

RG&E

SITE CHARACTERIZATION REPORT

Park Street Former MGP Site

Geneseo, New York

May 23, 2016

Micholog (Takano) Baye

Nicholas "Klaus" Beyrle Staff Geologist

lunder.

Scott Powlin Principal Geologist

Bruce W. ahrens

Bruce W. Ahrens Associate Vice President

SITE CHARACTERIZATION REPORT

Park Street Former MGP Site

Prepared for: RG&E 1300 Scottsville Road Rochester, New York 14624

Prepared by: Arcadis of New York, Inc. 295 Woodcliff Drive Third Floor Suite 301 Fairport New York 14450 Tel 585 385 0090 Fax 585 385 4198

Our Ref.: B0013138.0002 Date: May 23, 2016

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

SITE CHARACTERIZATION REPORT

CONTENTS

Ac	ronyms and Abbreviations	iv
1	Introduction	6
	1.1 Site Characterization Objectives	6
	1.2 Report Organization	7
	1.3 Site Description and History	7
	1.3.1 Site Description	7
	1.3.2 Site History	7
	1.4 Summary of Previous Environmental Actions	8
2	Site Characterization Activities	9
	2.1 Environmental Setting	9
	2.2 Locating Underground Utilities	9
	2.3 Site Surveys	.10
	2.3.1 Geophysical Survey	.10
	2.3.2 Site Planimetric Survey	.10
	2.4 Soil Investigation	.10
	2.4.1 Soil Borings	.10
	2.4.2 Laboratory Analysis of Soil Samples	.11
	2.5 Groundwater Investigation	.11
	2.5.1 Monitoring Well Installation	.11
	2.5.2 Monitoring Well Development	.12
	2.5.3 Fluid-Level Measurement	.12
	2.5.4 Groundwater Sampling and Laboratory Analysis	.13
	2.6 Soil Vapor Investigation	.13
	2.6.1 Soil Vapor Point Installation and Sampling	.13
	2.6.2 Laboratory Analysis of Soil Vapor Samples	.14
	2.7 Equipment Decontamination	.14
	2.8 Investigation-Derived Waste (IDW) Disposal	.14
	2.9 Data Usability Summary Reports	.15
3	Site Characterization Findings	.16

SITE CHARACTERIZATION REPORT

	3.1	Site G	eolog	у	
	3.2	Groun	dwate	er Flow	
	3.3	Observ	vation	s of MGP Impacts	
	3.4	Soil Q	uality.		17
	3	.4.1	VOC	s	17
	3	.4.2	SVO	Cs	17
	3	.4.3	Meta	Is and Cyanide	
	3	.4.4	Total	Petroleum Hydrocarbons	
	3.5	Groun	dwate	er Quality	
	3	.5.1	Total	Petroleum Hydrocarbons	
	3	.5.2	VOC	S	19
	3	.5.3	SVO	Cs	19
	3	.5.4	Meta	Is and Total Cyanide	19
	3	.5.5	Geod	chemical Analyses	
		3.5.	.5.1	Carbon Dioxide	20
		3.5.	.5.2	Methane	20
		3.5.	.5.3	Nitrate Nitrogen	20
		3.5.	.5.4	Sulfide	20
		3.5.	.5.5	Dissolved Iron (filtered)	21
		3.5.	.5.6	Dissolved Manganese (filtered)	21
	3.6	Soil Va	apor		21
4	Conc	lusion	S		
	4.1	Enviro	nmen	tal Setting	22
	4.2	Geolog	gy and	d Hydrogeology	
	4.3 I	Nature	and	Extent of Impacts	
	4	.3.1	Sour	ce Material	
	4	.3.2	Soil		
	4	.3.3	Grou	Indwater	23
	4	.3.4	Soil \	Vapor	23
	4	.3.5	NAP	L	23
5	Reco	mmen	datior	าร	24

6 R	eferences	25
-----	-----------	----

TABLES

Table 1. Well Construction Details
Table 2. Gauging Data
Table 3. Soil Analytical Results (Detected Analytes Only)
Table 3a. Soil Analytical Results (All Analytes)
Table 4. Groundwater Analytical Results (Detected Analytes Only)
Table 4a. Groundwater Analytical Results (All Analytes)
Table 5. Soil Vapor Analytical Results (Detected Analytes Only)

FIGURES

- Figure 1. Site Location Map
- Figure 2. Site Map
- Figure 3. Soil Boring, Monitoring Well, and Soil Vapor Locations
- Figure 4. Top of Competent Rock Contours
- Figure 5. Shallow Bedrock Groundwater Contours August 31, 2015
- Figure 6. Shallow Bedrock Groundwater Contours October 1, 2015
- Figure 7. Groundwater VOC Data
- Figure 8. Groundwater SVOC Data
- Figure 9. Soil VOC Data
- Figure 10. Soil SVOC Data
- Figure 11. Location of Proposed Monitoring Well MW-8

APPENDICES

- A Soil Boring and Monitoring Well Installation Logs
- B PTS Laboratories, Inc. Physical Properties Report
- C Soil Gas Sample Collection Logs
- D Data Usability Summary Report (DUSR)

ACRONYMS AND ABBREVIATIONS

ASP	Analytical Services Protocol
AU	attenuation units
BDL	below method detection levels
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
DER-10	Department of Environmental Remediation's Technical Guidance for Site Investigation and Remediation
DNAPL	Dense non-aqueous phase liquid
DOT	Department of Transportation
DUSR	Data usability Summary Reports
EDR	Environmental Data Resources, Inc.
ft/ft	feet/foot
IDW	investigation-derived waste
IRM	interim remedial measure
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
MGP	manufactured gas plant
MtBE	Methyl tertiary butyl ether
NAPL	non-aqueous phase liquids
NTU	nephelometric turbidity units
NYSDEC	New York State Department of Environmental Conservation
PAHs	polycyclic aromatic hydrocarbons
PID	photoionization detector
PVC	polyvinyl chloride
RGE	Rochester Gas & Electric
RQD	rock-quality designation
SCOs	Soil Cleanup Objectives
SCR	Site Characterization Report
SCWP	Site Characterization Work Plan
SMP	Site Management Plan

SITE CHARACTERIZATION REPORT

SUNY	State University of New York
SVOC	semivolatile organic compounds
TAL	Target Analyte List
TCL	Target Compound List
Test America	Test America Laboratories
TLM	tar-like material
TPH	Total Petroleum Hydrocarbons
µg/kg	micrograms per kilogram
µg/L	micrograms per liter
USEPA	United States Environmental Protection Agency
USTs	underground storage tanks
VOC	volatile organic compounds

1 INTRODUCTION

This *Site Characterization Report* (SCR) presents results from the Site Characterization activities completed at Rochester Gas & Electric's (RGE's) former manufactured gas plant (MGP) site located on Park Street in the Village of Geneseo, New York. The site is being investigated under the New York State Department of Environmental Conservation (NYSDEC) Voluntary Cleanup Agreement No. V00731.

The site characterization was conducted consistent with the NYSDEC-approved *Site Characterization Work Plan* (Arcadis, 2015) (SCWP). The SCWP includes a description of the characterization scope of work, along with detailed descriptions of the field techniques, sample collection methods and protocols, and safety monitoring requirements, along with reporting requirements. This SCR was prepared consistent with the requirements presented in the NYSDEC's Department of Environmental Remediation's *DER-10 Technical Guidance for Site Investigation and Remediation* dated May 2010 (DER-10).

The site characterization field activities included in the SCWP were completed from May 30 through September 4, 2015. In October 2015, preliminary results from the site characterization (tables and figures) were presented to the NYSDEC for discussion. Based on review of the preliminary data and subsequent discussion with RGE on October 30, 2015, additional gauging and sampling tasks were added to the site characterization activities. The additional characterization scope of work was described in an email correspondence to the NYSDEC dated November 17, 2016, and included:

- Conduct three gauging events at each monitoring well (MW-1 through MW-7) to document static fluid levels, fluid interface depths, and depth to bottom.
- Remove non-aqueous phase liquids (NAPL), where present.
- Collect a sample of NAPL for laboratory analysis of its physical properties.

The results from the additional gauging and sampling characterization tasks were provided to the NYSDEC on February 12, and subsequently discussed during a conference call on February 23, 2016. Based on the preliminary results, the NYSDEC issued a preliminary decision that no additional remediation is required at the site, and the site can be entered into the site management phase that will require additional monitoring and institutional controls. This SCR presents and fully discusses the information collected during the site characterization to support the conclusion that a remedial investigation is not required.

1.1 Site Characterization Objectives

The overall objectives of the site characterization were to:

- Gather sufficient data to evaluate whether MGP-related residuals are present in the subsurface.
- Determine whether MGP-related residual materials, if present, have a potential to pose a threat to
 public health or the environment.
- Determine whether a remedial investigation at the site is appropriate.

The balance of Section 1 presents the report organization, along with a site description and history, and a summary of previous environmental activities performed at the site.

1.2 Report Organization

The SCR has been organized into the following sections:

	Section	Purpose
Section 1 –	Introduction	Provides background information relevant to the development of the SCR and objectives of the site characterization.
Section 2 –	Site Characterization Activities	Describes the environmental setting, preliminary planning, and field activities related to the characterization of soil, groundwater, and soil vapor.
Section 3 –	Site Characterization Findings	Describes the field observations and laboratory results obtained during the site characterization.
Section 4 –	Conclusions	Presents conclusions developed based on the site characterization results.
Section 5 -	Recommendations	Presents recommendations for future activities for the site.
Section 6 -	References	Presents a list of the references cited in the SCR.

1.3 Site Description and History

1.3.1 Site Description

The Park Street former MGP site is located at 6 Park Street in the Village of Geneseo, Livingston County, New York (**Figure 1**). The former gas works operations covered approximately ³/₄ of an acre that was located on what is now the eastern side of the State University of New York (SUNY) Geneseo campus (**Figure 2**).

The site property, which is owned by SUNY, is bound on the north by commercial buildings and School Street; on the west by a SUNY academic building complex (the Brodie Fine Arts building), by Park Street on the south; and on the east by a SUNY parking lot and commercial buildings along the west side of Main Street. The Park Street site straddles the boundary between the village commercial district and the SUNY campus. Most of the area occupied by the former MGP is either paved or located under buildings. The eastern portion of the site is a paved parking lot (L-Lot), and the western portion is covered by a campus access road, buildings, and small landscaped area.

The Brodie Fine Arts building is a square building complex that includes an inner courtyard and a high-rise tower at the east side of the complex. Based on correlation between current campus maps and historical Sanborn Fire Insurance (Sanborn) maps, the east side of the former gas production building was located under the parking lot and access road, and the west side of the gas house and the gas holder was under the east end of the Brodie Fine Arts building.

1.3.2 Site History

Based on review of historical reports, the Park Street MGP was built on Park Street in 1860 and most likely produced gas by the coal carbonization process until January 1906. During this time the plant

consisted of one building, which presumably housed the gas retorts, and one gas holder. The 1900 Sanborn map shows a small electric generating plant further northeast of the MGP, on School Street. The 1906 Sanborn notes a small lime house (lime was often used in gas purification), a paint shop on the north side of the gas house, and a coal shed to the northeast (it is possible that the coal house was associated with the electric generating facility). The 1913 Sanborn map shows that the gas house and gas holder were gone from the site. The electric generating building is identified as a hardware store on the 1930 through 1949 Sanborn maps, and this building still remains today. A survey map dated 1973 identifies this building as a book store. The approximate locations of the historical MGP-related structures are shown on **Figure 2**.

The western portion of the site was acquired first by SUNY; however, the date of the acquisition is unknown. SUNY acquired the eastern portion around 1973.

1.4 Summary of Previous Environmental Actions

No previous investigations have been conducted at the site; however, a remediation of MGP-related source materials was completed by SUNY during a Park Street entrance improvement program when the east side of the property was developed as a parking lot.

In September 2002 during final preparation for paving of the parking lot, a stone/brick containment structure was discovered approximately 4 feet below ground surface (bgs) that contained a black tarry material. Based on comparison of available information, the structure appears to have been located between the north side of the former MGP works building and the south side of the former coal house; however, the structure does not appear on any historical mapping. From September, 2002 to January, 2003 the NYSDEC oversaw the excavation and off-site disposal of the structure, liquid material inside and outside the structure, and the surrounding soil containing visible impacts. During excavation, sidewall samples were collected for laboratory analysis. When laboratory results indicated an exceedance of the cleanup objective of 500 milligrams per kilogram (mg/kg) total polycyclic aromatic hydrocarbons (PAHs) and/or 10 mg/kg total benzene, toluene, ethylbenzene, and xylenes (BTEX), or when visible coal tar was encountered, excavation continued. Excavation sidewall and bottom sampling results were presented in the Report of Activities at LL-Lot (SUNY, 2003). The report indicated that only one sidewall sample (located on the north excavation sidewall) did not meet the 500 mg/kg objective for PAHs (549.7 mg/kg were reported at that location). The final excavation depth was approximately 20 feet bgs, terminating at the top of the fractured bedrock. An area near the center of the excavation was excavated an additional 5 feet into the fractured bedrock to approximately 25 feet bgs. Approximately 800 tons of tar-impacted soil and 3,200 gallons of impacted water that accumulated in the excavation were sent off site for disposal. The approximate location of the coal tar structure and the areal limits of the excavation are also shown on Figure 2. Structural fill was placed into the excavation and compacted. The remedial excavation was considered to be an interim remedial measure (IRM) by the NYSDEC.

2 SITE CHARACTERIZATION ACTIVITIES

This section summarizes site characterization field activities that were implemented by Arcadis between May 2015 and February 2016.

2.1 Environmental Setting

Sanborn maps indicate that several businesses, including a filling station and an auto sales and service center historically existed adjacent to, and upgradient from, the eastern site boundary (i.e., at a higher topographic elevation). In addition, during preparation of the SCWP, Arcadis contracted Environmental Data Resources, Inc. (EDR) to perform a search of available state and federal environmental records for the site and surrounding area. Relevant findings were included in the SCWP and included:

- State records indicate that there were 30 leaking underground storage tank and spills sites located hydraulically upgradient within approximately 0.5 mile of the site; the closest being at the corner of Main Street and Route 20A (approximately 300 feet hydraulically upgradient from the site).
- A site with registered underground storage tanks (USTs) existed at the corner of Park Street and Main Street (128 Main Street) approximately 70 feet hydraulically upgradient from the site. Approximately 400 tons of petroleum impacted soil was removed during removal of three USTs and bioremediated onsite.
- Three additional sites located immediately upgradient and to the east and southeast of the site underwent investigations upon discovery of petroleum impacts in subsurface soil:
 - 119 Main Street Encountered petroleum-impacted soil and subsequently removed approximately 500 to 1,000 tons of soil.
 - 120 Main Street Encountered petroleum-impacted soil during a subsurface investigation near abandoned tanks. EDR search results did not indicate if impacted soil had been removed or remediated.
 - 137 Main Street During service station upgrade activities, impacted soil was discovered during removal of two USTs. Impacted soil was removed, treated onsite, and disposed offsite.

Information from the EDR report was incorporated into the site characterization investigation strategy.

2.2 Locating Underground Utilities

Preliminary location of utilities was conducted during preparation of the base mapping associated with the SCWP. Prior to completing the base mapping surveys described below, NYS One Call (811) was contacted to identify and mark public utilities in the work area. In addition, SUNY Geneseo marked the locations of private underground utility lines the university had installed in and around parking Lot L (the anticipated area of subsurface investigation). These utilities were also located during the geophysical and site planimetric surveys described below, and included during the development of figures presented in this SCR.

NYS One Call (811) was contacted again to re-identify and re-mark public utilities in the work area prior to initiating any intrusive work associated with the site characterization.

2.3 Site Surveys

2.3.1 Geophysical Survey

As part of the development of the SCWP, a geophysical survey consisting of ground-penetrating radar and radio detection was conducted at the site from May 30 to 31, 2015 by Underground Services (SoftDig). The purpose of the geophysical survey was to locate subgrade public utilities and potential structures (e.g., former MGP structures), and confirm the locations of utility lines the university had installed and identified. The figure prepared by Underground Services (SoftDig) was included as Appendix I to the SCWP. The information has been compiled and incorporated into the site base map.

2.3.2 Site Planimetric Survey

A site survey was performed from May 31 to June 5, 2015 during the development of the SCWP to locate physical features and utilities within the anticipated investigation area with the intent of gathering information required to build a site base map. The survey was performed by Fisher Associates, a New York State-licensed surveyor. The survey area encompassed an area of approximately 7 acres, bounded by the east side of Main Street, the north side of School Street (extended), the south side of Park Street, and the western leg of College Circle. As stated above, prior to completing the base mapping survey NYS One Call (811) was contacted to identify and mark public utilities in the work area and SUNY Geneseo marked the locations of private underground utility lines the university had installed in and around the anticipated area of subsurface investigation. These utilities were also located by Fisher Associates. The site survey data were used to develop the figures presented in this SCR.

2.4 Soil Investigation

2.4.1 Soil Borings

Twelve soil borings were installed August 10 to 19, 2015 with seven soil borings completed as monitoring wells as shown on **Figure 3**. Four soil borings were advanced through the overburden to the top of competent bedrock (SB-1, SB-2, SB-3, and SB-5). The remaining seven soil borings were advanced through the overburden and up to 20 feet into competent bedrock, and completed as monitoring wells (MW-1 through MW-7). The purpose of the soil borings were to collect soil, bedrock, and groundwater data for assessing the presence of MGP-related impacts and to determine groundwater flow direction and gradient.

Soil borings in overburden materials at each location were advanced using a truck-mounted hollow-stem auger drilling rig with 6.25-inch inner diameter augers, and continuously sampled using 4-foot long by 2-inch diameter macrocore tooling in accordance with the procedures described in the SCWP. Soil recovered from each sampler was visually characterized for color, texture, moisture content, and headspace-screened with a photoionization detector (PID). The presence of visible staining, NAPL, and obvious odors observed in the soil was noted/recorded, if existing.

Soil borings were advanced to the top of competent bedrock which ranged from 8.3 to 18.5 feet bgs. Soil borings not completed as monitoring wells (SB-1, SB-2, SB-3, and SB-5) were abandoned by tremiegrouting to the surface; asphalt cold patch was used as the surface completion. Details regarding the installation and construction of monitoring wells is provided in **Section 2.4**. Installation logs for soil borings are provided in **Appendix A**. Top of competent bedrock contours are provided on **Figure 4**.

Drill cuttings from the installation of all soil borings were containerized in 55-gallon steel drums, staged onsite in secure containers (Conex boxes), and disposed as discussed in Section 2.8.

2.4.2 Laboratory Analysis of Soil Samples

Two soil samples were collected from each soil boing based on field observations during advancement. At each location, one sample was collected from the depth interval exhibiting visual/olfactory observations of MGP-related impacts (if observed) and/or the highest PID headspace reading. A second soil sample was collected from just above the soil/bedrock interface.

Soil samples were submitted under chain-of-custody to Test America Laboratories, Amherst, New York (Test America) for analysis of:

- Target Compound List (TCL) volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) SW-846 Method 8260B
- TCL semivolatile organic compounds (SVOCs) by USEPA SW-846 Method 8270C
- Target Analyte List (TAL) Metals by USEPA SW-846 Method 6010
- Total Cyanide by USEPA Method 9012A

In addition, one soil sample (from MW-3) that exhibited petroleum odors during drilling was collected for analysis of Total Petroleum Hydrocarbons (TPH).

Sample collection, handling, and shipping were completed consistent with SCWP requirements. The laboratory provided standard turn-around for reporting of NYSDEC Analytical Services Protocol (ASP) Category B-equivalent data packages.

2.5 Groundwater Investigation

2.5.1 Monitoring Well Installation

Seven soil borings were completed as monitoring wells (MW-1 through MW-7). The location of the monitoring wells are shown on **Figure 3**. Soil borings were first advanced to the top of competent bedrock and soil samples collected for laboratory analysis as described above. Once the top of competent bedrock was identified, the upper two feet was cored, logged, and reamed out with a 6-inch roller bit to create a 2-foot long socket in the bedrock into which 4-inch steel casing was set and grouted. Each location was cased with permanent 4-inch steel casing from approximately 0.5 feet bgs to 2 feet into bedrock to create a riser. The grouted 4-inch casing was allowed to set overnight before rock coring was continued. At each monitoring well location, bedrock was then cored using HQ coring tools to 20 feet below the bottom of the 4-inch casing (22 feet below the top of bedrock). Rock cores were logged in accordance with methods described in the SCWP, and cores were placed in core boxes for retention and storage by RGE.

With the exception of MW-5, monitoring wells were completed using open-hole construction (i.e., no screen or seal materials), cased using the 4-inch steel casing set 2 feet into the bedrock socket, and constructed with 20 feet of bedrock exposed in each well. Dense non-aqueous phase liquid (DNAPL) was identified in the bedrock at MW-5. Per the SCWP, MW-5 was constructed using 2-inch diameter, 20-foot long, Schedule 40 polyvinyl chloride (PVC), 0.020-inch slotted well screen from 20-30 feet bgs, # 2 silica sand from 19-30 feet bgs and 19.5 feet of 2-inch diameter, Schedule 40 PVC riser to just below ground surface. In addition, MW-5 was installed with a five foot long, 2-inch diameter, Schedule 40 PVC well sump grouted into bedrock. All monitoring well locations were completed at the surface with locking well caps and flush-mounted road boxes set into concrete. Construction details for the monitoring wells are provided in **Appendix A**.

2.5.2 Monitoring Well Development

Following installation, monitoring wells were developed by surging and pumping to remove fine-grained material that may have accumulated in the well during installation from recirculated drilling fluid and to ensure connection to the bedrock aquifer.

Groundwater was pumped from each location and, due to a high pumping rate versus recharging rate, was ultimately pumped dry. Locations were allowed to recharge and then pumped dry again. Turbidity measurements were collected at periodic intervals during development of each well. Readings were high and ranged from 2,000 attenuation units (AU) to exceeding the range of the meter (4000 AU). Turbidity AU are directly comparable to nephelometric turbidity units (NTU) with the only difference being the angle at which scattered light is measured (90° versus 180°, respectively). At turbidity levels higher than approximately 600 NTUs, AU's are the preferred unit of measure.

2.5.3 Fluid-Level Measurement

As required by the SCWP, two gauging events were conducted to measure static groundwater levels to confirm groundwater flow direction beneath the site and determine the presence/absence of NAPL. These two gauging events were conducted on August 31 and October 1, 2015. Contours of groundwater elevation data for these two events are presented on **Figure 5** and **Figure 6**, respectively. The figures show that groundwater flow direction during both events is to the west-northwest (toward the Genesee River) with a gradient of approximately 0.05 feet/foot (ft/ft) during both events. The groundwater flow direction is generally consistent with the slope of the bedrock surface.

During the October 1, 2015 (i.e., second) gauging event, 0.4 feet of tar-like material was observed in the sump at monitoring well MW-5. Based on discussions with the NYSDEC during an October 30, 2015 conference call to discuss the preliminary results from the site characterization, additional gauging and sampling tasks were added to the site characterization activities. Three additional site visits were subsequently conducted to gauge MW-5 and the remaining site wells over the following 6 week period, remove any NAPL present, and monitor whether NAPL continued to accumulate in MW-5. These three additional gauging visits were conducted December 17, 2015, January 5, 2016 and February 4, 2016. During the December 17, 2015 gauging event, a sample of NAPL was collected from MW-5 and submitted to PTS Laboratories, Inc. (PTS) located in Santa Fe Springs, CA for analysis of physical properties, including dynamic viscosity, density and surface and interfacial tension. A copy of the PTS report is included as **Appendix B**.

All groundwater and NAPL removed from MW-5 was containerized in a Department of Transportation-(DOT-) approved 5-gallon plastic bucket with ratchet-locking lid and staged in a secure area located on SUNY Geneseo campus for proper disposal by RGE.

2.5.4 Groundwater Sampling and Laboratory Analysis

Groundwater samples were collected from seven monitoring wells (MW-1 through MW-7) on August 31, 2015. Initially, the well headspace was screened with a PID and fluid levels and depth to bottom measurements were collected from each location. Wells were purged and sampled using a bladder pump via low-flow sampling procedures detailed in the SCWP. Once stabilization parameters had been met, groundwater samples were collected in laboratory supplied containers and submitted under chain of custody to Test America for analysis of:

- Total Petroleum Hydrocarbons by USEPA Method 310.13
- TCL VOCs by USEPA SW-846 Method 8260B
- TCL SVOCs by USEPA SW-846 Method 8270C
- TAL Metals by USEPA SW-846 Method 6000/7000
- Total Cyanide by USEPA Method 9013A
- Miscellaneous Geochemical Analyses by Various Methods

Sample collection, handling, and shipping were completed consistent with SCWP requirements. The laboratory provided standard turn-around for reporting of NYSDEC ASP Category B-equivalent data packages.

2.6 Soil Vapor Investigation

Soil vapor samples were collected on September 2, 2015 from seven locations (SV-1 through SV-7) around the vicinity of the former MGP structures. Specifically, soil vapor samples were collected along the exterior of the eastern facade of the Brodie Fine Arts building, along the west side of the Brodie Fine Arts building within the courtyard, and north of the area excavated by SUNY in 2002/2003. The locations of the seven soil vapor sampling locations are also shown on **Figure 3**.

2.6.1 Soil Vapor Point Installation and Sampling

Soil vapor sampling points were installed in borings created using a bucket auger to create an approximately 3 inch diameter boring to a depth of approximately 4 feet bgs. For each location, Teflon[™]-lined light density polyethylene tubing was attached to a 12-inch-long stainless-steel mesh screen (i.e., implant) that was positioned at the bottom of the borehole. Fine-grained sand (US Silica #2) was placed in the annulus of the hole around the screen, followed by 3-inches of US Silica #00 "choker" sand and hydrated bentonite chips that were emplaced in 6-inch lifts to the surface. At the surface, a shroud was placed over the location, sealed to the ground and around the sample tubing, filled with helium, and the sample point was purged and tested for evidence of short-circuiting (helium). Once the location was purged per procedures in the SCWP and any short-circuiting issues were corrected, the location was ready for sample collection.

At each soil vapor sampling location, a laboratory batch-certified 6-liter SUMMA[®] canister was connected to the sampling tube and canisters were run for approximately six hours or until the canister pressure read between -9 and -6 inches or mercury. Additional details regarding the soil vapor sampling procedures can be found in the SCWP; sample collection details are included on the soil vapor sample collection field logs provided in **Appendix C**.

2.6.2 Laboratory Analysis of Soil Vapor Samples

SUMMA canisters were submitted in one batch under chain-of-custody to Test America located in Burlington, Vermont for analysis of the project-specific analyte list:

- USEPA Compendium Method TO-15
- N-alkanes
- Isopropyl benzene
- Naphthalene
- Branched alkanes
- Indicator compounds

Sample collection, handling, and shipping were completed consistent with SCWP requirements. The laboratory provided standard turn-around for reporting of NYSDEC ASP Category B-equivalent data packages.

2.7 Equipment Decontamination

After each soil boring and monitoring well location was installed, drill stem equipment was decontaminated on a temporarily constructed decontamination pad by pressure stem cleaning. Drill tooling used for sample collection was decontaminated after each sample was removed and before it was use to collected the next interval.

Reusable groundwater sampling equipment (i.e., bladder pump) and soil vapor boring installation equipment (i.e., bucket auger, post hole digger) were decontaminated using procedures detailed in the SCWP.

Fluids generated as a result of equipment decontamination were containerized in 55-gallon steel drums.

2.8 Investigation-Derived Waste (IDW) Disposal

IDW generated during implementation of the SCWP were containerized in DOT-approved 55-gallon drums, labeled appropriately, and temporarily staged in a secure Conex-type container. RGE arranged to have KBH Environmental, LLC (KBH) collect waste characterization samples and drums were transported and disposed of off-site September 2, 2015.

DNAPL removed from MW-5 was containerized in a DOT-approved 5-gallon plastic bucket with ratchetlocking lid and staged in a secure area located on SUNY Geneseo campus. RGE also arranged for KBH to pick up and transport the bucket for off-site disposal.

2.9 Data Usability Summary Reports

The analytical data packages and associated Quality Assurance/Quality Control information for the soil, groundwater, and soil vapor samples were reviewed to determine if they met the project-specific criteria for data quality and data use as identified in the Quality Assurance Project Plan. The complete record of each of these samples' history were reviewed from the time of sample collection, to arrival at the laboratory, processing and analysis at the laboratory, and sample receipt and reporting. Upon completion of the data usability summary review, Data usability Summary Reports (DUSRs) were prepared. The DUSRs are included as **Appendix D**. The results from the data review have been incorporated into the analytical summary tables. The DUSRs indicate that the data collected during the site characterization are determined generally usable for the purposes of the site characterization.

3 SITE CHARACTERIZATION FINDINGS

This section presents a summary of the site characterization results.

3.1 Site Geology

Regional surficial geological maps indicate that native overburden material in the Geneseo area is likely glacial till (Cadwell, 1988). Bedrock beneath the site is mapped as middle to upper Devonian aged shale and limestone (Fisher et al., 1970). Depth and thickness ranges for stratigraphic units vary across the site and are a result of the grade elevation change across the site (difference in grade elevation between MW-3 and MW-7 is 17.7 feet) and the IRM excavation completed in 2003. The general stratigraphic profile consists of fill underlain by till deposits which are underlain by weathered bedrock and competent bedrock. Drilling completed during implementation of the SCWP indicates fill material at the site varies from less than 2 feet bgs to 9 feet bgs and is generally observed to be thicker near former MGP structures (SB-3 and SB-5). Beneath the fill is a medium to very dense till unit with varying amounts of clay and gravel from approximately 2 to 14.5 feet bgs. Bedrock at the site is shale with a weathered bedrock surface observed from approximately 8 to 18.5 feet bgs. The thickness of the weathered bedrock ranges from approximately 0.3 to 6 feet, depending on location. Generally, the upper 10 feet of competent bedrock was observed to be highly fractured with low rock-quality designation (RQDs) percentages (less than 50%). Bedrock below this depth exhibited RQDs generally above 85% and contained primarily horizontal iointing along bedding planes with few low angle joint sets (10-15 degrees) and few high angle joint sets (80 degrees to vertical). Some joints exhibited secondary mineralization or solution-widening. The bedrock surface slopes to the west-northwest at an approximate 5% slope.

3.2 Groundwater Flow

The depth to the water table beneath most of the site is approximately 10 to 15 feet bgs; however, where the grade elevation is substantially lower in the western portion off the site (i.e., near MW-7) the depth to the water table is approximately 6 feet bgs. Water-level gauging data indicate that the water table lies slightly above the top of competent bedrock, within the weathered bedrock or lower portion of the overburden. Given the relatively low RQDs observed in the upper approximately 10 feet of competent bedrock and the presence of a highly fractured weathered bedrock zone, it is reasonable to assume the that majority of groundwater flow beneath the site is within the weathered bedrock and upper 10 feet of competent rock. Gauging data collected during the August and October 2015 gauging events indicate that groundwater flow is to the west-northwest, in the direction of the Genesee River and slope of the bedrock surface. Based on review of the contours shown on **Figure 5** and **Figure 6**, the horizontal hydraulic gradient across the site is estimated at approximately 0.05 ft/ft. It is reasonable to assume that the surface topography of the bedrock exerts some control on shallow groundwater flow.

3.3 Observations of MGP Impacts

Observations of MGP impacts were limited. A small interval of soil containing tar-like material (TLM) was observed from 5 to 5.5 feet bgs at MW-1. The TLM was stiff and weathered (i.e., not 'free-product') and observed in soil that appeared to be re-worked and used as backfill for the IRM excavation completed in 2002/2003.

Trace oil-like material was observed in bedrock fractures at MW-5 at 20.2 feet bgs, 20.2 to 20.6 feet bgs, and 21.7 feet bgs. These fractures are located near the top of competent bedrock. It is assumed that the DNAPL accumulating in the sump installed at MW-5 is likely originating from these fractures.

3.4 Soil Quality

A total of 22 soil samples were collected from the 11 soil borings for laboratory analysis. Soil analytical results are provided in **Table 3** (detected results only). The complete list of the reported analytes for each laboratory analytical method is included in **Table 3a**. Results for each of the analyses are compared to the 6 NYSRR Part 375 Unrestricted Use Soil Cleanup Objectives (SCOs) and Restricted Commercial Use SCOs, where appropriate. For ease of reference when reviewing the summary table:

- Detected analytes are presented in bold font.
- Reported values that exceed Unrestricted Use SCOs have gray shading.
- Reported values that exceed Restricted Commercial Use SCOs have yellow shading.

Discussions of the analytical results are presented below.

3.4.1 VOCs

Results from the VOC analyses are presented on **Figure 9**. VOCs were detected in 20 of the 22 soil samples. Total VOC concentrations ranged from below method detection levels (BDL) for two samples to 23,840 micrograms per kilogram (μ g/kg). None of the samples contained VOCs that exceeded Restricted Commercial Use SCOs. BTEX were the only VOCs that exceeded Unrestricted Use SCOs (toluene in one sample; ethylbenzene in two samples; benzene in three samples, and; xylenes in four samples). The two samples with the highest reported VOC concentrations were collected from SB-2 (7 to 9 feet bgs) and MW-3 (7 to 9 feet bgs). Both SB-2 and MW-3 are located hydraulically upgradient from the former MGP structures.

Methylcyclohexane, xylenes (total), and cyclohexane were the most prevalent VOCs detected in subsurface soil. Methylcyclohexane was detected in 13 of the 22 soil samples; xylenes (total) were detected in 12 of the 25 soil samples, and; cyclohexane was detected in 10 of the 25 samples. Methylcyclohexane, cyclohexane, and xylenes are commonly present in weathered gasoline. Methyl tertiary butyl ether (MtBE), an octane enhancing gasoline additive used since 1979 to help prevent engine knocking, was detected in soil samples collected from MW-3 and MW-6.

3.4.2 SVOCs

Results from the SVOC analyses are presented on **Figure 10**. SVOCs were detected in 12 of the 22 soil samples. Total SVOC concentrations ranged from BDL for 12 samples to 741,900 μ g/kg in the soil sample collected from MW-1 (5 to 7 feet bgs). Monitoring well MW-1 is believed to be located within the backfill of the former excavation area. This sample was the only sample to exceed the 500 mg/kg (500,000 μ g/kg) total SVOCs excavation objective defined during the 2002/2003 IRM.

Six soil samples collected from four soil boring/monitoring well locations (MW-1, MW-4, MW-5, and SB-5) contained SVOCs that exceeded Unrestricted Use SCOs; five of these six samples also contained at least

one analyte that exceeded Restricted Commercial Use SCOs. Fluoranthene, phenanthrene, and pyrene were the SVOCs detected in the highest relative concentrations in subsurface soil. PAHs represent a significant percentage of the total SVOCs reported. The highest concentrations of SVOCs/PAHs were detected within or adjacent to the western side of the former IRM excavation area; the lowest concentrations of SVOCs/PAHs were reported in soil samples collected from the eastern side of the excavation.

3.4.3 Metals and Cyanide

Analytical results for metals and cyanide are summarized in **Table 3**. Metals were detected in all 22 samples and total cyanide was detected in 6 of the 22 samples. Six metals (arsenic, cyanide, lead, mercury, nickel, and zinc) were detected at concentrations above Unrestricted Use SCOs. Two metals (arsenic and cyanide) were also detected above Restricted Commercial Use SCOs; however, both arsenic and cyanide only exceeded SCOs at one location each. Arsenic was detected above its Restricted Commercial Use SCO in a sample collected from MW-4 at 5 to 7 feet bgs; cyanide was detected above its Restricted Commercial Use SCO in a sample collected from SB-5 at 9 to 11 feet bgs.

Nickel was the only metal present that was consistently above its Unrestricted Use SCO (30 mg/kg) across the site (20 of 22 samples). However, nickel was not detected at concentrations above its Restricted Commercial Use SCO in any samples. Concentrations of nickel were consistent across the study area (ranging from 20.8 mg/kg to 54.2 mg/kg) and could be attributable to background influences (e.g., naturally present in bedrock or soils). Mercury only exceeded its Unrestricted Use SCO at one location in a sample collected from 5 to 7 feet bgs. Zinc and lead exceeded their Unrestricted Use SCOs at three locations in samples collected from 5 to 14 feet bgs.

3.4.4 Total Petroleum Hydrocarbons

Petroleum-like odors were observed during advancement of MW-3 and a soil sample was collected from 7 to 9 feet bgs. The sample was submitted for laboratory analysis for the presence of TPH, including extractable organics in the diesel range and purgable organics in the gasoline range. Results from the TPH analysis are also summarized in **Table 3**. The results indicate that petroleum hydrocarbons in the range of gasoline, motor oils, kerosene, and diesel fuel were present in the sample. Hydrocarbons in the range of gasoline were present in the highest relative concentration (210 mg/kg), followed closely by motor oils (160 mg/kg), diesel fuel 150 mg/kg), and kerosene (140 mg/kg).

3.5 Groundwater Quality

A round of groundwater samples was collected on August 31, 2015 from the six monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-6, and MW-7) that did not contain NAPL. As stated above, approximately 0.4 feet of DNAPL was measured in monitoring well MW-5 during the August sampling event.

Discussions of the analytical results are presented below.

3.5.1 Total Petroleum Hydrocarbons

Results from the TPH analyses from the collected groundwater samples are summarized in **Table 4**. Note that the analytical results from the sample collected from MW-1 was rejected due to a holding time exceedance by the laboratory.

The presence of extractable hydrocarbons associated with petroleum products were reported at three monitoring wells, including MW-4 (360 micrograms per liter [μ g/L]), MW-6 (0.370 μ g/L), and MW-7 (410 μ g/L). The petroleum hydrocarbons at MW-3 and MW-7 were reported to be in the range of gasoline. The potential parent petroleum hydrocarbon at MW-6 was unknown.

3.5.2 VOCs

The detected VOC analytes in groundwater are summarized in **Table 4** (detected analytes only); a complete list of the VOCs reported by the laboratory analytical method is included in **Table 4a**. The VOC analytical results are also presented on **Figure 7**.

VOCs were detected in each of the six samples. The highest relative concentrations of VOCs were detected at MW-7 (162 μ g/L), MW-4 (126 μ g/L), and MW-6 (113 μ g/L). As stated above, the petroleum hydrocarbons at MW-7 were reported to be indicative of gasoline. Benzene, ethylbenzene, and xylenes were the only VOC analytes detected above their respective NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 groundwater standards (benzene and ethylbenzene were only slightly above their respective standards). Benzene, ethylbenzene, and xylenes were detected above their respective groundwater standards at four of the six wells, including MW-1, MW-4, MW-6, and MW-7.

The VOCs detected in the highest relative concentrations were cyclohexane, methylcyclohexane, and xylenes. Cyclohexane and methylcyclohexane were the only analytes detected in groundwater at each of the six monitoring wells. Cyclohexane, methylcyclohexane, and xylenes are commonly present in weathered gasoline.

3.5.3 SVOCs

The detected SVOC analytes in groundwater are summarized in **Table 4** (detected analytes only); a complete list of the SVOCs reported by the laboratory analytical method is also included in **Table 4a**. The SVOC analytical results are also presented on **Figure 8**.

Total SVOCs ranged from BDL at MW-1 to 29 μ g/L at MW-3. None of the SVOCs were present above their respective NYSDEC TOGS 1.1.1 groundwater guidance values. Caprolactam was the SVOC detected at the highest relative concentrations. Caprolactam is not related to MGP operations. No PAHs were detected in any of the groundwater samples except for naphthalene at MW-7. Naphthalene was detected at a concentration of 1.2 μ g/L, well below its guidance value of 10 μ g/L.

3.5.4 Metals and Total Cyanide

The results metals and cyanide detected in groundwater samples are summarized in **Table 4**. Three metals (sodium, magnesium, and iron) were detected above their respective groundwater standards at all locations sampled. Barium was also present above its groundwater standard in samples collected from MW-2 and MW-3. Sodium and iron were detected at elevated concentrations in soil across the site (no

SCOs exist for either of these metals). Iron concentrations in native soil ranged from 11,000 mg/kg to 27,300 mg/kg, and sodium concentrations ranged from 173 mg/kg to 916 mg/kg. These metals; therefore, are likely elevated in background groundwater due to native soil and/or bedrock characteristics. Similarly, barium and magnesium were also present in soil across the site; however, at concentrations below unrestricted use SCOs.

For evaluation of natural attenuation parameters, two of the groundwater samples were also laboratory filtered and analyzed for iron and manganese. When compared to the non-filtered results, the dissolved iron concentrations were lower by 2 to 3 orders of magnitude, and below the groundwater standard. The laboratory-filtered manganese results were very similar to the non-filtered results; however, both filtered and non-filtered results were well below the groundwater standard.

Total cyanide was not detected in groundwater samples collected from the any of the six monitoring wells.

3.5.5 Geochemical Analyses

Groundwater samples were collected from monitoring wells MW-3 and MW-4 to evaluate natural attenuation processes. The samples were analyzed for carbon dioxide, methane, nitrate nitrogen, and sulfide as geochemical indicators and byproducts. The results from the geochemical analyses are also summarized in **Table 4**.

3.5.5.1 Carbon Dioxide

An accumulation of the end product carbon dioxide is a universal indicator of hydrocarbon biodegradation. Carbon dioxide concentrations in groundwater ranged from 16,000 μ g/L at upgradient well MW-3 to 24,000 μ g/L at cross-gradient well MW-4.

3.5.5.2 Methane

Methane is an end product produced during methanogenesis. Methanogenesis generally occurs after oxygen, nitrate, and sulfate have been depleted within the dissolved plume. The presence of methane in groundwater is indicative of strongly reducing conditions. Because methane is not present in fuels or MGP-related impacts, the presence of methane in groundwater is indicative of microbial degradation of hydrocarbons. Methane concentrations in groundwater ranged from 5,100 μ g/L at monitoring well MW-3 to 6,000 μ g/L at monitoring well MW-4.

3.5.5.3 Nitrate Nitrogen

When dissolved oxygen is depleted within a dissolved plume, nitrate is the next most favorable electronacceptor. Nitrate was not detected in groundwater collected from either upgradient well MW-3 or downgradient well MW-4.

3.5.5.4 Sulfide

After dissolved oxygen and nitrate have been depleted within the dissolved plume, sulfate may be used as an electron acceptor for anaerobic degradation. This process is termed sulfate reduction and results in the

production on sulfide. Sulfide was not detected in groundwater collected from either upgradient well MW-3 or downgradient well MW-4.

3.5.5.5 Dissolved Iron (filtered)

Groundwater samples were collected from MW-3 and MW-4 and sent to the laboratory for filtering and analysis of iron. Samples were filtered to remove suspended material so that results for only dissolved iron would be reported. In some cases, iron (III) is used as an electron acceptor during anaerobic biodegradation of hydrocarbons. During this process, iron (III) is reduced to iron (II), which may be soluble in water. Iron (II) concentrations can thus be used as an indicator of anaerobic biodegradation of hydrocarbons. Dissolved iron concentrations in groundwater were reported as 0.0260 milligrams per liter (mg/L) at monitoring well MW-3 and below detection levels at monitoring well MW-4.

3.5.5.6 Dissolved Manganese (filtered)

Groundwater samples were collected from MW-3 and MW-4 and also sent to the laboratory for filtering and analysis of manganese. Similar to the analysis for dissolved iron, samples were filtered to remove suspended material so that results for only dissolved manganese would be reported. Dissolved manganese is generated by reducing conditions that develop during anaerobic biodegradation of hydrocarbons. Dissolved manganese concentrations in groundwater were reported as 0.0600 mg/L at monitoring well MW-3 and 0.220 mg/L at monitoring well MW-4.

3.6 Soil Vapor

Results from the TO-15 analyses from the collected soil vapor samples are summarized in **Table 5** (detected analytes only); a complete list of the VOCs reported by the laboratory analytical method is also included in **Table 5a**.

The highest concentration of VOCs in soil gas was detected at SV-3; the lowest concentration was reported at SV-1 located northeast from the former excavation area. In general, BTEX compounds were detected in much lower concentrations than were chlorinated VOCs. Acetone and chloroform were the VOCs detected in the highest frequencies (i.e., in each of the seven soil vapor samples) and in the highest relative concentrations. Fourteen (14) chlorinated compounds were detected, with at least 1 chlorinated compound detected in each of the samples.

None of the "MGP-indicator" analytes included with the TO-15 analyses (indene, isooctane, or thiopenes) were detected in any of the soil gas samples.

Six of the detected analytes (butane, isopentane, pentane, n-hexane, n-heptane, and 2,2,4trimethylpentane) are commonly used as "gasoline indicators". Gasoline indicators were reported in 6 of the 7 soil vapor samples (gasoline indicators were not present in soil gas collected from SV-6).

4 CONCLUSIONS

Discussions of pertinent conclusions based on the results from the site characterization activities are presented below.

4.1 Environmental Setting

The environmental setting of the Park Street former MGP and surrounding area has been sufficiently defined. The site straddles the boundary between the village commercial district and the SUNY campus. State and Federal records document multiple petroleum spills and leaking underground storage tanks upgradient from the site, which in addition to the MGP-related impacts, have impacted site soil and groundwater. MtBE was detected in two soil samples, and preliminary hydrocarbon fingerprinting of soil and groundwater identified gasoline range organics as the primary petroleum hydrocarbons present.

4.2 Geology and Hydrogeology

Geology at the site has been sufficiently characterized to understand the site conceptual model. Material at the site is generally fill, underlain by a medium to very dense till, underlain by weathered and competent middle to upper Devonian shale bedrock.

Gauging data indicates that groundwater flow is to the west-northwest at an average of 0.05 ft/ft. Groundwater is not observed in overburden material and is instead observed in bedrock which is acting as a partially confined artesian aquifer.

4.3 Nature and Extent of Impacts

4.3.1 Source Material

MGP-related source material was removed by SUNY Geneseo between September 2002 and January 2003 under the guidance of the NYSDEC. A stone/brick underground containment structure, approximately 800 tons of MGP-impacted soil, and 3,200 gallons of impacted water that accumulated in the excavation were transported off site for disposal. Excavation sidewall samples were collected for laboratory analysis. The excavation depths ranged between approximately 20 to 25 feet bgs, terminating at the top of competent bedrock. The soil analytical results collected during the site characterization confirm that the horizontal limits of source material were successfully removed during the excavation IRM. The location of the source removal excavation is shown on **Figure 2**.

4.3.2 Soil

The nature and extent of MGP-related impacts in soil has been sufficiently defined. Laboratory analysis of subsurface soil samples indicated that all locations outside the former excavation area had concentrations of total PAHs below 500 mg/kg (the remediation goal identified during the 2002/2003 soil removal IRM). The highest concentrations of VOCs detected in soil were located east and hydraulically upgradient from the former MGP facility, and several petroleum indicators, including MtBE, were prevalent. The predominance of methylcyclohexane, xylenes (total), and cyclohexane, common components of

weathered gasoline, along with the presence of MtBE and results from the petroleum hydrocarbon analyses, suggests that petroleum may be the primary source of VOCs detected in soil within the study area.

4.3.3 Groundwater

The nature and extent of MGP-related impacts in groundwater have been sufficiently defined. None of the PAH analytes traditionally associated with MGP operations were present above their respective groundwater guidance values; BTEX analytes, where existing, were only slightly above groundwater standards. Similar to VOCs in soil, the predominance of methylcyclohexane, xylenes (total), and cyclohexane and results from the petroleum hydrocarbon analyses, suggests that petroleum is the primary source of VOCs detected in groundwater within the study area.

The concentrations of carbon dioxide present in groundwater, along with the presence of dissolved methane and manganese, suggests that natural attenuation processes are occurring in groundwater.

4.3.4 Soil Vapor

While concentrations of VOCs were detected in soil vapor samples collected from across the site, no MGP indicator compounds were present in any of the 7 soil vapor samples. Gasoline indicators were present in 6 of the 7 soil vapor samples collected from across the site. Chlorinated compounds were detected in the highest relative concentrations; chlorinated compounds are not associated with MGP operations.

Based on the types of analytes detected, no evidence of MGP impacts exist in the soil vapor.

4.3.5 NAPL

A seam of MGP-related NAPL was detected within the weathered bedrock at one location during installation of MW-5; MW-5 is located immediately west of the former excavation IRM. Subsequent gauging of MW-5 indicates NAPL is accumulating within the well sump. Evidence of NAPL was not detected during the installation or subsequent gauging events of monitoring wells located to the north (MW-4) or south (MW-6).

5 RECOMMENDATIONS

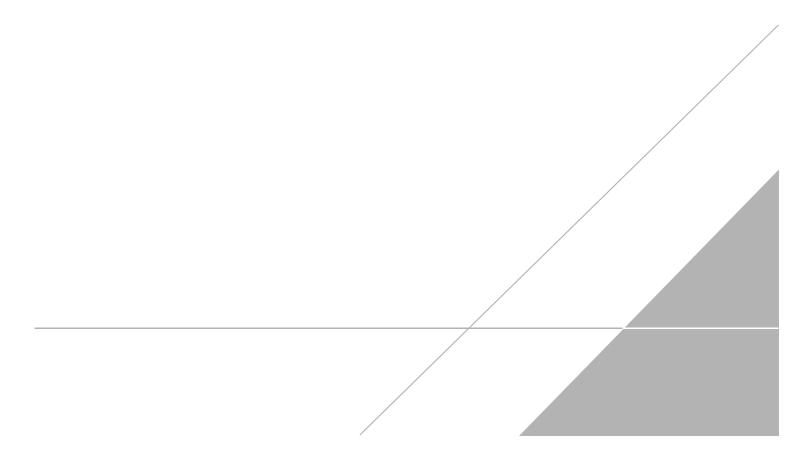
Based on the source material IRM conducted in 2003/2003 and results from the site characterization completed at the Park Street former MGP site, a remedial investigation is not required. The following two recommendations; however, are presented:

Install One Additional Monitoring Well (MW-8). Monitoring well MW-8 would be located west of the
access road at an accessible location south of soil vapor point SV-3. The final location of MW-8 would
be dependent upon the locations of utilities and accessibility. The objective of installing MW-8 is to
assess the presence of NAPL in the bedrock adjacent to the Brodie Fine Arts building.

The proposed location of MW-8 is shown on **Figure 11**. The well will be installed through the overburden and up to 20 feet into competent bedrock, similar to MW-1 through MW-7, and as described in the FSP. Prior to any intrusive activities, NYS One Call (811) will be contacted again to re-identify and re-mark public utilities in the work area. No overburden soil samples will be collected for laboratory analyses. Upon completion, MW-8 will be surveyed for location and elevations, and information added to the site map. A soil boring/monitoring well log will be created and forwarded to the NYSDEC. Community air monitoring will be performed as required by the CAMP,

• **Prepare a Site Management Plan.** Environmental impacts exist at the site that require monitoring. A site-specific Site Management Plan (SMP) will be developed in accordance with DER-10 (Section 6.2) requirements using the template available on the NYSDEC's website. A draft SMP will be provided to the Department for review within 60 days of approval of this SCR (completed environmental easements, if required, will not be included in the draft SMP).

SITE CHARACTERIZATION REPORT


6 **REFERENCES**

- Cadwell, D.H. 1988. Surficial geologic map of New York; Niagara Sheet, 1988. New York State Museum Map and Chart Series No. 40, scale 1:250,000
- D.W. Fisher, Y.W. Isachsen, and L.V. Rickard. 1970. Geologic Map of New York State: Niagara Sheet, New York State Museum and Science Service, Map and Chart Series No. 15, scale 1:250000.
- Geneseo Department of Environmental Health and Safety. 2003. Report of Activities at LL-Lot, SUNY Geneseo. June 2003.

Arcadis, 2015. Site Characterization Work Plan. July 2015

New York State Department of Environmental Conservation, 2010. DER-10 Technical Guidance for Site Investigation and Remediation. May 2010.

TABLES

Table 1 Well Construction Details

Site Characterization Report Rochester Gas and Electric Former Park Street MGP Site

Well ID	Northing Coordinate	Easting Coordinate	Ground Surface Elevation	Top of Weathered Bedrock (feet bgs)	Top of Weathered Bedrock Elevation	Top of Competant Bedrock (feet bgs)	Top of Competant Bedrock Elevation	Screened Interval (ft bgs)	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)
MW-1	1353704.55	1019330.354	758.42	11.0	747.42	14.5	743.92	16.5-36.5	758.41	35.84
MW-2	1353766.155	1019308.138	760.29	13.0	747.29	15.0	745.29	17-37	760.25	36.65
MW-3	1353780.054	1019260.673	761.65	10.5	751.15	11.0	750.65	13-33	761.66	32.54
MW-4	1353683.744	1019399.011	756.07	14.5	741.57	18.5	737.57	20.5-40.5	756.18	39.70
MW-5	1353666.221	1019333.488	757.63			17.5	740.13	20-30	757.82	34.90
MW-6	1353655.223	1019280.819	757.55	9.0	748.55	15.0	742.55	17-37	757.73	37.39
MW-7	1353502.948	1019379.851	743.96	8.0	735.96	8.3	735.66	10.5-30.5	744.07	29.28

Notes:

1. bgs - feet below ground surface

2. TOC - top of casing

3. Northing and Easting Coordinates in reference to the New York State Plane Coordinate Systemm West Zone, 1983 North American Datum (NAD83)

4. Elevations in feet above mean sea level (ft amsl), 1988 North American Vertical Datum (NAVD88)

5. MW-5 was installed with a 5-foot long PVC sump

6. -- Indicates weathered bedrock was not identified at this location.

Table 2 Gauging Data

Site Characterization Report Rochester Gas and Electric Geneseo Park Street Former MGP Site

Well ID	Ground Surface Elevation	Monitored Interval* (ft bgs)	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
					8/31/2015	15.85	742.56		35.65	0.19
					10/1/2015	14.57	743.84		35.83	0.01
MW-1	758.42	16.5-36.5	758.41	35.84	12/17/2015	9.90	748.51		35.82	0.02
					1/5/2016	8.92	749.49		35.84	0.00
					2/4/2016	9.32	749.09		35.80	0.04
					8/31/2015	11.22	749.03		36.70	-0.05
					10/1/2015	10.73	749.52		36.70	-0.05
MW-2	760.29	17-37	760.25	36.65	12/17/2015	9.43	750.82		36.70	-0.05
					1/5/2016	9.40	750.85		36.72	-0.07
					2/4/2016	9.37	750.88		36.70	-0.05
					8/31/2015	12.20	749.46		32.58	-0.04
					10/1/2015	11.82	749.84		32.59	-0.05
MW-3	761.65	13-33	761.66	32.54	12/17/2015	10.45	751.21		32.57	-0.03
					1/5/2016	10.38	751.28		32.68	-0.14
					2/4/2016	10.43	751.23		32.56	-0.02
					8/31/2015	15.02	741.16		39.74	-0.04
					10/1/2015	15.27	740.91		39.72	-0.02
MW-4	756.07	20.5-40.5	756.18	39.70	12/17/2015	15.69	740.49		39.72	-0.02
					1/5/2016	16.09	740.09		39.75	-0.05
					2/4/2016	15.90	740.28		39.74	-0.04
					8/31/2015	16.04	741.78		34.72	0.18
					10/1/2015	16.38	741.44	34.49	34.89	0.01
MW-5	757.63	20-30	757.82	34.90	12/17/2015	17.09	740.73	33.80	34.90	0.00
					1/5/2016	16.45	741.37	34.74	35.09	-0.19
					2/4/2016	17.48	740.34	34.79	35.09	-0.19
					8/31/2015	15.64	742.09		37.35	0.04
					10/1/2015	15.73	742.00		37.35	0.04
MW-6	757.55	17-37	757.73	37.39	12/17/2015	15.90	741.83		37.33	0.06
					1/5/2016	15.96	741.77		37.33	0.06
					2/4/2016	16.11	741.62	-	37.35	0.04
					8/31/2015	6.37	737.70		29.94	-0.66
					10/1/2015	5.86	738.21		30.00	-0.72
MW-7	743.96	10.5-30.5	744.07	29.28	12/17/2015	6.57	737.50		29.95	-0.67
					1/5/2016	6.24	737.83	-	30.02	-0.74
					2/4/2016	6.43	737.64		30.04	-0.76

Notes:

ft bgs - feet below ground surface

TOC - top of casing

Elevations in feet above mean sea level (ft amsl), 1988 North American Vertical Datum (NAVD88).

Monitoring wells MW-1, MW-2, MW-3, MW-4, MW-6 and MW-7 are open bedrock wells; MW-5 is screened from 20 to 30 feet bgs and has a 5 foot long sump.

* Monitored Interval is 2 feet below top of competent bedrock to bottom of hole (MW-1, MW-2, MW-3, MW-4 MW-6, and MW-7) or to top of sump (MW-5)

Table 3 Soil Analytical Results (Detected Analytes Only)

Site Characterization Report Rochester Gas and Electric Geneseo Park Street Former MGP Site

Location ID:		Restricted Use		MW-1	MW-1	MW-2	MW-2	MW-3	MW-3	MW-4	MW-4	MW-5	MW-5	MW-6	MW-6	MW-7	MW-7	SB-1	SB-1	SB-2	SB-2	SB-3	SB-3	SB-5	SB-5
Sample Depth(Feet BGS):	Unrestricted Use SCOs	SCOs	Units	5 - 7	9 - 11	5 - 7	9 - 13	7 - 9	9 - 10.2	5 - 7	13 - 14.5	10 - 12	12 - 14	9 - 11	13 - 14.2	4 - 6	6 - 8.3	7 - 9	9 - 11	7 - 9	9 - 11	7 - 9	9 - 11	9 - 11	11 - 13.5
Date Collected:		Commercial		08/11/15	08/11/15	08/12/15	08/12/15	08/13/15	08/13/15	08/10/15	08/10/15	08/11/15	08/11/15	08/12/15	08/12/15	08/12/15	08/12/15	08/13/15	08/13/15	08/13/15	08/13/15	08/13/15	08/13/15	08/14/15	08/14/15
Volatile Organic Compounds																									
1,2-Dichloroethane	20	30,000	μg/kg	4.0 U	4.9 U	3.8 U	0.32 J	410 U	1.6 J	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Acetone	50	500,000	μg/kg	35	8.4 J	22 UB	18 U	2,000 U	15 U	29 UJ	40 J	14 J	28	21 U	6.4 J	20 UB	19 UB	17 U	20 UB	1,700 U	18 UB	18 U	19 UB	19 U	18 UB
Benzene	60	44,000	μg/kg	2,300 D	0.72 J	3.8 U	3.7 U	100 J	2.0 J	5.9 UJ	4.1 UJ	48	6,000 D	0.39 J	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	2.4 J	3.6 U	3.7 U	1.2 J	1.8 J
Cyclohexane			μg/kg	2.5 J	4.9 U	3.8 U	3.7 U	1,500 J	23	5.9 UJ	4.1 UJ	2.4 J	3.3 J	4.2 U	2.5 J	4.0 U	3.8 U	3.4 U	2.7 J	5,000 J	2,300 D	3.6 U	2.4 J	3.8 U	3.6 U
Ethylbenzene	1,000	390,000	μg/kg	92	4.9 U	3.8 U	3.7 U	2,500 J	1.5 J	5.9 UJ	4.1 UJ	47	5,900 D	0.33 J	4.1 U	4.0 U	0.91 J	3.4 U	3.9 U	370	37	3.6 U	3.7 U	3.8 U	0.57 J
Isopropylbenzene			μg/kg	19	4.9 U	3.8 U	3.7 U	320 J	3.1 U	5.9 UJ	4.1 UJ	4.0	14	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	370	22	3.6 U	3.7 U	3.8 U	3.6 U
Methyl tert-butyl ether	930	500,000	μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	7.9	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	0.70 J	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Methylcyclohexane			μg/kg	3.1 J	4.9 U	0.91 J	3.7 U	4,900 J	25	5.9 UJ	4.1 UJ	3.1 J	4.6	4.2 U	2.6 J	4.0 U	2.4 J	3.4 U	2.7 J	17,000	7,600 D	2.3 J	2.5 J	3.8 U	3.6 U
Methylene Chloride	50	500,000	μg/kg	4.0 U	4.9 U	3.8 UJ	3.7 UJ	410 UJ	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 UJ	3.8 U	3.4 U	3.9 U	750 UBJ	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Styrene			μg/kg	63	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	14	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	0.70 J	3.6 U
Toluene	700	500,000	μg/kg	6,100 D	1.4 J	0.52 J	3.7 U	410 U	0.25 J	5.9 UJ	4.1 UJ	5.9	59	4.2 U	0.43 J	4.0 U	3.8 U	3.4 U	3.9 U	350 U	10	3.6 U	3.7 U	2.6 J	3.6 U
Xylenes (total)	260	500,000	μg/kg	950	1.6 J	1.2 J	7.4 U	14,000 J	5.6 J	12 UJ	8.1 UJ	170	480	8.4 U	8.2 U	1.0 J	6.4 J	6.8 U	7.9 U	1,100	67	7.1 U	7.5 U	3.5 J	7.2 U
Total BTEX			μg/kg	9,442	3.7 J	1.7 J	BDL	16,600 J	9.4 J	BDL	BDL	271	12,439	0.72 J	0.43 J	1.0 J	7.3 J	BDL	BDL	1,470	116 J	BDL	BDL	7.3 J	2.4 J
Total Volatile Organic Compounds (VOCs)			μg/kg	9,565 J	12.1 J	2.63 J	0.32 J	23,320 J	66.5 J	BDL	40 J	294 J	12,503 J	0.72 J	12.6 J	1.0 J	9.71 J	BDL	5.4 J	23,840 J	10,038 J	2.3 J	4.9 J	8.0 J	2.37 J
Semivolatile Organic Compounds													T 1										1		
2,4-Dimethylphenol			μg/kg	5,300	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
2-Methylnaphthalene			μg/kg	60,000	200 U	920 U	1,800 U	1,200 J	3,600 U	2,100 U	200 U	5,300	1,700 J	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
2-Methylphenol	330	500,000	μg/kg	3,600 J	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
4-Methylphenol	330	500,000	μg/kg	5,900 J	390 U	1,800 U	3,600 U	7,000 U	7,000 U	4,000 U	380 U	3,700 U	3,500 U	350 U	1,700 U	1,900 U	18,000 U	4,000 U	7,700 U	3,600 U	6,800 U	1,400 U	17,000 U	41,000 UJ	7,800 U
Acenaphthene	20,000	500,000	μg/kg	9,700	200 U	920 U	1,800 U	3,600 U	3,600 U	770 J	200 U	2,600	840 J	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Acenaphthylene	100,000	500,000	μg/kg	11,000	200 U	920 U	1,800 U	3,600 U	3,600 U	910 J	200 U	12,000	3,500	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	8,600 J	4,000 U
Anthracene	100,000	500,000	μg/kg	33,000	200 U	920 U	1,800 U	3,600 U	3,600 U	3,600	200 U	20,000	6,400	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	18,000 J	4,000 U
Benzo(a)anthracene	1,000	5,600	μg/kg	30,000	200 U	920 U	1,800 U	3,600 U	3,600 U	14,000	70.0 J	20,000	11,000	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	36,000 J	800 J
Benzo(a)pyrene	1,000	1,000	μg/kg	20,000	200 U	920 U	1,800 U	3,600 U	3,600 U	16,000	120 J	15,000	7,400	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	30,000 J	740 J
Benzo(b)fluoranthene	1,000	5,600	μg/kg	22,000	200 U	920 U	1,800 U	3,600 U	3,600 U	18,000	160 J	17,000	8,400	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	32,000 J	4,000 U
Benzo(g,h,i)perylene	100,000	500,000	μg/kg	9,100	200 U	920 U	1,800 U	3,600 U	3,600 U	11,000	70.0 J	7,200	3,400	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	16,000 J	4,000 U
Benzo(k)fluoranthene	800	56,000	μg/kg	9,200	200 U	920 U	1,800 U	3,600 U	3,600 U	8,700	200 U	7,800	4,900	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	25,000 J	4,000 U
Biphenyl			μg/kg	9,400	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	3,200	970 J	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
bis(2-Ethylhexyl)phthalate			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	130 J	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Carbazole			μg/kg	9,500	200 U	920 U	1,800 U	3,600 U	3,600 U	1,200 J	200 U	4,300	1,100 J	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	2,500 J	4,000 U
Chrysene	1,000	56,000	μg/kg	23,000	84.0 J	920 U	1,800 U	3,600 U	3,600 U	12,000	87.0 J	15,000	7,800	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	45,000 J	1,200 J
Dibenzo(a,h)anthracene	330	560	μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	94.0 J	3,000	2,000	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	5,000 J	4,000 U
Dibenzofuran	7,000	350,000	μg/kg	28,000	200 U	920 U	1,800 U	3,600 U	3,600 U	650 J	200 U	13,000	3,600	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	4,400 J	4,000 U
Fluoranthene	100,000	500,000	μg/kg	58,000	200 U	920 U	1,800 U	3,600 U	3,600 U	18,000	93.0 J	39,000	20,000	180 U	890 U	980 U	9,300 U	340 J	4,000 U	1,800 U	3,500 U	740 U	8,900 U	82,000 J	1,800 J
Fluorene	30,000	500,000	μg/kg	35,000	200 U	920 U	1,800 U	3,600 U	3,600 U	1,100 J	200 U	18,000	5,300	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	8,800 J	4,000 U
Indeno(1,2,3-cd)pyrene	500	5,600	μg/kg	9,200	200 U	920 U	1,800 U	3,600 U	3,600 U	11,000	100 J	7,400	4,000	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	15,000 J	4,000 U
Naphthalene	12,000	500,000	μg/kg	160,000 D	200 U	920 U	1,800 U	940 J	3,600 U	600 J	200 U	27,000	9,600	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Phenanthrene	100,000	500,000	μg/kg	140,000 D	200 U	920 U	1,800 U	3,600 U	3,600 U	9,400	47.0 J	44,000	16,000	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	59,000 J	1,700 J
Pyrene	100,000	500,000	μg/kg	51,000	200 U	920 U	1,800 U	3,600 U	3,600 U	16,000	83.0 J	30,000	15,000	180 U	890 U	980 U	9,300 U	280 J	4,000 U	1,800 U	3,500 U	740 U	8,900 U	71,000 J	1,300 J
Total Polycyclic Aromatic Hydrocarbons (PAHs)			μg/kg	620,200	84.0 J	BDL	BDL	940 J	BDL	141,080 J	924 J	285,000	125,540	BDL	BDL	BDL	BDL	620 J	BDL	BDL	BDL	BDL	BDL	451,400 J	7,540 J
Total Semivolatile Organic Compounds (SVOCs)			μg/kg	741,900 J	84.0 J	BDL	BDL	2,140 J	BDL	142,930 J	1,054 J	310,800	132,910 J	BDL	BDL	BDL	BDL	620 J	BDL	BDL	BDL	BDL	BDL	458,300 J	7,540 J

Table 3 Soil Analytical Results (Detected Analytes Only)

Site Characterization Report Rochester Gas and Electric Geneseo Park Street Former MGP Site

Location ID: Sample Depth(Feet BGS): Date Collected:	Unrestricted Use SCOs	Restricted Use SCOs Commercial	Units	MW-1 5 - 7 08/11/15	MW-1 9 - 11 08/11/15	MW-2 5 - 7 08/12/15	MW-2 9 - 13 08/12/15	MW-3 7 - 9 08/13/15	MW-3 9 - 10.2 08/13/15	MW-4 5 - 7 08/10/15	MW-4 13 - 14.5 08/10/15	MW-5 10 - 12 08/11/15	MW-5 12 - 14 08/11/15	MW-6 9 - 11 08/12/15	MW-6 13 - 14.2 08/12/15	MW-7 4 - 6 08/12/15	MW-7 6 - 8.3 08/12/15	SB-1 7 - 9 08/13/15	SB-1 9 - 11 08/13/15	SB-2 7 - 9 08/13/15	SB-2 9 - 11 08/13/15	SB-3 7 - 9 08/13/15	SB-3 9 - 11 08/13/15	SB-5 9 - 11 08/14/15	SB-5 11 - 13.5 08/14/15
Petroleum Hydrocarbons			•			•									•	•									
Diesel, Fuel Oil #2, C10-C23			mg/kg	NA	NA	NA	NA	150	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fuel Oil #4			mg/kg	NA	NA	NA	NA	18.0 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fuel Oil #6			mg/kg	NA	NA	NA	NA	18.0 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline			mg/kg	NA	NA	NA	NA	210	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Kerosene			mg/kg	NA	NA	NA	NA	140	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Motor Oils			mg/kg	NA	NA	NA	NA	160	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Unknown Hydrocarbon1			mg/kg	NA	NA	NA	NA	18.0 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics			-																						
Aluminum			mg/kg	16,600 J	17,100 J	11,200 J	16,700 J	10,400 J	12,700 J	9,860 J	17,800 J	16,400 J	15,300 J	15,100 J	17,900 J	20,300 J	15,700 J	12,600	15,500	11,200	12,800	14,400	14,100	17,300	18,600
Antimony			mg/kg	17.8 UJ	17.5 UJ	16.6 UJ	16.3 UJ	15.8 UJ	15.1 UJ	18.7 UJ	16.7 UJ	0.990 J	16.8 UJ	15.6 UJ	15.9 UJ	16.6 UJ	16.8 UJ	19.0 U	17.5 U	0.650 J	16.0 U	16.2 U	15.7 U	18.6 U	18.0 U
Arsenic	13	16	mg/kg	2.20 J	2.90	3.60	4.00	3.60	3.60	23.9	6.60	3.90	4.80	2.80	3.50	2.40	5.60	7.30	3.40	3.70	4.00	4.10	3.80	5.00	3.60
Barium	350	400	mg/kg	66.3 J	86.4 J	55.3 J	67.7 J	44.3 J	47.2 J	95.3 J	63.9 J	168 J	69.5 J	98.9 J	58.8 J	75.1 J	57.8 J	92.7	54.9	48.3	99.5	71.1	63.6	123	76.6
Beryllium	7.2	590	mg/kg	0.820	0.830	0.550	0.820	0.490	0.640	0.900	0.950	0.820	0.750	0.760	0.920	0.880	0.740	0.580	0.790	0.590	0.690	0.750	0.750	0.860	0.960
Cadmium	2.5	9.3	mg/kg	0.0370 J	0.0410 J	0.0940 J	0.0340 J	0.140 J	0.0720 J	0.290	0.130 J	0.0530 J	0.260	0.0560 J	0.210 U	0.0740 J	0.160 J	0.150 J	0.0640 J	0.0610 J	0.210 U	0.220 U	0.0360 J	0.610	0.0570 J
Calcium			mg/kg	56,600 J	45,300 J	72,200 J	53,400 J	54,500 J	59,200 J	49,500 J	12,900 J	40,000 J	35,000 J	45,300 J	22,600 J	37,500 J	46,500 J	24,000	37,900	60,400	71,300	56,300	47,600	8,180	11,400
Chromium			mg/kg	24.7 J	26.1 J	16.8 J	24.3 J	15.1 J	19.2 J	15.7 J	26.6 J	24.8 J	22.9 J	22.9 J	27.2 J	26.4 J	24.3 J	16.8	25.3	17.5	20.2	22.4	22.3	23.9	28.8
Cobalt			mg/kg	13.5	13.7	10.4	15.4	10.8	12.5	6.50	15.4	14.9	14.5	13.4	14.7	8.70	10.7	8.60	15.1	10.8	12.2	14.2	15.5	12.2	17.1
Copper	50	270	mg/kg	27.8	28.0	27.7 J	30.5 J	32.1 J	28.0 J	49.0	42.2	26.6	31.0	27.0	28.3	17.3 J	34.1 J	27.4	27.1	26.5	29.1	29.2	28.0	18.4	27.0
Cyanide	27	27	mg/kg	1.10 U	0.860 J	1.10 U	1.10	1.00 U	1.10 U	5.80	1.10 U	2.90	3.80	1.00 U	1.00 U	1.10 U	1.10 U	1.20 U	1.20 U	1.10 U	1.00 U	1.10 U	1.00 U	469	1.20 U
Iron			mg/kg	20,200 J	23,800 J	16,500 J	21,400 J	15,500 J	18,300 J	11,000 J	27,100 J	23,800 J	24,300 J	21,300 J	24,100 J	19,300 J	21,100 J	17,100	24,500	17,100	19,700	21,400	21,700	23,300	27,300
Lead	63	1,000	mg/kg	10.1	10.1	12.2	12.2	12.2	13.8	138	22.3	10.9	14.3	9.70	11.8	9.10	13.2	130	13.4	12.2	13.4	12.1	11.4	63.6	13.5
Magnesium			mg/kg	7,830 J	8,340 J	17,200 J	7,380 J	12,700 J	9,390 J	3,640 J	6,780 J	7,800 J	7,460 J	7,400 J	9,170 J	7,770 J	6,450 J	6,110	8,300	11,100	7,240	7,540	7,570	5,550	7,880
Manganese	1,600	10,000	mg/kg	345 J	333 J	321 J	410 J	368 J	345 J	197 J	285 J	302 J	284 J	295 J	269 J	254 J	249 J	332	355	349	388	361	360	389	307
Mercury	0.18	2.8	mg/kg	0.0230	0.0140 J	0.0190	0.0180 J	0.00890 J	0.0170 J	0.200	0.0320	0.0300	0.0200	0.0170 J	0.0150 J	0.0570	0.0260	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	30	310	mg/kg	43.3	44.5	34.0	42.2	32.4	38.9	20.8	54.2	42.1	41.0	40.4	42.9	36.7	46.8	24.8	45.4	34.2	39.1	42.9	41.6	35.7	48.0
Potassium			mg/kg	3,650 J	3,470 J	2,750 J	3,850 J	2,700 J	3,070 J	1,450 J	3,840 J	3,550 J	3,030 J	3,110 J	3,980 J	4,200 J	3,520 J	2,720	3,000	2,510	2,990	3,020	3,010	2,960	3,120
Selenium	3.9	1,500	mg/kg	4.70 U	4.70 U	4.40 U	0.500 J	4.20 U	4.00 U	0.560 J	4.50 U	1.00 J	4.50 U	4.10 U	0.460 J	0.780 J	2.10 J	0.580 J	4.70 U	1.00 J	0.440 J	4.30 U	0.650 J	0.730 J	4.80 U
Sodium			mg/kg	226	212	524	235	173	234	736	173	523	472	427	240	186	189	916	627	407	264	642	327	752	321
Vanadium			mg/kg	21.6 J	20.9 J	17.7 J	21.8 J	17.6 J	19.1 J	21.9 J	24.7 J	20.8 J	18.7 J	19.2 J	22.7 J	26.7 J	25.7 J	21.8	19.7	16.9	17.1	18.6	17.7	27.6	23.9
Zinc	109	10,000	mg/kg	56.1 J	71.7 J	57.7 J	56.2 J	66.2 J	50.8 J	135 J	90.5 J	69.9 J	203 J	75.4 J	52.2 J	64.7 J	82.1 J	99.9	76.0	52.4	50.8	50.8	63.5	887	79.0

Notes:

1. Samples were submitted to Test America, Amherst, New York for analysis using USEPA SW-846 Methods 8260B (VOCs), 8270D (SVOCs), 6010C (Inorganics), 9012B (Total Cyanide), 310.13 (Hydrocarbon Identification).

2. Samples from monitoring wells MW-3 and MW-4 were submitted to Test America, Amherst, New York for additional analysis of carbon dioxide, methane, sulfide, nitrate, nitrite, and dissolved iron and manganese.

3. Results are presented in units of micrograms per liter (µg/L) and milligrams per liter (mg/L), as identified.

4. J - Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).

5. U - Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.

6. UB - Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.

7. D - Compound quantitated using a secondary dilution.

8. NA - not analyzed

9. BDL - Below method detection limits.

10. BGS - Below ground surface.

11. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.

12. Gray Shading indicates the result exceeds NYSDEC Part 375 Soil Cleanup Objectives (SCO) for Unrestricted use (Unrestricted use SCO).

13. Yellow Shading indicates the result exceeds NYSDEC Part 375 Soil Cleanup Objectives (SCO) for Commercial use (Commercial use SCO).

14. -- Indicates a standard or guidance value does not exist for the respective analyte.

Table 3a Soil Analytical Results

Site Characterization Plan Rochester Gas and Electric Geneseo Park Street Former MGP Site

Location ID:		Restricted Use		MW-1	MW-1	MW-2	MW-2	MW-3	MW-3	MW-4	MW-4	MW-5	MW-5	MW-6	MW-6	MW-7	MW-7	SB-1	SB-1	SB-2	SB-2	SB-3	SB-3	SB-5	SB-5
Sample Depth(Feet BGS):	Unrestricted Use SCOs	SCOs	Units	5 - 7	9 - 11	5 - 7	9 - 13	7 - 9	9 - 10.2	5 - 7	13 - 14.5	10 - 12	12 - 14	9 - 11	13 - 14.2	4 - 6	6 - 8.3	7-9	9 - 11	7-9	9 - 11	7-9	9 - 11	9 - 11	11 - 13.5
Date Collected:	Use SCUS	Commercial		08/11/15	08/11/15	08/12/15	08/12/15	08/13/15	08/13/15	08/10/15	08/10/15	08/11/15	08/11/15	08/12/15	08/12/15	08/12/15	08/12/15	08/13/15	08/13/15	08/13/15	08/13/15	08/13/15	08/13/15	08/14/15	08/14/15
Volatile Organic Compounds							•	•					•												
1,1,1-Trichloroethane	680	500,000	μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
1,1,2,2-Tetrachloroethane			μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 UJ	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
1,1,2-trichloro-1,2,2-trifluoroethane			μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
1,1,2-Trichloroethane			μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
1,1-Dichloroethane	270	240,000	μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
1,1-Dichloroethene	330	500,000	μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
1,2,4-Trichlorobenzene			μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 UJ	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
1,2-Dibromo-3-chloropropane			μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 UJ	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 UJ	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 UJ	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
1,2-Dibromoethane			μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 UJ	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
1,2-Dichlorobenzene	1,100	500,000	μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 UJ	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
1,2-Dichloroethane	20	30,000	μg/kg μg/kg	4.0 U 4.0 U	4.9 U 4.9 U	3.8 U 3.8 U	0.32 J 3.7 U	410 U 410 U	1.6 J 3.1 U	5.9 UJ 5.9 UJ	4.1 UJ 4.1 UJ	3.8 U 3.8 U	3.7 U 3.7 U	4.2 U 4.2 U	4.1 U 4.1 U	4.0 U 4.0 U	3.8 U 3.8 U	3.4 U 3.4 U	3.9 U 3.9 U	350 U 350 U	3.7 U 3.7 U	3.6 U 3.6 U	3.7 U 3.7 U	3.8 U 3.8 U	3.6 U 3.6 U
1,2-Dichloropropane 1,3-Dichlorobenzene	2,400	280,000	μg/kg μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 UJ	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
1,4-Dichlorobenzene	1,800	130,000	μg/kg μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 UJ	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
2-Butanone	120	500,000	μg/kg	4.0 U	4.3 U	19 U	18 U	2,000 U	15 U	29 UJ	20 UJ	19 U	19 U	4.2 03 21 UJ	21 U	4:0 U	19 U	17 U	20 U	1,700 U	18 UB	18 U	19 U	19 U	18 U
2-Hexanone			μg/kg	20 U	24 U	19 U	18 U	2,000 U	15 U	29 UJ	20 UJ	19 U	19 U	21 U	21 U	20 U	19 U	17 U	20 U	1,700 U	18 U	18 U	10 U	19 U	18 U
4-Methyl-2-pentanone			μg/kg	20 U	24 U	19 U	18 U	2,000 U	15 U	29 UJ	20 UJ	19 U	19 U	21 UJ	21 U	20 U	19 U	17 U	20 U	1,700 U	18 U	18 U	19 U	19 U	18 U
Acetone	50	500,000	μg/kg	35	8.4 J	22 UB	18 U	2,000 U	15 U	29 UJ	40 J	14 J	28	21 U	6.4 J	20 UB	19 UB	17 U	20 UB	1,700 U	18 UB	18 U	19 UB	19 U	18 UB
Benzene	60	44,000	μg/kg	2,300 D	0.72 J	3.8 U	3.7 U	100 J	2.0 J	5.9 UJ	4.1 UJ	48	6,000 D	0.39 J	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	2.4 J	3.6 U	3.7 U	1.2 J	1.8 J
Bromodichloromethane			μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Bromoform			μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 UJ	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 UJ	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 UJ	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Bromomethane			μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Carbon Disulfide			μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Carbon Tetrachloride	760	22,000	μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Chlorobenzene	1,100	500,000	μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Chloroethane			μg/kg	4.0 U	4.9 U	3.8 UJ	3.7 UJ	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 UJ	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Chloroform	370	350,000	μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Chloromethane		500.000	μg/kg	4.0 U	4.9 U 4.9 U	3.8 UJ 3.8 U	3.7 UJ	410 U 410 U	3.1 U 3.1 U	5.9 UJ	4.1 UJ 4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 UJ	3.8 U	3.4 U 3.4 U	3.9 U 3.9 U	350 U	3.7 U	3.6 U	3.7 U 3.7 U	3.8 U	3.6 U 3.6 U
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	250	500,000	μg/kg μg/kg	4.0 U 4.0 U	4.9 U	3.8 U	3.7 U 3.7 U	410 U	3.1 U	5.9 UJ 5.9 UJ	4.1 UJ 4.1 UJ	3.8 U 3.8 U	3.7 U 3.7 U	4.2 U 4.2 U	4.1 U 4.1 U	4.0 U 4.0 U	3.8 U 3.8 U	3.4 U 3.4 U	3.9 U 3.9 U	350 U 350 U	3.7 U 3.7 U	3.6 U 3.6 U	3.7 U	3.8 U 3.8 U	3.6 U
Cyclohexane			μg/kg μg/kg	4.0 0 2.5 J	4.9 U	3.8 U	3.7 U	1,500 J	23	5.9 UJ	4.1 UJ	2.4 J	3.3 J	4.2 U	2.5 J	4.0 U	3.8 U	3.4 U	2.7 J	5,000 J	2,300 D	3.6 U	2.4 J	3.8 U	3.6 U
Dibromochloromethane			μg/kg	4.0 UJ	4.9 UJ	3.8 U	3.7 U	410 UJ	3.1 UJ	5.9 UJ	4.1 UJ	3.8 UJ	3.7 UJ	4.2 UJ	4.1 UJ	4.0 U	3.8 UJ	3.4 UJ	3.9 UJ	350 UJ	3.7 UJ	3.6 UJ	3.7 UJ	3.8 UJ	3.6 UJ
Dichlorodifluoromethane			μg/kg	4.0 UJ	4.9 UJ	3.8 U	3.7 U	410 UJ	3.1 UJ	5.9 UJ	4.1 UJ	3.8 UJ	3.7 UJ	4.2 UJ	4.1 UJ	4.0 U	3.8 UJ	3.4 UJ	3.9 UJ	350 U	3.7 UJ	3.6 UJ	3.7 UJ	3.8 UJ	3.6 UJ
Ethylbenzene	1,000	390,000	μg/kg	92	4.9 U	3.8 U	3.7 U	2,500 J	1.5 J	5.9 UJ	4.1 UJ	47	5,900 D	0.33 J	4.1 U	4.0 U	0.91 J	3.4 U	3.9 U	370	37	3.6 U	3.7 U	3.8 U	0.57 J
Isopropylbenzene			μg/kg	19	4.9 U	3.8 U	3.7 U	320 J	3.1 U	5.9 UJ	4.1 UJ	4.0	14	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	370	22	3.6 U	3.7 U	3.8 U	3.6 U
Methyl acetate			μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Methyl tert-butyl ether	930	500,000	μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	7.9	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	0.70 J	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Methylcyclohexane			μg/kg	3.1 J	4.9 U	0.91 J	3.7 U	4,900 J	25	5.9 UJ	4.1 UJ	3.1 J	4.6	4.2 U	2.6 J	4.0 U	2.4 J	3.4 U	2.7 J	17,000	7,600 D	2.3 J	2.5 J	3.8 U	3.6 U
Methylene Chloride	50	500,000	μg/kg	4.0 U	4.9 U	3.8 UJ	3.7 UJ	410 UJ	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 UJ	3.8 U	3.4 U	3.9 U	750 UBJ	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Styrene			μg/kg	63	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	14	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	0.70 J	3.6 U
Tetrachloroethene	1,300	150,000	μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
	700	500,000	μg/kg	6,100 D	1.4 J	0.52 J	3.7 U	410 U	0.25 J	5.9 UJ	4.1 UJ	5.9	59	4.2 U	0.43 J	4.0 U	3.8 U	3.4 U	3.9 U	350 U	10	3.6 U	3.7 U	2.6 J	3.6 U
trans-1,2-Dichloroethene	190	500,000	μg/kg	4.0 U	4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
trans-1,3-Dichloropropene	470		μg/kg	4.0 U	4.9 U 4.9 U	3.8 U	3.7 U	410 U	3.1 U	5.9 UJ	4.1 UJ 4.1 UJ	3.8 U	3.7 U	4.2 U	4.1 U	4.0 U	3.8 U	3.4 U	3.9 U	350 U	3.7 U	3.6 U	3.7 U	3.8 U	3.6 U
Trichloroethene Trichlorofluoromethane	470	200,000	μg/kg μg/kg	4.0 U 4.0 U	4.9 U 4.9 U	3.8 U 3.8 U	3.7 U 3.7 U	410 U 410 U	3.1 U 3.1 U	5.9 UJ 5.9 UJ	4.1 UJ 4.1 UJ	3.8 U 3.8 U	3.7 U 3.7 U	4.2 U 4.2 U	4.1 U 4.1 U	4.0 U 4.0 U	3.8 U 3.8 U	3.4 U 3.4 U	3.9 U 3.9 U	350 U 350 U	3.7 U 3.7 U	3.6 U 3.6 U	3.7 U 3.7 U	3.8 U 3.8 U	3.6 U 3.6 U
Vinyl Chloride	20	13,000	µg/кg µg/kg	4.0 U	4.9 U 4.9 U	3.8 U 3.8 U	3.7 U 3.7 U	410 U 410 U	3.1 U 3.1 U	5.9 UJ 5.9 UJ	4.1 UJ 4.1 UJ	3.8 U 3.8 U	3.7 U 3.7 U	4.2 U 4.2 U	4.1 U 4.1 U	4.0 U	3.8 U 3.8 U	3.4 U 3.4 U	3.9 U 3.9 U	350 U 350 U	3.7 U 3.7 U	3.6 U 3.6 U	3.7 U 3.7 U	3.8 U 3.8 U	3.6 U 3.6 U
Xylenes (total)	260	500,000	μg/kg μg/kg	950	4.90 1.6 J	1.2 J	7.4 U	14,000 J	5.6 J	12 UJ	4.1 UJ	170	480	4.2 U	4.1 U	4.0 0 1.0 J	6.4 J	6.8 U	7.9 U	1,100	67	7.1 U	7.5 U	3.5 J	7.2 U
Total BTEX			μg/kg	9,442	3.7 J	1.2 J	BDL	16,600 J	9.4 J	BDL	BDL	271	12,439	0.72 J	0.43 J	1.0 J	7.3 J	BDL	BDL	1,470	116 J	BDL	BDL	7.3 J	2.4 J
Total Volatile Organic Compounds (VOCs)			μg/kg μg/kg	9,565 J	12.1 J	2.63 J	0.32 J	23,320 J	66.5 J	BDL	40 J	294 J	12,503 J	0.72 J	12.6 J	1.0 J	9.71 J	BDL	5.4 J	23,840 J	10.038 J	2.3 J	4.9 J	8.0 J	2.4 J
Semivolatile Organic Compounds	•							. ,					. ,							,					
2,4,5-Trichlorophenol			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
2,4,6-Trichlorophenol			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
2,4-Dichlorophenol			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
	•	•							=																

Table 3a Soil Analytical Results

Site Characterization Plan Rochester Gas and Electric Geneseo Park Street Former MGP Site

Location ID:		Destricted Has		MW-1	MW-1	MW-2	MW-2	MW-3	MW-3	MW-4	MW-4	MW-5	MW-5	MW-6	MW-6	MW-7	MW-7	SB-1	SB-1	SB-2	SB-2	SB-3	SB-3	SB-5	SB-5
Sample Depth(Feet BGS):	Unrestricted	Restricted Use SCOs	Units	5 - 7	9 - 11	5 - 7	9 - 13	7 - 9	9 - 10.2	5 - 7	13 - 14.5	10 - 12	12 - 14	9 - 11	13 - 14.2	4 - 6	6 - 8.3	7-9	9 - 11	7 - 9	9 - 11	7-9	9 - 11	9 - 11	11 - 13.5
Date Collected:	Use SCOs	Commercial		08/11/15	08/11/15	08/12/15	08/12/15	08/13/15	08/13/15	08/10/15	08/10/15	08/11/15	08/11/15	08/12/15	08/12/15	08/12/15	08/12/15	08/13/15	08/13/15	08/13/15	08/13/15	08/13/15	08/13/15	08/14/15	08/14/15
2,4-Dimethylphenol			μq/kq	5,300	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
2,4-Dinitrophenol			μg/kg	37,000 U	1,900 U	9,000 U	18,000 U	35,000 U	35,000 U	20,000 U	1,900 U	19,000 U	18,000 U	1,700 U	8,700 U	9,500 U	91,000 U	20,000 U	39,000 U	18,000 U	34,000 U	7,200 U	87,000 U	200,000 UJ	39,000 U
2,4-Dinitrotoluene			μg/kg	3,800 U	200 UJ	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 UJ	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
2,6-Dinitrotoluene			μg/kg	3,800 UJ	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 UJ	200 UJ	1,900 U	1,800 UJ	180 UJ	890 UJ	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
2-Chloronaphthalene			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
2-Chlorophenol			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
2-Methylnaphthalene			μg/kg	60,000	200 U	920 U	1,800 U	1,200 J	3,600 U	2,100 U	200 U	5,300	1,700 J	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
2-Methylphenol	330	500,000	μg/kg	3,600 J	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
2-Nitroaniline			μg/kg	7,400 U	390 U	1,800 U	3,600 U	7,000 U	7,000 U	4,000 U	380 U	3,700 U	3,500 U	350 U	1,700 U	1,900 U	18,000 U	4,000 U	7,700 U	3,600 U	6,800 U	1,400 U	17,000 U	41,000 UJ	7,800 U
2-Nitrophenol			μg/kg	3,800 UJ	200 UJ	920 U	1,800 U	3,600 U	3,600 U	2,100 UJ	200 UJ	1,900 UJ	1,800 UJ	180 UJ	890 UJ	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
3,3'-Dichlorobenzidine			μg/kg	7,400 U	390 U	1,800 U	3,600 U	7,000 U	7,000 U	4,000 U	380 U	3,700 U	3,500 U	350 U	1,700 U	1,900 U	18,000 U	4,000 U	7,700 U	3,600 U	6,800 U	1,400 U	17,000 U	41,000 UJ	7,800 U
3-Nitroaniline			μg/kg	7,400 U	390 U	1,800 U	3,600 U	7,000 U	7,000 U	4,000 U	380 U	3,700 U	3,500 U	350 U	1,700 U	1,900 U	18,000 U	4,000 U	7,700 U	3,600 U	6,800 U	1,400 U	17,000 U	41,000 UJ	7,800 U
4,6-Dinitro-2-methylphenol			μg/kg	7,400 U	390 U	1,800 U	3,600 U	7,000 U	7,000 U	4,000 U	380 U	3,700 U	3,500 U	350 U	1,700 U	1,900 U	18,000 U	4,000 U	7,700 U	3,600 U	6,800 U	1,400 U	17,000 U	41,000 UJ	7,800 U
4-Bromophenyl-phenylether			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
4-Chloro-3-Methylphenol			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
4-Chlorophopyl phopylothor			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
4-Chlorophenyl-phenylether 4-Methylphenol	330	 500,000	μg/kg μα/kg	3,800 U 5,900 J	200 U 390 U	920 U 1.800 U	1,800 U 3,600 U	3,600 U 7,000 U	3,600 U 7,000 U	2,100 U 4,000 U	200 U 380 U	1,900 U 3,700 U	1,800 U 3.500 U	180 U 350 U	890 U 1,700 U	980 U 1,900 U	9,300 U 18.000 U	2,100 U 4.000 U	4,000 U 7,700 U	1,800 U 3.600 U	3,500 U 6,800 U	740 U 1.400 U	8,900 U 17,000 U	21,000 UJ 41,000 UJ	4,000 U 7,800 U
4-Nitroaniline			μg/kg μg/kg	7,400 U	390 U	1,800 U	3,600 U	7,000 U	7,000 U	4,000 U	380 U 380 U	3,700 U	3,500 U	350 U	1,700 U	1,900 U	18,000 U	4,000 U	7,700 U	3,600 U	6,800 U	1,400 U	17,000 U	41,000 UJ	7,800 U
4-Nitrophenol			μg/kg	7,400 U	390 U	1,800 U	3,600 U	7,000 U	7,000 U	4,000 U	380 U	3,700 U	3,500 U	350 U	1,700 U	1,900 U	18,000 U	4,000 U	7,700 U	3,600 U	6,800 U	1,400 U	17,000 U	41,000 UJ	7,800 U
Acenaphthene	20,000	500,000	μg/kg	9,700	200 U	920 U	1,800 U	3,600 U	3,600 U	770 J	200 U	2,600	840 J	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Acenaphthylene	100,000	500,000	μα/kq	11,000	200 U	920 U	1,800 U	3,600 U	3,600 U	910 J	200 U	12.000	3,500	180 U	890 U	980 U	9.300 U	2.100 U	4.000 U	1.800 U	3,500 U	740 U	8.900 U	8,600 J	4,000 U
Acetophenone			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Anthracene	100,000	500,000	μg/kg	33,000	200 U	920 U	1,800 U	3,600 U	3,600 U	3,600	200 U	20,000	6,400	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	18,000 J	4,000 U
Atrazine			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Benzaldehyde			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Benzo(a)anthracene	1,000	5,600	μg/kg	30,000	200 U	920 U	1,800 U	3,600 U	3,600 U	14,000	70.0 J	20,000	11,000	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	36,000 J	800 J
Benzo(a)pyrene	1,000	1,000	μg/kg	20,000	200 U	920 U	1,800 U	3,600 U	3,600 U	16,000	120 J	15,000	7,400	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	30,000 J	740 J
Benzo(b)fluoranthene	1,000	5,600	μg/kg	22,000	200 U	920 U	1,800 U	3,600 U	3,600 U	18,000	160 J	17,000	8,400	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	32,000 J	4,000 U
Benzo(g,h,i)perylene	100,000	500,000	μg/kg	9,100	200 U	920 U	1,800 U	3,600 U	3,600 U	11,000	70.0 J	7,200	3,400	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	16,000 J	4,000 U
Benzo(k)fluoranthene	800	56,000	μg/kg	9,200	200 U	920 U	1,800 U	3,600 U	3,600 U	8,700	200 U	7,800	4,900	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	25,000 J	4,000 U
Biphenyl			μg/kg	9,400	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	3,200	970 J	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
bis(2-Chloroethoxy)methane			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
bis(2-Chloroethyl)ether			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
bis(2-Chloroisopropyl)ether			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
bis(2-Ethylhexyl)phthalate			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	130 J	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Butylbenzylphthalate			μg/kg μα/ka	3,800 U	200 U 200 U	920 U 920 U	1,800 U 1.800 U	3,600 U	3,600 U 3.600 U	2,100 U	200 U 200 U	1,900 U	1,800 U 1.800 U	180 U	890 U	980 U 980 U	9,300 U	2,100 U 2.100 U	4,000 U	1,800 U	3,500 U	740 U 740 U	8,900 U 8,900 U	21,000 UJ 21.000 UJ	4,000 U 4.000 U
Caprolactam Carbazole			μg/kg μg/kg	3,800 0 9,500	200 U 200 U	920 U 920 U	1,800 U	3,600 U 3,600 U	3,600 U 3,600 U	2,100 U	200 U 200 U	4,300 U	1,800 U	180 U 180 U	890 U 890 U	980 U 980 U	9,300 U 9,300 U	2,100 U	4,000 U 4,000 U	1,800 U	3,500 U 3,500 U	740 U 740 U	8,900 U 8,900 U	21,000 UJ 2,500 J	4,000 U 4,000 U
Chrysene	1,000	56,000	μg/kg μg/kg	23,000	84.0 J	920 U 920 U	1,800 U	3,600 U	3,600 U	12,000	87.0 J	4,300	7,800	180 U	890 U	980 U 980 U	9,300 U 9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	2,500 J 45,000 J	4,000 U
Dibenzo(a,h)anthracene	330	560	μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	94.0 J	3,000	2,000	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	5,000 J	4,000 U
Dibenzofuran	7,000	350,000	μg/kg	28,000	200 U	920 U	1,800 U	3,600 U	3,600 U	650 J	200 U	13,000	3,600	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	4,400 J	4,000 U
Diethylphthalate			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Dimethylphthalate			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Di-n-Butylphthalate			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Di-n-Octylphthalate			μg/kg	3,800 UJ	200 UJ	920 U	1,800 U	3,600 U	3,600 U	2,100 UJ	200 UJ	1,900 UJ	1,800 UJ	180 UJ	890 UJ	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Fluoranthene	100,000	500,000	μg/kg	58,000	200 U	920 U	1,800 U	3,600 U	3,600 U	18,000	93.0 J	39,000	20,000	180 U	890 U	980 U	9,300 U	340 J	4,000 U	1,800 U	3,500 U	740 U	8,900 U	82,000 J	1,800 J
Fluorene	30,000	500,000	μg/kg	35,000	200 U	920 U	1,800 U	3,600 U	3,600 U	1,100 J	200 U	18,000	5,300	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	8,800 J	4,000 U
Hexachlorobenzene	330	6,000	μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Hexachlorobutadiene			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Hexachlorocyclopentadiene			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Hexachloroethane			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Indeno(1,2,3-cd)pyrene	500	5,600	μg/kg	9,200	200 U	920 U	1,800 U	3,600 U	3,600 U	11,000	100 J	7,400	4,000	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	15,000 J	4,000 U
Isophorone			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Naphthalene	12,000	500,000	μg/kg	160,000 D	200 U	920 U	1,800 U	940 J	3,600 U	600 J	200 U	27,000	9,600	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U

Table 3a Soil Analytical Results

Site Characterization Plan Rochester Gas and Electric Geneseo Park Street Former MGP Site

Less the IP				N N4 4		MIN O			1040			104/5	104 5	104	MM4 6	104/7	N014/ 7	05.4	05.4	00.0	0.0.0	00.0	0.0.0	00.5	0.0.5
Location ID:	Unrestricted	Restricted Use SCOs	Units	MW-1	MW-1	MW-2	MW-2	MW-3	MW-3	MW-4	MW-4	MW-5	MW-5	MW-6	MW-6	MW-7	MW-7	SB-1	SB-1	SB-2	SB-2	SB-3	SB-3	SB-5	SB-5
Sample Depth(Feet BGS):	Use SCOs	Commercial	onits	5-7	9 - 11	5 - 7	9 - 13	7-9	9 - 10.2	5 - 7	13 - 14.5	10 - 12	12 - 14	9 - 11	13 - 14.2	4 - 6	6 - 8.3	7 - 9	9 - 11	7-9	9 - 11	7-9	9 - 11	9 - 11	11 - 13.5
Date Collected:				08/11/15	08/11/15	08/12/15	08/12/15	08/13/15	08/13/15	08/10/15	08/10/15	08/11/15	08/11/15	08/12/15	08/12/15	08/12/15	08/12/15	08/13/15	08/13/15	08/13/15	08/13/15	08/13/15	08/13/15	08/14/15	08/14/15
Nitrobenzene			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
N-Nitroso-di-n-propylamine			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
N-Nitrosodiphenylamine			μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Pentachlorophenol	800	6,700	μg/kg	7,400 U	390 U	1,800 U	3,600 U	7,000 U	7,000 U	4,000 U	380 U	3,700 U	3,500 U	350 U	1,700 U	1,900 U	18,000 U	4,000 U	7,700 U	3,600 U	6,800 U	1,400 U	17,000 U	41,000 UJ	7,800 U
Phenanthrene	100,000	500,000	μg/kg	140,000 D	200 U	920 U	1,800 U	3,600 U	3,600 U	9,400	47.0 J	44,000	16,000	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	59,000 J	1,700 J
Phenol	330	500,000	μg/kg	3,800 U	200 U	920 U	1,800 U	3,600 U	3,600 U	2,100 U	200 U	1,900 U	1,800 U	180 U	890 U	980 U	9,300 U	2,100 U	4,000 U	1,800 U	3,500 U	740 U	8,900 U	21,000 UJ	4,000 U
Pyrene	100,000	500,000	μg/kg	51,000	200 U	920 U	1,800 U	3,600 U	3,600 U	16,000	83.0 J	30,000	15,000	180 U	890 U	980 U	9,300 U	280 J	4,000 U	1,800 U	3,500 U	740 U	8,900 U	71,000 J	1,300 J
Total Polycyclic Aromatic Hydrocarbons (PAHs)			μg/kg	620,200	84.0 J	BDL	BDL	940 J	BDL	141,080 J	924 J	285,000	125,540	BDL	BDL	BDL	BDL	620 J	BDL	BDL	BDL	BDL	BDL	451,400 J	7,540 J
Total Semivolatile Organic Compounds (SVOCs)			μg/kg	741,900 J	84.0 J	BDL	BDL	2,140 J	BDL	142,930 J	1,054 J	310,800	132,910 J	BDL	BDL	BDL	BDL	620 J	BDL	BDL	BDL	BDL	BDL	458,300 J	7,540 J
Petroleum Hydrocarbons																									
Diesel, Fuel Oil #2, C10-C23			mg/kg	NA	NA	NA	NA	150	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fuel Oil #4			mg/kg	NA	NA	NA	NA	18.0 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fuel Oil #6			mg/kg	NA	NA	NA	NA	18.0 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline			mg/kg	NA	NA	NA	NA	210	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Kerosene			mg/kg	NA	NA	NA	NA	140	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Motor Oils			mg/kg	NA	NA	NA	NA	160	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Unknown Hydrocarbon1			mg/kg	NA	NA	NA	NA	18.0 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics							•	•	•					•									•	•	
Aluminum			mg/kg	16.600 J	17.100 J	11,200 J	16.700 J	10.400 J	12.700 J	9.860 J	17.800 J	16.400 J	15.300 J	15.100 J	17.900 J	20.300 J	15.700 J	12.600	15.500	11.200	12.800	14.400	14.100	17.300	18,600
Antimony			mg/kg	17.8 UJ	17.5 UJ	16.6 UJ	16.3 UJ	15.8 UJ	15.1 UJ	18.7 UJ	16.7 UJ	0.990 J	16.8 UJ	15.6 UJ	15.9 UJ	16.6 UJ	16.8 UJ	19.0 U	17.5 U	0.650 J	16.0 U	16.2 U	15.7 U	18.6 U	18.0 U
Arsenic	13	16	mg/kg	2.20 J	2.90	3.60	4.00	3.60	3.60	23.9	6.60	3.90	4.80	2.80	3.50	2.40	5.60	7.30	3.40	3.70	4.00	4.10	3.80	5.00	3.60
Barium	350	400	mg/kg	66.3 J	86.4 J	55.3 J	67.7 J	44.3 J	47.2 J	95.3 J	63.9 J	168 J	69.5 J	98.9 J	58.8 J	75.1 J	57.8 J	92.7	54.9	48.3	99.5	71.1	63.6	123	76.6
Beryllium	7.2	590	mg/kg	0.820	0.830	0.550	0.820	0.490	0.640	0.900	0.950	0.820	0.750	0.760	0.920	0.880	0.740	0.580	0.790	0.590	0.690	0.750	0.750	0.860	0.960
Cadmium	2.5	9.3	mg/kg	0.0370 J	0.030 0.0410 J	0.0940 J	0.0340 J	0.490 0.140 J	0.040 0.0720 J	0.290	0.130 J	0.0530 J	0.260	0.0560 J	0.210 U	0.0740 J	0.160 J	0.150 J	0.0640 J	0.0610 J	0.210 U	0.220 U	0.0360 J	0.610	0.0570 J
	-	9.3		56.600 J	45.300 J		53.400 J	54.500 J	59.200 J	49.500 J	12.900 J	40.000 J	35.000 J	45.300 J	22.600 J	37.500 J	46.500 J	24.000	37.900	60.400		56.300	47.600	8.180	
			mg/kg			72,200 J				-,		-,			,		.,	,			71,300		,		11,400
Chromium			mg/kg	24.7 J	26.1 J	16.8 J	24.3 J	15.1 J	19.2 J	15.7 J	26.6 J	24.8 J	22.9 J	22.9 J	27.2 J	26.4 J	24.3 J	16.8	25.3	17.5	20.2	22.4	22.3	23.9	28.8
Cobalt			mg/kg	13.5	13.7	10.4	15.4	10.8	12.5	6.50	15.4	14.9	14.5	13.4	14.7	8.70	10.7	8.60	15.1	10.8	12.2	14.2	15.5	12.2	17.1
Copper	50	270	mg/kg	27.8	28.0	27.7 J	30.5 J	32.1 J	28.0 J	49.0	42.2	26.6	31.0	27.0	28.3	17.3 J	34.1 J	27.4	27.1	26.5	29.1	29.2	28.0	18.4	27.0
Cyanide	27	27	mg/kg	1.10 U	0.860 J	1.10 U	1.10	1.00 U	1.10 U	5.80	1.10 U	2.90	3.80	1.00 U	1.00 U	1.10 U	1.10 U	1.20 U	1.20 U	1.10 U	1.00 U	1.10 U	1.00 U	469	1.20 U
Iron			mg/kg	20,200 J	23,800 J	16,500 J	21,400 J	15,500 J	18,300 J	11,000 J	27,100 J	23,800 J	24,300 J	21,300 J	24,100 J	19,300 J	21,100 J	17,100	24,500	17,100	19,700	21,400	21,700	23,300	27,300
Lead	63	1,000	mg/kg	10.1	10.1	12.2	12.2	12.2	13.8	138	22.3	10.9	14.3	9.70	11.8	9.10	13.2	130	13.4	12.2	13.4	12.1	11.4	63.6	13.5
Magnesium			mg/kg	7,830 J	8,340 J	17,200 J	7,380 J	12,700 J	9,390 J	3,640 J	6,780 J	7,800 J	7,460 J	7,400 J	9,170 J	7,770 J	6,450 J	6,110	8,300	11,100	7,240	7,540	7,570	5,550	7,880
Manganese	1,600	10,000	mg/kg	345 J	333 J	321 J	410 J	368 J	345 J	197 J	285 J	302 J	284 J	295 J	269 J	254 J	249 J	332	355	349	388	361	360	389	307
Mercury	0.18	2.8	mg/kg	0.0230	0.0140 J	0.0190	0.0180 J	0.00890 J	0.0170 J	0.200	0.0320	0.0300	0.0200	0.0170 J	0.0150 J	0.0570	0.0260	NA	NA						
Nickel	30	310	mg/kg	43.3	44.5	34.0	42.2	32.4	38.9	20.8	54.2	42.1	41.0	40.4	42.9	36.7	46.8	24.8	45.4	34.2	39.1	42.9	41.6	35.7	48.0
Potassium			mg/kg	3,650 J	3,470 J	2,750 J	3,850 J	2,700 J	3,070 J	1,450 J	3,840 J	3,550 J	3,030 J	3,110 J	3,980 J	4,200 J	3,520 J	2,720	3,000	2,510	2,990	3,020	3,010	2,960	3,120
Selenium	3.9	1,500	mg/kg	4.70 U	4.70 U	4.40 U	0.500 J	4.20 U	4.00 U	0.560 J	4.50 U	1.00 J	4.50 U	4.10 U	0.460 J	0.780 J	2.10 J	0.580 J	4.70 U	1.00 J	0.440 J	4.30 U	0.650 J	0.730 J	4.80 U
Silver	2	1,500	mg/kg	0.710 U	0.700 U	0.660 U	0.650 U	0.630 U	0.600 U	0.750 U	0.670 U	0.710 U	0.670 U	0.620 U	0.630 U	0.660 U	0.670 U	0.760 U	0.700 U	0.630 U	0.640 U	0.650 U	0.630 U	0.740 U	0.720 U
Sodium			mg/kg	226	212	524	235	173	234	736	173	523	472	427	240	186	189	916	627	407	264	642	327	752	321
Thallium			mg/kg	7.10 U	7.00 U	6.60 U	6.50 U	6.30 U	6.00 U	7.50 U	6.70 U	7.10 U	6.70 U	6.20 U	6.30 U	6.60 U	6.70 U	7.60 U	7.00 U	6.30 U	6.40 U	6.50 U	6.30 U	7.40 U	7.20 U
			ma/ka	21.6 J	20.9 J	17.7 J	21.8 J	17.6 J	19.1 J	21.9 J	24.7 J	20.8 J	18.7 J	19.2 J	22.7 J	26.7 J	25.7 J	21.8	19.7	16.9	17.1	18.6	17.7	27.6	23.9
Vanadium			mg/kg	21.00						21.00	24.1 0	20.00	10.1 0	10.2 0		20.10									

Notes:

1. Samples were submitted to Test America, Amherst, New York for analysis using USEPA SW-846 Methods 8260B (VOCs), 8270D (SVOCs), 6010C (Inorganics), 9012B (Total Cyanide), 310.13 (Hydrocarbon Identification).

2. Samples from monitoring wells MW-3 and MW-4 were submitted to Test America, Amherst, New York for additional analysis of carbon dioxide, methane, sulfide, nitrate, nitrite, and dissolved iron and manganese.

3. Results are presented in units of micrograms per liter (µg/L) and milligrams per liter (mg/L), as identified.

4. J - Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).

5. U - Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.

6. UB - Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.

7. D - Compound quantitated using a secondary dilution.

8. NA - not analyzed

9. BRL - Below reporting limits.

10. BGS - Below ground surface.

Sample results detected above the Method Detection Limit (MDL) are presented in bold font.
 Gray Shading indicates the result exceeds NYSDEC Part 375 Soil Cleanup Objectives (SCO) for Unrestricted use (Unrestricted use SCO).
 Yellow Shading indicates the result exceeds NYSDEC Part 375 Soil Cleanup Objectives (SCO) for Commercial use (Commercial use SCO).

14. -- Indicates a standard or guidance value does not exist for the respective analyte.

Table 4 Groundwater Analytical Results (Detected Analytes Only)

Site Characterization Report Rochester Gas and Electric Geneseo Park Street Former MGP Site

		1						
Location ID:	NYSDEC TOGS GW	Units	MW-1	MW-2	MW-3	MW-4	MW-6	MW-7
Date Collected:	Stds & GVs		08/31/15	08/31/15	08/31/15	08/31/15	08/31/15	08/31/15
Volatile Organic Compounds								
2-Butanone	50	μg/L	10 U	10 UJ	10 U	2.2 J	10 U	10 U
Acetone	50	μg/L	10 U	10 UJ	10 U	7.4 J	12 UB	10 UB
Benzene	1	μg/L	1.1	1.0 UJ	1.0 U	2.0	5.8	4.2
Bromodichloromethane	50	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.3 J	1.0 U
Chloroform	7	μg/L	1.0 U	1.0 UJ	0.71 J	1.4	6.6	2.4
cis-1,2-Dichloroethene	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.1
Cyclohexane		μg/L	18	3.8 J	0.91 J	41	43	58
Ethylbenzene	5	μg/L	0.81 J	1.0 UJ	1.0 U	5.9	4.4	6.2
Isopropylbenzene	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.1	0.97 J	1.4
Methylcyclohexane		μg/L	15	5.6 J	1.6	32	31	54
Toluene	5	μg/L	1.4	0.65 J	1.0 U	4.4	3.7	4.9
Xylenes (total)	5	μg/L	4.2	1.5 J	2.0 U	29	16	30
Total BTEX		μg/L	7.5	2.2	BRL	41	30	45
Total Volatile Organic Compounds (VOCs)		μg/L	40.5 J	11.6 J	3.22 J	126 J	113 J	162
Semivolatile Organic Compounds								
2,4-Dimethylphenol	50 (GV)	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	0.860 J	4.80 U
2-Methylnaphthalene		μg/L	4.60 U	5.20 UJ	4.90 U	0.790 J	4.80 U	1.60 J
Acetophenone		μg/L	4.60 U	5.20 UJ	4.90 U	0.570 J	4.80 U	4.80 U
Caprolactam		μg/L	4.60 U	29.0 J	23.0	5.00 U	4.80 U	4.80 U
Carbazole		μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	0.380 J	4.80 U
Naphthalene	10 (GV)	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	1.20 J
Total Polycyclic Aromatic Hydrocarbons (PAHs)		μg/L	BRL	BRL	BRL	BRL	BRL	1.20 J
Total Semivolatile Organic Compounds (SVOCs)		μg/L	BRL	29.0 J	23.0	1.36 J	1.24 J	2.8 J
Inorganics								
Aluminum		mg/L	2.00	0.480	1.20	0.0680 J	0.200	0.530
Arsenic	0.025	mg/L	0.0150 U	0.0150 U	0.0150 U	0.00560 J	0.0150 U	0.0150 U
Barium	1	mg/L	0.470	2.60	2.00	0.920	0.900	0.710
Calcium		mg/L	293	142	158	124	110	121
Chromium	0.05	mg/L	0.00320 J	0.00150 J	0.00220 J	0.00400 U	0.00400 U	0.00130 J
Cobalt		mg/L	0.00400 U	0.00400 U	0.00400 U	0.00400 U	0.000980 J	0.00400 U
Copper	0.2	mg/L	0.00360 J	0.0100 U	0.0100 U	0.0100 U	0.00410 J	0.00280 J
Iron	0.3	mg/L	2.00	2.40	4.70	37.7	0.440	1.80
Magnesium	35	mg/L	204	91.2	126	85.0	83.3	74.3
Manganese	0.3	mg/L	0.150	0.0450	0.0650	0.230	0.0300	0.0640

0.1

- -

20

- -

2

mg/L

mg/L

mg/L

mg/L

mg/L

0.00500 J

8.40

373

0.00390 J

0.00830 J

0.0100 U

7.40

278

0.00500 U

0.00360 J

0.00220 J

11.7

159

0.00190 J

0.00550 J

0.00230 J

10.4

419

0.00500 U

0.00350 J

0.0130

9.30

304

0.00500 U

0.00300 J

4/5/2016 0271611807 Table 4 and 4a_GW.xlsx

Nickel

Potassium

Vanadium

Sodium

Zinc

0.00200 J

31.1

377

0.00500 U

0.00490 J

Table 4 Groundwater Analytical Results (Detected Analytes Only)

Site Characterization Report Rochester Gas and Electric

Geneseo Park Street Former MGP Site

	Location ID: NYSDEC TOGS GW Stds & GVs Date Collected:	[/] Units	MW-1 08/31/15	MW-2 08/31/15	MW-3 08/31/15	MW-4 08/31/15	MW-6 08/31/15	MW-7 08/31/15
Petroleum Hydrocarbons								
Diesel, Fuel Oil #2, C10-C23		mg/L	R	0.480 U	0.480 U	0.520 U	0.510 U	0.470 U
Fuel Oil #4,#5,#6		mg/L	NA	0.480 U	0.480 U	0.520 U	0.510 U	0.470 U
Gasoline		mg/L	R	0.190 U	0.190 U	0.360	0.200 U	0.410
Kerosene		mg/L	R	0.480 U	0.480 U	0.520 U	0.510 U	0.470 U
Motor Oils		mg/L	R	0.960 U	0.960 U	1.00 U	1.00 U	0.950 U
Unknown Hydrocarbons		mg/L	R	0.190 U	0.190 U	0.210 U	0.370	0.190 U
Geochemical Analyses								
Carbon Dioxide		ug/L	NA	NA	16,000 J	24,000 J	NA	NA
Methane		ug/L	NA	NA	5,100 J	6,000 J	NA	NA
Nitrate Nitrogen	0.01	mg/L	NA	NA	0.0500 U	0.0500 U	NA	NA
Sulfide	0.00005	mg/L	NA	NA	1.00 U	1.00 U	NA	NA
Iron (Filtered)	0.3	mg/L	NA	NA	0.0260 J	0.0500 U	NA	NA
Manganese (Filtered)	0.3	mg/L	NA	NA	0.0600	0.220	NA	NA

Notes:

1. Samples were submitted to Test America, Amherst, New York for analysis using USEPA SW-846 Methods 8260B (VOCs), 8270D (SVOCs), 6010C (Inorganics), 9012B (Total Cyanide), 310.13 (Hydrocarbon Identification).

2. Samples from monitoring wells MW-3 and MW-4 were submitted to Test America, Amherst, New York for additional analysis of carbon dioxide, methane, sulfide, nitrate, nitrite, and dissolved iron and manganese.

- 3. Results are presented in units of micrograms per liter (μ g/L) and milligrams per liter (mg/L), as identified.
- 4. J Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).

5. U - Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.

6. UB - Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.

7. R - Indicates the sample results were rejected.

8. NA - not analyzed

9. BRL - Below method detection limits.

10. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.

11. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value.

12. - Indicates a standard or guidance value does not exist for the respective analyte.

13 GV - Guidance Value

	ID: NYSDEC TOGS GW Stds & GVs	Units	MW-1	MW-2	MW-3	MW-4	MW-6	MW-7
Date Collecte	ed:		08/31/15	08/31/15	08/31/15	08/31/15	08/31/15	08/31/15
Volatile Organic Compounds		- 0	4.011	1.0.111	4.011	4.011	4.011	4.011
1,1,1-Trichloroethane	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-trichloro-1,2,2-trifluoroethane	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	0.04	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	3	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	0.6	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	3	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	3	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone	50	μg/L	10 U	10 UJ	10 U	2.2 J	10 U	10 U
2-Hexanone	50	μg/L	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone		μg/L	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	50	μg/L	10 U	10 UJ	10 U	7.4 J	12 UB	10 UB
Benzene	1	μg/L	1.1	1.0 UJ	1.0 U	2.0	5.8	4.2
Bromodichloromethane	50	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.3 J	1.0 U
Bromoform	50	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 UJ	1.0 U	1.0 U
Carbon Disulfide	60	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Tetrachloride	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	7	μg/L	1.0 U	1.0 UJ	0.71 J	1.4	6.6	2.4
Chloromethane	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.1
cis-1,3-Dichloropropene	0.4	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Cyclohexane		μg/L	18	3.8 J	0.91 J	41	43	58
Dibromochloromethane	50	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	5	μg/L	1.0 U					
Ethylbenzene	5	μg/L	0.81 J	1.0 UJ	1.0 U	5.9	4.4	6.2
Isopropylbenzene	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.1	0.97 J	1.4
Methyl acetate		μg/L	2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U	2.5 U
Methyl tert-butyl ether	10	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Methylcyclohexane		μg/L	15	5.6 J	1.6	32	31	54
Methylene Chloride	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Styrene	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5	μg/L	1.4	0.65 J	1.0 U	4.4	3.7	4.9
trans-1,2-Dichloroethene	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	0.4	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	5	μg/L	1.0 U					

Location ID	NYSDEC TOGS GW	Units	MW-1	MW-2	MW-3	MW-4	MW-6	MW-7
Date Collected	Stds & GVs	onito	08/31/15	08/31/15	08/31/15	08/31/15	08/31/15	08/31/15
Vinyl Chloride	2	μg/L	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Xylenes (total)	5	μg/L	4.2	1.5 J	2.0 U	29	16	30
Total BTEX		μg/L	7.5	2.2	BDL	41	30	45
Total Volatile Organic Compounds (VOCs)		μg/L	40.5 J	11.6 J	3.22 J	126 J	113 J	162
Semivolatile Organic Compounds								
2,4,5-Trichlorophenol	1	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
2,4,6-Trichlorophenol	1	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
2,4-Dichlorophenol	5	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
2,4-Dimethylphenol	50	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	0.860 J	4.80 U
2,4-Dinitrophenol	10	μg/L	9.20 UJ	10.0 UJ	9.80 UJ	10.0 UJ	9.70 UJ	9.50 UJ
2,4-Dinitrotoluene	5	μg/L	4.60 UJ	5.20 UJ	4.90 UJ	5.00 UJ	4.80 UJ	4.80 UJ
2,6-Dinitrotoluene	5	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
2-Chloronaphthalene	10	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
2-Chlorophenol	1	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
2-Methylnaphthalene		μg/L	4.60 U	5.20 UJ	4.90 U	0.790 J	4.80 U	1.60 J
2-Methylphenol	1	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
2-Nitroaniline	5	μg/L	9.20 U	10.0 UJ	9.80 U	10.0 U	9.70 U	9.50 U
2-Nitrophenol	1	μg/L	4.60 UJ	5.20 UJ	4.90 UJ	5.00 UJ	4.80 UJ	4.80 UJ
3,3'-Dichlorobenzidine	5	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
3-Nitroaniline	5	μg/L	9.20 U	10.0 UJ	9.80 U	10.0 U	9.70 U	9.50 U
4,6-Dinitro-2-methylphenol	1	μg/L	9.20 U	10.0 UJ	9.80 U	10.0 U	9.70 U	9.50 U
4-Bromophenyl-phenylether		μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
4-Chloro-3-Methylphenol	1	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
4-Chloroaniline	5	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
4-Chlorophenyl-phenylether		μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
4-Methylphenol	1	μg/L	9.20 U	10.0 UJ	9.80 U	10.0 U	9.70 U	9.50 U
4-Nitroaniline	5	μg/L	9.20 U	10.0 UJ	9.80 U	10.0 U	9.70 U	9.50 U
4-Nitrophenol	1	μg/L	9.20 U	10.0 U	9.80 U	10.0 U	9.70 UJ	9.50 UJ
Acenaphthene	20	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Acenaphthylene		μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Acetophenone		μg/L	4.60 U	5.20 UJ	4.90 U	0.570 J	4.80 U	4.80 U
Anthracene	50	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Atrazine		μg/L	4.60 UJ	5.20 UJ	4.90 UJ	5.00 UJ	4.80 UJ	4.80 UJ
Benzaldehyde		μg/L	4.60 UJ	5.20 UBJ	4.90 UBJ	5.00 UJ	4.80 UJ	4.80 UJ
Benzo(a)anthracene	0.002	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Benzo(a)pyrene	0	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Benzo(b)fluoranthene	0.002	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Benzo(g,h,i)perylene		μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Benzo(k)fluoranthene	0.002	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Biphenyl		μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
bis(2-Chloroethoxy)methane	5	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
bis(2-Chloroethyl)ether	1	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
bis(2-Chloroisopropyl)ether		μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
bis(2-Ethylhexyl)phthalate	5	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Butylbenzylphthalate	50	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Caprolactam		μg/L	4.60 U	29.0 J	23.0	5.00 U	4.80 U	4.80 U
Carbazole		μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	0.380 J	4.80 U

Location ID:	NYSDEC TOGS GW	Units	MW-1	MW-2	MW-3	MW-4	MW-6	MW-7
Date Collected:	Stds & GVs	Units	08/31/15	08/31/15	08/31/15	08/31/15	08/31/15	08/31/15
Chrysene	0.002	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Dibenzo(a,h)anthracene		μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Dibenzofuran		μg/L	9.20 U	10.0 UJ	9.80 U	10.0 U	9.70 U	9.50 U
Diethylphthalate	50	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Dimethylphthalate	50	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Di-n-Butylphthalate	50	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Di-n-Octylphthalate	50	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Fluoranthene	50	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Fluorene	50	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Hexachlorobenzene	0.04	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Hexachlorobutadiene	0.5	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Hexachlorocyclopentadiene	5	μg/L	4.60 UJ	5.20 UJ	4.90 UJ	5.00 UJ	4.80 UJ	4.80 UJ
Hexachloroethane	5	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Indeno(1,2,3-cd)pyrene	0.002	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Isophorone	50	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Naphthalene	10	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	1.20 J
Nitrobenzene	0.4	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
N-Nitroso-di-n-propylamine		μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
N-Nitrosodiphenylamine	50	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Pentachlorophenol	1	μg/L	9.20 UJ	10.0 UJ	9.80 UJ	10.0 UJ	9.70 UJ	9.50 UJ
Phenanthrene	50	μg/L	4.60 UB	5.20 UBJ	4.90 UBJ	5.00 UB	4.80 UB	4.80 UB
Phenol	1	μg/L	4.60 U	5.20 UJ	4.90 U	5.00 U	4.80 U	4.80 U
Pyrene	50	μg/L	4.60 UJ	5.20 UJ	4.90 UJ	5.00 UJ	4.80 UJ	4.80 UJ
Total Polycyclic Aromatic Hydrocarbons (PAHs)		μg/L	BDL	BDL	BDL	BDL	BDL	1.20 J
Total Semivolatile Organic Compounds (SVOCs)		μg/L	BDL	29.0 J	23.0	1.36 J	1.24 J	2.8 J
Inorganics		P-9/-						
Aluminum		mg/L	2.00	0.480	1.20	0.0680 J	0.200	0.530
Antimony	0.003	mg/L	0.0200 U	0.0200 U				
Arsenic	0.025	mg/L	0.0150 U	0.0150 U	0.0150 U	0.00560 J	0.0150 U	0.0150 U
Barium	1	mg/L	0.470	2.60	2.00	0.920	0.900	0.710
Beryllium	0.003	mg/L	0.00200 U	0.00200 U				
Cadmium	0.005	mg/L	0.00200 U	0.00200 U				
Calcium		mg/L	293	142	158	124	110	121
Chromium	0.05	mg/L	0.00320 J	0.00150 J	0.00220 J	0.00400 U	0.00400 U	0.00130 J
Cobalt		ma/L	0.00400 U	0.00400 U	0.00400 U	0.00400 U	0.000980 J	0.00400 U
Copper	0.2	mg/L	0.00360 J	0.0100 U	0.0100 U	0.0100 U	0.00410 J	0.00280 J
Cyanide	0.2	mg/L	0.0100 U	0.0100 U				
Iron	0.3	mg/L	2.00	2.40	4.70	37.7	0.440	1.80
Lead	0.025	mg/L	0.0100 U	0.0100 U				
Magnesium	35	mg/L	204	91.2	126	85.0	83.3	74.3
Manganese	0.3	mg/L	0.150	0.0450	0.0650	0.230	0.0300	0.0640
Nickel	0.1	mg/L	0.00500 J	0.0100 U	0.00220 J	0.00230 J	0.0130	0.00200 J
Potassium		mg/L	8.40	7.40	11.7	10.4	9.30	31.1
Selenium	0.01	mg/L	0.0250 U	0.0250 U				
Silver	0.05	mg/L	0.00600 U	0.00600 U	0.00600 U	0.00600 U	0.00200 U	0.00600 U
Sodium	20	mg/L	373	278	159	419	304	377
	20	ing/∟	515	210	133	0.0200 U		5/1

Site Characterization Report Rochester Gas and Electric Geneseo Park Street Former MGP Site

Location Date Collect	ID: NYSDEC TOGS GW Stds & GVs	Units	MW-1 08/31/15	MW-2 08/31/15	MW-3 08/31/15	MW-4 08/31/15	MW-6 08/31/15	MW-7 08/31/15
Vanadium		mg/L	0.00390 J	0.00500 U	0.00190 J	0.00500 U	0.00500 U	0.00500 U
Zinc	2	mg/L	0.00830 J	0.00360 J	0.00550 J	0.00350 J	0.00300 J	0.00490 J
Petroleum Hydrocarbons			-					
Diesel, Fuel Oil #2, C10-C23		mg/L	R	0.480 U	0.480 U	0.520 U	0.510 U	0.470 U
Fuel Oil #4,#5,#6		mg/L	NA	0.480 U	0.480 U	0.520 U	0.510 U	0.470 U
Gasoline		mg/L	R	0.190 U	0.190 U	0.360	0.200 U	0.410
Kerosene		mg/L	R	0.480 U	0.480 U	0.520 U	0.510 U	0.470 U
Motor Oils		mg/L	R	0.960 U	0.960 U	1.00 U	1.00 U	0.950 U
Unknown Hydrocarbons		mg/L	R	0.190 U	0.190 U	0.210 U	0.370	0.190 U
Geochemical Analyses								
Carbon Dioxide		ug/L	NA	NA	16,000 J	24,000 J	NA	NA
Methane		ug/L	NA	NA	5,100 J	6,000 J	NA	NA
Nitrate Nitrogen	0.01	mg/L	NA	NA	0.0500 U	0.0500 U	NA	NA
Sulfide	0.00005	mg/L	NA	NA	1.00 U	1.00 U	NA	NA
Iron (Filtered)	0.3	mg/L	NA	NA	0.0260 J	0.0500 U	NA	NA
Manganese (Filtered)	0.3	mg/L	NA	NA	0.0600	0.220	NA	NA

Notes:

1. Samples were submitted to Test America, Amherst, New York for analysis using USEPA SW-846 Methods 8260B (VOCs), 8270D (SVOCs), 6010C (Inorganics), 9012B (Total Cyanide), 310.13 (Hydrocarbon Identification).

2. Samples from monitoring wells MW-3 and MW-4 were submitted to Test America, Amherst, New York for additional analysis of carbon dioxide, methane, sulfide, nitrate, nitrite, and dissolved iron and manganese.

3. Results are presented in units of micrograms per liter (µg/L) and milligrams per liter (mg/L), as identified.

4. J - Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).

5. U - Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.

6. UB - Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.

7. R - Indicates the sample results are rejected.

8. NA - not analyzed

9. BDL - Below method detection limits.

10. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.

11. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value.

12. - Indicates a standard or guidance value does not exist for the respective analyate.

13. GV - Guidance value

Table 5 TO-15 Soil Gas Analytical Results (Detected Analytes Only)

Site Characterization Report Rochester Gas and Electric Geneseo Park Street Former MGP Site

Location ID:		SV-1	SV-2	SV-3	SV-4	SV-5	SV-6	SV-7
Date Collected:	Units	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15
Volatile Organic Compounds	<u> </u>	00/02/10	00/02/10	00/02/10	00/02/10	00/04/0	00/02/10	00/02/10
1,1,1-Trichloroethane	μg/m3	1.1 U	4.0	6.6 U	1.1 U	3.3 U	22 U	21 U
1,1,2,2-Tetrachloroethane	μg/m3	0.60 J	1.4 U	8.3 U	1.4 U	4.1 U	27 U	27 U
1,1,2-trichloro-1,2,2-trifluoroethane	μg/m3	0.52 J	0.94 J	9.2 U	0.70 J	4.6 U	31 U	30 U
1,2,4-Trimethylbenzene	μg/m3	4.2	1.3	48	4.6	3.5	20 U	19 U
1,3,5-Trimethylbenzene	μg/m3	0.99	0.54 J	20	0.59 J	0.79 J	20 U	19 U
2,2,4-Trimethylpentane	μg/m3	0.29 J	0.93 U	2.9 J	0.81 J	2.8 U	19 U	18 U
2-Butanone	μg/m3	3.5	2.4	3.2 J	3.4	7.7	6.8 J	29 U
2-Hexanone	μg/m3	0.79 J	2.0 U	12 U	1.3 J	6.1 U	41 U	40 U
4-Ethyltoluene	μg/m3	0.41 J	0.98 U	10	0.77 J	0.88 J	20 U	19 U
Acetone	μg/m3	52	45	58 J	47	52	240	43 J
Benzene	μg/m3	0.15 J	1.6	4.1	0.24 J	0.43 J	13 U	13 U
Bromodichloromethane	μg/m3	1.3 U	3.9	24	24	25	4.3 J	26 U
Butane	μg/m3	1.2 U	1.2 U	240	11	9.6	24 U	23 U
Carbon Disulfide	μg/m3	0.71 J	2.2	11	6.2	16	31 U	31 U
Carbon Tetrachloride	μg/m3	1.3 U	1.3 U	7.6 U	0.14 J	0.37 J	25 U	25 U
Chlorobenzene	μg/m3	0.92 U	0.92 U	5.5 U	0.92 U	0.31 J	18 U	18 U
Chlorodifluoromethane	μg/m3	1.8 U	1.8 U	1.9 J	1.3 J	150	35 U	35 U
Chloroform	μg/m3	5.1	32	260	140	120	46	44
Chloromethane	μg/m3	0.16 J	0.68 J	6.2 U	0.23 J	3.1 U	21 U	20 U
Cyclohexane	μg/m3	0.79	5.9	49	4.2	4.1	14 U	14 U
Dibromochloromethane	μg/m3	1.7 U	1.7 U	2.0 J	2.7	3.1 J	34 U	34 U
Dichlorodifluoromethane	μg/m3	2.3 J	2.9	3.6 J	2.9	2.6 J	310	49 U
Ethylbenzene	μg/m3	0.43 J	0.51 J	12	3.2	2.6 J	17 U	17 U
Isopentane	μg/m3	0.59 U	6.5	150	7.5	5.6	12 U	12 U
Isopropanol	μg/m3	0.72 J	12 U	74 U	12 U	1.2 J	250 U	240 U
Isopropylbenzene	μg/m3	0.98 U	0.24 J	2.2 J	0.30 J	0.44 J	20 U	19 U
m,p-Xylenes	μg/m3	3.4	2.5	64	8.7	9.4	43 U	43 U
Naphthalene	μg/m3	0.71 J	2.0 J	1.4 J	1.1 J	0.64 J	52 U	52 U
n-Decane	μg/m3	2.9 U	1.0 J	25	2.0 J	8.7 U	44 J	57 U
n-Dodecane	μg/m3	35 U	35 U	210 U	4.6 J	100 U	63 J	690 U
N-Heptane	μg/m3	0.82 U	1.9	85	0.60 J	2.2 J	16 U	16 U
N-Hexane	μg/m3	0.42 J	2.3	110	4.4	5.4	14 U	2.5 J
n-Octane	μg/m3	0.93 U	1.9	50	0.67 J	1.6 J	9.8 J	32
Nonane	μg/m3	1.0 U	1.1	33	0.98 J	1.1 J	22	230
n-Propylbenzene	μg/m3	0.22 J	0.20 J	5.7	0.48 J	0.64 J	20 U	19 U
n-Undecane	μg/m3	32 U	32 U	15 J	2.7 J	96 U	100 J	630 U
o-Xylene	μg/m3	1.8	1.6	20	5.0	5.0	17 U	17 U
Pentane	μg/m3	1.5 U	2.7	160	8.3	8.7	30 U	29 U
p-Isopropyltoluene	μg/m3	0.19 J	0.32 J	1.0 J	0.19 J	0.48 J	22 UJ	22 U
Styrene	μg/m3	0.85 U	0.85 U	5.1 U	0.10 J	2.5 U	17 U	17 U
t-Butyl Alcohol	μg/m3	1.7 J	15 U	91 U	15 U	1.7 J	300 U	300 U
Tetrachloroethene	μg/m3	6.1	38	2.2 J	2.4	4.1 U	27 U	27 U
Tetrahydrofuran	μg/m3	15 U	15 U	89 U	15 U	2.9 J	290 U	290 U
Toluene	μg/m3	0.69 J	3.9	24	2.2	2.6	14 J	11 J
Trichlorofluoromethane	μg/m3	1.5	2.7	4.0 J	1.9	4.8	22 U	22 U
Xylenes (total)	μg/m3	5.2	4.1	85	13	15	61 U	60 U

Notes:

Notes:

 Samples were submitted to Test America, South Burlington, Vermont for analysis using USEPA method TO-15.
 TO-15 results are presented in units of micrograms per cubic meter (µg/m³).
 J - Indicates the analyte was detected at a concentration less than the practical quantitation limit (PQL). The value reported is an estimated concentration.
 U - Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
 UJ - Indicates the constituent was not detected above the PQL. The reported limit is approximate and may or may not represent the actual PQL.
 Sample results detected above the Method Detection Limit (MDL) are presented in bold font.

Table 5a TO-15 Soil Gas Analytical Results

Location ID:		SV-1	SV-2	SV-3	SV-4	SV-5	SV-6	SV-7
Date Collected:	Units	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15
Volatile Organic Compounds		I	I	I			I	
1,1,1-Trichloroethane	μg/m3	1.1 U	4.0	6.6 U	1.1 U	3.3 U	22 U	21 U
1,1,2,2-Tetrachloroethane	μg/m3	0.60 J	1.4 U	8.3 U	1.4 U	4.1 U	27 U	27 U
1,1,2-trichloro-1,2,2-trifluoroethane	μg/m3	0.52 J	0.94 J	9.2 U	0.70 J	4.6 U	31 U	30 U
1,1,2-Trichloroethane	μg/m3	1.1 U	1.1 U	6.6 U	1.1 U	3.3 U	22 U	21 U
1,1-Dichloroethane	μg/m3	0.81 U	0.81 U	4.9 U	0.81 U	2.4 U	16 U	16 U
1,1-Dichloroethene	μg/m3	0.79 U	0.79 U	4.8 U	0.79 U	2.4 U	16 U	16 U
1,2,4-Trichlorobenzene	μg/m3	3.7 U	3.7 U	22 U	3.7 U	11 U	74 U	73 U
1,2,4-Trimethylbenzene	μg/m3	4.2	1.3	48	4.6	3.5	20 U	19 U
1,2-Dibromoethane	μg/m3	1.5 U	1.5 U	9.3 U	1.5 U	4.6 U	31 U	30 U
1,2-Dichlorobenzene	μg/m3	1.2 U	1.2 U	7.2 U	1.2 U	3.6 U	24 U	24 U
1,2-Dichloroethane	μg/m3	0.81 U	0.81 U	4.9 U	0.81 U	2.4 U	16 U	16 U
1,2-Dichloroethene (total)	μg/m3	1.6 U	1.6 U	9.5 U	1.6 U	4.7 U	32 U	31 U
1,2-Dichloropropane	μg/m3	0.92 U	0.92 U	5.6 U	0.92 U	2.8 U	18 U	18 U
1,2-Dichlorotetrafluoroethane	μg/m3	1.4 U	1.4 U	8.4 U	1.4 U	4.2 U	28 U	28 U
1,3,5-Trimethylbenzene	μg/m3	0.99	0.54 J	20	0.59 J	0.79 J	20 U	19 U
1,3-Butadiene	μg/m3	0.44 U	0.44 U	2.7 U	0.44 U	1.3 U	8.8 U	8.7 U
1,3-Dichlorobenzene	μg/m3	1.2 U	1.2 U	7.2 U	1.2 U	3.6 U	24 U	24 U
1,4-Dichlorobenzene	μg/m3	1.2 U	1.2 U	7.2 U	1.2 U	3.6 U	24 U	24 U
1,4-Dioxane	μg/m3	18 U	18 U	110 U	18 U	54 U	360 U	350 U
2,2,4-Trimethylpentane	μg/m3	0.29 J	0.93 U	2.9 J	0.81 J	2.8 U	19 U	18 U
2-Butanone	μg/m3	3.5	2.4	3.2 J	3.4	7.7	6.8 J	29 U
2-Chlorotoluene	μg/m3	1.0 U	1.0 U	6.2 U	1.0 U	3.1 U	21 U	20 U
2-Hexanone	μg/m3	0.79 J	2.0 U	12 U	1.3 J	6.1 U	41 U	40 U
3-Chloropropene	μg/m3	1.6 U	1.6 U	9.4 U	1.6 U	4.7 U	31 U	31 U
4-Ethyltoluene	μg/m3	0.41 J	0.98 U	10	0.77 J	0.88 J	20 U	19 U
4-Methyl-2-pentanone	μg/m3	2.0 U	2.0 U	12 U	2.0 U	6.1 U	41 U	40 U
Acetone	μg/m3	52	45	58 J	47	52	240	43 J
Benzene	μg/m3	0.15 J	1.6	4.1	0.24 J	0.43 J	13 U	13 U
Benzyl Chloride	μg/m3	1.0 U	1.0 U	6.2 U	1.0 U	3.1 U	21 U	20 U
Bromodichloromethane	μg/m3	1.3 U	3.9	24	24	25	4.3 J	26 U
Bromoethane	μg/m3	0.87 U	0.87 U	5.3 U	0.87 U	2.6 U	17 U	17 U
Bromoform	μg/m3	2.1 U	2.1 U	12 UT	2.1 U	6.2 U	41 U	41 U
Bromomethane	μg/m3	0.78 U	0.78 U	4.7 U	0.78 U	2.3 U	16 U	15 U
Butane	μg/m3	1.2 U	1.2 U	240	11	9.6	24 U	23 U
Carbon Disulfide	μg/m3	0.71 J	2.2	11	6.2	16	31 U	31 U
Carbon Tetrachloride	μg/m3	1.3 U	1.3 U	7.6 U	0.14 J	0.37 J	25 U	25 U
Chlorobenzene	μg/m3	0.92 U	0.92 U	5.5 U	0.92 U	0.31 J	18 U	18 U

Table 5a TO-15 Soil Gas Analytical Results

Location ID:		SV-1	SV-2	SV-3	SV-4	SV-5	SV-6	SV-7
Date Collected:	Units	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15
Chlorodifluoromethane	μg/m3	1.8 U	1.8 U	1.9 J	1.3 J	150	35 U	35 U
Chloroethane	μg/m3	1.3 U	1.3 U	7.9 U	1.3 U	3.9 U	26 U	26 U
Chloroform	μg/m3	5.1	32	260	140	120	46	44
Chloromethane	μg/m3	0.16 J	0.68 J	6.2 U	0.23 J	3.1 U	21 U	20 U
cis-1,2-Dichloroethene	μg/m3	0.79 U	0.79 U	4.8 U	0.79 U	2.4 U	16 U	16 U
cis-1,3-Dichloropropene	μg/m3	0.91 U	0.91 U	5.5 U	0.91 U	2.7 U	18 U	18 U
Cyclohexane	μg/m3	0.79	5.9	49	4.2	4.1	14 U	14 U
Dibromochloromethane	μg/m3	1.7 U	1.7 U	2.0 J	2.7	3.1 J	34 U	34 U
Dichlorodifluoromethane	μg/m3	2.3 J	2.9	3.6 J	2.9	2.6 J	310	49 U
Ethylbenzene	μg/m3	0.43 J	0.51 J	12	3.2	2.6 J	17 U	17 U
Hexachlorobutadiene	μg/m3	2.1 U	2.1 U	13 U	2.1 U	6.4 U	43 U	42 U
Isopentane	μg/m3	0.59 U	6.5	150	7.5	5.6	12 U	12 U
Isopropanol	μg/m3	0.72 J	12 U	74 U	12 U	1.2 J	250 U	240 U
Isopropylbenzene	μg/m3	0.98 U	0.24 J	2.2 J	0.30 J	0.44 J	20 U	19 U
m,p-Xylenes	μg/m3	3.4	2.5	64	8.7	9.4	43 U	43 U
Methyl Methacrylate	μg/m3	2.0 U	2.0 U	12 U	2.0 U	6.1 U	41 U	40 U
Methyl tert-butyl ether	μg/m3	0.72 U	0.72 U	4.3 U	0.72 U	2.2 U	14 U	14 U
Methylene Chloride	μg/m3	1.7 UB	1.7 UB	10 UB	1.7 UB	5.2 UB	35 UB	34 UB
Naphthalene	μg/m3	0.71 J	2.0 J	1.4 J	1.1 J	0.64 J	52 U	52 U
n-Butylbenzene	μg/m3	1.1 U	1.1 U	6.6 U	1.1 U	3.3 U	22 U	22 U
n-Decane	μg/m3	2.9 U	1.0 J	25	2.0 J	8.7 U	44 J	57 U
n-Dodecane	μg/m3	35 U	35 U	210 U	4.6 J	100 U	63 J	690 U
N-Heptane	μg/m3	0.82 U	1.9	85	0.60 J	2.2 J	16 U	16 U
N-Hexane	μg/m3	0.42 J	2.3	110	4.4	5.4	14 U	2.5 J
n-Octane	μg/m3	0.93 U	1.9	50	0.67 J	1.6 J	9.8 J	32
Nonane	μg/m3	1.0 U	1.1	33	0.98 J	1.1 J	22	230
n-Propylbenzene	μg/m3	0.22 J	0.20 J	5.7	0.48 J	0.64 J	20 U	19 U
n-Undecane	μg/m3	32 U	32 U	15 J	2.7 J	96 U	100 J	630 U
o-Xylene	μg/m3	1.8	1.6	20	5.0	5.0	17 U	17 U
Pentane	μg/m3	1.5 U	2.7	160	8.3	8.7	30 U	29 U
p-lsopropyltoluene	μg/m3	0.19 J	0.32 J	1.0 J	0.19 J	0.48 J	22 UJ	22 U
sec-Butylbenzene	μg/m3	1.1 U	1.1 U	6.6 U	1.1 U	3.3 U	22 U	22 U
Styrene	μg/m3	0.85 U	0.85 U	5.1 U	0.10 J	2.5 U	17 U	17 U
t-Butyl Alcohol	μg/m3	1.7 J	15 U	91 U	15 U	1.7 J	300 U	300 U
tert-Butylbenzene	μg/m3	1.1 U	1.1 U	6.6 U	1.1 U	3.3 U	22 U	22 U
Tetrachloroethene	μg/m3	6.1	38	2.2 J	2.4	4.1 U	27 U	27 U
Tetrahydrofuran	μg/m3	15 U	15 U	89 U	15 U	2.9 J	290 U	290 U
Toluene	μg/m3	0.69 J	3.9	24	2.2	2.6	14 J	11 J

Table 5a **TO-15 Soil Gas Analytical Results**

Site Characterization Report Rochester Gas and Electric Geneseo Park Street Former MGP Site

	Location ID:		SV-1	SV-2	SV-3	SV-4	SV-5	SV-6	SV-7
	Date Collected:	Units	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15
trans-1,2-Dichloroethene		μg/m3	0.79 U	0.79 U	4.8 U	0.79 U	2.4 U	16 U	16 U
trans-1,3-Dichloropropene		μg/m3	0.91 U	0.91 U	5.5 U	0.91 U	2.7 U	18 U	18 U
Trichloroethene		μg/m3	1.1 U	1.1 U	6.5 U	1.1 U	3.2 U	21 U	21 U
Trichlorofluoromethane		μg/m3	1.5	2.7	4.0 J	1.9	4.8	22 U	22 U
Vinyl Chloride		μg/m3	0.51 U	0.51 U	3.1 U	0.51 U	1.5 U	10 U	10 U
Xylenes (total)		μg/m3	5.2	4.1	85	13	15	61 U	60 U

Notes:

1. Samples were submitted to Test America, South Burlington, Vermont for analysis using USEPA method TO-15.

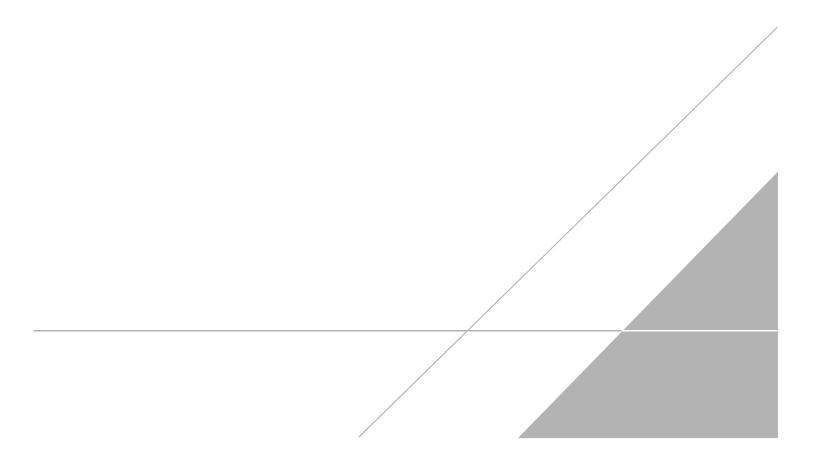
2. TO-15 results are presented in units of micrograms per cubic meter (µg/m³).

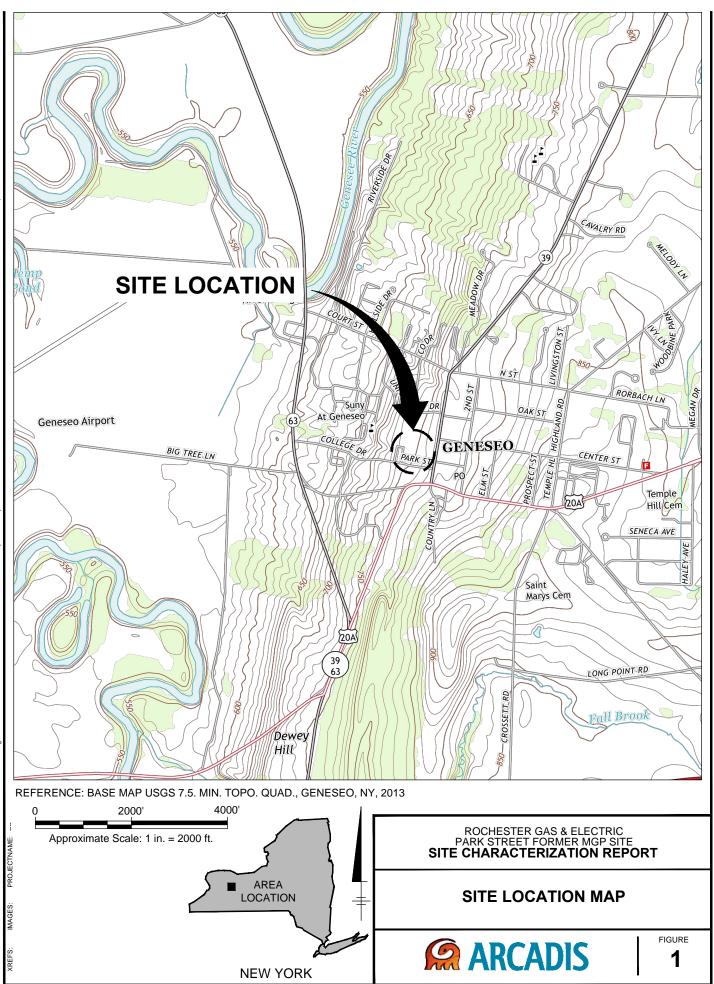
3. J - Indicates the analyte was detected at a concentration less than the practical quantitation limit (PQL). The value reported is

3. J - Indicates the analyte was detected at a concentration less than the practical quantitation limit (PQL). The value reported is an estimated concentration.
 4. U - Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
 5. UJ - Indicates the constituent was not detected above the PQL. The reported limit is approximate and may or may not represent the actual PQL.
 6. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.

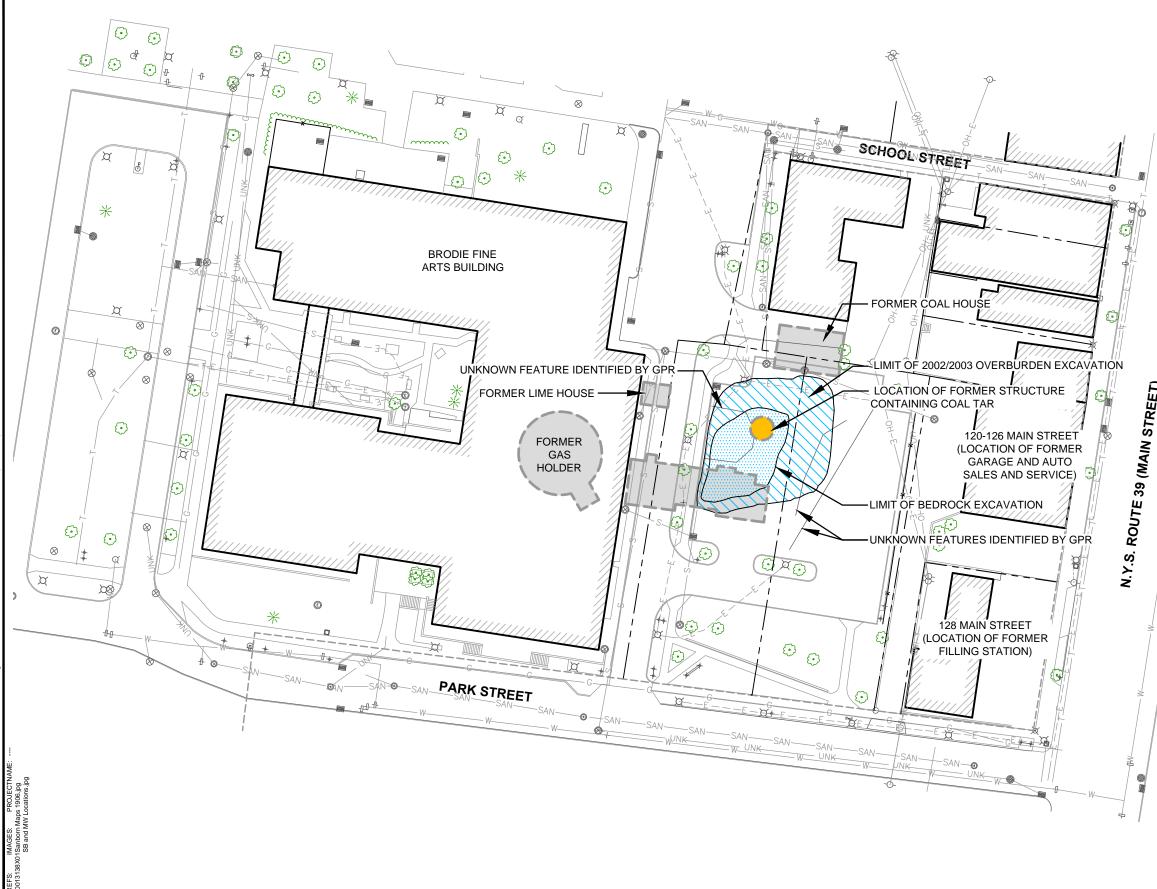
Table 5b Tentatively Identified Compounds Soil Gas Analytical Results

Site Characterization Report Rochester Gas and Electric Geneseo Park Street Former MGP Site

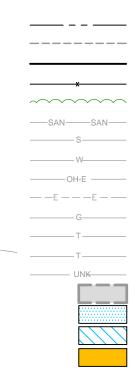

Location ID:		SV-1	SV-2	SV-3	SV-4	SV-5	SV-6	SV-7
Date Collected:	Units	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15
Tentatively Identified Volatile Organic Comp	ounds							
.betaPhellandrene	ppbv	NA	NA	NA	NA	NA	130 JN	NA
.betaPinene	ppbv	NA	NA	NA	NA	NA	780 JN	490 JN
1RalphaPinene	ppbv	NA	NA	NA	NA	NA	3,900 JN	NA
1SalphaPinene	ppbv	NA	NA	NA	NA	NA	7,400 JN	9,500 JN
3,3-Dimethyl-6-methylenecyclohexene	ppbv	NA	NA	NA	NA	NA	180 JN	NA
Camphene	ppbv	NA	NA	NA	NA	NA	630 JN	840 JN
Cyclohexane, 1,1,3-trimethyl-	ppbv	NA	1.50 JN	NA	NA	NA	NA	NA
Cyclohexane, 1,2-dimethyl-, trans-	ppbv	NA	1.30 JN	NA	NA	NA	NA	NA
Cyclohexane, 1,3-dimethyl-, cis-	ppbv	NA	2.60 JN	NA	NA	NA	NA	NA
Cyclotrisiloxane, hexamethyl-	ppbv	NA	NA	NA	13.0 JN	10.0 JN	NA	NA
Heptane, 3-ethyl-2-methyl-	ppbv	NA	1.10 JN	NA	NA	NA	NA	NA
Limonene	ppbv	NA	NA	NA	NA	NA	830 JN	NA
Methylcyclohexane	ppbv	NA	5.50 JN	NA	NA	NA	NA	NA
Pentane, 2-methyl-	ppbv	NA	NA	19.0 JN	NA	NA	NA	NA
Tricyclo[2.2.1.0(2,6)]heptane, 1,7,7-tri	ppbv	NA	NA	NA	NA	NA	53.0 JN	160 JN
Unknown1	ppbv	16.0 JN	41.0 JN	71.0 JN	16.0 JN	11.0 JN	330 JN	960 JN
Unknown2	ppbv	7.40 JN	7.70 JN	24.0 JN	8.60 JN	NA	81.0 JN	310 JN
Unknown3	ppbv	NA	NA	24.0 JN	NA	NA	NA	210 JN
Unknown4	ppbv	NA	NA	11.0 JN	NA	NA	NA	95.0 JN
Unknown5	ppbv	NA	NA	11.0 JN	NA	NA	NA	90.0 JN
Unknown6	ppbv	NA	NA	9.40 JN	NA	NA	NA	NA
Unknown7	ppbv	NA	NA	7.40 JN	NA	NA	NA	NA


Notes:

 Samples were submitted to Test America, South Burlington, Vermont for analysis using USEPA method TO-15.
 Tentatively Identified Compound (TIC) results are presented in units of parts per billion volume (ppbv)
 JN - Indicates the presence of a constituent for which there is presumptive evidence to make a tentative identification. The value reported is an estimated concentration.


4. NA - Indicates no evidence of the constituent was identified

FIGURES



BY: FATTO, TRACEY ---- PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 5/20/2016 3:42 PM CITY:CRANBURY-AU DIV/GROUP:ENVCAD DB.JMEYER LD.JMEYER PIC:K.WHITE PMB.AHRENS TM:B.AHRENS LYR:(Op/ION=*,OFF=*REF C:IENVCADICRANBURYIACT\B001313800001000033CR\B0013138N01.dwg LAYOUT: 1 SAVED: 520/2016 341 PM ACADVER: 19.15 (LMSTECH) PAGESETUP:

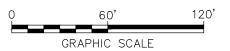
ot)ON=*;OFF LYR:(Op ŝ TM:B.AHREN PM:B.AHRENS PIC:K.WHITE Ř

LEGEND: PROPERTY LINE RIGHT-OF-WAY LINE BUILDING LINE FENCE LINE VEGETATION SANITARY SEWER LINE STORM SEWER LINE WATER LINE OVERHEAD ELECTRIC LINE UNDERGROUND ELECTRIC LINE NATURAL GAS LINE OVERHEAD TELEPHONE & CABLE LINE TELEPHONE & CABLE LINE UNKNOWN UTILITY FORMER MGP STRUCTURE LIMITS OF BEDROCK EXCAVATION LIMITS OF OVERBURDEN EXCAVATION FORMER STONE/BRICK STRUCTURE CONTAINING COAL TAR

NOTES:

 \otimes

書

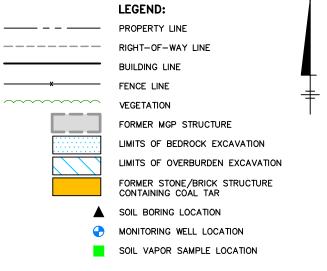

[≁]⊗

TREET)

- FORMER LOCATIONS OF GAS WORKS STRUCTURES FROM SANBORN LIBRARY, LLC 1906 MAP. LOCATIONS ARE APPROXIMATE. 1.
- APPROXIMATE.
 LIMITS OF THE 2002/2003 OVERBURDEN EXCAVATION, BEDROCK EXCAVATION, AND LOCATIONS OF THE FORMER STRUCTURE CONTAINING COAL TAR FROM REPORT OF ACTIVITIES AT LL-LOT, SUNY GENESEO (2003). LOCATIONS ARE APPROXIMATE.
 GROUND PENETRATING RADAR SURVEY AND UTILITY LOCATION DESCRIPTION OF A LINER OF A LINE AND A LINE AND
- PREFORMED BY UNDERGROUND SERVICES JULY 2015.

SOURCE:


1. BASEMAP INFORMATION PROVIDED BY FISHER ASSOCIATES, LLC. DATED JUNE, 2015. FILENAME: GENESEO TOPO.DWG. GEOREFERENCED TO NEW YORK STATE PLANE NAD83 COORDINATE SYSTEM.



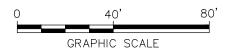
SITE MAP

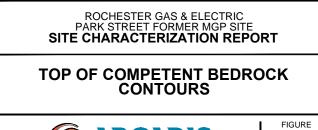
- FORMER LOCATIONS OF GAS WORKS STRUCTURES FROM SANBORN LIBRARY, LLC 1906 MAP. LOCATIONS ARE APPROXIMATE.
- APPROXIMA IL. 2. LIMITS OF THE 2002/2003 OVERBURDEN EXCAVATION, BEDROCK EXCAVATION, AND LOCATIONS OF THE FORMER STRUCTURE CONTAINING COAL TAR FROM REPORT OF ACTIVITIES AT LL-LOT, SUNY GENESEO (2003). LOCATIONS ARE APPROXIMATE.

SOURCE:

 BASEMAP INFORMATION PROVIDED BY FISHER ASSOCIATES, LLC. DATED JUNE, 2015. FILENAME: GENESEO TOPO.DWG. GEOREFERENCED TO NEW YORK STATE PLANE NAD83 COORDINATE SYSTEM.

SOIL BORING, MONITORING WELL AND SOIL VAPOR LOCATIONS


LEGEND: PROPERTY LINE RIGHT-OF-WAY LINE BUILDING LINE FENCE LINE FORMER MGP STRUCTURE LIMITS OF BEDROCK EXCAVATION LIMITS OF OVERBURDEN EXCAVATION FORMER STONE/BRICK STRUCTURE CONTAINING COAL TAR SOIL BORING LOCATION MONITORING WELL LOCATION INFERRED TOP OF BEDROCK CONTOUR BEDROCK ELEVATION (FEET ABOVE MEAN SEA LEVEL) (89.79)


NOTES:

- ELEVATIONS IN FEET ABOVE MEAN SEA LEVEL, 1988 NORTH AMERICAN VERTICAL DATUM (NAVD88).
 FORMER LOCATIONS OF GAS WORKS STRUCTURES FROM SANBORN LIBRARY, LLC 1906 MAP. LOCATIONS ARE APPROXIMATE.
 LUTING OF THE COLOMAN.
- APPROXIMATE.
 LIMITS OF THE 2002/2003 OVERBURDEN EXCAVATION, BEDROCK EXCAVATION, AND LOCATIONS OF THE FORMER STRUCTURE CONTAINING COAL TAR FROM REPORT OF ACTIVITIES AT LL-LOT, SUNY GENESEO (2003). LOCATIONS ARE APPROXIMATE.

SOURCE:


1. BASEMAP INFORMATION PROVIDED BY FISHER ASSOCIATES, LLC. DATED JUNE, 2015. FILENAME: GENESEO TOPO.DWG. GEOREFERENCED TO NEW YORK STATE PLANE NAD83 COORDINATE SYSTEM.

4

LEGEND: PROPERTY LINE RIGHT-OF-WAY LINE BUILDING LINE FENCE LINE FORMER MGP STRUCTURE LIMITS OF BEDROCK EXCAVATION LIMITS OF OVERBURDEN EXCAVATION FORMER STONE/BRICK STRUCTURE CONTAINING COAL TAR SOIL BORING LOCATION MONITORING WELL LOCATION INFERRED GROUNDWATER ELEVATION CONTOUR GROUNDWATER ELEVATION (89.79) (FEET ABOVE MEAN SEA LEVEL) GROUNDWATER FLOW DIRECTION

NOTES:

- ELEVATIONS IN FEET ABOVE MEAN SEA LEVEL, 1988 NORTH AMERICAN VERTICAL DATUM (NAVD88).
 FORMER LOCATIONS OF GAS WORKS STRUCTURES FROM SANBORN LIBRARY, LLC 1906 MAP. LOCATIONS ARE APPROXIMATE.
- LIMITS OF THE 2002/2003 OVERBURDEN EXCAVATION, BEDROCK EXCAVATION, AND LOCATIONS OF THE FORMER STRUCTURE CONTAINING COAL TAR FROM REPORT OF ACTIVITIES AT LL-LOT, SUNY GENESEO (2003). LOCATIONS ARE APPROXIMATE.

SOURCE:

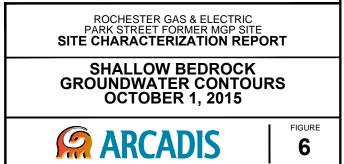
1. BASEMAP INFORMATION PROVIDED BY FISHER ASSOCIATES, LLC. DATED JUNE, 2015. FILENAME: GENESEO TOPO.DWG. GEOREFERENCED TO NEW YORK STATE PLANE NAD83 COORDINATE SYSTEM.

LEGEND:

.....

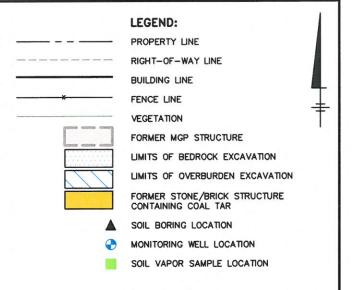
	PROPERTY LINE	
	RIGHT-OF-WAY LINE	
	BUILDING LINE	
_	FENCE LINE	
	FORMER MGP STRUCTURE	
	LIMITS OF BEDROCK EXCAVATION	
$\overline{}$	LIMITS OF OVERBURDEN EXCAVATION	
	FORMER STONE/BRICK STRUCTURE CONTAINING COAL TAR	
	SOIL BORING LOCATION	
Ð	MONITORING WELL LOCATION	
~	INFERRED GROUNDWATER ELEVATION CONTOUR	
(89.79)	GROUNDWATER ELEVATION (FEET ABOVE MEAN SEA LEVEL)	
	GROUNDWATER FLOW DIRECTION	


ŧ


NOTES:

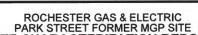
- ELEVATIONS IN FEET ABOVE MEAN SEA LEVEL, 1988 NORTH AMERICAN VERTICAL DATUM (NAVD88).
 FORMER LOCATIONS OF GAS WORKS STRUCTURES FROM SANBORN LIBRARY, LLC 1906 MAP. LOCATIONS ARE ADDOXINATE.
- APPROXIMATE.
- LIMITS OF THE 2002/2003 OVERBURDEN EXCAVATION, BEDROCK EXCAVATION, AND LOCATIONS OF THE FORMER STRUCTURE CONTAINING COAL TAR FROM REPORT OF ACTIVITIES AT LL-LOT, SUNY GENESEO (2003). LOCATIONS ARE APPROXIMATE.

SOURCE:


1. BASEMAP INFORMATION PROVIDED BY FISHER ASSOCIATES, LLC. DATED JUNE, 2015. FILENAME: GENESED TOPO.DWG. GEOREFERENCED TO NEW YORK STATE PLANE NAD83 COORDINATE SYSTEM.

M:B. IHW.N: YER ZO

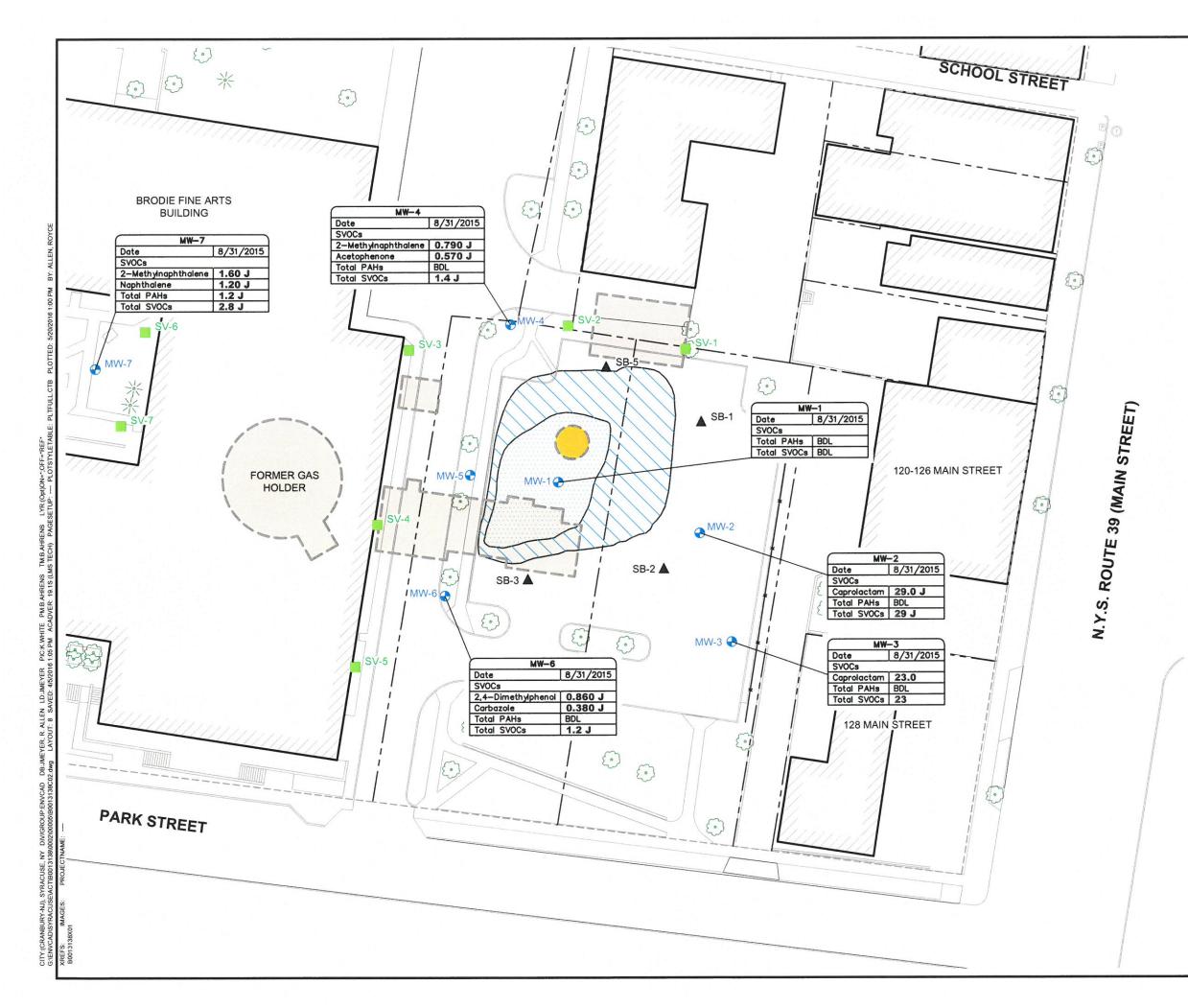
NOTES:

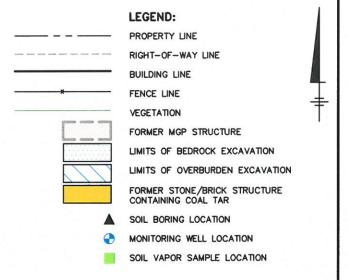

- RESULTS ARE IN UNITS OF MICROGRAMS PER LITER (ug/L) ONLY DETECTED CONSTITUENTS ARE PRESENTED.
- 2. BTEX - BENZENE, TOLUENE, ETHYLBENZENE, XYLENE
- 3. VOC - VOLATILE ORGANIC COMPOUND
- 5. BDL BELOW DETECTION LIMITS
- J INDICATES AN ESTIMATED CONCENTRATION 6.
- 7. U INDICATES THE CONSTITUENT WAS NOT DETECTED ABOVE THE IDENTIFIED CONCENTRATION A BOLD RESULT INDICATES CONSTITUENT DETECTION
- 8
- SHADING INDICATES RESULT EXCEEDS THE NYSDEC TOGS 1.1.1
 FORMER LOCATIONS OF GAS WORKS STRUCTURES FROM SANBORN LIBRARY, LLC 1906 MAP. LOCATIONS ARE
- APPROXIMATE. 11. LIMITS OF THE 2002/2003 OVERBURDEN EXCAVATION, BEDROCK EXCAVATION, AND LOCATIONS OF THE FORMER STRUCTURE CONTAINING COAL TAR FROM REPORT OF ACTIVITIES AT

LL-LOT, SUNY GENESEO (2003). LOCATIONS ARE APPROXIMATE.

SOURCE:

1. BASEMAP INFORMATION PROVIDED BY FISHER ASSOCIATES, LLC. DATED JUNE, 2015. FILENAME: GENESEO TOPO.DWG. GEOREFERENCED TO NEW YORK STATE PLANE NAD83 COORDINATE SYSTEM.

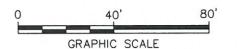


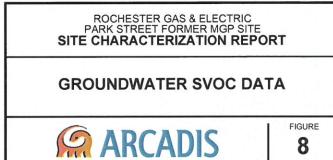

GROUNDWATER VOC DATA

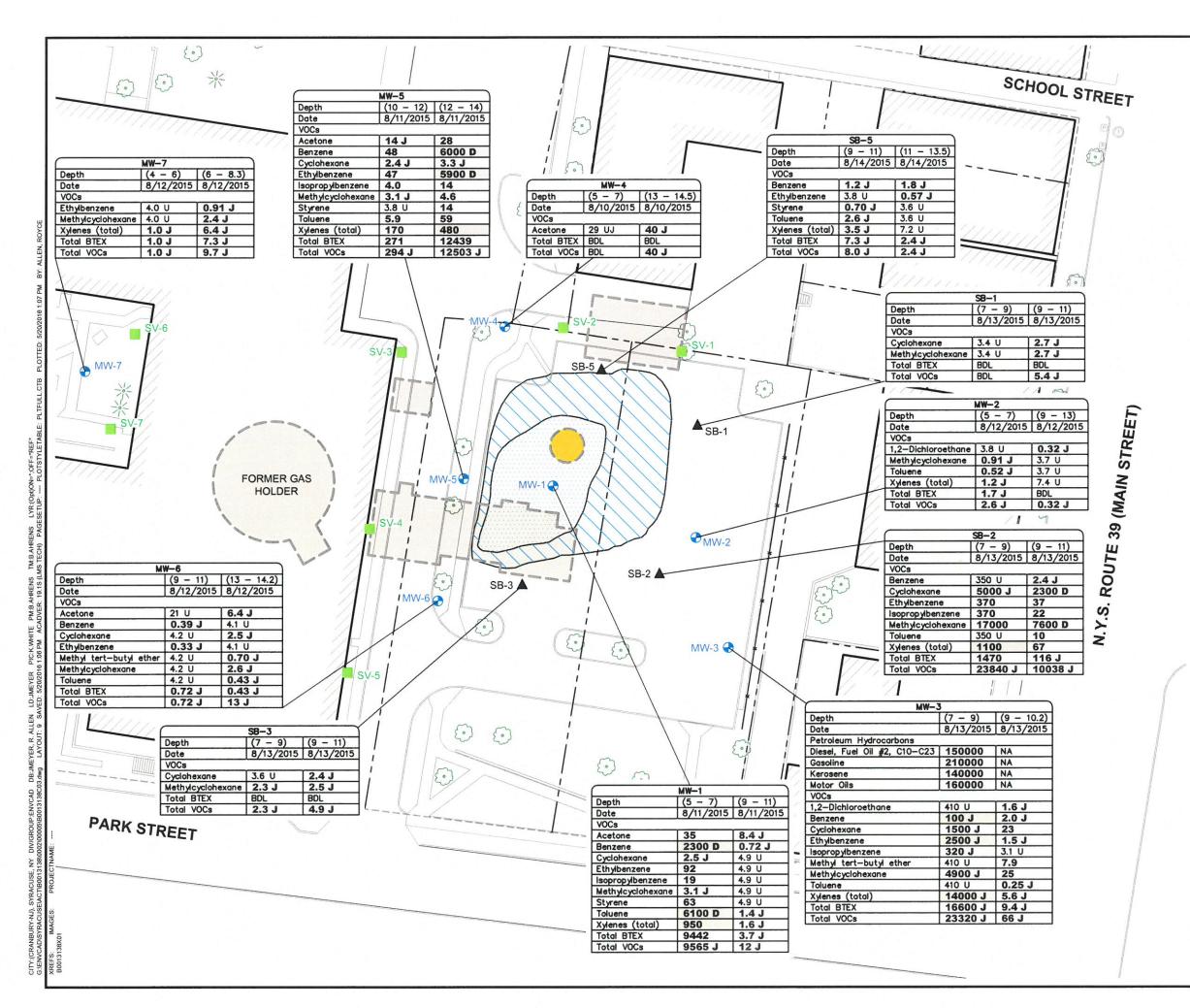
ARCADIS

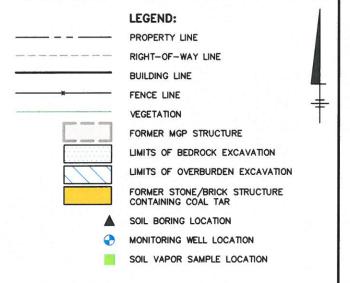
FIGURE

7

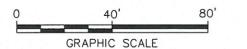


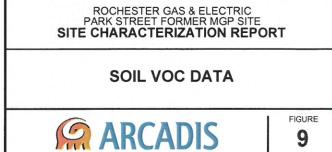

- RESULTS ARE IN UNITS OF MICROGRAMS PER LITER (ug/L) ONLY DETECTED CONSTITUENTS ARE PRESENTED. 1.
- 2.
- 3. PAH - POLYCYCLIC AROMATIC HYDROCARBON

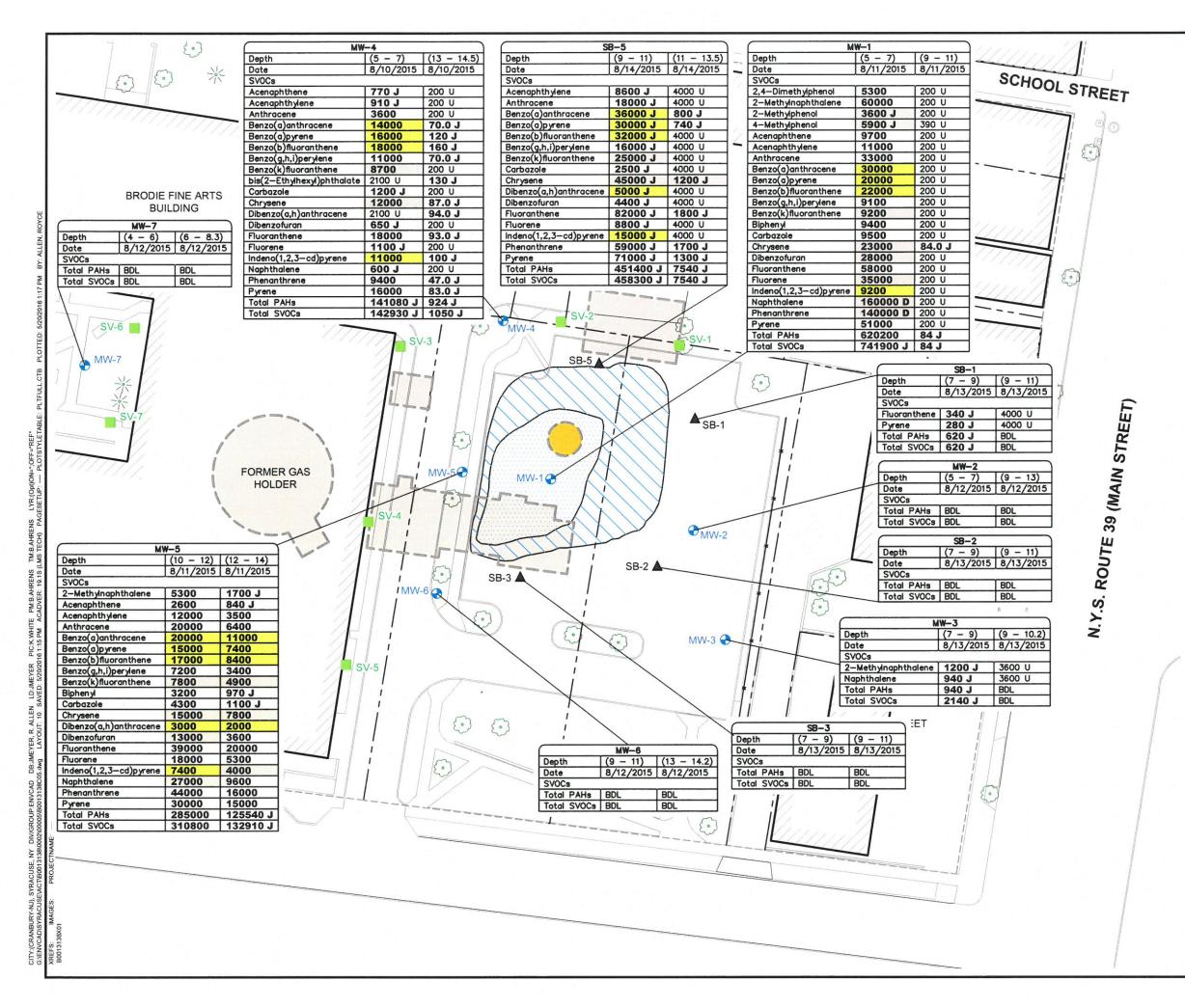

- S. PAH POLICICIC AROMATIC HIDROGARBON
 SVOC SEMIVOLATILE ORGANIC COMPOUND
 BDL BELOW DETECTION LIMITS
 J INDICATES AN ESTIMATED CONCENTRATION
 U INDICATES THE CONSTITUENT WAS NOT DETECTED ABOVE THE IDENTIFIED CONCENTRATION
 A BOLD RESULT INDICATES CONSTITUENT DETECTION
 SHADING INDICATES DESILIT EXCEPTION TO EXTEND TO STILL
- SHADING INDICATES RESULT EXCEEDS THE NYSDEC TOGS 1.1.1
 FORMER LOCATIONS OF GAS WORKS STRUCTURES FROM SANBORN LIBRARY, LLC 1906 MAP. LOCATIONS ARE
- APPROXIMATE. 11. LIMITS OF THE 2002/2003 OVERBURDEN EXCAVATION, BEDROCK EXCAVATION, AND LOCATIONS OF THE FORMER STRUCTURE CONTAINING COAL TAR FROM REPORT OF ACTIVITIES AT LL-LOT, SUNY GENESEO (2003). LOCATIONS ARE APPROXIMATE.

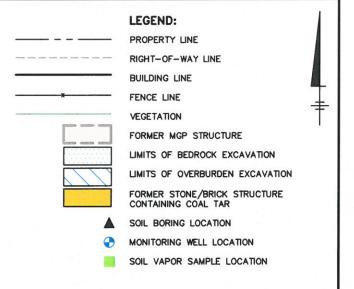

SOURCE:

1. BASEMAP INFORMATION PROVIDED BY FISHER ASSOCIATES, LLC. DATED JUNE, 2015. FILENAME: GENESEO TOPO.DWG. GEOREFERENCED TO NEW YORK STATE PLANE NAD83 COORDINATE SYSTEM.

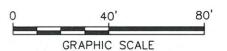


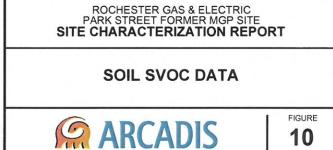


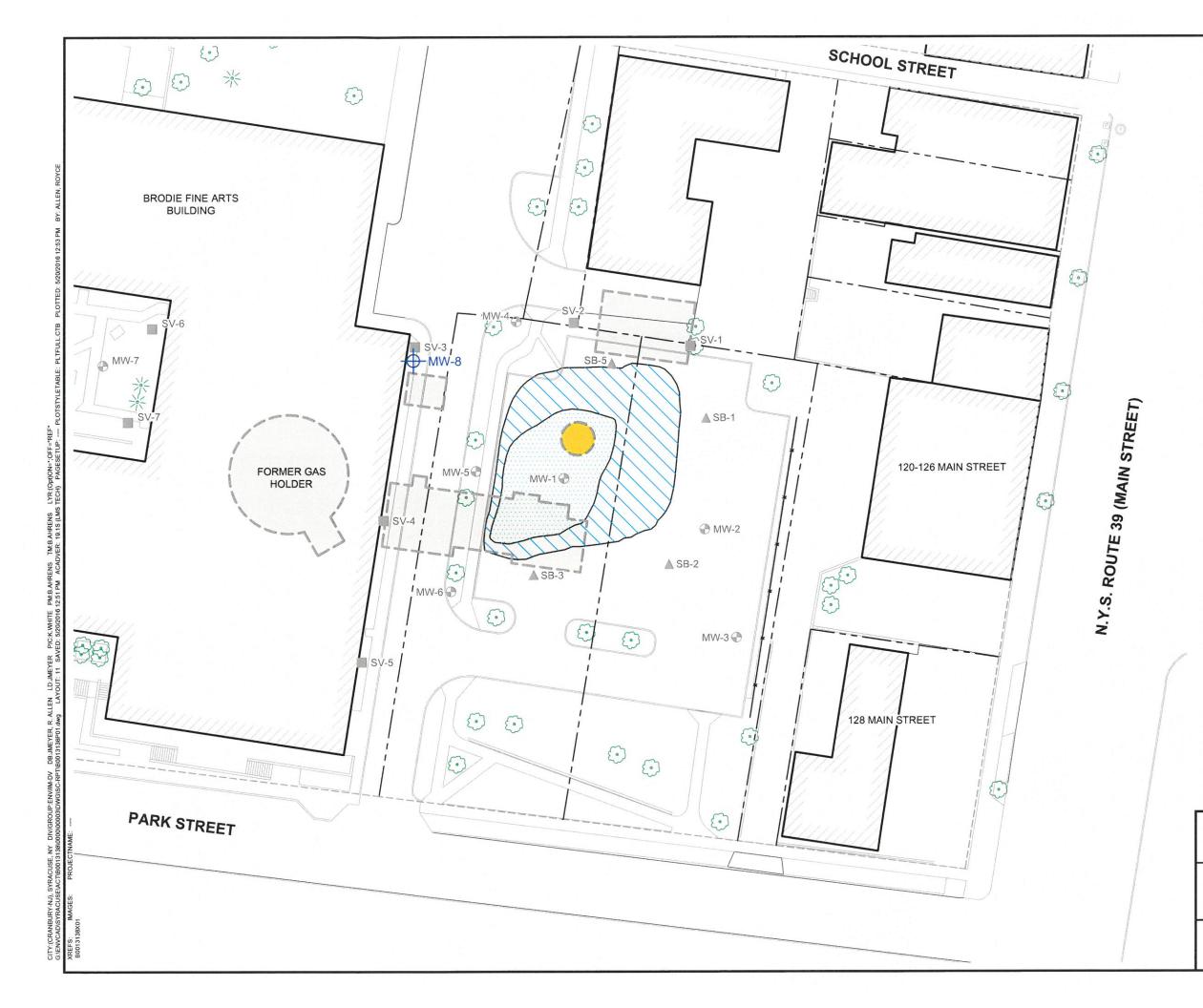

- RESULTS ARE IN UNITS OF MICROGRAMS PER LITER (ug/L)
- ONLY DETECTED CONSTITUENTS ARE PRESENTED.
- BTEX BENZENE, TOLUENE, ETHYLBENZENE, XYLENE
- VOC VOLATILE ORGANIC COMPOUND DEPTHS ARE IN FEET BELOW GROUND SURFACE 5.
- NA NOT ANALYZED
- BDL BELOW DETECTION LIMITS J - INDICATES AN ESTIMATED CONCENTRATION
- U INDICATES THE CONSTITUENT WAS NOT DETECTED ABOVE 9. THE IDENTIFIED CONCENTRATION
- 10. A BOLD RESULT INDICATES CONSTITUENT DETECTION 11. GRAY SHADING INDICATES RESULT EXCEEDS THE NYSDEC PART 375 UNRESTRICTED USE SCO.
- 12. YELLOW SHADING INDICATES RESULT EXCEEDS THE NYSDEC PART 375 COMMERCIAL USE SCO. 13. FORMER LOCATIONS OF GAS WORKS STRUCTURES FROM
- SANBORN LIBRARY, LLC 1906 MAP. LOCATIONS ARE APPROVIMATE
- 14. LIMITS OF THE 2002/2003 OVERBURDEN EXCAVATION, BEDROCK EXCAVATION, AND LOCATIONS OF THE FORMER STRUCTURE CONTAINING COAL TAR FROM REPORT OF ACTIVITIES AT LL-LOT, SUNY GENESEO (2003). LOCATIONS ARE APPROXIMATE.


SOURCE:

BASEMAP INFORMATION PROVIDED BY FISHER ASSOCIATES, LLC. DATED JUNE, 2015. FILENAME: GENESEO TOPO.DWG. GEOREFERENCED TO NEW YORK STATE PLANE NAD83 COORDINATE SYSTEM.






- RESULTS ARE IN UNITS OF MICROGRAMS PER LITER (ug/L) ONLY DETECTED CONSTITUENTS ARE PRESENTED.
- 2
- PAH POLYCYCLIC AROMATIC HYDROCARBON 3.
- SVOC SEMIVOLATILE ORGANIC COMPOUND 5
- DEPTHS ARE IN FEET BELOW GROUND SURFACE NA - NOT ANALYZED 6.
- **BDL BELOW DETECTION LIMITS**
- J INDICATES AN ESTIMATED CONCENTRATION
- U INDICATES THE CONSTITUENT WAS NOT DETECTED ABOVE 9. THE IDENTIFIED CONCENTRATION
- 10. A BOLD RESULT INDICATES CONSTITUENT DETECTION
- 11. GRAY SHADING INDICATES RESULT EXCEEDS THE NYSDEC PART 375 UNRESTRICTED USE SCO.
- 12. YELLOW SHADING INDICATES RESULT EXCEEDS THE NYSDEC
- PART 375 COMMERCIAL USE SCO. 13. FORMER LOCATIONS OF GAS WORKS STRUCTURES FROM SANBORN LIBRARY, LLC 1906 MAP. LOCATIONS ARE APPROXIMATE.
- 14. LIMITS OF THE 2002/2003 OVERBURDEN EXCAVATION, BEDROCK EXCAVATION, AND LOCATIONS OF THE FORMER STRUCTURE CONTAINING COAL TAR FROM REPORT OF ACTIVITIES AT LL-LOT, SUNY GENESEO (2003). LOCATIONS ARE APPROXIMATE.

SOURCE:

1. BASEMAP INFORMATION PROVIDED BY FISHER ASSOCIATES, LLC. DATED JUNE, 2015. FILENAME: GENESEO TOPO.DWG. GEOREFERENCED TO NEW YORK STATE PLANE NAD83 COORDINATE SYSTEM.

LEGEND:

PROPERTY LINE RIGHT-OF-WAY LINE

BUILDING LINE FENCE LINE VEGETATION

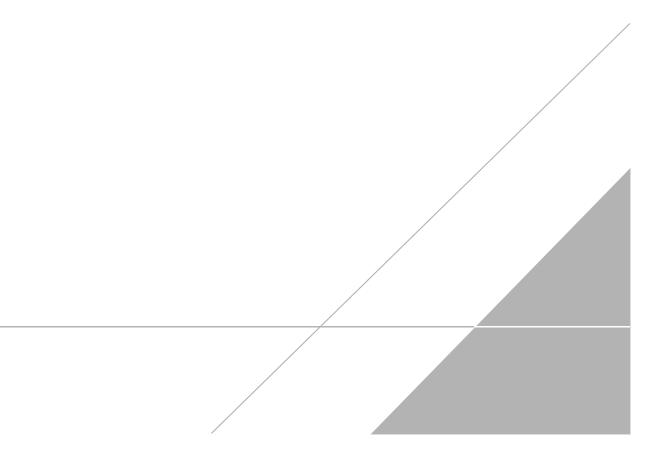
0

FORMER MGP STRUCTURE LIMITS OF BEDROCK EXCAVATION LIMITS OF OVERBURDEN EXCAVATION FORMER STONE/BRICK STRUCTURE CONTAINING COAL TAR MW-8 - PROPOSED MONITORING WELL LOCATION SOIL BORING LOCATION MONITORING WELL LOCATION

SOIL VAPOR SAMPLE LOCATION

NOTES:

- 1. FORMER LOCATIONS OF GAS WORKS STRUCTURES FROM SANBORN LIBRARY, LLC 1906 MAP. LOCATIONS ARE APPROXIMATE.
- LIMITS OF THE 2002/2003 OVERBURDEN EXCAVATION, BEDROCK EXCAVATION, AND LOCATIONS OF THE FORMER STRUCTURE CONTAINING COAL TAR FROM REPORT OF ACTIVITIES AT LL-LOT, SUNY GENESEO (2003). LOCATIONS ARE APPROXIMATE.


SOURCE:

BASEMAP INFORMATION PROVIDED BY FISHER ASSOCIATES, LLC. DATED JUNE, 2015. FILENAME: GENESEO TOPO.DWG. GEOREFERENCED TO NEW YORK STATE PLANE NAD83 COORDINATE SYSTEM.

80' 0 40 GRAPHIC SCALE ROCHESTER GAS & ELECTRIC PARK STREET FORMER MGP SITE SITE CHARACTERIZATION REPORT LOCATION OF PROPOSED MONITORING WELL MW-8 FIGURE ARCADIS Design & Consult for natural and built assets 11

APPENDIX A

Soil Boring and Monitoring Well Installation Logs

Dri Dri Dri Aug Rig	lling (Iler's I Iling N ger Si I Type	Com Nam Meth ze:	nish: pany: e: Ste od: H 6-1/4" ME 85 thod:	Noth eve Lo lollow ID/HC Truck	nagle oranty Stem Q Core Mour	Drilli Aug e Bai nted I	ing, Ir er/Ro rrel		Easting: 1353704.50 Casing Elevation: 758.41' AMSL	g ID: MW-1 E 6 Park Street, Geneseo, New York			
Depth (ft bgs)	Elevation (ft AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well Construction		
760													
5	- - 755 -	1	0-5	NA	NA	NA	0.7		Asphalt. Gravel road base. Brown medium to coarse SAND and medium to coarse rounded to GRAVEL, moist. Large COBBLES 2-4.5 ft bgs, red and white brid ft bgs. Gray-brown SILTY CLAY, trace fine SAND, trace fine to medium of plasticity, no dilatancy, soft.	ck debris at 3.5	Concrete (0-1' bgs) Sand Drain (0.5- 1' bgs)		
-	- - 750 -	2	5-9	NA	NA	4.0	391.0 194.2 18.3 9.4	20000000	Brown SILT and very fine to coarse angular GRAVEL, some tar-lii strong odor, moist. Light Gray SILT and very fine to medium angular GRAVEL, little to brittle, dry. Material possibly stone fill.	/	Cement-Bentonite Grout (0.3-16.5'		
1	- 0 -	3	9-11	NA	NA	2.0	0.3 0.2				bgs) 4" Steel Casing (0.3-16.5' bgs)		
745 - 4 11-14.5 NA NA 0.2 0.2													
-1	5 –	5	14.5- 16.5	NA	0	2.0	NA		Dark gray SHALE, breaks across entire length.		Bedrock Formation		
			R(Ire, el					lings		e Mean Sea Le verburden drille	surface; NA = Not evel. ed with 6.25" ID HSA. 4" steel casing k well installed using HQ core barrel.		
Proj	Project: B0013138.2 Template: G:\DIV 11\Rockware\LogPlot Templates\Current Page: 1 of												

Client: RG&E	Well/Boring	ID: MW-1
Site Location:	Borehole De	epth: 36.5' bgs
6 Park Street, Geneseo, New York		
Genesed, New TOIK		
Depth (ft. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type Minutes per Foot RQD (%) RQD (%) Recovery (feet) PID Headspace (ppm)	Stratigraphic Description	Well Construction
	Dark gray SHALE, 15-deg joint at 17.4 ft bgs, mechanical breaks across entire length.	A A A A A A Bedrock Formation A A
3.17 3.50 - 7.35 7 21.5- 3.75 73 5.0 NA 7 25.5 min/ft - 25.5 min/ft 	Dark gray SHALE, horizontal joint 1-2.5mm wide at 23.8 ft bgs, joints along bedding planes at 22.2, 23.2, 24.87, 25, 25.5 ft bgs.	 ∧ ∧
	Dark gray SHALE, horizontal joint 1-2 mm wide at 29.1, 1-3mm wide at 29.75, 26.9, 27.55, 28.1, and 30.8 ft bgs, 45-deg mechanical break 30.1-30.3 ft bgs.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
- 2.50 min/ft 2.50 min/ft 9 30.5- 2.25 93 5.0 NA - 9 30.5- 2.25 min/ft 2.35 min/ft 2.50 min/ft 2.50 min/ft 2.50	Dark gray SHALE, horizontal joint 1-2mm wide at 32.45 and 32.83 ft bgs, 15-deg joint 34.7-34.75 ft bgs.	
Project: B0013138.2 Template: G:\DI	Remarks: ags = above ground surface; bgs = below ground surface; bgs = below ground surface; bgs = below ground sufface; bgs = below ground su	vel. ed with 6.25" ID HSA. 4" steel casing

С	Client: RG&E Well/Boring ID: MW-1									
s	ite L								Borehole De	epth: 36.5' bgs
	6 Pa Gen	ark S ieseo	treet, o, New	York						
	(ISN	umber	Ð	ot		æ	(mqq) e	u		
Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well Construction
	Ξ	ö	ű	Σ	Ľ.	Ľ.		<u>ග</u>		
									End of boring at 36.5' bgs.	
	_	-								
7	20 -	-								
	-	-								
- 40	-	-								
	_	-								
	_	-								
_	1-									
7	15 -									
- 45	-	-								
	_									
	-	-								
	_	-								
. 7	10 -	-								
	_	-								
- 50										
	_									
	-	-								
	-	-								
7	05 -									
	_									
- 55	_									
Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level.										
	2	Λ	D	CA	D	10			Location hand cleared to 5 ft bgs. Overburden drill	ed with 6.25" ID HSA. 4" steel casing
				nviro				linas	set 2 ft into competent bedrock. Open hole bedroc	ck well installed using HQ core barrel.
Project: B0013138.2 Template: G:\DIV 11\Rockware\LogPlot Templates\Current Page: 3 of 3 Data File:MW-1 Date: 10/27/2015 Created/Edited by: NJB										

Dri Dri Dri Aug Rig	lling (ller's lling N ger Si g Type	Com Nam Meth ze: c: c:	nish: pany: e: Sto od: ⊢ 6-1/4" ME 85 thod:	Nothr eve Lo lollow ID/HC Truck	nagle oranty Stem Q Core Mour	Drill Aug e Ba nted	ing, Ir jer/Ro rrel	IC.	Easting: 1353766.02 Casing Elevation: 760.25' AMSL	Well ID/Boring ID: MW-2 Client: RG&E Site Location: 6 Park Street, Geneseo, New York
Depth (ft bgs)	Elevation (ft AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well Construction
-	-	-			Flush-mount concrete surface pad with locking j-plug.					
-	760 - - - -	- 1	0-5	NA	NA	NA	0.0 0.0 0.0 0.0		Asphalt. Gravel road base. Dark gray very fine to very coarse subrounded GRAVEL, some to coarse Sand, little small Cobbles, moist. Brown medium to coarse SAND and subrounded to subangular v coarse GRAVEL, moist. Yellow-brown SILT and very fine to fine SAND, trace medium to v subrounded to subangular Gravel, trace brick and charcoal debris	very fine to very
	755 - - -	2	5-9	NA	NA	4.0	0.0		Yellow-brown very fine to fine SAND, trace Silt, trace Shale fragmedium dense, dry.	
- 1 -	- 750 - -	3	9-13	NA	NA	NA	0.0			Cement-Bentonite Grout (0.3-17' bgs) 4" Steel Casing (0.3-17' bgs)
_	-	4	13-15	NA	NA	NA	NA		NO RECOVERY. Top of weathered SHALE bedrock at 13 ft bgs. competent SHALE bedrock at 15 ft bgs.	Top of
1	5 745 -	-							Dark gray SHALE, breaks across entire length. Remarks: ags = above ground surface; bgs = I	Bedrock Formation
Int Proje	frastr	0013	R <i>ure, e</i>		nme	nt, i	build		Applicable/Available; AMSL = Above Location hand cleared to 5 ft bgs. O set 2 ft into competent bedrock. Op Rockware\LogPlot Templates\Current	

c	lient	: RG	&E						Well/Boring ID: MW-2				
s	ite Lo	ocat	ion:						Borehole De	pth: 37' bgs	;		
	6 Pa	ark S	treet,	Vork									
	Gen	esec	, New	TOIK									
Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well Co	onstruction		
	_	5	15-17	NA	0	2.0							
- - - 20 7 -	- - - 40 - -	6	17-22	NA NA 5.00 min/ft 10.00 min/ft 7.33 min/ft	27	4.5	NA		Dark gray SHALE, medium hard, 60-deg joint 17.70-17.73 ft bgs, 60-deg joint 17.87-17.96 ft bgs, 50-deg joint 18.95-18.95 ft bgs, 12-deg joint 20.30 ft bgs, horizontal joint 20.40 ft bgs, 82-deg joint 20.60-21.16 ft bgs.		Image: Addition of the second seco		
- 25 7 -	- - 35 -	7	22-27	8.50 min/ft NA 4.50 min/ft 4.33 min/ft 5.33	58	4.5	NA		Dark gray SHALE, medium hard, horizontal joint at 22.20, 22.35, 23.10, 23.50, 25.0, 25.2 ft bgs, mechanical break at 23.6, 24.6, 25.23, 25.95, 26.5 ft bgs, broken zone 2.1-2.25 ft bgs.		∧ ∧ ∧ ∧ Open Bedrock Hole (17-37' bgs)		
- - - 30 7	- - 30 -	8	27-32	3.85 min/ft 4.53 min/ft 5.02 min/ft 7.15 min/ft 6.58 min/ft	91	5.0	NA		Dark gray SHALE, horizontal joint 1-2mm wide 27.5, 1-3mm wide 28.25 ft bgs, 5- deg joint 1-2mm wide 28.65 ft bgs, 80-deg calcium filled joint 29.3-29.75, 30.4-32 ft bgs, broken zone 31.4-31.8 ft bgs.				
	25 -	9	32-37	3.85 min/ft 3.93 min/ft 4.53 min/ft 3.43 min/ft	96	5.0	NA		Dark gray SHALE, 10-deg joint 1mm wide 34 ft bgs, mechanical breaks at 34.2, 34.95, 36.4, 36.95 ft bgs. Remarks: ags = above ground surface; bgs = below ground s Applicable/Available; AMSL = Above Mean Sea Le Location hand cleared to 5 ft bgs. Overburden drilli set 2 ft into competent bedrock. Open hole bedroce	vel. ed with 6.25"	ID HSA. 4" steel casing		
Infr	astru	uctu		nviroi	nme	nt, i	builc		\Rockware\LogPlot Templates\Current		Page: 2 of 3		

C	Client	: RG	i&E						Well/Boring ID: MW-2								
5	Site L	ocat	ion:						Borehole D	epth: 37' bgs							
	6 Pa	ark S	treet,	× ·													
	Gen	nesed	, New	York													
	SL)	her					PID Headspace (ppm)										
(sɓ	t. AM	nun c	Type	Foot		feet)	oace (nmlo									
(ft. b	ion (ft	e Rur	e/Int/	s per	(%)	Recovery (feet)	eadsp	gic Co	Stratigraphic Description	Well Construction							
Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Reco		Geologic Column									
_	ш	0)	0,	2 3.73 min/ft													
									End of boring at 37' bgs.								
	-																
-	_	-															
40 7	720 -	_															
_																	
	_																
-	_																
_	_																
45 7	1																
7	715 -																
_	-																
-	_	-															
_																	
	-																
50 7	710 -	-															
-	_	_															
	_																
	-																
-	_																
55	705 -																
,																	
									Remarks: ags = above ground surface; bgs = below ground Applicable/Available; AMSL = Above Mean Sea Lu	surface; NA = Not evel.							
Location hand cleared to 5 ft bgs. Overburden drilled with 6.25" ID HSA. 4" steel casing set 2 ft into competent bedrock. Open hole bedrock well installed using HQ core barrel.																	
1.000								line	set 2 ft into competent bedrock. Open hole bedro	ck well installed using HQ core barrel.							
Inti	astri	uctu	ire, ei	nviroi	nme	nt, i	ouila	ings									
Proje Data			138.2		Tem	plate	e: G:\E	DIV 11	Nockware\LogPlot Templates\Current Date: 10/27/2015 Created/Edited by	Page: 3 of S							

Dri Dri Dri Au Rig	lling (Iler's I Iling N ger Si I Type	Com Nam Meth ze: cn	nish: bany: e: Ste od: H 6-1/4" //E 85 hod:	Nothr eve Lo lollow ID/HC Truck	nagle ranty Stem Core Mour	Drill Aug e Ba nted	ing, Ir jer/Ro rrel		Northing: 1019260.91 Easting: 1353779.99 Casing Elevation: 761.66' AMSL Borehole Depth: 33' bgs Surface Elevation: 761.65' AMSL Descriptions By: Nicholas (Klaus) Beyrle	Well ID/Boring Client: RG&E Site Location:				
Depth (ft bgs)	Elevation (ft AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well Construction			
-	-	-			Flush-mount concrete surface pad with locking j-plug.									
	- 760 - -	1	0-5	NA	NA	NA	NA 2.3 4.4 438		Asphalt. Gravel road base. Light reddish brown SILTY CLAY, white and gray mottled, trace fine subrounded Gravel, high plasticity, no dilatancy. Light reddish brown SILT, gray mottling, some Clay, trace round trace rootlets, no plasticity, no dilatancy, stiff, dry. Yellow-brown SILT, olive gray mottling, trace rounded fine Grav	ded fine Gravel,	Concrete (0-1' bgs) Sand Drain (0.5- 1' bgs)			
— 5 - -	- - 755 - -	2	5-9	NA	NA	4.0	1586 154.6 1309 1025 79.8		no dilatancy, trace rootlets, medium stiff, petroleum-like odor, dr Gray very fine SAND, SILT and CLAY, some to little very fine to Gravel, medium stiff, wet (due to rain overnight). Gray-brown very fine to medium SAND and SILT, little Clay, sor fine to very coarse angular to rounded gravel, medium stiff, stro odor, dry to moist.	y. o medium angular me to little very	Cement-Bentonite Grout (0.3-13' bgs)			
	- 0 -	3	9-11	NA	NA	1.7	8.2 22.3 75.6		Gray-brown very fine to fine SAND and SILT, trace Clay, little to coarse angular Gravel and weathered Shale bedrock dry to moi bedrock at 11 ft bgs.		4" Steel Casing (0.3-17' bgs)			
-	750 -	4	11-13	NA	0	2.0	NA		Dark gray fragments of SHALE. Dark gray SHALE, medium hard, broken zone 13-14.2 ft bgs, m at 14.2, 14.35, 14.65, 14.8, 14.86, 15.0, 15.2, 15.6, 15.7 ft bgs, 18 ft bac		Bedrock Formation			
- 1	5 –	5	13-18	NA 3.37 min/ft 4.20 min/ft	0	5.0	NA		18 ft bgs.	bolow are a d	$ \begin{vmatrix} \uparrow \\ \land \\$			
Int	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level. Location hand cleared to 5 ft bgs. Overburden drilled with 6.25" ID HSA. 4" steel casing set 2 ft into competent bedrock. Open hole bedrock well installed using HQ core barrel. Infrastructure, environment, buildings roject: B0013138.2 Template: G:\DIV 11\Rockware\LogPlot Templates\Current													

Client	:: RG	6&E						Well/Boring ID: MW-3			
Site L	ocat	ion						Borehole De	epth: 33' bgs		
6 Pa	ark S	treet,									
Gen	ieseo	o, New	YOrk								
Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well Construction		
745 -			4.67 min/ft					Dark gray SHALE, medium hard, broken zone 13-14.2 ft bgs, mechanical breaks at 14.2, 14.35, 14.65, 14.8, 14.86, 15.0, 15.2, 15.6, 15.7 ft bgs, broken zone 15.9-			
-			4.43 min/ft					18 ft bgs.			
								Dark gray SHALE, medium hard, mechanical breaks along bedding planes 18.65,			
			6.63 min/ft					18.7, 18.85, 19.4, 19.7, 19.9, 20.25 ft bgs, broken zone 20.6-21.4 ft bgs, 80-deg joint 20.7-22.6 ft bgs, mechanical break at 21.5, 22.0, 22.2, 22.5, 22.7 ft bgs.	Bedrock Formation		
- 20			3.87 min/ft								
	6	18-23	4.25 min/ft	0	4.6	NA					
740 -	-		4.42 min/ft								
-	-		4.15 min/ft								
-								Dark gray SHALE, medium hard, mechanical break 23.4 ft bgs, horizontal joint 23.65, 24.18 ft bgs, broken zone 24.37-24.6 ft bgs, horizontal joint 23.15 ft bgs,			
-			4.38 min/ft					broken zone 23.35-23.45 ft bgs, mechanical breaks 23.65, 23.87, 24.22 ft bgs, horizontal joint 24.30 ft bgs, mechanical break 24.57, 24.9 ft bgs, broken zone 25.2-25.4 ft bgs.			
- 25		~ ~ ~	4.02 min/ft								
-	7	23-28	3.08 min/ft 4.98	25	4.3	NA			✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓		
735 - -			Min/ft								
-	-		NA					Dark gray SHALE, medium hard, horizontal joint 28.44, 29.05-29.06, 29.2 ft bgs, mechanical break 29.95 ft bgs, broken zone 30.3-30.57 ft bgs, vertical joint 30.6- 32.25 ft bgs, mechanical break 31 ft bgs, horizontal joint 31.58, 32 ft bgs,			
-	-		5.78					mechanical break 32.3, 32.9 ft bgs.			
30	8	28-33	min/ft 3.27	86	5.0	NA					
- 730 -			min/ft 4.28 min/ft								
-			4.00 min/ft								
								End of boring at 33' bgs.			
-											
35											
-											
								Remarks: ags = above ground surface; bgs = below ground s Applicable/Available; AMSL = Above Mean Sea Le	surface; NA = Not evel.		
R	A	R	CA	D	5			Location hand cleared to 5 ft bgs. Overburden drill set 2 ft into competent bedrock. Open hole bedroc	ed with 6.25" ID HSA. 4" steel casing k well installed using HQ core barrel.		
and a second	nfrastructure, environment, buildings										

Dril Dril Dril Aug Rig	lling C ller's I lling N ger Si Type	Com Nam Meth ze:	nish: pany: e: Ste od: H 6-1/4" ME 85 .hod:	Nothr eve Lo ollow ID/HC Truck	nagle ranty Stem Core Mour	Drill Aug e Ba nted	ing, Ir ıer/Ro rrel	nc.	Northing: 1019399.75 Well ID/Boring ID: MW-4 Easting: 1353683.64 Client: RG&E Casing Elevation: 756.18' AMSL Site Location: 6 Park Street, Geneseo, New York Borehole Depth: 40.5' bgs Site Location: 6 Park Street, Geneseo, New York Descriptions By: Nicholas (Klaus) Beyrle Vell ID/Boring ID: MW-4
Depth (ft bgs)	Elevation (ft AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Stratigraphic Description Well Construction			
- -	-							±	TOPSON
-	755 - - -	1	0-5	NA	NA	NA	2.1		TOPSOIL. Concrete (0-1' bgs) Brown fine SAND, little fine to medium subrounded to angular Gravel, trace roots, dry. Sand Drain (0.5-1' bgs) Dark brown SILT and very fine to fine SAND, some fine to medium Gravel, trace brick debris and rootlets. Little very fine to fine Sand 4-5 ft bgs. Sand Drain (0.5-1' bgs)
	- 750 - -	2	5-9	NA	NA	1.0	1.3		Brown fine to coarse SAND and SILT, some to little very fine to coarse angular gravel, trace Slag, trace brick fragments, moist.
- 1(-	-) - 745 -	. 3	9-13	NA	NA	3.1	0.0 0.0 0.0 0.0		Brown SILTY CLAY, trace very fine to fine Sand and very fine Gravel, medium soft, medium plasticity, moist. bgs) Gray SILT, some Clay and very fine to medium Sand, trace rootlets, no plasticity, moist. 4" Steel Casing (0.3-20.5' bgs) Gray olive CLAY, yellow mottled, trace Silt, trace rootlets, little medium to coarse rounded Gravel 11-11.3 ft bgs, stiff, plastic, moist. 9
- 1!	- 5 -	4	13-14.5	NA	NA	1.8	0.0 0.0 0.6		Olive green-gray SILT and CLAY, trace very fine Gravel, brittle, dry. Top of weathered SHALE bedrock at 14.5 ft bgs. Gray broken SHALE fragments and Silt. Wet at 17.5 ft bgs. Competent bedrock at 18.5 ft bgs.
Inf. Proje	ect: B	0013	R (<i>ire, el</i> 138.2 /MW-4		nme	nt, i	build		Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level. Location hand cleared to 5 ft bgs. Overburden drilled with 6.25" ID HSA. 4" steel casing set 2 ft into competent bedrock. Open hole bedrock well installed using HQ core barrel. Rockware\LogPlot Templates\Current Page: 1 of Date: 10/27/2015

Clie	ent:	RG	&E						Well/Boring	ID: MW-4			
City		4							Borehole Depth: 40.5' bgs				
	e Lo Parl		on: reet,										
			, New	York									
	_	_			1	-				1			
	_ اير	ber					PID Headspace (ppm)						
(s)	Elevation (ft. AMSL)	Sample Run Number	ype	⁻ oot		eet)	ace (Geologic Column					
Depth (ft. bgs)	ti u	Run	Sample/Int/Type	Minutes per Foot	(%)	Recovery (feet)	adspe	° Co	Stratigraphic Description	Well Construction			
pth (i	vatio	nple	nple/	utes	RQD (%)	COVE) He	ologi					
i De	Шe	Sar	Sar	Min	RG	Re	ЫС	Gec					
/40		5	14.5	NA	NA	0.8	0.8		Gray broken SHALE fragments and Silt. Wet at 17.5 ft bgs. Competent bedrock at 18.5 ft bgs.		Cement-Bentonite Grout (0.3-18.5'		
-	_		18.5						-		Grout (0.3-18.5' bgs)		
		_											
-	_								Dark gray SHALE.				
— 20		6	18.5 20.5	NA	0	2.0	NA						
- 20													
- 73	5 -								Dark gray SHALE, medium hard, mechanical break 20.65, 20.72, 21.2, 21.25, 21.34, 21.45, 21.55, 21.70, 21.77, 22.02, 22.5, 22.9, 23.05 ft bgs, horizontal joint				
				3.78 min/ft					23.2 ft bgs, mechanical break 23.87, 24.3, 24.7 ft bgs, vertical joint 24.0-24.7 ft bgs.				
_				2.93 min/ft									
-	_	7	20.5 25.5	3.35 min/ft	50	4.2	NA						
			25.5	2.88									
_	-			min/ft									
- 25	_			5.05 min/ft									
									Dark gray SHALE, medium hard, horizontal joint 26.14 ft bgs, broken zone 26.6-		On an Dadasak		
- 730	0 -			5.50 min/ft					26.75 ft bgs, mechanical break 27.88 ft bgs, horizontal joint 28.9 ft bgs, mechanical break 29.65 ft bgs, broken zone 29.7-29.9 ft bgs, mechanical break 30.5 ft bgs.		Open Bedrock Hole (20.5-40.5' bgs)		
-	_			5.40					30.5 m bys.		-9-)		
				min/ft									
_		8	25.5 30.5	NA	91.6	5.0	NA				Bedrock Formation		
-	_			NA									
2.0				NA									
— 30	1	\square											
- 72	5 -			5 40					Dark gray SHALE, medium hard, horizontal joint 1-2mm wide 31.69 ft bgs, 32.46 ft bgs, horizontal joint 33.05 ft bgs, horizontal joint 1-5mm wide 33.8 ft bgs, mechanical brack 34 ft bgs, 57.35 0.7 ft bgs.				
L				5.48 min/ft					mechanical break 34.67-35.07 ft bgs.				
	1			3.12 min/ft									
-	-	9	30.5 35.5	2.82 min/ft	100	5.0	NA						
L			55.0	1.35									
				min/ft									
— 35	-			NA									
									Dark gray SHALE, medium hard, horizontal joint 35.72 ft bgs, mechanical break				
									Remarks: ags = above ground surface; bgs = below ground s Applicable/Available; AMSL = Above Mean Sea Le	surface; NA = Not evel.			
		Λ		~ \	D	10	•		Location hand cleared to 5 ft bgs. Overburden drill				
S									set 2 ft into competent bedrock. Open hole bedroc				
Infras	stru	ctu	re, ei	nviror									

Created/Edited by: NJB

C	lient	: RG	i&E				Well/Boring ID: MW-4							
S	ite L	ocat	ion:						Borehole D	epth: 40.5' bgs				
	6 Pa Gen	ark S	treet, o, New	York										
	0011		, 1101	Tork										
	SL)	lber					(mdd)							
(sbc	t. AM:	n Nun	Type	r Foot		(feet)	pace	olumr						
Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well Construction				
		Sam	Sam	Minut	RQ	Rec	DID	Geol						
,	20 -			NA					37.17 ft bgs, horizontal joint 38, 39.5 ft bgs, mechanical break 40.05 ft bgs, broken zone 40.3-40.5 ft bgs.	Open Bedrock Hole (20.5-40.5'				
-	_			NA						bgs)				
-	-	10	35.5 40.5	NA	90	5.0	NA			Bedrock Formation				
-	-			3.47 min/ft										
- 40	_			2.77 min/ft										
- 7	15 -								End of boring at 40.5' bgs.					
_	_													
_	-													
_	-													
- 45	_													
- 7	10 -													
_	_													
_	_													
_														
	_													
- 50	_													
- 7	05 -													
-	-													
-	-													
_	_													
- 55	_													
									Remarks: ags = above ground surface; bgs = below ground Applicable/Available; AMSL = Above Mean Sea Lu	surface; NA = Not evel.				
(0	Λ	R	~/	D	1			Location hand cleared to 5 ft bgs. Overburden dril	led with 6.25" ID HSA. 4" steel casing				
1,000			ire, e					linas	set 2 ft into competent bedrock. Open hole bedro	ck weil installed using HQ Core barrel.				
			138.2 MW-4		Tem	plate	e: G:\[DIV 11	\Rockware\LogPlot Templates\Current Date: 10/27/2015 Created/Edited by	™NJB				

Date Start/Finish: Augus Drilling Company: Nothr Driller's Name: Steve Lo Drilling Method: Hollow Auger Size: 6-1/4" ID/HC Rig Type: CME 85 Truck Sampling Method: 4' Ma	nagle Dril ranty Stem Aug Core Ba Mounted	ling, Inc ger/Rocl arrel		Easting: 1353666.43 Casing Elevation: 757.82' AMSL	Well ID/Boring Client: RG&E Site Location:			
Depth (ft bgs) Elevation (ft AMSL) Sample Run Number Sample/Int/Type Minutes per Foot	RQD (%) Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well Construction		
760						Flush-mount concrete surface pad with locking j-plug.		
	NA NA	0.0	Br	own wood mulch. own medium to coarse SAND, little rounded to angular mediur avel, trace roots, moist.	m to coarse	Concrete (0-1' bgs) Sand Drain (0.5- 1' bgs) 2" Sch 40 PVC		
	NA 1.5	0.0		own fine to coarse SAND and very fine to very coarse rounded t, moist to wet.	d GRAVEL, some	Riser (0.3'-20' bgs) Cement-Bentonite Grout (0.3-17' bgs) Cement-Bentonite Grout (0.3-20' bgs)		
- 10 - 3 10-14 NA 745	NA 2.8	1.2 29.6 26.7 5.2		ay-green CLAY and SILT, trace fine Sand, wood piece at top of -like odor, moist. ark Gray broken ROCK fragments and SILT, some to little Clay ark gray-olive SILT, some very fine to coarse angular Gravel, li	y, odor, moist.	4" Steel Casing (0.3-20' bgs)		
	NA NA	NA		D RECOVERY. Top of competent SHALE bedrock at 17.5 ft b				
Project: B0013138.2	nment,	buildir	gs	emarks: ags = above ground surface; bgs = Applicable/Available; AMSL = Abov Location hand cleared to 5 ft bgs. C set 2 ft into competent bedrock. Op	ve Mean Sea Le [.] Overburden drille			

Client	:: R0	6&E						Well/Boring I	D: MW-5
Site L	oca	ion:						Borehole Dep	oth: 35.0' bgs
6 Pa	ark S	treet,							
Gen	iese	o, New	York						
gs) :. AMSL)	Number	Type	Foot		feet)	bace (ppm)	olumn		
Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well Construction
-								NO RECOVERY. Top of competent SHALE bedrock at 17.5 ft bgs.	Cement-Bentonite Grout (0.3-20'
-									bgs)
- 740 -								Dark gray SHALE, breaks across entire length.	Bentonite Seal
-	5	17.5-20	NA	0	2.0	NA			(17-19' bgs)
_									2" Sch 40 PVC
- 20								Dark gray SHALE, medium hard, horizontal joint with trace oil-like material 20.2 ft	Riser (0.3'-20' bgs)
			3.57 min/ft					bgs, 63-deg joint coated with oil-like material 20.2-20.6 ft bgs, horizontal joint 21.1, 21.2, 21.3 ft bgs, broken zone 21.3-21.4 ft bgs, horizontal joint 21.5 ft bgs, horizontal joint containing little to trace oil-like material 21.73 ft bgs, mechanical	
-			3.22					break 21.9, 22.0, 22.2, 22.48 ft bgs, horizontal joint 22.9 ft bgs, mechanical break 23.2, 23.35, 24.03, 24.32 ft bgs.	
- 735 -	6	20-25	min/ft 3.55	43	4.7	NA			
- 735 -			min/ft 2.25						
			min/ft						
-			3.75 min/ft						#2 Silica Sand Pack (19-30'
- 25								Dark gray SHALE, medium hard, broken zone 25.25-25.4 ft bgs, 15-deg joint 1- 3mm wide 25.65 ft bgs, horizontal joint 1-3 mm wide 25.67, 25.9, 2-4mm wide	bgs)
			5.27 min/ft					26.18, 27.5, 26.73, 28.24, 27.9, 28.47, 28.68, 29.05 ft bgs, vertical joint 27.35- 28.55 ft bgs.	
			4.53 min/ft						2" Sch 40 PVC 0.020" Slot
730 -	7	25-30	4.10	30	4.6	NA			Screen (20-30' bgs)
_			min/ft NA						
-			NA						
30								Dark gray SHALE, medium hard, horizontal joint 1-2mm wide, 31.15, 31.95, 1- 4mm wide 34 ft bgs, mechanical break 34.38 ft bgs.	2" Sch 40 PCV
]		7.02 min/ft						Sump (25-30' bgs)
-	-		4.42 min/ft						
725 -	8	30-35	4.75	88	4.8	NA			Cement-Bentonite
_			min/ft 3.87						Grout (30-35' bgs)
	1		min/ft						
-	-		3.12 min/ft						
- 35								End of boring at 35' bgs.	
								Remarks: ags = above ground surface; bgs = below ground su Applicable/Available; AMSL = Above Mean Sea Lev	urface; NA = Not /el.
								Location hand cleared to 5 ft bgs. Overburden drille set 2 ft into competent bedrock. Open hole bedrock	d with 6.25" ID HSA. 4" steel casing
Infrastr	uctu	ire, ei	nviroi	nme	nt, I	buila	lings		
Project: B	0013	138.2		Tem	plate	: G:\F	DIV 11	Rockware\LogPlot Templates\Current	Page: 2 of 2

Project: B0013138.2 Data File:MW-5

Created/Edited by: NJB

Dri Dri Dri Aug Rig	lling C Iler's I Iling N ger Si I Type	Com Nam Meth ze: cn	nish: pany: e: Ste od: H 6-1/4" ME 85 .hod:	Nothr eve Lo lollow ID/HC Truck	nagle ranty Stem Core Mour	Drill Aug e Ba	ing, Ir er/Ro rrel	IC.	Casing Elevation: 757.73' AMSL	Site Location: 6 Park Street, Geneseo, New York AMSL		
Depth (ft bgs)	Elevation (ft AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well Construction	
-	760 - -	-									Flush-mount concrete surface pad with locking j-plug.	
- - -	- 755 - -	- 1	0-5	NA	NA	NA	0.0		Brown wood mulch. Yellowish brown very fine to medium SAND, little Silt, little fine to no plasticity, no dilatancy, dry. Yellowish brown very fine to medium SAND, some medium to coa to angular Gravel, trace Silt, dry.		Concrete (0-1' bgs) Sand Drain (0.5- 1' bgs)	
_	- - 750 -	2	5-9	NA	NA	1.8	0.0 0.0 0.0		Gray, brown mottled SILT, little to trace Clay, brittle, dry.		Cement-Bentonite Grout (0.3-17'	
- 1 -	- 0 - 745 -	3	9-13	NA	NA	2.3	0.0 0.0 0.0		Gray weathered SHALE bedrock, some to little Silt, brittle, dry.		4" Steel Casing (0.3-17' bgs)	
-	-	4	13-15	NA	NA	1.2	0.0 0.0		Gray weathered SHALE bedrock, brittle, dry. Top of competent S at 15 ft bgs.	SHALE bedrock		
1	с –	-							Dark gray SHALE, breaks across entire length. Remarks: ags = above ground surface; bgs = b	below ground su	rface; NA = Not	
Int Proje	Applicable/Available; AMSL = Above Mean Sea Level. Location hand cleared to 5 ft bgs. Overburden drilled with 6.25" ID HSA. 4" steel casing set 2 ft into competent bedrock. Open hole bedrock well installed using HQ core barrel. Project: B0013138.2 Template: G:\DIV 11\Rockware\LogPlot Templates\Current Page: 1 of 3 Date: 10/27/2015 Created/Edited by: NJB											

Client: RG&E								Well/Boring ID: MW-6					
Site L	.oca	ion:						Borehole Depth: 37.0' bgs					
		treet, b, New	York										
	_		1	-		1							
Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well Construction				
-	5	15-17	NA	NA	0	NA		Dark gray SHALE, breaks across entire length.	Cement-Bentonite				
- 740 - - 20 - 	- 6	17-22	4.62 min/ft 4.00 min/ft 3.25 min/ft 2.15 min/ft 2.12 min/ft	35	3.7	NA		Dark gray SHALE, medium hard, horizontal joint 2-3mm wide 17.7, 1-3mm wide 18.04, 1-2mm wide 18.35, 18.43-18.45, 18.65-18.67 ft bgs, mechanical break 18.82 ft bgs, horizontal joint 1-2mm wide 18.95 ft bgs, mechanical break 19.13 ft bgs, horizontal break 19.5-19.52 ft bgs, mechanical break 20.21, 20.56 ft bgs.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
- - - - - - 25 - -	- 7	22-27	4.15 min/ft 3.95 min/ft 5.73 min/ft 4.58 min/ft 5.67 min/ft	73	3.7	NA		Dark gray SHALE, medium hard, horizontal joint, 22.17, 1-3mm wide 22.46, 22.73, 22.9, 23.69, 24.1 ft bgs, 45-deg joint 23.95-24.4 ft bgs, broken zone 24.7-24.8 ft bgs, horizontal joint 25.4-25.42 ft bgs, mechanical break 26.47 ft bgs.	Image: A mark Image: A mark Image: A mark I				
- - - - - - 30 -	- 8	27-32	6.02 min/ft 4.50 min/ft 4.30 min/ft NA	100	5.0	NA		Dark gray SHALE, medium hard, 45-deg joint 27-27.55 ft bgs, horizontal joint 27.55, 1-2mm wide 28.9, 1-3mm wide 29.75, 30.55, 31 ft bgs, mechanical break 31.45 ft bgs.	\land				
- 725 - - - - 35 -	- 9	32-37	NA NA NA NA	75	5.0	NA		Dark gray SHALE, medium hard, horizontal joint with trace calcium-like mineral deposit 32.36 ft bgs, broken zone 32.8-33.2, 33.85-33.95 ft bgs, mechanical break 34.2 ft bgs, horizontal joint 1-3mm wide 35.3 ft bgs, mechanical break 35.9 ft bgs, broken zone 36.8-37 ft bgs.					
ARCADIS Infrastructure, environment, buildings								Remarks: ags = above ground surface; bgs = below ground s Applicable/Available; AMSL = Above Mean Sea Le Location hand cleared to 5 ft bgs. Overburden drill set 2 ft into competent bedrock. Open hole bedroc	evel. led with 6.25" ID HSA. 4" steel casing				

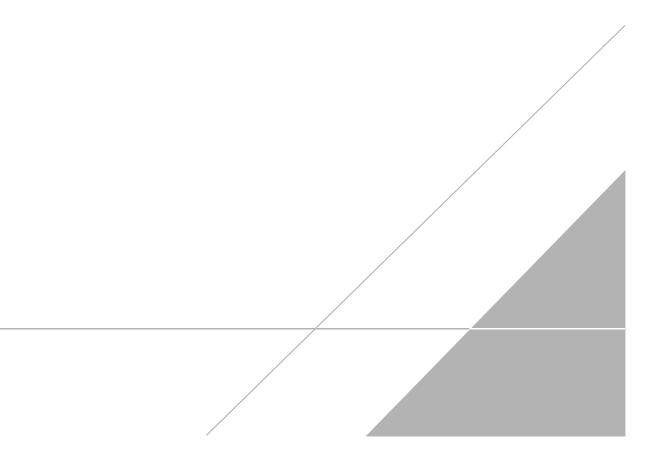
Created/Edited by: NJB

Client: RG&E						Well/Boring ID: MW-6					
Site Location:						Borehole Depth: 37.0' bgs					
6 Park Street,											
Geneseo, Nev	v York										
				Ê							
MSL) umbe	t I		t	e (pp	uu						
bgs) (ft. A :un N it/Typ	er Fo		/ (fee	Ispac	Colur	Stratigraphic Description	Well Construction				
Depth (ft. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column						
Dep Elev Sam Sam	Minu	RQI	Rec	뎹	Geo						
_	NA					deposit 32.36 ft bgs, broken zone 32.8-33.2, 33.85-33.95 ft bgs, mechanical break 34.2 ft bgs, horizontal joint 1-3mm wide 35.3 ft bgs, mechanical break 35.9 ft bgs, broken zone 36.8-37 ft bgs.	Open Bedrock				
700						End of boring at 37.0' bgs.	/ \ Hole (17-37' bgs)				
720 -											
- 40											
-											
715 -											
- 45											
_											
710 -											
-											
- 50											
-											
705 -											
.											
- 55											
Remarks: ags = above ground surface; bgs = below ground surface; NA = Not											
Applicable/Available; AMSL = Above Mean Sea Level.											
	CA	D	IS			Location hand cleared to 5 ft bgs. Overburden drill set 2 ft into competent bedrock. Open hole bedroc	ed with 6.25" ID HSA. 4" steel casing ck well installed using HQ core barrel.				
Infrastructure, e					lings		-				
Project: B0013138.2 Data File:MW-6		Tem	plate	e: G:\E	DIV 11	\Rockware\LogPlot Templates\Current Date: 10/27/2015 Created/Edited by	Page: 3 of NJB				

Date Sta Drilling (Driller's Drilling I Auger Si Rig Type Sampling	Com Nam Veth ize: cl	pany: ne: Ste od: H 6-1/4" ME 85	Nothr eve Lo lollow ID/HQ Truck	nagle ranty Stem Core Mour	Drill Aug e Ba	ing, Ir ıer/Ro rrel	nc.	Northing: 1019380.35 Easting: 1353503.14 Casing Elevation: 744.07' AMSL Borehole Depth: 30.5' bgs Surface Elevation: 743.96' AMSL Descriptions By: Nicholas (Klaus) Beyrle	Well ID/Boring ID: MW-7 Client: RG&E Site Location: 6 Park Street, Geneseo, New York		
Depth (ft bgs) Elevation (ft AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well Construction		
 - 745 -	-								Flush-mount concrete surface pad with locking j-plug.		
 - 740 -	1	0-5	NA	NA	NA	7.8		TOPSOIL. Yellowish brown very fine to medium SAND, some Silt, little very Gravel, some brick debris, some rootlets, no plasticity, no dilat Dark brown SILTY CLAY, medium plasticity, no dilatancy, soft Yellowish brown CLAYEY SILT, trace fine Sand, trace Gravel, no dilatancy, moist.	tancy, moist.		
 	2	5-8.5	NA	NA	3.3	0.0		Yellowish brown SILT, little very fine to fine Sand, no plasticity loose to medium dense, brittle, dry. Gray weathered SHALE bedrock. Top of competent SHALE b			
- 735- 10 -	3	8.5-10.5	NA	NA	NA	NA		Interval not sampled/logged.	Bedrock Formation		
 - 730 - 	4	10.5- 15.5	10.00 min/ft 10.00 min/ft 11.00 min/ft 10.00 min/ft	22	4.04	NA		Dark gray SHALE, medium hard, broken zone 10.6-11.2 ft bgs 13.1, 13.9, 14, 14.4 ft bgs, vertical mechanical joint 12.5-14.7 Dark gray SHALE, medium hard, horizontal joint 15.7, 16.75, 20.1 ft bgs, 72-deg joint 16-16.65 ft bgs.	ft bgs.		
Sec Infrastr							lings				
Project: B	Project: B0013138.2 Template: G:\DIV 1						DIV 11	Rockware\LogPlot Templates\Current	Page: 1 or		

Clien	Client: RG&E							Well/Boring ID: MW-7				
Site L								Borehole Depth: 30.5' bgs				
		treet, o, New	York									
Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well Construction			
 - 725 - - 20 -	- 5	15.5- 20.5	8.00 min/ft 8.50 min/ft 9.50 min/ft 10.00 min/ft 10.00	89	4.89	NA		Dark gray SHALE, medium hard, horizontal joint 15.7, 16.75, 17.7, 18.45, 19.25, 20.1 ft bgs, 72-deg joint 16-16.65 ft bgs.				
 - 720 -	6	20.5- 25.5	8.00 min/ft 10.00 min/ft 11.00 min/ft 11.00 min/ft 9.00 min/ft	93	4.92	NA		Dark gray SHALE, medium hard, horizontal joint 1mm wide 20.83 ft bgs, mechanical break 21.3 ft bgs, horizontal joint with calcium-like mineral deposit 1- 2mm wide 21.9, 21.96 ft bgs, mechanical break 23.86, 24.6 ft bgs.	 ∧ ∧			
	7	25.5- 30.5	11.00 min/ft 11.00 min/ft 10.00 min/ft 11.00 min/ft 12.00 min/ft	69	4.71	NA		Dark gray SHALE, medium hard, mechanical break 25.65, 25.9 ft bgs, horizontal joint with calcium-like mineral deposit 1mm wide 26.4, 1-3mm wide 27.65 ft bgs, mechanical break 27.9, 29 ft bgs, 54-deg joint 28.2-28.4 ft bgs.				
1000	ARCADIS Infrastructure, environment, buildings							Remarks: ags = above ground surface; bgs = below ground s Applicable/Available; AMSL = Above Mean Sea Le Location hand cleared to 5 ft bgs. Overburden drill set 2 ft into competent bedrock. Open hole bedroc	evel. ed with 6.25" ID HSA. 4" steel casing			

Dri Dri Dri Aug Rig	lling (ller's lling N ger Si I Type	Com Nam Meth ize: e: Cl	nish: pany: e: Sto od: ⊢ 6-1/4" ME 85 .hod:	Nothr eve Lo Iollow ID Truck	nagle oranty Stem Mour	Drilli Aug nted I	ing, Ir er/Ro		Northing: 1019356.16 Easting: 1353766.74 Casing Elevation: NA Borehole Depth: 12.9' bgs Surface Elevation: 759.24' AMSL Descriptions By: Nicholas (Klaus) Beyrle		-
Depth (ft bgs)	Elevation (ft AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well Construction
_	- 760 -	-									
	- - 755 -	- 1	0-5	NA	NA	NA	0.0		Asphalt. Road base gravel. Brown fine to coarse SAND and fine to coarse rounded Grave some Silt, dry to moist.	, little cobbles,	Asphalt cold patch (0-0.3' bgs)
— 5 - -	-	2	5-9	NA	NA	1.6	0.0		Dark brown grading to brown SILT and very fine SAND, some very fine to medium angular Gravel, low plasticity, soft, dry to r		Cement-Bentonite Grout (0.3-12.9' bgs)
- - 1 -	750 - 0 - -	3	9-12.9	NA	NA	3.8	0.0 0.0 0.0		Brown SILT and CLAY, orange mottled, medium stiff, no plast Gray weathered SHALE bedrock, dry. Top of weathered SHA bgs.		
_ 1	- 745 - 5 -	-							End of boring at 12.9' bgs.		
F ARCADIS Infrastructure, environment, buildings									Remarks: ags = above ground surface; bgs Applicable/Available; AMSL = Abo Location hand cleared to 5 ft bgs.	ove Mean Sea Leve	el.
Proi	ect: B	0013	138.2		Tem	plate	: G:\E	DIV 11	V 11\Rockware\LogPlot Templates\Current Page: 1 of		


Dril Dril Dril Aug Rig	lling C ller's I lling N ger Si Type	Com Nam Meth ize: e: CN	nish: bany: e: Ste od: H 6-1/4" //E 85 hod:	Nothi eve Lo lollow ID Truck	nagle oranty Stem Mour	Drill Aug	ing, Ir er/Ro		Northing: 1019292.15 Well ID/Boring ID: SB-2 Easting: 1353750.52 Casing Elevation: NA Borehole Depth: 13.2' bgs Site Location: 6 Park Street, Geneseo, New York Surface Elevation: 760.19' AMSL Descriptions By: Nicholas (Klaus) Beyrle		
Depth (ft bgs)	Elevation (ft AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well Construction
_ _ 0_	- - 760 -	-							Asphalt. Road base gravel.		Asphalt cold patch (0-0.3' bgs)
-	-	1	0-5	NA	NA	NA	0.0		Brown coarse SAND and fine to coarse subangular to subrour moist. Dark reddish brown SILT, little very fine Sand, trace small to m Pebbles, trace brick debris, soft to medium stiff, moist. Dark reddish brown SILT, little very fine Sand, trace small to m Pebbles, soft to medium stiff, moist to wet.	redium subrounded	
5 	755 - - - -	2	5-9	NA	NA	3.8	0.3 2.1 89.3 372.2 1007		Brown-gray SILT, trace Clay, little to trace very fine to medium strong petroleum-like odor 7.5-8.8 ft bgs, stiff, dry.	angular Gravel,	Cement-Bentonite Grout (0.3-13.2' bgs)
- 10 -	- 750 - -	3	9-13	NA	NA	1.5	251.9 56.4		Weathered SHALE bedrock and rock flour, brittle, faint petrole Competent bedrock at 11 ft bgs. Dark Gray SHALE bedrock.	um-like odor.	
	- - 745 -	- 4	13-13.2	NA	NA	0.1	8.3		End of boring at 13.2' bgs.		
Inf Proje	rastro	<u>uctu</u> 0013	R (<i>ire, ei</i> 138.2		nme	nt, i	buila		Remarks: ags = above ground surface; bgs Applicable/Available; AMSL = Abo Location hand cleared to 5 ft bgs. Rockware\LogPlot Templates\Current Date: 10/27/2015 C	ove Mean Sea Le	vel. ed with 6.25" ID HSA. <i>Page: 1 of 1</i>

Dri Dri Dri Au Riç	lling (Iler's Iling N ger Si I Type	Com Nam Meth ze: c	nish: pany: e: Str od: ⊢ 6-1/4" //E 85 .hod:	Noth eve Lo lollow ID Truck	nagle oranty Stem Mour	Drill Aug	ing, Ir er/Ro		Northing: 1019287.46 Easting: 1353691.45 Casing Elevation: NA re Borehole Depth: 11' bgs Surface Elevation: 758.49' AMSL Descriptions By: Nicholas (Klaus) Beyrle	1353691.45 Client: RG&E evation: NA Site Location: 6 Park Street, Geneseo, New York evation: 758.49' AMSL Geneseo, New York		
Depth (ft bgs)	Elevation (ft AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well Construction	
0	- 760 - -	-										
_ _ _	- - 755 -	1	0-5	NA	NA	NA	1.1 2.2 2.9		Asphalt. Road base gravel. Dark gray SILT, some very fine to fine Sand, little small to med subangular Gravel, soft to medium stiff, no plasticity no dilatance Dark brown SILT, trace very fine to fine Sand, trace Clay, trace angular fine to medium Gravel, soft to medium stiff, low to med dilatancy, moist. Dark brown fine to coarse SAND, trace subrounded to angular Gravel, trace Silt, loose, dry to moist.	subrounded to ium plasticity, no	Asphalt cold patch (0-0.3' bgs)	
— 5 - -	- - 750 -	2	5-9	NA	NA	3.7	0.0		Reddish-dark brown very fine to fine SILTY SAND, little Silt, tra subrounded fine to medium Gravel, dense to very dense, dry.	ice angular to	Cement-Bentonite Grout (0.3-11' bgs)	
- 1 	- 0 - -	3	9-11	NA	NA	2.0	0.0		Light gray weathered SHALE bedrock, dry. Top of SHALE bed End of boring at 11.0' bgs.	Irock at 11ft bgs.		
- - 1	- 745 - - 5 -											
Ini Proj	frastr	<u>uctu</u> 0013	R (<i>ire, e</i> . 138.2		nme	nt, i	build		Remarks: ags = above ground surface; bgs = Applicable/Available; AMSL = Abo Location hand cleared to 5 ft bgs.	ve Mean Sea Le	evel. led with 6.25" ID HSA. Page: 1 of 1	

Drill Drill Drill Aug Rig	ing C er's I ing N er Si Type	Com Nam Meth ze: : Cl	nish: // pany: e: Ste od: H 6-1/4" ME 85 ⁻ thod:	Nothr eve Lo ollow ID Truck	nagle ranty Stem Mour	Drill Aug	ing, Ir ıer/Ro		Client: Casing Elevation: NA	Boring ID: SB-5 RG&E ation: 6 Park Street, Geneseo, New York
Depth (ft bgs)	Elevation (ft AMSL)	Sample Run Number	Sample/Int/Type	Minutes per Foot	RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well Construction
- -	- 760 - -									
-	- - 755 -	1	0-5	NA	NA	NA	0.0		Asphalt. Road base gravel. Brown fine to coarse SAND and SILT, some fine to coarse angular Gravel, t brick, moist.	race
	- - 750 -	2	5-9	NA	NA	2.0	0.0 0.0 0.0		Black and brown Slag and SILT, dry to moist. Brown SILT, little Clay, no plasticity, medium stiff, moist to dry. White calciu like deposits possibly ash-like material 6.2-7 ft bgs.	m- Cement-Bentonite Grout (0.3-15.2' bgs)
- 10 -	-	3	9-13	NA	NA	3.6	0.0		Dark brown SILT, some very fine Sand, trace very fine angular to rounded Gravel, medium soft, moist. Gray CLAY, orange mottled, some Silt, trace very fine angular to rounded G medium plasticity, stiff, dry to moist. Brittle 11.3-12.6 ft bgs. Gray CLAY, orange mottled, some Silt, trace very fine angular to rounded G	iravel
- - - 15	- 45	4	13-15.2	NA	NA	2.2	0.0 0.0 0.0		brittle, medium plasticity, stiff, dry to moist. Top of weathered Shale bedrock 13.5 ft bgs. Gray weathered SHALE bedrock, brittle. End of boring at 15.2' bgs.	at
Ren Ren Infrastructure, environment, buildings									Remarks: ags = above ground surface; bgs = below gr Applicable/Available; AMSL = Above Mean 3 Location hand cleared to 5 ft bgs. Overburde	Sea Level.
Proje	ct: B(013	138.2		Tom	nlate		11 //ור	Rockware\LogPlot Templates\Current	Page: 1 of

APPENDIX B

PTS Laboratories, Inc. Physical Properties Report

8100 Secura Way • Santa Fe Springs, CA 90670 Telephone (562) 347-2500 • Fax (562) 907-3610

February 9, 2016

Bruce Ahrens ARCADIS U.S., Inc. 295 Woodcliff Dr. Fairport, NY 14450

Re: PTS File No: 45755R1 Physical Properties Data Geneseo Park Street Former MGP; B0012128.0001

Dear Mr. Ahrens:

Please find enclosed REVISED report for Physical Properties analyses conducted upon samples received from your Geneseo Park Street Former MGP; B0012128.0001 project. All analyses were performed by applicable ASTM, EPA, or API methodologies. The report was revised to include extrapolated Viscosity data per client request. The samples are currently in storage and will be retained for thirty days past completion of testing at no charge. Please note that the samples will be disposed of at that time. You may contact me regarding storage, disposal, or return of the samples.

PTS Laboratories appreciates the opportunity to be of service. If you have any questions or require additional information, please give me a call at (562) 347-2502.

Sincerely, PTS Laboratories, Inc.

Michael Mark Brady, P.G. Laboratory Director

Encl.

$PTS \ {\sf Laboratories}$

Project Name:Geneseo Park Street Former MGPProject Number:B0012128.0001

PTS File No: 45755R1 Client: ARCADIS U.S., Inc.

TEST PROGRAM - 20151224

FLUID ID	Date	Time	Fluid Type	Fluid Properties Pkg.	Fluid Cleaning		Comments
			Method:	ASTM D1481, 445, 971	Proprietary		
Date Received: 20151224							
DNAPLMW-5	20151217	1030	DANPL/Water	x	Х		
TOTALS:			4 jars	1	1		
Laboration Task David No.							

Laboratory Test Program Notes

Standard TAT for basic analysis is 10 business days.

Fluid Properties Package - DNAPL & Water: Includes dynamic viscosity and fluid density at three temperatures (70, 100, 130°F), surface tension for each fluid, and interfacial tensions

(three phase pairs; oil/water, oil/air, and water/air (at ambient laboratory temperature)).

Per client request include extrapolated Viscosity at 55°F

PTS File No: 45755R1 Client: ARCADIS U.S., Inc. Report Date: 02/09/16

VISCOSITY, DENSITY, and SPECIFIC GRAVITY DATA (METHODOLOGY: ASTM D445, ASTM D1481, API RP40)

Project Name: Project No: Geneseo Park Street Former MGP B0012128.0001

SAMPLE	MATRIX	TEMPERATURE,	SPECIFIC	DENSITY,	VISCOSITY		
ID		°F	GRAVITY	g/cc	centistokes	centipoise	
DNAPLMW-5	Water	55			*1.21		
		70	1.004	1.002	1.04	1.04	
		100	1.004	0.9975	0.714	0.712	
		130	1.003	0.9889	0.542	0.536	
DNAPLMW-5	NAPL	55			*8000		
		70	1.158	1.156	2000	2310	
		100	1.151	1.143	329	376	
		130	1.146	1.130	72.7	82.1	

*Extrapolated using ASTM D341 Viscosity-Temperature Charts

QUALITY CONTROL DATA		
Date: 01/21/16	01/21/16	01/28/16
FLUID TYPE: Cannon® C	VS S3 DI Water	Cannon® CVS S3
TEMPERATURE, °F: 70	70	70
DENSITY, MEASURED: 0.8636	0.9982	
DENSITY, PUBLISHED: 0.8631	0.9980	
RPD: 0.05	0.02	
VISCOSITY, MEASURED:	1.00	4.57
VISCOSITY, PUBLISHED:	0.98	4.54
RPD:	2.09	0.67
CVS Lot #: 15201	CVS = Certified Viscosity Standard	

PTS File No:45755R1Client:ARCADIS U.S., Inc.Report Date:02/09/16

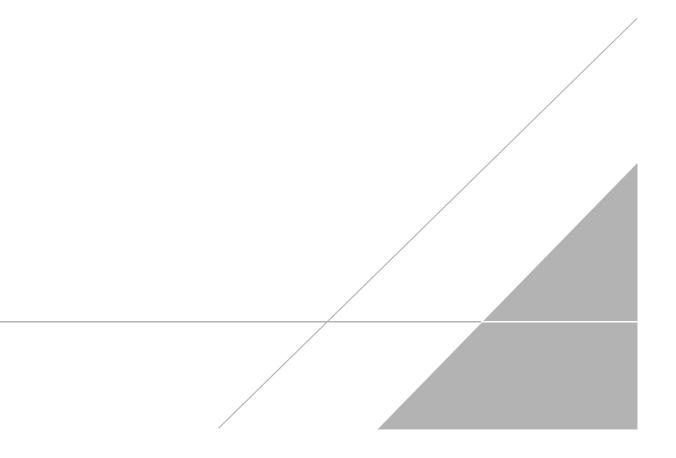
INTERFACIAL / SURFACE TENSION DATA

(METHODOLOGY: DuNuoy Method - ASTM D971)

Project Name:Geneseo Park Street Former MGPProject No:B0012128.0001

PHASE	E PAIR	TEMPERATURE,	INTERFACIAL TENSION,
SAMPLE ID / PHASE	SAMPLE ID / PHASE	°F	Dynes/centimeter
DNAPLMW-5 / Water	Air	73	55.8
DNAPLMW-5 / NAPL	Air	73	39.7
DNAPLMW-5 / NAPL	DNAPLMW-5 / Water	73	22.2

QUALITY CONTROL DATA


Date: 01/29/16 PHASE PAIR: DIWATER / AIR TEMPERATURE, °F: 71 IFT, MEASURED: 71.9 IFT, PUBLISHED: 72.5 RPD: -0.81

PTS Laboratories, Inc.	s, Inc.		CHAIN	ЦО	ñ	0 LO	CUSTODY RECORD	щС	Ц Ц	Ω					۵	PAGE 1 OF 1
COMPANY								NAL	YSIS	ANALYSIS REQUEST	UES	F				PO#
Arcadis														*******		IND TIME
ADDRESS 295 Woodcliff Drive	CITY Fairport, NY		21P COUE 14450						ED	78937						
PROJECT MANAGER Bruce Ahrens	br	e uce.ahren	email bruce.ahrens@arcadis.com			GE				I MT2A					еE	OTHER:
PROJECT NAME Geneseo Park Street Former MGP			PHONE NUMBER 585-662-4034	E		PACKA		B			01		0,0,0		PACKA	SAMPLE INTEGRITY (CHECK): INTACT TEMP/E)
PROJECT NUMBER B0013138.0001			FAX NUMBER 585-385-4198				РАСКА	PACKA			v9月 19A					JOTE NO.
sitt Location Geneseo, New York				J9MA2 A Səitf)UGNOC \RUTA2	PROPI	CORE F	TRO92	DTAL, AI	, ,YTIVAf YAO) YT	' אורובל'	OUDNO:	EX-BLAC	NOISU	UCT MC	15-242 PTS FILE:
SAMPLER SIGNATURE							РВОРГ	ИАЯТ Я			АЭМЯЭ				РКОР	45755
SAMPLE ID	DATE	TIME	DEPTH, FT				דרטום	IO9AV			IA AIA				EREE	COMMENTS
DNAPLMW-5	12.17.15	1030	35	4			×									
									Mar resolutions							
												:				
									ноласталониканом							
1. RELINGUISHED BY	La Perch	2. RECEIVED BY	WED BY			ຕ່	3. RELINQUISHED BY	NISH	ED BY					4. F	4. RECEIVED	ED BY
COMPANY COMPANY		COMPAN	COMPANY DR. Idby, Inc			Ō	COMPANY	~						8	COMPANY	
$\frac{\text{DATE}}{ \mathcal{I}_i \mathcal{F}_i \mathcal{S}}$ TIME	1400	DATE UUUU	4 / ist	^ଜ ୁପର୍ୟ	5		DATE			⊢	TIME			DATE	ш	TIME

PTS Laboratories, Inc. • 8100 Secura Way • Santa Fe Springs, CA 90670 • Phone (562) 347-2500 • Fax (562) 279-1150

APPENDIX C

Soil Gas Sample Collection Logs

ARCADIS		Soil Gas Sample Collection Log			
ALCO A LILOA			Sample ID:	50-1	
Client:	RGE		Date/Day:	9 12 115	
Project:	Cerus Par	th st	Weather:	Calm art-cast 30.14	
Location:	Garry, NY		Temperature:	Cosof	
Project #:	B0015154	/ = 00	Wind Speed/Direction:	Calm SE (ft/min) (mph)	
Samplers:	25g/mmp		Subcontractor:	Nar	
Logged By:			Equipment:		
Background PID Ambient Air Reading: Sampling Depth:	0 3.8 BG	ppb 5- 2.8-3,86	Moisture Content of Sampling Zone (circle one):	Dry/ Moist	
Sumpling Deptil.	B	V.0->10 03	(ch che one).		
Probe (circle one):	Permanen	I	Approximate Volume of Sampling Train::	$60 \text{ mL}=(6^{\circ} \text{ of } \frac{5}{4} \text{ "ID tubing})$	
Time of Collection:	Start: 0846 Finish: 1440		Approximate Purge Volume:	<u>/</u> 8> mL= [(<u>(</u> 3v)]	

Well ID	Depth to Groundwater (feet)

SUMMA Canister Information

Size (circle one): <u>1 L</u>	<u>3L</u> <u>6L</u>	Other:L
Canister ID:	3317	
Flow Controller ID:	2528	

Tracer Gas Information (if applicable)

Tracer Gas: Helium

Canister Pressure (inches Hg): 30	0 -30	
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
- 30.0	Analog: - 30 / Digital: - MA	Analog: - 🂪 / Digital: -

Measur	ed from Soil	Vapor Tul	oing		Μ	easured in 'Co	ncentrated	l' Area	
Post Pu	rge	Post Sa	mple	Prior to P	urging	Post Pu	urging	Post Sam	pling
Om	ppm	D	ppm	401	%	(7pm	%	1725 AM	%

General Observations/Notes:

Photo ID:			ppb reading on the PID following sample
Analog reading (-) after () hrs.	Collected from soil vapor tubing.
Analog reading (-) after () hrs.	
Differential Pressure:	+:	- <u></u>	

Approximating One-Well Volume (for purging temporary points): Each foot of ¼-inch tubing will have a volume of approximately 10 mL. Scienced 2n8-2,8 ~ 3 to growd 3 about good ~()

		Soil Gas Sample Collection Log			
			Sample ID:	50-2	
Client:	RGE		Date/Day:	912115	
Project:	Gardo Por	kst	Weather:	Calm, Cha 3014	
Location:	GENTIO N		Temperature:	7100	
Project #:	Bas 15/38		Wind Speed/Direction:	Smale / SFE (ft/min) (mph)	
Samplers:	NJSCAM	M	Subcontractor:	None	
Logged By:	NSO		Equipment:	Nort	
Background PID Ambient Air Reading: Sampling Depth:	Ø	ppb	Moisture Content of Sampling Zone (circle one):	Dry / Moist	
Probe (circle one):	Permanen	t / Temporary	Approximate Volume of Sampling Train::	$\underline{6}$ mL= ($\underline{6}$ of $\underline{4}$ " ID tubing)	
Time of Collection:	Start: 092> Finish: 🚝 /	60	Approximate Purge Volume:	/ mL= [($(3v)$]	

Well ID	Depth to Groundwater (feet)
	· · · · · · · · · · · · · · · · · · ·

SUMMA Canister Information

Size (circle one): <u>1 L</u>	<u>3 L 6 L</u>	Other:L
Canister ID:	36.41	
Flow Controller ID:	4937	
Tracer Gas Informatio	n (if applicab	le)

Tracer Gas:

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
- 30.0	Analog: - 275 / Digital: -	Analog: - 6.5 / Digital: -

Tracer Gas	Concentra	tion (if app	licable):					
Measu	red from So	oil Vapor Tu	bing	Measured in 'Concentrated' Area				
Post P	urge	Post S	ample	Prior to P	urging	Post Pu	rging	Post Sampling
0	ppm	0	ppm	92.9	%	42.3	%	14275 pm %

General Observations/Notes:

Photo ID:			ppb reading on the PID following sample
Analog reading (-) after () hrs.	Collected from soil vapor tubing.
Analog reading (-) after () hrs.	
Differential Pressure:			

Approximating One-Well Volume (for purging temporary points): Each foot of ¼-inch tubing will have a volume of approximately 10 mL.

Screen	• • • •	5-3.7	5		
Tubing Tubin	belie auto).75 (1)	= L7 \$0.87	3	=~Gf

ARCA	DIS	Soil Ga	as Sample	Collection Log
			Sample ID:	SV-3
Client:	RGE		Date/Day:	912115
Project:	GANESCO PON	nh sl	Weather:	Calm, Nazy 301
Location:	GALSED, M	14 V	Temperature:	75°F
Project #:	30013138	Contraction of the second	Wind Speed/Direction:	Calm SE (ft/min) (mph)
Samplers:	NB/MMI	1	Subcontractor:	mc~
Logged By:	NOS		Equipment:	non
Background PID Ambient Air Reading: Sampling Depth:	0 2.75-3.	ppb 7-5	Moisture Content of Sampling Zone (circle one):	Dry / Moist
Probe (circle one):	Permanen	t / Temporary	Approximate Volume of Sampling Train::	$\underline{55}$ mL= ($\underline{555}$ of" ID tubing)
Time of Collection:	Start: 0955 Finish: 1530		Approximate Purge Volume:	/65 mL=[(55)*(3v)]

Well ID	Depth to Groundwater (feet)

SUMMA Canister Information

Size (circle one): 1L 3L (6L)Other: ___L

Canister ID:	1632
Campter ID.	

Flow Controller ID: $5 \otimes 9$

Tracer Gas Information (if applicable)

Tracer Gas: ____# e

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
- 2 30	Analog: - 🏹 / Digital: -	Analog: - 🂪 / Digital: -

							licable):	ation (if app	Concentra	Fracer Gas
		Area	centrated'	sured in 'Con	Me		oing	oil Vapor Tu	red from Se	Measu
β	ling	Post Sampl	ging	Post Pur	urging	Prior to P	mple	Post Sa	rge	Post Pu
<u>ppm</u> <u>ppm</u> <u>75,0</u> % <u>53,0</u> % <u>8745</u>	%	8425 ppn	%	33.6	%	93.0	ppm	0	ppm	Ø

General Observations/Notes:

Photo ID:	_		ppb reading on the PID following sample
Analog reading (-) after () hrs.	Collected from soil vapor tubing.
Analog reading (-) after () hrs.	
Differential Pressure:			

Approximating One-Well Volume (for purging temporary points):

Each foot of 1/2-inch tubing will have a volume of approximately 10 mL. Tubisy below grown 2.75 = 5.55 Screen 2.75 - 3.75 Tubisy Above grown = 2.8

ARCA	DIS	Soil Ga	as Sample	Collection Log
REECT TREAT			Sample ID:	50-4
Client:	RGE		Date/Day:	9/2/15
Project:	GAVEND PONK	St	Weather:	Calm 30.09"
Location:	Gereka, Nº		Temperature:	75%
Project #:	30013134		Wind Speed/Direction:	$G_{m} SE$ (ft/min) (mph)
Samplers:	NOB/mm		Subcontractor:	Nove
Logged By:	NOB		Equipment:	Non
Background PID Ambient Air Reading: Sampling Depth:	2.75-3.	ppb	Moisture Content of Sampling Zone (circle one):	Dry / Moist
Probe (circle one):	Permanen		Approximate Volume of Sampling Train::	$\underline{(a)}$ mL=($\underline{(b)}$ of $\underline{(c)}$ "ID tubing)
Time of Collection:	Start: 1030 Finish: 1630		Approximate Purge Volume:	<u>/80</u> mL= [($\frac{63}{2}$) * (3v)]

Well ID	Depth to Groundwater (feet)
	· · · · · · · · · · · · · · · · · · ·

SUMMA Canister Information

Size (circle one): <u>1 L</u>	<u>3 L</u>	<u>61</u>	Other: _	_L
Canister ID:	42	829		_

Flow Controller ID: 3954

Tracer Gas Information (if applicable)

Tracer Gas: ______

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
- 29.9	Analog: - 29,5 / Digital: -	Analog: - 6,5 / Digital: -

Tracer Gas Concentra	ation (if applicable):			
Measured from S	oil Vapor Tubing	Me	asured in 'Concentrated'	Area
Post Purge	Post Sample	Prior to Purging	Post Purging	Post Sampling
750 ppm	25 ppm	93.1 %	23,0 %	7800 ppm %

General Observations/Notes:

Photo ID:			ppb reading on the PID following sample
Analog reading (-) after () hrs.	Collected from soil vapor tubing.
Analog reading (-) after () hrs.	
Differential Pressure:			

Approximating One-Well Volume (for purging temporary points): Each foot of ¹/₄-inch tubing will have a volume of approximately 10 mL.

	Tubiog belos	=2,75	-(,
75	tubios abuy	= 3.2	-4

Screwal 2,75 -3,

		Soil Gas Sample Collection Log				
ALCO A BELOWA		Sample ID: 50-5				
Client:	RGE		Date/Day:	912115		
Project:	Garges Pork	52	Weather:	Caby Sunny Ourcast 3209"		
Location:	General 1	4	Temperature:	755		
Project #:	B0212138		Wind Speed/Direction:	Calm ESE Ind (ft/min) (mph)		
Samplers:	MSS/MMH		Subcontractor:	word		
Logged By:	N33		Equipment:	None		
Background PID Ambient Air Reading:	0	ppb	Moisture Content of Sampling Zone	Dry / Moist		
Sampling Depth:	2.6-3.6		(circle one):			
Probe (circle one):	Permanen	1 2	Approximate Volume of Sampling Train::	$\underline{\leq}4$ mL= ($\underline{\leq}4$ of $\underline{\downarrow}7$ in Tubing)		
Time of Collection:	Start: 1055 Finish: 164		Approximate Purge Volume:	(6) mL= [(54)*(3v)]		

Well ID	Depth to Groundwater (feet)

SUMMA Canister Information

Size (circle one): <u>1 L</u>	<u>3 L</u>	<u>6</u> L	Other: _	_L
Canister ID:	Цo	76		_
Flow Controller ID:	47	764		_
Tracer Gas Informatio	<u>n (if a</u>	pplicabl	le)	

Tracer Gas: _ 🛚

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
-29,7	Analog: - 🤰 / Digital: -	Analog: - $6, 5$ / Digital: -

Tracer Gas C	oncentra	ation (if app	licable):					
Measured from Soil Vapor Tubing Measured in 'Concentrated' Area					Area			
Post Purg	e	Post Sa	mple	Prior to Pu	urging	Post Purg	ging	Post Sampling
350	ppm	0	ppm	91.7	%	338	%	7657 pon %

General Observations/Notes:

Photo ID:			ppb reading on the PID following sample
Analog reading (-) after () hrs.	Collected from soil vapor tubing.
Analog reading (-) after () hrs.	
Differential Pressure:			

Approximating One-Well Volume (for purging temporary points): Each foot of ¼-inch tubing will have a volume of approximately 10 mL. S. Tubing below d.4 S.4 Tubing above d.8 S.4

		Soil Gas Sample Collection Log			
			Sample ID:	50-6 1 DUP-090215	
Client:	KGE		Date/Day:	912115	
Project:	Genes Pa	-K SL	Weather:	Calm Haty 30.094	
Location:	GERKS N	K	Temperature:	7901-	
Project #:	B60B138		Wind Speed/Direction:	Ne (court yard) (ft/min) (mph)	
Samplers:	MUSS/MMH		Subcontractor:	24.00	
Logged By:	mo		Equipment:	NON	
Background PID Ambient Air Reading:	6	ppb	Moisture Content of Sampling Zone	Dry / Moist	
Sampling Depth:	2,75-3	35	(circle one):		
Probe (circle one):	Permanent	t / Temporary	Approximate Volume of Sampling Train::	65 mL=(655 of 4) "ID tubing	
Time of Collection:	Start: 1140 Finish: 1740		Approximate Purge Volume:	<u>/9.5</u> mL= [(<u>/95</u>) * (3v)]	

Well ID	Depth to Groundwater (feet)

SUMMA Canister Information

Size (circle one): <u>1 L</u>	<u>3 L</u> (6		Other: _	_L
	Sample	/	DUP	
Canister ID:	4087	/	3539	
Flow Controller ID:	4751	1	4049	
Tracer Gas Informatio	n (if annl	icahl	۵	

<u>itormation (if applicable)</u>

Tracer Gas: <u>He</u>

Canister Press	ure (inches Hg):				
Reported	By Laboratory	Measured Prio	r to Sample Collection	Measured Follov	ving Sample Collection
(Sample)	(DUP)	(Sample)	(DUP)	(Sample)	(DUP)
-)9.9	225	Analog: - 🍌	Analog: - 27,5	Analog: - 🔄 🅤	Analog: - – 1
- 21.9	- 30.0	Digital: -	Digital: -	Digital: -	Digital: -

Trac	er Gas	Concentrat	tion (if appl	icable):						
	Measu	ed from Soi	l Vapor Tub	ing		Me	asured in 'Con	centrated' A	rea	
	Post Pu	rge	Post Sa	mple	Prior to P	urging	Post Pur	ging	Post Sar	npling
	0	ppm	0	ppm	928	%	49.5	%	Ø	%

General Observations/Notes:

Photo ID:			ppb reading on the PID following sample
Analog reading (-) after () hrs.	Collected from soil vapor tubing.
Analog reading (-) after () hrs.	
Differential Pressure:			

Approximating One-Well Volume (for purging temporary points):Each foot of ¼-inch tubing will have a volume of approximately 10 mL.Each foot of ¼-inch tubing will have a volume of approximately 10 mL.TubiryTubiryLaborTubiryLaborTubiryLabor</

		Soil Ga	as Sample	Collection Log
2000 7 11 1 OF 1			Sample ID:	SU-20 SU-7
Client:	RGE		Date/Day:	912115
Project:	Gerses Pa	rk sl	Weather:	Surg 30081
Location:	bassed, r	2d	Temperature:	\$30 F
Project #:	120012138		Wind Speed/Direction:	amoth wst (mrtyaft/min) (mph)
Samplers:	NS3 (MM	Н	Subcontractor:	NONT
Logged By:	NSS		Equipment:	NUNT
Background PID Ambient Air Reading:	0	ppb	Moisture Content of Sampling Zone	Dry / Moist
Sampling Depth:	2.0-3.	0	(circle one):	
Probe (circle one):	Permanen	t / Temporary	Approximate Volume of Sampling Train::	5/ mL= ($5/$ of $4/$ "ID tubing)
Time of Collection:	Start: 200 Finish: 190		Approximate Purge Volume:	<u> </u> § 3 mL=[(<u>≤7</u>)*(3v)]

Well ID	Depth to Groundwater (feet)

SUMMA Canister Information

Size (circle one): 1L 3L (6L)Other: ___L Canister ID: _____4455

Flow Controller ID: 3856

Tracer Gas Information (if applicable)

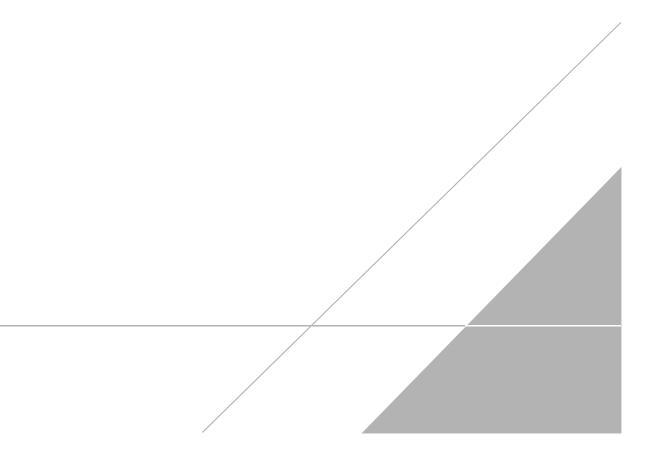
Tracer Gas: He

			- 1
	•		- (
10	•		

Canister Pressure (inches Hg):				
Reported By Laboratory	Measured Prior to	o Sample Collection	Measured Follow	ing Sample Collection
- 30.0	Analog: - 30	/ Digital: -	Analog: - 🂪	/ Digital: -

Tracer Gas	Concentra	tion (if appl	licable):						
Measu	red from Soi	l Vapor Tub	oing		Me	asured in 'Con	centrated' A	Area	
Post Purge Post Sample		mple	Prior to P	urging	Post Pur	rging	Post Sar	npling	
0	ppm	6	ppm	92.4	%	46.9	%	Opport	%

General Observations/Notes:


Photo ID:			ppb reading on the PID following sample
Analog reading (-) after () hrs.	Collected from soil vapor tubing.
Analog reading (-) after () hrs.	
Differential Pressure:			

Approximating One-Well Volume (for purging temporary points):

Each foot of ¼-inch tubing will have a volume of approximately 10 mL. Above ground tubio 3.1 = 5.1 Blow ground tubio 2.1 = 5.1

APPENDIX D

Data Usability Summary Report (DUSR)

Imagine the result

Rochester Gas & Electric – Geneseo Park Street Site

Data Usability Summary Report

GENESEO, NEW YORK

Volatile, Semivolatile, Metals and Cyanide Analyses

SDG #480-85554-1 and 480-85640-1

Analyses Performed By: TestAmerica Amherst, New York

Report #24467R Review Level: Tier III Project: B0013138.0002.00005

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #200-29600-1 for samples collected in association with the Rochester Gas & Electric Geneseo Park Street Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Included with this assessment are the validation annotated sample result sheets and chain of custody. Analyses were performed on the following samples:

SDG				Sample	Parent		А	nalysi	S	
020	Sample ID	Lab ID	Matrix	Collection Date	Sample	voc	SVOC	ТРН	MET	MISC
	MW-5 (10-12)	480-85554-1	Soil	8/11/2015		Х	Х		Х	Х
	MW-5 (12-14)	480-85554-2	Soil	8/11/2015		Х	Х		Х	Х
	MW-6 (9-11)	480-85554-3	Soil	8/12/2015		Х	Х		Х	Х
	MW-6 (13-14.2)	480-85554-4	Soil	8/12/2015		Х	Х		Х	Х
480-85554	MW-4 (5-7)	480-85554-5	Soil	8/10/2015		Х	Х		Х	Х
	MW-4 (13-14.5)	480-85554-6	Soil	8/10/2015		Х	Х		Х	Х
	MW-1 (5-7)	480-85554-7	Soil	8/11/2015		Х	Х		Х	Х
	MW-1 (9-11)	480-85554-8	Soil	8/11/2015		Х	Х		Х	Х
	DUP-081115	480-85554-9	Soil	8/11/2015	MW-1 (9-11)	Х	Х		Х	Х
	MW-2 (5-7)	480-85640-1	Soil	8/12/2015		Х	Х		Х	Х
	MW-2 (9-13)	480-85640-2	Soil	8/12/2015		Х	Х		Х	Х
	MW-7 (4-6)	480-85640-3	Soil	8/12/2015		Х	Х		Х	Х
480-85640	MW-7 (6-8.3)	480-85640-4	Soil	8/12/2015		Х	Х		Х	Х
	MW-3 (7-9)	480-85640-5	Soil	8/13/2015		Х	Х	Х	Х	Х
	MW-3 (9-10.2)	480-85640-6	Soil	8/13/2015		Х	Х		Х	Х
	TRIP BLANK	480-85640-7	Water	8/13/2015		Х				

Note:

1. Miscellaneous parameters include total cyanide.

2. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location MW-6 (9-11) and MW-3 (7-9).

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted		mance ptable	Not
Items Reviewed	No	Yes	No	Yes	Required
1. Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		Х	
3. Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
11. Narrative summary of QA or sample problems provided		х		х	
12. Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 8260C, 8270D and NYDOH 310.13 (total petroleum hydrocarbons-TPH). Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260	Water	14 days from collection to analysis (preserved) 7 days from collection to analysis (non-preserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u.
	Soil	48 hours from collection to extraction and 14 days from extraction to analysis	Cool to <6 °C.

The laboratory noted, "The following samples were received outside of the preparation holding time. As such, the laboratory could not perform the analysis within holding time: MW-4 (5-7) (480-85554-5), MW-4 (13-14.5) (480-85554-6) and DUP-081115 (480-85554-9)." Samples prepared beyond the method prescribed holding time were qualified as estimated (J).

The analyses that exceeded the holding time are presented in the following table.

Sample Locations	Holding Time	Criteria
MW-4 (5-7) MW-4 (13-14.5)	~72 Hours	48 Hours
DUP-081115		

Sample results associated with sample locations analyzed by analytical method SW-846 8260 were qualified, as specified in the table below. All other holding times were met.

	Qualification	
Criteria	Detected Analytes	Non-detect Analytes
Analysis completed less than two times holding time	J	UJ

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
MW-7 (4-6) MW-7 (6-8.3)	Acetone (TB)	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL
MW-2 (5-7)	Acetone (TB)	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration

RL Reporting limit

TB Trip Blank

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
All samples associated with	ICV %RSD	Dichlorodifluoromethane	17.6%
SDG 480-85554		Dibromchloromethane	17.0%

Sample Locations	Initial/Continuing	Compound	Criteria
		Dichlorodifluoromethane	25.2%
		Vinyl chloride	23.7%
		Trichlorofluoromethane	22.5%
	CCV %D	1,1-Dichloroethene	23.2%
		Carbon disulfide	20.7%
		1,1,1-Trichloroethane	21.6%
		1,1-Dichloropropene	22.0%
MW-7 (6-8.3)	ICV %RSD	Dichlorodifluoromethane	17.6%
MW-3 (9-10.2)		Dibromchloromethane	17.0%
		Methylene chloride	16.9%
		Dibromchloromethane	20.0%
MW-3 (7-9)	ICV %RSD	Bromoform	18.2%
		1,2-Dibromo-3- Chloropropane	18.7%
	CCV %D	Bromoform	27.0%
MW-2 (5-7)	ICV %RSD	Methylene chloride	18.2%
MW-2 (9-13)	CCV %D	Chloromethane	-27.6%
MW-7 (4-6)		Bromoform	29.8%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification	
		Non-detect	R	
	RRF <0.05	Detect	J	
Initial and Continuing	RRF <0.01 ¹	Non-detect	R	
Calibration	NKF <0.01	Detect	J	
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action	
	RRF 20.03 01 RRF 20.01	Detect	NO ACTION	
	%RSD > 15% or a correlation	Non-detect	UJ	
Initial Calibration	coefficient <0.99	Detect	J	
	%RSD >90%	Non-detect	R	
		Detect	J	
	%D >20% (increase in sensitivity)	Non-detect	No Action	
		Detect	J	
Continuing Colibration	0/D > 200/ (decreases in consitivity)	Non-detect	UJ	
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J	
	%D >90% (increase/decrease in	Non-detect	R	
	sensitivity)	Detect	J	

¹ RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Surrogate	Recovery
	1,2-Dichloroethane-d4	AC
	4-Bromofluorobenzene	< LL but > 10%
MW-4 (5-7)	Dibromofluoromethane	AC
	Toluene-d8	AC
L ower control limit	·	•

LL Lower control limit

AC Acceptable

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
> UL	Detect	J
< LL but > 10%	Non-detect	UJ
< LL Dui > 10%	Detect	J
- 100/	Non-detect	R
< 10%	Detect	J

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample Locations	Compound	MS Recovery	MSD Recovery
	1,1,2,2-Tetrachloroethane	<ll but="">10%</ll>	<ll but="">10%</ll>
	1,2,4-Trichlorobenzene	<ll but="">10%</ll>	<ll but="">10%</ll>
	1,2-Dibromo-3- Chloropropane	<ll but="">10%</ll>	<ll but="">10%</ll>
	1,2-Dibromoethane	<ll but="">10%</ll>	AC
MW-6 (9-11)	1,2-Dichlorobenzene	<ll but="">10%</ll>	<ll but="">10%</ll>
	1,3-Dichlorobenzene	<ll but="">10%</ll>	<ll but="">10%</ll>
	1,4-Dichlorobenzene	<ll but="">10%</ll>	<ll but="">10%</ll>
	2-Butanone (MEK)	<ll but="">10%</ll>	AC
	4-Methyl-2-pentanone	<ll but="">10%</ll>	AC
	Bromoform	<ll but="">10%</ll>	AC

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
\sim the lower central limit (11) but > 10%	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J
Parent sample concentration > four times the MS/MSD	Detect	No Action
spiking solution concentration.	Non-detect	NO ACION

Please note the MS/MSD analysis performed on sample location MW-3 (7-9) exhibited recoveries and RPD above the control limits for the majority of target compounds; therefore detected compounds were qualified as estimated (J).

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS/LCSD analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery	LCSD Recovery
MW-2 (5-7) MW-2 (9-13) MW-7 (4-6)	Bromoform	>UL	NA
	Chloroethane	<ll but="">10%</ll>	NA
MW-7 (6-8.3) MW-3 (9-10.2)	2-Butanone	>UL	>UL

The criteria used to evaluate the LCS/LCSD recoveries are presented in the following table. In the case of an LCS/LCSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper central limit (III.)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
< the lower control limit (LL) but > 10%	Non-detect	UJ
	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MW-1 (9-11)/ DUP-081115	Acetone	8.4 J	7.6 J	AC
	Benzene	0.72 J	0.50 J	AC
	Toluene	1.4 J	0.67 J	AC
	Xylenes, total	1.6 J	7.7 U	AC

AC Acceptable NC Not compliant

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

Sample results associated with compound that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
MW-5 (12-14)	Benzene	510 E	6000 D	6000 D
	Ethylbenzene	240 E	5900 D	5900 D
MW-1 (5-7)	Benzene	370 E	2300 D	2300 D
	Toluene	600 E	6100 D	6100 D

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentrations greater than the linear range are qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260C	Repo	orted		mance ptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)			
Tier II Validation		I		1	
Holding times		Х	Х		
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
C. Trip blanks		Х	Х		
Laboratory Control Sample (LCS)		Х	Х		
Laboratory Control Sample Duplicate(LCSD)		Х	Х		
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS)		Х	Х		
Matrix Spike Duplicate(MSD)		Х	Х		
MS/MSD Precision (RPD)		Х	Х		
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х	Х		
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х	Х		
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation		•			
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		х		х	
D. Transcription/calculation errors present				Х	

VOCs: SW-846 8260C	Repo	Reported Performance Acceptable		Not Required	
	No	Yes	No	Yes	Roquiou
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)					
 Reporting limits adjusted to reflect sample dilutions 		x		Х	
%RSD Relative standard deviation					

Percent recovery Relative percent difference Percent difference

%R RPD %D

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270D	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6°C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
		2-Nitrophenol	18.4%
All samples associated with this SDG	ICV %RSD	2,6-Dinitrotoluene	16.1%
		Di-n-octyl phthalate	17.1%
MW-5 (10-12) MW-5 (12-14) MW-6 (9-11) MW-6 (13-14.2)		Benzaldehyde	37.8%
MW-4 (5-7) MW-1 (5-7) MW-1 (9-11) DUP-081115	CCV %D	Di-n-octyl phthalate	23.2%
	CCV %D	Benzaldehyde	26.9%
MW-4 (13-14.5)		2-Nitrophenol	20.3%
MW-2 (5-7) MW-7 (4-6) MW-7 (6-8.3) MW-3 (7-9) MW-3 (9-10.2) TRIP BLANK	CCV %D	Benzaldehyde	50.1%
MW-2 (9-13)	CCV %D	Benzaldehyde	50.4%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	KKF <0.05	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	RRF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	KKF >0.03 01 KKF >0.01	Detect	NO ACIION
	%RSD > 15% or a correlation coefficient	Non-detect	UJ
Initial Calibration	<0.99	Detect	J
	%RSD >90%	Non-detect	R
	%RSD >90%	Detect	J
Continuing Calibration	%D >20% (increase in sensitivity)	Non-detect	No Action
Continuing Calibration		Detect	J

Initial/Continuing	Criteria	Sample Result	Qualification
	$0/D \sim 200/$ (decrease in constitution)	Non-detect	UJ
	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)		J
¹ PPE of 0.01 only app	lies to compounds which are typically poor i	esponding compour	nds (i a katonas

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Surrogate	Recovery
	Phenol-d6	AC
	2-Fluorophenol	AC
	2,4,6-Tribromophenol	AC
MW-5 (12-14)	Nitrobenzene-d5	AC
	2-Fluorobiphenyl	AC
	Terphenyl-d14	<ll but=""> 10%</ll>

LL Lower control limit

AC Acceptable

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification			
> UL	Non-detect	No Action			
	Detect	J			
< LL but > 10%	Non-detect	UJ			
< LL Dui > 10%	Detect	J			
< 10%	Non-detect	R			
< 10%	Detect	J			
Surrogates diluted below the calibration curve due to the	Non-detect	ı1			
high concentration of a target compounds	Detect	J			
A more concentrated analysis was not performed with surrogate compounds within the calibration range:					

A more concentrated analysis was not performed with surrogate compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Please note a reduced list of target analytes was used for the MS/MSD analysis. The MS/MSD associated with sample MW-6 (9-11) exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

The MS/MSD analysis associated with sample location MW-3 (7-9) was performed at a 20-fold dilution; therefore, percent recoveries were not evaluated for this sample.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Please note a reduced list of target analytes was used for the LCS analysis. All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MW-1 (9-11)/ DUP-081115	All compounds	U	U	AC

AC Acceptable

U Not detected

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

Sample results associated with compound that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
	Naphthalene	140000 E	160000 D	160000 D
MW-1 (5-7)	Phenanthrene	110000 E	140000 D	140000 D

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentrations greater than the linear range are qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

11. System Performance and Overall Assessment

The laboratory noted the samples associated with SDG 480-85640 were analyzed at dilutions due to the nature of the sample matrix and/or extract viscosity; therefore elevated detection limits were provided.

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270D	Repo	orted	Perfor Accep		Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/I	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R					х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х	Х		
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		х		х	
D. Transcription/calculation errors present				Х	
 E. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation 		Х		х	

%R RPD

Percent recovery Relative percent difference Percent difference %D

PETROLEUM PRODUCTS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Petroleum products By NYSDOH 310.13	Soil	14 days from collection to analysis	Cool to <6 °C

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. System Performance

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

A maximum RSD of 20% or a correlation coefficient of greater than 0.99 is allowed.

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%).

All calibration criteria were within the control limits.

5. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

7. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

A field duplicate was not included for this parameter.

8. Compound Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows.

All identified compounds met the specified criteria.

9. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR PETROLEUM PRODUCTS

Petroleum Products: By NYSDOH 310.13	Rep	orted		mance otable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY (GC/FID)					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		X	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)					Х
Surrogate Spike Recoveries					Х
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation			•		
Initial calibration %RSDs		Х		X	
Continuing calibration %Ds		Х		Х	
System performance and column resolution		Х		Х	
Compound identification and quantitation					
A. Quantitation Reports		Х		Х	
B. RT of sample compounds within the established RT windows		Х		х	
C. Pattern identification		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		х	

%RSD - relative standard deviation, %R - percent recovery, RPD - relative percent difference,

%D – difference

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010C and 9012B. Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
 - B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).
- Quantitation (Q) Qualifiers
 - E The reported value is estimated due to the presence of interference.
 - N Spiked sample recovery is not within control limits.
 - * Duplicate analysis is not within control limits.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

METALS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010C	Water	180 days from collection to analysis	Preserve to a pH of less than 2.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. Therefore, sample results greater than the BAL resulted in the removal of the laboratory qualifier (B). No other qualification of the sample results was required.

3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. All initial calibration verification standard recoveries were within control limits.

All continuing calibration verification standard recoveries were within the control limit.

3.2 Low Level Continuing Calibration Standard

The low level continuing calibration check standard (ICVL/CCVL) serves to verify the linearity of calibration of the analysis at the RL.

The ICVL/CCVL standard recoveries were within the control limits of 70 to 130%.

3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

All analytes associated with MS/MSD recoveries were within control limits with the exception of the following analyte present in the table below.

Sample Location	Analyte	MS Recovery	MSD Recovery
	Antimony	<ll but="">30%</ll>	<ll but="">30%</ll>
	Barium	AC	>UL
	Magnesium	>UL	>UL
MW-6 (9-11)	Potassium	>UL	>UL
	Vanadium	>UL	>UL
	Zinc	AC	<ll but="">30%</ll>
	Antimony	<ll but="">30%</ll>	<ll but="">30%</ll>
MW-3 (7-9)	Barium	>UL	>UL
	Potassium	>UL	>UL

The criteria used to evaluate MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified. The qualifications are applied to all sample results associated with this SDG.

Control limit	Sample Result	Qualification
MS/MSD percent recovery 20% to 74%	Non-detect	UJ
MS/MSD percent recovery 30% to 74%	Detect	J
MS/MSD percent recovery <30%	Non-detect	R
	Detect	J
MS/MSD percept recovery - 1250/	Non-detect	No Action
MS/MSD percent recovery >125%	Detect	J

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for water matrices.

MS/MSD analysis was performed in addition to the laboratory duplicate analysis. The laboratory duplicate and MS/MSD recoveries exhibited acceptable RPD.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Aluminum	17100	15200	11.8%
	Arsenic	2.9	3.1	AC
	Barium	86.4	45.9	61.2%
	Beryllium	0.83	0.74	AC
	Cadmium	0.041 J	0.048 J	AC
	Calcium	45300	41800	8.0%
	Chromium	26.1	23.8	9.2%
	Cobalt	13.7	13.3	3.0%
MW-1 (9-11)/ DUP-081115	Copper	28.0	27.3	2.5%
	Iron	23800	22400	6.1%
	Lead	10.1	11.2	10.3%
	Magnesium	8340	7520	10.3%
	Manganese	333	304	9.1%
	Nickel	44.5	41.6	6.7%
	Potassium	3470	2750	23.2%
	Sodium	212	163	AC
	Vanadium	20.9	17.2	19.4%

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Zinc	71.7	76.4	6.3%

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

All serial dilutions were within control limits, with the exception of the analytes presented in the following table.

Sample Locations	Analytes	Serial Dilution (%D)
	Aluminum	18%
	Barium	22%
	Calcium	19%
	Chromium	20%
	Iron	20%
MW-6 (9-11)	Magnesium	17%
	Manganese	20%
	Potassium	21%
	Vanadium	22%
	Zinc	23%
	Aluminum	17%
	Barium	20%
	Calcium	24%
	Chromium	21%
MW-3 (7-9)	Copper	12%
	Iron	24%
	Magnesium	16%
	Manganese	22%
	Potassium	16%

Vanadium	17%
Zinc	23%

The criteria used to evaluate the serial dilution are presented in the following table. In the case of a serial dilution deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
	Detect	J

8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

METALS; SW-846 6010C	Rep	Reported		rmance ptable	Not
	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Atomic Emission S	pectrometry	(ICP)			
Tier II Validation					
Holding Times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Instrument Blanks		Х		Х	
B. Method Blanks		Х		Х	
C. Equipment/Field Blanks		Х		Х	
Laboratory Control Sample (LCS) %R		Х		Х	
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD Precision (RPD)		Х		Х	
Lab Duplicate (RPD)					Х
Field Duplicate (RPD)		Х		Х	
ICP Serial Dilution		Х	Х		
Reporting Limit Verification		Х		Х	
Raw Data		Х		Х	
Tier III Validation					
Initial Calibration Verification		Х		Х	
Continuing Calibration Verification		Х		Х	
CCVL Standard		Х		Х	
ICP Interference Check		Х		Х	
Transcription/calculations acceptable		Х		Х	
Reporting limits adjusted to reflect sample dilutions %R Percent recovery		Х		Х	

DATA VALIDATION CHECKLIST FOR METALS

%R Percent recovery RPD Relative percent difference

GENERAL CHEMISTRY ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Total Cyanide SW-846 9012B	Water	14 days from collection to analysis	Cool to <6°C; preserved to a pH of greater than 12.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All calibration standard recoveries were within the control limit.

4. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of

four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory qualifier "N" will be removed.

The MS/MSD analysis exhibited recoveries within the control limits.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

The laboratory duplicate analysis exhibited recoveries within the control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MW-1 (9-11)/ DUP-081115	Cyanide	0.86 J	0.55 J	AC

AC Acceptable

NC Not compliant

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit recoveries between the control limits of 80% and 120%.

All analytes associated with the LCS analysis exhibited recoveries within the control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

General Chemistry: SW-846 9012B	Rep	orted		mance ptable	Not Required
	No	Yes	No	Yes	Required
Miscellaneous Instrumentation					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
Initial calibration %RSD or correlation coefficient		Х		Х	
Continuing calibration %R		X		Х	
Raw Data		Х		Х	
Transcription/calculation errors present				Х	
Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		Х		х	

Percent recovery Relative percent difference Percent difference %R RPD

%D

SAMPLE COMPLIANCE REPORT

Sample						Со	mpliand	≎y¹		Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	SVOC	ТРН	МЕТ	MISC	
	8/11/2015	SW846	MW-5 (10-12)	Soil	No	No	-	No	Yes	VOC: ICV %RSD SVOC: ICV %RSD MET: MS/MSD%R, Serial DIn
	8/11/2015	SW846	MW-5 (12-14)	Soil	No	No	-	No	Yes	VOC: ICV %RSD SVOC: ICV %RSD MET: MS/MSD%R, Serial DIn
	8/12/2015	SW846	MW-6 (9-11)	Soil	No	No	-	No	Yes	VOC: ICV %RSD, MS/MSD%R SVOC: ICV %RSD MET: MS/MSD%R, Serial DIn
	8/12/2015	SW846	MW-6 (13-14.2)	Soil	No	No	-	No	Yes	VOC: ICV %RSD SVOC: ICV %RSD MET: MS/MSD%R, Serial DIn
480-85554	8/10/2015	SW846	MW-4 (5-7)	Soil	No	No	-	No	Yes	VOC: ICV %RSD, Holding Time SVOC: ICV %RSD MET: MS/MSD%R, Serial DIn
	8/10/2015	SW846	MW-4 (13-14.5)	Soil	No	No	-	No	Yes	VOC: ICV %RSD, Holding Time SVOC: ICV %RSD MET: MS/MSD%R, Serial DIn
	8/11/2015	SW846	MW-1 (5-7)	Soil	No	No	-	No	Yes	VOC: ICV %RSD SVOC: ICV %RSD MET: MS/MSD%R, Serial DIn
	8/11/2015	SW846	MW-1 (9-11)	Soil	No	No	-	No	Yes	VOC: ICV %RSD SVOC: ICV %RSD MET: MS/MSD%R, Serial DIn
	8/11/2015	SW846	DUP-081115	Soil	No	No	-	No	Yes	VOC: ICV %RSD, Holding Time SVOC: ICV %RSD MET: MS/MSD%R, Serial DIn
	8/12/2015	SW846	MW-2 (5-7)	Soil	No	Yes	-	No	Yes	VOC: ICV %RSD, CCV%D, LCS%R, Trip Blk MET: MS/MSD%R, Serial Dln
480-85640	8/12/2015	SW846	MW-2 (9-13)	Soil	No	Yes	-	No	Yes	VOC: ICV %RSD, CCV%D, LCS%R, MET: MS/MSD%R, Serial DIn
	8/12/2015	SW846	MW-7 (4-6)	Soil	No	Yes	-	No	Yes	VOC: ICV %RSD, CCV%D, LCS%R, Trip Blk MET: MS/MSD%R, Serial Dln

8/12/2015	SW846	MW-7 (6-8.3)	Soil	No	Yes	-	No	Yes	VOC: ICV %RSD, Trip Blk MET: MS/MSD%R, Serial Dln
8/13/2015	SW846	MW-3 (7-9)	Soil	No	Yes	Yes	No	Yes	VOC: ICV %RSD, MS/MSD %R/RPD MET: MS/MSD%R, Serial Dln
8/13/2015	SW846	MW-3 (9-10.2)	Soil	No	Yes	-	No	Yes	VOC: ICV %RSD MET: MS/MSD%R, Serial Dln
8/13/2015	SW846	TRIP BLANK	Water	Yes	-	-	-	-	

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Jef

Jeffrey L. Davin

SIGNATURE:

DATE: October 22, 2015

PEER REVIEW: Joseph C. Houser

DATE: October 23, 2015

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

					Ŭ	TactAn			
Chain of		Temperatur	Temperature on Receipt	<i>vt</i>	ز	N LIC			
custoay hecora		Drinking W.	Drinking Water? Yes		THE LE/	THE LEADER IN ENV	480-85554 01		
TAL-4124 (1007) Client JA		Project Manager	ier ()				Custody Chain of Custody	ustody	nber
ARLADIS/RGE			Bag	Ahrenis			8.12.15		,2
Rdiff Neve		Telephone Nu	nber (Area Co 85 - 385	Telephone Number (Area Code)/Fax Number 585 - 385 - 000		<u></u>	Lab Number	Page	of Í
State ZI	1445	Site Contact Klours	Seurle	Lab Contact MU 55 OCV	0843	An	Analysis (Attach list if more space is needed)		
tion (State)		Camer/Waybill Number	l Number	-		-1724 -1724			
Contract/Purchase Order/Quote No.			Matrix	Containers &	ers & atives	ny ny ns		Condition	opecial instructions/ Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time Air	1105 Pas snoanby	IЭН ЕОNН \$2057H `səıduŋ	HOBN POUZ HOBN	01/2 11/2 12.1 12.1	· · · · · · · · · · · · · · · · · · ·		
8 (TI-0) S-MW	8.11.15	1530	Ð.	4 3	5	XXXX			
MM-5 (12-14)	3.1h15	(735à		ų g	1.0050	3 3 X X			
(1-1)	8.12.15	Q(4)		176	8	****		V-SW/SW	
(r:h. E) g-~m	Sulles	1920	7	ц Ч		メイメメ			
52 of									
125									
4									
		Sample Disposal	ple Disposal		Ber Cantre	CONTRL	I I I I I I I I I I I I I I I I I I I	be assessed if samples are	retained
🗌 Flammable Skin Irritant	Poison B	Cunknown	Return To Clier		By Lab 🛛 A	rchive For	Months longer than	longer than 1 month)	
Tum Around Time Required	🗌 21 Days	S Other Standard	andard	OC Require	QC Requirements (Specify)				
1. Relingenstredfor]	Date S. D.IS	Time 350	1. Received By	m M			Date Date S B J	$D4\omega$
2. Relinquished By () U		Date	Time	2. Received By	By			Date	Time
2. 13. Relinquished By 50		Date	Time	3. Received By	By			Date	Time
ocomments		-	-				2	140,	
DISTRIBUTION: WHITE - Returned to Client with Report. CANARY - Stays with the Sample;	4RY - Stays w		PINK - Field Copy						

	S Chain of Custody Num 297363					A fee may be assessed if samples are retained forger than 1 month)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
THE LEADER IN ENVIRONMENTAL TESTING	Date S, U, I Lab Number	Analysis (Attach list if more space is needed)	of Cherry			Months to	2,84
Temperature on Receipt	Project Manager Ardus Star Days Bruce Abres S Telephone Number (Area Code)/Fax Number Car-385-0090	Sile Contact Naves Certre Lab Contact Naves Certre Mul 55 a Day 6 Carrier Number H Containers & 3 3	seidun	(340 1400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Sample Disposal B C C Sample Disposal C C C Sample Disposal Disposal By Lab Archive For	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Chain of Custody Record	Client ARCANTS/RGE 290 Crand of Ann	N N	Sample I.D. No. and Description Containers for each sample may be combined on one line) Date $M_W > 4 (S-7)$ $S_1[2, 15']$ $M_W - 4 (13 - 14.5)$ $S_2[2, 15']$	-1 (5-7) 8,11,15 -1 (9-11) 8,11,15 -1 (9-11) 8,11,15 -11,15 -11,15	254	rid Identification rid 🗌 playmable 🗌 Skin Intiant 🔤 Poison B Time Regulied	28 Hours 48Hours 7 Days 21 Days 20 Other 1. Relinquished By 0.1 0.1 0.1 0.1 2. Comments 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

DATA REPORTING QUALIFIERS

Lab Section	Qualifier	Description
GC/MS VOA		
	В	Compound was found in the blank and sample.
	F1	MS and/or MSD Recovery is outside acceptance limits.
	E	Result exceeded calibration range.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	Н	Sample was prepped or analyzed beyond the specified holding time
	Х	Surrogate is outside control limits
GC/MS Semi VOA		
	E	Result exceeded calibration range.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	Х	Surrogate is outside control limits
Metals		
	В	Compound was found in the blank and sample.
	F1	MS and/or MSD Recovery is outside acceptance limits.
	4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
	W	PS: Post-digestion spike was outside control limits
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	V	Serial Dilution exceeds the control limits
General Chemistry		
-	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-5 (10-12)								
Lab Sample ID: Client Matrix:	480-85554-1 Solid		% Moistur	e: 12.4				npled: 08/11/20 eived: 08/13/20	
	82	50C Volat	ile Organi	c Compoun	ds by (GC/MS			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1526 08/13/2015 1300	-	sis Batch: 3atch:	480-25917 480-25921				HP5973F F0213.D 7.541 g 5 mL	
Analyte	DryWt Correcte	d: Y	Result (u	g/Kg)	Qualif	ier	MDL	RL	
1,1,1-Trichloroetha	-		ND	0 0/	-		0.27	3.8	
1,1,2,2-Tetrachloro			ND				0.61	3.8	
1,1,2-Trichloro-1,2			ND			(0.86	3.8	
1,1,2-Trichloroetha	ane		ND			(0.49	3.8	
1,1-Dichloroethane	e		ND			(0.46	3.8	
1,1-Dichloroethene	e		ND				0.46	3.8	
1,2,4-Trichloroben	zene		ND			(0.23	3.8	
1,2-Dibromo-3-Chl			ND				1.9	3.8	
1,2-Dibromoethane			ND				0.49	3.8	
1,2-Dichlorobenze			ND				0.30	3.8	
1,2-Dichloroethane			ND				0.19	3.8	
1,2-Dichloropropar			ND				1.9	3.8	
1,3-Dichlorobenze			ND				0.19	3.8	
1,4-Dichlorobenze			ND ND				0.53 1.4	3.8 19	
2-Butanone (MEK) 2-Hexanone			ND				1.4	19	
4-Methyl-2-pentan	one (MIRK)		ND				1.2	19	
Acetone			14		J		3.2	19	
Benzene			48		0		0.19	3.8	
Bromodichloromet	hane		ND				0.51	3.8	
Bromoform			ND				1.9	3.8	
Bromomethane			ND				0.34	3.8	
Carbon disulfide			ND				1.9	3.8	
Carbon tetrachlorid	de		ND			(0.37	3.8	
Chlorobenzene			ND			(0.50	3.8	
Chloroethane			ND			(0.85	3.8	
Chloroform			ND				0.23	3.8	
Chloromethane			ND				0.23	3.8	
cis-1,2-Dichloroeth			ND				0.48	3.8	
cis-1,3-Dichloropro	ppene		ND				0.54	3.8	
Cyclohexane			2.4	J	J		0.53	3.8	
Dibromochloromet			ND				0.48	3.8	
Dichlorodifluorome	etnane			J			0.31	3.8	
Ethylbenzene Isopropylbenzene			47 4.0				0.26 0.57	3.8 3.8	
Methyl acetate			4.0 ND				2.3	3.8	
Methyl tert-butyl et	her		ND				0.37	3.8	
Methylcyclohexane			3.1		J		0.57	3.8	
Methylene Chloride			ND		0		1.7	3.8	
Styrene	-		ND				0.19	3.8	
Tetrachloroethene			ND				0.51	3.8	
Toluene			5.9				0.29	3.8	
trans-1,2-Dichloroe	ethene		ND				0.39	3.8	
trans-1,3-Dichlorop			ND				1.7	3.8	
Trichloroethene			ND			(0.83	3.8	
Trichlorofluoromet	hane		ND				0.36	3.8	

Analytical Data

Client: ARCADIS U.S. Inc

Job Number: 480-85554-1

Client Sample ID	MW-5 (10-12)					
Lab Sample ID: Client Matrix:	480-85554-1 Solid	% Moistur	e: 12.4			l: 08/11/2015 1530 d: 08/13/2015 0900
	826	60C Volatile Organ	ic Compounds	by GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1526 08/13/2015 1300	Analysis Batch: Prep Batch:	480-259171 480-259213	Instrument ID Lab File ID: Initial Weight/ Final Weight/\	F02 Volume: 7.54	5973F 213.D 41 g mL
Analyte	DryWt Corrected	d: Y Result (u	ıg/Kg) Qi	ualifier MDL		RL
Vinyl chloride Xylenes, Total		ND 170		0.46 0.64		3.8 7.6
Surrogate 1,2-Dichloroethan 4-Bromofluoroben Dibromofluoromet Toluene-d8 (Surr)	zene (Surr)	%Rec 121 104 115 98	Q		Acceptance Li 64 - 126 72 - 126 60 - 140 71 - 125	imits

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-5 (12-14)									
Lab Sample ID: Client Matrix:	480-85554-2 Solid		c	% Moisture	e: 8.1				mpled: 08/11/2 ceived: 08/13/2	
		8260	C Volati	le Organi	c Compo	unds by	GC/N	//S		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1551 08/13/2015 1300		Analys Prep B	is Batch: atch:	480-259 480-259		La Ini	strument ID: b File ID: tial Weight/Volume: nal Weight/Volume:	HP5973F F0214.D 7.268 g 5 mL	
Analyte	DryWt Co	rrected:	Y	Result (u	g/Kg)	Qua	lifier	MDL	RL	
1,1,1-Trichloroetha	ane			ND				0.27	3.7	
1,1,2,2-Tetrachloro				ND				0.61	3.7	
1,1,2-Trichloro-1,2				ND				0.85	3.7	
1,1,2-Trichloroetha				ND				0.49	3.7	
1,1-Dichloroethane				ND				0.46	3.7	
1,1-Dichloroethene				ND				0.46	3.7	
1,2,4-Trichloroben				ND				0.23	3.7	
1,2-Dibromo-3-Chl 1,2-Dibromoethane				ND ND				1.9 0.48	3.7 3.7	
1,2-Dichlorobenze				ND				0.48	3.7	
1,2-Dichloroethane				ND				0.19	3.7	
1,2-Dichloropropar				ND				1.9	3.7	
1,3-Dichlorobenze				ND				0.19	3.7	
1,4-Dichlorobenze				ND				0.52	3.7	
2-Butanone (MEK)				ND				1.4	19	
2-Hexanone				ND				1.9	19	
4-Methyl-2-pentan	one (MIBK)			ND				1.2	19	
Acetone				28		_	_	3.2	19	
Benzene		6000		510		E -	D	0.18	3.7	
Bromodichloromet	nane			ND				0.50	3.7	
Bromoform Bromomethane				ND ND				1.9 0.34	3.7 3.7	
Carbon disulfide				ND				1.9	3.7	
Carbon tetrachloric	le			ND				0.36	3.7	
Chlorobenzene				ND				0.49	3.7	
Chloroethane				ND				0.85	3.7	
Chloroform				ND				0.23	3.7	
Chloromethane				ND				0.23	3.7	
cis-1,2-Dichloroeth				ND				0.48	3.7	
cis-1,3-Dichloropro	pene			ND				0.54	3.7	
Cyclohexane				3.3	J	J		0.52	3.7	
Dibromochloromet				ND	J			0.48	3.7	
Dichlorodifluorome	etnane	БО	0.0	ND	U	÷	D	0.31	3.7	
Ethylbenzene Isopropylbenzene		59	00	240- 14		T	D	0.26 0.56	3.7 3.7	
Methyl acetate				ND				2.3	3.7	
Methyl tert-butyl et	her			ND				0.37	3.7	
Methylcyclohexane				4.6				0.57	3.7	
Methylene Chloride				ND				1.7	3.7	
Styrene				14				0.19	3.7	
Tetrachloroethene				ND				0.50	3.7	
Toluene				59				0.28	3.7	
trans-1,2-Dichloroe				ND				0.39	3.7	
trans-1,3-Dichlorop	propene			ND				1.6	3.7	
Trichloroethene	hana							0.82	3.7	
Trichlorofluoromet	Indite			ND				0.35	3.7	

TestAmerica Buffalo

Analytical Data

Client: ARCADIS U.S. Inc

Job Number: 480-85554-1

Client Sample ID	MW-5 (12-14)				
Lab Sample ID: Client Matrix:	480-85554-2 Solid	% Moistur	e: 8.1		te Sampled: 08/11/2015 1550 te Received: 08/13/2015 0900
	826	SOC Volatile Organ	ic Compounds	by GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1551 08/13/2015 1300	Analysis Batch: Prep Batch:	480-259171 480-259213	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vol	•
Analyte	DryWt Corrected	d: Y Result (u	ıg/Kg) Qı	ualifier MDL	RL
Vinyl chloride Xylenes, Total		ND 480		0.46 0.63	3.7 7.5
Surrogate 1,2-Dichloroethan 4-Bromofluoroben Dibromofluoromet Toluene-d8 (Surr)	zene (Surr)	%Rec 110 96 111 99	Qı	64 72 60	ceptance Limits - 126 - 126 - 140 - 125

Analytical Data

Job Number: 480-85554-1

Analysis Method:8260CAnalysis Batch:480-259737Instrument ID:HP5973GPrep Method:5035APrep Batch:480-259512Lab File ID:G41632.DDilution:4.0Initial Weight/Volume:7.172 gAnalysis Date:08/21/2015 0213Run Type:DLFinal Weight/Volume:10 mLPrep Date:08/13/2015 1300Prevented:YResult (ug/Kg)QualifierMDLRL1,1,1-TrichloroethaneND893201,1,2,2-TetrachloroethaneND52320	Date Sampled: 08/11/2015 1550 Ioisture: 8.1 Date Received: 08/13/2015 0900
Prep Method:5035APrep Batch:480-259512Lab File ID:G41632.DDilution:4.0Initial Weight/Volume:7.172 gAnalysis Date:08/21/2015 0213Run Type:DLFinal Weight/Volume:10 mLPrep Date:08/13/2015 1300Presult (ug/Kg)QualifierMDLRL1,1,1-TrichloroethaneND893201,1,2,2-TetrachloroethaneND52320	Drganic Compounds by GC/MS
AnalyteDryWt Corrected: YResult (ug/Kg)QualifierMDLRL1,1,1-TrichloroethaneND893201,1,2,2-TetrachloroethaneND52320	h: 480-259512 Lab File ID: G41632.D Initial Weight/Volume: 7.172 g
1,1,1-TrichloroethaneND893201,1,2,2-TetrachloroethaneND52320	esult (ug/Kg) Qualifier MDL RL
1,1-2-Trichloroethane ND 67 320 1,1-Dichloroethane ND 110 320 1,1-Dichloroethane ND 110 320 1,2-Dichoros-3-Chloroppane ND 120 320 1,2-Dichoros-3-Chloroppane ND 56 320 1,2-Dichoros-3-Chloroppane ND 56 320 1,2-Dichlorobenzene ND 52 320 1,2-Dichlorobenzene ND 86 320 1,3-Dichlorobenzene ND 86 320 1,4-Dichlorobenzene ND 660 1600 2-Butanone (MEK) ND 100 1600 2-Hexanone ND 1300 1600 4-Methyl-2-pentanone (MIBK) ND 100 1600 4-Methyl-2-pentanone (MIBK) ND 160 320 Bromodichloromethane ND 160 320 Bromodichloromethane ND 160 320 Carbon disulfide ND 160 320	No or 89 320 52 320 160 320 67 320 99 320 110 320 120 320 56 320 56 320 56 320 56 320 52 320 56 320 56 320 52 320 56 320 52 320 55 320 56 320 57 320 58 320 59 1600 660 1600 00 61 320 01 160 320 02 160 320 03 150 320 04 42 320 05 77 320 06 160 320 07 160 320 08 320 160 160 320

TestAmerica Buffalo

Analytical Data

Job Number: 480-85554-1

Lab Sample ID: Client Matrix:	MW-5 (12-14) 480-85554-2 Solid	% Moisture	e: 8.1		Date Sampled: 08/11 Date Received: 08/13	
\rightarrow		C Volatile Organio		by GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 4.0 08/21/2015 0213 08/13/2015 1300	Analysis Batch: 480-259737 In Prep Batch: 480-259512 La In		Instrument II Lab File ID: Initial Weight Final Weight	G41632.D t/Volume: 7.172 g	
Analyte	DryWt Corrected:	Y Result (u	g/Kg) Qi	ualifier MD	L RL	
Vinyl chloride		ND		110	320	
Kylenes, Total		21000		180	640	
4-Bromofluoroben: Dibromofluorometh Toluene-d8 (Surr)		104 100 101			49 - 148 60 - 140 50 - 149	

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-6 (9-11)								
Lab Sample ID: Client Matrix:	480-85554-3 Solid	% Moisture	npled: 08/12/2015 1230 eived: 08/13/2015 0900						
8260C Volatile Organic Compounds by GC/MS									
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1618 08/13/2015 1300	Analysis Batch: Prep Batch:	480-259171 480-259213			HP5973F F0215.D 6.309 g 5 mL			
Analyte	DryWt Corrected	: Y Result (u	ıg/Kg) G	lualifier	MDL	RL			
1,1,1-Trichloroetha 1,1,2-Trichloroetha 1,1,2-Trichloroetha 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dibromo-3-Ch 1,2-Dibromo-3-Ch 1,2-Dichlorobenze 1,2-Dichlorobenze 1,2-Dichlorobenze 1,2-Dichlorobenze 1,2-Dichlorobenze 1,3-Dichlorobenze 2-Butanone (MEK) 2-Hexanone 4-Methyl-2-pentan Acetone Benzene Bromodichloromet Bromoform Bromomethane Carbon disulfide Carbon tetrachlorio Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloropto Cyclohexane Dibromochloromet Dichlorodifluoromet Ethylbenzene Isopropylbenzene Methyl acetate	ane bethane ,2-trifluoroethane ane e zene loropropane e ne ne ne ne ne ne ne de de	ND ND ND ND ND ND ND ND ND ND ND ND ND N		1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J	0.30 0.68 0.96 0.55 0.51 0.51 0.26 2.1 0.54 0.33 0.21 2.1 0.22 0.59 1.5 2.1 1.4 3.5 0.21 0.56 2.1 0.38 2.1 0.41 0.55 0.95 0.26 0.25 0.26 0.25 0.54 0.60 0.59 0.54 0.60 0.59 0.54 0.60 0.59 0.54 0.55 0.54 0.60 0.59 0.54 0.55 0.54 0.59 0.54 0.55 0.54 0.59 0.54 0.55 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.59 0.54 0.55 0.29 0.54 0.52 0.54 0.52 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.52 0.54 0.52 0.54 0.52 0.54 0.55 0.54 0.52 0.54 0.55 0.54 0.52 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.52 0.54 0.52 0.54 0.53 0.55 0.54 0.55 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55	$\begin{array}{c} 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\$			
Methyl tert-butyl ei Methylcyclohexand Methylene Chlorid Styrene Tetrachloroethene Toluene trans-1,2-Dichloroo trans-1,3-Dichloroo Trichloroethene Trichlorofluoromet	e e ethene propene	ND ND ND ND ND ND ND ND ND ND			0.41 0.64 1.9 0.21 0.56 0.32 0.43 1.8 0.92 0.40	4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2			

TestAmerica Buffalo

Analytical Data

Client: ARCADIS U.S. Inc

Job Number: 480-85554-1

Client Sample ID	: MW-6 (9-11)							
Lab Sample ID: Client Matrix:	480-85554-3 Solid	% Moistu	re: 5.6			npled: 08/12/2015 1230 ceived: 08/13/2015 0900		
8260C Volatile Organic Compounds by GC/MS								
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1618 08/13/2015 1300	Analysis Batch: Prep Batch:	480-259171 480-259213	Lab Fi Initial	ment ID: le ID: Weight/Volume: Veight/Volume:	HP5973F F0215.D 6.309 g 5 mL		
Analyte	DryWt Corrected	d: Y Result (ug/Kg) G	Qualifier	MDL	RL		
Vinyl chloride Xylenes, Total		ND ND			0.51 0.71	4.2 8.4		
Surrogate 1,2-Dichloroethane 4-Bromofluoroben Dibromofluoromet Toluene-d8 (Surr)	zene (Surr) hane (Surr)	%Rec 111 92 111 103	C	Qualifier	Acceptan 64 - 126 72 - 126 60 - 140 71 - 125	ce Limits		

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-6 (13-14.2)											
Lab Sample ID: Client Matrix:	480-85554-4 Solid	% Moisture	e: 5.4			npled: 08/12/2015 1250 ceived: 08/13/2015 0900						
8260C Volatile Organic Compounds by GC/MS												
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1644 08/13/2015 1300	Analysis Batch: Prep Batch:	480-259171 480-259213		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP5973F F0216.D 6.423 g 5 mL						
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifi	er MDL	RL						
1,1,1-Trichloroetha	ane	ND			0.30	4.1						
1,1,2,2-Tetrachlor		ND			0.67	4.1						
1,1,2-Trichloro-1,2		ND			0.94	4.1						
1,1,2-Trichloroetha		ND			0.54	4.1						
1,1-Dichloroethane		ND			0.50	4.1						
1,1-Dichloroethene		ND			0.50	4.1						
1,2,4-Trichloroben		ND			0.25	4.1						
1,2-Dibromo-3-Ch		ND			2.1	4.1						
1,2-Dibromoethan		ND			0.53	4.1						
1,2-Dichlorobenze		ND			0.32	4.1						
1,2-Dichloroethane		ND			0.21	4.1						
1,2-Dichloropropa 1,3-Dichlorobenze		ND ND			2.1 0.21	4.1 4.1						
1,4-Dichlorobenze		ND			0.58	4.1						
2-Butanone (MEK)		ND			1.5	21						
2-Hexanone	/	ND			2.1	21						
4-Methyl-2-pentan	one (MIBK)	ND			1.4	21						
Acetone		6.4		J	3.5	21						
Benzene		ND			0.20	4.1						
Bromodichloromet	hane	ND			0.55	4.1						
Bromoform		ND			2.1	4.1						
Bromomethane		ND			0.37	4.1						
Carbon disulfide		ND			2.1	4.1						
Carbon tetrachlorie	de	ND			0.40	4.1						
Chlorobenzene		ND			0.54	4.1						
Chloroethane		ND			0.93	4.1						
Chloroform		ND			0.25	4.1						
Chloromethane		ND			0.25	4.1						
cis-1,2-Dichloroeth		ND			0.53 0.59	4.1						
cis-1,3-Dichloropro Cyclohexane	opene	ND 2.5		J	0.59	4.1 4.1						
Dibromochloromet	hane	ND	J	5	0.53	4.1						
Dichlorodifluorome		ND	J		0.34	4.1						
Ethylbenzene	Shaho	ND	0		0.28	4.1						
Isopropylbenzene		ND			0.62	4.1						
Methyl acetate		ND			2.5	4.1						
Methyl tert-butyl et	ther	0.70		J	0.40	4.1						
Methylcyclohexan		2.6		J	0.63	4.1						
Methylene Chlorid	e	ND			1.9	4.1						
Styrene		ND			0.21	4.1						
Tetrachloroethene	1	ND			0.55	4.1						
Toluene		0.43		J	0.31	4.1						
trans-1,2-Dichloro		ND			0.42	4.1						
trans-1,3-Dichloro	propene	ND			1.8	4.1						
Trichloroethene	L	ND			0.91	4.1						
Trichlorofluoromet	nane	ND			0.39	4.1						

Analytical Data

Client: ARCADIS U.S. Inc

Client Sample ID	MW-6 (13-14.2)										
Lab Sample ID: Client Matrix:	480-85554-4 Solid	% Moistur	e: 5.4		mpled: 08/12/2015 1250 eceived: 08/13/2015 0900						
8260C Volatile Organic Compounds by GC/MS											
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1644 08/13/2015 1300	Analysis Batch: Prep Batch:	480-259171 480-259213	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	•						
Analyte	DryWt Corrected	l: Y Result (u	ıg/Kg) Qua	lifier MDL	RL						
Vinyl chloride Xylenes, Total		ND ND		0.50 0.69	4.1 8.2						
Surrogate 1,2-Dichloroethan 4-Bromofluoroben Dibromofluoromet Toluene-d8 (Surr)	zene (Surr)	%Rec 113 88 113 106	Qua	lifier Accepta 64 - 126 72 - 126 60 - 140 71 - 125	i I						

Analytical Data

Client Sample ID:	MW-4 (5-7)								
Lab Sample ID: Client Matrix:	480-85554-5 Solid		npled: 08/10/ ceived: 08/13/						
		8260C Volat	le Organi	c Compound	ds by C	GC/MS			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1709 08/13/2015 1300	-	Analysis Batch: 480-259171 Prep Batch: 480-259213					HP5973F F0217.D 5.18 g 5 mL	
Analyte	DryWt Correc	cted: Y	Result (u	g/Kg)	Qualifi	ier	MDL	RL	
1,1,1-Trichloroetha			ND			-	0.43	5.9	
1,1,2,2-Tetrachloro			ND		н		0.96	5.9	
1,1,2-Trichloro-1,2			ND		н		1.3	5.9	
1,1,2-Trichloroetha			ND		н		0.77	5.9	
1,1-Dichloroethane			ND		н		0.72	5.9	
1,1-Dichloroethene	9		ND		н		0.72	5.9	
1,2,4-Trichloroben	zene		ND		н		0.36	5.9	
1,2-Dibromo-3-Chl	loropropane		ND		н		2.9	5.9	
1,2-Dibromoethane	е		ND		н		0.76	5.9	
1,2-Dichlorobenze	ne		ND		н		0.46	5.9	
1,2-Dichloroethane	e		ND		н		0.30	5.9	
1,2-Dichloropropar	ne		ND		н		2.9	5.9	
1,3-Dichlorobenze	ne		ND		н		0.30	5.9	
1,4-Dichlorobenze	ne		ND		н		0.82	5.9	
2-Butanone (MEK))		ND		н		2.2	29	
2-Hexanone			ND		н		2.9	29	
4-Methyl-2-pentan	one (MIBK)		ND		н		1.9	29	
Acetone			ND		н		5.0	29	
Benzene			ND		н		0.29	5.9	
Bromodichloromet	hane		ND		н		0.79	5.9	
Bromoform			ND		н		2.9	5.9	
Bromomethane			ND		н		0.53	5.9	
Carbon disulfide			ND		н		2.9	5.9	
Carbon tetrachlorid	de		ND		H		0.57	5.9	
Chlorobenzene			ND		H		0.78	5.9	
Chloroethane			ND		H		1.3	5.9	
Chloroform			ND		H		0.36	5.9	
Chloromethane			ND		H		0.36	5.9	
cis-1,2-Dichloroeth			ND		H		0.75	5.9	
cis-1,3-Dichloropro	opene		ND		H H H H H H H H H H H H H H H H H H H		0.85	5.9	
Cyclohexane			ND		н		0.82	5.9	
Dibromochloromet			ND		н		0.75	5.9	
Dichlorodifluorome	ethane		ND		н		0.49	5.9	
Ethylbenzene			ND		н		0.41	5.9	
Isopropylbenzene			ND		н		0.89	5.9	
Methyl acetate			ND		н		3.6	5.9	
Methyl tert-butyl et			ND		н		0.58	5.9	
Methylcyclohexane			ND		H H H		0.90	5.9	
Methylene Chlorid	e		ND				2.7	5.9	
Styrene			ND		H		0.29	5.9	
Tetrachloroethene			ND		н	1	0.79	5.9	
Toluene			ND		H		0.45	5.9	
trans-1,2-Dichloroe			ND		н	1	0.61	5.9	
trans-1,3-Dichlorop	propene		ND		H		2.6	5.9	
Trichloroethene			ND				1.3	5.9	
Trichlorofluoromet	hane		ND		H N	V	0.56	5.9	

Analytical Data

Client: ARCADIS U.S. Inc

MW-4 (5-7)											
480-85554-5 Solid	% Moisture	e: 18.1			npled: 08/10/2015 1340 eived: 08/13/2015 0900						
8260C Volatile Organic Compounds by GC/MS											
8260C 5035A 1.0 08/18/2015 1709 08/13/2015 1300	Analysis Batch: Prep Batch:	480-259171 480-259213	Lab I Initia	File ID: I Weight/Volume:	HP5973F F0217.D 5.18 g 5 mL						
DryWt Corrected	: Y Result (ug	g/Kg) Qu	alifier	MDL	RL						
	ND ND	н Н	J J	0.72 0.99	5.9 12						
	%Rec	Qu	alifier	Acceptan	ce Limits						
zene (Surr)	105 67 110	Х		64 - 126 72 - 126 60 - 140							
	480-85554-5 Solid 8260C 5035A 1.0 08/18/2015 1709 08/13/2015 1300	480-85554-5 Solid % Moisture 8260C Volatile Organia 8260C Analysis Batch: 5035A Prep Batch: 1.0 08/18/2015 1709 08/13/2015 1300 DryWt Corrected: Y Result (up ND ND ND ND ND ND 2ene (Surr) 105 2ene (Surr) 67 nane (Surr) 110	480-85554-5 Solid % Moisture: 18.1 8260C Volatile Organic Compounds b 8260C Analysis Batch: 480-259171 5035A Prep Batch: 480-259213 1.0 08/18/2015 1709 08/13/2015 1300 DryWt Corrected: Y Result (ug/Kg) Qu ND H ND H ND H ND H ND K ND K K K ND K ND K ND K ND K K K ND K K K K K K K K K K K K K K K K K K K	480-85554-5 Solid % Moisture: 18.1 8260C Volatile Organic Compounds by GC/MS 8260C Analysis Batch: 480-259171 Instru- 5035A 9rep Batch: 480-259213 Lab I 1.0 Initia Initia 08/18/2015 1709 Final 08/13/2015 1300 Final 08/13/2015 1300 H J MD H J %Rec Qualifier %Rec Qualifier %Rec Qualifier 67 X nane (Surr) 110	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-4 (13-14.5)											
Lab Sample ID: Client Matrix:	480-85554-6 Solid	% Moisture	e: 13.9			npled: 08/10/201 ceived: 08/13/201						
8260C Volatile Organic Compounds by GC/MS												
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1735 08/13/2015 1300	Analysis Batch: 480-259171 Prep Batch: 480-259213				HP5973F F0218.D 7.147 g 5 mL						
Analyte	DryWt Corrected:	Y Result (u	g/Kg) Q	ualifier	MDL	RL						
1,1,1-Trichloroetha	ane	ND	H	J	0.30	4.1						
1,1,2,2-Tetrachlor	oethane	ND	Н		0.66	4.1						
1,1,2-Trichloro-1,2	2,2-trifluoroethane	ND	н		0.93	4.1						
1,1,2-Trichloroetha	ane	ND	H		0.53	4.1						
1,1-Dichloroethane	e	ND	H		0.50	4.1						
1,1-Dichloroethene	e	ND	H		0.50	4.1						
1,2,4-Trichloroben	zene	ND	H		0.25	4.1						
1,2-Dibromo-3-Ch		ND	H		2.0	4.1						
1,2-Dibromoethan		ND	H		0.52	4.1						
1,2-Dichlorobenze		ND	H		0.32	4.1						
1,2-Dichloroethane		ND	H		0.20	4.1						
1,2-Dichloropropa		ND	н		2.0	4.1						
1,3-Dichlorobenze		ND	н		0.21	4.1						
1,4-Dichlorobenze		ND	HI HI		0.57	4.1						
2-Butanone (MEK))	ND			1.5	20						
2-Hexanone		ND	H H H		2.0	20 20						
4-Methyl-2-pentan Acetone	one (MIBK)	ND 40	I		1.3 3.4	20 20						
Benzene		40 ND			0.20	4.1						
Bromodichloromet	hane	ND			0.54	4.1						
Bromoform		ND	H H H H H H		2.0	4.1						
Bromomethane		ND			0.37	4.1						
Carbon disulfide		ND			2.0	4.1						
Carbon tetrachlori	de	ND	H		0.39	4.1						
Chlorobenzene		ND	н		0.54	4.1						
Chloroethane		ND	н		0.92	4.1						
Chloroform		ND	H		0.25	4.1						
Chloromethane		ND	H		0.25	4.1						
cis-1,2-Dichloroeth	iene	ND	H		0.52	4.1						
cis-1,3-Dichloropro	opene	ND	H H H H		0.59	4.1						
Cyclohexane		ND	H		0.57	4.1						
Dibromochloromet		ND	H		0.52	4.1						
Dichlorodifluorome	ethane	ND	H		0.34	4.1						
Ethylbenzene		ND	H		0.28	4.1						
Isopropylbenzene		ND			0.61	4.1						
Methyl acetate	the set	ND			2.5	4.1						
Methyl tert-butyl et		ND	1		0.40	4.1						
Methylcyclohexane Methylene Chlorid		ND ND	1		0.62 1.9	4.1 4.1						
•	e	ND	3		0.20	4.1						
Styrene Tetrachloroethene		ND	3		0.20	4.1						
Toluene		ND	L L		0.31	4.1						
trans-1,2-Dichloro	ethene	ND	L L		0.42	4.1						
trans-1,3-Dichloro		ND	L L		1.8	4.1						
Trichloroethene	p. spono	ND	H		0.89	4.1						
Trichlorofluoromet	hane	ND	H	\vee	0.38	4.1						
	· · ·		.1									

Analytical Data

Client Sample ID	MW-4 (13-14.5)										
Lab Sample ID: Client Matrix:	480-85554-6 Solid	% Moisture	e: 13.9			npled: 08/10/2015 1400 ceived: 08/13/2015 0900					
8260C Volatile Organic Compounds by GC/MS											
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1735 08/13/2015 1300	Analysis Batch: Prep Batch:	480-259171 480-259213	La	strument ID: b File ID: tial Weight/Volume: nal Weight/Volume:	HP5973F F0218.D 7.147 g 5 mL					
Analyte	DryWt Corrected	: Y Result (u	g/Kg) G	alifier	MDL	RL					
Vinyl chloride Xylenes, Total		ND ND	6-1 6-1		0.50 0.68	4.1 8.1					
Surrogate 1,2-Dichloroethan 4-Bromofluoroben Dibromofluoromet Toluene-d8 (Surr)	zene (Surr)	%Rec 117 98 114 102	C	Qualifier	Acceptan 64 - 126 72 - 126 60 - 140 71 - 125	ice Limits					

Analytical Data

Client Sample ID:	MW-1 (5-7)										
Lab Sample ID: Client Matrix:	480-85554-7 Solid		% Moisture	e: 12.6				npled: 08/11/2015 1340 ceived: 08/13/2015 0900			
8260C Volatile Organic Compounds by GC/MS											
Analysis Method:	8260C		sis Batch:	480-25917			nent ID:	HP5973F			
Prep Method:	5035A	Prep	Batch:	480-25921	3	Lab File		F0219.D			
Dilution:	1.0 08/18/2015 1801						Veight/Volume: /eight/Volume:	7.209 g 5 mL			
Analysis Date: Prep Date:	08/13/2015 1300						eight/volume.	5 IIIL			
Analyte	DryWt Corre	ected: Y	Result (u	g/Kg)	Qualif	ier	MDL	RL			
1,1,1-Trichloroetha			ND				0.29	4.0			
1,1,2,2-Tetrachlor			ND				0.64	4.0			
1,1,2-Trichloro-1,2							0.90	4.0			
1,1,2-Trichloroetha			ND ND				0.52 0.48	4.0 4.0			
1,1-Dichloroethane			ND				0.49	4.0			
1,2,4-Trichloroben			ND				0.24	4.0			
1,2-Dibromo-3-Chl			ND				2.0	4.0			
1,2-Dibromoethane			ND				0.51	4.0			
1,2-Dichlorobenze			ND				0.31	4.0			
1,2-Dichloroethane			ND				0.20	4.0			
1,2-Dichloropropar	ne		ND				2.0	4.0			
1,3-Dichlorobenze	ne		ND				0.20	4.0			
1,4-Dichlorobenze			ND				0.56	4.0			
2-Butanone (MEK)			ND				1.5	20			
2-Hexanone			ND				2.0	20			
4-Methyl-2-pentan	one (MIBK)		ND				1.3	20			
Acetone		2200	35		-E-	D	3.3	20			
Benzene Bromodichloromet	hano	2300	370 ND		E	D	0.19 0.53	4.0 4.0			
Bromoform	nane		ND				2.0	4.0			
Bromomethane			ND				0.36	4.0			
Carbon disulfide			ND				2.0	4.0			
Carbon tetrachlorio	de		ND				0.38	4.0			
Chlorobenzene			ND				0.52	4.0			
Chloroethane			ND				0.90	4.0			
Chloroform			ND				0.25	4.0			
Chloromethane			ND				0.24	4.0			
cis-1,2-Dichloroeth			ND				0.51	4.0			
cis-1,3-Dichloropro	ppene		ND				0.57	4.0			
Cyclohexane	h a a a		2.5	J	J		0.56	4.0			
Dibromochloromet Dichlorodifluorome			ND ND	J			0.51 0.33	4.0 4.0			
Ethylbenzene			92	0			0.27	4.0			
Isopropylbenzene			19				0.60	4.0			
Methyl acetate			ND				2.4	4.0			
Methyl tert-butyl et	her		ND				0.39	4.0			
Methylcyclohexane			3.1		J		0.60	4.0			
Methylene Chloride			ND				1.8	4.0			
Styrene			63				0.20	4.0			
Tetrachloroethene			ND				0.53	4.0			
Toluene		6100	600		-E -	D	0.30	4.0			
trans-1,2-Dichloroe			ND				0.41	4.0			
trans-1,3-Dichlorop	propene						1.7	4.0			
Trichloroethene Trichlorofluoromet	hana		ND ND				0.87 0.38	4.0			
TIGHIOIOIIUOIOIIIEU							0.00	4.0			

Analytical Data

Client: ARCADIS U.S. Inc

Client Sample ID	MW-1 (5-7)										
Lab Sample ID: Client Matrix:	480-85554-7 Solid	% Moistur	e: 12.6			npled: 08/11/2015 1340 ceived: 08/13/2015 0900					
8260C Volatile Organic Compounds by GC/MS											
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1801 08/13/2015 1300	Analysis Batch: Prep Batch:	480-259171 480-259213	Lab Initia	ument ID: File ID: Il Weight/Volume: I Weight/Volume:	HP5973F F0219.D 7.209 g 5 mL					
Analyte	DryWt Corrected	d: Y Result (u	ug/Kg) (Qualifier	MDL	RL					
Vinyl chloride Xylenes, Total		ND 950			0.48 0.67	4.0 7.9					
Surrogate 1,2-Dichloroethane 4-Bromofluoroben Dibromofluoromet Toluene-d8 (Surr)	zene (Surr) hane (Surr)	%Rec 120 102 113 95		Qualifier	Acceptan 64 - 126 72 - 126 60 - 140 71 - 125	ce Limits					

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-1 (5-7)					
Lab Sample ID:	480-85554-7				Date Sar	npled: 08/11/2015 1340
Client Matrix:	Solid	% Moisture	e: 12.6		Date Red	ceived: 08/13/2015 0900
	8260	C Volatile Organi	c Compound	ls by GC/M	6	
Analysis Method: 8	8260C	Analysis Batch:	480-259737	/ Instr	ument ID:	HP5973G
	5035A	Prep Batch:	480-259512	2 Lab	File ID:	G41633.D
Dilution:	4.0			Initia	I Weight/Volume:	6.474 g
Analysis Date:	08/21/2015 0236	Run Type:	DL	Fina	I Weight/Volume:	10 mL
Prep Date:	8/13/2015 1300					
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethan		ND			110	380
1,1,2,2-Tetrachloroe		ND			62	380
1,1,2-Trichloro-1,2,2		ND			190	380
1,1,2-Trichloroethan	ie 🔪	ND			80	380
1,1-Dichloroethane	\mathbf{X}	ND			120	380
1,1-Dichloroethene	\sim	ND			130	380
1,2,4-Trichlorobenze		ND			140	380
1,2-Dibromo-3-Chlo	ropropane	ND			190	380
1,2-Dibromoethane	\sim	ND			67	380
1,2-Dichlorobenzene	e	ND			98	380
1,2-Dichloroethane		ND			160	380
1,2-Dichloropropane		ND			62	380
1,3-Dichlorobenzene		ND			100	380
1,4-Dichlorobenzene	9	ND			54	380
2-Butanone (MEK)		ND			1100	1900
2-Hexanone		ND			780	1900
4-Methyl-2-pentanor	ne (MIBK)	ND			120	1900
Acetone		ND			1600	1900
Benzene		2300	`		73	380
Bromodichlorometha	ane	ND	\backslash		77	380
Bromoform		ND	\mathbf{X}		190 84	380 380
Bromomethane		ND	\sim			
Carbon disulfide Carbon tetrachloride		ND	\sim		170	380
		ND	\sim		98	380
Chlorobenzene Chloroethane		ND ND	\sim		50 80	380 380
				\backslash		
Chloroform Chloromethane		ND ND		\mathbf{X}	260 91	380 380
cis-1,2-Dichloroethe		ND			110	380
cis-1,3-Dichloroprop		ND			91	380
Cyclohexane		ND			85	380
Dibromochlorometha	ane	ND		\sim	190	380
Dichlorodifluorometh		ND			170	380
Ethylbenzene	lane	1700			110	380
Isopropylbenzene		550			57	380
Methyl acetate		ND			180	380
Methyl tert-butyl eth	er	ND			140	380
Methylcyclohexane		ND			180	380
Methylene Chloride		690		В	76	380
Styrene		1100			92	380
Tetrachloroethene		ND			51	380
Toluene		6100			100	380
trans-1,2-Dichloroet	hene	ND			90	380
trans-1,3-Dichloropr		ND			38	380
Trichloroethene	1 -	ND			110	380
Trichlorofluorometha	ane	ND			180	380
						•

Analytical Data

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-1 (5-7)					
Lab Sample ID: Olient Matrix:	480-85554-7 Solid	% Moisture	e: 12.6			npled: 08/11/2015 1340 eived: 08/13/2015 0900
		C Volatile Organi		Is by GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 4.0 08/21/2015 0236 08/13/2015 1300	Analysis Batch: Prep Batch: Run Type:	480-259737 480-259512 DL	Instrumer Lab File I Initial We		HP5973G G41633.D 6.474 g 10 mL
Analyte	DryWt Corrected:	Y Result (u	a/Ka)	Qualifier I	MDL	RL
Vinyl chloride	Diywi Conecied.	ND	y/ry)		130	380
Xylenes, Total		21000			210	770
	\mathbf{X}					
Surrogate		%Rec		Qualifier	Acceptan	ce Limits
1,2-Dichloroethane 4-Bromofluorobenz Dibromofluorometh Toluene-d8 (Surr)	zene (Surr)	98 103 96 100			53 - 146 49 - 148 60 - 140 50 - 149	

Analytical Data

Client Sample ID:	MW-1 (9-11)											
Lab Sample ID: Client Matrix:	480-85554-8 Solid	%	Moisture	e: 14.9				npled: 08/11/ eived: 08/13/				
8260C Volatile Organic Compounds by GC/MS												
Analysis Method:	8260C		s Batch:	480-25917 ²	-	Instrument	t ID:	HP5973F				
Prep Method:	5035A	Prep Ba	atch:	480-259213	3	Lab File ID):	F0220.D				
Dilution:	1.0						ght/Volume:	6.032 g				
Analysis Date:	08/18/2015 1827					Final Weig	ht/Volume:	5 mL				
Prep Date:	08/13/2015 1300											
Analyte	DryWt Correcte		Result (u	g/Kg)	Qualif		1DL	RL				
1,1,1-Trichloroetha			ND				.35	4.9				
1,1,2,2-Tetrachlor			ND				.79	4.9				
1,1,2-Trichloro-1,2			ND				.1	4.9				
1,1,2-Trichloroetha			ND				.63	4.9				
1,1-Dichloroethane			ND				.59	4.9				
1,1-Dichloroethene			ND				.60	4.9				
1,2,4-Trichloroben			ND				.30	4.9				
1,2-Dibromo-3-Chl							.4	4.9				
1,2-Dibromoethane 1,2-Dichlorobenze			ND ND				.63 .38	4.9 4.9				
1,2-Dichloroethane			ND				.30 .24	4.9 4.9				
1,2-Dichloropropa			ND				.24 .4	4.9				
1,3-Dichlorobenze			ND				.4	4.9				
1,4-Dichlorobenze			ND				.68	4.9				
2-Butanone (MEK)			ND				.8	24				
2-Hexanone			ND				.4	24				
4-Methyl-2-pentan	one (MIBK)		ND				.6	24				
Acetone			8.4		J		.1	24				
Benzene			0.72		J		.24	4.9				
Bromodichloromet	hane		ND				.65	4.9				
Bromoform			ND			2	.4	4.9				
Bromomethane			ND			0	.44	4.9				
Carbon disulfide			ND			2	.4	4.9				
Carbon tetrachlorio	de		ND			0	.47	4.9				
Chlorobenzene			ND			0	.64	4.9				
Chloroethane			ND			1	.1	4.9				
Chloroform			ND			0	.30	4.9				
Chloromethane			ND				.29	4.9				
cis-1,2-Dichloroeth			ND				.62	4.9				
cis-1,3-Dichloropro	ppene		ND				.70	4.9				
Cyclohexane			ND _				.68	4.9				
Dibromochloromet			ND J				.62	4.9				
Dichlorodifluorome	ethane		ND J				.40	4.9				
Ethylbenzene			ND				.34	4.9				
Isopropylbenzene			ND				.73	4.9				
Methyl acetate			ND				.9	4.9				
Methyl tert-butyl et			ND				.48	4.9				
Methylcyclohexane			ND				.74	4.9				
Methylene Chlorid	e		ND				.2	4.9				
Styrene Tetrachloroethene			ND ND				.24 .65	4.9 4.9				
Toluene					I.		.05 .37					
trans-1,2-Dichloroe	athana		1.4 ND		J		.37 .50	4.9 4.9				
			ND				.50	4.9 4.9				
trans-1,3-Dichlorop Trichloroethene	oropene		ND				.1	4.9 4.9				
Trichlorofluoromet	hane		ND				.46	4.9 4.9				
						0	0	7.0				

Analytical Data

Client: ARCADIS U.S. Inc

Client Sample ID	MW-1 (9-11)										
Lab Sample ID: Client Matrix:	480-85554-8 Solid	% Moistu	re: 14.9			ampled: 08/11/2015 1400 eceived: 08/13/2015 0900					
8260C Volatile Organic Compounds by GC/MS											
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1827 08/13/2015 1300	Analysis Batch: Prep Batch:	480-25917 480-25921	3 L I	nstrument ID: ∟ab File ID: nitial Weight/Volume Final Weight/Volume	•					
Analyte	DryWt Correcte	d: Y Result (ug/Kg)	Qualifier	MDL	RL					
Vinyl chloride	-	ND			0.59	4.9					
Xylenes, Total		1.6		J	0.82	9.7					
Surrogate		%Rec		Qualifier	Accept	ance Limits					
1,2-Dichloroethan	· ,	114			64 - 12	-					
4-Bromofluoroben		84			72 - 12	-					
Dibromofluoromet Toluene-d8 (Surr)	nane (Surr)	114 107			60 - 14 71 - 12						

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	DUP-081115								
Lab Sample ID: Client Matrix:	480-85554-9 Solid	% Moisture	e: 8.3			d: 08/11/2015 0000 d: 08/13/2015 0900			
8260C Volatile Organic Compounds by GC/MS									
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1853 08/13/2015 1300	Analysis Batch: Prep Batch:	480-259171 480-259213	Instrument I Lab File ID: Initial Weigh Final Weigh	F02 t/Volume: 7.1	5973F 221.D 04 g mL			
Analyte	DryWt Corrected	: Y Result (u	g/Kg) Qua	alifier MD)L	RL			
1,1,1-Trichloroetha	-	ND	H	J 0.2	8	3.8			
1,1,2,2-Tetrachlor	oethane	ND	н	0.6	2	3.8			
1,1,2-Trichloro-1,2	2,2-trifluoroethane	ND	н	0.8	8	3.8			
1,1,2-Trichloroetha		ND	н	0.5	0	3.8			
1,1-Dichloroethane	e	ND	н	0.4	7	3.8			
1,1-Dichloroethene		ND	H	0.4		3.8			
1,2,4-Trichloroben	zene	ND	H	0.2		3.8			
1,2-Dibromo-3-Ch		ND	H	1.9		3.8			
1,2-Dibromoethan		ND	H	0.4		3.8			
1,2-Dichlorobenze		ND	H	0.3		3.8			
1,2-Dichloroethane		ND	H	0.1		3.8			
1,2-Dichloropropa		ND	H H H	1.9		3.8			
1,3-Dichlorobenze		ND		0.2		3.8			
1,4-Dichlorobenze		ND	H	0.5		3.8			
2-Butanone (MEK))	ND		1.4		19			
2-Hexanone		ND	H H H	1.9 1.3		19			
4-Methyl-2-pentan Acetone	one (MIBK)	ND 7.6	т JHJ			19 19			
Benzene		0.50	JH			3.8			
Bromodichloromet	hane	ND	H H	0.5		3.8			
Bromoform		ND	Ĥ	1.9		3.8			
Bromomethane		ND		0.3		3.8			
Carbon disulfide		ND	H	1.9		3.8			
Carbon tetrachlori	de	ND	H	0.3		3.8			
Chlorobenzene		ND	H	0.5		3.8			
Chloroethane		ND	H	0.8		3.8			
Chloroform		ND	H	0.2	4	3.8			
Chloromethane		ND	H	0.2	3	3.8			
cis-1,2-Dichloroeth	nene	ND	H	0.4		3.8			
cis-1,3-Dichloropro	opene	ND	H	0.5		3.8			
Cyclohexane		ND	H	0.5		3.8			
Dibromochloromet		ND	H	0.4		3.8			
Dichlorodifluorome	ethane	ND	H	0.3		3.8			
Ethylbenzene		ND	H	0.2		3.8			
Isopropylbenzene		ND	HI .	0.5		3.8			
Methyl acetate	44	ND	H H	2.3		3.8			
Methyl tert-butyl et		ND		0.3		3.8			
Methylcyclohexan		ND ND	H	0.5 1.8		3.8 3.8			
Methylene Chlorid	e		н Н	0.1		3.8			
Styrene Tetrachloroethene		ND ND	H	0.1		3.8 3.8			
Toluene		0.67	⊓ J₩			3.8			
trans-1,2-Dichloro	ethene	ND	ларана 14	0.2		3.8			
trans-1,3-Dichloro		ND	H	1.7		3.8			
Trichloroethene	P. 0 POILO	ND		0.8		3.8			
Trichlorofluoromet	hane	ND	H	0.3		3.8			
				, 0.0	-				

Analytical Data

Client: ARCADIS U.S. Inc

Client Sample ID	DUP-081115					
Lab Sample ID: Client Matrix:	480-85554-9 Solid	% Moisture	e: 8.3			npled: 08/11/2015 0000 ceived: 08/13/2015 0900
	826	60C Volatile Organi	c Compounds	by GC/M	S	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/18/2015 1853 08/13/2015 1300	Analysis Batch: Prep Batch:	480-259171 480-259213	Lab Initia	rument ID: File ID: al Weight/Volume: al Weight/Volume:	HP5973F F0221.D 7.104 g 5 mL
Analyte	DryWt Corrected	d: Y Result (u	g/Kg) Q	ualifier	MDL	RL
Vinyl chloride Xylenes, Total		ND ND	н н	J J	0.47 0.65	3.8 7.7
Surrogate 1,2-Dichloroethan 4-Bromofluoroben Dibromofluoromet Toluene-d8 (Surr)	zene (Surr)	%Rec 114 83 114 108	Q	ualifier	Acceptan 64 - 126 72 - 126 60 - 140 71 - 125	ce Limits

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-5 (10-12)								
Lab Sample ID: Client Matrix:	480-85554-1 Solid	% Moisture	: 12.4		mpled: 08/11/2015 1530 ceived: 08/13/2015 0900				
8270D Semivolatile Organic Compounds (GC/MS)									
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 10 08/20/2015 1532 08/13/2015 1351	Analysis Batch: Prep Batch:	480-259596 480-258542	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	•				
Analyte	DryWt Correcte	d: Y Result (u	g/Kg) Qı	ualifier MDL	RL				
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichlorophe 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthale 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-methyl 4-Chloro-3-methyl 4-Chloro-3-methyl 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Methylphenol 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzo[a]anthracer Benzo[b]fluoranthe Benzo[g,h,i]perylet Benzo[k]fluoranthe	nol nol nol i ol ene ene dine ylphenol enyl ether phenol enyl ether phenol enyl ether	3200 ND ND ND ND ND ND ND ND S300 ND ND ND ND ND ND ND ND ND ND ND ND ND	g/Kg) Qı	280 380 520 380 200 460 8900 400 230 320 320 320 320 320 320 3	1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 3700 3700 3700 3700 3700 3700 3700 3700 3700 3700 3700 3700 3700 3700 3700 3700 3700 1900				
Bis(2-chloroethoxy Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Dibenz(a,h)anthrae	e e	ND ND ND ND 4300 15000 ND ND 3000	J	410 250 660 320 580 230 430 330 230 340	1900 1900 1900 1900 1900 1900 1900 1900				

Analytical Data

Client Sample ID	: MW-5 (10-12)					
Lab Sample ID: Client Matrix:	480-85554-1 Solid	% Moistur	e: 12.4			npled: 08/11/2015 1530 ceived: 08/13/2015 0900
	827	0D Semivolatile Org	janic Compo	ounds (GC/M	S)	
Analysis Method:	8270D	Analysis Batch:	480-25959		ument ID:	HP5973V
Prep Method:	3550C	Prep Batch:	480-25854		File ID:	V52394.D
Dilution:	10			Initia	I Weight/Volume:	+30.25 g
Analysis Date:	08/20/2015 1532			Final	Weight/Volume:	1 mL
Prep Date:	08/13/2015 1351			Injec	tion Volume:	1 uL
Analyte	DryWt Correct	ed: Y Result (u	ıg/Kg)	Qualifier	MDL	RL
Dibenzofuran		13000			230	1900
Diethyl phthalate		ND			250	1900
Dimethyl phthalate	9	ND			230	1900
Fluoranthene		39000			200	1900
Fluorene		18000			230	1900
Hexachlorobenzer		ND			260	1900
Hexachlorobutadie		ND			280	1900
Hexachlorocyclop		ND			260	1900
Hexachloroethane		ND			250	1900
Indeno[1,2,3-cd]py	rene	7400			240	1900
Isophorone		ND			410	1900
N-Nitrosodi-n-prop		ND			330	1900
N-Nitrosodiphenyl	amine	ND			1600	1900
Naphthalene		27000			250	1900
Nitrobenzene		ND			210	1900
Pentachloropheno		ND			1900	3700
Phenanthrene		44000			280	1900
Phenol		ND			290	1900
Pyrene		30000			230	1900
Surrogate		%Rec		Qualifier	Acceptar	ce Limits
2,4,6-Tribromophe	enol	119			39 - 146	
2-Fluorobiphenyl		90			37 - 120	
2-Fluorophenol		77			18 - 120	
Nitrobenzene-d5		94			34 - 132	
p-Terphenyl-d14		98			65 - 153	
Phenol-d5		77			11 - 120	

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-5 (12-14)								
Lab Sample ID: Client Matrix:	480-85554-2 Solid	% Moisture	e: 8.1		mpled: 08/11/2015 1550 ceived: 08/13/2015 0900				
8270D Semivolatile Organic Compounds (GC/MS)									
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 10 08/20/2015 1559 08/13/2015 1351	Analysis Batch: Prep Batch:	480-259596 480-258542	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	-				
Analyte	DryWt Correcte	d: Y Result (u	g/Kg) Qu	alifier MDL	RL				
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichloropheno 2,4-Dintholorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthale 2-Chlorophenol 2-Methylnaphthale 2-Methylphenol 2-Nitroaniline	nol nol l bl	970 ND ND ND ND ND ND ND 1700 ND ND	J	270 360 490 360 190 440 8400 370 210 300 330 360 210 270	1800 1800 1800 1800 1800 1800 1800 1800				
2-Nitrophenol 3,3'-Dichlorobenzid 3-Nitroaniline 4,6-Dinitro-2-meth 4-Bromophenyl ph 4-Chloro-3-methyl 4-Chlorophenyl ph 4-Methylphenol 4-Nitroaniline 4-Nitrophenol	ylphenol enyl ether phenol	ND ND ND ND ND ND ND ND ND ND	J	510 2100 500 1800 260 450 450 220 210 950 1300 270	1800 3500 3500 1800 1800 1800 1800 3500 3500 3500 1800				
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzo[a]anthracer Benzo[a]pyrene Benzo[b]fluoranthe Benzo[g,h,i]peryle Benzo[k]fluoranthe Bis(2-chloroethoxy) Bis(2-chloroethoxy) Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Dibenz(a,h)anthra	ene ne ene v)methane ether hthalate late e	840 3500 ND 6400 ND 11000 7400 8400 3400 4900 ND ND ND ND ND ND ND 1100 7800 ND 1100 7800 ND ND 2000	J	270 240 250 450 630 1400 180 270 290 190 240 380 240 620 300 550 210 410 310 210 320	1800 1800				

Analytical Data

Client Sample ID:	MW-5 (12-14)			
Lab Sample ID: Client Matrix:	480-85554-2 Solid	% Moisture: 8.1		Date Sampled: 08/11/2015 1550 Date Received: 08/13/2015 0900
		8270D Semivolatile Organic Com	pounds (GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 10 08/20/2015 1559 08/13/2015 1351	Analysis Batch: 480-259 Prep Batch: 480-258		V52395.D nt/Volume: +30.54 g nt/Volume: 1 mL
Analyte Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclope Hexachlorocyclope Hexachlorocyclope Hexachlorocthane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodiphenyla Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol	ne ene entadiene vrene vylamine amine	3600 ND ND 20000 5300 ND ND ND ND ND ND ND 9600 ND ND ND ND 16000 ND	Qualifier MI 21 24 21 24 21 19 21 25 27 25 24 22 38 31 15 24 20 18 27 28	0 1800 0 1800
Pyrene Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	enol	15000 %Rec 86 45 37 55 43 36	21 Qualifier X	0 1800 Acceptance Limits 39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-6 (9-11)								
Lab Sample ID: Client Matrix:	480-85554-3 Solid		% Moisture	e: 5.6			ampled: 08/12/2015 1230 Received: 08/13/2015 0900		
	8270D Semivolatile Organic Compounds (GC/MS)								
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 1.0 08/20/2015 1627 08/13/2015 1351	Analys Prep E	sis Batch: 3atch:	480-259596 480-258542		Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume Injection Volume:	•		
Analyte	DryWt Co	rrected: Y	Result (u	g/Kg)	Qualifi	er MDL	RL		
Biphenyl Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-methyl 4-Chloro-3-methyl 4-Chloro-3-methyl 4-Chloro-3-methyl 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acetophenone Anthracene Atrazine Benzaldehyde Benzo[a]anthracer Benzo[b]fluoranthe Benzo[y,hi]perylet Bis(2-chloroethyl) Bis(2-chloroethyl)e Bis(2-ethylhexyl) p	pyl) ether nol nol l ine me dine ylphenol enyl ether phenol enyl ether phenol enyl ether phenol enyl ether phenol enyl ether phenol enyl ether		ND ND ND ND ND ND ND ND ND ND ND ND ND N			$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IRD 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 350 350 350 350 350 350 350 350 350 180		
Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Di-n-octyl phthalat Dibenz(a,h)anthrae	late e e		ND ND ND ND ND ND ND	r		29 53 21 40 30 21 31	180 180 180 180 180 180 180		

Analytical Data

Client Sample ID	: MW-6 (9-11)				
Lab Sample ID: Client Matrix:	480-85554-3 Solid	% Moisture:	5.6		mpled: 08/12/2015 1230 ceived: 08/13/2015 0900
	82	70D Semivolatile Orga	nic Compounds ((GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 1.0 08/20/2015 1627 08/13/2015 1351	5	480-259596 480-258542	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5973V V52396.D +30.33 g 1 mL 1 uL
Analyte	DryWt Correc		'Kg) Qualif		RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzen Hexachlorobutadie Hexachlorocyclop Hexachlorocyclop Hexachlorocethane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene	ne entadiene yrene oylamine amine	ND ND ND ND ND ND ND ND ND ND ND ND ND N		21 23 21 19 21 24 26 24 23 22 38 30 140 23 20 180 26	180 180 180 180 180 180 180 180 180 180
Phenol Pyrene		ND ND		27 21	180 180
Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	enol	%Rec 83 78 70 68 90 73	Qualif	ier Acceptar 39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120	nce Limits

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-6 (13-14.2)								
Lab Sample ID: Client Matrix:	480-85554-4 Solid	% Moisture	e: 5.4		Date Sampled: 08/12/2015 1250 Date Received: 08/13/2015 0900				
8270D Semivolatile Organic Compounds (GC/MS)									
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 5.0 08/20/2015 1654 08/13/2015 1351	Analysis Batch: Prep Batch:	480-259596 480-258542		V52397.D Volume: +30.23 g /olume: 1 mL				
Analyte	DryWt Corrected	: Y Result (u	g/Kg)	Qualifier MDL	RL				
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichlorophe 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthale 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-meth 4-Bromophenyl ph 4-Chloro-3-methyl 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Methylphenol 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acetophenone Anthracene Anthracene Benzo[a]anthracer Benzo[b]fluoranthe Benzo[y,hi]perylet Benzo[k]fluoranthe Bis(2-chloroethoxy	pyl) ether nol nol l b me me dine ylphenol enyl ether phenol enyl ether phenol enyl ether	ND ND ND ND ND ND ND ND ND ND ND ND ND N	Ţ	130 180 240 180 94 220 4100 180 100 150 160 180 100 150 160 180 100 250 890 130 250 890 130 220 220 110 130 220 220 110 130 220 220 310 710 89 130 120 120 120 120 120 120 120 120 120 12	890 8				
Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Di-n-octyl phthalat Dibenz(a,h)anthrae	hthalate late e	ND ND ND ND ND ND ND ND	Ţ	120 300 150 270 100 200 150 100 160	890 890 890 890 890 890 890 890 890				

Analytical Data

Client Sample ID	MW-6 (13-14.2)				
Lab Sample ID: Client Matrix:	480-85554-4 Solid	% Moisture: 5.	4		npled: 08/12/2015 1250 eived: 08/13/2015 0900
	82	70D Semivolatile Organic C	ompounds (GC/M	S)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 5.0 08/20/2015 1654 08/13/2015 1351	5	258542 Lab Initia Fina	ument ID: File ID: I Weight/Volume: Weight/Volume: tion Volume:	HP5973V V52397.D +30.23 g 1 mL 1 uL
Analyte	DryWt Correct		Qualifier	MDL	RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclop Hexachlorocyclop Hexachlorocthane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol Pyrene	e ene entadiene yrene oylamine amine	ND ND ND ND ND ND ND ND ND ND ND ND ND N		100 120 100 94 100 120 130 120 120 120 110 190 150 720 120 120 100 890 130 140 100	890 890 890 890 890 890 890 890 890 890
Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	enol	%Rec 88 87 72 78 95 75	Qualifier	Acceptan 39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120	ce Limits

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-4 (5-7)									
Lab Sample ID: Client Matrix:	480-85554-5 Solid		% Moisture	e: 18.1				npled: 08/10/ eived: 08/13/		
	8270D Semivolatile Organic Compounds (GC/MS)									
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 10 08/20/2015 1722 08/13/2015 1351	-	sis Batch: Batch:	480-259596 480-258542			D: ight/Volume: ght/Volume:	HP5973V V52398.D +30.09 g 1 mL 1 uL		
					0	-				
Analyte Biphenyl	DryWt Cor	rected: Y	Result (u ND	ig/Kg)	Qualifi		MDL 300	RL 2100		
bis (2-chloroisopro	nvl) other		ND				410	2100		
2,4,5-Trichlorophe			ND				560	2100		
2,4,6-Trichlorophe			ND				410	2100		
2,4,0-menoropheno			ND				220	2100		
· ·							220 500			
2,4-Dimethylpheno	וו							2100		
2,4-Dinitrophenol			ND				9500	20000		
2,4-Dinitrotoluene			ND	-			430	2100		
2,6-Dinitrotoluene				J			240	2100		
2-Chloronaphthale	ne		ND				340	2100		
2-Chlorophenol			ND				380	2100		
2-Methylnaphthale	ne		ND				410	2100		
2-Methylphenol			ND				240	2100		
2-Nitroaniline			ND T				300	4000		
2-Nitrophenol	P		ND J				580	2100		
3,3'-Dichlorobenzio	aine		ND				2400	4000		
3-Nitroaniline			ND				570	4000		
4,6-Dinitro-2-methy			ND				2100	4000		
4-Bromophenyl ph			ND				290	2100		
4-Chloro-3-methyl	pnenoi		ND				510	2100		
4-Chloroaniline			ND				510	2100		
4-Chlorophenyl ph	enyl ether		ND				260	2100		
4-Methylphenol			ND				240	4000		
4-Nitroaniline			ND				1100	4000		
4-Nitrophenol			ND				1400	4000		
Acenaphthene			770		J		300	2100		
Acenaphthylene			910		J		270	2100		
Acetophenone			ND				280	2100		
Anthracene			3600				510	2100		
Atrazine			ND				720	2100		
Benzaldehyde			ND				1600	2100		
Benzo[a]anthracer	ie		14000				210	2100		
Benzo[a]pyrene			16000				300	2100		
Benzo[b]fluoranthe			18000				330	2100		
Benzo[g,h,i]peryle			11000				220	2100		
Benzo[k]fluoranthe			8700				270	2100		
Bis(2-chloroethoxy			ND				440	2100		
Bis(2-chloroethyl)e							270	2100		
Bis(2-ethylhexyl) p							710	2100		
Butyl benzyl phtha	เลเษ						340	2100		
Caprolactam			ND				620 240	2100		
Carbazole			1200		J		240	2100		
Chrysene	^		12000				460	2100		
Di-n-butyl phthalat				-			350	2100		
Di-n-octyl phthalate				J			240	2100		
Dibenz(a,h)anthrac	Celle		ND				370	2100		

Analytical Data

Client Sample ID:	MW-4 (5-7)				
Lab Sample ID: Client Matrix:	480-85554-5 Solid	% Moistur	e: 18.1		npled: 08/10/2015 1340 ceived: 08/13/2015 0900
		8270D Semivolatile Org	ganic Compounds	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 10 08/20/2015 1722 08/13/2015 1351	Analysis Batch: Prep Batch:	480-259596 480-258542	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5973V V52398.D +30.09 g 1 mL 1 uL
Analyte	DryWt Co	rected: Y Result (u	ıg/Kg) Qual	ifier MDL	RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclope Hexachlorocyclope Hexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlope Pentachlorocyclope Nexachlope Ne	ne entadiene vrene vylamine amine	650 ND ND 18000 1100 ND ND ND 11000 ND ND ND ND 600 ND ND	J J	240 270 240 220 240 280 300 280 270 260 440 350 1700 270 230 2100	2100 2100 2100 2100 2100 2100 2100 2100
Phenanthrene Phenol Pyrene	I	9400 ND 16000		300 320 240	2100 2100 2100
Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	nol	%Rec 112 81 77 86 91 74	Qual	ifier Acceptar 39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120	nce Limits

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-4 (13-14.5)								
Lab Sample ID: Client Matrix:	480-85554-6 Solid	% Moisture	e: 13.9			oled: 08/10/2015 1400 ived: 08/13/2015 0900			
8270D Semivolatile Organic Compounds (GC/MS)									
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 1.0 08/21/2015 2107 08/13/2015 1351	Analysis Batch: Prep Batch:	480-259881 480-258542		: N ht/Volume: - ht/Volume: -	HP5973V V52425.D +30.07 g 1 mL 1 uL			
Analyte	DryWt Corrected	d: Y Result (u	g/Kg)	Qualifier M	DL	RL			
Biphenyl Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-methyl 4-Chloro-3-methyl 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Nitroaniline 4-Nitrophenol Acenaphthylene Acetophenone Anthracene Attrazine Benzaldehyde Benzo[a]anthraceri Benzo[b]fluoranthe	pyl) ether nol nol l ne ne dine ylphenol enyl ether ohenol enyl ether	ND ND ND <	J	Quanner in 29 39 50 39 50 39 21 48 91 41 23 30 30 30 20 56 20 20 56 20 20 56 20 20 20 20 20 20 20 20 20 20 20 20 20	P P <td< td=""><td>200 380 380 380 380 380 380 380 380 380 380 200 2</td></td<>	200 380 380 380 380 380 380 380 380 380 380 200 2			
Benzo[g,h,i]perylet Benzo[k]fluoranthe Bis(2-chloroethoxy Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene	ene r)methane hther hthalate late	70 ND ND 130 ND ND 87		J 21 26 42 26 J 67 32 59 23 J 42	5 2 5 7 2 9 3 4	200 200 200 200 200 200 200 200 200			
Di-n-butyl phthalat Di-n-octyl phthalat Dibenz(a,h)anthra	е	ND ND 94	J	34 23 J 35	3	200 200 200			

Analytical Data

Client Sample ID	: MW-4 (13-14.5)				
Lab Sample ID: Client Matrix:	480-85554-6 Solid	% Moisture:	13.9		npled: 08/10/2015 1400 ceived: 08/13/2015 0900
	827	0D Semivolatile Organi	c Compounds (GC	:/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 1.0 08/21/2015 2107 08/13/2015 1351	,	0-258542 La In Fi	strument ID: ab File ID: itial Weight/Volume: nal Weight/Volume: jection Volume:	HP5973V V52425.D +30.07 g 1 mL 1 uL
Analyte	DryWt Correct	ed: Y Result (ug/Kg	g) Qualifier	MDL	RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclop Hexachloroethane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene	e ene entadiene yrene oylamine amine	ND ND 93 ND ND ND ND ND ND ND ND ND ND ND ND ND	J J J	23 26 23 21 23 27 29 27 26 24 42 34 160 26 22 200 29	200 200 200 200 200 200 200 200 200 200
Phenol Pyrene		ND 83	J	30 23	200 200
Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	enol	%Rec 75 78 70 65 83 76	Qualifier	Acceptan 39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120	ice Limits

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-1 (5-7)						
Lab Sample ID: Client Matrix:	480-85554-7 Solid	%	Moisture	: 12.6			npled: 08/11/2015 1340 ceived: 08/13/2015 0900
	82	270D Semivola	tile Orga	anic Compou	unds (G	C/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 20 08/20/2015 1817 08/13/2015 1351	Analysis Prep Bat		480-259596 480-258542		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5973V V52400.D +30.51 g 1 mL 1 uL
Analyte	DryWt Corre	cted: Y F	Result (ug	g/Kg)	Qualifie	r MDL	RL
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichlorophe 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthale 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-methyl 4-Chloro-3-methyl 4-Chloro-3-methyl 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Methylphenol 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acetophenone Anthracene Anthracene Benzo[a]anthracer Benzo[b]fluoranthe Benzo[k]fluoranthe Bis(2-chloroethoxy	pyl) ether nol nol l nol l ne ne dine ylphenol enyl ether ohenol enyl ether ohenol enyl ether	9 N N N N S S N N N N N N N N N N N S S N N N N S S N N N N S S N N N N N S S N N N N S S N N N N S S N N N N N S S N N N N N S S N N N N N S S N N N N N S S N N N N N S S N N N N N S S N N N N N S S N N N N N S S N N N N N S S N N N N N S S S N N N N N S S S N N N N N S S S N N N N N S S S N N N N N S S S N N N N N S S S N N N N N S S S N N N N N N S S S N N N N N N N N N N N N N N N S S S N	1400 ND ND </td <td></td> <td>J</td> <td>560 770 1000 770 410 920 18000 790 450 630 700 770 450 630 700 770 450 560 1100 3800 540 950 950 950 950 950 2000 2700 560 500 520 950 1300 3000 380 560 610 410 500 810</td> <td>3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 7400 7400 7400 7400 7400 7400 3800</td>		J	560 770 1000 770 410 920 18000 790 450 630 700 770 450 630 700 770 450 560 1100 3800 540 950 950 950 950 950 2000 2700 560 500 520 950 1300 3000 380 560 610 410 500 810	3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 7400 7400 7400 7400 7400 7400 3800
Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Di-n-octyl phthalat Dibenz(a,h)anthrae	hthalate late e	N N 9 2 N N	1D 1D 1D 2500 23000 1D 1D J 1D J			500 1300 630 1100 450 860 650 450 680	3800 3800 3800 3800 3800 3800 3800 3800

Analytical Data

Client Sample ID: Lab Sample ID: Client Matrix:	MW-1 (5-7) 480-85554-7 Solid		% Moisture:	12.6				npled: 08/11/2015 1340 eived: 08/13/2015 0900
		8270D Semiv	olatile Orgar	nic Compo	ounds	(GC/M	5)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 20 08/20/2015 1817 08/13/2015 1351			480-259596 480-258542		Lab F Initial Final	iment ID: File ID: Weight/Volume: Weight/Volume: ion Volume:	HP5973V V52400.D +30.51 g 1 mL 1 uL
Analyte Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclope Hexachlorocyclope Hexachlorocyclope Nexachlorochane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol Pyrene	ne entadiene vrene vylamine amine	rected: Y 160000 140000	Result (ug/ 28000 ND ND 58000 35000 ND ND ND ND 9200 ND ND 140000 ND ND 119000 ND S1000	Kg)	Quali	D D	MDL 450 500 450 410 450 520 560 520 500 470 810 650 3100 500 430 3800 560 590 450	RL 3800
Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	nol		%Rec 189 92 79 117 105 89		Quali X	fier	Acceptar 39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120	ice Limits

Client Sample ID: MW-1 (5-7)

Analytical Data

Job Number: 480-85554-1

Lab Sample ID: Client Matrix:	480-85554-7 Solid	% Moisture	e: 12.6		Date Sampled: 08 Date Received: 08	
	8270D	Semivolatile Org	anic Compoun	ds (GC/MS)		
Analysis Method:	8270D	Analysis Batch:	480-260277	Instrument IE): HP5973	V
Prep Method:	3550C	Prep Batch:	480-258542	Lab File ID:	V52453.	.D
Dilution:	100			Initial Weight		
Analysis Date:	08/25/2015 1243	Run Type:	DL	Final Weight		3
Prep Date:	08/13/2015 1351	rtan rype.	DL	Injection Volu		
Thep Date.	00/13/2013 1331			injection voit	ine. i u	
Analyte	DryWt Corrected: \		• •	ualifier MDI		
Biphenyl		9900	J	280		
bis (2-chloroisopro		ND		380		
2,4,5-Trichloropher		ND		520		
2,4,6-Trichloropher		ND		380	0 190	00
2,4-Dichlorophenol		ND		200	0 190	00
2,4-Dimethylpheno	1	5200	J	460	0 190	00
2,4-Dinitrophenol	\sim	ND		880	00 190	000
2,4-Dinitrotoluene	\sim	ND		390		
2,6-Dinitrotoluene	\sim	ND		230		
2-Chloronaphthale	ne	ND		320		
2-Chlorophenol		ND		350		
2-Methylnaphthale	ne	69000		380		
2-Methylphenol		3500	J	230		
• •			J			
2-Nitroaniline		ND		280		
2-Nitrophenol		ND		540		
3,3'-Dichlorobenzic	line	ND		230		
3-Nitroaniline		ND		530		
4,6-Dinitro-2-methy		ND		190		
4-Bromophenyl pho		ND		270		
4-Chloro-3-methylp	phenol	ND	`	470	0 190	00
4-Chloroaniline		ND	\mathbf{X}	470		00
4-Chlorophenyl pho	enyl ether	ND	\mathbf{X}	240	0 190	00
4-Methylphenol		5000	J	230	0 370	00
4-Nitroaniline		ND	\sim	100	00 370	00
4-Nitrophenol		ND	\sim	130	00 370	00
Acenaphthene		11000		280		
Acenaphthylene		11000		250		
Acetophenone		ND	· ·	260		
Anthracene		37000		470		
Atrazine		ND		660		
Benzaldehyde		ND		150		
		32000		190		
Benzo[a]anthracen		26000		280		
Benzo[a]pyrene	20					
Benzo[b]fluoranthe		28000		300		
Benzo[g,h,i]peryler		10000	J	200		
Benzo[k]fluoranthe		8100	J	250		
Bis(2-chloroethoxy		ND		410		
Bis(2-chloroethyl)e		ND		250		
Bis(2-ethylhexyl) p		ND		650		
Butyl benzyl phthal	ate	ND		320		
Caprolactam		ND		570	0 190	00
Carbazole		9800	J	230	0 190	00
Chrysene		26000		430		
Di-n-butyl phthalate	e	ND		330		
Di-n-octyl phthalate		ND		230		

Analytical Data

Client Sample ID: MW-1 (5-7) Lab Sample ID: 480-85554-7			Date Sampled: 08/11/2015 1340
Client Matrix: Solid	% Moisture: 12.6		Date Received: 08/13/2015 0900
82700) Semivolatile Organic Comp	oounds (GC/MS)	
Analysis Method: 8270D Prep Method: 35500 Dilution: 100	Analysis Batch: 480-2602 Prep Batch: 480-2585		V52453.D
Analysis Date: 08/25/2015 1243 Prep Date: 08/13/2015 1351	Run Type: DL	Final Weigh Injection Vo	nt/Volume: 1 mL
Analyte DryWt Corrected:		Qualifier MI	
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Network Indeno[1,2,3-cd]pyrene Isophorone N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene	32000 ND ND 68000 39000 ND ND ND ND ND ND 13000 ND ND 160000 ND ND 140000 ND 56000	23 25 23 20 23 26 28 26 25 25 25 25 25 25 25 25 21 33 16 25 21 19 28 29	00 19000 00 19000 00 19000 00 19000 00 19000 00 19000 00 19000 00 19000 00 19000 00 19000 00 19000 00 19000
Surrogate	%Rec	Qualifier	Acceptance Limits
2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5		X X X X X X	39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-1 (9-11)								
Lab Sample ID: Client Matrix:	480-85554-8 Solid		% Moisture	e: 14.9			mpled: 08/11/2015 1400 eceived: 08/13/2015 0900		
8270D Semivolatile Organic Compounds (GC/MS)									
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 1.0 08/20/2015 1844 08/13/2015 1351	Analys Prep E	is Batch: Batch:	480-259596 480-258542		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	-		
Analyte	DryWt Co	rrected: Y	Result (u	g/Kg)	Qualifie	er MDL	RL		
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichlorophe 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthale 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-meth 4-Bromophenyl ph 4-Chloro-3-methyl 4-Chloro-3-methyl 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acetophenone Anthracene Atrazine Benzaldehyde Benzo[a]anthracer Benzo[b]fluoranthe Benzo[b]fluoranthe Benzo[k]fluoranthe Bis(2-chloroethyl)e	pyl) ether nol nol l ine me dine ylphenol enyl ether phenol enyl ether phenol enyl ether phenol enyl ether phenol enyl ether phenol enyl ether		ND ND ND ND ND ND ND ND ND ND ND ND ND N	J		29 40 54 40 21 48 920 41 23 33 36 40 23 29 56 230 55 200 28 49 49 49 25 23 100 140 29 26 27 49 69 160 20 29 32 21 26 42 26	200 200 200 200 200 200 200 200		
Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Di-n-octyl phthalat Dibenz(a,h)anthrae	late e e		ND ND ND 84 ND ND J ND		J	68 33 60 23 45 34 23 35	200 200 200 200 200 200 200 200		

Analytical Data

Client Sample ID: Lab Sample ID:	MW-1 (9-11) 480-85554-8			Date Sa	mpled: 08/11/2015 1400
Client Matrix:	Solid	% Moistur	re: 14.9		ceived: 08/13/2015 0900
		8270D Semivolatile Org	ganic Compound	ls (GC/MS)	
Analysis Method:	8270D	Analysis Batch:	480-259596	Instrument ID:	HP5973V
Prep Method:	3550C	Prep Batch:	480-258542	Lab File ID:	V52401.D
Dilution:	1.0			Initial Weight/Volume	-
Analysis Date:	08/20/2015 1844			Final Weight/Volume:	
Prep Date:	08/13/2015 1351			Injection Volume:	1 uL
Analyte	DryWt C	corrected: Y Result (ug/Kg) Qua	alifier MDL	RL
Dibenzofuran		ND		23	200
Diethyl phthalate		ND		26	200
Dimethyl phthalate	;	ND		23	200
Fluoranthene		ND		21	200
Fluorene		ND		23	200
Hexachlorobenzer		ND		27	200
Hexachlorobutadie		ND		29	200
Hexachlorocyclope		ND		27	200
Hexachloroethane		ND		26	200
Indeno[1,2,3-cd]py	rene	ND		25	200
Isophorone	u lo min o	ND		42 34	200
N-Nitrosodi-n-prop N-Nitrosodiphenyla		ND ND		34 160	200 200
Naphthalene	amme	ND		26	200
Nitrobenzene		ND		20	200
Pentachloropheno	I	ND		200	390
Phenanthrene	I	ND		200	200
Phenol		ND		30	200
Pyrene		ND		23	200
Surrogate		%Rec	Qua	alifier Accepta	nce Limits
2,4,6-Tribromophe	enol	82		39 - 146	
2-Fluorobiphenyl		84		37 - 120)
2-Fluorophenol		71		18 - 120)
Nitrobenzene-d5		73		34 - 132	
p-Terphenyl-d14		92		65 - 153	
Phenol-d5		76		11 - 120	

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	DUP-081115								
Lab Sample ID: Client Matrix:	480-85554-9 Solid	% Moisture	e: 8.3		ampled: 08/11/2015 0000 eceived: 08/13/2015 0900				
8270D Semivolatile Organic Compounds (GC/MS)									
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 1.0 08/20/2015 1912 08/13/2015 1351	Analysis Batch: Prep Batch:	480-259596 480-258542		•				
Analyte	DryWt Corrected	d: Y Result (u	ıg/Kg)	Qualifier MDL	RL				
Analyte Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichloropheno 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthale 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-meth 4-Bromophenyl ph 4-Chloro-3-methyl 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acetophenone Anthracene Atrazine Benzaldehyde Benzo[a]anthracer Benzo[b]fluoranthe Benzo[g,h,i]peryle Benzo[k]fluoranthe Bis(2-chloroethyl)e	appl) ether nol nol l ol ene ene dine ylphenol enyl ether phenol enyl ether phenol enyl ether phenol enyl ether phenol	ND ND ND ND ND ND ND ND ND ND ND ND		Qualifier MDL 27 37 30 37 19 44 850 38 22 30 34 37 22 27 52 220 51 180 26 45 45 23 22 96 130 27 24 25 45 64 150 18 27 29 19 24 39 24	RL 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 36				
Bis(2-ethylhexyl) p Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Dibenz(a,h)anthra	hthalate late e	ND ND ND ND 62 ND ND ND		24 63 30 55 22 J 41 31 22 32	180 180 180 180 180 180 180 180				

Analytical Data

Job Number: 480-85554-1

Client Sample ID	: DUP-081115				
Lab Sample ID: Client Matrix:	480-85554-9 Solid	% Moisture: 8.3			npled: 08/11/2015 0000 ceived: 08/13/2015 0900
	827	0D Semivolatile Organic Co	ompounds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 1.0 08/20/2015 1912 08/13/2015 1351	Analysis Batch: 480-24 Prep Batch: 480-24	58542 Lab File Initial V Final W	nent ID: e ID: Veight/Volume: /eight/Volume: n Volume:	HP5973V V52402.D +30.24 g 1 mL 1 uL
Analyte Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzen Hexachlorobutadid Hexachlorocyclop Hexachloroethane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-propy N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol Pyrene	ne ene entadiene yrene oylamine amine	ed: Y Result (ug/Kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier	MDL 22 24 22 19 22 25 27 25 24 23 39 31 150 24 21 180 27 28 22	RL 180 180 180 180 180 180 180 180 180 180
Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	enol	%Rec 80 83 71 72 93 77	Qualifier	Acceptan 39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120	ice Limits

-

Analytical Data

Client Sample ID	MW-5 (10-12)					
Lab Sample ID:	480-85554-1					npled: 08/11/2015 1530
Client Matrix:	Solid	% Moisture	e: 12.4		Date Rec	ceived: 08/13/2015 0900
		6010C N	letals (ICI	>)		
Analysis Method:	6010C	Analysis Batch:	480-259	063	Instrument ID:	ICAP1
Prep Method:	3050B	Prep Batch:	480-258	782	Lab File ID:	I1081715A-3.asc
Dilution:	1.0				Initial Weight/Volume:	+0.4821 g
Analysis Date:	08/17/2015 0905				Final Weight/Volume:	50 mL
Prep Date:	08/14/2015 1635					
Analyte	DryWt Corrected	d: Y Result (n	ıg/Kg)	Qualifie	er MDL	RL
Aluminum		16400	J		5.2	11.8
Antimony		0.99		J	0.47	17.7
Arsenic		3.9			0.47	2.4
Barium		168	J		0.13	0.59
Beryllium		0.82			0.033	0.24
Cadmium		0.053		J	0.035	0.24
Calcium		40000	J	B -	3.9	59.2
Chromium		24.8	J		0.24	0.59
Cobalt		14.9			0.059	0.59
Copper		26.6			0.25	1.2
Iron		23800	J		4.1	11.8
Lead		10.9	-		0.28	1.2
Magnesium		7800	J		1.1	23.7
Manganese		302	J	B	0.038	0.24
Nickel		42.1	-		0.27	5.9
Potassium		3550	J		23.7	35.5
Selenium		1.0		J	0.47	4.7
Silver		ND			0.24	0.71
Sodium		523			15.4	166
Thallium		ND	-		0.35	7.1
Vanadium		20.8	J		0.13	0.59
Zinc		69.9	J		0.76	2.4

Analytical Data

Client Sample ID:	MW-5 (12-14)					
Lab Sample ID:	480-85554-2				Date Sar	mpled: 08/11/2015 1550
Client Matrix:	Solid	% Moisture	e: 8.1		Date Ree	ceived: 08/13/2015 0900
		6010C N	letals (IC	P)		
Analysis Method:	6010C	Analysis Batch:	480-259	0063	Instrument ID:	ICAP1
Prep Method:	3050B	Prep Batch:	480-258		Lab File ID:	1081715A-3.asc
Dilution:	1.0	Thep Bateri.	400 200	5102	Initial Weight/Volume:	
Analysis Date:	08/17/2015 0908				Final Weight/Volume:	50 mL
•	08/14/2015 1635					50 IIIL
Prep Date:	00/14/2015 1035					
Analyte	DryWt Corrected	: Y Result (n	ng/Kg)	Qualifie	er MDL	RL
Aluminum		15300	J		4.9	11.2
Antimony		ND	J		0.45	16.8
Arsenic		4.8			0.45	2.2
Barium		69.5	J		0.12	0.56
Beryllium		0.75			0.031	0.22
Cadmium		0.26	-		0.034	0.22
Calcium		35000	J	B	3.7	55.9
Chromium		22.9	J		0.22	0.56
Cobalt		14.5			0.056	0.56
Copper		31.0			0.23	1.1
Iron		24300	J		3.9	11.2
Lead		14.3	т		0.27	1.1
Magnesium		7460	J	_	1.0	22.4
Manganese		284	J	B	0.036	0.22
Nickel		41.0	J		0.26	5.6
Potassium		3030	U		22.4	33.6
Selenium		ND			0.45	4.5
Silver		ND			0.22	0.67
Sodium		472			14.5	157
Thallium Vanadium		ND 18.7	J		0.34 0.12	6.7 0.56
Zinc		203	J		0.12	0.56 2.2
ZINC		203	Ŭ		0.72	2.2

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-6 (9-11)					
Lab Sample ID:	480-85554-3				Date San	npled: 08/12/2015 1230
Client Matrix:	Solid	% Moisture	e: 5.6		Date Rec	eived: 08/13/2015 0900
		6010C N	letals (ICF)		
Analysis Method:	6010C	Analysis Batch:	480-2590	163	Instrument ID:	ICAP1
Prep Method:	3050B	Prep Batch:	480-2587		Lab File ID:	1081715A-3.asc
Dilution:	1.0	Thep Daten.	400-2001	102	Initial Weight/Volume:	+0.5109 g
					-	50 mL
Analysis Date:	08/17/2015 0911				Final Weight/Volume:	50 IIIL
Prep Date:	08/14/2015 1635					
Analyte	DryWt Corrected	:Y Result (m	ng/Kg)	Qualifie	er MDL	RL
Aluminum		15100	J		4.6	10.4
Antimony		ND	J	F1	0.41	15.6
Arsenic		2.8			0.41	2.1
Barium		98.9	J	F1	0.11	0.52
Beryllium		0.76			0.029	0.21
Cadmium		0.056		J	0.031	0.21
Calcium		45300	J	B	3.4	51.8
Chromium		22.9	J		0.21	0.52
Cobalt		13.4			0.052	0.52
Copper		27.0	_		0.22	1.0
Iron		21300	J		3.6	10.4
Lead		9.7			0.25	1.0
Magnesium		7400	J	F1	0.96	20.7
Manganese		295	J	В	0.033	0.21
Nickel		40.4			0.24	5.2
Potassium		3110	J	F1	20.7	31.1
Selenium		ND			0.41	4.1
Silver		ND			0.21	0.62
Sodium		427			13.5	145
Thallium		ND	т		0.31	6.2
Vanadium		19.2	J	F1	0.11	0.52
Zinc		75.4	J	F1	0.66	2.1

. .

Analytical Data

Client Sample ID	: MW-6 (13-14.2)					
Lab Sample ID:	480-85554-4				Date Sar	mpled: 08/12/2015 1250
Client Matrix:	Solid	% Moistu	re: 5.4		Date Re	ceived: 08/13/2015 0900
		6010C	Metals (ICI	P)		
Analysis Method:	6010C	Analysis Batch:	480-259	063	Instrument ID:	ICAP1
Prep Method:	3050B	Prep Batch: 480-258782			Lab File ID:	I1081715A-3.asc
Dilution:	1.0				Initial Weight/Volume:	+0.4996 g
Analysis Date:	08/17/2015 0935				Final Weight/Volume:	50 mL
Prep Date:	08/14/2015 1635					
Analyte	DryWt Corrected	d: Y Result (mg/Kg)	Qualifi	er MDL	RL
Aluminum	y	17900	J		4.7	10.6
Antimony		ND	J		0.42	15.9
Arsenic		3.5			0.42	2.1
Barium		58.8	J		0.12	0.53
Beryllium		0.92			0.030	0.21
Cadmium		ND			0.032	0.21
Calcium		22600	J	18	3.5	52.9
Chromium		27.2	J		0.21	0.53
Cobalt		14.7			0.053	0.53
Copper		28.3			0.22	1.1
Iron		24100	J		3.7	10.6
Lead		11.8	_		0.25	1.1
Magnesium		9170	J		0.98	21.2
Manganese		269	J	B	0.034	0.21
Nickel		42.9			0.24	5.3
Potassium		3980	J		21.2	31.7
Selenium		0.46		J	0.42	4.2
Silver		ND			0.21	0.63
Sodium		240			13.8	148
Thallium		ND	_		0.32	6.3
Vanadium		22.7	J		0.12	0.53
Zinc		52.2	J		0.68	2.1

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	: MW-4 (5-7)						
Lab Sample ID:	480-85554-5				Date San	npled: 08/10/2015 1340	
Client Matrix:	Solid	% Moistur	e: 18.1		Date Rec	ceived: 08/13/2015 0900	
		6010C I	Metals (ICP)			
Analysis Method:	6010C	Analysis Batch:	480-2590		Instrument ID:	ICAP1	
Prep Method:	3050B	Prep Batch:	480-2587	782	Lab File ID:	I1081715A-3.asc	
Dilution:	1.0				Initial Weight/Volume:	+0.4908 g	
Analysis Date:	08/17/2015 0938 08/14/2015 1635				Final Weight/Volume:	50 mL	
Prep Date:	00/14/2015 1035						
Analyte	DryWt Corrected:	Y Result (r	ng/Kg)	Qualifie	er MDL	RL	
Aluminum		9860	J		5.5	12.4	
Antimony		ND	J		0.50	18.7	
Arsenic		23.9			0.50	2.5	
Barium		95.3	J		0.14	0.62	
Beryllium		0.90			0.035	0.25	
Cadmium		0.29	_		0.037	0.25	
Calcium		49500	J J	B	4.1	62.2	
Chromium		15.7	J		0.25	0.62	
Cobalt		6.5			0.062	0.62	
Copper		49.0			0.26	1.2	
Iron		11000	J		4.4	12.4	
Lead		138			0.30	1.2	
Magnesium		3640	J		1.2	24.9	
Manganese		197	J	B	0.040	0.25	
Nickel		20.8	_		0.29	6.2	
Potassium		1450	J		24.9	37.3	
Selenium		0.56		J	0.50	5.0	
Silver		ND			0.25	0.75	
Sodium		736			16.2	174	
Thallium		ND			0.37	7.5	
Vanadium		21.9	J		0.14	0.62	
Zinc		135	J		0.80	2.5	

Client Sample ID: MW-4 (5-7)

Analytical Data

Chefit Sample ID	. 11114-4 (13-14.5)							
Lab Sample ID: Client Matrix:	480-85554-6 Solid	% Moistur	re: 13.9			Date Sampled: 08/10/2015 1400 Date Received: 08/13/2015 0900		
		6010C I	Metals (ICF	?)				
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	6010C 3050B 1.0 08/17/2015 0941 08/14/2015 1635	Analysis Batch: Prep Batch:	480-259063 480-258782		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICAP1 I1081715A-3.asc +0.5215 g 50 mL		
Analyte	DryWt Corrected	d: Y Result (r	ma/Ka)	Qualifie	er MDL	RL		
Aluminum	,	17800	J		4.9	11.1		
Antimony		ND	J		0.45	16.7		
Arsenic		6.6			0.45	2.2		
Barium		63.9	J		0.12	0.56		
Beryllium		0.95			0.031	0.22		
Cadmium		0.13		J	0.033	0.22		
Calcium		12900	J	-B	3.7	55.7		
Chromium		26.6	J		0.22	0.56		
Cobalt		15.4			0.056	0.56		
Copper		42.2			0.23	1.1		
Iron		27100	J		3.9	11.1		
Lead		22.3			0.27	1.1		
Magnesium		6780	J		1.0	22.3		
Manganese		285	J	B	0.036	0.22		
Nickel		54.2			0.26	5.6		
Potassium		3840	J		22.3	33.4		
Selenium		ND			0.45	4.5		
Silver		ND			0.22	0.67		
Sodium		173			14.5	156		
Thallium		ND			0.33	6.7		
Vanadium		24.7	J		0.12	0.56		
Zinc		90.5	J		0.71	2.2		

Analytical Data

Job Number: 480-85554-1

Client Sample ID:	MW-1 (5-7)								
Lab Sample ID:	480-85554-7					Date Sar	npled: 08/11/2015 1340		
Client Matrix:	Solid	C	% Moisture	e: 12.6		Date Received: 08/13/2015 0900			
			6010C N	letals (ICP))				
Analysis Method:	6010C	Analys	is Batch:	480-2590	63	Instrument ID:	ICAP1		
Prep Method:	3050B	Prep E	Batch:	480-2587	82	Lab File ID:	I1081715A-3.asc		
Dilution:	1.0					Initial Weight/Volume:	+0.4821 g		
Analysis Date:	08/17/2015 0944					Final Weight/Volume:	50 mL		
Prep Date:	08/14/2015 1635								
Analyte	DryWt Corrected	: Y	Result (m	ng/Kg)	Qualifie	er MDL	RL		
Aluminum			16600	J		5.2	11.9		
Antimony			ND	J		0.47	17.8		
Arsenic			2.2		J	0.47	2.4		
Barium			66.3	J		0.13	0.59		
Beryllium			0.82			0.033	0.24		
Cadmium			0.037		J	0.036	0.24		
Calcium			56600	J	-B-	3.9	59.4		
Chromium			24.7	J		0.24	0.59		
Cobalt			13.5			0.059	0.59		
Copper			27.8			0.25	1.2		
Iron			20200	J		4.2	11.9		
Lead			10.1			0.28	1.2		
Magnesium			7830	J		1.1	23.7		
Manganese			345	J	-B-	0.038	0.24		
Nickel			43.3	_		0.27	5.9		
Potassium			3650	J		23.7	35.6		
Selenium			ND			0.47	4.7		
Silver			ND			0.24	0.71		
Sodium			226			15.4	166		
Thallium			ND	-		0.36	7.1		
Vanadium			21.6	J		0.13	0.59		
Zinc			56.1	J		0.76	2.4		

Client Sample ID: MW-1 (5-7)

Analytical Data

Client Sample ID	MW-1 (9-11)					
Lab Sample ID:	480-85554-8				Date Sar	npled: 08/11/2015 1400
Client Matrix:	Solid	% Moistur	e: 14.9		Date Rec	ceived: 08/13/2015 0900
		6010C N	Metals (ICF)		
Analysia Mothod:	6010C		480-2590		Instrument ID:	ICAP1
Analysis Method:	3050B	Analysis Batch: Prep Batch:	480-2587		Lab File ID:	1081715A-3.asc
Prep Method: Dilution:	1.0	Fiep batch.	400-2007	02		
					Initial Weight/Volume:	•
Analysis Date:	08/17/2015 0947				Final Weight/Volume:	50 mL
Prep Date:	08/14/2015 1635					
Analyte	DryWt Corrected	:Y Result (r	ng/Kg)	Qualifie	er MDL	RL
Aluminum		17100	J		5.1	11.7
Antimony		ND	J		0.47	17.5
Arsenic		2.9			0.47	2.3
Barium		86.4	J		0.13	0.58
Beryllium		0.83			0.033	0.23
Cadmium		0.041		J	0.035	0.23
Calcium		45300	J	B	3.9	58.5
Chromium		26.1	J		0.23	0.58
Cobalt		13.7			0.058	0.58
Copper		28.0			0.25	1.2
Iron		23800	J		4.1	11.7
Lead		10.1			0.28	1.2
Magnesium		8340	J		1.1	23.4
Manganese		333	J	B	0.037	0.23
Nickel		44.5	-		0.27	5.8
Potassium		3470	J		23.4	35.1
Selenium		ND			0.47	4.7
Silver		ND			0.23	0.70
Sodium		212			15.2	164
Thallium		ND	_		0.35	7.0
Vanadium		20.9	J		0.13	0.58
Zinc		71.7	J		0.75	2.3

Analytical Data

Client Sample ID	DUP-081115						
Lab Sample ID:	480-85554-9				Date Sar	mpled: 08/11/2015 0000	
Client Matrix:	Solid	% Moistur	re: 8.3		Date Received: 08/13/2015 0900		
		6010C I	Metals (ICF)			
Analysis Method:	6010C	Analysis Batch:	480-2590		Instrument ID:	ICAP1	
Prep Method:	3050B	Prep Batch: 480-258781			Lab File ID:	I1081715A-3.asc	
Dilution:	1.0	Fiep Balch.	400-200	101			
					Initial Weight/Volume:	-	
Analysis Date:	08/17/2015 1053				Final Weight/Volume:	50 mL	
Prep Date:	08/14/2015 1635						
Analyte	DryWt Corrected	I: Y Result (r	ng/Kg)	Qualifie	er MDL	RL	
Aluminum	-	15200	J		4.7	10.7	
Antimony		ND	J		0.43	16.1	
Arsenic		3.1			0.43	2.1	
Barium		45.9	J		0.12	0.54	
Beryllium		0.74			0.030	0.21	
Cadmium		0.048		J	0.032	0.21	
Calcium		41800	J	B	3.5	53.6	
Chromium		23.8	J		0.21	0.54	
Cobalt		13.3			0.054	0.54	
Copper		27.3	-		0.23	1.1	
Iron		22400	J		3.8	10.7	
Lead		11.2			0.26	1.1	
Magnesium		7520	J		0.99	21.5	
Manganese		304	J		0.034	0.21	
Nickel		41.6	т		0.25	5.4	
Potassium		2750	J		21.5	32.2	
Selenium		ND			0.43	4.3	
Silver		ND			0.21	0.64	
Sodium		163			13.9	150	
Thallium		ND	J		0.32	6.4	
Vanadium		17.2	J		0.12	0.54	
Zinc		76.4	U		0.69	2.1	

Client: ARCADIS U.S. Inc

		Gene	eral Chemi	stry				
Client Sample ID	: MW-5 (10-12)							
Lab Sample ID:	480-85554-1				Date	e Sampled:	08/11/2015 1530	
Client Matrix:	Solid	% Mois	ture: 12	.4	Date	e Received:	ved: 08/13/2015 0900	
Analyte	Result	Qual	Units	MDL	RL	Dil	Method	
Cyanide, Total	2.9		mg/Kg	0.53	1.1	1.0	9012B	
	Analysis Batch: 480-259694	Analysis Date	e: 08/20/20	15 1323		Dr	yWt Corrected: Y	
	Prep Batch: 480-259547	Prep Date: 08	3/20/2015 ()725				
Analyte	Result	Qual	Units	RL	RL	Dil	Method	
Percent Moisture	12		%	0.10	0.10	1.0	Moisture	
	Analysis Batch: 480-258632	Analysis Date	Analysis Date: 08/13/2015 2303				yWt Corrected: N	
Percent Solids	88		%	0.10	0.10	1.0	Moisture	
	Analysis Batch: 480-258632	Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N	

Client: ARCADIS U.S. Inc

General Chemistry									
Client Sample ID): MW-5 (12-14)								
Lab Sample ID:	480-85554-2				Date	e Sampled:	08/11/2015 1550		
Client Matrix:	Solid	% Mois	ture: 8.1		Date	e Received:	08/13/2015 0900		
Analyte	Result	Qual	Units	MDL	RL	Dil	Method		
Cyanide, Total	3.8		mg/Kg	0.51	1.1	1.0	9012B		
	Analysis Batch: 480-259694	Analysis Date	e: 08/20/20	15 1326		Dr	yWt Corrected: Y		
	Prep Batch: 480-259547	Prep Date: 08	3/20/2015 ()725					
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	8.1		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-258632	2 Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N		
Percent Solids	92		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-258632	2 Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N		

Client: ARCADIS U.S. Inc

		Gene	eral Chemi	stry			
Client Sample ID): MW-6 (9-11)						
Lab Sample ID:	480-85554-3				Date	e Sampled:	08/12/2015 1230
Client Matrix:	Solid	% Mois	sture: 5.6		Date	e Received:	08/13/2015 0900
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	ND		mg/Kg	0.50	1.0	1.0	9012B
	Analysis Batch: 480-260089	Analysis Date	e: 08/24/20	15 1010		Dr	yWt Corrected: Y
	Prep Batch: 480-260006	Prep Date: 08	8/24/2015 ()155			
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	5.6		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258632	Analysis Date	Analysis Date: 08/13/2015 2303			Dr	yWt Corrected: N
Percent Solids	94		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258632	Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N

Client: ARCADIS U.S. Inc

General Chemistry									
Client Sample ID	: MW-6 (13-14.2)								
Lab Sample ID:	480-85554-4				Date	e Sampled:	08/12/2015 1250		
Client Matrix:	Solid	% Mois	ture: 5.4	ŀ	Date	e Received:	08/13/2015 0900		
Analyte	Result	Qual	Units	MDL	RL	Dil	Method		
Cyanide, Total	ND		mg/Kg	0.49	1.0	1.0	9012B		
	Analysis Batch: 480-260089	Analysis Date	Analysis Date: 08/24/2015 1014			Dr	yWt Corrected: Y		
	Prep Batch: 480-260006	Prep Date: 08	8/24/2015	0155					
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	5.4		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-258632	Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N		
Percent Solids	95		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-258632	Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N		

Client: ARCADIS U.S. Inc

		Gene	ral Chemi	stry			
Client Sample ID	: MW-4 (5-7)						
Lab Sample ID:	480-85554-5				Date	e Sampled:	08/10/2015 1340
Client Matrix:	Solid	% Mois	ture: 18.	1	Dat	e Received:	08/13/2015 0900
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	5.8		mg/Kg	0.57	1.2	1.0	9012B
	Analysis Batch: 480-259694	Analysis Date	e: 08/20/20	15 1329		Dr	yWt Corrected: Y
	Prep Batch: 480-259547	Prep Date: 08	3/20/2015 0)725			
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	18		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258632	Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N
Percent Solids	82	-	%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258632	Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N

Client: ARCADIS U.S. Inc

		Gene	eral Chemi	stry			
Client Sample ID	: MW-4 (13-14.5)						
Lab Sample ID:	480-85554-6				Date	e Sampled:	08/10/2015 1400
Client Matrix:	Solid	% Mois	ture: 13	.9	Dat	e Received:	08/13/2015 0900
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	ND		mg/Kg	0.53	1.1	1.0	9012B
	Analysis Batch: 480-259694	Analysis Date	e: 08/20/20	15 1330		Dr	yWt Corrected: Y
	Prep Batch: 480-259547	Prep Date: 08	3/20/2015 ()725			
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	14		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258632	Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N
Percent Solids	86		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258632	Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N

Client: ARCADIS U.S. Inc

		Gene	ral Chemi	stry			
Client Sample ID): MW-1 (5-7)						
Lab Sample ID:	480-85554-7				Date	e Sampled:	08/11/2015 1340
Client Matrix:	Solid	% Mois	ture: 12	.6	Date	e Received:	08/13/2015 0900
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	ND		mg/Kg	0.55	1.1	1.0	9012B
	Analysis Batch: 480-260089	Analysis Date	: 08/24/20	15 1015		Dr	yWt Corrected: Y
	Prep Batch: 480-260006	Prep Date: 08	8/24/2015 (0155			
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	13		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258632	Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N
Percent Solids	87		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258632	Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N

Client: ARCADIS U.S. Inc

		Gene	ral Chem	istry			
Client Sample ID): MW-1 (9-11)						
Lab Sample ID:	480-85554-8				Date	e Sampled:	08/11/2015 1400
Client Matrix:	Solid	% Mois	ture: 14	.9	Date	e Received:	08/13/2015 0900
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	0.86	J	mg/Kg	0.56	1.2	1.0	9012B
	Analysis Batch: 480-260089	Analysis Date	: 08/24/20	15 1017		Dr	yWt Corrected: Y
	Prep Batch: 480-260006	Prep Date: 08	8/24/2015	0155			
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	15		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258632	Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N
Percent Solids	85		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258632	Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N

Client: ARCADIS U.S. Inc

		Gene	ral Chemi	stry			
Client Sample ID	DUP-081115						
Lab Sample ID:	480-85554-9				Date	e Sampled:	08/11/2015 0000
Client Matrix:	Solid	% Mois	ture: 8.3	}	Date	e Received:	08/13/2015 0900
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	0.55	J	mg/Kg	0.52	1.1	1.0	9012B
	Analysis Batch: 480-260089	Analysis Date	: 08/24/20	15 1018		Dr	yWt Corrected: Y
	Prep Batch: 480-260006	Prep Date: 08	3/24/2015	0155			
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	8.3		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258632	Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N
Percent Solids	92		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258632	Analysis Date	e: 08/13/20	15 2303		Dr	yWt Corrected: N

Chain of		Temperatur	Temperature on Receipt	ť	TestA	TestAmericc	Ŏ	
		Drinking Wa	Drinking Water? Yes		THE LEADER IN	THE LEADER IN ENVIRONMENTAL TESTING	STING	
Client ARCADES/RGE		Project Manage	1.	Brua Ameri		$\left \begin{array}{c} Date \\ \mathcal{Q}_{i} / \lambda_{i} / S \end{array} \right $	Chain of Custody Number	dy Number
18 24		Telephone Numbe	mber (Area Cou - 385~ (Telephone Number (Area Code)/Fax Number 545 - 385 - 600		Lab Number	Page	0 ⁶
State Z	o code 144 SD	Site Contact Noves	Berry	Lab Contact	4	Analysis (Attach list if more space is needed)		
cation (State) Pork Skiet		Carrier/Waybill Numb	l Number	/				ind tractions
Contract/Purchase Order/Quote No.			Matrix	H Containers &	2100 7015 7015	<u>لارا</u>	Cond	Operat Instructions Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time Air	llOS POS snoonby	HO ^B N IOH EONH VOSZH	7471. 721. 127 127 127 127 127 127 127	10/E		
mm-2 (5-7)	Si Bild 15 15	1530	X-	<u> </u>	+.	Je.		
MW -2 (9-13)	1	اححك					450 BE640 Chain of Custody	
(9-H) t- M~ 20	\mathcal{H}	coh(<u> </u>	7		
(21- M-L (6-9.3)	▲ 14	1430		1	***	X		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SUBUS 10	(Do <i>O</i>		$ \beta _{0}$	3474	XX	w/sw	(msa)
(۲.0/- ٤) ٤	&13215 10	lois	≯	43	$  \chi \chi \chi$	X		
LANK	8.13.15 -		<u> </u>	·	X			
Possible Hazard Identification	Deison B	Sam Sam	Sample Disposal Return _o To Client	$\begin{array}{c} \Theta P \Theta - C \\ \Omega Disposal By Lab \end{array}$	CONTRUT ab [] Archive For _	(A fee ) Months longer	(A fee may be assessed if samples are retained longer than 1 month)	are retained
Turn Around Tinge Required	□ 21 Days		Standord		Sp		-	-
1. Relipenshidd By Q D		^{Date} S. B. K	$\left  \frac{T_{ime}}{1} \right  $	1. Received By	TA A		- Silvin	- magner
2. Relifquished B/		Date	Time	2. Received By			Date	Time
D. Relinquished By		Date	Time	3. Received By			Date	Time
Jomments				-		12	12 1/2	
DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy	NARY - Stays with I	he Sample; Pll	VK - Field Copy			) 		

### DATA REPORTING QUALIFIERS

Lab Section	Qualifier	Description
GC/MS VOA		
	*	LCS or LCSD is outside acceptance limits.
	F1	MS and/or MSD Recovery is outside acceptance limits.
	4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
	F2	MS/MSD RPD exceeds control limits
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC/MS Semi VOA		
	F1	MS and/or MSD Recovery is outside acceptance limits.
	F2	MS/MSD RPD exceeds control limits
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals		
	В	Compound was found in the blank and sample.
	F1	MS and/or MSD Recovery is outside acceptance limits.
	4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
	W	PS: Post-digestion spike was outside control limits
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	V	Serial Dilution exceeds the control limits

### **Analytical Data**

Job Number: 480-85640-1

Client Sample ID:	MW-2 (5-7)								
Lab Sample ID: Client Matrix:	480-85640-1 Solid		% Moisture	e: 7.9				npled: 08/12/20 eived: 08/14/20	
	8	260C Volat	ile Organi	c Compound	ls by (	GC/MS			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/21/2015 0621 08/14/2015 1300	Analys Prep E	sis Batch: 3atch:	480-259752 480-259754				HP5973P P9367.D 7.221 g 5 mL	
Analyte	DryWt Correct	ed: Y	Result (u	ıg/Kg)	Qualif	ier N	MDL	RL	
1,1,1-Trichloroetha	-		ND	3 3/			).27	3.8	
1,1,2,2-Tetrachloro			ND				0.61	3.8	
1,1,2-Trichloro-1,2			ND				0.86	3.8	
1,1,2-Trichloroetha	ane		ND			(	0.49	3.8	
1,1-Dichloroethane	e		ND			(	0.46	3.8	
1,1-Dichloroethene	e		ND			(	0.46	3.8	
1,2,4-Trichloroben			ND				0.23	3.8	
1,2-Dibromo-3-Chl	oropropane		ND			1	1.9	3.8	
1,2-Dibromoethan			ND				0.48	3.8	
1,2-Dichlorobenze			ND				0.29	3.8	
1,2-Dichloroethane			ND				0.19	3.8	
1,2-Dichloropropa			ND				1.9	3.8	
1,3-Dichlorobenze			ND				0.19	3.8	
1,4-Dichlorobenze			ND				0.53	3.8	
2-Butanone (MEK)			ND				1.4	19	
2-Hexanone							1.9 1.2	19	
4-Methyl-2-pentan Acetone	one (MIBK)		ND 22 U	П			1.2 3.2	19 19	
Benzene			22 U ND	В			o.∠ ).18	3.8	
Bromodichloromet	hano		ND				0.50	3.8	
Bromoform	nanc		ND		*		1.9	3.8	
Bromomethane			ND				0.34	3.8	
Carbon disulfide			ND				1.9	3.8	
Carbon tetrachlorio	de		ND				0.36	3.8	
Chlorobenzene			ND				0.50	3.8	
Chloroethane			ND J		*		0.85	3.8	
Chloroform			ND				0.23	3.8	
Chloromethane			ND J			(	0.23	3.8	
cis-1,2-Dichloroeth	nene		ND			(	0.48	3.8	
cis-1,3-Dichloropro	opene		ND			(	0.54	3.8	
Cyclohexane			ND			(	0.53	3.8	
Dibromochloromet			ND				0.48	3.8	
Dichlorodifluorome	ethane		ND				0.31	3.8	
Ethylbenzene			ND				0.26	3.8	
Isopropylbenzene			ND				0.57	3.8	
Methyl acetate			ND				2.3	3.8	
Methyl tert-butyl et			ND				0.37	3.8	
Methylcyclohexane			0.91		J		0.57	3.8	
Methylene Chlorid	e			Ţ			1.7	3.8	
Styrene Tetrachloroethene			ND ND				D.19 D.50	3.8 3.8	
Toluene			ND 0.52				).28	3.8	
trans-1,2-Dichloroe	athana		0.52 ND		J		).28 ).39	3.8 3.8	
trans-1,3-Dichloro			ND				1.7	3.8	
Trichloroethene	oropene		ND				).83	3.8	
Trichlorofluoromet	hane		ND				D.36	3.8	
						(		0.0	

#### Client: ARCADIS U.S. Inc

Client Sample ID:	MW-2 (5-7)					
Lab Sample ID: Client Matrix:	480-85640-1 Solid	% Moistur	e: 7.9		Date Sampled: 08 Date Received: 08	
	82	60C Volatile Organ	ic Compounds b	y GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/21/2015 0621 08/14/2015 1300	Analysis Batch: Prep Batch:	480-259752 480-259754	Instrument ID: Lab File ID: Initial Weight/\ Final Weight/\	P9367.[ /olume: 7.221	)
Analyte	DryWt Correcte	d: Y Result (u	ıg/Kg) Qu	alifier MDL	RL	
Vinyl chloride	-	ND		0.46	3.8	
Xylenes, Total		1.2	J	0.63	7.5	
Surrogate		%Rec	Qu	alifier A	Acceptance Limits	
1,2-Dichloroethan		102		-	4 - 126	
4-Bromofluoroben Dibromofluoromet	. ,	124 109			'2 - 126 60 - 140	
Toluene-d8 (Surr)		116			1 - 125	

### **Analytical Data**

Job Number: 480-85640-1

Client Sample ID:	MW-2 (9-13)					
Lab Sample ID: Client Matrix:	480-85640-2 Solid	% Mois	sture: 7.5			npled: 08/12/2015 1550 ceived: 08/14/2015 0900
	82	60C Volatile Org	anic Compoun	ds by G	GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/21/2015 0648 08/14/2015 1300	Analysis Bate Prep Batch:	ch: 480-259752 480-259754		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP5973P P9368.D 7.319 g 5 mL
Analyte	DryWt Correcte	ed: Y Resu	lt (ug/Kg)	Qualifi	er MDL	RL
1,1,1-Trichloroetha	-	ND			0.27	3.7
1,1,2,2-Tetrachloro	bethane	ND			0.60	3.7
1,1,2-Trichloro-1,2	,2-trifluoroethane	ND			0.84	3.7
1,1,2-Trichloroetha	ane	ND			0.48	3.7
1,1-Dichloroethane	9	ND			0.45	3.7
1,1-Dichloroethene	e	ND			0.45	3.7
1,2,4-Trichloroben	zene	ND			0.22	3.7
1,2-Dibromo-3-Chl	oropropane	ND			1.8	3.7
1,2-Dibromoethane	e	ND			0.47	3.7
1,2-Dichlorobenze	ne	ND			0.29	3.7
1,2-Dichloroethane	e	0.32		J	0.19	3.7
1,2-Dichloropropar	ne	ND			1.8	3.7
1,3-Dichlorobenze		ND			0.19	3.7
1,4-Dichlorobenze		ND			0.52	3.7
2-Butanone (MEK)		ND			1.4	18
2-Hexanone		ND			1.8	18
4-Methyl-2-pentan	one (MIBK)	ND			1.2	18
Acetone		ND			3.1	18
Benzene		ND			0.18	3.7
Bromodichloromet	hane	ND			0.49	3.7
Bromoform		ND			1.8	3.7
Bromomethane		ND			0.33	3.7
Carbon disulfide		ND			1.8	3.7
Carbon tetrachlorio	le	ND			0.36	3.7
Chlorobenzene		ND	т	*	0.49	3.7
Chloroethane		ND	J		0.83	3.7
Chloroform Chloromethane		ND ND	_		0.23 0.22	3.7 3.7
cis-1,2-Dichloroeth	ana	ND	J		0.22	3.7
cis-1,3-Dichloropro		ND			0.53	3.7
Cyclohexane	pene	ND			0.52	3.7
Dibromochloromet	hane	ND			0.47	3.7
Dichlorodifluorome		ND			0.30	3.7
Ethylbenzene		ND			0.25	3.7
Isopropylbenzene		ND			0.56	3.7
Methyl acetate		ND			2.2	3.7
Methyl tert-butyl et	her	ND			0.36	3.7
Methylcyclohexane		ND			0.56	3.7
Methylene Chlorid		ND	J		1.7	3.7
Styrene		ND			0.18	3.7
Tetrachloroethene		ND			0.50	3.7
Toluene		ND			0.28	3.7
trans-1,2-Dichloroe	ethene	ND			0.38	3.7
trans-1,3-Dichlorop		ND			1.6	3.7
Trichloroethene		ND			0.81	3.7
Trichlorofluoromet	hane	ND			0.35	3.7

#### Client: ARCADIS U.S. Inc

Client Sample ID	: MW-2 (9-13)				
Lab Sample ID: Client Matrix:	480-85640-2 Solid	% Moisture	e: 7.5		e Sampled: 08/12/2015 1550 e Received: 08/14/2015 0900
	820	60C Volatile Organi	c Compounds b	y GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/21/2015 0648 08/14/2015 1300	Analysis Batch: Prep Batch:	480-259752 480-259754	Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu	e e e e e e e e e e e e e e e e e e e
Analyte	DryWt Corrected	d: Y Result (u	g/Kg) Qu	alifier MDL	RL
Vinyl chloride		ND		0.45	3.7
Xylenes, Total		ND		0.62	7.4
Surrogate		%Rec	Qu	alifier Acc	eptance Limits
1,2-Dichloroethan		98		64 -	126
4-Bromofluoroben	zene (Surr)	124		72 -	- 126
Dibromofluoromet	hane (Surr)	102			- 140
Toluene-d8 (Surr)		100		71 -	- 125

## **Analytical Data**

Job Number: 480-85640-1

Client Sample ID:	MW-7 (4-6)									
Lab Sample ID: Client Matrix:	480-85640-3 Solid			% Moistur	re: 13.5				npled: 08/12/2019 ceived: 08/14/2019	
		82600	C Volat	ile Organ	ic Compour	nds by	GC/MS			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/21/2015 0716 08/14/2015 1300		Analys Prep E	sis Batch: 3atch:	480-25975 480-25975		Lab F Initial	ment ID: ile ID: Weight/Volume: Weight/Volume:	HP5973P P9369.D 7.226 g 5 mL	
Analyte	DryWt Corre	ected: `	Y	Result (ı	ug/Kg)	Qua	lifier	MDL	RL	
1,1,1-Trichloroetha	ane			ND				0.29	4.0	
1,1,2,2-Tetrachlor				ND				0.65	4.0	
1,1,2-Trichloro-1,2				ND				0.91	4.0	
1,1,2-Trichloroetha				ND				0.52	4.0	
1,1-Dichloroethane				ND				0.49	4.0	
1,1-Dichloroethene				ND				0.49	4.0	
1,2,4-Trichloroben				ND				0.24	4.0	
1,2-Dibromo-3-Chl				ND				2.0	4.0	
1,2-Dibromoethan				ND				0.51	4.0	
1,2-Dichlorobenze				ND ND				0.31 0.20	4.0 4.0	
1,2-Dichloropropa				ND				2.0	4.0	
1,3-Dichlorobenze				ND				0.21	4.0	
1,4-Dichlorobenze				ND				0.56	4.0	
2-Butanone (MEK)				ND				1.5	20	
2-Hexanone				ND				2.0	20	
4-Methyl-2-pentan	one (MIBK)			ND				1.3	20	
Acetone	( ),	2	20	<del>8.5</del>		<del></del> _	UB	3.4	20	
Benzene				ND				0.20	4.0	
Bromodichloromet	hane			ND				0.54	4.0	
Bromoform				ND		*-		2.0	4.0	
Bromomethane				ND				0.36	4.0	
Carbon disulfide				ND				2.0	4.0	
Carbon tetrachlorio	de			ND				0.39	4.0	
Chlorobenzene				ND				0.53	4.0	
Chloroethane				ND J		-		0.90	4.0	
Chloroform				ND				0.25	4.0	
Chloromethane cis-1,2-Dichloroeth	2000			ND J ND				0.24 0.51	4.0 4.0	
cis-1,3-Dichloropro				ND				0.58	4.0	
Cyclohexane	pene			ND				0.56	4.0	
Dibromochloromet	hane			ND				0.51	4.0	
Dichlorodifluorome				ND				0.33	4.0	
Ethylbenzene				ND				0.28	4.0	
Isopropylbenzene				ND				0.60	4.0	
Methyl acetate				ND				2.4	4.0	
Methyl tert-butyl et	her			ND				0.39	4.0	
Methylcyclohexane	e			ND				0.61	4.0	
Methylene Chlorid	e			ND J				1.8	4.0	
Styrene				ND				0.20	4.0	
Tetrachloroethene				ND				0.54	4.0	
Toluene				ND				0.30	4.0	
trans-1,2-Dichloroe				ND				0.41	4.0	
trans-1,3-Dichloro	propene			ND				1.8	4.0	
Trichloroethene	h			ND				0.88	4.0	
Trichlorofluoromet	nane			ND				0.38	4.0	

#### Client: ARCADIS U.S. Inc

Client Sample ID	MW-7 (4-6)					
Lab Sample ID: Client Matrix:	480-85640-3 Solid	% Moistur	e: 13.5			)8/12/2015 1400 )8/14/2015 0900
	82	60C Volatile Organ	ic Compounds b	oy GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/21/2015 0716 08/14/2015 1300	Analysis Batch: Prep Batch:	480-259752 480-259754	Instrument ID: Lab File ID: Initial Weight/\ Final Weight/\	P9369 /olume: 7.226	g.D
Analyte	DryWt Correcte	d: Y Result (u	ıg/Kg) Qu	alifier MDL	R	L
Vinyl chloride		ND		0.49	4.	-
Xylenes, Total		1.0	J	0.67	8.	0
Surrogate		%Rec	Qu	alifier	Acceptance Limit	S
1,2-Dichloroethan		105			64 - 126	
4-Bromofluoroben Dibromofluoromet		123 99			72 - 126 60 - 140	
Toluene-d8 (Surr)		104			71 - 125	

## **Analytical Data**

Job Number: 480-85640-1

Client Sample ID:	MW-7 (6-8.3)								
Lab Sample ID: Client Matrix:	480-85640-4 Solid			% Moistur	e: 9.4				npled: 08/12/2015 1430 ceived: 08/14/2015 0900
		82600	C Volat	ile Organi	c Compoun	ds by	GC/MS		
Analysis Method: Prep Method:	8260C 5035A	Anal <u>y</u> Prep		sis Batch: Batch:		480-260056 480-260092		ent ID: e ID:	HP5973F F0341.D
Dilution:	1.0		- 1-					/eight/Volume:	7.22 g
Analysis Date:	08/24/2015 1338						Final W	/eight/Volume:	5 mL
Prep Date:	08/14/2015 1300								
Analyte	DryWt Corre	cted: `	Y	Result (u	ıg/Kg)	Qual	ifier	MDL	RL
1,1,1-Trichloroetha				ND				0.28	3.8
1,1,2,2-Tetrachlor				ND				0.62	3.8
1,1,2-Trichloro-1,2				ND				0.87	3.8
1,1,2-Trichloroetha				ND ND				0.50 0.47	3.8 3.8
1,1-Dichloroethane				ND				0.47	3.8
1,2,4-Trichloroben				ND				0.23	3.8
1,2-Dibromo-3-Chl				ND				1.9	3.8
1,2-Dibromoethan				ND				0.49	3.8
1,2-Dichlorobenze				ND				0.30	3.8
1,2-Dichloroethane				ND				0.19	3.8
1,2-Dichloropropa				ND				1.9	3.8
1,3-Dichlorobenze				ND				0.20	3.8
1,4-Dichlorobenze	ne			ND				0.54	3.8
2-Butanone (MEK)	)			ND		*		1.4	19
2-Hexanone				ND				1.9	19
4-Methyl-2-pentan	one (MIBK)			ND				1.3	19
Acetone			19	<del>3.2</del>		<del>.]</del>	UB	3.2	19
Benzene				ND				0.19	3.8
Bromodichloromet	hane			ND				0.51	3.8
Bromoform				ND				1.9	3.8
Bromomethane Carbon disulfide				ND ND				0.34 1.9	3.8 3.8
Carbon tetrachlorid				ND				0.37	3.8
Chlorobenzene				ND				0.50	3.8
Chloroethane				ND				0.86	3.8
Chloroform				ND				0.24	3.8
Chloromethane				ND				0.23	3.8
cis-1,2-Dichloroeth	iene			ND				0.49	3.8
cis-1,3-Dichloropro	pene			ND				0.55	3.8
Cyclohexane				ND				0.54	3.8
Dibromochloromet				ND	J			0.49	3.8
Dichlorodifluorome	ethane				J			0.32	3.8
Ethylbenzene				0.91		J		0.26	3.8
Isopropylbenzene				ND				0.58	3.8
Methyl acetate	1			ND				2.3	3.8
Methyl tert-butyl ef				ND				0.38	3.8
Methylcyclohexane				2.4		J		0.58	3.8
Methylene Chlorid Styrene	6			ND ND				1.8 0.19	3.8 3.8
Tetrachloroethene				ND				0.19	3.8
Toluene				ND				0.29	3.8
trans-1,2-Dichloroe	ethene			ND				0.39	3.8
trans-1,3-Dichloro				ND				1.7	3.8
Trichloroethene	F = -			ND				0.84	3.8
Trichlorofluoromet	hane			ND				0.36	3.8

### Client: ARCADIS U.S. Inc

Client Sample ID:	MW-7 (6-8.3)								
Lab Sample ID: Client Matrix:	480-85640-4 Solid	% Moistu	re: 9.4			npled: 08/12/2015 1430 eived: 08/14/2015 0900			
	8260C Volatile Organic Compounds by GC/MS								
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/24/2015 1338 08/14/2015 1300	Analysis Batch: Prep Batch:	480-260056 480-260092	Lab Fi Initial	ment ID: le ID: Weight/Volume: Veight/Volume:	HP5973F F0341.D 7.22 g 5 mL			
Analyte	DryWt Corrected	I: Y Result (	ug/Kg) G	ualifier	MDL	RL			
Vinyl chloride	-	ND			0.47	3.8			
Xylenes, Total		6.4	J		0.64	7.6			
Surrogate		%Rec	C	ualifier	Acceptan	ce Limits			
1,2-Dichloroethan	. ,	103			64 - 126				
4-Bromofluoroben Dibromofluoromet		81 97			72 - 126 60 - 140				
Toluene-d8 (Surr)		105			71 - 125				

### **Analytical Data**

Job Number: 480-85640-1

Client Sample ID:	MW-3 (7-9)					
Lab Sample ID: Client Matrix:	480-85640-5 Solid	% Moisture	e: 7.0			npled: 08/13/2015 1000 ceived: 08/14/2015 0900
	8260	C Volatile Organi	ic Compound	ls by G	GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 10 08/22/2015 0136 08/14/2015 1300	Analysis Batch: Prep Batch:	480-259939 480-259918		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP5973G G41656.D 7.268 g 5 mL
Analyte	DryWt Corrected:	Y Result (u	ıg/Kg)	Qualifi	er MDL	RL
1,1,1-Trichloroetha	-	ND	0 0/	F1 F2	110	410
1,1,2,2-Tetrachloro	bethane	ND		F1 F2	66	410
1,1,2-Trichloro-1,2	,2-trifluoroethane	ND		F1	200	410
1,1,2-Trichloroetha	ane	ND		F1 F2	86	410
1,1-Dichloroethane	9	ND		F1 F2	130	410
1,1-Dichloroethene		ND		F1 F2	140	410
1,2,4-Trichloroben		ND		F1	150	410
1,2-Dibromo-3-Chl		ND J	г	F1 F2	200	410
1,2-Dibromoethan		ND			71	410
1,2-Dichlorobenze		ND			100	410
1,2-Dichloroethane		ND			170	410
1,2-Dichloropropa		ND		F1 F2 F1 F2	66 110	410
1,3-Dichlorobenze 1,4-Dichlorobenze		ND ND			57	410 410
2-Butanone (MEK)		ND		F1 F2	1200	2000
2-Hexanone		ND		F1 F2	840	2000
4-Methyl-2-pentan	one (MIBK)	ND		F1 F2	130	2000
Acetone		ND		F1 F2	1700	2000
Benzene		100		JFIE		410
Bromodichloromet	hane	ND		F1 F2	82	410
Bromoform		ND .	Г	F1 F2	200	410
Bromomethane		ND		F1	90	410
Carbon disulfide		ND		F1 F2	190	410
Carbon tetrachlorie	de	ND		F1 F2	100	410
Chlorobenzene		ND		F1 F2	54	410
Chloroethane		ND		F1	85	410
Chloroform		ND		F1 F2	280	410
Chloromethane		ND		F1	97	410
cis-1,2-Dichloroeth		ND ND		F1 F2 F1 F2	110 97	410
cis-1,3-Dichloropro Cyclohexane	ppene	1500	J	F1	90	410 410
Dibromochloromet	hane	ND	J	F1 F2	200	410
Dichlorodifluorome		ND	U	F1	180	410
Ethylbenzene		2500	J	F1	120	410
Isopropylbenzene		320	U U	J F <del>1 F</del>		410
Methyl acetate		ND		<b>F</b> 1 F2	190	410
Methyl tert-butyl et	her	ND		F1 F2	150	410
Methylcyclohexane	e	4900	J	F1	190	410
Methylene Chlorid	e	ND	J	F1 F2	81	410
Styrene		ND		F1 F2	98	410
Tetrachloroethene		ND		F1 F2	55	410
Toluene		ND		F1 F2	110	410
trans-1,2-Dichloroe		ND		F1 F2	96	410
trans-1,3-Dichloro	propene	ND		F1 F2	40	410
Trichloroethene	hono	ND		F1 F2	110	410
Trichlorofluoromet	IIdHE	ND		<b>F</b> 1	190	410

#### Client: ARCADIS U.S. Inc

Client Sample ID:	MW-3 (7-9)				
Lab Sample ID: Client Matrix:	480-85640-5 Solid	% Moisture	e: 7.0		Sampled: 08/13/2015 1000 Received: 08/14/2015 0900
	826	0C Volatile Organi	c Compounds by	GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 10 08/22/2015 0136 08/14/2015 1300	Analysis Batch: Prep Batch:	480-259939 480-259918	Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum	•
Analyte	DryWt Corrected	I: Y Result (u	g/Kg) Qual	lifier MDL	RL
Vinyl chloride Xylenes, Total		ND 14000	<b>-F1</b> - J	140 230	410 820
Surrogate 1,2-Dichloroethane 4-Bromofluoroben Dibromofluoromet Toluene-d8 (Surr)	zene (Surr)	%Rec 89 99 90 95	Qua	lifier Accep 53 - 14 49 - 14 60 - 14 50 - 14	48 40

### **Analytical Data**

Job Number: 480-85640-1

Client Sample ID:	MW-3 (9-10.2)								
Lab Sample ID: Client Matrix:	480-85640-6 Solid	%	Moisture	e: 7.7				npled: 08/13/2 eived: 08/14/2	
	826	0C Volatil	e Organi	c Compoun	ds by (	GC/MS			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/24/2015 1404 08/14/2015 1300	Analysis Prep Ba	s Batch: atch:	480-260056 480-260092		Instrument Lab File ID Initial Weig Final Weigl	: ht/Volume:	HP5973F F0342.D 8.808 g 5 mL	
Analyte	DryWt Corrected	I: Y	Result (u	g/Kg)	Qualif	ïer M	DL	RL	
1,1,1-Trichloroetha	-		ND	• • •		0.	22	3.1	
1,1,2,2-Tetrachloro	pethane		ND				50	3.1	
1,1,2-Trichloro-1,2	,2-trifluoroethane		ND			0.	70	3.1	
1,1,2-Trichloroetha	ane		ND				40	3.1	
1,1-Dichloroethane	e		ND				38	3.1	
1,1-Dichloroethene	9		ND			0.	38	3.1	
1,2,4-Trichloroben			ND				19	3.1	
1,2-Dibromo-3-Chl			ND			1.		3.1	
1,2-Dibromoethane			ND				39	3.1	
1,2-Dichlorobenze			ND				24	3.1	
1,2-Dichloroethane			1.6		J		15	3.1	
1,2-Dichloropropar			ND			1.		3.1	
1,3-Dichlorobenze			ND				16	3.1	
1,4-Dichlorobenze			ND				43	3.1	
2-Butanone (MEK)	)		ND			1.		15	
2-Hexanone						1. 1.		15 15	
4-Methyl-2-pentan Acetone	one (MIBK)		ND ND			1. 2.		15	
Benzene			2.0				15	3.1	
Bromodichloromet	hane		2.0 ND		J		41	3.1	
Bromoform	liane		ND			1.		3.1	
Bromomethane			ND				28	3.1	
Carbon disulfide			ND			1.		3.1	
Carbon tetrachlorid	1e		ND				30	3.1	
Chlorobenzene			ND				41	3.1	
Chloroethane			ND				69	3.1	
Chloroform			ND				19	3.1	
Chloromethane			ND				19	3.1	
cis-1,2-Dichloroeth	iene		ND				39	3.1	
cis-1,3-Dichloropro			ND				44	3.1	
Cyclohexane			23				43	3.1	
Dibromochloromet	hane		ND	J			39	3.1	
Dichlorodifluorome	ethane		ND	J		0.	25	3.1	
Ethylbenzene			1.5	0	J	0.	21	3.1	
Isopropylbenzene			ND			0.	46	3.1	
Methyl acetate			ND			1.	9	3.1	
Methyl tert-butyl et	her		7.9			0.	30	3.1	
Methylcyclohexane			25				47	3.1	
Methylene Chloride	е		ND			1.		3.1	
Styrene			ND				15	3.1	
Tetrachloroethene			ND				41	3.1	
Toluene			0.25		J		23	3.1	
trans-1,2-Dichloroe			ND				32	3.1	
trans-1,3-Dichlorop	propene		ND			1.		3.1	
Trichloroethene			ND				68	3.1	
Trichlorofluoromet	hane		ND			0.	29	3.1	

#### Client: ARCADIS U.S. Inc

Client Sample ID:	MW-3 (9-10.2)					
Lab Sample ID: Client Matrix:	480-85640-6 Solid	% Moistu	re: 7.7			npled: 08/13/2015 1015 eived: 08/14/2015 0900
	820	60C Volatile Organ	ic Compounds	by GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 08/24/2015 1404 08/14/2015 1300	Analysis Batch: Prep Batch:	480-260056 480-260092			HP5973F F0342.D 8.808 g 5 mL
Analyte	DryWt Corrected	d: Y Result (	ug/Kg) Q	ualifier I	MDL	RL
Vinyl chloride		ND			).38	3.1
Xylenes, Total		5.6	J	(	).52	6.1
Surrogate		%Rec	Q	ualifier	Acceptan	ce Limits
1,2-Dichloroethan		111			64 - 126	
4-Bromofluoroben Dibromofluoromet	. ,	97 97			72 - 126 60 - 140	
Toluene-d8 (Surr)		100			71 - 125	

### **Analytical Data**

Job Number: 480-85640-1

Client Sample ID:	TRIP BLANK					
Lab Sample ID:	480-85640-7				Date Sar	mpled: 08/13/2015 0000
Client Matrix:	Water				Date Re	ceived: 08/14/2015 0900
		8260C Volatile Organi	c Compound	s by GC/	MS	
Analysis Method:	8260C	Analysis Batch:	480-259173	strument ID:	HP5975T	
Prep Method:	5030C	Prep Batch:	N/A	La	ab File ID:	T7505.D
Dilution:	1.0			In	itial Weight/Volume:	5 mL
Analysis Date:	08/18/2015 1348			Fi	nal Weight/Volume:	5 mL
Prep Date:	08/18/2015 1348					
Analyte		Result (u	g/L)	Qualifier	MDL	RL
1,1,1-Trichloroetha		ND			0.82	1.0
1,1,2,2-Tetrachloro		ND			0.21	1.0
1,1,2-Trichloroetha		ND			0.23	1.0
1,1,2-Trichloro-1,2		ND			0.31	1.0
1,1-Dichloroethane		ND			0.38	1.0
1,1-Dichloroethene		ND			0.29	1.0
1,2,4-Trichloroben		ND			0.41	1.0
1,2-Dibromo-3-Chl		ND			0.39	1.0
1,2-Dibromoethan		ND			0.73	1.0
1,2-Dichlorobenze		ND			0.79	1.0
1,2-Dichloroethane		ND			0.21	1.0
1,2-Dichloropropar		ND ND			0.72 0.78	1.0 1.0
1,3-Dichlorobenze		ND			0.78	1.0
1,4-Dichlorobenze 2-Hexanone	ne	ND			1.2	5.0
2-Butanone (MEK)		ND			1.3	10
4-Methyl-2-pentan		ND			2.1	5.0
Acetone		3.8		J	3.0	10
Benzene		ND	·	5	0.41	1.0
Bromodichloromet	hane	ND			0.39	1.0
Bromoform		ND			0.26	1.0
Bromomethane		ND			0.69	1.0
Carbon disulfide		ND			0.19	1.0
Carbon tetrachlorid	de	ND			0.27	1.0
Chlorobenzene		ND			0.75	1.0
Dibromochloromet	hane	ND			0.32	1.0
Chloroethane		ND			0.32	1.0
Chloroform		ND			0.34	1.0
Chloromethane		ND			0.35	1.0
cis-1,2-Dichloroeth	iene	ND			0.81	1.0
cis-1,3-Dichloropro	pene	ND			0.36	1.0
Cyclohexane		ND			0.18	1.0
Dichlorodifluorome	ethane	ND			0.68	1.0
Ethylbenzene		ND			0.74	1.0
Isopropylbenzene		ND			0.79	1.0
Methyl acetate		ND			1.3	2.5
Methyl tert-butyl et		ND			0.16	1.0
Methylcyclohexane		ND			0.16	1.0
Methylene Chloride	e	ND			0.44	1.0
Styrene		ND			0.73	1.0
Tetrachloroethene		ND ND			0.36 0.51	1.0
Toluene	othono	ND ND			0.90	1.0 1.0
trans-1,2-Dichloroe		ND			0.90	1.0
trans-1,3-Dichlorop Trichloroethene	bioperie	ND			0.46	1.0
Trichlorofluoromet	hane	ND			0.88	1.0
richoronauruniet					0.00	1.0

## **Analytical Data**

Client Sample ID:	TRIP BLANK								
Lab Sample ID: Client Matrix:	480-85640-7 Water				-	l: 08/13/2015 0000 d: 08/14/2015 0900			
8260C Volatile Organic Compounds by GC/MS									
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/18/2015 1348 08/18/2015 1348	Analysis Batch: Prep Batch:	480-259173 N/A	Instrument ID Lab File ID: Initial Weight Final Weight/	T75 /Volume: 5	5975T 505.D mL mL			
Analyte		Result (u	ıg/L) Qu	alifier MDI	L	RL			
Vinyl chloride		ND		0.90	)	1.0			
Xylenes, Total		ND		0.66	3	2.0			
Surrogate		%Rec	Qu	alifier	Acceptance L	imits			
1,2-Dichloroethane	e-d4 (Surr)	101			66 - 137				
Toluene-d8 (Surr)		97			71 - 126				
4-Bromofluoroben:	zene (Surr)	99			73 - 120				
Dibromofluoromet	hane (Surr)	100			60 - 140				

### **Analytical Data**

Job Number: 480-85640-1

Client Sample ID:	MW-2 (5-7)								
Lab Sample ID: Client Matrix:	480-85640-1 Solid		% Moisture	e: 7.9				npled: 08/12/2 eived: 08/14/2	
		8270D Semive	olatile Org	anic Compo	ounds (	(GC/MS)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 5.0 08/18/2015 2153 08/17/2015 0827	Analy: Prep I	sis Batch: 3atch:	480-259277 480-258952		Instrument II Lab File ID: Initial Weigh Final Weight Injection Vol	t/Volume: t/Volume:	HP5973X X009012409 +30.07 g 1 mL 1 uL	.D
Analyte	DryWt Cor	rected: Y	Result (u	g/Kg)	Qualifi	ier MD	)L	RL	
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichlorophe 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthale 2-Chlorophenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-meth 4-Bromophenyl ph 4-Chloro-3-methyl 4-Chlorophenol 4-Nitroaniline 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Methylphenol 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acetophenone Anthracene Anthracene Benzo[a]anthracer Benzo[b]fluoranthe Benzo[y,h,j]perylet Benzo[k]fluoranthe Bis(2-chloroethoxy	pyl) ether nol nol l bl me dine ylphenol enyl ether phenol enyl ether phenol enyl ether phenol enyl ether	rected: Y	ND ND ND ND ND ND ND ND ND ND ND ND ND N	g/Kg)	Qualifi	140 180 250 180 98 220 420 190 110 150 170 180 110 250 920 130 230 230 110 140 250 920 130 230 230 110 120 320 730 92 140 120 120 120 120 120 120 120 12	D D D D D D D D D D D D D D D D D D D	920 920 920 920 920 920 920 920 920 920	
Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Di-n-octyl phthalat Dibenz(a,h)anthrae	hthalate late e		ND ND ND ND ND ND ND ND			120 310 150 280 110 210 160 110 160	) ) ) ) )	920 920 920 920 920 920 920 920 920 920	

## **Analytical Data**

Client Sample ID:	MW-2 (5-7)				
Lab Sample ID: Client Matrix:	480-85640-1 Solid	% Moisture	: 7.9		npled: 08/12/2015 1530 ceived: 08/14/2015 0900
	8	270D Semivolatile Orga	anic Compound	ls (GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 5.0 08/18/2015 2153 08/17/2015 0827	Analysis Batch: Prep Batch:	480-259277 480-258952	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5973X X009012409.D +30.07 g 1 mL 1 uL
Analyte	DryWt Corre		g/Kg) Qu	alifier MDL	RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclope Hexachlorocyclope Hexachlorocyclope Hexachlorocethane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol	ne entadiene vrene vylamine amine	ND ND ND ND ND ND ND ND ND ND ND ND ND N		110 120 110 98 110 120 140 120 120 120 110 200 160 750 120 100 920 140 140	920 920 920 920 920 920 920 920 920 920
Pyrene		ND		110	920
Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	enol	%Rec 72 76 70 69 81 68	Qu	alifier Acceptar 39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120	nce Limits

## **Analytical Data**

Client Sample ID:	MW-2 (9-13)							
Lab Sample ID: Client Matrix:	480-85640-2 Solid	%	6 Moisture	e: 7.5				pled: 08/12/2015 1550 eived: 08/14/2015 0900
		8270D Semivol	atile Org	anic Compo	unds (	GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 10 08/19/2015 1300 08/17/2015 0827	Analysi Prep Ba	s Batch: atch:	480-259368 480-258952		Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vo Injection Volume	lume:	HP5973X X009012435.D +30.06 g 1 mL 1 uL
Analyte	DryWt Cor	rected: Y	Result (u	g/Kg)	Qualifi	er MDL		RL
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichlorophe 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthale 2-Chlorophenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-methyl 4-Chloro-3-methyl 4-Chloro-3-methyl 4-Chloro-3-methyl 4-Chloroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acetophenone Anthracene Atrazine Benzaldehyde Benzo[a]anthracer	pyl) ether nol nol l ne ne dine ylphenol enyl ether ohenol enyl ether		ND ND ND ND ND ND ND ND ND ND ND ND ND N			270 370 500 370 190 440 8500 380 220 300 330 370 220 270 520 2200 510 1800 260 450 450 230 220 960 1300 270 240 250 450 640 1500 180		1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800 3800
Benzo[a]pyrene Benzo[b]fluoranthe Benzo[g,h,i]peryler Benzo[k]fluoranthe	ene ne ene		ND ND ND ND			270 290 190 240		1800 1800 1800 1800
Bis(2-chloroethoxy Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Di-n-octyl phthalat Dibenz(a,h)anthrae	ther hthalate late e		ND ND ND ND ND ND ND ND ND ND			390 240 630 300 550 220 410 310 220 320		1800 1800 1800 1800 1800 1800 1800 1800

### **Analytical Data**

Client Sample ID: Lab Sample ID: Client Matrix:	<b>MW-2 (9-13)</b> 480-85640-2 Solid	% Moisture: 7.5		e Sampled: 08/12/2015 1550 e Received: 08/14/2015 0900
	82	70D Semivolatile Organic Com	oounds (GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 10 08/19/2015 1300 08/17/2015 0827	Analysis Batch: 480-2593 Prep Batch: 480-2589		0
Analyte	DryWt Correc		Qualifier MDL	RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclope Hexachlorocyclope Hexachlorocthane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol Pyrene	e ene entadiene vrene vylamine amine	ND ND ND ND ND ND ND ND ND ND ND ND ND N	220 240 220 190 220 250 270 250 240 230 390 310 1500 240 200 1800 270 280 220	1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800
Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	nol	%Rec 67 77 74 71 98 79	Qualifier         Accord           39 -         37 -           18 -         34 -           65 -         11 -	120 120 132 153

# **Analytical Data**

Job Number: 480-85640-1

Client Sample ID:	MW-7 (4-6)								
Lab Sample ID: Client Matrix:	480-85640-3 Solid	Date Sampled:         08/12/2015           % Moisture:         13.5         Date Received:         08/14/2015							
8270D Semivolatile Organic Compounds (GC/MS)									
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 5.0 08/18/2015 2246 08/17/2015 0827	-	Analysis Batch: 480-259277 Prep Batch: 480-258952		B952 Lab File II Initial Wei		: ht/Volume: ht/Volume:	HP5973X X009012411.D +30.19 g 1 mL 1 uL	
Analyte	DryWt Co	rrected: Y	ected: Y Result (ug/Kg) Qualifier					RL	
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichlorophe 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthale 2-Chlorophenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-methyl 4-Chloro-3-methyl 4-Chloro-3-methyl 4-Chloroaniline 4-Chlorophenyl ph 4-Chloroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acetophenone Anthracene Atrazine Benzaldehyde	ppyl) ether nol nol l bl ene ene dine ylphenol enyl ether phenol		ND ND ND ND ND ND ND ND ND ND ND ND ND N			14 20 26 20 10 24 45 20 11 16 18 20 11 14 20	00         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50	980 980 980 980 980 980 980 980 980 980	
Benzo[a]anthracer Benzo[a]pyrene Benzo[b]fluoranthe Benzo[g,h,i]perylet	ene ne		ND ND ND ND			98 14 16 10	3 40 60 00	980 980 980 980	
Benzo[k]fluoranthe Bis(2-chloroethoxy Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Di-n-octyl phthalat Dibenz(a,h)anthrae	r)methane ether hthalate late e		ND ND ND ND ND ND ND ND ND ND			13 21 13 33 16 29 11 22 17 11 21 7 11	0 30 30 50 90 10 20 70 10	980 980 980 980 980 980 980 980 980 980	

TestAmerica Buffalo

# **Analytical Data**

Client Sample ID:	MW-7 (4-6)									
Lab Sample ID: Client Matrix:	480-85640-3 Solid	% Moisture:	13.5		npled: 08/12/2015 1400 ceived: 08/14/2015 0900					
8270D Semivolatile Organic Compounds (GC/MS)										
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 5.0 08/18/2015 2246 08/17/2015 0827	,	0-258952 Lab Initi Fina	rument ID: File ID: al Weight/Volume: al Weight/Volume: ction Volume:	HP5973X X009012411.D +30.19 g 1 mL 1 uL					
Analyte	DryWt Correc		g) Qualifier	MDL	RL					
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclope Hexachlorocthane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol Pyrene	e ene entadiene vrene ylamine amine	ND ND ND ND ND ND ND ND ND ND ND ND ND N		110 130 110 100 110 130 140 130 140 130 120 210 170 790 130 110 980 140 150 110	980 980 980 980 980 980 980 980 980 980					
Surrogate		%Rec	Qualifier	Acceptan	ce Limits					
2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	nol	67 72 70 66 84 73		39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120						

# **Analytical Data**

Client Sample ID:	MW-7 (6-8.3)									
Lab Sample ID: Client Matrix:	480-85640-4 Solid	% Moisture:9.4Date Sampled:08/12/2015Date Received:08/14/2015								
8270D Semivolatile Organic Compounds (GC/MS)										
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 50 08/18/2015 2313 08/17/2015 0827	•	Analysis Batch: 480-259277 Prep Batch: 480-258952		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5973X X009012412.D +30.24 g 1 mL 1 uL				
Analyte	DryWt Corr	ected: Y Re	esult (ug/Kg)	Qualifi	er MDL	RL				
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichlorophe 2,4-Dichloropheno 2,4-Dimethylpheno 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthale 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-meth 4-Bromophenyl ph 4-Chloro-3-methyl 4-Chloroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline	apyl) ether nol nol l b ene ene dine ylphenol enyl ether phenol enyl ether	NI NI NI NI NI NI NI NI NI NI NI NI NI N			1400 1900 2500 1900 990 2200 43000 1900 1100 1500 1700 1900 1100 1400 2600 1100 2600 9300 1300 2300 2300 2300 2300 1100 1100 4900 6500 1400 1200 1300 2300 3200 7400 930	9300 9300 9300 9300 9300 9300 9300 9300				
Benzo[a]pyrene Benzo[b]fluoranthe Benzo[g,h,i]peryle Benzo[k]fluoranthe Bis(2-chloroethoxy	ene ne ene	NI NI NI NI NI	) ) )		1400 1500 990 1200 2000	9300 9300 9300 9300 9300 9300				
Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Di-n-octyl phthalat Dibenz(a,h)anthra	ether e	NI NI NI NI NI NI NI			1200 3200 1500 2800 1100 2100 1600 1100 1600	9300 9300 9300 9300 9300 9300 9300 9300				

# **Analytical Data**

Client Sample ID: Lab Sample ID: Client Matrix:	<b>MW-7 (6-8.3)</b> 480-85640-4 Solid	% Moisture: 9.4			npled: 08/12/2015 1430 eived: 08/14/2015 0900					
8270D Semivolatile Organic Compounds (GC/MS)										
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 50 08/18/2015 2313 08/17/2015 0827	Analysis Batch: 480-2 Prep Batch: 480-2	58952 Lab File Initial V Final W		HP5973X X009012412.D +30.24 g 1 mL 1 uL					
Analyte	DryWt Correc		Qualifier	MDL	RL					
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclope Hexachlorocthane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol Pyrene	e ene entadiene vrene vylamine amine	ND ND ND ND ND ND ND ND ND ND ND ND ND N		1100 1200 1100 990 1100 1300 1400 1300 1200 1100 2000 1600 7600 1200 1000 9300 1400 1400 1400	9300 9300 9300 9300 9300 9300 9300 9300					
Surrogate		%Rec	Qualifier	Acceptan						
2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	nol	40 70 67 44 76 79		39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120						

# **Analytical Data**

Job Number: 480-85640-1

Client Sample ID:	MW-3 (7-9)								
Lab Sample ID: Client Matrix:	480-85640-5 Solid	% Moisture:7.0Date Sampled:08/13/20108/13/201Date Received:08/14/201							
8270D Semivolatile Organic Compounds (GC/MS)									
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 20 08/18/2015 2126 08/17/2015 0827	-	Analysis Batch: 480-25927 Prep Batch: 480-258952			Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume Injection Volume:	-		
Analyte	DryWt Cor	rected: Y	Result (u	g/Kg)	Qualifie	er MDL	RL		
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4-Dinthloropheno 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitroaniline 2-Nitrophenol 3,3'-Dichlorobenzid 3-Nitroaniline 4,6-Dinitro-2-methyl 4-Chloro-3-methyl 4-Chloro-3-methyl 4-Chloroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzo[a]anthracer Benzo[b]fluoranthe Benzo[g,h,i]perylere Benzo[k]fluoranthe	nol nol l nol l nol me dine ylphenol enyl ether phenol enyl ether		ND ND ND ND ND ND ND ND ND ND ND ND ND N		<del>F2</del> F <del>2</del> <del>F2</del> <del>F2</del> <del>F2</del>	530 730 980 730 380 870 17000 750 430 600 660 660 660 530 1000 4300 1000 4300 1000 4300 1000 4300 1000 4300 1000 4300 510 900 900 450 430 1900 2500 530 470 490 900 1300 2900 360 530 530 530 470	3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 7000 7000 7000 7000 7000 7000 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600		
Bis(2-chloroethoxy Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Di-n-octyl phthalat Dibenz(a,h)anthrae	ether hthalate late e		ND ND ND ND ND ND ND ND ND		F1	770 470 1200 600 1100 430 810 620 430 640	3600 3600 3600 3600 3600 3600 3600 3600		

TestAmerica Buffalo

# **Analytical Data**

Client Sample ID	. ,									
Lab Sample ID: Client Matrix:	480-85640-5 Solid	% Moisture:	7.0		npled: 08/13/2015 1000 ceived: 08/14/2015 0900					
8270D Semivolatile Organic Compounds (GC/MS)										
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 20 08/18/2015 2126 08/17/2015 0827	· ) · · · ·		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5973X X009012408.D +30.25 g 1 mL 1 uL					
Analyte	DryWt Corr	ected: Y Result (ug/	Kg) Qualifie	er MDL	RL					
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclop Hexachlorocthane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol Pyrene	e ene entadiene yrene oylamine amine	ND ND ND ND ND ND ND ND ND ND ND ND ND N	F1-	430 470 430 380 430 490 530 490 470 450 770 620 2900 470 410 3600 530 550 430	3600 3600 3600 3600 3600 3600 3600 3600					
Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	enol	%Rec 69 75 68 72 92 71	Qualifie	er Acceptar 39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120	nce Limits					

# **Analytical Data**

Client Sample ID:	MW-3 (9-10.2)									
Lab Sample ID: Client Matrix:	480-85640-6 Solid	% Moistur		ed: 08/13/2015 1015 ed: 08/14/2015 0900						
8270D Semivolatile Organic Compounds (GC/MS)										
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 20 08/18/2015 2339 08/17/2015 0827	Analysis Batch: Prep Batch:	-		X0 nt/Volume: +3	25973X 009012413.D 30.59 g mL uL				
Analyte	DryWt Correct	ed: Y Result (u	ıg/Kg)	Qualifier ME	DL	RL				
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichloropheno 2,4-Dinthlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthale 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline 4,6-Dinitro-2-meth 4-Bromophenyl ph 4-Chloro-3-methyl 4-Chlorophenol ph 4-Methylphenol 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline	nol nol l l b ne ene dine ylphenol enyl ether phenol	ND ND ND ND ND ND ND ND ND ND ND ND ND N		530 720 980 720 380 870 170 740 420 590 660 720 420 530 100 420 100 360 510 890 890 450 450 450 450 450 450 450 470	D D D D D D D D D D D D D D D D D D D	3600 3600 3600 3600 3600 35000 3600 3600				
Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzo[a]anthracer Benzo[a]pyrene Benzo[b]fluoranthe Benzo[g,h,i]peryle Benzo[k]fluoranthe Bis(2-chloroethoxy Bis(2-chloroethoxy) Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Dibenz(a,h)anthra	ene ne ene v)methane ether whthalate late e	ND ND ND ND ND ND ND ND ND ND ND ND ND N		470 490 890 130 290 360 530 570 380 470 760 470 120 590 110 420 810 620 420 640	D D D D D D D D D D D D D D D D D D D	3600 3600 3600 3600 3600 3600 3600 3600				

# **Analytical Data**

Client Sample ID: Lab Sample ID: Client Matrix:	: <b>MW-3 (9-10.2)</b> 480-85640-6 Solid	% Moisture: 7.7			npled: 08/13/2015 1015 eived: 08/14/2015 0900					
8270D Semivolatile Organic Compounds (GC/MS)										
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 20 08/18/2015 2339 08/17/2015 0827	Analysis Batch: 480-2592 Prep Batch: 480-2589	52 Lab File I Initial Wei	D: ght/Volume: ght/Volume:	HP5973X X009012413.D +30.59 g 1 mL 1 uL					
Analyte	DryWt Corre			MDL	RL					
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclope Hexachlorocyclope Hexachlorocthane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol Pyrene	e ene entadiene yrene oylamine amine	ND ND ND ND ND ND ND ND ND ND ND ND ND N		420 470 420 380 420 490 530 490 450 760 530 450 760 520 2900 470 400 3600 530 550 420	3600 3600 3600 3600 3600 3600 3600 3600					
Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	enol	%Rec 41 79 77 66 90 78	Qualifier	Acceptan 39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120	ice Limits					

## Client: ARCADIS U.S. Inc

Client Sample ID:	MW-3 (7-9)								
Lab Sample ID: Client Matrix:	480-85640-5 Solid	% Moistur	e: 7.0			mpled: 08/13/2015 1000 ceived: 08/14/2015 0900			
310.13 Identification of Routine Petroleum Products									
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	310.13 3550C 1.0 08/19/2015 1914 08/18/2015 1436	Analysis Batch: Prep Batch:	480-259453 480-259270		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5890-24 24a100_281.d +30.44 g 1 mL 1 uL			
Analyte	DryWt Correcte	ed: Y Result (r	ng/Kg)	Qualifie	er MDL	RL			
Gasoline		210			7.1	7.1			
Kerosene		140			18	18			
Motor Oil		160			35	35			
Fuel Oil #2		150			18	18			
Fuel Oil #4		ND			18	18			
Fuel Oil #6		ND			18	18			
Unknown Hydroca	rbons	ND			18	18			

# **Analytical Data**

Client Sample ID:	MW-2 (5-7)								
Lab Sample ID:	480-85640-1				Date Sar	mpled: 08/12/2015 1530			
Client Matrix:	Solid	% Moistur	re: 7.9		Date Received: 08/14/2015 0900				
6010C Metals (ICP)									
Analysis Method:	6010C	Analysis Batch:	480-2593		Instrument ID:				
Prep Method:	3050B	Prep Batch:	480-2589	989	Lab File ID:	I1081815A-7.asc			
Dilution:	1.0				Initial Weight/Volume:	-			
Analysis Date:	08/18/2015 1059				Final Weight/Volume:	50 mL			
Prep Date:	08/17/2015 1140								
Analyte	DryWt Corrected	: Y Result (r	ng/Kg)	Qualifie	er MDL	RL			
Aluminum		11200	J		4.9	11.1			
Antimony		ND	J		0.44	16.6			
Arsenic		3.6			0.44	2.2			
Barium		55.3	J		0.12	0.55			
Beryllium		0.55			0.031	0.22			
Cadmium		0.094		J	0.033	0.22			
Calcium		72200	J	-8	3.7	55.3			
Chromium		16.8	J		0.22	0.55			
Cobalt		10.4			0.055	0.55			
Copper		27.7	J		0.23	1.1			
Iron		16500	J		3.9	11.1			
Lead		12.2			0.27	1.1			
Magnesium		17200	J		1.0	22.1			
Manganese		321	J		0.035	0.22			
Nickel		34.0			0.25	5.5			
Potassium		2750	J		22.1	33.2			
Selenium		ND			0.44	4.4			
Silver		ND			0.22	0.66			
Sodium		524			14.4	155			
Thallium		ND	-		0.33	6.6			
Vanadium		17.7	J		0.12	0.55			
Zinc		57.7	J		0.71	2.2			

# **Analytical Data**

Client Sample ID	MW-2 (9-13)								
Lab Sample ID:	480-85640-2				Date Sar	mpled: 08/12/2015 1550			
Client Matrix:	Solid	% Moisture: 7.5			Date Received: 08/14/2015 0900				
6010C Metals (ICP)									
Analysis Method:	6010C	Analysis Batch	: 480-2593	355	Instrument ID:	ICAP1			
Prep Method:	3050B	Prep Batch:	480-258		Lab File ID:	11081815A-7.asc			
Dilution:	1.0	Trop Bateri.	400 200	000	Initial Weight/Volume:				
Analysis Date:	08/18/2015 1102				Final Weight/Volume:	50 mL			
Prep Date:	08/17/2015 1140					JU IIIL			
TTOP Date.	00/11/2010 1140								
Analyte	DryWt Corrected	d: Y Result	(mg/Kg)	Qualifie	er MDL	RL			
Aluminum		16700	J		4.8	10.9			
Antimony		ND	J		0.43	16.3			
Arsenic		4.0			0.43	2.2			
Barium		67.7	J		0.12	0.54			
Beryllium		0.82			0.030	0.22			
Cadmium		0.034	_	J	0.033	0.22			
Calcium		53400	J	<del>B</del> -	3.6	54.3			
Chromium		24.3	J		0.22	0.54			
Cobalt		15.4	_		0.054	0.54			
Copper		30.5	J		0.23	1.1			
Iron		21400	J		3.8	10.9			
Lead		12.2			0.26	1.1			
Magnesium		7380	J		1.0	21.7			
Manganese		410	J		0.035	0.22			
Nickel		42.2	-		0.25	5.4			
Potassium		3850	J		21.7	32.6			
Selenium		0.50		J	0.43	4.3			
Silver		ND			0.22	0.65			
Sodium		235			14.1	152			
Thallium		ND	J		0.33	6.5			
Vanadium		21.8			0.12	0.54			
Zinc		56.2	J		0.70	2.2			

# **Analytical Data**

Job Number: 480-85640-1

Client Sample ID:	MW-7 (4-6)						
Lab Sample ID: Client Matrix:	480-85640-3 Solid	(	% Moisture	e: 13.5			npled: 08/12/2015 1400 ceived: 08/14/2015 0900
	00110						
			6010C N	letals (ICF	<b>?</b> )		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	6010C 3050B 1.0 08/18/2015 1105 08/17/2015 1140		Analysis Batch: 480-259355 Prep Batch: 480-258989		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICAP1 I1081815A-7.asc +0.5220 g 50 mL	
Analyte	DryWt Corrected:	Y	Result (m	ng/Kg)	Qualifie	er MDL	RL
Aluminum			20300	J		4.9	11.1
Antimony			ND	J		0.44	16.6
Arsenic			2.4			0.44	2.2
Barium			75.1	J		0.12	0.55
Beryllium			0.88			0.031	0.22
Cadmium			0.074		J	0.033	0.22
Calcium			37500	J	₿	3.7	55.4
Chromium			26.4	J		0.22	0.55
Cobalt			8.7			0.055	0.55
Copper			17.3	J		0.23	1.1
Iron			19300	J		3.9	11.1
Lead			9.1			0.27	1.1
Magnesium			7770	J		1.0	22.2
Manganese			254	J		0.035	0.22
Nickel			36.7			0.25	5.5
Potassium			4200	J		22.2	33.2
Selenium			0.78		J	0.44	4.4
Silver			ND			0.22	0.66
Sodium			186			14.4	155
Thallium			ND	_		0.33	6.6
Vanadium			26.7	J		0.12	0.55
Zinc			64.7	J		0.71	2.2

#### Client Sample ID: MW-7 (4-6)

# **Analytical Data**

Client Sample ID:	MW-7 (6-8.3)					
Lab Sample ID:	480-85640-4				Date Sar	mpled: 08/12/2015 1430
Client Matrix:	Solid	% Moistur	re: 9.4		Date Red	ceived: 08/14/2015 0900
		6010C I	Metals (IC	P)		
Analysis Method:	6010C	Analysis Batch:	480-259	355	Instrument ID:	ICAP1
Prep Method:	3050B	Prep Batch:	480-259		Lab File ID:	1081815A-7.asc
-		Fiep Batch.	400-200	909		
Dilution:	1.0				Initial Weight/Volume:	0
Analysis Date:	08/18/2015 1108				Final Weight/Volume:	50 mL
Prep Date:	08/17/2015 1140					
Analyte	DryWt Corrected	I: Y Result (I	mg/Kg)	Qualifie	er MDL	RL
Aluminum		15700	J		4.9	11.2
Antimony		ND	J		0.45	16.8
Arsenic		5.6			0.45	2.2
Barium		57.8	J		0.12	0.56
Beryllium		0.74			0.031	0.22
Cadmium		0.16		J	0.034	0.22
Calcium		46500	J	₽	3.7	56.1
Chromium		24.3	J		0.22	0.56
Cobalt		10.7			0.056	0.56
Copper		34.1	J		0.24	1.1
Iron		21100	J		3.9	11.2
Lead		13.2			0.27	1.1
Magnesium		6450	J		1.0	22.4
Manganese		249	J		0.036	0.22
Nickel		46.8	_		0.26	5.6
Potassium		3520	J		22.4	33.6
Selenium		2.1		J	0.45	4.5
Silver		ND			0.22	0.67
Sodium		189			14.6	157
Thallium		ND	J		0.34	6.7
Vanadium		25.7			0.12	0.56
Zinc		82.1	J		0.72	2.2

# **Analytical Data**

Client Sample ID:	MW-3 (7-9)					
Lab Sample ID:	480-85640-5				Date San	npled: 08/13/2015 1000
Client Matrix:	Solid	% Moistur	e: 7.0		Date Rec	ceived: 08/14/2015 0900
		6010C N	/letals (IC	P)		
Analysis Method:	6010C	Analysis Batch:	480-259	355	Instrument ID:	ICAP1
Prep Method:	3050B	Prep Batch: 480-258989			Lab File ID:	11081815A-7.asc
Dilution:	1.0	·			Initial Weight/Volume:	+0.5096 g
Analysis Date:	08/18/2015 1111				Final Weight/Volume:	50 mL
Prep Date:	08/17/2015 1140				5	
Analyte	DryWt Corrected	d: Y Result (r	na/Ka)	Qualifie	er MDL	RL
Aluminum	2.,	10400	J		4.6	10.6
Antimony		ND	J	<del>- F 1</del>	0.42	15.8
Arsenic		3.6			0.42	2.1
Barium		44.3	J	<del>F1</del>	0.12	0.53
Beryllium		0.49			0.030	0.21
Cadmium		0.14		J	0.032	0.21
Calcium		54500	J	B	3.5	52.8
Chromium		15.1	J		0.21	0.53
Cobalt		10.8			0.053	0.53
Copper		32.1	J		0.22	1.1
Iron		15500	J		3.7	10.6
Lead		12.2	_		0.25	1.1
Magnesium		12700	J		0.98	21.1
Manganese		368	J		0.034	0.21
Nickel		32.4			0.24	5.3
Potassium		2700	J	F <del>1</del>	21.1	31.7
Selenium		ND			0.42	4.2
Silver		ND			0.21	0.63
Sodium		173			13.7	148
Thallium		ND	-		0.32	6.3
Vanadium		17.6	J		0.12	0.53
Zinc		66.2	J		0.68	2.1

# **Analytical Data**

Client Sample ID:	MW-3 (9-10.2)						
Lab Sample ID:	480-85640-6					Date Sar	mpled: 08/13/2015 1015
Client Matrix:	Solid	% N	/loisture	: 7.7		Date Red	ceived: 08/14/2015 0900
		6	010C M	etals (ICI	P)		
Analysis Method:	6010C	Analysis F	Ratch:	480-259	355	Instrument ID:	ICAP1
Prep Method:	3050B	Analysis Batch: 480-259355 Prep Batch: 480-258989			Lab File ID:	11081815A-7.asc	
Dilution:	1.0	Fiep Ball		400-200	909		
						Initial Weight/Volume:	÷
Analysis Date:	08/18/2015 1135					Final Weight/Volume:	50 mL
Prep Date:	08/17/2015 1140						
Analyte	DryWt Corrected	:Y Re	esult (m	g/Kg)	Qualifie	er MDL	RL
Aluminum		12	2700	J		4.4	10.1
Antimony		NI	D	J		0.40	15.1
Arsenic		3.	6			0.40	2.0
Barium		47	7.2	J		0.11	0.50
Beryllium		0.	64			0.028	0.20
Cadmium		0.	072		J	0.030	0.20
Calcium		59	9200	J	B	3.3	50.3
Chromium		19	9.2	J		0.20	0.50
Cobalt			2.5			0.050	0.50
Copper		28	3.0	J		0.21	1.0
Iron			3300	J		3.5	10.1
Lead		13	3.8			0.24	1.0
Magnesium		93	390	J		0.93	20.1
Manganese		34	15	J		0.032	0.20
Nickel		38	3.9			0.23	5.0
Potassium			)70	J		20.1	30.2
Selenium		N				0.40	4.0
Silver		N				0.20	0.60
Sodium		23				13.1	141
Thallium		N		-		0.30	6.0
Vanadium		19		J		0.11	0.50
Zinc		50	).8	J		0.64	2.0

## Client: ARCADIS U.S. Inc

	General Chemistry									
Client Sample ID	): MW-2 (5-7)									
Lab Sample ID:	480-85640-1				Date	e Sampled:	08/12/2015 1530			
Client Matrix:	Solid	% Mois	sture: 7.9		Date	e Received:	08/14/2015 0900			
Analyte	Result	Qual	Units	MDL	RL	Dil	Method			
Cyanide, Total	ND		mg/Kg	0.52	1.1	1.0	9012B			
	Analysis Batch: 480-260089	Analysis Date	e: 08/24/20	15 1020		Dr	yWt Corrected: Y			
	Prep Batch: 480-260006	Prep Date: 08	8/24/2015 (	)155						
Analyte	Result	Qual	Units	RL	RL	Dil	Method			
Percent Moisture	7.9		%	0.10	0.10	1.0	Moisture			
	Analysis Batch: 480-258869	Analysis Date	e: 08/14/20	15 2159		Dr	yWt Corrected: N			
Percent Solids	92		%	0.10	0.10	1.0	Moisture			
	Analysis Batch: 480-258869	9 Analysis Date	e: 08/14/20	15 2159		Dr	yWt Corrected: N			

## Client: ARCADIS U.S. Inc

		Gene	eral Chemi	stry			
Client Sample ID	): MW-2 (9-13)						
Lab Sample ID:	480-85640-2				Dat	e Sampled:	08/12/2015 1550
Client Matrix:	Solid	% Mois	sture: 7.5		Dat	e Received:	08/14/2015 0900
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	1.1		mg/Kg	0.51	1.1	1.0	9012B
	Analysis Batch: 480-260089	9 Analysis Date	e: 08/24/20	15 1021		Dr	yWt Corrected: Y
	Prep Batch: 480-260006	Prep Date: 08	8/24/2015 0	155			
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	7.5		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258869	9 Analysis Date	e: 08/14/20	15 2159		Dr	yWt Corrected: N
Percent Solids	93	-	%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258869	9 Analysis Date					yWt Corrected: N

## Client: ARCADIS U.S. Inc

	General Chemistry								
Client Sample ID	): MW-7 (4-6)								
Lab Sample ID:	480-85640-3				Date	e Sampled:	08/12/2015 1400		
Client Matrix:	Solid	% Mois	ture: 13	.5	Date	e Received:	08/14/2015 0900		
Analyte	Result	Qual	Units	MDL	RL	Dil	Method		
Cyanide, Total	ND		mg/Kg	0.55	1.1	1.0	9012B		
	Analysis Batch: 480-260089	Analysis Date	: 08/24/20	15 1023		Dr	yWt Corrected: Y		
	Prep Batch: 480-260006	Prep Date: 08	8/24/2015	0155					
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	14		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-258869	Analysis Date	: 08/14/20	15 2159		Dr	yWt Corrected: N		
Percent Solids	86		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-258869	Analysis Date	e: 08/14/20	15 2159		Dr	yWt Corrected: N		

## Client: ARCADIS U.S. Inc

		Gene	eral Chemi	stry			
Client Sample ID	: MW-7 (6-8.3)						
Lab Sample ID:	480-85640-4				Date	e Sampled:	08/12/2015 1430
Client Matrix:	Solid	% Mois	ture: 9.4		Date	e Received:	08/14/2015 0900
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	ND		mg/Kg	0.53	1.1	1.0	9012B
	Analysis Batch: 480-260089	Analysis Date	: 08/24/20	15 1027		Dr	yWt Corrected: Y
	Prep Batch: 480-260006	Prep Date: 08	3/24/2015 (	)155			
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	9.4		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258869	Analysis Date	e: 08/14/20	15 2159		Dr	yWt Corrected: N
Percent Solids	91		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258869	Analysis Date	e: 08/14/20	15 2159		Dr	yWt Corrected: N

## Client: ARCADIS U.S. Inc

		Gene	eral Chemi	stry			
Client Sample ID	): MW-3 (7-9)						
Lab Sample ID:	480-85640-5				Date	e Sampled:	08/13/2015 1000
Client Matrix:	Solid	% Mois	sture: 7.0		Date	e Received:	08/14/2015 0900
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	ND		mg/Kg	0.50	1.0	1.0	9012B
	Analysis Batch: 480-260093	Analysis Date	e: 08/24/20	15 1054		Dr	yWt Corrected: Y
	Prep Batch: 480-260082	Prep Date: 08	8/24/2015 (	)740			
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	7.0		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258869	Analysis Date	e: 08/14/20	15 2159		Dr	yWt Corrected: N
Percent Solids	93		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258869	Analysis Date	e: 08/14/20	15 2159		Dr	yWt Corrected: N

## Client: ARCADIS U.S. Inc

	General Chemistry								
Client Sample ID	0: MW-3 (9-10.2)								
Lab Sample ID:	480-85640-6				Date	e Sampled:	08/13/2015 1015		
Client Matrix:	Solid	% Mois	ture: 7.7	,	Date	e Received:	08/14/2015 0900		
Analyte	Result	Qual	Units	MDL	RL	Dil	Method		
Cyanide, Total	ND		mg/Kg	0.51	1.1	1.0	9012B		
	Analysis Batch: 480-260089	Analysis Date	: 08/24/20	15 1031		Dr	yWt Corrected: Y		
	Prep Batch: 480-260006	Prep Date: 08	3/24/2015 (	0155					
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	7.7		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-258869	Analysis Date	e: 08/14/20	15 2159		Dr	yWt Corrected: N		
Percent Solids	92		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-258869	Analysis Date					yWt Corrected: N		



Imagine the result

# Rochester Gas & Electric – Geneseo Park Street Site

# **Data Usability Summary Report**

GENESEO, NEW YORK

Volatile, Semivolatile, Metals and Cyanide Analyses

SDG #480-85696-1

Analyses Performed By: TestAmerica Amherst, New York

Report #24468R Review Level: Tier III Project: B0013138.0002.00005

#### SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #480-85696-1 for samples collected in association with the Rochester Gas & Electric Geneseo Park Street Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Included with this assessment are the validation annotated sample result sheets and chain of custody. Analyses were performed on the following samples:

SDG				Sample	Parent	Analysis				
020	Sample ID	Lab ID	Matrix	Collection Date	Sample	voc	SVOC	ТРН	МЕТ	MISC
	SB-2 (7-9)	480-85696-1	Soil	8/13/2015		Х	Х		Х	Х
	TRIP BLANK	480-85696-10	Water	8/14/2015		Х				
	SB-2 (9-11)	480-85696-2	Soil	8/13/2015		Х	Х		Х	Х
	SB-1 (7-9)	480-85696-3	Soil	8/13/2015		Х	Х		Х	Х
400.05000	SB-1 (9-11)	480-85696-4	Soil	8/13/2015		Х	Х		Х	Х
480-85696	DUP-081315	480-85696-5	Soil	8/13/2015	SB-2 (7-9)	Х	Х		Х	Х
	SB-3 (7-9)	480-85696-6	Soil	8/13/2015		Х	Х		Х	Х
	SB-3 (9-11)	480-85696-7	Soil	8/13/2015		Х	Х		Х	Х
	SB-5 (9-11)	480-85696-8	Soil	8/14/2015		Х	Х		Х	Х
	SB-5 (11-13.5)	480-85696-9	Soil	8/14/2015		Х	Х		Х	Х

Note:

1. Miscellaneous parameters include total cyanide.

## ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted		mance ptable	Not
Items Reviewed	No	Yes	No	Yes	Required
1. Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		Х	
3. Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
11. Narrative summary of QA or sample problems provided		х		х	
12. Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

## **ORGANIC ANALYSIS INTRODUCTION**

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 8260C and 8270D. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
  - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
  - E The compound was quantitated above the calibration range.
  - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
  - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
  - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
  - UB Compound considered non-detect at the listed value due to associated blank contamination.
  - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

# **VOLATILE ORGANIC COMPOUND (VOC) ANALYSES**

#### 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260	(		Cool to <6 °C; preserved to a pH of less than 2 s.u.
48 hours from collection toSoilextraction and 14 days fromextraction to analysis		extraction and 14 days from	Cool to <6 °C.

All samples were analyzed within the specified holding time criteria.

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
SB-3 (9-11) SB-5 (11-13.5)	Acetone (TB)	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL
SB-2 (7-9) DUP-081315	Methylene chloride (MB)	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration
SB-2 (9-11)	2-Butanone	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL
36-2 (9-11)	Acetone (TB)	Detected cample results > PL and < BAL	"UB" at detected
SB-1 (9-11)	Acetone (TB) Detected sample results >RL and <bal B-1 (9-11)</bal 		sample concentration

RL Reporting limit

TB Trip Blank

MB Method Blank

#### 3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

#### 4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

#### 4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

#### 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
SB-2 (9-11) SB-1 (7-9) SB-1 (9-11)	ICV %RSD	Dichlorodifluoromethane	17.6%
SB-3 (7-9) SB-3 (9-11) SB-5 (9-11)		Dibromchloromethane	17.0%
SB-5 (11-13.5)	CCV %D	Vinyl chloride	22.1%
		Methylene chloride	16.9%
DUP-081315		Dibromchloromethane	20.0%
SB-2 (7-9)	ICV %RSD	Bromoform	18.2%
		1,2-Dibromo-3- Chloropropane	18.7%
DUP-081315	CCV %D	Bromoform	20.1%
TRIP BLANK	CCV %D	Dichlorodifluoromethane	-22.1%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	NNF <0.05	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	KKF 20.05 01 KKF 20.01	Detect	NO ACIION
	%RSD > 15% or a correlation	Non-detect	UJ
Initial Calibration	coefficient <0.99	Detect	J
	%RSD >90%	Non-detect	R
	%RSD >90%	Detect	J
	%D >20% (increase in sensitivity)	Non-detect	No Action
	%D >20% (Increase in sensitivity)	Detect	J
Continuing Colibration	0/D > 200/ (decrease in consitivity)	Non-detect	UJ
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J mpounds (i.e. kei

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

#### 5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

#### 6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

#### 7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established

acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD analysis was not performed on a sample location within this SDG.

#### 8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

#### 9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Cyclohexane	5000	890 U	NC
	Ethylbenzene	370	680 J	AC
SB-2 (7-9)/ DUP-081315	Isopropylbenzene	370	620 J	AC
	Methylcyclohexane	17000	30000	55.3%
	Total Xylenes	1100	1900	AC

Results for duplicate samples are summarized in the following table.

AC Acceptable

NC Not compliant

The compound Cyclohexane associated with sample locations SB-2 (7-9) and DUP-081315 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

#### 10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

Sample results associated with compound that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
SB-2 (9-11)	Cyclohexane	180 E	2300 D	2300 D
3B-2 (9-11)	Methylcyclohexane	310 E	7600 D	7600 D

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentrations greater than the linear range are qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

#### 11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260C	Repo	orted		mance otable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)			
Tier II Validation		I		1	
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х	Х		
B. Equipment blanks					Х
C. Trip blanks		Х	Х		
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate(LCSD)		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS)					Х
Matrix Spike Duplicate(MSD)					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)		Х	Х		
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation	•		•		•
System performance and column resolution		Х		X	
Initial calibration %RSDs		Х	Х		
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation		•	•	•	•
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		х		х	
D. Transcription/calculation errors present				Х	

VOCs: SW-846 8260C	Repo	Reported		mance otable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)					
<ul> <li>Reporting limits adjusted to reflect sample dilutions</li> </ul>		x		Х	
%RSD Relative standard deviation					

Percent recovery Relative percent difference Percent difference

%R RPD %D

## SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

#### 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270D	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6°C

All samples were analyzed within the specified holding time criteria.

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

#### 3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

#### 4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

#### 4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

#### 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
All samples associated with this SDG	CCV %D	Benzaldehyde	50.1%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	KKF <0.03	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	KKF 20.03 01 KKF 20.01	Detect	NO ACION
	%RSD > 15% or a correlation coefficient	Non-detect	UJ
Initial Calibration	<0.99	Detect	J
	%RSD >90%	Non-detect	R
	%NGD >90 %	Detect	J
	%D >20% (increase in sensitivity)	Non-detect	No Action
	/6D >20 % (Increase in sensitivity)	Detect	J
Continuing Colibration	% D > 20% (decrease in consitivity)	Non-detect	UJ
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

#### 5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Surrogate	Recovery
	Phenol-d6	D
	2-Fluorophenol	D
SR 5 (0.11)	2,4,6-Tribromophenol	D
SB-5 (9-11)	Nitrobenzene-d5	D
	2-Fluorobiphenyl	D
	Terphenyl-d14	D

D Dilution

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
	Detect	J
< LL but > 10%	Non-detect	UJ
	Detect	J
< 10%	Non-detect	R
	Detect	J
Surrogates diluted below the calibration curve due to the high concentration of a target compounds	Non-detect	- J ¹
	Detect	

A more concentrated analysis was not performed with surrogate compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

#### 6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

#### 7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD analysis was not performed on a sample location within this SDG.

### 8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Please note a reduced list of target analytes was used for the LCS analysis. All compounds associated with the LCS analysis exhibited recoveries within the control limits.

### 9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Acetophenone	1800 U	230 J	AC
SB-2 (7-9)/ DUP-081315	Naphthalene	1800 U	170 J	AC

AC Acceptable

U Not detected

The calculated RPDs between the parent sample and field duplicate were acceptable.

#### 10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

#### 11. System Performance and Overall Assessment

The laboratory noted the samples associated with SDG 480-85696 were analyzed at dilutions due to the extract appearance and viscosity; therefore elevated detection limits were provided.

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

## DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270D	Repo	orted	Perfor Accep		Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)			·	
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks		-			•	
A. Method blanks		Х		Х		
B. Equipment blanks					Х	
Laboratory Control Sample (LCS) %R		Х		Х		
Laboratory Control Sample Duplicate(LCSD) %R		х		x		
LCS/LCSD Precision (RPD)		Х		Х		
Matrix Spike (MS) %R					Х	
Matrix Spike Duplicate (MSD) %R					Х	
MS/MSD Precision (RPD)					Х	
Field/Lab Duplicate (RPD)		Х		Х		
Surrogate Spike Recoveries		Х	Х			
Dilution Factor		Х		Х		
Moisture Content		Х		Х		
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х	Х			
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
<ul> <li>C. RT of sample compounds within the established RT windows</li> </ul>		х		х		
D. Transcription/calculation errors present				Х		
<ul> <li>E. Reporting limits adjusted to reflect sample dilutions</li> <li>%RSD Relative standard deviation</li> </ul>		х		х		

%R RPD

Percent recovery Relative percent difference Percent difference %D

### **INORGANIC ANALYSIS INTRODUCTION**

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010C and 9012B. Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
  - B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).
- Quantitation (Q) Qualifiers
  - E The reported value is estimated due to the presence of interference.
  - N Spiked sample recovery is not within control limits.
  - * Duplicate analysis is not within control limits.
- Validation Qualifiers
  - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
  - UB Analyte considered non-detect at the listed value due to associated blank contamination.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

### METALS ANALYSES

### 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010C	Water	180 days from collection to analysis	Preserve to a pH of less than 2.

All samples were analyzed within the specified holding times.

### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. Therefore, sample results greater than the BAL resulted in the removal of the laboratory qualifier (B). No other qualification of the sample results was required.

### 3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

#### 3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. All initial calibration verification standard recoveries were within control limits.

All continuing calibration verification standard recoveries were within the control limit.

#### 3.2 Low Level Continuing Calibration Standard

The low level continuing calibration check standard (ICVL/CCVL) serves to verify the linearity of calibration of the analysis at the RL.

The ICVL/CCVL standard recoveries were within the control limits of 70 to 130%.

### 3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

### 4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

### 4.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD analysis was not performed on a sample location within this SDG.

### 4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for water matrices.

A laboratory duplicate analysis was not performed on a sample location within this SDG.

#### 5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Aluminum	11200	11200	0%
SB-2 (7-9)/ DUP-081315	Antimony	0.65 J	17.0 U	AC
	Arsenic	3.7	4.4	AC
	Barium	48.3	42.9	11.8%
	Beryllium	0.59	0.57	AC
	Cadmium	0.061 J	0.036 J	AC

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Calcium	60400	60200	0.3%
	Chromium	17.5	18.2	3.9%
	Cobalt	10.8	12.3	13.0%
	Copper	26.5	28.7	8.0%
	Iron	17100	19700	14.1%
	Lead	12.2	12.9	5.6%
	Magnesium	11100	11300	1.8%
	Manganese	349	374	6.9%
	Nickel	34.2	39.2	13.6%
	Potassium	2510	2200	13.2%
	Selenium	1.0 J	0.64 J	AC
	Sodium	407	336	19.1%
	Vanadium	16.9	15.8	6.7%
	Zinc	52.4	52.0	0.8%

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

### 6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

#### 7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

A serial dilution analysis was not performed on a sample location within this SDG.

#### 8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

## DATA VALIDATION CHECKLIST FOR METALS

METALS; SW-846 6010C	Rep	orted		rmance ptable	Not
,	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Atomic Emission S	pectrometry	(ICP)			
Tier II Validation					
Holding Times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Instrument Blanks		Х		Х	
B. Method Blanks		Х		Х	
C. Equipment/Field Blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Matrix Spike (MS) %R					Х
Matrix Spike Duplicate (MSD) %R					Х
MS/MSD Precision (RPD)					Х
Lab Duplicate (RPD)					Х
Field Duplicate (RPD)		Х		Х	
ICP Serial Dilution					Х
Reporting Limit Verification		Х		Х	
Raw Data		Х		Х	
Tier III Validation					
Initial Calibration Verification		Х		Х	
Continuing Calibration Verification		Х		Х	
CCVL Standard		Х		Х	
ICP Interference Check		Х		Х	
Transcription/calculations acceptable		Х		Х	
Reporting limits adjusted to reflect sample dilutions		Х		Х	

%R Percent recovery RPD Relative percent difference

### **GENERAL CHEMISTRY ANALYSES**

### 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Total Cyanide SW-846 9012B	Water	14 days from collection to analysis	Cool to <6°C; preserved to a pH of greater than 12.

All samples were analyzed within the specified holding times.

### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

### 3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All calibration standard recoveries were within the control limit.

#### 4. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

#### 4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of

four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory qualifier "N" will be removed.

The MS analysis exhibited recoveries within the control limits.

#### 4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

The laboratory duplicate analysis exhibited recoveries within the control limits.

### 5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
SB-2 (7-9)/DUP-081315	Cyanide	U	U	AC

AC Acceptable

U Not detected

The calculated RPDs between the parent sample and field duplicate were acceptable.

#### 6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit recoveries between the control limits of 80% and 120%.

All LCS recoveries were within control limits, with the exception of the analytes associated with sample locations, as presented in the following table.

Sample Location	Analytes	LCS Recovery
SB-5 (11-13.5)	Cyanide	>UL

The criteria used to evaluate the LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
the lower centrel limit (LL) but > 10%	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
- 109/	Non-detect	R
< 10%	Detect	J

### 7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

## DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

General Chemistry: SW-846 9012B	Rep	orted	Perfor Acce	Not Required	
	No	Yes	No	Yes	Kequileu
Miscellaneous Instrumentation					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х	Х		
Laboratory Control Sample Duplicate(LCSD) %R					х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate(MSD) %R					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation		•			
Initial calibration %RSD or correlation coefficient		Х		Х	
Continuing calibration %R		Х		Х	
Raw Data		Х		Х	
Transcription/calculation errors present				Х	
Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		Х		х	

%R RPD

Percent recovery Relative percent difference Percent difference %D

### SAMPLE COMPLIANCE REPORT

Sample					Compliancy ¹					Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	ТРН	MET	MISC	
	8/13/2015	SW846	SB-2 (7-9)	Soil	No	Yes	-	Yes	Yes	VOC: ICV %RSD, Meth Blk, FD%RPD
	8/14/2015	SW846	TRIP BLANK	Soil	No	-	-	-	-	VOC: CCV %D
	8/13/2015	SW846	SB-2 (9-11)	Soil	No	Yes	-	Yes	Yes	VOC: ICV %RSD, Trip Blk
	8/13/2015	SW846	SB-1 (7-9)	Soil	No	Yes	-	Yes	Yes	VOC: ICV %RSD
	8/13/2015	SW846	SB-1 (9-11)	Soil	No	Yes	-	Yes	Yes	VOC: ICV %RSD, Trip Blk
480-85696	8/13/2015	SW846	DUP-081315	Soil	No	Yes	-	Yes	Yes	VOC: ICV %RSD, Meth Blk, FD%RPD
	8/13/2015	SW846	SB-3 (7-9)	Soil	No	Yes	-	Yes	Yes	VOC: ICV %RSD
	8/13/2015	SW846	SB-3 (9-11)	Soil	No	Yes	-	Yes	Yes	VOC: ICV %RSD, Trip Blk
	8/14/2015	SW846	SB-5 (9-11)	Soil	No	No	-	Yes	Yes	VOC: ICV %RSD SVOC: Surrogate %Rec
	8/14/2015	SW846	SB-5 (11-13.5)	Soil	No	Yes	-	Yes	Yes	VOC: ICV %RSD, Trip Blk

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Jeff

Jeffrey L. Davin

SIGNATURE:

DATE: October 21, 2015

PEER REVIEW: Joseph C. Houser

DATE: October 23, 2015

### CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of		Temperature on Receipt	on Receipt	F	TestAme	JE JE	
Custody Record		Drinking Water? Yes			THE LEADER IN ENVIRONME		430-85696 Chain of Custody
Client ACCADTS /RGE		Project Manage	Rence	thress		Date 8.14,15	Chain of Custody Number 297360
Address 295 HOORCHIF D.VC		Telephone Number	r Area Cod	e)/Fax Number OD & D		Lab Number	Page of f
State	Zp Code	Site Contact Klauxe	REWLY N	Lab Contact Melisse Mar	Ana mon	Analysis (Attach list if more space is needed)	
ion (State) v k Steck		Carrier/Waybill Nun	ther the		Spep Jo		Snacial Instructions/
Contract/Purchase Order/Quote No.			Matrix	E Containers &			Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	snoenby JIV eui	səidun Ilos pəş	HOBN /24UZ HOBN IOH EONH	141 771. 771		
                                                             	SISIS	<u>S</u>	4	~	12243		
50 -2 (g-11)	~	0/51					
58-1 (7-9)		(550					
58-1 (9-11)		୍ବ					-
DGP- GUIS		at a					
SB-3 (F4)		اكارك			$\gamma \gamma \gamma \gamma \gamma \gamma \gamma$		
SB - 3 (q-11)	7	isis	€ •	7	XXXX		
53-5 (q-n)	8,14,15	S.	र भ	~	× × × × ~		
5R-5 (1-13.5)	-1	000	r r	t	XXX XX X		
TRIP BLANK	8,14,15	8			×.		
Identification	- {	San		6	attart		(A fee may be assessed if samples are retained
Tum Around Time Required Above 14 Dave			ient	OC Requirements (Specify	acity)	Months longer than 1 i	nonth)
all 1. noll			Time	1. Received By	1 100 1100		Date Times
CINCH, 13K 2. Relinquished By		8.14.15 Date	Time 1208	C.a. MV 7021	Wurule		Date Time
3. Relinquished By		Date	Time	3. Received By			Date
Comments							
		new PINK - Field CODY	K - Field Copy			C IT	G

. .....

## DATA REPORTING QUALIFIERS

Lab Section	Qualifier	Description
GC/MS VOA		
	В	Compound was found in the blank and sample.
	E	Result exceeded calibration range.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC/MS Semi VOA		
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	Х	Surrogate is outside control limits
Metals		
	В	Compound was found in the blank and sample.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
General Chemistry		
	*	LCS or LCSD is outside acceptance limits.
	4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	SB-2 (7-9)						
Lab Sample ID: Client Matrix:	480-85696-1 Solid	% Moistur	re: 8.6				npled: 08/13/2015 1500 ceived: 08/15/2015 0900
	82	60C Volatile Organ	ic Compound	ls by G	C/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 4.0 08/21/2015 1452 08/13/2015 1130	Analysis Batch: Prep Batch:	480-259811 480-259512				HP5973G G41628.D 6.629 g 10 mL
Analyte	DryWt Correcte	d: Y Result (	ug/Kg)	Qualifie	er	MDL	RL
1,1,1-Trichloroetha	ane	ND				97	350
1,1,2,2-Tetrachlor		ND				57	350
1,1,2-Trichloro-1,2		ND				170	350
1,1,2-Trichloroetha		ND				73	350
1,1-Dichloroethane		ND				110	350
1,1-Dichloroethene		ND				120	350
1,2,4-Trichloroben		ND				130	350
1,2-Dibromo-3-Chl	oropropane	ND J				170	350
1,2-Dibromoethan		ND				61	350
1,2-Dichlorobenze		ND				89	350
1,2-Dichloroethane		ND				140	350
1,2-Dichloropropa		ND				57	350
1,3-Dichlorobenze		ND				93	350
1,4-Dichlorobenze		ND				49	350
2-Butanone (MEK)		ND				1000	1700
2-Hexanone		ND				720	1700
4-Methyl-2-pentan	one (MIBK)	ND				110	1700
Acetone		ND				1400	1700
Benzene		ND				66	350
Bromodichloromet	nane	ND				70	350
Bromoform		ND J				170	350
Bromomethane		ND				77	350
Carbon disulfide Carbon tetrachlorid	da	ND				160	350
	le	ND				89 46	350
Chlorobenzene		ND ND				40 73	350 350
Chloroethane Chloroform		ND				240	350
Chloromethane		ND				83	350
cis-1,2-Dichloroeth	lene	ND				96	350
cis-1,3-Dichloropro		ND				83	350
Cyclohexane	pene	5000	J			78	350
Dibromochloromet	hane	ND	J			170	350
Dichlorodifluorome		ND	-			150	350
Ethylbenzene		370				100	350
Isopropylbenzene		370				52	350
Methyl acetate		ND				170	350
Methyl tert-butyl et	her	ND				130	350
Methylcyclohexane		17000				160	350
Methylene Chlorid		750	-	B	UB J	69	350
Styrene		ND				84	350
Tetrachloroethene		ND				47	350
Toluene		ND				94	350
trans-1,2-Dichloroe	ethene	ND				82	350
trans-1,3-Dichloro		ND				34	350
Trichloroethene		ND				97	350
Trichlorofluoromet	hane	ND				160	350

**TestAmerica Buffalo** 

### Client: ARCADIS U.S. Inc

Client Sample ID	SB-2 (7-9)				
Lab Sample ID: Client Matrix:	480-85696-1 Solid	% Moistur	e: 8.6		ampled: 08/13/2015 1500 eceived: 08/15/2015 0900
	820	60C Volatile Organ	ic Compounds I	by GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 4.0 08/21/2015 1452 08/13/2015 1130	Analysis Batch: Prep Batch:	480-259811 480-259512	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume	e e
Analyte	DryWt Corrected	d: Y Result (u	ıg/Kg) Qu	alifier MDL	RL
Vinyl chloride Xylenes, Total		ND 1100		120 190	350 700
Surrogate 1,2-Dichloroethane 4-Bromofluoroben Dibromofluoromet Toluene-d8 (Surr)	zene (Surr)	%Rec 112 86 102 85	Qı	alifier Accept 53 - 14 49 - 14 60 - 14 50 - 14	8 0

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	SB-2 (9-11)									
Lab Sample ID: Client Matrix:	480-85696-2 Solid								npled: 08/13/201 eived: 08/15/201	
		8260C Volat	ile Organi	c Corr	npour	nds by	GC/MS			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035 1.0 08/19/2015 1328 08/15/2015 1130	Analys Prep E	sis Batch: 3atch:	480-: 480-:	25934 25939		Lab F Initial	iment ID: ile ID: Weight/Volume: Weight/Volume:	HP5973F F0241.D 6.764 g 5 mL	
Analyte	DryWt Cori	rected: N	Result (u	g/Kg)		Qua	lifier	MDL	RL	
1,1,1-Trichloroetha	ane		ND					0.27	3.7	
1,2-Dichlorobenze	ne		ND					0.29	3.7	
1,1,2,2-Tetrachloro	bethane		ND					0.60	3.7	
1,1,2-Trichloroetha			ND					0.48	3.7	
1,1,2-Trichloro-1,2	,2-trifluoroethane		ND					0.84	3.7	
1,1-Dichloroethane	9		ND					0.45	3.7	
1,1-Dichloroethene	9		ND					0.45	3.7	
1,2,4-Trichloroben	zene		ND					0.22	3.7	
1,2-Dibromo-3-Chl	oropropane		ND					1.8	3.7	
1,2-Dichloroethane	9		ND					0.19	3.7	
1,2-Dichloropropar	ne		ND					1.8	3.7	
1,3-Dichlorobenze	ne		ND					0.19	3.7	
1,4-Dichlorobenze	ne		ND					0.52	3.7	
2-Butanone (MEK)		18	3.6			<del></del>	UB	1.4	18	
2-Hexanone			ND					1.8	18	
4-Methyl-2-pentan	one (MIBK)		ND					1.2	18	
Acetone			18		UB			3.1	18	
Benzene			2.4			J		0.18	3.7	
Bromodichloromet	hane		ND					0.50	3.7	
Bromoform			ND					1.8	3.7	
Bromomethane			ND					0.33	3.7	
Carbon disulfide			ND					1.8	3.7	
Carbon tetrachlorio	de		ND					0.36	3.7	
Chlorobenzene			ND					0.49	3.7	
Dibromochloromet	hane		ND J					0.47	3.7	
Chloroethane			ND					0.84	3.7	
Chloroform			ND					0.23	3.7	
Chloromethane			ND					0.22	3.7	
cis-1,2-Dichloroeth			ND ND					0.47 0.53	3.7	
cis-1,3-Dichloropro	pene	2300				<del>-</del>	D		3.7	
Cyclohexane Dichlorodifluorome	thono	2300	1 <del>80</del> ND J			L	Ľ	0.52 0.31	3.7 3.7	
Ethylbenzene	linane		37					0.26	3.7	
1,2-Dibromoethane	<b>`</b>		ND					0.20	3.7	
Isopropylbenzene	5		22					0.56	3.7	
Methyl acetate			ND					2.2	3.7	
Methyl tert-butyl et	hor		ND					0.36	3.7	
Methylcyclohexane		7600	<del>310 -</del>			E	-	0.56	3.7	
Methylene Chlorid			ND			-	D	1.7	3.7	
Styrene	-		ND					0.18	3.7	
Tetrachloroethene			ND					0.50	3.7	
Toluene			10					0.28	3.7	
trans-1,2-Dichloroe	othene		ND					0.38	3.7	
trans-1,3-Dichlorop			ND					1.6	3.7	
Trichloroethene			ND					0.81	3.7	
Trichlorofluoromet	hane		ND					0.35	3.7	
								0.00	0.7	

TestAmerica Buffalo

## Client: ARCADIS U.S. Inc

Client Sample ID:	SB-2 (9-11)					
Lab Sample ID: Client Matrix:	480-85696-2 Solid					npled: 08/13/2015 1510 eived: 08/15/2015 0900
	8260	C Volatile Organi	c Compounds	s by GC	C/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035 1.0 08/19/2015 1328 08/15/2015 1130	Analysis Batch: Prep Batch:	480-259347 480-259392	L	nstrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP5973F F0241.D 6.764 g 5 mL
Analyte	DryWt Corrected:	N Result (u	g/Kg) C	Qualifier	r MDL	RL
Vinyl chloride		ND			0.45	3.7
Xylenes, Total		67			0.62	7.4
Surrogate		%Rec	C	Qualifier	r Acceptan	ce Limits
Toluene-d8 (Surr)		119			71 - 125	
1,2-Dichloroethane	. ,	110			64 - 126	
4-Bromofluorobenz Dibromofluorometh		95 69			72 - 126 60 - 140	

## **Analytical Data**

Job Number: 480-85696-1

ab Sample ID: Client Matrix:	480-85696-2 Solid	% Moisture	e: 5.7			mpled: 08/13/2015 1 ceived: 08/15/2015 0
	82600	Volatile Organi	c Compound	ls by G	C/MS	
Prep Method.	3260C 5035A 2.0	Analysis Batch: Prep Batch:	480-259811 480-259512	2	Instrument ID: Lab File ID:	HP5973G G41629.D
Analysis Date:	2.0 08/21/2015 1514 08/13/2015 1130	Run Type:	DL		Initial Weight/Volume: Final Weight/Volume:	6.687 g 10 mL
Analyte	DryWt Corrected: Y	′ Result (u	g/Kg)	Qualifie	er MDL	RL
1,1,1-Trichloroethan	ie 🔪	ND			46	160
1,1,2,2-Tetrachloroe	ethane	ND			27	160
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND			82	160
1,1,2-Trichloroethan		ND			35	160
1,1-Dichloroethane	$\mathbf{X}$	ND			51	160
1,1-Dichloroethene	$\mathbf{X}$	ND			57	160
1,2,4-Trichlorobenze	ene	ND			62	160
1,2-Dibromo-3-Chlo		ND			82	160
1,2-Dibromoethane		ND			29	160
1,2-Dichlorobenzene		ND			42	160
1,2-Dichloroethane		ND			67	160
1,2-Dichloropropane		ND			27	160
1,3-Dichlorobenzene		ND			44	160
1,4-Dichlorobenzene		ND			23	160
2-Butanone (MEK)	5	ND			490	820
2-Butanone (MER)		ND			340	820
					53	
4-Methyl-2-pentanor		ND				820 820
Acetone		ND	<b>`</b>		680	
Benzene		43	$\mathbf{X}$	J	31	160
Bromodichlorometha	ane	ND	$\mathbf{X}$		33	160
Bromoform		ND	$\sim$		82	160
Bromomethane		ND			36	160
Carbon disulfide		ND			75	160
Carbon tetrachloride	2	ND	$\sim$		42	160
Chlorobenzene		ND		$\backslash$	22	160
Chloroethane		ND		$\mathbf{X}$	34	160
Chloroform		ND			110	160
Chloromethane		ND			39	160
cis-1,2-Dichloroethe		ND			45	160
cis-1,3-Dichloroprop	ene	ND			39	160
Cyclohexane		2300			37	160
Dibromochlorometha		ND			80	160
Dichlorodifluorometh	nane	ND			72	160
Ethylbenzene		230			₹2 48	160
Isopropylbenzene		130		J	25	160
Methyl acetate		ND			78	160
Methyl tert-butyl eth	er	ND			62	160
Methylcyclohexane		7600			77	160
Methylene Chloride		250		В	33	160
Styrene		ND			40	160
Tetrachloroethene		ND			22	160
Toluene		82		J	44	160
trans-1,2-Dichloroet	hene	ND		-	39	160
trans-1,3-Dichloropr		ND			16	160
	opene	ND			46	160
Trichloroethene		INI I			4h	Inu 🔪

TestAmerica Buffalo

### Client: ARCADIS U.S. Inc

Lab Sample ID: Client Matrix:	480-85696-2 Solid	% Moisture	e: 5.7			npled: 08/13/2015 1510 eived: 08/15/2015 0900
	826	60C Volatile Organi	c Compounds	by GC/MS		
Analysis Method: Prep Method: Dilution:	8260C 5035A 2.0	Analysis Batch: Prep Batch:	480-259811 480-259512	Lab Fil	nent ID: e ID: Veight/Volume:	HP5973G G41629.D 6.687 g
Analysis Date: Prep Date:	08/21/2015 1514 08/13/2015 1130	Run Type:	DL		/eight/Volume:	10 mL
Analyte	DryWt Corrected	d: Y Result (u	g/Kg) G	alifier	MDL	RL
Vinyl chloride Xylenes, Total		ND 410			55 91	160 330
Surrogate 1,2-Dichloroethane 4-Bromofluorobenz Dibromofluorometh Toluene-d8 (Surr)	ene (Surr)	%Rec 110 90 105 89		Qualifier	Acceptan 53 - 146 49 - 148 60 - 140 50 - 149	ce Limits

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	SB-1 (7-9)							
Lab Sample ID: Client Matrix:	480-85696-3 Solid						npled: 08/13/2 ceived: 08/15/2	
	8260	C Volatile Organi	c Compound	ls by G	C/MS			
Analysis Method: Prep Method:	8260C 5035	Analysis Batch: Prep Batch:	480-259347 480-259392		Instrument II Lab File ID:	D:	HP5973F F0242.D	
Dilution:	1.0	r top Baton.	100 200002	-	Initial Weight	t/Volume [.]	7.357 g	
Analysis Date:	08/19/2015 1354				Final Weight		5 mL	
Prep Date:	08/15/2015 1130				i illa i toigite		•	
Analyte	DryWt Corrected:	N Result (u	g/Kg)	Qualifie			RL	
1,1,1-Trichloroetha		ND			0.25		3.4	
1,2-Dichlorobenze		ND			0.27		3.4	
1,1,2,2-Tetrachlor		ND			0.5		3.4	
1,1,2-Trichloroetha		ND			0.44		3.4	
1,1,2-Trichloro-1,2		ND			0.77		3.4	
1,1-Dichloroethane		ND			0.4		3.4	
1,1-Dichloroethene		ND			0.42		3.4	
1,2,4-Trichloroben		ND			0.2		3.4	
1,2-Dibromo-3-Ch		ND			1.7		3.4	
1,2-Dichloroethane		ND			0.17		3.4	
1,2-Dichloropropa		ND			1.7		3.4	
1,3-Dichlorobenze		ND			0.17		3.4	
1,4-Dichlorobenze		ND ND			0.48 1.2	D	3.4 17	
2-Butanone (MEK)	)	ND			1.2		17	
4-Methyl-2-pentan	one (MIRK)	ND			1.1		17	
Acetone		ND			2.9		17	
Benzene		ND			0.17	7	3.4	
Bromodichloromet	hane	ND			0.46		3.4	
Bromoform	hano	ND			1.7		3.4	
Bromomethane		ND			0.3		3.4	
Carbon disulfide		ND			1.7		3.4	
Carbon tetrachlori	de	ND			0.33		3.4	
Chlorobenzene		ND			0.4		3.4	
Dibromochloromet	hane	ND J			0.43	3	3.4	
Chloroethane		ND			0.77	7	3.4	
Chloroform		ND			0.2	1	3.4	
Chloromethane		ND			0.2	1	3.4	
cis-1,2-Dichloroeth		ND			0.43		3.4	
cis-1,3-Dichloropro	opene	ND			0.49		3.4	
Cyclohexane		ND			0.48		3.4	
Dichlorodifluorome	ethane	ND J			0.28		3.4	
Ethylbenzene		ND			0.23		3.4	
1,2-Dibromoethan	9	ND			0.44		3.4	
Isopropylbenzene		ND			0.5	1	3.4	
Methyl acetate		ND			2.1	•	3.4	
Methyl tert-butyl ei		ND			0.33		3.4	
Methylcyclohexan		ND			0.52	2	3.4	
Methylene Chlorid	C C	ND			1.6	7	3.4	
Styrene Tetrachloroethene		ND ND			0.1 0.40		3.4 3.4	
					0.40			
Toluene trans-1,2-Dichloro	athene	ND ND			0.20		3.4 3.4	
trans-1,3-Dichloro		ND			1.5	0	3.4 3.4	
Trichloroethene	oroherie	ND			0.7	5	3.4 3.4	
Trichlorofluoromot	h =				0.73		3.4 2.4	

Trichlorofluoromethane

ND

3.4

0.32

### Client: ARCADIS U.S. Inc

Client Sample ID:	SB-1 (7-9)					
Lab Sample ID: Client Matrix:	480-85696-3 Solid					npled: 08/13/2015 1550 eived: 08/15/2015 0900
	8260	C Volatile Organi	c Compounds	by GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035 1.0 08/19/2015 1354 08/15/2015 1130	Analysis Batch: Prep Batch:	480-259347 480-259392	Instrument Lab File ID Initial Weig Final Weigl	ht/Volume:	HP5973F F0242.D 7.357 g 5 mL
Analyte	DryWt Corrected:	N Result (u	g/Kg) Qi	ualifier M	DL	RL
Vinyl chloride		ND		0.4	41	3.4
Xylenes, Total		ND		0.	57	6.8
Surrogate		%Rec	Q	ualifier	Acceptan	ce Limits
Toluene-d8 (Surr)		105			71 - 125	
1,2-Dichloroethane	. ,	116			64 - 126	
4-Bromofluorobenz	· · · ·	106			72 - 126	
Dibromofluorometh	nane (Surr)	109			60 - 140	

## **Analytical Data**

Lab Sample ID:         340-85696-4         Date Sample Sample Solution         Date Received: 08/15/2015 0900           Client Matrix         Solid         Description         Date Received: 08/15/2015 0900           Analysis Method:         8260C Volatile Organic Compounds by GC/MS         Instrument ID:         HP5873F           Prep Method:         5035         Prep Batch:         480-259347         Instrument ID:         HP5873F           Analysis Data:         08/15/2015 1130         Final WeightV/Volume:         5.345 g         Final WeightV/Volume:         5.345 g           Analysis Data::         08/15/2015 1130         ND         0.29         3.9           1.1.2.1.Trinkincorethrane         ND         0.41         3.9           1.1.2.2.Trinkincorethrane         ND         0.43         3.9           1.1.2.1.Trinkincor.1.2.2.st/funcorethrane         ND         0.44         3.9           1.1.2.1.Trinkincor.1.2.2.st/funcorethrane         ND         0.20         3.9           1.2.2.Dichloropherzene         ND         0.20         3.9           1.2.2.Dichloropherzene         ND         0.20         3.9           1.2.2.Trinkinor.1.2.2.st/funcorethrane         ND         0.20         3.9           1.2.Dichlorophorzene         ND         0.20	Client Sample ID:	SB-1 (9-11)								
Analysis Method:         8280C         Analysis Batch:         480-259347         Instrument ID:         HP5973F           Prep Method:         5035         Prep Batch:         480-259392         Instrument ID:         HP5973F           Analysis Date:         08/19/2015         1420         Final WeightVolume:         5 mL           Prep Date:         08/15/2015         1130         Final WeightVolume:         5 mL           Analyse         Dr/Wt Corrected: N         Result (ug/Kg)         Qualifier         MDL         RL           1,12Trichioroethane         ND         0.31         3.9         1.2.2.5tettAchorethane         ND         0.44         3.9           1,12.2-TettAchorethane         ND         0.48         3.9         1.1.2.7trichioroethane         ND         0.43         3.9           1,12.2-Tichioroethane         ND         0.48         3.9         1.2.01chorethane         ND         0.20         3.9           1,2.2-Tichiorosochance         ND         0.20         3.9         1.2.01chorethane         ND         0.20         3.9           1,2.2-Tichiorosochance         ND         1.4         2.0         3.9         1.2.01chorethane         ND         0.20         3.9           1,2.01chorosochance <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>									-	
Prep Method:5035Prep Batch:480-25930Lab File ID:F0243.DAnalysis Date:08/19/2015 1420Initial Weight/Volume:5 mLPrep Date:04/15/2015 1130SAnalyteDryWt Corrected: NResult (ug/Kg)QualifierMDLRL1,1-1 TrichioroethaneND0.293.91,2-DichioroethaneND0.6413.91,1.2.TrichioroethaneND0.6443.91,1.2.TrichioroethaneND0.6443.91,1.2.TrichioroethaneND0.4883.91.1-DichioroethaneND0.203.91.2-DichioroethaneND0.203.91.2-DichioroethaneND0.203.91.2-DichioroethaneND0.203.91.2-DichioroethaneND0.203.91.2-DichioroethaneND0.203.91.3-DichioroethaneND0.203.91.4-DichioroethaneND0.253.91.3-DichioroethaneND0.553.92-DichioroethaneND0.333.91.4-DichioroethaneND0.353.91.4-DichioroethaneND0.353.91.4-DichioroethaneND0.353.91.4-DichioroethaneND0.353.91.4-DichioroethaneND0.353.91.4-DichioroethaneND0.353.91.4-DichioroethaneND0.353.91.4-DichioroethaneND<			8260C Vo	latile Organi	c Compour	nds by	GC/MS	;		
Diktion:         1.0         Initial Weight/Volume:         6.345 g           Analysis Date:         08/15/2015 1130         Final Weight/Volume:         5 mL           Analyte         DryWt Corrected: N         Result (ug/Kg)         Qualifier         MDL         RL           1.1.1-Trichloroethane         ND         0.29         3.9           1.2-Dichloroethane         ND         0.641         3.9           1.1.2-Trichloroethane         ND         0.643         3.9           1.1.2-Trichloroethane         ND         0.488         3.9           1.1.2-Trichloroethane         ND         0.448         3.9           1.1.2-Dichloroethane         ND         0.24         3.9           1.2-Dichloroethane         ND         0.20         3.9           1.3-Dichloroethane         ND         0.55         3.9           2-Betranone (MEK)         ND         1.3         20           2-Hexanone	-			•						
Analysis Date:       08/19/2015 1430       Final WeightVolume:       5 mL         Prep Date:       08/15/2015 1130       ND       0.29       3.9         Analyte       DryWt Corrected: N       Result (ug/Kg)       Qualifier       MDL       Result (ug/Kg)         Analyte       DryWt Corrected: N       ND       0.31       3.9         1,13-Trichioroethane       ND       0.641       3.9         1,12-Trichioroethane       ND       0.643       3.9         1,12-Trichioroethane       ND       0.484       3.9         1,12-Trichioroethane       ND       0.443       3.9         1,2-Trichioroethane       ND       0.20       3.9         1,2-Dichioroethane       ND       0.55       3.9         2-Uexanone       ND       0.53       3.9 <td< td=""><td>-</td><td></td><td>Pie</td><td>р ваксп.</td><td>400-2093</td><td>92</td><td></td><td></td><td></td><td></td></td<>	-		Pie	р ваксп.	400-2093	92				
Prep Date:         08/15/2015 1130           Analyte         DryWL Corrected: N         Result (ug/Kg)         Qualifier         MDL         RL           1,1,1-Trichlorosethane         ND         0.29         3.9           1,2-Dichlorosethane         ND         0.31         3.9           1,12-Trichlorosethane         ND         0.64         3.9           1,12-Trichlorosethane         ND         0.48         3.9           1,12-Trichlorosethane         ND         0.48         3.9           1,12-Trichlorosethane         ND         0.48         3.9           1,12-Trichlorosethane         ND         0.20         3.9           1,2-Dichlorosethane         ND         1.3         2.0           1,2-Dichlorosethane         ND         0.55         3.9           2-Dichlorosethane         ND         0.53         3.9									-	
1.1_frichloroethane         ND         0.0         0.29         3.9           1.2_Dichloroethane         ND         0.31         3.9           1.1_2_Trichloroethane         ND         0.51         3.9           1.1_2_Trichloroethane         ND         0.51         3.9           1.1_2_Trichloroethane         ND         0.44         3.9           1.1_Dichloroethane         ND         0.48         3.9           1.1_Dichloroethane         ND         0.48         3.9           1.2_Dibrono-S-Chloropropane         ND         0.20         3.9           1.2_Dichloroethane         ND         0.20         3.9           1.2_Dichloropting         ND         0.20         3.9           1.2_Dichloropting         ND         0.20         3.9           1.2_Dichloropting         ND         0.20         3.9           1.4_Dichlorobenzene         ND         0.55         3.9           2_Butanone (MEK)         ND         1.3         20           2_Hetanone (MIBK)         ND         0.33         3.9           Bromodorm         ND         0.35         3.9           Bromodorm         ND         0.38         3.9           Ca	•								•	
1.2-DichlorobenzeneND0.313.91.1.2-TrichloroethaneND0.643.91.1.2-TrichloroethaneND0.903.91.1.2-Trichloro-1.2.2-trifluoroethaneND0.483.91.1-DichloroethaneND0.483.91.1-DichloroethaneND0.243.91.2-DichloroethaneND0.203.91.2-DichlorobenzeneND0.203.91.2-DichloroethaneND0.203.91.2-DichloroethaneND0.203.91.2-DichlorobenzeneND0.203.91.3-DichlorobenzeneND0.553.91.4-DichlorobenzeneND0.553.92-Butanone (MEK)ND1.4202-HexanoneND0.193.92-Butanone (MEK)ND0.193.9BromodichloromethaneND0.533.9BromodichloromethaneND0.533.9BromodichloromethaneND0.523.9Carbon distlifeND0.523.9ChlorobenzeneND0.523.9ChlorobenzeneND0.523.9ChlorobenzeneND0.523.9ChlorobenzeneND0.523.9ChlorobenzeneND0.523.9ChlorobenzeneND0.523.9ChlorobenzeneND0.523.9ChlorobenzeneND0.523.9ChlorobenzeneND0.	-	•	rected: N	-	g/Kg)	Qual	ifier			
1,1,2-TickloroethaneND0.643.91,1,2-TickloroethaneND0.903.91,1-DickloroethaneND0.483.91,1-DickloroethaneND0.483.91,1-DickloroetheneND0.483.91,2-DickloroetheneND0.243.91,2-DickloroetheneND2.03.91,2-DickloroetheneND0.203.91,2-DickloroetheneND0.203.91,2-DickloroetheneND0.203.91,2-DickloroetheneND0.203.91,2-DickloroetheneND0.203.91,3-DickloroberzeneND0.203.91,4-DickloroberzeneND0.203.91,4-DickloroberzeneND1.4202-Hetanone (MEK)ND1.320Acetone206.7J< UB										
1,12-TrichloroethaneND0,513,91,12-Trichloro-1,2.2-trifluroethaneND0,483,91,1-DichloroethaneND0,483,91,1-DichloroethaneND0,243,91,2-DichloroethaneND2,03,91,2-DichloroethaneND2,03,91,2-DichloroethaneND0,203,91,2-DichloroethaneND0,203,91,3-DichloroberzeneND0,203,91,3-DichloroberzeneND0,553,92-Butanone (MEK)ND1,4202-HexanoneND2,0202-HexanoneND2,03,92-HexanoneND1,3202-HexanoneND1,3203-BenzeneND0,193,9BromodichloromethaneND0,353,9BromodichloromethaneND0,353,9BromodichloromethaneND0,353,9Carbon titrachlorideND0,523,9ChloroberzeneND0,523,9ChloroberzeneND0,553,9ChloroberzeneND0,553,9ChloroberzeneND0,553,9ChloroberzeneND0,553,9ChloroberzeneND0,553,9ChloroberzeneND0,553,9ChloroberzeneND0,553,9ChloroberzeneND0,553,9Chloroberzen										
1,1-2-Inchloro-1,2.2-trifluoroethaneND0.403.91,1-DichloroethaneND0.483.91,1-DichloroethaneND0.243.91,2-Libromo-3-ChloropropaneND2.03.91,2-DichloroethaneND2.03.91,2-DichloroethaneND2.03.91,2-DichloroethaneND2.03.91,2-DichloroethaneND2.03.91,3-DichlorobenzeneND0.203.91,4-DichlorobenzeneND1.4202-Butanone (MEK)ND1.4202-Heatnone (MEK)ND1.3202-Heatnone (MIBK)ND3.320BerneneND0.533.9BromodichloromethaneND0.533.9BromodichloromethaneND0.533.9BromodichloromethaneND0.533.9Carbon tetrachlordeND0.523.9ChlorobenzeneND0.533.9ChloroethaneND0.533.9ChloroethaneND0.533.9ChloroethaneND0.533.9ChloroethaneND0.533.9ChloroethaneND0.533.9ChloroethaneND0.533.9ChloroethaneND0.533.9ChloroethaneND0.533.9ChloroethaneND0.533.9ChloroethaneND0.533.9										
1,1-DichloroethaneND0.483.91,1-DichloroethaneND0.243.91,2-DichloroethaneND0.243.91,2-DichloroethaneND0.203.91,2-DichloroethaneND0.203.91,2-DichloroethaneND0.203.91,3-DichloroberzeneND0.253.91,4-DichloroberzeneND0.553.92-Butanone (MEK)ND1.4202-HexanoneND1.3202-HexanoneND0.193.92-HoromethaneND0.193.9BromoformND0.193.9BromoformND0.353.9BromoformND0.353.9BromoformND0.383.9Carbon disulfideND0.383.9ChloroberzeneND0.523.9DibromochloromethaneND0.523.9ChloroberzeneND0.523.9ChloroberzeneND0.523.9ChloroberzeneND0.523.9ChloroberzeneND0.553.9ChloroethaneND0.553.9ChloroethaneND0.553.9ChloroethaneND0.553.9ChloroethaneND0.553.9ChloroethaneND0.553.9ChloroethaneND0.553.9ChloroethaneND0.553.9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1,1-DichloroetheneND0.483.91,2.4-TrichlorobenzeneND0.243.91,2-DichoroethaneND2.03.91,2-DichloropropaneND2.03.91,2-DichloropropaneND0.203.91,3-DichloroporpaneND0.203.91,3-DichlorobenzeneND0.203.91,4-DichlorobenzeneND0.203.91,4-DichlorobenzeneND1.4202-Hatanone (MEK)ND1.4202-Hexanone (MEK)ND1.320Acetone2.06.7TTTAcetone2.06.73.320BromodichloromethaneND0.533.9BromodichloromethaneND0.353.9BromodichloromethaneND0.383.9Carbon disulfideND0.383.9ChlorobenzeneND0.553.9ChloromethaneND0.503.9ChloromethaneND0.553.9ChloromethaneND0.553.9ChloromethaneND0.553.9ChloromethaneND0.553.9ChloromethaneND0.553.9ChloromethaneND0.553.9ChloromethaneND0.553.9ChloromethaneND0.553.9ChloromethaneND0.553.9ChloromethaneND0.553.9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1,2.4 TichlorobenzeneND0.243.91,2.2 DichloropropaneND2.03.91,2.2 DichloropropaneND0.203.91,2.2 DichloropropaneND0.203.91,3.2 DichlorobenzeneND0.203.91,4.2 DichlorobenzeneND0.203.91,4.2 DichlorobenzeneND0.553.92.4 Buanone (MEK)ND1.4202.4 HexanoneND1.3202.4 Adetone2.0677VB3.3203.93.9BromodichloromethaneND0.193.9BromodichloromethaneND0.353.9BromodichloromethaneND0.353.9Carbon disulfideND0.383.9ChlorobenzeneND0.503.9ChlorobenzeneND0.523.9DibromochloromethaneND0.523.9ChlorobenzeneND0.503.9ChlorobenzeneND0.503.9ChlorobenzeneND0.503.9ChlorobenzeneND0.573.9ChlorobenzeneND0.573.9ChlorobentaneND0.573.9ChlorobentaneND0.573.9ChlorobentaneND0.573.9ChlorobenzeneND0.513.9DichlorodithorobenzeneND0.513.9DichlorodithorobenzeneND0.513.9 </td <td></td>										
1.2-DichloropropaneND2.03.91.2-DichloropropaneND0.203.91.3-DichloropropaneND0.203.91.3-DichlorobenzeneND0.553.92-Butanone (MEK)ND1.4202-HexanoneND1.4202-HexanoneND1.4202-HexanoneND1.3204-Methyl-2-pentanone (MIBK)ND1.320Acetone2067J< UB	,									
1,2-Dichlorogenpane       ND       0.20       3.9         1,2-Dichloropropane       ND       2.0       3.9         1,3-Dichlorobenzene       ND       0.20       3.9         1,4-Dichlorobenzene       ND       0.55       3.9         2-Butanone (MEK)       ND       1.4       20         2-Hexanone       ND       1.4       20         2-Hexanone       ND       1.3       20         4-Methyl-2-pentanone (MIBK)       ND       1.3       20         Acetone       20       53       3.9         Bromodichloromethane       ND       0.19       3.9         Bromodichloromethane       ND       2.0       3.9         Bromodichloromethane       ND       0.35       3.9         Carbon tetrachloride       ND       0.38       3.9         Chlorobenzene       ND       0.52       3.9         Dibromochloromethane       ND       0.50       3.9         Chloroform       ND       0.50       3.9         Chloroform       ND       0.50       3.9         Chloroformethane       ND       0.50       3.9         Chloroformethane       ND       0.51       3.9 <td></td>										
1.2-DichloropropaneND2.03.91.3-DichlorobenzeneND0.203.91.4-DichlorobenzeneND0.553.92-Butanone (MEK)ND1.4202-HexanoneND1.3204-Methyl-2-pentanone (MIBK)ND1.320Acetone206700.193.9BenzeneND0.533.9BromodichloromethaneND0.533.9BromodichloromethaneND0.353.9BromodichloromethaneND0.353.9Carbon disulfideND0.383.9Carbon disulfideND0.523.9Carbon disulfideND0.523.9ChloromethaneND0.523.9ChloroformND0.523.9ChloroformND0.243.9ChloroformND0.243.9ChloroformND0.243.9ChloroformND0.553.9ChloroformND0.553.9ChloroformND0.553.9Cyclohexane2.7J0.553.9IsopropylbenzeneND0.273.9IsopropylbenzeneND0.233.9Hethyl acetateND0.233.9Methyl et-buly etherND0.553.9IsopropylbenzeneND0.553.9IsopropylbenzeneND0.513.9Isopropylbenzen										
1.3-Dichlorobenzene       ND       0.20       3.9         1.4-Dichlorobenzene       ND       0.55       3.9         2-Butanone (MEK)       ND       2.0       20         2-Hexanone (MEK)       ND       1.3       20         Acetone       20       67       0       0.53       3.9         Benzene       ND       0.53       3.9         Bromodichloromethane       ND       0.53       3.9         Bromodichloromethane       ND       0.35       3.9         Carbon disulfide       ND       0.38       3.9         Carbon disulfide       ND       0.50       3.9         Chlorobenzene       ND       0.50       3.9         Chlorobenzene       ND       0.50       3.9         Chlorobenzene       ND       0.50       3.9         Chlorobenzene       ND       0.24       3.9         Chlorobenzene       ND       0.24       3.9         Chlorobenzene       ND       0.57       3.9         Chlorobenzene       ND       0.57       3.9         Chlorobenzene       ND       0.57       3.9         Chlorobenzene       ND       0.57       3										
1.4-DichlorobenzeneND0.553.92-Butanone (MEK)ND1.4202-HexanoneND2.0204-Methyl-2-pentanone (MIBK)ND1.320Acetone200.7JUB3.320BenzeneND0.193.93.9BromodichloromethaneND0.533.9BromodichloromethaneND2.03.9BromoditalND2.03.9Carbon disulfideND2.03.9Carbon disulfideND0.383.9Carbon tetrachlorideND0.383.9ChlorobenzeneND0.523.9ChlorobenzeneND0.503.9ChloromethaneND0.503.9ChloroformND0.243.9ChloroformND0.513.9Cycloexane2.7J0.553.9DichorodifluoromethaneND0.273.9Cycloexane2.7J0.533.9IsopropylbenzeneND0.273.9J.2-DichloropteneND0.393.9IsopropylbenzeneND0.393.9Methyl tert-butyl etherND0.393.9Methyl tert-butyl etherND0.303.9Methylec-ChlordeND0.303.9TetrachloroetheneND0.303.9TetrachloroetheneND0.303.9Chlorofiluoromethane <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
2-Butanone (MEK)ND1.4202-HexanoneND2.0204-Methyl-2-pentanone (MIBK)ND1.320Acetone206.7JUB3.320BenzeneND0.193.93.9BromodichloromethaneND2.03.9BromodichloromethaneND2.03.9BromodichloromethaneND2.03.9Carbon disulfideND0.353.9Carbon disulfideND0.383.9ChlorobenzeneND0.523.9DibromochhoromethaneND0.503.9ChlorobenzeneND0.523.9ChlorobenzeneND0.503.9ChlorobentaneND0.503.9ChlorobentaneND0.243.9ChlorobentaneND0.243.9ChlorobentaneND0.573.9Cyclohexane2.7J0.553.9DichlorodifluoromethaneND0.273.9Cyclohexane2.7J0.513.9IsopropylbenzeneND0.393.9IsopropylbenzeneND0.393.9Methyl acetateND0.393.9Methyl dert-butyl etherND0.393.9Methylen ChlorideND0.303.9TetrachloroetheneND0.303.9IsopropylbenzeneND0.303.9Methylen ChlorideND										
2-HexanoneND2.0204-Methyl-2-pentanone (MIBK)ND1.320Acetone2067.√UB3.320BenzeneND0.193.9BromodichloromethaneND2.03.9BromoformND2.03.9BromoformND2.03.9BromoformND2.03.9BromoformND0.353.9Carbon disulfideND0.353.9Carbon tetrachlorideND0.523.9ChlorobenzeneND0.523.9ChlorothaneND0.523.9ChlorothaneND0.533.9ChlorothaneND0.533.9ChlorothaneND0.543.9Cyclohexane2.7J0.553.9Cyclohexane2.7J0.553.9DichlorodifuoromethaneND0.273.9Cyclohexane2.7J0.513.9IsopropylbenzeneND0.513.9IsopropylbenzeneND0.533.9Methyl tert-butyl etherND0.383.9Methyl tert-butyl etherND0.603.9Methylenc ChlorideND1.83.9StyreneND0.533.9TothoroetheneND0.633.9HyblenzeneND0.633.9StyreneND0.533.9StyreneND </td <td></td>										
4-Methyl-2-pentanone (MIBK)       ND       1.3       20         Acctone       20       6.7.       ✓       UB       3.3       20         Benzene       ND       0.19       3.9         Bromodichloromethane       ND       0.53       3.9         Bromoform       ND       2.0       3.9         Bromomethane       ND       2.0       3.9         Carbon disulfide       ND       2.0       3.9         Carbon tetrachloride       ND       2.0       3.9         Carbon disulfide       ND       0.38       3.9         Chlorobenzene       ND       0.50       3.9         Chloromethane       ND       0.50       3.9         Chloromethane       ND       0.50       3.9         Chloroform       ND       0.24       3.9         Chloromethane       ND       0.51       3.9         Cyclohexane       2.7       J       0.55       3.9         Dichlorofifuoromethane       ND       0.33       3.9       1.2         Cyclohexane       2.7       J       0.55       3.9         Dichlorofifuoromethane       ND       0.51       3.9										
Acetone         20         6.7         J         UB         3.3         20           Benzene         ND         0.19         3.9           Bromodichloromethane         ND         0.53         3.9           Bromodichloromethane         ND         2.0         3.9           Bromodichloromethane         ND         0.35         3.9           Carbon disulfide         ND         0.38         3.9           Carbon disulfide         ND         0.38         3.9           Chlorobenzene         ND         0.52         3.9           Dibromochloromethane         ND         0.50         3.9           Chlorothane         ND         0.50         3.9           Chlorothane         ND         0.24         3.9           Cislophorothane         ND         0.50         3.9           Chlorothane         ND         0.53         3.9           Cyclohexane         2.7         J         0.50         3.9           Cyclohexane         ND         0.33         3.9           Lichorotifluoromethane         ND         0.51         3.9           Isopropylbenzene         ND         0.59         3.9 <td< td=""><td>4-Methyl-2-pentan</td><td>one (MIBK)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	4-Methyl-2-pentan	one (MIBK)								
BromodichloromethaneND0.533.9BromoformND2.03.9BromomethaneND0.353.9Carbon disulfideND2.03.9Carbon tetrachlorideND0.383.9ChlorobenzeneND0.523.9DibromochloromethaneND0.503.9ChloroformND0.503.9ChloroformND0.243.9ChloroformND0.243.9ChloroformND0.243.9ChloroformND0.573.9cis-1.2-DichloroetheneND0.573.9cis-1.2-DichloroetheneND0.573.9Cyclohexane2.7J0.553.9DichlorodifluoromethaneND0.513.9LyclohexaneND0.513.9J_2-DibromethaneND0.513.9IsopropylbenzeneND0.513.9IsopropylbenzeneND0.513.9Methyl acetateND0.393.9Methylene ChlorideND1.83.9StyreneND0.533.9TetrachloroetheneND0.533.9TetrachloroetheneND0.303.9TetrachloroetheneND0.303.9TetrachloroetheneND0.303.9TetrachloroetheneND0.333.9TetrachloroetheneND0.303.9Tetrachloroethene<			20	<del>6.7</del>		J	UB		20	
BromoformND2.03.9BromomethaneND0.353.9Carbon disulfideND2.03.9Carbon disulfideND0.383.9ChlorobenzeneND0.523.9DibromochloromethaneND0.503.9ChloroformND0.503.9ChloroformND0.243.9ChloroformND0.243.9ChloroformND0.243.9ChloroformND0.503.9cis-1,2-DichloroetheneND0.503.9cis-1,3-DichloroppeneND0.573.9Cyclohexane2.7J0.553.9DichlorodifluoromethaneND0.273.91,2-DibromoethaneND0.513.9LycloiromethaneND0.593.9Hethyl enzeneND0.593.9Methyl enzeneND0.593.9Methyl ent-butyl etherND0.303.9Methylenc ChlorideND0.413.9StyreneND0.303.9TetrachloroetheneND0.303.9TolueneND0.533.9TolueneND0.303.9Trans-1,2-DichloroptopeneND0.413.9Trans-1,2-DichloroptopeneND0.413.9Trans-1,3-DichloroptopeneND0.873.9Trans-1,3-DichloroptopeneND0.413.9Trans-	Benzene			ND				0.19	3.9	
BromomethaneND0.353.9Carbon disulfideND2.03.9Carbon tetrachlorideND0.383.9ChlorobenzeneND0.523.9DibromochloromethaneND0.503.9ChlorobethaneND0.503.9ChloroothaneND0.243.9ChloroothaneND0.243.9ChloroothaneND0.503.9ChloroothaneND0.503.9cis-1,2-DichlorootheneND0.573.9cis-1,3-DichloropropeneND0.573.9Cyclohexane2.7J0.553.9DichlorodifluoromethaneND0.273.9LipbenzeneND0.513.9BiopropylbenzeneND0.513.9IsopropylbenzeneND0.393.9Methyl cetateND0.393.9Methyl cetateND1.83.9StyreneND0.203.9TetrachloroetheneND0.303.9Turas-1,2-DichloroetheneND0.303.9Turas-1,3-DichloropropeneND0.303.9Turas-1,3-DichloropropeneND0.413.9Turas-1,3-DichloropropeneND0.413.9Turas-1,3-DichloropropeneND0.873.9Turas-1,3-DichloropropeneND0.873.9Turas-1,3-DichloropropeneND0.413.9Turas-1,3-Dichloroprop	Bromodichloromet	hane		ND					3.9	
Carbon disulfideND2.03.9Carbon tetrachlorideND0.383.9ChlorobenzeneND0.523.9DibromochloromethaneND0.503.9ChloroethaneND0.243.9ChloroothaneND0.243.9ChloroothaneND0.243.9ChloroothaneND0.503.9ChloroothaneND0.573.9ChloroothaneND0.573.9ChloroothaneND0.573.9Cyclohexane2.7J0.553.9DichlorootfiluoromethaneND0.333.9EthylbenzeneND0.273.91,2-DibromoethaneND0.513.9IsopropylbenzeneND0.593.9Methyl acetateND0.593.9Methyl tet-butyl etherND0.393.9Methyl colohexane2.7J0.603.9Methyl chlorideND1.83.9StyreneND0.203.9TetrachloroetheneND0.533.9TolueneND0.533.9TolueneND0.413.9Trans-1,3-DichloropropeneND1.73.9TrichloroetheneND0.413.9TrichloroetheneND0.873.9	Bromoform			ND						
Carbon tetrachloride         ND         0.38         3.9           Chlorobenzene         ND         0.52         3.9           Dibromochloromethane         ND         0.50         3.9           Chloroethane         ND         0.89         3.9           Chloroethane         ND         0.24         3.9           Chloromethane         ND         0.24         3.9           Chloromethane         ND         0.24         3.9           Cis-1,2-Dichloroethene         ND         0.50         3.9           cis-1,3-Dichloropopene         ND         0.57         3.9           Cyclohexane         2.7         J         0.55         3.9           Dichlorodifluoromethane         ND         0.33         3.9           Ethylbenzene         ND         0.51         3.9           Isopropylbenzene         ND         0.59         3.9           Methyl acetate         ND         2.4         3.9           Methylcyclohexane         2.7         J         0.60         3.9           Methylene Chloride         ND         1.8         3.9           Styrene         ND         0.20         3.9           Tetrachloroethene <td></td>										
Chlorobenzene         ND         0.52         3.9           Dibromochloromethane         ND         0.50         3.9           Chloroethane         ND         0.89         3.9           Chloroform         ND         0.24         3.9           Chloromethane         ND         0.24         3.9           cis-1,2-Dichloroethene         ND         0.50         3.9           cis-1,3-Dichloropropene         ND         0.57         3.9           Cyclohexane         2.7         J         0.55         3.9           Dichlorodifluoromethane         ND         0.33         3.9           Ethylbenzene         ND         0.27         3.9           1,2-Dibromoethane         ND         0.51         3.9           Isopropylbenzene         ND         0.59         3.9           Methyl acetate         ND         0.39         3.9           Methyl tert-butyl ether         ND         0.39         3.9           Methyl pene Chloride         ND         0.39         3.9           Methyl pene Chloride         ND         1.8         3.9           Styrene         ND         0.20         3.9           Toluene         ND<										
Dibromochloromethane         ND         J         0.50         3.9           Chloroform         ND         0.89         3.9           Chloroform         ND         0.24         3.9           Chloromethane         ND         0.24         3.9           cis-1,2-Dichloroethene         ND         0.50         3.9           cis-1,3-Dichloropropene         ND         0.57         3.9           Cyclohexane         2.7         J         0.55         3.9           Dichlorodifluoromethane         ND         0.33         3.9           Ethylbenzene         ND         0.27         3.9           1,2-Dibromoethane         ND         0.51         3.9           Isopropylbenzene         ND         0.59         3.9           Methyl acetate         ND         0.39         3.9           Methyl tert-butyl ether         ND         0.39         3.9           Methyl per Chloride         ND         1.8         3.9           Styrene         ND         0.20         3.9           Tetrachloroethene         ND         0.30         3.9           Tetrachloroethene         ND         0.30         3.9           Tetrachloro		de								
Chloroethane         ND         0.89         3.9           Chloronform         ND         0.24         3.9           Chloromethane         ND         0.24         3.9           cis-1,2-Dichloroethene         ND         0.50         3.9           cis-1,3-Dichloropropene         ND         0.57         3.9           Cyclohexane         2.7         J         0.55         3.9           Dichlorodifluoromethane         ND         0.27         3.9           Ltylbenzene         ND         0.27         3.9           1,2-Dibromoethane         ND         0.51         3.9           1,2-Dibromoethane         ND         0.59         3.9           Isopropylbenzene         ND         0.59         3.9           Methyl acetate         ND         0.39         3.9           Methyl tert-butyl ether         ND         0.39         3.9           Methyl tert-butyl ether         ND         1.8         3.9           Styrene         ND         0.20         3.9           Tetrachloroethene         ND         0.30         3.9           Toluene         ND         0.30         3.9           Trans-1,2-Dichloroethene										
Chloroform         ND         0.24         3.9           Chloromethane         ND         0.24         3.9           cis-1,2-Dichloroethene         ND         0.50         3.9           cis-1,3-Dichloropropene         ND         0.57         3.9           Cyclohexane         2.7         J         0.55         3.9           Dichlorodifluoromethane         ND         0.33         3.9           Ethylbenzene         ND         0.27         3.9           1,2-Dibromoethane         ND         0.51         3.9           Isopropylbenzene         ND         0.59         3.9           Methyl acetate         ND         0.39         3.9           Methyl cectate         ND         0.59         3.9           Methyl cyclohexane         2.7         J         0.60         3.9           Methyl cectate         ND         0.39         3.9           Methylene Chloride         ND         1.8         3.9           Styrene         ND         0.53         3.9           Tetrachloroethene         ND         0.53         3.9           Toluene         ND         0.30         3.9           trans-1,2-Dichloroethene <td></td> <td>hane</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		hane								
Chloromethane       ND       0.24       3.9         cis-1,2-Dichloroethene       ND       0.50       3.9         cis-1,3-Dichloropropene       ND       0.57       3.9         Cyclohexane       2.7       J       0.55       3.9         Dichlorodifluoromethane       ND       0.33       3.9         Ethylbenzene       ND       0.27       3.9         1,2-Dibromoethane       ND       0.51       3.9         1sopropylbenzene       ND       0.59       3.9         Methyl acetate       ND       0.39       3.9         Methyl tert-butyl ether       ND       0.44       3.9         Methylene Chloride       ND       0.39       3.9         Methylene Chloride       ND       0.39       3.9         Styrene       ND       0.60       3.9         Tetrachloroethene       ND       1.8       3.9         Styrene       0.20       3.9       3.9         Toluene       ND       0.53       3.9         Toluene       ND       0.53       3.9         Toluene       ND       0.41       3.9         Trans-1,3-Dichloropropene       ND       0.87										
cis-1,2-Dichloroethene         ND         0.50         3.9           cis-1,3-Dichloropropene         ND         0.57         3.9           Cyclohexane         2.7         J         0.55         3.9           Dichlorodifluoromethane         ND         0.33         3.9           Ethylbenzene         ND         0.27         3.9           1,2-Dibromoethane         ND         0.51         3.9           1,2-Dibromoethane         ND         0.59         3.9           1,2-Dibromoethane         ND         0.59         3.9           Isopropylbenzene         ND         0.59         3.9           Methyl acetate         ND         0.39         3.9           Methyl tert-butyl ether         ND         0.39         3.9           Methylcyclohexane         2.7         J         0.60         3.9           Methylene Chloride         ND         1.8         3.9           Styrene         ND         0.20         3.9           Toluene         ND         0.30         3.9           trans-1,2-Dichloroethene         ND         0.30         3.9           trans-1,3-Dichloropropene         ND         0.41         3.9										
cis-1,3-Dichloropropene         ND         0.57         3.9           Cyclohexane         2.7         J         0.55         3.9           Dichlorodifluoromethane         ND         J         0.33         3.9           Ethylbenzene         ND         J         0.27         3.9           1,2-Dibromoethane         ND         0.51         3.9           Isopropylbenzene         ND         0.59         3.9           Methyl acetate         ND         2.4         3.9           Methyl acetate         ND         0.39         3.9           Methyl tert-butyl ether         ND         0.39         3.9           Methylene Chloride         ND         0.60         3.9           Styrene         ND         1.8         3.9           Tetrachloroethene         ND         0.20         3.9           Toluene         ND         0.30         3.9           Toluene         ND         0.30         3.9           Toluene         ND         0.30         3.9           Trans-1,2-Dichloroethene         ND         0.41         3.9           Trans-1,3-Dichloropropene         ND         0.87         3.9										
Cyclohexane         2.7         J         0.55         3.9           Dichlorodifluoromethane         ND         0.33         3.9           Ethylbenzene         ND         0.27         3.9           1,2-Dibromoethane         ND         0.51         3.9           Isopropylbenzene         ND         0.59         3.9           Methyl acetate         ND         0.39         3.9           Methyl tert-butyl ether         ND         0.39         3.9           Methyl cyclohexane         2.7         J         0.60         3.9           Methylene Chloride         ND         1.8         3.9           Styrene         ND         0.20         3.9           Toluene         ND         0.30         3.9           Toluene         ND         0.30         3.9           Toluene         ND         0.30         3.9           Trans-1,2-Dichloroethene         ND         0.41         3.9           Trans-1,3-Dichloropropene         ND         1.7         3.9           Trichloroethene         ND         0.87         3.9										
Dichlorodifluoromethane         ND         J         0.33         3.9           Ethylbenzene         ND         0.27         3.9           1,2-Dibromoethane         ND         0.51         3.9           Isopropylbenzene         ND         0.59         3.9           Methyl acetate         ND         2.4         3.9           Methyl tert-butyl ether         ND         0.39         3.9           Methyl colonexane         2.7         J         0.60         3.9           Methylene Chloride         ND         1.8         3.9           Styrene         ND         0.20         3.9           Toluene         ND         0.53         3.9           trans-1,2-Dichloroethene         ND         0.30         3.9           trans-1,3-Dichloropropene         ND         0.41         3.9           Trichloroethene         ND         0.87         3.9		pene								
Ethylbenzene         ND         0.27         3.9           1,2-Dibromoethane         ND         0.51         3.9           Isopropylbenzene         ND         0.59         3.9           Methyl acetate         ND         2.4         3.9           Methyl tert-butyl ether         ND         0.39         3.9           Methyl colohexane         2.7         J         0.60         3.9           Methylene Chloride         ND         1.8         3.9           Styrene         ND         0.20         3.9           Tetrachloroethene         ND         0.53         3.9           Toluene         ND         0.30         3.9           trans-1,2-Dichloroethene         ND         0.30         3.9           trans-1,3-Dichloropropene         ND         0.41         3.9           Trichloroethene         ND         0.87         3.9		thane				J				
1,2-Dibromoethane       ND       0.51       3.9         Isopropylbenzene       ND       0.59       3.9         Methyl acetate       ND       2.4       3.9         Methyl tert-butyl ether       ND       0.39       3.9         Methylcyclohexane       2.7       J       0.60       3.9         Methylene Chloride       ND       1.8       3.9         Styrene       ND       0.20       3.9         Tetrachloroethene       ND       0.53       3.9         Toluene       ND       0.30       3.9         trans-1,2-Dichloroethene       ND       0.41       3.9         trans-1,3-Dichloropropene       ND       1.7       3.9         Trichloroethene       ND       0.87       3.9										
IsopropylbenzeneND0.593.9Methyl acetateND2.43.9Methyl tert-butyl etherND0.393.9Methylcyclohexane2.7J0.603.9Methylene ChlorideND1.83.9StyreneND0.203.9TetrachloroetheneND0.533.9TolueneND0.303.9trans-1,2-DichloroetheneND0.413.9trans-1,3-DichloropropeneND1.73.9TrichloroetheneND0.873.9	•	2								
Methyl acetateND2.43.9Methyl tert-butyl etherND0.393.9Methylcyclohexane2.7J0.603.9Methylene ChlorideND1.83.9StyreneND0.203.9TetrachloroetheneND0.533.9TolueneND0.303.9trans-1,2-DichloroptopeneND0.413.9trans-1,3-DichloroptopeneND1.73.9TrichloroetheneND0.873.9	•	5								
Methyl tert-butyl ether         ND         0.39         3.9           Methylcyclohexane         2.7         J         0.60         3.9           Methylene Chloride         ND         1.8         3.9           Styrene         ND         0.20         3.9           Tetrachloroethene         ND         0.53         3.9           Toluene         ND         0.30         3.9           trans-1,2-Dichloroethene         ND         0.41         3.9           trans-1,3-Dichloropropene         ND         1.7         3.9           Trichloroethene         ND         0.87         3.9										
Methylcyclohexane2.7J0.603.9Methylene ChlorideND1.83.9StyreneND0.203.9TetrachloroetheneND0.533.9TolueneND0.303.9trans-1,2-DichloroetheneND0.413.9trans-1,3-DichloropropeneND1.73.9TrichloroetheneND0.873.9		her								
Methylene ChlorideND1.83.9StyreneND0.203.9TetrachloroetheneND0.533.9TolueneND0.303.9trans-1,2-DichloroetheneND0.413.9trans-1,3-DichloropropeneND1.73.9TrichloroetheneND0.873.9						J				
StyreneND0.203.9TetrachloroetheneND0.533.9TolueneND0.303.9trans-1,2-DichloroetheneND0.413.9trans-1,3-DichloropropeneND1.73.9TrichloroetheneND0.873.9										
Tetrachloroethene         ND         0.53         3.9           Toluene         ND         0.30         3.9           trans-1,2-Dichloroethene         ND         0.41         3.9           trans-1,3-Dichloropropene         ND         1.7         3.9           Trichloroethene         ND         0.87         3.9	•			ND						
trans-1,2-DichloroetheneND0.413.9trans-1,3-DichloropropeneND1.73.9TrichloroetheneND0.873.9				ND				0.53		
trans-1,3-DichloropropeneND1.73.9TrichloroetheneND0.873.9	Toluene			ND				0.30	3.9	
Trichloroethene ND 0.87 3.9	trans-1,2-Dichloroe	ethene							3.9	
	trans-1,3-Dichlorop	propene								
Trichlorofluoromethane ND 0.37 3.9										
	Trichlorofluoromet	hane		ND				0.37	3.9	

### Client: ARCADIS U.S. Inc

Client Sample ID:	SB-1 (9-11)					
Lab Sample ID: Client Matrix:	480-85696-4 Solid					pled: 08/13/2015 1600 eived: 08/15/2015 0900
	8260	C Volatile Organi	c Compounds I	by GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035 1.0 08/19/2015 1420 08/15/2015 1130	Analysis Batch: Prep Batch:	480-259347 480-259392	Instrument II Lab File ID: Initial Weigh Final Weight	t/Volume:	HP5973F F0243.D 6.345 g 5 mL
Analyte	DryWt Corrected:	N Result (u	g/Kg) Qu	ualifier MD	L	RL
Vinyl chloride		ND		0.4	8	3.9
Xylenes, Total		ND		0.6	6	7.9
Surrogate		%Rec	Qu	ualifier	Acceptance	ce Limits
Toluene-d8 (Surr)		107			71 - 125	
1,2-Dichloroethane		108			64 - 126	
4-Bromofluorobenz	zene (Surr)	91			72 - 126	
Dibromofluorometh	nane (Surr)	105			60 - 140	

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	DUP-081315										
Lab Sample ID: Client Matrix:	480-85696-5 Solid	% Moisture	e: 12.2			npled: 08/13/2015 0000 ceived: 08/15/2015 0900					
8260C Volatile Organic Compounds by GC/MS											
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 10 08/21/2015 0405 08/13/2015 1130	Analysis Batch: Prep Batch:	480-259737 480-259512			HP5973G G41637.D 6.968 g 10 mL					
Analyte	DryWt Corrected	Y Result (u	g/Kg) Q		MDL	RL					
1,1,1-Trichloroetha		ND			250	890					
1,1,2,2-Tetrachlor		ND			140	890					
1,1,2-Trichloro-1,2		ND			440	890					
1,1,2-Trichloroetha		ND			190	890					
1,1-Dichloroethane		ND			270	890					
1,1-Dichloroethene		ND			310	890					
1,2,4-Trichloroben		ND			340	890					
1,2-Dibromo-3-Ch 1,2-Dibromoethan		ND J ND			440 160	890 890					
1,2-Dichlorobenze		ND			230	890					
1,2-Dichloroethane		ND			360	890					
1,2-Dichloropropa		ND			140	890					
1,3-Dichlorobenze		ND			240	890					
1,4-Dichlorobenze		ND			120	890					
2-Butanone (MEK)		ND			2600	4400					
2-Hexanone		ND			1800	4400					
4-Methyl-2-pentan	one (MIBK)	ND			280	4400					
Acetone		ND			3600	4400					
Benzene		ND			170	890					
Bromodichloromet	hane	ND			180	890					
Bromoform		ND J			440	890					
Bromomethane		ND			200	890					
Carbon disulfide Carbon tetrachlorid	da	ND			400	890					
Chlorobenzene	ue	ND ND			230 120	890 890					
Chloroethane		ND			180	890					
Chloroform		ND			610	890					
Chloromethane		ND			210	890					
cis-1,2-Dichloroeth	iene	ND			240	890					
cis-1,3-Dichloropro		ND			210	890					
Cyclohexane		ND J			200	890					
Dibromochloromet	hane	ND J			430	890					
Dichlorodifluorome	ethane	ND			390	890					
Ethylbenzene		680	J		260	890					
Isopropylbenzene		620	J		130	890					
Methyl acetate		ND			420	890					
Methyl tert-butyl ei		ND			340	890					
Methylcyclohexane Methylene Chlorid		30000 2100	B		420 180	890 890					
-	е	2100 ND	D		210	890					
Styrene Tetrachloroethene		ND			120	890					
Toluene		ND			240	890					
trans-1,2-Dichloro	ethene	ND			210	890					
trans-1,3-Dichloro		ND			87	890					
Trichloroethene		ND			250	890					
Trichlorofluoromet	hane	ND			420	890					

**TestAmerica Buffalo** 

## **Analytical Data**

Client Sample ID	: DUP-081315				
Lab Sample ID: Client Matrix:	480-85696-5 Solid	% Moistu	re: 12.2		te Sampled: 08/13/2015 0000 te Received: 08/15/2015 0900
	826	60C Volatile Organ	ic Compounds	by GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 10 08/21/2015 0405 08/13/2015 1130	Analysis Batch: Prep Batch:	480-259737 480-259512	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vol	•
Analyte	DryWt Corrected	d: Y Result (	ug/Kg) Qi	ualifier MDL	RL
Vinyl chloride Xylenes, Total		ND 1900		300 490	890 1800
Surrogate 1,2-Dichloroethan 4-Bromofluoroben Dibromofluoromet Toluene-d8 (Surr)	zene (Surr) hane (Surr)	%Rec 108 91 106 90	Qı	53 49 60	ceptance Limits - 146 - 148 - 140 - 149

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	SB-3 (7-9)									
Lab Sample ID: Client Matrix:	480-85696-6 Solid						pled: 08/13/2 eived: 08/15/2			
8260C Volatile Organic Compounds by GC/MS										
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035 1.0 08/19/2015 1511 08/15/2015 1130	Analysis Batch: Prep Batch:	480-259347 480-259392		Instrument ID: Lab File ID: Initial Weight/V Final Weight/Vo		HP5973F F0245.D 7.037 g 5 mL			
Analyte	DryWt Corrected:	N Result (u	g/Kg)	Qualifie	er MDL		RL			
1,1,1-Trichloroetha	-	ND	0 0/		0.26		3.6			
1,2-Dichlorobenze	ne	ND			0.28		3.6			
1,1,2,2-Tetrachloro	bethane	ND			0.58		3.6			
1,1,2-Trichloroetha	ane	ND			0.46		3.6			
1,1,2-Trichloro-1,2	,2-trifluoroethane	ND			0.81		3.6			
1,1-Dichloroethane	9	ND			0.43		3.6			
1,1-Dichloroethene	9	ND			0.43		3.6			
1,2,4-Trichloroben	zene	ND			0.22		3.6			
1,2-Dibromo-3-Chl	oropropane	ND			1.8		3.6			
1,2-Dichloroethane	9	ND			0.18		3.6			
1,2-Dichloropropa	ne	ND			1.8		3.6			
1,3-Dichlorobenze		ND			0.18		3.6			
1,4-Dichlorobenze		ND			0.50		3.6			
2-Butanone (MEK)	)	ND			1.3		18			
2-Hexanone		ND			1.8		18			
4-Methyl-2-pentan	one (MIBK)	ND			1.2		18			
Acetone		ND			3.0		18			
Benzene		ND			0.17		3.6			
Bromodichloromet	hane	ND			0.48		3.6			
Bromoform		ND			1.8		3.6			
Bromomethane		ND			0.32		3.6			
Carbon disulfide	4.	ND			1.8		3.6			
Carbon tetrachlorio	de	ND			0.34		3.6			
Chlorobenzene	h	ND			0.47		3.6			
Dibromochloromet	nane	ND J ND			0.45		3.6 3.6			
Chloroethane					0.80					
Chloroform Chloromethane		ND ND			0.22 0.21		3.6 3.6			
cis-1,2-Dichloroeth		ND			0.21		3.6			
cis-1,3-Dichloropro		ND			0.43		3.6			
Cyclohexane	pene	ND			0.50		3.6			
Dichlorodifluorome	othane	ND J			0.29		3.6			
Ethylbenzene		ND			0.25		3.6			
1,2-Dibromoethan	٩	ND			0.46		3.6			
Isopropylbenzene	-	ND			0.54		3.6			
Methyl acetate		ND			2.1		3.6			
Methyl tert-butyl ef	her	ND			0.35		3.6			
Methylcyclohexane		2.3		J	0.54		3.6			
Methylene Chlorid		ND			1.6		3.6			
Styrene		ND			0.18		3.6			
Tetrachloroethene		ND			0.48		3.6			
Toluene		ND			0.27		3.6			
trans-1,2-Dichloroe	ethene	ND			0.37		3.6			
trans-1,3-Dichloro		ND			1.6		3.6			
Trichloroethene	-	ND			0.78		3.6			
Trichlorofluoromot	hana	ND			0.34		36			

Trichlorofluoromethane

ND

3.6

0.34

## Client: ARCADIS U.S. Inc

Client Sample ID:	SB-3 (7-9)					
Lab Sample ID: Client Matrix:	480-85696-6 Solid					npled: 08/13/2015 1515 eived: 08/15/2015 0900
	8260	C Volatile Organi	c Compounds	by GC	/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035 1.0 08/19/2015 1511 08/15/2015 1130	Analysis Batch: Prep Batch:	480-259347 480-259392	L	nstrument ID: .ab File ID: nitial Weight/Volume: Final Weight/Volume:	HP5973F F0245.D 7.037 g 5 mL
Analyte	DryWt Corrected:	N Result (u	g/Kg) G	Qualifier	MDL	RL
Vinyl chloride		ND			0.43	3.6
Xylenes, Total		ND			0.60	7.1
Surrogate		%Rec	C	Qualifier	Acceptan	ce Limits
Toluene-d8 (Surr)		104			71 - 125	
1,2-Dichloroethane	e-d4 (Surr)	107			64 - 126	
4-Bromofluorobenz	zene (Surr)	98			72 - 126	
Dibromofluorometh	nane (Surr)	105			60 - 140	

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	SB-3 (9-11)							
Lab Sample ID: Client Matrix:	480-85696-7 Solid							npled: 08/13/2015 1525 ceived: 08/15/2015 0900
		8260C Vola	tile Organi	c Compou	inds by	y GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035 1.0 08/19/2015 1537 08/15/2015 1130		vsis Batch: Batch:	480-2593 480-2593		Lab F Initia	ument ID: File ID: I Weight/Volume: Weight/Volume:	HP5973F F0246.D 6.679 g 5 mL
Analyte	DryWt Cor	rected: N	Result (u	g/Kg)	Qua	alifier	MDL	RL
1,1,1-Trichloroetha	ane		ND				0.27	3.7
1,2-Dichlorobenze	ne		ND				0.29	3.7
1,1,2,2-Tetrachlor	pethane		ND				0.61	3.7
1,1,2-Trichloroetha	ane		ND				0.49	3.7
1,1,2-Trichloro-1,2	2,2-trifluoroethane		ND				0.85	3.7
1,1-Dichloroethan	9		ND				0.46	3.7
1,1-Dichloroethene	9		ND				0.46	3.7
1,2,4-Trichloroben	zene		ND				0.23	3.7
1,2-Dibromo-3-Ch	loropropane		ND				1.9	3.7
1,2-Dichloroethan			ND				0.19	3.7
1,2-Dichloropropa	ne		ND				1.9	3.7
1,3-Dichlorobenze	ne		ND				0.19	3.7
1,4-Dichlorobenze	ne		ND				0.52	3.7
2-Butanone (MEK	)		ND				1.4	19
2-Hexanone			ND				1.9	19
4-Methyl-2-pentan	one (MIBK)		ND				1.2	19
Acetone		19	<del>14</del>		<del>၂</del>	UB	3.2	19
Benzene			ND				0.18	3.7
Bromodichloromet	hane		ND				0.50	3.7
Bromoform			ND				1.9	3.7
Bromomethane			ND				0.34	3.7
Carbon disulfide			ND				1.9	3.7
Carbon tetrachlori	de		ND				0.36	3.7
Chlorobenzene			ND				0.49	3.7
Dibromochloromet	hane		ND J				0.48	3.7
Chloroethane			ND				0.85	3.7
Chloroform			ND				0.23	3.7
Chloromethane			ND				0.23	3.7
cis-1,2-Dichloroeth			ND				0.48	3.7
cis-1,3-Dichloropro	opene		ND				0.54	3.7
Cyclohexane			2.4 ND J		J		0.52	3.7
Dichlorodifluorome	ethane		ND U ND				0.31 0.26	3.7 3.7
Ethylbenzene 1,2-Dibromoethan	0		ND				0.48	3.7
Isopropylbenzene	C		ND				0.48	3.7
Methyl acetate			ND				2.3	3.7
Methyl tert-butyl e	thor		ND				0.37	3.7
Methylcyclohexan			2.5		J		0.57	3.7
Methylene Chlorid			ND		J		1.7	3.7
Styrene			ND				0.19	3.7
Tetrachloroethene			ND				0.50	3.7
Toluene			ND				0.28	3.7
trans-1,2-Dichloro	ethene		ND				0.39	3.7
trans-1,3-Dichloro			ND				1.6	3.7
Trichloroethene	properte		ND				0.82	3.7
Trichlorofluoromet	hane		ND				0.35	3.7
inchioronauroniel							0.00	0.7

**TestAmerica Buffalo** 

## Client: ARCADIS U.S. Inc

Client Sample ID:	SB-3 (9-11)					
Lab Sample ID: Client Matrix:	480-85696-7 Solid					npled: 08/13/2015 1525 ceived: 08/15/2015 0900
	8260	C Volatile Organi	c Compounds	s by GC	C/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035 1.0 08/19/2015 1537 08/15/2015 1130	Analysis Batch: Prep Batch:	480-259347 480-259392	l	nstrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP5973F F0246.D 6.679 g 5 mL
Analyte	DryWt Corrected:	N Result (u	g/Kg) (	Qualifie	r MDL	RL
Vinyl chloride		ND			0.46	3.7
Xylenes, Total		ND			0.63	7.5
Surrogate		%Rec	(	Qualifie	r Acceptar	nce Limits
Toluene-d8 (Surr)		106			71 - 125	
1,2-Dichloroethane		110			64 - 126	
4-Bromofluoroben: Dibromofluorometl	· · · ·	85 105			72 - 126 60 - 140	
Distonioliuolonieu		105			00 - 140	

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	SB-5 (9-11)					
Lab Sample ID: Client Matrix:	480-85696-8 Solid					ed: 08/14/2015 0800 /ed: 08/15/2015 0900
	82	260C Volatile Orga	nic Compounds	s by GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035 1.0 08/19/2015 1602 08/15/2015 1130	Analysis Batch Prep Batch:	: 480-259347 480-259392	Instrument II Lab File ID: Initial Weigh Final Weight	F t/Volume: 6	IP5973F 0247.D .57 g mL
Analyte	DryWt Correcte	ed: N Result	(ug/Kg) G	Qualifier MD		RL
1,1,1-Trichloroetha	ane	ND		0.2	8	3.8
1,2-Dichlorobenze	ne	ND		0.3	0	3.8
1,1,2,2-Tetrachloro	bethane	ND		0.6	2	3.8
1,1,2-Trichloroetha	ane	ND		0.4	9	3.8
1,1,2-Trichloro-1,2	,2-trifluoroethane	ND		0.8	7	3.8
1,1-Dichloroethane		ND		0.4	6	3.8
1,1-Dichloroethene		ND		0.4		3.8
1,2,4-Trichloroben		ND		0.2	3	3.8
1,2-Dibromo-3-Chl		ND		1.9		3.8
1,2-Dichloroethane		ND		0.1		3.8
1,2-Dichloropropa		ND		1.9		3.8
1,3-Dichlorobenze		ND		0.2		3.8
1,4-Dichlorobenze		ND		0.2		3.8
		ND		1.4		19
2-Butanone (MEK) 2-Hexanone	)	ND		1.4		19
				1.9		
4-Methyl-2-pentan		ND		3.2		19
Acetone		ND 1.2	,			19 3.8
Benzene	h a 1 a		J			
Bromodichloromet	nane	ND		0.5		3.8
Bromoform		ND		1.9		3.8
Bromomethane		ND		0.3		3.8
Carbon disulfide		ND		1.9		3.8
Carbon tetrachlorio	de	ND		0.3		3.8
Chlorobenzene		ND		0.5		3.8
Dibromochloromet	hane	ND J		0.4		3.8
Chloroethane		ND		0.8		3.8
Chloroform		ND		0.2		3.8
Chloromethane		ND		0.2		3.8
cis-1,2-Dichloroeth		ND		0.4		3.8
cis-1,3-Dichloropro	opene	ND		0.5		3.8
Cyclohexane		ND		0.5		3.8
Dichlorodifluorome	ethane	ND J		0.3	1	3.8
Ethylbenzene		ND		0.2	6	3.8
1,2-Dibromoethan	e	ND		0.4	9	3.8
Isopropylbenzene		ND		0.5	7	3.8
Methyl acetate		ND		2.3		3.8
Methyl tert-butyl et	ther	ND		0.3	7	3.8
Methylcyclohexane		ND		0.5	8	3.8
Methylene Chlorid		ND		1.8		3.8
Styrene		0.70	J			3.8
Tetrachloroethene		ND		0.5		3.8
Toluene		2.6	J			3.8
trans-1,2-Dichloroe	ethene	ND	·	0.3		3.8
trans-1,3-Dichloro		ND		1.7		3.8
Trichloroethene		ND		0.8		3.8
Trichlorofluoromot	hano			0.0		3.0

**TestAmerica Buffalo** 

Trichlorofluoromethane

ND

3.8

0.36

### Client: ARCADIS U.S. Inc

Client Sample ID	: SB-5 (9-11)					
Lab Sample ID:	480-85696-8				Date San	npled: 08/14/2015 0800
Client Matrix:	Solid				Date Rec	ceived: 08/15/2015 0900
	826	OC Volatile Organ	ic Compounds	by GC/MS		
Analysis Method:	8260C	Analysis Batch:	480-259347	Instrumer	nt ID:	HP5973F
Prep Method:	5035	Prep Batch:	480-259392	Lab File I	D:	F0247.D
Dilution:	1.0			Initial We	ight/Volume:	6.57 g
Analysis Date:	08/19/2015 1602			Final Wei	ght/Volume:	5 mL
Prep Date:	08/15/2015 1130					
Analyte	DryWt Corrected	I: N Result (	ug/Kg) Q	ualifier I	MDL	RL
Vinyl chloride		ND		(	0.46	3.8
Xylenes, Total		3.5	J	(	0.64	7.6
Surrogate		%Rec	Q	ualifier	Acceptan	ice Limits
Toluene-d8 (Surr)		104			71 - 125	
1,2-Dichloroethan	( )	108			64 - 126	
4-Bromofluoroben		92 105			72 - 126	
Dibromofluoromet		105			60 - 140	

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	SB-5 (11-13.5)								
Lab Sample ID: Client Matrix:	480-85696-9 Solid							npled: 08/14/20 ceived: 08/15/20	
		8260C Vola	tile Organi	c Compour	nds by (	GC/MS			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035 1.0 08/19/2015 1628 08/15/2015 1130	-	rsis Batch: Batch:	480-25934 480-25939				HP5973F F0248.D 6.976 g 5 mL	
Analyte	DryWt Cor	rected: N	Result (u	g/Kg)	Qualit	fier	MDL	RL	
1,1,1-Trichloroetha			ND				0.26	3.6	
1,2-Dichlorobenze			ND				0.28	3.6	
1,1,2,2-Tetrachlor			ND				0.58	3.6	
1,1,2-Trichloroetha 1,1,2-Trichloro-1,2			ND ND				0.47 0.82	3.6 3.6	
1,1-Dichloroethane			ND				0.82	3.6	
1,1-Dichloroethene			ND				0.44	3.6	
1,2,4-Trichloroben			ND				0.22	3.6	
1,2-Dibromo-3-Ch			ND				1.8	3.6	
1,2-Dichloroethane			ND				0.18	3.6	
1,2-Dichloropropa			ND				1.8	3.6	
1,3-Dichlorobenze			ND				0.18	3.6	
1,4-Dichlorobenze	ne		ND				0.50	3.6	
2-Butanone (MEK)	)		ND				1.3	18	
2-Hexanone			ND				1.8	18	
4-Methyl-2-pentan	one (MIBK)		ND			IID	1.2	18	
Acetone		18	6.1		<del>」</del>	UB	3.0	18	
Benzene	hana		1.8		J		0.18	3.6	
Bromodichloromet Bromoform	nane		ND ND				0.48 1.8	3.6 3.6	
Bromomethane			ND				0.32	3.6	
Carbon disulfide			ND				1.8	3.6	
Carbon tetrachlori	de		ND				0.35	3.6	
Chlorobenzene			ND				0.47	3.6	
Dibromochloromet	hane		ND J				0.46	3.6	
Chloroethane			ND				0.81	3.6	
Chloroform			ND				0.22	3.6	
Chloromethane			ND				0.22	3.6	
cis-1,2-Dichloroeth			ND				0.46	3.6	
cis-1,3-Dichloropro	opene		ND				0.52	3.6	
Cyclohexane	there		ND T				0.50	3.6	
Dichlorodifluorome	ethane		ND J 0.57		J		0.30 0.25	3.6 3.6	
Ethylbenzene 1,2-Dibromoethan	0		ND		J		0.25	3.6	
Isopropylbenzene	6		ND				0.40	3.6	
Methyl acetate			ND				2.2	3.6	
Methyl tert-butyl et	ther		ND				0.35	3.6	
Methylcyclohexan			ND				0.54	3.6	
Methylene Chlorid			ND				1.6	3.6	
Styrene			ND				0.18	3.6	
Tetrachloroethene			ND				0.48	3.6	
Toluene			ND				0.27	3.6	
trans-1,2-Dichloro			ND				0.37	3.6	
trans-1,3-Dichloro	propene		ND				1.6	3.6	
Trichloroethene	h		ND				0.79	3.6	
Trichlorofluoromet	nane		ND				0.34	3.6	

TestAmerica Buffalo

## **Analytical Data**

Client Sample ID	SB-5 (11-13.5)					
Lab Sample ID: Client Matrix:	480-85696-9 Solid					npled: 08/14/2015 0820 ceived: 08/15/2015 0900
	826	0C Volatile Orgar	nic Compound	ds by GC	/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035 1.0 08/19/2015 1628 08/15/2015 1130	Analysis Batch: Prep Batch:	480-259347 480-259392	2 La Ir	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	HP5973F F0248.D 6.976 g 5 mL
Analyte	DryWt Corrected	I: N Result (	ug/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.44	3.6
Xylenes, Total		ND			0.60	7.2
Surrogate Toluene-d8 (Surr) 1,2-Dichloroethan		%Rec 103 117		Qualifier	Acceptar 71 - 125 64 - 126	nce Limits
4-Bromofluoroben		105			72 - 126	
Dibromofluoromet	hane (Surr)	108			60 - 140	

## **Analytical Data**

Client Sample ID:	TRIP BLANK						
Lab Sample ID: Client Matrix:	480-85696-10 Water					npled: 08/14/20 eived: 08/15/20	
		8260C Volatile Organi	c Compounds	by GC/MS			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/19/2015 1215 08/19/2015 1215	Analysis Batch: Prep Batch:	480-259393 N/A	Instrument II Lab File ID: Initial Weigh Final Weight	t/Volume:	HP5975T T7562.D 5 mL 5 mL	
Analyte		Result (u	a/L) Qu	ualifier MD	L	RL	
1,1,1-Trichloroetha	ane	ND	3,	0.8		1.0	
1,1,2,2-Tetrachloro		ND		0.2		1.0	
1,1,2-Trichloroetha		ND		0.23		1.0	
1,1,2-Trichloro-1,2		ND		0.3	1	1.0	
1,1-Dichloroethane	9	ND		0.38	8	1.0	
1,1-Dichloroethene	e	ND		0.29	9	1.0	
1,2,4-Trichloroben	zene	ND		0.4	1	1.0	
1,2-Dibromo-3-Chl	oropropane	ND		0.3	9	1.0	
1,2-Dibromoethan	e	ND		0.73	3	1.0	
1,2-Dichlorobenze	ne	ND		0.79	9	1.0	
1,2-Dichloroethane	e	ND		0.2	1	1.0	
1,2-Dichloropropa	ne	ND		0.72	2	1.0	
1,3-Dichlorobenze	ne	ND		0.78	8	1.0	
1,4-Dichlorobenze	ne	ND		0.84		1.0	
2-Hexanone		ND		1.2		5.0	
2-Butanone (MEK)	)	1.7	J	1.3		10	
4-Methyl-2-pentan	one (MIBK)	ND		2.1		5.0	
Acetone		4.4	J	3.0		10	
Benzene		ND		0.4		1.0	
Bromodichloromet	hane	ND		0.3		1.0	
Bromoform		ND		0.20		1.0	
Bromomethane		ND		0.6		1.0	
Carbon disulfide		ND		0.19		1.0	
Carbon tetrachlorio	de	ND		0.2		1.0	
Chlorobenzene		ND		0.7		1.0	
Dibromochloromet	hane	ND		0.3		1.0	
Chloroethane		ND		0.32		1.0	
Chloroform		ND		0.34		1.0	
Chloromethane		ND		0.3		1.0	
cis-1,2-Dichloroeth		ND		0.8		1.0	
cis-1,3-Dichloropro	ppene	ND		0.30 0.18		1.0	
Cyclohexane Dichlorodifluorome	thana	ND ND J		0.6		1.0 1.0	
Ethylbenzene	linane	ND		0.04		1.0	
Isopropylbenzene		ND		0.79		1.0	
Methyl acetate		ND		1.3		2.5	
Methyl tert-butyl ef	her	ND		0.10		1.0	
Methylcyclohexane		ND		0.10		1.0	
Methylene Chlorid		ND		0.4		1.0	
Styrene	•	ND		0.73		1.0	
Tetrachloroethene		ND		0.3		1.0	
Toluene		ND		0.5		1.0	
trans-1,2-Dichloroe	ethene	ND		0.9		1.0	
trans-1,3-Dichloro		ND		0.3		1.0	
Trichloroethene		ND		0.4		1.0	
Trichlorofluoromet	hane	ND		0.8		1.0	
includionel		ND		0.00	0	1.0	

## Client: ARCADIS U.S. Inc

Client Sample ID:	TRIP BLANK							
Lab Sample ID: Client Matrix:	480-85696-10 Water					npled: 08/14/2015 0000 ceived: 08/15/2015 0900		
8260C Volatile Organic Compounds by GC/MS								
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/19/2015 1215 08/19/2015 1215	Analysis Batch: Prep Batch:	480-259393 N/A	La Ir	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	HP5975T T7562.D 5 mL 5 mL		
Analyte		Result (u	g/L) G	Qualifier	MDL	RL		
Vinyl chloride		ND			0.90	1.0		
Xylenes, Total		ND			0.66	2.0		
Surrogate		%Rec	C	Qualifier	Acceptar	nce Limits		
1,2-Dichloroethane	e-d4 (Surr)	104			66 - 137			
Toluene-d8 (Surr)	( <b>0</b> , <b>0</b> )	99			71 - 126			
4-Bromofluoroben: Dibromofluoromet	. ,	97 101			73 - 120 60 - 140			

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	SB-2 (7-9)								
Lab Sample ID: Client Matrix:	480-85696-1 Solid		% Moistur	e: 8.6				npled: 08/13/2015 150 eived: 08/15/2015 090	
	8	3270D Semiv	olatile Org	janic Compo	ounds	(GC/MS)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 10 08/19/2015 0006 08/17/2015 0827	•	sis Batch: Batch:	480-25927 480-258952		Final We		HP5973X X009012414.D +30.24 g 1 mL 1 uL	
Analyte	DryWt Corre	ected: Y	Result (u	ıg/Kg)	Qualif	ier	MDL	RL	
Biphenyl	,		ND	0 0/			270	1800	_
bis (2-chloroisopro	pyl) ether		ND				370	1800	
2,4,5-Trichlorophe			ND				500	1800	
2,4,6-Trichlorophe	nol		ND				370	1800	
2,4-Dichloropheno	I		ND				200	1800	
2,4-Dimethylphend	bl		ND				450	1800	
2,4-Dinitrophenol			ND				8500	18000	
2,4-Dinitrotoluene			ND				380	1800	
2,6-Dinitrotoluene			ND				220	1800	
2-Chloronaphthale	ne		ND				300	1800	
2-Chlorophenol			ND				340	1800	
2-Methylnaphthale	ne		ND				370	1800	
2-Methylphenol			ND				220	1800	
2-Nitroaniline			ND				270	3600	
2-Nitrophenol	dina		ND ND				520 2200	1800 3600	
3,3'-Dichlorobenzio 3-Nitroaniline	une		ND				510	3600	
4,6-Dinitro-2-methy	Vinhenol		ND				1800	3600	
4-Bromophenyl ph			ND				260	1800	
4-Chloro-3-methyl			ND				460	1800	
4-Chloroaniline			ND				460	1800	
4-Chlorophenyl ph	envl ether		ND				230	1800	
4-Methylphenol	onyr olliol		ND				220	3600	
4-Nitroaniline			ND				970	3600	
4-Nitrophenol			ND				1300	3600	
Acenaphthene			ND				270	1800	
Acenaphthylene			ND				240	1800	
Acetophenone			ND				250	1800	
Anthracene			ND				460	1800	
Atrazine			ND				640	1800	
Benzaldehyde			ND				1500	1800	
Benzo[a]anthracer	ne		ND				180	1800	
Benzo[a]pyrene			ND				270	1800	
Benzo[b]fluoranthe			ND				290	1800	
Benzo[g,h,i]peryler			ND				200	1800	
Benzo[k]fluoranthe			ND				240	1800	
Bis(2-chloroethoxy	-		ND				390	1800	
Bis(2-chloroethyl)e							240 630	1800	
Bis(2-ethylhexyl) p Butyl benzyl phtha			ND ND				300	1800 1800	
Caprolactam			ND				500 550	1800	
Carbazole			ND				220	1800	
Chrysene			ND				410	1800	
Di-n-butyl phthalat	۵		ND				310	1800	
Di-n-octyl phthalat			ND				220	1800	
Dibenz(a,h)anthra			ND				330	1800	
								1000	

## **Analytical Data**

Client Sample ID: Lab Sample ID:	: <b>SB-2 (7-9)</b> 480-85696-1			Date San	npled: 08/13/2015 1500
Client Matrix:	Solid	% Moisture: 8.6		Date Rec	eived: 08/15/2015 0900
	827	OD Semivolatile Organic Cor	npounds (GC/MS)	)	
Analysis Method:	8270D	Analysis Batch: 480-259		nent ID:	HP5973X
Prep Method:	3550C	Prep Batch: 480-258			X009012414.D
Dilution:	10		Initial \	Neight/Volume:	+30.24 g
Analysis Date:	08/19/2015 0006		Final V	Veight/Volume:	1 mL
Prep Date:	08/17/2015 0827		Injectio	on Volume:	1 uL
Analyte	DryWt Correct	ed: Y Result (ug/Kg)	Qualifier	MDL	RL
Dibenzofuran		ND		220	1800
Diethyl phthalate		ND		240	1800
Dimethyl phthalate	;	ND		220	1800
Fluoranthene		ND		200	1800
Fluorene		ND		220	1800
Hexachlorobenzer		ND		250	1800
Hexachlorobutadie		ND		270	1800
Hexachlorocyclope		ND		250	1800
Hexachloroethane		ND		240	1800
Indeno[1,2,3-cd]py	/rene	ND		230	1800
Isophorone	1	ND		390	1800
N-Nitrosodi-n-prop		ND		310	1800
N-Nitrosodiphenyl	amine	ND		1500	1800
Naphthalene Nitrobenzene		ND ND		240 210	1800 1800
Pentachloropheno	I	ND		1800	3600
Phenanthrene	1	ND		270	1800
Phenol		ND		280	1800
Pyrene		ND		220	1800
Surrogate		%Rec	Qualifier	Acceptan	ce Limits
2,4,6-Tribromophe	enol	70		39 - 146	
2-Fluorobiphenyl		85		37 - 120	
2-Fluorophenol		80		18 - 120	
Nitrobenzene-d5		77		34 - 132	
p-Terphenyl-d14		91		65 - 153	
Phenol-d5		71		11 - 120	

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	SB-2 (9-11)								
Lab Sample ID: Client Matrix:	480-85696-2 Solid	%	Moisture:	5.7				pled: 08/13/2015 eived: 08/15/2015	
		8270D Semivola	atile Orga	nic Compo	unds (	GC/MS)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 20 08/19/2015 0032 08/17/2015 0827	Analysis Prep Ba		480-259277 480-258952		Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vo Injection Volume	lume:	HP5973X X009012415.D +30.76 g 1 mL 1 uL	
Analyte	DryWt Corr	ected: Y	Result (ug	/Kg)	Qualifi	er MDL		RL	
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichlorophe 2,4-Dinklorophenol 2,4-Dinklorophenol 2,4-Dinitrobluene 2,4-Dinitrobluene 2,4-Dinitrobluene 2,6-Dinitrobluene 2-Chloronaphthale 2-Chlorophenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-methyl 4-Chloro-3-methyl 4-Chloro-3-methyl 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acetophenone Anthracene Anthracene Benzo[a]anthracer Benzo[b]fluoranthe Benzo[k]fluoranthe Bis(2-chloroethoxy	pyl) ether nol nol l nol l ne ne dine ylphenol enyl ether ohenol enyl ether ohenol enyl ether	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		/Kg)	Qualifi	520 700 950 700 370 850 16000 720 410 580 640 700 410 520 990 4100 970 3500 500 870 870 870 870 870 430 410 1800 2500 520 450 430 410 870 1200 2800 350 520 520 520 520 520 520 520 520 520 5		3500 3500 3500 3500 3500 3500 3500 3500	
Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Di-n-octyl phthalat Dibenz(a,h)anthrae	hthalate late e	1 1 1 1 1 1	ND ND ND ND ND ND ND ND			450 1200 580 1100 410 790 600 410 620		3500 3500 3500 3500 3500 3500 3500 3500	

## **Analytical Data**

Client Sample ID: Lab Sample ID: Client Matrix:	<b>SB-2 (9-11)</b> 480-85696-2 Solid	% Moisture: 5.7		Date Sampled:( Date Received:(	
	82	270D Semivolatile Organic Com	oounds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 20 08/19/2015 0032 08/17/2015 0827	Analysis Batch: 480-2592 Prep Batch: 480-2589	52 Lab File ID	: X0090 ht/Volume: +30.76 ht/Volume: 1 mL	912415.D 6 g
Analyte	DryWt Correc			DL R	
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclope Hexachlorocyclope Hexachlorocthane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodi-n-prop N-Nitrosodiphenyla Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol Pyrene	e ene entadiene vrene ylamine amine	ND ND ND ND ND ND ND ND ND ND ND ND ND N	4 37 4 4 52 4 5 4 5 4 5 7 4 6 0 2 9 3 9 3 9 3 9 3 5 2 5 2 5	50     34       10     34       10     34       10     34       30     34       20     34       30     34       50     34       50     34       30     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50     34       50	500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         5
Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	nol	%Rec 57 78 62 69 82 68	Qualifier	Acceptance Limit 39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120	ts

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	SB-1 (7-9)								
Lab Sample ID: Client Matrix:	480-85696-3 Solid		% Moisture	e: 19.2				pled: 08/13/ eived: 08/15/	
		8270D Semive	olatile Org	anic Compo	ounds (	GC/MS)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 10 08/19/2015 0059 08/17/2015 0827	Analy: Prep I	sis Batch: 3atch:	480-25927 480-25895		Instrument Lab File ID: Initial Weigl Final Weigh Injection Vo	nt/Volume: nt/Volume:	HP5973X X00901241 +30.65 g 1 mL 1 uL	6.D
Analyte	DryWt Cor	rected: Y	Result (u	g/Kg)	Qualifi	ier MI	DL	RL	
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4-Dichloropheno 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzio 3-Nitroaniline 4,6-Dinitro-2-meth 4-Bromophenyl ph 4-Chloro-3-methyl 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzo[a]anthracer Benzo[b]fluoranthe Benzo[g,h,i]peryle	ppyl) ether nol nol il ol ene ene dine ylphenol enyl ether phenol ienyl ether		ND ND ND ND ND ND ND ND ND ND ND ND ND N	g/kg)	Quality	Itel         MI           30         41           56         41           22         50           95         42           34         38           41         24           30         58           24         30           58         24           57         21           29         51           51         25           24         11           30         27           28         51           72         16           21         30           33         22           27         16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2100 2100 2100 2100 2100 2100 2100 2100	
Benzo[k]fluoranthe Bis(2-chloroethoxy Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Dibenz(a,h)anthra	r)methane ether hthalate llate e		ND ND ND ND ND ND ND ND ND			27 44 27 70 34 62 24 46 35 24 36	0 0 0 0 0 0 0 0 0 0	2100 2100 2100 2100 2100 2100 2100 2100	

## **Analytical Data**

Client Sample ID	SB-1 (7-9)				
Lab Sample ID: Client Matrix:	480-85696-3 Solid	% Moisture:	19.2		npled: 08/13/2015 1550 ceived: 08/15/2015 0900
	82	70D Semivolatile Orgar	nic Compounds (G	GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 10 08/19/2015 0059 08/17/2015 0827	· <b>)</b> · · · · ·	180-258952	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5973X X009012416.D +30.65 g 1 mL 1 uL
Analyte	DryWt Correct		Kg) Qualifie		RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclop Hexachloroethane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol Pyrene	e ene entadiene vrene oylamine amine	ND           ND	J	240 270 240 220 240 280 300 280 270 250 440 350 1700 270 230 2100 300 320 240	2100 2100 2100 2100 2100 2100 2100 2100
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	nol	64 74 74 71 84 82		39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120	

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	SB-1 (9-11)				
Lab Sample ID: Client Matrix:	480-85696-4 Solid	% Moisture	e: 15.6		Date Sampled: 08/13/2015 16 Date Received: 08/15/2015 09
	827	0D Semivolatile Org	janic Compou	nds (GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 20 08/19/2015 0125 08/17/2015 0827	Analysis Batch: Prep Batch:	480-259277 480-258952	Instrument IE Lab File ID: Initial Weight Final Weight Injection Volu	X009012417.D /Volume: +30.50 g /Volume: 1 mL
Analyte	DryWt Correcte	ed: Y Result (u	ig/Kg) G	Qualifier MD	
Analyte Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichloropheno 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthale 2-Chlorophenol 2-Methylnaphthale 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-meth 4-Bromophenyl ph 4-Chloro-3-methyl 4-Chloroaniline 4-Chlorophenol Acenaphthenol Acenaphthenol Acenaphthene Acetophenone Anthracene Atrazine Benzaldehyde Benzo[a]anthracer Benzo[b]fluoranthe Bis(2-chloroethyl)e	ppyl) ether nol nol i i b ene ene dine ylphenol ienyl ether phenol ienyl ether phenol ienyl ether phenol ienyl ether phenol ienyl ether phenol ienyl ether	ed: Y Result (u ND ND ND ND ND ND ND ND ND ND ND ND ND	ig/Kg) C	Qualifier MD 580 790 110 790 420 960 180 820 470 650 720 790 470 580 110 470 580 110 470 580 110 470 580 110 470 580 510 540 980 580 510 540 980 540 580 510 540 540 550 510 540 550 510 540 550 550 550 550 550 550 550 550 55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Di-n-octyl phthalat Dibenz(a,h)anthra	ohthalate ilate e	ND ND ND ND ND ND ND		140 650 120 470 890 680 470 700	0 4000 4000 0 4000 4000 4000 4000 4000

## Analytical Data

Client Sample ID	: SB-1 (9-11)				
Lab Sample ID: Client Matrix:	480-85696-4 Solid	% Moisture:	15.6		npled: 08/13/2015 1600 ceived: 08/15/2015 0900
	827	0D Semivolatile Organic	Compounds (GC/M	IS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 20 08/19/2015 0125 08/17/2015 0827		-258952 Lab Initia Fina	rument ID: File ID: al Weight/Volume: al Weight/Volume: ction Volume:	HP5973X X009012417.D +30.50 g 1 mL 1 uL
Analyte	DryWt Correcte		Qualifier	MDL	RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclope Hexachlorocyclope Hexachlorocthane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol Pyrene	ne ene entadiene yrene oylamine amine	ND ND ND ND ND ND ND ND ND ND ND ND ND N		470 510 470 420 470 540 580 540 510 490 840 680 3200 510 440 4000 580 610 470	4000 4000 4000 4000 4000 4000 4000 400
Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	enol	%Rec 58 82 85 79 90 82	Qualifier	Acceptan 39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120	ice Limits

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	DUP-081315							
Lab Sample ID: Client Matrix:	480-85696-5 Solid		% Moisture	e: 12.2			-	led: 08/13/2015 0000 ved: 08/15/2015 0900
		8270D Semivo	latile Org	anic Compo	ounds (	GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 5.0 08/19/2015 0152 08/17/2015 0827	Analys Prep E	is Batch: Batch:	480-259277 480-258952		Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vol Injection Volume	) lume: + lume: 1	HP5973X (009012418.D -30.27 g   mL   uL
Analyte	DryWt Corr	ected: Y	Result (u	g/Kg)	Qualifi	er MDL		RL
Analyte Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4-Dinthlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzid 3-Nitroaniline 4,6-Dinitro-2-methyl 4-Chloro-3-methyl 4-Chloro-3-methyl 4-Chloroaniline 4-Chlorophenyl ph 4-Chloroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzo[a]anthracer Benzo[b]fluoranthe Benzo[y,i]perylet Bis(2-chloroethyl)e Bis(2-chloroethyl)e	appl) ether nol nol l b ene ene dine ylphenol enyl ether phenol enyl ether phenol enyl ether phenol enyl ether phenol enyl ether phenol enyl ether	ected: Y	Result (u, ND ND ND ND ND ND ND ND ND ND ND ND ND	g/Kg)	J	er MDL 140 190 260 190 100 230 4400 200 110 160 170 190 110 140 270 960 140 240 240 240 120 110 500 670 140 120 130 240 330 760 96 140 120 200 120 330		RL         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         960         96
Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Dibenz(a,h)anthrae	late e e		ND ND ND ND ND ND			160 290 110 210 160 110 170		960 960 960 960 960 960 960

## **Analytical Data**

<b>Client Sample ID</b> Lab Sample ID: Client Matrix:	<b>DUP-081315</b> 480-85696-5 Solid	% Moisture:	12.2		npled: 08/13/2015 0000 eived: 08/15/2015 0900
	82	70D Semivolatile Organic	Compounds (GC	C/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 5.0 08/19/2015 0152 08/17/2015 0827	5	)-258952 La In F	istrument ID: ab File ID: iitial Weight/Volume: inal Weight/Volume: ijection Volume:	HP5973X X009012418.D +30.27 g 1 mL 1 uL
Analyte Dibenzofuran	DryWt Correc		) Qualifier	MDL 110	RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclop Hexachlorocyclop Hexachlorocyclop Hexachlorocyclop Hexachlorocyclop Nexachlorochane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol Pyrene	ne entadiene vrene oylamine amine	ND ND ND ND ND ND ND ND ND ND ND 170 ND ND ND ND ND ND ND ND ND ND ND ND	J	110 120 110 100 110 130 140 130 120 120 200 160 780 120 160 780 120 110 960 140 150 110	960 960 960 960 960 960 960 960 960 960
Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	nol	%Rec 73 74 72 70 84 75	Qualifier	Acceptan 39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120	ice Limits

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	SB-3 (7-9)					
Lab Sample ID: Client Matrix:	480-85696-6 Solid	% N	loisture: 8.6			npled: 08/13/2015 1515 eived: 08/15/2015 0900
		8270D Semivolati	le Organic Comp	ounds (GC/	MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 4.0 08/19/2015 0218 08/17/2015 0827	Analysis E Prep Batc		52 Lat Init Fin	trument ID: b File ID: tial Weight/Volume: nal Weight/Volume: ection Volume:	HP5973X X009012419.D +30.16 g 1 mL 1 uL
Analyte	DryWt Cor	rected: Y Re	sult (ug/Kg)	Qualifier	MDL	RL
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichlorophe 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthale 2-Chlorophenol 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-methyl 4-Bromophenyl ph 4-Chloro-3-methyl 4-Chlorophenol 4-Nitroaniline 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Methylphenol Acenaphthene Acenaphthene Acetophenone Anthracene Atrazine Benzaldehyde Benzo[a]anthracer Benzo[b]fluoranthe	pyl) ether nol nol l bl ne ne dine ylphenol enyl ether ohenol enyl ether	NGUEGE 1 NG NE NE NE NE NE NE NE NE NE NE NE NE NE			110         150         200         150         78         180         3400         150         87         120         130         150         87         120         130         150         87         120         130         150         87         100         200         740         100         180         91         87         390         520         110         96         100         180         260         590         74         110         120	740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         7
Benzo[g,h,i]perylei Benzo[k]fluoranthe Bis(2-chloroethoxy Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat	ne ene r)methane tther hthalate late	NE NE NE NE NE NE NE NE NE	) ) ) ) ) )		78 96 160 96 250 120 220 87 170 130	740 740 740 740 740 740 740 740 740 740
Di-n-octyl phthalat Dibenz(a,h)anthrae	е	NE	)		87 130	740 740

## **Analytical Data**

Client Sample ID: Lab Sample ID: Client Matrix:	<b>SB-3 (7-9)</b> 480-85696-6 Solid	% Moisture: 8.6			npled: 08/13/2015 1515 ceived: 08/15/2015 0900
	827	0D Semivolatile Organic Con	npounds (GC/MS)		
Analysis Method:	8270D	Analysis Batch: 480-259			HP5973X
Prep Method:	3550C	Prep Batch: 480-258			X009012419.D
Dilution:	4.0			/eight/Volume:	+30.16 g
Analysis Date:	08/19/2015 0218			eight/Volume:	1 mL
Prep Date:	08/17/2015 0827		Injectio	n Volume:	1 uL
Analyte	DryWt Correcte	ed: Y Result (ug/Kg)	Qualifier	MDL	RL
Dibenzofuran		ND		87	740
Diethyl phthalate		ND		96	740
Dimethyl phthalate	;	ND		87	740
Fluoranthene		ND		78	740
Fluorene		ND		87	740
Hexachlorobenzer		ND		100	740
Hexachlorobutadie		ND		110	740
Hexachlorocyclope		ND		100	740
Hexachloroethane		ND		96	740
Indeno[1,2,3-cd]py	rene	ND ND		91 160	740 740
Isophorone N-Nitrosodi-n-prop	wlamino	ND		130	740 740
N-Nitrosodiphenyl		ND		600	740
Naphthalene	amino	ND		96	740
Nitrobenzene		ND		83	740
Pentachloropheno	I	ND		740	1400
Phenanthrene		ND		110	740
Phenol		ND		110	740
Pyrene		ND		87	740
Surrogate		%Rec	Qualifier	Acceptar	ice Limits
2,4,6-Tribromophe	enol	73		39 - 146	
2-Fluorobiphenyl		77		37 - 120	
2-Fluorophenol		71		18 - 120	
Nitrobenzene-d5		74		34 - 132	
p-Terphenyl-d14		86		65 - 153	
Phenol-d5		73		11 - 120	

## **Analytical Data**

Client Sample ID:	SB-3 (9-11)								
Lab Sample ID: Client Matrix:	480-85696-7 Solid		% Moisture	e: 4.9				npled: 08/13/2 eived: 08/15/2	
	8270D Semivolatile Organic Compounds (GC/MS)								
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 50 08/19/2015 0245 08/17/2015 0827	Analy Prep I	sis Batch: 3atch:	480-25927 480-25895		Instrument II Lab File ID: Initial Weight Final Weight Injection Vol	t/Volume: /Volume:	HP5973X X009012420 +30.13 g 1 mL 1 uL	.D
Analyte	DryWt Cor	rected: Y	Result (u	g/Kg)	Qualifi	er MD	L	RL	
Analyte Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzid 3-Nitroaniline 4,6-Dinitro-2-methyl 4-Chloro-3-methyl 4-Chloroaniline 4-Chlorophenyl ph 4-Chloroaniline 4-Chlorophenyl ph 4-Chloroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzo[a]anthracer Benzo[b]fluoranthe Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-ethylhexyl) p	appl) ether nol nol i b ene ene dine ylphenol enyl ether phenol enyl ether phenol enyl ether phenol enyl ether phenol enyl ether phenol enyl ether	rected: Y	Result (u ND ND ND ND ND ND ND ND ND ND ND ND ND	g/Kg)	Qualifi	er MD 130 180 240 180 240 410 410 180 100 150 160 180 100 150 160 180 100 250 890 130 220 200 110 120 200 130 220 100 130 250 890 130 220 100 220 100 130 250 100 250 890 130 220 100 130 250 100 130 250 100 130 250 100 130 250 100 130 250 100 130 250 100 130 250 100 130 250 100 130 250 100 130 250 100 130 250 100 130 250 100 130 250 100 130 250 100 130 250 100 130 250 100 130 250 100 130 250 100 130 130 120 100 130 120 130 120 130 120 130 120 130 120 130 120 130 120 130 120 130 120 130 120 120 120 120 120 120 120 12		RL           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           17000           17000           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900           8900	
Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Dibenz(a,h)anthra	e e		ND ND ND ND ND ND			150 270 100 200 150 100 160	0 0 0 0 0 0	8900 8900 8900 8900 8900 8900 8900	

## Analytical Data

Client Sample ID: SB-	3 (9-11)			
Lab Sample ID: 480- Client Matrix: Solie	-85696-7 d	% Moisture: 4.9		ate Sampled: 08/13/2015 1525 bate Received: 08/15/2015 0900
	8270D Semivo	olatile Organic Comp	ounds (GC/MS)	
	Analys Prep E 2015 0245 2015 0827	sis Batch: 480-25927 3atch: 480-25895		olume: 1 mL
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier MDL	RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno[1,2,3-cd]pyrene Isophorone N-Nitrosodi-n-propylamine N-Nitrosodi-n-propylamine N-Nitrosodi-n-propylamine N-Nitrosodi-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene	e	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1000 1200 1000 940 1000 1200 1300 1200 1200 1200 1200 120	8900 8900 8900 8900 8900 8900 8900 8900
		%Rec	Qualifier A	contanco Limite
Surrogate 2,4,6-Tribromophenol 2-Fluorobiphenyl		48 81	3	cceptance Limits 9 - 146 7 - 120
2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5		70 80 96 81	1 3 6	7 - 120 8 - 120 4 - 132 5 - 153 1 - 120

## **Analytical Data**

Client Sample ID:	SB-5 (9-11)								
Lab Sample ID: Client Matrix:	480-85696-8 Solid		% Moisture	e: 20.1			mpled: 08/14/2015 0800 ceived: 08/15/2015 0900		
	8270D Semivolatile Organic Compounds (GC/MS)								
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 100 08/19/2015 0311 08/17/2015 0827	Analy: Prep I	sis Batch: 3atch:	480-259277 480-258952		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5973X X009012421.D +30.45 g 1 mL 1 uL		
Analyte	DryWt Co	rrected: Y	Result (u	g/Kg)	Qualifi	er MDL	RL		
Analyte Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4-Dinthlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthale 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-methyl 4-Bromophenyl ph 4-Chloro-3-methyl 4-Chloro-3-methyl 4-Chlorophenol 4-Nitroaniline 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Chlorophenyl ph 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acetophenone Anthracene Anthracene Anthracene Benzo[a]anthracer Benzo[b]fluoranthe Benzo[b]fluoranthe Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)e Bis(2-chloroethyl)	pyl) ether nol nol l nol l ne ne dine dine dine dine dine enyl ether obenol enyl ether	rrected: Y	Result (u           ND           36000           32000           16000           25000           ND      ND	<u>g/kg)</u>		er MDL 3100 4200 5700 4200 2200 5100 97000 4300 2500 3800 4200 2500 3800 4200 2500 3100 5900 25000 5800 21000 3000 5200 5200 5200 5200 5200 2500 11000 3000 5200 5200 5200 2500 11000 3000 5200 5200 2500 11000 3100 2500 11000 3100 2500 11000 3100 2700 2800 5200 7300 17000 2100 3100 2700 2800 5200 7300 17000 2100 3100 2700 2800 5200 7300 17000 2100 3100 3100 2700 2800 5200 7300 17000 2100 3100 2700 2800 5200 7300 17000 2100 3100 2100 3100 2700 2800 5200 7300 17000 2100 3100 2700 2800 5200 7300 17000 2100 3100 2700 2800 5200 3100 2700 2800 5200 3100 2700 2800 5200 3100 2700 2800 5200 3100 2700 2800 5200 3100 2700 2800 5200 7300 7300 7300 7300 7300 7200 2100 3100 2700 2800 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 5200 500 5	RL         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000         21000		
Carbazole Chrysene Di-n-butyl phthalat Di-n-octyl phthalat Dibenz(a,h)anthrad	е		2500 45000 ND ND 5000		l ↑ 1 1	2500 4700 3600 2500 3700	21000 21000 21000 21000 21000 21000		

## **Analytical Data**

Client Sample ID	SB-5 (9-11)				
Lab Sample ID: Client Matrix:	480-85696-8 Solid	% Moistur	e: 20.1		npled: 08/14/2015 0800 ceived: 08/15/2015 0900
		8270D Semivolatile Org	ganic Compounds (	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 100 08/19/2015 0311 08/17/2015 0827	Analysis Batch: Prep Batch:	480-259277 480-258952	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5973X X009012421.D +30.45 g 1 mL 1 uL
Analyte	DryWt Corr				RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclop Hexachlorocyclop Hexachlorocthane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol Pyrene	e ene entadiene vrene oylamine amine	4400 ND ND 82000 8800 ND ND ND ND ND ND ND ND ND ND ND ND ND	J J J J J J J J J	2500 2700 2500 2200 2500 2800 3100 2800 2700 2600 4400 3600 17000 2700 2300 21000 3100 3200 2500	21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000
Surrogate		%Rec	Qualif	ier Accentar	nce Limits
2,4,6-Tribromophe	enol	0	Х	39 - 146	
2-Fluorobiphenyl 2-Fluorophenol		0 0	X X	37 - 120 18 - 120	
Nitrobenzene-d5		0	×	34 - 132	
p-Terphenyl-d14		0	Х	65 - 153	
Phenol-d5		0	Х	11 - 120	

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	SB-5 (11-13.5)							
Lab Sample ID: Client Matrix:	480-85696-9 Solid	% Moisture	e: 15.8		Date Sampled: 08/14/2015 0820 Date Received: 08/15/2015 0900			
8270D Semivolatile Organic Compounds (GC/MS)								
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 20 08/19/2015 0338 08/17/2015 0827	Analysis Batch: Prep Batch:	480-259277 480-258952	Instrument IE Lab File ID: Initial Weight Final Weight Injection Volu	X009012422.D /Volume: +30.21 g /Volume: 1 mL			
Analyte	DryWt Corrected	d: Y Result (u	g/Kg) (	Qualifier MD	L RL			
Analyte Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4-Dinthlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthale 2-Chlorophenol 2-Methylnaphthale 2-Methylphenol 2-Nitroaniline 2-Nitroaniline 4,6-Dinitro-2-meth 4-Bromophenyl ph 4-Chloro-3-methyl 4-Chloroaniline 4-Chlorophenol 4-Nitroaniline 4-Nitrophenol Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzo[a]anthracer Benzo[b]fluoranthe Benzo[g,h,i]peryle	apyl) ether nol nol i b b ene ene dine ylphenol enyl ether phenol enyl ether phenol enyl ether	J. Y         Result (u           ND         ND           ND	g/kg) (	590 800 110 800 420 970 180 830 470 660 730 800 470 590 110 470 590 110 470 590 110 470 590 510 500 500 500 500 500 500 510 520 540 990 140 320	4000 4000 0 4000 4000 4000 4000 00 39000 4000 4000 4000 4000 4000 4000 7800 0 7800 0 4000 4000 4000 4000 4000 4000 4000			
Benzo[k]fluoranthe Bis(2-chloroethoxy Bis(2-chloroethyl)e Bis(2-ethylhexyl) p Butyl benzyl phtha Caprolactam Carbazole Chrysene Di-n-butyl phthalat Dibenz(a,h)anthra	r)methane ether hthalate late e	ND ND ND ND ND 1200 ND ND ND	J	520 850 520 140 660 120 470 900 680 470 710	4000 4000 0 4000 0 4000 0 4000 4000 400			

## **Analytical Data**

Client Sample ID	SB-5 (11-13.5)				
Lab Sample ID: Client Matrix:	480-85696-9 Solid	% Moisture:	15.8		mpled: 08/14/2015 0820 ceived: 08/15/2015 0900
	82	70D Semivolatile Orgai	nic Compounds (	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 20 08/19/2015 0338 08/17/2015 0827		480-259277 480-258952	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5973X X009012422.D +30.21 g 1 mL 1 uL
Analyte	DryWt Correct		Kg) Qualif		RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclop Hexachlorocyclop Hexachlorocethane Indeno[1,2,3-cd]py Isophorone N-Nitrosodi-n-prop N-Nitrosodiphenyl Naphthalene Nitrobenzene Pentachloropheno Phenanthrene	ne entadiene yrene oylamine amine	ND ND ND 1800 ND ND ND ND ND ND ND ND ND ND ND ND ND	J	470 520 470 420 470 540 590 540 520 500 850 680 3300 520 450 4000 590	4000 4000 4000 4000 4000 4000 4000 400
Phenol Pyrene		ND 1300	J	610 470	4000 4000
Surrogate 2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	enol	%Rec 73 81 66 64 87 74	Qualif	ier Acceptar 39 - 146 37 - 120 18 - 120 34 - 132 65 - 153 11 - 120	nce Limits

## **Analytical Data**

Client Sample ID	SB-2 (7-9)				
Lab Sample ID:	480-85696-1			Date Sa	mpled: 08/13/2015 1500
Client Matrix:	Solid	% Moisture	e: 8.6	Date Re	ceived: 08/15/2015 0900
		6010C N	letals (ICP)		
Analysis Method:	6010C	Analysis Batch:	480-259355	Instrument ID:	ICAP1
Prep Method:	3050B	Prep Batch:	480-259089	Lab File ID:	I1081815A-7.asc
Dilution:	1.0			Initial Weight/Volume:	+0.5173 g
Analysis Date:	08/18/2015 2041			Final Weight/Volume:	50 mL
Prep Date:	08/18/2015 0855			0	
Analyte	DryWt Corrected	d: Y Result (n	ng/Kg) Qu	alifier MDL	RL
Aluminum	<b>y</b>	11200	B	4.7	10.6
Antimony		0.65	J	0.42	15.9
Arsenic		3.7		0.42	2.1
Barium		48.3		0.12	0.53
Beryllium		0.59		0.030	0.21
Cadmium		0.061	J	0.032	0.21
Calcium		60400	B	3.5	52.9
Chromium		17.5		0.21	0.53
Cobalt		10.8		0.053	0.53
Copper		26.5		0.22	1.1
Iron		17100	B	3.7	10.6
Lead		12.2		0.25	1.1
Magnesium		11100	₽	0.98	21.2
Manganese		349	-8	0.034	0.21
Nickel		34.2		0.24	5.3
Potassium		2510		21.2	31.7
Selenium		1.0	J	0.42	4.2
Silver		ND		0.21	0.63
Sodium		407	₽	13.8	148
Thallium		ND		0.32	6.3
Vanadium		16.9		0.12	0.53
Zinc		52.4		0.68	2.1

## **Analytical Data**

Client Sample ID	: SB-2 (9-11)				
Lab Sample ID:	480-85696-2			Date Sa	mpled: 08/13/2015 1510
Client Matrix:	Solid	% Moisture	e: 5.7	Date Re	ceived: 08/15/2015 0900
		6010C N	letals (ICP)		
Analysis Method:	6010C	Analysis Batch:	480-259355	Instrument ID:	ICAP1
Prep Method:	3050B	Prep Batch:	480-259089	Lab File ID:	I1081815A-7.asc
Dilution:	1.0			Initial Weight/Volume:	+0.4980 g
Analysis Date:	08/18/2015 2044			Final Weight/Volume:	50 mL
Prep Date:	08/18/2015 0855			Ũ	
Analyte	DryWt Correcte	d: Y Result (n	ng/Kg) Qua	alifier MDL	RL
Aluminum		12800	B	4.7	10.6
Antimony		ND		0.43	16.0
Arsenic		4.0		0.43	2.1
Barium		99.5		0.12	0.53
Beryllium		0.69		0.030	0.21
Cadmium		ND		0.032	0.21
Calcium		71300	B	3.5	53.2
Chromium		20.2		0.21	0.53
Cobalt		12.2		0.053	0.53
Copper		29.1		0.22	1.1
Iron		19700	B	3.7	10.6
Lead		13.4		0.26	1.1
Magnesium		7240	B	0.99	21.3
Manganese		388	B	0.034	0.21
Nickel		39.1		0.24	5.3
Potassium		2990		21.3	31.9
Selenium		0.44	J	0.43	4.3
Silver		ND	_	0.21	0.64
Sodium		264	B	13.8	149
Thallium		ND		0.32	6.4
Vanadium		17.1		0.12	0.53
Zinc		50.8		0.68	2.1

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID	: SB-1 (7-9)				
Lab Sample ID:	480-85696-3			Date Sa	ampled: 08/13/2015 1550
Client Matrix:	Solid	% Moistur	re: 19.2	Date R	eceived: 08/15/2015 0900
		6010C I	Vetals (ICP)		
Analysis Method:	6010C	Analysis Batch:	480-259355	Instrument ID:	ICAP1
Prep Method:	3050B	Prep Batch:	480-259089	Lab File ID:	I1081815A-7.asc
Dilution:	1.0	-1		Initial Weight/Volume	
Analysis Date:	08/18/2015 2047			Final Weight/Volume	C C
Prep Date:	08/18/2015 0855				
Analyte	DryWt Correcte	d: Y Result (i	ma/Ka) Q	ualifier MDL	RL
Aluminum	,	12600			12.7
Antimony		ND	_	0.51	19.0
Arsenic		7.3		0.51	2.5
Barium		92.7		0.14	0.63
Beryllium		0.58		0.035	0.25
Cadmium		0.15	J	0.038	0.25
Calcium		24000	B	4.2	63.4
Chromium		16.8		0.25	0.63
Cobalt		8.6		0.063	0.63
Copper		27.4		0.27	1.3
Iron		17100	B		12.7
Lead		130		0.30	1.3
Magnesium		6110	B		25.3
Manganese		332	B		0.25
Nickel		24.8		0.29	6.3
Potassium		2720		25.3	38.0
Selenium		0.58	J	0.51	5.1
Silver		ND		0.25	0.76
Sodium		916	B		177
Thallium		ND		0.38	7.6
Vanadium		21.8		0.14	0.63
Zinc		99.9		0.81	2.5

Page 70 of 1188

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID	SB-1 (9-11)					
Lab Sample ID:	480-85696-4				Date Sar	mpled: 08/13/2015 1600
Client Matrix:	Solid	% Moistu	re: 15.6		Date Re	ceived: 08/15/2015 0900
		6010C	Metals (ICP	)		
Analysis Method:	6010C	Analysis Batch:	480-2593	55	Instrument ID:	ICAP1
Prep Method:	3050B	Prep Batch:	480-2590		Lab File ID:	1081815A-7.asc
Dilution:	1.0	r rop Baton.	100 2000		Initial Weight/Volume:	
Analysis Date:	08/18/2015 2059				Final Weight/Volume:	50 mL
Prep Date:	08/18/2015 0855				i indi Weight Volume.	oo me
Thep Date.	00/10/2013 0000					
Analyte	DryWt Correcte	d: Y Result (i	mg/Kg)	Qualifie	er MDL	RL
Aluminum	-	15500		B	5.1	11.6
Antimony		ND			0.47	17.5
Arsenic		3.4			0.47	2.3
Barium		54.9			0.13	0.58
Beryllium		0.79			0.033	0.23
Cadmium		0.064		J	0.035	0.23
Calcium		37900		B	3.8	58.2
Chromium		25.3			0.23	0.58
Cobalt		15.1			0.058	0.58
Copper		27.1			0.24	1.2
Iron		24500		B	4.1	11.6
Lead		13.4			0.28	1.2
Magnesium		8300		<del>B</del> -	1.1	23.3
Manganese		355		B	0.037	0.23
Nickel		45.4			0.27	5.8
Potassium		3000			23.3	34.9
Selenium		ND			0.47	4.7
Silver		ND			0.23	0.70
Sodium		627		<del>-B-</del>	15.1	163
Thallium		ND			0.35	7.0
Vanadium		19.7			0.13	0.58
Zinc		76.0			0.74	2.3

## **Analytical Data**

Client Sample ID	: DUP-081315							
Lab Sample ID:	480-85696-5				Date San	npled: 08/13/2015 0000		
Client Matrix:	Solid	% Moistur	e: 12.2		Date Received: 08/15/2015 0900			
		6010C N	letals (ICP)					
Analysis Method:	6010C	Analysis Batch:	480-259355	Inst	rument ID:	ICAP1		
Prep Method:	3050B	Prep Batch: 480-259089			File ID:	11081815A-7.asc		
Dilution:	1.0	-			al Weight/Volume:	+0.5036 g		
Analysis Date:	08/18/2015 2102				al Weight/Volume:	50 mL		
Prep Date:	08/18/2015 0855							
Analyte	DryWt Corrected	d: Y Result (r	ng/Kg) (	Qualifier	MDL	RL		
Aluminum	<b>,</b>	11200	<u> </u>		5.0	11.3		
Antimony		ND			0.45	17.0		
Arsenic		4.4			0.45	2.3		
Barium		42.9			0.12	0.57		
Beryllium		0.57			0.032	0.23		
Cadmium		0.036		J	0.034	0.23		
Calcium		60200	f	3-	3.7	56.5		
Chromium		18.2			0.23	0.57		
Cobalt		12.3			0.057	0.57		
Copper		28.7			0.24	1.1		
Iron		19700	E	3	4.0	11.3		
Lead		12.9			0.27	1.1		
Magnesium		11300		3	1.0	22.6		
Manganese		374	E	3-	0.036	0.23		
Nickel		39.2			0.26	5.7		
Potassium		2200			22.6	33.9		
Selenium		0.64	· ·	J	0.45	4.5		
Silver		ND			0.23	0.68		
Sodium		336	E	3	14.7	158		
Thallium		ND			0.34	6.8		
Vanadium		15.8			0.12	0.57		
Zinc		52.0			0.72	2.3		

## **Analytical Data**

Client Sample ID	SB-3 (7-9)							
Lab Sample ID:	480-85696-6				Date Sam	npled: 08/13/2015 1515		
Client Matrix:	Solid	% Moistu	re: 8.6		Date Received: 08/15/2015 0900			
		6010C	Metals (ICP)					
Analysis Method:	6010C	Analysis Batch:	480-259355	Instrumer	nt ID [.]	ICAP1		
Prep Method:	3050B	Prep Batch:	Lab File II		I1081815A-7.asc			
Dilution:	1.0		480-259089		ight/Volume:	+0.5060 g		
Analysis Date:	08/18/2015 2105				ght/Volume:	50 mL		
Prep Date:	08/18/2015 0855				9			
Analyte	DryWt Correcte	d: Y Result (i	mg/Kg) (	Qualifier	MDL	RL		
Aluminum	<b>,</b>	14400	0 0,		4.8	10.8		
Antimony		ND			0.43	16.2		
Arsenic		4.1		(	0.43	2.2		
Barium		71.1		(	0.12	0.54		
Beryllium		0.75		(	0.030	0.22		
Cadmium		ND		(	0.032	0.22		
Calcium		56300	÷		3.6	54.1		
Chromium		22.4		(	0.22	0.54		
Cobalt		14.2			0.054	0.54		
Copper		29.2			0.23	1.1		
Iron		21400	f		3.8	10.8		
Lead		12.1			0.26	1.1		
Magnesium		7540			1.0	21.6		
Manganese		361	ť		0.035	0.22		
Nickel		42.9			0.25	5.4		
Potassium		3020			21.6	32.4		
Selenium		ND			0.43	4.3		
Silver		ND			0.22	0.65		
Sodium		642	ŧ		14.1	151		
Thallium		ND			0.32	6.5		
Vanadium		18.6			0.12	0.54		
Zinc		50.8		(	0.69	2.2		

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID	: SB-3 (9-11)							
Lab Sample ID:	480-85696-7				Date Sampled: 08/13/2015 1525			
Client Matrix:	Solid	% Moistu	re: 4.9		Date Received: 08/15/2015 0900			
		6010C	Metals (ICP)					
Analysis Method:	6010C	Analysis Batch:	480-259355	Instrument I	D: ICAP1			
Prep Method:	3050B	Prep Batch:	-		I1081815A-7.asc			
Dilution:	1.0			Initial Weight	t/Volume: +0.5023 g			
Analysis Date:	08/18/2015 2108			Final Weight				
Prep Date:	08/18/2015 0855							
Analyte	DryWt Correcte	d: Y Result (i	mg/Kg) C	Qualifier MD	L RL			
Aluminum	<b>y</b>	14100	<u> </u>		10.5			
Antimony		ND		0.42	2 15.7			
Arsenic		3.8		0.42	2 2.1			
Barium		63.6		0.12	2 0.52			
Beryllium		0.75		0.02	29 0.21			
Cadmium		0.036	J	0.03	31 0.21			
Calcium		47600	Ð		52.3			
Chromium		22.3		0.2	1 0.52			
Cobalt		15.5		0.0	52 0.52			
Copper		28.0		0.22				
Iron		21700	E					
Lead		11.4		0.2				
Magnesium		7570	E		7 20.9			
Manganese		360	Æ					
Nickel		41.6		0.24				
Potassium		3010		20.9				
Selenium		0.65	J					
Silver		ND		0.2				
Sodium		327	E					
Thallium		ND		0.3				
Vanadium		17.7		0.12				
Zinc		63.5		0.6	7 2.1			

## **Analytical Data**

Client Sample ID	: SB-5 (9-11)						
Lab Sample ID:	480-85696-8			Date Sa	mpled: 08/14/2015 0800		
Client Matrix:	Solid	% Moistur	e: 20.1	Date Received: 08/15/2015 0900			
		6010C I	Metals (ICP)				
Analysis Method:	6010C	Analysis Batch:	480-259355	Instrument ID:	ICAP1		
Prep Method:	3050B	Prep Batch:	-		11081815A-7.asc		
Dilution:	1.0		100 200000	Lab File ID: Initial Weight/Volume:			
Analysis Date:	08/18/2015 2111			Final Weight/Volume:	-		
Prep Date:	08/18/2015 0855				00 mL		
Thep Date.	00/10/2013 0000						
Analyte	DryWt Corrected	d: Y Result (r	ng/Kg) Qua	lifier MDL	RL		
Aluminum		17300	B	5.5	12.4		
Antimony		ND		0.50	18.6		
Arsenic		5.0		0.50	2.5		
Barium		123		0.14	0.62		
Beryllium		0.86		0.035	0.25		
Cadmium		0.61		0.037	0.25		
Calcium		8180	B	4.1	62.1		
Chromium		23.9		0.25	0.62		
Cobalt		12.2		0.062	0.62		
Copper		18.4		0.26	1.2		
Iron		23300	₿	4.3	12.4		
Lead		63.6		0.30	1.2		
Magnesium		5550	B	1.2	24.8		
Manganese		389	<del>-B</del> -	0.040	0.25		
Nickel		35.7		0.29	6.2		
Potassium		2960		24.8	37.2		
Selenium		0.73	J	0.50	5.0		
Silver		ND		0.25	0.74		
Sodium		752	B	16.1	174		
Thallium		ND		0.37	7.4		
Vanadium		27.6		0.14	0.62		
Zinc		887		0.79	2.5		

## **Analytical Data**

Job Number: 480-85696-1

Client Sample ID:	SB-5 (11-13.5)					
Lab Sample ID: Client Matrix:	480-85696-9 Solid	% Moistur	e: 15.8		Date Sampled: 08/14/20 Date Received: 08/15/20	
		6010C N	letals (ICP)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	6010C 3050B 1.0 08/18/2015 2114 08/18/2015 0855	Analysis Batch: Prep Batch:	480-259355 480-259089	Instrument II Lab File ID: Initial Weigh Final Weight	I1081815A-7. Volume: +0.4959 g	asc
Analyte	DryWt Corrected	Y Result (n	ng/Kg) G	Qualifier MD	L RL	
Aluminum		18600			12.0	
Antimony		ND		0.48		
Arsenic		3.6		0.48		
Barium		76.6		0.13	3 0.60	
Beryllium		0.96		0.03		
Cadmium		0.057	J		36 0.24	
Calcium		11400	Ð		59.9	
Chromium		28.8		0.24	4 0.60	
Cobalt		17.1		0.0	60 0.60	
Copper		27.0		0.2	5 1.2	
Iron		27300	Ð	<del>4</del> .2	12.0	
Lead		13.5		0.29	9 1.2	
Magnesium		7880	E		23.9	
Manganese		307	÷	0.03	38 0.24	
Nickel		48.0		0.28	3 6.0	
Potassium		3120		23.9	9 35.9	
Selenium		ND		0.48	3 4.8	
Silver		ND		0.24	4 0.72	
Sodium		321	E	<del>)</del> 15.0	6 168	
Thallium		ND		0.30	5 7.2	
Vanadium		23.9		0.13	3 0.60	
Zinc		79.0		0.7	7 2.4	

## Client Sample ID: SB-5 (11-13.5)

### Client: ARCADIS U.S. Inc

General Chemistry								
Client Sample ID	): SB-2 (7-9)							
Lab Sample ID:	480-85696-1				Dat	e Sampled:	08/13/2015 1500	
Client Matrix:	Solid	% Mois	% Moisture: 8.6 Date R				eceived: 08/15/2015 0900	
Analyte	Result	Qual	Units	MDL	RL	Dil	Method	
Cyanide, Total	ND		mg/Kg	0.52	1.1	1.0	9012B	
	Analysis Batch: 480-26008	9 Analysis Date	e: 08/24/20	15 1028		Dr	yWt Corrected: Y	
	Prep Batch: 480-260006	Prep Date: 08	8/24/2015 (	0155				
Analyte	Result	Qual	Units	RL	RL	Dil	Method	
Percent Moisture	8.6		%	0.10	0.10	1.0	Moisture	
	Analysis Batch: 480-25890	6 Analysis Date	Analysis Date: 08/15/2015 1533			Dr	yWt Corrected: N	
Percent Solids	91		%	0.10	0.10	1.0	Moisture	
	Analysis Batch: 480-25890	6 Analysis Date	e: 08/15/20	15 1533		Dr	yWt Corrected: N	

### Client: ARCADIS U.S. Inc

	General Chemistry								
Client Sample ID	): SB-2 (9-11)								
Lab Sample ID:	480-85696-2				Dat	e Sampled:	08/13/2015 1510		
Client Matrix:	Solid	% Mois	sture: 5.7	,	Dat	e Received:	08/15/2015 0900		
Analyte	Result	Qual	Units	MDL	RL	Dil	Method		
Cyanide, Total	ND		mg/Kg	0.50	1.0	1.0	9012B		
	Analysis Batch: 480-260089	Analysis Date	e: 08/24/20	15 1030		Dr	yWt Corrected: Y		
	Prep Batch: 480-260006	Prep Date: 08	8/24/2015 (	0155					
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	5.7		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-258906	6 Analysis Date	Analysis Date: 08/15/2015 1533			Dr	yWt Corrected: N		
Percent Solids	94		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-258906	6 Analysis Date	e: 08/15/20	15 1533		Dr	yWt Corrected: N		

### Client: ARCADIS U.S. Inc

		Gene	eral Chem	istry			
Client Sample ID	9: SB-1 (7-9)						
Lab Sample ID:	480-85696-3				Date	e Sampled:	08/13/2015 1550
Client Matrix:	Solid	% Mois	ture: 19	0.2	Dat	e Received:	08/15/2015 0900
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	ND		mg/Kg	0.58	1.2	1.0	9012B
	Analysis Batch: 480-260089	Analysis Date	e: 08/24/20	015 1034		Dr	yWt Corrected: Y
	Prep Batch: 480-260006	Prep Date: 08	3/24/2015	0155			
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	19		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258906	Analysis Date	Analysis Date: 08/15/2015 1533			Dr	yWt Corrected: N
Percent Solids	81		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258906	Analysis Date	e: 08/15/20	)15 1533		Dr	yWt Corrected: N

### Client: ARCADIS U.S. Inc

General Chemistry										
Client Sample ID	): SB-1 (9-11)									
Lab Sample ID:	480-85696-4						08/13/2015 1600			
Client Matrix:	Solid	% Mois	ture: 15.	6	Date	Received:	08/15/2015 0900			
Analyte	Result	Qual	Units	MDL	RL	Dil	Method			
Cyanide, Total	ND		mg/Kg	0.57	1.2	1.0	9012B			
	Analysis Batch: 480-260093	Analysis Date	e: 08/24/20 ²	15 1058		Dr	yWt Corrected: Y			
	Prep Batch: 480-260082	Prep Date: 08	3/24/2015 0	740						
Analyte	Result	Qual	Units	RL	RL	Dil	Method			
Percent Moisture	16		%	0.10	0.10	1.0	Moisture			
	Analysis Batch: 480-258906	Analysis Date	e: 08/15/20 ²	15 1533		Dr	yWt Corrected: N			
Percent Solids	84		%	0.10	0.10	1.0	Moisture			
	Analysis Batch: 480-258906	Analysis Date	e: 08/15/20 ²	15 1533		Dr	yWt Corrected: N			

### Client: ARCADIS U.S. Inc

### Job Number: 480-85696-1

General Chemistry								
Client Sample ID	: DUP-081315							
Lab Sample ID:	480-85696-5				Date	e Sampled:	08/13/2015 0000	
Client Matrix:	Solid	% Mois	% Moisture: 12.2 Date Re				ceived: 08/15/2015 0900	
Analyte	Result	Qual	Units	MDL	RL	Dil	Method	
Cyanide, Total	ND		mg/Kg	0.55	1.1	1.0	9012B	
	Analysis Batch: 480-260093	Analysis Date	e: 08/24/20	15 1100		Dr	yWt Corrected: Y	
	Prep Batch: 480-260082	Prep Date: 08	8/24/2015	0740				
Analyte	Result	Qual	Units	RL	RL	Dil	Method	
Percent Moisture	12		%	0.10	0.10	1.0	Moisture	
	Analysis Batch: 480-258906	Analysis Date	e: 08/15/20	15 1533		Dr	yWt Corrected: N	
Percent Solids	88		%	0.10	0.10	1.0	Moisture	
	Analysis Batch: 480-258906	analysis Date	e: 08/15/20	15 1533		Dr	yWt Corrected: N	

.

### Client: ARCADIS U.S. Inc

	General Chemistry								
Client Sample ID	): SB-3 (7-9)								
Lab Sample ID:	480-85696-6				Date	e Sampled:	08/13/2015 1515		
Client Matrix:	Solid	% Mois	sture: 8.6	6	Date	e Received:	08/15/2015 0900		
Analyte	Result	Qual	Units	MDL	RL	Dil	Method		
Cyanide, Total	ND		mg/Kg	0.52	1.1	1.0	9012B		
	Analysis Batch: 480-260093	Analysis Date	e: 08/24/20	15 1101		Dr	yWt Corrected: Y		
	Prep Batch: 480-260082	Prep Date: 08	8/24/2015	0740					
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	8.6		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-258906	Analysis Date	e: 08/15/20	15 1533		Dr	yWt Corrected: N		
Percent Solids	91		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-258906	Analysis Date	e: 08/15/20	15 1533		Dr	yWt Corrected: N		

### Client: ARCADIS U.S. Inc

	General Chemistry								
Client Sample ID	): SB-3 (9-11)								
Lab Sample ID:	480-85696-7				Date	e Sampled:	08/13/2015 1525		
Client Matrix:	Solid	% Mois	ture: 4.9	)	Date	e Received:	08/15/2015 0900		
Analyte	Result	Qual	Units	MDL	RL	Dil	Method		
Cyanide, Total	ND		mg/Kg	0.49	1.0	1.0	9012B		
	Analysis Batch: 480-260093	Analysis Date	e: 08/24/20	15 1103		Dr	yWt Corrected: Y		
	Prep Batch: 480-260082	Prep Date: 08	3/24/2015 (	0740					
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	4.9		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-258906	Analysis Date	e: 08/15/20	15 1533		Dr	yWt Corrected: N		
Percent Solids	95		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-258906	Analysis Date	e: 08/15/20	15 1533		Dr	yWt Corrected: N		

### Client: ARCADIS U.S. Inc

Job Number: 480-85696-1

		Gene	eral Chem	istry			
Client Sample ID	): SB-5 (9-11)						
Lab Sample ID:	480-85696-8				Date	e Sampled:	08/14/2015 0800
Client Matrix:	Solid	% Mois	ture: 20	).1	Date	e Received:	08/15/2015 0900
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	469		mg/Kg	6.0	12.5	10	9012B
	Analysis Batch: 480-260955	Analysis Date	e: 08/28/20	015 0942		Di	yWt Corrected: Y
	Prep Batch: 480-260793	Prep Date: 08	3/27/2015	1345			
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	20		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258906	Analysis Date	e: 08/15/20	015 1533		Dr	yWt Corrected: N
Percent Solids	80		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258906	Analysis Date	e: 08/15/20	015 1533		Dr	yWt Corrected: N

### Client: ARCADIS U.S. Inc

Job Number: 480-85696-1

General Chemistry							
Client Sample ID	: SB-5 (11-13.5)						
Lab Sample ID:	480-85696-9				Date	e Sampled:	08/14/2015 0820
Client Matrix:	Solid	% Mois	sture: 15	.8	Date	e Received:	08/15/2015 0900
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Cyanide, Total	ND	*	mg/Kg	0.57	1.2	1.0	9012B
	Analysis Batch: 480-260544	Analysis Date	e: 08/26/20	15 0955		Dr	yWt Corrected: Y
	Prep Batch: 480-260328	Prep Date: 08	3/25/2015 ⁻	1050			
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	16		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258906	06 Analysis Date: 08/15/2015 1533			Dr	yWt Corrected: N	
Percent Solids	84		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 480-258906	3 Analysis Date	e: 08/15/20	15 1533		Dr	yWt Corrected: N



Imagine the result

# Rochester Gas & Electric – Geneseo Park Street Site

# **Data Usability Summary Report**

GENESEO, NEW YORK

Volatile Analyses

SDG# 200-29600-1

Analyses Performed By: TestAmerica Laboratories Burlington, Vermont

Report: #24497R Review Level: Tier III Project: B0013138.0002.00005

### SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #200-29600-1 for samples collected in association with the Rochester Gas & Electric Geneseo Park Street Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Included with this assessment are the validation annotated sample result sheets and chain of custody. Analyses were performed on the following samples:

			Sample		Analysis				
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	SVOC	РСВ	MET	MISC
SV-1	200-29600-1	Air	9/2/2015		Х				
SV-2	200-29600-2	Air	9/2/2015		Х				
SV-3	200-29600-3	Air	9/2/2015		Х				
SV-4	200-29600-4	Air	9/2/2015		Х				
SV-5	200-29600-5	Air	9/2/2015		Х				
SV-6	200-29600-6	Air	9/2/2015		Х				
SV-7	200-29600-7	Air	9/2/2015		Х				
DUP-090215	200-29600-8	Air	9/2/2015	SV-6	Х				

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Reported			mance ptable	Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		Х		Х	
Collection Technique (grab, composite, etc.)		Х		Х	
Methods of analysis		Х		Х	
Reporting limits		Х		Х	
Sample collection date		Х		Х	
Laboratory sample received date		Х		Х	
Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
Fully executed Chain-of-Custody (COC) form completed		х		х	
Narrative summary of QA or sample problems provided		х		х	
Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

### INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999, USEPA Region II SOP HW-31- Validating Air Samples Volatile Organic Analysis of Ambient Air In Canister by Method TO-15 of October 2006, New York State DEC Analytical Method ASP 2005 TO-15 (QA/QC Criteria R9 TO-15), NYSDEC Modifications to R9 TO-15 QA/QC Criteria October 2009.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
  - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
  - E The compound was quantitated above the calibration range.
  - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
  - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
  - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
  - UB Compound considered non-detect at the listed value due to associated blank contamination.
  - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on

data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

### **VOLATILE ORGANIC COMPOUND (VOC) ANALYSES**

### 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	Return Canister Pressure
EPA TO-15	Air	30 days from collection to analysis	Ambient Temperature	< -1" Hg

All samples met return canister pressure criteria and were analyzed within the specified holding time criteria.

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the reporting limit (RL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
SV-1 SV-2 SV-3 SV-4 SV-5 SV-6 SV-7	Methylene Chloride	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the PQL</td></rl>	"UB" at the PQL
DI Dementio	P 14		

RL Reporting limit

#### 3. Mass Spectrometer Tuning

A few sample locations were compliant with the Method TO-15 requirement of analysis within a 24-hour tune clock but not compliant with the NYSDEC requirement of analysis within a 12-hour tune clock. The data were not qualified.

System performance and column resolution were acceptable.

#### 4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

#### 4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) and an RRF value greater than control limit (0.05).

#### 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
SV-1 SV-2 SV-3 SV-4 SV-5 SV-6 SV-7	CCV %D	Bromoform	38.0%
DUP-090215	CCV %D	Bromoform	35.0%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
Initial and Continuing Calibration	KKF <0.05	Detect	J
	RRF <0.01 ¹	Non-detect	R
	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	RRF >0.05 01 RRF >0.01	Detect	NO ACTION
Initial Calibration	%RSD > 30%	Non-detect	UJ
Initial Calibration	%RSD > 30%	Detect	J
Continuing Colibration	$0/D \sim 200/$ (increases in consistivity)	Non-detect	No Action
Continuing Calibration	%D >30% (increase in sensitivity)	Detect	J

Initial/Continuing	Criteria	Sample Result	Qualification
	$0/D \sim 200/$ (decreases in consitivity)	Non-detect	UJ
%D >30% (decrease in sensitivity)		Detect	J

1 RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

#### 5. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than 40% or less than 40% of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

#### 6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the established acceptance limits of 70% to 130%. The relative percent difference (RPD) between the LCS recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery
All sample locations within this SDG	Bromoform	>UL

The criteria used to evaluate the LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
LCS percent receiver (> 120%	Non-detect	No Action
LCS percent recovery >130%	Detect	J
LCS percent receiver (70% but a 10%	Result     Quant       Non-detect     No A       Detect     Non-detect       0%     Non-detect       Detect     Non-detect       Detect     Detect	J
LCS percent recovery <70% but > 10%		J
- 109/	Non-detect	R
< 10%	Detect	J

#### 7. Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for air matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for

air matrices.

Laboratory duplicates were not performed as part of this SDG.

### 8. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Acetone	240	200 J	AC
	Bromodichloromethane	4.3 J	27 U	AC
	Carbon disulfide	31 U	4 J	AC
	Chloroform	46	45	AC
	4-Isopropyltoluene (Cymene)	22 U	200	NC
	Dichlorodifluoromethane	310	290	6.6%
SV-6/DUP-090215	MEK (2-Butanone)	6.8 J	8.3 J	AC
	n-Decane	44 J	38 J	AC
	n-Dodecane	63 J	700 U	AC
	n-Nonane	22	19 J	AC
	n-Octane	9.8 J	9.4 J	AC
	n-Undecane	100 J	78 J	AC
	Toluene	14 J	14 J	AC

U = Not detected.

AC = Acceptable.

The compound 4-Isopropyltoluene (Cymene) associated with sample locations SV-6 and DUP-090215 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

#### 9. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

Tentatively identified compounds (TICs) were identified in all sample locations associated with this SDG. VOC analysis requires that TICs be qualified as estimated (JN).

#### 10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# DATA VALIDATION CHECKLIST FOR VOCs

VOCs: TO-15	Repo	orted		mance ptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)			
Tier II Validation					
Canister return pressure (<-1"Hg)		Х		Х	
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х	Х		
B. Equipment blanks					Х
C. Trip blanks					Х
Laboratory Control Sample (LCS)		Х	Х		
Laboratory Control Sample Duplicate(LCSD)					Х
LCS/LCSD Precision (RPD)					Х
Field/Lab Duplicate (%D)		Х	Х		
Surrogate Spike Recoveries					Х
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		х	
D. Transcription/calculation errors present				Х	
<ul> <li>Reporting limits adjusted to reflect sample dilutions</li> </ul>		Х		х	

VOCs: TO-15	Repo	orted	Perfor Accep		Not Required				
	No	Yes	No	Yes	Roquiou				
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)									
% PSD Percent relative difference									

%RSDPercent relative difference%RPercent recoveryRPDRelative percent difference

Percent recovery Relative percent difference Percent difference %D

Sample							Compliancy ¹			Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	VOC	svoc	PCB/PEST /HERB	MET	MISC	Keneempilanee
	9/2/2015	TO-15	SV-1	Air	No					VOC – Associated Blanks
	9/2/2015	TO-15	SV-2	Air	No					VOC – Associated Blanks
	9/2/2015	TO-15	SV-3	Air	No					VOC – Associated Blanks
	9/2/2015	TO-15	SV-4	Air	No					VOC – Associated Blanks
200-29600-1	9/2/2015	TO-15	SV-5	Air	No					VOC – Associated Blanks
	9/2/2015	TO-15	SV-6	Air	No					VOC – Associated Blanks, Field Duplicate RPD
	9/2/2015	TO-15	SV-7	Air	No					VOC – Associated Blanks
	9/2/2015	TO-15	DUP-090215	Air	No					VOC – Field Duplicate RPD

#### SAMPLE COMPLIANCE REPORT

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

Jough c. House

DATE: October 21, 2015

PEER REVIEW BY: Dennis Capria

DATE: October 22, 2015

# CORRECTED SAMPLE ANALYSIS DATA SHEETS AND COCs

### Client: ARCADIS U.S. Inc

### Analytical Data

Job Number: 200-29600-1

Lab Sample ID: Client Matrix:	200-29600-1 Air					mpled: 09/02/2 ceived: 09/04/2	
	то	-15 Volatile Organic	Compounds	in Amb	lient Air		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 1.0 09/08/2015 1126 09/08/2015 1126	Analysis Batch: Prep Batch:	200-93675 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	CHX.i 15638_05.D 200 mL 200 mL 200 mL	
Analyte		Result (p	nh v/v)	Qualifie	er MDL	RL	
			pp v/v)	Quaime			
1,1,1-Trichloroetha		ND			0.030	0.20	
1,1,2,2-Tetrachloro		0.088		J	0.034	0.20	
1,1,2-Trichloroetha		ND			0.037	0.20	
1,1-Dichloroethane		ND			0.028	0.20	
1,1-Dichloroethene		ND			0.010	0.20	
1,2,4-Trichloroben:		ND			0.034	0.50	
1,2,4-Trimethylben		0.86			0.016	0.20	
1,2-Dibromoethane		ND			0.018	0.20	
1,2-Dichlorobenzer		ND			0.018	0.20	
1,2-Dichloroethane		ND			0.052	0.20	
1,2-Dichloroethene		ND			0.053	0.40	
1,2-Dichloropropar		ND			0.035	0.20	
1,3,5-Trimethylben	zene	0.20			0.019	0.20	
1,3-Butadiene		ND			0.036	0.20	
1,3-Dichlorobenzer		ND			0.020	0.20	
1,4-Dichlorobenzer	ne	ND			0.019	0.20	
1,4-Dioxane		ND			0.16	5.0	
2-Chlorotoluene		ND			0.031	0.20	
3-Chloropropene		ND			0.16	0.50	
4-Ethyltoluene		0.084		J	0.020	0.20	
4-Isopropyltoluene		0.035		J	0,020	0.20	
Acetone		22			0.69	5.0	
Benzene		0.046		J	0.029	0.20	
Benzyl chloride		ND			0.018	0.20	
Bromodichlorometh	nane	ND			0.029	0.20	
Bromoethene(Viny	Bromide)	ND			0.020	0.20	
Bromoform		ND	1.12	*	0.025	0.20	
Bromomethane		ND			0.044	0.20	
Carbon disulfide		0.23		J	0.030	0.50	
Carbon tetrachloric	le	ND			0.011	0.20	
Chlorobenzene		ND			0.018	0.20	
Chloroethane		ND			0.061	0.50	
Chloroform		1.0			0.038	0.20	
Chloromethane		0.080		J	0.060	0.50	
cis-1,2-Dichloroeth	ene	ND		×	0.030	0.20	
sis-1,3-Dichloropro		ND			0.029	0.20	
Cyclohexane	Vienti)	0.23			0.010	0.20	
Dibromochlorometh	nane	ND			0.020	0.20	
Dichlorodifluorome		0.46		J	0.056	0.50	
Dichlorotetrafluoroe		ND			0.052	0.20	
Ethylbenzene		0.099		J	0.020	0.20	
reon 22		ND			0.080	0.50	
Hexachlorobutadie	ne	ND			0.036	0.20	
sooctane		0.062		J	0.023	0.20	
sopentane		ND		-	0.055	0.20	
		0.29		J	0.000	5.0	

**TestAmerica Burlington** 

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

**Client Sample ID:** SV-1 Lab Sample ID: 200-29600-1 Client Matrix: Air

	то	-15 Volatile Organic	Compounds in Am	nbient Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 1.0 09/08/2015 1126 09/08/2015 1126	Analysis Batch: Prep Batch:	200-93675 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	CHX.i 15638_05.D 200 mL 200 mL 200 mL
Analyte		Result (p	pb v/v) Quali	fier MDL	RL
Isopropylbenzene		ND		0.019	0.20
m,p-Xylene		0.78		0.025	0.50
Methyl Butyl Ketor	ne (2-Hexanone)	0.19	J	0.17	0.50
Methyl Ethyl Ketor		1.2		0.092	0.50
methyl isobutyl ke		ND		0.18	0.50
Methyl methacryla		ND		0.096	0.50
Methyl tert-butyl e		ND		0.022	0.20
Methylene Chlorid	e	0.18- 0	.S JB-		0.50
Naphthalene		0.14	J	0.030	0.50
n-Butane		ND		0.18	0.50
n-Butylbenzene		ND		0.028	0.20
n-Decane		ND		0.13	0.50
n-Dodecane		ND		0.25	5.0
n-Heptane		ND		0.037	0.20
n-Hexane		0.12	J	0.028	0.20
n-Octane		ND		0.031	0.20
Nonane		ND	1.0	0.022	0.20
n-Propylbenzene		0.044	J	0.027	0.20
n-Undecane		ND		0.18	5.0
Pentane		ND		0.12	0.50
sec-Butylbenzene		ND ND		0.021 0.016	0.20 0.20
Styrene tert-Butyl alcohol		0.55	J	0.010	5.0
tert-Butylbenzene		ND	5	0.020	0.20
Tetrachloroethene		0.89		0.030	0.20
Tetrahydrofuran		ND		0.18	5.0
Toluene		0.18	J	0.025	0.20
trans-1,2-Dichloro	ethene	ND		0.027	0.20
trans-1,3-Dichloro		ND		0.026	0.20
Trichloroethene		ND		0.030	0.20
Trichlorofluoromet	hane	0.27		0.045	0.20
Trichlorotrifluoroet	hane	0.067	J	0.041	0.20
Vinyl chloride		ND		0.026	0.20
Xylene (total)		1.2		0.041	0.70
Xylene, o-		0.41		0.018	0.20
Analyte		Result (u	g/m3) Quali	fier MDL	RL
1,1,1-Trichloroetha	ano	ND	ginoj dadi	0.16	1.1
1,1,2,2-Tetrachlord		0.60	J	0.23	1.4
1,1,2-Trichloroetha		ND	5	0.20	1.1
1,1-Dichloroethane		ND		0.11	0.81
1.1-Dichloroethene		ND		0.040	0.79
1,2,4-Trichloroben		ND		0.25	3.7
1,2,4-Trimethylber		4.2		0.079	0.98
1,2-Dibromoethan		ND		0.14	1.5
1,2-Dichlorobenze		ND		0.11	1.2
TestAmerica Bur	lington	Page 2	25 of 648		09/21/2015

### Client: ARCADIS U.S. Inc

Client Sample ID: SV-1

### **Analytical Data**

Job Number: 200-29600-1

Lab Sample ID: Client Matrix:	200-29600-1 Air				eceived: 09/02/2015 1 eceived: 09/04/2015 1
	тс	0-15 Volatile Organic Co	ompounds in Am	bient Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 1.0 09/08/2015 1126 09/08/2015 1126		200-93675 N/A	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume: Injection Volume:	
Analyte		Result (ug	/m3) Quali	fier MDL	RL
			(III3) Quali		
1,2-Dichloroethane		ND		0.21	0.81
1,2-Dichloroethene		ND		0.21	1.6
1,2-Dichloropropar		ND		0.16 0.093	0.92
1,3,5-Trimethylben	izene	0.99			0.98
1,3-Butadiene		ND		0.080	0.44
1,3-Dichlorobenzei		ND ND		0.12 0.11	1.2 1.2
1,4-Dichlorobenzei 1,4-Dioxane	ile ile	ND		0.58	1.2
2-Chlorotoluene		ND		0.58	1.0
3-Chloropropene		ND		0.50	1.6
4-Ethyltoluene		0.41	J	0.098	0.98
4-Isopropyltoluene		0.19	J	0.11	1.1
Acetone		52	5	1.6	12
Benzene		0.15	Ĵ	0.093	0.64
Benzyl chloride		ND	0	0.093	1.0
Bromodichloromet	hane	ND		0.19	1.3
Bromoethene(Viny		ND		0.087	0.87
Bromoform	. El sinnos	ND	-	0.26	2.1
Bromomethane		ND		0.17	0.78
Carbon disulfide		0.71	J	0.093	1.6
Carbon tetrachloric	le	ND		0.069	1.3
Chlorobenzene		ND		0.083	0.92
Chloroethane		ND		0.16	1.3
Chloroform		5.1		0.19	0.98
Chloromethane		0.16	J	0.12	1.0
cis-1,2-Dichloroeth	ene	ND		0.12	0.79
cis-1,3-Dichloropro		ND		0.13	0.91
Cyclohexane		0.79		0.034	0.69
Dibromochloromet	hane	ND		0.17	1.7
Dichlorodifluorome	thane	2.3	J	0.28	2.5
Dichlorotetrafluoro	ethane	ND		0.36	1.4
Ethylbenzene		0.43	J	0.087	0.87
Freon 22		ND		0.28	1.8
Hexachlorobutadie	ne	ND		0.38	2,1
sooctane		0.29	7	0.11	0.93
sopentane		ND		0.16	0.59
sopropyl alcohol		0.72	J	0.37	12
sopropylbenzene		ND		0.093	0.98
n,p-Xylene	and the second second	3.4		0.11	2.2
Methyl Butyl Keton		0.79	J	0.70	2.0
Methyl Ethyl Keton		3.5		0.27	1.5
methyl isobutyl ket		ND		0.74	2.0
Methyl methacrylat		ND		0.39	2.0
Methyl tert-butyl et		ND	1	0.079	0.72
Methylene Chloride Naphthalene	9	0.64 1.1			1.7
A Desire In Min. in Lin on in		0.71	J	0.16	2.6

Client: ARCADIS U.S. Inc

### Job Number: 200-29600-1

Lab Sample ID: Client Matrix:	200-29600-1 Air					npled: 09/02/20 ceived: 09/04/20
	TO	15 Volatile Organic	Compounds	in Ambi	ient Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 1.0 09/08/2015 1126 09/08/2015 1126	Analysis Batch: Prep Batch:	200-93675 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	CHX.i 15638_05.D 200 mL 200 mL 200 mL
Analyte		Result (u	ig/m3)	Qualifie	r MDL	RL
n-Butane		ND	2		0.43	1.2
n-Butylbenzene		ND			0.15	1.1
n-Decane		ND			0.76	2.9
n-Dodecane		ND			1.7	35
n-Heptane		ND			0.15	0.82
n-Hexane		0.42		J	0.099	0.70
n-Octane		ND			0.14	0.93
Nonane		ND			0.12	1.0
n-Propylbenzene		0.22		J	0.13	0.98
n-Undecane		ND			1.2	32
Pentane		ND			0.35	1.5
sec-Butylbenzene		ND			0.12	1,1
Styrene		ND			0.068	0.85
ert-Butyl alcohol		1.7		J	0.36	15
ert-Butylbenzene		ND			0.11	1.1
Tetrachloroethene		6.1			0.20	1.4
Tetrahydrofuran		ND			0.53	15
Toluene		0.69		J	0.094	0.75
rans-1,2-Dichloroe		ND			0.11	0.79
rans-1,3-Dichlorop	propene	ND			0.12	0.91
Trichloroethene		ND			0.16	1.1
Trichlorofluorometh	nane	1.5			0.25	1.1
Trichlorotrifluoroeth	nane	0.52		J	0.31	1.5
Vinyl chloride		ND			0.066	0.51
Kylene (total)		5.2			0.18	3.0
(ylene, o-		1.8			0.078	0.87

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

Lab Sample ID: Client Matrix:	200-29600-1 Air			Date Sampled: 09/02/2015 1440 Date Received: 09/04/2015 1030		
	то	-15 Volatile Organic	Compounds in A	mbient Air		
Analysis Method:	TO-15	Analysis Batch:	200-93675	Instrument ID:	CHX	.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	1563	38_05.D
Dilution:	1.0			Initial Weight/Volume:	200	mL
Analysis Date:	09/08/2015 1126			Final Weight/Volume:	200	mL
Prep Date:	09/08/2015 1126			Injection Volume:	200	mL
Tentatively Identi	fied Compounds	Number TIC's F	ound: 2			
Cas Number	Analyte		RT	Est. Result (pp	b v/v)	Qualifier
	Unknown		3.0	2 16		TJN
	Unknown		3.3	5 7.4		ΤJ 🚺

Client: ARCADIS U.S. Inc

**Client Matrix:** 

### Job Number: 200-29600-1

Client Sample ID: SV-2 Lab Sample ID: 200-29600-2

Air

	100 C	O-15 Volatile Organic	Compounds	in Ambie	ent Air		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 1.0 09/08/2015 1215 09/08/2015 1215	Analysis Batch: Prep Batch:	200-93675 N/A	L Ir F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume: njection Volume:	CHX.i 15638_06.D 200 mL 200 mL 200 mL	
Analyte		Result (p	pb v/v)	Qualifier	MDL	RL	
1,1,1-Trichloroetha	ane	0.74			0.030	0.20	
1,1,2,2-Tetrachlor	oethane	ND			0.034	0.20	
1,1,2-Trichloroetha	ane	ND			0.037	0.20	
1,1-Dichloroethan	e	ND			0.028	0.20	
1,1-Dichloroethen	e	ND			0.010	0.20	
1,2,4-Trichloroben		ND			0.034	0.50	
1,2,4-Trimethylber	nzene	0.25			0.016	0.20	
1,2-Dibromoethan	e	ND			0.018	0.20	
1,2-Dichlorobenze	ne	ND			0.018	0.20	
1,2-Dichloroethane	e	ND			0.052	0.20	
1,2-Dichloroethene	e, Total	ND			0.053	0.40	
1,2-Dichloropropa	ne	ND			0.035	0.20	
1,3,5-Trimethylber	nzene	0.11		J	0.019	0.20	
1,3-Butadiene		ND			0.036	0.20	
1,3-Dichlorobenze	ne	ND			0.020	0.20	
1,4-Dichlorobenze	ne	ND			0.019	0.20	
1,4-Dioxane		ND			0.16	5.0	
2-Chlorotoluene		ND			0.031	0.20	
3-Chloropropene		ND			0.16	0.50	
4-Ethyltoluene		ND			0.020	0.20	
4-Isopropyltoluene	n l'	0.058		J	0.020	0.20	
Acetone		19			0.69	5.0	
Benzene		0.49			0.029	0.20	
Benzyl chloride		ND			0.018	0.20	
Bromodichloromet	hane	0.58			0.029	0.20	
Bromoethene(Viny	I Bromide)	ND			0.020	0.20	
Bromoform		ND		***	0.025	0.20	
Bromomethane		ND			0.044	0.20	
Carbon disulfide		0.70			0.030	0.50	
Carbon tetrachlorid	de	ND			0.011	0.20	
Chlorobenzene		ND			0.018	0.20	
Chloroethane		ND			0.061	0.50	
Chloroform		6.6			0.038	0.20	
Chloromethane		0.33		J	0.060	0.50	
cis-1,2-Dichloroeth		ND			0.030	0.20	
cis-1,3-Dichloropro	pene	ND			0.029	0.20	
Cyclohexane		1.7			0.010	0.20	
Dibromochloromet		ND			0.020	0.20	
Dichlorodifluorome	and the second sec	0.58			0.056	0.50	
Dichlorotetrafluoro	ethane	ND		S	0.052	0.20	
Ethylbenzene		0.12		J	0.020	0.20	
Freon 22		ND			0.080	0.50	
Hexachlorobutadie	ne	ND			0.036	0.20	
Isooctane		ND			0.023	0.20	
Isopentane		2,2			0.055	0.20	
Isopropyl alcohol		ND			0.15	5.0	
	ter ter an	Deve	0 of 649			00/24	1004

Client: ARCADIS U.S. Inc

### Job Number: 200-29600-1

Client Sample ID: SV-2 Lab Sample ID: 200-29600-2

#### Lab Sample ID: 200 Client Matrix: Air

	то	-15 Volatile Organic C	ompounds in Am	bient Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 1.0 09/08/2015 1215 09/08/2015 1215	Analysis Batch: Prep Batch:	200-93675 N/A	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume: Injection Volume:	
Analyte		Result (pr	ob v/v) Qualifi	er MDL	RL
Isopropylbenzene		0.048	J	0.019	0.20
m,p-Xylene		0.57		0.025	0.50
Methyl Butyl Ketor	ne (2-Hexanone)	ND		0.17	0.50
Methyl Ethyl Ketor		0.80		0.092	0.50
methyl isobutyl kel		ND		0.18	0.50
Methyl methacryla		ND		0.096	0.50
Methyl tert-butyl el		ND		0.022	0.20
Methylene Chlorid		<del>0.22</del> O,	S JB-U	IB 0.12	0.50
Naphthalene		0.39	J	0.030	0.50
n-Butane		ND		0.18	0.50
n-Butylbenzene		ND		0.028	0.20
n-Decane		0.17	L	0.13	0.50
n-Dodecane		ND		0.25	5.0
n-Heptane		0.46		0.037	0.20
n-Hexane		0.65		0.028	0.20
n-Octane		0.40		0.031	0.20
Nonane		0.21		0.022	0.20
n-Propylbenzene		0.042	J	0.027	0.20
n-Undecane		ND		0.18	5.0
Pentane		0.90		0.12	0.50
sec-Butylbenzene		ND		0.021	0.20
Styrene		ND		0.016	0.20
tert-Butyl alcohol		ND		0.12	5.0
tert-Butylbenzene		ND		0.020	0.20
Tetrachloroethene		5.6		0.030	0.20
Tetrahydrofuran		ND		0.18	5.0
Toluene		1.0		0.025	0.20
trans-1,2-Dichloroe		ND		0.027	0.20 0.20
trans-1,3-Dichloro	bropene	ND ND		0.026	0.20
Trichloroethene Trichlorofluoromet	hano	0.48		0.045	0.20
Trichlorotrifluoroet		0.48	J	0.041	0.20
Vinyl chloride	Indite	ND	5	0.026	0.20
Xylene (total)		0.94		0.041	0.70
Xylene, o-		0.37		0.018	0.20
Analyte		Result (ug	ı/m3) Qualifi	er MDL	RL
1,1,1-Trichloroetha	ane	4.0	,	0.16	1.1
1,1,2,2-Tetrachlord		ND		0.23	1.4
1,1,2-Trichloroetha		ND		0.20	1.1
1,1-Dichloroethane		ND		0.11	0.81
1,1-Dichloroethene		ND		0.040	0.79
1,2,4-Trichloroben		ND		0.25	3.7
1,2,4-Trimethylber		1.3		0.079	0.98
1,2-Dibromoethan		ND		0.14	1.5
1,2-Dichlorobenze		ND		0.11	1.2
TestAmerica Bur	lington	Page 3	0 of 648		09/21/201

#### Client: ARCADIS U.S. Inc

### Analytical Data

Job Number: 200-29600-1

Client Sample ID:SV-2Lab Sample ID:200-29600-2Client Matrix:Air

		-15 Volatile Organic				A	
Analysis Method:	TO-15	Analysis Batch:	200-93675		trument ID:	CHX	
Prep Method:	Summa Canister	Prep Batch:	N/A		o File ID:		8_06.D
Dilution:	1.0				ial Weight/Volume:	200	
Analysis Date:	09/08/2015 1215				al Weight/Volume:		mL
Prep Date:	09/08/2015 1215			Inje	ection Volume:	200	mL
Analyte		Result (u	g/m3)	Qualifier	MDL	F	RL
1,2-Dichloroethan	e	ND			0.21	(	0.81
1,2-Dichloroethen	e, Total	ND			0.21		1.6
.2-Dichloropropa	ne	ND			0.16	(	0.92
,3,5-Trimethylber	nzene	0.54		J	0.093	(	0.98
,3-Butadiene		ND			0.080	(	0.44
,3-Dichlorobenze	ene	ND			0.12		1.2
,4-Dichlorobenze	ene	ND			0.11		1.2
,4-Dioxane		ND			0.58		18
-Chlorotoluene		ND			0.16		1.0
-Chloropropene		ND			0.50		1.6
-Ethyltoluene		ND			0.098	(	0.98
-Isopropyltoluene	9	0.32		J	0.11		1.1
cetone		45			1.6	1	12
Benzene		1.6			0.093	C	0.64
Benzyl chloride		ND			0.093	1	1.0
Bromodichlorome	thane	3.9			0.19	1	1.3
Bromoethene(Ving	yl Bromide)	ND			0.087	0	0.87
Bromoform		ND		*	0.26	2	2.1
romomethane		ND			0.17	0	0.78
arbon disulfide		2.2			0.093	1	1.6
arbon tetrachlori	de	ND			0.069	1	1.3
hlorobenzene		ND			0.083		0.92
hloroethane		ND			0.16	1	1.3
Chloroform		32			0.19		0.98
Chloromethane		0.68		J	0.12	1	1.0
is-1,2-Dichloroet	nene	ND			0.12		0.79
is-1,3-Dichloropr	opene	ND			0.13		0.91
yclohexane		5.9			0.034		0.69
Dibromochlorome	thane	ND			0.17	1	1.7
Dichlorodifluorom	ethane	2.9			0.28		2.5
Dichlorotetrafluoro	bethane	ND			0.36		1.4
Ithylbenzene		0.51		J	0.087		0.87
reon 22		ND			0.28		8.1
lexachlorobutadie	ene	ND			0.38		2.1
sooctane		ND			0.11		0.93
sopentane		6.5			0.16		0.59
sopropyl alcohol		ND			0.37		12
sopropylbenzene		0.24		J	0.093		0.98
n,p-Xylene		2.5			0.11		2.2
lethyl Butyl Ketor		ND			0.70		2.0
lethyl Ethyl Ketor		2.4			0.27		1.5
nethyl isobutyl ke		ND			0.74		2.0
lethyl methacryla		ND			0.39		2.0
Aethyl tert-butyl e	ther	ND	7		0.079		0.72
		0.70	1	10 1115	0.42	1	.7
/lethylene Chlorid	e	<del>0.76</del> 2.0	8	JBUB	0.16		2.6

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

Client Sample ID: SV-2 Lab Sample ID: 200-29600-2

# Client Matrix: Air

	то	-15 Volatile Organic	Compounds	in Amb	ient Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 1.0 09/08/2015 1215 09/08/2015 1215	Analysis Batch: Prep Batch:	200-93675 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	CHX.i 15638_06.D 200 mL 200 mL 200 mL
Analyte		Result (u	ia/m3)	Qualifie	MDL	RL
n-Butane n-Butylbenzene n-Decane n-Dodecane n-Heptane n-Heptane n-Octane Nonane n-Propylbenzene n-Undecane Pentane sec-Butylbenzene Styrene tert-Butyl alcohol tert-Butyl alcohol tert-Butyl benzene Tetrachloroethene Tetrahydrofuran Toluene trans-1,2-Dichloro trans-1,3-Dichloro	ethene	ND ND 1.0 ND 1.9 2.3 1.9 1.1 0.20 ND 2.7 ND ND 2.7 ND ND ND ND 38 ND 3.9 ND 3.9 ND ND		J	0.43 0.15 0.76 1.7 0.15 0.099 0.14 0.12 0.13 1.2 0.35 0.12 0.068 0.36 0.11 0.20 0.53 0.094 0.11 0.12	1.2 1.1 2.9 35 0.82 0.70 0.93 1.0 0.98 32 1.5 1.1 0.85 15 1.1 1.4 15 0.75 0.79 0.91
Trichloroethene Trichlorofluoromet Trichlorotrifluoroet Vinyl chloride Xylene (total) Xylene, o-		ND 2.7 0.94 ND 4.1 1.6		Ĵ	0.16 0.25 0.31 0.066 0.18 0.078	1.1 1.1 1.5 0.51 3.0 0.87

Client: ARCADIS U.S. Inc

### Job Number: 200-29600-1

Lab Sample ID: Client Matrix:	200-29600-2 Air						
	то	-15 Volatile Organic	Compounds in A	Ambient Air			
Analysis Method:	TO-15	Analysis Batch:	200-93675	Instrument ID:	CHX.i		
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	15638_06.D		
Dilution:	1.0			Initial Weight/Volume:	200 mL		
Analysis Date:	09/08/2015 1215			Final Weight/Volume:	200 mL		
Prep Date:	09/08/2015 1215			Injection Volume:	200 mL		

Cas Number	Analyte	RT	Est. Result (ppb v/v)	Qualifier
	Unknown	3.01	41	TJN
	Unknown	3.37	7.7	TJN
108-87-2	Cyclohexane, methyl-	13.00	5.5	TJN
538-04-0	Cyclohexane, 1,3-dimethyl-, cis-	15.10	2.6	TJN
6876-23-9	Cyclohexane, 1,2-dimethyl-, trans-	15.88	1.3	TJN
3073-66-3	Cyclohexane, 1,1,3-trimethyl-	17.22	1.5	TJN
14676-29-0	Heptane, 3-ethyl-2-methyl-	20.03	1.1	TJN

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

Client Sample ID:SV-3Lab Sample ID:200-29600-3Client Matrix:Air

	10-	15 Volatile Organic	compounds	in Amble	nt Air		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 6.02 09/08/2015 1306 09/08/2015 1306	Analysis Batch: Prep Batch:	200-93675 N/A	La In Fi	strument ID: ab File ID: itial Weight/Volume: nal Weight/Volume: jection Volume:	CHX.i 15638_07.D 33 mL 200 mL 200 mL	
Analyte		Result (p	ob v/v)	Qualifier	MDL	RL	
1,1,1-Trichloroetha	ane	ND	pe ni)	aaamo	0.18	1.2	
1,1,2,2-Tetrachlord		ND			0.20	1.2	
1,1,2-Trichloroetha		ND			0.22	1.2	
1,1-Dichloroethane		ND			0.17	1.2	
1,1-Dichloroethene		ND			0.060	1.2	
,2,4-Trichloroben		ND			0.20	3.0	
2,4-Trimethylber		9.7			0.096	1.2	
2-Dibromoethan		ND			0.11	1.2	
2-Dichlorobenze		ND			0.11	1.2	
2-Dichloroethane		ND			0.31	1.2	
1,2-Dichloroethene		ND			0.32	2.4	
1,2-Dichloropropa		ND			0.21	1.2	
1,3,5-Trimethylber		4.0			0.11	1.2	
1,3-Butadiene	izene	ND			0.22	1.2	
1,3-Dichlorobenze	20	ND			0.12	1.2	
1,4-Dichlorobenze		ND			0.11	1.2	
1,4-Dioxane	ile -	ND			0.96	30	
2-Chlorotoluene		ND			0.19	1.2	
3-Chloropropene		ND			0.96	3.0	
4-Ethyltoluene		2.1			0.12	1.2	
4-Isopropyltoluene		0.18		J	0.12	1.2	
Acetone		24		J	4.2	30	
Benzene		1.3		5	0.17	1.2	
Benzyl chloride		ND			0.11	1.2	
Bromodichloromet	hana	3.6			0.17	1.2	
Bromoethene(Viny		ND			0.12	1.2	
Bromoform	(Biolilide)	ND		-	0.15	1.2	
Bromomethane		ND			0.26	1.2	
Carbon disulfide		3.4			0.18	3.0	
Carbon tetrachlorid		ND			0.066	1.2	
Chlorobenzene	Je	ND			0.11	1.2	
Chloroethane		ND			0.37	3.0	
Chloroform		53			0.23	1.2	
Chloromethane		ND			0.36	3.0	
cis-1,2-Dichloroeth		ND			0.18	1.2	
		ND			0.17	1.2	
cis-1,3-Dichloropro	opene	14			0.060	1.2	
Cyclohexane Dibromochloromet	hana	0.24		J	0.12	1.2	
Dichlorodifluorome		0.73		J	0.34	3.0	
		ND			0.34	1.2	
Dichlorotetrafluoro	eurane	2.8			0.12	1.2	
Ethylbenzene		0.55		1	0.48	3.0	
Freon 22		ND		J	0.48	1.2	
Jovaphlarabutadia					0.22		
		0.61					
sooctane		0.61		J		1.2	
Hexachlorobutadie Isooctane Isopentane Isopropyl alcohol		0.61 50 ND		J	0.14 0.33 0.90	1.2 1.2 30	

#### Client: ARCADIS U.S. Inc

1,2,4-Trimethylbenzene

**TestAmerica Burlington** 

1,2-Dibromoethane

1,2-Dichlorobenzene

### **Analytical Data**

Job Number: 200-29600-1

Lab Sample ID: Client Matrix:	200-29600-3 Air					mpled: 09/02/2015 ceived: 09/04/2015
Silent Matrix.						ceived. 09/04/2015
	то	-15 Volatile Organic	Compounds	in Ambient A	\ir	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 6.02 09/08/2015 1306 09/08/2015 1306	Analysis Batch: Prep Batch:	200-93675 N/A	Lab F Initial Final	iment ID: File ID: Weight/Volume: Weight/Volume: ion Volume:	CHX.i 15638_07.D 33 mL 200 mL 200 mL
Analyte		Result (p	opb v/v)	Qualifier	MDL	RL
sopropylbenzene		0.45	Per inty	J	0.11	1.2
n,p-Xylene		15		7300	0.15	3.0
	ne (2-Hexanone)	ND			1.0	3.0
ethyl Ethyl Ketor		1.1		J	0.55	3.0
ethyl isobutyl ke		ND			1.1	3.0
lethyl methacryla		ND			0.58	3.0
lethyl tert-butyl e		ND			0.13	1.2
lethylene Chlorid		4.2-3.	0	JB-UB	0.72	3.0
aphthalene		0.28		J	0.18	3.0
-Butane		100			1.1	3.0
Butylbenzene		ND			0.17	1.2
Decane		4.2			0.78	3.0
Dodecane		ND			1.5	30
Heptane		21			0.22	1.2
Hexane		30			0.17	1.2
Octane		11			0.19	1.2
onane		6.4			0.13	1.2
Propylbenzene		1.2			0.16	1.2
Undecane		2.3		J	1.1	30
entane		53			0.72	3.0
ec-Butylbenzene		ND			0.13	1.2
tyrene		ND			0.096	1.2
ert-Butyl alcohol		ND			0.72	30
rt-Butylbenzene		ND			0.12	1.2
etrachloroethene	61 - C	0.32		J	0.18	1.2
etrahydrofuran		ND			1.1	30
oluene		6.5			0.15	1.2
ans-1,2-Dichloroe	ethene	ND			0.16	1.2
ans-1,3-Dichloro	propene	ND			0.16	1.2
richloroethene		ND			0.18	1.2
richlorofluoromet	hane	0.70		J	0.27	1.2
richlorotrifluoroet	hane	ND			0.25	1.2
inyl chloride		ND			0.16	1.2
ylene (total)		20			0.25	4.2
/lene, o-		4.6			0.11	1.2
nalyte		Result (u	g/m3)	Qualifier	MDL	RL
1,1-Trichloroetha	ane	ND			0.99	6.6
1,2,2-Tetrachloro		ND			1.4	8.3
1,2-Trichloroetha		ND			1.2	6.6
1-Dichloroethane		ND			0.68	4.9
1-Dichloroethene		ND			0.24	4.8
2,4-Trichloroben		ND			1.5	22
		10			0.47	5.0

48

ND

ND

5.9

9.3

7.2

0.47

0.83

0.65

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

**Client Sample ID:** SV-3 Lab Sample ID: 200-29600-3 Client Matrix: Air

#### Date Sampled: 09/02/2015 1530 Date Received: 09/04/2015 1030

	то	-15 Volatile Organic	Compounds	in Ambien	it Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 6.02 09/08/2015 1306 09/08/2015 1306	Analysis Batch: Prep Batch:	200-93675 N/A	La Ini Fir	strument ID: b File ID: tial Weight/Volume: nal Weight/Volume: ection Volume:	CHX.i 15638_07.D 33 mL 200 mL 200 mL
Analyte		Result (u	ia/m3)	Qualifier	MDL	RL
1,2-Dichloroethan	0	ND	g/mo)	Quantor	1.3	4.9
1,2-Dichloroethen		ND			1.3	9.5
1,2-Dichloropropa		ND			0.97	5.6
1,3,5-Trimethylber		20			0.56	5.9
1,3-Butadiene	120110	ND			0.48	2.7
1,3-Dichlorobenze	ne	ND			0.72	7.2
4-Dichlorobenze		ND			0.69	7.2
1,4-Dioxane		ND			3.5	110
2-Chlorotoluene		ND			0.97	6.2
3-Chloropropene		ND			3.0	9.4
4-Ethyltoluene		10			0.59	5.9
-Isopropyltoluene	3	1.0		J	0.66	6.6
Acetone		58		J	9.9	71
Benzene		4.1			0.56	3.8
Benzyl chloride		ND			0.56	6.2
Bromodichlorome	thane	24			1.2	8.1
romoethene(Vin	I Bromide)	ND			0.53	5.3
romoform		ND			1.6	12
romomethane		ND			1.0	4.7
arbon disulfide		11			0.56	9.4
arbon tetrachlori	de	ND			0.42	7.6
hlorobenzene		ND			0.50	5.5
hloroethane		ND			0.97	7.9
Chloroform		260			1.1	5.9
chloromethane		ND			0.75	6.2
is-1,2-Dichloroet		ND			0.72	4.8
is-1,3-Dichloropro	opene	ND			0.79	5.5
yclohexane		49		201	0.21	4.1
bibromochlorome		2.0		J	1.0	10
ichlorodifluorom		3.6		J	1.7	15
)ichlorotetrafluoro	betnane	ND			2.2	8.4
thylbenzene		12		4	0.52	5.2
reon 22	57.4	1.9		J	1.7	11 13
lexachlorobutadie	ene	ND		i i	2.3 0.65	5.6
sooctane		2.9		J	0.98	3.6
sopentane		150 ND			2.2	74
sopropyl alcohol		2.2		J	0.56	5.9
opropylbenzene		64		J	0.65	13
n,p-Xylene lethyl Butyl Ketor	no (2 Hevanana)	ND			4.2	12
lethyl Ethyl Ketor		3.2		J	1.6	8.9
nethyl isobutyl ke		ND			4.4	12
Aethyl methacryla		ND			2.4	12
Aethyl tert-butyl e		ND			0.48	4.3
lethylene Chlorid		4.1 /0		JB UB	2.5	10
Vaphthalene		1.4		J	0.95	16
- spritterente				10.		

Client: ARCADIS U.S. Inc

-

#### Job Number: 200-29600-1

Client Sample ID:SV-3Lab Sample ID:200-29600-3Client Matrix:AirDate Sampled: 09/02/2015 1530Date Received: 09/04/2015 1030

	тс	-15 Volatile Organic	Compounds	in Ambient	Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 6.02 09/08/2015 1306 09/08/2015 1306	Analysis Batch: Prep Batch:	200-93675 N/A	Lab Initia Fina	rument ID: File ID: al Weight/Volume: al Weight/Volume: ction Volume:	CHX.i 15638_07.D 33 mL 200 mL 200 mL
Analyte n-Butane n-Butylbenzene n-Decane n-Dodecane n-Heptane n-Heptane n-Hexane n-Octane Nonane n-Propylbenzene n-Undecane Pentane sec-Butylbenzene Styrene tert-Butyl alcohol tert-Butylbenzene Tetrachloroethene		Result (u 240 ND 25 ND 85 110 50 33 5.7 15 160 ND ND ND ND ND 2.2	ıg/m3)	Qualifier J	MDL 2.6 0.93 4.6 10 0.91 0.59 0.87 0.69 0.80 6.9 2.1 0.69 0.41 2.2 0.66 1.2	RL 7.2 6.6 18 210 4.9 4.2 5.6 6.3 5.9 190 8.9 6.6 5.1 91 6.6 8.2
Tetrachloroethene Tetrahydrofuran Toluene trans-1,2-Dichloro trans-1,3-Dichloro Trichloroethene Trichlorofluoromet Trichlorofluoromet Vinyl chloride Xylene (total) Xylene, o-	ethene propene thane	2.2 ND 24 ND ND 4.0 ND 85 20		J	1.2 3.2 0.57 0.64 0.71 0.97 1.5 1.9 0.40 1.1 0.47	8.2 89 4.5 4.8 5.5 6.5 6.5 6.8 9.2 3.1 18 5.2

TJV

Client: ARCADIS U.S. Inc

Unknown

### Job Number: 200-29600-1

Client Sample ID	: SV-3						
Lab Sample ID:	200-29600-3				Date San	npled:	09/02/2015 15
Client Matrix:	Air				Date Rec	eived:	09/04/2015 10
	TO-1	15 Volatile Organic	Compounds	in Aml	pient Air		
Analysis Method:	TO-15	Analysis Batch:	200-93675		Instrument ID:	CHX.i	
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	15638	3_07.D
Dilution:	6.02				Initial Weight/Volume:	33 m	ıL
Analysis Date:	09/08/2015 1306				Final Weight/Volume:	200 1	mL
Prep Date:	09/08/2015 1306				Injection Volume:	200 1	mL
Tentatively Ident	ified Compounds	Number TIC's F	ound: 8				
Cas Number	Analyte			RT	Est. Result (ppt	o v/v)	Qualifier
	Unknown			3.08	71		TJN
	Unknown			3.44	24		TJN
107-83-5	Pentane, 2-methyl-			7.23	19		TJN
	Unknown			13.01	24		T J N
	Unknown			14.39	11		TJ
	Unknown			17.70	7.4		TJ
	Unknown			20.03	11		TJ

9.4

20.84

Client: ARCADIS U.S. Inc

Lab Sample ID:

Client Matrix:

### Job Number: 200-29600-1

Client Sample ID: SV-4 Date Sampled: 09/02/2015 1630 200-29600-4 Date Received: 09/04/2015 1030 Air

	то	-15 Volatile Organic	Compound	s in Ambien	t Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 1.0 09/08/2015 1356 09/08/2015 1356	Analysis Batch: Prep Batch:	200-9367 N/A	Lat Init Fin	trument ID: b File ID: ial Weight/Volume: al Weight/Volume: ection Volume:	CHX.i 15638_08.D 200 mL 200 mL 200 mL
Analyte		Result (p	(v/v da	Qualifier	MDL	RL
1,1,1-Trichloroeth	ane	ND			0.030	0.20
1,1,2,2-Tetrachlor		ND			0.034	0.20
1,1,2-Trichloroeth		ND			0.037	0.20
1,1-Dichloroethan		ND			0.028	0.20
1,1-Dichloroethen		ND			0.010	0.20
1,2,4-Trichlorober		ND			0.034	0.50
1,2,4-Trimethylbe		0.94			0.016	0.20
1,2-Dibromoethan		ND			0.018	0.20
1,2-Dichlorobenze		ND			0.018	0.20
1,2-Dichloroethan		ND			0.052	0.20
1,2-Dichloroethen		ND			0.053	0.40
1,2-Dichloropropa		ND			0.035	0.20
1,3,5-Trimethylbe		0.12		J	0.019	0.20
1,3-Butadiene		ND			0.036	0.20
1,3-Dichlorobenze	ene	ND			0.020	0.20
1,4-Dichlorobenze		ND			0.019	0.20
1,4-Dioxane		ND			0.16	5.0
2-Chlorotoluene		ND			0.031	0.20
3-Chloropropene		ND			0.16	0.50
4-Ethyltoluene		0.16		J	0.020	0.20
4-Isopropyltoluene	e	0.035		J	0.020	0.20
Acetone		20			0.69	5.0
Benzene		0.075		J	0.029	0.20
Benzyl chloride		ND			0.018	0.20
Bromodichlorome	thane	3.5			0.029	0.20
Bromoethene(Vin	yl Bromide)	ND			0.020	0.20
Bromoform		ND		-	0.025	0.20
Bromomethane		ND			0.044	0.20
Carbon disulfide		2.0			0.030	0.50
Carbon tetrachlori	ide	0.022		J	0.011	0.20
Chlorobenzene		ND			0.018	0.20
Chloroethane		ND			0.061	0.50
Chloroform		28			0.038	0.20
Chloromethane		0.11		J	0.060	0.50
cis-1,2-Dichloroet	hene	ND			0.030	0.20
cis-1,3-Dichloropr	opene	ND			0.029	0.20
Cyclohexane		1.2			0.010	0.20
Dibromochlorome		0.32			0.020	0.20
Dichlorodifluorom		0.59			0.056	0.50
Dichlorotetrafluoro	pethane	ND			0.052	0.20
Ethylbenzene		0.74			0.020	0.20
Freon 22		0.37		J	0.080	0.50
Hexachlorobutadi	ene	ND			0.036	0.20
Isooctane		0.17		J	0.023	0.20
Isopentane		2.5			0.055	0.20
Isopropyl alcohol		ND			0.15	5.0
TostAmorica Pur	lington	Page	39 of 648			09/21/20

### Client: ARCADIS U.S. Inc

### Analytical Data

Job Number: 200-29600-1

Client Sample ID: SV-4 Lab Sample ID: 200-29600-4 Client Matrix: Air

Applyois Mathe		-15 Volatile Organic C				CHX :
Analysis Method: Prep Method: Dilution: Analysis Date:	TO-15 Summa Canister 1.0 09/08/2015 1356	Analysis Batch: Prep Batch:	200-93675 N/A	Lab Initia Final	ument ID: File ID: I Weight/Volume: Weight/Volume:	CHX.i 15638_08.D 200 mL 200 mL
Prep Date:	09/08/2015 1356			Injec	tion Volume:	200 mL
Analyte		Result (p	ob v/v)	Qualifier	MDL	RL
Isopropylbenzene		0.061		J	0.019	0.20
m,p-Xylene		2.0			0.025	0.50
Methyl Butyl Ketor	ne (2-Hexanone)	0.33		J	0.17	0.50
Methyl Ethyl Ketor	ne	1.1			0.092	0.50
methyl isobutyl kei	tone	ND			0.18	0.50
Methyl methacryla		ND			0.096	0.50
Methyl tert-butyl et		ND	-	-	0.022	0.20
Methylene Chlorid		0.21 0	2	JB-UIS	0.12	0.50
Naphthalene		0.20		J	0.030	0.50
n-Butane		4.6			0.18	0.50
n-Butylbenzene		ND			0.028	0.20
n-Decane		0.34		J	0.13	0.50
n-Dodecane		0.66		J	0.25	5.0
n-Heptane		0.15		J	0.037	0.20
n-Hexane		1.2			0.028	0.20
n-Octane		0.14		J	0.031	0.20
Nonane		0.19		J	0.022	0.20
n-Propylbenzene		0.097		J	0.027	0.20
n-Undecane		0.43		J	0.18	5.0
Pentane		2.8			0.12	0.50
sec-Butylbenzene		ND			0.021	0.20
Styrene		0.023		J	0.016	0.20
tert-Butyl alcohol		ND			0.12	5.0
tert-Butylbenzene		ND			0.020	0.20
Tetrachloroethene		0.35			0.030	0.20
Tetrahydrofuran		ND			0.18	5.0
Toluene		0.59			0.025	0.20
trans-1,2-Dichloroe	othene	ND			0.027	0.20
trans-1,3-Dichlorop		ND			0.026	0.20
Trichloroethene	oropono	ND			0.030	0.20
Trichlorofluoromet	hane	0.34			0.045	0.20
Trichlorotrifluoroet		0.091		J	0.043	0.20
Vinyl chloride	i u i o	ND			0.026	0.20
Xylene (total)		3.1			0.041	0.70
Xylene, o-		1.1			0.018	0.20
		-	4.0	0	MDI	
Analyte		Result (ug	g/m3)	Qualifier	MDL	RL
1,1,1-Trichloroetha		ND			0.16	1.1
1,1,2,2-Tetrachloro		ND			0.23	1.4
1,1,2-Trichloroetha		ND			0.20	1.1
1,1-Dichloroethane		ND			0.11	0.81
1,1-Dichloroethene		ND			0.040	0.79
1,2,4-Trichloroben		ND			0.25	3.7
1,2,4-Trimethylber		4.6			0.079	0.98
1,2-Dibromoethane		ND			0.14	1.5
1,2-Dichlorobenze	ne	ND			0.11	1.2
TestAmerica Bur	instan	Page 4	0 of 648			09/21/2

#### Client: ARCADIS U.S. Inc

### Analytical Data

Job Number: 200-29600-1

Lab Sample ID: 200-29600-4 Client Matrix: Air	ent Air
Lab Sample ID: 200-29600-4	
Client Sample ID: SV-4	

	TO-	15 Volatile Organic (	Compounds	in Ambient	Air		
Analysis Method: Prep Method: Dilution: Analysis Date:	TO-15 Summa Canister 1.0 09/08/2015 1356	Analysis Batch: Prep Batch:	200-93675 N/A	Lab Initi Fin	rument ID: ) File ID: al Weight/Volume: al Weight/Volume:	CHX.i 15638_08.D 200 mL 200 mL	
Prep Date:	09/08/2015 1356			Inje	ction Volume:	200 mL	
Analyte		Result (u	a/m3)	Qualifier	MDL	RL	
1,2-Dichloroethane	9	ND			0.21	0.81	
1,2-Dichloroethene		ND			0.21	1.6	
1,2-Dichloropropar		ND			0.16	0.92	
1,3,5-Trimethylber		0.59		J	0.093	0.98	
1,3-Butadiene		ND			0.080	0.44	
1,3-Dichlorobenze	ne	ND			0.12	1.2	
1,4-Dichlorobenze		ND			0.11	1.2	
1,4-Dioxane		ND			0.58	18	
2-Chlorotoluene		ND			0.16	1.0	
3-Chloropropene		ND			0.50	1.6	
4-Ethyltoluene		0.77		J	0.098	0.98	
4-Isopropyltoluene	the second s	0.19		J	0.11	1.1	
Acetone		47			1.6	12	
Benzene		0.24		J	0.093	0.64	
Benzyl chloride		ND			0.093	1.0	
Bromodichloromet	hane	24			0.19	1.3	
Bromoethene(Viny	I Bromide)	ND			0.087	0.87	
Bromoform	(and the f	ND		-	0.26	2.1	
Bromomethane		ND			0.17	0.78	
Carbon disulfide		6.2			0.093	1.6	
Carbon tetrachlorid	de	0.14		J	0.069	1.3	
Chlorobenzene		ND			0.083	0.92	
Chloroethane		ND			0.16	1.3	
Chloroform		140			0.19	0.98	
Chloromethane		0.23		J	0.12	1.0	
cis-1,2-Dichloroeth	ene	ND			0.12	0.79	
cis-1,3-Dichloropro	pene	ND			0.13	0.91	
Cyclohexane		4.2			0.034	0.69	
Dibromochloromet		2.7			0.17	1.7	
Dichlorodifluorome	thane	2.9			0.28	2.5	
Dichlorotetrafluoro	ethane	ND			0.36	1.4	
Ethylbenzene		3.2			0.087	0.87	
Freon 22		1.3		J	0.28	1.8	
Hexachlorobutadie	ne	ND		2	0.38	2.1	
Isooctane		0.81		J	0.11	0.93	
Isopentane		7.5			0.16	0.59	
Isopropyl alcohol		ND			0.37	12	
Isopropylbenzene		0.30		J	0.093	0.98	
m,p-Xylene		8.7			0.11	2.2	
Methyl Butyl Keton		1.3		J	0.70	2.0	
Methyl Ethyl Keton		3.4			0.27	1.5	
methyl isobutyl ket		ND			0.74	2.0	
Methyl methacrylat		ND			0.39	2.0	
Methyl tert-butyl et		ND	7	JB-UB	0.079	0.72	
Methylene Chloride	3	0.72 /	7		0.42	1.7	
Naphthalene		1.1		J	0.16	2.6	
						00/0	1001

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

Client Sample ID: SV-4 Lab Sample ID: 200-29600-4

Air

**Client Matrix:** 

	то	-15 Volatile Organic	Compounds	in Ambien	t Air	1.1
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 1.0 09/08/2015 1356 09/08/2015 1356	Analysis Batch: Prep Batch:	200-93675 N/A	Lat Init Fin	trument ID: o File ID: ial Weight/Volume: al Weight/Volume: action Volume:	CHX.i 15638_08.D 200 mL 200 mL 200 mL
Analyte		Result (u	a/m3)	Qualifier	MDL	RL
n-Butane		11	g/mo)	quamor	0.43	1.2
n-Butylbenzene		ND			0.15	1.1
n-Decane		2.0		J	0.76	2.9
n-Dodecane		4.6		J	1.7	35
n-Heptane		0.60		J	0.15	0.82
n-Hexane		4.4			0.099	0.70
n-Octane		0.67		J	0.14	0.93
Nonane		0.98		Ĵ	0.12	1.0
n-Propylbenzene		0.48		Ĵ	0.13	0.98
n-Undecane		2.7		J	1.2	32
Pentane		8.3			0.35	1.5
sec-Butylbenzene		ND			0.12	1.1
Styrene		0.10		J	0.068	0.85
tert-Butyl alcohol		ND			0.36	15
tert-Butylbenzene		ND			0.11	1.1
Tetrachloroethene		2.4			0.20	1.4
Tetrahydrofuran		ND			0.53	15
Toluene		2.2			0.094	0.75
trans-1,2-Dichloroe	ethene	ND			0.11	0.79
trans-1,3-Dichloro	propene	ND			0.12	0.91
Trichloroethene		ND			0.16	1.1
Trichlorofluoromet	hane	1.9			0.25	1.1
Trichlorotrifluoroet	hane	0.70		J	0.31	1.5
Vinyl chloride		ND			0.066	0.51
Xylene (total)		13			0.18	3.0
Xylene, o-		5.0			0.078	0.87

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

Client Sample ID	: SV-4					
Lab Sample ID: Client Matrix:	200-29600-4 Air	Date Sampled: 09/02/2015 1 Date Received: 09/04/2015 1				
	то	15 Volatile Organic	Compounds in Ar	nbient Air		
Analysis Method:	TO-15	Analysis Batch:	200-93675	Instrument ID:	CHX.i	
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	15638_08.D	
Dilution:	1.0			Initial Weight/Volume	: 200 mL	
Analysis Date:	09/08/2015 1356			Final Weight/Volume	200 mL	
Prep Date:	09/08/2015 1356			Injection Volume:	200 mL	
Tentatively Identi	fied Compounds	Number TIC's F	ound: 3			
Cas Number	Analyte		RT	Est. Result (p	pb v/v) Qualifi	er
	Unknown		3.03	16	TJN	
	Unknown		3.35	8.6	TJN	
541-05-9	Cyclotrisiloxane, hexa	methyl-	16.0	7 13	TJN	

# Client: ARCADIS U.S. Inc

Client Sample ID: SV-5

# Analytical Data

Job Number: 200-29600-1

Lab Sample ID: Client Matrix:	200-29600-5 Air					mpled: 09/02/2015 1 ceived: 09/04/2015 1
	тс	0-15 Volatile Organic	Compounds	in Ambi	ent Air	1.11
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 2.99 09/08/2015 1446 09/08/2015 1446	Analysis Batch: Prep Batch:	200-93675 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	CHX.i 15638_09.D 67 mL 200 mL 200 mL
Analyte		Result (p	(v/v da	Qualifie	r MDL	RL
1,1,1-Trichloroeth	200	ND		Contractory (	0.090	0.60
1,1,2,2-Tetrachlor		ND			0.10	0.60
1,1,2,2-Trichloroetha		ND			0.10	0.60
1,1-Dichloroethan		ND			0.084	0.60
1,1-Dichloroethen		ND			0.030	0.60
		ND			0.10	1.5
1,2,4-Trichloroben		0.72			0.048	0.60
1,2,4-Trimethylber		ND			0.054	0.60
1,2-Dibromoethan		ND			0.054	0.60
1,2-Dichlorobenze		ND			0.16	0.60
1,2-Dichloroethan		ND			0.16	1.2
1,2-Dichloroethen		ND			0.10	0.60
1,2-Dichloropropa		0.16		J	0.057	0.60
1,3,5-Trimethylber	lizene	ND		J	0.11	0.60
1,3-Butadiene		ND			0.060	0.60
1,3-Dichlorobenze		ND			0.057	0.60
1,4-Dichlorobenze	ine	ND			0.48	15
1,4-Dioxane		ND			0.093	0.60
2-Chlorotoluene		ND			0.48	1.5
3-Chloropropene 4-Ethyltoluene		0.18		J	0.060	0.60
4-Eurynoldene 4-Isopropyltoluene		0.088		J	0.060	0.60
Acetone	5	22		J	2.1	15
Benzene		0.14		J	0.087	0.60
Benzyl chloride		ND		0	0.054	0.60
Bromodichlorome	thane	3.8			0.087	0.60
Bromoethene(Vin)		ND			0.060	0.60
Bromoform	yr bronnde)	ND		1	0.075	0.60
Bromomethane		ND			0.13	0.60
Carbon disulfide		5.0			0.090	1.5
Carbon tetrachlori	de	0.059		J	0.033	0.60
Chlorobenzene	uc	0.067		Ĵ	0.054	0.60
Chloroethane		ND		-	0.18	1.5
Chloroform		24			0.11	0.60
Chloromethane		ND			0.18	1.5
cis-1,2-Dichloroeth	hene	ND			0.090	0.60
cis-1,3-Dichloropro		ND			0.087	0.60
Cyclohexane	-F	1.2			0.030	0.60
Dibromochloromet	thane	0.37		J	0.060	0.60
Dichlorodifluorome		0.53		J	0.17	1.5
Dichlorotetrafluoro		ND		11	0.16	0.60
Ethylbenzene		0.59		J	0.060	0.60
Freon 22		43			0.24	1.5
Hexachlorobutadie	ene	ND			0.11	0.60
Isooctane		ND			0.069	0.60
Isopentane		1.9			0.16	0.60
Isopropyl alcohol		0.49		1	0.45	15

Isopropyl alcohol

J

0.45

0.49

15

Client: ARCADIS U.S. Inc

# Job Number: 200-29600-1

Client Sample ID:SV-5Lab Sample ID:200-29600-5Client Matrix:Air

Date Sampled: 09/02/2015 1640 Date Received: 09/04/2015 1030

	TO-	15 Volatile Organic Co	ompounds in Am	bient Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 2.99 09/08/2015 1446 09/08/2015 1446		200-93675 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	CHX.i 15638_09.D 67 mL 200 mL 200 mL
Analyte		Result (ppt	o v/v) Qualif	ier MDL	RL
Isopropylbenzene		0.090	J	0.057	0.60
m,p-Xylene		2.2		0.075	1.5
Methyl Butyl Ketor	ne (2-Hexanone)	ND		0.51	1.5
Methyl Ethyl Ketor		2.6		0.28	1.5
methyl isobutyl ke		ND		0.54	1.5
Methyl methacryla		ND		0.29	1.5
Methyl tert-butyl e		ND		0.066	0.60
Methylene Chlorid		0.40 /.	JB	013 0.36	1.5
Naphthalene		0.12	J	0.090	1.5
n-Butane		4.0		0.54	1.5
n-Butylbenzene		ND		0.084	0.60
n-Decane		ND		0.39	1.5
n-Dodecane		ND		0.75	15
n-Heptane		0.54	J	0.11	0.60
n-Hexane		1.5		0.084	0.60
n-Octane		0.34	J	0.093	0.60
Nonane		0.22	J	0.066	0.60
n-Propylbenzene		0.13	J	0.081	0.60
n-Undecane		ND		0.54	15
Pentane		2.9		0.36	1.5
sec-Butylbenzene		ND		0.063	0.60
Styrene		ND		0.048	0.60
tert-Butyl alcohol		0.56	J	0.36	15
tert-Butylbenzene		ND		0.060	0.60
Tetrachloroethene	9	ND	T.	0.090	0.60
Tetrahydrofuran		0.97	J	0.54 0.075	15 0.60
Toluene	all and	0.69		0.075	0.60
trans-1,2-Dichloro trans-1,3-Dichloro		ND ND		0.078	0.60
	propene	ND		0.090	0.60
Trichloroethene Trichlorofluoromet	thono	0.86		0.13	0.60
Trichlorotrifluoroet		ND		0.12	0.60
Vinyl chloride	unane	ND		0.078	0.60
Xylene (total)		3.4		0.12	2.1
Xylene, o-		1.2		0.054	0.60
Analyte		Result (ug/	m3) Qualifi	ier MDL	RL
1,1,1-Trichloroeth	ane	ND	scadini	0.49	3.3
1,1,2,2-Tetrachlor		ND		0.70	4.1
1,1,2-Trichloroeth		ND		0.60	3.3
1.1-Dichloroethan		ND		0.34	2.4
1,1-Dichloroethen		ND		0.12	2.4
1,2,4-Trichlorober		ND		0.75	11
1,2,4-Trimethylbe		3.5		0.24	2.9
1,2-Dibromoethan		ND		0.41	4.6
1,2-Dichlorobenze		ND		0.32	3.6
TestAmerica Bur	lington	Page 45	5 of 648		09/21/2015

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

Client Sample ID:SV-5Lab Sample ID:200-29600-5Client Matrix:Air

Date Sampled: 09/02/2015 1640 Date Received: 09/04/2015 1030

	то	-15 Volatile Organic	Compound	ls in Ambie	ent Air		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 2.99 09/08/2015 1446 09/08/2015 1446	Analysis Batch: Prep Batch:	200-9367 N/A	L Ir F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume: njection Volume:	CHX.i 15638_09.D 67 mL 200 mL 200 mL	
Analyte		Result (u	a/m3)	Qualifier	MDL	RL	
1,2-Dichloroethan	P	ND	ginoy	adduniter	0.63	2.4	
1,2-Dichloroethen		ND			0.63	4.7	
1,2-Dichloropropa		ND			0.48	2.8	
1,3,5-Trimethylber		0.79		J	0.28	2.9	
1,3-Butadiene		ND			0.24	1.3	
1,3-Dichlorobenze	ene	ND			0.36	3.6	
1,4-Dichlorobenze		ND			0.34	3.6	
1,4-Dioxane		ND			1.7	54	
2-Chlorotoluene		ND			0.48	3.1	
3-Chloropropene		ND			1.5	4.7	
4-Ethyltoluene		0.88		J	0.29	2.9	
4-Isopropyltoluene	e	0.48		J	0.33	3.3	
Acetone		52			4.9	36	
Benzene		0.43		J	0.28	1.9	
Benzyl chloride		ND			0.28	3.1	
Bromodichlorome		25			0.58	4.0	
Bromoethene(Vin	yl Bromide)	ND			0.26	2.6	
Bromoform		ND		-	0.77	6.2	
Bromomethane		ND			0.51	2.3	
Carbon disulfide		16			0.28	4.7	
Carbon tetrachlori	de	0.37		J	0.21	3.8	
Chlorobenzene		0.31		J	0.25 0.48	2.8 3.9	
Chloroethane		ND 120			0.48	2.9	
Chloroform		120 ND			0.37	3.1	
Chloromethane	hone	ND			0.36	2.4	
cis-1,2-Dichloroet cis-1,3-Dichloropr		ND			0.39	2.7	
Cyclohexane	opene	4.1			0.10	2.1	
Dibromochlorome	thane	3.1		J	0.51	5.1	
Dichlorodifluorom		2.6		J	0.83	7.4	
Dichlorotetrafluoro		ND			1.1	4.2	
Ethylbenzene	Jouriano	2.6		J	0.26	2.6	
Freon 22		150			0.85	5.3	
Hexachlorobutadi	ene	ND			1.1	6.4	
Isooctane		ND			0.32	2.8	
Isopentane		5.6			0.49	1.8	
Isopropyl alcohol		1.2		J	1.1	37	
Isopropylbenzene		0.44		J	0.28	2.9	
m,p-Xylene		9.4			0.32	6.5	
Methyl Butyl Ketor	ne (2-Hexanone)	ND			2.1	6.1	
Methyl Ethyl Ketor		7.7			0.81	4.4	
methyl isobutyl ke		ND			2.2	6.1	
Methyl methacryla		ND			1.2	6.1	
Methyl tert-butyl e		ND	-		2 0.24	2.2	
Methylene Chlorid	le	-14 5-	2	JB UI		5.2	
Naphthalene		0.64		J	0.47	7.8	
		100				0.010	1100

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

Client Sample ID:SV-5Lab Sample ID:200-29600-5Client Matrix:Air

Date Sampled: 09/02/2015 1640 Date Received: 09/04/2015 1030

	то	-15 Volatile Organic	Compounds	in Ambient	Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 2.99 09/08/2015 1446 09/08/2015 1446	Analysis Batch: Prep Batch:	200-93675 N/A	Lab Initi Fina	rrument ID: ) File ID: al Weight/Volume: al Weight/Volume: ction Volume:	CHX.i 15638_09.D 67 mL 200 mL 200 mL
Analyte		Result (u	ıg/m3)	Qualifier	MDL	RL
n-Butane n-Butylbenzene n-Decane n-Dodecane n-Heptane n-Heptane n-Hexane n-Octane Nonane n-Propylbenzene n-Undecane Pentane sec-Butylbenzene Styrene tert-Butyl alcohol tert-Butyl benzene Tetrachloroethene Tetrahydrofuran Toluene trans-1,2-Dichloroo trans-1,3-Dichloroo Trichloroethene	ethene	9.6 ND ND 2.2 5.4 1.6 1.1 0.64 ND 8.7 ND ND 1.7 ND ND 1.7 ND ND 2.9 2.6 ND ND ND ND	g/113)	1 1 1	1.3 0.46 2.3 5.2 0.45 0.30 0.43 0.35 0.40 3.4 1.1 0.34 0.20 1.1 0.33 0.61 1.6 0.28 0.32 0.35 0.48	3.6 3.3 8.7 100 2.5 2.1 2.8 3.1 2.9 96 4.4 3.3 2.5 45 3.3 4.1 44 2.3 2.4 2.7 3.2
Trichlorofluoromet Trichlorotrifluoroet Vinyl chloride Xylene (total) Xylene, o-	C 0 4 10 12 E	4.8 ND ND 15 5.0			0.76 0.94 0.20 0.53 0.23	3.4 4.6 1.5 9.1 2.6

Client: ARCADIS U.S. Inc

### Job Number: 200-29600-1

Client Sample ID:	SV-5					
Lab Sample ID:	200-29600-5			Date Sa	mpled:	09/02/2015 1640
Client Matrix:	Air			Date Re	eceived	: 09/04/2015 1030
	то	-15 Volatile Organic	Compounds in Am	bient Air		
Analysis Method:	TO-15	Analysis Batch:	200-93675	Instrument ID:	СНХ	1.1
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	1563	38_09.D
Dilution:	2.99			Initial Weight/Volume	67	mL
Analysis Date:	09/08/2015 1446			Final Weight/Volume:	200	mL
Prep Date:	09/08/2015 1446			Injection Volume:	200	mL
Tentatively Identi	ified Compounds	Number TIC's F	ound: 2			
Cas Number	Analyte		RT	Est. Result (p	ob v/v)	Qualifier
	Unknown		3.03	11		TJN
541-05-9	Cyclotrisiloxane, hexa	amethyl-	16.08	10		TJN

Client: ARCADIS U.S. Inc

200-29600-6

Air

Client Sample ID: SV-6

Lab Sample ID:

**Client Matrix:** 

#### Job Number: 200-29600-1

Date Sampled: 09/02/2015 1740 Date Received: 09/04/2015 1030

Applyois Mathed		Analysis Batch: 200-93		nstrument ID:	CHX.i
Analysis Method: Prep Method:	TO-15 Summa Canister	Analysis Batch: 200-93 Prep Batch: N/A		Lab File ID:	15638_10.D
		Frep Batch. N/A		nitial Weight/Volume:	51 mL
Dilution:	20			Final Weight/Volume:	200 mL
nalysis Date:	09/08/2015 1536			1. A set of the set of the second set of the set of	200 mL
rep Date:	09/08/2015 1536		1.1.1.1	njection Volume:	200 ML
nalyte		Result (ppb v/v)	Qualifier	MDL	RL
1,1-Trichloroetha	ane	ND		0.60	4.0
1,2,2-Tetrachlor	oethane	ND		0.68	4.0
1,2-Trichloroetha	ane	ND		0.74	4.0
1-Dichloroethan	e	ND		0.56	4.0
1-Dichloroethen	e	ND		0.20	4.0
2,4-Trichloroben	izene	ND		0.68	10
2,4-Trimethylber	nzene	ND		0.32	4.0
2-Dibromoethan	e	ND		0.36	4.0
2-Dichlorobenze	ene	ND		0.36	4.0
2-Dichloroethan		ND		1.0	4.0
2-Dichloroethen	e, Total	ND		1.1	8.0
2-Dichloropropa		ND		0.70	4.0
3,5-Trimethylber	nzene	ND		0.38	4.0
3-Butadiene		ND		0.72	4.0
3-Dichlorobenze	ene	ND		0.40	4.0
4-Dichlorobenze	ene	ND		0.38	4.0
4-Dioxane		ND		3.2	100
-Chlorotoluene		ND		0.62	4.0
Chloropropene		ND		3.2	10
Ethyltoluene		ND		0.40	4.0
Isopropyltoluene	9	ND	UJ	0.40	4.0
cetone		100		14	100
enzene		ND		0.58	4.0
enzyl chloride		ND		0.36	4.0
romodichloromet		0.64	)	0.58	4.0
romoethene(Viny	yl Bromide)	ND		0.40	4.0
romoform		ND		0.50	4.0
romomethane		ND		0.88	4.0
arbon disulfide	22.7	ND		0.60	10
arbon tetrachlori	de	ND		0.22	4.0
hlorobenzene		ND		0.36	4.0
hloroethane		ND		1.2	10
hloroform		9.5		0.76	4.0
hloromethane	A STA	ND		1.2 0.60	10 4.0
s-1,2-Dichloroeth		ND		0.58	4.0
s-1,3-Dichloropro	opene	ND		0.20	4.0
yclohexane	(h a z a	ND		0.40	4.0
ibromochlorome		ND		1.1	10
ichlorodifluorome		63 ND		1.0	4.0
ichlorotetrafluoro	beinane	ND ND		0.40	4.0
thylbenzene		ND		1.6	10
reon 22				0.72	4.0
exachlorobutadie	ene	ND ND		0.46	4.0
sooctane		ND		1.1	4.0
sopentane		ND		3.0	100
opropyl alcohol				0.0	,00
		Dava 40 of 6	10		00/

#### **TestAmerica Burlington**

Client: ARCADIS U.S. Inc

# Job Number: 200-29600-1

Client Matrix:	Air					npled: 09/02/2015 ceived: 09/04/2015
	TO	15 Volatile Organic (	Compounds in	Ambient A	\ir	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 20 09/08/2015 1536 09/08/2015 1536	Analysis Batch: Prep Batch:	200-93675 N/A	Lab F Initial Final	iment ID: File ID: Weight/Volume: Weight/Volume: ion Volume:	CHX.i 15638_10.D 51 mL 200 mL 200 mL
Analyte		Result (p	pb v/v) Q	ualifier	MDL	RL
Isopropylbenzene		ND			0.38	4.0
m,p-Xylene		ND			0.50	10
Methyl Butyl Keton	e (2-Hexanone)	ND			3.4	10
Methyl Ethyl Keton		2.3	J		1.8	10
methyl isobutyl ket		ND			3.6	10
Methyl methacrylat		ND			1.9	10
Methyl tert-butyl et		ND			0.44	4.0
Methylene Chloride		2.8- 10	-	BUIS	2.4	10
Naphthalene		ND			0.60	10
n-Butane		ND			3.6	10
n-Butylbenzene		ND			0.56	4.0
n-Decane		7.6	J		2.6	10
n-Dodecane		9.1	J		5.0	100
n-Heptane		ND			0.74	4.0
n-Hexane		ND			0.56	4.0
n-Octane		2.1	J		0.62	4.0
Nonane		4.3			0.44	4.0
n-Propylbenzene		ND			0.54	4.0
n-Undecane		16	J		3.6	100
Pentane		ND			2.4	10
sec-Butylbenzene		ND			0.42	4.0
Styrene		ND			0.32	4.0
tert-Butyl alcohol		ND			2.4	100
tert-Butylbenzene		ND			0.40	4.0
Tetrachloroethene		ND			0.60	4.0
Tetrahydrofuran		ND			3.6	100
Toluene		3.8	J		0.50	4.0
trans-1,2-Dichloroe	thene	ND	5		0.54	4.0
rans-1,3-Dichlorop		ND			0.52	4.0
Trichloroethene		ND			0.60	4.0
Trichlorofluorometh	ane	ND			0.90	4.0
Trichlorotrifluoroeth		ND			0.82	4.0
Vinyl chloride		ND			0.52	4.0
Xylene (total)		ND			0.82	14
Xylene, o-		ND			0.36	4.0
Analyte		Result (up	a/m3) O	ualifier	MDL	RL
1,1,1-Trichloroetha	ne	ND			3.3	22
1,1,2,2-Tetrachloro		ND			4.7	27
1,1,2-Trichloroetha		ND			4.0	22
1,1-Dichloroethane		ND			2.3	16
1,1-Dichloroethene		ND			0.79	16
		ND			5.0	74
1 / A_ I richlorohonz		NU			0.0	14
1,2,4-Trichlorobenz					16	20
1,2,4-1 richlorobenz 1,2,4-Trimethylbenz 1,2-Dibromoethane	zene	ND ND			1.6 2.8	20 31

**TestAmerica Burlington** 

Client: ARCADIS U.S. Inc

# Job Number: 200-29600-1

Client Sample ID:	SV-6	
Lab Sample ID:	200-29600-6	
Client Matrix:	Air	

#### Date Sampled: 09/02/2015 1740 Date Received: 09/04/2015 1030

		-15 Volatile Organic	compounds	III Ambient	L AII	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 20 09/08/2015 1536 09/08/2015 1536	Analysis Batch: Prep Batch:	200-93675 N/A	Lab Initi Fina	trument ID: ) File ID: ial Weight/Volume: al Weight/Volume: ection Volume:	CHX.i 15638_10.D 51 mL 200 mL 200 mL
Analyte		Result (u	ia/m3)	Qualifier	MDL	RL
1,2-Dichloroethan	0	ND	5		4.2	16
1,2-Dichloroethen		ND			4.2	32
1,2-Dichloropropa		ND			3.2	18
1,3,5-Trimethylbe		ND			1.9	20
1,3-Butadiene		ND			1.6	8.8
1,3-Dichlorobenze	ane	ND			2.4	24
1,4-Dichlorobenze		ND			2.3	24
1,4-Dioxane		ND			12	360
2-Chlorotoluene		ND			3.2	21
3-Chloropropene		ND			10	31
4-Ethyltoluene		ND		2.4	2.0	20
4-Isopropyltoluene	9	ND		10	2.2	22
Acetone		240			33	240
Benzene		ND			1.9	13
Benzyl chloride		ND			1.9	21
Bromodichlorome	thane	4.3		J	3.9	27
Bromoethene(Vin		ND			1.7	17
Bromoform	ji Dioninao)	ND			5.2	41
Bromomethane		ND			3.4	16
Carbon disulfide		ND			1.9	31
Carbon tetrachlori	ide	ND			1.4	25
Chlorobenzene		ND			1.7	18
Chloroethane		ND			3.2	26
Chloroform		46			3.7	20
Chloromethane		ND			2.5	21
cis-1,2-Dichloroet	hene	ND			2.4	16
cis-1,3-Dichloropr		ND			2.6	18
Cyclohexane	1	ND			0.69	14
Dibromochlorome	thane	ND			3.4	34
Dichlorodifluorom		310			5.5	49
Dichlorotetrafluor		ND			7.3	28
Ethylbenzene		ND			1.7	17
Freon 22		ND			5.7	35
Hexachlorobutadi	ene	ND			7.7	43
Isooctane		ND			2.1	19
Isopentane		ND			3.2	12
Isopropyl alcohol		ND			7.4	250
Isopropylbenzene		ND			1.9	20
m,p-Xylene		ND			2.2	43
Methyl Butyl Keto	ne (2-Hexanone)	ND			14	41
Methyl Ethyl Keto	ne	6.8		J	5.4	29
methyl isobutyl ke		ND			15	41
Methyl methacryla	ate	ND			7.9	41
Methyl tert-butyl e		ND	-		1.6	14
Methylene Chlorid			35	JB UIS		35
Naphthalene		ND			3.1	52

Client: ARCADIS U.S. Inc

SV-6

Air

200-29600-6

Client Sample ID:

Lab Sample ID:

**Client Matrix:** 

# Job Number: 200-29600-1

Date Sampled: 09/02/2015 1740 Date Received: 09/04/2015 1030

	то	-15 Volatile Organic	Compounds	in Ambie	ent Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 20 09/08/2015 1536 09/08/2015 1536	Analysis Batch: Prep Batch:	200-93675 N/A	L II F	nstrument ID: Lab File ID: nitial Weight/Volume: Final Weight/Volume: njection Volume:	CHX.i 15638_10.D 51 mL 200 mL 200 mL
Analyte		Result (u	ia/m3)	Qualifier	MDL	RL
-Butane		ND	gitter		8.6	24
Butylbenzene		ND			3.1	22
-Decane		44			15	58
-Dodecane		63		1	35	700
n-Heptane		ND			3.0	16
-Hexane		ND			2.0	14
-Octane		9.8		J	2.9	19
lonane		22			2.3	21
-Propylbenzene		ND			2.7	20
-Undecane		100		J	23	640
Pentane		ND			7.1	30
ec-Butylbenzene		ND			2.3	22
Styrene		ND			1.4	17
ert-Butyl alcohol		ND			7.3	300
ert-Butylbenzene		ND			2.2	22
etrachloroethene		ND			4.1	27
Tetrahydrofuran		ND			11	290
oluene		14		J	1.9	15
rans-1,2-Dichloro	ethene	ND			2.1	16
rans-1,3-Dichloro	propene	ND			2.4	18
richloroethene		ND			3.2	21
richlorofluoromet	hane	ND			5.1	22
richlorotrifluoroet	hane	ND			6.3	31
inyl chloride		ND			1.3	10
Xylene (total)		ND			3.6	61
Kylene, o-		ND			1.6	17

Client: ARCADIS U.S. Inc

Client Sample ID:

Lab Sample ID:

**Client Matrix:** 

SV-6

Air

200-29600-6

# Job Number: 200-29600-1

Date Sampled: 09/02/2015 1740 Date Received: 09/04/2015 1030

	TO	-15 Volatile Organic	Compounds	in Aml	bient Air	
Analysis Method:	TO-15	Analysis Batch:	200-93675		Instrument ID:	CHX.i
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	15638_10.D
Dilution:	20				Initial Weight/Volume:	51 mL
Analysis Date:	09/08/2015 1536				Final Weight/Volume:	200 mL
Prep Date:	09/08/2015 1536				Injection Volume:	200 mL
Tentatively Ident	ified Compounds	Number TIC's F	ound: 10			
Cas Number	Analyte			RT	Est. Result (ppl	v/v) Qualifie
20185-16-4	3,3-Dimethyl-6-methy	lenecyclohexene		18.51	180	TJN
508-32-7	Tricyclo[2.2.1.0(2,6)]h	eptane, 1,7,7-tri		20.02	53	TJN
7785-26-4	1SalphaPinene			20.29	7400	TJN
7785-70-8	1RalphaPinene			20.35	3900	TJN
	Unknown			20.59	81	TJN
79-92-5	Camphene			20.78	630	TJN
	Unknown			21.35	330	TJN
127-91-3	.betaPinene			21.40	780	TJN
138-86-3	Limonene			22.23	830	TJN
555-10-2	.betaPhellandrene			22.38	130	TJN

## Client: ARCADIS U.S. Inc

# Analytical Data

Job Number: 200-29600-1

Lab Sample ID:	200-29600-7				Date Sar	mpled: 09/02/201
Client Matrix:	Air					ceived: 09/04/201
	TO	15 Volatile Organic	Compounds	in Amb	ient Air	2.25
Analysis Method: Prep Method: Dilution:	TO-15 Summa Canister 19.7	Analysis Batch: Prep Batch:	200-93675 N/A		Instrument ID: Lab File ID: Initial Weight/Volume:	CHX.i 15638_11.D 50 mL
Analysis Date: Prep Date:	09/08/2015 1625 09/08/2015 1625				Final Weight/Volume: Injection Volume:	200 mL 200 mL
Analyte		Result (p	opb v/v)	Qualifie	er MDL	RL
1,1,1-Trichloroetha	ne	ND			0.59	3.9
1,1,2,2-Tetrachlord		ND			0.67	3.9
1,1,2-Trichloroetha		ND			0.73	3,9
1,1-Dichloroethane		ND			0.55	3.9
1,1-Dichloroethene		ND			0.20	3.9
1,2,4-Trichloroben:		ND			0.67	9.9
1,2,4-Trimethylben		ND			0.32	3.9
the second se						
1,2-Dibromoethane		ND			0.35	3.9
1,2-Dichlorobenzei		ND			0.35	3.9
1,2-Dichloroethane		ND			1.0	3.9
1,2-Dichloroethene		ND			1.0	7.9
1,2-Dichloropropar		ND			0.69	3.9
1,3,5-Trimethylben	zene	ND			0.37	3.9
1,3-Butadiene		ND			0.71	3.9
1,3-Dichlorobenzer		ND			0.39	3.9
1,4-Dichlorobenzer	ne	ND			0.37	3.9
1,4-Dioxane		ND			3.2	99
2-Chlorotoluene		ND			0.61	3.9
3-Chloropropene		ND			3.2	9.9
4-Ethyltoluene		ND			0.39	3.9
4-Isopropyltoluene		ND			0.39	3.9
Acetone		18		J	14	99
Benzene		ND			0.57	3.9
Benzyl chloride		ND			0.35	3.9
Bromodichlorometh	nane	ND			0.57	3.9
Bromoethene(Viny	Bromide)	ND			0.39	3.9
Bromoform		ND		-	0.49	3.9
Bromomethane		ND			0.87	3.9
Carbon disulfide		ND			0.59	9.9
Carbon tetrachlorid	e	ND			0.22	3.9
Chlorobenzene		ND			0.35	3.9
Chloroethane		ND			1.2	9.9
Chloroform		9.1			0.75	3.9
Chloromethane		ND			1.2	9.9
cis-1,2-Dichloroeth	ene	ND			0.59	3.9
cis-1,3-Dichloropro		ND			0.57	3.9
Cyclohexane		ND			0.20	3.9
Dibromochlorometh	ane	ND			0.39	3.9
Dichlorodifluorome		ND			1.1	9.9
Dichlorotetrafluoroe		ND			1.0	
	sulane					3.9
Ethylbenzene		ND			0.39	3.9
Freon 22		ND			1.6	9.9
Hexachlorobutadie	ne	ND			0.71	3.9
sooctane		ND			0.45	3.9
sopentane sopropyl alcohol		ND			1.1	3.9
		ND			3.0	99

Client: ARCADIS U.S. Inc

## Job Number: 200-29600-1

Client Sample ID:SV-7Lab Sample ID:200-29600-7Client Matrix:Air

Date Sampled: 09/02/2015 1800 Date Received: 09/04/2015 1030

	тс	)-15 Volatile Organic (	Compound	ds in Ambi	ent Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 19.7 09/08/2015 1625 09/08/2015 1625	Analysis Batch: Prep Batch:	200-9367 N/A	1   	nstrument ID: .ab File ID: nitial Weight/Volume: Final Weight/Volume: njection Volume:	
Analyte		Result (p	nh v/v	Qualifier	MDL	RL
Isopropylbenzene		ND	PD (///)	Quannor	0.37	3.9
m,p-Xylene		ND			0.49	9.9
Methyl Butyl Keto	ne (2-Hevanone)	ND			3.3	9.9
Methyl Ethyl Keto		ND			1.8	9.9
methyl isobutyl ke		ND			3.5	9.9
Methyl methacryla		ND			1.9	9.9
Methyl tert-butyl e		ND	-		0.43	3.9
Methylene Chloric		2.5. 9.	9	JB U		9.9
Naphthalene		ND			0.59	9.9
n-Butane		ND			3.5	9.9
n-Butylbenzene		ND			0.55	3.9
n-Decane		ND			2.6	9.9
n-Dodecane		ND			4.9	99
n-Heptane		ND			0.73	3.9
n-Hexane		0.72		J	0.55	3.9
n-Octane		7.0			0.61	3.9
Nonane		43			0.43	3.9
n-Propylbenzene		ND			0.53	3.9
n-Undecane		ND			3.5	99
Pentane		ND			2.4	9.9
sec-Butylbenzene	1	ND			0.41	3.9
Styrene		ND			0.32	3.9
tert-Butyl alcohol		ND			2.4	99
tert-Butylbenzene		ND			0.39	3.9
Tetrachloroethene	e	ND			0.59	3.9
Tetrahydrofuran		ND			3.5	99
Toluene		3.0		J	0.49	3.9
trans-1,2-Dichloro		ND			0.53	3.9
trans-1,3-Dichloro	propene	ND			0.51	3.9
Trichloroethene		ND			0.59	3.9 3.9
Trichlorofluorome		ND			0.89 0.81	3.9
Trichlorotrifluoroe	thane	ND			0.51	3.9
Vinyl chloride		ND			0.81	14
Xylene (total) Xylene, o-		ND ND			0.35	3.9
		Result (u	(m3)	Qualifier	MDL	RL
Analyte	222	ND	g/mo)	Quanter	3.2	21
1,1,1-Trichloroeth		ND			4.6	27
1,1,2,2-Tetrachlor 1,1,2-Trichloroeth		ND			4.0	21
1,1-Dichloroethan		ND			2.2	16
1,1-Dichloroethen		ND			0.78	16
1,2,4-Trichlorober		ND			5.0	73
1,2,4-Trimethylbe		ND			1.5	19
1,2-Dibromoethar		ND			2.7	30
1,2-Dichlorobenze		ND			2.1	24
			55 of 648		~ /	09/21
TootAmorioo Du	lington	Pana	22 01 D4X			19/2

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

Client Sample ID:	SV-7				
Lab Sample ID: Client Matrix:	200-29600-7 Air				ampled: 09/02/2015 1 Received: 09/04/2015 1
		TO-15 Volatile Organic	Compounds in A	Mbient Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 19.7 09/08/2015 1625 09/08/2015 1625	Analysis Batch: Prep Batch:	200-93675 N/A	Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volume Injection Volume:	
Analyte		Result (u	g/m3) Qui	alifier MDL	RL
1,2-Dichloroethane	1	ND		4.1	16
1,2-Dichloroethene		ND		4.1	31
1,2-Dichloropropar		ND		3.2	18
1,3,5-Trimethylben		ND		1.8	19
1,3-Butadiene	Lono	ND		1.6	8.7
1,3-Dichlorobenzer		ND		2.4	24
1,4-Dichlorobenzer		ND		2.4	24
				2.5	
1,4-Dioxane		ND			350
2-Chlorotoluene		ND		3.2	20
3-Chloropropene		ND		9.9	31
4-Ethyltoluene		ND		1.9	19
4-Isopropyltoluene		ND		2.2	22
Acetone		43	J	32	230
Benzene		ND		1.8	13
Benzyl chloride		ND		1.8	20
Bromodichlorometh		ND		3.8	26
Bromoethene(Viny	Bromide)	ND		1.7	17
Bromoform		ND	-	5.1	41
Bromomethane		ND		3.4	15
Carbon disulfide		ND		1.8	31
Carbon tetrachlorid	e	ND		1.4	25
Chlorobenzene		ND		1.6	18
Chloroethane		ND		3.2	26
Chloroform		44		3.7	19
Chloromethane		ND		2.4	20
sis-1,2-Dichloroeth	ene	ND		2.3	16
cis-1,3-Dichloropro		ND		2.6	18
Cyclohexane	n	ND		0.68	14
Dibromochlorometh	nane	ND		3.4	34
Dichlorodifluorome		ND		5.5	49
Dichlorotetrafluoroe		ND		7.2	28
Ethylbenzene		ND		1.7	17
Freon 22		ND		5.6	35
lexachlorobutadie	ne	ND		7.6	42
sooctane		ND		2.1	18
sopentane		ND		3.2	12
sopropyl alcohol		ND		7.3	240
		ND		1.8	19
sopropylbenzene				2.1	
n,p-Xylene	o (2 Howarana)	ND			43
Methyl Butyl Keton		ND		14	40
Aethyl Ethyl Keton		ND		5.3	29
nethyl isobutyl keto		ND		15	40
Methyl methacrylat		ND		7.7	40
Methyl tert-butyl eth		ND	1	1.6	14
Methylene Chloride		8.7- 39	JB	013 8.2	34
Naphthalene		ND		3.1	52

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

Client Sample ID:SV-7Lab Sample ID:200-29600-7Client Matrix:Air

Date Sampled:	09/02/2015	1800	
Date Received:	09/04/2015	1030	

		O-15 Volatile Organic (	Compounds	in Ambie	nt Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 19.7 09/08/2015 1625 09/08/2015 1625	Analysis Batch: Prep Batch:	200-93675 N/A	La In Fi	strument ID: ab File ID: itial Weight/Volume: inal Weight/Volume: jection Volume:	CHX.i 15638_11.D 50 mL 200 mL 200 mL
Analyte		Result (u	g/m3)	Qualifier	MDL	RL
n-Butane n-Butylbenzene n-Decane n-Dodecane n-Heptane n-Heptane n-Hexane n-Octane Nonane n-Propylbenzene n-Undecane Pentane sec-Butylbenzene Styrene tert-Butyl alcohol tert-Butyl alcohol tert-Butylbenzene Tetrachloroethene Tetrahydrofuran Toluene trans-1,2-Dichloro trans-1,3-Dichloro Trichloroethene	ethene	ND ND ND ND ND 2.5 32 230 ND ND ND ND ND ND ND ND ND ND ND ND ND	gine)	J	8.4 3.0 15 34 3.0 1.9 2.9 2.3 2.6 23 7.0 2.3 1.3 7.2 2.2 4.0 10 1.9 2.1 2.3 3.2	23 22 57 690 16 14 18 21 19 630 29 22 17 300 22 27 290 15 16 18 21
Trichlorofluoromet Trichlorotrifluoroet Vinyl chloride Xylene (total) Xylene, o-		ND ND ND ND ND			5.0 6.2 1.3 3.5 1.5	22 30 10 60 17

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

Client Sample ID	: SV-7					
Lab Sample ID: Client Matrix:	200-29600-7 Air					npled: 09/02/2015 18 ceived: 09/04/2015 10
			0		- 1.0 CM-	Jerved. 09/04/2013 10
	10	-15 Volatile Organic	Compounds in	Ambi	ent Air	
Analysis Method:		Analysis Batch:	200-93675		Instrument ID:	CHX.i
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	15638_11.D
Dilution:	19.7				Initial Weight/Volume:	50 mL
Analysis Date:	09/08/2015 1625				Final Weight/Volume:	200 mL
Pron Dato	00/08/2016 1626					
Prep Date:	09/08/2015 1625				Injection Volume:	200 mL
	ified Compounds	Number TIC's F	ound: 10	1	njection volume.	200 ML
		Number TIC's F		۲ ۲	Est. Result (ppt	
Tentatively Ident	ified Compounds	Number TIC's F	F			
Tentatively Ident	ified Compounds Analyte	Number TIC's F	F 1	RT .	Est. Result (ppt	b v/v) Qualifier
Tentatively Ident	i <b>fied Compounds</b> Analyte Unknown	Number TIC's F	F 1 1	RT 7.70	Est. Result (ppt 95	b v/v) Qualifier TJ <mark>N</mark>
Tentatively Ident Cas Number	<b>ified Compounds</b> Analyte Unknown Unknown		F 1 1 1	RT 7.70 8.51	Est. Result (ppt 95 960	bv/v) Qualifier TJAJ TJJ
Tentatively Ident	<b>ified Compounds</b> Analyte Unknown Unknown Unknown		F 1 1 1 2	RT 7.70 8.51 9.49	Est. Result (ppt 95 960 90	b v/v) Qualifier TJ N TJ J TJ J TJN TJN
Tentatively Ident Cas Number 508-32-7	ified Compounds Analyte Unknown Unknown Unknown Tricyclo[2.2.1.0(2,6)]h		F 1 1 2 2	RT 7.70 8.51 9.49 0.03	Est. Result (ppt 95 960 90 160	bv/v) Qualifier TJ N TJ J TJ J TJN TJN TJN TJN
Tentatively Ident Cas Number 508-32-7 7785-26-4	ified Compounds Analyte Unknown Unknown Unknown Tricyclo[2.2.1.0(2,6)]h 1SalphaPinene		F 1 1 2 2 2 2	8T 7.70 8.51 9.49 0.03 0.29	Est. Result (ppt 95 960 90 160 9500	bv/v) Qualifier TJ <b>V</b> TJJ TJJ TJN TJN
Tentatively Ident Cas Number 508-32-7 7785-26-4	ified Compounds Analyte Unknown Unknown Unknown Tricyclo[2.2.1.0(2,6)]h 1SalphaPinene 1SalphaPinene		F 1 1 2 2 2 2 2 2 2	RT 7.70 8.51 9.49 0.03 0.29 0.38	Est. Result (ppt 95 960 90 160 9500 3600	b v/v) Qualifier TJN TJJJ TJN TJN TJN TJN TJN TJN TJN
<b>Tentatively Ident</b> Cas Number 508-32-7 7785-26-4 7785-26-4	ified Compounds Analyte Unknown Unknown Unknown Tricyclo[2.2.1.0(2,6)]h 1SalphaPinene 1SalphaPinene Unknown		F 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RT 7.70 8.51 9.49 0.03 0.29 0.38 0.60	Est. Result (ppt 95 960 90 160 9500 3600 210	b v/v) Qualifier TJN TJJJ TJN TJN TJN TJN TJN TJN

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

Client Sample ID:DUP-090215Lab Sample ID:200-29600-8

Air

Client Matrix:

Date Sampled: 09/02/2015 0000 Date Received: 09/04/2015 1030

Analysis Mathad	TO 15	Analysis Ratah	200-03750	Inc	strument ID:	CHX.i
Analysis Method: Prep Method: Dilution:	TO-15 Summa Canister 20.1	Analysis Batch: Prep Batch:	200-93750 N/A	La	b File ID: tial Weight/Volume:	15667_25.D 57 mL
Analysis Date:	09/10/2015 0644			Fir	al Weight/Volume:	200 mL
Prep Date:	09/10/2015 0644				ection Volume:	200 mL
riep bate.	03/10/2013 0044			1.9.	couori volume.	200 1112
Analyte		Result (p	pb v/v)	Qualifier	MDL	RL
1,1,1-Trichloroetha	ane	ND	6.5		0.60	4.0
1,1,2,2-Tetrachlor		ND			0.68	4.0
1,1,2-Trichloroetha		ND			0.74	4.0
1,1-Dichloroethane		ND			0.56	4.0
1,1-Dichloroethene		ND			0.20	4.0
1,2,4-Trichloroben		ND			0.68	10
1,2,4-Trimethylber		ND			0.32	4.0
1,2-Dibromoethan		ND			0.36	4.0
1,2-Dichlorobenze		ND			0.36	4.0
1,2-Dichloroethane		ND			1.0	4.0
1,2-Dichloroethene		ND			1.1	8.0
1,2-Dichloropropa		ND			0.70	4.0
1,3,5-Trimethylber		ND			0.38	4.0
1,3-Butadiene		ND			0.72	4.0
1,3-Dichlorobenze	ne	ND			0.40	4.0
1,4-Dichlorobenze		ND			0.38	4.0
1,4-Dioxane		ND			3.2	100
2-Chlorotoluene		ND			0.62	4.0
3-Chloropropene		ND			3.2	10
4-Ethyltoluene		ND			0.40	4.0
4-Isopropyltoluene	R.	36		J	0.40	4.0
Acetone		86		J	14	100
Benzene		ND			0.58	4.0
Benzyl chloride		ND			0.36	4.0
Bromodichloromet	hane	ND			0.58	4.0
Bromoethene(Viny	I Bromide)	ND			0.40	4.0
Bromoform		ND		-	0.50	4.0
Bromomethane		ND			0.88	4.0
Carbon disulfide		1.3		J	0.60	10
Carbon tetrachlorid	de	ND			0.22	4.0
Chlorobenzene		ND			0.36	4.0
Chloroethane		ND			1.2	10
Chloroform		9.1			0.76	4.0
Chloromethane		ND			1.2	10
cis-1,2-Dichloroeth	ene	ND			0.60	4.0
cis-1,3-Dichloropro	pene	ND			0.58	4.0
Cyclohexane		ND			0.20	4.0
Dibromochloromet		ND			0.40	4.0
Dichlorodifluorome		59			1.1	10
Dichlorotetrafluoro	ethane	ND			1.0	4.0
Ethylbenzene		ND			0.40	4.0
Freon 22		ND			1.6	10
Hexachlorobutadie	ene	ND			0.72	4.0
		ND			0.46	4.0
sooctane						
sooctane sopentane sopropyl alcohol		ND ND			1.1 3.0	4.0 100

**TestAmerica Burlington** 

### Client: ARCADIS U.S. Inc

# Analytical Data

Job Number: 200-29600-1

Date Sampled: 09/02/2015 0000

Date Received: 09/04/2015 1030

Client Sample ID:	DUP-090215	
Lab Sample ID:	200-29600-8	
Client Matrix:	Air	
12		

	TO	-15 Volatile Organic	Compound	ls in Ambie	ent Air		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 20.1 09/10/2015 0644 09/10/2015 0644	Analysis Batch: Prep Batch:	200-9375 N/A	L Ir F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume: njection Volume:	CHX.i 15667_25.D 57 mL 200 mL 200 mL	
Analyte		Result (p	pb v/v)	Qualifier	MDL	RL	
Isopropylbenzene		ND	Per nev		0.38	4.0	
m,p-Xylene		ND			0.50	10	
Methyl Butyl Ketor	ne (2-Hexanone)	ND			3.4	10	
Methyl Ethyl Ketor		2.8		J	1.8	10	
methyl isobutyl ket		ND			3.6	10	
Methyl methacryla		ND			1.9	10	
Methyl tert-butyl et		ND			0.44	4.0	
Methylene Chlorid		2.8		J	2.4	10	
Naphthalene		ND			0.60	10	
n-Butane		ND			3.6	10	
n-Butylbenzene		ND			0.56	4.0	
n-Decane		6.6		J	2.6	10	
n-Dodecane		ND		100	5.0	100	
n-Heptane		ND			0.74	4.0	
n-Hexane		ND			0.56	4.0	
n-Octane		2.0		J	0.62	4.0	
Nonane		3.5		J	0.44	4.0	
n-Propylbenzene		ND			0.54	4.0	
n-Undecane		12		J	3.6	100	
Pentane		ND			2.4	10	
sec-Butylbenzene		ND			0.42	4.0	
Styrene		ND			0.32	4.0	
tert-Butyl alcohol		ND			2.4	100	
tert-Butylbenzene		ND			0.40	4.0	
Tetrachloroethene		ND			0.60	4.0	
Tetrahydrofuran		ND			3.6	100	
Toluene		3.8		J	0.50	4.0	
trans-1,2-Dichloroe	ethene	ND			0.54	4.0	
trans-1,3-Dichlorop		ND			0.52	4.0	
Trichloroethene		ND			0.60	4.0	
Trichlorofluoromet	hane	ND			0.90	4.0	
Trichlorotrifluoroet	hane	ND			0.82	4.0	
Vinyl chloride		ND			0.52	4.0	
Xylene (total)		ND			0.82	14	
Xylene, o-		ND			0.36	4.0	
Analyte		Result (u	a/m3)	Qualifier	MDL	RL	
1,1,1-Trichloroetha	ane	ND			3.3	22	
1,1,2,2-Tetrachlord		ND			4.7	28	
1.1.2-Trichloroetha		ND			4.1	22	
1,1-Dichloroethane	3	ND			2.3	16	
1,1-Dichloroethene		ND			0.80	16	
1,2,4-Trichloroben		ND			5.1	75	
1,2,4-Trimethylben		ND			1.6	20	
1,2-Dibromoethane		ND			2.8	31	
1,2-Dichlorobenzei		ND			2.2	24	
TestAmerica Burl	ington	Page 6	50 of 648			09	/21/2

Client: ARCADIS U.S. Inc

### Job Number: 200-29600-1

Client Sample ID:DUP-090215Lab Sample ID:200-29600-8

Air

Client Matrix:

#### Date Sampled: 09/02/2015 0000 Date Received: 09/04/2015 1030

	тс	-15 Volatile Organic	Compound	ds in Amb	pient Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 20.1 09/10/2015 0644 09/10/2015 0644	Analysis Batch: Prep Batch:	200-9375 N/A	50	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	CHX.i 15667_25.D 57 mL 200 mL 200 mL
Analyte		Result (u	a/m3)	Qualifi	er MDL	RL
1,2-Dichloroethan	P	ND	gritter	Guidini	4.2	16
1,2-Dichloroethen		ND			4.2	32
1,2-Dichloropropa		ND			3.3	19
1,3,5-Trimethylbe		ND			1.9	20
1,3-Butadiene	ILCIIC	ND			1.6	8.9
1,3-Dichlorobenze	ene	ND			2.4	24
1,4-Dichlorobenze		ND			2.3	24
1,4-Dioxane		ND			12	360
2-Chlorotoluene		ND			3.2	21
3-Chloropropene		ND			10	31
4-Ethyltoluene		ND			2.0	20
4-Isopropyltoluene	9	200		1	2.2	22
Acetone		200		J	33	240
Benzene		ND			1.9	13
Benzyl chloride		ND			1.9	21
Bromodichlorome	thane	ND			3.9	27
Bromoethene(Vin	yl Bromide)	ND			1.8	18
Bromoform		ND		-	5.2	42
Bromomethane		ND			3.4	16
Carbon disulfide		4.0		J	1.9	31
Carbon tetrachlori	ide	ND			1.4	25
Chlorobenzene		ND			1.7	19
Chloroethane		ND			3.2	27
Chloroform		45			3.7	20
Chloromethane	A 70.00	ND			2.5	21
cis-1,2-Dichloroet		ND			2.4 2.6	16 18
cis-1,3-Dichloropr	opene	ND ND			0.69	14
Cyclohexane Dibromochlorome	thana	ND			3.4	34
Dichlorodifluorom		290			5.6	50
Dichlorotetrafluoro		ND			7.3	28
Ethylbenzene	betriarie	ND			1.7	17
Freon 22		ND			5.7	36
Hexachlorobutadi	ene	ND			7.7	43
Isooctane		ND			2.2	19
Isopentane		ND			3.3	12
Isopropyl alcohol		ND			7.4	250
Isopropylbenzene		ND			1.9	20
m,p-Xylene		ND			2.2	44
Methyl Butyl Ketol	ne (2-Hexanone)	ND			14	41
Methyl Ethyl Ketor	ne	8.3		J	5.5	30
methyl isobutyl ke		ND			15	41
Methyl methacryla		ND			7.9	41
Methyl tert-butyl e		ND			1.6	14
Methylene Chloric	le	9.6		J	8.4	35
Naphthalene		ND			3.2	53

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

	ir	Date Received: 09/04/2015 1030
Client Matrix: A		Data Repaired 00/04/2015 1020
Lab Sample ID: 2	00-29600-8	Date Sampled: 09/02/2015 0000
Client Sample ID: D	UP-090215	

		TO-15 Volatile Organic	Compounds	in Ambient	Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 20.1 09/10/2015 0644 09/10/2015 0644	Analysis Batch: Prep Batch:	200-93750 N/A	Lab Initia Fina	rument ID: File ID: al Weight/Volume: I Weight/Volume: stion Volume:	CHX.i 15667_25.D 57 mL 200 mL 200 mL
Analyte		Result (u	ig/m3)	Qualifier	MDL	RL
n-Butane		ND	3		8.6	24
n-Butylbenzene		ND			3.1	22
n-Decane		38		J	15	58
n-Dodecane		ND			35	700
n-Heptane		ND			3.0	16
n-Hexane		ND			2.0	14
n-Octane		9.4		J	2.9	19
Nonane		19		J	2.3	21
n-Propylbenzene		ND			2.7	20
n-Undecane		78		J	23	640
Pentane		ND			7.1	30
sec-Butylbenzene		ND			2.3	22
Styrene		ND			1.4	17
tert-Butyl alcohol		ND			7.3	300
tert-Butylbenzene		ND			2.2	22
Tetrachloroethene	61.	ND			4.1	27
Tetrahydrofuran		ND			11	300
Toluene		14		J	1.9	15
trans-1,2-Dichloro	ethene	ND			2.2	16
trans-1,3-Dichloro	propene	ND			2.4	18
Trichloroethene		ND			3.2	22
Trichlorofluoromet	hane	ND			5.1	23
Trichlorotrifluoroet	hane	ND			6.3	31
Vinyl chloride		ND			1.3	10
Xylene (total)		ND			3.6	61
Xylene, o-		ND			1.6	17

Client: ARCADIS U.S. Inc

#### Job Number: 200-29600-1

	TO-15 Volatile Organic Compou	inds in Ambient Air
Client Matrix:	Air	Date Received: 09/04/2015 1030
Lab Sample ID:	200-29600-8	Date Sampled: 09/02/2015 0000
Client Sample ID:	DUP-090215	

	10	-15 volatile Organic	compounds	in Ann	Sient All		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 20.1 09/10/2015 0644 09/10/2015 0644	Analysis Batch: Prep Batch:	200-93750 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:		(.i 67_25.D mL mL mL
Tentatively Ident	ified Compounds	Number TIC's F	ound: 10				
Cas Number	Analyte			RT	Est. Result (ppl	b v/v)	Qualifier
20185-16-4	3,3-Dimethyl-6-methyl	lenecyclohexene		18.51	170		TJN
498-15-7	Bicyclo[4.1.0]hept-3-e	ne, 3,7,7-trimethy		20.02	38		TJN
785-70-8	1RalphaPinene			20.29	6000		TJN
7785-26-4	1SalphaPinene			20.34	3000		TJN
	Unknown			20.59	61		TJN
	Unknown			20.78	610		TJ
	Unknown			21.34	220		ТJV
127-91-3	.betaPinene			21.40	570		TJN
5989-27-5	D-Limonene			22.23	670		TJN
555-10-2	.betaPhellandrene			22.38	54		TJN

Intrager     Arror     Arror     Samples Collected By:     And       StS - Leo 34     Arror     Served     And       Area. Arror     Served     Arror     Served       Arror     Arror     Arror     Arror	Contract Information     Project Manager: Auxo, Ab-c-JS     Samples Collected Br.     YSG       env., AktAUTS     Prone: SKS - Velo 2-by 34     Samples Collected Br.     YSG       env., AktAUTS     Prone: SKS - Velo 2-by 34     Route Texture Internation     Samples Collected Br.     YSG       env., AktaUTS     Fourier: SKS - Velo 2-by 34     Route Texture Internation     Samples Collected Br.     YSG       env. AktaUTS     Samples Texture Internation     Samples Collected Br.     YSG     Samples Collected Br.     YSG       env. Akta St     Analysis Turnhound Time     Contexture Musics     Contexture Musics     Samples Collected Br.     YSG       CALLea Fex Ast     Analysis Turnhound Time     Contexture Musics     Contexture Musics     Contexture Musics     Samples Collected Br.     YSG       CALLea Fex Ast     Rush State     Mash State     Contexture Musics     Contexture Musics     Samples Collected Br.     YSG       CALLea Fex Ast     Rush State     Mash State     Nonumentation     Nonumentation     Nonumentation       Sample Information     Sample Information     Nonumentation     Nonumentation     Nonumentation     Nonumentation       Sample Information     Sample Information     Nonumentation     Nonumentation     Nonumentation     Nonumentation       Sample Information     Sample Information<	Contract Information     Project Manager: Kyoo, Manager: Kyoo, Mac,J.)     Samples collected Br: ASS     Contract Information       Final: STST-STST-StST-order     Bits Contract Max, March     Samples collected Br: ASS     Col 2     Coca       Final: STST-StST-StST-order     Bits Contract Max, March     Samples collected Br: ASS     Col 2     Coca       Final: STST-StST-StST-order     Bits Contract Max, March     Samples collected Br: AS     Col 2     Coca       Bits StST-StST-order     Bits Contract Max, March     Samples collected Br: ASS     Coca     Coca       Bits StST-StST-order     Bits Atta     Coca     Coca     Coca     Coca       Bits Statter     Anables trumformed Time     Coca     Coca     Coca     Coca       Stample Identification     Sample Identification     Sample Identification     Coca     Coca     Coca       Statter     Coca     Sample Identification     Sample Identification     Coca     Coca     Coca       Statter     Sample Identification     Sample Identification     Coca     Coca     Coca     Coca     Coca       Statter     Sample Identification     Sample Identification     Sample Identification     Coca     Coca     Coca     Coca       Statter     Sample Identification     Sample Identification     Coca     Coca	Contract Information     Project Manager: KLox, Ab-Ad-15     Samples Collected By: ASR     I of J cools       mix: ARXML     From: SYS - 562 - 562 - 563 - 563     Emmit: Arxw.     From: Arxw.     Amole Collected By: ASR     I of J cool       mix: SYS - System     Arxw.     Emmit: Arxw.     From: Arxw.     Amole Collected By: ASR     I of J cool       mix: SYS - System     Arxw.     Emmit: Arxw.     Amole Collected By: ASR     Amole Collected By: ASR     Amole Collected By: ASR       mix: SYS - System     Arxw.     Emmit: Arxw.     Amole Collected By: ASR     Amole Collected By: ASR     Amole Collected By: ASR       Mix: SYS - System     Amole Collected By: ASR       Cocrete Levies     Arxw.     Amole Collected By: ASR     <	Contract Information     Project Manager:     Avoid About Standard     Samples Collected By:       erry:     Actual Standard     Bite Contact:     Mout. About Standard     Samples Collected By:       erry:     Actual Standard     Bite Contact:     Mout. About Standard     Samples Collected By:       erry:     Standard     Mout. About Standard     Mout. About Standard     Samples Collected By:       erro:     Standard     Mout. About Standard     Bite Contact:     Mout. About Standard       error     Standard     Mout. About Standard     Bite Contact:     Mout. About Standard       error     Standard     Mout. About Standard     Bite Contact:     Mout. About Standard       error     Standard     Mout. About Standard     Bite Contact:     Mout. About Standard       error     Standard     Mout. About Standard     Bite Contact:     Mout. About Standard       error     Standard     Mout. About Standard     Bite Contact:     Mout. About Standard       fourtie:     Control of the Mout. About Standard     Mout. About Standard     Bite Standard       fourtie:     Control of the Mout. About Standard     Mout. About Standard     Bite Standard       fourtie:     Standard     Mout. About Standard     Mout. About Standard     Bite Standard       fourtie:     Standard     Mout.	Canister Samples Chain of Custody Record TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.	200-29600 COC
шего, МКАЛТК шего, МКА шего, МКАЛТК шего, МКАЛТК шего, МКАЛТК шего, МКАЛТК шего, МКАЛТК шего, МКАЛТК шего, МКАЛТК шего, МКА шего, МКА	ант. Абл. М. А. Алагует С.	ши. Аколол. вл.	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	and the formation of the set of	30	5
Bits:: 355-Usedddf: Дул, К     Email: Альц. Альц. 52, Useddff: Дул, К     Email: Альц. Альц. 52, Useddff: Дул, К       E::::::::::::::::::::::::::::::::::::	Size: 355: Jobd Joff: Ло: vice         Email: No: vice         And Size         A	Instruction Texture of Network of	March of All Constraint     Email Druct, Mucr. 55(- 184N3), Car- times, Taylor of Grupping (Grupping, Turnifound Time, s. 5575 - 3785 - carbot Grupping, Turnifound Time, and the Constraint Mucr. 75(-0)     Email Druct, Mucr. 75(-0)          in School of Grupping (Grupping), in School of Grupping, Turnifound Time, in Turnifound Time, i	Raise: 3 SS: JASE LADAR AN CALES Rescription France An Carter Alexes Tarker Alexes Tarker An Alexes Rescription Frank and time Contact: Alexes Tarker Alexes Tarker Alexes Rescription Frank and time Contact and the Alexes Tarker Alexes Tarker Alexes CLATIKe Fork ST CLATIKe ST CLATIKE FORK ST CLATIKE FORK ST CLATIKE ST CLA		1
Bill Contract:         March 124/H           Charler:         Counted:         Canter           Sample         Investment         Nater 100 of Mr           Sample         Investment         Content:           March 135         Sunda         March 144           Sample         Investment         Part 14           March 135         Sunda         March 144           Sunda         March 144         2xxx           Sunda         Part 14         March 144           Sunda         Part 14         March 144           Sunda         Part 144         March 144           Sunda         Part 144         March 144           Sunda         Pare 144         Part 144			Bits - Name         State         State <thstate< th=""> <thstate< th="">         State</thstate<></thstate<>	Second of the contact: Muck. As analysis turnforund Time       Second of the contact: Muck. As analysis turnforund Time       Contact: Muck. As analysis turnforund Time       Control: Contact: Muck. As analysis turnforund Time     Canter Contact       Control: Contact: Muck. As analysis turnforund Time     Canter Contact       Sample Identification     Sample Identification     Sample Identification       Sample Identification     Sample Identification     Pace Identification       Sample Identification     Sample Identification     Interviewer       Sample Identification     Sample Identification     Identification       Sample Identification     Sample Identification     Identification       Sample Identification     Sample Identification     Identification       Sample Id		
It Admit:         Transmission         Transmission         Admitsion	Current:         Concret:         MULX:         Xind           Current:         Concret:         MuLX:         Xind         Analysis         Turnelound Time           Current:         Concret:         MuLX:         Contract:         MuLX:         Xind           Current:         Concret:         MuLX:         Contract:         MuLX:         Contract:         MuLX:         Xind           Sample         East (Specify)         Time Statt         Time Statt         Contract:         MuLX:         Contract:         MuLX:         Contract:         MuLX:         Xind         Yind         Yind <td>Marrie: Coordia Park St     Tx Connact: Micker, Xan       Coordia     Coordia       Co</td> <td>Control Constraint         TA Contract:         Accounter:         &lt;</td> <td>Anthonic three consists     Anthonic three constant       Contact     Anthonic three constant       Contract     Anthonic three constant       Contract     Anthonic three constant       Contract     Contract       Sample identification     Sample       Sample identification     Sample       Sample     Contract       Sample     Contract   &lt;</td> <td></td> <td>(uoț</td>	Marrie: Coordia Park St     Tx Connact: Micker, Xan       Coordia     Coordia       Co	Control Constraint         TA Contract:         Accounter:         <	Anthonic three consists     Anthonic three constant       Contact     Anthonic three constant       Contract     Anthonic three constant       Contract     Anthonic three constant       Contract     Contract       Sample identification     Sample       Sample identification     Sample       Sample     Contract       Sample     Contract   <		(uoț
Сискуса Релик SJ         Analysis Turniforund Time           Гели SJ         Analysis Turniforund Time           Гели SJ         Analysis Turniforund Time           Carrier SI         Analysis Turniforund Time           Carrier SI         Canitation         Canitation           Turnifoldintification         Sample (Canitation         Canitation         Canitation           Turnifol Identification         Sample (Processing)         Trans Sample (Canitation         Canitation         Canitation           Manual Identification         Sample (Processing)         Trans Sample (Canitation         Canitation         Cani	Currence Renk St     Arrativels Turniforund Time       Park St     Arrativels Turniforund Time       Park St     Rush (Specify)       Rush (Specify)     Rush (Specify)       ample Identification     Sample       Number of Specify)     Rush (Specify)       ample Identification     Sample       Number of Specify)     Rush (Specify)       Annolusi     Time Start     Rush (Specify)       Daniels     Rush (Specify)       Daniels     Rush (Specify)	Performance         Attalysis Turnhforund Time         Attalysis Turnhforund Time           Perfor         Attalysis Turnhforund Time         Attalysis Turnhforund Time           Perform         Attalysis Turnhforund Time         Attalysis Turnhforund Time           Text         Attalysis Turnhforund Time         Attalysis Turnhforund Time           Attalysis         Attalysis Turnhforund Time         Attalysis         Attalysis           Attalysis         Attalysis         Attalysis         Attalysis         Attalysis           Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis           Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis         Attalysis	Perform         Analysis         Turnformation         Analysis         Turnformation           Perfor         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         <	Autrice     Analysis Turnfround Time       Park SI     Analysis Turnfround Time       Park SI     Rush (Specify)       Partial Library     Rush (Specify)       ample Identification     Sample       ample Identification     Sample       Turn Start     Trans Start       Constant     Rush (Specify)       Auton     Q1/5       Object     15/5       Over     24/5       V-1     Q1/5       Over     24/5       V-2     Over       V-1     Q1/5       Over     24/5       V-2     Over       V-1     Over       V-2     Value       V-1     Over       V-1     Over       V-2     Value       V-3     Over       V-1     Over       V-2     Value       V-2     Value       V-2     Value       V-2     Value       V-3     Value       V-1     Over       V-2     Value       V-2     Value       V-2     Value       V-2     Value       V-4     Value       V-4     Value       V-4     Value       V-5 <td></td> <td>sect</td>		sect
Part St         Carrier Cartier         Carrier         Car	Perform         Remote city         Canning         Caning         Canning         Canning	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Рам 54         Сомпаст         Сомпаст <t< td=""><td>Park 54         Runs (Bpecify)           ample Identification         sample           ample Identification         sample           MU-I         91/5           V-J         91/5           V-S         91/5           V-S         10/5           V-S         10/5           V-S         10/5           V-S         11/4           V-S         11/4           V-S         11/4           V-S         11/5           V-S         11/5           V-S         11/5           V-S         11/5           V-S         11/5      <tr< td=""><td></td><td>səjo</td></tr<></td></t<>	Park 54         Runs (Bpecify)           ample Identification         sample           ample Identification         sample           MU-I         91/5           V-J         91/5           V-S         91/5           V-S         10/5           V-S         10/5           V-S         10/5           V-S         11/4           V-S         11/4           V-S         11/4           V-S         11/5           V-S         11/5           V-S         11/5           V-S         11/5           V-S         11/5 <tr< td=""><td></td><td>səjo</td></tr<>		səjo
Rundification         Rundification         Rundification         Sample Identification         Sample Identification           ample Identification         Sample Identificatidentification	Runh (Specify)         Runh (Specify)           ample identification         Sample           ample identification         Sample           23         Canitiste           21,15         OS to           21,15 <td< td=""><td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td><td>Полновида         Падати (Specify)         Падати (Specify)         Полновида         Селения полновиди         Селения полновиди         Селения по</td><td>Turble identificationample identificationSampleThe startThree stopCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitor<!--</td--><td></td><td></td></td></td<>	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Полновида         Падати (Specify)         Падати (Specify)         Полновида         Селения полновиди         Селения полновиди         Селения по	Turble identificationample identificationSampleThe startThree stopCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitorCanitor </td <td></td> <td></td>		
Sample Identification	Sample         Lanister         Canister         Canister         Canister         Canister         Canister         Canister         Pieck         Pieck <thp< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>Sample Banelia Dennisi Banelia Banelia Banelia Banelia Banelia Banelia Banelia Banelia Banelia Banelia Find. Yacumin Find. Ya</td><td>Sample Detects)     Time Start Time Start     Canister vacuum Field, 'Hg     Canister Nacuum Field, 'Hg     Canister Nacuum Field, 'Hg     Canister Nacuum Field, 'Hg     Canister Nacuum Field, 'Hg     Field Start     Field Canister Start     Field Canister Canister Start     Field Canister Start       Start     <t< td=""><td></td><td>- State</td></t<></td></thp<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample Banelia Dennisi Banelia Banelia Banelia Banelia Banelia Banelia Banelia Banelia Banelia Banelia Find. Yacumin Find. Ya	Sample Detects)     Time Start Time Start     Canister vacuum Field, 'Hg     Canister Nacuum Field, 'Hg     Canister Nacuum Field, 'Hg     Canister Nacuum Field, 'Hg     Canister Nacuum Field, 'Hg     Field Start     Field Canister Start     Field Canister Canister Start     Field Canister Start       Start     Start <t< td=""><td></td><td>- State</td></t<>		- State
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	92.15 Orto 14to -30.0 -60 35,13 33,17 × × × × × × × × × × × × × × × × × × ×	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EPA 26C	Other (Please st Sample Type Indoor Air Anbient Air
0122     15co     77,5     -6.5     4937     3641       0755     1530     -28.0     -6.5     4937     3433       1030     1030     1030     -39.5     -6.5     3954     4034       1030     1035     1030     -39.5     -6.5     3954     4034       1030     1035     1040     -39.5     -6.5     4746     4046       1140     1740     1740     -30.5     -7.0     4087     1406       1140     1740     -30.5     -7.0     4087     1406       11     1740     1740     -30.5     -7.0     4087     1406       11     1740     1740     -30.5     -7.0     4087     1406       11     1740     -30.5     -7.0     4087     1456       11     1740     -30.5     -7.0     4087     1753       11     1740     -30.5     -7.0     4087     1753       11     1740     1740     -30.5     -7.0     4087       11     1740     1740     1753     1753       11     1740     1766     4067     1753       11     175     4067     1755     1756       11 <t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>And a second sec</td><td></td></t<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	And a second sec	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{                                    $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1030     1030     1030     -39.5     -6.5     3954     4836     1       1055     1040     -39.5     -6.5     4766     40746     1       1140     1740     -35.5     -9.5     4087     14085     1       1140     1740     -35.5     -9.5     4087     14085     1       1140     1740     -35.5     -9.5     4087     14085     1       1140     1740     -35.5     -9.5     4057     1455     1       1140     1740     -35.5     -9.5     4057     1753       1140     1753     1753     1753     1       1140     1753     1753     1     1       1141     Ambient     1     1     1       1141     1     1     1     1       1141     1     1     1     1       1141     1     1     1     1       1141     1     1     1     1       1141     1     1     1     1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030         1030	1030     1030     1030     1030     1030     1030     1030     1030     1031     1031       1140     1740     -30,0     -6.5     3354     14314     10416       1140     1740     -30,0     -6.5     1466     1046     1       1140     1740     -30,0     -6.5     1466     1964     1       1140     1740     -30,0     -9.5     14687     1406     1       1141     1753     1753     1753     1753     1566     1       1141     Ambient     Ambient     1753     1753     1     1       1141     Ambient     Ambient     1     1     1     1       1141     Ambient     Ambient     1     1     1       1141     Ambient     1     1     1     1       1141     Ambient     Ambient     1     1     1       1141     Ambient     Ambient     1     1     1       1141     Ambien		
IOSS     IC4O     -24,0     -6.5     H766     H016       I140     1740     -30,0     -6.5     4766     4076       Interior     Interior     Ambient     4753     1753       Start     Stop     Stop     Pressure (Inches of Hg)       Interior     Ambient     Ambient     510       Start     Stop     Ambient     510       Start     Ambient     510     510	1055   1640 - 24,0 - 6.5 4766 4076   1046   1046   1140   1740 - 30,0 - 4,037   24087 24085 2 24085 2 25,0 - 4,0 - 2,0 2 4085 2 24085 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 4,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 - 2 25,0 -	1055     1040     -29,0     -6.5     4766     4076     40       1140     1740     -30,0     -9.0     4037     2065     4       Interior       Interior     Ambient     4     753       Start     20,0     -9.0     4034     4       Start       Freestine (Fahrenheit)       1753       Start       Interior     Ambient       Start     Ambient       Interior     Ambient       Start     Ambient       Start     Ambient       Oresture fish     Ambient       Start     Ambient       Oresture fish     Ambient	1055     1040     -29,0     -6.5     4766     4076     4       1140     1740     -20,0     -9.0     4054     4       Interior       Interior     Ambient     41753       Start       Interior     Ambient       Start     Ambient     41753       Start     Ambient     416       Pressure (inclose of Hg)     Ambient       Rath     Start     Ambient       Start     Ambient     Ambient       Aster     Ambient     Ambient       Start     Ambient     Ambient       Aster     Ambient     Ambient	1055     1640     -29,0     -6.5     4766     4076       1140     1740     -30.0     -9.0     4087     1967       Interior       Interior       Interior       Start     1753       Start       Interior       Interior       Interior     Ambient       Start       Start     Pressure (Inches of Hg)       Interior     Ambient       Start       Start       Start     Start       Interior     Ambient       Start     Start       Start     Start       Interior     Ambient       Start     Start       Start     Start       Interior     Ambient       Start     Start		
Normalize     Normalize     Normalize     Normalize     Normalize       Interior     Ambient     4753     4084       Interior     Ambient     4753       Start     Ressure (fractions of Hg)     1753       Start     Ressure (inches of Hg)     1753	V     1140     1740     - 30.2     -9.0     4065     4       Temperature (Fahrenheit)       Temperature (Fahrenheit)     4153       Interior     Amblent     4153       Start     Amblent     4153       Start     Amblent     4153       Start     Amblent     4153       Start     Amblent     4153       Stop     Freesure (inches of Hg)     510       Start     Amblent     Amblent       Start     Amblent     410	V 1140 1740 - 30,2 -9,0 467 4069 V Temperature (Fahrenhell) 4753 Start Interior Ambient 4753 Start Stop Pressure (inches of Hg) Montor Ambient Amb	V 1140 1740 - 30,2 -9,0 4037 4035 4 153 Temperature (Fahrenhell) 4753 Start Interior Ambient Start Start Ambient Start Interior Ambient Start Ambient Amb	V 1140 1740 - 30.0 -9.0 4087 4087 4 Tomperature (Fahrenheit) 4752 Start Interior Ambient Start Step Pressure (Inches of Hg) Interior Ambient Start Ambient Ambient Start Ambient (Inches of Hg) Pressure (Inches of Hg		3
Temperature (Fahrenheit) Interior Ambient Pressure (Inches of Hg) Interior Ambient	Temperature (Fahrenheit)     H T53.       Interior     Ambient       Start     Ambient       Stop     Pressure (Inches of Hg)       faart     Ambient       Start     Ambient       Start     Ambient       Start     Ambient       Start     Ambient       Start     Ambient	Tomporture (Fahrenheit)     ITSA       Start     Ambient     Interior       Stop     Start     Ambient       Stop     Ambient     Ambient       Start     Pressure (Inches of Hg)     Ambient       Interior     Ambient     Ambient       Start     Ambient     Ambient	Tomporature (Fahrenheit)     HTSA.       Start     Interior     Ambient       Start     Ambient     Ambient       Start     Pressure (Inches of Hg)     Pressure (Inches of Hg)       Ambient     Ambient     Ambient       Start     Interior     Ambient       Start     Pressure (Inches of Hg)     Ambient       Pressure (Inches of Hg)     Pressure (Inches of Hg)     Ambient       Pressure (Inches of Hg)     Pressure (Inches of Hg)     Ambient       Start     Ambient     Ambient       Start     Ambient     Ambient       Start     Ambient     Ambient       Start     Ambient     Ambient       Date/Time: 9.1     Samples Received by:     Ambient	Temperature (Fahrenheit) 4752 Interior Ambient Start Start Stop Ambient Start Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient		7
Interior Interior	Interior     Ambient       Start     Interior       Stop     Fressure (inches of Hg)       Interior     Ambient       Start     Ambient       Stop     124	Interior     Ambient       Start     Interior       Stop     Pressure (inclues of Hg)       Interior     Ambient       Start     Interior       Start     Ambient       Stop     Start       Stop     Start       Start     Ambient       Start     Ambient       Stop     Start	Interior     Ambient       Start     Interior       Start     Pressure (inclues of Hg)       Interior     Ambient       Start     Interior       Start     Ambient       Date/Fix     Confround List       Date/Time:     21	Start Start Start Amblent Start Start Stop Pressure (Inches of Hg) Pressure (Inches of Hg) Interior Amblent Start Start Amblent Amblent Stop Pressure (Inches of Hg) Amblent Stop Pressure (Inches of Hg) Amblent Start Data Fix Compound Lish as per email fin Ama		
Interior	Start Start Stop Start Interior Ambient Start Stop Store (Inches of Hg) Start Stop Start Concer & 12 C	Start Stop Stop Start Start Start Stop Stop Frester Fis (onyound list as per email fish Anter Minnus Clarker	Start Start Stop Pressure (Inches of Hg) Pressure (Inches of Hg) Interior Ambient Start Ambient Start Ambient	Start Stop Stop Ambient Start Start Start Stop Stop Stop Stop Stop Stop Stop Sto		
Interior	Stop     Stop       Pressure (inches of Hg)       Pressure (inches of Hg)       Interior       Ambient       Start       Stop       Stop	Stop Eressure (Inches of Hg) Interior Ambient Ambient Start Ambient Ambient Conformation Ambient Conformation Ambient American A	Stop Ressure (Inches of Hg) Pressure (Inches of Hg) Interior Ambient Start Start Ambient Stop Pressure from Annow List as per errarit from Anner Murrus derker Pressure from Anner Murrus derker	stop stop		
Interior	Start Ambient Ambient Storp Concert of the Storp	Pressure (Inches of Hg) start Ambient stop Stop Pressure (compound lish as per email from Brue Winnus derber	Pressure (Inches of Hg) start Intertor Ambient start Star Fix Compound Lish as per email fibre Ance Winnus derived the Date/Time: 9215 molecula by:	Pressure (Inches of Hg) start Interior Ambient stop Pressure (ampound 1:sh as per email figh Bruce		
Interior	Start Ambient Start Start Converting the Start Converting the Start Store Stor	Start Interior Ambient Start Star Ambient Stop Star Fis Compound Lish as per email fish Bruce Khurus dated	Start Interior Ambient Start Star Ambient Stop Star Fis Compound Lish as per email fish Ance When we defer Project Star Fis Compound Lish as per email fish Ance When so defer	Start Interior Ambient Start Start Ambient Project Spec Fix Compound list as por email fin grue		
Start	start stop Orstel Stor Er Sammer & 126 as non owned C. Dan Willing D. Li	start stop Project Spectic Compound List as por email from Brue Wurnus derter	Start Start Start ( as por email fim Bruce Hurrus derter Project Startis ( and 1:56 as por email fim Bruce Hurrus derter DaterTime: 9215 more, Samples Received by:	Start stop ====================================		
Chan	Presty Ever Er Conner & 126 as nor conner P. Dan Herri D. Li	Project Spectre Compound list as poor email from Bruce Wheness dated	Project Spectre Compound List as por email from Bruce Hurrus derter DaterTime: 9215 more, SampterReceived by:	Project Spectra Compound list as por email from Bruce		
Samples Shipped by: Samples Relinquished by: Samples Relinquished by: Date/Time: Date/Time:	Well Date/Time: 9.3.15 0934 Samples Received by: Date/Time: 2.15 0934 Received by: 2.14/1.5 10.30	Date/Time: Received by: 1111 1030		Relinquished by: Date/Time: Received by:		

Suite 11 South Burlington, VT 05403 phone 802-660-1990 fax 802-660-1919	TestAmerica ,	Analytical Te	sting Corp.	ou seunes no	liability with	TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.	ollection and sl	ipment of	these san	nples.					
Client Contact Information	Project Manage	ų	Bria A	Ahrew		Samples Collected By:	lected By:	NO	0	a	of	cocs			
Company: ARCADIS	Phone:	5	1	34						-					
City/State/Zip Primert N. 14000	Email: A	~~	their	ARCAD	ARCADES. COM					-	(		-	$\vdash$	-
	Site Contact: /		Khen apry	A P							uoŋɔəs	Dette			
Project Name: Ocarke Park SI		Analysis	Turnaroui	d Time					_	_	eejoi				
	er.	Standard (Spec Rush (Specify)	Standard (Specify) Rush (Specify)								15 30				I Mag
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller ID	Canister ID	81-OT H9A-AM	EPA 3C	EPA 25C	Other (Please sp	aqyT əlqmsZ Indoor Air	riA tneidmA	Soil Gas Landfill Gas	Other (Please sp
2.12	9.2.15	1200	000	- 40°	0.9-	3456	445.5	×			×		1		-
Dup-ogais	9.2.15	1	3	-27.5	-9.0	6404	3539	4			6		~	6	
								-		+		4			
										-		Hats	1	-	-
				Temperature	Temperature (Fahrenheit)								1		
		Interior		Ambient											
	Start														
	Stop														
				Pressure (inches of Hg)	ches of Hg)										
		Interior		Ambient				_							
	Start														
Special Instructions/QC Requirements & Comments:			specific compour	your &	test	as per	enail f	free	Bruce Arress	F		deted	FO	PY SULS	62
Samples Shipped by CALON	Date/Time: 9	9210	202		Samples F	Samples Received by:	44			-					
Samples Relinquished by:	Date/Time:		1	0	Received by:	by:				Т					
Relinquished by:	Date/Time:				Received by:	bv:				Т					
						. 6.				_					



Imagine the result

# Rochester Gas & Electric – Geneseo Park Street Site

# **Data Usability Summary Report**

GENESEO, NEW YORK

Volatile, Semivolatile, Dissolved Gases, Metals and General Chemistry Analyses

SDGs #480-86431-1 and 480-86431-2

Analyses Performed By: TestAmerica Amherst, New York

Report #24498R Review Level: Tier III Project: B0013138.0002.00005

# SUMMARY

This data quality assessment summarizes the review of Sample Delivery Groups (SDGs) #480-86431-1 and 480-86431-2 for samples collected in association with the Rochester Gas & Electric Geneseo Park Street Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Included with this assessment are the validation annotated sample result sheets and chain of custody. Analyses were performed on the following samples:

				Samula				Anal	ysis		
SDG	Sample ID	Lab ID	Matrix	Sample Collection Date	Parent Sample	voc	DISS GAS	svoc	ТРН	MET	MISC
	MW-2	480-86431-1	Ground water	8/31/2015		х		Х	Х	Х	х
	MW-3	480-86431-2	Ground water	8/31/2015		х	х	х	х	Х	х
480-	MW-4	480-86431-3	Ground water	8/31/2015		х	х	х	х	Х	х
86431-1	MW-1	480-86431-4	Ground water	8/31/2015		х		х		Х	х
	DUP- 083115	480-86431-5	Ground water	8/31/2015	MW-4	х		х	*	Х	х
	TRIP BLANK	480-86431-6	Water	8/31/2015		х					
480- 86431-2	MW-1	480-86431-4	Ground water	8/31/2015					Х		

#### Notes:

- 1. MISC- Miscellaneous parameters: Total Cyanide, Nitrogen/Nitrate and/or Sulfide.
- 2. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location MW-2 for volatile, semi-volatile, metals and total cyanide; MS analysis was performed on sample location MW-4 for Sulfide; and, MS analysis was performed on sample location MW-3 for Nitrate.
- 3. Sample locations MW-3 and MW-4 were sent to TestAmerica Burlington, Vermont facility for RSK-175 (Dissolved Gas) analysis.
- 4. * The sample container for sample location DUP-083115 was not received by the laboratory; Arcadis was notified.

# ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted		mance ptable	Not
Items Reviewed	No	Yes	No	Yes	Required
1. Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		Х	
3. Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		х		х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
11. Narrative summary of QA or sample problems provided		Х		х	
12. Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

# **ORGANIC ANALYSIS INTRODUCTION**

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 8260C, 8270D, RSK-175 and 310.13 (petroleum products). Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
  - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
  - E The compound was quantitated above the calibration range.
  - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
  - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
  - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
  - UB Compound considered non-detect at the listed value due to associated blank contamination.
  - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

# **VOLATILE ORGANIC COMPOUND (VOC) ANALYSES**

## 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260C	Water	14 days from collection to analysis	Cool to <6°C; preserved to a pH of less than 2 s.u.

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

# 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

# 3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

## 4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

## 4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

## 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
MW-2		Bromomethane	-21.8%
MW-4		Acetone	+22.6%
DUP-083115		2-Butanone	+20.9%
TRIP BLANK		2-Hexanone	+27.6%
		Trichlorofluoromethane	+24.1%
	CCV %D	Acetone	+25.6%
		Carbon disulfide	+37.5%
MW-3 MW-1		1,1,1-Trichloroethane	+26.1%
		Carbon tetrachloride	+21.5%
		Bromodichloromethane	+21.4%
		2-Hexanone	+21.3%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	RRF <0.05	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	RRF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	RRF >0.05 01 RRF >0.01	Detect	NO ACTION
	%RSD > 15% or a correlation	Non-detect	UJ
Initial Calibration	coefficient <0.99	Detect	J
Initial Calibration		Non-detect	R
	%RSD >90%	Detect	J
		Non-detect	No Action
Continuing Colibration	%D >20% (increase in sensitivity)	Detect	J
Continuing Calibration	V/D > 20% (decrease in consitiuity)	Non-detect	UJ
	%D >20% (decrease in sensitivity)	Detect	J

Initial/Continuing	Criteria	Sample Result	Qualification
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

### 5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

#### 6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

#### 7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
	1,1,1-Trichloroethane	>UL	AC
	1,2-Dibromoethane	>UL	AC
	1,2-Dichlorobenzene	AC	<ll but="">10%</ll>
MW-2	1,2-Dichloropropane	>UL	AC
10100-2	1,3-Dichlorobenzene	AC	<ll but="">10%</ll>
	1,4-Dichlorobenzene	AC	<ll but="">10%</ll>
	2-Hexanone	>UL	AC
	Bromodichloromethane	>UL	AC

Carbon disulfide	>UL	AC
Isopropylbenzene	AC	<ll but="">10%</ll>
Toluene	AC	<ll but="">10%</ll>

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
a the lower control limit (11) but > 10%	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J
Parent sample concentration > four times the MS/MSD	Detect	No Action
spiking solution concentration.	Non-detect	NU ACIUN

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound
MW-2	All compounds, except Dichlorodifluoromethane and Trichlorofluoromethane

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
	Detect	J

#### 8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

#### 9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent

sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Sample ID/ Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Methyl ethyl ketone (2-Butanone)	2.2 J	2.9 J	AC
	Acetone	7.4 J	11	39.1%
	Benzene	2.0	1.9	AC
	Chloroform	1.4	1.6	AC
MW-4/	Cyclohexane	41	39	5.0%
DUP-083115	Ethylbenzene	5.9	5.9	0%
	Isopropylbenzene (Cumene)	1.1	1.1	AC
	Methylcyclohexane	32	31	3.1%
	Toluene	4.4	4.3	AC
	Xylenes, total	29	27	7.1%

Results for duplicate samples are summarized in the following table.

AC Acceptable

NC Not compliant

The compound Acetone associated with sample locations MW-4 and DUP-083115 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

### 10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

#### 11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260C	Reported		Performance Acceptable		Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					•
A. Method blanks		Х		Х	
B. Equipment blanks					Х
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate(LCSD)					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS)		Х	Х		
Matrix Spike Duplicate(MSD)		Х	Х		
MS/MSD Precision (RPD)		Х	Х		
Field/Lab Duplicate (RPD)		Х	Х		
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					•
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		х	
D. Transcription/calculation errors present		Х		Х	
<ul> <li>E. Reporting limits adjusted to reflect sample dilutions</li> <li>%RSD Relative standard deviation</li> </ul>		Х		Х	

%RSDRelative standard deviation%RPercent recoveryRPDRelative percent difference

%D Percent difference

# SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

## 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270D	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6°C

All samples were analyzed within the specified holding time criteria.

## 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification	
MW-2 MW-3	Benzaldehyde Phenanthrene (method blank)	Detected sample results <rl< td=""><td colspan="2" rowspan="2">"UB" at the RL</td></rl<>	"UB" at the RL	
MW-4 MW-1 DUP-083115	Phenanthrene (method blank)	and <bal< td=""></bal<>		

RL Reporting limit

## 3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

## 4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

## 4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

#### 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
	ICV %RSD	Benzaldehyde	19.2%
		2-Nitrophenol	17.1%
		Hexachlorocyclopentadiene	19.1%
MW-2 MW-3 MW-4 MW-1 DUP-083115		2,4-Dinitrophenol	55.0%
		2,4-Dinitrotoluene	19.4%
		Atrazine	16.7%
		Pyrene	16.4%
	CCV %D	Benzaldehyde	-28.1%
		Pentachlorophenol	-39.1%
		Fluoranthene	+21.1%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
Initial and Continuing Calibration	KKF <0.05	Detect	J
	RRF <0.01 ¹	Non-detect	R
	RRF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No. Action
	ארר 20.05 טו ארר 20.01	Detect	No Action

Initial/Continuing	Criteria	Sample Result	Qualification
	%RSD > 15% or a correlation coefficient	Non-detect	UJ
Initial Calibration	<0.99	Detect	J
		Non-detect	R
	%RSD >90%	Detect	J
Continuing Calibration	%D >20% (increase in sensitivity)	Non-detect	No Action
		Detect	J
		Non-detect	UJ
	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

# 5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

## 6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

## 7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
	2,4,5-Trichlorophenol	AC	<ll but="">10%</ll>
	2,4,6-Trichlorophenol	AC	<ll but="">10%</ll>
	2,4-Dichlorophenol		<ll but="">10%</ll>
	2-Nitroaniline	AC	<ll but="">10%</ll>
	3-Nitroaniline	AC	<ll but="">10%</ll>
	4-Bromophenyl phenyl ether	AC	<ll but="">10%</ll>
	4-Chloroaniline	AC	<ll but="">10%</ll>
MW-2	Benzo(a)pyrene	AC	<ll but="">10%</ll>
10100-2	Benzo(g,h,i)perylene	AC	<ll but="">10%</ll>
	Benzo(k)fluoranthene	AC	<ll but="">10%</ll>
	Bis(2-ethylhexyl)phthalate	AC	<ll but="">10%</ll>
	Caprolactam	<ll but="">10%</ll>	<10%
	Chrysene	AC	<ll but="">10%</ll>
	Di n-octyl phthalate	AC	<ll but="">10%</ll>
	Dibenz(a,h)anthracene	AC	<ll but="">10%</ll>
	Indeno(1,2,3-cd)pyrene	<ll but="">10%</ll>	<ll but="">10%</ll>

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper control limit (III.)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
$\sim$ the lower central limit (11) but > 10%	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J
Parent sample concentration > four times the MS/MSD	Detect	No Action
spiking solution concentration.	Non-detect	NO ACION

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound
MW-2	All compounds, except 4-Nitrophenol and Pentachlorophenol

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
	Detect	J

#### 8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

#### 9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	2-Methylnaphthalene	0.79 J	0.69 J	
MW-4/ DUP-083115	Acetophenone	0.57 J	5.1 U	AC
	Phenanthrene	0.66 J	0.55 J	

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

#### 10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

#### 11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270D	Rep	orted		mance otable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks		•		•	•
A. Method blanks		Х	Х		
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD Precision (RPD)		Х	Х		
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х	Х		
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		х	
D. Transcription/calculation errors present				Х	
<ul> <li>E. Reporting limits adjusted to reflect sample dilutions</li> <li>%RSD Relative standard deviation</li> </ul>		Х		х	

Percent recovery Relative percent difference Percent difference

%R RPD %D

### DISSOLVED GASES ANALYSES

#### 1. Holding Times

The EPA-recommended holding time for the specified method is presented in the following table.

Method	Matrix	Holding Time	Preservation
RSK-175	Water	14 days from collection to analysis	Cool to <6°C; preserved to a pH of less than 2 s.u.

All samples were analyzed within the specified holding time criteria.

The analyses that exceeded the temperature criteria are presented in the following table.

Sample Locations	Temperature	Criteria
MW-3 MW-4	24.8°C	<6°C

Sample results associated with sample locations analyzed by analytical method RSK-175 were qualified, as specified in the table below.

	Qualification		
Criteria	Sample Result	Qualification	
Temperature > two times the criteria	Non-detect	R	
	Detect	J	

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks, trip blanks, and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Laboratory method blanks measure laboratory contamination. Trip blanks also measure contamination during sample shipment and storage. Equipment rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

#### 3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of

acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

#### 3.1 Initial Calibration

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.995.

#### 3.2 Continuing Calibration

All target analytes associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (15%).

All calibration criteria were within the control limits.

#### 4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD was not performed on a sample associated with this SDG.

#### 5. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

#### 6. Field Duplicate Sample Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate was not performed on a sample associated with this SDG for RSK-175 analysis.

#### 7. Analyte Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows.

Sample results associated with compounds exhibited concentrations within control limits.

#### 8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# DATA VALIDATION CHECKLIST FOR DISSOLVED GASES

Dissolved Gases: RSK-175	Rep	orted		mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY (GC)					
Tier II Validation					
Holding times (Temperature)		Х	Х		
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment/Field blanks					Х
Laboratory Control Sample (LCS)		Х		X	
Laboratory Control Sample Duplicate (LCSD)		Х		Х	
LCS/LCSD Precision (RPD)		Х		X	
Matrix Spike (MS)					Х
Matrix Spike Duplicate(MSD)					Х
MS/MSD Precision (RPD)					Х
Laboratory Duplicate Sample RPD					Х
Field Duplicate Sample RPD					Х
Dilution Factor		Х		Х	
Tier III Validation					
Initial calibration %RSDs/correlation coefficients		Х		Х	
Continuing calibration %Ds		Х		Х	
Compound identification and quantitation					
A. Quantitation Reports		Х		Х	
<ul> <li>B. RT of sample analytes within the established RT windows</li> </ul>		х		Х	
C. Identification/Confirmation		Х		Х	
D. Quantitation transcriptions/calculations		Х		Х	
E. Reporting limits adjusted for sample dilutions		Х		Х	

RPDRelative percent difference%RSDRelative standard deviation%DPercent difference

### PETROLEUM PRODUCT ANALYSES

#### 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Petroleum products By NYSDOH 310.13	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

The analyses that exceeded the holding are presented in the following table.

Sample Locations	Holding Time	Criteria
MW-1	Extraction Completed in 16 days	7 Days

Sample results associated with sample locations analyzed by analytical method SW-846 310.13 were qualified, as specified in the table below. All other holding times were met.

	Qualification	
Criteria	Detected Analytes	Non-detect Analytes
Analysis completed less than two times holding time	J	UJ
Analysis completed greater than two times holding time	J	R

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

#### 3. System Performance

System performance and column resolution were acceptable.

#### 4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

#### 4.1 Initial Calibration

A maximum RSD of 20% or a correlation coefficient of greater than 0.99 is allowed.

#### 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%).

All calibration criteria were within the control limits.

#### 5. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD was not performed on sample location associated with these SDGs.

#### 6. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

#### 7. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

The field duplicate sample was not submitted for analysis, as indicated on the chain-of-custody.

#### 8. Compound Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows.

All identified compounds met the specified criteria.

#### 9. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# DATA VALIDATION CHECKLIST FOR PETROLEUM PRODUCTS

TPH; SW-846 310.13	Rep	orted		mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY (GC/FID)					
Tier II Validation					
Holding times		Х	Х		
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R		Х		х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R					Х
Matrix Spike Duplicate(MSD) %R					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)					Х
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation				-	
Initial calibration %RSDs		Х		Х	
Continuing calibration %Ds		Х		Х	
System performance and column resolution		Х		Х	
Compound identification and quantitation					•
A. Quantitation Reports		Х		Х	
<ul> <li>B. RT of sample compounds within the established RT windows</li> </ul>		Х		х	
C. Pattern identification		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

%RSD – relative standard deviation, %R - percent recovery, RPD - relative percent difference,

%D – difference

### **INORGANIC ANALYSIS INTRODUCTION**

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010C, 353.2 (Nitrate), 9012B (Total Cyanide) and Standard Method (SM) 4500 (Sulfide). Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
  - B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).
- Quantitation (Q) Qualifiers
  - E The reported value is estimated due to the presence of interference.
  - N Spiked sample recovery is not within control limits.
  - * Duplicate analysis is not within control limits.
- Validation Qualifiers
  - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
  - UB Analyte considered non-detect at the listed value due to associated blank contamination.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

### METALS ANALYSES

#### 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010C	Water	180 days from collection to analysis	Preserve to a pH of less than 2.

All samples were analyzed within the specified holding times.

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. Therefore, sample results greater than the BAL resulted in the removal of the laboratory qualifier (B). No other qualification of the sample results was required.

#### 3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

#### 3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

The correct number and type of standards were analyzed. All initial calibration verification standard recoveries were within control limits.

All initial and continuing calibration verification standard recoveries were within the control limit.

#### 3.2 Low Level Continuing Calibration Standard

The low level continuing calibration check standard (ICVL/CCVL) serves to verify the linearity of calibration of the analysis at the RL.

The ICVL/CCVL standard recoveries were within the control limits of 70 to 130%.

#### 3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

#### 4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

#### 4.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS analysis performed on sample location MW-2 exhibited recoveries within the control limits.

#### 4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for water matrices.

MS/MSD analysis was performed in addition to the laboratory duplicate analysis. The laboratory duplicate and MS/MSD recoveries exhibited acceptable RPD.

#### 5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Aluminum	0.068 J	0.076 J	AC
	Arsenic	0.0056 J	0.006 J	AC
MW-4/ DUP-083115	Barium	0.92	0.91	1.0%
DUF-003115	Calcium	124	123	0.8%
	Iron	37.7	37.5	0.5%
	Magnesium	85	83.6	1.6%

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Manganese	0.23	0.22	4.4%
	Nickel	0.0023 J	0.0025 J	AC
	Potassium	10.4	10.2	1.9%
	Sodium	419	416	0.7%
	Zinc	0.0035 J	0.0033 J	AC

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

#### 6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

#### 7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

The serial dilution performed on sample location MW-2 exhibited %D within the control limit.

#### 8. General Assessment – Total vs. Dissolved

The calculated %D between the total and the dissolved sample results were within the control limit

#### 9. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

METALS; SW-846 6010C	Repo	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Atomic Emission Sp	pectrometry	(ICP)			
Tier II Validation		1	1	I I	
Holding Times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Instrument Blanks		Х		Х	
B. Method Blanks		Х	Х		
C. Equipment/Field Blanks		Х		Х	
Laboratory Control Sample (LCS) %R		Х		Х	
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Lab Duplicate (RPD)		Х		Х	
Field Duplicate (RPD)		Х		Х	
ICP Serial Dilution		Х		Х	
Total vs Dissolved		Х		Х	
Reporting Limit Verification		Х		Х	
Raw Data		Х		Х	
Tier III Validation					
Initial Calibration Verification		Х		Х	
Continuing Calibration Verification		Х		Х	
CCVL Standard		Х		Х	
ICP Interference Check		Х		Х	
Transcription/calculations acceptable		Х		Х	
Reporting limits adjusted to reflect sample dilutions %R Percent recovery		Х		Х	

# DATA VALIDATION CHECKLIST FOR METALS

%R Percent recovery RPD Relative percent difference

### **GENERAL CHEMISTRY ANALYSES**

#### 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Nitrite-N by EPA 353.2	Water	48 hours from collection to analysis	Cool to <6 °C.
Total Cyanide by SW- 846 9012B	Water	14 days from collection to analysis	Cool to <6°C; preserved to a pH of greater than 12.
Sulfide by SM 4500	Water	7 days from collection to analysis	Zinc acetate; preserved to a pH of greater than 9

All samples were analyzed within the specified holding times.

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

#### 3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All calibration standard recoveries were within the control limit.

#### 4. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

#### 4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory qualifier "N" will be removed.

The MS/MSD analysis exhibited recoveries within the control limits.

#### 4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

MS/MSD analysis was performed in replacement of the laboratory duplicate analysis (for Cyanide). The MS/MSD recoveries exhibited acceptable RPD.

The laboratory duplicate exhibited a recovery within the control limit (for Sulfide)

#### 5. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MW-4/ DUP-083115	Cyanide	0.01 U	0.01 U	AC

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

#### 6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit recoveries between the control limits of 80% and 120%.

All analytes associated with the LCS analysis exhibited recoveries within the control limits.

#### 7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

General Chemistry: SW-846 353.2, 9012B, SM 4500	Rep	orted		mance ptable	Not Required
	No	Yes	No	Yes	Required
Miscellaneous Instrumentation					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation			•	•	•
Initial calibration %RSD or correlation coefficient		Х		Х	
Continuing calibration %R		Х		Х	
Raw Data		Х		Х	
Transcription/calculation errors present		Х		Х	
Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		х		Х	

Percent recovery Relative percent difference Percent difference %R RPD

%D

### SAMPLE COMPLIANCE REPORT

Oceanda							Comp	liancy ¹			Noncompliance
Sample Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	SVOC	DISS GAS	ТРН	MET	MISC	
	8/31/2015	SW-846	MW-2	Ground water	No	No		Yes	Yes	Yes	VOC-MS/MSD %R, RPD, Continuing calibration %D SVOC-Method blank, MS/MSD %R, RPD, Initial and continuing calibrations
	8/31/2015	SW-846	MW-3	Ground water	Yes	No	No	Yes	Yes	Yes	SVOC-Method blank, Initial and continuing calibrations Diss Gas-Temperature
480-86431-1	8/31/2015	SW-846	MW-4	Ground water	No	No	No	Yes	Yes	Yes	VOC- Continuing calibration %D, Field Duplicate RPD SVOC-Method blank, Initial and continuing calibrations Diss Gas-Temperature
	8/31/2015	SW-846	MW-1	Ground water	Yes	No			Yes	Yes	SVOC-Method blank, Initial and continuing calibrations
	8/31/2015	SW-846	DUP- 083115	Ground water	No	No			Yes	Yes	VOC-Continuing calibration %D, Field Duplicate RPD SVOC-Method blank, Initial and continuing calibrations
	8/31/2015	SW-846	TRIP BLANK	Water	No						VOC-Continuing calibration %D
480-86431-2	8/31/2015	SW-846	MW-1	Ground water				No			TPH-Hold time

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY:

Lisa Horton

SIGNATURE:

Lisa Hoston

DATE: October 23, 2015

PEER REVIEW: Joseph C. Houser

DATE: October 23, 2015

### CHAIN OF CUSTODY/LABORATORY DATA QUALIFIERS/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

180-86431 Chain of Custody	Chain of Custody Num 296731	- Tage	Conditions of Receipt	X X X X		2 monsored	voč avly	(A fee may be assessed if samples are retained	iger man 1 month)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date Time	
THE LEADER IN ENVIRONMENTAL TESTING	Abress Date Si	Lab Contact Lab Contact It Analysis (Attach list if Mubsse Defe) on more space is needed)	Containers & Containers & Preservatives Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Arrow Ar	393 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		× × × × × × × × × × × × × × × × × × ×	×	Remed Bul and Andrews Handler	Specify)	1. Flequined By . Heceived By 2. Heceived By	3. Received By	本1 3.1,3,
on Receipt _	Project Manager Project Manager Teleptrone Number (Area Code)/Fax Number SKS - 3 25 - 230 75	Bey-U		C.31.15 1050 2 1 10	b r seu r	15		Poison B Return Return To Client	21 Days B-Other Stewellow	0	Date Time 3	CANARY - Stays with the Sample; PINK - Field Copy
Chain of Custody Record	RANTY RIGE	State 2	ContractPurchase Order/Quote No. Sample I.D. No. and Description (Containers for each sample may be combined on one line)	E-MW-F	5 1 3 8 age 14	0 Dre-083115	YNYN ULAN	Possible Hazard Identification	Hequired They 14 D	1. Relinquished By Bank	Relinquished By	uComments DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy

1

a.

I ESTAMERICA BUTTAIO 10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-3600 Fav (716) 601-7001	0	Chain of	in of Custody Record	dy Re	cord						TestA	TestAmerica
	Campler										2 M 112104127 114 2	WHALFMER STAL FERENCE
on (Sub Contract Lab)	oampier.			Lab PM: Deyo,	Lab PM: Deyo, Melissa L	480-86431 Chain of Custody	Chain of C	ustody		04	COC No: 480-25594 1	
Client Contact: Shipping/Receiving	Phone:			E-Mail: meliss	E-Mail: melissa.devo@testamericainc.com	americaine c	mo	_	а Т	. 10. 11	Page:	
Company: TestAmerica Laboratories, Inc.				$\left  \right $		An	Analysis Portocod	outoetod				
0.12-44	Due Date Requested:	ij		1963				dnesien		4 9	480-86431-1 Preservation Codes	des:
Jommunity Drive, Suite 11,	9/14/2015			ang a	No. 1970						HCI	
ngton	TAT Requested (da	ys):		7219							8 - NaOH	M - Nexane
State, Zip: VT, 05403											0 - 2n Acetate D - Nitric Acid E - NaHSO4	0 - ASNAU2 P - Na2O4S 0 - Na2SO3
90(Tel) 802-660-1919(Fax)	PO#:			<u>*0.68</u>							F - MeOH G - Amchlor	R - Na2S2SO3 S - H2SO4
	WO #:				lo						H - Ascorbic Acid I - Ice I - DI Weter	T - TSP Dodecahydrate U - Acetone
Project Name:	Project #:				N. O						K - EDTA	W - ph 4-5
	48012426				E ex			28			L-EDA	Z - other (specify)
	-#M000			10162	) ași						Other:	
		d)		Matrix (w=water, s=solid, O=waste/oil,	₩SM-01021					tsi Number		
	Sample Date		Preservation Code	1 100					「「「「「「「」」」	01	Special I	Special Instructions/Note:
0 MW-3 (480-86431-2)	8/31/15	11:05 Eastern		Water	×					0		
A MW4 (480-86431-3)	8/31/15	12:40		Water	×				+	i is		
1 0		Eastern					+			<b>V</b>		
f 14												
144										1		
										進304 中華		
										ABA Rejus		
				2	•					1990		
										27. VE 21. 199		
Possible Hazard Identification					Sample Di	sposal ( A 1	ee may be	assessed	if samples	are retained	Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)	1 month)
Deliverable Requested: I. II. IV. Other (specify)					Second Inc	Return To Client Disy		Disposal By Lab	y Lab	Archive For	/e For	Months
					opecial IIIs	וו תכווסנוצי היר	Requirem					
nbul		Date:			Time:			Metho	Method of Shipment:	L.		
Contrained by WANG	Date me: 9/	1151	00 00	Company	Received	E S	AT /	TABIV	Pate/Time: 9/3/	ne: 3/15	1030	Company
	Uate/ I me:		Col	hpany	Received by	by:			Date/Tir	ne:		Company
Relinquished by: 7/1	Date/Time:		ð	Company	Received by:	by:			Date/Time:	ne:		Company
Custody Seals Intact: Custody Seal No.:					Cooler T	Cooler Temperature(s) °C and Other Remarks:	C and Other F	temarks:				

# DATA REPORTING QUALIFIERS

### Client: ARCADIS U.S. Inc

Lab Section	Qualifier	Description
GC/MS VOA		
	F1	MS and/or MSD Recovery is outside acceptance limits.
	F2	MS/MSD RPD exceeds control limits
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC/MS Semi VOA		
	В	Compound was found in the blank and sample.
	F1	MS and/or MSD Recovery is outside acceptance limits.
	F2	MS/MSD RPD exceeds control limits
	E	Result exceeded calibration range.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	Х	Surrogate is outside control limits
Metals		
	В	Compound was found in the blank and sample.
	4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
	W	PS: Post-digestion spike was outside control limits
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

# DATA REPORTING QUALIFIERS

Client: ARCADIS U.S. Inc

Lab Section	Qualifier	Description
GC Semi VOA		
	н	Sample was prepped or analyzed beyond the specified holding time

#### Client: ARCADIS U.S. Inc

### **Analytical Data**

Client Sample ID	: MW-2				
Lab Sample ID: Client Matrix:	480-86431-1 Water				mpled: 08/31/2015 1030 ceived: 09/01/2015 1030
		8260C Volatile Organi	c Compounds by G	GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 09/09/2015 1504 09/09/2015 1504	Analysis Batch: Prep Batch:	480-262527 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	
Analyte		Result (u	g/L) Qualifi	er MDL	RL
1,1,1-Trichloroetha	ane	ND J	F1 F2	0.82	1.0
1,1,2,2-Tetrachlor		ND	F2	0.21	1.0
1,1,2-Trichloroetha		ND	F2	0.23	1.0
1,1,2-Trichloro-1,2		ND	F2	0.31	1.0
1,1-Dichloroethan		ND	F2	0.38	1.0
1,1-Dichloroethen		ND	F2	0.29	1.0
1,2,4-Trichloroben		ND	F2	0.41	1.0
1,2-Dibromo-3-Ch		ND	F2	0.39	1.0
1,2-Dibromoethan		ND	F1 F2	0.73	1.0
1,2-Dichlorobenze		ND	F1 F2	0.79	1.0
1,2-Dichloroethan		ND	F2	0.21	1.0
1,2-Dichloropropa		ND	F1 F2	0.72	1.0
1,3-Dichlorobenze		ND	F1 F2	0.78	1.0
1,4-Dichlorobenze		ND	F1 F2	0.84	1.0
2-Hexanone		ND	F1 F2	1.2	5.0
2-Butanone (MEK)	)	ND	F2	1.3	10
4-Methyl-2-pentan		ND	F <mark>2</mark>	2.1	5.0
Acetone		ND	F <mark>2</mark>	3.0	10
Benzene		ND	F2	0.41	1.0
Bromodichloromet	hane	ND	F <mark>1</mark> F2	0.39	1.0
Bromoform		ND	F <mark>2</mark>	0.26	1.0
Bromomethane		ND	F2	0.69	1.0
Carbon disulfide		ND	F1 F2	0.19	1.0
Carbon tetrachlorid	de	ND	F2	0.27	1.0
Chlorobenzene		ND	F2	0.75	1.0
Dibromochloromet	hane	ND	F2	0.32	1.0
Chloroethane		ND	F2	0.32	1.0
Chloroform		ND	F2	0.34	1.0 1.0
Chloromethane		ND	F2 F2	0.35 0.81	1.0
cis-1,2-Dichloroeth			F2 F2	0.36	1.0
cis-1,3-Dichloropro	opene	3.8 J	F2	0.18	1.0
Cyclohexane	thana	ND	12	0.68	1.0
Dichlorodifluorome	ethane	ND J	F2	0.74	1.0
Ethylbenzene		ND J	F1 F2	0.79	1.0
Isopropylbenzene Methyl acetate		ND	F2	1.3	2.5
	bor	ND	F2	0.16	1.0
Methyl tert-butyl et Methylcyclohexane		5.6	F2	0.16	1.0
Methylene Chlorid		ND	F2	0.44	1.0
Styrene	•	ND	F2	0.73	1.0
Tetrachloroethene		ND	F2	0.36	1.0
Toluene		0.65	JF1F		1.0
trans-1,2-Dichloroe	ethene	ND	F2	0.90	1.0
trans-1,3-Dichlorop			₹2	0.37	1.0
Trichloroethene		ND J	F2	0.46	1.0
Trichlorofluorometi	hane	ND		0.88	1.0
nonoronuoronici				0000 Tr 170	16 - 25

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-2							
Lab Sample ID: Client Matrix:	480-86431-1 Water							npled: 08/31/2015 1030 eived: 09/01/2015 1030
		8260C	Volatile Organie	c Compour	ds by (	GC/MS		÷.
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 09/09/2015 1504 09/09/2015 1504		Analysis Batch: Prep Batch:	480-26252 N/A	7	Instrument I Lab File ID: Initial Weigh Final Weigh	t/Volume:	HP5973S S2289.D 5 mL 5 mL
Analyte			Result (u	g/L)	Qualif	ier ME	۱L	RL
Vinyl chloride			ND J	an can a second a second and a second a	F2	0.9	0	1.0
Xylenes, Total			1.5 J		JF2	0.6	6	2.0
Surrogate			%Rec		Qualif	ier	Acceptan	ce Limits
1,2-Dichloroethane	e-d4 (Surr)		104				66 - 137	
Toluene-d8 (Surr)			98				71 - 126	
4-Bromofluoroben:	zene (Surr)		112				73 - 120	
Dibromofluorometh	nane (Surr)		104				60 - 140	

Job Number: 480-86431-1

### Client: ARCADIS U.S. Inc

Client Sample ID:	MW-3					
Lab Sample ID:	480-86431-2					npled: 08/31/2015 1105 ceived: 09/01/2015 1030
Client Matrix:	Water					
		8260C Volatile Organi	c Compound			
Analysis Method:	8260C	Analysis Batch:	480-262721		nstrument ID:	HP5973S
Prep Method:	5030C	Prep Batch:	N/A		ab File ID:	S2312.D
Dilution:	1.0				nitial Weight/Volume:	5 mL
Analysis Date:	09/09/2015 2344			F	inal Weight/Volume:	5 mL
Prep Date:	09/09/2015 2344					
Analyte		Result (u	g/L)	Qualifier	MDL	RL
1,1,1-Trichloroetha	ne	ND			0.82	1.0
1,1,2,2-Tetrachloro	ethane	ND			0.21	1.0
1,1,2-Trichloroetha		ND			0.23	1.0
1,1,2-Trichloro-1,2,		ND			0.31	1.0
1,1-Dichloroethane		ND			0.38	1.0
1,1-Dichloroethene		ND			0.29	1.0
1,2,4-Trichlorobenz	zene	ND			0.41	1.0
1,2-Dibromo-3-Chl	oropropane	ND			0.39	1.0
1,2-Dibromoethane	)	ND			0.73	1.0
1,2-Dichlorobenzer	ne	ND			0.79	1.0
1,2-Dichloroethane		ND			0.21	1.0
1,2-Dichloropropan	е	ND			0.72	1.0
1,3-Dichlorobenzer	ne	ND			0.78	1.0
1,4-Dichlorobenzer	ne	ND			0.84	1.0
2-Hexanone		ND			1.2	5.0
2-Butanone (MEK)		ND			1.3	10
4-Methyl-2-pentance	one (MIBK)	ND			2.1	5.0
Acetone		ND			3.0	10
Benzene		ND			0.41	1.0
Bromodichlorometh	nane	ND			0.39	1.0
Bromoform		ND			0.26	1.0
Bromomethane		ND			0.69	1.0
Carbon disulfide		ND			0.19	1.0
Carbon tetrachlorid	e	ND			0.27	1.0
Chlorobenzene		ND			0.75	1.0
Dibromochlorometh	nane	ND			0.32	1.0
Chloroethane		ND			0.32	1.0
Chloroform		0.71		J	0.34	1.0
Chloromethane		ND			0.35	1.0
cis-1,2-Dichloroeth	ene	ND			0.81	1.0
cis-1,3-Dichloropro	pene	ND			0.36	1.0
Cyclohexane		0.91		J	0.18	1.0
Dichlorodifluoromet	thane	ND			0.68	1.0
Ethylbenzene		ND			0.74	1.0
Isopropylbenzene		ND			0.79	1.0
Methyl acetate		ND			1.3	2.5
Methyl tert-butyl eth		ND			0.16	1.0
Methylcyclohexane		1.6			0.16	1.0
Methylene Chloride	•	ND			0.44	1.0
Styrene		ND			0.73	1.0
Tetrachloroethene		ND			0.36	1.0
Toluene		ND			0.51	1.0
trans-1,2-Dichloroe		ND			0.90	1.0
trans-1,3-Dichlorop	ropene	ND			0.37	1.0
150 (CS)	25.				0.40	10
Trichloroethene Trichlorofluorometh		ND ND			0.46 0.88	1.0 1.0

**TestAmerica Buffalo** 

Client: ARCADIS U.S. Inc

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

#### Job Number: 480-86431-1

73 - 120

60 - 140

Client Sample ID	: MW-3				
Lab Sample ID: Client Matrix:	480-86431-2 Water				ampled: 08/31/2015 1105 eceived: 09/01/2015 1030
		8260C Volatile Organi	c Compounds b	GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 09/09/2015 2344 09/09/2015 2344	Analysis Batch: Prep Batch:	480-262721 N/A	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume	
Analyte		Result (u	g/L) Qua	lifier MDL	RL
Vinyl chloride		ND		0.90	1.0
Xylenes, Total		ND		0.66	2.0
Surrogate		%Rec	Qua	lifier Accepta	ance Limits
1,2-Dichloroethane	e-d4 (Surr)	105	and south as the souther dentry of	66 - 137	
Toluene-d8 (Surr)		96		71 - 126	

106

103

Job Number: 480-86431-1

Client Sample ID:	MW-4					
Lab Sample ID: Client Matrix:	480-86431-3 Water					npled: 08/31/2015 1240 eived: 09/01/2015 1030
	83	260C Volatile Organi	ic Compounds	by GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 09/09/2015 1549 09/09/2015 1549	Analysis Batch: Prep Batch:	480-262527 N/A			HP5973S S2291.D 5 mL 5 mL
Analyte		Result (u	ıg/L) Q		DL 82	RL 1.0
1,1,2,2-Tetrachloro 1,1,2-Trichloroetha 1,1,2-Trichloroetha 1,1-Dichloroethan 1,2-Dichloroethan 1,2-Dibromo-3-Chl 1,2-Dibromoethan 1,2-Dibromoethan 1,2-Dichlorobenze	ane ,2-trifluoroethane e zene oropropane e ne	ND ND ND ND ND ND ND		0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	21 23 31 38 29 41 39 73 79	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1,2-Dichloroethane 1,2-Dichloropropar 1,3-Dichlorobenze 1,4-Dichlorobenze 2-Hexanone 2-Butanone (MEK) 4-Methyl-2-pentan	ne ne	ND ND ND ND 2.2 ND	J	0. 0.	3	1.0 1.0 1.0 5.0 10 5.0
Acetone Benzene Bromodichloromet Bromoform Bromomethane Carbon disulfide		7.4 2.0 ND ND ND J ND	Ļ	0. 0. 0. 0.	41 39 26 69 19	10 1.0 1.0 1.0 1.0 1.0
Carbon tetrachlorid Chlorobenzene Dibromochloromet Chloroethane Chloroform Chloromethane	hane	ND ND ND 1.4 ND		0. 0. 0. 0. 0.	27 75 32 32 34 35	1.0 1.0 1.0 1.0 1.0 1.0
cis-1,2-Dichloroeth cis-1,3-Dichloropro Cyclohexane Dichlorodifluorome Ethylbenzene Isopropylbenzene	pene	ND ND 41 ND 5.9 1.1		0. 0. 0. 0. 0.	81 36 18 68 74 79	1.0 1.0 1.0 1.0 1.0 1.0
Methyl acetate Methyl tert-butyl et Methylcyclohexane Methylene Chloride Styrene Tetrachloroethene Toluene	)	ND ND 32 ND ND ND 4.4		0. 0. 0.	16 16 44 73 36	2.5 1.0 1.0 1.0 1.0 1.0 1.0
trans-1,2-Dichloroe trans-1,3-Dichloroe Trichloroethene Trichlorofluorometh	propene	ND ND ND ND		0. 0. 0.	90 37 46 88	1.0 1.0 1.0 1.0

Job Number: 480-86431-1

Client Sample ID	: MW-4					
Lab Sample ID: Client Matrix:	480-86431-3 Water					npled: 08/31/2015 1240 ceived: 09/01/2015 1030
	8	260C Volatile Organi	c Compounds	by GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 09/09/2015 1549 09/09/2015 1549	Analysis Batch: Prep Batch:	480-262527 N/A			HP5973S S2291.D 5 mL 5 mL
Analyte		Result (u	g/L) Qi	ualifier N	<b>/</b> DL	RL
Vinyl chloride	and a second second of the second proves of the second diverse application of the second second second second s	ND		C	.90	1.0
Xylenes, Total		29		C	0.66	2.0
Surrogate		%Rec	Qu	ualifier	Acceptan	ce Limits
1,2-Dichloroethane	e-d4 (Surr)	102			66 - 137	
Toluene-d8 (Surr)		99			71 - 126	
4-Bromofluorobenz	· · · · · · · · · · · · · · · · · · ·	113			73 - 120	
Dibromofluorometh	nane (Surr)	100			60 - 140	

Job Number: 480-86431-1

Client Sample ID:	MW-1						
Lab Sample ID:	480-86431-4					mpled: 08/31/2015 13 ceived: 09/01/2015 10	
Client Matrix:	Water						
		8260C Volatile Organi	c Compound	is by GC/	MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 09/10/2015 0006 09/10/2015 0006	Analysis Batch: Prep Batch:	480-262721 N/A	La In	strument ID: ab File ID: itial Weight/Volume: nal Weight/Volume:	HP5973S S2313.D 5 mL 5 mL	8
		Booult /u	~/1)	Qualifier	MDL	RL	
Analyte		Result (u ND	J/L)	Quaimer	0.82	1.0	
1,1,1-Trichloroetha		ND			0.21	1.0	
1,1,2,2-Tetrachloro		ND			0.23	1.0	
1,1,2-Trichloroetha		ND			0.31	1.0	
1,1,2-Trichloro-1,2		ND			0.38	1.0	
1,1-Dichloroethane		ND			0.29	1.0	
1,2,4-Trichlorobenz		ND			0.41	1.0	
1,2-Dibromo-3-Chl		ND			0.39	1.0	
1,2-Dibromoethane		ND			0.73	1.0	
1,2-Dichlorobenzer		ND			0.79	1.0	
1,2-Dichloroethane		ND			0.21	1.0	
1,2-Dichloropropar		ND			0.72	1.0	
1,3-Dichlorobenzer		ND			0.78	1.0	
1,4-Dichlorobenzer		ND			0.84	1.0	
2-Hexanone		ND			1.2	5.0	
2-Butanone (MEK)		ND			1.3	10	
4-Methyl-2-pentance		ND			2.1	5.0	
Acetone		ND			3.0	10	
Benzene		1.1			0.41	1.0	
Bromodichlorometh	nane	ND			0.39	1.0	
Bromoform		ND			0.26	1.0	
Bromomethane		ND			0.69	1.0	
Carbon disulfide		ND			0.19	1.0	
Carbon tetrachlorid	le	ND			0.27	1.0	
Chlorobenzene		ND			0.75	1.0	
Dibromochlorometh	hane	ND			0.32	1.0	
Chloroethane		ND			0.32	1.0	
Chloroform		ND			0.34	1.0	
Chloromethane		ND			0.35	1.0	
cis-1,2-Dichloroeth	ene	ND			0.81	1.0	
cis-1,3-Dichloropro		ND			0.36	1.0	
Cyclohexane		18			0.18	1.0	
Dichlorodifluorome	thane	ND			0.68	1.0	
Ethylbenzene		0.81	,	J	0.74	1.0	
Isopropylbenzene		ND			0.79	1.0	
Methyl acetate		ND			1.3	2.5	
Methyl tert-butyl eth	her	ND			0.16	1.0	
Methylcyclohexane		15			0.16	1.0	
Methylene Chloride	9	ND			0.44	1.0	
Styrene		ND			0.73	1.0	
Tetrachloroethene		ND			0.36	1.0	
Toluene		1.4			0.51	1.0	
trans-1,2-Dichloroe		ND			0.90	1.0	
trans-1,3-Dichlorop	ropene	ND			0.37	1.0	
Trichloroethene		ND			0.46	1.0	
Trichlorofluorometh	nane	ND			0.88	1.0	

Client: ARCADIS U.S. Inc

Client Sample ID:	MW-1				
Lab Sample ID: Client Matrix:	480-86431-4 Water				e Sampled: 08/31/2015 1320 e Received: 09/01/2015 1030
	8	260C Volatile Organi	c Compounds	by GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 09/10/2015 0006 09/10/2015 0006	Analysis Batch: Prep Batch:	480-262721 N/A	Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu	
Analyte		Result (u	g/L) Qւ	alifier MDL	RL
Vinyl chloride		ND	1999 1977 - 1979 A. 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	0.90	1.0
Xylenes, Total		4.2		0.66	2.0
Surrogate		%Rec	Qı	alifier Acce	eptance Limits
1,2-Dichloroethane	e-d4 (Surr)	102	Contraction of the second s	66 -	137
Toluene-d8 (Surr)		98		71 -	
4-Bromofluorobenz		110		73 -	
Dibromofluorometh	nane (Surr)	101		60 -	140

Job Number: 480-86431-1

	8260C Volatile Organic Cor	npounds by GC/MS
Lab Sample ID: Client Matrix:	480-86431-5 Water	Date Sampled: 08/31/2015 0000 Date Received: 09/01/2015 1030
Client Sample ID:	DUP-083115	

	8	260C Volatile Organi	c Compound	ds by G	CINIS		
Analysis Method: Prep Method: Dilution:	8260C 5030C 1.0	Analysis Batch: Prep Batch:	480-262527 N/A		Instrument ID: Lab File ID: Initial Weight/Volume:	HP5973S S2293.D 5 mL	
Analysis Date:	09/09/2015 1635				Final Weight/Volume:	5 mL	
Prep Date:	09/09/2015 1635						
T TOP Date.							
Analyte		Result (u	g/L)	Qualifie		RL	
1,1,1-Trichloroetha	ane	ND			0.82	1.0	
1,1,2,2-Tetrachlore	oethane	ND			0.21	1.0	
1,1,2-Trichloroetha	ane	ND			0.23	1.0	
1,1,2-Trichloro-1,2	2,2-trifluoroethane	ND			0.31	1.0	
1,1-Dichloroethane	e	ND			0.38	1.0	
1,1-Dichloroethene	e	ND			0.29	1.0	
1,2,4-Trichloroben	zene	ND			0.41	1.0	
1,2-Dibromo-3-Ch	loropropane	ND			0.39	1.0	
1,2-Dibromoethan		ND			0.73	1.0	
1,2-Dichlorobenze		ND			0.79	1.0	
1,2-Dichloroethane		ND			0.21	1.0	
1,2-Dichloropropa		ND			0.72	1.0	
1,3-Dichlorobenze		ND			0.78	1.0	
1,4-Dichlorobenze		ND			0.84	1.0	
2-Hexanone		ND			1.2	5.0	
2-Butanone (MEK)	1	2.9		J	1.3	10	
4-Methyl-2-pentan		ND			2.1	5.0	
Acetone		11 J			3.0	10	
Benzene		1.9			0.41	1.0	
Bromodichloromet	hane	ND			0.39	1.0	
Bromoform	indito	ND			0.26	1.0	
Bromomethane		ND J			0.69	1.0	
Carbon disulfide		ND			0.19	1.0	
Carbon tetrachlorio	de	ND			0.27	1.0	
Chlorobenzene		ND			0.75	1.0	
Dibromochloromet	hane	ND			0.32	1.0	
Chloroethane		ND			0.32	1.0	
Chloroform		1.6			0.34	1.0	
Chloromethane		ND			0.35	1.0	
cis-1,2-Dichloroeth	ene	ND			0.81	1.0	
cis-1,3-Dichloropro		ND			0.36	1.0	
Cyclohexane		39			0.18	1.0	
Dichlorodifluorome	thane	ND			0.68	1.0	
Ethylbenzene	linano	5.6			0.74	1.0	
Isopropylbenzene		1.1			0.79	1.0	
Methyl acetate		ND			1.3	2.5	
Methyl tert-butyl et	her	ND			0.16	1.0	
Methylcyclohexane		31			0.16	1.0	
Methylene Chloride		ND			0.44	1.0	
Styrene	~	ND			0.73	1.0	
Tetrachloroethene		ND			0.36	1.0	
Toluene		4.3			0.51	1.0	
trans-1,2-Dichloroe	ethene	ND			0.90	1.0	
trans-1,3-Dichlorop		ND			0.37	1.0	
Trichloroethene	siopono	ND			0.46	1.0	
Trichlorofluoromet	hane	ND			0.88	1.0	
rionoronuoronieu	nuno				and the second sec	ensee 1266	

Job Number: 480-86431-1

#### Client: ARCADIS U.S. Inc

### Client Sample ID: DUP-083115

Lab Sample ID: Client Matrix:	480-86431-5 Water	Date Sampled: 08/31/2015 0000 Date Received: 09/01/2015 1030									
8260C Volatile Organic Compounds by GC/MS											
Analysis Method: Prep Method: Dilution:	8260C 5030C 1.0	Analysis Batch: Prep Batch:	480-262527 N/A	Instrument ID: Lab File ID: Initial Weight/Volume:							
Analysis Date: Prep Date:	09/09/2015 1635 09/09/2015 1635			Final Weight/Volume:	5 mL						

Prep Date: 0	9/09/2015 1635					
Analyte		Result (ug/L)	Qualifier	MDL	RL	
Vinyl chloride		ND		0.90	1.0	
Xylenes, Total		27		0.66	2.0	
Surrogate		%Rec	Qualifier	Acceptance Limits		
1,2-Dichloroethane-d4 (Surr)		105	66 - 137		7	
Toluene-d8 (Surr)		98	71 - 126			
4-Bromofluorobenzene (Surr)		109	73 - 120			
Dibromofluoromethane (Surr)		103	60 - 140			

Job Number: 480-86431-1

#### Client: ARCADIS U.S. Inc

Client Sample ID: TR							
10000000 Marcana Marcana (10000000)	0-86431-6 ater					npled: 08/31/ eived: 09/01/	
	8260	)C Volatile Organi	c Compound	ds by GC/MS			
		Analysis Batch: Prep Batch:	480-262527 N/A	Lab File Initial We		HP5973S S2294.D 5 mL 5 mL	
Analyte		Result (u	g/L)		MDL	RL	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dibromo-3-Chloropro 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2-Hexanone 2-Butanone (MEK) 4-Methyl-2-pentanone (M Acetone Benzene Bromodichloromethane Bromodethane Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane Chloroethane Chloroethane Chloroethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene	oroethane pane	ND ND ND ND ND ND ND ND ND ND ND ND ND N			0.82 0.21 0.23 0.31 0.38 0.29 0.41 0.39 0.73 0.79 0.21 0.72 0.78 0.84 1.2 1.3 2.1 3.0 0.41 0.39 0.26 0.69 0.19 0.27 0.75 0.32 0.32 0.34 0.35 0.81 0.36	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	
cis-1,3-Dichloropropene Cyclohexane Dichlorodifluoromethane Ethylbenzene Isopropylbenzene Methyl acetate Methyl tert-butyl ether Methylcyclohexane		ND ND ND ND ND ND ND			0.36 0.18 0.68 0.74 0.79 1.3 0.16 0.16	1.0 1.0 1.0 1.0 2.5 1.0 1.0	
Methylcyclonexaite Methylene Chloride Styrene Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane	e	ND ND ND ND ND ND ND			0.44 0.73 0.36 0.51 0.90 0.37 0.46 0.88	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	

Client: ARCADIS U.S. Inc

Client Sample ID	TRIP BLANK				
Lab Sample ID:	480-86431-6				mpled: 08/31/2015 0000
Client Matrix:	Water			Date Re	eceived: 09/01/2015 1030
		8260C Volatile Organ	ic Compounds by	GC/MS	
Analysis Method:	8260C	Analysis Batch:	480-262527	Instrument ID:	HP5973S
Prep Method:	5030C	Prep Batch:	N/A	Lab File ID:	S2294.D
Dilution:	1.0			Initial Weight/Volume	: 5 mL
Analysis Date:	09/09/2015 1658			Final Weight/Volume:	5 mL
Prep Date:	09/09/2015 1658				
Analyte		Result (u	ıg/L) Qua	lifier MDL	RL
Vinyl chloride	a baar ( ) is no matter balance ( ) is ( ) and have been a so ( ) and (	ND		0.90	1.0
Xylenes, Total		ND		0.66	2.0
Surrogate		%Rec	Qual	ifier Accepta	nce Limits
1,2-Dichloroethane	e-d4 (Surr)	100		66 - 137	
Toluene-d8 (Surr)		95		71 - 126	
4-Bromofluoroben		108		73 - 120	
Dibromofluorometh	nane (Surr)	102		60 - 140	

# **Analytical Data**

Job Number: 480-86431-1

Lab Sample ID: Client Matrix:	480-86431-1 Water					npled: 08/31/2015 1 ceived: 09/01/2015 1
	8	270D Semivolatile O	ganic Con	npounds (	GC/MS)	
Analysis Method:	8270D	Analysis Batch	-		Instrument ID:	HP5973W
Prep Method:	3510C	Prep Batch:	480-261	595	Lab File ID:	W6448.D
Dilution:	1.0				Initial Weight/Volume:	241.5 mL
Analysis Date:	09/05/2015 1731				Final Weight/Volume:	1 mL
Prep Date:	09/02/2015 0935				Injection Volume:	1 uL
Analyte		Result (	ug/L)	Qualifie	er MDL	RL
Biphenyl		ND J		F2	0.68	5.2
bis (2-chloroisopro	pyl) ether	ND		F2	0.54	5.2
2,4,5-Trichlorophe	nol	ND		F2 F1	0.50	5.2
2,4,6-Trichlorophe	nol	ND		F2 F1	0.63	5.2
2,4-Dichloropheno	l	ND		F2 F1	0.53	5.2
2,4-Dimethylphend	bl	ND		F2	0.52	5.2
2,4-Dinitrophenol		ND		F2	2.3	10
2,4-Dinitrotoluene		ND		F2	0.46	5.2
2,6-Dinitrotoluene		ND		F2	0.41	5.2
2-Chloronaphthale	ne	ND		F2	0.48	5.2
2-Chlorophenol		ND		F2	0.55	5.2
2-Methylnaphthale	ne	ND		F2	0.62	5.2
2-Methylphenol		ND		F2	0.41	5.2
2-Nitroaniline		ND		F2 F1	0.43	10
2-Nitrophenol		ND		F2	0.50	5.2
3,3'-Dichlorobenzio	line	ND		F2	0.41	5.2
3-Nitroaniline		ND		F2 F1	0.50	10
4,6-Dinitro-2-methy		ND		F2	2.3	10
4-Bromophenyl ph	-	ND		F2 F1	0.47	5.2
4-Chloro-3-methylp	phenol	ND		F2	0.47	5.2
4-Chloroaniline		ND		F2 F1	0.61	5.2
4-Chlorophenyl ph	enyl ether	ND		F2	0.36	5.2
1-Methylphenol		ND V		F2	0.37	10
1-Nitroaniline		ND J		F <b>2</b>	0.26	10
4-Nitrophenol		ND		50	1.6	10
Acenaphthene		ND J		F2	0.42	5.2
Acenaphthylene		ND		F2	0.39	5.2
Acetophenone		ND		F2	0.56	5.2
Anthracene		ND V		F2 F2	0.29 0.48	5.2
Atrazine		ND J				5.2
Benzaldehyde			UB J	<del>JF2B</del> F2	0.28 0.37	5.2 5.2
Benzo(a)anthracen	e	ND J ND		F2 F2 F1	0.49	5.2
Benzo(a)pyrene	<b>n</b> 0	ND		F2 F1 F2	0.35	5.2 5.2
Benzo(b)fluoranthe Benzo(g,h,i)peryler		ND		F2 F1	0.36	5.2
Benzo(k)fluoranthe		ND		F2 F1	0.76	5.2
Bis(2-chloroethoxy)		ND		F2 F1	0.36	5.2
Bis(2-chloroethyl)e		ND		F2	0.41	5.2
Bis(2-ethylhexyl) pl		ND		F2 F1	1.9	5.2
Butyl benzyl phthal		ND		F2	0.43	5.2
Caprolactam	ato	29		F2 F1	2.3	5.2
Carbazole		ND		F2	0.31	5.2
Chrysene		ND		F2 F1	0.34	5.2
Di-n-butyl phthalate	2	ND .		F2	0.32	5.2
i-n-octyl phthalate				F2 F1	0.49	5.2
)ihenz(a h)anthrac				F2 F1	0.43	5.2

Dibenz(a,h)anthracene

F2 F1

0.43

ND J

5.2

# **Analytical Data**

Client Sample ID	: MW-2				
Lab Sample ID: Client Matrix:	480-86431-1 Water				mpled: 08/31/2015 1030 aceived: 09/01/2015 1030
and a set that a	8	3270D Semivolatile Or	ganic Compound	ls (GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 09/05/2015 1731 09/02/2015 0935	Analysis Batch: Prep Batch:	480-262233 480-261595	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	
Analyte		Result (	5 /	alifier MDL	RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclope Hexachlorocyclope Hexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Nexachlorocyclope Ne	ne entadiene vrene ylamine amine	ND J ND ND ND ND ND ND ND ND ND ND ND ND ND	F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F	0.45 0.56 0.53 0.79 0.30 2.3	10 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2
Surrogate		%Rec	Qua		nce Limits
2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	noi	115 107 79 105 113 49		52 - 132 48 - 120 20 - 120 46 - 120 67 - 150 16 - 120	

Job Number: 480-86431-1

#### Client: ARCADIS U.S. Inc

Client Sample ID:	MW-3								
Lab Sample ID: Client Matrix:	480-86431-2 Water							npled: 08/31/2 ceived: 09/01/2	
		8270D Sen	nivolatile Org	ganic Comp	oounds (	(GC/MS)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 09/05/2015 1759 09/02/2015 0935	Pre	Analysis Batch: 480-262233 Prep Batch: 480-261595		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:		HP5973W W6449.D 254.2 mL 1 mL 1 uL		
Analyte			Result (u	ıg/L)	Qualif		IDL	RL	
Biphenyl	Mariana, composition of the state of the sta		ND				.64	4.9	
bis (2-chloroisopro	pyl) ether		ND				.51	4.9	
2,4,5-Trichlorophe	nol		ND				.47	4.9	
2,4,6-Trichlorophe	nol		ND				.60	4.9	
2,4-Dichloropheno	1		ND				.50	4.9	
2,4-Dimethylphenc			ND				.49	4.9	
2,4-Dinitrophenol			ND J				.2	9.8	
2,4-Dinitrotoluene			ND J				.44	4.9	
2,6-Dinitrotoluene			ND				.39	4.9	
2-Chloronaphthale	ne		ND				45	4.9	
2-Chlorophenol			ND				.52	4.9	
2-Methylnaphthale	ne		ND				.59	4.9	
2-Methylphenol			ND				.39	4.9	
2-Nitroaniline			ND				41	9.8	
2-Nitrophenol			ND J				47	4.9	
3,3'-Dichlorobenzio	line		ND				39	4.9	
3-Nitroaniline			ND				47	9.8	
4,6-Dinitro-2-methy			ND				2	9.8	
4-Bromophenyl pho		2	ND				44	4.9	
4-Chloro-3-methylp	phenol		ND				44	4.9	
4-Chloroaniline	521 - 1927		ND				58	4.9	
4-Chlorophenyl pho	enyl ether		ND				34	4.9	
4-Methylphenol			ND				35	9.8	
4-Nitroaniline			ND				25	9.8	
4-Nitrophenol			ND			1.		9.8	
Acenaphthene			ND				40 37	4.9 4.9	
Acenaphthylene			ND				53	4.9	
Acetophenone			ND				28	4.9	
Anthracene			ND .				20 45	4.9	
Atrazine		4.9	ND J - 0.26	UB J	J-B-		45 26	4.9	
Benzaldehyde		4.9	ND	OB 1	JD		35	4.9	
Benzo(a)anthracen	le		ND				46	4.9	
Benzo(a)pyrene	20		ND				33	4.9	
Benzo(b)fluoranthe			ND				34	4.9	
Benzo(g,h,i)peryler Benzo(k)fluoranthe			ND				72	4.9	
Bis(2-chloroethoxy)			ND				34	4.9	
Bis(2-chloroethyl)e			ND				39	4.9	
Bis(2-ethylhexyl) pl			ND			1.		4.9	
Butyl benzyl phthal			ND				41	4.9	
Caprolactam	uto		23			2.		4.9	
Carbazole			ND				30	4.9	
Chrysene			ND				32	4.9	
Di-n-butyl phthalate	2		ND				30	4.9	
Di-n-octyl phthalate			ND				46	4.9	
Dibenz(a,h)anthrac			ND				41	4.9	
Discriz(a,n)antinat	0.10					0.	toetilli	10.7	

**TestAmerica Buffalo** 

.

# **Analytical Data**

Client Sample ID	): MW-3						
Lab Sample ID: Client Matrix:	480-86431-2 Water						mpled: 08/31/2015 1105 eceived: 09/01/2015 1030
	82	0D Semive	olatile Org	anic Corr	pounds (	GC/MS)	A COLUMN ANY
Analysis Method:	8270D	Analy	sis Batch:	480-262	233	Instrument ID:	HP5973W
Prep Method:	3510C	Prep I	Batch:	480-261	595	Lab File ID:	W6449.D
Dilution:	1.0					Initial Weight/Volume	: 254.2 mL
Analysis Date:	09/05/2015 1759					Final Weight/Volume:	1 mL
Prep Date:	09/02/2015 0935					Injection Volume:	1 uL
Analyte			Result (u	g/L)	Qualifi	er MDL	RL
Dibenzofuran	ang sa		ND	BURNELL ST. 2 Mar. South	An Antonio and Alfancia	0.50	9.8
Diethyl phthalate			ND			0.22	4.9
Dimethyl phthalate	e		ND			0.35	4.9
Fluoranthene			ND			0.39	4.9
Fluorene			ND			0.35	4.9
Hexachlorobenze	ne		ND			0.50	4.9
Hexachlorobutadi	Hexachlorobutadiene		ND			0.67	4.9
Hexachlorocyclop	entadiene		ND <mark>J</mark>			0.58	4.9
Hexachloroethane	9		ND			0.58	4.9
Indeno(1,2,3-cd)p	yrene		ND			0.46	4.9
Isophorone			ND			0.42	4.9
N-Nitrosodi-n-prop	oylamine		ND			0.53	4.9
N-Nitrosodiphenyl	amine		ND			0.50	4.9
Naphthalene			ND			0.75	4.9
Nitrobenzene			ND			0.29	4.9
Pentachlorophenc	bl		ND J			2.2	9.8
Phenanthrene		4.9	<del>0.90</del> UB		JB	0.43	4.9
Phenol			ND			0.38	4.9
Pyrene			ND J			0.33	4.9
Surrogate			%Rec		Qualifi		nce Limits
2,4,6-Tribromophe	enol		98		52 - 132 48 - 120		
2-Fluorobiphenyl			100				
2-Fluorophenol			70			20 - 120	
Nitrobenzene-d5	Nitrobenzene-d5		98		46 - 120		
p-Terphenyl-d14			103		67 - 150		
Phenol-d5			40			16 - 120	

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-4				
Lab Sample ID: Client Matrix:	480-86431-3 Water				ampled: 08/31/2015 1240 eceived: 09/01/2015 1030
	8	270D Semivolatile Org	anic Compoun	ds (GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 09/05/2015 1828 09/02/2015 0935	Analysis Batch: Prep Batch:	480-262233 480-261595	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume: Injection Volume:	
Analyte		Result (u	g/L) Qı	alifier MDL	RL
Biphenyl bis (2-chloroisopro 2,4,5-Trichlorophe 2,4,6-Trichlorophe 2,4-Dinithlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthale 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzio 3-Nitroaniline 4,6-Dinitro-2-methyl 4-Chloro-3-methylp 4-Chloroaniline 4-Chlorophenyl phe 4-Chlorophenyl phe 4-Chlorophenyl phe 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Accenaphthene Acetophenone Anthracene	nol nol l nol ne ne dine ylphenol enyl ether ohenol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	J	0.66 0.52 0.48 0.61 0.51 0.50 2.2 0.45 0.40 0.46 0.53 0.60 0.40 0.44 0.42 0.48 0.40 0.48 2.2 0.45 0.45 0.45 0.45 0.45 0.59 0.35 0.35 0.36 0.25 1.5 0.41 0.38 0.54 0.28 0.28	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Atrazine Benzaldehyde Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranthe Benzo(g,h,i)peryler Benzo(k)fluoranthe Bis(2-chloroethoxy Bis(2-chloroethyl)e Bis(2-ethylhexyl) pl Butyl benzyl phthal Caprolactam	ene ne )methane ther hthalate	ND J ND J ND ND ND ND ND ND ND ND ND ND ND		0.46 0.27 0.36 0.47 0.34 0.35 0.74 0.35 0.74 0.35 0.40 1.8 0.42 2.2	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Carbazole Chrysene Di-n-butyl phthalate Di-n-octyl phthalate Dibenz(a,h)anthrac	•	ND ND ND ND		0.30 0.33 0.31 0.47 0.42	5.0 5.0 5.0 5.0 5.0 5.0

# Analytical Data

Lab Sample ID: Client Matrix:	480-86431-3 Water		_					pled: 08/31/201 eived: 09/01/201	
	82	270D Semi	volatile Org	anic Compo	ounds (	GC/MS)			
Analysis Method:	8270D		ysis Batch:	480-26223		Instrument ID:		HP5973W	
Prep Method:	3510C	Prep	Batch:	480-26159	5	Lab File ID:		W6450.D	
Dilution:	1.0					Initial Weight/Vol		248 mL	
Analysis Date:	09/05/2015 1828					Final Weight/Volu	ume:	1 mL	
Prep Date:	09/02/2015 0935					Injection Volume:	1	1 uL	
Analyte			Result (u	g/L)	Qualifie	er MDL		RL	
Dibenzofuran	an in the second se	arter a service and an arter	ND	12 B W. 2008 A F S S S S S S S S S S S S S S S S S S	an an an an an Arabaran a	0.51		10	and the second se
Diethyl phthalate			ND	5		0.22		5.0	
Dimethyl phthalate			ND			0.36		5.0	
Fluoranthene			ND			0.40		5.0	
Fluorene			ND			0.36		5.0	
Hexachlorobenzer	ie		ND			0.51		5.0	
Hexachlorobutadie	ene		ND			0.69		5.0	
Hexachlorocyclope	entadiene		ND J			0.59		5.0	
Hexachloroethane			ND			0.59		5.0	
Indeno(1,2,3-cd)py	rene		ND			0.47		5.0	
Isophorone			ND			0.43		5.0	
N-Nitrosodi-n-prop	ylamine		ND			0.54		5.0	
N-Nitrosodiphenyla	amine		ND			0.51		5.0	
Naphthalene			ND			0.77		5.0	
Nitrobenzene			ND			0.29		5.0	
Pentachloropheno			ND J			2.2		10	
Phenanthrene		5.0	-0.66 U	В	JB	0.44		5.0	
Phenol			ND	0		0.39		5.0	
Pyrene			ND J			0.34		5.0	
Surrogate			%Rec		Qualifie	er Acc	eptanc	e Limits	
2,4,6-Tribromophe	nol	Charles and the second of the second s	91	and the second	· · · · · · · · · · · · · · · · · · ·	52 -	- 132		and the second second
2-Fluorobiphenyl		92		48 - 120					
2-Fluorophenol			69		20 - 120				
Nitrobenzene-d5			92			46 -	- 120		
o-Terphenyl-d14			95			67 -	- 150		
Phenol-d5			39			16 -	120		

# Analytical Data

Client Sample ID:	MW-1				
Lab Sample ID: Client Matrix:	480-86431-4 Water		,		mpled: 08/31/2015 13 ceived: 09/01/2015 10
	82	70D Semivolatile Org	anic Compoun	ds (GC/MS)	
Analysis Method:	8270D	Analysis Batch:	480-262233	Instrument ID:	HP5973W
Prep Method:	3510C	Prep Batch:	480-261595	Lab File ID:	W6451.D
Dilution:	1.0			Initial Weight/Volume:	
Analysis Date:	09/05/2015 1856			Final Weight/Volume:	1 mL
Prep Date:	09/02/2015 0935			Injection Volume:	1 uL
Analyte		Result (u	g/L) Qı	alifier MDL	RL
Biphenyl		ND		0.60	4.6
bis (2-chloroisopro	oyl) ether	ND		0.48	4.6
2,4,5-Trichloropher		ND		0.44	4.6
2,4,6-Trichloropher		ND		0.56	4.6
2,4-Dichlorophenol		ND		0.47	4.6
2,4-Dimethylpheno	ļ	ND		0.46	4.6
2,4-Dinitrophenol		ND J		2.0	9.2
2,4-Dinitrotoluene		NDJ		0.41	4.6
2,6-Dinitrotoluene		ND		0.37	4.6
2-Chloronaphthaler	ne	ND		0.42	4.6
2-Chlorophenol		ND		0.49	4.6
2-Methylnaphthaler	ne	ND		0.55	4.6
2-Methylphenol		ND		0.37	4.6
2-Nitroaniline		ND		0.39	9.2
2-Nitrophenol		ND J		0.44	4.6
3,3'-Dichlorobenzid	ine	ND		0.37	4.6
3-Nitroaniline		ND		0.44	9.2
4,6-Dinitro-2-methy	Iphenol	ND		2.0	9.2
4-Bromophenyl phe	enyl ether	ND		0.42	4.6
4-Chloro-3-methylp	henol	ND		0.42	4.6
4-Chloroaniline		ND		0.54	4.6
4-Chlorophenyl phe	enyl ether	ND		0.32	4.6
4-Methylphenol		ND		0.33	9.2
4-Nitroaniline		ND		0.23	9.2
4-Nitrophenol		ND		1.4	9.2
Acenaphthene		ND		0.38	4.6
Acenaphthylene		ND		0.35	4.6
Acetophenone		ND		0.50	4.6
Anthracene		ND		0.26	4.6
Atrazine		ND J		0.42	4.6
Benzaldehyde		ND J		0.25	4.6
Benzo(a)anthracen	e	ND		0.33	4.6
Benzo(a)pyrene		ND		0.43	4.6
Benzo(b)fluoranthe		ND		0.31	4.6
Benzo(g,h,i)perylen	e	ND		0.32	4.6
Benzo(k)fluoranthe		ND		0.67	4.6
Bis(2-chloroethoxy)	methane	ND		0.32	4.6
Bis(2-chloroethyl)et	her	ND		0.37	4.6
Bis(2-ethylhexyl) ph	ithalate	ND		1.7	4.6
Butyl benzyl phthala		ND		0.39	4.6
Caprolactam		ND		2.0	4.6
Carbazole		ND		0.28	4.6
Chrysene		ND		0.30	4.6
Di-n-butyl phthalate		ND		0.29	4.6
		ND		0.43	4.6
Di-n-octyl phthalate		I D		0.39	4.6

Job Number: 480-86431-1

Client: ARCADIS U.S. Inc

Lab Sample ID: Client Matrix:	480-86431-4 Water					mpled: 08/31/2015 1320 ceived: 09/01/2015 1030
	82	270D Semivolatile Org	janic Compo	unds (G	C/MS)	
Analysis Method:	8270D	Analysis Batch:	480-262233		nstrument ID:	HP5973W
Prep Method:	3510C	Prep Batch:	480-261595		_ab File ID:	W6451.D
Dilution:	1.0				nitial Weight/Volume:	
Analysis Date:	09/05/2015 1856			F	Final Weight/Volume:	
Prep Date:	09/02/2015 0935			I	njection Volume:	1 uL
Analyte		Result (u	ıg/L)	Qualifier		RL
Dibenzofuran	anale - and an and a substantian in the part of the second second second second second second second second se	ND		How we also a constrained of the second second	0.47	9.2
Diethyl phthalate		ND			0.20	4.6
Dimethyl phthalate		ND			0.33	4.6
Fluoranthene		ND			0.37	4.6
Fluorene		ND			0.33	4.6
Hexachlorobenzen	е	ND			0.47	4.6
Hexachlorobutadie	ne	ND			0.63	4.6
Hexachlorocyclope	entadiene	ND J			0.54	4.6
Hexachloroethane		ND			0.54	4.6
Indeno(1,2,3-cd)py	rene	ND			0.43	4.6
sophorone		ND			0.40	4.6
N-Nitrosodi-n-prop		ND			0.50	4.6
N-Nitrosodiphenyla	amine	ND			0.47	4.6
Naphthalene		ND			0.70	4.6
Nitrobenzene		ND			0.27	4.6
Pentachlorophenol		ND J	_		2.0	9.2
Phenanthrene			JB	JB	0.41	4.6
Phenol		ND			0.36	4.6
⊃yrene		ND J			0.31	4.6
Surrogate		%Rec		Qualifier	•	nce Limits
2,4,6-Tribromophe	nol	89			52 - 132	
2-Fluorobiphenyl		91			48 - 120	
2-Fluorophenol		66			20 - 120	
Nitrobenzene-d5		90			46 - 120	
o-Terphenyl-d14		95			67 - 150	
Phenol-d5		35			16 - 120	

# **Analytical Data**

Job Number: 480-86431-1

Client Sample ID:	DUP-083115						
Lab Sample ID: Client Matrix:	480-86431-5 Water					npled: 08/31/201 ceived: 09/01/201	
	82	70D Semivolatile Org	anic Compou	nds (GC/MS)			2000 2000
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 09/05/2015 1925 09/02/2015 0935	Analysis Batch: Prep Batch:	480-262233 480-261595	Final We		HP5973W W6452.D 243.7 mL 1 mL 1 uL	
Analyte		Result (u	a/l) C	Qualifier	MDL	RL	
Biphenyl		ND	g/L) 3	<u>cualifier</u>	0.67	5.1	
bis (2-chloroisopro	vl) ether	ND			0.53	5.1	
2,4,5-Trichloropher		ND			0.49	5.1	
2,4,6-Trichloropher		ND			0.63	5.1	
2,4-Dichlorophenol		ND			0.52	5.1	
2,4-Dimethylphenol	Ê	ND			0.51	5.1	
2,4-Dinitrophenol		ND J			2.3	10	
2,4-Dinitrotoluene		NDJ			0.46	5.1	
2,6-Dinitrotoluene		ND			0.41	5.1	
2,6-Dinitrotoluene 2-Chloronaphthalene		ND			0.47	5.1	
2-Chlorophenol		ND			0.54	5.1	
2-Methylnaphthaler	10	0.69	J		0.62	5.1	
2-Methylphenol		ND	0		0.41	5.1	
2-Nitroaniline		ND			0.43	10	
2-Nitrophenol		NDJ			0.49	5.1	
3,3'-Dichlorobenzidine		ND			0.41	5.1	
3-Nitroaniline		ND			0.49	10	
4,6-Dinitro-2-methylphenol		ND			2.3	10	
4-Bromophenyl phe		ND			0.46	5.1	
4-Chloro-3-methylp		ND			0.46	5.1	
4-Chloroaniline	nenor	ND			0.61	5.1	
4-Chlorophenyl phe	nyl ether	ND			0.36	5.1	
4-Methylphenol	ily culo	ND			0.37	10	
4-Nitroaniline		ND			0.26	10	
4-Nitrophenol		ND			1.6	10	
Acenaphthene		ND			0.42	5.1	
Acenaphthylene		ND			0.39	5.1	
Acetophenone		ND			0.55	5.1	
Anthracene		ND			0.29	5.1	
Atrazine		ND J			0.47	5.1	
Benzaldehyde		ND J			0.27	5.1	
Benzo(a)anthracene	2	ND			0.37	5.1	
Benzo(a)pyrene	-	ND			0.48	5.1	
Benzo(b)fluoranthei	ne	ND			0.35	5.1	
Benzo(g,h,i)perylen		ND			0.36	5.1	
Benzo(k)fluoranther		ND			0.75	5.1	
Bis(2-chloroethoxy)		ND			0.36	5.1	
Bis(2-chloroethyl)et		ND			0.41	5.1	
Bis(2-ethylhexyl) ph		ND			1.8	5.1	
Butyl benzyl phthala		ND			0.43	5.1	
Caprolactam	989-000 M	ND			2.3	5.1	
Carbazole		ND			0.31	5.1	
Chrysene		ND			0.34	5.1	
Di-n-butyl phthalate		ND			0.32	5.1	
Di-n-octyl phthalate		ND			0.48	5.1	
		ND			0.43	5.1	

# **Analytical Data**

Client Sample ID:	DUP-083115	
Lab Sample ID:	480-86431-5	Date Sampled: 08/31/2015 0000
Client Matrix:	Water	Date Received: 09/01/2015 1030

	82	270D Semivolatile	Organic Com	pounds (G	C/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 09/05/2015 1925 09/02/2015 0935	Analysis Bat Prep Batch:	ch: 480-2622 480-2613	595 L F	nstrument ID: _ab File ID: nitial Weight/Volume Final Weight/Volume njection Volume:	
Analyte		Resu	lt (ug/L)	Qualifier	MDL	RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzer Hexachlorobutadie Hexachlorocyclope Hexachlorocyclope Hexachlorocyclope Hexachlorocthane Indeno(1,2,3-cd)py Isophorone N-Nitrosodi-n-prop N-Nitrosodi-n-prop N-Nitrosodiphenyla Naphthalene Nitrobenzene Pentachloropheno Phenanthrene Phenol Pyrene	ne ene entadiene yrene yylamine amine	ND ND ND ND ND ND ND ND ND ND ND ND ND N	UB	<u>−J B</u> −−	0.52 0.23 0.37 0.41 0.37 0.52 0.70 0.61 0.61 0.48 0.44 0.55 0.52 0.78 0.30 2.3 0.45 0.40 0.35	$ \begin{array}{c} 10\\ 5.1\\ 5.1\\ 5.1\\ 5.1\\ 5.1\\ 5.1\\ 5.1\\ 5.1$
Surrogate		%Re	C	Qualifier		ance Limits
2,4,6-Tribromophe 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	nol	86 81 63 79 93 35			52 - 13 48 - 12 20 - 12 46 - 12 67 - 15 16 - 12	

Client: ARCADIS U.S. Inc

Client Sample ID Lab Sample ID: Client Matrix:	: <b>MW-3</b> 480-86431-2 Water					mpled: 08/31/2015 1105 ceived: 09/01/2015 1030
		RSK-175 Diss	olved Gases	6 (GC)		
Analysis Method:	RSK-175 N/A	Analysis Batch: Prep Batch:	200-93634 N/A		Instrument ID: Lab File ID:	CH2866.i 15623019.D
Dilution: Analysis Date:	1.0 09/04/2015 1405				Initial Weight/Volume: Final Weight/Volume:	18 mL 18 mL
Prep Date:	N/A	x		1	Injection Volume:	400 uL
Analyte		Result (u	g/L)	Qualifie	r MDL	RL
Carbon dioxide	an a	16000	100 Al 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	J	200	1000

Client: ARCADIS U.S. Inc

Client Sample ID	: MW-3						
Lab Sample ID: Client Matrix:	480-86431-2 Water		mpled: 08/31/2015 1105 ceived: 09/01/2015 1030				
		RSK-175 Diss	olved Gases	(GC)			
Analysis Method:	RSK-175 N/A	Analysis Batch:	480-262612 N/A		Initial V	nent ID: Veight/Volume:	HP5890-21 17 mL
Dilution: Analysis Date: Prep Date:	50 09/09/2015 1221 N/A					Veight/Volume: on Volume: Type:	5 mL PRIMARY
Analyte		Result (u	ıg/L)	Qualifie	er	MDL	RL
Methane		5100	CARTING MARCOLOGICAL CONTRACTOR	J		50	200

Client: ARCADIS U.S. Inc

.

#### Job Number: 480-86431-1

Client Sample ID	: MW-4				
Lab Sample ID: Client Matrix:	480-86431-3 Water				npled: 08/31/2015 1240 ceived: 09/01/2015 1030
		RSK-175 Diss	olved Gases (GC)		
Analysis Method:	RSK-175 N/A	Analysis Batch: Prep Batch:	200-93634 N/A	Instrument ID: Lab File ID:	CH2866.i 15623020.D
Dilution: Analysis Date:	1.0 09/04/2015 1414			Initial Weight/Volume: Final Weight/Volume: Injection Volume:	18 mL 18 mL 400 uL
Prep Date:	N/A			mjection volume.	400 42

AnalyteResult (ug/L)QualifierMDLRLCarbon dioxide24000J2001000

Client: ARCADIS U.S. Inc

<b>MW-4</b> 480-86431-3 Water						mpled: 08/31/2015 1240 ceived: 09/01/2015 1030
	RSK-175 Disso	olved Gase	s (GC)			
RSK-175 N/A 50	Analysis Batch:	480-2626 N/A	2	Initial	Weight/Volume:	HP5890-21 17 mL
09/09/2015 1348 N/A				Injecti	ion Volume:	5 mL PRIMARY
		g/L)	Qualif	ier	MDL	RL 200
	480-86431-3 Water RSK-175 N/A 50 09/09/2015 1348	480-86431-3 Water RSK-175 Disso RSK-175 Analysis Batch: N/A 50 09/09/2015 1348 N/A	480-86431-3 Water RSK-175 Dissolved Gases RSK-175 Analysis Batch: 480-26261 N/A N/A 50 09/09/2015 1348 N/A Result (ug/L)	480-86431-3 Water RSK-175 Dissolved Gases (GC) RSK-175 Analysis Batch: 480-262612 N/A N/A 50 09/09/2015 1348 N/A Result (ug/L) Qualif	480-86431-3 Water RSK-175 Dissolved Gases (GC) RSK-175 Analysis Batch: 480-262612 Instru N/A N/A Initial 50 Final 09/09/2015 1348 Injecti N/A Result (ug/L) Qualifier	480-86431-3 Water Date San Date San Date Rev RSK-175 Dissolved Gases (GC) RSK-175 Analysis Batch: 480-262612 Instrument ID: N/A N/A Initial Weight/Volume: 50 Final Weight/Volume: 09/09/2015 1348 Final Weight/Volume: N/A Result (ug/L) Qualifier MDL

Client: ARCADIS U.S. Inc

Client Sample ID	MW-2								
Lab Sample ID: 480-86431-1 Client Matrix: Water							Date Sampled: 08/31/2015 1030 Date Received: 09/01/2015 1030		
	3	10.13 Identification of F	Routine Per	roleun	n Produ	icts			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	310.13 3510C 1.0 09/03/2015 1645 09/02/2015 0957	Analysis Batch: Prep Batch:	480-2618 480-2616		Lab Initia Fina	ument ID: File ID: I Weight/Volume: I Weight/Volume: tion Volume:	HP5890-24 24a102_124.d 1039 mL 1 mL 1 uL		
Analyte		Result (n	ng/L)	Qua	ifier	MDL	RL		
Gasoline Kerosene		ND ND		anan anata an araa a	1	0.19 0.48	0.19 0.48		

Analyte	Result (mg/L)	Qualifier	MDL	RL
Gasoline	ND		0.19	0.19
Kerosene	ND	1	0.48	0.48
Motor Oil	ND		0.96	0.96
Fuel Oil #2	ND		0.48	0.48
Fuel Oil #4	ND		0.48	0.48
Fuel Oil #6	ND		0.48	0.48
Unknown Hydrocarbons	ND		0.19	0.19

Job Number: 480-86431-1

#### Client: ARCADIS U.S. Inc

Client Sample ID	: MW-3					
Lab Sample ID: Client Matrix:	480-86431-2 Water					Sampled: 08/31/2015 1105 Received: 09/01/2015 1030
	310.1	3 Identification of F	Routine Petro	leum F	Products	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	310.13 3510C 1.0 09/03/2015 1719 09/02/2015 0957	Analysis Batch: Prep Batch:	480-261827 480-261603		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum Injection Volume:	
Analyte		Result (n	ng/L)	Qualifi	er MDL	RL
Gasoline	an man a shara	ND		ALL DESIGNATION OF THE PARTY OF	0.19	0.19
Kerosene		ND			0.48	0.48
Motor Oil		ND			0.96	0.96
Fuel Oil #2		ND			0.48	0.48
Fuel Oil #4		ND			0.48	0.48
Fuel Oil #6		ND			0.48	0.48
Unknown Hydroca	rbons	ND			0.19	0.19

X.

Client: ARCADIS U.S. Inc

Fuel Oil #6

Unknown Hydrocarbons

#### Job Number: 480-86431-1

0.52

0.21

0.52 0.21

Client Sample ID	: MW-4						
Lab Sample ID: Client Matrix:	480-86431-3 Water					npled: 08/31/2015 124 ceived: 09/01/2015 103	
	310.	13 Identification of R	Routine Petro	oleum Pr	roducts		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	310.13 3510C 1.0 09/03/2015 1753 09/02/2015 0957	Analysis Batch: Prep Batch:	480-26182 480-26160	3 I I	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5890-24 24a102_126.d 960.6 mL 1 mL 1 uL	
Analyte		Result (n	ng/L)	Qualifier	r MDL	RL	
Gasoline		0.36			0.21	0.21	
Kerosene		ND			0.52	0.52	
Motor Oil		ND			1.0	1.0	
Fuel Oil #2		ND			0.52	0.52	
Fuel Oil #4		ND			0.52	0.52	

ND

ND

# **Analytical Data**

Job Number: 480-86431-2

Client Sample ID	MW-1					
Lab Sample ID: Client Matrix:	480-86431-4 Water					npled: 08/31/2015 1320 ceived: 09/01/2015 1030
3 <u></u>	310.1	3 Identification of F	Routine Petro	leum P	roducts	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	310.13 3510C 1.0 09/17/2015 0939 09/16/2015 1443	Analysis Batch: Prep Batch:	480-264040 480-263938		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5890-24 24a102_265.d 1053 mL 1 mL 1 uL
Analyte		Result (n	ng/L)	Qualifie	er MDL	RL
Gasoline		ND R	and survivore and the second second	Н	0.19	0.19
Kerosene Motor Oil Fuel Oil #2 Fuel Oil #4 Fuel Oil #6 Unknown Hydroca	rbons	ND ND ND ND ND ND			0.47 0.95 0.47 0.47 0.47 0.47 0.19	0.47 0.95 0.47 0.47 0.47 0.47 0.19

.

### **Analytical Data**

Job Number: 480-86431-1

**Client Sample ID: MW-2** Date Sampled: 08/31/2015 1030 Lab Sample ID: 480-86431-1 Date Received: 09/01/2015 1030 Water **Client Matrix:** 6010C Metals (ICP) Instrument ID: ICAP1 Analysis Batch: 480-261795 Analysis Method: 6010C I1090215A-7.asc Prep Batch: Lab File ID: 3005A 480-261540 Prep Method: Initial Weight/Volume: 50 mL Dilution: 1.0 Final Weight/Volume: 50 mL 09/02/2015 1737 Analysis Date: 09/02/2015 0730 Prep Date: RL MDL Analyte Result (mg/L) Qualifier 0.060 0.20 0.48 Aluminum 0.0068 0.020 ND Antimony 0.0056 0.015 ND Arsenic 2.6 0.00070 0.0020 Barium ND 0.00030 0.0020 Beryllium 0.00050 0.0020 ND Cadmium 0.50 0.10 142 Calcium 0.0040 J 0.0010 0.0015 Chromium 0.0040 ND 0.00063 Cobalt 0.0016 0.010 ND Copper 2.4 0.019 0.050 Iron 0.0030 0.010 ND Lead 91.2 0.043 0.20 Magnesium 0.045 В 0.00040 0.0030 Manganese ND 0.0013 0.010 Nickel 0.10 0.50 7.4 Potassium 0.0087 0.025 ND Selenium 0.0017 0.0060 Silver ND 0.32 1.0 Sodium 278 0.020 ND 0.010 Thallium 0.0050 0.0015 ND Vanadium 0.0015 0.010 J 0.0036

Zinc

# **Analytical Data**

Client Sample ID	: MW-3					
Lab Sample ID: Client Matrix:	480-86431-2 Water					mpled: 08/31/2015 110 ceived: 09/01/2015 103
		6010C N	letals (ICP)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	6010C 3005A 1.0 09/02/2015 1802 09/02/2015 0730	Prep Batch: 480-261540 La		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:		
Analyte		Result (n	na/L)	Qualifi	er MDL	RL
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc		1.2 ND ND 2.0 ND 158 0.0022 ND ND 4.7 ND 126 0.065 0.0022 11.7 ND 126 0.065 0.0022 11.7 ND 159 ND 0.0019 0.0055		J B J J J	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.00063 0.0016 0.019 0.0030 0.043 0.0040 0.0040 0.0043 0.0040 0.0013 0.10 0.0087 0.0017 0.32 0.010 0.0015 0.0015	0.20 0.020 0.015 0.0020 0.0020 0.0020 0.0020 0.0040 0.0040 0.010 0.050 0.010 0.20 0.0030 0.010 0.50 0.025 0.0060 1.0 0.020 0.025 0.0050 0.025 0.0050 0.010
		6010C Metals	(ICP)-Diss	olved		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	6010C 3005A 1.0 09/10/2015 2115 09/10/2015 1116	Analysis Batch: Prep Batch:	480-26301 480-26243	9	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICAP1 i1091015b-1.asc 50 mL 50 mL
Analyte		Result (n	ng/L)	Qualifie	er MDL	RL
Iron Manganese		0.026 0.060		J	0.019 0.00040	0.050 0.0030

# **Analytical Data**

Client Sample ID	: MW-4						
Lab Sample ID: Client Matrix:	480-86431-3 Water						d: 08/31/2015 124 d: 09/01/2015 103
A		6010C N	letals (ICP)				
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	6010C 3005A 1.0 09/02/2015 1805 09/02/2015 0730	Analysis Batch: Prep Batch:	480-26179 480-26154		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	110 50	AP1 90215A-7.asc mL mL
Analyte		Result (n	na/L)	Qualifie	er MDL		RL
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium		0.068 ND 0.0056 0.92 ND ND 124 ND ND 37.7 ND 85.0 0.23 0.0023 10.4 ND ND 419 ND ND 419 ND		J J J	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.0016 0.019 0.0030 0.043 0.0013 0.0013 0.10 0.0013 0.10 0.0017 0.32 0.010 0.0015 0.0015 0.0015		0.20 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.0040 0.0040 0.0040 0.0040 0.010 0.050 0.010 0.20 0.0030 0.010 0.50 0.025 0.0060 1.0 0.020 0.020 0.0050 0.010
Zinc		0.0035		J	0.0015		0.010
		6010C Metals	(ICP)-Disso	lved			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	6010C 3005A 1.0 09/10/2015 2118 09/10/2015 1116	Analysis Batch: Prep Batch:	480-263019 480-262435	5	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	50	AP1 91015b-1.asc mL mL
Analyte		Result (m	ig/L)	Qualifie	er MDL		RL
Iron Manganese		ND 0.22			0.019 0.00040		0.050 0.0030

# **Analytical Data**

Lab Sample ID: Client Matrix:	480-86431-4 Water					npled: 08/31/2015 eived: 09/01/2015
and a second		6010C N	letals (ICP)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	6010C 3005A 1.0 09/02/2015 1808 09/02/2015 0730	Analysis Batch: Prep Batch:	480-261795 480-261540	Lab Initi	rument ID: File ID: al Weight/Volume: al Weight/Volume:	ICAP1 I1090215A-7.asc 50 mL 50 mL
Analyte		Result (m	ıg/L) Q	ualifier	MDL	RL
Aluminum		2.0			0.060	0.20
Antimony		ND			0.0068	0.020
Arsenic		ND			0.0056	0.015
Barium		0.47			0.00070	0.0020
Beryllium		ND			0.00030	0.0020
Cadmium		ND			0.00050	0.0020
Calcium		293			0.10	0.50
Chromium		0.0032	J		0.0010	0.0040
Cobalt		ND			0.00063	0.0040
Copper		0.0036	J		0.0016	0.010
lron		2.0			0.019	0.050
Lead		ND			0.0030	0.010
Magnesium		204		_	0.043	0.20
Manganese		0.15	B		0.00040	0.0030
Nickel		0.0050	J		0.0013	0.010
Potassium		8.4			0.10	0.50
Selenium		ND			0.0087	0.025
Silver		ND			0.0017	0.0060
Sodium		373			0.32	1.0
Thallium		ND			0.010	0.020
√anadium		0.0039	J		0.0015	0.0050
Zinc		0.0083	J		0.0015	0.010

Job Number: 480-86431-1

#### Client: ARCADIS U.S. Inc

#### Client Sample ID: DUP-083115

# Lab Sample ID: 480-86431-5 Client Matrix: Water

#### Date Sampled: 08/31/2015 0000 Date Received: 09/01/2015 1030

		6010C N	letals (ICP)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	6010C 3005A 1.0 09/02/2015 1811 09/02/2015 0730	Analysis Batch: Prep Batch:	480-26179 480-26154	0	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICAP1 I1090215A-7.asc 50 mL 50 mL
Analyte		Result (n	ng/L)	Qualifie	r MDL	RL
Aluminum		0.076	1010 - 1020 - 1020 - 1020 - 1020 - 1020 - 1020 - 1020 - 1020 - 1020 - 1020 - 1020 - 1020 - 1020 - 1020 - 1020 -	J	0.060	0.20
Antimony		ND			0.0068	0.020
Arsenic		0.0060		J	0.0056	0.015
Barium		0.91			0.00070	0.0020
Beryllium		ND			0.00030	0.0020
Cadmium		ND			0.00050	0.0020
Calcium		123			0.10	0.50
Chromium		ND			0.0010	0.0040
Cobalt		ND			0.00063	0.0040
Copper		ND			0.0016	0.010
Iron		37.5			0.019	0.050
Lead		ND			0.0030	0.010
Magnesium		83.6			0.043	0.20
Manganese		0.22		B	0.00040	0.0030
Nickel		0.0025		J	0.0013	0.010
Potassium		10.2			0.10	0.50
Selenium		ND			0.0087	0.025
Silver		ND			0.0017	0.0060
Sodium		416			0.32	1.0
Thallium		ND			0.010	0.020
Vanadium		ND			0.0015	0.0050
Zinc		0.0033		J	0.0015	0.010

		Gene	eral Chemi	istry				
Client Sample ID	: MW-2							
Lab Sample ID: Client Matrix:	480-86431-1 Water						08/31/2015 1 09/01/2015 1	
Analyte	Resu	lt Qual	Units	MDL	RL	Dil	Method	
Cyanide, Total	ND		mg/L	0.0050	0.010	1.0	9012B	
	Analysis Batch: 480-26169	2 Analysis Date	e: 09/02/20	15 1448				
	Prep Batch: 480-261556	Prep Date: 09	9/02/2015 (	0150				

### Client: ARCADIS U.S. Inc

		Gene	eral Cher	nistry			
Client Sample I	D: MW-3						
Lab Sample ID: Client Matrix:	480-86431-2 Water					the second se	08/31/2015 1105 09/01/2015 1030
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Nitrogen, Nitrate	ND		mg/L	0.020	0.050	1.0	353.2
	Analysis Batch: 480-261524	Analysis Date	e: 09/01/2	015 1800			
Cyanide, Total	ND		mg/L	0.0050	0.010	1.0	9012B
	Analysis Batch: 480-261692	2 Analysis Date	e: 09/02/2	015 1453			
	Prep Batch: 480-261556	Prep Date: 09	0/02/2015	0150			
Sulfide	ND		mg/L	0.67	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-261821	Analysis Date	: 09/03/2	015 0715			

Client: ARCADIS U.S. Inc

Job Number: 480-86431-1

#### **General Chemistry**

Client Sample I	D: MW-4						
Lab Sample ID: Client Matrix:	480-86431-3 Water						08/31/2015 1240 09/01/2015 1030
Analyte	Result	Qual	Units	MDL	RL	Dil	Method
Nitrogen, Nitrate	ND		mg/L	0.020	0.050	1.0	353.2
	Analysis Batch: 480-261524	Analysis Date	e: 09/01/20	015 1802			
Cyanide, Total	ND		mg/L	0.0050	0.010	1.0	9012B
	Analysis Batch: 480-261692	Analysis Date	: 09/02/20	015 1454			
	Prep Batch: 480-261556	Prep Date: 09	9/02/2015	0150			
Sulfide	ND		mg/L	0.67	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-261821	Analysis Date	: 09/03/20	015 0715			

,

### Client: ARCADIS U.S. Inc

		Gene	eral Chemi	istry				
Client Sample II	D: MW-1							
Lab Sample ID: Client Matrix:	480-86431-4 Water						08/31/2015 1 09/01/2015 1	
Analyte	Result	Qual	Units	MDL	RL	Dil	Method	
Cyanide, Total	ND Analysis Batch: 480-261692 Prep Batch: 480-261556	Analysis Date Prep Date: 09			0.010	1.0	9012B	

1

### Client: ARCADIS U.S. Inc

			Gene	eral Chemi	stry				
Client Sample II	D: DUP-083115								
Lab Sample ID: Client Matrix:	480-86431-5 Water						and the second second	08/31/2015 ( 09/01/2015 1	
Analyte		Result	Qual	Units	MDL	RL	Dil	Method	
Cyanide, Total		ND	1000 C 2012 - 1014-91	mg/L	0.0050	0.010	1.0	9012B	
	Analysis Batch: 480 Prep Batch: 480-26		Analysis Date Prep Date: 09						



Imagine the result

# Rochester Gas & Electric – Geneseo Park Street Site

# **Data Usability Summary Report**

GENESEO, NEW YORK

Volatile, Semivolatile, Metals and Cyanide Analyses

SDG #480-86520-1

Analyses Performed By: TestAmerica Amherst, New York

Report #24499R Review Level: Tier III Project: B0013138.0002.00005

### SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #480-86520-1 for samples collected in association with the Rochester Gas & Electric Geneseo Park Street Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Included with this assessment are the validation annotated sample result sheets and chain of custody. Analyses were performed on the following samples:

				Commis				Anal	ysis		
SDG	Sample ID	Lab ID	Matrix	Sample Collection Date	Parent Sample	voc	DISS GAS	svoc	ТРН	МЕТ	MISC
	MW-6	480-86520-1	Water	8/31/2015		Х		Х	Х	Х	Х
480-	MW-7	480-86520-2	Water	8/31/2015		Х		Х	Х	Х	Х
86520-1	RB-083115	480-86520-3	Water	8/31/2015		Х		Х		Х	Х
	TRIP BLANK	480-86520-4	Water	8/31/2015		Х					

Note:

1. MISC- Miscellaneous parameters: Total Cyanide.

### ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	Reported		mance ptable	Not
Items Reviewed	No	Yes	No	Yes	Required
1. Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		Х	
3. Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		х		х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form	1	Х		Х	
11. Narrative summary of QA or sample problems provided		Х		х	
12. Data Package Completeness and Compliance		х		х	

QA - Quality Assurance

### **ORGANIC ANALYSIS INTRODUCTION**

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 8260C, 8270D, RSK-175 and 310.13 (petroleum products). Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
  - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
  - E The compound was quantitated above the calibration range.
  - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
  - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
  - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
  - UB Compound considered non-detect at the listed value due to associated blank contamination.
  - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

# **VOLATILE ORGANIC COMPOUND (VOC) ANALYSES**

#### 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260C	Water	14 days from collection to analysis	Cool to <6°C; preserved to a pH of less than 2 s.u.

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
MW-7	Apotono	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL
MW-6	Acetone	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration

RL Reporting limit

#### 3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

#### 4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of

acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

## 4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

## 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
			+24.1%
		Acetone	+25.6%
MW-6 MW-7 RB-083115 TRIP BLANK	CCV %D	Carbon disulfide	+37.5%
		1,1,1-Trichloroethane	+26.1%
		Carbon tetrachloride	+21.5%
		Bromodichloromethane	+21.4%
		2-Hexanone	+21.3%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification	
	RRF <0.05	Non-detect	R	
	KKF <0.05	Detect	J	
Initial and Continuing	RRF <0.01 ¹	Non-detect	R	
Calibration	KKF <0.01	Detect	J	
	RRF >0.05 or RRF >0.01 ^{$1$}	Non-detect	No Action	
	RRF >0.05 01 RRF >0.01	Detect	NO ACTION	
	%RSD > 15% or a correlation	Non-detect	UJ	
Initial Calibration	coefficient <0.99	Detect	J	
Initial Calibration		Non-detect	R	
	%RSD >90%	Detect	J	
Continuing Colibration	$0/D \sim 200/$ (increases in consistivity)	Non-detect	No Action	
Continuing Calibration	%D >20% (increase in sensitivity)	Detect	J	

Initial/Continuing	Criteria	Sample Result	Qualification
	%D >20% (decrease in sensitivity)	Non-detect	UJ
	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

## 5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

#### 6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

#### 7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD was not performed on a sample location associated with this SDG.

#### 8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

## 9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate was not collected a with sample location associated with this SDG.

## 10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

#### 11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

## DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260C	Reported		Performance Acceptable		Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks		Х	Х		
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate(LCSD)					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS)					Х
Matrix Spike Duplicate(MSD)					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)					Х
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		х	
D. Transcription/calculation errors present		Х		Х	
<ul> <li>E. Reporting limits adjusted to reflect sample dilutions</li> <li>%RSD Relative standard deviation</li> </ul>		Х		х	

%RSDRelative standard deviation%RPercent recoveryRPDRelative percent difference

%D Percent difference

## SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

## 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270D	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6°C

All samples were analyzed within the specified holding time criteria.

## 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
MW-6 MW-7	Phenanthrene (rinsate and method blank)	Detected sample results <rl and <bal< td=""><td>"UB" at the RL</td></bal<></rl 	"UB" at the RL

RL Reporting limit

## 3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

## 4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of

acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

## 4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

## 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
		Benzaldehyde	19.2%
		2-Nitrophenol	17.1%
		Hexachlorocyclopentadiene	19.1%
	ICV %RSD	2,4-Dinitrophenol	55.0%
MW-6		2,4-Dinitrotoluene	19.4%
MW-7 RB-083115		Atrazine	16.7%
		Pyrene	16.4%
	CCV %D	Benzaldehyde	-29.1%
		Hexachlorocyclopentadiene	-23.7%
		2,4-Dinitrophenol	-23.1%
		4-Nitrophenol	-22.8%
		Pentachlorophenol	-31.7%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification	
	RRF <0.05	Non-detect	R	
	KKF <0.00	Detect	J	
Initial and Continuing Calibration	RRF <0.01 ¹	Non-detect	R	
	KKF <0.01	Detect	J	
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action	
	KKF 20.03 01 KKF 20.01	Detect		
Initial Calibration	%RSD > 15% or a correlation coefficient	Non-detect	UJ	
	<0.99	Detect	J	

Initial/Continuing	Criteria	Sample Result	Qualification
	% PSD > 00%	Non-detect	R
	%RSD >90%		J
		Non-detect	No Action
	%D >20% (increase in sensitivity)	Detect	J
Continuing Colibration		Non-detect	UJ
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

## 5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

## 6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

## 7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD was not performed on a sample location associated with this SDG.

## 8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery
MW-6 MW-7 RB-083115	2,4-Dinitrophenol	<ll but="">10%</ll>

The criteria used to evaluate the LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper control limit (III.)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
the lower control limit (11) but a 10%	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
. 100/	Non-detect	R
< 10%	Detect	J

## 9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate was not collected a with sample location associated with this SDG.

#### 10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

## 11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

## DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270D	Rep	orted	Performance Acceptable		Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	ETRY (GC/	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х	Х		
B. Equipment blanks		Х	Х		
Laboratory Control Sample (LCS) %R		Х	Х		
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R					Х
Matrix Spike Duplicate (MSD) %R					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)					Х
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х	Х		
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
<ul> <li>C. RT of sample compounds within the established RT windows</li> </ul>		Х		х	
D. Transcription/calculation errors present				Х	
<ul> <li>E. Reporting limits adjusted to reflect sample dilutions</li> <li>%RSD Relative standard deviation</li> </ul>		Х		х	

Percent recovery Relative percent difference Percent difference

%R RPD %D

## PETROLEUM PRODUCTS ANALYSES

## 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Petroleum products By NYSDOH 310.13	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

All samples were analyzed within the specified holding times.

## 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

## 3. System Performance

System performance and column resolution were acceptable.

## 4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

#### 4.1 Initial Calibration

A maximum RSD of 20% or a correlation coefficient of greater than 0.99 is allowed.

#### 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%).

All calibration criteria were within the control limits.

## 5. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD was not performed on sample location associated with these SDGs.

#### 6. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

### 7. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate was not collected a with sample location associated with this SDG.

#### 8. Compound Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows.

All identified compounds met the specified criteria.

#### 9. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

## DATA VALIDATION CHECKLIST FOR PETROLEUM PRODUCTS

TPH; SW-846 310.13	Rep	orted		mance ptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY (GC/FID)					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R		Х		x	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R					Х
Matrix Spike Duplicate(MSD) %R					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)					Х
Surrogate Spike Recoveries					Х
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
Initial calibration %RSDs		Х		Х	
Continuing calibration %Ds		Х		Х	
System performance and column resolution		Х		Х	
Compound identification and quantitation					
A. Quantitation Reports		Х		Х	
<ul> <li>B. RT of sample compounds within the established RT windows</li> </ul>		Х		Х	
C. Pattern identification		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		X	

%RSD – relative standard deviation, %R - percent recovery, RPD - relative percent difference, %D – difference

## **INORGANIC ANALYSIS INTRODUCTION**

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010C and 9012B (Total Cyanide). Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
  - B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).
- Quantitation (Q) Qualifiers
  - E The reported value is estimated due to the presence of interference.
  - N Spiked sample recovery is not within control limits.
  - * Duplicate analysis is not within control limits.
- Validation Qualifiers
  - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
  - UB Analyte considered non-detect at the listed value due to associated blank contamination.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

## METALS ANALYSES

## 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010C	Water	180 days from collection to analysis	Preserve to a pH of less than 2.

All samples were analyzed within the specified holding times.

## 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. No qualification of the sample results was required.

#### 3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

#### 3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

The correct number and type of standards were analyzed. All initial calibration verification standard recoveries were within control limits.

All initial and continuing calibration verification standard recoveries were within the control limit.

#### 3.2 Low Level Continuing Calibration Standard

The low level continuing calibration check standard (ICVL/CCVL) serves to verify the linearity of calibration of the analysis at the RL.

The ICVL/CCVL standard recoveries were within the control limits of 70 to 130%.

## 3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

## 4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

## 4.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS analysis was not performed on sample location associated with this SDG.

## 4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for water matrices.

A laboratory duplicate analysis was not performed on sample location associated with this SDG.

#### 5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate was not collected a with sample location associated with this SDG.

#### 6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

#### 7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample

are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

A serial dilution was not performed on sample location associated with this SDG.

## 8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

METALS; SW-846 6010C	Rep	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Atomic Emission Sp	pectrometry	(ICP)			
Tier II Validation					
Holding Times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Instrument Blanks		Х	Х		
B. Method Blanks		Х		Х	
C. Equipment/Field Blanks		Х	Х		
Laboratory Control Sample (LCS) %R		Х		Х	
Matrix Spike (MS) %R					Х
Matrix Spike Duplicate (MSD) %R					Х
MS/MSD Precision (RPD)					Х
Lab Duplicate (RPD)					Х
Field Duplicate (RPD)					Х
ICP Serial Dilution					Х
Reporting Limit Verification		Х		Х	
Total vs. Dissolved					Х
Raw Data		Х		Х	
Tier III Validation					
Initial Calibration Verification		Х		Х	
Continuing Calibration Verification		Х		Х	
CCVL Standard		Х		Х	
ICP Interference Check		Х		Х	
Transcription/calculations acceptable		Х		Х	
Reporting limits adjusted to reflect sample dilutions		Х		Х	

## DATA VALIDATION CHECKLIST FOR METALS

%R Percent recovery RPD Relative percent difference

## **GENERAL CHEMISTRY ANALYSES**

## 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Total Cyanide SW-846 9012B	Water	14 days from collection to analysis	Cool to <6°C; preserved to a pH of greater than 12.

All samples were analyzed within the specified holding times.

## 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

## 3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All calibration standard recoveries were within the control limit.

## 4. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

## 4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the

analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory qualifier "N" will be removed.

A MS/MSD analysis was not performed on a sample location associated with this SDG.

## 4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

The laboratory duplicate was not performed on a sample location associated with this SDG.

## 5. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

A field duplicate was not collected a with sample location associated with this SDG.

## 6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit recoveries between the control limits of 80% and 120%.

All analytes associated with the LCS analysis exhibited recoveries within the control limits.

## 7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

General Chemistry: SW-846 9012B	Rep	orted	Perfor Acce	Not Required	
-	No	Yes	No	Yes	Required
Miscellaneous Instrumentation					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks		Х		Х	
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R					Х
Matrix Spike Duplicate(MSD) %R					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)					Х
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation		- -		·	
Initial calibration %RSD or correlation coefficient		Х		Х	
Continuing calibration %R		Х		Х	
Raw Data		Х		Х	
Transcription/calculation errors present		Х		Х	
Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		Х		х	

Percent recovery Relative percent difference Percent difference %R RPD %D

## SAMPLE COMPLIANCE REPORT

Sampla					Compliancy ¹					Noncompliance	
Sample Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	SVOC	DISS GAS	ТРН	MET	MISC	•
	8/31/2015	SW-846	MW-6	Water	No	No		Yes	Yes	Yes	VOC-Rinsate blank SVOC-Method/Rinsate blank, Initial and continuing calibrations, LCS %R
480-86520-1	8/31/2015	SW-846	MW-7	Water	No	No		Yes	Yes	Yes	VOC-Rinsate blank SVOC-Method/Rinsate blank, Initial and continuing calibrations, LCS %R
	8/31/2015	SW-846	RB- 083115	Water	No	No			Yes	Yes	VOC- Continuing calibration %D SVOC-Initial and continuing calibrations, LCS %R
	8/31/2015	SW-846	TRIP BLANK	Water	Yes						

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Lisa Horton

SIGNATURE:

Lisa Hoston

DATE: October 23, 2015

PEER REVIEW: Joseph C. Houser

DATE: October 23, 2015

## CHAIN OF CUSTODY/LABORATORY DATA QUALIFIERS/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of	Temperature on Receipt		<b>TestAmerica</b>	
	Drinking Water? Yes□		THE LEADER IN ENVIRONMENTAL TESTING	
Client RCAPITS/RGF	Project Manager Bruce Ahrens	Ahrens	Date Bate 1 2015	Chain of Custody Number
Idiff Driv	Telephone Number (Area Code)/Fax Number 5 §5 - 3 §5 - 000	Code)Fax Number	Lab Number	Page   of ]
Failport State ZP Code	Site Contact Klaws Berth	Mel 350 Davo	Analysis (Attech list if more space is needed)	
Project Name and Location (State) Gentses Pork Scheet Centses NY	Carrier/Waybill Nomber			
~	Matrix	Containers & Preservatives	Xq	opecial insuracions/ Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date	Time Time	HOBN JOYUZ HOBN IOH EONH ¢OSZH	121 121 121 121 121 121	
MW-6 8131.15	5 1550 X	y 131	***	
n t-mw	Z45   X	ù 131	X X X	
B RB-083115 8.31.15	5 leto 8	2 [3[		
- LETP BLANK	R 1		X	
13 of				
824				
			480-86520 Chain of Custody	Custody
Presitile Hazard (dontification	Samla Dienes			
Mon-Hazard      Hammable      Skin Imfant      Poison B	Cunkmown	Disposal By Lab	Orved (A fee may be as	(A fee may be assessed if samples are retained longer than 1 month)
Tum Around Time Required	Days & Other Standord	QC Requirements (Specify)		
2100 21		1. Received By		Date I Time
2. Relinquished By	- (- (-	2. Received By		Detel Time
1. 12. Relinquished By	Date	3. Received By		Date
Gomments			1# 0.2	-

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

## DATA REPORTING QUALIFIERS

Client: ARCADIS U.S. Inc

Job Number: 480-86520-1

Lab Section	Qualifier	Description
GC/MS VOA		
	۸	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC/MS Semi VOA		
	В	Compound was found in the blank and sample.
	*	LCS or LCSD is outside acceptance limits.
	E	Result exceeded calibration range.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals		
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

## Client: ARCADIS U.S. Inc

**MW-6** 

Water

480-86520-1

Client Sample ID:

Lab Sample ID:

Client Matrix:

## Job Number: 480-86520-1

**Analytical Data** 

Date Sampled: 08/31/2015 1550 Date Received: 09/02/2015 1000

client matrix.	vvalei			Buterne	
		8260C Volatile Organi	c Compounds by	GC/MS	
Analysis Method:	8260C	Analysis Batch:	480-262721	Instrument ID:	HP5973S
Prep Method:	5030C	Prep Batch:	N/A	Lab File ID:	S2317.D
Dilution:	1.0			Initial Weight/Volume:	5 mL
nalysis Date:	09/10/2015 0138			Final Weight/Volume:	5 mL
Prep Date:	09/10/2015 0138			0	
Tep Date.	03/10/2013 0130				
Analyte		Result (u	g/L) Qua		RL
,1,1-Trichloroeth		ND		0.82	1.0
,1,2,2-Tetrachlor	oethane	ND		0.21	1.0
,1,2-Trichloroetha		ND		0.23	1.0
,1,2-Trichloro-1,2	2,2-trifluoroethane	ND		0.31	1.0
,1-Dichloroethan	e	ND		0.38	1.0
,1-Dichloroethen	e	ND		0.29	1.0
,2,4-Trichloroben	nzene	ND		0.41	1.0
,2-Dibromo-3-Ch	loropropane	ND		0.39	1.0
,2-Dibromoethan	e	ND		0.73	1.0
,2-Dichlorobenze	ene	ND		0.79	1.0
,2-Dichloroethan		ND		0.21	1.0
,2-Dichloropropa	ne	ND		0.72	1.0
,3-Dichlorobenze	ene	ND		0.78	1.0
4-Dichlorobenze		ND		0.84	1.0
-Hexanone		ND		1.2	5.0
-Butanone (MEK	)	ND		1.3	10
-Methyl-2-pentan	<ul> <li>Compared and a state of the set</li> </ul>	ND		2.1	5.0
cetone		12 UB		3.0	10
enzene		5.8		0.41	1.0
romodichloromet	thane	1.3 J	K	0.39	1.0
romoform		ND		0.26	1.0
romomethane		ND		0.69	1.0
arbon disulfide		ND		0.19	1.0
arbon tetrachlori	de	ND		0.27	1.0
hlorobenzene		ND		0.75	1.0
bibromochloromet	thane	ND		0.32	1.0
hloroethane		ND		0.32	1.0
Chloroform		6.6		0.34	1.0
hloromethane		ND		0.35	1.0
is-1,2-Dichloroeth	nene	ND		0.81	1.0
is-1,3-Dichloropro		ND		0.36	1.0
cyclohexane		43		0.18	1.0
ichlorodifluorome	ethane	ND		0.68	1.0
thylbenzene		4.4		0.74	1.0
sopropylbenzene		0.97	J	0.79	1.0
lethyl acetate		ND	-	1.3	2.5
lethyl tert-butyl el	ther	ND		0.16	1.0
lethylcyclohexan		31		0.16	1.0
lethylene Chlorid		ND		0.44	1.0
		ND		0.73	1.0
tyrene		ND		0.36	1.0
etrachloroethene		3.7		0.51	1.0
oluene	othono	ND		0.90	1.0
ans-1,2-Dichloro		ND		0.37	1.0
ans-1,3-Dichloro	propene			0.46	1.0
richloroethene		ND		0.48	1.0
richlorofluoromet		ND			

Client: ARCADIS U.S. Inc

## Job Number: 480-86520-1

Client Sample ID	: MW-6					
Lab Sample ID: Client Matrix:	480-86520-1 Water					bled: 08/31/2015 1550 ived: 09/02/2015 1000
		8260C Volatile Organi	ic Compounds I	by GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 09/10/2015 0138 09/10/2015 0138	Analysis Batch: Prep Batch:	480-262721 N/A	Instrument II Lab File ID: Initial Weigh Final Weight	t/Volume:	HP5973S S2317.D 5 mL 5 mL
Analyte		Result (u	g/L) Qu	alifier MD	L	RL
Vinyl chloride		ND	MARTINE MARCINE AND	0.90	)	1.0
Xylenes, Total		16		0.66	6	2.0
Surrogate		%Rec	Qu	alifier	Acceptance	e Limits
1,2-Dichloroethane	e-d4 (Surr)	112		a dina di kana di karang di kana di karang di karan	66 - 137	general and during a solution of the solution
Toluene-d8 (Surr)		100			71 - 126	
4-Bromofluoroben	· ·	114			73 - 120 60 - 140	
Dibromofluorometh	lane (Sun)	107			00 - 140	

## Client: ARCADIS U.S. Inc

## **Analytical Data**

Job Number: 480-86520-1

Lab Sample ID: Client Matrix:	480-86520-2 Water						pled: 08/31/2015 eived: 09/02/2015
	8	260C Vola	atile Organi	c Compour	nds by C	GC/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 09/10/2015 0201 09/10/2015 0201	2011/2012/2012/2012	ysis Batch: Batch:	480-26272 N/A	21	Instrument ID: Lab File ID: Initial Weight/V Final Weight/V	HP5973S S2318.D 5 mL 5 mL
Analyte			Result (u	a/L)	Qualifi	ier MDL	RL
1,1,1-Trichloroetha	200		ND	9, _ )	quann	0.82	 1.0
1,1,2,2-Tetrachlor			ND			0.21	1.0
1,1,2,2-Tetrachion			ND			0.23	1.0
1,1,2-Trichloro-1,2			ND			0.31	1.0
			ND			0.38	1.0
1,1-Dichloroethan			ND			0.29	1.0
1,1-Dichloroethen		8	ND			0.29	1.0
1,2,4-Trichloroben			ND			0.39	1.0
1,2-Dibromo-3-Ch						0.73	1.0
1,2-Dibromoethan			ND			0.73	1.0
1,2-Dichlorobenze			ND			0.79	1.0
1,2-Dichloroethane			ND			0.72	1.0
1,2-Dichloropropa			ND			0.72	1.0
1,3-Dichlorobenze			ND				
1,4-Dichlorobenze	ne		ND			0.84	1.0
2-Hexanone			ND			1.2	5.0
2-Butanone (MEK)			ND			1.3	10
4-Methyl-2-pentan	one (MIBK)		ND			2.1	5.0
Acetone		10	8.9 UB		_J	3.0	10
Benzene			4.2			0.41	1.0
Bromodichloromet	hane		ND			0.39	1.0
Bromoform			ND			0.26	1.0
Bromomethane			ND			0.69	1.0
Carbon disulfide			ND			0.19	1.0
Carbon tetrachlorid	de		ND			0.27	1.0
Chlorobenzene			ND			0.75	1.0
Dibromochloromet	hane		ND			0.32	1.0
Chloroethane			ND			0.32	1.0
Chloroform			2.4			0.34	1.0
Chloromethane			ND			0.35	1.0
cis-1,2-Dichloroeth	nene		1.1			0.81	1.0
cis-1,3-Dichloropro			ND			0.36	1.0
Cyclohexane	- 65		58			0.18	1.0
Dichlorodifluorome	ethane		ND			0.68	1.0
Ethylbenzene			6.2			0.74	1.0
sopropylbenzene			1.4			0.79	1.0
Methyl acetate			ND			1.3	2.5
Methyl tert-butyl et	her		ND			0.16	1.0
Viethylcyclohexane			54			0.16	1.0
Methylene Chloride			ND			0.44	1.0
Styrene	-		ND			0.73	1.0
etrachloroethene			ND			0.36	1.0
enacinoroennene						0.50	1.0

Trichlorofluoromethane

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Toluene

4.9

ND ND

ND

ND

1.0

1.0

1.0

1.0

1.0

0.51

0.90

0.37

0.46

0.88

Client: ARCADIS U.S. Inc

## Job Number: 480-86520-1

Client Sample ID	: MW-7					
Lab Sample ID: Client Matrix:	480-86520-2 Water					npled: 08/31/2015 1545 ceived: 09/02/2015 1000
	-	8260C Volatile Organi	ic Compounds	s by GC/I	MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 09/10/2015 0201 09/10/2015 0201	Analysis Batch: Prep Batch:	480-262721 N/A	La Ini	strument ID: ab File ID: itial Weight/Volume: nal Weight/Volume:	HP5973S S2318.D 5 mL 5 mL
Analyte		Result (u	g/L) G	Qualifier	MDL	RL
Vinyl chloride		ND			0.90	1.0
Xylenes, Total		30			0.66	2.0
Surrogate		%Rec	G	ualifier	Acceptan	ce Limits
1,2-Dichloroethane	e-d4 (Surr)	107			66 - 137	an dae oo tifee ah
Toluene-d8 (Surr)		98			71 - 126	
4-Bromofluoroben		111			73 - 120	
Dibromofluorometh	nane (Surr)	102			60 - 140	

Job Number: 480-86520-1

## Client: ARCADIS U.S. Inc

# Client Sample ID:RB-083115Lab Sample ID:480-86520-3Client Matrix:Water

## Date Sampled: 08/31/2015 1640 Date Received: 09/02/2015 1000

	8	260C Volatile Organi	c Compounds b	oy GC/MS	
analysis Method: 8260C		Analysis Batch:	480-262721	Instrument ID: Lab File ID:	HP5973S
Prep Method:	5030C	Prep Batch:			S2319.D
Dilution:	1.0			Initial Weight/Volume:	
Analysis Date:	09/10/2015 0223			Final Weight/Volume:	5 mL
Prep Date:	09/10/2015 0223				
Analyte		Result (u	g/L) Qu	alifier MDL	RL
1,1,1-Trichloroetha	ine	ND		0.82	1.0
1,1,2,2-Tetrachloro		ND		0.21	1.0
1,1,2-Trichloroetha		ND		0.23	1.0
1,1,2-Trichloro-1,2		ND		0.31	1.0
1,1-Dichloroethane		ND		0.38	1.0
1,1-Dichloroethene		ND		0.29	1.0
1,2,4-Trichloroben		ND		0.41	1.0
1,2-Dibromo-3-Chl		ND		0.39	1.0
1,2-Dibromoethane		ND		0.73	1.0
1,2-Dichlorobenze		ND		0.79	1.0
1,2-Dichloroethane		ND		0.21	1.0
1,2-Dichloropropar		ND		0.72	1.0
1,3-Dichlorobenzei		ND		0.78	1.0
1,4-Dichlorobenzei		ND		0.84	1.0
2-Hexanone		ND		1.2	5.0
2-Butanone (MEK)		2.3	J	1.3	10
4-Methyl-2-pentan		ND		2.1	5.0
Acetone		8.4	J	3.0	10
Benzene		ND		0.41	1.0
Bromodichlorometl	nane	ND		0.39	1.0
Bromoform		ND		0.26	1.0
Bromomethane		ND		0.69	1.0
Carbon disulfide		ND		0.19	1.0
Carbon tetrachloric	le	ND		0.27	1.0
Chlorobenzene		ND		0.75	1.0
Dibromochloromet	hane	ND		0.32	1.0
Chloroethane		ND		0.32	1.0
Chloroform		ND		0.34	1.0
Chloromethane		ND		0.35	1.0
cis-1,2-Dichloroeth	ene	ND		0.81	1.0
cis-1,3-Dichloropro		ND		0.36	1.0
Cyclohexane	pene	ND		0.18	1.0
Dichlorodifluorome	thane	ND		0.68	1.0
Ethylbenzene	thano	ND		0.74	1.0
sopropylbenzene		ND		0.79	1.0
Methyl acetate		ND		1.3	2.5
Vethyl tert-butyl et	her	ND		0.16	1.0
Methylcyclohexane		ND		0.16	1.0
viethylene Chloride		ND		0.44	1.0
Styrene		ND		0.73	1.0
Tetrachloroethene		ND		0.36	1.0
Toluene		ND		0.51	1.0
rans-1,2-Dichloroe	thene	ND		0.90	1.0
rans-1,3-Dichlorop		ND		0.37	1.0
	opene				
Trichloroethene		ND		0.46	1.0

Job Number: 480-86520-1

#### Client: ARCADIS U.S. Inc

#### **Client Sample ID:** RB-083115 Date Sampled: 08/31/2015 1640 Lab Sample ID: 480-86520-3 Client Matrix: Date Received: 09/02/2015 1000 Water 8260C Volatile Organic Compounds by GC/MS Analysis Batch: 480-262721 Instrument ID: HP5973S Analysis Method: 8260C Prep Method: 5030C Prep Batch: N/A Lab File ID: S2319.D Initial Weight/Volume: 5 mL Dilution: 1.0 Final Weight/Volume: 5 mL Analysis Date: 09/10/2015 0223 Prep Date: 09/10/2015 0223 RL Analyte Result (ug/L) Qualifier MDL

Vinyl chloride	ND		0.90	1.0	
Xylenes, Total	ND		0.66	2.0	
Surrogate	%Rec	Qualifier	Accepta	ance Limits	
1,2-Dichloroethane-d4 (Surr)	105	66 - 137			
Toluene-d8 (Surr)	98	71 - 126			
4-Bromofluorobenzene (Surr)	112	73 - 120		D	
Dibromofluoromethane (Surr)	107		60 - 140	C	

Job Number: 480-86520-1

#### Client: ARCADIS U.S. Inc

#### TRIP BLANK **Client Sample ID:** Date Sampled: 08/31/2015 0000 Lab Sample ID: 480-86520-4 Date Received: 09/02/2015 1000 **Client Matrix:** Water 8260C Volatile Organic Compounds by GC/MS Analysis Batch: 480-262721 HP5973S 8260C Instrument ID: Analysis Method: Lab File ID: S2320.D Prep Batch: N/A Prep Method: 5030C Initial Weight/Volume: 5 mL Dilution: 1.0 Final Weight/Volume: 5 mL Analysis Date: 09/10/2015 0246 Prep Date: 09/10/2015 0246

Analyte	Result (ug/L)	Qualifier	MDL	RL	
1,1,1-Trichloroethane	ND		0.82	1.0	
1,1,2,2-Tetrachloroethane	ND		0.21	1.0	
1,1,2-Trichloroethane	ND		0.23	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0	
1,1-Dichloroethane	ND		0.38	1.0	
1,1-Dichloroethene	ND		0.29	1.0	
1,2,4-Trichlorobenzene	ND		0.41	1.0	
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0	
1,2-Dibromoethane	ND		0.73	1.0	
1,2-Dichlorobenzene	ND		0.79	1.0	
1,2-Dichloroethane	ND		0.21	1.0	
1,2-Dichloropropane	ND		0.72	1.0	
1,3-Dichlorobenzene	ND		0.78	1.0	
1,4-Dichlorobenzene	ND		0.84	1.0	
2-Hexanone	ND		1.2	5.0	
2-Butanone (MEK)	ND		1.3	10	
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0	
Acetone	ND		3.0	10	
Benzene	ND		0.41	1.0	
Bromodichloromethane	ND		0.39	1.0	
Bromoform	ND		0.26	1.0	
Bromomethane	ND		0.69	1.0	
Carbon disulfide	ND		0.19	1.0	
Carbon tetrachloride	ND		0.27	1.0	
Chlorobenzene	ND		0.75	1.0	
Dibromochloromethane	ND		0.32	1.0	
Chloroethane	ND		0.32	1.0	
Chloroform	ND		0.34	1.0	
Chloromethane	ND		0.35	1.0	
cis-1,2-Dichloroethene	ND		0.81	1.0	
cis-1,3-Dichloropropene	ND		0.36	1.0	
Cyclohexane	ND		0.18	1.0	
Dichlorodifluoromethane	ND		0.68	1.0	
Ethylbenzene	ND		0.74	1.0	
Isopropylbenzene	ND		0.79	1.0	
Methyl acetate	ND		1.3	2.5	
Methyl tert-butyl ether	ND		0.16	1.0	
Methylcyclohexane	ND		0.16	1.0	
Methylene Chloride	ND		0.44	1.0	
Styrene	ND		0.73	1.0	
Tetrachloroethene	ND		0.36	1.0	
Toluene	ND		0.51	1.0	
trans-1,2-Dichloroethene	ND		0.90	1.0	
trans-1,3-Dichloropropene	ND		0.37	1.0	
Trichloroethene	ND		0.46	1.0	
Trichlorofluoromethane	ND		0.88	1.0	

Job Number: 480-86520-1

## Client: ARCADIS U.S. Inc

Client Sample ID:	TRIP BLANK						
Lab Sample ID: Client Matrix:	480-86520-4 Water					Sampled: 08/31/2 Received: 09/02/2	
		8260C Volatile Orga	anic Compou	nds by G	C/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 09/10/2015 0246 09/10/2015 0246	Analysis Batc Prep Batch:	h: 480-2627 N/A	21	Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum		
Analyte		Result	(ug/L)	Qualifie	r MDL	RL	
Vinyl chloride	an antarconstante a constant poster for an an a second second second second second second second second second	ND		AND ADDRESS OF A DREAM AND A	0.90	1.0	
Xylenes, Total		ND			0.66	2.0	
Surrogate		%Rec		Qualifie	r Accep	tance Limits	
1,2-Dichloroethane	e-d4 (Surr)	109			66 - 1	-	
Toluene-d8 (Surr)		97			71 - 1		
4-Bromofluorobenz		115			73 - 1		
Dibromofluorometh	iane (Surr)	112			60 - 1	40	

Job Number: 480-86520-1

## Client: ARCADIS U.S. Inc

MW-6

Client Sample ID:

Lab Sample ID: Client Matrix:	480-86520-1 Water				mpled: 08/31/2015 1550 ceived: 09/02/2015 1000
		8270D Semivolatile Org	anic Compound	s (GC/MS)	
Analysis Method:	8270D	Analysis Batch:	480-262234	Instrument ID:	HP5973W
Prep Method:	3510C	Prep Batch:	480-261907	Lab File ID:	W6469.D
Dilution:	1.0			Initial Weight/Volume:	
Analysis Date:	09/06/2015 0329			Final Weight/Volume:	1 mL
Prep Date:	09/03/2015 1401			Injection Volume:	1 uL
Prep Date.	09/03/2013 1401			njeelon volume.	
Analyte		Result (u	g/L) Qua	lifier MDL	RL
Biphenyl		ND		0.63	4.8
bis (2-chloroisopro		ND		0.50	4.8
2,4,5-Trichlorophe		ND		0.47	4.8
2,4,6-Trichlorophe		ND		0.59	4.8
2,4-Dichloropheno		ND		0.49	4.8
2,4-Dimethylphend	bl	0.86	J	0.48	4.8
2,4-Dinitrophenol		ND J	*	2.2	9.7
2,4-Dinitrotoluene		ND J		0.43	4.8
2,6-Dinitrotoluene		ND		0.39	4.8
2-Chloronaphthale	ne	ND		0.45	4.8
2-Chlorophenol		ND		0.51	4.8
2-Methylnaphthale	ne	ND		0.58	4.8
2-Methylphenol		ND		0.39	4.8
2-Nitroaniline		ND		0.41	9.7
2-Nitrophenol		ND J		0.47	4.8
3,3'-Dichlorobenzio	dine	ND		0.39	4.8
3-Nitroaniline		ND		0.47	9.7
4,6-Dinitro-2-methy		ND		2.1	9.7
4-Bromophenyl ph		ND		0.44	4.8
4-Chloro-3-methylp	phenol	ND		0.44	4.8
4-Chloroaniline		ND		0.57	4.8
4-Chlorophenyl ph	enyl ether	ND		0.34	4.8
4-Methylphenol		ND		0.35	9.7
4-Nitroaniline		ND		0.24	9.7
4-Nitrophenol		ND J		1.5	9.7
Acenaphthene		ND		0.40	4.8
Acenaphthylene		ND		0.37	4.8
Acetophenone		ND		0.52	4.8
Anthracene		ND		0.27	4.8
Atrazine		ND J		0.45	4.8
Benzaldehyde		ND J		0.26	4.8
Benzo(a)anthracer	ie	ND		0.35	4.8
Benzo(a)pyrene		ND		0.46	4.8
Benzo(b)fluoranthe		ND		0.33	4.8
Benzo(g,h,i)peryler		ND		0.34	4.8
Benzo(k)fluoranthe		ND		0.71	4.8
Bis(2-chloroethoxy		ND		0.34	4.8
Bis(2-chloroethyl)e		ND		0.39	4.8
Bis(2-ethylhexyl) p		ND		1.7	4.8
Butyl benzyl phthal	ate	ND		0.41	4.8
Caprolactam		ND	- 14	2.1	4.8
Carbazole		0.38	J	0.29	4.8
Chrysene		ND		0.32	4.8
Di-n-butyl phthalate	e	ND		0.30	4.8
Di-n-octyl phthalate		ND		0.46	4.8
Dibenz(a,h)anthrac	ono	ND		0.41	4.8

## TestAmerica Buffalo

Job Number: 480-86520-1

## Client: ARCADIS U.S. Inc

Client Sample ID:	MW-6
Lab Sample ID:	480-86520-1
Client Matrix:	Water

#### Date Sampled: 08/31/2015 1550 Date Received: 09/02/2015 1000

8270D Semivolatile Organic Compounds (GC/MS)								
Analysis Method: Prep Method: Dilution:	8270D 3510C 1.0		Analysis Batch: Prep Batch:	480-262234 480-261907		Instrument I Lab File ID: Initial Weigh		HP5973W W6469.D 257.8 mL
Analysis Date:	09/06/2015 0329					Final Weight		1 mL
and a second sec								
Prep Date:	09/03/2015 1401					Injection Vol	ume:	1 uL
Analyte			Result (u	g/L)	Qualifi		The second second second	RL
Dibenzofuran			ND			0.4		9.7
Diethyl phthalate			ND			0.2		4.8
Dimethyl phthalate	•		ND			0.3		4.8
Fluoranthene			ND			0.3		4.8
Fluorene			ND			0.3	5	4.8
Hexachlorobenzen	e '		ND			0.4		4.8
Hexachlorobutadie	ne		ND			0.6	6	4.8
Hexachlorocyclope	entadiene		ND J			0.5		4.8
Hexachloroethane			ND			0.5	7	4.8
Indeno(1,2,3-cd)py	rene		ND			0.46	-	4.8
Isophorone			ND			0.42	2	4.8
N-Nitrosodi-n-prop	ylamine		ND			0.5		4.8
N-Nitrosodiphenyla	amine		ND			0.49		4.8
Naphthalene			ND			0.74		4.8
Nitrobenzene			ND			0.28	В	4.8
Pentachlorophenol			ND J			2.1		9.7
Phenanthrene		2	4.8 <del>1.2</del> UB	_	J B	0.43		4.8
Phenol			ND			0.38	3	4.8
Pyrene			ND J			0.33	3	4.8
Surrogate			%Rec	(	Qualifie	er	Acceptan	ce Limits
2,4,6-Tribromophenol		90	an a		an a	52 - 132	ang ng Canada ang ang Silatan na ang ang ang ang ang ang ang ang an	
2-Fluorobiphenyl			100 48 - 120					
2-Fluorophenol			74		20 - 120			
Nitrobenzene-d5			90				46 - 120	
p-Terphenyl-d14			110				67 - 150	
Phenol-d5			31				16 - 120	

Job Number: 480-86520-1

## Client: ARCADIS U.S. Inc

Client Sample ID: Lab Sample ID:	<b>MW-7</b> 480-86520-2			Date Sa	npled: 08/31/2015 154
Client Matrix:	Water		1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		ceived: 09/02/2015 100
	82	270D Semivolatile Org	anic Compounds (	GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 09/06/2015 0358 09/03/2015 1401	Analysis Batch: Prep Batch:	480-262234 480-261907	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5973W W6470.D 262.5 mL 1 mL 1 uL
Analyte		Result (u	g/L) Qualifie	er MDL	RL
Biphenyl		ND	<u>y</u> , <u> </u>	0.62	4.8
bis (2-chloroisopro	ovl) ether	ND		0.50	4.8
2,4,5-Trichloropher		ND		0.46	4.8
2,4,6-Trichloropher		ND		0.58	4.8
2,4-Dichlorophenol		ND		0.49	4.8
2,4-Dimethylpheno		ND		0.48	4.8
2,4-Dinitrophenol	22	ND J	*	2.1	9.5
2,4-Dinitrotoluene		ND J		0.43	4.8
2,6-Dinitrotoluene		ND		0.38	4.8
2-Chloronaphthaler	ne	ND		0.44	4.8
2-Chlorophenol		ND		0.50	4.8
2-Methylnaphthaler	ne	1.6	J	0.57	4.8
2-Methylphenol		ND		0.38	4.8
2-Nitroaniline		ND		0.40	9.5
2-Nitrophenol		ND J		0.46	4.8
3,3'-Dichlorobenzid	ine	ND		0.38	4.8
3-Nitroaniline		ND		0.46	9.5
4,6-Dinitro-2-methy		ND		2.1	9.5
4-Bromophenyl phe		ND		0.43	4.8
4-Chloro-3-methylp	henol	ND		0.43	4.8
4-Chloroaniline	1 0	ND		0.56	4.8
4-Chlorophenyl phe	enyl ether	ND		0.33 0.34	4.8 9.5
4-Methylphenol		ND		0.24	9.5 9.5
4-Nitroaniline		ND ND		1.4	9.5
4-Nitrophenol				0.39	4.8
Acenaphthene Acenaphthylene		ND		0.36	4.8
Acetophenone		ND		0.51	4.8
Anthracene		ND		0.27	4.8
Atrazine		ND J		0.44	4.8
Benzaldehyde		ND J		0.25	4.8
Benzo(a)anthracen	e	ND		0.34	4.8
Benzo(a)pyrene		ND		0.45	4.8
Benzo(b)fluoranthe	ne	ND		0.32	4.8
Benzo(g,h,i)perylen		ND		0.33	4.8
Benzo(k)fluoranthei	ne	ND		0.70	4.8
Bis(2-chloroethoxy)	methane	ND		0.33	4.8
Bis(2-chloroethyl)et		ND		0.38	4.8
Bis(2-ethylhexyl) ph		ND		1.7	4.8
Butyl benzyl phthala	ate	ND		0.40	4.8
Caprolactam		ND		2.1	4.8
Carbazole		ND		0.29	4.8
Chrysene		ND		0.31	4.8
Di-n-butyl phthalate		ND		0.30	4.8
Di-n-octyl phthalate		ND		0.45 0.40	4.8 4.8
Dibenz(a,h)anthrace	ene	ND		0.40	<b>H.</b> 0

**TestAmerica Buffalo** 

Client: ARCADIS U.S. Inc

Job Number: 480-86520-1

 Client Sample ID:
 MW-7

 Lab Sample ID:
 480-86520-2

 Client Matrix:
 Water

 Date Received: 09/02/2015 1000

82	270D Semivolatile Org	anic Compounds	(GC/MS)	
Analysis Method: 8270D	Analysis Batch:	480-262234	Instrument ID:	HP5973W
Prep Method: 3510C	Prep Batch:	480-261907	Lab File ID:	W6470.D
Dilution: 1.0	λα στο στο ∎κοικό στο γκαι, η καταστασία.		Initial Weight/Volume	: 262.5 mL
Analysis Date: 09/06/2015 0358			Final Weight/Volume:	
Prep Date: 09/03/2015 1401			Injection Volume:	1 uL
			injoonon volumo.	
Analyte	Result (u	g/L) Qualif		RL
Dibenzofuran	ND		0.49	9.5
Diethyl phthalate	ND		0.21	4.8
Dimethyl phthalate	ND		0.34	4.8
Fluoranthene	ND		0.38	4.8
Fluorene	ND		0.34	4.8
Hexachlorobenzene	ND		0.49	4.8
Hexachlorobutadiene	ND		0.65	4.8
Hexachlorocyclopentadiene	ND J		0.56	4.8
Hexachloroethane	ND		0.56	4.8
Indeno(1,2,3-cd)pyrene	ND		0.45	4.8
Isophorone	ND		0.41	4.8
N-Nitrosodi-n-propylamine	ND		0.51	4.8
N-Nitrosodiphenylamine	ND		0.49	4.8
Naphthalene	1.2	J	0.72	4.8
Nitrobenzene	ND		0.28	4.8
Pentachlorophenol	ND J		2.1	9.5
Phenanthrene	4.8 ^{1.3} UB	JB-	0.42	4.8
Phenol	ND		0.37	4.8
Pyrene	ND J		0.32	4.8
Surrogate	%Rec	Qualifi	er Accepta	nce Limits
2,4,6-Tribromophenol	99	and an	52 - 132	A 1997
2-Fluorobiphenyl	110		48 - 120	
2-Fluorophenol	83		20 - 120	
Nitrobenzene-d5	104		46 - 120	
p-Terphenyl-d14	127		67 - 150	
Phenol-d5	34		16 - 120	

Lab Sample ID:

**Client Matrix:** 

## **Analytical Data**

Job Number: 480-86520-1

Client Sample ID: RB-083115

480-86520-3

Water

#### Date Sampled: 08/31/2015 1640 Date Received: 09/02/2015 1000

		8270D Semivolatile Org	anic Compounds	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3510C 1.0 09/06/2015 0426 09/03/2015 1401	Analysis Batch: Prep Batch:	480-262234 480-261907	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5973W W6471.D 251 mL 1 mL 1 uL
Analyte		Result (u	g/L) Quali	ifier MDL	RL
Biphenyl		ND	REPORT OF THE OWNER OF THE OWNER OF THE	0.65	5.0
bis (2-chloroisopro	pyl) ether	ND		0.52	5.0
2,4,5-Trichlorophe		ND		0.48	5.0
2,4,6-Trichlorophe		ND		0.61	5.0
2,4-Dichloropheno		ND		0.51	5.0
2,4-Dimethylpheno		ND		0.50	5.0
2,4-Dinitrophenol		ND J	×	2.2	10
2,4-Dinitrotoluene		ND J		0.45	5.0
2,6-Dinitrotoluene		ND		0.40	5.0
2-Chloronaphthale	ne	ND		0.46	5.0
2-Chlorophenol		ND		0.53	5.0
2-Methylnaphthale	ne	ND		0.60	5.0
2-Methylphenol		ND		0.40	5.0
2-Nitroaniline		ND		0.42	10
2-Nitrophenol		ND J		0.48	5.0
3,3'-Dichlorobenzio	dine	ND		0.40	5.0
3-Nitroaniline		ND		0.48	10
4,6-Dinitro-2-methy	vlphenol	ND		2.2	10
4-Bromophenyl ph		ND		0.45	5.0
4-Chloro-3-methyl		ND		0.45	5.0
4-Chloroaniline		ND		0.59	5.0
4-Chlorophenyl ph	envl ether	ND		0.35	5.0
4-Methylphenol	3	ND		0.36	10
4-Nitroaniline		ND		0.25	10
4-Nitrophenol		ND J		1.5	10
Acenaphthene		ND		0.41	5.0
Acenaphthylene		ND		0.38	5.0
Acetophenone		ND		0.54	5.0
Anthracene		ND		0.28	5.0
Atrazine		ND J		0.46	5.0
Benzaldehyde		0.91	JB	0.27	5.0
Benzo(a)anthracer	ne	ND		0.36	5.0
Benzo(a)pyrene		ND		0.47	5.0
Benzo(b)fluoranthe	ene	ND		0.34	5.0
Benzo(g,h,i)peryler		ND		0.35	5.0
Benzo(k)fluoranthe		ND		0.73	5.0
Bis(2-chloroethoxy		ND		0.35	5.0
Bis(2-chloroethyl)e		ND		0.40	5.0
Bis(2-ethylhexyl) p		ND		1.8	5.0
Butyl benzyl phthal		ND		0.42	5.0
Caprolactam		ND		2.2	5.0
Carbazole		ND		0.30	5.0
Chrysene		ND		0.33	5.0
Di-n-butyl phthalate	Э	ND		0.31	5.0
Di-n-octyl phthalate		ND		0.47	5.0
Dibenz(a,h)anthrac		ND		0.42	5.0

## **Analytical Data**

Client Sample ID:	RB-083115	
Lab Sample ID: Client Matrix:	480-86520-3 Water	Date Sampled: 08/31/2015 1640 Date Received: 09/02/2015 1000
	Water	Date Received. 09/02/2015 1000

Analysis Method:8270DAnalysis Batch:480-262234Instrument ID:HP5973WPrep Method:3510CPrep Batch:480-261907Lab File ID:W6471.DDilution:1.0Initial Weight/Volume:251 mL	
Analysis Date:09/06/2015 0426Final Weight/Volume:1mLPrep Date:09/03/2015 1401Injection Volume:1uL	
Analyte Result (ug/L) Qualifier MDL RL	
Dibenzofuran ND 0.51 10	
Diethyl phthalate ND 0.22 5.0	
Dimethyl phthalate ND 0.36 5.0	
Fluoranthene ND 0.40 5.0	
Fluorene ND 0.36 5.0	
Hexachlorobenzene ND 0.51 5.0	
Hexachlorobutadiene ND 0.68 5.0	
Hexachlorocyclopentadiene ND J 0.59 5.0	
Hexachloroethane ND 0.59 5.0	
Indeno(1,2,3-cd)pyrene ND 0.47 5.0	
Isophorone ND 0.43 5.0	
N-Nitrosodi-n-propylamine ND 0.54 5.0	
N-Nitrosodiphenylamine ND 0.51 5.0	
Naphthalene ND 0.76 5.0	
Nitrobenzene ND 0.29 5.0	
Pentachlorophenol NDJ 2.2 10	
Phenanthrene 1.1 J B 0.44 5.0	
Phenol ND 0.39 5.0	
Pyrene ND 0.34 5.0	
Surrogate %Rec Qualifier Acceptance Limits	
2,4,6-Tribromophenol 84 52 - 132	
2-Fluorobiphenyl 105 48 - 120	
2-Fluorophenol 82 20 - 120	
Nitrobenzene-d5 99 46 - 120	
p-Terphenyl-d14 127 67 - 150	
Phenol-d5 33 16 - 120	

Client: ARCADIS U.S. Inc

Unknown Hydrocarbons

#### Job Number: 480-86520-1

0.20

0.20

Client Sample ID	: MW-6					
Lab Sample ID: Client Matrix:	480-86520-1 Water					mpled: 08/31/2015 1550 ceived: 09/02/2015 1000
	310.	13 Identification of F	Routine Petr	oleum F	Products	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	310.13 3510C 1.0 09/08/2015 1905 09/04/2015 1440	Analysis Batch: Prep Batch:	480-26259 480-26214		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5890-24 24a102_169.d 978.1 mL 1 mL 1 uL
Analyte		Result (n	ng/L)	Qualifie	er MDL	RL
Gasoline		ND	and the latter of the second line of the second second	analis and the second	0.20	0.20
Kerosene		ND			0.51	0.51
Motor Oil		ND			1.0	1.0
Fuel Oil #2		ND			0.51	0.51
Fuel Oil #4		ND			0.51	0.51
Fuel Oil #6		ND			0.51	0.51

0.37

Client: ARCADIS U.S. Inc

09/08/2015 1939

Analysis Date:

#### **Client Sample ID: MW-7** Lab Sample ID: Date Sampled: 08/31/2015 1545 480-86520-2 **Client Matrix:** Water Date Received: 09/02/2015 1000 **310.13 Identification of Routine Petroleum Products** Analysis Batch: 480-262592 HP5890-24 Analysis Method: 310.13 Instrument ID: Prep Method: 3510C Prep Batch: 480-262144 Lab File ID: 24a102_170.d Dilution: 1.0 Initial Weight/Volume: 1056 mL

Prep Date: 09/04/2015 1440			Injec	tion Volume:	1 uL	
Analyte		Result (mg/L)	Qualifier	MDL	RL	
Gasoline		0.41	an a	0.19	0.19	
Kerosene		ND		0.47	0.47	
Motor Oil		ND		0.95	0.95	
Fuel Oil #2		ND		0.47	0.47	
Fuel Oil #4		ND		0.47	0.47	
Fuel Oil #6		ND		0.47	0.47	
Unknown Hydroca	irbons	ND		0.19	0.19	

**TestAmerica Buffalo** 

Job Number: 480-86520-1

Final Weight/Volume: 1 mL

## **Analytical Data**

Job Number: 480-86520-1

Client Sample ID:MW-6Lab Sample ID:480-86520-1Client Matrix:Water

#### Date Sampled: 08/31/2015 1550 Date Received: 09/02/2015 1000

		6010C N	letals (ICP)			
Analysis Method:	6010C	Analysis Batch:	Analysis Batch: 480-262020		Instrument ID:	ICAP1
Prep Method:	3005A	Prep Batch:	480-261682	2	Lab File ID:	I1090315A-7.asc
Dilution:	1.0				Initial Weight/Volume:	50 mL
Analysis Date:	09/03/2015 1817				Final Weight/Volume:	50 mL
Prep Date:	09/03/2015 0725					
Analyte		Result (m	ng/L)	Qualifie		RL
Aluminum	an an an Anna a	0.20			0.060	0.20
Antimony		ND			0.0068	0.020
Arsenic		ND			0.0056	0.015
Barium		0.90			0.00070	0.0020
Beryllium		ND			0.00030	0.0020
Cadmium		ND			0.00050	0.0020
Calcium		110			0.10	0.50
Chromium		ND			0.0010	0.0040
Cobalt		0.00098		J	0.00063	0.0040
Copper		0.0041		J	0.0016	0.010
Iron		0.44			0.019	0.050
_ead		ND			0.0030	0.010
Magnesium		83.3			0.043	0.20
Manganese		0.030			0.00040	0.0030
Nickel		0.013			0.0013	0.010
Potassium		9.3			0.10	0.50
Selenium		ND			0.0087	0.025
Silver		ND			0.0017	0.0060
Sodium		304			0.32	1.0
Thallium		ND			0.010	0.020
Vanadium		ND			0.0015	0.0050
Zinc		0.0030		J	0.0015	0.010

## **Analytical Data**

Job Number: 480-86520-1

Client Sample ID:MW-7Lab Sample ID:480-86520-2Client Matrix:Water

#### Date Sampled: 08/31/2015 1545 Date Received: 09/02/2015 1000

		6010C N	letals (ICP)			
Analysis Method:	6010C	Analysis Batch:	480-262020		Instrument ID:	ICAP1
Prep Method:	3005A	Prep Batch:	480-261682	1	Lab File ID:	I1090315A-7.asc
Dilution:	1.0				Initial Weight/Volume:	50 mL
Analysis Date:	09/03/2015 1820				Final Weight/Volume:	50 mL
Prep Date:	09/03/2015 0725					
Analyte		Result (m	ng/L)	Qualifie		RL
Aluminum		0.53			0.060	0.20
Antimony		ND			0.0068	0.020
Arsenic		ND			0.0056	0.015
Barium		0.71			0.00070	0.0020
Beryllium		ND			0.00030	0.0020
Cadmium		ND			0.00050	0.0020
Calcium		121			0.10	0.50
Chromium		0.0013		J	0.0010	0.0040
Cobalt		ND			0.00063	0.0040
Copper		0.0028	;	J	0.0016	0.010
Iron		1.8			0.019	0.050
Lead		ND			0.0030	0.010
Magnesium		74.3			0.043	0.20
Manganese		0.064			0.00040	0.0030
Nickel		0.0020		J	0.0013	0.010
Potassium		31.1			0.10	0.50
Selenium		ND			0.0087	0.025
Silver		ND			0.0017	0.0060
Sodium		377			0.32	1.0
Thallium		ND			0.010	0.020
Vanadium		ND			0.0015	0.0050
Zinc		0.0049	,	J	0.0015	0.010

#### Client Sample ID: RB-083115

#### L С

## **Analytical Data**

Client Sample ID	: RB-083115					
Lab Sample ID: Client Matrix:	480-86520-3 Water					npled: 08/31/2015 164 ceived: 09/02/2015 100
		6010C N	letals (ICP)			
Analysis Method:	6010C	Analysis Batch:	480-262020		trument ID:	ICAP1
Prep Method:	3005A	Prep Batch:	480-261682		File ID:	11090315A-7.asc
Dilution:	1.0				al Weight/Volume:	50 mL
Analysis Date: Prep Date:	09/03/2015 1823 09/03/2015 0725			Fin	al Weight/Volume:	50 mL
Analyte		Result (m	ng/L) G	alifier	MDL	RL
Aluminum		ND		water, magnetic constant	0.060	0.20
Antimony		ND			0.0068	0.020
Arsenic		ND			0.0056	0.015
Barium		ND			0.00070	0.0020
Beryllium		ND			0.00030	0.0020
Cadmium		ND			0.00050	0.0020
Calcium		ND			0.10	0.50
Chromium		ND			0.0010	0.0040
Cobalt		ND			0.00063	0.0040
Copper		ND			0.0016	0.010
Iron		ND			0.019	0.050
Lead		ND			0.0030	0.010
Magnesium		ND			0.043	0.20
Manganese		ND			0.00040	0.0030
Nickel		ND			0.0013	0.010
Potassium		0.12	J		0.10	0.50
Selenium		ND			0.0087	0.025
Silver		ND			0.0017	0.0060
Sodium		0.41	J		0.32	1.0
Thallium		ND			0.010	0.020
Vanadium		ND			0.0015	0.0050
Zinc		ND			0.0015	0.010

#### Client: ARCADIS U.S. Inc

		Gene	eral Chem	istry				
Client Sample II	D: MW-6							
Lab Sample ID: Client Matrix:	480-86520-1 Water					100 C	08/31/2015 155 09/02/2015 100	
Analyte	Result	Qual	Units	MDL	RL	Dil	Method	
Cyanide, Total	ND Analysis Batch: 480-262224 Prep Batch: 480-262037	4 Analysis Date Prep Date: 09			0.010	1.0	9012B	(mer)

#### Client: ARCADIS U.S. Inc

		Gene	eral Chem	istry				
Client Sample I	): MW-7							
Lab Sample ID: Client Matrix:	480-86520-2 Water						08/31/2015 1 09/02/2015 1	
Analyte	Result	Qual	Units	MDL	RL	Dil	Method	
Cyanide, Total	ND Analysis Batch: 480-262224 Prep Batch: 480-262037	Analysis Date Prep Date: 09			0.010	1.0	9012B	

## Client: ARCADIS U.S. Inc

		Gene	eral Chem	istry		535	
Client Sample I	D: RB-083115						
Lab Sample ID: Client Matrix:	480-86520-3 Water Result	Quel	Units	MDL			08/31/2015 1640 09/02/2015 1000 Method
Analyte Cyanide, Total	ND Analysis Batch: 480-262224 Prep Batch: 480-262037	Qual Analysis Date Prep Date: 09	mg/L e: 09/05/20	0.0050 15 1018	0.010	1.0	9012B



#### Arcadis of New York, Inc.

295 Woodcliff Drive Third Floor Suite 301 Fairport, New York 14450 Tel 585 385 0090 Fax 585 385 4198

www.arcadis.com