### **Park Street Former MGP Site**

Livingston County Village of Geneseo, New York

### **Final Engineering Report**

**NYSDEC Site Number: V00731** 

**Prepared for:** 

**NYSEG** 

18 Link Drive Binghamton, New York 13904

### Prepared by:

Arcadis of New York 295 Woodcliff Drive Fairport, New York

#### CERTIFICATION

I, Jason D. Brien, P.E., am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the *Installation of Monitoring Well MW-8* (Arcadis 2017) work plan was implemented and that all construction activities were completed in substantial conformance with the Department-approved *Installation of Monitoring Well MW-8* work plan.

I certify that to the best of my knowledge and based on my inquiry of the persons involved with the observation of the remediation activities the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the *Installation of Monitoring Well MW-8* work plan and in all applicable statutes and regulations have been achieved in accordance with the time frames, if any, established for the remedy.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and/or any operation and maintenance requirements applicable to the Site are, or will be, contained in a Declaration of Covenants and Restrictions (deed restriction) created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such easement has been recorded.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of Engineering Controls employed at the Site, including the proper maintenance of remaining monitoring wells, and that such plan has been approved by the Department.

I certify that all documents generated by Arcadis in support of this report have been submitted in accordance with the DER's electronic submission protocols.

I certify that all data generated by Arcadis in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department.

I certify that to the best of my knowledge and based on my inquiry of the persons involved in preparing this document, all information and statements in this certification form are true. I understand that a knowingly false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Jason Brien, P.E., of Arcadis of New York, Inc., am certifying as Owner's Designated Site Representative for the site.

084067 06/29/18

NYS Professional Engineer # Date Signature

### TABLE OF CONTENTS

| CERT   | IFICATIO1 | NS                                       | i   |
|--------|-----------|------------------------------------------|-----|
| LIST ( | OF ACRON  | NYMS                                     | iii |
| FINAI  | L ENGINE  | ERING REPORT                             | 1   |
| 1.0    | BACKGR    | OUND AND SITE DESCRIPTION                | 1   |
| 2.0    | SUMMAI    | RY OF SITE REMEDY                        | 2   |
| 2.1    | REM       | EDIAL ACTION OBJECTIVES                  | 2   |
|        | 2.1.1     | Groundwater RAOs                         | 2   |
|        | 2.1.2     | Soil RAOs                                | 2   |
|        | 2.1.3     | Soil Vapor RAOs                          | 2   |
| 2.2    | DESC      | RIPTION OF SELECTED REMEDY               | 2   |
| 3.0    | INTERIM   | REMEDIAL MEASURES AND REMEDIAL CONTRACTS | 4   |
| 4.0    |           | TION OF REMEDIAL ACTIONS PERFORMED       |     |
| 4.1    | GOVE      | ERNING DOCUMENTS                         |     |
|        | 4.1.1     | Site Specific Health & Safety Plan       | 5   |
|        | 4.1.2     | Quality Assurance Project Plan           | 5   |
|        | 4.1.3     | Field Sampling Plan                      | 5   |
|        | 4.1.4     | Community Air Monitoring Plan            | 6   |
| 4.2    | REME      | EDIAL PROGRAM ELEMENTS                   | 6   |
|        | 4.2.1     | Contractors and Consultants              | 6   |
|        | 4.2.2     | Site Preparation                         | 7   |
|        | 4.2.3     | General Site Controls                    | 7   |
|        | 4.2.4     | Nuisance Controls                        | 8   |
|        | 4.2.5     | CAMP Results                             | 8   |
|        | 4.2.6     | Reporting                                | 8   |
| 4.3    | CONT      | CAMINATED MATERIALS REMOVAL              | 8   |
|        | 4.3.1     | Disposal Details                         | 8   |
| 4.4    | REME      | EDIAL DOCUMENTATION SAMPLING             | 9   |
| 4.5    | IMPOR     | RTED BACKFILL                            | 9   |
| 4.6    | CONT      | AMINATION REMAINING AT THE SITE          | 9   |

|     |         | 4.6.1    | Soil                                                         |
|-----|---------|----------|--------------------------------------------------------------|
|     |         | 4.6.2    | Groundwater                                                  |
|     |         | 4.6.3    | Soil Vapor                                                   |
|     | 4.7     | SOIL     | COVER SYSTEMS                                                |
|     | 4.8     | OTHE     | R ENGINEERING CONTROLS                                       |
|     | 4.9     | INSTI    | TUTIONAL CONTROLS                                            |
|     | 4.10    | DEVI     | ATIONS FROM THE REMEDIAL ACTION WORK PLAN 12                 |
|     | <b></b> |          |                                                              |
|     |         | S IN TH  |                                                              |
|     | ole 4.1 |          | ontractors and Consultants                                   |
|     | ole 4.2 |          | Vaste Disposal Quantities and Facilities                     |
|     | BLES    |          |                                                              |
|     | le 1    |          | pil Analytical Results                                       |
|     | GURE    |          |                                                              |
| Fig | ure 1   | S        | ite Map                                                      |
| Fig | ure 2   | S        | oil VOC Data                                                 |
| Fig | ure 3   | S        | oil SVOC Data                                                |
| LIS | ST OF   | APPE     | NDICES                                                       |
| A   | Sı      | ırvey N  | Iap, Metes and Bounds (on Compact Disk)                      |
| В   | C       | opy of   | the FER (on Compact Disk)                                    |
| С   | Re      | eport oj | Activities at LL-Lot Letter Correspondence (on Compact Disk) |
| D   | C       | AMP N    | Monitoring Data (on Compact Disk)                            |
| E   | W       | aste Di  | sposal Documentation                                         |
| F   | W       | aste Cl  | naracterization Analytical Report (on Compact Disk)          |
| G   | D       | ata Usa  | bility Summary Report (on Compact Disk)                      |
| Н   | La      | aborato  | ry Analytical Report for Remedial Action (on Compact Disk)   |
| I   | D       | eclarati | on of Covenants and Restrictions                             |
|     |         |          |                                                              |

#### **ACRONYMS**

BTEX benzene, toluene, ethylbenzene, and xylenes

CAMP Community Air Monitoring Plan

CD compact disk

DUSR Data Usability Summary Report

ECs/ICs Engineering and Institutional Controls

FSP Field Sampling Plan

IDW investigation derived waste

IRM Interim Remedial Measures

HASP Health and Safety Plan

KBH Environmental, LLC

mcg/m3 micrograms per cubic meter

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

PAH polycyclic aromatic hydrocarbon

PID photoionization detector

PPE personal protective equipment

ppm parts per million

RAO Remedial Action Objectives

RG&E Rochester Gas and Electric Corporation

SCWP Site Characterization Work Plan

SMP Site Management Plan

SUNY State University of New York

VCA Voluntary Cleanup Agreement

VOC volatile organic compound

QAPP Quality Assurance Project Plan

#### FINAL ENGINEERING REPORT

#### 1.0 BACKGROUND AND SITE DESCRIPTION

Rochester Gas and Electric Corporation (RG&E) entered into an Amended and Restated Voluntary Cleanup Agreement (VCA) on December 23, 2014 (DEC Index No. B8-0535-98-07) with the New York State Department of Environmental Conservation (NYSDEC) to include this site. The Agreement obligated RG&E to implement a remedial program for hazardous substances that are components of wastes associated MGP-related operations at the approximately <sup>3</sup>/<sub>4</sub>-acre site located in the Village of Geneseo, Livingston County, New York. The site was remediated to restricted residential and industrial use.

The Park Street former MGP site is located at 4 and 6 Park Street in the Village of Geneseo, County of Livingston, New York. The Livingston County tax maps identifies the western portion of the site as Section 080.16, Block 1, Lot 33, and the eastern portion of the site as Section 080.16, Block 1, Lot 34. The site is situated on an approximately <sup>3</sup>/<sub>4</sub> acre area bounded by commercial buildings and School Street to the north, Park Street to the south, commercial buildings along the west side of Main Street to the east, and a State University of New York (SUNY) academic complex (the Brodie Fine Arts building) to the west (**Figure 1**). The boundaries of the site are fully described in **Appendix A:** Survey Map, Metes and Bounds (on compact disk).

An electronic copy of this FER with all supporting documentation is included as **Appendix B**.

#### 2.0 SUMMARY OF SITE REMEDY

#### 2.1 REMEDIAL ACTION OBJECTIVES

The following Remedial Action Objectives (RAOs) were identified in the Decision Document for this site.

#### 2.1.1 Groundwater RAOs

#### **RAOs for Public Health Protection:**

- Prevent ingestion of groundwater containing contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles from contaminated groundwater.

#### **RAOs for Environmental Protection:**

- Restore groundwater aquifer to pre-disposal/pre- release conditions, to the extent practicable.
- Prevent the discharge of contaminants to surface water.
- Remove the source of groundwater or surface water contamination.

#### 2.1.2 Soil RAOs

#### RAOs for Public Health Protection:

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure to, contaminants volatilizing from contaminated soil.

#### **RAOs for Environmental Protection:**

 Prevent migration of contaminants that would result in groundwater or surface water contamination.

#### 2.1.3 Soil Vapor RAOs

#### RAOs for Public Health Protection:

• Mitigate impacts to public health resulting from existing, or the potential for, soils vapor intrusion into buildings at the site.

#### 2.2 DESCRIPTION OF SELECTED REMEDY

The site remedy was installed in accordance with the remedy selected by the NYSDEC in the Decision Document dated August 2017.

The factors considered during the selection of the remedy are those listed in 6NYCRR 375-1.8. The following are the components of the selected remedy:

- 1. Maintenance of the cover systems that currently exist in areas not occupied by buildings to prevent human exposure to any remaining contaminated soil/fill to allow for restricted residential use of the site;
- 2. Installation and operation of a coal tar recovery well to remove potentially mobile coal tar from the subsurface. Coal tar will be manually collected periodically from the well; however, if the well is determined by the NYSDEC to accumulate large quantities of coal tar over extended time periods, it may be retrofitted with an automatic collection system and additional wells may be added.
- 3. Execution and recording of a Declaration of Covenants and Restrictions (Deed Restriction) that will:
  - a. Restrict land use and prevent future exposure to any contamination remaining at the site.
  - b. Limit occupancy of the site that will result in the disturbance or excavation that threatens the integrity of the engineering controls.
  - c. Prohibit the site from ever being used for purposes other than non-residential uses, such as a parking lot and Commercial uses as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial uses as described in 6 NYCRR 375-1.8(g)(2)(iv), without the express written waiver of such prohibition by the NYSDEC.
  - d. Restrict the use of groundwater underlying the site.
  - e. Require the owner of the site to provide a periodic certification that will certify that the institutional and engineering controls put in place are unchanged from the previous certification and have not been impaired.
  - f. Maintain any institutional and engineering controls required for the remedy, unless the owner first obtains permission to discontinue such controls from the NYSDEC, in compliance with the approved SMP.
    - The Deed Restriction will be deemed a covenant that will run with the land and shall be binding upon all future owners of the site, and shall provide that the owner and its successors and assigns consent to enforcement by the NYSDEC.
- 4. Development and implementation of a Site Management Plan (SMP) for long term management of remaining contamination as required by the Deed Restriction, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting;
- 5. Periodic certification of the institutional and engineering controls listed above.

# 3.0 INTERIM REMEDIAL MEASURES AND REMEDIAL CONTRACTS

As stated in the Decision Document, no Interim Remedial Measures (IRMs) were performed at the site during the remedial investigation.

A source removal action was completed by State University of New York (SUNY) at the site under the oversight of the NYSDEC between September 2002 and January 2003, after SUNY acquired the properties and began activities associated with a Park Street entrance improvement program. A stone/brick underground containment structure, approximately 800 tons of MGP-impacted soil, and 3,200 gallons of impacted water that accumulated in the excavation were excavated and properly disposed off-site. The final excavation depth was approximately 20-feet bgs, terminating at the top of fractured bedrock. An area near the center of the excavation was excavated an additional 5-feet into fractured bedrock to approximately 25 feet bgs. The excavation was backfilled with material that met structural requirements, the landscaped areas and sidewalks were constructed, and the remaining area of the site was paved.

The information provided in a *Report of Activities at LL-Lot* letter correspondence from SUNY to the NYSDEC dated June 26, 2003 was relied upon to describe the source removal activities. A copy of the report is included as **Appendix C**.

#### 4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved *Installation of Monitoring Well MW-8* letter work plan that was prepared for the RG&E Park Street Former MGP Site (Arcadis 2017). No deviations from the letter work plan occurred during installation of MW-8.

#### 4.1 GOVERNING DOCUMENTS

The *Installation of Monitoring Well MW-8* letter work plan presented the objectives, remedial approach, scope of work, and design parameters for implementing the NYSDEC-selected site remedy. As stated in the letter work plan, the scope of work associated with installation of MW-8 was performed consistent with the requirements of the plans and governing documents presented in the NYSDEC-approved *Site Characterization Work Plan* (Arcadis 2015) (SCWP), and included:

- Health and Safety Plan (HASP)
- Quality Assurance Project Plan (QAPP)
- Field Sampling Plan (FSP)
- Community Air Monitoring Plan (CAMP)

Brief descriptions of each of these governing documents are presented below.

#### 4.1.1 Site Specific Health & Safety Plan

Work performed under the remedial action was in compliance with Site and worker safety requirements mandated by Federal OSHA. The HASP was complied with for all remedial and invasive work performed at the Site. A site- and task-specific HASP was included as Appendix A of the NYSDEC-approved SCWP. Key topics detailed in the HASP included monitoring, documentation, vapor emission action levels, hazard controls (e.g., personal protective equipment [PPE]), project personnel and responsibilities, material data safety sheets, utility identification requirements, and site traffic awareness and responses.

#### 4.1.2 Quality Assurance Project Plan

A QAPP was included as Appendix D of the SCWP. The QAPP describes the specific policies, objectives, organization, functional activities and quality assurance/quality control activities designed to achieve the project data quality objectives. Further, the QAPP presented analytical requirements by media; analyses for waste characterization; and shipping, data review and reporting requirements.

#### 4.1.3 Field Sampling Plan

A FSP was included as Appendix C of the SCWP. The FSP provided methods and guidelines for the field activities and sample collection requirements that were used during

implementation of the remedial action. Pertinent sections and requirements that were followed during the remedial action included soil boring/monitoring well installation, soil sampling, sample labeling/packaging/shipping, well development and equipment decontamination.

#### 4.1.4 Community Air Monitoring Plan

A Community Air Monitoring Plan (CAMP) was included as Appendix E of the SCWP. The objective of the CAMP was to provide direct measurement of volatile organic compounds (VOCs) and total airborne particulates potentially released during well installation, handling, and or transportation of soil at the site, and to eliminate nuisance odors to the community.

Continuous real-time monitoring for VOCs and particulates (i.e., dust) at the downwind perimeter of the work exclusion zone was conducted during installation of MW-8, along with periodic upwind monitoring.

A RAE MiniRAE 3000 photoionization detector (PID) capable of calculating 15-minute running average concentrations was used for community and worker air monitoring. The PID was calibrated at the beginning of each work day. Total organic vapors at the downwind perimeter of the exclusion zone did not exceed the action level of 5 parts per million (ppm) above background for the 15-minute average.

Particulate concentrations were also monitored continuously at the downwind perimeter of the exclusion zone. A TSI Dust Trak II particulate monitor equipped with an audible alarm, capable of measuring particulate matter less than 10 micrometers in size (PM-10), and capable of integrating over a period of 15 minutes for comparison to the airborne particulate action level was used. The downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m3) greater than background (upwind perimeter) for the 15-minute period was not exceeded during installation of MW-08. Additionally, airborne dust was not observed leaving the work area. Dust suppression techniques were not required.

#### 4.2 REMEDIAL PROGRAM ELEMENTS

#### 4.2.1 Contractors and Consultants

Contractors and consultants used during completion of the remedial activities are summarized in **Table 4.1**.

**Table 4.1 Contractors and Consultants** 

| Role / Responsibility                         | Name                              |
|-----------------------------------------------|-----------------------------------|
| Design Engineer                               | Arcadis of New York, Inc.         |
| Remedial Project Manager                      | Arcadis of New York, Inc.         |
| Construction Quality Control Representative   | Arcadis of New York, Inc.         |
| Well Installation Contractor                  | Nothnagle Drilling, Inc.          |
| Analytical Laboratory                         | Test America Laboratories, Inc.   |
| IDW Waste Characterization and Transportation | KBH Environmental, LLC            |
| Site Survey                                   | Fisher Associates                 |
| Waste Transportation                          | Environmental Service Group, Inc. |

#### 4.2.2 Site Preparation

Site preparation activities generally consisted of the following:

- Utility Location. Preliminary location of utilities was conducted during preparation of the base mapping during the initial site characterization activities. Prior to initiating field activities associated with the remedial action, NYS One Call (811) was again contacted to identify and mark public utilities in the work area. In addition, SUNY Geneseo identified the locations of private underground utility lines the university had installed around the proposed location of MW-8. A geophysical survey consisting of ground-penetrating radar and radio detection was then conducted at the site on October 8, 2017 by Underground Services (SoftDig) prior to initiating any intrusive work.
- Mobilizing manpower, equipment, and materials to the site. Mobilization activities were also conducted on October 8, 2017.
- A pre-construction meeting was held with the drilling contractor on the first morning of site activities on October 8, 2017. A notice of the meeting and invitation was extended to the NYSDEC and SUNY personnel. The pre-construction meeting and daily tailgate meetings were documented in a field log book.

All work was completed on SUNY property; therefore, permits relating to the remediation project were not required.

#### 4.2.3 General Site Controls

For security purposes and to minimize impacts to the SUNY community, MW-8 installation field activities were conducted over a Holiday break when classes were not in session. When not in use, equipment was stored in a secure Conex-type storage container located in a corner of the adjacent parking lot. Orange traffic cones and flagging were used to secure the work area to keep potential pedestrians/students at a safe distance.

Drill stem equipment was decontaminated within a temporarily constructed decontamination pad by pressure steam cleaning as described in the Field Sampling Plan. Drill cuttings, fluids, and other IDW generated as a result of equipment decontamination from the installation soil boring MW-8 were containerized in DOT-approved 55-gallon steel drums, labeled appropriately, and also temporarily staged onsite in the secure Conextype container. The decontamination pad was only required for one day, and was removed at the end of the day.

Daily field notes documenting on-site activities and soil screening results were maintained in a field log book. No problems were encountered with site controls during the remedial action.

#### 4.2.4 Nuisance controls

No dust or odor nuisance controls were required.

#### 4.2.5 CAMP results

Community air monitoring was conducted during intrusive work in accordance with the New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan (CAMP). VOCs and particulates were monitored from one upwind and one downwind location. No action thresholds were exceeded. A compact disk (CD) containing the air monitoring data relating to the CAMP is provided in electronic format in **Appendix D**.

#### 4.2.6 Reporting

Installation of MW-8, including well development, required three days to complete. Field notes were documenting on-site activities recorded daily in a field log book; however, daily reports were not required. Pertinent notes, details, and observations from the installation of MW-8 were included in the SMP, including a well construction log.

#### 4.3 CONTAMINATED MATERIALS REMOVAL

Investigation derived waste (IDW) generated during installation of MW-8 were containerized in DOT-approved 55-gallon drums, labeled appropriately, and temporarily staged in a secure Conex-type container. Two waste streams requiring off-site treatment and/or disposal were generated during the remedial action activities: liquids and soil/solids.

The location of the source area removal excavation performed in 2002 to 2003 and the location of MW-8 are also shown on **Figure 1**. Documentation of the source removal waste removal and disposal is provided in **Appendix C**.

#### 4.3.1 Disposal Details

At the completion of well MW-8 installation, the drum inventory included six drums of liquid (core water and development water) and one drum of soil cuttings. RG&E arranged to have KBH Environmental, LLC (KBH) collect waste characterization samples; drums

were removed from the site by KBH on November 16, 2017 and transported for off-site disposal. Based on the results of the waste characterization sampling conducted by KBH, soil and liquids were transported as non-RCRA, non-DOT regulated waste and transported by Environmental Service Group, Inc. to American Recyclers Company located in Tonawanda, New York.

**Table 4-2** shows the total quantities of each category of material removed from the site and the disposal locations. Copies of the shipping non-hazardous waste manifest is included in **Appendix E**; waste characterization laboratory analytical reports are included in **Appendix F**.

**Table 4.2 Waste Disposal Quantities and Facilities** 

| Material    | #<br>Drums | Estimated Quantity | Disposal Facility          |
|-------------|------------|--------------------|----------------------------|
| Liquids     | 6          | 330 gallons        | American Recyclers Company |
| Solids/Soil | 1          | 250 pounds         | American Recyclers Company |

#### 4.4 REMEDIAL DOCUMENTATION SAMPLING

During installation of MW-8, overburden soil recovered from each 4-foot interval was visually characterized and headspace-screened with a PID. Two overburden soil samples (plus QA/QC samples) were selected per the sample selection criteria included in the SCWP and sent for laboratory analysis of VOCs and semivolatile organic compounds (SVOCs). The soil sampling results were included with the site characterization data in the SMP; the summary table is included as **Table 1**. The soil sampling results are also summarized on **Figure 2** and **Figure 3**, with exceedances of SCOs highlighted.

A Data Usability Summary Report (DUSR) was prepared for all soil data generated during the remedial action. The DUSR is included in **Appendix G**, and associated laboratory reports are provided electronically in **Appendix H**.

#### 4.5 IMPORTED BACKFILL

No imported fill was required by the remedial action.

#### 4.6 CONTAMINATION REMAINING AT THE SITE

As indicated above, source material and soil containing visual MGP-impacts on the former MGP property were removed by SUNY with NYSDEC oversight from 2002 to 2003. A summary of the MGP-related impacts remaining at the site following the completion of the remedial action activities is provided in the following subsections.

#### 4.6.1 Soil

During the site characterization conducted from 2015 to 2016, 22 soil samples were collected from 11 soil borings for laboratory analysis. Two additional soil samples were collected for laboratory analyses during the subsequent installation of MW-8 in October 2017. **Table 1** summarizes the results of all soil samples remaining at the site after completion of Remedial Action that exceed the Unrestricted Use SCOs and Restricted Commercial Use SCOs. Summaries of the VOC and SVOC results of soil samples collected during the site characterization and subsequent MW-8 installation that exceed the Unrestricted Use SCOs and the Restricted Commercial Use SCOs at the site are also included as **Figure 2** and **Figure 3**.

Soil containing one or more residual MGP contaminants above their respective Unrestricted Use SCO was first encountered at approximately 4 feet bgs at various locations across the site. Weathered bedrock is encountered between 8 to 18.5 ft. bgs; therefore, the layer of soil containing those residual MGP contaminants could potentially vary from 4 ft. to 14.5 ft. in thickness. There may be some residual MGP contaminants also present in the weathered bedrock which ranges another 0.3 ft. to 6 ft. bgs and the upper 10 feet of bedrock that was observed to be highly fractured.

#### 4.6.2 Groundwater

Based on the groundwater sampling completed during the site characterization, depth to groundwater across most of the site is 10 ft. to 15 ft. bgs. None of the polycyclic aromatic hydrocarbon (PAH) analytes associated with MGP operations were detected at concentrations above their respective groundwater guidance values; benzene, toluene, ethylbenzene, and xylene (BTEX) analytes, where existing, were only detected at concentrations slightly above groundwater standards.

The volatile and semivolatile analytes detected in groundwater during the site characterization are summarized in Table 5 of the SMP. The table includes a comparison of reported data to *New York State Division of Water Technical and Operational Guidance Series 1.1.1* (TOGS 1.1.1) groundwater quality standards and/or guidance criteria. Summaries of the volatile and semivolatile results of groundwater samples collected during the site characterization that exceed the TOGS 1.1.1 groundwater standards or guidance values are included as Figure 7 and Figure 8 in the SMP.

#### 4.6.3 Soil Vapor

Soil vapor samples were collected in September 2015 during the site characterization and submitted for analysis by USEPA Compendium Method TO-15. Results from the TO-15 analyses are summarized in Table 9 of the SMP. In general, BTEX compounds were detected in much lower concentrations than were non-MGP related chlorinated VOCs. Acetone and chloroform were the VOCs detected in the highest frequencies and in the highest relative concentrations. None of the "MGP-indicator" analytes included with the

TO-15 analyses (indene, isooctane, or thiopenes) were detected in any of the soil gas samples. Gasoline indicators were present in 6 of the 7 soil vapor samples collected from across the site. Based on the types of analytes detected, no evidence of MGP impacts exist in the soil vapor.

Since contaminated soil and groundwater remain beneath the site after completion of the remedial action, Engineering and Institutional Controls (ECs/ICs) are required to protect human health and the environment. These ECs/ICs are described in the following sections. Long-term management of these EC/ICs and residual contamination will be performed under a SMP approved by the NYSDEC.

#### 4.7 SOIL COVER SYSTEM

A site cover currently exists and will be maintained to allow for restricted residential and/or and industrial uses of the site. The cover system consists of asphalt pavement, concrete-covered sidewalks, and a paved access road, with a small landscaped area located at the southern end of the site. Site covers are shown on **Figure 1**. Any site redevelopment will maintain the existing site cover. The site cover may include paved surface parking areas, sidewalks, or soil where the upper 2-feet of exposed surface soil meets the applicable soil cleanup objectives for restricted residential use. An Excavation Work Plan, which outlines the procedures required in the event the cover system and/or underlying residual contamination are disturbed, is provided in Appendix D of the SMP.

#### 4.8 OTHER ENGINEERING CONTROLS

Since remaining MGP-related impacts exist beneath the site, the following EC was required by the Decision Document:

A coal tar recovery well (MW-8) was installed to collect and remove potentially
mobile coal tar from the subsurface that may remain beyond the excavation limits.
The location of the coal tar recovery well is also shown on Figure 1. Well
construction details are included in the SMP; a well construction log is included in
Appendix B of the SMP.

Procedures for monitoring, operating and maintaining the coal tar recovery well are provided in the Monitoring and Sampling Plan and Operation and Maintenance Plan in Section 4 and Section 5, respectively of the SMP. The Monitoring Plan also addresses inspection procedures that must occur after any severe weather condition has taken place that may affect on-site ECs.

#### 4.9 INSTITUTIONAL CONTROLS

The site remedy requires that an institutional control in the form of a deed restriction be placed on the controlled property to (1) require the remedial party to submit to the Department periodic certification of ICs and ECs in accordance with 6 NYCRR Part 375-

1.8(h)(3); (2) restrict the use of groundwater as a source of potable or process water without necessary water quality treatment as determined by the NYSDOH or County DOH; (3) prohibit the use and development of the controlled property from ever being used for purposes other than non-residential uses, such as a parking lot and Commercial uses as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and industrial uses as described in Part 375-1.8(g)(2)(iv) without the express written waiver of such prohibition by the Department, subject to local zoning laws; and (4) require compliance with the Department-approved SMP.

The deed restriction for the site is currently being reviewed by the Department, and will be filed with the Livingston County Clerk upon Department acceptance. Upon acceptance, a copy of the deed restriction will be included in **Appendix I**.

#### 4.10 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN

No deviations from the *Installation of Monitoring Well MW-8* letter work plan occurred during installation of MW-8.

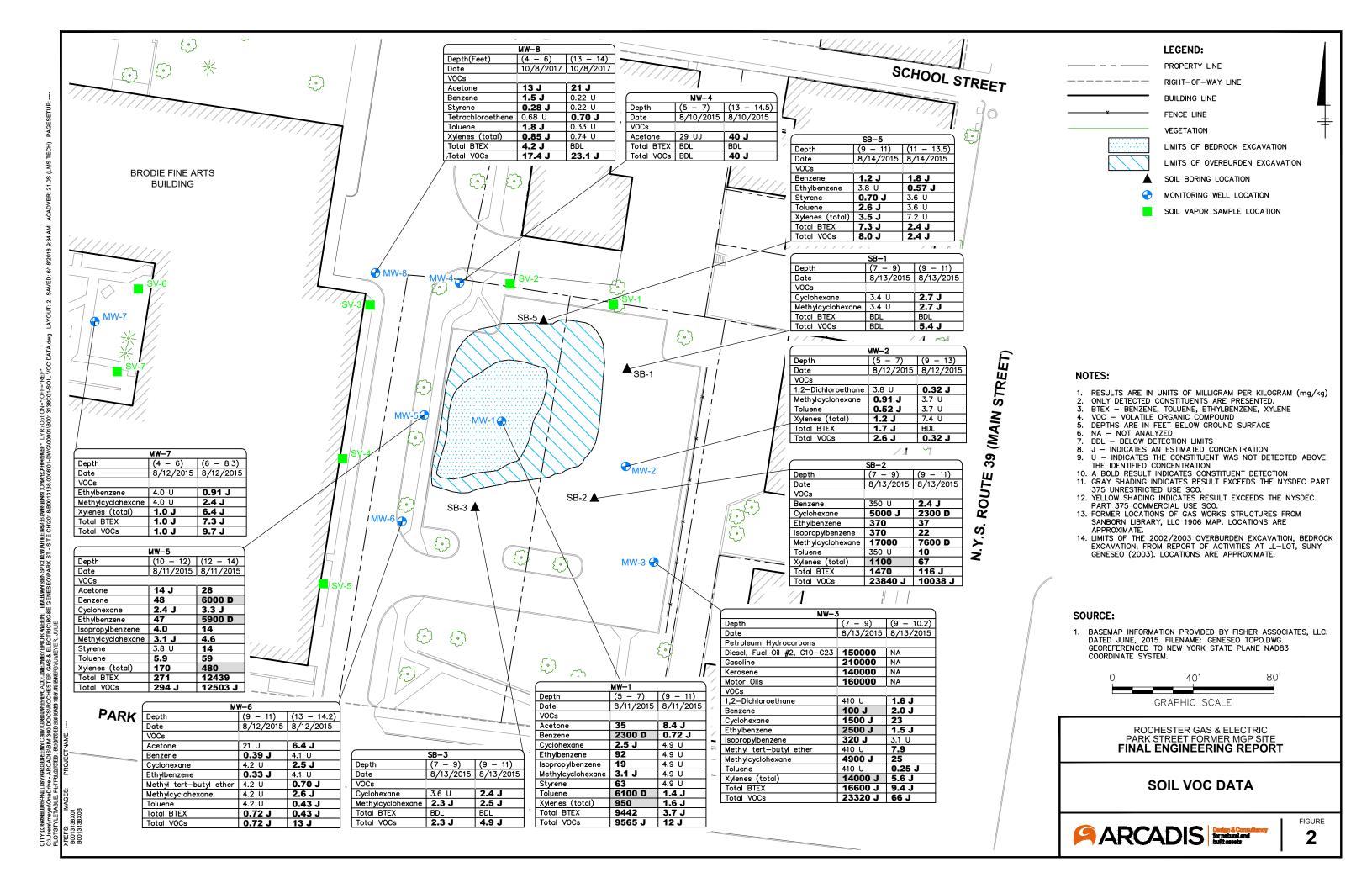
## **Tables**

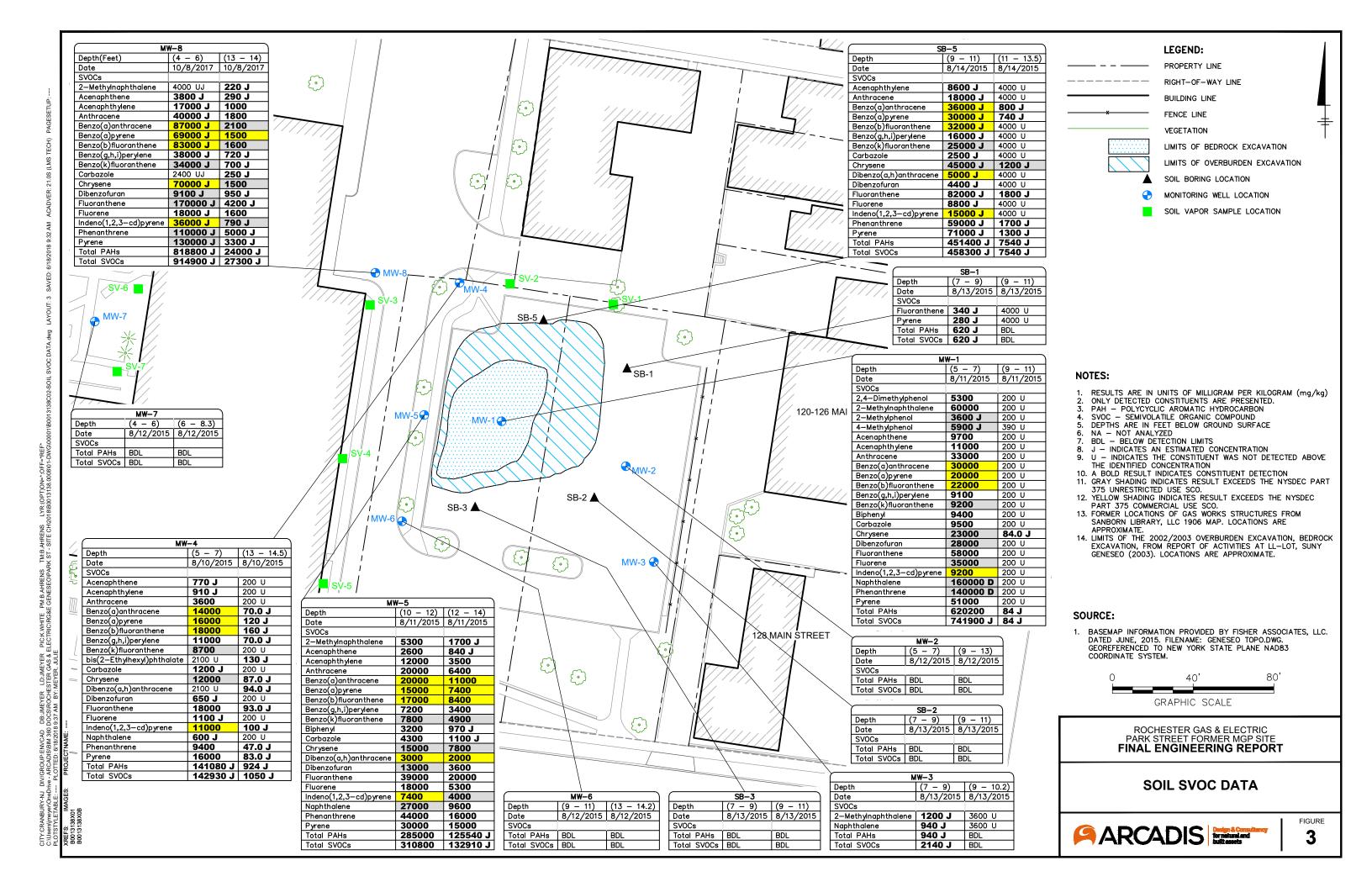
#### Table 1 Soil Analytical Results (Detected Analytes Only)

### Final Engineering Report (table taken from Site Management Plan) Park Street Former MGP Site

| Location ID:                                  | Unrestricted | Restricted Use<br>SCOs | Units | MW-1              | MW-1               | MW-2              | MW-2               | MW-3              | MW-3                 | MW-4              | MW-4                  | MW-5                | MW-5                | MW-6               | MW-6                  | MW-7              | MW-7                | MW-8              | MW-8                | SB-1              | SB-1               | SB-2              | SB-2               | SB-3              | SB-3               | SB-5               | SB-5                  |
|-----------------------------------------------|--------------|------------------------|-------|-------------------|--------------------|-------------------|--------------------|-------------------|----------------------|-------------------|-----------------------|---------------------|---------------------|--------------------|-----------------------|-------------------|---------------------|-------------------|---------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|--------------------|-----------------------|
| Sample Depth(Feet BGS):  Date Collected:      | Use SCOs     | Commercial             | Onits | 5 - 7<br>08/11/15 | 9 - 11<br>08/11/15 | 5 - 7<br>08/12/15 | 9 - 13<br>08/12/15 | 7 - 9<br>08/13/15 | 9 - 10.2<br>08/13/15 | 5 - 7<br>08/10/15 | 13 - 14.5<br>08/10/15 | 10 - 12<br>08/11/15 | 12 - 14<br>08/11/15 | 9 - 11<br>08/12/15 | 13 - 14.2<br>08/12/15 | 4 - 6<br>08/12/15 | 6 - 8.3<br>08/12/15 | 4 - 6<br>10/08/17 | 13 - 14<br>10/08/17 | 7 - 9<br>08/13/15 | 9 - 11<br>08/13/15 | 7 - 9<br>08/13/15 | 9 - 11<br>08/13/15 | 7 - 9<br>08/13/15 | 9 - 11<br>08/13/15 | 9 - 11<br>08/14/15 | 11 - 13.5<br>08/14/15 |
| Volatile Organic Compounds                    |              |                        |       |                   |                    |                   |                    |                   |                      |                   |                       |                     |                     |                    |                       |                   |                     |                   |                     |                   |                    |                   |                    |                   |                    |                    |                       |
| 1,2-Dichloroethane                            | 20           | 30,000                 | ug/kg | 4.0 U             | 4.9 U              | 3.8 U             | 0.32 J             | 410 U             | 1.6 J                | 5.9 UJ            | 4.1 UJ                | 3.8 U               | 3.7 U               | 4.2 U              | 4.1 U                 | 4.0 U             | 3.8 U               | 0.25 UJ           | 0.22 U              | 3.4 U             | 3.9 U              | 350 U             | 3.7 U              | 3.6 U             | 3.7 U              | 3.8 U              | 3.6 U                 |
| Acetone                                       | 50           | 500,000                | ug/kg | 35                | 8.4 J              | 22 UB             | 18 U               | 2,000 U           | 15 U                 | 29 UJ             | 40 J                  | 14 J                | 28                  | 21 U               | 6.4 J                 | 20 UB             | 19 UB               | 13 J              | 21 J                | 17 U              | 20 UB              | 1,700 U           | 18 UB              | 18 U              | 19 UB              | 19 U               | 18 UB                 |
| Benzene                                       | 60           | 44,000                 | ug/kg | 2,300 D           | 0.72 J             | 3.8 U             | 3.7 U              | 100 J             | 2.0 J                | 5.9 UJ            | 4.1 UJ                | 48                  | 6,000 D             | 0.39 J             | 4.1 U                 | 4.0 U             | 3.8 U               | 1.5 J             | 0.22 U              | 3.4 U             | 3.9 U              | 350 U             | 2.4 J              | 3.6 U             | 3.7 U              | 1.2 J              | 1.8 J                 |
| Cyclohexane                                   |              |                        | ug/kg | 2.5 J             | 4.9 U              | 3.8 U             | 3.7 U              | 1,500 J           | 23                   | 5.9 UJ            | 4.1 UJ                | 2.4 J               | 3.3 J               | 4.2 U              | 2.5 J                 | 4.0 U             | 3.8 U               | 0.71 U            | 0.62 U              | 3.4 U             | 2.7 J              | 5,000 J           | 2,300 D            | 3.6 U             | 2.4 J              | 3.8 U              | 3.6 U                 |
| Ethylbenzene                                  | 1,000        | 390,000                | ug/kg | 92                | 4.9 U              | 3.8 U             | 3.7 U              | 2,500 J           | 1.5 J                | 5.9 UJ            | 4.1 UJ                | 47                  | 5,900 D             | 0.33 J             | 4.1 U                 | 4.0 U             | 0.91 J              | 0.35 UJ           | 0.30 U              | 3.4 U             | 3.9 U              | 370               | 37                 | 3.6 U             | 3.7 U              | 3.8 U              | 0.57 J                |
| Isopropylbenzene                              | -            |                        | ug/kg | 19                | 4.9 U              | 3.8 U             | 3.7 U              | 320 J             | 3.1 U                | 5.9 UJ            | 4.1 UJ                | 4.0                 | 14                  | 4.2 U              | 4.1 U                 | 4.0 U             | 3.8 U               | 0.76 U            | 0.66 U              | 3.4 U             | 3.9 U              | 370               | 22                 | 3.6 U             | 3.7 U              | 3.8 U              | 3.6 U                 |
| Methyl tert-butyl ether                       | 930          | 500,000                | ug/kg | 4.0 U             | 4.9 U              | 3.8 U             | 3.7 U              | 410 U             | 7.9                  | 5.9 UJ            | 4.1 UJ                | 3.8 U               | 3.7 U               | 4.2 U              | 0.70 J                | 4.0 U             | 3.8 U               | 0.49 U            | 0.43 U              | 3.4 U             | 3.9 U              | 350 U             | 3.7 U              | 3.6 U             | 3.7 U              | 3.8 U              | 3.6 U                 |
| Methylcyclohexane                             | -            |                        | ug/kg | 3.1 J             | 4.9 U              | 0.91 J            | 3.7 U              | 4,900 J           | 25                   | 5.9 UJ            | 4.1 UJ                | 3.1 J               | 4.6                 | 4.2 U              | 2.6 J                 | 4.0 U             | 2.4 J               | 0.77 U            | 0.67 U              | 3.4 U             | 2.7 J              | 17,000            | 7,600 D            | 2.3 J             | 2.5 J              | 3.8 U              | 3.6 U                 |
| Styrene                                       | -            |                        | ug/kg | 63                | 4.9 U              | 3.8 U             | 3.7 U              | 410 U             | 3.1 U                | 5.9 UJ            | 4.1 UJ                | 3.8 U               | 14                  | 4.2 U              | 4.1 U                 | 4.0 U             | 3.8 U               | 0.28 J            | 0.22 U              | 3.4 U             | 3.9 U              | 350 U             | 3.7 U              | 3.6 U             | 3.7 U              | 0.70 J             | 3.6 U                 |
| Tetrachloroethene                             | 1,300        | 150,000                | ug/kg | 4.0 U             | 4.9 U              | 3.8 U             | 3.7 U              | 410 U             | 3.1 U                | 5.9 UJ            | 4.1 UJ                | 3.8 U               | 3.7 U               | 4.2 U              | 4.1 U                 | 4.0 U             | 3.8 U               | 0.68 U            | 0.70 J              | 3.4 U             | 3.9 U              | 350 U             | 3.7 U              | 3.6 U             | 3.7 U              | 3.8 U              | 3.6 U                 |
| Toluene                                       | 700          | 500,000                | ug/kg | 6,100 D           | 1.4 J              | 0.52 J            | 3.7 U              | 410 U             | 0.25 J               | 5.9 UJ            | 4.1 UJ                | 5.9                 | 59                  | 4.2 U              | 0.43 J                | 4.0 U             | 3.8 U               | 1.8 J             | 0.33 U              | 3.4 U             | 3.9 U              | 350 U             | 10                 | 3.6 U             | 3.7 U              | 2.6 J              | 3.6 U                 |
| Xylenes (total)                               | 260          | 500,000                | ug/kg | 950               | 1.6 J              | 1.2 J             | 7.4 U              | 14,000 J          | 5.6 J                | 12 UJ             | 8.1 UJ                | 170                 | 480                 | 8.4 U              | 8.2 U                 | 1.0 J             | 6.4 J               | 0.85 J            | 0.74 U              | 6.8 U             | 7.9 U              | 1,100             | 67                 | 7.1 U             | 7.5 U              | 3.5 J              | 7.2 U                 |
| Total BTEX                                    |              |                        | μg/kg | 9,442             | 3.7 J              | 1.7 J             | BDL                | 16,600 J          | 9.4 J                | BDL               | BDL                   | 271                 | 12,439              | 0.72 J             | 0.43 J                | 1.0 J             | 7.3 J               | 4.2 J             | BDL                 | BDL               | BDL                | 1,470             | 116 J              | BDL               | BDL                | 7.3 J              | 2.4 J                 |
| Total Volatile Organic Compounds (VOCs)       |              |                        | μg/kg | 9,565 J           | 12.1 J             | 2.63 J            | 0.32 J             | 23,320 J          | 66.5 J               | BDL               | 40 J                  | 294 J               | 12,503 J            | 0.72 J             | 12.6 J                | 1.0 J             | 9.71 J              | 17.4 J            | 23.1 J              | BDL               | 5.4 J              | 23,840 J          | 10,038 J           | 2.3 J             | 4.9 J              | 8.0 J              | 2.37 J                |
| Semivolatile Organic Compounds                |              |                        |       |                   |                    |                   |                    |                   |                      |                   |                       |                     |                     |                    |                       |                   |                     |                   |                     |                   |                    |                   |                    |                   |                    |                    |                       |
| 2,4-Dimethylphenol                            |              |                        | μg/kg | 5,300             | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 2,100 U           | 200 U                 | 1,900 U             | 1,800 U             | 180 U              | 890 U                 | 980 U             | 9,300 U             | 4,800 UJ          | 250 U               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 21,000 UJ          | 4,000 U               |
| 2-Methylnaphthalene                           | -            |                        | μg/kg | 60,000            | 200 U              | 920 U             | 1,800 U            | 1,200 J           | 3,600 U              | 2,100 U           | 200 U                 | 5,300               | 1,700 J             | 180 U              | 890 U                 | 980 U             | 9,300 U             | 4,000 UJ          | 220 J               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 21,000 UJ          | 4,000 U               |
| 2-Methylphenol                                | 330          | 500,000                | μg/kg | 3,600 J           | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 2,100 U           | 200 U                 | 1,900 U             | 1,800 U             | 180 U              | 890 U                 | 980 U             | 9,300 U             | 2,400 UJ          | 120 U               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 21,000 UJ          | 4,000 U               |
| 4-Methylphenol                                | 330          | 500,000                | μg/kg | 5,900 J           | 390 U              | 1,800 U           | 3,600 U            | 7,000 U           | 7,000 U              | 4,000 U           | 380 U                 | 3,700 U             | 3,500 U             | 350 U              | 1,700 U               | 1,900 U           | 18,000 U            | 2,400 UJ          | 120 U               | 4,000 U           | 7,700 U            | 3,600 U           | 6,800 U            | 1,400 U           | 17,000 U           | 41,000 UJ          | 7,800 U               |
| Acenaphthene                                  | 20,000       | 500,000                | μg/kg | 9,700             | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 770 J             | 200 U                 | 2,600               | 840 J               | 180 U              | 890 U                 | 980 U             | 9,300 U             | 3,800 J           | 290 J               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 21,000 UJ          | 4,000 U               |
| Acenaphthylene                                | 100,000      | 500,000                | μg/kg | 11,000            | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 910 J             | 200 U                 | 12,000              | 3,500               | 180 U              | 890 U                 | 980 U             | 9,300 U             | 17,000 J          | 1,000               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 8,600 J            | 4,000 U               |
| Anthracene                                    | 100,000      | 500,000                | μg/kg | 33,000            | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 3,600             | 200 U                 | 20,000              | 6,400               | 180 U              | 890 U                 | 980 U             | 9,300 U             | 40,000 J          | 1,800               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 18,000 J           | 4,000 U               |
| Benzo(a)anthracene                            | 1,000        | 5,600                  | μg/kg | 30,000            | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 14,000            | 70.0 J                | 20,000              | 11,000              | 180 U              | 890 U                 | 980 U             | 9,300 U             | 87,000 J          | 2,100               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 36,000 J           | 800 J                 |
| Benzo(a)pyrene                                | 1,000        | 1,000                  | μg/kg | 20,000            | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 16,000            | 120 J                 | 15,000              | 7,400               | 180 U              | 890 U                 | 980 U             | 9,300 U             | 69,000 J          | 1,500               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 30,000 J           | 740 J                 |
| Benzo(b)fluoranthene                          | 1,000        | 5,600                  | μg/kg | 22,000            | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 18,000            | 160 J                 | 17,000              | 8,400               | 180 U              | 890 U                 | 980 U             | 9,300 U             | 83,000 J          | 1,600               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 32,000 J           | 4,000 U               |
| Benzo(g,h,i)perylene                          | 100,000      | 500,000                | μg/kg | 9,100             | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 11,000            | 70.0 J                | 7,200               | 3,400               | 180 U              | 890 U                 | 980 U             | 9,300 U             | 38,000 J          | 720 J               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 16,000 J           | 4,000 U               |
| Benzo(k)fluoranthene                          | 800          | 56,000                 | μg/kg | 9,200             | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 8,700             | 200 U                 | 7,800               | 4,900               | 180 U              | 890 U                 | 980 U             | 9,300 U             | 34,000 J          | 700 J               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 25,000 J           | 4,000 U               |
| Biphenyl                                      |              |                        | μg/kg | 9,400             | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 2,100 U           | 200 U                 | 3,200               | 970 J               | 180 U              | 890 U                 | 980 U             | 9,300 U             | 3,000 UJ          | 150 U               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 21,000 UJ          | 4,000 U               |
| bis(2-Ethylhexyl)phthalate                    |              |                        | μg/kg | 3,800 U           | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 2,100 U           | 130 J                 | 1,900 U             | 1,800 U             | 180 U              | 890 U                 | 980 U             | 9,300 U             | 6,800 UJ          | 350 U               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 21,000 UJ          | 4,000 U               |
| Carbazole                                     |              |                        | μg/kg | 9,500             | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 1,200 J           | 200 U                 | 4,300               | 1,100 J             | 180 U              | 890 U                 | 980 U             | 9,300 U             | 2,400 UJ          | 250 J               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 2,500 J            | 4,000 U               |
| Chrysene                                      | 1,000        | 56,000                 | μg/kg | 23,000            | 84.0 J             | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 12,000            | 87.0 J                | 15,000              | 7,800               | 180 U              | 890 U                 | 980 U             | 9,300 U             | 70,000 J          | 1,500               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 45,000 J           | 1,200 J               |
| Dibenzo(a,h)anthracene                        | 330          | 560                    | μg/kg | 3,800 U           | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 2,100 U           | 94.0 J                | 3,000               | 2,000               | 180 U              | 890 U                 | 980 U             | 9,300 U             | 3,500 UJ          | 180 U               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 5,000 J            | 4,000 U               |
| Dibenzofuran                                  | 7,000        | 350,000                | μg/kg | 28,000            | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 650 J             | 200 U                 | 13,000              | 3,600               | 180 U              | 890 U                 | 980 U             | 9,300 U             | 9,100 J           | 950 J               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 4,400 J            | 4,000 U               |
| Fluoranthene                                  | 100,000      | 500,000                | μg/kg | 58,000            | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 18,000            | 93.0 J                | 39,000              | 20,000              | 180 U              | 890 U                 | 980 U             | 9,300 U             | 170,000 J         | 4,200 J             | 340 J             | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 82,000 J           | 1,800 J               |
| Fluorene                                      | 30,000       | 500,000                | μg/kg | 35,000            | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 1,100 J           | 200 U                 | 18,000              | 5,300               | 180 U              | 890 U                 | 980 U             | 9,300 U             | 18,000 J          | 1,600               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 8,800 J            | 4,000 U               |
| Indeno(1,2,3-cd)pyrene                        | 500          | 5,600                  | μg/kg | 9,200             | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 11,000            | 100 J                 | 7,400               | 4,000               | 180 U              | 890 U                 | 980 U             | 9,300 U             | 36,000 J          | 790 J               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 15,000 J           | 4,000 U               |
| Naphthalene                                   | 12,000       | 500,000                | μg/kg | 160,000 D         | 200 U              | 920 U             | 1,800 U            | 940 J             | 3,600 U              | 600 J             | 200 U                 | 27,000              | 9,600               | 180 U              | 890 U                 | 980 U             | 9,300 U             | 2,600 UJ          | 130 U               | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 21,000 UJ          | 4,000 U               |
| Phenanthrene                                  | 100,000      | 500,000                | μg/kg | 140,000 D         | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 9,400             | 47.0 J                | 44,000              | 16,000              | 180 U              | 890 U                 | 980 U             | 9,300 U             | 110,000 J         | 5,000 J             | 2,100 U           | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 59,000 J           | 1,700 J               |
| Pyrene                                        | 100,000      | 500,000                | μg/kg | 51,000            | 200 U              | 920 U             | 1,800 U            | 3,600 U           | 3,600 U              | 16,000            | 83.0 J                | 30,000              | 15,000              | 180 U              | 890 U                 | 980 U             | 9,300 U             | 130,000 J         | 3,300 J             | 280 J             | 4,000 U            | 1,800 U           | 3,500 U            | 740 U             | 8,900 U            | 71,000 J           | 1,300 J               |
| Total Polycyclic Aromatic Hydrocarbons (PAHs) |              |                        | μg/kg | 620,200           | 84.0 J             | BDL               | BDL                | 940 J             | BDL                  | 141,080 J         | 924 J                 | 285,000             | 125,540             | BDL                | BDL                   | BDL               | BDL                 | 818,800 J         | 24,000 J            | 620 J             | BDL                | BDL               | BDL                | BDL               | BDL                | 451,400 J          | 7,540 J               |
| Total Semivolatile Organic Compounds (SVOCs)  |              |                        | μg/kg | 741,900 J         | 84.0 J             | BDL               | BDL                | 2,140 J           | BDL                  | 142,930 J         | 1,054 J               | 310,800             | 132,910 J           | BDL                | BDL                   | BDL               | BDL                 | 914,900 J         | 27,300 J            | 620 J             | BDL                | BDL               | BDL                | BDL               | BDL                | 458,300 J          | 7,540 J               |

### Table 1 Soil Analytical Results (Detected Analytes Only)


### Final Engineering Report (table taken from Site Management Plan) Park Street Former MGP Site


| Location ID:                 |                          | Restricted Use     |       | MW-1     | MW-1     | MW-2     | MW-2     | MW-3      | MW-3     | MW-4     | MW-4      | MW-5     | MW-5     | MW-6     | MW-6      | MW-7     | MW-7     | MW-8     | MW-8     | SB-1     | SB-1     | SB-2     | SB-2     | SB-3     | SB-3     | SB-5     | SB-5      |
|------------------------------|--------------------------|--------------------|-------|----------|----------|----------|----------|-----------|----------|----------|-----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| Sample Depth(Feet BGS):      | Unrestricted<br>Use SCOs | SCOs<br>Commercial | Units | 5 - 7    | 9 - 11   | 5 - 7    | 9 - 13   | 7 - 9     | 9 - 10.2 | 5 - 7    | 13 - 14.5 | 10 - 12  | 12 - 14  | 9 - 11   | 13 - 14.2 | 4 - 6    | 6 - 8.3  | 4 - 6    | 13 - 14  | 7 - 9    | 9 - 11   | 7 - 9    | 9 - 11   | 7 - 9    | 9 - 11   | 9 - 11   | 11 - 13.5 |
| Date Collected:              |                          |                    |       | 08/11/15 | 08/11/15 | 08/12/15 | 08/12/15 | 08/13/15  | 08/13/15 | 08/10/15 | 08/10/15  | 08/11/15 | 08/11/15 | 08/12/15 | 08/12/15  | 08/12/15 | 08/12/15 | 10/08/17 | 10/08/17 | 08/13/15 | 08/13/15 | 08/13/15 | 08/13/15 | 08/13/15 | 08/13/15 | 08/14/15 | 08/14/15  |
| Petroleum Hydrocarbons       |                          |                    |       |          |          |          |          | 1         |          |          |           | 1        | Ι        |          |           |          | 1        |          | Ι        |          | Ι        |          | 1        |          |          |          |           |
| Diesel, Fuel Oil #2, C10-C23 |                          |                    | mg/kg | NA       | NA       | NA       | NA       | 150       | NA       | NA       | NA        | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA        |
| Fuel Oil #4                  |                          |                    | mg/kg | NA       | NA       | NA       | NA       | 18.0 U    | NA       | NA       | NA        | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA        |
| Fuel Oil #6                  |                          |                    | mg/kg | NA       | NA       | NA       | NA       | 18.0 U    | NA       | NA       | NA        | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA        |
| Gasoline                     |                          |                    | mg/kg | NA       | NA       | NA       | NA       | 210       | NA       | NA       | NA        | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA        |
| Kerosene                     |                          |                    | mg/kg | NA       | NA       | NA       | NA       | 140       | NA       | NA       | NA        | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA        |
| Motor Oils                   |                          |                    | mg/kg | NA       | NA       | NA       | NA       | 160       | NA       | NA       | NA        | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA        |
| Unknown Hydrocarbon1         |                          |                    | mg/kg | NA       | NA       | NA       | NA       | 18.0 U    | NA       | NA       | NA        | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA       | NA        |
| Inorganics                   | janics                   |                    |       |          |          |          |          |           |          |          |           |          |          |          |           |          |          |          |          |          |          |          |          |          |          |          |           |
| Aluminum                     |                          |                    | mg/kg | 16,600 J | 17,100 J | 11,200 J | 16,700 J | 10,400 J  | 12,700 J | 9,860 J  | 17,800 J  | 16,400 J | 15,300 J | 15,100 J | 17,900 J  | 20,300 J | 15,700 J | 15,400   | 15,100   | 12,600   | 15,500   | 11,200   | 12,800   | 14,400   | 14,100   | 17,300   | 18,600    |
| Antimony                     |                          |                    | mg/kg | 17.8 UJ  | 17.5 UJ  | 16.6 UJ  | 16.3 UJ  | 15.8 UJ   | 15.1 UJ  | 18.7 UJ  | 16.7 UJ   | 0.990 J  | 16.8 UJ  | 15.6 UJ  | 15.9 UJ   | 16.6 UJ  | 16.8 UJ  | 0.470 UJ | 0.470 UJ | 19.0 U   | 17.5 U   | 0.650 J  | 16.0 U   | 16.2 U   | 15.7 U   | 18.6 U   | 18.0 U    |
| Arsenic                      | 13                       | 16                 | mg/kg | 2.20 J   | 2.90     | 3.60     | 4.00     | 3.60      | 3.60     | 23.9     | 6.60      | 3.90     | 4.80     | 2.80     | 3.50      | 2.40     | 5.60     | 18.5     | 2.30 J   | 7.30     | 3.40     | 3.70     | 4.00     | 4.10     | 3.80     | 5.00     | 3.60      |
| Barium                       | 350                      | 400                | mg/kg | 66.3 J   | 86.4 J   | 55.3 J   | 67.7 J   | 44.3 J    | 47.2 J   | 95.3 J   | 63.9 J    | 168 J    | 69.5 J   | 98.9 J   | 58.8 J    | 75.1 J   | 57.8 J   | 184      | 45.9     | 92.7     | 54.9     | 48.3     | 99.5     | 71.1     | 63.6     | 123      | 76.6      |
| Beryllium                    | 7.2                      | 590                | mg/kg | 0.820    | 0.830    | 0.550    | 0.820    | 0.490     | 0.640    | 0.900    | 0.950     | 0.820    | 0.750    | 0.760    | 0.920     | 0.880    | 0.740    | 0.960    | 0.890    | 0.580    | 0.790    | 0.590    | 0.690    | 0.750    | 0.750    | 0.860    | 0.960     |
| Cadmium                      | 2.5                      | 9.3                | mg/kg | 0.0370 J | 0.0410 J | 0.0940 J | 0.0340 J | 0.140 J   | 0.0720 J | 0.290    | 0.130 J   | 0.0530 J | 0.260    | 0.0560 J | 0.210 U   | 0.0740 J | 0.160 J  | 1.10     | 0.0350 U | 0.150 J  | 0.0640 J | 0.0610 J | 0.210 U  | 0.220 U  | 0.0360 J | 0.610    | 0.0570 J  |
| Calcium                      |                          |                    | mg/kg | 56,600 J | 45,300 J | 72,200 J | 53,400 J | 54,500 J  | 59,200 J | 49,500 J | 12,900 J  | 40,000 J | 35,000 J | 45,300 J | 22,600 J  | 37,500 J | 46,500 J | 26,100   | 16,800   | 24,000   | 37,900   | 60,400   | 71,300   | 56,300   | 47,600   | 8,180    | 11,400    |
| Chromium                     |                          |                    | mg/kg | 24.7 J   | 26.1 J   | 16.8 J   | 24.3 J   | 15.1 J    | 19.2 J   | 15.7 J   | 26.6 J    | 24.8 J   | 22.9 J   | 22.9 J   | 27.2 J    | 26.4 J   | 24.3 J   | 31.3 J   | 21.8 J   | 16.8     | 25.3     | 17.5     | 20.2     | 22.4     | 22.3     | 23.9     | 28.8      |
| Cobalt                       |                          |                    | mg/kg | 13.5     | 13.7     | 10.4     | 15.4     | 10.8      | 12.5     | 6.50     | 15.4      | 14.9     | 14.5     | 13.4     | 14.7      | 8.70     | 10.7     | 13.1 J   | 8.90 J   | 8.60     | 15.1     | 10.8     | 12.2     | 14.2     | 15.5     | 12.2     | 17.1      |
| Copper                       | 50                       | 270                | mg/kg | 27.8     | 28.0     | 27.7 J   | 30.5 J   | 32.1 J    | 28.0 J   | 49.0     | 42.2      | 26.6     | 31.0     | 27.0     | 28.3      | 17.3 J   | 34.1 J   | 60.5 J   | 26.2 J   | 27.4     | 27.1     | 26.5     | 29.1     | 29.2     | 28.0     | 18.4     | 27.0      |
| Cyanide                      | 27                       | 27                 | mg/kg | 1.10 U   | 0.860 J  | 1.10 U   | 1.10     | 1.00 U    | 1.10 U   | 5.80     | 1.10 U    | 2.90     | 3.80     | 1.00 U   | 1.00 U    | 1.10 U   | 1.10 U   | NA       | NA       | 1.20 U   | 1.20 U   | 1.10 U   | 1.00 U   | 1.10 U   | 1.00 U   | 469      | 1.20 U    |
| Iron                         |                          |                    | mg/kg | 20,200 J | 23,800 J | 16,500 J | 21,400 J | 15,500 J  | 18,300 J | 11,000 J | 27,100 J  | 23,800 J | 24,300 J | 21,300 J | 24,100 J  | 19,300 J | 21,100 J | 25,000 J | 17,900 J | 17,100   | 24,500   | 17,100   | 19,700   | 21,400   | 21,700   | 23,300   | 27,300    |
| Lead                         | 63                       | 1,000              | mg/kg | 10.1     | 10.1     | 12.2     | 12.2     | 12.2      | 13.8     | 138      | 22.3      | 10.9     | 14.3     | 9.70     | 11.8      | 9.10     | 13.2     | 679 J    | 8.80 J   | 130      | 13.4     | 12.2     | 13.4     | 12.1     | 11.4     | 63.6     | 13.5      |
| Magnesium                    |                          |                    | mg/kg | 7,830 J  | 8,340 J  | 17,200 J | 7,380 J  | 12,700 J  | 9,390 J  | 3,640 J  | 6,780 J   | 7,800 J  | 7,460 J  | 7,400 J  | 9,170 J   | 7,770 J  | 6,450 J  | 5,870 J  | 5,420 J  | 6,110    | 8,300    | 11,100   | 7,240    | 7,540    | 7,570    | 5,550    | 7,880     |
| Manganese                    | 1,600                    | 10,000             | mg/kg | 345 J    | 333 J    | 321 J    | 410 J    | 368 J     | 345 J    | 197 J    | 285 J     | 302 J    | 284 J    | 295 J    | 269 J     | 254 J    | 249 J    | 308 J    | 173 J    | 332      | 355      | 349      | 388      | 361      | 360      | 389      | 307       |
| Mercury                      | 0.18                     | 2.8                | mg/kg | 0.0230   | 0.0140 J | 0.0190   | 0.0180 J | 0.00890 J | 0.0170 J | 0.200    | 0.0320    | 0.0300   | 0.0200   | 0.0170 J | 0.0150 J  | 0.0570   | 0.0260   | 0.350    | 0.0130 J | NA        |
| Nickel                       | 30                       | 310                | mg/kg | 43.3     | 44.5     | 34.0     | 42.2     | 32.4      | 38.9     | 20.8     | 54.2      | 42.1     | 41.0     | 40.4     | 42.9      | 36.7     | 46.8     | 39.1 J   | 33.3 J   | 24.8     | 45.4     | 34.2     | 39.1     | 42.9     | 41.6     | 35.7     | 48.0      |
| Potassium                    |                          |                    | mg/kg | 3,650 J  | 3,470 J  | 2,750 J  | 3,850 J  | 2,700 J   | 3,070 J  | 1,450 J  | 3,840 J   | 3,550 J  | 3,030 J  | 3,110 J  | 3,980 J   | 4,200 J  | 3,520 J  | 4,310 J  | 4,350 J  | 2,720    | 3,000    | 2,510    | 2,990    | 3,020    | 3,010    | 2,960    | 3,120     |
| Selenium                     | 3.9                      | 1.500              | mg/kg | 4.70 U   | 4.70 U   | 4.40 U   | 0.500 J  | 4.20 U    | 4.00 U   | 0.560 J  | 4.50 U    | 1.00 J   | 4.50 U   | 4.10 U   | 0.460 J   | 0.780 J  | 2.10 J   | 4.00 J   | 0.470 J  | 0.580 J  | 4.70 U   | 1.00 J   | 0.440 J  | 4.30 U   | 0.650 J  | 0.730 J  | 4.80 U    |
| Silver                       | 2                        | 1,500              | mg/kg | 0.710 U  | 0.700 U  | 0.660 U  | 0.650 U  | 0.630 U   | 0.600 U  | 0.750 U  | 0.670 U   | 0.710 U  | 0.670 U  | 0.620 U  | 0.630 U   | 0.660 U  | 0.670 U  | 0.260 J  | 0.240 U  | 0.760 U  | 0.700 U  | 0.630 U  | 0.640 U  | 0.650 U  | 0.630 U  | 0.740 U  | 0.720 U   |
|                              |                          |                    |       | 226      | 212      | 524      | 235      | 173       | 234      | 736      | 173       | 523      | 472      | 427      | 240       | 186      | 189      | 565      | 411      | 916      | 627      | 407      | 264      | 642      | 327      | 752      | 321       |
| Sodium                       |                          |                    | mg/kg |          |          |          |          |           |          |          |           |          |          |          |           |          |          |          |          |          |          |          |          |          |          |          |           |
| Vanadium                     |                          |                    | mg/kg | 21.6 J   | 20.9 J   | 17.7 J   | 21.8 J   | 17.6 J    | 19.1 J   | 21.9 J   | 24.7 J    | 20.8 J   | 18.7 J   | 19.2 J   | 22.7 J    | 26.7 J   | 25.7 J   | 29.1 J   | 22.5 J   | 21.8     | 19.7     | 16.9     | 17.1     | 18.6     | 17.7     | 27.6     | 23.9      |
| ∠inc                         | 109                      | 10,000             | mg/kg | 56.1 J   | 71.7 J   | 57.7 J   | 56.2 J   | 66.2 J    | 50.8 J   | 135 J    | 90.5 J    | 69.9 J   | 203 J    | 75.4 J   | 52.2 J    | 64.7 J   | 82.1 J   | 482 J    | 35.9 J   | 99.9     | 76.0     | 52.4     | 50.8     | 50.8     | 63.5     | 887      | 79.0      |

#### Notes

- 1. Samples were submitted to Test America, Amherst, New York for analysis using USEPA SW-846 Methods 8260B (VOCs), 8270D (SVOCs), 6010C (Inorganics), 9012B (Total Cyanide), 310.13 (Hydrocarbon Identification).
- 2. Samples from monitoring wells MW-3 and MW-4 were submitted to Test America, Amherst, New York for additional analysis of carbon dioxide, methane, sulfide, nitrate, nitrite, and dissolved iron and manganese.
- 3. Results are presented in units of micrograms per liter (µg/L) and milligrams per liter (mg/L), as identified.
- $4. \ \ J Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).$
- 5. U Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
- 6. UB Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.
- 7. D Compound quantitated using a secondary dilution.
- 8. NA not analyzed
- 9. BDL Below method detection limits.
- 10. BGS Below ground surface.
- 11. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.
- 12. Gray Shading indicates the result exceeds NYSDEC Part 375 Soil Cleanup Objectives (SCO) for Unrestricted use (Unrestricted use SCO).
- 13. Yellow Shading indicates the result exceeds NYSDEC Part 375 Soil Cleanup Objectives (SCO) for Commercial use (Commercial use SCO).
- 14. -- Indicates a standard or guidance value does not exist for the respective analyte.

## **Figures**





## Appendix A

**Survey Map, Metes and Bounds (on Compact Disk)** 

ALL THAT TRACT OR PARCEL OF LAND, situate in the Village of Geneseo, Livingston County, New York, bounded and described as follows:

Beginning in the north line of Park Street, at the southeast corner of lands ormerly of Frank K. Cook;

Running thence northerly, on the east line of said Cook, and a continuation thereof, 5 chains and 18 links, more or less, to land, now or formerly of Caroline Foote;

Running thence easterly, on the south line of said Foote's land, 1 chain and 18 links to the west line of Village Lots fronting on the west side of Main Street;

Running thence southerly, on the west line of said Village Lots, and parallel with the first mentioned line, 3 chains and 18 links, more or less, to the north line of Park Street; and

Running thence westerly, on the last mentioned line, 1 chain and 18 links to the

Containing 0.36 of an acre of land, more or less.

Being and intending to convey Parcel 2 as set out in a Bargain and Sale Deed from Paul J. Least to Gary L. Least dated September 15, 1977 and recorded in the ivingston County Clerks' Óffice on the same date in Liber 513 of Deeds at Page 205.

DESCRIPTION OF RESTRICTED PROPERTY (AS FILED IN THE LIVINGSTON COUNTY CLERK'S OFFICE AT LIBER 1053, PAGE 246 ROPERTY ADDRESS: 6 PARK STREET TAX MAP NO. 80.16 - 1 - 33

ALL THAT TRACT OR PARCEL OF LAND, situated on the north side of Park Street in the Village of Geneseo, County of Livingston and the State of New York, bounded and

Commencing at a point in the north line of Park Street, said point being located 78.6 feet, more or less, westerly from the west edge of the sidewalk on the west side of Main Street, said point also being the southwesterly corner of lands of C. Leslie Brion as described in a Deed recorded in the Office of the Livingston County Clerk in Liber 316 of Deeds, Page 180;

Thence (1) North 77° 30' 00" West and along the north line of Park Street for a distance of 81.18 feet to an iron pipe, said point being the intersection of the northerly line of Park Street with and easterly line of lands of the State of New York (State University College at Geneseo);

Thence (2) North 14° 33' 00" East and along an easterly line of lands of the State of New York for a distance of 214.52 feet to an iron pipe;

Thence (3) South 79° 35' 40" East and along a southerly line of lands of the State of New York for a distance of 28.94 feet to an iron pipe, said point being the southwest corner of lands of Dorothy Wright as described in Liber 373 of Deeds, Page

Thence (4) South 76° 01' 37" East and along the southerly line of said Wright for distance of 52.27 feet to an iron pipe at the northwest corner of the aforementioned Brion lands;

Thence (5) South 14° 33' 00" West and along the westerly line of said Brion lands or a distance of 214.23 feet to the point of beginning.

Containing 0.40034 acres.

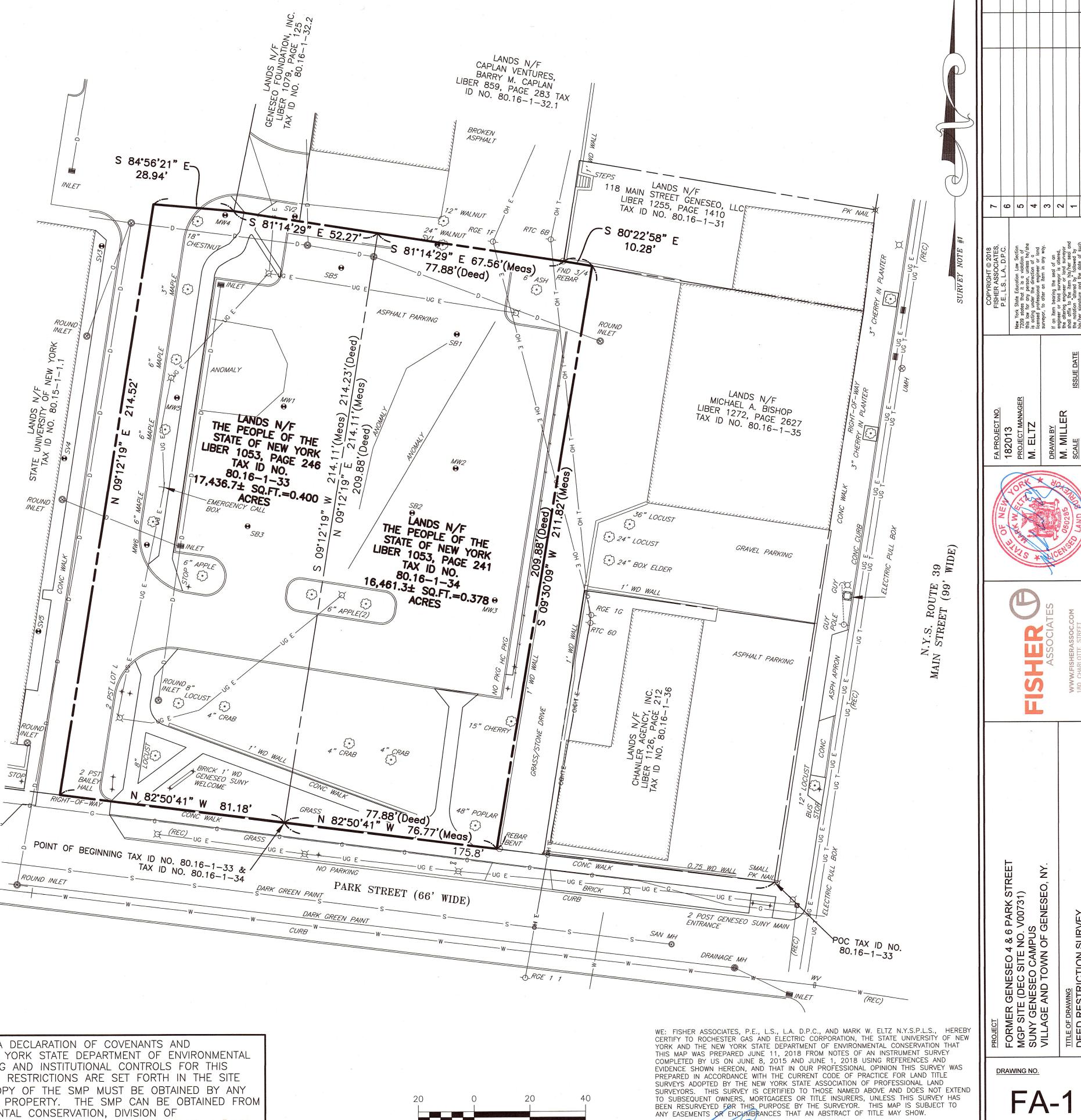
Together with all of the right, title and interest of the Grantor in and to rights of vay to and from the said premises as they may exist.

The said premises are more particularly described on a map of a survey made by Denluck, Thomas, McGrail & Associates dated October 5, 1970 which is recorded in he Livingston County Clerk's Office in Liber 407, Page 949.

Being and intending to convey Parcel 3 as set forth in a Bargain and Sale Deed rom Paul J. Least to Gary L. Least dated September 15, 1977 and recorded in the ivinaston County Clerk's Office on the same date in Liber 513 of Deeds at Page 205 METES AND BOUNDS DESCRIPTION OF RESTRICTED PROPERTY (AS MEASURED) FOR TAX ID NO. 80.16-1-34

AND TAX ID NO. 80.16-1-33 THE PEOPLE OF THE STATE OF NEW YORK VILLAGE OF GENESEO, LIVINGSTON COUNTY, STATE OF NEW YORK

All that piece or parcel of land situate in the Village of Geneseo, County of Livingston, State of New York and being part bounded and described as follows:


Beginning at a point in the northerly right of way of Park Street (66' wide), said point being 175.8 feet westerly from the westerly right of way of Main Street (N.Y.S. Route 39) (99' wide) at its intersection with the division line between the lands of The People of the State of New York (reputed owner) (Tax ID. No. 80.16-1-34) on the east and the lands of The People of the State of New York (reputed owner) (Tax ID. No. 80.16-1-33) on the west; thence

- 1. North 82° 50' 41" West, along the northerly right of way of Park Street (66' wide) a distance of 81.18 feet to a point on the division line between the lands of The People of the State of New York (reputed owner) (Tax ID. No. 80.16-1-33) on the east and the lands of The State University of New York (reputed owner) (Tax ID. No. 80.15-1-1.1) on the west; thence
- 2. Northerly and Easterly along the last mentioned division line the following two (2) courses and distances:

1) North 09° 12' 19" East, a distance of 214.52 feet to a point; thence

2) South 84° 56' 21" East, a distance of 28.94 feet to a point on the division line between the lands of The People of the State of New York (reputed owner) (Tax ID. No. 80.16-1-33) on the south and the lands of Geneseo Foundation, Inc. (reputed owner) (Tax ID. No. 80.16-1-32.2) on

- 3. South 81° 14' 29" East, along the last mentioned division line and the lands of Caplan Ventures, Barry Caplan (reputed owner) (Tax ID, No. 80.16-1-32.1) on the north a distance of 52.27 feet to a point on the division line between the lands of The People of the State of New York (reputed owner) (Tax ID. No. 80.16-1-33) on the west and the lands of The People of the State of New York (reputed owner) (Tax ID. No. 80.16-1-34) on the east; thence
- 4. South 81' 14' 29" East, a distance of 67.56 feet, along the division line between the lands of Caplan Ventures, Barry Caplan (reputed owner) (Tax ID. No. 80.16-1-32.1) on the north and the lands of the People of the State of New York (reputed owner) (Tax ID. No. 80.16-1-34) on the south to a point on the division line between the lands of the People of the State of New York (reputed owner) (Tax ID. No. 80.16-1-34) on the south and the lands of 118 Main Street Geneseo, LLC (reputed owner) (Tax ID. No. 80.16-1-31) on the north; thence
- 5. South 80° 22' 58" East, along the last mentioned division line a distance of 10.28 feet to a point on the division line between the lands of the People of the State of New York (reputed owner) (Tax ID. No. 80.16-1-34) on the west and the lands of Michael A. Bishop (reputed owner) (Tax ID. No. 80.16-1-35) on the east; thence
- 6. South 09' 30' 09" West, along the last mentioned division line a distance of 211.82 feet to a point in the northerly right of way of Park Street (66' wide); thence
- 7. North 82° 50' 41" West, along the northerly right of way of Park Street (66' wide) a distance of 76.77 feet to the point of beginning, being 0.778 acres



## LEGEND

PROPERTY LINE/LEASE PARCEL LINE ----- RIGHT-OF-WAY LINE ----- EASEMENT LINE BUILDING LINE SANITARY SEWER LINE W/MANHOLE & C.O. — D — © CULVERTS, STORM SEWER LINE W/MH & CATCH BASIN ---- W ------ W---- WATER LINE W/HYDRANT, VALVE & VAULT — G — © → S NATURAL GAS LINE W/METER, VALVE & LINE MARKER - OH, OH E, OH T, OC - OVERHEAD WIRES, ELECTRIC, TELEPHONE & CABLE LINE 

UTILITY POLE, GUY, LIGHT POLE, WALK LIGHT & TOP MOUNT LIGHT SIGN, ROADWAY DELINEATOR/REFLECTOR

CONC CONCRETE (REC) RECORD SB5 → SOIL BORING

MW5 € MONITORING WELL

Free

SURVEY NOTES:

1. COORDINATES AND NORTH ORIENTATION SHOWN HEREON ARE REFERENCED TO THE NEW YORK STATE PLANE COORDINATE SYSTEM. WEST ZONE, TRANSVERSE MERCATOR PROJECTION, NAD 83 (2011) EPOCH 2010.00 USING GPS PROCEDURES AND THE NEW YORK STATE DOT CORS NETWORK.

2. ELEVATIONS SHOWN HEREON ARE REFERENCED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (GEOID 12A) USING GPS PROCEDURES.

3. UNDERGROUND UTILITIES SHOWN HEREON WERE PLOTTED FROM VISIBLE EVIDENCE LOCATED AT THE TIME OF THE FIELD SURVEY, AND DESIGNATION MARKINGS BY A SUBSURFACE UTILITY ENGINEERING FIRM. THE LOCATIONS OF ALL UNDERGROUND UTILITIES SHOULD BE STAKED BY THE RESPECTIVE UTILITY COMPANY PRIOR TO ANY CONSTRUCTION.

THIS PROPERTY IS SUBJECT TO A DECLARATION OF COVENANTS AND RESTRICTIONS HELD BY THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION. THE ENGINEERING AND INSTITUTIONAL CONTROLS FOR THIS DECLARATION OF COVENANTS AND RESTRICTIONS ARE SET FORTH IN THE SITE MANAGEMENT PLAN (SMP). A COPY OF THE SMP MUST BE OBTAINED BY ANY PARTY WITH AN INTEREST IN THE PROPERTY. THE SMP CAN BE OBTAINED FROM NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION, DIVISION OF ENVIRONMENTAL REMEDIATION, SITE CONTROL SECTION, 625 BROADWAY, ALBANY, NY 12233 OR AT DERWEB@DEC.NY.GOV

12.19m SCALE: 1" = 20' (6.096M)

N.Y.S.P.L.S. NO. 050285

DRAWING NO.

SHEET 1 OF 1

R R R

## **Appendix B**

Copy of the FER (on Compact Disk)

## **Appendix C**

Report of Activities at LL-Lot Letter Correspondence (on Compact Disk)



#### Department of Environmental Health & Safety

Thursday, June 26, 2003

Mr. James Craft, Engineering Geologist
New York State Department of Environmental Conservation
Region 8 Office
6274 East Avon - Lima Road
Avon, New York 14414

DIVISION OF ENVIRONMENTAL

RE:

Report of Activities at LL-Lot, SUNY Geneseo

Dear Jim:

Enclosed please find two copies of a report on the activities conducted at the SUNY Geneseo LL-Lot after discovery of subsurface coal tar at that location on September 11, 2002.

Per our previous discussions, this report also includes photographs taken as these activities progressed and a brief history of the site. During the period 1872 to 1902 a coal gasification plant operated on property immediately adjacent to the LL-Lot.

I may be reached at 585-245-5512 or by email at <a href="mailto:dalton@geneseo.edu">dalton@geneseo.edu</a> to discuss the contents of the report.

Sincerely,

Kimberly Dalton Ferris

Director, Environmental Health and Safety.

4-27-05 SEM @ AGE
recieved from Sel Priore & MSD

Cc:

Levison

Summary of Activities

In November 2001, the State University of New York at Geneseo took ownership of two

vacant properties on Park Street in the Village of Geneseo. The location of the

properties, identified as 4 Park Street and 6 Park Street, is shown on Figure 1. Shortly

after taking ownership design/construction activities were initiated to transform the

approximately 0.75 acre parcel into a campus entrance that would include a small park

with benches and a parking lot for 50 vehicles. The construction project is identified as

State University Construction Fund Project 06312: Park Street Entrance Improvements.

The project site is referred to as "LL Lot" and is located as shown on Figure 2.

On September 11, 2002, during final preparation for paving, the contractor, Babcock

Enterprises LTD., of 10121 Poags Hole Road, Dansville, noticed a "soft spot".

Excavating that area to determine the cause of the problem revealed a stone/brick

containment structure approximately 4 feet below ground surface containing a black tarry

substance. Wooden planks had been placed atop the structure and fill material placed on

top of the planks. Photographs of the discovered tarry material are included in the Photos

Section of this document.

The Project Site Inspector, John Villnave of Parrone Engineers, contacted NYSDEC

Region 8 to report the discovery of the material. Samples of the tarry material were

collected by Mr. Villnave and analyzed by Toxicity Characteristic Leaching Procedures

(TCLP) at Paradigm Laboratories. The results of this analysis can be found in

Attachment 1.

On September 25, 2002, after receipt of the analytical results, the SUNY Geneseo

Environmental Health and Safety Department (EHS) was notified of the discovery of this

subsurface material. EHS contacted Dixon Rollins of the Region 8 Office of the

NYSDEC on October 4, 2002. Mr. Rollins visited the site the next day.

Following discussions between EHS and Mr. Rollins, it was determined that following

sampling to identify constituents, the liquid material would be removed for incineration.

Surrounding soils containing visible contamination would be excavated and sampled for disposal. The walls of the excavation would be sampled and analyzed for identified constituents to determine extent of contamination. Sample results for the sample of tar are included as Attachment 2.

Excavation of the structure and its contents was initiated October 29, 2002. Photographs of the excavation taken immediately after removal of the structure are included in the Photos Section of this document. On November 6, 2002, the structure and its contents were transported for incineration under NYS Hazardous Waste Manifest # NYG1577817 to Ross Incineration Services, Grafton, Ohio. A copy of the manifest, Land Disposal Restriction Notification, and certificate of destruction are included as Attachment 3.

After additional discussions with Mr. Rollins, it was determined that additionally excavated materials were eligible to be managed under NYSDEC TAGM 4061: Management of Coal Tar Waste and Coal Tar Contaminated Soils and Sediment from Former Manufactured Gas Plants (MGPs). Between November 2002 and February 2003 approximately 800 Tons of contaminated subsurface materials were removed from the site. The materials were incinerated at American ReFuel of Niagara Falls.

The walls of the excavation were sampled as excavation continued. The results of laboratory analyses conducted on these samples were compared to objective level for volatiles published in NYSDEC TAGM 4046 and polycyclic aromatic hydrocarbons (PAHs) published in NYSDEC Records of Decision for other coal tar sites in New York State<sup>1</sup>. When samples indicated the presence of contaminants in excess of these levels or when visible coal tar was encountered, excavation continued. The approximate location of the coal tar structure and the aerial limits of excavation are shown on Figure 3.

\$127006 2000

Niagara Mohawk Oneida – Sconondaga Street Former MGP Site, 6-33-041, March 2002.
Niagara Mohawk Rome - Kingsley Avenue MGP Site, Site No. 6-33-043, March 2002.
New York State Electric and Gas – Waterville MGP Site, Site No. 7-27-008, January 2002.

On January 10<sup>th</sup> and 28<sup>th</sup> and February 3<sup>rd</sup>, samples were collected from the base and sides of the excavation that, at the time, exceeded 20 feet in depth. Results of laboratory analyses of these samples indicated the objective levels had been met for the majority of constituents. The results of these analyses are summarized below. Laboratory analytical reports are included as Attachment 4.

|                      |                      |                        | ole 1           | 121        |                                   |  |                          |
|----------------------|----------------------|------------------------|-----------------|------------|-----------------------------------|--|--------------------------|
|                      | Summary o            | f Subsurface           | Sampling and    | l Analyses |                                   |  |                          |
|                      | Category             | Contaminant of Concern | Martine Otto    |            | of Concern Range (ppm) Meeting Ob |  | Objective<br>Level (ppm) |
|                      | Semivolatile Organic |                        | 14.399 - 549.71 | 3 of 4     | 500*                              |  |                          |
|                      | Compounds (SVOCs)    | сРАН                   | 2.6 - 367.5     | 3 of 4     | 10*                               |  |                          |
|                      |                      | benzene                | ND              | 4 of 4     | 0.06**                            |  |                          |
| Overburden           | Volatile Organic     | ethyl benzene          | ND              | 4 of 4     | 1.5**                             |  |                          |
|                      | Compounds (VOCs)     | toluene                | ND              | 4 of 4     | 5.5**                             |  |                          |
|                      |                      | xylenes (total)        | ND              | 4 of 4     | 1.2**                             |  |                          |
|                      | Metals               | Cyanide                | ND - 4.1        | NA         | NA                                |  |                          |
|                      | Semivolatile Organic | tPAH                   | ND - 180.02     | 6 of 6     | 500*                              |  |                          |
|                      | Compounds (SVOCs)    | сРАН                   | ND - 116.5      | 5 of 6     | 10*                               |  |                          |
|                      |                      | benzene                | ND - 0.36       | 5 of 6     | 0.06**                            |  |                          |
| Fractured<br>Bedrock | Volatile Organic     | ethyl benzene          | ND              | 6 of 6     | 1.5**                             |  |                          |
|                      | Compounds (VOCs)     | toluene                | ND - 0.224      | 6 of 6     | 5.5**                             |  |                          |
| i                    |                      | xylenes (total)        | ND - 0.777      | 6 of 6     | 1.2**                             |  |                          |
|                      | Metals               | Cyanide                | 4.1 - 22        | NA         | NA                                |  |                          |

<sup>\*</sup> Objective Levels from NYSDEC Records of Decision, MCG Sites.

cPAH is an abbreviation for "carcinogenic polycyclic aromatic hydrocarbons", including:

indeno(1,2,3-cd)pyrene

benzo(k)flouranthene

benzo(a)anthracene

chyrsene

benzo(a)pyrene

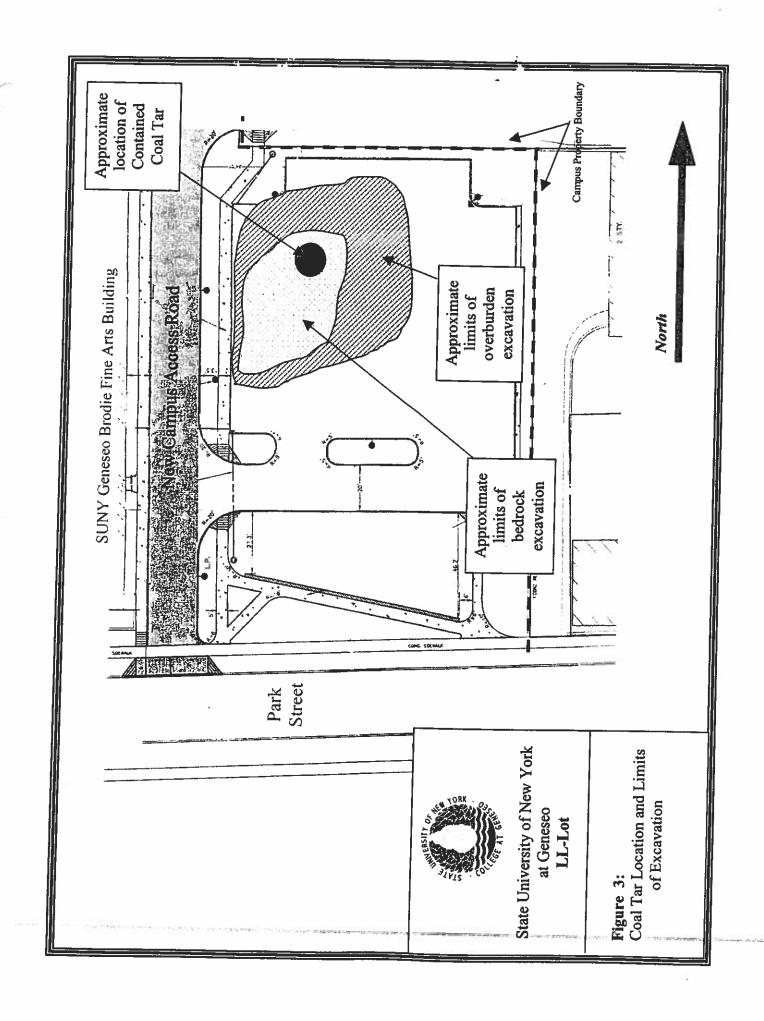
benzo(b)fluoranthene

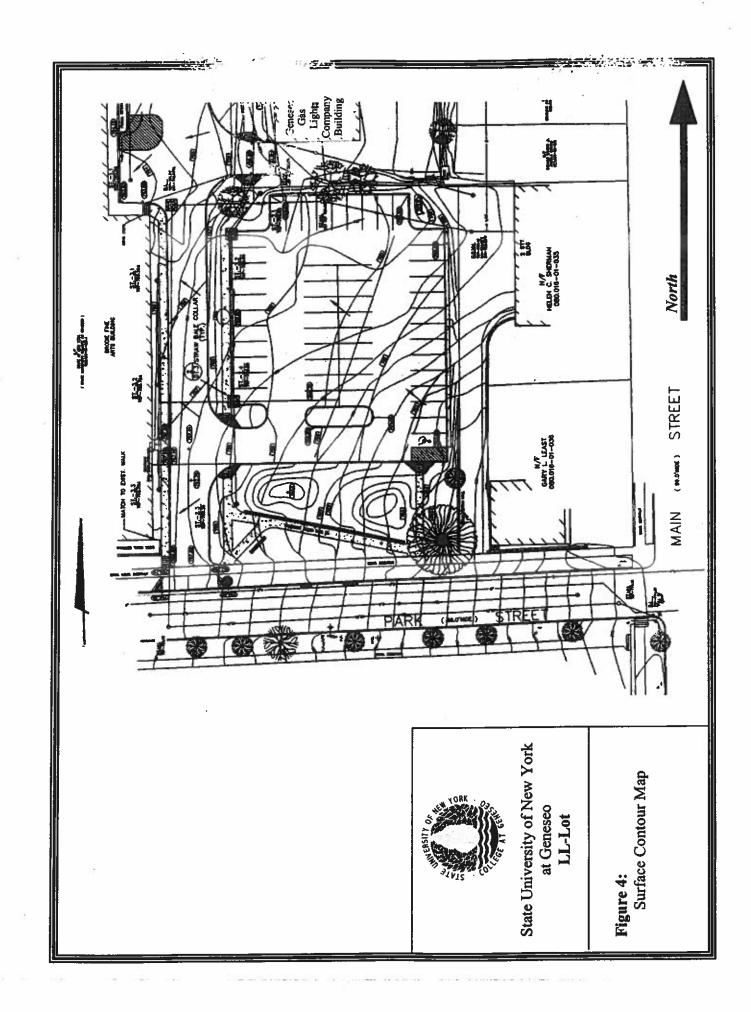
dibenzo(a,h)anthracene

tPAH is an abbreviation for "total polycyclic aromatic hyrdocarbons", including the cPAHs

<sup>\*\*</sup> Objective Levels from NYSDEC TAGM 4061.

The Photos section of this document includes pictures collected during the excavation process.


Very little groundwater was encountered during the excavation process. Any groundwater and/or precipitation collected in the excavation was pumped into a holding tank maintained at the site. On May 2<sup>nd</sup> and 5<sup>th</sup>, the liquid materials were transported from the site under Hazardous Waste Manifests #NYG2887056 and NYG3371535, respectively (included as Attachments 5 and 6). The total of approximately 3,200 gallons of materials were thermally treated at CECOS International, Niagara Falls, NY.


On January 10, 2003, Mr. Jim Craft of the NYSDEC Region 8 Office visited the site. After consultation with Mr. Craft, the decision was made to terminate excavation activities prior to the arrival of students for the spring semester due to the physical hazard created by the deep excavation. Structural fill was placed into the 20+ foot excavation and compacted.

During the excavation process, material that did not contain visible contamination was placed on bermed plastic on a paved portion of the site and covered. This material was originally intended to be returned to the excavation as structural fill. The material was later determined to be structurally unsuitable and required off-site disposal. During the week of May 8, 2003, this 200 Tons of excavated material was transported to BFI – Niagara Recycling in Niagara Falls, NY for landfilling.

#### Site History:

According to Mr. David Parish, Village and Town of Geneseo Historian, and other persons involved in tracing Geneseo history, the LL-Lot site was in the immediate vicinity of the Electric Power Plant for the Village of Geneseo, which operated during the early 1900s. The building that housed the coal-powered plant is immediately north of the site and currently houses the Sundance Bookstore (not affiliated with SUNY Geneseo). The location of this building is shown on Figure 4. The "Electrical Light Station," as the power plant was referred to, opened in 1902. The Village of Geneseo Gasworks









Metal Pole used as attempt to determine depth of material (2 – 3 feet)



Metal Pipe containing coal tar. Approx. 4" OD. Removed.

Photo 2: 9/26/02 Coal Tar at time of discovery.



Photo 3: 10/29/02 Excavation following removal of containment structure

Metal conduit installed by previous owners – later removed/disposed



Photo 4: 10/29/02 Excavation following removal of containment structure



Photo 5: 11/01/02
Excavation following removal of containment structure



Photo 6: 1/06/03
Walls of excavation - overburden



Photo 7: 12/30/02 West excavation wall



Photo 8: 12/31/02 Excavation



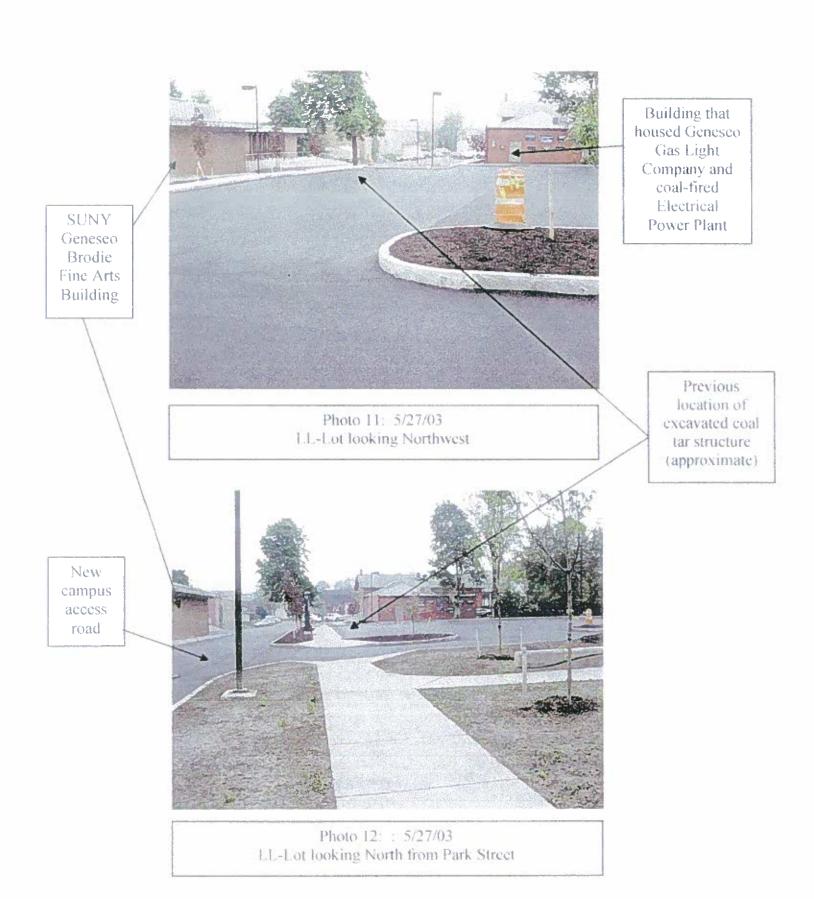

Approximate Bedrock/ Overburden Interface

Photo 9: 1/16/03 Excavation Maximum Depth – Looking South



Approximate
Bedrock/
Overburden
Interface

Photo 10: 1/16/03
Excavation Maximum Depth – Looking East





AY 0 " 2003

# 179 Lake Avenue, Rochester, NY 14608 (685) 647-2535 FAX (685) 647-3311

Client:

**SUNY Geneseo** 

Lab Project No.:

02-2367

**Client Job Site:** 

Parking Lot

Sample Type:

Sludge

**Client Job No.:** 

ATTACHMENT 1

N/A

Method:

SW846 1010

Date(s) Sampled: **Date Received:** 

9/17/02

9/17/02

Date Analyzed:

9/19/02

### **Laboratory Report for Flashpoint Analyis**

| Lab<br>Sample<br>No. | Field ID<br>No. | Field Location | Flashpoint<br>Results<br>(°C) |
|----------------------|-----------------|----------------|-------------------------------|
| 8546                 | N/A             | Tar Mix        | >70                           |
|                      |                 |                |                               |
|                      |                 |                |                               |
|                      |                 |                |                               |
|                      |                 |                |                               |
|                      |                 |                |                               |
|                      |                 |                |                               |
|                      | !               |                |                               |
|                      | £23             |                |                               |
|                      |                 | 9              | ¥                             |
|                      |                 |                |                               |
|                      |                 |                |                               |
|                      |                 |                |                               |
|                      | <del></del>     | <u> </u>       | ELAD ID No : 10958            |

**ELAP ID No.: 10958** 

Comments:

Approved By:



Client:

**SUNY Geneseo** 

Lab Project No.:

02-2367

**Client Job Site:** 

Parking Lot

Sample Type: Method:

Sludge SW846 9045C

**Client Job No.:** 

N/A

Date(s) Sampled:

9/17/02

Date Received:

9/17/02

Date Analyzed:

9/18/02

### Laboratory Report for pH Analysis

| Lab<br>Sample<br>No. | Field ID<br>No. | Field Location | pH<br>Results<br>(S.U.) |
|----------------------|-----------------|----------------|-------------------------|
| 8546                 | N/A             | Tar Mix        | 6.57                    |
|                      |                 |                |                         |
|                      |                 |                |                         |
|                      |                 | */             | <i>i</i> .              |
|                      |                 |                |                         |
|                      |                 |                |                         |

ELAP ID No.: 10958

Comments:

Approved By:



### 179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:

**SUNY Geneseo** 

Lab Project No.:

02-2367

Client Job Site:

Parking Lot

Sample Type:

Sludge

**Client Job No.:** 

N/A

Method:

SM17 2540B

Date(s) Sampled: Date Received:

9/17/02

Date Received:

9/17/02

Date Analyzed:

9/17/02

### **Laboratory Report for Percent Solids Analysis**

| Lab<br>Sample<br>No. | Field ID<br>No. | Field Location | Percent<br>Solids (%) |
|----------------------|-----------------|----------------|-----------------------|
| 8546                 | N/A             | Tar Mix        | 98.4                  |
|                      |                 |                |                       |
|                      |                 |                |                       |
|                      |                 |                |                       |
|                      |                 |                |                       |
|                      |                 |                |                       |
|                      |                 |                |                       |
|                      |                 |                |                       |

**ELAP ID No.: 10958** 

| $\sim$ | m | m   | 0 | its: |
|--------|---|-----|---|------|
| $\sim$ |   | ,,, | ᄗ | ILO. |

Approved By:



### 179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:

**SUNY Geneseo** 

Lab Project No.:

02-2367

**Client Job Site:** 

Client Job No.:

Parking Lot

N/A

Sample Type:

Sludge

Method:

SW846 9095

Date(s) Sampled:

9/17/02

Date Received: Date Analyzed:

9/17/02 9/20/02

### **Laboratory Report for Paint Filter Analysis**

| Lab<br>Sample<br>No. | Field ID No. | Field Location | Paint Filter Test<br>Result<br>(Pass/Fail) |
|----------------------|--------------|----------------|--------------------------------------------|
| 8546                 | N/A          | Tar Mix        | Fail                                       |
| 15                   |              |                |                                            |
|                      |              |                |                                            |
|                      |              |                |                                            |
|                      |              |                |                                            |
|                      |              |                |                                            |
|                      |              | (C             |                                            |
|                      |              |                |                                            |

ELAP ID No.: 10958

Comments:

Pass = No Free Liquids

Approved By:

### **LABORATORY REPORT OF ANALYSIS**

Client:

**SUNY Geneseo** 

Lab Project No.: 02-2367 Lab Sample No.: 8546

Client Job Site:

Parking Lot

Sample Type:

Solid

Client Job No.:

Field Location:

N/A
Tar Mix

Date Sampled:

09/17/2002

**Date Received:** 

09/17/2002

| Parameter             | Date Analyzed | Analytical<br>Method | Result (mg/kg)    |
|-----------------------|---------------|----------------------|-------------------|
| Cyanide<br>Reactivity | 09/24/2002    | SW846, 7.3           | ND<1 Non Reactive |
| Sulfide<br>Reactivity | 09/24/2002    | SW846, 7.3           | 56 Non Reactive   |

ELAP ID. No.: 10709

Comments:

ND denotes Non Detected.

Hazardous Waste Regulatory Levels for Reactivity are as follows:

Sulfide - 500 mg/kg, Cyanide - 250 mg/kg.

**Approved By Technical Director:** 

**Bruce Hoogesteger** 



Client:

**SUNY Geneseo** 

Lab Project No.: Lab Sample No.: 02-2367 8546

Client Job Site:

Parking Lot

Sample Type:

TCLP Extract

**Client Job No.:** 

N/A

Date Sampled:

09/17/2002

Field Location:

Tar Mix

**Date Received:** 

09/17/2002

Field ID No.:

N/A

### Laboratory Report for TCLP Metals Analysis

| Parameter         | Date Analyzed | Analytical Method | Result (mg/L) | Regulatory Limit<br>(mg/L) |
|-------------------|---------------|-------------------|---------------|----------------------------|
| TCLP Metal Series |               |                   |               |                            |
| Arsenic           | 09/20/2002    | EPA 6010          | <0.100        | 5.0                        |
| Barium            | 09/20/2002    | EPA 6010          | 0.190         | 100.0                      |
| Cadmium           | 09/20/2002    | EPA 6010          | <0.025        | 1.0                        |
| Chromium          | 09/20/2002    | EPA 6010          | <0.050        | 5.0                        |
| Lead              | 09/20/2002    | EPA 6010          | <0.100        | 5.0                        |
| Mercury           | 09/20/2002    | EPA 7470          | <0.0020       | 0.2                        |
| Selenium          | 09/20/2002    | EPA 6010          | <0.100        | 1.0                        |
| Silver            | 09/20/2002    | EPA 6010          | <0.050        | 5.0                        |
|                   |               |                   |               |                            |
|                   |               |                   |               |                            |

ELAP ID No.: 10958

Comments:

Approved By:



### Semi-Volatile Analysis Report for TCLP Extract

Client: SUNY Geneseo

Client Job Site:

Parking Lot

Lab Project Number: Lab Sample Number:

02-2367 8546

Client Job Number:

N/A Field Location:

Field ID Number:

Tar Mix N/A

Date Sampled: Date Received: 09/17/2002

Sample Type:

**TCLP Extract** 

09/17/2002

Date Analyzed:

09/25/2002

| Base / Neutrals     | Results in ug / L | Regulatory Limits in ug / L |
|---------------------|-------------------|-----------------------------|
| 1,4-Dichlorobenzene | ND< 2,000         | 7,500                       |
| 2,4-Dinitrotoluene  | ND< 2,000         | 130                         |
| Hexachlorobenzene   | ND< 2,000         | 3,000                       |
| Hexachlorobutadiene | ND< 2,000         | 500                         |
| Hexachloroethane    | ND< 2,000         | 130                         |
| Nitrobenzene        | ND< 2,000         | 2,000                       |
| Pyridine            | 7,710             | 5,000                       |

| Acids                     | Results in ug / L | Regulatory Limits in ug / L |
|---------------------------|-------------------|-----------------------------|
| Cresols (as m,p,o-Cresol) | 142,000           | 200,000                     |
| Pentachlorophenol         | ND< 5,000         | 100,000                     |
| 2,4,5-Trichlorophenol     | ND< 5,000         | 400,000                     |
| 2,4,6-Trichlorophenol     | ND< 2,000         | 2,000                       |
| ELAP Number 10958         | Method: EPA 8270C | Data File: 8815.D           |

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:



### PCB Analysis Report for Soils/Solids/Sludges

Client: SUNY Geneseo

Client Job Site:

Parking Lot

Lab Project Number: Lab Sample Number: 8546

02-2367

Client Job Number:

N/A

Date Sampled:

09/17/2002

Field Location: Field ID Number: Tar Mix

N/A

Date Received:

09/17/2002

Sample Type:

Solid

Date Analyzed:

09/24/2002

| PCB Identification | Results in mg / Kg |  |
|--------------------|--------------------|--|
| Aroclor 1016       | ND< 0.406          |  |
| Aroclor 1221       | ND< 0.406          |  |
| Aroclor 1232       | ND< 0.406          |  |
| Aroclor 1242       | ND< 0.406          |  |
| Arocior 1248       | ND< 0.406          |  |
| Aroclor 1254       | ND< 0.406          |  |
| Aroclor 1260       | ND< 0.406          |  |
|                    |                    |  |

ELAP Number 10958

Method: EPA 8082

Comments:

ND denotes Non Detect

mg / Kg = milligram per Kilogram

Signature:



### Volatile Analysis Report for TCLP Extract

Client: SUNY Geneseo

Client Job Site:

Parking Lot

Lab Project Number: Lab Sample Number: 02-2367

8546

**Client Job Number:** 

N/A

Date Sampled:

09/17/2002

Field Location: Field ID Number: Tar Mix N/A

Date Received:

09/17/2002

Sample Type:

TCLP Extract

Date Analyzed:

09/21/2002

| TCLP Analytes        | Results in ug / L | Regulatory Limits in ug / L |
|----------------------|-------------------|-----------------------------|
| Benzene              | 19,600            | 500                         |
| 2-Butanone           | ND< 500           | 200,000                     |
| Carbon tetrachloride | ND< 200           | 500                         |
| Chlorobenzene        | ND< 200           | 100,000                     |
| Chloroform           | ND< 200           | 6,000                       |
| 1,2-Dichloroethane   | ND< 200           | 500                         |
| 1,1-Dichloroethene   | ND< 200           | 700                         |
| Tetrachloroethene    | ND< 200           | 700                         |
| Trichloroethene      | ND< 200           | 500                         |
| Vinyl Chloride       | ND< 200           | 200                         |
| ELAP Number 10958    | Method: EPA 8260B | Data File: 61821.D          |

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:



179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Services, Inc.

### **TCLP Herbicides**

Client:

SUNY Geneseo

Lab Project No: Lab Sample No: 02-2367

**Client Job Site:** 

Parking Lot

Sample Type:

8546 TCLP Extract

Client Job No:

Field Location:

N/A Tar Mix Date Sampled:

09/17/2002

Date Received:

09/17/2002

Field ID No:

N/A

Date Analyzed:

09/20/2002

| Parameter         | Result<br>UG/L | Reporting<br>Limit<br>UG/L | Regulatory<br>Limit<br>UG/L |
|-------------------|----------------|----------------------------|-----------------------------|
| 2,4-D             | ND             | 2000                       | 10,000                      |
| 2,4,5-TP (Silvex) | ND             | 200                        | 1,000                       |

Analytical Method: EPA 8151 ELAP ID. No.: 10709

Comments:

ND denotes Non Detected.

Approved By:



### Pesticide Analysis Report for TCLP Extracts

Client: SUNY Geneseo

Client Job Site:

Parking Lot

Lab Project Number: Lab Sample Number:

02-2367

8546

**Client Job Number:** 

N/A

Date Sampled:

09/17/2002

Field Location: Field ID Number: Tar Mix N/A

Date Received:

09/17/2002

Sample Type:

TCLP Extract

Date Analyzed:

09/24/2002

| Pesticide           | Results in ug / L | Regulatory Limits in ug / L |
|---------------------|-------------------|-----------------------------|
| gamma-BHC (Lindane) | ND< 1.00          | 400                         |
| Chlordane           | ND< 1.00          | 30                          |
| Endrin              | ND< 1.00          | 20                          |
| Heptachlor          | ND< 1.00          | 8                           |
| Heptachlor Epoxide  | ND< 1.00          | 8                           |
| Methoxychlor        | ND< 1.00          | 10,000                      |
| Toxaphene           | ND< 50.0          | 500                         |

ELAP Number 10958

Method: EPA 8081A

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:



# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM Columbia CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUE

SR #

CAS Contact

ا ا

| C   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Senesses Parking Lot Project Number 03-2367    |                                                | REQUESTED (Inclu                    | ANALYSIS REQUESTED (include Method Number and Container Preservative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | intainer Pres | ervative)                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------|
| Compared    | Parione Fire.                                  | PRESERVATIVE                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0             |                                                  |
| N.Y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                | 410                                            | JONS O                              | POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>POJONI<br>PO                                                                                                                                                 |               | Preservative Key 0. NONE 1. HCL 2. HNO3 3. H2SO4 |
| Signature   Sign   | NY. 10                                         | 09/109<br>  \$29<br>  \$29<br>  \$29<br>  \$29 | 802<br>1017<br>1018<br>1017<br>1017 | APACTI<br>COSTO<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL<br>TOPAL |               | 4. NaOH<br>5. Zh. Acetate<br>6. MeOH<br>7. NaHSO |
| Simple   Name    | SSI FAXE                                       | 20/0/20/0/20/0/20/0/20/0/20/0/20/0/20/         | 17 S.E.                             | 15 IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u></u>       | 8. Other                                         |
| FOR OUR CLUSTONIX SAMPLING  LAST NOTE IN THE MATRIX  LAST NAME IN THE PARTIES AND A SAMPLING SET STATES AND A SAMPLING  | >                                              | S                                              | 10/01vs/                            | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | REMARKS/<br>ALTERNATE DESCRIPTION                |
| COPY RACH THE STATE OF THE STAT | SAMPLING<br>DATE TIME                          | 7                                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                  |
| LODY RAPET + D. STATEMENT THOUSE REPORT REQUIREMENTS  REQUIREMENTS  REPORT REQUIREMENTS  RECURRENCE BY  REQUIREMENTS  REQUIREMEN | 13 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1        |                                                |                                     | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | # 83410                                          |
| ALIENTON RECUREMENTS  ( D PUT RAPE + D: 1944 SALE - AND THE NOTICE IN REPORT RECUREMENTS  ( D PUT RAPE + D: 1944 SALE - AND THE NOTICE IN REPORT RECUREMENTS  ( D PUT RAPE + D: 1944 SALE - AND THE SALE  | 1000年代の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の |                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                  |
| LODY REPORT FEOUREMENTS  COPY REACH + Do. The Following Service of the Source of the S |                                                |                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                  |
| COLPUS RECIVED BY MOCE IN PECUPERATOR CONTRIBUTION OF THE CONTRIBU |                                                |                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | *                                                |
| LOPU RAPET FEOUREMENTS  CORUSTON SELVENT NOTICE IN THE PROPER FEOUREMENTS  FOURTHER OFFICE APPROPER TO THE MARKOUND REQUIREMENTS  TO FINANCIAL SELVENT NOTICE IN THE SERVENT NOTICE IN THE SELVENT NOTICE IN THE SERVENT NOTICE IN THE SELVENT NOTICE IN THE SERVENT NOT |                                                |                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                  |
| STATISTICS OF THE PROPERTY OF  |                                                |                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                  |
| COPY Report PEONIFEMENTS  COPY Report PEONIFEMENTS  REPORT PEONIFEMENTS  RECEIVED IN CASAME  AND WITHOUT PAIR  PARCHINE  AND MAKE A SELVICE IN CASAME  AND MAKE A SECURE IN CASAME  AND MA |                                                |                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                  |
| EDDY RAPET + 10° 10° 10° 10° 10° 10° 10° 10° 10° 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                  |
| COLETTEN REQUIREMENTS  (20 Py Report FOUNDMENTS  (20 Py Report FEOUNDMENTS  | Bri                                            | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\         |                                     | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                  |
| COUNTY & COLOR DE TOWN   The part of the   | of two O in                                    |                                                | UIREMENTS                           | REPORT REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | INVOICE INFORMATION                              |
| The John VI II May Requested that the Requision of Parkun Reduces the North Reduce   | 100 Take 1000                                  | <u> </u>                                       | SES APPLY)                          | X I. Results Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                                  |
| Summaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \       |                                                | App. c                              | II. Results + QC Summaries<br>(LCS, DUP, MS/MSD as required)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                  |
| BOUNT (2) COLPOSED PORT DATE IV. Data Validation Report with Raw Data COLSTODY SEALS: Y N RECEIVED BY RELINQUISHED BY RECEIVED BY RECE | Farrone Ping                                   | R                                              |                                     | Ilt. Results + OC and Calibration<br>Summaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>18</b>     | SUNY GENESO                                      |
| And   House of plane 5 8 4 72 20   145 2 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 July (@ Jenesso) Partield,                   |                                                |                                     | IV. Data Validation Report with Ran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | w Data        |                                                  |
| COLER TEMP: 20°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ma 5 84 2200                                   | (                                              |                                     | V. Speicalized Forms / Custom Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                  |
| Comparison   Com   |                                                | ≻                                              |                                     | , se,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | #SSION #:                                        |
| Signature V. M. 110 Signature Printed Name Firm Firm Printed Name Prin | 1/al melinguis                                 |                                                | 18/2                                | RELINQUISHED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | RECEIVED BY                                      |
| Frind Name (AS Printed Name Frim Frim Frim Frim Printed Name Frim Frim Printed Name | Signature V . M . 11.en Signature V            | Signature 1. D.                                | loia                                | ature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Signat        | 7.0                                              |
| Descriting of 12 02 (200 1200) The Descriting of 17/07/01/1/10 Ogale/line of 1200 Cate/line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Name C. A.S. Printed Notice A.                 | Printed Name (19 h)                            |                                     | ted Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Printed       | Name                                             |
| Delectrine of 17 020, 120 Delectrine (17/07/0) 1/W Option of 150 Delectrine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Firm                                           | Firm                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 邢             |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/4)/ Maiorima 1/20 1200 Date/Img/ 1/10/4     | Joseph Constitution of                         | 0                                   | VTime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date/         | ine.                                             |

### **LABORATORY REPORT OF ANALYSIS**

**Client:** 

**NYE Tech** 

Lab Project No.:

02-2632

**Client Job Site:** 

**Client Job No.:** 

SUNY Genese

Parking Lot

N/A

Sample Type:

Sludge

**Analytical Method:** EPA 9012 Date Sampled:

Date Received:

10/15/2002

10/15/2002

Date Analyzed:

10/24/2002

| Sample Location/Field ID | Total Cyanide<br>(mg/kg) |
|--------------------------|--------------------------|
| S-1 Pit                  | 4.2                      |
|                          |                          |
|                          |                          |
|                          |                          |

**ELAP ID No. 10709** 

Comments:

ND denotes Non-Detected.

Approved By Technical Director:

Bruce Hoogesteger



### **LABORATORY REPORT OF ANALYSIS**

Client:

**NYE Tech** 

Lab Project No.:

02-2632

**Client Job Site:** 

SUNY Geneseo

Parking Lot

Sample Type:

Water

Client Job No.:

N/A

**Analytical Method: EPA 335.3** 

Date Sampled:

10/15/2002

**Date Received:** 

10/15/2002

Date Analyzed:

10/24/2002

| Lab<br>Sample ID. | Sample Location/Field ID | Total Cyanide<br>(mg/l) |
|-------------------|--------------------------|-------------------------|
| 10254             | Field Blank              | ND<0.01                 |
|                   |                          |                         |
|                   |                          |                         |
|                   |                          |                         |

ELAP ID No. 10709

Comments:

ND denotes Non-Detected.

**Approved By Technical Director:** 

Bruce Hoogesteger



Client: NYE Tech

Client Job Site:

SUNY Geneseo Parking Lot

Lab Project Number: Lab Sample Number: 10253

02-2632

Client Job Number:

N/A

Field Location:

S-1 Pit

Date Sampled:

10/15/2002

Field ID Number:

N/A

Date Received:

10/15/2002

Sample Type:

Tar

Date Analyzed:

10/21/2002

| Base / Neutrals             | Results in ug / Kg |
|-----------------------------|--------------------|
| Acenaphthene                | ND< 8,470,000      |
| Anthracene                  | ND< 8,470,000      |
| Benzo (a) anthracene        | ND< 8,470,000      |
| Benzo (a) pyrene            | ND< 8,470,000      |
| Benzo (b) fluoranthene      | ND< 8,470,000      |
| Benzo (g,h,i) perylene      | ND< 8,470,000      |
| Benzo (k) fluoranthene      | ND< 8,470,000      |
| Chrysene                    | ND< 8,470,000      |
| <br>Dibenz (a,h) anthracene | ND< 8,470,000      |
| Fluoranthene                | 14,000,000         |
| Fluorene                    | ND< 8,470,000      |
| Indeno (1,2,3-cd) pyrene    | ND< 8,470,000      |
| Naphthalene                 | 58,400,000         |
| Phenanthrene                | 23,500,000         |
| Pyrene                      | 10,900,000         |
| Pyridine                    | ND< 8,470,000      |

ELAP Number 10958

Method: EPA 8270C

Data File: 9032.D

Comments

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:



### Semi -Volatile STARS Analysis Report for Non-potable Water

Client: NYE Tech

Client Job Site:

SUNY Geneseo

Lab Project Number: Lab Sample Number: 02-2632 10254

Parking Lot

Client Job Number: Field Location:

N/A Field Blank

Date Sampled:

10/15/2002

Field ID Number:

N/A

Date Received:

10/15/2002

Sample Type:

Water

Date Analyzed:

10/21/2002

| Base / Neutrals          | Results in ug / L |
|--------------------------|-------------------|
| Acenaphthene             | ND< 10.0          |
| Anthracene               | ND< 10.0          |
| Benzo (a) anthracene     | ND< 10.0          |
| Benzo (a) pyrene         | ND< 10.0          |
| Benzo (b) fluoranthene   | ND< 10.0          |
| Benzo (g,h,i) perylene   | ND< 10.0          |
| Benzo (k) fluoranthene   | ND< 10.0          |
| Chrysene                 | ND< 10.0          |
| Dibenz (a,h) anthracene  | ND< 10.0          |
| Fluoranthene             | ND< 10.0          |
| Fluorene                 | ND< 10.0          |
| Indeno (1,2,3-cd) pyrene | e ND< 10.0        |
| Naphthalene              | ND< 10.0          |
| Phenanthrene             | ND< 10.0          |
| Pyrene                   | ND< 10.0          |
| Pyridine                 | ND< 10.0          |

ELAP Number 10958

Method: EPA 8270C

Data File: 9030.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:



### Volatile Analysis Report for Soils/Solids/Sludges

Client: NYE Tech

Client Job Site:

SUNY Geneseo

Lab Project Number:

02-2632

Parking Lot

N/A

Lab Sample Number:

10253

Client Job Number:

Date Sampled:

10/15/2002

Field Location: Field ID Number: Pit S-1

Date Received:

10/15/2002

Sample Type:

Tar

Date Analyzed:

10/17/2002

| Results in ug / Kg |
|--------------------|
| 285,000            |
| ND< 20,400         |
| 206,000            |
| 111,000            |
| 34,800             |
| *                  |

ELAP Number 10958

Method: EPA 8021B (GC/MS)

Data File: 12573.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:



### Volatile Analysis Report for Non-potable Water

Client: NYE Tech

**Client Job Site:** 

SUNY Geneseo

Lab Project Number: Lab Sample Number: 02-2632

Client Job Number:

N/A

10254

Field Location:

IN/A

Field Blank

Parking Lot

Date Sampled:

10/15/2002

Field ID Number:

N/A

Date Received:

10/15/2002

Sample Type:

Water

Date Analyzed:

10/17/2002

 Aromatics
 Results in ug / L

 Benzene
 ND< 0.700</td>

 Ethylbenzene
 ND< 2.00</td>

 Toluene
 ND< 2.00</td>

 m,p-Xylene
 ND< 2.00</td>

 o-Xylene
 ND< 2.00</td>

ELAP Number 10958

Method: EPA 8021B (GC/MS)

Data File: 12574.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:

**PARADIGM** 

| <b>PARADIGM</b>                                        | O                                             | CHAIN OF CUSTODY    | J.A.                               |
|--------------------------------------------------------|-----------------------------------------------|---------------------|------------------------------------|
| ENVIRONMENTAL                                          | HEPORITOR                                     | INVOICETO:          |                                    |
| SERVICES, INC.                                         | COMPANYS                                      | (COMPANY:           | LAB PROJECT #: CLIENT PROJECT #:   |
| 179 Lake Avenue                                        | Address:                                      | ADDRES8:            | 62-302-                            |
| Rochester, NY 14608<br>(585) 647-2530 * (800) 724-1997 | CITY: STATE: ZIP:                             | CITY: STATE: ZIP:   | TURNAROUND TIME: (WORKING DAYS)    |
| FAX: (585) 647-3311                                    | PHONE: 436-5660 FAX: 436-6135                 | PHONE: FAX:         | STD OTHER                          |
| PROJECT NAMESTITE NAME:                                | JK BODHER                                     | ATTN:               |                                    |
| PARKING LOT                                            | COMMENTS: TECH SITE VISIT                     | Cell 14 746 - 4488  |                                    |
| がた ない 一大は ラー                                           | 大学 (本文) 日本 1 日本 | REGUESTIFICANIAMENS |                                    |
|                                                        | 2 <                                           | (02-                |                                    |
| DATE TIME 0                                            | R SAMPLE LOCATIONFIELD ID T                   | (A)                 | REMARKS PARADIGM LAB SAMPLE NUMBER |

| DATE                                                         | TIME                        | 00 E a 0 m — H H | © « <b>«</b> ∞ | SAMPLE LOCATION/FIELD ID                          | <b>Ξ&lt;</b> ⊢α−× | 2 3 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | (シアゴタ) HAS<br>X3TB<br>X3TB<br>W2T<br>(M) ういロパア | (mg) JWI (mg) | The Location 1 | , ,        | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PARADIGH LAB<br>SAMPLE NUMBER |
|--------------------------------------------------------------|-----------------------------|------------------|----------------|---------------------------------------------------|-------------------|-----------------------------------------|------------------------------------------------|---------------|----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 1 rolision                                                   | 1030                        |                  | ×              | S-1 P.T                                           |                   | 7                                       | ×                                              | ×             |                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1025                          |
| 2                                                            |                             | 70               | 535<br>33      | FIELD BLANK                                       |                   | J                                       | ×                                              | ×             |                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1025                          |
| 3                                                            |                             |                  | - pa           | <b>2</b> 5° ≥ ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° |                   |                                         | į                                              |               |                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
| 4                                                            |                             |                  | 200 T          | 18 · · · · · · · · · · · · · · · · · · ·          |                   |                                         | λ                                              | 2             |                |            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
| 5                                                            |                             |                  |                |                                                   |                   |                                         |                                                |               |                |            | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |
| 6 1/                                                         |                             |                  |                |                                                   |                   |                                         |                                                |               |                | 20 To      | no of the same of |                               |
| 7                                                            |                             | - 6              | 20.00          |                                                   |                   |                                         |                                                |               |                |            | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
| 8                                                            |                             |                  | 20,53          |                                                   |                   |                                         |                                                |               |                |            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |
| 6                                                            |                             |                  |                |                                                   |                   |                                         |                                                | -             |                |            | Dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |
| 10                                                           |                             |                  |                |                                                   |                   |                                         |                                                |               |                | 10 A S S S | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
| **LAB USE ONLY**                                             | ONLY**                      |                  |                |                                                   |                   |                                         |                                                |               |                |            | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
| SAMPLE CONDITION: Check box if acceptable or note deviation: | ITION: Chec<br>note deviati | k box<br>on:     | ٥              | CONTAINER TYPE: PRESERVATIONS:                    | NS:               | $\overline{\Box}$                       |                                                | HOLDING TIME: | G TIME:        |            | TEMPERATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |
|                                                              |                             |                  |                |                                                   |                   |                                         |                                                |               |                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |

P.I.F.

Date/Time:

10/15/02

Received @ Lab By:

Received By:

Date/Time:

# NYG1577817

*UEPARIMENI OF ENVIRONMENTAL CONSERVATION* DIVISION OF SOLID & HAZARDOUS MATERIALS



Please type or print. Do not staple

In case of emergency or spill immediately call the National Response Center (800) 424.8802 and the NYS Department of Environmental Conservation (518) 457-7362

TRANSPORTER

FACILITY

GENERATOR

# HAZARDOUS WASTE MANIFEST RO. Box 12820, Albany, New York 12212

| UNIFORM HAZARDOUS                                                                                                           | 1. Generator's l       | JS EPA ID No.                | Manifest E       | Doc. Na.    | 2. Page   | 1 of          | Informatio          | n within   | heavy bold line   |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------|------------------|-------------|-----------|---------------|---------------------|------------|-------------------|
| WASTE MANIFEST                                                                                                              | 100                    | 35                           | Į.               |             |           | -             | is not requ         | ired by F  | ederal Law,       |
|                                                                                                                             | NI Y' D O 7            | 316 619 315 0                | 7.78             | 1 7         | 1         | - 1           |                     |            |                   |
| 3.Generator's Name and Mailing Add                                                                                          | dress SUNY G           | ENESEO                       |                  |             |           | 10/0          | 4 ==                |            |                   |
|                                                                                                                             | 1 COLL                 | EGE CIRCLE                   |                  |             |           |               | 157                 | 78.        | L-7               |
| N . N.                                                                                                                      | GENESE                 | O NY 14454                   |                  | - 1         | . Gener   | SAME          |                     |            |                   |
| Generator's Telephone Number (     Transporter 1 (Company Name)                                                             | 585) 245-              | 5511<br>6. US EPA ID Number  |                  |             |           |               |                     | 40         | lore and          |
|                                                                                                                             |                        | The second second            |                  |             |           | Transpor      |                     | 22 /       | PUN BLOW          |
| 7 Transporter 2 (Company Name)                                                                                              |                        | 8. US EPA ID Number          | 655              | 7.4         | l. Transj | 72            | 87h82               | 2-141      | 4                 |
| Robbie D. WOO                                                                                                               | ) N                    | B. LO 0 6 7 /                | 2 20             | 9.1         |           | Transport     | ers in              | -          |                   |
| 9. Designated Facility Name and Site                                                                                        | Address                | 10. US EPA ID Number         | 200              | - C         |           | Facility II   |                     |            |                   |
| ROSS INCINERATION S                                                                                                         | SERVICES.              |                              |                  | - 1         |           |               | _                   | 1          |                   |
| 36790 GILES ROAD                                                                                                            | JERCVICEO,             |                              |                  | H           | . Facilit | y Telepho     | 008) <sup>pnc</sup> | Mozo       | 7000              |
| GRAFTON OH MACM                                                                                                             |                        | OHD0484                      | 156              | 5 5         |           | 36901         | 008)                | 1.878      | -/6/7             |
| 11, US DOT Description (Including Pr                                                                                        | oper Shipping Nar      | ne, Hazard Class and IO N    | ladmu            | 12. Con     | diners    | 13. To        | tol                 | 14. Unit   |                   |
|                                                                                                                             |                        |                              |                  | Number      | Туре      | Que           | antity              | Wt/Vol     | i. Waste No.      |
| *WASTE ENVIRONMENTALI                                                                                                       | Y HAZARDO              | US SUBSTANCES,               |                  |             | CM        | 29            | 900                 | P          | 5018              |
| LIQUID, N.O.S. (BENZE                                                                                                       | ENE), 9, U             | N3077, PGIII                 | J                | 001         | b         | -مام          | 0 2 0               | -          | STATE             |
| b.                                                                                                                          | V-10-21 21 W           |                              |                  | 01017       |           | -1            | -1-1-1              |            | EPA               |
| ATTA                                                                                                                        | throw .                | 2                            |                  | 1 1         | 1         | 1.1           | 111                 |            | STATE             |
| c /////                                                                                                                     | ALLES I                |                              |                  |             | 1         |               |                     | _          | and a series of   |
|                                                                                                                             |                        |                              |                  | 1.1         |           | 1 1           | 1                   |            | EPA               |
| d.                                                                                                                          |                        |                              | -                |             |           |               |                     |            | STATE             |
|                                                                                                                             |                        |                              |                  |             |           |               |                     |            | EPA               |
|                                                                                                                             |                        |                              | - 1              | 11          |           |               | 1 1                 | - 1        | STATE             |
| J. Additional Descri                                                                                                        |                        |                              |                  |             | K. He     | andlina C     | odes for            | Vastes Liv | ted Above         |
| a San San San San San San San San San Sa                                                                                    |                        | l c                          | 1                | 6.0         | a so      |               |                     | 1          |                   |
|                                                                                                                             |                        |                              |                  |             | a         | _             | 15                  | 15         |                   |
| b                                                                                                                           | 1 1 1                  | 1.                           | Î I              | 1           | eq.       |               |                     | 1.25       |                   |
| 15. Special Handling Instructions and                                                                                       | Additional labora      |                              |                  | 1           | ь         |               |                     | d          |                   |
| ERG 171                                                                                                                     | Automora internet      | THE CASE (                   |                  | GENCY       | : (5      | 85)           | 436–56              | 60         |                   |
| ERG 1/1                                                                                                                     |                        | R3954 / PO#                  | 131829           |             |           | 8             |                     |            | _                 |
|                                                                                                                             |                        |                              |                  |             |           | 6             | mal                 | 100        | and la            |
| 16. GENERATOR'S CERTIFICATION: 1 and are classified, packed, marked and                                                     | hereby declare th      | at the contents of this con: | signment an      | e fully and | accurol   | ely descr     | rbed abov           | by prop    | er shipping name  |
| national government regulations and s                                                                                       | tate laws and mou      | in an respects in proper co  | ondinon for      | munsport    | oy highw  | AGA accou     | ding to ap          | plicable   | international and |
| If I am a large quantity generator, I cer                                                                                   | tify that I have a a   | regram in place to reduce    | the volume       | and toxic   | ity of wo | ste gane      | rated to th         | e degree   | I have determined |
| to be economically practicable and that<br>present and future threat to human her<br>generation and select the best waste m |                        |                              |                  |             |           |               |                     |            |                   |
|                                                                                                                             | anagement metho        | d that is available to me a  | and that I co    | in offsyd.  |           | 7<br>200 a go | od laim er          | וש פז חסיו | nimize my waste   |
| Printed/Typed Name                                                                                                          | VACAS                  | Signature                    |                  | ///         | //        |               |                     | Mo.        | Day Year          |
| 17. Transparter 1 Acknowledgement of                                                                                        | 17 10110               | V                            |                  | 10          |           |               |                     | 1/1        | 0002              |
| Printed/June Name                                                                                                           | Receipt of Materia     |                              | 1                | /           | 7         |               |                     |            |                   |
| 1Hom A R                                                                                                                    | CF                     | Signature                    | 7                | //          | ,         |               |                     | /º/.       | Ogy Year          |
| 18: Transparier 2 Acknowledgement of                                                                                        | Receipt of Materia     | 15 / //                      |                  | 911         |           |               | $-\bot \angle$      | 1          | 001               |
| Printed/Typed Name                                                                                                          |                        | Signature                    |                  |             |           | _             |                     | Mo.        |                   |
| Elijah McLin                                                                                                                |                        | ( / 40                       | 17               | 7-1         |           |               | 11                  | "!/ Tz     | Doy Year          |
| 19. Discrepancy Indication Space 51                                                                                         | CHONS 12               | A, IT UPDATED W.             | TW GA            | NERCT       | 00        | FR 44 5       | 55100               | 7 -000     | 2000              |
| •                                                                                                                           |                        |                              | - 1 44 - 44 - 47 | 27 TOY      |           |               | - Aller             | a aprilul  | KAJZ)             |
| 20 Forelity Owner or Operator Conf.                                                                                         | nation of constitution |                              |                  | nyou        |           |               |                     |            |                   |
| 20. Facility Owner or Operator: Cartific<br>Printed/Typed Name                                                              | unon of receipt of     |                              | red by this r    | nanifest ex | cept as   | noted in      | Item 19.            |            |                   |
|                                                                                                                             | 1 12                   | Signature                    | 10.875           |             | 10        |               | ٨                   | Ao.        | Day Year          |
| scrian S                                                                                                                    | lack                   | 1 15-                        |                  | ر -         |           |               | 1/                  | · ) i      | 11/05             |
|                                                                                                                             |                        | 1                            |                  | 0.00        |           |               | 1/                  |            |                   |

たいなかられ

ŧ,

ķ.

- 教養をはしい

Transfer or

ŧ,

:!

۲,

CCI APPROVALS DEPT

FACILITIES PLANNING

9083550965 PAGE 04

5h-105374

## ACTINICATION OF MALLE ARTHUL

THE WINESTY OF MY VIII

REFIGER 11/91

1 The constant rest above hereby provides the following purposal to been included in services, inc. (PIC) as particularly of the provides the following purposal action of the provides provided by an CR and (a)(1) and the OCCAM-19-(VAC)). The veste material shipped under the basic wants of the provided with the constant purposal particular regulations as set forth in a constant purposal particular regulations as set forth in a constant purposal particular regulations as set forth in a constant purposal particular regulations.

2. check all under you therefore constituents (MC's), on the attended from, which can resembly be expected to the original for the waste at a constituent asserting treatment asserting to the property of the

3. A separate page must be used for each WS in which RIC's or UHC's are present.

4. Heste Analysis is accaded where સવસ્તાઓક, ઇપલાનોડર, ઇપલાનોડર, ઇપલાનોડર દાતાવાલનો સવસ્તા મહાદાવાના પ્રાથમિક વિભાગાના તે પર મહાદાવાના

### UNDERLYING HAZARD DUS CONSTITUENTS

Aldicarb sulfore
Bartist
Barti

Hartis (A) Hearthard Herror orderins)

- Hartis - Artis - Arti

Physiciante salicylum
Physiciane salicylum
Physician
Phy

() THE WASH UNSPLYING HOWING COSTILLING ARE NOT "REASONALY EXPORTED" TO BE PRESENT DIT THE WASTE PRODUCT SLOWER LISTED IN WASTE SLOWER TO THEATHERT.

RES INCHESCION SERVICE, INC. CONDIT RODET WATE WITH THESE UNDELYING HEARTOLS CONSTITUENTS WITH THE WATER HARDONS ARE WESTERN.

WASTES SUBJECT TO TREATMENT

Percentaring of disciss)

Triantability spe todes & Schrategory (if annitoshie)

Are IMPARTS OFFICE OF

Signature (

4

Date\_

ide DREUDE PRILITIES.

It is the operator's respectfulltry under all the 20/04/276-99 to entry that annualists initialized according to the sound of this form and recommend that the generator representation of the sound of this form and recommend that the generator representation of the waste stream.

aspeare

Perițăs c

WOSE SECUL

University Treatment Standards 40 CFR 268.48

REMELLIANS: This map reads completion only if "YES" is indicated under wastes subject to Treatment section.

Indicate with an "X" any underlying Heconolius Constituent reasonably expected to be present in this basts.

| <del>, -</del> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |                                               | 1 Auditoria L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | <u> </u>                              | <b>、此</b> 念  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|--------------|
| 1              | Chairman ph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OFFIC.                                 | OPC.                 | Crastituents by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OPTC.                                                        | CLC                                           | Changal Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAN CATE       | 農                                     |              |
| =              | According for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.89                                   | 益                    | Libitizoative Unacidentico evidentico eviden                                                                                                                                                                                                                                                                                                                                                     | ne. 0.025                                                    | <b>648</b>                                    | - o-litroini ire<br>- parteseni ige<br>- introducina<br>- > ntroducina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7            | 1                                     |              |
| =              | Absonitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2                                    |                      | ethylede                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.044                                                        | •                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.5           | *                                     |              |
| _              | E-Acety annual lucrere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | 176                  | = 2.40(2,40)(b)(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8,84                                                         | 11                                            | - PHILAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02           |                                       | 171.5        |
| =              | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2                                    | 0,08                 | ) intidopares of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              | 0.007                                         | PHOTOS STAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 1                                     | 间            |
| =              | ART TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,02                                   | 0,08                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                         | 0.007<br>0.007                                | - Hall Dries St. In which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.40           | - !                                   | 1            |
| Ξ              | And the state of t | 0.07                                   |                      | - p.p. die<br>- p.p. | 0,03                                                         | H                                             | Harding 2 Hary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.40           | 7.1                                   |              |
| Ξ              | ANICAS<br>ASILIA<br>ANICAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05                                   |                      | trais-1,3-trictiloro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.036                                                        | 18                                            | Hipospipardia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | <b>3</b>                              | ***          |
|                | BEST CHANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                      | _ pleiny   Abdelate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.017<br>0.11                                                | 0.13                                          | Tings FCE's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.014          | *                                     | i (l)        |
| <u> </u>       | BASE CHARLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N.                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.13                                                         |                                               | Paramonian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 4                                     | 5 1          |
| <u>:-</u>      | Secondary of the second | 0.0055                                 | 6-1                  | 2.4-Olaschy), Phanol<br>Ulmetty Physical Jan<br>Dr. 14-Buty), Physical<br>Dr.                                                                          |                                                              | 2<br>2                                        | - Period propreso!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 侧              | 7                                     |              |
| =              | A CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.007                                  | . 33                 | - A DINTING COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              | 246                                           | A Property of the Property of  |                | 码                                     |              |
| =              | Ele-ec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . Valence                              |                      | 2.4-Director                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2<br>0.2                                                   | 130                                           | Projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 3                                     |              |
| _              | and administrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0017<br>0.11                         | 0.066<br>12          | In Heldy Pitte late  - Fini Industries  - Fini Indu                                                                                                                                                                                                                                                                                                                                                     | 0,007                                                        | THE STANSFORMER                               | - Mingrit askering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.83           | 13                                    | 4.3          |
| _!             | (करणकार कर)<br>हार्थ कर्मकर-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.11                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n 0.3                                                        | 城                                             | X Pyrese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 12                                    |              |
|                | Grander (Serv) Ett<br>Grander (Serv) Ett<br>Grander (Serv) Grander<br>Grander (Serv) Grander<br>Grander (Grander)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | at 0.05                                | 15<br>23<br>23<br>23 | The Mildrenius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.5                                                          |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | <b>*</b>                              |              |
| =              | PACE STATE OF THE PACE OF THE  | 8:82                                   | - 1                  | — 1.2-Turenyinya azin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e (J.077<br>mai) (J.028                                      | <b>E</b>                                      | Silver ( L-TP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20,0           | 1                                     |              |
| _              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 認                                      | Q14                  | ** PHONE !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | Section 8.                                    | Tollege Stollard Stollard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 103                                   |              |
| $\Xi$          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.8 4                                  |                      | — विविद्यास्य स्थानक                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                                                        |                                               | Terrationalisme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       | 数量           |
| =              | Actual Control of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                  | 0.2                  | Entrin aldeische<br>City/ Jonann<br>Entry/ Servent <sup>2</sup><br>Day/ Option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,025                                                        | 0.13                                          | 7 interiors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00           | 14                                    |              |
| -              | A CONTROL OF THE CONT | 0.45                                   | 25                   | Divi Owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.24                                                         | ×43 (                                         | _ 100 NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ****           | 1.2                                   | 外            |
| =3             | Chlore I, but diene<br>Orod groenestere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.30                                   | 0.                   | (Proprentorile)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8-8                                                          | 搬                                             | Transam (tribrono-<br>metrore<br>12.4-Taichlordenane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.65           | 39:                                   |              |
| $\equiv$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.057                                  | 3                    | ETIV BETTEL YELL<br>ETIV BETTEL YELL<br>ETIV ETIT BETTEL<br>155 (-ETIS PEC) ()<br>Professione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | 爱                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |              |
|                | 10 - C) 10 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.036                                  | 93                   | Profesione<br>Control there                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.607                                                        | 35                                            | To are not less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X 167          |                                       |              |
| <u> </u>       | Control of the contro |                                        | 6.0                  | rius ee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.07                                                         | 0.06                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.18           | 2.H.                                  |              |
| 二計             | 50-Chigo-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.85                                   | 99                   | epiacilor epocida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0012<br>(A.016                                             | 0.06                                          | 二红头形门头杆面                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05           | Res.                                  | 3.5          |
| -Ř             | Chicago de Carego                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.019                                  | 18                   | isagnioroxide<br>isagnioroxidates<br>isagnioroxidates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                                                         | <b>5.5</b>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.45           | 37.                                   |              |
| 3              | (ETY OTOTAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.055                                  | ) -                  | Macach Icrost trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                               | maria — Colombiano — 2, 5-17-colombiano — 2, 5-17-colombiano — 2, 5-17-colombiano — 2, 5-17-colombiano — 2, 2, 5-17-colombiano | ישניט<br>רלי ח | 6.0                                   | Q C          |
| =}             | ताताताता शह<br>(तिकासम्                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.E                                    | 34                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.002<br>0.002                                               | 37                                            | A Milese-level Donata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.32           | 39                                    |              |
| 15             | Gentle .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.00                                   | 34                   | Tachtoly Sicators<br>Tochmestants<br>Syland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.19                                                         | .55                                           | A SOUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 115            | SO CE                                 | が<br>トト<br>1 |
|                | Control o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>y</i>                               | 進一                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                                                        |                                               | - Rucium 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87             | 1/1/                                  | 建作           |
| -#i            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ゆる                                     |                      | ISTATITO   g<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00<br>0.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00 |                                               | Bryllius Cadrus Chimples (Seal) Comples (Seal) Comples (Seal) Comples (Seal) Comples (Seal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 70                                    |              |
| -81            | TOTAL HILLSHOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | 灣 二                  | Medianalis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5,6,240,7                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       | 2            |
| <b>1</b>       | S. C. Stare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.05                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4                                                          | 100年間の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の | Since Office (ASC ASC)  Since  | 0.7            | 4                                     |              |
| ون_            | der district                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.028                                  | 15                   | HELD TECHNICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              | 劃二                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | Ø, K                                  |              |
| _24 <u>6</u>   | de Despuse (1812)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0.11                                  | בן צנ                | Well sellers frate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.014                                                        | 震一                                            | 3 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.14           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1            |
| 13:            | C. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | 図目                   | HEIN COLUMN BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              | 15 ]                                          | Autority of the control of the contr | 0 7            |                                       | ( )<br>( )   |
| 1              | Angri increations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                      | Will the Color of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              | 3D<br>5 0                                     | ZIRC (NOT UNC) 2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.34           | VI W                                  | 要            |
| 137            | Treasing Country of the Country of t | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | or Ruit-             | SEATION  FETENCIA (CONTO)  FET                                                                                                                                                                                                                                                                                                                                                     | (A)                                                          | <u>, 1</u>                                    | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                       |              |
| ï              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | : <del></del>                          |                      | a - 70'00 nior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                            |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠,٠            |                                       | 14           |
| ij             | ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                      | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 75K                                   |              |

Marrifest:

WPS#: 59011

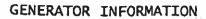
Page \_\_ of \_

INSTRUCTIONS: This page needs completion only if "YES" is indicated under wastes Subject to Treatment section.

Indicate with an "X" any Underlying Hazardous Constituent reasonably expected to be present in this waste.

| Constituents by<br>Chemical Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WW<br>Conc.                                 | NAW<br>Conc.                           | Constituents by<br>Chemical Name                                                                                                                                        | uw<br>Conc.                                                                   | NAW<br>Conc.                                                | Constituents by<br>Chemical Name                                                                                          | WW<br>Conc.                               | NWW<br>Conc.              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------|
| Acerephthene Acerephthylene Aceture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.059<br>0.059<br>0,29                      | 3.4<br>160                             |                                                                                                                                                                         | 0.025<br>0.054                                                                | 6.0<br>30                                                   | O-Nitroaniline D-Nitroaniline Wittobergene                                                                                | 0.2                                       | 7 14                      |
| Acetoritri le Acetoritri le 2-Acetylamno luorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.018                                       | 44<br>160<br>940                       | ethylene<br>2,4-bigilorophenol<br>2,6-bighlorophenol                                                                                                                    | 0.044<br>0.044                                                                | 14<br>10                                                    | l 5-Nittro-D-tolundiae                                                                                                    | <b>0</b> ,3                               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.059                                       | 73<br>73                               | 2,6-Dichloropherol 2,4-Dichloropherol ropherosyacetric Acid p,p;-00e                                                                                                    | 0.72                                                                          |                                                             | o-Nitrophero) p-Nitrophero N-Nitrophero N-Nitrosodiethylamine N-Nitrosodimethylamine                                      | P 1J.44                                   |                           |
| Acrylom trule<br>Aldrin<br>4-Amnobipheny?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.24<br>0.01<br>0.13<br>0.03<br>0.03        | 0.9 <u>4</u> 14                        | I h'h'-mr                                                                                                                                                               | 0.023<br>0.023<br>0.036<br>0.036                                              | 0.087<br>0.087<br>0.087                                     | N-Nitroso-Di-N-Butyl-<br>anine<br>N-Nitrosomethyl-                                                                        | 0.40<br>0.40                              | _                         |
| Antine Anticacene Aramite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,059                                       | 14<br>3.4<br>84                        | 1,2-pichlomoropane<br>  cis-1,3-bichloro-<br>  propylene<br>  trans-1,3-bichloro-                                                                                       | 0.036                                                                         | 18<br>18<br>18                                              | EUNIAMOR NO STORE                                                                                                         | 0,4                                       |                           |
| Bendiocaro Benony! Benz(a)Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.056<br>0.056                              | 1.4                                    |                                                                                                                                                                         | 0.017<br>0.20<br>0.13                                                         | 0.13<br>0.13<br>28                                          | Nitrosopiperidine Nitrosopyrrolidine Parathion                                                                            | 8,81                                      | 4,5                       |
| Berzal diloride Berzal diloride Berzale   Berzale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.055                                       | € <u>:</u> 3                           | profiled by facility dazes                                                                                                                                              |                                                                               |                                                             | Total PCB's  Peritach for oberzene  Peritach for our troberzene  Peritach for our troberzene  Peritach for our troberzene | 0.05                                      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,0055                                      | SESSIVENCES OF                         | 2,4-Dimethyl Phenol Dimethyl Phthalate Di-N-Butyl Phthalate                                                                                                             | 0.037<br>0.037<br>0.037<br>0.037<br>0.037<br>0.037<br>0.037<br>0.037<br>0.037 |                                                             | - Phenacetrin                                                                                                             | ne 0.05<br>0.08<br>0.08                   | 4.8                       |
| Berzo (X)- Fluorantiere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8:001                                       | 8.000                                  | 4.6-Dinitro-O-Creso                                                                                                                                                     | 0.32<br>0.28<br>0.12                                                          | 2.3<br>160<br>160                                           | Phenanthrene<br>Phenoi                                                                                                    | 0.05<br>0.03                              | 5.6                       |
| delta-BHC<br>camma-BHC<br>Engroyichlorgrethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.003                                       | 16                                     | 2,4-Dim tropheno!<br>2,4-Dim troto Juene<br>2,6-Dim troto Juene<br>Di-N-Octyl, Pritha late                                                                              | 0.32<br>0.55<br>0.053                                                         | 120<br>23                                                   | Priorate Priorate Prioratic acid Prioratic aninydride                                                                     | 0 05<br>0 05                              | 22<br>28                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.11<br>0.055                               | 15                                     |                                                                                                                                                                         |                                                                               | 170                                                         | Pronantide Proposur  Pyrene Pyrene                                                                                        | 0.05                                      | 1:3<br>8:2                |
| - (Brynnethene) - (Brynnethene | er 0.055<br>0.017<br>0.066                  | 2.5<br>2.5<br>2.5<br>2.5               | 1.4-Diokane Diphenylamine Diphenylamine Diphenylmitrosamine 1.2-Diphenylhydrazine Disulfoton                                                                            | 0.957<br>0.987                                                                | #3                                                          |                                                                                                                           | 0.05<br>0.77                              | 8 16<br>7 14              |
| dini trophenol (Dinoseb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.006                                       |                                        | Dithiocardanaes (CDL)                                                                                                                                                   | 4 ? ? II II/K                                                                 | 6,7<br>28<br>0,066                                          |                                                                                                                           | 0.055<br>hane 0.05                        | 7 6.0                     |
| Carbary!  Carbaryadim  Carbardingin  Carbon displicate  Carbon tecrachiloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.006<br>0.066<br>0.066                     | 0.14<br>0.14<br>4.800/1                | Endrag                                                                                                                                                                  | 8.029                                                                         |                                                             | 11.1.1.2-Tetrachloroet<br>11.1.2-Tetrachloroet<br>Tetrachloroethylere<br>2.3,4,6-Tetrachlorom                             | hane 0.05<br>0.05<br>eno 0.05             | 7 6:0<br>8 <del>9</del> 9 |
| Chiombane (alona-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | 4.8 0<br>6 0<br>0.26                   | i — Emprin algenyge<br>Ethyl acetaber                                                                                                                                   | 0.025<br>0.33<br>0.057                                                        | 0.13<br>33                                                  | Togethere                                                                                                                 | 0.00                                      | 114                       |
| and came, isomers) p-Chloroperaline Unfortherene Chloroperaliate 2-Chlorop-1,3 hutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,46<br>0,057                               | 6.0<br>6.0                             | Ethyl berzene* Ethyl cyamice (Proparentorile) Ethyl ether                                                                                                               | 0.24                                                                          | •                                                           | Bruipfom (tribrum-                                                                                                        | 0.63                                      | 1.4                       |
| Utioruoibruidiemane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.10<br>0.057<br>0.057                      | 0.28                                   | Ethyl methacrylate                                                                                                                                                      | 0:13<br>0:28                                                                  |                                                             | 1,2,4-iridilorderzen                                                                                                      | 0.055                                     | 19<br><b>6.0</b>          |
| Onloroethane pis(2-Chiloro- ethoxy) retirane pis(2-Chiloroethy))ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.636                                       | 6.0<br>7.2                             | Ethylene oxide<br>bis(2-Ethylecyl)<br>Phthalate<br>Fanchur                                                                                                              | 0.28<br>0.017                                                                 | .15                                                         | III di la cellare<br>III di la cellare<br>III di la cellare<br>III di la cellare<br>III di la cellare                     | 8.62                                      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er 0.033<br>er 0.062<br>0.035               | 6.0<br>6.2<br>7.2                      | X Fluoranthene Fluorene Heptaction                                                                                                                                      | 0.059<br>0.0012                                                               | 3.4<br>0.066                                                | metrane  2,4,5-Trichlorophenol  2,4,5-Trichlorophenol  2,4,5-T(2,4,5-Trichlor pheroxyacetric acid)                        | 0.18                                      | <b>3.</b> 4               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                        | Heatarilor enocide Heatarilor enocide Heatarilor enocide                                                                                                                | 0.016<br>0.055                                                                | 0.066                                                       | 2,4,5-T(2,4,5-Trichlor<br>phenoxyceric acid)                                                                              | 10- 10:72<br>0.85                         | 7.9<br>≈n                 |
| p-Chloro-m-cresol Chlorometrane (Nethyl Chloride) 2-Chlorometrialene - (1-chlorometrialene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 810.0<br>220.0                              | 30<br>56                               | Headhlorocyclo-<br>pentachiene<br>Headhloroethane                                                                                                                       | 0.055                                                                         | \$:\$<br>2:4                                                | 111,2-th-doloro-1,2,2-                                                                                                    | 0.057                                     | <b>38</b>                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.055<br>0.034<br>0.039                     | مين کامنونو<br>دف کامنونو              |                                                                                                                                                                         | 0.055<br>0.035<br>0.0055                                                      | 30<br>3.4                                                   |                                                                                                                           | 0.27<br>0.32                              |                           |
| ✓ n-Oesol*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q. <i>Z</i> Z                               | 5.6                                    | Ioumethane<br>Isputyl almhol*                                                                                                                                           | 0.19<br>5.6                                                                   | 170                                                         | ATCHIONY 1 Arsenic I Barrium I                                                                                            | 4 3                                       |                           |
| C)C)diseases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.37<br>0.35<br>0.023                       | 7.007                                  | Isodrin<br>Isosafrole<br>Kepone                                                                                                                                         | 0.19<br>0.02<br>0.001<br>0.001                                                | 0.066                                                       | Barrum I Beryllium 0 Cadmum (Total) 2                                                                                     |                                           |                           |
| 0,p; -COE<br>0,p; -COE<br>Dipenz(a,h)Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.36 0.<br>0.003<br>0.003<br>0.003<br>0.003 | 7.007<br>0.007<br>0.007                | Kepone  Methacry jornitrije  Methanol*                                                                                                                                  | 5,6,001 <b>0.</b> 7                                                           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | Cyamides (Total) I<br>Cyamides (Ameriable) 0<br>Flugride (Not UHC)                                                        | 26                                        | ~ 590<br>30               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.11                                        | NA 15                                  | Metropyrillere Metrosychior Metryllethyl letteret                                                                                                                       | 0.23                                                                          | 0.18                                                        | Lead Others 0                                                                                                             | # 0,7<br>15 0,0                           |                           |
| Ediylene dioromide -<br>(1.2-Dibromethane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.028                                       | 15                                     | Methy restrictly lettres<br>Methy methody late<br>Methy methods for ate                                                                                                 | 8-14<br>0.018                                                                 | 180                                                         |                                                                                                                           | 36 07 07 07 07 07 07 07 07 07 07 07 07 07 |                           |
| Dibronometrare  In-Dictioropersene  O-Dictioropersene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05                                        | 63                                     | Metry metracry ate Metry metracry ate Metry metrarsulforate Metry paratrion - Metry colorate Metry lene Brs- (2-chloroan line) Metry lene chlorode  Metry lene chlorode | 5.6 0.7<br>0.22<br>0.22<br>0.14<br>0.014<br>0.018<br>0.0055<br>0.0055         | 0.100 Mary 100 100 100 100 100 100 100 100 100 10           | Selenium 0 Si Ner 0 Si Ner 0 Si Ner 1 Sulfide 1 Varadium (Not (HC) 1                                                      | 14 0.2<br>61 4:                           |                           |
| p-Dichlordrevere Dichlordrif lugrarethane Li-Dichlordethane Li-Dichlordethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.11<br>0.036<br>0.030<br>0.039             | 50000000000000000000000000000000000000 | Methylene chloride                                                                                                                                                      | 0. <b>059</b><br>0.059                                                        | <b>30</b>                                                   | Zinc (Not UHC) 2.                                                                                                         | 61 <b>4</b> ;                             | <b>3</b> ig√1             |
| 1:2-Dichloroethane<br>Regulated Hazardous Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.21<br>nstribent                           | 6.0<br>for FO                          | 2-Narhativ lamine<br>21-FOUS are Indicated with                                                                                                                         | (*)                                                                           | NA I                                                        |                                                                                                                           |                                           |                           |

### NOTIFICATION OF WASTE SUBJECT TO LAND DISPOSAL RESTRICTIONS


| 3 <b>2</b> ) | erato<br>dores           | STATE INTO                                                                                                         | ERSTTY OF NEW YOR                                          | <u>K</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                  | Revised 11/9<br>Marrifest #<br>Shipper                                                                                      | <u></u>                                                                              | <del>_</del>      |
|--------------|--------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------|
|              |                          | (ENESE)                                                                                                            |                                                            | 14454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |                                                  | Û.S. EPA ID                                                                                                                 | NYOU/3669350                                                                         |                   |
|              |                          |                                                                                                                    |                                                            | y provides the fol<br>and the OACSV4S-SS<br>and Disposal Restr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                  |                                                                                                                             |                                                                                      |                   |
|              |                          |                                                                                                                    |                                                            | CONSTITUENTS (LHC'<br>ncentration above<br>sal Treathent Star<br>eactive Cyamdes a<br>stenater forms of C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |                                                  |                                                                                                                             |                                                                                      |                   |
|              |                          |                                                                                                                    |                                                            | AZAROULS CONSTITUE<br>hove the constitue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                  |                                                                                                                             | projected to be pr<br>in 40 CFR Part                                                 | 758.48.           |
|              |                          |                                                                                                                    |                                                            | reach WPS in which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                                                  |                                                                                                                             |                                                                                      |                   |
|              | 4. W                     | aste Analysis<br>nowledge of t                                                                                     | is attached wher<br>he waste(s).                           | e available, other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | wise, the                                          | information o                                    | antained herei                                                                                                              | n is besed upon                                                                      | my thorough       |
| **           |                          |                                                                                                                    |                                                            | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    | Watter or 1000 m marred marrers                  | advanced no no his not below \$2 to \$40 and                                                                                | ********                                                                             |                   |
| * ;          | i<br>P                   |                                                                                                                    | UNDERLY                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RD OUS                                             |                                                  | ITUENTS                                                                                                                     |                                                                                      | *                 |
| *****        | ********                 | dicarb sulfon<br>than<br>that<br>the polition of the<br>polition<br>Curary I methy<br>cleate<br>TC<br>metanate hyd | e<br>ol<br>lcar <del>barete</del>                          | HxCDs(A)] Head<br>HxCDs(A)] Head<br>3-Indo-2-propyly<br>Metholaro<br>Metholaro<br>Metolaro<br>Mescarbate<br>Mescarbate<br>Molaro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jorodiberz<br>Jorodiberz<br>n-butylcz<br>n-butylcz | o-p-diocins) ofurans) rbanate 20-0-diocins)      | Physostigmine<br>Physostigmine<br>Propagaro<br>Prosulfocarb<br>TODS(AL) Tet<br>TODS(AL) Tet<br>TODS(AL) Tet<br>TODS(AL) Tet | salicylate rachiorodiperzo- rachiorodiperzo- rachiorodiperzo- rethyl rumpropyl) phos | ் <u>#</u>        |
| · 安全安全安全安全安全 | (X)                      | PRILICI SUR<br>INCINERATIO<br>TAL APPROVAL                                                                         | MEYS LISTED IN WA<br>SERVICES, INC.<br>S. PLEASE CONTAC    | LE CONSTITUENTS AR<br>STES SUBJECT TO TR<br>CANNOT ACCEPT WAST<br>T YOUR ACTOUNT REP<br>TANKER TO THE STEEL OF THE STEEL | EAIMENT. E WITH THE RESENTATIVE AMARAMAN  J E C T. | E UNDERLYING<br>IF APPROVALS                     | HAZAROOLS CON<br>ARE NEEDED.                                                                                                |                                                                                      | r i               |
|              |                          | Treatability                                                                                                       |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ater(NWV)                                          | Wastevater (WA                                   | D                                                                                                                           |                                                                                      |                   |
| 1            | #5.#<br>#011             | Now York                                                                                                           | FPA (ndes & Sub<br>DULL                                    | category(if applic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | able).                                             |                                                  |                                                                                                                             | Are U SE BH                                                                          | 's present?<br>NO |
|              |                          |                                                                                                                    |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                                                  |                                                                                                                             |                                                                                      |                   |
| S            | ignati                   | ure X                                                                                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                                                  | ate                                              |                                                                                                                             |                                                                                      | _                 |
|              | N                        | arne                                                                                                               |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ti                                                 | tle                                              | ·                                                                                                                           |                                                                                      | ···               |
| I<br>e       | t is i<br>ach s<br>he ge | the generator<br>friprient of wa<br>nerator indep                                                                  | 's responsibility<br>ste as required,<br>endently verify r | under 40 CFR 268/<br>RTS makes no repr<br>octificación requir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 04C2745-59<br>Vesentation<br>Venents for           | to ensure the<br>s as to the ac<br>the waste sti | at appropriate<br>couracy of thi<br>teans.                                                                                  | notifications a<br>s form and recor                                                  | COMPANY<br>TEXT   |

|      | S S               | TARE             | Z.    | 1         | 1             | 1           | · [.             | 1           |              |                                                                    |
|------|-------------------|------------------|-------|-----------|---------------|-------------|------------------|-------------|--------------|--------------------------------------------------------------------|
| 91   | 67540 1b          | 37640 1b         | 3990D | i -       | - 1           |             |                  | 5           | . 116        | m B.S.1-20<br>Tickets by: BRECHBUHLER SCALES, INC.<br>800-331-2424 |
| Date | 11.28 FIN11 11 02 | 1:11 PM11 11 02. |       |           | ano Javano    | 18 P        |                  | 519628      | Load No.     | O                                                                  |
|      | of desperso       | 11811            | 1 2   |           |               | ₩<br>  (2)  | UNIV             | 519         | 908-355-0965 | Printed in U.S.A.                                                  |
|      | Number 4          | 105374           | 3 S   | Commodity | From          | To          | Address STATE UN |             | Parise       |                                                                    |
|      | No.               |                  |       | (1=+7, 1f | e Edit report | g out - 212 |                  | ZUM ZUROT ; | ZWII E       | 515.92                                                             |

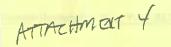
The contract of the contract o

Shipper 105374 Weight discrepant, oxiginally manifested as 40000 lbs. Changed to 29900 lbs.

### CERTIFICATE OF TREATMENT



STATE UNIVERSITY OF NEW YORK GENESEO NY EPA # NYD073669350


The above material has been processed at:

Ross Incineration Services, Inc. 36790 Giles Road Grafton, Ohio 44044-9752 (440) 748-2171

US EPA ID # OHD048415665



179 Lake



7-2530 FAX 585-647-3311

LABORAT

<u>SIS</u>

Client:

**NYE TECH** 

Lab Project No.:

03-0196

**Client Job Site:** 

Suny Geneseo

Sample Type:

Soil

Client Job No.:

Parking Lot Excavation

3954

**Analytical Method:** 

SW846, 9012

Date Sampled:

01/10/2003

Date Received:

01/10/2003

Date Analyzed:

01/16/2003

| Lab Sample<br>ID. | Field Location/Sample ID | T. Cyanide<br>(mg/kg) |
|-------------------|--------------------------|-----------------------|
| 1324              | S-1, NE Pit Floor        | 4.1                   |
| 1325              | S-2, SW Pit Floor        | ND<0.5                |
| 1326              | S-3, SW Pit Lower Wall   | ND<0.5                |
| 1327              | S-4, SW Pit Upper Wall   | ND<0.5                |
| 1328              | S-5, West Pit Lower Wall | ND<0.5                |
| 1329              | S-6, West Pit Upper Wall | ND<0.5                |

ELAP ID No. 10709

Comments:

ND denotes Non Detected.

**Approved By Technical Director:** 

Bruce Hoogesteger

File ID: VarLocCN03-0196



Client: NYETECH

Client Job Site:

SUNY Geneseo

Parking Lot Excavation

Lab Project Number: Lab Sample Number:

03-0196 1324

Client Job Number:

N/A

**NE Pit Floor** 

Date Sampled:

01/10/2003

Field Location: Field ID Number:

S-1

**Date Received:** 

01/10/2003

Sample Type:

Soil

Date Analyzed:

01/17/2003

| Base / Neutrals          | Results in ug / Kg |
|--------------------------|--------------------|
| Acenaphthene             | ND< 3,470          |
| Anthracene               | 3,510              |
| Benzo (a) anthracene     | 17,300             |
| Benzo (a) pyrene         | 26,600             |
| Benzo (b) fluoranthene   | 27,300             |
| Benzo (g,h,i) perylene   | 15,600             |
| Benzo (k) fluoranthene   | 12,400             |
| Chrysene                 | 15,400             |
| Dibenz (a,h) anthracene  | ND< 3,470          |
| Fluoranthene             | 18,300             |
| Fluorene                 | ND< 3,470          |
| Indeno (1,2,3-cd) pyrene | 17,500             |
| Naphthalene              | ND< 3,470          |
| Phenanthrene             | 5,810              |
| Pyrene                   | 20,300             |
| Puridina                 | ND< 3.470          |

ELAP Number 10958

Method: EPA 8270C

Data File: 10070.D

179,620 (what edding MD) 196,970 (w/ND's)

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:



Client: NYETECH

Client Job Site:

SUNY Geneseo

Parking Lot Excavation

Lab Project Number:

03-0196 1325

Client Job Number:

N/A

Lab Sample Number:

Field Location:

SW Pit Floor

Date Sampled: **Date Received:**  01/10/2003

Field ID Number: Sample Type:

S-2 Soil

Date Analyzed:

01/10/2003 01/14/2003

| Base / Neutrals          | Results in ug / Kg |
|--------------------------|--------------------|
| Acenaphthene             | ND< 332            |
| Anthracene               | ND< 332            |
| Benzo (a) anthracene     | 428                |
| Benzo (a) pyrene         | 404                |
| Benzo (b) fluoranthene   | 456                |
| Benzo (g,h,i) perylene   | ND< 332            |
| Benzo (k) fluoranthene   | ND< 332            |
| Chrysene                 | 381                |
| Dibenz (a,h) anthracene  | ND< 332            |
| Fluoranthene             | 744                |
| Fluorene                 | ND< 332            |
| Indeno (1,2,3-cd) pyrene | ND< 332            |
| Naphthalene              | ND< 332            |
| Phenanthrene             | 485                |
| Pyrene                   | 661                |
| Pyridine                 | ND< 332            |

ELAP Number 10958

Method: EPA 8270C

Data File: 10021.D

3,569 (NO NO'S)

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:



Client: NYETECH

Client Job Site:

SUNY Geneseo

Lab Project Number:

03-0196

N/A

Parking Lot Excavation

Lab Sample Number:

1326

Client Job Number:

Field Location:

SW Pit Lower Wall

Date Sampled:

01/10/2003

Field ID Number:

S-3 Soil **Date Received:** 

01/10/2003

Sample Type:

Date Analyzed:

01/14/2003

| Base / Neutrals          | Results in ug / Kg |
|--------------------------|--------------------|
| Acenaphthene             | ND< 299            |
| Anthracene               | ND< 299            |
| Benzo (a) anthracene     | ND< 299            |
| Benzo (a) pyrene         | ND< 299            |
| Benzo (b) fluoranthene   | ND< 299            |
| Benzo (g,h,i) perylene   | ND< 299            |
| Benzo (k) fluoranthene   | ND< 299            |
| Chrysene                 | ND< 299            |
| Dibenz (a,h) anthracene  | ND< 299            |
| Fluoranthene             | ND< 299            |
| Fluorene                 | ND< 299            |
| Indeno (1,2,3-cd) pyrene | ND< 299            |
| Naphthalene              | ND< 299            |
| Phenanthrene             | ND< 299            |
| Pyrene                   | ND< 299            |
| Pyridine                 | ND< 299            |

ELAP Number 10958

Method: EPA 8270C

Data File: 10022.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:



Client: NYETECH

**Client Job Site:** 

SUNY Geneseo

Parking Lot Excavation

Lab Project Number: Lab Sample Number:

03-0196 1327

**Client Job Number:** 

SW Pit Upper Wall

Date Sampled:

01/10/2003

Field Location: Field ID Number:

Sample Type:

S-4

Date Received:

01/10/2003

Soil

Date Analyzed:

01/14/2003

|    | Base / Neutrals          | Results in ug / Kg |
|----|--------------------------|--------------------|
|    | Acenaphthene             | ND< 327            |
|    | Anthracene               | ND< 327            |
| 1  | Benzo (a) anthracene     | 1,020              |
|    | Benzo (a) pyrene         | 1,060              |
| ŀ  | Benzo (b) fluoranthene   | 1,200              |
| [  | Benzo (g,h,i) perylene   | 553                |
|    | Benzo (k) fluoranthene   | 443                |
| l  | Chrysene                 | 891                |
|    | Dibenz (a,h) anthracene  | ND< 327            |
|    | Fluoranthene             | 1,650              |
|    | Fluorene                 | ND< 327            |
| 20 | Indeno (1,2,3-cd) pyrene | 651                |
|    | Naphthalene              | ND< 327            |
|    | Phenanthrene             | 434                |
|    | Pyrene                   | 1,510              |
|    | Pyridine                 | ND< 327            |

ELAP Number 10958

Method: EPA 8270C

Data File: 10023.D

9,412 (w/o vo's) 11,074 (w/ NO's)

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:



Client: NYETECH

**Client Job Site:** 

SUNY Geneseo

Lab Project Number:

03-0196

Client Job Number:

N/A

Lab Sample Number:

1328

Field Location:

West Pit Lower Wall

Parking Lot Excavation

Date Sampled:

01/10/2003

Field ID Number:

S-5

Date Received:

01/10/2003

Sample Type:

Soil

Date Analyzed:

01/17/2003

| Base / Neutrals          | Results in ug / Kg |
|--------------------------|--------------------|
| Acenaphthene             | ND< 2,940          |
| Anthracene               | 5,940              |
| Benzo (a) anthracene     | 10,500             |
| Benzo (a) pyrene         | 9,050              |
| Benzo (b) fluoranthene   | 10,900             |
| Benzo (g,h,i) perylene   | 4,180              |
| Benzo (k) fluoranthene   | 4,460              |
| Chrysene                 | 8,710              |
| Dibenz (a,h) anthracene  | ND< 2,940          |
| Fluoranthene             | 21,400             |
| Fluorene                 | 3,350              |
| Indeno (1,2,3-cd) pyrene | 5,290              |
| Naphthalene              | ND< 2,940          |
| Phenanthrene             | 18,100             |
| Pyrene                   | 17,300             |
| Pyridine                 | ND< 2,940          |

Method: EPA 8270C

119, 180 (ulo NO'S) 133, 800 (ul NO'S)

Data File: 10071.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

ELAP Number 10958

Signature:



Client: NYETECH

Client Job Site:

SUNY Geneseo

Parking Lot Excavation

Lab Project Number:

03-0196

Client Job Number:

Lab Sample Number:

1329

Field Location:

West Pit Upper Wall Date Sampled:

Field ID Number: Sample Type:

S-6

Date Received:

01/10/2003 01/10/2003

Soil

Date Analyzed:

01/14/2003

| Base / Neutrals          | Results in ug / Kg |
|--------------------------|--------------------|
| Acenaphthene             | ND< 359            |
| Anthracene               | 670                |
| Benzo (a) anthracene     | 725                |
| Benzo (a) pyrene         | 620                |
| Benzo (b) fluoranthene   | 679                |
| Benzo (g,h,i) perylene   | ND< 359            |
| Benzo (k) fluoranthene   | ND< 359            |
| Chrysene                 | 576                |
| Dibenz (a,h) anthracene  | ND< 359            |
| Fluoranthene             | 1,440              |
| Fluorene                 | 699                |
| Indeno (1,2,3-cd) pyrene | ND< 359            |
| Naphthalene              | 5,860              |
| Phenanthrene             | 2,070              |
| Pyrene                   | 1,090              |
| Pyridine                 | ND< 359            |

ELAP Number 10958

Method: EPA 8270C

Data File: 10025.D

14,429 (n/o NO's)
16,583 (w/NO's)

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

File ID: 030196S6.XL\$



Client: NYETECH

Client Job Site:

SUNY Geneseo

Parking Lot Excavation

Lab Project Number: Lab Sample Number:

03-0196 1324

Client Job Number:

N/A

Field Location:

**NE Pit Floor** 

Date Sampled:

01/10/2003

Field ID Number:

S-1

Date Received:

01/10/2003

Sample Type:

Soil

Date Analyzed:

01/15/2003

| Aromatics    | Results in ug / Kg |
|--------------|--------------------|
| Benzene      | ND< 8.56           |
| Ethylbenzene | ND< 8.56           |
| Toluene      | ND< 8.56           |
| m,p - Xylene | ND< 8.56           |
| o - Xylene   | ND< 8.56           |

ELAP Number 10958

Method: EPA 8260B

Data File: 63545.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:



Client: NYETECH

Client Job Site:

**SUNY Geneseo** 

Lab Project Number:

03-0196

Parking Lot Excavation N/A

Lab Sample Number:

1325

Client Job Number:

Field Location:

SW Pit Floor

Date Sampled:

01/10/2003

Field ID Number: Sample Type:

**\$-2** 

**Date Received:** 

01/10/2003

Soil

Date Analyzed:

01/15/2003

| Aromatics    | Results in ug / Kg |
|--------------|--------------------|
| Benzene      | ND< 5.51           |
| Ethylbenzene | ND< 5.51           |
| Toluene      | ND< 5.51           |
| m,p - Xylene | 6.29               |
| o - Xvlene   | ND< 5.51           |

ELAP Number 10958

Method: EPA 8260B

Data File: 63546.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:



Client: NYETECH

Client Job Site:

SUNY Geneseo

Lab Project Number: Lab Sample Number:

03-0196 1326

Client Job Number:

SW Pit Lower Wall

Parking Lot Excavation

Date Sampled:

01/10/2003

Field Location: Field ID Number:

S-3

**Date Received:** 

01/10/2003

Sample Type: Soil

Date Analyzed:

01/15/2003

| Aromatics    | Results in ug / Kg |
|--------------|--------------------|
| Benzene      | 28.1               |
| Ethylbenzene | ND< 6.08           |
| Toluene      | 12.4               |
| m,p - Xylene | 11.1               |
| o - Xylene   | ND< 6.08           |

ELAP Number 10958

Method: EPA 82608

Data File: 63547.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:



Client: NYETECH

Client Job Site:

SUNY Geneseo

Lab Project Number:

03-0196

Lab Sample Number:

1327

Client Job Number: Field Location:

SW Pit Upper Wall

Parking Lot Excavation

Date Sampled:

01/10/2003

Field ID Number:

**S-4** Soil Date Received:

01/10/2003

Sample Type:

Date Analyzed:

01/17/2003

| Aromatics    | Results in ug / Kg |
|--------------|--------------------|
| Benzene      | ND< 10.2           |
| Ethylbenzene | ND< 10.2           |
| Toluene      | ND< 10.2           |
| m,p - Xylene | ND< 10.2           |
| o - Xylene   | ND< 10.2           |

ELAP Number 10958

Method: EPA 8260B

Data File: 63570.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:



Client: NYETECH

Client Job Site:

SUNY Geneseo

Lab Project Number:

03-0196

Lab Sample Number:

1328

Client Job Number: Field Location:

West Pit Lower Wall

Parking Lot Excavation

Date Sampled:

01/10/2003

Field ID Number:

S-5

**Date Received:** 

01/10/2003

Sample Type:

Soil

Date Analyzed:

01/15/2003

|         | Aromatics    | Results in ug / Kg |
|---------|--------------|--------------------|
|         | Benzene      | 2,480              |
|         | Ethylbenzene | ND< 1,130          |
| Toluene |              | 883                |
|         | m,p - Xylene | 3,330              |
| ĺ       | o - Xvlene   | 1 140              |

ELAP Number 10958

Method: EPA 8260B

Data File: 63549.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:



Client: NYETECH

Client Job Site:

SUNY Geneseo

Lab Project Number: Lab Sample Number:

03-0196 1329

**Client Job Number:** 

West Pit Upper Wall

Parking Lot Excavation

Date Sampled:

01/10/2003

Field Location: Field ID Number:

S-6

**Date Received:** 

01/10/2003

Sample Type:

Soil

Date Analyzed:

01/15/2003

| Aromatics    | Results in ug / Kg |
|--------------|--------------------|
| Benzene      | ND< 10.5           |
| Ethylbenzene | ND< 10.5           |
| Toluene      | ND< 10.5           |
| m,p - Xylene | ND< 10.5           |
| o - Xylene   | ND< 10.5           |

ELAP Number 10958

Method: EPA 8260B

Data File: 63550.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

PARADIGM

CHAIN OF CUSTODY

| ENVIRON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ENVIRONMENTAL                                                |              | 地                       | 1000                    |               |               |            |                                         |                                         |             |                                                  |               |                               |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------|-------------------------|-------------------------|---------------|---------------|------------|-----------------------------------------|-----------------------------------------|-------------|--------------------------------------------------|---------------|-------------------------------|------------------|
| SERVICES, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S, INC.                                                      | COMPANY:     | M. NYETECH              |                         | NOS.          | COMPANY       |            |                                         |                                         |             |                                                  | LAB PROJECT & | CLIENT PROJECT &              | *                |
| 179 Lake Avenue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ð                                                            | ADDRESS:     | ss: 230 McKee Rd.       |                         | 8             | ADDRESS;      |            |                                         |                                         |             |                                                  | 03-0196       | -                             |                  |
| Rochester, NY 14608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4608                                                         | :<br>5       | Rochester               | λ                       | 2P: 14611 cm: |               |            |                                         |                                         | STATE       | À                                                | ľ             | ORKING DAYS)                  |                  |
| (716) 847-2530 * (800) 724-1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (800) 724-1997                                               | PHONE        | 436-6660                | FAX: 43(0-(1139         | PHONE         | ΝË            |            |                                         | FAX                                     |             |                                                  | T             | CT.                           | 1                |
| PROJECT NAMÉ/SITE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E NAME:                                                      | ATTN         | Frank Booher            |                         | ATTA          | ä             |            |                                         |                                         |             |                                                  |               |                               | OIHER<br>R       |
| SUNY Geneseo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90                                                           | COMMENTS:    | NTS:                    |                         |               |               |            |                                         |                                         |             |                                                  |               | 3 V 2                         |                  |
| Parking Lot Excavation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | xcavation                                                    |              | Parking Lot Excavation  |                         |               | S98.8 (8.8.7) | (m #72) 73 | 2000 000 000 000 000 000 000 000 000 00 | *************************************** | 0.540004005 | 1.7.5.25.6.00.00.00.00.00.00.00.00.00.00.00.00.0 |               |                               |                  |
| THE PARTY OF THE P |                                                              |              |                         |                         |               |               |            |                                         |                                         |             |                                                  |               |                               | S. Carlotte      |
| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TIME<br>O O M T O O - H II                                   | <b>७ ४ ०</b> | SAMPLE                  | SAMPLE LOCATIONFIELD ID | 2 4 F K - X   | BTEX          | enebinγ⊂   | \$5±0.8<br>100                          |                                         |             |                                                  | REMARKS       | PARADIGM LAB<br>BAMPLE NUMBER | ZM LAB<br>NUMBER |
| 1 1-10-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.30                                                         | ×            | S-1 NE Pit Floor        |                         | S             | ×             | ×          | ×                                       |                                         |             | Soil                                             |               | ر<br>ا                        | 1 4 4            |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | ×            | X S-2 SW Pit Floor      |                         | S             | ×             | ×          | ×                                       |                                         |             | 150                                              | Shale         | 7 ~                           | \<br>3 \<br>4    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | ×            | S-3 SW Pit Lower Wall   |                         | S             | ٦<br>×        | ×          | ×                                       |                                         |             | क                                                | Shale         | 7,7                           | 10               |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | ×            | S-4 SW Pit Upper Wall   |                         | S             | ×             | ×          | ×                                       |                                         |             | Soil                                             | -             | 1 3                           | 27               |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | ×            | S-5 West Pit Lower Wall |                         | S             | ×             | ×          | ×                                       |                                         |             | St                                               | Shale         | 13                            | ر<br>ص           |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | ×            | S-6 West Pit Upper M    | /all                    | <br>          | ×             | ×          | ×                                       |                                         |             | Soil                                             |               | ا<br>ا                        | 9                |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>→</b>                                                     |              |                         |                         |               | -             |            |                                         |                                         |             |                                                  |               | -                             |                  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |              |                         |                         |               |               |            |                                         |                                         |             |                                                  |               |                               |                  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |              |                         |                         | -             | $\vdash$      | 上          | L                                       |                                         | F           | $\vdash$                                         |               | -                             |                  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |              |                         |                         | -             | $\vdash$      |            |                                         | $\vdash$                                | F           | $\vdash$                                         |               | -                             | E                |
| **LAB USE ONLY**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ONLY**                                                       |              |                         |                         |               | -             | 1          | †                                       | 1                                       | 1           | -                                                |               |                               |                  |
| SAMPLE CONDITION: Check both acceptable or note deviation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE CONDITION: Check box if acceptable or note deviation: |              | CONTAINER TYPE:         | PRESERVATIONS:          | 7             | Ŀ             | =          | HOLDING TIME                            | /<br>ÿ                                  | 7           |                                                  | TEMPERATURE:  | 10°C                          |                  |

| Date/Time: Total Cost: | Date/Time:   | Date/Time: P.LF.   |
|------------------------|--------------|--------------------|
| Date/                  | Date/        | Date/Time:         |
| Refinquished By:       | Received By: | Received @ Lab By: |
| 10                     | . 1          | 0                  |

# PARADIGM



# **LABORATORY REPORT OF ANALYSIS**

Client:

**NYE Tech** 

Lab Project No.:

03-0408

**Client Job Site:** 

SUNY Geneseo

**Client Job No.:** 

3954 Geneseo

Sample Type:

Soil

Analytical Method: SW 9012

SUII

Date Sampled:

02/03/2003

Date Received:

02/04/2003

Date Analyzed:

02/11-02/12/2003

| Lab<br>Sample ID. | Sample Location/Field ID | Total Cyanide<br>(mg/kg) |
|-------------------|--------------------------|--------------------------|
| 2012              | North Wall               | 22                       |
| 2013              | East Wall                | 11                       |
| 2014              | Northwest Wall           | 4.1                      |
|                   |                          |                          |

**ELAP ID No. 10709** 

Comments:

ND denotes Non-Detected.

Approved By Technical Director:

Bryce Hoogesteger

MAY 12 2003

File ID: TCN03-0408.xls



Client: NYETECH

Client Job Site:

SUNY Geneseo

Lab Project Number:

Lab Sample Number: 2012

03-0408

: 39521

Client Job Number: Field Location:

North Wall

Date Sampled:

02/03/2003

Field ID Number:

N/A

Date Received:

02/04/2003

Sample Type:

Soil

Date Analyzed:

02/10/2003

| Base / Neutrals          | Results in ug / Kg |
|--------------------------|--------------------|
| Acenaphthene             | ND< 3,630          |
| Anthracene               | 8,910              |
| Benzo (a) anthracene     | 59,700             |
| Benzo (a) pyrene         | 75,700             |
| Benzo (b) fluoranthene   | 79,600             |
| Benzo (g,h,i) perylene   | 39,400             |
| Benzo (k) fluoranthene   | 35,700             |
| Chrysene                 | 54,500             |
| Dibenz (a,h) anthracene  | 14,900             |
| Fluoranthene             | 60,400             |
| Fluorene                 | ND< 3,630          |
| Indeno (1,2,3-cd) pyrene | 47,400             |
| Naphthalene              | ND< 3,630          |
| Phenanthrene             | 14,100             |
| Pyrene .                 | 59,400             |
| Pyridine                 | ND< 3,630          |

ELAP Number 10958

Method: EPA 8270C

Data File: 10244

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Chain of Custody assuidas additional samals information



Client: NYETECH

**Client Job Site:** 

**SUNY Geneseo** 

Lab Project Number:

03-0408

Lab Sample Number: 2013

Client Job Number:

Field Location:

39521 East Wall

Date Sampled:

02/03/2003

Field ID Number:

N/A

**Date Received:** 

02/04/2003

Sample Type:

Soil

Date Analyzed:

02/10/2003

| Base / Neutrals          | Results in ug / Kg |
|--------------------------|--------------------|
| Acenaphthene             | ND< 3,370          |
| Anthracene               | ND< 3,370          |
| Benzo (a) anthracene     | 13,600             |
| Benzo (a) pyrene         | 15,800             |
| Benzo (b) fluoranthene   | 16,800             |
| Benzo (g,h,i) perylene   | 7,950              |
| Benzo (k) fluoranthene   | 6,190              |
| Chrysene                 | 11,800             |
| Dibenz (a,h) anthracene  | ND< 3,370          |
| Fluoranthene             | 13,500             |
| Fluorene                 | ND< 3,370          |
| Indeno (1,2,3-cd) pyrene | 9,000              |
| Naphthalene              | ND< 3,370          |
| Phenanthrene             | 5,670              |
| Pyrene                   | 11,900             |
| Pyridine                 | ND< 3,370          |

ELAP Number 10958

Method: EPA 8270C

Data File: 10245.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger, Teahnical Director

File ID: 030408S2.XLS



Client: NYETECH

Client Job Site:

**SUNY Geneseo** 

Lab Project Number: Lab Sample Number:

03-0408

2014

39521

Date Sampled:

02/03/2003

Field Location: Field ID Number:

Client Job Number:

North-West Wall N/A

Date Received:

02/04/2003

Sample Type:

Soil

Date Analyzed:

02/10/2003

| Base / Neutrals          | Results in ug / Kg |
|--------------------------|--------------------|
| Acenaphthene             | ND< 3,470          |
| Anthracene               | ND< 3,470          |
| Benzo (a) anthracene     | 17,700             |
| Benzo (a) pyrene         | 23,200             |
| Benzo (b) fluoranthene   | 23,000             |
| Benzo (g,h,i) perylene   | 13,000             |
| Benzo (k) fluoranthene   | 9,940              |
| Chrysene                 | 16,000             |
| Dibenz (a,h) anthracene  | 4,980              |
| Fluoranthene             | 15,500             |
| Fluorene                 | ND< 3,470          |
| Indeno (1,2,3-cd) pyrene | 15,000             |
| Naphthalene              | ND< 3,470          |
| Phenanthrene             | 6,390              |
| Pyrene                   | 14,500             |
| Pyridine                 | ND< 3,470          |

ELAP Number 10958

Method: EPA 8270C

Data File: 10246.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

chnical Director

File ID: 030408S3.XLS



Client: NYETECH

Client Job Site:

SUNY Geneseo

Lab Project Number: Lab Sample Number: 03-0408

2012

Client Job Number: Field Location:

39521 North Wall

Date Sampled:

02/03/2003

Field ID Number:

N/A

Date Received:

02/04/2003

Sample Type:

Soil

Date Analyzed:

02/10/2003

|   | Aromatics    | Results in ug / Kg |  |
|---|--------------|--------------------|--|
|   | Benzene      | ND< 9.10           |  |
|   | Ethylbenzene | ND< 9.10           |  |
| } | Toluene      | ND< 9.10           |  |
|   | m,p-Xylene   | ND< 9.10           |  |
| 1 | o-Xvlene     | ND< 9.10           |  |

ELAP Number 10958

Method: EPA 8021B (GC/MS)

Data File: 13667.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

File ID- 03040841 vie



Client: NYETECH

Client Job Site:

SUNY Geneseo

Lab Project Number:

03-0408

Lab Sample Number:

2013

Client Job Number:

39521

Date Sampled:

02/03/2003

Field Location: Field ID Number:

East Wall N/A

Date Received:

02/04/2003

Sample Type:

Soil

Date Analyzed:

02/10/2003

|   | Aromatics    | Results in ug / Kg |
|---|--------------|--------------------|
|   | Benzene      | ND< 6.45           |
|   | Ethylbenzene | ND< 6.45           |
|   | Toluene      | ND< 6.45           |
| - | m,p-Xylene   | ND< 6.45           |
| 1 | o-Xylene     | ND< 6.45           |

ELAP Number 10958 Method: EPA 8021B (GC/MS)

Data File: 13668.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Jechnical Director

File ID: 030408v2.xls



Client: NYETECH

Client Job Site:

**SUNY Geneseo** 

Lab Project Number: Lab Sample Number: 03-0408

2014

Client Job Number:

39521

02/03/2003

Field Location: Field ID Number: North-West Wall

Date Sampled: Date Received:

02/04/2003

**N/A** 

Sample Type:

Soil

Date Analyzed:

02/07/2003

| Aromatics    | Results in ug / Kg |
|--------------|--------------------|
| Benzene      | ND< 9.79           |
| Ethylbenzene | ND< 9.79           |
| Toluene      | ND< 9.79           |
| m,p-Xylene   | ND< 9.79           |
| o-Xylene     | ND< 9.79           |

ELAP Number 10958

Method: EPA 8021B (GC/MS)

Data File: 13657.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

File ID: 030408V3.XLS

# PARADIGM

CHAIN OF CUSTODY

| NT PROJECT #,                   | 3954                                  |                                      | STD OTHER  |            |                                          | PARADIGM LAB<br>SAMPLE ŅUMBER | 2010       | 8012      | 2/24         |   |  |    |                  |                                                             | ost              |                  |            |
|---------------------------------|---------------------------------------|--------------------------------------|------------|------------|------------------------------------------|-------------------------------|------------|-----------|--------------|---|--|----|------------------|-------------------------------------------------------------|------------------|------------------|------------|
| LAB PROJECT #: CLIEN            | 03-0408                               | TURNAROUND TIME: (WORKING DAYS)      | 1 2 3      |            | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | REMARKS                       |            |           |              |   |  |    |                  | TEMPERATURE:                                                | me: Total Cost   | ine:             |            |
| 通過                              |                                       | STATE: ZIP:<br>FAX:                  |            |            |                                          |                               |            |           |              |   |  |    |                  | TEM                                                         | Date/Time:       | Date/Time:       |            |
| COMPANY:                        | AUGORESS:                             |                                      | ATTN:      |            |                                          | X57 8<br>X57 8                | 5          | / / / / - | 1            |   |  |    |                  | HOLDING TIME:                                               |                  |                  |            |
|                                 | Box 247                               | 1/634                                | W. C. Q.   |            |                                          | 0<br>0<br>2 < ⊢ ∝ ~ ×         | 2          |           | Which        |   |  |    |                  | PRESERVATIONS:                                              | Relinquished By: | 0                | •          |
| COMPANY: JY/E TO/S C.           | 8                                     | PHONE: 121. CLL ANI:                 | N          |            |                                          | SAMPLE LOCATION/FIELD ID      | No874 WALL | EAST WALL | NURSOL-WISST |   |  |    |                  | CONTAINER TYPE:                                             | Date/Time:       | Date/Time:       |            |
| COMPANY                         | ADDRESS:                              | PHONE                                | TE VE      |            |                                          | 0 K < D                       |            |           |              | 1 |  |    |                  | 8                                                           |                  |                  |            |
|                                 |                                       |                                      |            | 製み         | υc                                       | ) ¥ 7 () & - 1- m             |            |           |              |   |  |    |                  | ck box<br>lon:                                              | Y                | 1 4              |            |
| MENT,<br>S, INC.                | 8091                                  | (800) 724-1!<br>311                  | NAME:      | chese      |                                          | TIME                          |            |           |              |   |  |    | ONLY**           | ITION: Chennote deviati                                     | H1.3C.52         | N. S.            |            |
| ENVIRONMENTAL<br>Services, Inc. | 79 Lake Avenue<br>Rochester, NY 14608 | 585) 647-2530 *<br>FAX: (585) 647-3; | S I IN THE | Junychosao |                                          | DATE                          | 43/03      | 20/2/03   | 32/3/03      |   |  | 10 | **LAB USE ONLY** | SAMPLE CONDITION: Check box f acceptable or note deviation: | Sampled By:      | Relinquished By: | December 1 |



Client: NYETECH

Client Job Site:

Geneseo College

Lab Project Number:

03-0354

Client Job Number:

R-3954

Lab Sample Number:

1785

Field Location:

S/W Pit Wall

Date Sampled:

01/28/2003

Field ID Number: Sample Type:

#1

Date Received:

01/29/2003

Soil

Date Analyzed:

01/30/2003

| Aromatics    | Results in ug / Kg |
|--------------|--------------------|
| Benzene      | 360                |
| Ethylbenzene | ND< 113            |
| Toluene      | 224                |
| m.p-Xylene   | 549                |
| o-Xylene     | 228                |

ELAP Number 10958 Method: EPA 8021B (GC/MS)

Data File: 13598.D

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:



Client: NYETECH

Client Job Site:

Geneseo College

Lab Project Number:

03-0354 Lab Sample Number: 1785

Client Job Number:

Field Location:

R-3954

S/W Pit Wall

Date Sampled:

01/28/2003

Field ID Number:

#1

**Date Received:** 

01/29/2003

Sample Type:

Soil

Date Analyzed:

01/31/2003

| Base / Neutrals          | Results in ug / Kg |
|--------------------------|--------------------|
| Acenaphthene             | ND< 283            |
| Anthracene               | ND< 283            |
| Benzo (a) anthracene     | ND< 283            |
| Benzo (a) pyrene         | ND< 283            |
| Benzo (b) fluoranthene   | ND< 283            |
| Benzo (g,h,i) perylene   | ND< 283            |
| Benzo (k) fluoranthene   | ND< 283            |
| Chrysene                 | ND< 283            |
| Dibenz (a,h) anthracene  | ND< 283            |
| Fluoranthene             | ND< 283            |
| Fluorene                 | ND< 283            |
| Indeno (1,2,3-cd) pyrene | ND< 283            |
| Naphthalene              | 1,360              |
| Phenanthrene             | ND< 283            |
| Pyrene                   | ND< 283            |
| Pyridine                 | ND< 283            |

ELAP Number 10958

Method: EPA 8270C

Data File: 10202.0

Comments:

ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

# **LABORATORY REPORT OF ANALYSIS**

Client:

**NYE Tech** 

Lab Project No.:

03-0354

**Client Job Site:** 

Geneseo College

**Client Job No.:** 

R-3954

Sample Type:

Soil

Analytical Method: SW 9012

Date Sampled: Date Received: 01/28/2003

01/28/2003

Date Analyzed:

02/05/2003

| Lab<br>Sample ID. | Sample Location/Field ID | Total Cyanide<br>(mg/kg) |
|-------------------|--------------------------|--------------------------|
| 1785              | S/W Pit Wall             | ND<0.5                   |
|                   |                          |                          |
|                   | • #                      |                          |

**ELAP ID No. 10709** 

Comments:

ND denotes Non-Detected.

Approved By Technical Director:

Bruce Hoogesteger

# CHAIN OF CUSTODY RECORD

Environmental PRODUCTS & SERVICES, INC. (315) 471-05

(315) 471-0503/(800) 843-8265

EPSTABLOGNO.

| ċ          | REPORTING REQUIREMENTS (other than mail | 25            | SITE ADDRESS      | C. 100 10 55 10 1000 0000                  |                  | SPECIAL INSTRUCTIONS                  | Action States of James Barres              |                                 | 8,7 m                           | COMMENTS/<br>SAMPING                               | POINT(S)   | 5/w Pit wood | Spir dit 20.766 | 20   |    |            | ĕ.   |            |    | Same       |           | DATE TIME | 1/28/63 3    | 1/2/18 8:25      | Jest Salvety                |  |
|------------|-----------------------------------------|---------------|-------------------|--------------------------------------------|------------------|---------------------------------------|--------------------------------------------|---------------------------------|---------------------------------|----------------------------------------------------|------------|--------------|-----------------|------|----|------------|------|------------|----|------------|-----------|-----------|--------------|------------------|-----------------------------|--|
| בי בי      | REPORTING REC                           | FAX NO:       |                   |                                            |                  | 8 0728<br>0528                        | A93                                        | Λ <sub>.</sub> φ.ξ.ξ.)          | A93, 😰 8                        | 29 Aq                                              | _          |              |                 |      |    |            |      | <u>S</u> . |    | NO.: 430   |           |           | ***          |                  | Æ                           |  |
| 2          | E L.                                    |               | ANALYSIS RE-      | [BE]                                       | TM \W<br>B8TM \\ | MTBE[<br>802-T<br>XXX W               | W/EPA                                      | 8080    <br>                    | A93   SPA<br>8   EPA<br>8   EPA | 08 A9<br>08 A9<br>08 A9<br>08 A9                   | ا<br>بد ا  |              | 2.0             |      |    |            | - 21 |            |    | PHONE NO.: |           |           | 3 B. W. Le   | رسيد             | on the                      |  |
|            |                                         |               | ANAL              | San o                                      | □                | EMI-VO                                | בודע:<br>יוז.יו⊡<br>יוז.ים                 | ] SPE<br>392 [<br>493 :<br>T □C |                                 | JATOT<br>DIL AN<br>FIB :He                         | )          |              | Ž.              |      |    | ).         |      |            |    |            |           |           | The same of  | NE               | LAB BY: , × , //            |  |
| ממ' מו מבמ | rory:<br>S:                             | ZO:           | VEL               |                                            |                  |                                       | DAEAC                                      | PRESERVATIVE T                  | Liner                           | noffer<br>Teffor<br>Tertic                         |            |              | iæ.             |      |    |            |      |            | 41 |            | TRANSFERS |           | RECEIVED BY: | RECEIVED BY:     | RECEIVED AT LAB BY: , , , , |  |
|            | LABORATORY;                             | PHONE NO.     |                   | Yes [_] No [_<br>(Specify)<br>WASTE SAMPLE | ₩<br>8<br>0      |                                       | Ā.                                         | TYPE PRESI<br>(ENTER<br>CODE)   |                                 | н <sup>2</sup> 80 <sup>4</sup><br>НИО <sup>2</sup> |            |              |                 |      |    |            |      | W.         |    | 1 I        | STODY     | DATE TIME | 150 Chill    |                  |                             |  |
|            |                                         | æ             | SPE               | × * *                                      | >                |                                       | **                                         | MATRIX                          | dwater                          |                                                    |            | ,2,          |                 |      |    |            |      |            |    | EPS CO     |           |           |              |                  |                             |  |
| ,          | PIN NUMBER:                             | SPILL NUMBER: | ETECTION          | □<br>- <u>\$</u>                           | PE               | OSITE                                 | SS - SURFACE SCRAPE<br>O - OTHER (SPECIFY) | TIME CONTAINER                  | 9T<br>Enter Code)               | Numbi<br>Size                                      | 1.00       | 00.20        | i terri         | 40 8 | 4. | <u>(3</u>  | 25.0 |            | 10 |            |           |           |              |                  |                             |  |
|            | .                                       | SPIL SPIL     | SPECIAL DETECTION | Yes<br>Yes<br>(Specify)                    | SAMPLE TYPE:     | G - GRAB<br>C - COMPOSITE<br>W - WIPE | SS - SURI<br>0 - OTHE                      | DATE TII                        |                                 | 2                                                  | 1/28/65 12 | 128103 -2    |                 |      |    | <b>S</b> ) | 34   |            |    |            |           |           | 206          |                  |                             |  |
|            | -                                       | P.O. NUMBER:  | TURN AROUND TIME  | APPROVAL FOR RUSH)                         | 10èc             | ¥                                     |                                            | V - VOA VIALS                   | STIC<br>STIC<br>SAME E D        | DESCRIPTION                                        | 5 1 m      |              |                 |      | ž  |            |      |            |    |            |           |           | BY: Chine    | i,               | <b>;</b>                    |  |
|            | N BOC                                   | P.O. N        | TURN              | <b>1</b>                                   | 鱼壳               | 100                                   | 1                                          | 000                             | (4) E                           |                                                    |            |              |                 |      |    |            |      |            |    |            |           |           | (SAMPLER)    | RELINQUISHED BY: | RELINQUISHED BY:            |  |

| Plec       | DISTORM HAZARDO ATTACHMENTS                                                                                                                                                                                                                                                                                                                                                                                        | JS WASTE ; Albany, New                                                                                                                                            | A 25.341                                             | ECT                                                      |                                                       | √° (Hežerto                           | us Weile Manifest 1/6/89)                                     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|---------------------------------------|---------------------------------------------------------------|
|            | UNIFORM HAZARDO WASTE MANIFEST                                                                                                                                                                                                                                                                                                                                                                                     | Manifest Da                                                                                                                                                       | c. No. 1                                             | h:Page 1:a                                               |                                                       | n within h                            | eavy bold line                                                |
|            | 3.Generator's Name and Mailing  I Gollege Circle                                                                                                                                                                                                                                                                                                                                                                   | 80                                                                                                                                                                | ^                                                    | N                                                        | YG 288                                                | 3705                                  | 56                                                            |
|            | Geneseo NY 14454                                                                                                                                                                                                                                                                                                                                                                                                   | alton-Ferris                                                                                                                                                      | В                                                    | Generato                                                 | r's ID                                                | ME                                    |                                                               |
|            | 5. Transporter 1 (Company Name) 6. US EPA                                                                                                                                                                                                                                                                                                                                                                          | A ID Number                                                                                                                                                       | 200                                                  | 100                                                      | rsporter's ID<br>er's Telephone                       | (585 )                                | 4.1.5047                                                      |
|            | 7 Transporter 2 (Company Name) 8. US EPA                                                                                                                                                                                                                                                                                                                                                                           | A ID Number                                                                                                                                                       | E                                                    | State Tran                                               | sporter's ID<br>or's Telephone (                      |                                       | 3.60                                                          |
|            | CECOS International, Inc.                                                                                                                                                                                                                                                                                                                                                                                          | PA ID Number                                                                                                                                                      | Va s                                                 | . State Fac                                              |                                                       |                                       | 24.24                                                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                    | 0803362                                                                                                                                                           | 4 1                                                  |                                                          | elephone ( 714                                        |                                       | -Z9/6                                                         |
|            | 11. US DOT Description (Including Proper Shipping Name, Hazard                                                                                                                                                                                                                                                                                                                                                     | 8 Ø                                                                                                                                                               | 12. Con<br>Number                                    | 30 3                                                     | Quantity                                              | 14. Unit<br>Wt/Vol                    | I. Waste No.                                                  |
|            | o. AQ Hazardous waste, liquid, n.e.s.<br>9, MA3032, III                                                                                                                                                                                                                                                                                                                                                            | • (D018)                                                                                                                                                          | 0 0 1                                                | TT                                                       | alalab                                                | G                                     | STATE                                                         |
| ATOR       | Ь.                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                   | 22 PS                                                | V.3                                                      |                                                       |                                       | EPA<br>STATE                                                  |
| GENERATOR  | c                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                   | ,                                                    | 1.43                                                     | <del>                                     </del>      |                                       | EPA<br>STATE                                                  |
|            | d.                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                   | _ { _                                                |                                                          |                                                       |                                       | EPA +                                                         |
|            | J. Additional Descriptions for Materials listed Above                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   |                                                      | K. Han                                                   | dling Codes for                                       | Wastes Li                             | N. 1911 12                                                    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                 | 1 4 1 1                                              |                                                          | I                                                     |                                       | A 2                                                           |
|            | ь                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                   |                                                      | ь                                                        |                                                       | d                                     |                                                               |
|            | 15. Special Handling Instructions and Additional Information  WTS#8806  Emer. Cor  a.12541-AAB, ERG# 171  16. GENERATOR'S CERTIFICATION: I hereby declare that the co                                                                                                                                                                                                                                              | WOT 283798 utaet: 71-11                                                                                                                                           | 1.04-1.0                                             |                                                          | 0.5                                                   |                                       |                                                               |
|            | and are classified, packed, marked and labeled, and are in all rest<br>national government regulations and state laws and regulations.<br>If I am a large quantity generator, I certify that I have a program to be economically practicable and that I have selected the practic<br>present and future threat to human health and the environment; generation and select the best waste management method that is | spects in proper condition for<br>in place to reduce the volum<br>cable method of treatment, s<br>OR if I am a small quantity s<br>s available to me and that I o | r transpor<br>ie and tox<br>storage, o<br>generator, | t by highwo<br>icity of was<br>r disposal c<br>I have ma | y according to<br>te generated to<br>urrently availab | applicable<br>the degre<br>le to me v | international and<br>be I have determin<br>which minimizes th |
|            | Kimbary Della Forces                                                                                                                                                                                                                                                                                                                                                                                               | fr. / M                                                                                                                                                           | 1                                                    |                                                          |                                                       | اكآه                                  | إلاما في الم                                                  |
| RANSPORTER | 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Sig                                                                                                                                                                                                                                                                                                                                   | nature                                                                                                                                                            |                                                      | 1.11.1                                                   | l                                                     | Mo.                                   | Day Yea                                                       |
| TRANSF     | 18. Transporter 2 Acknowledgement of Receipt of Materials  Printed/Typed Name  Sig                                                                                                                                                                                                                                                                                                                                 | inature                                                                                                                                                           |                                                      | · ·                                                      |                                                       | Mo.                                   | Day Yea                                                       |
|            | 19. Discrepancy Indication Space                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   | 427                                                  |                                                          |                                                       |                                       | <u> </u>                                                      |
| FACILITY   | 20. Facility Owner or Operator: Confication of receipt of hazard                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   | 5<br>s manifes                                       | except as                                                | noted in Item 1                                       |                                       |                                                               |
| FA         | _                                                                                                                                                                                                                                                                                                                                                                                                                  | nature /                                                                                                                                                          | 7                                                    |                                                          | 1                                                     | Mo.                                   | `Day Yea                                                      |
|            | Tim Clark                                                                                                                                                                                                                                                                                                                                                                                                          | 1 um ch                                                                                                                                                           | 100                                                  | <b>∕</b> (∞                                              |                                                       | <b>ロ</b> フ                            | 020                                                           |

COPY 5—Generator—Mailed by TSD Facility

# Land Disposal Restriction Form

# 6C6S incredional fie

5600 Niagara Kalls Hivd.

Vigrary Ralls, NV 14304-1340

Generator Information:

EPA ID #: NYD073669350

S.U.N.Y. @ Geneseo

1 College Circle

Site Information:

S.U.N.Y. @ Geneseo

1 College Circle

Geneseo, NY 14454

Geneseo, NY 14454

Billing Contact: Technical Contact: Phone: (585) 245-5511 Phone: (585) 245-5511

Name of Waste: Contaminated Groundwater

Waste Codes: D018

State Manifest Number:

NYG2887056 line item a

Federal Manifest Number:

Profile Number: 12541-AAB

LDR Nonwastewater Treatability Group

BREATO SENTENDRISMOS

A. F001-F005 Solvent Restrictions

There are no F001-F005 solvent restricted wastes present that are banned from land disposal under 40 CFR 268.30.

EPA Code(s) Waste Description and Treatment/Regulatory Subcategory

Hazardous Constituent

Total Concentration in mg/l (WW),

mg/kg (NWW); or Technology Code

**B.** Other Regulated Waste Notification

This section includes all wastes restricted from land disposal not included in other sections. If any treatment standards reference 268.48, then all underlying hazardous constituents are listed in Section D.

EPA Code(s) Waste Description and Treatment/Regulatory Subcategory

Hazardous Constituent

Total Concentration in mg/l (WW),

mg/kg (NWW); or Technology Code

D018

Wastes that are TC for Benzene based on the TCLP in SW846 Method 1311.

Benzene

10 and meet 268.48 standards

C. D001-D003

There are no D001-D003 restricted wastes present that are banned from land disposal.

EPA Code(s) Waste Description and Treatment/Regulatory Subcategory

Hazardous Constituent

Total Concentration in mg/l (WW), mg/kg (NWW); or Technology Code

D: Underlying Hazardous Constituents

There are no underlying hazardous constituents present as defined in 268.2(i).

Hazardous Constituent

Total Concentration in mg/l (WW), mg/kg (NWW); or Technology Code Land Disposa Restriction domi

COS International, Inc.

PRA D (3\1VD08033624)

5600 Ningara Falls Blvd.

Niagara Falls, NY 14304-0340

F. Non-Hazardous/Non-Restricted Waste

There are no EPA waste codes that are not subject to land disposal restrictions as specified in 40 CFR Subpart D or applicable prohibitions in 40 CFR 268.32 or RCRA.

|        | ications |
|--------|----------|
| L.ETHI | CALIUIIS |

| This waste must be treated to the applicable treatment standards set for in 40 CFR Part 268 S | ubpart D, 268.32, or RCRA Section 3004(d) |
|-----------------------------------------------------------------------------------------------|-------------------------------------------|
| Signature Man Date 5.2. 0                                                                     |                                           |

# NYG 3371535

DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS

# HAZARDOUS WASTE MANIFEST



Please type or print. Do not staple

# P.O. Box 12820, Albany, New York 12212

|                                                    | UNIFORM HAZARDOUS 1. GO<br>WASTE MANIFEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | enerator's US EFA ID No.            | Manifest Doc. No.        | 2. Page 1 o               | f Information              | haythin heavy light fine<br>lived by Federal Law. |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|---------------------------|----------------------------|---------------------------------------------------|
| 22                                                 | N Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 007366935                           | 071818                   | •                         | GENEGEO                    | , NEW YORK 14454-145                              |
| 457-7362                                           | I 3.Generator's Name and Mailinn Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SUNY GENESEO                        |                          | A. MI                     | VC 227                     | 1535                                              |
| 457                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 COLLEGE CIRCLE                    |                          | 9 Garantes                | 14 33 1                    | 1555                                              |
| Conservation (518)                                 | 4. Generators Telephone Number ( 585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GENESEO NY 14454<br>245-5511        |                          | 8. Generator              |                            |                                                   |
| n (5                                               | 5. Transporter 1 (Company Name)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. U\$ EPA ID Number                |                          | C. State Tran             | sporter's ID               |                                                   |
| e e                                                | 7 Transporter 2 (Company Name)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8. US EPA ID Number                 | 761191                   |                           | r's Telephone              | 471-0503                                          |
| 5                                                  | / Iransporter 2 (Company Name)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8. US EPA ID Number                 |                          | E. State Trans            | <del></del>                | *12-V303                                          |
| 8                                                  | 9. Designated Facility Name and Site Addre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10. US EPA ID Numbi                 |                          | G. State Faci             | r's Telephone (<br>lity ID | 1                                                 |
| 草                                                  | CECOS INTERNATIONAL, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     | -11<br>                  |                           |                            |                                                   |
| E E                                                | 5600 NIAGARA FALLS BLV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D.                                  |                          | H. Facility Tel           | lephone 777.6              | 282-2676                                          |
| ī.                                                 | 11. US DOT Description (Including Proper S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HYDO BO                             | 336241                   |                           |                            |                                                   |
| E                                                  | The second secon | inpling Name, Hazara Class and i    |                          | ontainers 1.<br>or 1 Type | 3. Total  Quantity         | 14. Unit waste No.                                |
| 10                                                 | "RO HAZARDOUS WASTE LIQU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TO MAC (DESCRIPTIONE)               |                          | ,,,,,                     |                            | EPA                                               |
| E I                                                | 9, NA3082, PGIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tot ace (pensene);                  | اهاما                    | 1 + + /                   | 0839                       | G DO STATE                                        |
| port                                               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | -   0 0                  |                           | OIN 19                     | EPA                                               |
| NYS Depa                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 111                      |                           |                            | STATE                                             |
| NYS                                                | c ATTM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                          |                           |                            | EPA                                               |
| the NYS Department of Environmental                | d. ATTACHMON 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                          |                           | $\Box \Box \Box \Box$      | STATE                                             |
| Puo                                                | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H. 300 12                           | 39                       |                           | , , ,                      | EPA                                               |
| 020                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                   |                          |                           |                            | STATE                                             |
| 88                                                 | J. Adr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e                                   |                          | K. Hand                   | ling Codes for             | Wastes Listed Above                               |
| 42                                                 | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                          | a SO2                     | •                          |                                                   |
| 8                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | (B)                      |                           |                            |                                                   |
| Response Center (800) 424-8802                     | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d d                                 |                          | ь                         |                            | d L                                               |
| Gul                                                | 15. Special Handling Instructions and Addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onal Information                    | OF BURNGRIC              | T. IEBS                   | 3) 436-56                  | 50                                                |
| 98 (                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | III CALSE                           | the secondary of         | in a l                    | 17 420-36                  | <b>100</b>                                        |
| 200                                                | WIS\$8806 NO \$285800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                          |                           |                            |                                                   |
|                                                    | 16. GENERATOR'S CERTIFICATION: 1 hereb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y declare that the contents of this | consignment are fully a  | nd accurately             | described abov             | re by proper shipping name                        |
| ono                                                | and are classified, packed, marked and label national government regulations and state la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ws and regulations.                 |                          |                           |                            |                                                   |
| Ā                                                  | If I am a large quantity generator, I certify the to be economically practicable and that I have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | at I have a program in place to rec | duce the volume and to   | xicity of waste           | generated to t             | he degree I have determined                       |
| 홀                                                  | present and future threat to human health ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | id the environment; OR if I am a s  | mall quantity generator  | . I have made             | a good faith e             | fort to minimize my waste                         |
|                                                    | generation and select the best waste manage Printed/Typed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Signature                           | me and that I can afford | i.                        |                            | Mo. Day Year                                      |
| <u>-</u>                                           | Vandrey 1 by the 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2                                 | 611                      | -                         | 14                         | 15 0 5 0 2                                        |
| 를 교                                                | 17. Transporter 1 Agknowledgement of Recei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pt of Materials                     |                          | ·                         | 1                          | 7                                                 |
| ARTE                                               | Printed/Typed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Signature                           | 1                        |                           |                            | Mo. Day Year                                      |
| or spill immediately call the National TRANSPORTER | Printed/Typed Name  Signature  Mo. Day Year  18. Transporter 2 Acknowledgement of Receipt of Materials  Printed/Typed Name  Signature  Mo. Day Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                          |                           |                            |                                                   |
| G M                                                | Printed/Typed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Signature                           |                          |                           | <del>_</del> _             | Mo, Day Year                                      |
| ٦                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                          |                           |                            |                                                   |
| e l                                                | 19. Discrepancy Indication Space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                          |                           |                            | · · · · · · · · · · · · · · · · · · ·             |
| a ≧                                                | EL Quatty &cond = 3.38 tins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                          |                           |                            |                                                   |
| FACILITY                                           | 20. Facility Owner or Operator: Certification of receipt of hazardous materials covered by this manifest except as noted in Item 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                          |                           |                            |                                                   |
| In case of emergency                               | Printed/Typed Name Signature  Signature  Signature  Signature  O.5.0.5.0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                          |                           |                            |                                                   |
| ٥<br><u>د</u>                                      | Julia Collisa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92                                  | a library                |                           | l C                        | 050503                                            |

# Treviale (Que it

THE A 111 MAY NOT HUBBERS (22)

COUNTED TO BE STATE OF THE STAT

Niagara Balle NY | 4504-1540

Generator Information:

EPA ID #: NYD073669350

S.U.N.Y. @ Geneseo

1 College Circle

Site Information:

S.U.N.Y. @ Geneseo

1 College Circle

Geneseo, NY 14454

Geneseo, NY 14454

Billing Contact: Technical Contact: Phone: (585) 245-5511 Phone: (585) 245-5511

Name of Waste: Contaminated Groundwater

Waste Codes: D018

State Manifest Number:

NYG2887065 line item a

Federal Manifest Number:

Profile Number: 12541-AAB

LDR Nonwastewater Treatability Group

A. F001-F005 Solvent Restrictions

There are no F001-F005 solvent restricted wastes present that are banned from land disposal under 40 CFR 268.30.

EPA Code(s) Waste Description and Treatment/Regulatory Subcategory

Hazardous Constituent

Total Concentration in mg/l (WW

mg/kg (NWW); or Technology C

# B. Other Regulated Waste Notification

This section includes all wastes restricted from land disposal not included in other sections. If any treatment standards reference 268.48, then all underlying hazardous constituen are listed in Section D.

EPA Code(s) Waste Description and Treatment/Regulatory Subcategory

Hazardous Constituent

Total Concentration in mg/l (WW mg/kg (NWW); or Technology C

D018 Wastes th

Wastes that are TC for Benzene based on the TCLP in SW846 Method 1311.

Benzene

10 and meet 268.48 standards

C. D001-D003

There are no D001-D003 restricted wastes present that are banned from land disposal.

EPA Code(s) Waste Description and Treatment/Regulatory Subcategory

Hazardous Constituent

Total Concentration in mg/l (WW mg/kg (NWW); or Technology C

# D: Underlying Hazardous Constituents

There are no underlying hazardous constituents present as defined in 268.2(i).

Hazardous Constituent

Total Concentration in mg/l (WW mg/kg (NWW); or Technology C

ore oracional, inc

medon form

EPA ID #:NYD080336241

5600 Ningara Falls Blvd.

Viagara Falls, NY 14304-0340

F. Non-Hazardous/Non-Restricted Waste

There are no EPA waste codes that are not subject to land disposal restrictions as specified in 40 CFR Subpart D or applicable prohibitions in 40 CFR 268.32 or RCRA.

# Certifications

This waste must be treated to the applicable treatment standards set for in 40 CFR Part 268 Subpart D, 268.32, or RCRA Section 3004(d)

Signature

Date 05.05.03

ATTACHMENT 7



# The EDR Radius Map with GeoCheck®

SUNY Geneseo-Park St Parking Facility #4 and #6 Park Street Geneseo, NY 14454

Inquiry Number: 0906581.1r

January 06, 2003

# The Source For Environmental Risk Management Data

3530 Post Road Southport, Connecticut 06890

**Nationwide Customer Service** 

Telephone: 1-800-352-0050 Fax: 1-800-231-6802 Internet: www.edrnet.com

# **EXECUTIVE SUMMARY**

# STATE OR LOCAL ASTM SUPPLEMENTAL

SPILLS: Data collected on spills reported to NYSDEC. is required by one or more of the following:
Article 12 of the Navigation Law, 6 NYCRR Section 613.8 (from PBS regs), or 6 NYCRR Section 595.2 (from CBS regs). It includes spills active as of April 1, 1986, as well as spills occurring since this date.

A review of the NY Spills list, as provided by EDR, has revealed that there are 7 NY Spills sites within approximately 0.125 miles of the target property.

| Equal/Higher Elevation   | Address                                                                             | Dist / Dir  | Map ID | Page |
|--------------------------|-------------------------------------------------------------------------------------|-------------|--------|------|
| SUNY GENESEO             | 1 PARK PLACE                                                                        | 0 - 1/8 ESE | 1      | 6    |
| MARQUART (TJ) & SONS     | ROUTE 20 / ROUTE 39                                                                 | 0 - 1/8 SE  | B8     |      |
| Lower Elevation          | Address                                                                             | Dist / Dir  | Map ID | Page |
| SUNY GENESEO POWER PLANT | 1 COLLEGE CIRCLE 1 COLLEGE CIRCLE 1 COLLEGE DRIVE 1 COLLEGE CIRCLE 1 COLLEGE CIRCLE | 0 - 1/8 W   | A2     | 7    |
| CLARK BUILDING           |                                                                                     | 0 - 1/8 W   | A3     | 8    |
| SUNY GENESEO UNION BLDG  |                                                                                     | 0 - 1/8 W   | A4     | 9    |
| NEWTON BUILDING          |                                                                                     | 0 - 1/8 W   | A5     | 11   |
| SUNY GENESEO CLARK BLDG  |                                                                                     | 0 - 1/8 W   | A6     | 12   |

# PROPRIETARY DATABASES

# Former Manufactured Gas (Coal Gas) Sites:

The existence and location of Coal Gas sites is provided exclusively to EDR by Real Property Scan, Inc. Copyright 1993 Real Property Scan, Inc. For a technical description of the types of hazards which may be found at such sites, contact your EDR customer service representative

A review of the Coal Gas list, as provided by EDR, has revealed that there is 1 Coal Gas site within approximately 1 mile of the target property.

| Equal/Higher Elevation | Address           | Dist / Dir | Map ID | Page |
|------------------------|-------------------|------------|--------|------|
| GENESEO GAS LIGHT CO.  | BEHIND NORMAL ST. | 1/2 - 1 NE | 18     | 39   |

Map ID Direction Distance Distance (ft.) Elevation Site

# MAP FINDINGS

Database(s)

**EDR ID Number EPA ID Number** 

LIVINGSTON COUNTY SHERIFF (Continued)

S101508586

Last Date:

Num Times Material Entry In File:

09/29/1994 21329

DEC Remarks: 12/04/81: DOT USING ABSORBENT PADS.

Spill Cause:

WHILE REMOVING COUNTY GAOLINE TANK UNDERGROUND), A JOINT BROKE SPILLING

FUEL.

18 NE **GENESEO GAS LIGHT CO.** 

Coal Gas

G000000551 N/A

1/2-1

**BEHIND NORMAL ST.** GENESEO, NY 14454

2730 ft. Higher

COAL GAS SITE DESCRIPTION:

Site is in the center of the block formed by Main St. to the east, Normal to the north, Wadsworth to the west and Park to the south. Site is gone by 1910.

Copyright 1993 Real Property Scan, Inc.

# **Appendix D**

**CAMP Monitoring Data (on Compact Disk)** 

## TrakPro Version 4.70 ASCII Data File

Model:,DustTrak II Model Number:,8530

Serial Number:,8530121427

Test ID:,001

Test Abbreviation:,MANUAL\_001

Start Date:,10/08/2017 Start Time:,08:08:39

Duration (dd:hh:mm:ss):,0:04:00:00

Log Interval (mm:ss):,15:00

Number of points:,16

Notes:,

## Statistics, Channel:, AEROSOL

,Units:,mg/m<sup>3</sup> ,Average:,0.013 ,Minimum:,0.005

Time of Minimum:,11:38:39 ,Date of Minimum:,10/08/2017

,Maximum:,0.047

Time of Maximum:,08:53:39, Date of Maximum:,10/08/2017

# Calibration, Sensor:, AEROSOL

,Cal. date,07/24/2017

## Date, Time, AEROSOL

MM/dd/yyyy,hh:mm:ss,mg/m^3

10/08/2017,08:23:39,0.017

10/08/2017,08:38:39,0.009

10/08/2017,08:53:39,0.047

10/08/2017,09:08:39,0.021

10/08/2017,09:23:39,0.023

10/08/2017,09:38:39,0.015

10/08/2017,09:53:39,0.009

10/08/2017,10:08:39,0.006

10/08/2017,10:23:39,0.007

10/08/2017,10:38:39,0.007

10/08/2017,10:53:39,0.006

10/08/2017,11:08:39,0.006

10/08/2017,11:23:39,0.010

10/08/2017,11:38:39,0.005

10/08/2017,11:53:39,0.007

10/08/2017,12:08:39,0.016

## TrakPro Version 4.70 ASCII Data File

Model:,DustTrak II Model Number:,8530

Serial Number: ,8530121427

Test ID:,002

Test Abbreviation:,MANUAL\_002

Start Date:,10/09/2017 Start Time:,07:54:24

Duration (dd:hh:mm:ss):,0:03:45:00

Log Interval (mm:ss):,15:00

Number of points:,15

Notes:,

# Statistics, Channel:, AEROSOL

,Units:,mg/m<sup>3</sup> ,Average:,0.008 ,Minimum:,0.002

Time of Minimum:,11:39:24, Date of Minimum:,10/09/2017

,Maximum:,0.016

Time of Maximum:,08:09:24, Date of Maximum:,10/09/2017

# Calibration, Sensor:, AEROSOL

,Cal. date,07/24/2017

## Date, Time, AEROSOL

MM/dd/yyyy,hh:mm:ss,mg/m^3

10/09/2017,08:09:24,0.016

10/09/2017,08:24:24,0.010

10/09/2017,08:39:24,0.006

10/09/2017,08:54:24,0.011

10/09/2017,09:09:24,0.010

10/09/2017,09:24:24,0.008

10/09/2017,09:39:24,0.008

10/09/2017,09:54:24,0.009

10/09/2017,10:09:24,0.008

10/09/2017,10:24:24,0.008

10/09/2017,10:39:24,0.004

10/09/2017,10:54:24,0.006

10/09/2017,11:09:24,0.006

10/09/2017,11:24:24,0.006

10/09/2017,11:39:24,0.002

```
17/10/08 08:11
Unit Name MiniRAE 3000(PGM-7320)
Unit SN
       592-912861
Unit Firmware Ver V1.20A
Running Mode Hygiene Mode
Measure Type Avg; Max; Real
Datalog Mode
             Continuous
Datalog Type
             Auto
Diagnostic Mode No
Stop Reason
              Power Down
Site ID
         12345678
User ID 12345678
Begin10/8/2017 08:11:14
End 10/8/2017 12:14:01
Sample Period(s) 900
Number of Records
Sensor
          VOC(ppm)
Span 100.000
Span 2
         N/A
Low Alarm 50.000
High Alarm 100.000
Over Alarm 15000.000
STEL Alarm
              25.000
TWA Alarm 10.000
Measurement Gas
                    Isobutylene
Calibration Time 10/6/2017 08:27
Peak 0.010
Min 0.000
Average 0.001
Datalog
          VOC(ppm) VOC(ppm) VOC(ppm)
          Date/Time (Avg) (Max)
Index
001
    10/8/2017 08:26:14
                         0.0000.0000.000
002
    10/8/2017 08:41:14
                         0.0000.0000.000
003 10/8/2017 08:56:14
                         0.0000.0000.000
004
    10/8/2017 09:11:14
                         0.0000.0000.000
005
    10/8/2017 09:26:14
                         0.0000.0000.000
006
    10/8/2017 09:41:14
                         0.0000.0000.000
007
    10/8/2017 09:56:14
                         0.0000.0000.000
008 10/8/2017 10:11:14
                         0.0000.0000.000
009
   10/8/2017 10:26:14
                         0.0000.0000.000
010
   10/8/2017 10:41:14
                         0.0000.0000.000
011
    10/8/2017 10:56:14
                         0.0000.0010.000
```

0.0000.0000.000

0.0000.0050.000

0.0000.0270.000

012

013

014

10/8/2017 11:11:14

10/8/2017 11:26:14

10/8/2017 11:41:14

015 10/8/2017 11:56:14 0.0020.0350.005 016 10/8/2017 12:11:14 0.0100.0390.010

Peak 0.0100.0390.010 Min 0.0000.0000.000

0.0010.0070.001 Average

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| TWA/STEL |                    |            |  |
|----------|--------------------|------------|--|
|          | VOC(ppm) VOC       | (ppm)      |  |
| Inde     | x Date/Time (TW/   | Ä) (STEL)  |  |
| 001      | 10/8/2017 08:26:14 | 0.0000.000 |  |
| 002      | 10/8/2017 08:41:14 | 0.0000.000 |  |
| 003      | 10/8/2017 08:56:14 | 0.0000.000 |  |
| 004      | 10/8/2017 09:11:14 | 0.0000.000 |  |
| 005      | 10/8/2017 09:26:14 | 0.0000.000 |  |
| 006      | 10/8/2017 09:41:14 | 0.0000.000 |  |
| 007      | 10/8/2017 09:56:14 | 0.0000.000 |  |
| 800      | 10/8/2017 10:11:14 | 0.0000.000 |  |
| 009      | 10/8/2017 10:26:14 | 0.0000.000 |  |
| 010      | 10/8/2017 10:41:14 | 0.0000.000 |  |
| 011      | 10/8/2017 10:56:14 | 0.0000.000 |  |
| 012      | 10/8/2017 11:11:14 | 0.0000.000 |  |
| 013      | 10/8/2017 11:26:14 | 0.0000.000 |  |
| 014      | 10/8/2017 11:41:14 | 0.0000.000 |  |
| 015      | 10/8/2017 11:56:14 | 0.0000.005 |  |
| 016      | 10/8/2017 12:11:14 | 0.0000.010 |  |

```
17/10/09 07:57
******************
Unit Name MiniRAE 3000(PGM-7320)
Unit SN
       592-912861
Unit Firmware Ver V1.20A
Running Mode Hygiene Mode
Measure Type Avg; Max; Real
Datalog Mode
             Continuous
Datalog Type
             Auto
Diagnostic Mode No
Stop Reason
              Power Down
Site ID
         12345678
User ID 12345678
Begin10/9/2017 07:57:12
End 10/9/2017 11:56:47
Sample Period(s)
               900
Number of Records 15
Sensor
         VOC(ppm)
Span 100.000
Span 2
         N/A
Low Alarm 50.000
High Alarm 100.000
Over Alarm 15000.000
STEL Alarm
              25.000
TWA Alarm 10.000
Measurement Gas
                   Isobutylene
Calibration Time 10/6/2017 08:27
Peak 0.001
Min 0.000
Average 0.000
Datalog
         VOC(ppm) VOC(ppm) VOC(ppm)
         Date/Time (Avg) (Max)
Index
                                 (Real)
001
    10/9/2017 08:12:12
                        0.0000.0000.000
002
    10/9/2017 08:27:12
                        0.0000.0000.000
003 10/9/2017 08:42:12
                        0.0000.0000.000
004
    10/9/2017 08:57:12
                        0.0000.0000.000
005
    10/9/2017 09:12:12
                        0.0000.0000.000
006
    10/9/2017 09:27:12
                        0.0000.0000.000
007
    10/9/2017 09:42:12
                        0.0000.0000.000
008 10/9/2017 09:57:12
                        0.0000.0000.000
009
    10/9/2017 10:12:12
                        0.0000.0000.000
010
   10/9/2017 10:27:12
                        0.0000.0000.000
011
    10/9/2017 10:42:12
                        0.0000.0170.001
```

0.0010.2120.000

0.0010.1280.000

0.0020.1400.000

012

013

014

10/9/2017 10:57:12

10/9/2017 11:12:12

10/9/2017 11:27:12

015 10/9/2017 11:42:12 0.0000.0510.000

Peak 0.0020.2120.001 Min 0.0000.0000.000 Average 0.0000.0370.000

\*\*\*\*\*\*\*\*\*\*\*\*\*

# TWA/STEL

|      | VOC(ppm) VOC(ppm)  |            |  |  |  |  |  |  |
|------|--------------------|------------|--|--|--|--|--|--|
| Inde | x Date/Time (TW)   | A) (STEL)  |  |  |  |  |  |  |
| 001  | 10/9/2017 08:12:12 | 0.0000.000 |  |  |  |  |  |  |
| 002  | 10/9/2017 08:27:12 | 0.0000.000 |  |  |  |  |  |  |
| 003  | 10/9/2017 08:42:12 | 0.0000.000 |  |  |  |  |  |  |
| 004  | 10/9/2017 08:57:12 | 0.0000.000 |  |  |  |  |  |  |
| 005  | 10/9/2017 09:12:12 | 0.0000.000 |  |  |  |  |  |  |
| 006  | 10/9/2017 09:27:12 | 0.0000.000 |  |  |  |  |  |  |
| 007  | 10/9/2017 09:42:12 | 0.0000.000 |  |  |  |  |  |  |
| 800  | 10/9/2017 09:57:12 | 0.0000.000 |  |  |  |  |  |  |
| 009  | 10/9/2017 10:12:12 | 0.0000.000 |  |  |  |  |  |  |
| 010  | 10/9/2017 10:27:12 | 0.0000.000 |  |  |  |  |  |  |
| 011  | 10/9/2017 10:42:12 | 0.0000.001 |  |  |  |  |  |  |
| 012  | 10/9/2017 10:57:12 | 0.0000.000 |  |  |  |  |  |  |
| 013  | 10/9/2017 11:12:12 | 0.0000.000 |  |  |  |  |  |  |
| 014  | 10/9/2017 11:27:12 | 0.0000.000 |  |  |  |  |  |  |
| 015  | 10/9/2017 11:42:12 | 0.0000.000 |  |  |  |  |  |  |

#### TrakPro Version 4.70 ASCII Data File

Model:,DustTrak II Model Number:,8530

Serial Number:,8530143417

Test ID:,001

Test Abbreviation:,MANUAL\_001

Start Date:,10/08/2017 Start Time:,08:04:02

Duration (dd:hh:mm:ss):,0:04:00:00

Log Interval (mm:ss):,15:00

Number of points:,16

Notes:,

#### Statistics, Channel: , AEROSOL

,Units:,mg/m<sup>3</sup> ,Average:,0.001 ,Minimum:,0.000

Time of Minimum:,09:49:02

Date of Minimum:,10/08/2017

,Maximum:,0.006

Time of Maximum:,08:19:02, Date of Maximum:,10/08/2017

# Calibration, Sensor:, AEROSOL

,Cal. date,03/07/2017

#### Date, Time, AEROSOL

MM/dd/yyyy,hh:mm:ss,mg/m^3

10/08/2017,08:19:02,0.006

10/08/2017,08:34:02,0.004

10/08/2017,08:49:02,0.003

10/08/2017,09:04:02,0.002

10/08/2017,09:19:02,0.002

10/08/2017,09:34:02,0.001

10/08/2017,09:49:02,0.000

10/08/2017,10:04:02,0.000

10/08/2017,10:19:02,0.000

10/08/2017,10:34:02,0.000

10/08/2017,10:49:02,0.000

10/08/2017,11:04:02,0.000

10/08/2017,11:19:02,0.000

10/08/2017,11:34:02,0.000

10/08/2017,11:49:02,0.000

10/08/2017,12:04:02,0.000

#### TrakPro Version 4.70 ASCII Data File

Model:,DustTrak II Model Number:,8530

Serial Number: ,8530143417

Test ID:,002

Test Abbreviation:,MANUAL\_002

Start Date:,10/09/2017 Start Time:,07:57:20

Duration (dd:hh:mm:ss):,0:03:45:00

Log Interval (mm:ss):,15:00

Number of points:,15

Notes:,

# Statistics, Channel:, AEROSOL

,Units:,mg/m<sup>3</sup> ,Average:,0.001 ,Minimum:,-0.002

Time of Minimum:,10:57:20 ,Date of Minimum:,10/09/2017

,Maximum:,0.008

Time of Maximum:,08:57:20 ,Date of Maximum:,10/09/2017

# Calibration, Sensor:, AEROSOL

,Cal. date,03/07/2017

#### Date, Time, AEROSOL

MM/dd/yyyy,hh:mm:ss,mg/m^3

10/09/2017,08:12:20,0.002

10/09/2017,08:27:20,0.003

10/09/2017,08:42:20,0.005

10/09/2017,08:57:20,0.008

10/09/2017,09:12:20,0.003

10/09/2017,09:27:20,0.003

10/09/2017,09:42:20,0.002

10/09/2017,09:57:20,0.000

10/09/2017,10:12:20,0.000

10/09/2017,10:27:20,0.000

10/09/2017,10:42:20,-0.001

10/09/2017,10:57:20,-0.002

10/09/2017,11:12:20,-0.001

10/09/2017,11:27:20,-0.001

10/09/2017,11:27:20, 0.001

file:///arcadis-us.com/...t-NY/PROJECTS/RG&E/Geneseo-Park%20St/Park%20Street%20FER/Appendix%20D/Up%20Dust%20100917.txt[6/18/2018 10:42:22 AM]

```
17/10/08 08:05
Unit Name MiniRAE 3000(PGM-7320)
Unit SN
       592-906598
Unit Firmware Ver V1.10A
Running Mode Hygiene Mode
Measure Type Avg; Max; Real
             Continuous
Datalog Mode
Datalog Type
             Auto
Diagnostic Mode No
Stop Reason
              Power Down
Site ID
         12345678
User ID 12345678
Begin10/8/2017 08:05:46
End 10/8/2017 12:12:07
Sample Period(s) 900
Number of Records 16
Sensor
          VOC(ppm)
Span 100.000
Span 2
         N/A
Low Alarm 50.000
High Alarm 100.000
Over Alarm 15000.000
STEL Alarm
              25.000
TWA Alarm 10.000
Measurement Gas
                    Isobutylene
Calibration Time 10/6/2017 08:26
Peak 0.069
Min 0.000
Average 0.013
Datalog
          VOC(ppm) VOC(ppm) VOC(ppm)
          Date/Time (Avg) (Max)
Index
                                  (Real)
001
    10/8/2017 08:20:46
                        0.0000.0000.000
002
    10/8/2017 08:35:46
                         0.0000.0000.000
003 10/8/2017 08:50:46
                         0.0000.0000.000
004
    10/8/2017 09:05:46
                         0.0000.0000.000
005
    10/8/2017 09:20:46
                         0.0000.0000.000
006
    10/8/2017 09:35:46
                         0.0000.0000.000
007
    10/8/2017 09:50:46
                         0.0000.0000.000
008 10/8/2017 10:05:46
                         0.0030.0150.012
009 10/8/2017 10:20:46
                         0.0130.0300.020
010 10/8/2017 10:35:46
                         0.0150.0260.017
011
    10/8/2017 10:50:46
                         0.0180.0260.011
012
    10/8/2017 11:05:46
                         0.0100.0170.010
```

0.0150.0230.014

0.0040.0140.000

013

014

10/8/2017 11:20:46

10/8/2017 11:35:46

015 10/8/2017 11:50:46 0.0250.0540.054 016 10/8/2017 12:05:46 0.0640.0740.069

Peak 0.0640.0740.069 Min 0.0000.0000.000 Average 0.0100.0170.013

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

0.0040.054

0.0060.069

#### TWA/STEL

015

VOC(ppm) VOC(ppm) Date/Time (TWA) Index (STEL) 001 10/8/2017 08:20:46 0.0000.000 002 10/8/2017 08:35:46 0.0000.000 003 10/8/2017 08:50:46 0.0000.000 004 10/8/2017 09:05:46 0.0000.000 005 10/8/2017 09:20:46 0.0000.000 006 10/8/2017 09:35:46 0.0000.000 007 10/8/2017 09:50:46 0.0000.000 008 10/8/2017 10:05:46 0.0000.012 009 10/8/2017 10:20:46 0.0010.020 010 10/8/2017 10:35:46 0.0020.017 011 10/8/2017 10:50:46 0.0020.011 012 10/8/2017 11:05:46 0.0020.010 013 10/8/2017 11:20:46 0.0030.014 014 10/8/2017 11:35:46 0.0030.000

10/8/2017 11:50:46

016 10/8/2017 12:05:46

```
17/10/09 07:59
******************
Unit Name MiniRAE 3000(PGM-7320)
Unit SN
       592-906598
Unit Firmware Ver V1.10A
Running Mode Hygiene Mode
Measure Type Avg; Max; Real
Datalog Mode
             Continuous
Datalog Type
             Auto
Diagnostic Mode No
Stop Reason
              Power Down
Site ID
         12345678
User ID 12345678
Begin10/9/2017 07:59:21
End 10/9/2017 11:58:27
Sample Period(s)
               900
Number of Records
Sensor
         VOC(ppm)
Span 100.000
Span 2
         N/A
Low Alarm 50.000
High Alarm 100.000
Over Alarm 15000.000
STEL Alarm
              25.000
TWA Alarm 10.000
Measurement Gas
                   Isobutylene
Calibration Time 10/6/2017 08:26
Peak 0.000
Min 0.000
Average 0.000
Datalog
         VOC(ppm) VOC(ppm) VOC(ppm)
         Date/Time (Avg) (Max)
Index
                                 (Real)
001
    10/9/2017 08:14:21
                        0.0000.0000.000
002
    10/9/2017 08:29:21
                        0.0000.0000.000
003 10/9/2017 08:44:21
                        0.0000.0000.000
004
    10/9/2017 08:59:21
                        0.0000.0000.000
005
    10/9/2017 09:14:21
                        0.0000.0000.000
006
    10/9/2017 09:29:21
                        0.0000.0000.000
007
    10/9/2017 09:44:21
                        0.0000.0000.000
800
   10/9/2017 09:59:21
                        0.0000.0000.000
009
    10/9/2017 10:14:21
                        0.0000.0000.000
010
   10/9/2017 10:29:21
                        0.0000.0000.000
011
    10/9/2017 10:44:21
                        0.0000.0000.000
```

0.0000.0000.000

0.0000.0000.000

0.0000.0000.000

012

013

014

10/9/2017 10:59:21

10/9/2017 11:14:21

10/9/2017 11:29:21

015 10/9/2017 11:44:21 0.0000.0000.000

Peak 0.0000.0000.000 Min 0.0000.0000.000 Average 0.0000.0000.000

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

# TWA/STEL

| VOC(ppm) VOC(ppm) |           |       |      |            |  |  |  |  |
|-------------------|-----------|-------|------|------------|--|--|--|--|
| Index             | d Date    | /Time | (TWA | (STEL)     |  |  |  |  |
| 001               | 10/9/2017 | 08:14 | :21  | 0.0000.000 |  |  |  |  |
| 002               | 10/9/2017 | 08:29 | :21  | 0.0000.000 |  |  |  |  |
| 003               | 10/9/2017 | 08:44 | :21  | 0.0000.000 |  |  |  |  |
| 004               | 10/9/2017 | 08:59 | :21  | 0.0000.000 |  |  |  |  |
| 005               | 10/9/2017 | 09:14 | :21  | 0.0000.000 |  |  |  |  |
| 006               | 10/9/2017 | 09:29 | :21  | 0.0000.000 |  |  |  |  |
| 007               | 10/9/2017 |       |      | 0.0000.000 |  |  |  |  |
| 800               | 10/9/2017 | 09:59 | :21  | 0.0000.000 |  |  |  |  |
| 009               | 10/9/2017 | 10:14 | :21  | 0.0000.000 |  |  |  |  |
| 010               | 10/9/2017 | 10:29 | :21  | 0.0000.000 |  |  |  |  |
| 011               | 10/9/2017 |       |      | 0.0000.000 |  |  |  |  |
| 012               | 10/9/2017 | 10:59 | :21  | 0.0000.000 |  |  |  |  |
| 013               | 10/9/2017 | 11:14 | :21  | 0.0000.000 |  |  |  |  |
| 014               | 10/9/2017 |       |      | 0.0000.000 |  |  |  |  |
| 015               | 10/9/2017 | 11:44 | :21  | 0.0000.000 |  |  |  |  |

# **Appendix E**

**Waste Disposal Documentation** 

| _            | harieratus et er est allic                           |                         |                        |                                   |                                       | TA 5                 |              |                                                    |                                      |                                         |                         |                           |                                         |                       |
|--------------|------------------------------------------------------|-------------------------|------------------------|-----------------------------------|---------------------------------------|----------------------|--------------|----------------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------|---------------------------|-----------------------------------------|-----------------------|
| • 1          | NON-HAZARDOUS                                        | '                       | tor ID Number          |                                   |                                       | 2. Page 1 o          |              | ergency Respons                                    |                                      | 4. Waste Tr                             | -                       | mber                      |                                         | \$ -1 *               |
|              | VASTE MANIFEST                                       |                         |                        |                                   | <del></del>                           | <u> 1</u>            | 80           | 0-535-1                                            | 5053KE                               | CEIVEDS 8                               | 79                      |                           |                                         |                       |
|              | enerator's Name and I                                |                         |                        |                                   |                                       |                      | Gener        | ator's Site Addres                                 | •                                    | than mailing addre                      | 988)                    |                           |                                         |                       |
|              | ark Street                                           | , with                  |                        |                                   |                                       |                      |              |                                                    | NOV                                  | <b>20</b> 2017                          |                         |                           |                                         | • .                   |
| Ge           | neseo. NY 14                                         | 1454                    |                        |                                   |                                       |                      | 1            | VD                                                 | L Carrie                             | <b>.</b>                                |                         |                           |                                         |                       |
| Gen          | erator's Phone:<br>ansporter 1 Company               | 85-363-32<br>Name       | :04                    |                                   |                                       |                      | L            | <u> </u>                                           | n sovin                              | Onmental<br>U.S. EPA ID                 | Number                  |                           |                                         |                       |
| - 1          | ansporter i company<br>nvironmen                     |                         |                        | oup. In                           | 1 <i>i</i> '!                         | 716.                 | 695          | 6720                                               |                                      | NYD98                                   |                         | 3904                      |                                         |                       |
|              | ansporter 2 Company                                  |                         | A THE SAT              | wester 4 mm                       |                                       | AN B                 |              |                                                    |                                      | U.S. EPA ID                             |                         | - u- u - 41               |                                         |                       |
|              |                                                      | •                       |                        |                                   |                                       |                      |              |                                                    |                                      |                                         | •                       |                           |                                         |                       |
| 8. D         | esignated Facility Nam                               | ne and Site Addre       | ess                    |                                   |                                       |                      |              |                                                    |                                      | U.S. EPA ID                             | Number                  |                           |                                         |                       |
| Ar           | merican R                                            | ecycle                  | ra Compa               | ny                                |                                       |                      |              |                                                    |                                      |                                         |                         |                           |                                         |                       |
|              | 77 Wales                                             |                         |                        |                                   |                                       |                      |              |                                                    |                                      | ****                                    |                         |                           |                                         |                       |
| Facil        | nawanda,<br>ity's Phone:                             | NX 141                  | LOU                    |                                   | 716.                                  | 695.6                | 720          |                                                    |                                      | NYROO                                   | 0030                    | 1809                      |                                         | · .                   |
|              | 9. Waste Shipping N                                  |                         |                        |                                   |                                       |                      |              | 10. Cont                                           | tainers                              | 11. Total                               | 12. Unit                |                           |                                         |                       |
| L            | o. waste onlipping i                                 | value and Descri        | μισι                   |                                   |                                       |                      |              | No.                                                | Туре                                 | Quantity                                | Wt./Vol.                |                           |                                         |                       |
|              | Non RCRA                                             | Non DO                  | T Regulat              | ced , (C                          | oal T                                 | ar,                  |              |                                                    |                                      |                                         |                         |                           |                                         |                       |
|              | Water)                                               |                         |                        | , , , , , , , , , , , , , , , , , |                                       | ··· •                |              |                                                    |                                      | 2                                       | <b>_</b>                |                           |                                         |                       |
|              |                                                      |                         |                        |                                   |                                       |                      |              | COOP                                               | Dm                                   | 0330                                    | 6                       | 11111111111111            |                                         |                       |
|              | Non RCRA                                             | Non DO                  | T Regulat              | ed, (Sc                           | il                                    |                      |              |                                                    |                                      | 0.330<br>0.250                          | 1                       |                           |                                         |                       |
|              | Cuttings                                             |                         | <del>-</del>           | - 1                               |                                       |                      |              | 21                                                 | 200                                  | MARIA                                   | ົ                       |                           | 7                                       |                       |
|              | 0                                                    |                         |                        |                                   |                                       |                      |              | COOL                                               | UNI                                  | V150                                    | T                       | <i>[_</i> S\              |                                         |                       |
|              | 3.                                                   |                         |                        |                                   | ٠.                                    |                      |              |                                                    |                                      |                                         |                         |                           | 464                                     |                       |
|              |                                                      |                         |                        |                                   |                                       |                      |              |                                                    |                                      |                                         |                         |                           |                                         |                       |
| THE<br>HEAT  | 4.                                                   |                         |                        |                                   |                                       |                      |              | -                                                  | -                                    | <u> </u>                                |                         |                           |                                         |                       |
|              |                                                      |                         |                        |                                   |                                       |                      |              |                                                    |                                      |                                         |                         |                           |                                         |                       |
|              |                                                      | 1.11                    |                        |                                   | •                                     |                      |              |                                                    |                                      |                                         |                         |                           |                                         | ALCONOMY<br>ACCOMING  |
| 13.          | I<br>Special Handling Instr                          | uctions and Addi        | tional Information     |                                   | · · · · · · · · · · · · · · · · · · · | . A                  |              |                                                    | 1 .                                  | l                                       | L                       | n sayat <b>e</b> Githran  | 100000000000000000000000000000000000000 | ropatik<br>T          |
| ER           | l <b>G</b> :                                         | Approval                |                        |                                   |                                       | Handling             |              |                                                    |                                      | ~ *********                             | 6 <sup>™</sup> em am da |                           |                                         |                       |
| 1 -          |                                                      | 1 - X-10                | 946IN                  |                                   |                                       | i - None<br>2 - None |              |                                                    |                                      | ergency<br>Caller M                     |                         |                           |                                         |                       |
| 2 -          |                                                      | 2 - A-13                | 060L                   |                                   | -                                     | 3.<br>3.             |              | ESG)                                               | ) <i>«1876»</i>                      | woaawa R                                | ne of the seri          | n. g. call                |                                         |                       |
| 3 -<br>4 -   |                                                      | 3 -                     |                        |                                   |                                       | 5 °<br><b>1</b>      |              | esul til j                                         |                                      |                                         |                         |                           |                                         |                       |
|              | GENERATOR'S/OFFE                                     | ROR'S CERTIFIC          | CATION: I hereby de    | eclare that the co                |                                       | •                    | are fully a  | nd accurately de                                   | scribed ahove                        | e by the proper shi                     | ppina nam               | e, and are clas           | sified, packs                           | aged.                 |
| n            | narked and labeled/pla                               | acarded, and are        | in all respects in pro | oper condition for                | r transport ac                        | cording to appl      | icable int   | ernational and na                                  | ational govern                       | mental regulations                      |                         |                           |                                         |                       |
| Gene         | erator's/Offeror's Printe                            | ed/Typed Name           | AsacenT                | E, RG                             | 4E                                    | Si                   | gnature      | 1                                                  | THE PERSON NAMED IN COLUMN TO PARTY. | 21.00 0 0.                              |                         | Mon                       | ,                                       | Year                  |
|              | MI a hore                                            | w rele                  | erson                  |                                   |                                       |                      |              |                                                    |                                      |                                         |                         |                           | 95                                      | 12                    |
| 15. l        | nternational Shipments                               | , –                     | nport to U.S.          |                                   | Ī                                     | Export from          | U.S.         | Port of e                                          | ntry/exit:                           | •                                       |                         |                           |                                         |                       |
|              | sporter Signature (for                               | exports only):          |                        |                                   |                                       | <u> </u>             |              | Date leav                                          | ving U.S.:                           |                                         |                         |                           |                                         |                       |
|              | ransporter Acknowled                                 |                         | t of Materials         |                                   |                                       |                      |              |                                                    |                                      |                                         |                         |                           | u. 5                                    | ;                     |
| Tran         | sporter 1 Printed/Type                               |                         |                        |                                   |                                       | Si<br>ı              | gnaturo      | 2/                                                 |                                      |                                         |                         | Mon<br>م م ا              | •                                       | Year                  |
| <u> </u>     | ITTICHE                                              | el W                    | reters                 | on                                |                                       |                      | 7            |                                                    | 2                                    |                                         | •                       |                           | <u>69</u>                               | 1/2                   |
| Fran         | sporter 2 Printed/Type                               | ed Name                 |                        |                                   |                                       | Si<br>I              | gnature      |                                                    |                                      |                                         |                         | Mon<br>I                  | th Day                                  | Year<br>I             |
| <del> </del> | •                                                    |                         |                        |                                   | · · · · · ·                           |                      |              |                                                    |                                      | •                                       |                         |                           |                                         |                       |
|              | Discrepancy                                          | Conce -                 |                        |                                   |                                       |                      |              |                                                    |                                      |                                         |                         |                           | <del></del> -                           |                       |
| 17a.         | Discrepancy Indication                               | i Space                 | Quantity               |                                   | Type                                  |                      |              | Residue                                            |                                      | Partial Reje                            | ection                  | ; E                       | Full Rejec                              | ction                 |
|              |                                                      |                         |                        |                                   |                                       |                      |              | ulfack Defe                                        | Alexandr                             |                                         |                         |                           |                                         |                       |
| 17h          | Alternate Facility (or G                             | Generator)              |                        |                                   |                                       |                      | Ma           | nifest Reference                                   | Number:                              | U.S. EPA ID I                           | Number                  |                           | -                                       |                       |
| ,,,,,,       | rmomato raolity (of C                                | onoratory               |                        |                                   |                                       |                      |              |                                                    |                                      | OIOI EI A ID I                          | -umbol                  |                           |                                         |                       |
| Essil        | ity's Phone:                                         |                         |                        |                                   |                                       |                      |              |                                                    |                                      | 1                                       |                         |                           |                                         |                       |
|              | ty's Phone:<br>Signature of Alternate                | Facility (or Gene       | rator)                 |                                   |                                       |                      |              | <del></del>                                        |                                      |                                         |                         | Mon                       | h Day                                   | Year                  |
|              | 3                                                    | , ( e.e                 |                        |                                   |                                       | 1                    |              |                                                    |                                      |                                         |                         | 1                         |                                         |                       |
| (j. 15)      |                                                      |                         |                        | 57 (1567-38.                      |                                       | Road Ser             |              |                                                    |                                      |                                         |                         | 51411-32.4                |                                         | (A. 48 A. 48          |
|              |                                                      |                         |                        |                                   |                                       |                      |              |                                                    |                                      | A SELECTION AND                         |                         |                           |                                         | a dist                |
|              |                                                      |                         |                        |                                   |                                       | i de                 |              | 美国 物边                                              |                                      |                                         |                         |                           |                                         |                       |
|              | <b>建筑的医路线</b>                                        | 4,6 4 3,5, 1842, 19, 40 | Certification of recei | pt of materials co                | overed by the                         | manifest exce        | ot as not    | ed in Nem 1/2 1                                    | $\sqrt{V}$                           | e name prinsippi kana 1966 (1966).<br>N | فالموض 26 محموس         | general profite Selection |                                         | Legge, retrieved Laff |
| 18. F        | Designated Facility Ow                               | ner or Operator:        | OCHUNOCHOLI OLICOCI    | ,                                 | ,                                     |                      | gnature      | <del>-                                      </del> | 11                                   |                                         |                         | Mon                       | h Day                                   | Year                  |
|              | Designated Facility Ow<br>ad/ <del>Typed Na</del> me |                         | 1. 1 a 100             | N ~11                             |                                       | Si                   | gnature      | $\omega$                                           |                                      | <del></del>                             |                         | Mon                       | h Day                                   | , 229 B               |
|              |                                                      |                         | Mastr                  | apoll                             |                                       |                      | ynature      | Wa                                                 | HX                                   | ブー:                                     |                         |                           | \Vg                                     | 17                    |
| Printe       | ed/ <del>Typed Na</del> me                           | in                      | Mastr                  | poll                              |                                       | Si                   | griature<br> | Wa                                                 | X                                    |                                         |                         |                           | " \ <u>\</u> \\\\\\\\                   | 1(7                   |
| Printe       | ed/Typed Name                                        |                         | Mastr                  | POII<br>DESI                      | GNATED                                |                      | ·            | ENERATOR                                           | 1                                    |                                         |                         |                           | 100                                     | <u>  (</u> 7-         |
| Printe       | ed/ <del>Typed Name</del>                            |                         | Mastr                  | POII<br>DESI                      | GNATED                                |                      | ·            | ENERATOR                                           |                                      |                                         |                         |                           | 1 0 cd                                  | 1(7-                  |
| Printe       | ed/ <del>Typed Name</del>                            |                         | Mastr                  | DESI                              | GNATED                                |                      | ·            | ENERATOR                                           |                                      |                                         |                         |                           | "   Q C                                 | 1(7-                  |

# **Appendix F**

**Waste Characterization Analytical Report (on Compact Disk)** 



# Analytical Report For

# **KBH Environmental, LLC**

For Lab Project ID

153380

Referencing

SUNY Geneseo - 6 Park Street

Prepared

Wednesday, August 19, 2015

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958



Client: KBH Environmental, LLC

**Project Reference:** SUNY Geneseo - 6 Park Street

**Sample Identifier:** MW 1 / Drum #5

 Lab Sample ID:
 153380-01
 Date Sampled:
 8/12/2015

 Matrix:
 Soil
 Date Received:
 8/12/2015

### **PCBs**

| Analyte              | <u>Result</u> | <u>Units</u>       |               | <b>Qualifier</b> | Date Anal         | <u>vzed</u> |
|----------------------|---------------|--------------------|---------------|------------------|-------------------|-------------|
| PCB-1016             | < 0.375       | mg/Kg              |               |                  | 8/16/2015         | 23:05       |
| PCB-1221             | < 0.375       | mg/Kg              |               |                  | 8/16/2015         | 23:05       |
| PCB-1232             | < 0.375       | mg/Kg              |               |                  | 8/16/2015         | 23:05       |
| PCB-1242             | < 0.375       | mg/Kg              |               |                  | 8/16/2015         | 23:05       |
| PCB-1248             | < 0.375       | mg/Kg              |               |                  | 8/16/2015         | 23:05       |
| PCB-1254             | < 0.375       | mg/Kg              |               |                  | 8/16/2015         | 23:05       |
| PCB-1260             | < 0.375       | mg/Kg              |               |                  | 8/16/2015         | 23:05       |
| PCB-1262             | < 0.375       | mg/Kg              |               |                  | 8/16/2015         | 23:05       |
| PCB-1268             | < 0.375       | mg/Kg              |               |                  | 8/16/2015         | 23:05       |
| <u>Surrogate</u>     | Percer        | <u>it Recovery</u> | <b>Limits</b> | <b>Outliers</b>  | <b>Date Analy</b> | zed         |
| Decachlorobiphenyl   |               | 113                | 33.3 - 147    |                  | 8/16/2015         | 23:05       |
| Tetrachloro-m-xylene |               | 100                | 4.91 - 155    |                  | 8/16/2015         | 23:05       |

**Method Reference(s):** EPA 8082A EPA 3550C

**Preparation Date:** 8/13/2015

# Semi-Volatile Organics (PAHs)

| <u>Analyte</u>          | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-------------------------|---------------|--------------|------------------|----------------------|
| Acenaphthene            | 391           | ug/Kg        |                  | 8/14/2015 18:45      |
| Acenaphthylene          | < 339         | ug/Kg        |                  | 8/14/2015 18:45      |
| Anthracene              | 921           | ug/Kg        |                  | 8/14/2015 18:45      |
| Benzo (a) anthracene    | 4130          | ug/Kg        |                  | 8/14/2015 18:45      |
| Benzo (a) pyrene        | 6070          | ug/Kg        |                  | 8/14/2015 18:45      |
| Benzo (b) fluoranthene  | 5660          | ug/Kg        |                  | 8/14/2015 18:45      |
| Benzo (g,h,i) perylene  | 4240          | ug/Kg        |                  | 8/14/2015 18:45      |
| Benzo (k) fluoranthene  | 3080          | ug/Kg        |                  | 8/14/2015 18:45      |
| Chrysene                | 3810          | ug/Kg        |                  | 8/14/2015 18:45      |
| Dibenz (a,h) anthracene | 1640          | ug/Kg        |                  | 8/14/2015 18:45      |
| Fluoranthene            | 3840          | ug/Kg        |                  | 8/14/2015 18:45      |
| Fluorene                | < 339         | ug/Kg        |                  | 8/14/2015 18:45      |
|                         |               |              |                  |                      |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt. Page 2 of 18



Client: KBH Environmental, LLC

**Project Reference:** SUNY Geneseo - 6 Park Street

**Sample Identifier:** MW 1 / Drum #5

Lab Sample ID:153380-01Date Sampled:8/12/2015Matrix:SoilDate Received:8/12/2015

| 8/14/2015 18:45 |
|-----------------|
| , ,             |
| 8/14/2015 18:45 |
| 8/14/2015 18:45 |
| 8/14/2015 18:45 |
|                 |

| Surrogate        | Percent Recovery | <u>Limits</u> | <u>outners</u> | <u>Date Anaiy</u> | <u>zea</u> |
|------------------|------------------|---------------|----------------|-------------------|------------|
| 2-Fluorobiphenyl | 50.2             | 35.3 - 100.3  |                | 8/14/2015         | 18:45      |
| Nitrobenzene-d5  | 42.7             | 35.9 - 90.7   |                | 8/14/2015         | 18:45      |
| Terphenyl-d14    | 56.0             | 61.9 - 109.1  | *              | 8/14/2015         | 18:45      |

Method Reference(s): EPA 8270D EPA 3550C Preparation Date: 8/14/2015

**Data File:** 8/14/2015

# **Volatile Organics (Petroleum)**

| <u>Analyte</u>          | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-------------------------|---------------|--------------|------------------|----------------------|
| 1,2,4-Trimethylbenzene  | < 7.96        | ug/Kg        |                  | 8/14/2015 17:06      |
| 1,3,5-Trimethylbenzene  | < 7.96        | ug/Kg        |                  | 8/14/2015 17:06      |
| Benzene                 | < 7.96        | ug/Kg        |                  | 8/14/2015 17:06      |
| Ethylbenzene            | < 7.96        | ug/Kg        |                  | 8/14/2015 17:06      |
| Isopropylbenzene        | < 7.96        | ug/Kg        |                  | 8/14/2015 17:06      |
| m,p-Xylene              | < 7.96        | ug/Kg        |                  | 8/14/2015 17:06      |
| Methyl tert-butyl Ether | < 7.96        | ug/Kg        |                  | 8/14/2015 17:06      |
| Naphthalene             | < 19.9        | ug/Kg        |                  | 8/14/2015 17:06      |
| n-Butylbenzene          | < 7.96        | ug/Kg        |                  | 8/14/2015 17:06      |
| n-Propylbenzene         | < 7.96        | ug/Kg        |                  | 8/14/2015 17:06      |
| o-Xylene                | < 7.96        | ug/Kg        |                  | 8/14/2015 17:06      |
| p-Isopropyltoluene      | < 7.96        | ug/Kg        |                  | 8/14/2015 17:06      |
| sec-Butylbenzene        | < 7.96        | ug/Kg        |                  | 8/14/2015 17:06      |
| tert-Butylbenzene       | < 7.96        | ug/Kg        |                  | 8/14/2015 17:06      |
| Toluene                 | < 7.96        | ug/Kg        |                  | 8/14/2015 17:06      |



Client: KBH Environmental, LLC

**Project Reference:** SUNY Geneseo - 6 Park Street

**Sample Identifier:** MW 1 / Drum #5

 Lab Sample ID:
 153380-01
 Date Sampled:
 8/12/2015

 Matrix:
 Soil
 Date Received:
 8/12/2015

| <u>Surrogate</u>      | Percent Recovery | <u>Limits</u> | <u>Outliers</u> | <b>Date Analy</b> | vzed  |
|-----------------------|------------------|---------------|-----------------|-------------------|-------|
| 1,2-Dichloroethane-d4 | 105              | 84.1 - 121    |                 | 8/14/2015         | 17:06 |
| 4-Bromofluorobenzene  | 79.4             | 83.4 - 113    | *               | 8/14/2015         | 17:06 |
| Pentafluorobenzene    | 95.4             | 91.4 - 110    |                 | 8/14/2015         | 17:06 |
| Toluene-D8            | 89.9             | 91.5 - 106    | *               | 8/14/2015         | 17:06 |

**Method Reference(s):** EPA 8260C

EPA 5035A

Data File: x25411.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.



Client: KBH Environmental, LLC

**Project Reference:** SUNY Geneseo - 6 Park Street

**Sample Identifier:** MW 1 / Drum #5

Lab Sample ID:153380-01ADate Sampled:8/12/2015Matrix:TCLP ExtractDate Received:8/12/2015

## TCLP Mercury

AnalyteResultUnitsRegulatory LimitQualifierDate AnalyzedMercury< 0.00200</td>mg/L0.28/18/201515:14

**Method Reference(s):** EPA 7470A

EPA 1311

**Preparation Date:** 8/17/2015 **Data File:** Hg150818A

# TCLP RCRA Metals (ICP)

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | Regulatory Limit Qualifier | <b>Date Analyzed</b> |
|----------------|---------------|--------------|----------------------------|----------------------|
| Arsenic        | < 0.100       | mg/L         | 5                          | 8/17/2015 11:55      |
| Barium         | 0.880         | mg/L         | 100                        | 8/17/2015 11:55      |
| Cadmium        | < 0.0250      | mg/L         | 1                          | 8/17/2015 11:55      |
| Chromium       | < 0.0500      | mg/L         | 5                          | 8/17/2015 11:55      |
| Lead           | < 0.100       | mg/L         | 5                          | 8/17/2015 11:55      |
| Selenium       | < 0.100       | mg/L         | 1                          | 8/17/2015 11:55      |
| Silver         | < 0.0500      | mg/L         | 5                          | 8/17/2015 11:55      |

**Method Reference(s):** EPA 6010C

EPA 1311 / 3005

Preparation Date:8/14/2015Data File:081715b



Client: KBH Environmental, LLC

**Project Reference:** SUNY Geneseo - 6 Park Street

**Sample Identifier:** MW 1 / Drum #1

Lab Sample ID:153380-02Date Sampled:8/12/2015Matrix:WaterDate Received:8/12/2015

# **PCBs**

| Analyte              | <u>Result</u> | <u>Units</u> |               | <b>Qualifier</b> | Date Analy        | <u>vzed</u> |
|----------------------|---------------|--------------|---------------|------------------|-------------------|-------------|
| PCB-1016             | < 1.00        | ug/L         |               |                  | 8/18/2015         | 19:17       |
| PCB-1221             | < 1.00        | ug/L         |               |                  | 8/18/2015         | 19:17       |
| PCB-1232             | < 1.00        | ug/L         |               |                  | 8/18/2015         | 19:17       |
| PCB-1242             | < 1.00        | ug/L         |               |                  | 8/18/2015         | 19:17       |
| PCB-1248             | < 1.00        | ug/L         |               |                  | 8/18/2015         | 19:17       |
| PCB-1254             | < 1.00        | ug/L         |               |                  | 8/18/2015         | 19:17       |
| PCB-1260             | < 1.00        | ug/L         |               |                  | 8/18/2015         | 19:17       |
| PCB-1262             | < 1.00        | ug/L         |               |                  | 8/18/2015         | 19:17       |
| PCB-1268             | < 1.00        | ug/L         |               |                  | 8/18/2015         | 19:17       |
| Surrogate            | Percent       | Recovery     | <u>Limits</u> | <b>Outliers</b>  | <b>Date Analy</b> | zed         |
| Decachlorobiphenyl   | 7             | 8.1          | 0 - 147.5     |                  | 8/18/2015         | 19:17       |
| Tetrachloro-m-xylene | 1             | 0.5          | 2.06 - 91.3   |                  | 8/18/2015         | 19:17       |

**Method Reference(s):** EPA 8082A EPA 3510C

**Preparation Date:** 8/17/2015

# **Semi-Volatile Organics (PAHs)**

| <u>Analyte</u>          | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-------------------------|---------------|--------------|------------------|----------------------|
| Acenaphthene            | < 10.0        | ug/L         |                  | 8/17/2015 18:43      |
| Acenaphthylene          | < 10.0        | ug/L         |                  | 8/17/2015 18:43      |
| Anthracene              | < 10.0        | ug/L         |                  | 8/17/2015 18:43      |
| Benzo (a) anthracene    | < 10.0        | ug/L         |                  | 8/17/2015 18:43      |
| Benzo (a) pyrene        | < 10.0        | ug/L         |                  | 8/17/2015 18:43      |
| Benzo (b) fluoranthene  | < 10.0        | ug/L         |                  | 8/17/2015 18:43      |
| Benzo (g,h,i) perylene  | < 10.0        | ug/L         |                  | 8/17/2015 18:43      |
| Benzo (k) fluoranthene  | < 10.0        | ug/L         |                  | 8/17/2015 18:43      |
| Chrysene                | < 10.0        | ug/L         |                  | 8/17/2015 18:43      |
| Dibenz (a,h) anthracene | < 10.0        | ug/L         |                  | 8/17/2015 18:43      |
| Fluoranthene            | < 10.0        | ug/L         |                  | 8/17/2015 18:43      |
| Fluorene                | < 10.0        | ug/L         |                  | 8/17/2015 18:43      |
|                         |               |              |                  |                      |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt. Page 6 of 18



Client: **KBH Environmental, LLC** 

**Project Reference:** SUNY Geneseo - 6 Park Street

Sample Identifier: MW 1 / Drum #1

Lab Sample ID: 153380-02 **Date Sampled:** 8/12/2015 **Date Received:** 8/12/2015 **Matrix:** Water

| Surrogato                | Parca  | nt Rocovory | Limite | Outliare | Data Analyzad   |
|--------------------------|--------|-------------|--------|----------|-----------------|
| Pyrene                   | < 10.0 | ug/L        |        |          | 8/17/2015 18:43 |
| Phenanthrene             | < 10.0 | ug/L        |        |          | 8/17/2015 18:43 |
| Naphthalene              | 53.1   | ug/L        |        |          | 8/17/2015 18:43 |
| Indeno (1,2,3-cd) pyrene | < 10.0 | ug/L        |        |          | 8/17/2015 18:43 |
|                          |        |             |        |          |                 |

| Surrogate        | Percent Recovery | <u>LIIIILS</u> | <u>outhers</u> | <u>Date Anaiy</u> | <u>zeu</u> |
|------------------|------------------|----------------|----------------|-------------------|------------|
| 2-Fluorobiphenyl | 45.1             | 27.3 - 103.3   |                | 8/17/2015         | 18:43      |
| Nitrobenzene-d5  | 64.6             | 47.5 - 103.2   |                | 8/17/2015         | 18:43      |
| Terphenyl-d14    | 79.3             | 53.4 - 112.6   |                | 8/17/2015         | 18:43      |

Method Reference(s): EPA 8270D EPA 3510C **Preparation Date:** 8/17/2015 Data File:

B07017.D

# **Volatile Organics (Petroleum)**

| <u>Analyte</u>          | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-------------------------|---------------|--------------|------------------|----------------------|
| 1,2,4-Trimethylbenzene  | < 2.00        | ug/L         |                  | 8/13/2015 22:21      |
| 1,3,5-Trimethylbenzene  | < 2.00        | ug/L         |                  | 8/13/2015 22:21      |
| Benzene                 | 1.26          | ug/L         |                  | 8/13/2015 22:21      |
| Ethylbenzene            | < 2.00        | ug/L         |                  | 8/13/2015 22:21      |
| Isopropylbenzene        | < 2.00        | ug/L         |                  | 8/13/2015 22:21      |
| m,p-Xylene              | 2.77          | ug/L         |                  | 8/13/2015 22:21      |
| Methyl tert-butyl Ether | < 2.00        | ug/L         |                  | 8/13/2015 22:21      |
| Naphthalene             | 85.8          | ug/L         |                  | 8/13/2015 22:21      |
| n-Butylbenzene          | < 2.00        | ug/L         |                  | 8/13/2015 22:21      |
| n-Propylbenzene         | < 2.00        | ug/L         |                  | 8/13/2015 22:21      |
| o-Xylene                | < 2.00        | ug/L         |                  | 8/13/2015 22:21      |
| p-Isopropyltoluene      | < 2.00        | ug/L         |                  | 8/13/2015 22:21      |
| sec-Butylbenzene        | < 2.00        | ug/L         |                  | 8/13/2015 22:21      |
| tert-Butylbenzene       | < 2.00        | ug/L         |                  | 8/13/2015 22:21      |
| Toluene                 | 3.53          | ug/L         |                  | 8/13/2015 22:21      |



Client: KBH Environmental, LLC

**Project Reference:** SUNY Geneseo - 6 Park Street

**Sample Identifier:** MW 1 / Drum #1

Lab Sample ID:153380-02Date Sampled:8/12/2015Matrix:WaterDate Received:8/12/2015

| <u>Surrogate</u>      | Percent Recovery | <u>Limits</u> | <u>Outliers</u> | Date Analy | vzed  |
|-----------------------|------------------|---------------|-----------------|------------|-------|
| 1,2-Dichloroethane-d4 | 107              | 81.1 - 116    |                 | 8/13/2015  | 22:21 |
| 4-Bromofluorobenzene  | 89.7             | 82.3 - 113    |                 | 8/13/2015  | 22:21 |
| Pentafluorobenzene    | 96.6             | 91.1 - 110    |                 | 8/13/2015  | 22:21 |
| Toluene-D8            | 90.9             | 91.4 - 106    | *               | 8/13/2015  | 22:21 |

**Method Reference(s):** EPA 8260C

EPA 5030

Data File: x25394.D



Client: KBH Environmental, LLC

**Project Reference:** SUNY Geneseo - 6 Park Street

**Sample Identifier:** MW 1 / Drum #1

Lab Sample ID:153380-02ADate Sampled:8/12/2015Matrix:TCLP ExtractDate Received:8/12/2015

# **TCLP Mercury**

AnalyteResultUnitsRegulatory LimitQualifierDate AnalyzedMercury< 0.00200</td>mg/L0.28/18/201515:17

**Method Reference(s):** EPA 7470A

EPA 1311

Preparation Date: 8/17/2015
Data File: Hg150818A

# TCLP RCRA Metals (ICP)

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | Regulatory Limit Qualifier | <b>Date Analyzed</b> |
|----------------|---------------|--------------|----------------------------|----------------------|
| Arsenic        | < 0.100       | mg/L         | 5                          | 8/14/2015 11:50      |
| Barium         | < 0.500       | mg/L         | 100                        | 8/14/2015 11:50      |
| Cadmium        | < 0.0250      | mg/L         | 1                          | 8/14/2015 11:50      |
| Chromium       | 0.183         | mg/L         | 5                          | 8/14/2015 11:50      |
| Lead           | < 0.100       | mg/L         | 5                          | 8/14/2015 11:50      |
| Selenium       | < 0.100       | mg/L         | 1                          | 8/14/2015 11:50      |
| Silver         | < 0.0500      | mg/L         | 5                          | 8/14/2015 11:50      |

**Method Reference(s):** EPA 6010C

EPA 1311 / 3005

 Preparation Date:
 8/13/2015

 Data File:
 081415a



Client: KBH Environmental, LLC

**Project Reference:** SUNY Geneseo - 6 Park Street

**Sample Identifier:** MW 3,4,5 / Drum #9

Lab Sample ID:153380-03Date Sampled:8/12/2015Matrix:SoilDate Received:8/12/2015

| D                  | r | D | _ |
|--------------------|---|---|---|
| $\boldsymbol{\nu}$ | • | к | C |

| Analyte              | <u>Result</u> | <u>Units</u> |               | <b>Qualifier</b> | Date Analy        | vzed  |
|----------------------|---------------|--------------|---------------|------------------|-------------------|-------|
| PCB-1016             | < 0.339       | mg/Kg        |               |                  | 8/16/2015         | 23:29 |
| PCB-1221             | < 0.339       | mg/Kg        |               |                  | 8/16/2015         | 23:29 |
| PCB-1232             | < 0.339       | mg/Kg        |               |                  | 8/16/2015         | 23:29 |
| PCB-1242             | < 0.339       | mg/Kg        |               |                  | 8/16/2015         | 23:29 |
| PCB-1248             | < 0.339       | mg/Kg        |               |                  | 8/16/2015         | 23:29 |
| PCB-1254             | < 0.339       | mg/Kg        |               |                  | 8/16/2015         | 23:29 |
| PCB-1260             | < 0.339       | mg/Kg        |               |                  | 8/16/2015         | 23:29 |
| PCB-1262             | < 0.339       | mg/Kg        |               |                  | 8/16/2015         | 23:29 |
| PCB-1268             | < 0.339       | mg/Kg        |               |                  | 8/16/2015         | 23:29 |
| Surrogate            | Percen        | t Recovery   | <u>Limits</u> | <u>Outliers</u>  | <b>Date Analy</b> | zed   |
| Decachlorobiphenyl   | 2             | 109          | 33.3 - 147    |                  | 8/16/2015         | 23:29 |
| Tetrachloro-m-xylene | 1             | 102          | 4.91 - 155    |                  | 8/16/2015         | 23:29 |

**Method Reference(s):** EPA 8082A EPA 3550C

**Preparation Date:** 8/13/2015

# Semi-Volatile Organics (PAHs)

| <u>Analyte</u>          | Result | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-------------------------|--------|--------------|------------------|----------------------|
| Acenaphthene            | < 323  | ug/Kg        |                  | 8/14/2015 19:14      |
| Acenaphthylene          | < 323  | ug/Kg        |                  | 8/14/2015 19:14      |
| Anthracene              | < 323  | ug/Kg        |                  | 8/14/2015 19:14      |
| Benzo (a) anthracene    | < 323  | ug/Kg        |                  | 8/14/2015 19:14      |
| Benzo (a) pyrene        | < 323  | ug/Kg        |                  | 8/14/2015 19:14      |
| Benzo (b) fluoranthene  | < 323  | ug/Kg        |                  | 8/14/2015 19:14      |
| Benzo (g,h,i) perylene  | < 323  | ug/Kg        |                  | 8/14/2015 19:14      |
| Benzo (k) fluoranthene  | < 323  | ug/Kg        |                  | 8/14/2015 19:14      |
| Chrysene                | < 323  | ug/Kg        |                  | 8/14/2015 19:14      |
| Dibenz (a,h) anthracene | < 323  | ug/Kg        |                  | 8/14/2015 19:14      |
| Fluoranthene            | < 323  | ug/Kg        |                  | 8/14/2015 19:14      |
| Fluorene                | < 323  | ug/Kg        |                  | 8/14/2015 19:14      |
|                         |        |              |                  |                      |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 10 of 18



Client: KBH Environmental, LLC

**Project Reference:** SUNY Geneseo - 6 Park Street

**Sample Identifier:** MW 3,4,5 / Drum #9

Lab Sample ID:153380-03Date Sampled:8/12/2015Matrix:SoilDate Received:8/12/2015

| Surrogato                | Dorce | nt Racovary | Limite | Outliers | Data Analyzad   |
|--------------------------|-------|-------------|--------|----------|-----------------|
| Pyrene                   | < 323 | ug/Kg       |        |          | 8/14/2015 19:14 |
| Phenanthrene             | < 323 | ug/Kg       |        |          | 8/14/2015 19:14 |
| Naphthalene              | < 323 | ug/Kg       |        |          | 8/14/2015 19:14 |
| Indeno (1,2,3-cd) pyrene | < 323 | ug/Kg       |        |          | 8/14/2015 19:14 |

| <u>Surrogate</u> | Percent Recovery | LIMITS       | <u>oumers</u> | <u>Date Analyzeu</u> |       |
|------------------|------------------|--------------|---------------|----------------------|-------|
| 2-Fluorobiphenyl | 40.6             | 35.3 - 100.3 |               | 8/14/2015            | 19:14 |
| Nitrobenzene-d5  | 37.2             | 35.9 - 90.7  |               | 8/14/2015            | 19:14 |
| Terphenyl-d14    | 60.3             | 61.9 - 109.1 | *             | 8/14/2015            | 19:14 |

Method Reference(s):EPA 8270DEPA 3550CPreparation Date:8/14/2015

**Data File:** 806993.D

# **Volatile Organics (Petroleum)**

| Analyte                 | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analy</b> | <u>vzed</u> |
|-------------------------|---------------|--------------|------------------|-------------------|-------------|
| 1,2,4-Trimethylbenzene  | 4260          | ug/Kg        |                  | 8/14/2015         | 18:42       |
| 1,3,5-Trimethylbenzene  | 1550          | ug/Kg        |                  | 8/14/2015         | 18:42       |
| Benzene                 | < 70.0        | ug/Kg        |                  | 8/14/2015         | 18:42       |
| Ethylbenzene            | 104           | ug/Kg        |                  | 8/14/2015         | 18:42       |
| Isopropylbenzene        | < 70.0        | ug/Kg        |                  | 8/14/2015         | 18:42       |
| m,p-Xylene              | 903           | ug/Kg        |                  | 8/14/2015         | 18:42       |
| Methyl tert-butyl Ether | < 70.0        | ug/Kg        |                  | 8/14/2015         | 18:42       |
| Naphthalene             | 3390          | ug/Kg        |                  | 8/14/2015         | 18:42       |
| n-Butylbenzene          | < 70.0        | ug/Kg        |                  | 8/14/2015         | 18:42       |
| n-Propylbenzene         | 245           | ug/Kg        |                  | 8/14/2015         | 18:42       |
| o-Xylene                | < 70.0        | ug/Kg        |                  | 8/14/2015         | 18:42       |
| p-Isopropyltoluene      | 74.6          | ug/Kg        |                  | 8/14/2015         | 18:42       |
| sec-Butylbenzene        | < 70.0        | ug/Kg        |                  | 8/14/2015         | 18:42       |
| tert-Butylbenzene       | < 70.0        | ug/Kg        |                  | 8/14/2015         | 18:42       |
| Toluene                 | < 70.0        | ug/Kg        |                  | 8/14/2015         | 18:42       |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 11 of 18



Client: KBH Environmental, LLC

**Project Reference:** SUNY Geneseo - 6 Park Street

**Sample Identifier:** MW 3,4,5 / Drum #9

 Lab Sample ID:
 153380-03
 Date Sampled:
 8/12/2015

 Matrix:
 Soil
 Date Received:
 8/12/2015

| <u>Surrogate</u>      | Percent Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | vzed  |
|-----------------------|------------------|---------------|-----------------|-------------------|-------|
| 1,2-Dichloroethane-d4 | 94.1             | 84.1 - 121    |                 | 8/14/2015         | 18:42 |
| 4-Bromofluorobenzene  | 99.3             | 83.4 - 113    |                 | 8/14/2015         | 18:42 |
| Pentafluorobenzene    | 101              | 91.4 - 110    |                 | 8/14/2015         | 18:42 |
| Toluene-D8            | 103              | 91.5 - 106    |                 | 8/14/2015         | 18:42 |

**Method Reference(s):** EPA 8260C

EPA 5035A

Data File: x25415.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.



Client: KBH Environmental, LLC

**Project Reference:** SUNY Geneseo - 6 Park Street

**Sample Identifier:** MW 3,4,5 / Drum #9

Lab Sample ID:153380-03ADate Sampled:8/12/2015Matrix:TCLP ExtractDate Received:8/12/2015

## TCLP Mercury

AnalyteResultUnitsRegulatory LimitQualifierDate AnalyzedMercury< 0.00200</td>mg/L0.28/18/201515:21

**Method Reference(s):** EPA 7470A

EPA 1311

**Preparation Date:** 8/17/2015 **Data File:** Hg150818A

## TCLP RCRA Metals (ICP)

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | Regulatory Limit Qualifier | <b>Date Analyzed</b> |
|----------------|---------------|--------------|----------------------------|----------------------|
| Arsenic        | < 0.100       | mg/L         | 5                          | 8/17/2015 12:00      |
| Barium         | 2.59          | mg/L         | 100                        | 8/17/2015 12:00      |
| Cadmium        | < 0.0250      | mg/L         | 1                          | 8/17/2015 12:00      |
| Chromium       | < 0.0500      | mg/L         | 5                          | 8/17/2015 12:00      |
| Lead           | < 0.100       | mg/L         | 5                          | 8/17/2015 12:00      |
| Selenium       | < 0.100       | mg/L         | 1                          | 8/17/2015 12:00      |
| Silver         | < 0.0500      | mg/L         | 5                          | 8/17/2015 12:00      |

**Method Reference(s):** EPA 6010C

EPA 1311 / 3005

**Preparation Date:** 8/14/2015 **Data File:** 081715b



# **Analytical Report Appendix**

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns.

"NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.

"\*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
"(1)" = Indicates data from primary column used for QC calculation.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 14 of 18

# GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written. between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on th

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in

part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies

from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision. Law.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 15 of 18

Report Prepared Wednesday, August 19, 2015



# CHAIN OF CUSTODY

| Comments: $24 \circ C = \frac{1}{8} / 2 / 3 = \frac{1}{3} = \frac{1}{3}$ | Holding Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Preservation:   | Container Type: | Sample Condition: Per NELAC/ELAP 270/241/242/243/244  Receipt Parameter N | **LAB USE ONLY BELOW THIS LINE ** | 10        | Φ 0               | 000    | 7             | 0                | Ch              | 4              | 3 8/2/15 9:30    | 2 8/12/15 9/15 | 18/12/15 9:10    | DATE TIME P                                              | SUNY Geneseo - 6 Park Street | TOOSE VANCESTE NAME. |               |                                      |                  | PARADIGM           |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|---------------------------------------------------------------------------|-----------------------------------|-----------|-------------------|--------|---------------|------------------|-----------------|----------------|------------------|----------------|------------------|----------------------------------------------------------|------------------------------|----------------------|---------------|--------------------------------------|------------------|--------------------|------------|
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 | 112421243                                                                 | m**                               |           |                   |        |               |                  |                 | ,              | X                | X              | X                | ໝ⊳ສດ                                                     | COMMENIS                     |                      | PHONE: 5      | CITY: 6                              | ADDRESS:         | COMPANY:           |            |
| z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | z               | ×               | NELAC Compliance                                                          |                                   |           |                   |        |               |                  |                 | , ,            | MW 3,45/Brown    | MW1/bran #     | MWI/Brun#9       | SAMPLE LOCATION/FIELD ID                                 |                              | MA FIER KING         |               | SCOTTSVILLE STATE: NY                | 88 W. RIVER ROAD | KBH ENVIRONMENTAL, | コーコンロイ ずつ・ |
| Received @ Lab By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Received By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Relinquished By | Sampled By      |                                                                           | -                                 |           |                   |        |               |                  |                 |                | Sran #4 50       | #1 WA          | 9 60             | × − ¼ → ≥ ≤                                              |                              |                      | 585-889-6018  | Υ ZIP: 14546                         |                  | AL, LLC            |            |
| ab By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A STATE OF THE PROPERTY OF THE | By Ce           | 1000            |                                                                           | -                                 |           |                   |        |               |                  |                 |                | ×                | \<br>-<br>&    | ×                | 2 m m m m c z<br>2 m m z - > -1 z o o<br>0<br>8260 STARS |                              |                      | PHONE:        | CITY:                                | ADDRESS:         | COMPANY:           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dollara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1. Clorkes      | U. Jodes        |                                                                           |                                   |           |                   |        |               |                  |                 |                | X<br>X<br>X      | XXX<br>X       | X<br>X<br>X      | 8270 STARS<br>PCB's<br>TCLP RCRA Meta                    | REQUESTED A                  |                      | П             | SCOTTSVILLE                          | PO BOX 168       | KBH ENVIRONI       | EN55       |
| 8/13//S<br>Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S//2//S Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Daté/Time       | Date/Time       | 0                                                                         |                                   |           |                   |        |               |                  |                 |                |                  |                |                  |                                                          | ED ANALYSIS                  |                      | FAX:          | STATE: NY                            |                  | ENVIRONMENTAL, LLC | n<br>5     |
| 16:21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/15/0          |                 |                                                                           |                                   | 51/5/1390 | HCI preserved van | ر<br>د | 16 amberglass | received 8/13/15 | Water Sample Co | Extra volume F | colonia topicari | 608/12/1S      | A Br TUP extract | REMARKS                                                  | Quotation #                  |                      |               | ZIP: TURNAROUND TIME: (WORKING DAYS) | 153380           | LAB                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P.I.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | brane re        | Total Cost:     |                                                                           |                                   |           | 3 Cials.          | 2-4001 | 8000          | /is              | (62)            | かり             |                  |                | <del>2</del>     |                                                          | #                            | ω                    |               | 'IME: (WORKING                       | 20               |                    |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                                                                           | -                                 |           |                   |        |               |                  |                 |                | 0 0              | 0 2            | 0<br>-           | PARADIGM LAB<br>SAMPLE NUMBER                            |                              | > 5                  | STD OTHER Pag |                                      | 10 c             | CLIENT PROJECT #:  |            |

Q Q Q



# CHAIN OF CUSTODY

| WIRONMENTAL, LLC  COMPANY:  WIRONMENTAL, LLC  DATE: NY  JONESS:  FOR BOX 168  E STATE: NY  JONESS:  FOR BOX 168  FOR BOX 1 |                               |               | Date/Time    |            | о Ву                | Received @ Lab By | [                     |          | 08:01                 | 113/15                                   | 3,7 8       | Comments: 2           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|--------------|------------|---------------------|-------------------|-----------------------|----------|-----------------------|------------------------------------------|-------------|-----------------------|
| COMMENT   COMMENTAL, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |               |              |            |                     |                   | Z                     | <b>≺</b> | ·<br>·                | rajure: /                                | Tempe       |                       |
| COMPANY: KBH ENVIRONMENTAL, LLC   COMPANY: CONTSYLLE STATE NAY ZED: TURNACURO THE MORE: 885-889-6018   MORE: 805-889-6018     | .TI                           | 115-1030 P.I. | Date/Time    | Dalo       |                     | Received By       |                       | `        |                       | Time:                                    | Holding     | Comments:             |
| SOURCE SERVICE SAY REPORTED IN THE ENVIRONMENTAL, LLC COMPANY OF CONTROLLE SAY SOUTHWE MOVES SERVICE SAY AND THE STATE MY 2P 14546 OTT SOUTH SOUTH SOUTH SOUTH SOUTH SOUTH SOUTH SOUTH SOUTH SERVICE SET SERVICE SET SERVICE SET SET SET SET SET SET SET SET SET SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>                   | 1             | Date         | 100        | N N                 | Relinquished B    | Z                     | Ĭ        |                       | vation:                                  | Presen      | Comments:             |
| COMPANY   KBH ENVIRONMENTAL, LLC   COMPANY   KBH ENVIRONMENTAL, LLC   LASTROLUCUS   COMPANY   KBH ENVIRONMENTAL, LLC   LASTROLUCUS   COMPANY   KBH ENVIRONMENTAL, LLC   LASTROLUCUS   COMPANY   CO   | al Cost:                      | 1             |              |            | 1                   | Sampled By        | z                     | ·        |                       | er Type:                                 | Containe    | Comments:             |
| Deark Street    Company   KBH ENVIRONMENTAL, LLC   Company   KBH ENVIRONMENTAL, LLC   Company   KBH ENVIRONMENTAL, LLC   Company   Compa |                               |               |              |            |                     |                   | ompliance             | NELAC C  |                       | Parameter                                | Receipt I   |                       |
| DOMESS:  88 W. RIVER ROAD  OTHER STORE NY LIFE STATE NY LI |                               |               |              |            |                     |                   |                       | 243/244  | LINE**<br>10/241/242/ | LAC/ELAP 2                               | ONLY BE     | **LAB USE Sample Cond |
| COMPANY: KBH ENVIRONMENTAL, LLC COMPANY: KBH ENVIRONMENTAL, LLC LAB PROJECT #.  ADDRESS: 88 W, RIVER ROAD  OTHER SCOTTSVILLE STATE: NY ZIP: TURNAROUND TIME (MORRING PHONE: 585-889-1135 FAX: 585-889-6018 PHONE: F85-889-6018 PHONE: F85-889-6018 PHONE: F85-889-6018 PHONE: F85-889-6018 PHONE: FAX:  ODIMENTS:  PARK Street  ODIMENTS:  PARK STREET AND THE MATTER KING THEATHER BUGHERWICOM ATTIN: HEATHER KING THEATHER BUGHERWICOM ATTIN: REDUCTION THE CHORNONG THAT IN THE PHONE: FAX:  ODIMENTS:  REMARKS  ODIMENTS:  REMARKS  ODIMENTS:  REMARKS  ODIMENTS:  |                               |               |              |            |                     |                   |                       |          |                       |                                          |             | 10                    |
| COMPANY: KBH ENVIRONMENTAL, LLC COMPANY: KBH ENVIRONMENTAL, LLC LADRESS: 88 W. RIVER ROAD  ADDRESS: 88 W. RIVER ROAD  OTT: SCOTTSVILLE STATE: NY ZIP: 14546 OTT: SCOTTSVILLE STATE: NY ZIP: TURNAROUND TIME (MORNING TOTTS)  ATTN: HEATHER KING (MEXITER/BOSSHEWLOOM)  O A A SAMPLE LOCATION/PIELD ID  T I M T S RE M GO TO TO M RE M GO TO TO M RESSERVED ANALYSIS  O A A SAMPLE LOCATION/PIELD ID  T I M T S RE M GO TO TO M RESSERVED ANALYSIS  O A RESSERVED TO MALLYSIS  OUTSTANDAM RESSERVED |                               |               |              |            |                     |                   |                       |          |                       |                                          |             | 9                     |
| COMPANY: KBH ENVIRONMENTAL, LLC  COMPANY: KBH ENVIRONMENTAL, LLC  ADDRESS: 88 W. RIVER ROAD  ADDRESS: 88 W. RIVER ROAD  CITY: SCOTTSVILLE STATE: NY ZIP: TURNAROUND TIME (MORRISS)  PRONE: 585-889-1135 FAX: 585-889-6018  ATTR: HEATHER KING (TEATHER@MENUCON)  NO  B  SAMPLE LOCATION/PIELD ID  T  T  R  SAMPLE LOCATION/PIELD ID  T  ST  COMMENTS:   COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COMMENTS:  COME |                               |               |              |            |                     |                   |                       |          |                       |                                          |             | 8                     |
| COMPANY: KBH ENVIRONMENTAL, LLC COMPANY: KBH ENVIRONMENTAL, LLC LAB PROJECT #:  ADDRESS: 88 W. RIVER ROAD  OTH: SCOTTSVILLE STATE: NY ZIP: 14546 CITY: SCOTTSVILLE STATE: NY ZIP: TURNAROUND TIME: (MODRESS: PO BOX 168  ATTN: HEATHER KING (HEATHER@KBHEN/COM)  M N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |               |              |            |                     |                   |                       |          |                       |                                          |             | 7                     |
| COMPANY: KBH ENVIRONMENTAL, LLC COMPANY: KBH ENVIRONMENTAL, LLC LAB PROJECT.#  ADDRESS: 88 W. RIVER ROAD  CITY: SCOTTSVILLE STATE: NY ZIP: 14546 CITY: SCOTTSVILLE STATE: NY ZIP: 1040MAROUND TIME: WORKING PHONE: FAX:  PHONE: 585-889-1135 FAX: 585-889-6018 PHONE: FAX:  ATTN: HEATHER KING (HEATHER@KHERWCOM) ATTN:  COMMENTS:  REQUESTED ANALYSIS  REQUESTED ANALYSIS  REQUESTED ANALYSIS  REWARKS  REQUESTED ANALYSIS  REWARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |               |              |            |                     |                   |                       |          |                       |                                          |             | 0                     |
| COMPANY: KBH ENVIRONMENTAL, LLC  ADDRESS: 88 W. RIVER ROAD  ADDRESS: PO BOX 168  CITY: SCOTTSVILLE STATE: NY ZIP: 14546 CITY: SCOTTSVILLE STATE: NY ZIP: TURNAROUND TIME: (WORKING PHONE: 585-889-1135 FAX: 585-889-6018 PHONE: FAX: SCOTTSVILLE STATE: NY ZIP: TURNAROUND TIME: (WORKING PHONE: FAX: STA |                               |               |              |            |                     |                   |                       |          |                       |                                          |             | 5                     |
| COMPANY: KBH ENVIRONMENTAL, LLC  ADDRESS: 88 W. RIVER ROAD  ADDRESS: 90 BOX 168  CITY: SCOTTSVILLE STATE: NY ZIP: 14546 CITY: SCOTTSVILLE STATE: NY ZIP: 14546 CITY: SCOTTSVILLE STATE: NY ZIP: TURNAROUND TIME: (MORKING PHONE: FAX: S85-889-4135 FAX: 585-889-6018 PHONE: FAX: S1  COMMENTS:  PARK Street  COMMENTS:  REQUESTED ANALYSIS  REMARKS  REQUESTED ANALYSIS  REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |               |              |            |                     |                   |                       |          |                       |                                          |             | 4                     |
| COMPANY: KBH ENVIRONMENTAL, LLC  ADDRESS: 88 W. RIVER ROAD  ADDRESS: PO BOX 168  CITY: SCOTTSVILLE STATE: NY ZIP: 14546 CITY: SCOTTSVILLE STATE: NY ZIP: TURNAROUND TIME: (WORKING TAX: S85-889-1135 FAX: S85-889-6018 PHONE: FAX:  COMMENTS:  Park Street  COMMENTS:  COMMENTS:  COMMENTS:  REQUESTED ANALYSIS  REMARKS  B A N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | 8/13/13       |              |            |                     |                   |                       |          |                       |                                          |             | ယ                     |
| COMPANY: KBH ENVIRONMENTAL, LLC  COMPANY: KBH ENVIRONMENTAL, LLC  ADDRESS: 88 W. RIVER ROAD  CITY: SCOTTSVILLE STATE: NY ZIP: 14546 CITY: SCOTTSVILLE STATE: NY ZIP: TURNAROUND TIME: (WORKING PHONE: 585-889-6018 PHONE: FAX: STATE: NY ZIP: TURNAROUND TIME: (WORKING NEW PHONE: SECOTTSVILLE STATE: NY ZIP: TURNAROUND TIME: (WORKING NEW PHONE: NY ZIP: TURNAROUND TIME: NY ZIP: TURNAROUND TIME: NY ZIP: TURNAROUND TIME: NY ZIP: TUR |                               | 74            |              |            |                     |                   |                       |          |                       |                                          |             | 2                     |
| COMPANY: KBH ENVIRONMENTAL, LLC  ADDRESS: 88 W. RIVER ROAD  CITY: SCOTTSVILLE STATE: NY ZIP: 14546 CITY: SCOTTSVILLE STATE: NY ZIP: 14546 CITY: SCOTTSVILLE STATE: NY ZIP: TURNAROUND TIME: (WORKING PHONE: S85-889-1135 FAX: 585-889-6018 PHONE: FAX: S1 ATN: HEATHER@KBHENVCOM)  PARK Street  COMMENTS:  REQUESTED ANALYSIS  REMARKS  REMARKS  REMARKS  REMARKS  REMARKS  REMARKS  REMARKS  REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cr)                           |               |              | ×          | R                   | S.A.              |                       | MW 2     | X                     |                                          | 9:10        |                       |
| COMPANY: KBH ENVIRONMENTAL, LLC COMPANY: | PARADIGM LAB<br>SAMPLE NUMBER | REMARKS       |              | PCB's      | 20 m z - > -1 z O O | ·                 | PLE LOCATION/FIELD IC | SAM      | ๛⊳ฆด                  | ס ס ≥ ט ס ₪ ור ₪                         | TIME        | DATE                  |
| COMPANY: KBH ENVIRONMENTAL, LLC COMPANY: KBH ENVIRONMENTAL, LLC LAB PROJECT #:  ADDRESS: 88 W. RIVER ROAD  CITY: SCOTTSVILLE STATE: NY ZIP: 14546 CITY: SCOTTSVILLE STATE: NY ZIP: TURNAROUND TIME: (WG  PHONE: 585-889-1135 FAX: 585-889-6018 PHONE: FAX:  ATTN: HEATHER KING (HEATHER@KBHENV.COM) ATTN:  COMPANY: KBH ENVIRONMENTAL, LLC COMPANY: KBH ENVIRONMENTAL, LLC LAB PROJECT #:  LAB PROJECT #:  LAB PROJECT #:  UNARROUND TIME: (WG  ATTN: HEATHER KING (HEATHER@KBHENV.COM) ATTN:  D1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | Quotation #   | ANALYSIS     | REQUESTED  |                     |                   |                       | :NTS:    | COMME                 | ark Street                               | eseo - 6 Pa | SUNY Gen              |
| ADDRESS: 88 W. RIVER ROAD  CITY: SCOTTSVILLE STATE: NY ZIP: 14546 CITY: SCOTTSVILLE STATE: NY ZIP: TURNAROUND TIME: (WG PHONE: 585-889-1135 FAX: 585-889-6018 PHONE: FAX:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Section 100                   |               |              |            | ATTN:               |                   | i                     | HEATHER  | ATTN:                 |                                          | SITE NAME:  | PROJECT NAME/         |
| COMPANY: KBH ENVIRONMENTAL, LLC COMPANY: KBH ENVIRONMENTAL, LLC LAB PROJECT #:  ADDRESS: 88 W. RIVER ROAD ADDRESS: PO BOX 168  CITY: SCOTTSVILLE STATE: NY ZIP: 14546 CITY: SCOTTSVILLE STATE: NY ZIP: TURNAROUND TIME: (WO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ]<br>STD                      |               | FAX:         |            | PHONE:              |                   | 35 FAX: 585-          | 1        | PHONE                 |                                          |             |                       |
| ADDRESS: 88 W. RIVER ROAD  ADDRESS: PO BOX 168  ADDRESS: PO BOX 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :: (WORKING DAY               |               | STATE:       | OTTSVILLE  |                     | ZIP: 14546        | STATE:                | SCOTTSVI | CITY:                 | 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 |             |                       |
| COMPANY: KBH ENVIRONMENTAL, LLC COMPANY: KBH ENVIRONMENTAL, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 15>50         | 8            | PO BOX 168 | ADDRESS:            |                   | RIVER ROAD            |          | ADDRES                |                                          |             |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | <br>-         | VIRONMENTAL, |            | COMPANY:            |                   | ENVIRONMENT           |          | COMPA                 | 3                                        |             |                       |

D

2 of 2 3 of 3 6P & 1/3/15



# Chain of Custody Supplement

| Client:                                       | KBH Environmental                         | Completed by:                        | Glenn Pezzulo           |
|-----------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------|
| Lab Project ID:                               | 153380                                    | Date:                                | 8/12/15                 |
|                                               | Sample Condition Per NELAC/ELAP 21        | on Requirements<br>0/241/242/243/244 |                         |
| Condition                                     | NELAC compliance with the sample o<br>Yes | condition requirements upo<br>No     | on receipt<br>N/A       |
| Container Type                                |                                           | VOA CUE                              | ner)                    |
| Comments                                      | Sample 02 (Water) col                     | lected in 1 Lamber                   | -ungreseved, transfared |
|                                               | Porton of sample 1                        | 0 1-40ml HCLA                        | preserved voa val.      |
| Transferred to method-<br>compliant container | 53 to luvor Charles                       |                                      |                         |
| Headspace                                     | VOA (wat                                  | r)                                   |                         |
| (<1 mL) Comments                              |                                           |                                      |                         |
|                                               |                                           |                                      |                         |
| Preservation                                  | VOA (WA)                                  |                                      |                         |
| Comments                                      |                                           |                                      |                         |
|                                               |                                           |                                      |                         |
| Chlorine Absent (<0.10 ppm per test strip)    |                                           |                                      |                         |
| Comments                                      | ·                                         |                                      |                         |
|                                               |                                           | <u></u>                              |                         |
| Holding Time                                  |                                           |                                      |                         |
| Comments                                      |                                           |                                      |                         |
| Temperature                                   |                                           | $\overline{}$                        | Memls                   |
| Comments                                      | 5 <u> </u>                                |                                      |                         |
| Continent                                     | 23°C - extravolume                        | received & /13/15                    |                         |
| Sufficient Sample Quantity                    |                                           |                                      | (4)                     |
| Comment                                       | Lim                                       | ted Volume Br SVI                    | OA/PCB on               |

Extra volume for Sample of (Water) received 8/13/15, sufficient volume.

# Appendix G

**Data Usability Summary Report (on Compact Disk)** 



# Rochester Gas & Electric – Geneseo Park Street Site

# **Data Usability Summary Report**

GENESEO, NEW YORK

Volatile, Semivolatile and Metals Analyses

SDG #480-125579-1

Analyses Performed By: TestAmerica Amherst, New York

Report #28628R Review Level: Tier III

Project: B0013138.0006.00001

### **SUMMARY**

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #480-125579-1 for samples collected in association with the Rochester Gas & Electric Geneseo Park Street Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Included with this assessment are the validation annotated sample result sheets and chain of custody. Analyses were performed on the following samples:

| SDG          |              |              |        | Sample             | Parent       |     |      | Analysi | s   |      |
|--------------|--------------|--------------|--------|--------------------|--------------|-----|------|---------|-----|------|
| 020          | Sample ID    | Lab ID       | Matrix | Collection<br>Date | Sample       | voc | SVOC | TPH     | MET | MISC |
|              | MW-8 (4-6)   | 480-125579-1 | Soil   | 10/8/2017          |              | Х   | Х    |         | Х   |      |
| 490 425570 4 | MW-8 (13-14) | 480-125579-2 | Soil   | 10/8/2017          |              | Х   | Х    |         | Х   |      |
| 480-125579-1 | DUP-100817   | 480-125579-3 | Soil   | 10/8/2017          | MW-8 (13-14) | Х   | Х    |         | Х   |      |
|              | TRIP BLANK   | 480-125579-4 | Water  | 10/8/2017          |              | Х   |      |         |     |      |

#### Notes:

- 1. Miscellaneous parameters include total cyanide.
- 2. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location MW-8 (4-6).

# **ANALYTICAL DATA PACKAGE DOCUMENTATION**

The table below is the evaluation of the data package completeness.

|                                                         | Rep | orted |    | mance<br>ptable | Not      |
|---------------------------------------------------------|-----|-------|----|-----------------|----------|
| Items Reviewed                                          | No  | Yes   | No | Yes             | Required |
| Sample receipt condition                                |     | Х     |    | Х               |          |
| Requested analyses and sample results                   |     | Х     |    | Χ               |          |
| Master tracking list                                    |     | Х     |    | Χ               |          |
| 4. Methods of analysis                                  |     | Х     |    | X               |          |
| 5. Reporting limits                                     |     | Х     |    | Х               |          |
| 6. Sample collection date                               |     | Х     |    | Х               |          |
| 7. Laboratory sample received date                      |     | Х     |    | Х               |          |
| 8. Sample preservation verification (as applicable)     |     | Х     |    | Х               |          |
| 9. Sample preparation/extraction/analysis dates         |     | Х     |    | Х               |          |
| 10. Fully executed Chain-of-Custody (COC) form          |     | Х     |    | Х               |          |
| 11. Narrative summary of QA or sample problems provided |     | Х     |    | Х               |          |
| 12. Data Package Completeness and Compliance            |     | Х     |    | X               |          |

QA - Quality Assurance

#### ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8260C and 8270D. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
  - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
  - E The compound was quantitated above the calibration range.
  - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
  - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
  - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
  - UB Compound considered non-detect at the listed value due to associated blank contamination.
  - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

# **VOLATILE ORGANIC COMPOUND (VOC) ANALYSES**

# 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method      | Matrix | Holding Time                                                                                       | Preservation                                               |
|-------------|--------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| SW-846 8260 | Water  | 14 days from collection to analysis (preserved) 7 days from collection to analysis (non-preserved) | Cool to <6 °C;<br>preserved to a pH of<br>less than 2 s.u. |
|             | Soil   | 48 hours from collection to extraction and 14 days from extraction to analysis                     | Cool to <6 °C.                                             |

All samples were analyzed within the specified holding time criteria.

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

#### 3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

#### 4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

#### 4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

### 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

| Sample Locations | Initial/Continuing | Compound                | Criteria |
|------------------|--------------------|-------------------------|----------|
|                  |                    | Dichlorodifluoromethane | 25.8%    |
|                  |                    | Carbon disulfide        | 20.9%    |
| MW-8 (4-6)       | CCV %D             | Carbon tetrachloride    | 41.5%    |
| MW-8 (13-14)     |                    | Bromodichloromethane    | 29.0%    |
|                  |                    | cis-1,3-Dichloropropene | 21.5%    |
|                  |                    | Dibromochloromethane    | 23.1%    |
|                  |                    | Bromoform               | 50.6%    |
| DUP-100817       | CCV %D             | Chloromethane           | -22.3%   |
| DUF-100017       | CCV 70D            | Bromoform               | 21.4%    |
| TRIP BLANK       | CCV %D             | Acetone                 | 30.9%    |

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

| Initial/Continuing     | Criteria                                 | Sample<br>Result | Qualification |  |
|------------------------|------------------------------------------|------------------|---------------|--|
|                        | RRF <0.05                                | Non-detect       | R             |  |
|                        | KKF <0.05                                | Detect           | J             |  |
| Milnitial and          | RRF <0.01 <sup>1</sup>                   | Non-detect       | R             |  |
| Continuing Calibration | KKF <0.01*                               | Detect           | J             |  |
|                        | RRF >0.05 or RRF >0.01 <sup>1</sup>      | Non-detect       | No Action     |  |
|                        | KKF                                      | Detect           |               |  |
|                        | %RSD > 20% or a correlation              | Non-detect       | UJ            |  |
| Initial Calibration    | coefficient <0.99                        | Detect           | J             |  |
|                        | %RSD >90%                                | Non-detect       | R             |  |
|                        | /0N3D >90 /0                             | Detect           | J             |  |
|                        | %D >20% (increase in sensitivity)        | Non-detect       | No Action     |  |
| Continuing Calibration | /0D /20 /0 (IIICI ease III serisitivity) | Detect           | J             |  |
|                        | %D >20% (decrease in sensitivity)        | Non-detect       | UJ            |  |

| Initial/Continuing | Criteria                      | Sample<br>Result | Qualification |
|--------------------|-------------------------------|------------------|---------------|
|                    |                               | Detect           | J             |
|                    | %D >90% (increase/decrease in | Non-detect       | R             |
|                    | sensitivity)                  | Detect           | J             |

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

#### 5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

#### 6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

#### 7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

| Sample Locations | Compound                    | MS<br>Recovery      | MSD<br>Recovery     |  |
|------------------|-----------------------------|---------------------|---------------------|--|
|                  | 1,2,4-Trichlorobenzene      |                     |                     |  |
|                  | 1,2-Dibromo-3-Chloropropane |                     |                     |  |
| MW-8 (4-6)       | 1,2-Dibromoethane           | <ll but="">10%</ll> | <ll but="">10%</ll> |  |
|                  | 1,2-Dichlorobenzene         |                     |                     |  |
|                  | 1,3-Dichlorobenzene         |                     |                     |  |

| Sample Locations | Compound                    | MS<br>Recovery      | MSD<br>Recovery     |
|------------------|-----------------------------|---------------------|---------------------|
|                  | 1,4-Dichlorobenzene         |                     |                     |
|                  | 2-Butanone (MEK)            |                     |                     |
|                  | cis-1,3-Dichloropropene     |                     |                     |
|                  | Styrene                     |                     |                     |
|                  | 1,1,2,2-Tetrachloroethane   |                     |                     |
|                  | 1,2-Dichloroethane          |                     |                     |
|                  | 2-Hexanone                  |                     |                     |
|                  | 4-Methyl-2-pentanone (MIBK) |                     |                     |
|                  | 1,1,2-Trichloroethane       |                     |                     |
|                  | Bromoform                   |                     |                     |
|                  | Carbon disulfide            | AC                  | <ll but="">10%</ll> |
|                  | Chlorobenzene               |                     |                     |
|                  | cis-1,2-Dichloroethene      |                     |                     |
|                  | Dibromochloromethane        |                     |                     |
|                  | Ethylbenzene                |                     |                     |
|                  | trans-1,2-Dichloroethene    |                     |                     |
|                  | Trichloroethene             |                     |                     |
|                  | Acetone                     | <ll but="">10%</ll> | AC                  |

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

| Control Limit                                       | Sample<br>Result | Qualification |
|-----------------------------------------------------|------------------|---------------|
| > the upper control limit (UL)                      | Non-detect       | No Action     |
| > the upper control limit (OL)                      | Detect           | J             |
| < the lower control limit (LL) but > 10%            | Non-detect       | UJ            |
| < the lower control limit (EE) but > 10 %           | Detect           | J             |
| < 10%                                               | Non-detect       | R             |
| < 10 70                                             | Detect           | J             |
| Parent sample concentration > four times the MS/MSD | Detect           | No Action     |
| spiking solution concentration.                     | Non-detect       | NO ACTION     |

#### 8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

| Sample Locations           | Compound  | LCS<br>Recovery |
|----------------------------|-----------|-----------------|
| MW-8 (4-6)<br>MW-8 (13-14) | Bromoform | >UL             |

The criteria used to evaluate the LCS/LCSD recoveries are presented in the following table. In the case of an LCS/LCSD deviation, the sample results are qualified as documented in the table below.

| Control Limit                            | Sample<br>Result | Qualification |
|------------------------------------------|------------------|---------------|
| > the upper central limit (III.)         | Non-detect       | No Action     |
| > the upper control limit (UL)           | Detect           | J             |
| the lower central limit (LL) but > 100/  | Non-detect       | UJ            |
| < the lower control limit (LL) but > 10% | Detect           | J             |
| - 100/                                   | Non-detect       | R             |
| < 10%                                    | Detect           | J             |

### 9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices and 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

| Sample ID/Duplicate ID      | Compound          | Sample<br>Result | Duplicate<br>Result | RPD |
|-----------------------------|-------------------|------------------|---------------------|-----|
|                             | 2-Butanone (MEK)  | 22 U             | 2.6 J               |     |
| MW-8 (13-14)/<br>DUP-100817 | Acetone           | 21 J             | 42                  | AC  |
|                             | Tetrachloroethene | 0.70 J           | 0.62 J              |     |

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

### 10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

### 11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# **DATA VALIDATION CHECKLIST FOR VOCs**

| VOCs: SW-846 8260C                                          | Reported |     | Performance<br>Acceptable |     | Not<br>Required |
|-------------------------------------------------------------|----------|-----|---------------------------|-----|-----------------|
|                                                             | No       | Yes | No                        | Yes | Required        |
| GAS CHROMATOGRAPHY/MASS SPECTROME                           | TRY (GC/ | MS) |                           |     |                 |
| Tier II Validation                                          |          | 1   | 1                         | 1   |                 |
| Holding times                                               |          | X   |                           | X   |                 |
| Reporting limits (units)                                    |          | X   |                           | X   |                 |
| Blanks                                                      |          | _   | _                         |     |                 |
| A. Method blanks                                            |          | X   |                           | X   |                 |
| B. Equipment blanks                                         |          |     |                           |     | X               |
| C. Trip blanks                                              |          | Х   |                           | X   |                 |
| Laboratory Control Sample (LCS)                             |          | Х   | Х                         |     |                 |
| Laboratory Control Sample Duplicate(LCSD)                   |          |     |                           |     | Х               |
| LCS/LCSD Precision (RPD)                                    |          |     |                           |     | Х               |
| Matrix Spike (MS)                                           |          | Х   | Х                         |     |                 |
| Matrix Spike Duplicate(MSD)                                 |          | Х   | Х                         |     |                 |
| MS/MSD Precision (RPD)                                      |          | Х   |                           | Х   |                 |
| Field/Lab Duplicate (RPD)                                   |          | Х   |                           | Х   |                 |
| Surrogate Spike Recoveries                                  |          | Х   |                           | Х   |                 |
| Dilution Factor                                             |          | Х   |                           | Х   |                 |
| Moisture Content                                            |          | Х   |                           | Х   |                 |
| Tier III Validation                                         |          | -1  |                           |     |                 |
| System performance and column resolution                    |          | Х   |                           | Х   |                 |
| Initial calibration %RSDs                                   |          | Х   |                           | Х   |                 |
| Continuing calibration RRFs                                 |          | Х   |                           | Х   |                 |
| Continuing calibration %Ds                                  |          | Х   | Х                         |     |                 |
| Instrument tune and performance check                       |          | Х   |                           | Х   |                 |
| Ion abundance criteria for each instrument used             |          | Х   |                           | Х   |                 |
| Internal standard                                           |          | Х   |                           | Х   |                 |
| Compound identification and quantitation                    |          |     | 1                         | 1   | <u>I</u>        |
| A. Reconstructed ion chromatograms                          |          | Х   |                           | Х   |                 |
| B. Quantitation Reports                                     |          | Х   |                           | Х   |                 |
| C. RT of sample compounds within the established RT windows |          | Х   |                           | Х   |                 |
| D. Transcription/calculation errors present                 |          |     |                           | Х   |                 |

| VOCs: SW-846 8260C                                    | Reported |     | Performance<br>Acceptable |     | Not<br>Required |
|-------------------------------------------------------|----------|-----|---------------------------|-----|-----------------|
|                                                       | No       | Yes | No                        | Yes | rtoquirou       |
| GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)          |          |     |                           |     |                 |
| Reporting limits adjusted to reflect sample dilutions |          | Х   |                           | Х   |                 |

%RSD Relative standard deviation

%R RPD %D

Percent recovery
Relative percent difference
Percent difference

### SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

# 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method       | Matrix | Holding Time                                                                  | Preservation  |
|--------------|--------|-------------------------------------------------------------------------------|---------------|
| SW 946 9270D | Water  | 7 days from collection to extraction and 40 days from extraction to analysis  | Cool to <6°C  |
| SW-846 8270D | Soil   | 14 days from collection to extraction and 40 days from extraction to analysis | Cool to <6 °C |

All samples were analyzed within the specified holding time criteria.

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

#### 3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

#### 4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

#### 4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

#### 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

| Sample Locations | Initial/Continuing | Compound          | Criteria |
|------------------|--------------------|-------------------|----------|
| MW-8 (13-14)     | CCV %D             | Benzaldehyde      | -24.7%   |
| DUP-100817       | CCV %D             | Pentachlorophenol | -28.6%   |

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

| Initial/Continuing     | Criteria                            | Sample<br>Result | Qualification |
|------------------------|-------------------------------------|------------------|---------------|
|                        | RRF <0.05                           | Non-detect       | R             |
|                        | KKF <0.05                           | Detect           | J             |
| Initial and Continuing | RRF <0.01 <sup>1</sup>              | Non-detect       | R             |
| Calibration            | KKF <0.01*                          | Detect           | J             |
|                        | RRF >0.05 or RRF >0.01 <sup>1</sup> | Non-detect       | No Action     |
|                        | KKF                                 | Detect           | NO ACTION     |
|                        | %RSD > 20% or a correlation         | Non-detect       | UJ            |
| Initial Calibration    | coefficient <0.99                   | Detect           | J             |
|                        | %RSD >90%                           | Non-detect       | R             |
|                        | 76R3D 29076                         | Detect           | J             |
|                        | 0/D >200/ (increase in consitivity) | Non-detect       | No Action     |
|                        | %D >20% (increase in sensitivity)   | Detect           | J             |
| Continuing Colibration | 0/D > 200/ (degrees in consitiuity) | Non-detect       | UJ            |
| Continuing Calibration | %D >20% (decrease in sensitivity)   | Detect           | J             |
|                        | %D >90% (increase/decrease in       | Non-detect       | R             |
|                        | sensitivity)                        | Detect           | J             |

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

### 5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC

analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

| Sample Locations | Surrogate            | Recovery |
|------------------|----------------------|----------|
|                  | 2,4,6-Tribromophenol |          |
| MW-8 (4-6)       | 2-Fluorophenol       |          |
|                  | Nitrobenzene-d5      | Б        |
|                  | 2-Fluorobiphenyl     | D        |
|                  | Terphenyl-d14        |          |
|                  | Phenol-d5            |          |

D Diluted

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

| Control Limit                                             | Sample<br>Result | Qualification  |
|-----------------------------------------------------------|------------------|----------------|
| > UL                                                      | Non-detect       | No Action      |
| - OL                                                      | Detect           | J              |
| < LL but > 10%                                            | Non-detect       | UJ             |
| CL but > 10%                                              | Detect           | J              |
| < 10%                                                     | Non-detect       | R              |
| < 10%                                                     | Detect           | J              |
| Surrogates diluted below the calibration curve due to the | Non-detect       | J <sup>1</sup> |
| high concentration of a target compounds                  | Detect           | J,             |

A more concentrated analysis was not performed with surrogate compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

### 6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

#### 7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

| Sample Locations | Compound     | MS<br>Recovery | MSD<br>Recovery |
|------------------|--------------|----------------|-----------------|
| MW-8 (4-6)       | Acenaphthene | AC             | >UL             |

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

| Control Limit                                       | Sample<br>Result | Qualification |
|-----------------------------------------------------|------------------|---------------|
| > the upper control limit (UL)                      | Non-detect       | No Action     |
| - the upper control limit (OL)                      | Detect           | J             |
| the lower central limit (LL) but > 100/             | Non-detect       | UJ            |
| < the lower control limit (LL) but > 10%            | Detect           | J             |
| < 10%                                               | Non-detect       | R             |
| < 1076                                              | Detect           | J             |
| Parent sample concentration > four times the MS/MSD | Detect           | No Action     |
| spiking solution concentration.                     | Non-detect       | INO ACTION    |

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

| Sample Locations | Compound  |
|------------------|-----------|
| MW-8 (4-6)       | Carbazole |

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

| Control Limit | Sample<br>Result | Qualification |
|---------------|------------------|---------------|
| \$10          | Non-detect       | UJ            |
| > UL          | Detect           | J             |

### 8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

### 9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices and 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

| Sample ID/Duplicate ID | Compound               | Sample<br>Result | Duplicate<br>Result | RPD |
|------------------------|------------------------|------------------|---------------------|-----|
|                        | 2-Methylnaphthalene    | 220 J            | 620 J               |     |
|                        | Acenaphthene           | 290 J            | 810 J               |     |
|                        | Acenaphthylene         | 1000             | 2700                |     |
|                        | Anthracene             | 1800             | 5000                |     |
|                        | Benzo[a]anthracene     | 2100             | 5800                |     |
|                        | Benzo[a]pyrene         | 1500             | 4300                |     |
|                        | Benzo[b]fluoranthene   | 1600             | 5000                |     |
|                        | Benzo[g,h,i]perylene   | 720 J            | 2100                | AC  |
| MW-8 (13-14)/          | Benzo[k]fluoranthene   | 700 J            | 2000                |     |
| DUP-100817             | Carbazole              | 250 J            | 630 J               |     |
|                        | Chrysene               | 1500             | 4200                |     |
|                        | Dibenzofuran           | 950 J            | 2500                |     |
|                        | Fluorene               | 1600             | 4300                |     |
|                        | Indeno[1,2,3-cd]pyrene | 790 J            | 2300                |     |
|                        | Naphthalene            | 130              | 330 J               |     |
|                        | Phenanthrene           | 5000             | 14000               |     |
|                        | Fluoranthene           | 4200             | 12000               | NC  |
|                        | Pyrene                 | 3300             | 9000                |     |

AC Acceptable
NC Not Compliant

The compounds Phenanthrene, Fluoranthene and Pyrene associated with sample locations MW-8 (13-14) and DUP-100817 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

#### 10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

### 11. System Performance and Overall Assessment

Note: Method(s) 8270D: The following samples were diluted due to color and appearance: MW-8 (13-14) (480-125579-2) and DUP-100817 (480-125579-3). Elevated reporting limits (RL) are provided.

Method(s) 8270D: The following sample was diluted due to the nature of the sample matrix: MW-8 (4-6) (480-125579-1). Elevated reporting limits (RLs) are provided.

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# **DATA VALIDATION CHECKLIST FOR SVOCs**

| SVOCs: SW-846 8270D                                                                        | Rep     | Reported |    | mance<br>ptable | Not<br>Required |
|--------------------------------------------------------------------------------------------|---------|----------|----|-----------------|-----------------|
|                                                                                            | No      | Yes      | No | Yes             | Required        |
| GAS CHROMATOGRAPHY/MASS SPECTROME                                                          | TRY (GC | /MS)     |    |                 |                 |
| Tier II Validation                                                                         |         |          |    |                 |                 |
| Holding times                                                                              |         | Х        |    | Х               |                 |
| Reporting limits (units)                                                                   |         | Х        |    | Х               |                 |
| Blanks                                                                                     |         |          |    |                 |                 |
| A. Method blanks                                                                           |         | Х        |    | Х               |                 |
| B. Equipment blanks                                                                        |         |          |    |                 | Х               |
| Laboratory Control Sample (LCS) %R                                                         |         | Х        |    | Х               |                 |
| Laboratory Control Sample Duplicate(LCSD) %R                                               |         |          |    |                 | Х               |
| LCS/LCSD Precision (RPD)                                                                   |         |          |    |                 | Х               |
| Matrix Spike (MS) %R                                                                       |         | Х        |    | Х               |                 |
| Matrix Spike Duplicate (MSD) %R                                                            |         | Х        | Х  |                 |                 |
| MS/MSD Precision (RPD)                                                                     |         | Х        | Х  |                 |                 |
| Field/Lab Duplicate (RPD)                                                                  |         | Х        | Х  |                 |                 |
| Surrogate Spike Recoveries                                                                 |         | Х        | Х  |                 |                 |
| Dilution Factor                                                                            |         | Х        |    | Х               |                 |
| Moisture Content                                                                           |         | Х        |    | Х               |                 |
| Tier III Validation                                                                        |         |          |    |                 |                 |
| System performance and column resolution                                                   |         | Х        |    | Х               |                 |
| Initial calibration %RSDs                                                                  |         | Х        |    | Х               |                 |
| Continuing calibration RRFs                                                                |         | Х        |    | Х               |                 |
| Continuing calibration %Ds                                                                 |         | Х        | Х  |                 |                 |
| Instrument tune and performance check                                                      |         | Х        |    | Х               |                 |
| Ion abundance criteria for each instrument used                                            |         | Х        |    | Х               |                 |
| Internal standard                                                                          |         | Х        |    | Х               |                 |
| Compound identification and quantitation                                                   |         |          |    |                 |                 |
| Reconstructed ion chromatograms                                                            |         | Х        |    | Х               |                 |
| B. Quantitation Reports                                                                    |         | Х        |    | Х               |                 |
| C. RT of sample compounds within the established RT windows                                |         | Х        |    | Х               |                 |
| D. Transcription/calculation errors present                                                |         |          |    | X               |                 |
| E. Reporting limits adjusted to reflect sample dilutions  %RSD Relative standard deviation |         | Х        |    | Х               |                 |

%R

Percent recovery
Relative percent difference
Percent difference RPD

%D

### INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010C and 7471B. Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- · Concentration (C) Qualifiers
  - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
  - B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).
- Quantitation (Q) Qualifiers
  - E The reported value is estimated due to the presence of interference.
  - N Spiked sample recovery is not within control limits.
  - Duplicate analysis is not within control limits.
- Validation Qualifiers
  - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
  - UB Analyte considered non-detect at the listed value due to associated blank contamination.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

#### **METALS ANALYSES**

# 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method       | Matrix | Holding Time                         | Preservation   |
|--------------|--------|--------------------------------------|----------------|
| SW-846 6010C | Soil   | 180 days from collection to analysis | Cool to <6 °C. |
| SW-846 7471B | Soil   | 28 days from collection to analysis  | Cool to <6 °C. |

All samples were analyzed within the specified holding times.

#### 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. Therefore, sample results greater than the BAL resulted in the removal of the laboratory qualifier (B). No qualification of the sample results was required.

#### 3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument's continuing performance is satisfactory.

#### 3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. All initial calibration verification standard recoveries were within control limits.

All continuing calibration verification standard recoveries were within the control limit.

#### 3.2 Low Level Continuing Calibration Standard

The low level continuing calibration check standard (ICVL/CCVL) serves to verify the linearity of calibration of the analysis at the RL.

All analytes associated with RL standard recoveries were within control limits with the exception of the

analytes presented in the following table.

| Sample Locations | Analytes  | RL<br>Recovery |
|------------------|-----------|----------------|
|                  | Copper    | 184%           |
| DUP-100817       | Manganese | 403%           |
|                  | Zinc      | 148%           |

The criteria applied to evaluate the RL Standard criteria are presented below. In the case of a calibration deviation, the sample results are qualified.

| RL Standard Recovery Criteria                                     |                                                                   |                                    |               |  |  |  |  |  |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|---------------|--|--|--|--|--|--|--|
| Analytes                                                          | Control Limit                                                     | Sample Result                      | Qualification |  |  |  |  |  |  |  |
|                                                                   | RL %R <50% (<30%                                                  | Sample results<br>≥ MDL but <2x RL | R             |  |  |  |  |  |  |  |
|                                                                   | for Sb, Pb, TI) ICP-MS (<30% for Co,                              | Non-detect sample results          | R             |  |  |  |  |  |  |  |
|                                                                   | Mn, Zn)                                                           | Detected sample results ≥ 2x RL    | J             |  |  |  |  |  |  |  |
|                                                                   | RL %R 50-69%                                                      | Sample results ≥ MDL but <2x RL    | J             |  |  |  |  |  |  |  |
|                                                                   | (30-49% for Sb, Pb, Tl) ICP-MS (30-49% for Co, Mn, Zn)            | Non-detect sample results          | UJ            |  |  |  |  |  |  |  |
| All analytes, with the exception of Al, Ba, Ca, Fe, Mg, Na, and K |                                                                   | Detected sample results ≥ 2x RL    | No Action     |  |  |  |  |  |  |  |
|                                                                   | %R >130% but <180%<br>(>150% but <200% for                        | Sample results ≥ MDL but <2x RL    | J             |  |  |  |  |  |  |  |
|                                                                   | Sb, Pb, Tl)<br>  ICP-MS (>150% but                                | Non-detect sample results          | No Action     |  |  |  |  |  |  |  |
|                                                                   | <200% for Co, Mn, Zn)                                             | Detected sample results ≥ 2x RL    | No Action     |  |  |  |  |  |  |  |
|                                                                   | RL %R >180% (>200% for Sb, Pb, Tl)  ICP-MS (>200% for Co, Mn, Zn) | Sample results<br>≥ MDL            | R             |  |  |  |  |  |  |  |

### 3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories interelement and background correction factors.

All ICS exhibited recoveries within the control limits.

### 4. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

#### 4.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

All analytes associated with MS/MSD recoveries were within control limits with the exception of the following analyte present in the table below.

| Sample Location | Analyte   | MS<br>Recovery | MSD<br>Recovery |
|-----------------|-----------|----------------|-----------------|
|                 | Antimony  | 47%            | 49%             |
|                 | Copper    | 143%           | 67%             |
| MW-8 (4-6)      | Magnesium | 190%           | 142%            |
|                 | Potassium | 223%           | 238%            |
|                 | Vanadium  | 125%           | 238%            |

The criteria used to evaluate MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified. The qualifications are applied to all sample results associated with this SDG.

| Control limit                        | Sample Result | Qualification |
|--------------------------------------|---------------|---------------|
| MC/MCD percent recovery 200/ to 740/ | Non-detect    | UJ            |
| MS/MSD percent recovery 30% to 74%   | Detect        | J             |
| MS/MSD percent recovery <30%         | Non-detect    | R             |
| MS/MSD percent recovery <30%         | Detect        | J             |
| MS/MSD percent recovery >1250/       | Non-detect    | No Action     |
| MS/MSD percent recovery >125%        | Detect        | J             |

#### 4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for water matrices.

MS/MSD analysis was performed in replacement of the laboratory duplicate analysis. The MS/MSD recoveries exhibited acceptable RPD.

### 5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices and 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

| Sample ID/Duplicate ID | Compound  | Sample<br>Result | Duplicate<br>Result | RPD    |
|------------------------|-----------|------------------|---------------------|--------|
|                        | Aluminum  | 15100            | 21300               | 34.0 % |
|                        | Arsenic   | 2.3 J            | 6.4                 | AC     |
|                        | Barium    | 45.9             | 65.2                | 34.7 % |
|                        | Beryllium | 0.89             | 1.2                 | AC     |
|                        | Calcium   | 16800            | 25300               | 40.3 % |
|                        | Chromium  | 21.8             | 31.8                | 37.3 % |
|                        | Cobalt    | 8.9              | 19.1                | 72.8 % |
|                        | Copper    | 26.2             | 45.3                | 53.4 % |
| MW-8 (13-14)/          | Iron      | 17900            | 30800               | 52.9 % |
| DUP-100817             | Lead      | 8.8              | 20.2                | 78.6 % |
|                        | Magnesium | 5420             | 8480                | 44.0 % |
|                        | Manganese | 173              | 339                 | 64.8 % |
|                        | Mercury   | 0.013 J          | 0.039               | AC     |
|                        | Nickel    | 33.3             | 55.7                | 50.3 % |
|                        | Potassium | 4350             | 5760                | 27.8 % |
|                        | Selenium  | 0.47 J           | 4.8 U               | AC     |
|                        | Sodium    | 411              | 471                 | 13.6 % |
|                        | Vanadium  | 22.5             | 30.8                | 31.1 % |
|                        | Zinc      | 35.9             | 52.8                | 38.1 % |

AC Acceptable

The analytes Cobalt, Copper, Iron, Lead, Manganese and Nickel associated with sample locations MW-8 (13-14) and DUP-100817 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

#### 6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the certified reference material control limits.

The LCS analysis exhibited recoveries within the control limits.

#### 7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

All serial dilutions were within control limits, with the exception of the analytes presented in the following table. The sample locations associated with the deviant %D are also presented in the following table.

| Sample Locations | Analytes  | Serial Dilution<br>(%D) |
|------------------|-----------|-------------------------|
|                  | Chromium  | 14%                     |
|                  | Manganese | 11%                     |
| MW-8 (4-6)       | Iron      | 12%                     |
|                  | Magnesium | 11%                     |
|                  | Zinc      | 14%                     |

The criteria used to evaluate the serial dilution are presented in the following table. In the case of a serial dilution deviation, the sample results are qualified as documented in the table below.

| Control Limit | Sample<br>Result | Qualification |
|---------------|------------------|---------------|
| > UL          | Non-detect       | UJ            |
| / OL          | Detect           | J             |

#### 8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# **DATA VALIDATION CHECKLIST FOR METALS**

| METALS: SW-846 6010C and 7471B                                                              |            | orted |    | rmance<br>ptable | Not      |  |
|---------------------------------------------------------------------------------------------|------------|-------|----|------------------|----------|--|
|                                                                                             | No         | Yes   | No | Yes              | Required |  |
| Inductively Coupled Plasma-Atomic Emission Sp<br>Atomic Absorption – Manual Cold Vapor (CV) | ectrometry | (ICP) |    |                  |          |  |
| Tier II Validation                                                                          |            |       |    |                  |          |  |
| Holding Times                                                                               |            | Х     |    | Х                |          |  |
| Reporting limits (units)                                                                    |            | Х     |    | Х                |          |  |
| Blanks                                                                                      |            | -     |    |                  |          |  |
| A. Instrument Blanks                                                                        |            | Х     | Х  |                  |          |  |
| B. Method Blanks                                                                            |            | X     | Х  |                  |          |  |
| C. Equipment/Field Blanks                                                                   |            |       |    |                  | Х        |  |
| Laboratory Control Sample (LCS) %R                                                          |            | Х     |    | Х                |          |  |
| Matrix Spike (MS) %R                                                                        |            | Х     | Х  |                  |          |  |
| Matrix Spike Duplicate (MSD) %R                                                             |            | Х     | Х  |                  |          |  |
| MS/MSD Precision (RPD)                                                                      |            | X     |    | X                |          |  |
| Lab Duplicate (RPD)                                                                         |            |       |    |                  | X        |  |
| Field Duplicate (RPD)                                                                       |            | Х     | Х  |                  |          |  |
| ICP Serial Dilution                                                                         |            | X     | Х  |                  |          |  |
| Reporting Limit Verification                                                                |            | X     |    | Х                |          |  |
| Raw Data                                                                                    |            | X     |    | X                |          |  |
| Tier III Validation                                                                         |            |       |    |                  |          |  |
| Initial Calibration Verification                                                            |            | Х     |    | Х                |          |  |
| Continuing Calibration Verification                                                         |            | Х     |    | Х                |          |  |
| CCVL Standard                                                                               |            | Х     | Х  |                  |          |  |
| ICP Interference Check                                                                      |            | Х     |    | Х                |          |  |
| Transcription/calculations acceptable                                                       |            | Х     |    | Х                |          |  |
| Reporting limits adjusted to reflect sample dilutions                                       |            | Х     |    | Х                |          |  |

%R Percent recovery
RPD Relative percent difference

### SAMPLE COMPLIANCE REPORT

| Sample                  |                  |          |              |        | Compliancy <sup>1</sup> |      |     | cy <sup>1</sup> |      | Noncompliance                                                                                                 |
|-------------------------|------------------|----------|--------------|--------|-------------------------|------|-----|-----------------|------|---------------------------------------------------------------------------------------------------------------|
| Delivery<br>Group (SDG) | Sampling<br>Date | Protocol | Sample ID    | Matrix | voc                     | svoc | TPH | MET             | MISC |                                                                                                               |
|                         | 10/8/2017        | SW846    | MW-8 (4-6)   | Soil   | No                      | No   | 1   | No              | -    | VOC: MS/MSD %R<br>SVOC: Surrogate %R, MSD %R, MS/MSD<br>RPD<br>MET: MS/MSD %R, Field Duplicate, Serial<br>Dil |
| 480-125579-1            | 10/8/2017        | SW846    | MW-8 (13-14) | Soil   | Yes                     | No   | -   | No              | -    | SVOC: Field Duplicate, CCAL %D<br>MET: MS/MSD %R, Field Duplicate, Serial<br>Dil                              |
|                         | 10/8/2017        | SW846    | DUP-100817   | Soil   | No                      | No   | -   | No              | -    | VOC: CCAL %D<br>SVOC: Field Duplicate, CCAL %D<br>MET: MS/MSD %R, Field Duplicate, Serial<br>Dil              |
|                         | 10/8/2017        | SW846    | TRIP BLANK   | Water  | Yes                     | -    | -   | -               | -    |                                                                                                               |

<sup>1</sup> Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

DATE: November 6, 2017

PEER REVIEW: Jeffrey L. Davin

DATE: November 17, 2017

# CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St.

TestAmerica Job ID: 480-125579-1

Client Sample ID: MW-8 (4-6)

Date Collected: 10/08/17 11:30 Date Received: 10/10/17 09:50 Lab Sample ID: 480-125579-1

Matrix: Solid Percent Solids: 84.4

| Method: 8260C - Volatile Organ<br>Analyte   | Result Qualifier       | RL  | MDL  | Unit           | D         | Prepared                         | Analyzed       | Dil Fac |
|---------------------------------------------|------------------------|-----|------|----------------|-----------|----------------------------------|----------------|---------|
| 1,1,1-Trichloroethane                       | ND                     | 5.0 | 0.37 | ug/Kg          | ₩         | 10/10/17 10:30                   | 10/16/17 18:28 | 1       |
| 1,1,2,2-Tetrachloroethane                   | ND FT U                | 5.0 | 0.82 | ug/Kg          | ₽         | 10/10/17 10:30                   | 10/16/17 18:28 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane       | ND                     | 5.0 | 1.1  | ug/Kg          | ≎         | 10/10/17 10:30                   | 10/16/17 18:28 | 1       |
| 1,1,2-Trichloroethane                       | ND Ft U)               | 5.0 | 0.65 | ug/Kg          | ⋫         | 10/10/17 10:30                   | 10/16/17 18:28 | 1       |
| 1,1-Dichloroethane                          | ND                     | 5.0 | 0.61 | ug/Kg          | ₽         | 10/10/17 10:30                   | 10/16/17 18:28 | 1       |
| 1,1-Dichloroethene                          | ND                     | 5.0 | 0.62 | ug/Kg          | ≎         | 10/10/17 10:30                   | 10/16/17 18:28 | 1       |
| 1,2,4-Trichlorobenzene                      | ND Ft U)               | 5.0 | 0.31 | ug/Kg          | ≎         | 10/10/17 10:30                   | 10/16/17 18:28 | 1       |
| 1,2-Dibromo-3-Chloropropane                 | ND £1                  | 5.0 | 2.5  | ug/Kg          | ☼         | 10/10/17 10:30                   | 10/16/17 18:28 | 1       |
| 1,2-Dibromoethane                           | ND F4                  | 5.0 |      | ug/Kg          | ₽         | 10/10/17 10:30                   | 10/16/17 18:28 | 1       |
| 1,2-Dichlorobenzene                         | ND F1                  | 5.0 |      | ug/Kg          | ☼         | 10/10/17 10:30                   | 10/16/17 18:28 | 1       |
| 1,2-Dichloroethane                          | ND 54 V                | 5.0 |      | ug/Kg          | ₩         |                                  | 10/16/17 18:28 | 1       |
| 1,2-Dichloropropane                         | ND                     | 5.0 |      | ug/Kg          | ₩         | 10/10/17 10:30                   |                | 1       |
| 1,3-Dichlorobenzene                         | ND FA V)               | 5.0 |      | ug/Kg          | ₩         |                                  | 10/16/17 18:28 | 1       |
| 1,4-Dichlorobenzene                         | ND <del>F1</del> \     | 5.0 |      | ug/Kg          | ❖         |                                  | 10/16/17 18:28 | 1       |
| 2-Butanone (MEK)                            | ND F4                  | 25  |      | ug/Kg          | ₽         |                                  | 10/16/17 18:28 | 1       |
| 2-Hexanone                                  | ND <del>F</del> 4      | 25  |      | ug/Kg          | ₽         |                                  | 10/16/17 18:28 | 1       |
| 4-Methyl-2-pentanone (MIBK)                 | ND FT V                | 25  |      | ug/Kg          | ₽         |                                  | 10/16/17 18:28 | 1       |
| Acetone                                     | 13 J <del>F1*</del>    | 25  |      | ug/Kg          | ⇔         |                                  | 10/16/17 18:28 | 1       |
| Benzene                                     | 1.5 J                  | 5.0 |      | ug/Kg          | ₽         | 10/10/17 10:30                   |                | 1       |
| Bromodichloromethane                        | ND .                   | 5.0 |      | ug/Kg          | ₽         |                                  | 10/16/17 18:28 | 1       |
| Bromoform                                   | ND F1U)                | 5.0 |      | ug/Kg          | ☆         |                                  | 10/16/17 18:28 | 1       |
| Bromomethane                                | ND .                   | 5.0 |      | ug/Kg          | ₽         | 10/10/17 10:30                   |                | 1       |
| Carbon disulfide                            | ND-FT US               | 5.0 |      | ug/Kg          | ₩         | 10/10/17 10:30                   |                | 1       |
| Carbon tetrachloride                        | ND .                   | 5.0 |      | ug/Kg          | ₽         | 10/10/17 10:30                   |                | 1       |
| Chlorobenzene                               | ND FT US               | 5.0 |      | ug/Kg          | ₩         | 10/10/17 10:30                   |                | 1       |
| Chloroethane                                | ND                     | 5.0 |      | ug/Kg          | ₽         | 10/10/17 10:30                   |                | 1       |
| Chloroform                                  | ND                     | 5.0 |      | ug/Kg          | <b>\$</b> | 10/10/17 10:30                   |                | 1       |
| Chloromethane                               | ND                     | 5.0 |      | ug/Kg          |           | 10/10/17 10:30                   |                | 1       |
| cis-1,2-Dichloroethene                      | ND FT U)               | 5.0 |      | ug/Kg          | ₽         | 10/10/17 10:30                   | n n            | 1       |
| cis-1,3-Dichloropropene                     | ND F4- UŠ              | 5.0 |      | ug/Kg          | ಘ         | 10/10/17 10:30                   |                | 1       |
| Cyclohexane                                 | ND 11 000              | 5.0 |      | ug/Kg          | ₽         | 10/10/17 10:30                   |                | 1       |
| Dibromochloromethane                        | ND #1 U)               | 5.0 |      | ug/Kg          | ₽         | 10/10/17 10:30                   |                | 1       |
| Dichlorodifluoromethane                     | ND 11 03               | 5.0 |      | ug/Kg<br>ug/Kg | т<br>ф-   | 10/10/17 10:30                   |                | 1       |
| Ethylbenzene                                | ND FT V                | 5.0 | 0.35 |                | ≎         | 10/10/17 10:30                   |                | 1       |
| Isopropylbenzene                            | ND 11                  | 5.0 | 0.33 |                | ~<br>\$   | 10/10/17 10:30                   |                |         |
| Methyl acetate                              | ND                     | 25  |      | ug/Kg<br>ug/Kg |           | 10/10/17 10:30                   |                | 1<br>1  |
| Methyl tert-butyl ether                     | ND                     | 5.0 | 0.49 |                |           |                                  |                |         |
| Methyl terebutyr errer<br>Methylcyclohexane | ND                     | 5.0 | 0.49 |                |           | 10/10/17 10:30                   |                | 1       |
| Methylene Chloride                          | ND                     | 5.0 |      | ug/Kg<br>ug/Kg |           | 10/10/17 10:30<br>10/10/17 10:30 |                | 1       |
| Styrene                                     | 0.28 J <del>F</del> 4* | 5.0 | 0.25 |                | ф<br>Ф    | 10/10/17 10:30                   |                | 1       |
| Tetrachloroethene                           | ND                     | 5.0 | 0.23 |                |           |                                  |                | 1       |
| Toluene                                     | 1.8 J                  |     |      |                | Ď.        | 10/10/17 10:30                   |                | 1       |
| trans-1,2-Dichloroethene                    | ND-F+ U                | 5.0 | 0.38 | -              |           | 10/10/17 10:30                   |                | 1       |
| trans-1,3-Dichloropropene                   | ND FT I                | 5.0 | 0.52 |                |           | 10/10/17 10:30                   |                | 1       |
| • •                                         |                        | 5.0 |      | ug/Kg          | φ.        | 10/10/17 10:30                   |                | 1       |
| Trichloroethene<br>Trichlorofluoromethane   | ND FT                  | 5.0 |      | ug/Kg          |           | 10/10/17 10:30                   |                | 1       |
| Vinyl chloride                              | ND<br>ND               | 5.0 | 0.48 |                |           | 10/10/17 10:30                   |                | 1       |
| · ·                                         | ND                     | 5.0 | 0.61 |                |           | 10/10/17 10:30                   |                | 1       |
| Xylenes, Total                              | 0.85 J <b>F</b> 4      | 10  | 0.85 | ug/Kg          | ☼         | 10/10/17 10:30                   | 10/16/17 18:28 | 1       |

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

Client Sample ID: MW-8 (4-6)

Date Collected: 10/08/17 11:30 Date Received: 10/10/17 09:50 Lab Sample ID: 480-125579-1

Matrix: Solid Percent Solids: 84.4

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 98                  | 64 - 126 | 10/10/17 10:30 | 10/16/17 18:28 | 1       |
| 4-Bromofluorobenzene (Surr)  | 100                 | 72 - 126 | 10/10/17 10:30 | 10/16/17 18:28 | 1       |
| Dibromofluoromethane (Surr)  | 103                 | 60 - 140 | 10/10/17 10:30 | 10/16/17 18:28 | 1       |
| Toluene-d8 (Surr)            | 100                 | 71 - 125 | 10/10/17 10:30 | 10/16/17 18:28 | 1       |

| Method: 8270D - Semivolat     | ile Organic Compounds<br>Result Qualifier | (GC/MS) | MDL   | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------|-------------------------------------------|---------|-------|-------|---|----------------|----------------|---------|
| 2,4,5-Trichlorophenol         | ND US                                     | 20000   | 5400  | ug/Kg | ₩ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 2,4,6-Trichlorophenol         | ND 1                                      | 20000   | 4000  | ug/Kg | ≎ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 2,4-Dichlorophenol            | ND                                        | 20000   | 2100  | ug/Kg | ≎ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 2,4-Dimethylphenol            | ND segment                                | 20000   | 4800  | ug/Kg | ¤ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 2,4-Dinitrophenol             | ND                                        | 200000  | 93000 | ug/Kg | ₩ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 2,4-Dinitrotoluene            | ND                                        | 20000   | 4100  | ug/Kg | ⇔ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 2,6-Dinitrotoluene            | ND                                        | 20000   | 2400  | ug/Kg | ₽ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 2-Chloronaphthalene           | ND                                        | 20000   | 3300  | ug/Kg | ☼ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 2-Chlorophenol                | <b>N</b> D                                | 20000   | 3700  | ug/Kg | ф | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 2-Methylnaphthalene           | ND                                        | 20000   | 4000  | ug/Kg | ₽ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 2-Methylphenol                | ND                                        | 20000   | 2400  | ug/Kg | ₽ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 2-Nitroaniline                | ND                                        | 39000   | 3000  | ug/Kg | ₽ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 2-Nitrophenol                 | ND                                        | 20000   | 5700  | ug/Kg | ₽ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 3,3'-Dichlorobenzidine        | ND seement                                | 39000   | 24000 | ug/Kg | ₽ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 3-Nitroaniline                | ND                                        | 39000   | 5500  | ug/Kg | ₩ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 4,6-Dinitro-2-methylphenol    | ND                                        | 39000   |       | ug/Kg | ≎ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 4-Bromophenyl phenyl ether    | ND                                        | 20000   | 2800  | ug/Kg | ≎ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 4-Chloro-3-methylphenol       | ND                                        | 20000   | 5000  | ug/Kg | ≎ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 4-Chloroaniline               | ND                                        | 20000   | 5000  | ug/Kg | ≎ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 4-Chlorophenyl phenyl ether   | ND                                        | 20000   | 2500  | ug/Kg | ₽ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 4-Methylphenol                | ND with                                   | 39000   | 2400  | ug/Kg | ≎ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 4-Nitroaniline                | ND MANAGEMENT                             | 39000   |       | ug/Kg | Φ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 4-Nitrophenol                 | ND 🗸                                      | 39000   |       | ug/Kg | ≎ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Acenaphthene                  | 3800 J <b>∓4</b> ⊸                        | 20000   | 3000  | ug/Kg | ₽ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Acenaphthylene                | 17000 J <del>.F2</del> ~                  | 20000   | 2600  | ug/Kg | ₩ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Acetophenone                  | ND U\                                     | 20000   | 2700  | ug/Kg | ≎ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Anthracene                    | 40000 <del>F2</del> ~ _}                  | 20000   | 5000  | ug/Kg | ₩ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Atrazine                      | ND U\                                     | 20000   | 7000  | ug/Kg | ₩ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Benzaldehyde                  | ND U\                                     | 20000   | 16000 | ug/Kg | ₿ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Benzo[a]anthracene            | 87000 <b>.F2</b> ( )                      | 20000   | 2000  | ug/Kg | ≎ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Benzo[a]pyrene                | 69000 <b>F2</b>                           | 20000   | 3000  | ug/Kg | ≎ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Benzo[b]fluoranthene          | 83000 <del>F2</del>                       | 20000   | 3200  | ug/Kg | ✡ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Benzo[g,h,i]perylene          | 38000 <del>F2</del>                       | 20000   | 2100  | ug/Kg | ₩ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Benzo[k]fluoranthene          | 34000                                     | 20000   | 2600  | ug/Kg | ₩ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Biphenyl                      | ND U\                                     | 20000   | 3000  | ug/Kg | ≎ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| bis (2-chloroisopropyl) ether | ND (                                      | 20000   | 4000  | ug/Kg | ☆ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Bis(2-chloroethoxy)methane    | ND M                                      | 20000   | 4200  | ug/Kg | ₩ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Bis(2-chloroethyl)ether       | ND M                                      | 20000   | 2600  | ug/Kg | ₩ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Bis(2-ethylhexyl) phthalate   | <b>N</b> D                                | 20000   | 6800  | ug/Kg | ⋫ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Butyl benzyl phthalate        | ND                                        | 20000   | 3300  | ug/Kg | ✡ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Caprolactam                   | ND ,                                      | 20000   | 6000  | ug/Kg | ⋫ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Carbazole                     | ND R                                      | 20000   | 2400  | ug/Kg | ≎ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Chrysene                      | 70000 F2 \                                | 20000   | 4500  | ug/Kg | ₩ | 10/11/17 14:06 | 10/16/17 21:58 | 100     |

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

Client Sample ID: MW-8 (4-6)
Date Collected: 10/08/17 11:30

Date Received: 10/10/17 09:50

Calcium

Cobalt

Copper

iron

Lead

Nickel

Chromium

Magnesium

Manganese

Potassium

Selenium

Lab Sample ID: 480-125579-1

Matrix: Solid Percent Solids: 84.4

| Method: 8270D - Semivolatile |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |       |       | _         |                |                |         |
|------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|-------|-----------|----------------|----------------|---------|
| Analyte                      |           | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RL                  |       | Unit  | D         | Prepared       | Analyzed       | Dil Fac |
| Dibenz(a,h)anthracene        |           | u)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20000               | 3500  | . 5   | \$        | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Dibenzofuran                 |           | J <del>F2</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20000               |       | ug/Kg | <b>\$</b> | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Diethyl phthalate            | ND        | · week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20000               |       | ug/Kg | ₽         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Dimethyl phthalate           | ND        | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20000               | 2400  | ug/Kg | ☆         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Di-n-butyl phthalate         | ND        | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20000               |       | ug/Kg | ≎         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Di-n-octyl phthalate         |           | J .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20000               | 2400  | ug/Kg | ≎         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Fluoranthene                 | 170000    | ∞ <b>E.2</b> \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20000               | 2100  | ug/Kg | ≎         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Fluorene                     |           | J+F2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20000               | 2400  | ug/Kg | ₩         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Hexachlorobenzene            | ND        | U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20000               | 2700  | ug/Kg | ₩         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Hexachlorobutadiene          | ND        | Management of the Control of the Con | 20000               | 3000  | ug/Kg | ₿         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Hexachlorocyclopentadiene    | ND        | endestribite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20000               | 2700  | ug/Kg | ₽         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Hexachloroethane             | ND        | J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20000               | 2600  | ug/Kg | ₽         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Indeno[1,2,3-cd]pyrene       | 36000     | F2~ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20000               | 2500  | ug/Kg | ⊅         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Isophorone                   | ND        | US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20000               | 4200  | ug/Kg | ≎         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Naphthalene                  | ND        | rorrellin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20000               | 2600  | ug/Kg | ≎         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Nitrobenzene                 | ND        | and the same of th | 20000               | 2200  | ug/Kg | ₩         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| N-Nitrosodi-n-propylamine    | ND        | 2470-00 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20000               | 3400  | ug/Kg | ⋫         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| N-Nitrosodiphenylamine       | ND        | and an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20000               | 16000 | ug/Kg | ≎         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Pentachlorophenol            | ND        | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39000               | 20000 | ug/Kg | ₿         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Phenanthrene                 | 110000    | F2 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20000               | 3000  | ug/Kg | ⋫         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Phenol                       | ND        | us .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20000               |       |       | ₽         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Pyrene                       | 130000    | <b>F2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20000               |       | ug/Kg | ≎         | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Surrogate                    | %Recovery | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limits              |       |       |           | Prepared       | Analyzed       | Dil Fac |
| 2,4,6-Tribromophenol         | 0         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54 - 120            |       |       |           | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 2-Fluorobiphenyl             | 83        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 - 120            |       |       |           | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| 2-Fluorophenol               | 0         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52 - 120            |       |       |           | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Nitrobenzene-d5              | 0         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53 - 120            |       |       |           | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Phenol-d5                    | 0         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54 <sub>-</sub> 120 |       |       |           | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| p-Terphenyl-d14              | 0         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65 - 121            |       |       |           | 10/11/17 14:06 | 10/16/17 21:58 | 100     |
| Method: 6010C - Metals (ICP) |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |       |       |           |                |                |         |
| Analyte                      | Result    | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RL                  | MDL   | Unit  | D         | Prepared       | Analyzed       | Dil Fac |
| Aluminum                     | 15400     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.7                | 5.2   | mg/Kg | ₽         | 10/13/17 16:34 | 10/16/17 12:07 | 1       |
| Antimony                     | ND        | FT U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.6                | 0.47  | mg/Kg | ≎         | 10/13/17 16:34 | 10/16/17 12:07 | 1       |
| Arsenic                      | 18.5      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3                 | 0.47  | mg/Kg | ≎         | 10/13/17 16:34 | 10/16/17 12:07 | 1       |
| Barium                       | 184       | The state of the s | 0.59                |       | mg/Kg | ≎         | 10/13/17 16:34 | 10/16/17 12:07 | 1       |
| Beryllium                    | 0.96      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.23                | 0.033 |       | ₩         | 10/13/17 16:34 |                | 1       |
| Cadmium                      | 1.1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.23                | 0.035 | mg/Kg | ≎         | 10/13/17 16:34 | 10/16/17 12:07 | 1       |
| 0.1.1                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |       |       | u.        |                |                | •       |

TestAmerica Buffalo

1

1

1

1

1

1

1

1

1

1

☼ 10/13/17 16:34 10/16/17 12:07

☼ 10/13/17 16:34 10/16/17 12:07

☼ 10/13/17 16:34 10/16/17 12:07

☼ 10/13/17 16:34 10/16/17 12:07

**10/13/17 16:34 10/16/17 12:07** 

☼ 10/13/17 16:34 10/16/17 12:07

10/13/17 16:34 10/16/17 12:07

☼ 10/13/17 16:34 10/16/17 12:07

☼ 10/13/17 16:34 10/16/17 12:07

10/13/17 16:34 10/16/17 12:07

**4** 10/13/17 16:34 10/16/17 12:07

58.6

0.59

0.59

1.2

11.7

1.2

23.4

0.23

5.9

35.1

4.7

3.9 mg/Kg

0.23 mg/Kg

0.059 mg/Kg

0.25 mg/Kg

4.1 mg/Kg

0.28 mg/Kg

1.1 mg/Kg

0.037 mg/Kg

0.27 mg/Kg

23.4 mg/Kg

0.47 mg/Kg

26100 F2B

60.5 F2 F1 \

31.3 🕹

13.1 \

25000 --- )

5870 <del>F1</del> \

4310 <del>F1-</del> )

4.0 J

679

308

39.1

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

Client Sample ID: MW-8 (4-6)

Date Collected: 10/08/17 11:30 Date Received: 10/10/17 09:50 Lab Sample ID: 480-125579-1

Matrix: Solid

Percent Solids: 84.4

|   | Method: 6010C - Metals | (ICP) | (Continued) |   |
|---|------------------------|-------|-------------|---|
| ļ | Analyte                |       | Result      | C |

| Analyte  | Result | Qualifier | RL   | MDL  | Unit  | D         | Prepared       | Analyzed       | Dil Fac |
|----------|--------|-----------|------|------|-------|-----------|----------------|----------------|---------|
| Silver   | 0.26   | J         | 0.70 | 0.23 | mg/Kg | <u>\$</u> | 10/13/17 16:34 | 10/16/17 12:07 | 1       |
| Sodium   | 565    |           | 164  | 15.2 | mg/Kg | ≎         | 10/13/17 16:34 | 10/16/17 12:07 | 1       |
| Thallium | ND     |           | 7.0  | 0.35 | mg/Kg | ≎         | 10/13/17 16:34 | 10/16/17 12:07 | 1       |
| Vanadium | 29.1   | Ft \      | 0.59 | 0.13 | mg/Kg | ₩         | 10/13/17 16:34 | 10/16/17 12:07 | 1       |
| Zinc     | 482    |           | 2.3  | 0.75 | mg/Kg | ≎         | 10/13/17 16:34 | 10/16/17 12:07 | 1       |
| ****     |        | •         |      |      |       |           |                |                |         |

Method: 7471B - Mercury (CVAA)

 Analyte
 Result Qualifier
 RL 0.024
 MDL Unit 0.0099
 Unit mg/Kg
 D prepared 10/10/17 13:30
 Analyzed 10/10/17 15:10
 D 1

Client Sample ID: MW-8 (13-14)

Date Collected: 10/08/17 12:00 Date Received: 10/10/17 09:50 Lab Sample ID: 480-125579-2

Matrix: Solid Percent Solids: 81.6

| Method: 8260C | - Volatile | Organic | Compounds | by GC/MS |
|---------------|------------|---------|-----------|----------|

| Method: 8260C - Volatile Organ<br>Analyte | Result Qualifier | RL  | MDL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------------|------------------|-----|------|-------|---|----------------|----------------|---------|
| 1,1,1-Trichloroethane                     | ND               | 4.4 | 0.32 | ug/Kg | ₽ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,1,2,2-Tetrachloroethane                 | ND               | 4.4 | 0.71 | ug/Kg | ☼ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane     | ND               | 4.4 | 1.0  | ug/Kg | ✡ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,1,2-Trichloroethane                     | ND               | 4.4 | 0.57 | ug/Kg | ₩ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,1-Dichloroethane                        | ND               | 4.4 | 0.54 | ug/Kg | ₽ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,1-Dichloroethene                        | ND               | 4.4 | 0.54 | ug/Kg | ₽ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,2,4-Trichlorobenzene                    | ND               | 4.4 | 0.27 | ug/Kg | ♡ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,2-Dibromo-3-Chloropropane               | ND               | 4.4 | 2.2  | ug/Kg | ₩ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,2-Dibromoethane                         | ND               | 4.4 | 0.57 | ug/Kg | ₽ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,2-Dichlorobenzene                       | ND               | 4.4 | 0.34 | ug/Kg | ≎ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,2-Dichloroethane                        | ND               | 4.4 | 0.22 | ug/Kg | ≎ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,2-Dichloropropane                       | ND               | 4.4 | 2.2  | ug/Kg | ≎ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,3-Dichlorobenzene                       | ND               | 4.4 | 0.23 | ug/Kg | ≎ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,4-Dichlorobenzene                       | ND               | 4.4 | 0.62 | ug/Kg | ≎ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 2-Butanone (MEK)                          | ND               | 22  | 1.6  | ug/Kg | ≎ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 2-Hexanone                                | ND               | 22  | 2.2  | ug/Kg | ☼ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 4-Methyl-2-pentanone (MIBK)               | ND               | 22  | 1.4  | ug/Kg | ✡ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Acetone                                   | 21 J             | 22  | 3.7  | ug/Kg | ₽ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Benzene                                   | ND               | 4.4 | 0.22 | ug/Kg | ⇔ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Bromodichloromethane                      | ND               | 4.4 | 0.59 | ug/Kg | ≎ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Bromoform                                 | ND <>            | 4.4 | 2.2  | ug/Kg | ≎ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Bromomethane                              | ND               | 4.4 |      | ug/Kg | ₽ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Carbon disulfide                          | ND               | 4.4 |      | ug/Kg | ☼ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Carbon tetrachloride                      | ND               | 4.4 |      | ug/Kg | ≎ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Chlorobenzene                             | ND               | 4.4 | 0.58 | ug/Kg | ₩ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Chloroethane                              | ND               | 4.4 | 0.99 | ug/Kg | ₽ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Chloroform                                | ND               | 4.4 | 0.27 | ug/Kg | ⋫ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Chloromethane                             | ND               | 4.4 |      | ug/Kg | ₽ | 10/10/17 10:30 |                | 1       |
| cis-1,2-Dichloroethene                    | ND               | 4.4 | 0.56 | ug/Kg | ₩ | 10/10/17 10:30 |                | 1       |
| cis-1,3-Dichloropropene                   | ND               | 4.4 | 0.63 | ug/Kg | ₩ | 10/10/17 10:30 |                | 1       |
| Cyclohexane                               | ND               | 4.4 |      | ug/Kg | ₩ | 10/10/17 10:30 |                | 1       |
| Dibromochloromethane                      | ND               | 4.4 |      | ug/Kg | ₽ | 10/10/17 10:30 |                | 1       |
| Dichlorodifluoromethane                   | ND               | 4.4 |      | ug/Kg | ₽ | 10/10/17 10:30 |                | 1       |
| Ethylbenzene                              | ND               | 4.4 |      | ug/Kg | ₽ | 10/10/17 10:30 |                | 1       |

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St.

TestAmerica Job ID: 480-125579-1

Client Sample ID: MW-8 (13-14)
Date Collected: 10/08/17 12:00

Date Received: 10/10/17 09:50

Lab Sample ID: 480-125579-2

Matrix: Solid Percent Solids: 81.6

| Method: 8260C - Volatile O   | •         | -           | •                   | ,    |       |   |                |                |         |
|------------------------------|-----------|-------------|---------------------|------|-------|---|----------------|----------------|---------|
| Analyte                      | Result    | Qualifier   | RL                  | MDL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Isopropylbenzene             | ND        |             | 4.4                 | 0.66 | ug/Kg | ₩ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Methyl acetate               | ND        |             | 22                  | 2.7  | ug/Kg | ¢ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Methyl tert-butyl ether      | ND        |             | 4.4                 | 0.43 | ug/Kg | ₽ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Methylcyclohexane            | ND        |             | 4.4                 | 0.67 | ug/Kg | ₩ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Methylene Chloride           | ND        |             | 4.4                 | 2.0  | ug/Kg | ₩ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Styrene                      | ND        |             | 4.4                 | 0.22 | ug/Kg | ₩ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Tetrachloroethene            | 0.70      | J           | 4.4                 | 0.59 | ug/Kg | ≎ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Toluene                      | ND        |             | 4.4                 | 0.33 | ug/Kg | ≎ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| trans-1,2-Dichloroethene     | ND        |             | 4.4                 | 0.45 | ug/Kg | ₽ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| trans-1,3-Dichloropropene    | ND        |             | 4.4                 |      | ug/Kg | ≎ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Trichloroethene              | ND        |             | 4.4                 | 0.97 | ug/Kg | ≎ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Trichlorofluoromethane       | ND        |             | 4.4                 | 0.42 | ug/Kg | ≎ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Vinyl chloride               | ND        |             | 4.4                 |      | ug/Kg | ₩ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Xylenes, Total               | ND        |             | 8.8                 | 0.74 | ug/Kg | ₩ | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Surrogate                    | %Recovery | Qualifier   | Limits              |      |       |   | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 107       | <del></del> | 64 - 126            |      |       |   | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 4-Bromofluorobenzene (Surr)  | 105       |             | 72 <sub>-</sub> 126 |      |       |   | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Dibromofluoromethane (Surr)  | 106       |             | 60 - 140            |      |       |   | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Toluene-d8 (Surr)            | 98        |             | 71 - 125            |      |       |   | 10/10/17 10:30 | 10/16/17 18:54 | 1       |

| Analyte                     | Result | Qualifier | RL    | MDL  | Unit  | D        | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|--------|-----------|-------|------|-------|----------|----------------|----------------|---------|
| 2,4,5-Trichlorophenol       | ND     |           | 1000  | 280  | ug/Kg | <u> </u> | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2,4,6-Trichlorophenol       | ND     |           | 1000  | 200  | ug/Kg | ₩        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2,4-Dichlorophenol          | ND     |           | 1000  | 110  | ug/Kg | ☼        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2,4-Dimethylphenol          | ND     |           | 1000  | 250  | ug/Kg | ☼        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2,4-Dinitrophenol           | ND     |           | 10000 | 4700 | ug/Kg | ☼        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2,4-Dinitrotoluene          | ND     |           | 1000  | 210  | ug/Kg | ≎        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2,6-Dinitrotoluene          | ND     |           | 1000  | 120  | ug/Kg | ≎        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2-Chloronaphthalene         | ND     |           | 1000  | 170  | ug/Kg | ≎        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2-Chlorophenol              | ND     |           | 1000  | 190  | ug/Kg | ₩        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2-Methylnaphthalene         | 220    | J         | 1000  | 200  | ug/Kg | ⋫        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2-Methylphenol              | ND     |           | 1000  | 120  | ug/Kg | ✡        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2-Nitroaniline              | ND     |           | 2000  | 150  | ug/Kg | ₩        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2-Nitrophenol               | ND     |           | 1000  | 290  | ug/Kg | ≎        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 3,3'-Dichlorobenzidine      | ND     |           | 2000  | 1200 | ug/Kg | ₩        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 3-Nitroaniline              | ND     |           | 2000  | 280  | ug/Kg | ≎        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4,6-Dinitro-2-methylphenol  | ND     |           | 2000  | 1000 | ug/Kg | ≎        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4-Bromophenyl phenyl ether  | ND     |           | 1000  | 140  | ug/Kg | ☆        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4-Chloro-3-methylphenol     | ND     |           | 1000  | 250  | ug/Kg | ≎        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4-Chloroaniline             | ND     |           | 1000  | 250  | ug/Kg | ≎        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4-Chlorophenyl phenyl ether | ND     |           | 1000  |      | ug/Kg | ≎        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4-Methylphenol              | ND     |           | 2000  | 120  | ug/Kg | ≎        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4-Nitroaniline              | ND     |           | 2000  | 530  | ug/Kg | ≎        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4-Nitrophenol               | ND     |           | 2000  | 710  | ug/Kg | ₽        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Acenaphthene                | 290    | J         | 1000  | 150  | ug/Kg | ቝ        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Acenaphthylene              | 1000   |           | 1000  | 130  | ug/Kg | ₽        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Acetophenone                | ND     |           | 1000  | 140  | ug/Kg | ¤        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Anthracene                  | 1800   |           | 1000  |      | ug/Kg | ☼        | 10/11/17 14:06 | 10/13/17 08:02 | 5       |

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

Client Sample ID: MW-8 (13-14)

Date Collected: 10/08/17 12:00 Date Received: 10/10/17 09:50 Lab Sample ID: 480-125579-2

Matrix: Solid Percent Solids: 81.6

| Method: 8270D - Semivolatile<br>Analyte |           | Qualifier  | RL                  |      | ,<br>Unit      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|-----------|------------|---------------------|------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|---------|
| Atrazine                                | ND        |            | 1000                | 350  | ug/Kg          | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Benzaldehyde                            | ND        | U)         | 1000                | 810  | ug/Kg          | ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Benzo[a]anthracene                      | 2100      | <b>V</b> J | 1000                | 100  | ug/Kg          | ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Benzo[a]pyrene                          | 1500      |            | 1000                | 150  | ug/Kg          | ☼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Benzo[b]fluoranthene                    | 1600      |            | 1000                | 160  | ug/Kg          | ☼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Benzo[g,h,i]perylene                    | 720       | J          | 1000                | 110  | ug/Kg          | ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 10/13/17 08:02 | 5       |
| Benzo[k]fluoranthene                    | 700       |            | 1000                | 130  | ug/Kg          | ⇔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 |                | 5       |
| Biphenyl                                | ND        | •          | 1000                | 150  | ug/Kg          | ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 |                | 5       |
| bis (2-chloroisopropyl) ether           | ND        |            | 1000                | 200  | ug/Kg          | ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Bis(2-chloroethoxy)methane              | ND        |            | 1000                | 220  | ug/Kg          | ≎                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 10/13/17 08:02 | 5       |
| Bis(2-chloroethyl)ether                 | ND        |            | 1000                |      | • •            | ≎                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 10/13/17 08:02 | 5       |
| Bis(2-ethylhexyl) phthalate             | ND        |            | 1000                |      |                | ☆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 10/13/17 08:02 | 5       |
| Butyl benzyl phthalate                  | ND        |            | 1000                | 170  | ug/Kg          | ቝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 10/13/17 08:02 | 5       |
| Caprolactam                             | ND        |            | 1000                | 310  | ug/Kg          | <b>\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\</b> |                | 10/13/17 08:02 | 5       |
| Carbazole                               | 250       | ı          | 1000                | 120  | ug/Kg          | ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 10/13/17 08:02 | 5       |
|                                         | 1500      | 3          | 1000                | 230  | ug/Kg          | ф                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 10/13/17 08:02 | 5       |
| Chrysene                                | ND        |            | 1000                | 180  | ug/Kg<br>ug/Kg | φ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 10/13/17 08:02 | 5       |
| Dibenz(a,h)anthracene                   |           |            | 1000                |      |                | φ<br>Φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 10/13/17 08:02 |         |
| Dibenzofuran                            | 950       | J          |                     |      | ug/Kg          | ~<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                | 5       |
| Diethyl phthalate                       | ND        |            | 1000                | 130  | ug/Kg          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | 10/13/17 08:02 | 5       |
| Dimethyl phthalate                      | ND        |            | 1000                | 120  | ug/Kg          | Ď.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 10/13/17 08:02 | 5       |
| Di-n-butyl phthalate                    | ND        |            | 1000                | 170  | ug/Kg          | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 10/13/17 08:02 | 5       |
| Di-n-octyl phthalate                    | ND        | <u> </u>   | 1000                |      | ug/Kg          | φ.<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 10/13/17 08:02 | 5       |
| Fluoranthene                            | 4200      | لر         | 1000                |      | ug/Kg          | φ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 10/13/17 08:02 | 5       |
| Fluorene                                | 1600      |            | 1000                |      | ug/Kg          | φ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 10/13/17 08:02 | 5       |
| Hexachlorobenzene                       | ND        |            | 1000                |      | ug/Kg          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | 10/13/17 08:02 | 5       |
| Hexachlorobutadiene                     | ND        |            | 1000                |      | ug/Kg          | ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 10/13/17 08:02 | 5       |
| Hexachlorocyclopentadiene               | ND        |            | 1000                |      | ug/Kg          | ₽-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Hexachloroethane                        | ND        |            | 1000                |      | ug/Kg          | ₩.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Indeno[1,2,3-cd]pyrene                  | 790       | J          | 1000                |      | ug/Kg          | ≎                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Isophorone                              | ND        |            | 1000                | 220  | ug/Kg          | ≎                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Naphthalene                             | ND        |            | 1000                | 130  | ug/Kg          | ≎                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Nitrobenzene                            | ND        |            | 1000                | 110  | ug/Kg          | ≎                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| N-Nitrosodi-n-propylamine               | ND        |            | 1000                | 170  | ug/Kg          | ≎                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| N-Nitrosodiphenylamine                  | ND        | (          | 1000                | 830  | ug/Kg          | ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Pentachlorophenol                       | ND        | ń)         | 2000                | 1000 | ug/Kg          | ≎                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Phenanthrene                            | 5000      | )          | 1000                | 150  | ug/Kg          | ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Phenol                                  | ND        |            | 1000                | 160  | ug/Kg          | ≎                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Pyrene                                  | 3300      | 1          | 1000                | 120  | ug/Kg          | ☆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Surrogate                               | %Recovery | Qualifier  | Limits              |      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Prepared       | Analyzed       | Dil Fac |
| 2,4,6-Tribromophenol                    | 111       |            | 54 - 120            |      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2-Fluorobiphenyl                        | 88        |            | 60 - 120            |      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2-Fluorophenol                          | 73        |            | 52 <sub>-</sub> 120 |      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Nitrobenzene-d5                         | 55        |            | 53 - 120            |      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Phenol-d5                               | 82        |            | 54 - 120            |      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| p-Terphenyl-d14                         | 98        |            | 65 - 121            |      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Method: 6010C - Metals (ICP)            |           |            |                     |      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |         |
| Analyte                                 | Result    | Qualifier  | RL                  | MDL  |                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prepared       | Analyzed       | Dil Fac |
| Aluminum                                | 15100     |            | 11.8                | 5.2  | mg/Kg          | <u>\$</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/13/17 16:34 | 10/16/17 12:25 | 1       |

TestAmerica Buffalo 10/24/2017

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

Client Sample ID: MW-8 (13-14)

Date Collected: 10/08/17 12:00 Date Received: 10/10/17 09:50 Lab Sample ID: 480-125579-2

Matrix: Solid Percent Solids: 81.6

| Method: 6010C - Metals (ICP) (C<br>Analyte | Result Qualifier   | RL    | MDL    | Unit  | D        | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------------|--------------------|-------|--------|-------|----------|----------------|----------------|---------|
| Antimony                                   | ND U               | 17.7  | 0.47   | mg/Kg | ₽        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Arsenic                                    | 2.3 J              | 2.4   | 0.47   | mg/Kg | ✡        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Barium                                     | 45.9               | 0.59  | 0.13   | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Beryllium                                  | 0.89               | 0.24  | 0.033  | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Cadmium                                    | ND                 | 0.24  | 0.035  | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Calcium                                    | 16800 <del>B</del> | 59.1  | 3.9    | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Chromium                                   | 21.8 🛴             | 0.59  | 0.24   | mg/Kg | ₿        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Cobalt                                     | 8.9 🕽              | 0.59  | 0.059  | mg/Kg | ≎        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Copper                                     | 26.2               | 1.2   | 0.25   | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Iron                                       | 17900 🚣 \          | 11.8  | 4.1    | mg/Kg | ⋫        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Lead                                       | د 8.8              | 1.2   | 0.28   | mg/Kg | ≎        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Magnesium                                  | 5420 🕽             | 23.6  | 1.1    | mg/Kg | ≎        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Manganese                                  | 173 \              | 0.24  | 0.038  | mg/Kg | ¤        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Nickel                                     | 33.3 🕽             | 5.9   | 0.27   | mg/Kg | ₩        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Potassium                                  | 4350 👃             | 35.5  | 23.6   | mg/Kg | ₽        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Selenium                                   | 0.47 J             | 4.7   | 0.47   | mg/Kg | ₽        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Silver                                     | ND                 | 0.71  | 0.24   | mg/Kg | ≎        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Sodium                                     | 411                | 165   | 15.4   | mg/Kg | ≎        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Thallium                                   | ND                 | 7.1   | 0.35   | mg/Kg | ≎        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Vanadium                                   | 22.5 👃             | 0.59  | 0.13   | mg/Kg | ≎        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Zinc                                       | 35.9               | 2.4   | 0.76   | mg/Kg | Þ        | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Method: 7471B - Mercury (CVA               | ٨)                 |       |        |       |          |                |                |         |
| Analyte                                    | Result Qualifier   | RL    | MDL    | Unit  | D        | Prepared       | Analyzed       | Dil Fac |
| Mercury                                    | 0.013 J            | 0.024 | 0.0098 | mg/Kg | <u> </u> | 10/10/17 13:30 | 10/10/17 15:16 | 1       |

Client Sample ID: DUP-100817

Lab Sample ID: 480-125579-3

Matrix: Solid

Date Collected: 10/08/17 00:00 Date Received: 10/10/17 09:50 Percent Solids: 84.7

| Analyte                               | Result Qualifier | RL  | MDL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|---------------------------------------|------------------|-----|------|-------|---|----------------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND               | 4.4 | 0.32 | ug/Kg | ₩ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND               | 4.4 | 0.71 | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 4.4 | 1.0  | ug/Kg | ₩ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,1,2-Trichloroethane                 | ND               | 4.4 | 0.57 | ug/Kg | ⋫ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,1-Dichloroethane                    | ND               | 4.4 | 0.53 | ug/Kg | ₽ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,1-Dichloroethene                    | ND               | 4.4 | 0.54 | ug/Kg | ₽ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,2,4-Trichlorobenzene                | ND               | 4.4 | 0.27 | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND               | 4.4 | 2.2  | ug/Kg | ₩ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,2-Dibromoethane                     | ND               | 4.4 | 0.56 | ug/Kg | ⋫ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,2-Dichlorobenzene                   | ND               | 4.4 | 0.34 | ug/Kg | ₩ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,2-Dichloroethane                    | ND               | 4.4 | 0.22 | ug/Kg | ₽ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,2-Dichloropropane                   | ND               | 4.4 | 2.2  | ug/Kg | ⋫ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,3-Dichlorobenzene                   | ND               | 4.4 | 0.22 | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,4-Dichlorobenzene                   | ND               | 4.4 | 0.61 | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 2-Butanone (MEK)                      | 2.6 J            | 22  | 1.6  | ug/Kg | ⋫ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 2-Hexanone                            | ND               | 22  | 2.2  | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND               | 22  | 1.4  | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Acetone                               | 42               | 22  | 3.7  | ug/Kg | ⇔ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |

TestAmerica Buffalo

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

Client Sample ID: DUP-100817

Date Collected: 10/08/17 00:00 Date Received: 10/10/17 09:50 Lab Sample ID: 480-125579-3

Matrix: Solid Percent Solids: 84.7

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|-------|---|----------------|----------------|---------|
| Benzene                      | ND        |           | 4.4      | 0.21 | ug/Kg | ₽ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Bromodichloromethane         | ND        |           | 4.4      | 0.59 | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Bromoform                    | ND        |           | 4.4      | 2.2  | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Bromomethane                 | ND        |           | 4.4      | 0.39 | ug/Kg | ☼ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Carbon disulfide             | ND        |           | 4.4      | 2.2  | ug/Kg | ₩ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Carbon tetrachloride         | ND        |           | 4.4      | 0.42 | ug/Kg | ⋫ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Chlorobenzene                | ND        |           | 4.4      | 0.58 | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Chloroethane                 | ND        |           | 4.4      | 0.99 | ug/Kg | ☼ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Chloroform                   | ND        | ā s       | 4.4      | 0.27 | ug/Kg | ₩ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Chloromethane                | ND        | U)        | 4.4      | 0.26 | ug/Kg | ⋫ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| cis-1,2-Dichloroethene       | ND        |           | 4.4      | 0.56 | ug/Kg | ⋫ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| cis-1,3-Dichloropropene      | ND        |           | 4.4      | 0.63 | ug/Kg | ₽ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Cyclohexane                  | ND        |           | 4.4      | 0.61 | ug/Kg | ☼ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Dibromochloromethane         | ND        |           | 4.4      | 0.56 | ug/Kg | ₿ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Dichlorodifluoromethane      | ND        |           | 4.4      | 0.36 | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Ethylbenzene                 | ND        |           | 4.4      | 0.30 | ug/Kg | ₩ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Isopropylbenzene             | ND        |           | 4.4      | 0.66 | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Methyl acetate               | ND        |           | 22       | 2.6  | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Methyl tert-butyl ether      | ND        |           | 4.4      | 0.43 | ug/Kg | ₽ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Methylcyclohexane            | ND        |           | 4.4      | 0.67 | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Methylene Chloride           | ND        |           | 4.4      | 2.0  | ug/Kg | ₽ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Styrene                      | ND        |           | 4.4      | 0.22 | ug/Kg | ₽ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Tetrachloroethene            | 0.62      | J         | 4.4      | 0.59 | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Toluene                      | ND        |           | 4.4      | 0.33 | ug/Kg | ❖ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| trans-1,2-Dichloroethene     | ND        |           | 4.4      | 0.45 | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| trans-1,3-Dichloropropene    | ND        |           | 4.4      | 1.9  | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Trichloroethene              | ND        |           | 4.4      | 0.96 | ug/Kg | ₩ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Trichlorofluoromethane       | ND        |           | 4.4      | 0.41 | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Vinyl chloride               | ND        |           | 4.4      | 0.53 | ug/Kg | ₩ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Xylenes, Total               | ND        |           | 8.8      | 0.74 | ug/Kg | ≎ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |       |   | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 107       |           | 64 - 126 |      |       |   | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 4-Bromofluorobenzene (Surr)  | 103       |           | 72 - 126 |      |       |   | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Dibromofluoromethane (Surr)  | 104       |           | 60 - 140 |      |       |   | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Toluene-d8 (Surr)            | 98        |           | 71 - 125 |      |       |   | 10/10/17 10:30 | 10/17/17 14:11 | 1       |

| Analyte               | Result Qualifier | RL    | MDL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------|------------------|-------|------|-------|---|----------------|----------------|---------|
| 2,4,5-Trichlorophenol | ND               | 2000  | 530  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2,4,6-Trichlorophenol | ND               | 2000  | 390  | ug/Kg | ≎ | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2,4-Dichlorophenol    | ND               | 2000  | 210  | ug/Kg | ≎ | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2,4-Dimethylphenol    | ND               | 2000  | 470  | ug/Kg | ₿ | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2,4-Dinitrophenol     | ND               | 19000 | 9100 | ug/Kg | ₩ | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2,4-Dinitrotoluene    | ND               | 2000  | 410  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2,6-Dinitrotoluene    | ND               | 2000  | 230  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2-Chloronaphthalene   | ND               | 2000  | 320  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2-Chlorophenol        | ND               | 2000  | 360  | ug/Kg | ₩ | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2-Methylnaphthalene   | 620 J            | 2000  | 390  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2-Methylphenol        | ND               | 2000  | 230  | ug/Kg | ⋫ | 10/11/17 14:06 | 10/13/17 08:28 | 10      |

TestAmerica Buffalo 10/24/2017

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

Client Sample ID: DUP-100817

Date Collected: 10/08/17 00:00 Date Received: 10/10/17 09:50 Lab Sample ID: 480-125579-3

Matrix: Solid Percent Solids: 84.7

| Method: 8270D - Semivolat<br>Analyte | -     | mpounds<br>Qualifier | (GC/MS) (Co |      | )<br>Unit      | D          | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-------|----------------------|-------------|------|----------------|------------|----------------|----------------|---------|
| 2-Nitroaniline                       | ND    |                      | 3800        | 290  | ug/Kg          | <u>\$</u>  | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2-Nitrophenol                        | ND    |                      | 2000        | 560  | ug/Kg          | ₽          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 3,3'-Dichlorobenzidine               | ND    |                      | 3800        | 2300 | ug/Kg          | ≎          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 3-Nitroaniline                       | ND    |                      | 3800        | 540  | ug/Kg          | ₩          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 4,6-Dinitro-2-methylphenol           | ND    |                      | 3800        | 2000 | ug/Kg          | ≎          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 4-Bromophenyl phenyl ether           | ND    |                      | 2000        | 280  | ug/Kg          | ≎          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 4-Chloro-3-methylphenol              | ND    |                      | 2000        | 490  | ug/Kg          | ≎          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 4-Chloroaniline                      | ND    |                      | 2000        | 490  | ug/Kg          | ≎          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 4-Chlorophenyl phenyl ether          | ND    |                      | 2000        | 240  | ug/Kg          | ₩          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 4-Methylphenol                       | ND    |                      | 3800        | 230  | ug/Kg          | ₩          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 4-Nitroaniline                       | ND    |                      | 3800        | 1000 | ug/Kg          | ₽          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 4-Nitrophenol                        | ND    |                      | 3800        | 1400 | ug/Kg          | ≎          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Acenaphthene                         | 810   | J                    | 2000        | 290  | ug/Kg          | ≎          | 10/11/17 14:06 |                | 10      |
| Acenaphthylene                       | 2700  |                      | 2000        | 250  | ug/Kg          | ₩          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Acetophenone                         | ND    |                      | 2000        | 270  | ug/Kg          | ₽          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Anthracene                           | 5000  |                      | 2000        | 490  | ug/Kg          | ≎          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Atrazine                             | ND    |                      | 2000        |      | ug/Kg          | ≎          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Benzaldehyde                         | ND    | U)                   | 2000        | 1600 | ug/Kg          | ☆          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Benzo[a]anthracene                   | 5800  | **                   | 2000        |      | ug/Kg          | ₩          |                | 10/13/17 08:28 | 10      |
| Benzo[a]pyrene                       | 4300  |                      | 2000        | 290  | ug/Kg          | ₩          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Benzo[b]fluoranthene                 | 5000  |                      | 2000        |      | ug/Kg          | ₽          | 10/11/17 14:06 |                | 10      |
| Benzo[g,h,i]perylene                 | 2100  |                      | 2000        |      | ug/Kg          | ₩          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Benzo[k]fluoranthene                 | 2000  |                      | 2000        |      | ug/Kg          | ₩          | 10/11/17 14:06 |                | 10      |
| Biphenyl                             | ND    |                      | 2000        |      | ug/Kg          | ₩          | 10/11/17 14:06 |                | 10      |
| bis (2-chloroisopropyl) ether        | ND    |                      | 2000        |      | ug/Kg          | ✡          |                | 10/13/17 08:28 | 10      |
| Bis(2-chloroethoxy)methane           | ND    |                      | 2000        |      | ug/Kg          | ₩          |                | 10/13/17 08:28 | 10      |
| Bis(2-chloroethyl)ether              | ND    |                      | 2000        |      | ug/Kg          | ₽          | 10/11/17 14:06 |                | 10      |
| Bis(2-ethylhexyl) phthalate          | ND    |                      | 2000        |      | ug/Kg          | ₽          |                | 10/13/17 08:28 | 10      |
| Butyl benzyl phthalate               | ND    |                      | 2000        |      | ug/Kg          | ≎          |                | 10/13/17 08:28 | 10      |
| Caprolactam                          | ND    |                      | 2000        |      | ug/Kg          | ⇔          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Carbazole                            | 630   | J                    | 2000        |      | ug/Kg          | ≎          |                | 10/13/17 08:28 | 10      |
| Chrysene                             | 4200  |                      | 2000        |      | ug/Kg          | ₩          |                | 10/13/17 08:28 | 10      |
| Dibenz(a,h)anthracene                | ND    |                      | 2000        |      | ug/Kg          | ₽          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Dibenzofuran                         | 2500  |                      | 2000        |      | ug/Kg          | ≎          |                | 10/13/17 08:28 | 10      |
| Diethyl phthalate                    | ND    |                      | 2000        |      | ug/Kg          | ☼          |                | 10/13/17 08:28 | 10      |
| Dimethyl phthalate                   | ND    |                      | 2000        |      | ug/Kg          | ≎          |                | 10/13/17 08:28 | 10      |
| Di-n-butyl phthalate                 | ND    |                      | 2000        |      | ug/Kg          | <b>⊅</b> - |                | 10/13/17 08:28 | 10      |
| Di-n-octyl phthalate                 | ND    |                      | 2000        |      | ug/Kg          |            | 10/11/17 14:06 |                | 10      |
| Fluoranthene                         | 12000 |                      | 2000        |      | ug/Kg          |            | 10/11/17 14:06 |                | 10      |
| Fluorene                             | 4300  | قس                   | 2000        |      | ug/Kg          |            | 10/11/17 14:06 |                | 10      |
| Hexachlorobenzene                    | ND    |                      | 2000        |      | ug/Kg          |            | 10/11/17 14:06 |                | 10      |
| Hexachlorobutadiene                  | ND    |                      | 2000        |      | ug/Kg          | ₽          | 10/11/17 14:06 |                | 10      |
| Hexachlorocyclopentadiene            | ND    |                      | 2000        |      | ug/Kg          | ₩          | 10/11/17 14:06 |                | 10      |
| Hexachloroethane                     | ND    |                      | 2000        |      | ug/Kg          |            | 10/11/17 14:06 |                | 10      |
| Indeno[1,2,3-cd]pyrene               | 2300  |                      | 2000        |      | ug/Kg          |            | 10/11/17 14:06 |                | 10      |
| sophorone                            | ND    |                      | 2000        |      | ug/Kg          |            | 10/11/17 14:06 |                | 10      |
| Naphthalene                          | 330   | J                    | 2000        |      | ug/Kg          |            | 10/11/17 14:06 |                | 10      |
| Nitrobenzene                         | ND    | -                    | 2000        |      | ug/Kg          |            | 10/11/17 14:06 |                | 10      |
| N-Nitrosodi-n-propylamine            | ND    |                      | 2000        |      | ug/Kg<br>ug/Kg |            |                | 10/13/17 08:28 | 10      |

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

Client Sample ID: DUP-100817

Date Collected: 10/08/17 00:00 Date Received: 10/10/17 09:50

Lab Sample ID: 480-125579-3

Matrix: Solid Percent Solids: 84.7

| N-Nitrosodiphenylamine Pentachlorophenol | ND               |                                                                                                                | RL         | MUL   | Unit           | D             | Prepared       | Analyzed       | Dil Fac |
|------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------|------------|-------|----------------|---------------|----------------|----------------|---------|
| Pentachlorophenol                        | ND               |                                                                                                                | 2000       | 1600  | ug/Kg          | ₩             | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
|                                          | ND               | ۷٫۷                                                                                                            | 3800       | 2000  | ug/Kg          | ☼             | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Phenanthrene                             | 14000            | _                                                                                                              | 2000       | 290   | ug/Kg          | ₽             | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Phenol                                   | ND               | •                                                                                                              | 2000       | 300   | ug/Kg          | ₽             | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Pyrene                                   | 9000             | 1                                                                                                              | 2000       | 230   | ug/Kg          | ₽             | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Surrogate                                | %Recovery        | Qualifier                                                                                                      | Limits     |       |                |               | Prepared       | Analyzed       | Dil Fac |
| 2,4,6-Tribromophenol                     | 119              |                                                                                                                | 54 - 120   |       |                |               | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2-Fluorobiphenyl                         | 87               |                                                                                                                | 60 - 120   |       |                |               | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2-Fluorophenol                           | 72               |                                                                                                                | 52 - 120   |       |                |               | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Nitrobenzene-d5                          | 78               |                                                                                                                | 53 - 120   |       |                |               | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Phenol-d5                                | 59               |                                                                                                                | 54 - 120   |       |                |               | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| p-Terphenyl-d14                          | 95               |                                                                                                                | 65 - 121   |       |                |               | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Method: 6010C - Metals (ICP)             |                  |                                                                                                                |            |       |                |               |                |                |         |
| Analyte                                  |                  | Qualifier                                                                                                      | RL         | MDL   |                | D             | Prepared       | Analyzed       | Dil Fac |
| Aluminum                                 | 21300            | 4                                                                                                              | 11.9       | 5.2   | mg/Kg          | <del>\$</del> | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Antimony                                 | ND               | υJ                                                                                                             | 17.9       | 0.48  | mg/Kg          | ₽             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Arsenic                                  | 6.4              |                                                                                                                | 2.4        | 0.48  | mg/Kg          | ₽             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Barium                                   | 65.2             |                                                                                                                | 0.60       | 0.13  | mg/Kg          | ≎             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Beryllium                                | 1.2              |                                                                                                                | 0.24       | 0.033 | mg/Kg          | ≎             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Cadmium                                  | ND               |                                                                                                                | 0.24       | 0.036 | mg/Kg          | ≎             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Calcium                                  | 25300            | wB <sub>roots</sub>                                                                                            | 59.7       | 3.9   | mg/Kg          | ₽             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Chromium                                 | 31.8             |                                                                                                                | 0.60       | 0.24  | mg/Kg          | ₩             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Cobalt                                   | 19.1             | 1                                                                                                              | 0.60       | 0.060 | mg/Kg          | ☼             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Copper                                   | 45.3             | A                                                                                                              | 1.2        | 0.25  | mg/Kg          | ☼             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Iron                                     | 30800            | ~                                                                                                              | 11.9       | 4.2   | mg/Kg          | ☼             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Lead                                     | 20.2             | _                                                                                                              | 1.2        | 0.29  | mg/Kg          | ☼             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Magnesium                                | 8480             |                                                                                                                | 23.9       | 1.1   | mg/Kg          | ø             | 10/13/17 16:34 | 10/16/17 12:39 | . 1     |
| Manganese                                | 339              |                                                                                                                | 0.24       | 0.038 | mg/Kg          | ₽             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Nickel                                   | 55.7             | 1                                                                                                              | 6.0        | 0.27  | mg/Kg          | ₽             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Potassium                                | 5760             | 4                                                                                                              | 35.8       |       | mg/Kg          | ≎             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Selenium                                 | ND               |                                                                                                                | 4.8        |       | mg/Kg          | ಘ             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
|                                          | ND               |                                                                                                                | 0.72       |       | mg/Kg          | ≎             | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Silver                                   |                  |                                                                                                                | 4.07       |       | mg/Kg          | ☼             | 40/42/47 46:24 | 40/40/47 40:00 | 4       |
|                                          | 471              |                                                                                                                | 167        | 15.5  | mg/rxg         | ~~`           | 10/13/1/ 10:34 | 10/16/17 12:39 | 1       |
| Sodium                                   | <b>471</b><br>ND |                                                                                                                | 167<br>7.2 |       |                | *             | 10/13/17 16:34 |                | 1       |
| Silver<br>Sodium<br>Thallium<br>Vanadium |                  | de la companya de la |            | 0.36  | mg/Kg<br>mg/Kg |               |                | 10/16/17 12:39 |         |

Client Sample ID: TRIP BLANK

Method: 7471B - Mercury (CVAA)

Date Collected: 10/08/17 00:00 Date Received: 10/10/17 09:50

Analyte

Mercury

Lab Sample ID: 480-125579-4

Analyzed

Prepared

Matrix: Water

Dil Fac

| Method: 8260C - Volatile Organic Compounds by GC/MS |                  |     |      |      |   |          |                |         |  |
|-----------------------------------------------------|------------------|-----|------|------|---|----------|----------------|---------|--|
| Analyte                                             | Result Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |  |
| 1,1,1-Trichloroethane                               | ND -             | 1.0 | 0.82 | ug/L |   |          | 10/18/17 18:32 | 1       |  |

RL

0.022

MDL Unit

0.0089 mg/Kg

Result Qualifier

0.039

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St.

TestAmerica Job ID: 480-125579-1

Client Sample ID: TRIP BLANK Lab Sample ID: 480-125579-4

Date Collected: 10/08/17 00:00 Matrix: Water

Date Received: 10/10/17 09:50

| Method: 8260C - Volatile Org          |           | unds by G<br>Qualifier | C/MS (Contin | nued)<br>MDL | Unit         | D              | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|-----------|------------------------|--------------|--------------|--------------|----------------|----------|----------------|---------|
| 1,1,2,2-Tetrachloroethane             | ND        |                        | 1.0          | 0.21         |              | <del>-</del> - |          | 10/18/17 18:32 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND        |                        | 1.0          | 0.31         | -            |                |          | 10/18/17 18:32 | 1       |
| 1,1,2-Trichloroethane                 | ND        |                        | 1.0          | 0.23         |              |                |          | 10/18/17 18:32 | 1       |
| 1,1-Dichloroethane                    | ND        |                        | 1.0          | 0.38         |              |                |          | 10/18/17 18:32 | 1       |
| 1,1-Dichloroethene                    | ND        |                        | 1.0          | 0.29         |              |                |          | 10/18/17 18:32 | 1       |
| 1,2,4-Trichlorobenzene                | ND        |                        | 1.0          | 0.41         | -            |                |          | 10/18/17 18:32 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND        |                        | 1.0          | 0.39         | -            |                |          | 10/18/17 18:32 | 1       |
| 1,2-Dibromoethane                     | ND        |                        | 1.0          | 0.73         |              |                |          | 10/18/17 18:32 | 1       |
| 1,2-Dichlorobenzene                   | ND        |                        | 1.0          | 0.79         |              |                |          | 10/18/17 18:32 | 1       |
| 1,2-Dichloroethane                    | ND        |                        | 1.0          | 0.73         |              |                |          | 10/18/17 18:32 | 1       |
| 1,2-Dichloropropane                   | ND<br>ND  |                        | 1.0          | 0.72         |              |                |          | 10/18/17 18:32 | 1       |
| 1,3-Dichlorobenzene                   | ND        |                        | 1.0          | 0.72         | _            |                |          | 10/18/17 18:32 | 1       |
|                                       | ND        |                        | 1.0          | 0.70         | _            |                |          | 10/18/17 18:32 | 1       |
| 1,4-Dichlorobenzene                   | ND<br>ND  |                        | 1.0          |              | ug/L<br>ug/L |                |          | 10/18/17 18:32 | 1       |
| 2-Butanone (MEK)                      | ND<br>ND  |                        | 5.0          |              | ug/L<br>ug/L |                |          | 10/18/17 18:32 | 1       |
| 2-Hexanone                            |           |                        |              |              | -            |                |          |                | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND        |                        | 5.0          |              | ug/L         |                |          | 10/18/17 18:32 |         |
| Acetone                               | ND        |                        | 10           |              | ug/L         |                |          | 10/18/17 18:32 | 1       |
| Benzene                               | ND        |                        | 1.0          | 0.41         | -            |                |          | 10/18/17 18:32 | 1       |
| Bromodichloromethane                  | ND        |                        | 1.0          | 0.39         |              |                |          | 10/18/17 18:32 | 1       |
| Bromoform                             | ND        |                        | 1.0          | 0.26         | •            |                |          | 10/18/17 18:32 | 1       |
| Bromomethane                          | ND        |                        | 1.0          | 0.69         | -            |                |          | 10/18/17 18:32 | 1       |
| Carbon disulfide                      | ND        |                        | 1.0          | 0.19         | •            |                |          | 10/18/17 18:32 | 1       |
| Carbon tetrachloride                  | ND        |                        | 1.0          | 0.27         | _            |                |          | 10/18/17 18:32 | 1       |
| Chlorobenzene                         | ND        |                        | 1.0          | 0.75         | _            |                |          | 10/18/17 18:32 | 1       |
| Chloroethane                          | ND        |                        | 1.0          | 0.32         |              |                |          | 10/18/17 18:32 | 1       |
| Chloroform                            | ND        |                        | 1.0          | 0.34         |              |                |          | 10/18/17 18:32 | 1       |
| Chloromethane                         | ND        |                        | 1.0          | 0.35         | -            |                |          | 10/18/17 18:32 | 1       |
| cis-1,2-Dichloroethene                | ND        |                        | 1.0          | 0.81         |              |                |          | 10/18/17 18:32 | 1       |
| cis-1,3-Dichloropropene               | ND        |                        | 1.0          | 0.36         |              |                |          | 10/18/17 18:32 | 1       |
| Cyclohexane                           | ND        |                        | 1.0          | 0.18         |              |                |          | 10/18/17 18:32 | 1       |
| Dibromochloromethane                  | ND        |                        | 1.0          | 0.32         | -            |                |          | 10/18/17 18:32 | 1       |
| Dichlorodifluoromethane               | ND        |                        | 1.0          | 0.68         | ug/L         |                |          | 10/18/17 18:32 | 1       |
| Ethylbenzene                          | ND        |                        | 1.0          | 0.74         | -            |                |          | 10/18/17 18:32 | 1       |
| Isopropylbenzene                      | ND        |                        | 1.0          | 0.79         | -            |                |          | 10/18/17 18:32 | 1       |
| Methyl acetate                        | ND        |                        | 2.5          | 1.3          | ug/L         |                |          | 10/18/17 18:32 | 1       |
| Methyl tert-butyl ether               | ND        |                        | 1.0          | 0.16         | -            |                |          | 10/18/17 18:32 | 1       |
| Methylcyclohexane                     | ND        |                        | 1.0          | 0.16         | ug/L         |                |          | 10/18/17 18:32 | 1       |
| Methylene Chloride                    | ND        |                        | 1.0          | 0.44         | ug/L         |                |          | 10/18/17 18:32 | 1       |
| Styrene                               | ND        |                        | 1.0          | 0.73         | ug/L         |                |          | 10/18/17 18:32 | 1       |
| Tetrachloroethene                     | ND        |                        | 1.0          | 0.36         | ug/L         |                |          | 10/18/17 18:32 | 1       |
| Toluene                               | ND        |                        | 1.0          | 0.51         | ug/L         |                |          | 10/18/17 18:32 | 1       |
| trans-1,2-Dichloroethene              | ND        |                        | 1.0          | 0.90         | ug/L         |                |          | 10/18/17 18:32 | 1       |
| trans-1,3-Dichloropropene             | ND        |                        | 1.0          | 0.37         | ug/L         |                |          | 10/18/17 18:32 | 1       |
| Trichloroethene                       | ND        |                        | 1.0          | 0.46         | ug/L         |                |          | 10/18/17 18:32 | 1       |
| Trichlorofluoromethane                | ND        |                        | 1.0          | 0.88         | ug/L         |                |          | 10/18/17 18:32 | 1       |
| Vinyl chloride                        | ND        |                        | 1.0          | 0.90         | ug/L         |                |          | 10/18/17 18:32 | 1       |
| Xylenes, Total                        | ND        |                        | 2.0          | 0.66         | ug/L         |                |          | 10/18/17 18:32 | 1       |
| Surrogate                             | %Recovery | Qualifier              | Limits       |              |              |                | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr)          | 107       |                        | 77 - 120     |              |              | _              |          | 10/18/17 18:32 | 1       |

TestAmerica Buffalo 10/24/2017

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St.

S U.S. Inc TestAmerica Job ID: 480-125579-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-125579-4

Date Collected: 10/08/17 00:00 Date Received: 10/10/17 09:50

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

| - | Surrogate                   | %Recovery | Qualifier                               | Limits              | Prepared | Analyzed       | Dil Fac |
|---|-----------------------------|-----------|-----------------------------------------|---------------------|----------|----------------|---------|
| l | 4-Bromofluorobenzene (Surr) | 102       | *************************************** | 73 - 120            |          | 10/18/17 18:32 | 1       |
|   | Dibromofluoromethane (Surr) | 102       |                                         | 75 <sub>-</sub> 123 |          | 10/18/17 18:32 | 1       |
|   | Toluene-d8 (Surr)           | 100       |                                         | 80 <sub>-</sub> 120 |          | 10/18/17 18:32 | 1       |

in Hazelmood Briss

Amberst, NV 14228 Phone: 716.691.2600 Fax: 716.691.7991

Chain of Custody Record

NPDES

0/00/00/

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.

TAL-8210 (0713) Sampre opecitic Notes: COCs 480-125579 COC Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month) Pog. or Lab Use Only of Date/Fime: | Walk-in Client: Therm ID No Date/Time Date/Time COC No: ab Sam-S/qop Company Company Company Date: 10/8/1 اما کر Disposal by Lab Carrier: Site Contact: Klan> Buyin Lab Contact: My 1:850 Dryo & Percontin Received in Laboratory by: 2002 1 JAT M Other 又又又又 Return to Client X X 大 RCRA Filtered Sample (Y/N)
Perform MS / MSD (Y/N)
VOC TC L K X Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the # of Cont. 00 Date/Time: Date/Time: WORKING DAYS TAT if different from Below Stwaller Matrix Analysis Turnaround Time 3 Regulatory Program: Dow Project Manager: Bluck Athress Type (C=Comp, G=Grab) Sample 2 weeks 2 days 1 week 1 day Sample Time Company. CALENDAR DAYS Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other 1130 300 Custody Seal No. ì ١ Poison B Sample Date Company: Company (a/8/L) Tel/Fax: 1 1 solvetes Park Special Instructions/Q6 Requirements & Comments: comments Section if the lab is to dispose of the sample 1442 Sample Identification Sompany Name: REE\_/ Arculis Client Contact スつ面ででんな FRIDER NY 295 woodc1.FL Phone: 585.585 - 0940 ossible Hazard Identification: 5-87 R-38 9-5) 8-MW 4)8004-do Custody Seals Infla-Relinquished by roject Name: ity/State/Zip. Non-Hazard Address: # () Site

# **Appendix H** Laboratory Analytical Report for Remedial Action (on Compact Disk)



#### ANALYTICAL REPORT

Job Number: 480-125579-1

Job Description: RGE - Park St.

For:

ARCADIS U.S. Inc Arcadis 295 Woodcliff Drive #2. 3rd Floor, Suite 301 Fairport, NY 14450

Attention: Bruce Ahrens

Approved for release Melissa L Deyo Project Manager I 10/24/2017 3:44 PM

Melissa L Deyo, Project Manager I 10 Hazelwood Drive, Amherst, NY, 14228-2298 (716)504-9874 melissa.deyo@testamericainc.com 10/24/2017

Melisso Deyo

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project Manager who has signed this report.

TestAmerica Buffalo NELAC Certifications: CADPH 01169CA, FLDOH E87672, ILEPA 200003, KSDOH E-10187, LADEQ 30708, MDH 036-999-337, NHELAP 2973, NJDEP NY455, NHDOH 10026, ORELAP NY200003, PADEP 68-00281, TXCEQ T-104704412-10-1



# **Table of Contents**

| Cover Title Page           | 1   |
|----------------------------|-----|
| Data Summaries             | 5   |
| Report Narrative           | 5   |
| Sample Summary             | 7   |
| Detection Summary          | 8   |
| Method Summary             | 11  |
| Client Sample Results      | 12  |
| Surrogate Summary          | 24  |
| QC Sample Results          | 26  |
| Definitions                | 47  |
| QC Association             | 48  |
| Chronicle                  | 51  |
| Certification Summary      | 53  |
| Organic Sample Data        | 54  |
| GC/MS VOA                  | 54  |
| Method 8260C               | 54  |
| Method 8260C QC Summary    | 55  |
| Method 8260C Sample Data   | 80  |
| Standards Data             | 113 |
| Method 8260C ICAL Data     | 113 |
| Method 8260C CCAL Data     | 209 |
| Raw QC Data                | 231 |
| Method 8260C Tune Data     | 231 |
| Method 8260C Blank Data    | 246 |
| Method 8260C LCS/LCSD Data | 267 |
| Method 8260C MS/MSD Data   | 286 |

# **Table of Contents**

| Method 8260C Run Logs        | 296 |
|------------------------------|-----|
| Method 8260C Prep Data       | 301 |
| GC/MS Semi VOA               | 306 |
| Method 8270D                 | 306 |
| Method 8270D QC Summary      | 307 |
| Method 8270D Sample Data     | 327 |
| Standards Data               | 405 |
| Method 8270D ICAL Data       | 405 |
| Method 8270D Resolution Data | 492 |
| Method 8270D CCAL Data       | 496 |
| Raw QC Data                  | 513 |
| Method 8270D Tune Data       | 513 |
| Method 8270D Blank Data      | 541 |
| Method 8270D LCS/LCSD Data   | 551 |
| Method 8270D MS/MSD Data     | 558 |
| Method 8270D Run Logs        | 576 |
| Method 8270D Prep Data       | 580 |
| norganic Sample Data         | 581 |
| Metals Data                  | 581 |
| Met Cover Page               | 582 |
| Met Sample Data              | 583 |
| Met QC Data                  | 586 |
| Met ICV/CCV                  | 586 |
| Met Blanks                   | 592 |
| Met ICSA/ICSAB               | 597 |
| Met MS/MSD/PDS               | 599 |
|                              |     |

# **Table of Contents**

|    | Met LCS/LCSD                    | 602 |
|----|---------------------------------|-----|
|    | Met Serial Dilution             | 605 |
|    | Met MDL                         | 607 |
|    | Met IECF                        | 611 |
|    | Met Linear Ranges               | 614 |
|    | Met Preparation Log             | 616 |
|    | Met Analysis Run Log            | 618 |
|    | Met Raw Data                    | 623 |
|    | Met Prep Data                   | 903 |
|    | General Chemistry Data          | 906 |
|    | Gen Chem Cover Page             | 907 |
|    | Gen Chem MDL                    | 908 |
|    | Gen Chem Analysis Run Log       | 910 |
|    | Gen Chem Prep Data              | 911 |
| Sh | nipping and Receiving Documents | 912 |
|    | Client Chain of Custody         | 913 |
|    | Sample Receipt Checklist        | 914 |

# Job Narrative 480-125579-1

#### Receipt

The samples were received on 10/10/2017 9:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.1° C.

#### **Receipt Exceptions**

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. QC was checked off on the wrong sample, logged in as per pm direction.

#### GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-381944 recovered above the upper control limit for Bromoform, Carbon disulfide, Carbon tetrachloride, Dibromochloromethane, cis-1,3-Dichloropropene and Bromodichloromethane. The samples associated with this CCV were non-detects or below the reporting limit for the affected analytes; therefore, the data have been reported. The following samples are impacted: MW-8 (4-6) (480-125579-1) and MW-8 (13-14) (480-125579-2).

Method(s) 8260C: The laboratory control sample (LCS) for preparation batch 480-382014 and analytical batch 480-381944 recovered outside control limits for the following analyte: Bromoform. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported. The following samples are impacted: MW-8 (4-6) (480-125579-1) and MW-8 (13-14) (480-125579-2).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-382134 recovered outside acceptance criteria, low biased, for Chloromethane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following sample is impacted: DUP-100817 (480-125579-3).

Method(s) 8260C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 480-382187 and analytical batch 480-382134 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits. The following samples are impacted: MW-8 (4-6) (480-125579-1[MSD]) and MW-8 (4-6) (480-125579-1[MSD]).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### GC/MS Semi VOA

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-381534 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following samples are impacted: MW-8 (13-14) (480-125579-2) and DUP-100817 (480-125579-3).

Method(s) 8270D: The following samples was diluted due to color and viscosity: MW-8 (13-14) (480-125579-2) and DUP-100817 (480-125579-3). Elevated reporting limits (RL) are provided.

Method(s) 8270D: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-8 (4-6) (480-125579-1). Elevated reporting limits (RLs) are provided.

Method(s) 8270D: The following sample required a dilution due to the nature of the sample matrix: MW-8 (4-6) (480-125579-1). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8270D: The following samples was diluted due to the nature of the sample matrix: MW-8 (4-6) (480-125579-1[MS]) and MW-8 (4-6) (480-125579-1[MSD]). Because of this dilution, the surrogate spike and matrix spike concentration in the sample was reduced to a level where the recovery and precision calculation does not provide useful information.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **Metals**

Method(s) 6010C: The Low Level Continuing Calibration Verification (CCVL 480-382167/18) contained Total Zinc outside the control limits. All reported samples (MB 480-381758/1-A) associated with this CCVL were either below the laboratory's standard reporting limit for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples was not performed.

Method(s) 6010, 6010C: The Low Level Continuing Calibration Verification (CCVL 480-382167/34) contained Total Iron outside the control limits. All reported samples MW-8 (4-6) (480-125579-1), MW-8 (4-6) (480-125579-1[MS]), MW-8 (4-6) (480-125579-2), DUP-100817 (480-125579-3), (LCDSRM 480-381758/3-), (LCSSRM 480-381758/2-), (480-125579-E-1-B PDS) and (480-125579-E-1-B SD) associated with this CCVL were either below the laboratory's standard reporting limit for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples was not performed.

Method(s) 6010C: The Serial Dilution (480-125579-E-1-B SD) in batch 480-381758, exhibited results outside the quality control limits for Total Beryllium, Cadmium, Chromium, Iron, Magnesium, and Zinc. However, the Post Digestion Spike was compliant so no corrective action was necessary

Method(s) 6010C: The % recovery of Post Spike, (480-125579-E-1-B PDS), in batch 480-381758 exhibited results outside the quality control limits for Total Aluminum, Barium, Potassium, and Sodium. However, the Serial Dilution of this sample was compliant. Therefore, no corrective action was necessary

Method(s) 6010C: The Serial Dilution and Post Spike (480-125579-E-1-B PDS) and (480-125579-E-1-B SD) exceeded the quality control limits for Total Manganese. Sample matrix is suspected, therefore, no corrective action was necessary.

Method(s) 6010C: The continuing calibration blank (CCB 480-382167/45) contained Total iron and Manganese above the reporting limits (RLs). All reported samples DUP-100817 (480-125579-3) associated with this CCB were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCB; therefore, re-analysis of samples was not performed.

Method(s) 6010C: The Low Level Continuing Calibration Verification (CCVL 480-382167/46) contained Total Copper, Iron, Manganese, and Zinc outside the control limits. All reported samples DUP-100817 (480-125579-3) associated with this CCVL were either below the laboratory's standard reporting limit for these analyte or contained these analytes at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **Organic Prep**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

# Sample Summary

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

| Lab Sample ID | Client Sample ID | Matrix | Collected Received            |
|---------------|------------------|--------|-------------------------------|
| 480-125579-1  | MW-8 (4-6)       | Solid  | 10/08/17 11:30 10/10/17 09:50 |
| 480-125579-2  | MW-8 (13-14)     | Solid  | 10/08/17 12:00 10/10/17 09:50 |
| 480-125579-3  | DUP-100817       | Solid  | 10/08/17 00:00 10/10/17 09:50 |
| 480-125579-4  | TRIP BLANK       | Water  | 10/08/17 00:00 10/10/17 09:50 |

# **Detection Summary**

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St.

TestAmerica Job ID: 480-125579-1

# Client Sample ID: MW-8 (4-6)

# Lab Sample ID: 480-125579-1

| Analyte                |        | Qualifier | RL    | MDL    | Unit  | Dil Fac                                | D                          | Method | Prep Type |
|------------------------|--------|-----------|-------|--------|-------|----------------------------------------|----------------------------|--------|-----------|
| Acetone                | 13     | J F1      | 25    | 4.2    | ug/Kg | 1                                      | ₩                          | 8260C  | Total/NA  |
| Benzene                | 1.5    | J         | 5.0   | 0.25   | ug/Kg | 1                                      | ₩                          | 8260C  | Total/NA  |
| Styrene                | 0.28   | J F1      | 5.0   | 0.25   | ug/Kg | 1                                      | ₩                          | 8260C  | Total/NA  |
| Toluene                | 1.8    | J         | 5.0   | 0.38   | ug/Kg | 1                                      | ₩                          | 8260C  | Total/NA  |
| Xylenes, Total         | 0.85   | J F1      | 10    | 0.85   | ug/Kg | 1                                      | ₩                          | 8260C  | Total/NA  |
| Acenaphthene           | 3800   | J F1      | 20000 | 3000   | ug/Kg | 100                                    | ₩                          | 8270D  | Total/NA  |
| Acenaphthylene         | 17000  | JF2       | 20000 | 2600   | ug/Kg | 100                                    | ₩                          | 8270D  | Total/NA  |
| Anthracene             | 40000  | F2        | 20000 | 5000   | ug/Kg | 100                                    | ₩                          | 8270D  | Total/NA  |
| Benzo[a]anthracene     | 87000  | F2        | 20000 | 2000   | ug/Kg | 100                                    | ₩                          | 8270D  | Total/NA  |
| Benzo[a]pyrene         | 69000  | F2        | 20000 | 3000   | ug/Kg | 100                                    | ₩.                         | 8270D  | Total/NA  |
| Benzo[b]fluoranthene   | 83000  | F2        | 20000 | 3200   | ug/Kg | 100                                    | ₩                          | 8270D  | Total/NA  |
| Benzo[g,h,i]perylene   | 38000  | F2        | 20000 | 2100   | ug/Kg | 100                                    | ☼                          | 8270D  | Total/NA  |
| Benzo[k]fluoranthene   | 34000  |           | 20000 | 2600   | ug/Kg | 100                                    | ±                          | 8270D  | Total/NA  |
| Chrysene               | 70000  | F2        | 20000 | 4500   | ug/Kg | 100                                    | ₩                          | 8270D  | Total/NA  |
| Dibenzofuran           | 9100   | J F2      | 20000 | 2400   | ug/Kg | 100                                    | ₩                          | 8270D  | Total/NA  |
| Fluoranthene           | 170000 | F2        | 20000 | 2100   | ug/Kg | 100                                    | ±                          | 8270D  | Total/NA  |
| Fluorene               | 18000  | J F2      | 20000 | 2400   | ug/Kg | 100                                    | ₩                          | 8270D  | Total/NA  |
| Indeno[1,2,3-cd]pyrene | 36000  | F2        | 20000 | 2500   | ug/Kg | 100                                    | ₽                          | 8270D  | Total/NA  |
| Phenanthrene           | 110000 | F2        | 20000 | 3000   | ug/Kg | 100                                    |                            | 8270D  | Total/NA  |
| Pyrene                 | 130000 | F2        | 20000 | 2400   | ug/Kg | 100                                    | ☼                          | 8270D  | Total/NA  |
| Aluminum               | 15400  |           | 11.7  | 5.2    |       | 1                                      | ₽                          | 6010C  | Total/NA  |
| Arsenic                | 18.5   |           | 2.3   | 0.47   |       | 1                                      |                            | 6010C  | Total/NA  |
| Barium                 | 184    | F1        | 0.59  | 0.13   | mg/Kg | 1                                      | ☼                          | 6010C  | Total/NA  |
| Beryllium              | 0.96   |           | 0.23  | 0.033  | mg/Kg | 1                                      | ☼                          | 6010C  | Total/NA  |
| Cadmium                | 1.1    |           | 0.23  | 0.035  |       | 1                                      |                            | 6010C  | Total/NA  |
| Calcium                | 26100  | F2 B      | 58.6  |        | mg/Kg | 1                                      | ₩                          | 6010C  | Total/NA  |
| Chromium               | 31.3   |           | 0.59  | 0.23   |       | 1                                      | ₩                          | 6010C  | Total/NA  |
| Cobalt                 | 13.1   |           | 0.59  | 0.059  |       | 1                                      |                            | 6010C  | Total/NA  |
| Copper                 | 60.5   | F2 F1     | 1.2   | 0.25   | 0 0   | 1                                      | ₽                          | 6010C  | Total/NA  |
| Iron                   | 25000  | ٨         | 11.7  | 4.1    | 0 0   | 1                                      | ₩                          | 6010C  | Total/NA  |
| Lead                   | 679    |           | 1.2   | 0.28   | mg/Kg | 1                                      |                            | 6010C  | Total/NA  |
| Magnesium              | 5870   | F1        | 23.4  | 1.1    | 0 0   | 1                                      | ₽                          | 6010C  | Total/NA  |
| Manganese              | 308    |           | 0.23  | 0.037  | 0 0   | 1                                      | ₩                          | 6010C  | Total/NA  |
| Nickel                 | 39.1   |           | 5.9   | 0.27   |       | 1                                      | -<br>-<br>-<br>-<br>-<br>- | 6010C  | Total/NA  |
| Potassium              | 4310   | F1        | 35.1  | 23.4   | mg/Kg | 1                                      | ₩                          | 6010C  | Total/NA  |
| Selenium               | 4.0    |           | 4.7   | 0.47   | 0 0   | 1                                      | ₩                          | 6010C  | Total/NA  |
| Silver                 | 0.26   |           | 0.70  | 0.23   | mg/Kg | · · · · · · · · · · · · · · · · · · ·  |                            | 6010C  | Total/NA  |
| Sodium                 | 565    | •         | 164   |        | mg/Kg | 1                                      | ₩                          | 6010C  | Total/NA  |
| Vanadium               | 29.1   | F1        | 0.59  | 0.13   |       | 1                                      |                            | 6010C  | Total/NA  |
| Zinc                   | 482    |           | 2.3   |        | mg/Kg | ······································ |                            | 6010C  | Total/NA  |
| Mercury                | 0.35   |           | 0.024 | 0.0099 |       | 1                                      |                            | 7471B  | Total/NA  |

## Client Sample ID: MW-8 (13-14)

# Lab Sample ID: 480-125579-2

| Analyte             | Result | Qualifier | RL   | MDL  | Unit  | Dil Fac | D  | Method | Prep Type |
|---------------------|--------|-----------|------|------|-------|---------|----|--------|-----------|
| Acetone             | 21     | J         | 22   | 3.7  | ug/Kg |         | \$ | 8260C  | Total/NA  |
| Tetrachloroethene   | 0.70   | J         | 4.4  | 0.59 | ug/Kg | 1       | ₩  | 8260C  | Total/NA  |
| 2-Methylnaphthalene | 220    | J         | 1000 | 200  | ug/Kg | 5       | ₩  | 8270D  | Total/NA  |
| Acenaphthene        | 290    | J         | 1000 | 150  | ug/Kg | 5       | ₩. | 8270D  | Total/NA  |
| Acenaphthylene      | 1000   |           | 1000 | 130  | ug/Kg | 5       | ₩  | 8270D  | Total/NA  |

This Detection Summary does not include radiochemical test results.

# **Detection Summary**

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

## Client Sample ID: MW-8 (13-14) (Continued)

## Lab Sample ID: 480-125579-2

| Analyte                | Result | Qualifier | RL    | MDL    | Unit  | Dil Fac | D        | Method | Prep Type |
|------------------------|--------|-----------|-------|--------|-------|---------|----------|--------|-----------|
| Anthracene             | 1800   |           | 1000  | 250    | ug/Kg | 5       | ☼        | 8270D  | Total/NA  |
| Benzo[a]anthracene     | 2100   |           | 1000  | 100    | ug/Kg | 5       | ₩        | 8270D  | Total/NA  |
| Benzo[a]pyrene         | 1500   |           | 1000  | 150    | ug/Kg | 5       | ₩        | 8270D  | Total/NA  |
| Benzo[b]fluoranthene   | 1600   |           | 1000  | 160    | ug/Kg | 5       | ₩        | 8270D  | Total/NA  |
| Benzo[g,h,i]perylene   | 720    | J         | 1000  | 110    | ug/Kg | 5       | Þ        | 8270D  | Total/NA  |
| Benzo[k]fluoranthene   | 700    | J         | 1000  | 130    | ug/Kg | 5       | ₩        | 8270D  | Total/NA  |
| Carbazole              | 250    | J         | 1000  | 120    | ug/Kg | 5       | ₩        | 8270D  | Total/NA  |
| Chrysene               | 1500   |           | 1000  | 230    | ug/Kg | 5       | ₩.       | 8270D  | Total/NA  |
| Dibenzofuran           | 950    | J         | 1000  | 120    | ug/Kg | 5       | ₩        | 8270D  | Total/NA  |
| Fluoranthene           | 4200   |           | 1000  | 110    | ug/Kg | 5       | ₩        | 8270D  | Total/NA  |
| Fluorene               | 1600   |           | 1000  | 120    | ug/Kg | 5       | **       | 8270D  | Total/NA  |
| Indeno[1,2,3-cd]pyrene | 790    | J         | 1000  | 130    | ug/Kg | 5       | ₩        | 8270D  | Total/NA  |
| Phenanthrene           | 5000   |           | 1000  | 150    | ug/Kg | 5       | ₩        | 8270D  | Total/NA  |
| Pyrene                 | 3300   |           | 1000  | 120    | ug/Kg | 5       | ₩        | 8270D  | Total/NA  |
| Aluminum               | 15100  |           | 11.8  | 5.2    |       | 1       | ₩        | 6010C  | Total/NA  |
| Arsenic                | 2.3    | J         | 2.4   | 0.47   | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Barium                 | 45.9   |           | 0.59  | 0.13   | mg/Kg | 1       | **       | 6010C  | Total/NA  |
| Beryllium              | 0.89   |           | 0.24  | 0.033  | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Calcium                | 16800  | В         | 59.1  | 3.9    | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Chromium               | 21.8   |           | 0.59  | 0.24   | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Cobalt                 | 8.9    |           | 0.59  | 0.059  | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Copper                 | 26.2   |           | 1.2   | 0.25   | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Iron                   | 17900  | <b>V</b>  | 11.8  | 4.1    | mg/Kg | 1       | ±        | 6010C  | Total/NA  |
| Lead                   | 8.8    |           | 1.2   | 0.28   | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Magnesium              | 5420   |           | 23.6  | 1.1    | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Manganese              | 173    |           | 0.24  | 0.038  | mg/Kg | 1       | ÷.       | 6010C  | Total/NA  |
| Nickel                 | 33.3   |           | 5.9   | 0.27   | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Potassium              | 4350   |           | 35.5  | 23.6   | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Selenium               | 0.47   |           | 4.7   | 0.47   | mg/Kg | 1       | <b>*</b> | 6010C  | Total/NA  |
| Sodium                 | 411    |           | 165   | 15.4   | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Vanadium               | 22.5   |           | 0.59  | 0.13   |       | 1       | ₩        | 6010C  | Total/NA  |
| Zinc                   | 35.9   |           | 2.4   | 0.76   | mg/Kg | 1       |          | 6010C  | Total/NA  |
| Mercury                | 0.013  | J         | 0.024 | 0.0098 |       | 1       | ₩        | 7471B  | Total/NA  |

#### Client Sample ID: DUP-100817

#### Lab Sample ID: 480-125579-3

| Analyte              | Result | Qualifier | RL   | MDL  | Unit  | Dil Fac | D            | Method | Prep Type |
|----------------------|--------|-----------|------|------|-------|---------|--------------|--------|-----------|
| 2-Butanone (MEK)     | 2.6    | J         | 22   | 1.6  | ug/Kg |         | <del>\</del> | 8260C  | Total/NA  |
| Acetone              | 42     |           | 22   | 3.7  | ug/Kg | 1       | ₩            | 8260C  | Total/NA  |
| Tetrachloroethene    | 0.62   | J         | 4.4  | 0.59 | ug/Kg | 1       | ₩            | 8260C  | Total/NA  |
| 2-Methylnaphthalene  | 620    | J         | 2000 | 390  | ug/Kg | 10      | т.<br>Д      | 8270D  | Total/NA  |
| Acenaphthene         | 810    | J         | 2000 | 290  | ug/Kg | 10      | ₩            | 8270D  | Total/NA  |
| Acenaphthylene       | 2700   |           | 2000 | 250  | ug/Kg | 10      | ₩            | 8270D  | Total/NA  |
| Anthracene           | 5000   |           | 2000 | 490  | ug/Kg | 10      |              | 8270D  | Total/NA  |
| Benzo[a]anthracene   | 5800   |           | 2000 | 200  | ug/Kg | 10      | ₩            | 8270D  | Total/NA  |
| Benzo[a]pyrene       | 4300   |           | 2000 | 290  | ug/Kg | 10      | ₩            | 8270D  | Total/NA  |
| Benzo[b]fluoranthene | 5000   |           | 2000 | 310  | ug/Kg | 10      | т.<br>Д      | 8270D  | Total/NA  |
| Benzo[g,h,i]perylene | 2100   |           | 2000 | 210  | ug/Kg | 10      | ₩            | 8270D  | Total/NA  |
| Benzo[k]fluoranthene | 2000   |           | 2000 | 250  | ug/Kg | 10      | ₽            | 8270D  | Total/NA  |
| Carbazole            | 630    | J         | 2000 | 230  | ug/Kg | 10      |              | 8270D  | Total/NA  |

This Detection Summary does not include radiochemical test results.

# **Detection Summary**

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

## Client Sample ID: DUP-100817 (Continued)

| Lab | Sample | ID.   | 400  | 125570 1 | 5 |
|-----|--------|-------|------|----------|---|
| Lab | Samble | : יטו | 40U- | 1200/9-  | 5 |

Lab Sample ID: 480-125579-4

| Analyte                | Result | Qualifier | RL    | MDL    | Unit  | Dil Fac | D        | Method | Prep Type |
|------------------------|--------|-----------|-------|--------|-------|---------|----------|--------|-----------|
| Chrysene               | 4200   |           | 2000  | 440    | ug/Kg | 10      | \$       | 8270D  | Total/NA  |
| Dibenzofuran           | 2500   |           | 2000  | 230    | ug/Kg | 10      | ₩        | 8270D  | Total/NA  |
| Fluoranthene           | 12000  |           | 2000  | 210    | ug/Kg | 10      | ₩        | 8270D  | Total/NA  |
| Fluorene               | 4300   |           | 2000  | 230    | ug/Kg | 10      | ₩        | 8270D  | Total/NA  |
| Indeno[1,2,3-cd]pyrene | 2300   |           | 2000  | 240    | ug/Kg | 10      | ₩        | 8270D  | Total/NA  |
| Naphthalene            | 330    | J         | 2000  | 250    | ug/Kg | 10      | <b>*</b> | 8270D  | Total/NA  |
| Phenanthrene           | 14000  |           | 2000  | 290    | ug/Kg | 10      | ₩        | 8270D  | Total/NA  |
| Pyrene                 | 9000   |           | 2000  | 230    | ug/Kg | 10      | ₩        | 8270D  | Total/NA  |
| Aluminum               | 21300  |           | 11.9  | 5.2    | mg/Kg | 1       | <b>₩</b> | 6010C  | Total/NA  |
| Arsenic                | 6.4    |           | 2.4   | 0.48   | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Barium                 | 65.2   |           | 0.60  | 0.13   | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Beryllium              | 1.2    |           | 0.24  | 0.033  | mg/Kg | 1       | <b>₩</b> | 6010C  | Total/NA  |
| Calcium                | 25300  | В         | 59.7  | 3.9    | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Chromium               | 31.8   |           | 0.60  | 0.24   | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Cobalt                 | 19.1   |           | 0.60  | 0.060  | mg/Kg | 1       | <b>₩</b> | 6010C  | Total/NA  |
| Copper                 | 45.3   | ٨         | 1.2   | 0.25   | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Iron                   | 30800  | ٨         | 11.9  | 4.2    | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Lead                   | 20.2   |           | 1.2   | 0.29   | mg/Kg | 1       |          | 6010C  | Total/NA  |
| Magnesium              | 8480   |           | 23.9  | 1.1    | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Manganese              | 339    | ٨         | 0.24  | 0.038  | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Nickel                 | 55.7   |           | 6.0   | 0.27   | mg/Kg | 1       | ₩.       | 6010C  | Total/NA  |
| Potassium              | 5760   |           | 35.8  | 23.9   | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Sodium                 | 471    |           | 167   | 15.5   | mg/Kg | 1       | ₽        | 6010C  | Total/NA  |
| Vanadium               | 30.8   |           | 0.60  | 0.13   | mg/Kg | 1       | ₩        | 6010C  | Total/NA  |
| Zinc                   | 52.8   | ٨         | 2.4   | 0.76   | mg/Kg | 1       | ₽        | 6010C  | Total/NA  |
| Mercury                | 0.039  |           | 0.022 | 0.0089 | mg/Kg | 1       | ₩        | 7471B  | Total/NA  |

**Client Sample ID: TRIP BLANK** 

No Detections.

This Detection Summary does not include radiochemical test results.

# **Method Summary**

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

| Method   | Method Description                     | Protocol | Laboratory |
|----------|----------------------------------------|----------|------------|
| 8260C    | Volatile Organic Compounds by GC/MS    | SW846    | TAL BUF    |
| 8270D    | Semivolatile Organic Compounds (GC/MS) | SW846    | TAL BUF    |
| 6010C    | Metals (ICP)                           | SW846    | TAL BUF    |
| 7471B    | Mercury (CVAA)                         | SW846    | TAL BUF    |
| Moisture | Percent Moisture                       | EPA      | TAL BUF    |

#### **Protocol References:**

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

Client Sample ID: MW-8 (4-6)

Lab Sample ID: 480-125579-1 Date Collected: 10/08/17 11:30 **Matrix: Solid** Date Received: 10/10/17 09:50 Percent Solids: 84.4

| Method: 8260C - Volatile Organ<br>Analyte |          | unds by GC/I<br>Qualifier | MS<br>RL | MDL  | Unit           | D                                     | Prepared       | Analyzed       | Dil Fa |
|-------------------------------------------|----------|---------------------------|----------|------|----------------|---------------------------------------|----------------|----------------|--------|
| 1,1,1-Trichloroethane                     | ND       |                           | 5.0      | 0.37 | ug/Kg          | <del></del>                           | 10/10/17 10:30 | 10/16/17 18:28 |        |
| 1,1,2,2-Tetrachloroethane                 | ND       | F1                        | 5.0      | 0.82 | ug/Kg          | ₩                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane     | ND       |                           | 5.0      | 1.1  | ug/Kg          | ₩                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |
| 1,1,2-Trichloroethane                     | ND       | F1                        | 5.0      | 0.65 | ug/Kg          |                                       | 10/10/17 10:30 | 10/16/17 18:28 |        |
| 1,1-Dichloroethane                        | ND       |                           | 5.0      |      | ug/Kg          | ₽                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |
| 1,1-Dichloroethene                        | ND       |                           | 5.0      |      | ug/Kg          | ₽                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |
| 1,2,4-Trichlorobenzene                    | ND       | F1                        | 5.0      |      | ug/Kg          | · · · · · · · · · · · · · · · · · · · | 10/10/17 10:30 | 10/16/17 18:28 |        |
| 1,2-Dibromo-3-Chloropropane               | ND       | F1                        | 5.0      |      | ug/Kg          | ☼                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |
| 1,2-Dibromoethane                         | ND       | F1                        | 5.0      |      | ug/Kg          | ☼                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |
| 1,2-Dichlorobenzene                       | ND       | F1                        | 5.0      |      | ug/Kg          |                                       | 10/10/17 10:30 | 10/16/17 18:28 |        |
| 1,2-Dichloroethane                        | ND       | F1                        | 5.0      |      | ug/Kg          | ≎                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |
| 1,2-Dichloropropane                       | ND       |                           | 5.0      |      | ug/Kg          | ₩                                     |                | 10/16/17 18:28 |        |
| 1,3-Dichlorobenzene                       | ND       | F1                        | 5.0      |      | ug/Kg          |                                       |                | 10/16/17 18:28 |        |
| 1,4-Dichlorobenzene                       | ND       |                           | 5.0      |      | ug/Kg          | ₩                                     |                | 10/16/17 18:28 |        |
| 2-Butanone (MEK)                          | ND       |                           | 25       |      | ug/Kg          | ₩                                     |                | 10/16/17 18:28 |        |
| 2-Hexanone                                | ND       |                           | 25       |      | ug/Kg          | · · · · · · · · · · · · · · · · · · · |                | 10/16/17 18:28 |        |
| 4-Methyl-2-pentanone (MIBK)               | ND       |                           | 25       |      | ug/Kg          | ≎                                     |                | 10/16/17 18:28 |        |
| Acetone                                   |          | J F1                      | 25       |      | ug/Kg          | ₽                                     |                | 10/16/17 18:28 |        |
| Senzene                                   | 1.5      |                           | 5.0      |      | ug/Kg          | · · · · · · · · · · · · · · · · · · · |                | 10/16/17 18:28 |        |
| Bromodichloromethane                      | ND       | J                         | 5.0      |      | ug/Kg<br>ug/Kg |                                       |                | 10/16/17 18:28 |        |
| Bromoform                                 |          | F1 *                      | 5.0      |      | ug/Kg<br>ug/Kg |                                       |                | 10/16/17 18:28 |        |
| Bromomethane                              | ND       |                           | 5.0      |      | ug/Kg<br>ug/Kg | · · · · · · · · · · · · · · · · · · · |                | 10/16/17 18:28 |        |
| Carbon disulfide                          | ND       | ⊏1                        | 5.0      |      | ug/Kg<br>ug/Kg | ☼                                     |                | 10/16/17 18:28 |        |
|                                           | ND<br>ND | ГІ                        | 5.0      |      |                | ☼                                     |                | 10/16/17 18:28 |        |
| Carbon tetrachloride                      |          |                           |          |      | ug/Kg          | · · · · · · · · · · · · · · · · · · · |                | 10/16/17 18:28 |        |
| Chlorobenzene                             | ND       | ГІ                        | 5.0      |      | ug/Kg          | ☼                                     |                |                |        |
| Chloroethane                              | ND       |                           | 5.0      |      | ug/Kg          |                                       |                | 10/16/17 18:28 |        |
| Chloroform                                | ND       |                           | 5.0      |      | ug/Kg          | <del>.</del>                          |                | 10/16/17 18:28 |        |
| Chloromethane                             | ND       | <b>-</b> 4                | 5.0      |      | ug/Kg          | <b>☆</b>                              |                | 10/16/17 18:28 |        |
| cis-1,2-Dichloroethene                    | ND       |                           | 5.0      |      | ug/Kg          | <b>☆</b>                              |                | 10/16/17 18:28 |        |
| cis-1,3-Dichloropropene                   | ND       | F1                        | 5.0      |      | ug/Kg          | <u></u> .                             |                | 10/16/17 18:28 |        |
| Cyclohexane                               | ND       |                           | 5.0      |      | ug/Kg          |                                       |                | 10/16/17 18:28 |        |
| Dibromochloromethane                      | ND       | F1                        | 5.0      |      | ug/Kg          |                                       |                | 10/16/17 18:28 |        |
| Dichlorodifluoromethane                   | ND       | . <u> </u>                | 5.0      |      | ug/Kg          | <u>.</u> .                            |                | 10/16/17 18:28 |        |
| Ethylbenzene                              | ND       | F1                        | 5.0      |      | ug/Kg          | <b></b>                               |                | 10/16/17 18:28 |        |
| sopropylbenzene                           | ND       |                           | 5.0      |      | ug/Kg          | <b>‡</b>                              |                | 10/16/17 18:28 |        |
| Methyl acetate                            | ND       |                           | 25       |      | ug/Kg          |                                       | 10/10/17 10:30 |                |        |
| Methyl tert-butyl ether                   | ND       |                           | 5.0      |      | ug/Kg          | <del>:</del>                          |                | 10/16/17 18:28 |        |
| Methylcyclohexane                         | ND       |                           | 5.0      |      | ug/Kg          | <b>*</b>                              |                | 10/16/17 18:28 |        |
| Methylene Chloride                        | ND       |                           | 5.0      |      | ug/Kg          | ₩                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |
| Styrene                                   |          | J F1                      | 5.0      |      | ug/Kg          | ₩                                     |                | 10/16/17 18:28 |        |
| Tetrachloroethene                         | ND       |                           | 5.0      | 0.68 | ug/Kg          | ☼                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |
| Toluene                                   | 1.8      |                           | 5.0      |      | ug/Kg          | ₩                                     |                | 10/16/17 18:28 |        |
| rans-1,2-Dichloroethene                   | ND       | F1                        | 5.0      |      | ug/Kg          | ₽                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |
| rans-1,3-Dichloropropene                  | ND       | F1                        | 5.0      | 2.2  | ug/Kg          | ₩                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |
| richloroethene                            | ND       | F1                        | 5.0      |      | ug/Kg          | ☼                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |
| richlorofluoromethane                     | ND       |                           | 5.0      | 0.48 | ug/Kg          | ☼                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |
| /inyl chloride                            | ND       |                           | 5.0      | 0.61 | ug/Kg          | ₩                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |
| Xylenes, Total                            | 0.85     | J F1                      | 10       | 0.85 | ug/Kg          | ≎                                     | 10/10/17 10:30 | 10/16/17 18:28 |        |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

Client Sample ID: MW-8 (4-6)

Lab Sample ID: 480-125579-1

 Date Collected: 10/08/17 11:30
 Matrix: Solid

 Date Received: 10/10/17 09:50
 Percent Solids: 84.4

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 98                  | 64 - 126 | 10/10/17 10:30 | 10/16/17 18:28 | 1       |
| 4-Bromofluorobenzene (Surr)  | 100                 | 72 - 126 | 10/10/17 10:30 | 10/16/17 18:28 | 1       |
| Dibromofluoromethane (Surr)  | 103                 | 60 - 140 | 10/10/17 10:30 | 10/16/17 18:28 | 1       |
| Toluene-d8 (Surr)            | 100                 | 71 - 125 | 10/10/17 10:30 | 10/16/17 18:28 | 1       |

| Analyte                       | Result ( | Qualifier | RL     | MDL   | Unit  | D                                     | Prepared       | Analyzed       | Dil Fa |
|-------------------------------|----------|-----------|--------|-------|-------|---------------------------------------|----------------|----------------|--------|
| 2,4,5-Trichlorophenol         | ND       |           | 20000  | 5400  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 2,4,6-Trichlorophenol         | ND       |           | 20000  | 4000  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 2,4-Dichlorophenol            | ND       |           | 20000  | 2100  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 2,4-Dimethylphenol            | ND       |           | 20000  | 4800  | ug/Kg | ₩                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 2,4-Dinitrophenol             | ND       |           | 200000 | 93000 | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 2,4-Dinitrotoluene            | ND       |           | 20000  | 4100  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 2,6-Dinitrotoluene            | ND       |           | 20000  | 2400  | ug/Kg | ₽                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 2-Chloronaphthalene           | ND       |           | 20000  | 3300  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 2-Chlorophenol                | ND       |           | 20000  | 3700  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 2-Methylnaphthalene           | ND       |           | 20000  | 4000  | ug/Kg | ₿                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 2-Methylphenol                | ND       |           | 20000  | 2400  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 2-Nitroaniline                | ND       |           | 39000  | 3000  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 2-Nitrophenol                 | ND       |           | 20000  | 5700  | ug/Kg | ₿                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 3,3'-Dichlorobenzidine        | ND       |           | 39000  | 24000 | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 3-Nitroaniline                | ND       |           | 39000  | 5500  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 4,6-Dinitro-2-methylphenol    | ND       |           | 39000  | 20000 | ug/Kg |                                       | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 4-Bromophenyl phenyl ether    | ND       |           | 20000  | 2800  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 4-Chloro-3-methylphenol       | ND       |           | 20000  | 5000  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 4-Chloroaniline               | ND       |           | 20000  | 5000  | ug/Kg | <del></del>                           | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 4-Chlorophenyl phenyl ether   | ND       |           | 20000  | 2500  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 4-Methylphenol                | ND       |           | 39000  | 2400  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 4-Nitroaniline                | ND       |           | 39000  | 11000 | ug/Kg |                                       | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| 4-Nitrophenol                 | ND       |           | 39000  | 14000 | ug/Kg | ₩                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Acenaphthene                  | 3800 、   | J F1      | 20000  | 3000  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Acenaphthylene                | 17000    | J F2      | 20000  | 2600  | ug/Kg |                                       | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Acetophenone                  | ND       |           | 20000  | 2700  | ug/Kg | ₩                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Anthracene                    | 40000 F  | F2        | 20000  | 5000  | ug/Kg | ₩                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Atrazine                      | ND       |           | 20000  | 7000  | ug/Kg |                                       | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Benzaldehyde                  | ND       |           | 20000  | 16000 | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Benzo[a]anthracene            | 87000 F  | F2        | 20000  | 2000  | ug/Kg | ₩                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Benzo[a]pyrene                | 69000 F  | <b>F2</b> | 20000  | 3000  | ug/Kg | ₩                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Benzo[b]fluoranthene          | 83000 F  | F2        | 20000  | 3200  | ug/Kg | ₩                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Benzo[g,h,i]perylene          | 38000    | F2        | 20000  | 2100  | ug/Kg | ☼                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Benzo[k]fluoranthene          | 34000    |           | 20000  | 2600  | ug/Kg |                                       | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Biphenyl                      | ND       |           | 20000  | 3000  | ug/Kg | ₩                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| bis (2-chloroisopropyl) ether | ND       |           | 20000  |       | ug/Kg | ≎                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Bis(2-chloroethoxy)methane    | ND       |           | 20000  | 4200  | ug/Kg |                                       | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Bis(2-chloroethyl)ether       | ND       |           | 20000  |       | ug/Kg | ₩                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Bis(2-ethylhexyl) phthalate   | ND       |           | 20000  |       | ug/Kg | ₩                                     | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Butyl benzyl phthalate        | ND       |           | 20000  |       | ug/Kg | · · · · · · · · · · · · · · · · · · · | 10/11/17 14:06 | 10/16/17 21:58 | 100    |
| Caprolactam                   | ND       |           | 20000  |       | ug/Kg | ☼                                     |                | 10/16/17 21:58 | 100    |
| Carbazole                     | ND F     | F2        | 20000  |       | ug/Kg | ☼                                     |                | 10/16/17 21:58 | 100    |
| Chrysene                      | 70000 F  |           | 20000  |       | ug/Kg |                                       | 10/11/17 14:06 |                | 100    |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

Client Sample ID: MW-8 (4-6) Lab Sample ID: 480-125579-1

Date Collected: 10/08/17 11:30 **Matrix: Solid** 

|        | Qualifier |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | •                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dil Fa |
|--------|-----------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10     |
|        | J F2      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10     |
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₩            | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
| ND     |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≎            | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
| ND     |           | 20000                   | 3400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ☼            | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
| ND     |           | 20000                   | 2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ₽            | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
| 170000 | F2        | 20000                   | 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ≎            | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
| 18000  | J F2      | 20000                   | 2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ≎            | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
| ND     |           | 20000                   | 2700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ₽            | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
| ND     |           | 20000                   | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ≎            | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
| ND     |           | 20000                   | 2700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ₽            | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
| ND     |           | 20000                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
| 36000  | F2        | 20000                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≎            | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ₽            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10     |
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10     |
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₽            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10     |
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ₩            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10     |
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>-</del> |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10     |
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10     |
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|        | F2        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #.           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10     |
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10     |
| 130000 | F2        | 20000                   | 2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Đ:           | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
|        |           | Limits                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Prepared                                 | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dil F  |
|        | X         | 54 - 120                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
| 83     |           | 60 - 120                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
| 0      | X         | 52 - 120                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
| 0      | X         | 53 - 120                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
| 0      | X         | 54 - 120                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      |
| 0      | X         | 65 - 121                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 10/11/17 14:06                           | 10/16/17 21:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     |
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|        | Qualifier | RL                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D            | Prepared                                 | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dil F  |
| 15400  |           | 11.7                    | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ☼            | 10/13/17 16:34                           | 10/16/17 12:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| ND     | F1        | 17.6                    | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ≎            | 10/13/17 16:34                           | 10/16/17 12:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 18.5   |           | 2.3                     | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ☼            | 10/13/17 16:34                           | 10/16/17 12:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 184    | F1        | 0.59                    | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ₩.           | 10/13/17 16:34                           | 10/16/17 12:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 0.96   |           | 0.23                    | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ₽            | 10/13/17 16:34                           | 10/16/17 12:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|        |           | 0.23                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☼            | 10/13/17 16:34                           | 10/16/17 12:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|        | F2 B      | 58.6                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del> | 10/13/17 16:34                           | 10/16/17 12:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₽            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₩            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|        | F2 F4     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|        | · ·       | 11.7                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | γ.<br>γ.     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| 679    | ,         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/Kg<br>mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|        |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rna/ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ₽            | 10/13/17 16:34                           | 10/16/1/17/1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 5870   | F1        | 23.4                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| 308    | F1        | 0.23                    | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ₽            | 10/13/17 16:34                           | 10/16/17 12:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|        |           |                         | 0.037<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 10/13/17 16:34<br>10/13/17 16:34         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|        | Result    | Result   Qualifier   ND | Result ND         Qualifier         RL           ND         20000           9100         JF2         20000           ND         20000           ND         20000           ND         20000           ND         20000           170000         F2         20000           ND         200 | Result ND         Qualifier         RL         MDL           ND         20000         3500           9100         JF2         20000         2400           ND         20000         2400           ND         20000         2400           ND         20000         3400           ND         20000         2400           170000         F2         20000         2400           ND         20000         2700           ND         20000         2700           ND         20000         2700           ND         20000         2700           ND         20000         2500           ND         20000         2500           ND         20000         2500           ND         20000         2600           ND         20000         2600           ND         20000         2600           ND         20000         3400           ND         20000         3400           ND         20000         3400           ND         20000         3100           110000         F2         20000         3100 | NID          | Result   Qualifier   RL   MDL   Unit   D | Prepared   Prepared | ND     |

TestAmerica Buffalo

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

Client Sample ID: MW-8 (4-6)

Lab Sample ID: 480-125579-1 Date Collected: 10/08/17 11:30 **Matrix: Solid** Date Received: 10/10/17 09:50 Percent Solids: 84.4

| Method: 6010C - Metals (ICI | P) (Continued) |           |      |      |       |          |                |                |         |
|-----------------------------|----------------|-----------|------|------|-------|----------|----------------|----------------|---------|
| Analyte                     | Result         | Qualifier | RL   | MDL  | Unit  | D        | Prepared       | Analyzed       | Dil Fac |
| Silver                      | 0.26           | J -       | 0.70 | 0.23 | mg/Kg | <u> </u> | 10/13/17 16:34 | 10/16/17 12:07 | 1       |
| Sodium                      | 565            |           | 164  | 15.2 | mg/Kg | ⇔        | 10/13/17 16:34 | 10/16/17 12:07 | 1       |
| Thallium                    | ND             |           | 7.0  | 0.35 | mg/Kg | ₩        | 10/13/17 16:34 | 10/16/17 12:07 | 1       |
| Vanadium                    | 29.1           | F1        | 0.59 | 0.13 | mg/Kg | ₽        | 10/13/17 16:34 | 10/16/17 12:07 | 1       |
| Zinc                        | 482            |           | 2.3  | 0.75 | mg/Kg | \$       | 10/13/17 16:34 | 10/16/17 12:07 | 1       |

| Method: 7471B - Mercury (CVA | <b>A</b> ) |           |       |        |       |   |   |               |                |         |
|------------------------------|------------|-----------|-------|--------|-------|---|---|---------------|----------------|---------|
| Analyte                      | Result     | Qualifier | RL    | MDL    | Unit  | D |   | Prepared      | Analyzed       | Dil Fac |
| Mercury                      | 0.35       |           | 0.024 | 0.0099 | mg/Kg | ☼ | 1 | 0/10/17 13:30 | 10/10/17 15:10 | 1       |

Client Sample ID: MW-8 (13-14) Lab Sample ID: 480-125579-2 Date Collected: 10/08/17 12:00 **Matrix: Solid** 

Date Received: 10/10/17 09:50 Percent Solids: 81.6

| Analyte                               | Result | Qualifier | RL  | MDL  | Unit  | D         | Prepared       | Analyzed       | Dil Fac |
|---------------------------------------|--------|-----------|-----|------|-------|-----------|----------------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND     |           | 4.4 | 0.32 | ug/Kg | ₩         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 4.4 | 0.71 | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 4.4 | 1.0  | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,1,2-Trichloroethane                 | ND     |           | 4.4 | 0.57 | ug/Kg | <b></b>   | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,1-Dichloroethane                    | ND     |           | 4.4 | 0.54 | ug/Kg | ≎         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,1-Dichloroethene                    | ND     |           | 4.4 | 0.54 | ug/Kg | ≎         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,2,4-Trichlorobenzene                | ND     |           | 4.4 | 0.27 | ug/Kg | ₽         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 4.4 | 2.2  | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,2-Dibromoethane                     | ND     |           | 4.4 | 0.57 | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,2-Dichlorobenzene                   | ND     |           | 4.4 | 0.34 | ug/Kg | <b>\$</b> | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,2-Dichloroethane                    | ND     |           | 4.4 | 0.22 | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,2-Dichloropropane                   | ND     |           | 4.4 | 2.2  | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,3-Dichlorobenzene                   | ND     |           | 4.4 | 0.23 | ug/Kg |           | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 1,4-Dichlorobenzene                   | ND     |           | 4.4 | 0.62 | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 2-Butanone (MEK)                      | ND     |           | 22  | 1.6  | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 2-Hexanone                            | ND     |           | 22  | 2.2  | ug/Kg |           | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 22  | 1.4  | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Acetone                               | 21     | J         | 22  | 3.7  | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Benzene                               | ND     |           | 4.4 | 0.22 | ug/Kg | ф.        | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Bromodichloromethane                  | ND     |           | 4.4 | 0.59 | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Bromoform                             | ND     | *         | 4.4 | 2.2  | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Bromomethane                          | ND     |           | 4.4 | 0.40 | ug/Kg | Ф         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Carbon disulfide                      | ND     |           | 4.4 | 2.2  | ug/Kg | ₽         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Carbon tetrachloride                  | ND     |           | 4.4 | 0.43 | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Chlorobenzene                         | ND     |           | 4.4 | 0.58 | ug/Kg |           | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Chloroethane                          | ND     |           | 4.4 | 0.99 | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Chloroform                            | ND     |           | 4.4 | 0.27 | ug/Kg | ₽         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Chloromethane                         | ND     |           | 4.4 | 0.27 | ug/Kg |           | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| cis-1,2-Dichloroethene                | ND     |           | 4.4 | 0.56 | ug/Kg | ₩         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| cis-1,3-Dichloropropene               | ND     |           | 4.4 | 0.63 | ug/Kg | ₽         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Cyclohexane                           | ND     |           | 4.4 | 0.62 | ug/Kg |           | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Dibromochloromethane                  | ND     |           | 4.4 |      | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Dichlorodifluoromethane               | ND     |           | 4.4 |      | ug/Kg | ☼         | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Ethylbenzene                          | ND     |           | 4.4 |      | ug/Kg |           | 10/10/17 10:30 | 10/16/17 18:54 | 1       |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

Client Sample ID: MW-8 (13-14)

Lab Sample ID: 480-125579-2 Date Collected: 10/08/17 12:00 **Matrix: Solid** Date Received: 10/10/17 09:50 Percent Solids: 81.6

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit  | D        | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|-------|----------|----------------|----------------|---------|
| Isopropylbenzene             | ND        |           | 4.4      | 0.66 | ug/Kg | <u> </u> | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Methyl acetate               | ND        |           | 22       | 2.7  | ug/Kg | ☼        | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Methyl tert-butyl ether      | ND        |           | 4.4      | 0.43 | ug/Kg | ₽        | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Methylcyclohexane            | ND        |           | 4.4      | 0.67 | ug/Kg | ☼        | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Methylene Chloride           | ND        |           | 4.4      | 2.0  | ug/Kg | ☼        | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Styrene                      | ND        |           | 4.4      | 0.22 | ug/Kg | ₽        | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Tetrachloroethene            | 0.70      | J         | 4.4      | 0.59 | ug/Kg | ☼        | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Toluene                      | ND        |           | 4.4      | 0.33 | ug/Kg | ☼        | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| trans-1,2-Dichloroethene     | ND        |           | 4.4      | 0.45 | ug/Kg | \$       | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| trans-1,3-Dichloropropene    | ND        |           | 4.4      | 1.9  | ug/Kg | ☼        | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Trichloroethene              | ND        |           | 4.4      | 0.97 | ug/Kg | ☼        | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Trichlorofluoromethane       | ND        |           | 4.4      | 0.42 | ug/Kg | \$       | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Vinyl chloride               | ND        |           | 4.4      | 0.54 | ug/Kg | ☼        | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Xylenes, Total               | ND        |           | 8.8      | 0.74 | ug/Kg | ☼        | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |       |          | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 107       |           | 64 - 126 |      |       |          | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| 4-Bromofluorobenzene (Surr)  | 105       |           | 72 - 126 |      |       |          | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Dibromofluoromethane (Surr)  | 106       |           | 60 - 140 |      |       |          | 10/10/17 10:30 | 10/16/17 18:54 | 1       |
| Toluene-d8 (Surr)            | 98        |           | 71 - 125 |      |       |          | 10/10/17 10:30 | 10/16/17 18:54 | 1       |

| Analyte                     | Result | Qualifier | ŔL    | MDL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|--------|-----------|-------|------|-------|---|----------------|----------------|---------|
| 2,4,5-Trichlorophenol       | ND     |           | 1000  | 280  | ug/Kg | ₩ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2,4,6-Trichlorophenol       | ND     |           | 1000  | 200  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2,4-Dichlorophenol          | ND     |           | 1000  | 110  | ug/Kg | ☼ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2,4-Dimethylphenol          | ND     |           | 1000  | 250  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2,4-Dinitrophenol           | ND     |           | 10000 | 4700 | ug/Kg | ☼ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2,4-Dinitrotoluene          | ND     |           | 1000  | 210  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2,6-Dinitrotoluene          | ND     |           | 1000  | 120  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2-Chloronaphthalene         | ND     |           | 1000  | 170  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2-Chlorophenol              | ND     |           | 1000  | 190  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2-Methylnaphthalene         | 220    | J         | 1000  | 200  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2-Methylphenol              | ND     |           | 1000  | 120  | ug/Kg | ☼ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2-Nitroaniline              | ND     |           | 2000  | 150  | ug/Kg | ☼ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 2-Nitrophenol               | ND     |           | 1000  | 290  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 3,3'-Dichlorobenzidine      | ND     |           | 2000  | 1200 | ug/Kg | ☼ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 3-Nitroaniline              | ND     |           | 2000  | 280  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4,6-Dinitro-2-methylphenol  | ND     |           | 2000  | 1000 | ug/Kg |   | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4-Bromophenyl phenyl ether  | ND     |           | 1000  | 140  | ug/Kg | ☼ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4-Chloro-3-methylphenol     | ND     |           | 1000  | 250  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4-Chloroaniline             | ND     |           | 1000  | 250  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4-Chlorophenyl phenyl ether | ND     |           | 1000  | 130  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4-Methylphenol              | ND     |           | 2000  | 120  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4-Nitroaniline              | ND     |           | 2000  | 530  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| 4-Nitrophenol               | ND     |           | 2000  | 710  | ug/Kg | ☼ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Acenaphthene                | 290    | J         | 1000  | 150  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Acenaphthylene              | 1000   |           | 1000  | 130  | ug/Kg | ₽ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Acetophenone                | ND     |           | 1000  | 140  | ug/Kg | ☼ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |
| Anthracene                  | 1800   |           | 1000  | 250  | ug/Kg | ₩ | 10/11/17 14:06 | 10/13/17 08:02 | 5       |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

Client Sample ID: MW-8 (13-14)

Lab Sample ID: 480-125579-2 Date Collected: 10/08/17 12:00 **Matrix: Solid** Date Received: 10/10/17 09:50 Percent Solids: 81.6

| Method: 8270D - Semivolatile (  | Result            | Qualifier | RL                   | MDL | Unit           | D            | Prepared                | Analyzed                         | Dil Fac |
|---------------------------------|-------------------|-----------|----------------------|-----|----------------|--------------|-------------------------|----------------------------------|---------|
| Atrazine                        | ND                |           | 1000                 |     | ug/Kg          | ₩            | 10/11/17 14:06          | 10/13/17 08:02                   |         |
| Benzaldehyde                    | ND                |           | 1000                 |     | ug/Kg          | ☼            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Benzo[a]anthracene              | 2100              |           | 1000                 | 100 | ug/Kg          | ☼            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Benzo[a]pyrene                  | 1500              |           | 1000                 | 150 | ug/Kg          | ₩            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Benzo[b]fluoranthene            | 1600              |           | 1000                 | 160 | ug/Kg          | ₩            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Benzo[g,h,i]perylene            | 720               | J         | 1000                 | 110 | ug/Kg          | ₩            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Benzo[k]fluoranthene            | 700               | J         | 1000                 | 130 | ug/Kg          | ₽            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Biphenyl                        | ND                |           | 1000                 | 150 | ug/Kg          | ☼            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| bis (2-chloroisopropyl) ether   | ND                |           | 1000                 | 200 | ug/Kg          | ☼            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Bis(2-chloroethoxy)methane      | ND                |           | 1000                 | 220 | ug/Kg          | ₽            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Bis(2-chloroethyl)ether         | ND                |           | 1000                 | 130 | ug/Kg          | ₩            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Bis(2-ethylhexyl) phthalate     | ND                |           | 1000                 | 350 | ug/Kg          | ≎            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Butyl benzyl phthalate          | ND                |           | 1000                 | 170 | ug/Kg          | ₽            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Caprolactam                     | ND                |           | 1000                 | 310 | ug/Kg          | ☼            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Carbazole                       | 250               | J         | 1000                 | 120 | ug/Kg          | ≎            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Chrysene                        | 1500              |           | 1000                 |     | ug/Kg          | ₩.           | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Dibenz(a,h)anthracene           | ND                |           | 1000                 | 180 | ug/Kg          | ⇔            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Dibenzofuran                    | 950               | J         | 1000                 |     | ug/Kg          | ☆            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Diethyl phthalate               | ND                |           | 1000                 |     | ug/Kg          |              | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Dimethyl phthalate              | ND                |           | 1000                 |     | ug/Kg          | ☼            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Di-n-butyl phthalate            | ND                |           | 1000                 | 170 | ug/Kg          | ₩            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Di-n-octyl phthalate            | ND                |           | 1000                 | 120 | ug/Kg          |              | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Fluoranthene                    | 4200              |           | 1000                 |     | ug/Kg          | ⇔            | 10/11/17 14:06          | 10/13/17 08:02                   | 5       |
| Fluorene                        | 1600              |           | 1000                 |     | ug/Kg          | ⇔            |                         | 10/13/17 08:02                   | 5       |
| Hexachlorobenzene               | ND                |           | 1000                 |     | ug/Kg          | <sub>.</sub> |                         | 10/13/17 08:02                   | 5       |
| Hexachlorobutadiene             | ND                |           | 1000                 |     | ug/Kg          | ₩            |                         | 10/13/17 08:02                   | 5       |
| Hexachlorocyclopentadiene       | ND                |           | 1000                 |     | ug/Kg          | ₩            |                         | 10/13/17 08:02                   | 5       |
| Hexachloroethane                | ND                |           | 1000                 |     | ug/Kg          |              |                         | 10/13/17 08:02                   | 5       |
| Indeno[1,2,3-cd]pyrene          | 790               | J         | 1000                 |     | ug/Kg          | ⇔            |                         | 10/13/17 08:02                   | 5       |
| Isophorone                      | ND                |           | 1000                 |     | ug/Kg          | ₩            |                         | 10/13/17 08:02                   | 5       |
| Naphthalene                     | ND                |           | 1000                 |     | ug/Kg          |              |                         | 10/13/17 08:02                   | 5       |
| Nitrobenzene                    | ND                |           | 1000                 |     | ug/Kg          | ☆            |                         | 10/13/17 08:02                   | 5       |
| N-Nitrosodi-n-propylamine       | ND                |           | 1000                 |     | ug/Kg          | ☆            |                         | 10/13/17 08:02                   | 5       |
| N-Nitrosodiphenylamine          | ND                |           | 1000                 |     | ug/Kg<br>ug/Kg |              |                         | 10/13/17 08:02                   | 5       |
| Pentachlorophenol               | ND                |           | 2000                 |     | ug/Kg<br>ug/Kg | ☼            |                         | 10/13/17 08:02                   | 5       |
| Phenanthrene                    |                   |           | 1000                 |     |                |              | 10/11/17 14:06          |                                  | 5       |
| Phenol                          | <b>5000</b><br>ND |           | 1000                 |     | ug/Kg<br>ug/Kg |              | 10/11/17 14:06          |                                  | 5       |
| Pyrene                          | 3300              |           | 1000                 |     | ug/Kg<br>ug/Kg | ₩            |                         | 10/13/17 08:02                   | 5       |
| -                               |                   | Qualifie" |                      |     |                |              | Dronovod                | Analyzad                         | חנו ב-  |
| Surrogate  2.4.6 Tribromonhonol | %Recovery         | Quaiiller | Limits 54 - 120      |     |                |              | Prepared 10/11/17 14:06 | Analyzed<br>10/13/17 08:02       | Dil Fac |
| 2,4,6-Tribromophenol            | 111               |           |                      |     |                |              |                         |                                  | 5       |
| 2-Fluorobiphenyl                | 88                |           | 60 - 120<br>52 - 120 |     |                |              |                         | 10/13/17 08:02<br>10/13/17 08:02 | 5       |
| 2-Fluorophenol                  | 73                |           | 52 <sub>-</sub> 120  |     |                |              |                         |                                  | 5       |
| Nitrobenzene-d5                 | 55                |           | 53 - 120             |     |                |              |                         | 10/13/17 08:02                   | 5       |
| Phenol-d5                       | 82                |           | 54 - 120             |     |                |              |                         | 10/13/17 08:02                   | 5       |
| p-Terphenyl-d14                 | 98                |           | 65 - 121             |     |                |              | 10/11/1/ 14:06          | 10/13/17 08:02                   | 5       |
| Method: 6010C - Metals (ICP)    | _                 |           | <u>.</u>             |     |                | _            |                         |                                  |         |
| Analyte                         | Result            | Qualifier | RL                   | MDL | Unit           | D            | Prepared                | Analyzed                         | Dil Fac |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

Client Sample ID: MW-8 (13-14)

Lab Sample ID: 480-125579-2 Date Collected: 10/08/17 12:00 **Matrix: Solid** Date Received: 10/10/17 09:50 Percent Solids: 81.6

| Method: 6010C - Metals (ICP) (Co<br>Analyte |        | Qualifier | RL    | MDL    | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
|---------------------------------------------|--------|-----------|-------|--------|-------|--------------|----------------|----------------|---------|
| Antimony                                    | ND     |           | 17.7  | 0.47   | mg/Kg | <u></u>      | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Arsenic                                     | 2.3    | J         | 2.4   | 0.47   | mg/Kg | ₩            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Barium                                      | 45.9   |           | 0.59  | 0.13   | mg/Kg | φ.           | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Beryllium                                   | 0.89   |           | 0.24  | 0.033  | mg/Kg | ₩            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Cadmium                                     | ND     |           | 0.24  | 0.035  | mg/Kg | ☼            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Calcium                                     | 16800  | В         | 59.1  | 3.9    | mg/Kg | ₩            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Chromium                                    | 21.8   |           | 0.59  | 0.24   | mg/Kg | ₩            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Cobalt                                      | 8.9    |           | 0.59  | 0.059  | mg/Kg | ₩            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Copper                                      | 26.2   |           | 1.2   | 0.25   | mg/Kg | ₩            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Iron                                        | 17900  | ٨         | 11.8  | 4.1    | mg/Kg | ☼            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Lead                                        | 8.8    |           | 1.2   | 0.28   | mg/Kg | ☼            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Magnesium                                   | 5420   |           | 23.6  | 1.1    | mg/Kg | ₽            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Manganese                                   | 173    |           | 0.24  | 0.038  | mg/Kg | ☼            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Nickel                                      | 33.3   |           | 5.9   | 0.27   | mg/Kg | ☼            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Potassium                                   | 4350   |           | 35.5  | 23.6   | mg/Kg | ₩.           | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Selenium                                    | 0.47   | J         | 4.7   | 0.47   | mg/Kg | ☼            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Silver                                      | ND     |           | 0.71  | 0.24   | mg/Kg | ₩            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Sodium                                      | 411    |           | 165   | 15.4   | mg/Kg | ₩            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Thallium                                    | ND     |           | 7.1   | 0.35   | mg/Kg | ☼            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Vanadium                                    | 22.5   |           | 0.59  | 0.13   | mg/Kg | ☼            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Zinc                                        | 35.9   |           | 2.4   | 0.76   | mg/Kg | ☼            | 10/13/17 16:34 | 10/16/17 12:25 | 1       |
| Method: 7471B - Mercury (CVAA)              |        |           |       |        |       |              |                |                |         |
| Analyte                                     | Result | Qualifier | RL    | MDL    | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
| Mercury                                     | 0.013  | J         | 0.024 | 0.0098 | mg/Kg | <del>\</del> | 10/10/17 13:30 | 10/10/17 15:16 | 1       |

Client Sample ID: DUP-100817 Lab Sample ID: 480-125579-3 Date Collected: 10/08/17 00:00 **Matrix: Solid** 

Date Received: 10/10/17 09:50 Percent Solids: 84.7

| Analyte                               | Result Qualifier | RL  | MDL  | Unit  | D  | Prepared       | Analyzed       | Dil Fac |
|---------------------------------------|------------------|-----|------|-------|----|----------------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND               | 4.4 | 0.32 | ug/Kg | ₽  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND               | 4.4 | 0.71 | ug/Kg | ☼  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 4.4 | 1.0  | ug/Kg | ₽  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,1,2-Trichloroethane                 | ND               | 4.4 | 0.57 | ug/Kg | ₽  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,1-Dichloroethane                    | ND               | 4.4 | 0.53 | ug/Kg | ☼  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,1-Dichloroethene                    | ND               | 4.4 | 0.54 | ug/Kg | ☼  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,2,4-Trichlorobenzene                | ND               | 4.4 | 0.27 | ug/Kg | ₽  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND               | 4.4 | 2.2  | ug/Kg | ☼  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,2-Dibromoethane                     | ND               | 4.4 | 0.56 | ug/Kg | ☼  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,2-Dichlorobenzene                   | ND               | 4.4 | 0.34 | ug/Kg | ₽  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,2-Dichloroethane                    | ND               | 4.4 | 0.22 | ug/Kg | ☼  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,2-Dichloropropane                   | ND               | 4.4 | 2.2  | ug/Kg | ☼  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,3-Dichlorobenzene                   | ND               | 4.4 | 0.22 | ug/Kg | \$ | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 1,4-Dichlorobenzene                   | ND               | 4.4 | 0.61 | ug/Kg | ☼  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 2-Butanone (MEK)                      | 2.6 J            | 22  | 1.6  | ug/Kg | ☼  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 2-Hexanone                            | ND               | 22  | 2.2  | ug/Kg |    | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND               | 22  | 1.4  | ug/Kg | ☼  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |
| Acetone                               | 42               | 22  | 3.7  | ug/Kg | ₽  | 10/10/17 10:30 | 10/17/17 14:11 | 1       |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

| Client S | Sample | ID: Dl | JP-100 | 0817 |
|----------|--------|--------|--------|------|
|----------|--------|--------|--------|------|

2,4-Dinitrotoluene

2,6-Dinitrotoluene

2-Chlorophenol

2-Chloronaphthalene

2-Methylnaphthalene 2-Methylphenol

Lab Sample ID: 480-125579-3 Date Collected: 10/08/17 00:00 **Matrix: Solid** Date Received: 10/10/17 09:50 Percent Solids: 84.7

| Analyte                      |           | Qualifier | RL       | MDL     |       | D              | Prepared       | Analyzed                | Dil Fac |
|------------------------------|-----------|-----------|----------|---------|-------|----------------|----------------|-------------------------|---------|
| Benzene                      | ND        |           | 4.4      | 0.21    | ug/Kg | ₩              | 10/10/17 10:30 |                         | 1       |
| Bromodichloromethane         | ND        |           | 4.4      |         | ug/Kg | <b>*</b>       |                | 10/17/17 14:11          | 1       |
| Bromoform                    | ND        |           | 4.4      |         | ug/Kg |                |                | 10/17/17 14:11          | 1       |
| Bromomethane                 | ND        |           | 4.4      |         | ug/Kg | ₩              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Carbon disulfide             | ND        |           | 4.4      |         | ug/Kg | ₩              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Carbon tetrachloride         | ND        |           | 4.4      | 0.42    | ug/Kg | ₩              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Chlorobenzene                | ND        |           | 4.4      |         | ug/Kg | ≎              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Chloroethane                 | ND        |           | 4.4      | 0.99    | ug/Kg | ☼              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Chloroform                   | ND        |           | 4.4      | 0.27    | ug/Kg | ₩              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Chloromethane                | ND        |           | 4.4      | 0.26    | ug/Kg | ₽              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| cis-1,2-Dichloroethene       | ND        |           | 4.4      | 0.56    | ug/Kg | ☼              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| cis-1,3-Dichloropropene      | ND        |           | 4.4      | 0.63    | ug/Kg | ≎              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Cyclohexane                  | ND        |           | 4.4      | 0.61    | ug/Kg | ₽              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Dibromochloromethane         | ND        |           | 4.4      | 0.56    | ug/Kg | ☼              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Dichlorodifluoromethane      | ND        |           | 4.4      | 0.36    | ug/Kg | ☼              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Ethylbenzene                 | ND        |           | 4.4      | 0.30    | ug/Kg |                | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Isopropylbenzene             | ND        |           | 4.4      | 0.66    | ug/Kg | ≎              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Methyl acetate               | ND        |           | 22       | 2.6     | ug/Kg | ₽              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Methyl tert-butyl ether      | ND        |           | 4.4      |         | ug/Kg |                | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Methylcyclohexane            | ND        |           | 4.4      |         | ug/Kg | ₩              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Methylene Chloride           | ND        |           | 4.4      |         | ug/Kg | ₩              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Styrene                      | ND        |           | 4.4      |         | ug/Kg |                | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Tetrachloroethene            | 0.62      | J         | 4.4      |         | ug/Kg | ☼              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Toluene                      | ND        |           | 4.4      |         | ug/Kg | ☼              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| trans-1,2-Dichloroethene     | ND        |           | 4.4      |         | ug/Kg |                | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| trans-1,3-Dichloropropene    | ND        |           | 4.4      |         | ug/Kg | ≎              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Trichloroethene              | ND        |           | 4.4      |         | ug/Kg | ≎              | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Trichlorofluoromethane       | ND        |           | 4.4      |         | ug/Kg |                |                | 10/17/17 14:11          | 1       |
| Vinyl chloride               | ND        |           | 4.4      |         | ug/Kg | ₽              |                | 10/17/17 14:11          | 1       |
| Xylenes, Total               | ND        |           | 8.8      |         | ug/Kg | ₽              |                | 10/17/17 14:11          | 1       |
| 74,000, 10.00.               |           |           | 0.0      | · · · · | ~gg   |                |                |                         | •       |
| Surrogate                    | %Recovery | Qualifier | Limits   |         |       |                | Prepared       | Analyzed                | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 107       |           | 64 - 126 |         |       |                | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| 4-Bromofluorobenzene (Surr)  | 103       |           | 72 - 126 |         |       |                | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Dibromofluoromethane (Surr)  | 104       |           | 60 - 140 |         |       |                | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Toluene-d8 (Surr)            | 98        |           | 71 - 125 |         |       |                | 10/10/17 10:30 | 10/17/17 14:11          | 1       |
| Method: 8270D - Semivolat    |           | mpounds ( | (GC/MS)  | MDL     | Unit  | <b>D</b>       | Prepared       | Analyzod                | Dil Fac |
| Analyte                      | ND Result |           |          |         |       | — <del>D</del> | 10/11/17 14:06 | Analyzed 10/13/17 08:28 |         |
| 2,4,5-Trichlorophenol        |           |           | 2000     | 530     | ug/Kg |                |                |                         | 10      |
| 2,4,6-Trichlorophenol        | ND        |           | 2000     |         | ug/Kg | <b>\$</b>      | 10/11/17 14:06 |                         | 10      |
| 2,4-Dichlorophenol           | ND        |           | 2000     |         | ug/Kg | <u>.</u> .     |                | 10/13/17 08:28          | 10      |
| 2,4-Dimethylphenol           | ND        |           | 2000     |         | ug/Kg | ☼              |                | 10/13/17 08:28          | 10      |
| 2,4-Dinitrophenol            | ND        |           | 19000    | 9100    | ug/Kg | ₩              | 10/11/17 14:06 | 10/13/17 08:28          | 10      |
| 3. 4. Dissifus 4 - I         | NID.      |           | 0000     | 440     |       | <b>&gt;</b> ~< | 40/44/47 44:00 | 40/40/47 00:00          |         |

TestAmerica Buffalo

☼ 10/11/17 14:06 10/13/17 08:28

☼ 10/11/17 14:06 10/13/17 08:28

☼ 10/11/17 14:06 10/13/17 08:28

☼ 10/11/17 14:06 10/13/17 08:28

☼ 10/11/17 14:06 10/13/17 08:28

☼ 10/11/17 14:06 10/13/17 08:28

2000

2000

2000

2000

2000

2000

410 ug/Kg

230 ug/Kg

320 ug/Kg

360 ug/Kg

390 ug/Kg

230 ug/Kg

ND

ND

ND

ND

ND

620 J

10

10

10

10

10

10

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

Client Sample ID: DUP-100817

Lab Sample ID: 480-125579-3 Date Collected: 10/08/17 00:00 **Matrix: Solid** Date Received: 10/10/17 09:50 Percent Solids: 84.7

| Method: 8270D - Semivolatil<br>Analyte     | Result (   |            |       | Unit           | D               | Prepared       | Analyzed                         | Dil Fa                                |
|--------------------------------------------|------------|------------|-------|----------------|-----------------|----------------|----------------------------------|---------------------------------------|
| 2-Nitroaniline                             | ND ND      | 380        |       | ug/Kg          | — <del>ğ</del>  |                | 10/13/17 08:28                   | 1                                     |
| 2-Nitrophenol                              | ND         | 200        |       | ug/Kg          |                 |                | 10/13/17 08:28                   | · · · · · · · · · · · · · · · · · · · |
| 3,3'-Dichlorobenzidine                     | ND         | 380        |       | ug/Kg          | ₽               |                | 10/13/17 08:28                   | 1                                     |
| 3-Nitroaniline                             | ND         | 380        |       | ug/Kg          | ₽               |                | 10/13/17 08:28                   | 1                                     |
| 4,6-Dinitro-2-methylphenol                 | ND         | 380        |       | ug/Kg          |                 |                | 10/13/17 08:28                   | <u>.</u><br>1                         |
| •                                          | ND<br>ND   | 200        |       |                | ₽               |                | 10/13/17 08:28                   | 1                                     |
| 4-Bromophenyl phenyl ether                 | ND<br>ND   | 200        |       | ug/Kg          | ₽               |                | 10/13/17 08:28                   |                                       |
| 4-Chloro-3-methylphenol<br>4-Chloroaniline |            |            |       | ug/Kg          | · · · · · · · . |                | 10/13/17 06.26                   | 1                                     |
|                                            | ND<br>ND   | 200        |       | ug/Kg          |                 |                |                                  | 1                                     |
| 1-Chlorophenyl phenyl ether                | ND         | 200        |       | ug/Kg          | <b>☆</b>        |                | 10/13/17 08:28                   | 1                                     |
| 4-Methylphenol                             | ND         | 380        |       | ug/Kg          |                 |                | 10/13/17 08:28                   | 1                                     |
| 4-Nitroaniline                             | ND         | 380        |       | ug/Kg          |                 |                | 10/13/17 08:28                   | 1                                     |
| 1-Nitrophenol                              | ND         | 380        |       | ug/Kg          | Ψ.              |                | 10/13/17 08:28                   | 1                                     |
| Acenaphthene                               | 810 J      |            |       | ug/Kg          |                 |                | 10/13/17 08:28                   | 1                                     |
| Acenaphthylene                             | 2700       | 200        |       | ug/Kg          | Ψ.              |                | 10/13/17 08:28                   | 1                                     |
| Acetophenone                               | ND         | 200        |       | ug/Kg          | Ψ.              |                | 10/13/17 08:28                   | 1                                     |
| Anthracene                                 | 5000       | 200        |       | ug/Kg          |                 |                | 10/13/17 08:28                   |                                       |
| Atrazine                                   | ND         | 200        |       | ug/Kg          | <b>*</b>        |                | 10/13/17 08:28                   | 1                                     |
| Benzaldehyde                               | ND         | 200        |       | ug/Kg          | ☼               |                | 10/13/17 08:28                   | •                                     |
| Benzo[a]anthracene                         | 5800       | 200        | 0 200 | ug/Kg          | ₩               | 10/11/17 14:06 | 10/13/17 08:28                   |                                       |
| Benzo[a]pyrene                             | 4300       | 200        | 0 290 | ug/Kg          | ⊅               | 10/11/17 14:06 | 10/13/17 08:28                   |                                       |
| Benzo[b]fluoranthene                       | 5000       | 200        | 0 310 | ug/Kg          | ₽               | 10/11/17 14:06 | 10/13/17 08:28                   | •                                     |
| Benzo[g,h,i]perylene                       | 2100       | 200        | 0 210 | ug/Kg          | ☼               | 10/11/17 14:06 | 10/13/17 08:28                   | •                                     |
| Benzo[k]fluoranthene                       | 2000       | 200        | 0 250 | ug/Kg          | ₽               | 10/11/17 14:06 | 10/13/17 08:28                   |                                       |
| Biphenyl                                   | ND         | 200        | 0 290 | ug/Kg          | ₽               | 10/11/17 14:06 | 10/13/17 08:28                   | •                                     |
| ois (2-chloroisopropyl) ether              | ND         | 200        | 0 390 | ug/Kg          | ☼               | 10/11/17 14:06 | 10/13/17 08:28                   | •                                     |
| Bis(2-chloroethoxy)methane                 | ND         | 200        | 0 420 | ug/Kg          | ≎               | 10/11/17 14:06 | 10/13/17 08:28                   |                                       |
| Bis(2-chloroethyl)ether                    | ND         | 200        | 0 250 | ug/Kg          | ≎               | 10/11/17 14:06 | 10/13/17 08:28                   |                                       |
| Bis(2-ethylhexyl) phthalate                | ND         | 200        | 0 670 | ug/Kg          | ₽               | 10/11/17 14:06 | 10/13/17 08:28                   |                                       |
| Butyl benzyl phthalate                     | ND         | 200        | 0 320 | ug/Kg          | <b>\$</b>       | 10/11/17 14:06 | 10/13/17 08:28                   |                                       |
| Caprolactam                                | ND         | 200        | 0 590 | ug/Kg          | ☼               | 10/11/17 14:06 | 10/13/17 08:28                   |                                       |
| Carbazole                                  | 630 J      | 200        | 0 230 | ug/Kg          | ≎               | 10/11/17 14:06 | 10/13/17 08:28                   |                                       |
| Chrysene                                   | 4200       | 200        | 0 440 | ug/Kg          |                 | 10/11/17 14:06 | 10/13/17 08:28                   |                                       |
| Dibenz(a,h)anthracene                      | ND         | 200        |       | ug/Kg          | ☼               | 10/11/17 14:06 | 10/13/17 08:28                   |                                       |
| Dibenzofuran                               | 2500       | 200        | 0 230 | ug/Kg          | ₩               | 10/11/17 14:06 | 10/13/17 08:28                   |                                       |
| Diethyl phthalate                          | ND         | 200        | 0 250 | ug/Kg          |                 | 10/11/17 14:06 | 10/13/17 08:28                   |                                       |
| Dimethyl phthalate                         | ND         | 200        |       | ug/Kg          | ☼               | 10/11/17 14:06 | 10/13/17 08:28                   |                                       |
| Di-n-butyl phthalate                       | ND         | 200        |       | ug/Kg          | ≎               |                | 10/13/17 08:28                   |                                       |
| Di-n-octyl phthalate                       | ND         | 200        |       | ug/Kg          |                 |                | 10/13/17 08:28                   |                                       |
| Fluoranthene                               | 12000      | 200        |       | ug/Kg          | ₽               |                | 10/13/17 08:28                   |                                       |
| Fluorene                                   | 4300       | 200        |       | ug/Kg          | ₽               |                | 10/13/17 08:28                   |                                       |
| Hexachlorobenzene                          | ND         | 200        |       | ug/Kg          |                 |                | 10/13/17 08:28                   | ;                                     |
| Hexachlorobutadiene                        | ND         | 200        |       | ug/Kg          | ☼               |                | 10/13/17 08:28                   |                                       |
| lexachlorocyclopentadiene                  | ND         | 200        |       | ug/Kg          | ☼               |                | 10/13/17 08:28                   |                                       |
| Hexachloroethane                           | ND         | 200        |       | ug/Kg          | · · · · · · · . |                | 10/13/17 08:28                   | ;                                     |
|                                            |            | 200        |       | ug/Kg<br>ug/Kg | ₽               |                | 10/13/17 08:28                   |                                       |
| ndeno[1,2,3-cd]pyrene                      | 2300<br>ND |            |       |                |                 |                |                                  |                                       |
| sophorone                                  | ND         | 200        |       | ug/Kg          | <del>X</del> .  |                | 10/13/17 08:28                   | :                                     |
| Naphthalene                                | 330 J      |            |       | ug/Kg          | <b>☆</b>        |                | 10/13/17 08:28                   | •                                     |
| Nitrobenzene<br>N-Nitrosodi-n-propylamine  | ND<br>ND   | 200<br>200 |       | ug/Kg<br>ug/Kg | ☼               |                | 10/13/17 08:28<br>10/13/17 08:28 |                                       |

Client: ARCADIS U.S. Inc

Project/Site: RGE - Park St.

TestAmerica Job ID: 480-125579-1

Client Sample ID: DUP-100817 Lab Sample ID: 480-125579-3

 Date Collected: 10/08/17 00:00
 Matrix: Solid

 Date Received: 10/10/17 09:50
 Percent Solids: 84.7

| Method: 8270D - Semivolatile<br>Analyte |              | Qualifier | RL       | MDL    |       | D        | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|--------------|-----------|----------|--------|-------|----------|----------------|----------------|---------|
| N-Nitrosodiphenylamine                  | ND           |           | 2000     | 1600   | ug/Kg | <u>∓</u> | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Pentachlorophenol                       | ND           |           | 3800     | 2000   | ug/Kg |          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Phenanthrene                            | 14000        |           | 2000     | 290    | ug/Kg | ☼        | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Phenol                                  | ND           |           | 2000     | 300    | ug/Kg |          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Pyrene                                  | 9000         |           | 2000     | 230    | ug/Kg | ₩        | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Surrogate                               | %Recovery    | Qualifier | Limits   |        |       |          | Prepared       | Analyzed       | Dil Fac |
| 2,4,6-Tribromophenol                    | 119          |           | 54 - 120 |        |       |          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2-Fluorobiphenyl                        | 87           |           | 60 - 120 |        |       |          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| 2-Fluorophenol                          | 72           |           | 52 - 120 |        |       |          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Nitrobenzene-d5                         | 78           |           | 53 - 120 |        |       |          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Phenol-d5                               | 59           |           | 54 - 120 |        |       |          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| p-Terphenyl-d14                         | 95           |           | 65 - 121 |        |       |          | 10/11/17 14:06 | 10/13/17 08:28 | 10      |
| Method: 6010C - Metals (ICP)            |              |           |          |        |       |          |                |                |         |
| Analyte                                 |              | Qualifier | RL       | MDL    | Unit  | D        | Prepared       | Analyzed       | Dil Fac |
| Aluminum                                | 21300        |           | 11.9     | 5.2    | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Antimony                                | ND           |           | 17.9     | 0.48   | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Arsenic                                 | 6.4          |           | 2.4      | 0.48   | mg/Kg | ₩        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Barium                                  | 65.2         |           | 0.60     | 0.13   | mg/Kg | ₽        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Beryllium                               | 1.2          |           | 0.24     | 0.033  | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Cadmium                                 | ND           |           | 0.24     | 0.036  | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Calcium                                 | 25300        | В         | 59.7     | 3.9    | mg/Kg | ₽        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Chromium                                | 31.8         |           | 0.60     | 0.24   | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Cobalt                                  | 19.1         |           | 0.60     | 0.060  | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Copper                                  | 45.3         | Λ         | 1.2      | 0.25   | mg/Kg |          | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Iron                                    | 30800        | ٨         | 11.9     | 4.2    | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Lead                                    | 20.2         |           | 1.2      | 0.29   | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Magnesium                               | 8480         |           | 23.9     | 1.1    | mg/Kg |          | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Manganese                               | 339          | ٨         | 0.24     | 0.038  | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Nickel                                  | 55.7         |           | 6.0      | 0.27   | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Potassium                               | 5760         |           | 35.8     | 23.9   | mg/Kg |          | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Selenium                                | ND           |           | 4.8      | 0.48   | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Silver                                  | ND           |           | 0.72     | 0.24   | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Sodium                                  | 471          |           | 167      | 15.5   | mg/Kg |          | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Thallium                                | ND           |           | 7.2      | 0.36   | mg/Kg | ☼        | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Vanadium                                | 30.8         |           | 0.60     |        | mg/Kg | ☼        |                | 10/16/17 12:39 | 1       |
| Zinc                                    | <b>52.8</b>  | ^         | 2.4      | 0.76   | mg/Kg | \$       | 10/13/17 16:34 | 10/16/17 12:39 | 1       |
| Method: 7471B - Mercury (CV             | <b>/AA</b> ) |           |          |        |       |          |                |                |         |
| Analyte                                 | •            | Qualifier | RL       | MDL    |       | D        | Prepared       | Analyzed       | Dil Fac |
| Mercury                                 | 0.039        |           | 0.022    | 0.0089 | mg/Kg | <u> </u> | 10/10/17 13:30 | 10/10/17 15:22 | 1       |

Mercury 0.039 0.022 0.0089 mg/Kg © 10/10/17 13:30 10/10/17 15:22

Client Sample ID: TRIP BLANK

Date Collected: 10/08/17 00:00

Lab Sample ID: 480-125579-4

Matrix: Water

Date Received: 10/10/17 09:50

| Method: 8260C - Volatile Orga | nic Compoi | unds by Go | C/MS |      |      |   |          |                |         |
|-------------------------------|------------|------------|------|------|------|---|----------|----------------|---------|
| Analyte                       | Result     | Qualifier  | RL   | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane         | ND         |            | 1.0  | 0.82 | ug/L |   |          | 10/18/17 18:32 | 1       |

TestAmerica Buffalo 10/24/2017

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-125579-4 Date Collected: 10/08/17 00:00

**Matrix: Water** 

Date Received: 10/10/17 09:50

| Analyte                               | Result    | Qualifier | RL        | MDL  | Unit         | D | Prepared | Analyzed       | Dil Fa |
|---------------------------------------|-----------|-----------|-----------|------|--------------|---|----------|----------------|--------|
| 1,1,2,2-Tetrachloroethane             | ND        |           | 1.0       | 0.21 | ug/L         |   | •        | 10/18/17 18:32 |        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND        |           | 1.0       | 0.31 | -            |   |          | 10/18/17 18:32 |        |
| 1,1,2-Trichloroethane                 | ND        |           | 1.0       | 0.23 | -            |   |          | 10/18/17 18:32 |        |
| 1,1-Dichloroethane                    | ND        |           | 1.0       | 0.38 | -            |   |          | 10/18/17 18:32 |        |
| 1,1-Dichloroethene                    | ND        |           | 1.0       | 0.29 | -            |   |          | 10/18/17 18:32 |        |
| 1,2,4-Trichlorobenzene                | ND        |           | 1.0       | 0.41 | -            |   |          | 10/18/17 18:32 |        |
| 1,2-Dibromo-3-Chloropropane           | ND        |           | 1.0       | 0.39 | -            |   |          | 10/18/17 18:32 |        |
| 1,2-Dibromoethane                     | ND        |           | 1.0       | 0.73 | -            |   |          | 10/18/17 18:32 |        |
| 1.2-Dichlorobenzene                   | ND        |           | 1.0       | 0.79 | -            |   |          | 10/18/17 18:32 |        |
| 1.2-Dichloroethane                    | ND        |           | 1.0       | 0.21 | -            |   |          | 10/18/17 18:32 |        |
| 1,2-Dichloropropane                   | ND        |           | 1.0       | 0.72 | -            |   |          | 10/18/17 18:32 |        |
| 1,3-Dichlorobenzene                   | ND        |           | 1.0       | 0.78 | -            |   |          | 10/18/17 18:32 |        |
| 1,4-Dichlorobenzene                   | ND        |           | 1.0       | 0.76 | -            |   |          | 10/18/17 18:32 |        |
| 2-Butanone (MEK)                      | ND        |           | 10        |      | ug/L         |   |          | 10/18/17 18:32 |        |
| 2-Hexanone                            | ND        |           | 5.0       |      | ug/L         |   |          | 10/18/17 18:32 |        |
|                                       | ND<br>ND  |           |           |      |              |   |          | 10/18/17 18:32 |        |
| 4-Methyl-2-pentanone (MIBK) Acetone   | ND<br>ND  |           | 5.0<br>10 |      | ug/L<br>ug/L |   |          | 10/18/17 18:32 |        |
|                                       |           |           |           |      | -            |   |          |                |        |
| Benzene                               | ND        |           | 1.0       | 0.41 | -            |   |          | 10/18/17 18:32 |        |
| Bromodichloromethane                  | ND        |           | 1.0       | 0.39 | -            |   |          | 10/18/17 18:32 |        |
| Bromoform                             | ND        |           | 1.0       | 0.26 | -            |   |          | 10/18/17 18:32 |        |
| Bromomethane                          | ND        |           | 1.0       | 0.69 | -            |   |          | 10/18/17 18:32 |        |
| Carbon disulfide                      | ND        |           | 1.0       | 0.19 | -            |   |          | 10/18/17 18:32 |        |
| Carbon tetrachloride                  | ND        |           | 1.0       | 0.27 | -            |   |          | 10/18/17 18:32 |        |
| Chlorobenzene                         | ND        |           | 1.0       | 0.75 | -            |   |          | 10/18/17 18:32 |        |
| Chloroethane                          | ND        |           | 1.0       | 0.32 | -            |   |          | 10/18/17 18:32 |        |
| Chloroform                            | ND        |           | 1.0       | 0.34 | -            |   |          | 10/18/17 18:32 |        |
| Chloromethane                         | ND        |           | 1.0       | 0.35 | -            |   |          | 10/18/17 18:32 |        |
| cis-1,2-Dichloroethene                | ND        |           | 1.0       | 0.81 | -            |   |          | 10/18/17 18:32 |        |
| cis-1,3-Dichloropropene               | ND        |           | 1.0       | 0.36 | -            |   |          | 10/18/17 18:32 |        |
| Cyclohexane                           | ND        |           | 1.0       | 0.18 | -            |   |          | 10/18/17 18:32 |        |
| Dibromochloromethane                  | ND        |           | 1.0       | 0.32 | -            |   |          | 10/18/17 18:32 |        |
| Dichlorodifluoromethane               | ND        |           | 1.0       | 0.68 | -            |   |          | 10/18/17 18:32 |        |
| Ethylbenzene                          | ND        |           | 1.0       | 0.74 | -            |   |          | 10/18/17 18:32 |        |
| Isopropylbenzene                      | ND        |           | 1.0       | 0.79 | -            |   |          | 10/18/17 18:32 |        |
| Methyl acetate                        | ND        |           | 2.5       |      | ug/L         |   |          | 10/18/17 18:32 |        |
| Methyl tert-butyl ether               | ND        |           | 1.0       |      | ug/L         |   |          | 10/18/17 18:32 |        |
| Methylcyclohexane                     | ND        |           | 1.0       | 0.16 | ug/L         |   |          | 10/18/17 18:32 |        |
| Methylene Chloride                    | ND        |           | 1.0       | 0.44 | ug/L         |   |          | 10/18/17 18:32 |        |
| Styrene                               | ND        |           | 1.0       | 0.73 | ug/L         |   |          | 10/18/17 18:32 |        |
| Tetrachloroethene                     | ND        |           | 1.0       | 0.36 | ug/L         |   |          | 10/18/17 18:32 |        |
| Toluene                               | ND        |           | 1.0       | 0.51 | ug/L         |   |          | 10/18/17 18:32 |        |
| trans-1,2-Dichloroethene              | ND        |           | 1.0       | 0.90 | ug/L         |   |          | 10/18/17 18:32 |        |
| trans-1,3-Dichloropropene             | ND        |           | 1.0       | 0.37 | -            |   |          | 10/18/17 18:32 |        |
| Trichloroethene                       | ND        |           | 1.0       | 0.46 | -            |   |          | 10/18/17 18:32 |        |
| Trichlorofluoromethane                | ND        |           | 1.0       | 0.88 | -            |   |          | 10/18/17 18:32 |        |
| Vinyl chloride                        | ND        |           | 1.0       | 0.90 | -            |   |          | 10/18/17 18:32 |        |
| Xylenes, Total                        | ND        |           | 2.0       | 0.66 | -            |   |          | 10/18/17 18:32 |        |
| Surrogate                             | %Recovery | Qualifier | Limits    |      |              |   | Prepared | Analyzed       | Dil Fa |

TestAmerica Buffalo 10/24/2017

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1

Project/Site: RGE - Park St.

Client Sample ID: TRIP BLANK Lab Sample ID: 480-125579-4

Date Collected: 10/08/17 00:00 Matrix: Water Date Received: 10/10/17 09:50

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

| Surrogate                   | %Recovery | Qualifier Li | imits   | Prepared | Analyzed       | Dil Fac |
|-----------------------------|-----------|--------------|---------|----------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 102       | 73           | 3 - 120 |          | 10/18/17 18:32 | 1       |
| Dibromofluoromethane (Surr) | 102       | 75           | 5 - 123 |          | 10/18/17 18:32 | 1       |
| Toluene-d8 (Surr)           | 100       | 80           | 0 - 120 |          | 10/18/17 18:32 | 1       |

## **Surrogate Summary**

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

|                    |                    |          | Pe       | ercent Surre | ogate Reco |
|--------------------|--------------------|----------|----------|--------------|------------|
|                    |                    | 12DCE    | BFB      | DBFM         | TOL        |
| Lab Sample ID      | Client Sample ID   | (64-126) | (72-126) | (60-140)     | (71-125)   |
| 480-125579-1       | MW-8 (4-6)         | 98       | 100      | 103          | 100        |
| 480-125579-1 MS    | MW-8 (4-6)         | 87       | 95       | 100          | 104        |
| 480-125579-1 MSD   | MW-8 (4-6)         | 87       | 94       | 103          | 106        |
| 480-125579-2       | MW-8 (13-14)       | 107      | 105      | 106          | 98         |
| 480-125579-3       | DUP-100817         | 107      | 103      | 104          | 98         |
| LCS 480-382014/1-A | Lab Control Sample | 98       | 103      | 105          | 98         |
| LCS 480-382187/1-A | Lab Control Sample | 99       | 104      | 104          | 100        |
| MB 480-382014/2-A  | Method Blank       | 100      | 104      | 108          | 99         |
| MB 480-382187/2-A  | Method Blank       | 101      | 106      | 102          | 101        |

#### **Surrogate Legend**

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

|                  |                    | Percent Surrogate Recovery (Acceptance Limits) |          |          |          |  |   |  |  |
|------------------|--------------------|------------------------------------------------|----------|----------|----------|--|---|--|--|
|                  |                    | 12DCE                                          | BFB      | DBFM     | TOL      |  |   |  |  |
| Lab Sample ID    | Client Sample ID   | (77-120)                                       | (73-120) | (75-123) | (80-120) |  |   |  |  |
| 480-125579-4     | TRIP BLANK         | 107                                            | 102      | 102      | 100      |  | _ |  |  |
| LCS 480-382381/5 | Lab Control Sample | 99                                             | 106      | 104      | 104      |  |   |  |  |
| MB 480-382381/7  | Method Blank       | 97                                             | 105      | 100      | 104      |  |   |  |  |
|                  |                    |                                                |          |          |          |  |   |  |  |

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

| _                 |                    |          | Pe       | rcent Surro | ogate Reco | very (Accep | otance Limi |
|-------------------|--------------------|----------|----------|-------------|------------|-------------|-------------|
|                   |                    | ТВР      | FBP      | 2FP         | NBZ        | PHL         | TPH         |
| Lab Sample ID     | Client Sample ID   | (54-120) | (60-120) | (52-120)    | (53-120)   | (54-120)    | (65-121)    |
| 480-125579-1      | MW-8 (4-6)         | 0 X      | 83       | 0 X         | 0 X        | 0 X         | 0 X         |
| 80-125579-1 MS    | MW-8 (4-6)         | 0 X      | 0 X      | 0 X         | 0 X        | 0 X         | 0 X         |
| 30-125579-1 MSD   | MW-8 (4-6)         | 0 X      | 75       | 47 X        | 63         | 0 X         | 119         |
| -125579-2         | MW-8 (13-14)       | 111      | 88       | 73          | 55         | 82          | 98          |
| 0-125579-3        | DUP-100817         | 119      | 87       | 72          | 78         | 59          | 95          |
| CS 480-381332/2-A | Lab Control Sample | 95       | 80       | 76          | 77         | 78          | 96          |
| 3 480-381332/1-A  | Method Blank       | 86       | 84       | 77          | 73         | 80          | 101         |

#### **Surrogate Legend**

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

# **Surrogate Summary**

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St.

> NBZ = Nitrobenzene-d5 PHL = Phenol-d5 TPH = p-Terphenyl-d14

TestAmerica Job ID: 480-125579-1

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

## Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-382014/2-A

**Matrix: Solid** 

Analysis Batch: 381944

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 382014

| 7 maryono Batom Go To TT              | МВ     | MB        |     |      |       |   |                | op _a.com      |         |
|---------------------------------------|--------|-----------|-----|------|-------|---|----------------|----------------|---------|
| Analyte                               | Result | Qualifier | RL  | MDL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND     |           | 5.0 | 0.36 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 5.0 | 0.81 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 5.0 | 1.1  | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 1,1,2-Trichloroethane                 | ND     |           | 5.0 | 0.65 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 1,1-Dichloroethane                    | ND     |           | 5.0 | 0.61 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 1,1-Dichloroethene                    | ND     |           | 5.0 | 0.61 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 1,2,4-Trichlorobenzene                | ND     |           | 5.0 | 0.30 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 5.0 | 2.5  | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 1,2-Dibromoethane                     | ND     |           | 5.0 | 0.64 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 1,2-Dichlorobenzene                   | ND     |           | 5.0 | 0.39 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 1,2-Dichloroethane                    | ND     |           | 5.0 | 0.25 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 1,2-Dichloropropane                   | ND     |           | 5.0 | 2.5  | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 1,3-Dichlorobenzene                   | ND     |           | 5.0 | 0.26 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 1,4-Dichlorobenzene                   | ND     |           | 5.0 | 0.70 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 2-Butanone (MEK)                      | ND     |           | 25  | 1.8  | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 2-Hexanone                            | ND     |           | 25  | 2.5  | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 25  | 1.6  | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Acetone                               | ND     |           | 25  | 4.2  | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Benzene                               | ND     |           | 5.0 | 0.25 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Bromodichloromethane                  | ND     |           | 5.0 | 0.67 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Bromoform                             | ND     |           | 5.0 | 2.5  | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Bromomethane                          | ND     |           | 5.0 | 0.45 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Carbon disulfide                      | ND     |           | 5.0 | 2.5  | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Carbon tetrachloride                  | ND     |           | 5.0 | 0.48 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Chlorobenzene                         | ND     |           | 5.0 | 0.66 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Chloroethane                          | ND     |           | 5.0 | 1.1  | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Chloroform                            | ND     |           | 5.0 | 0.31 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Chloromethane                         | ND     |           | 5.0 | 0.30 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| cis-1,2-Dichloroethene                | ND     |           | 5.0 | 0.64 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| cis-1,3-Dichloropropene               | ND     |           | 5.0 | 0.72 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Cyclohexane                           | ND     |           | 5.0 | 0.70 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Dibromochloromethane                  | ND     |           | 5.0 | 0.64 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Dichlorodifluoromethane               | ND     |           | 5.0 | 0.41 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Ethylbenzene                          | ND     |           | 5.0 | 0.35 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Isopropylbenzene                      | ND     |           | 5.0 | 0.75 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Methyl acetate                        | ND     |           | 25  | 3.0  | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Methyl tert-butyl ether               | ND     |           | 5.0 | 0.49 | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Methylcyclohexane                     | ND     |           | 5.0 |      | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Methylene Chloride                    | ND     |           | 5.0 | 2.3  | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Styrene                               | ND     |           | 5.0 |      | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Tetrachloroethene                     | ND     |           | 5.0 |      | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Toluene                               | ND     |           | 5.0 |      | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| trans-1,2-Dichloroethene              | ND     |           | 5.0 |      | ug/Kg |   | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| trans-1,3-Dichloropropene             | ND     |           | 5.0 |      | ug/Kg |   |                | 10/16/17 13:08 | 1       |
| Trichloroethene                       | ND     |           | 5.0 |      | ug/Kg |   |                | 10/16/17 13:08 | 1       |
| Trichlorofluoromethane                | ND     |           | 5.0 |      | ug/Kg |   |                | 10/16/17 13:08 | 1       |
| Vinyl chloride                        | ND     |           | 5.0 |      | ug/Kg |   |                | 10/16/17 13:08 | 1       |
| Xylenes, Total                        | ND     |           | 10  |      | ug/Kg |   |                | 10/16/17 13:08 | 1       |

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

|                              | MB        | MB        |          |                |                |         |
|------------------------------|-----------|-----------|----------|----------------|----------------|---------|
| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 100       |           | 64 - 126 | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| 4-Bromofluorobenzene (Surr)  | 104       |           | 72 - 126 | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Dibromofluoromethane (Surr)  | 108       |           | 60 - 140 | 10/16/17 11:39 | 10/16/17 13:08 | 1       |
| Toluene-d8 (Surr)            | 99        |           | 71 - 125 | 10/16/17 11:39 | 10/16/17 13:08 | 1       |

Lab Sample ID: LCS 480-382014/1-A

Matrix: Solid

**Analysis Batch: 381944** 

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 382014

| Analysis Batch: 381944                    | Spike |      | LCS       |                | _ | ۵/ ۵ | Prep Batch: 382014<br>%Rec. |
|-------------------------------------------|-------|------|-----------|----------------|---|------|-----------------------------|
| Analyte 4.4.4 Triables at the second      | Added |      | Qualifier | Unit           | D | %Rec | Limits                      |
| 1,1,1-Trichloroethane                     | 50.0  | 55.4 |           | ug/Kg          |   | 111  | 77 - 121                    |
| 1,1,2,2-Tetrachloroethane                 | 50.0  | 47.5 |           | ug/Kg          |   | 95   | 80 - 120                    |
| 1,1,2-Trichloro-1,2,2-trifluoroetha<br>ne | 50.0  | 52.2 |           | ug/Kg          |   | 104  | 60 - 140                    |
| 1,1,2-Trichloroethane                     | 50.0  | 49.2 |           | ug/Kg          |   | 98   | 78 - 122                    |
| 1,1-Dichloroethane                        | 50.0  | 51.9 |           | ug/Kg          |   | 104  | 73 - 126                    |
| 1,1-Dichloroethene                        | 50.0  | 52.3 |           | ug/Kg          |   | 105  | 59 - 125                    |
| 1,2,4-Trichlorobenzene                    | 50.0  | 53.6 |           | ug/Kg          |   | 107  | 64 - 120                    |
| 1,2-Dibromo-3-Chloropropane               | 50.0  | 51.4 |           | ug/Kg          |   | 103  | 63 - 124                    |
| 1,2-Dibromoethane                         | 50.0  | 52.4 |           | ug/Kg          |   | 105  | 78 - 120                    |
| 1,2-Dichlorobenzene                       | 50.0  | 49.5 |           | ug/Kg          |   | 99   | 75 - 120                    |
| 1,2-Dichloroethane                        | 50.0  | 49.5 |           | ug/Kg          |   | 99   | 77 - 122                    |
| 1,2-Dichloropropane                       | 50.0  | 52.0 |           | ug/Kg          |   | 104  | 75 - 124                    |
| 1,3-Dichlorobenzene                       | 50.0  | 49.6 |           | ug/Kg          |   | 99   | 74 - 120                    |
| 1,4-Dichlorobenzene                       | 50.0  | 49.6 |           | ug/Kg          |   | 99   | 73 - 120                    |
| 2-Butanone (MEK)                          | 250   | 239  |           | ug/Kg          |   | 96   | 70 - 134                    |
| 2-Hexanone                                | 250   | 236  |           | ug/Kg          |   | 94   | 59 - 130                    |
| 4-Methyl-2-pentanone (MIBK)               | 250   | 230  |           | ug/Kg          |   | 92   | 65 - 133                    |
| Acetone                                   | 250   | 247  |           | ug/Kg          |   | 99   | 61 - 137                    |
| Benzene                                   | 50.0  | 50.9 |           | ug/Kg          |   | 102  | 79 - 127                    |
| Bromodichloromethane                      | 50.0  | 60.9 |           | ug/Kg          |   | 122  | 80 - 122                    |
| Bromoform                                 | 50.0  | 71.5 | *         | ug/Kg          |   | 143  | 68 <sub>-</sub> 126         |
| Bromomethane                              | 50.0  | 50.8 |           | ug/Kg          |   | 102  | 37 - 149                    |
| Carbon disulfide                          | 50.0  | 57.6 |           | ug/Kg          |   | 115  | 64 <sub>-</sub> 131         |
| Carbon tetrachloride                      | 50.0  | 67.5 |           | ug/Kg          |   | 135  | 75 <sub>-</sub> 135         |
| Chlorobenzene                             | 50.0  | 52.0 |           | ug/Kg          |   | 104  | 76 - 124                    |
| Chloroethane                              | 50.0  | 50.6 |           | ug/Kg          |   | 101  | 69 <sub>-</sub> 135         |
| Chloroform                                | 50.0  | 51.0 |           | ug/Kg          |   | 102  | 80 - 120                    |
| Chloromethane                             | 50.0  | 42.6 |           | ug/Kg          |   | 85   | 63 - 127                    |
| cis-1,2-Dichloroethene                    | 50.0  | 51.7 |           | ug/Kg          |   | 103  | 81 - 120                    |
| cis-1,3-Dichloropropene                   | 50.0  | 57.7 |           | ug/Kg          |   | 115  | 80 - 120                    |
| Cyclohexane                               | 50.0  | 51.2 |           | ug/Kg          |   | 102  | 65 - 120                    |
| Dibromochloromethane                      | 50.0  | 59.5 |           | ug/Kg          |   | 119  | 76 - 125                    |
| Dichlorodifluoromethane                   | 50.0  | 59.7 |           | ug/Kg          |   | 119  | 57 - 142                    |
| Ethylbenzene                              | 50.0  | 50.4 |           | ug/Kg          |   | 101  | 80 - 120                    |
| Isopropylbenzene                          | 50.0  | 49.0 |           | ug/Kg          |   | 98   | 72 - 120                    |
| Methyl acetate                            | 100   | 92.1 |           | ug/Kg          |   | 92   | 55 <sub>-</sub> 136         |
| Methyl tert-butyl ether                   | 50.0  | 48.4 |           | ug/Kg          |   | 97   | 63 - 125                    |
| Methylcyclohexane                         | 50.0  | 52.7 |           | ug/Kg          |   | 105  | 60 - 140                    |
| Methylene Chloride                        | 50.0  | 52.8 |           | ug/Kg          |   | 106  | 61 - 127                    |
| Styrene                                   | 50.0  | 50.8 |           | ug/Kg          |   | 100  | 80 - 120                    |
| Tetrachloroethene                         | 50.0  | 55.3 |           | ug/Kg<br>ug/Kg |   | 111  | 74 <sub>-</sub> 122         |
| Toluene                                   | 50.0  | 49.8 |           | ug/Kg<br>ug/Kg |   | 100  | 74 - 128                    |
|                                           |       |      |           |                |   |      | 78 - 126                    |
| trans-1,2-Dichloroethene                  | 50.0  | 52.3 |           | ug/Kg          |   | 105  | 10-120                      |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-382014/1-A

**Matrix: Solid** 

**Analysis Batch: 381944** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA Prep Batch: 382014

| Analysis Baton. 601044    | Spike | LCS    | LCS       |       |   |      | %Rec.    |
|---------------------------|-------|--------|-----------|-------|---|------|----------|
| Analyte                   | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |
| trans-1,3-Dichloropropene | 50.0  | 55.9   |           | ug/Kg |   | 112  | 73 - 123 |
| Trichloroethene           | 50.0  | 52.8   |           | ug/Kg |   | 106  | 77 - 129 |
| Trichlorofluoromethane    | 50.0  | 54.4   |           | ug/Kg |   | 109  | 65 - 146 |
| Vinyl chloride            | 50.0  | 47.4   |           | ug/Kg |   | 95   | 61 - 133 |

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| 1,2-Dichloroethane-d4 (Surr) | 98        |           | 64 - 126 |
| 4-Bromofluorobenzene (Surr)  | 103       |           | 72 - 126 |
| Dibromofluoromethane (Surr)  | 105       |           | 60 - 140 |
| Toluene-d8 (Surr)            | 98        |           | 71 - 125 |

Lab Sample ID: MB 480-382187/2-A

**Matrix: Solid** 

**Analysis Batch: 382134** 

Client Sample ID: Method Blank Prep Type: Total/NA

**Prep Batch: 382187** 

| -                                     | MB     | MB        |     |      |       |   |                | -              |         |
|---------------------------------------|--------|-----------|-----|------|-------|---|----------------|----------------|---------|
| Analyte                               | Result | Qualifier | RL  | MDL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND     |           | 5.0 | 0.36 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 5.0 | 0.81 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 5.0 | 1.1  | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 1,1,2-Trichloroethane                 | ND     |           | 5.0 | 0.65 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 1,1-Dichloroethane                    | ND     |           | 5.0 | 0.61 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 1,1-Dichloroethene                    | ND     |           | 5.0 | 0.61 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 1,2,4-Trichlorobenzene                | ND     |           | 5.0 | 0.30 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 5.0 | 2.5  | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 1,2-Dibromoethane                     | ND     |           | 5.0 | 0.64 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 1,2-Dichlorobenzene                   | ND     |           | 5.0 | 0.39 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 1,2-Dichloroethane                    | ND     |           | 5.0 | 0.25 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 1,2-Dichloropropane                   | ND     |           | 5.0 | 2.5  | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 1,3-Dichlorobenzene                   | ND     |           | 5.0 | 0.26 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 1,4-Dichlorobenzene                   | ND     |           | 5.0 | 0.70 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 2-Butanone (MEK)                      | ND     |           | 25  | 1.8  | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 2-Hexanone                            | ND     |           | 25  | 2.5  | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 25  | 1.6  | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Acetone                               | ND     |           | 25  | 4.2  | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Benzene                               | ND     |           | 5.0 | 0.25 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Bromodichloromethane                  | ND     |           | 5.0 | 0.67 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Bromoform                             | ND     |           | 5.0 | 2.5  | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Bromomethane                          | ND     |           | 5.0 | 0.45 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Carbon disulfide                      | ND     |           | 5.0 | 2.5  | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Carbon tetrachloride                  | ND     |           | 5.0 | 0.48 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Chlorobenzene                         | ND     |           | 5.0 | 0.66 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Chloroethane                          | ND     |           | 5.0 | 1.1  | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Chloroform                            | ND     |           | 5.0 | 0.31 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Chloromethane                         | ND     |           | 5.0 | 0.30 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| cis-1,2-Dichloroethene                | ND     |           | 5.0 | 0.64 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| cis-1,3-Dichloropropene               | ND     |           | 5.0 | 0.72 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Cyclohexane                           | ND     |           | 5.0 | 0.70 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Dibromochloromethane                  | ND     |           | 5.0 | 0.64 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
|                                       |        |           |     |      |       |   |                |                |         |

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 480-382187/2-A

**Matrix: Solid** 

Analysis Batch: 382134

**Client Sample ID: Method Blank** Prep Type: Total/NA

|   | Prep Batch: 3821 |                |         |  |  |  |  |  |  |  |  |
|---|------------------|----------------|---------|--|--|--|--|--|--|--|--|
| D | Prepared         | Analyzed       | Dil Fac |  |  |  |  |  |  |  |  |
| _ | 10/17/17 09:33   | 10/17/17 10:58 | 1       |  |  |  |  |  |  |  |  |
|   | 10/17/17 09:33   | 10/17/17 10:58 | 1       |  |  |  |  |  |  |  |  |
|   | 10/17/17 09:33   | 10/17/17 10:58 | 1       |  |  |  |  |  |  |  |  |
|   | 10/17/17 00:22   | 10/17/17 10:50 | 4       |  |  |  |  |  |  |  |  |

| Analyte                   | Result | Qualifier | RL  | MDL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-----|------|-------|---|----------------|----------------|---------|
| Dichlorodifluoromethane   | ND     |           | 5.0 | 0.41 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Ethylbenzene              | ND     |           | 5.0 | 0.35 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Isopropylbenzene          | ND     |           | 5.0 | 0.75 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Methyl acetate            | ND     |           | 25  | 3.0  | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Methyl tert-butyl ether   | ND     |           | 5.0 | 0.49 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Methylcyclohexane         | ND     |           | 5.0 | 0.76 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Methylene Chloride        | ND     |           | 5.0 | 2.3  | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Styrene                   | ND     |           | 5.0 | 0.25 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Tetrachloroethene         | ND     |           | 5.0 | 0.67 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Toluene                   | ND     |           | 5.0 | 0.38 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| trans-1,2-Dichloroethene  | ND     |           | 5.0 | 0.52 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| trans-1,3-Dichloropropene | ND     |           | 5.0 | 2.2  | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Trichloroethene           | ND     |           | 5.0 | 1.1  | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Trichlorofluoromethane    | ND     |           | 5.0 | 0.47 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Vinyl chloride            | ND     |           | 5.0 | 0.61 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
| Xylenes, Total            | ND     |           | 10  | 0.84 | ug/Kg |   | 10/17/17 09:33 | 10/17/17 10:58 | 1       |
|                           |        |           |     |      |       |   |                |                |         |

MB MB Surrogate %Recovery Qualifier Prepared Dil Fac Limits Analyzed 1,2-Dichloroethane-d4 (Surr) 101 64 - 126 10/17/17 09:33 10/17/17 10:58 72 - 126 4-Bromofluorobenzene (Surr) 106 10/17/17 09:33 10/17/17 10:58 1 Dibromofluoromethane (Surr) 102 60 - 140 10/17/17 09:33 10/17/17 10:58 Toluene-d8 (Surr) 101 71 - 125 10/17/17 09:33 10/17/17 10:58

Lab Sample ID: LCS 480-382187/1-A

**Matrix: Solid** 

Analysis Batch: 382134

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA **Prep Batch: 382187** 

| 7 maryolo Batom 602104              | Spike | LCS    | LCS       |       |   |      | %Rec.               |
|-------------------------------------|-------|--------|-----------|-------|---|------|---------------------|
| Analyte                             | Added | Result | Qualifier | Unit  | D | %Rec | Limits              |
| 1,1,1-Trichloroethane               | 50.0  | 52.8   | -         | ug/Kg |   | 106  | 77 - 121            |
| 1,1,2,2-Tetrachloroethane           | 50.0  | 48.4   |           | ug/Kg |   | 97   | 80 - 120            |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 50.0  | 53.1   |           | ug/Kg |   | 106  | 60 - 140            |
| ne                                  |       |        |           |       |   |      |                     |
| 1,1,2-Trichloroethane               | 50.0  | 50.2   |           | ug/Kg |   | 100  | 78 <sub>-</sub> 122 |
| 1,1-Dichloroethane                  | 50.0  | 50.4   |           | ug/Kg |   | 101  | 73 - 126            |
| 1,1-Dichloroethene                  | 50.0  | 52.1   |           | ug/Kg |   | 104  | 59 - 125            |
| 1,2,4-Trichlorobenzene              | 50.0  | 54.9   |           | ug/Kg |   | 110  | 64 - 120            |
| 1,2-Dibromo-3-Chloropropane         | 50.0  | 45.0   |           | ug/Kg |   | 90   | 63 - 124            |
| 1,2-Dibromoethane                   | 50.0  | 52.4   |           | ug/Kg |   | 105  | 78 - 120            |
| 1,2-Dichlorobenzene                 | 50.0  | 50.5   |           | ug/Kg |   | 101  | 75 - 120            |
| 1,2-Dichloroethane                  | 50.0  | 48.4   |           | ug/Kg |   | 97   | 77 - 122            |
| 1,2-Dichloropropane                 | 50.0  | 50.7   |           | ug/Kg |   | 101  | 75 - 124            |
| 1,3-Dichlorobenzene                 | 50.0  | 50.9   |           | ug/Kg |   | 102  | 74 - 120            |
| 1,4-Dichlorobenzene                 | 50.0  | 51.0   |           | ug/Kg |   | 102  | 73 - 120            |
| 2-Butanone (MEK)                    | 250   | 234    |           | ug/Kg |   | 94   | 70 - 134            |
| 2-Hexanone                          | 250   | 230    |           | ug/Kg |   | 92   | 59 - 130            |
| 4-Methyl-2-pentanone (MIBK)         | 250   | 224    |           | ug/Kg |   | 89   | 65 - 133            |
| Acetone                             | 250   | 242    |           | ug/Kg |   | 97   | 61 - 137            |
| Benzene                             | 50.0  | 51.1   |           | ug/Kg |   | 102  | 79 - 127            |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-382187/1-A

**Matrix: Solid** 

Analysis Batch: 382134

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA Prep Batch: 382187** 

| Analysis Batch. 302134    | Spike | LCS    | LCS         |       |   |      | %Rec.               |
|---------------------------|-------|--------|-------------|-------|---|------|---------------------|
| Analyte                   | Added | Result | Qualifier I | Unit  | D | %Rec | Limits              |
| Bromodichloromethane      | 50.0  | 57.1   |             | ug/Kg |   | 114  | 80 - 122            |
| Bromoform                 | 50.0  | 59.9   | ι           | ug/Kg |   | 120  | 68 - 126            |
| Bromomethane              | 50.0  | 52.5   |             | ug/Kg |   | 105  | 37 - 149            |
| Carbon disulfide          | 50.0  | 54.9   | ι           | ug/Kg |   | 110  | 64 - 131            |
| Carbon tetrachloride      | 50.0  | 57.6   | ι           | ug/Kg |   | 115  | 75 - 135            |
| Chlorobenzene             | 50.0  | 52.7   |             | ug/Kg |   | 105  | 76 - 124            |
| Chloroethane              | 50.0  | 50.8   | ι           | ug/Kg |   | 102  | 69 - 135            |
| Chloroform                | 50.0  | 50.6   | ι           | ug/Kg |   | 101  | 80 - 120            |
| Chloromethane             | 50.0  | 40.7   |             | ug/Kg |   | 81   | 63 - 127            |
| cis-1,2-Dichloroethene    | 50.0  | 51.1   | ι           | ug/Kg |   | 102  | 81 - 120            |
| cis-1,3-Dichloropropene   | 50.0  | 54.0   | ι           | ug/Kg |   | 108  | 80 - 120            |
| Cyclohexane               | 50.0  | 49.4   |             | ug/Kg |   | 99   | 65 - 120            |
| Dibromochloromethane      | 50.0  | 52.8   | ι           | ug/Kg |   | 106  | 76 - 125            |
| Dichlorodifluoromethane   | 50.0  | 60.0   | ι           | ug/Kg |   | 120  | 57 - 142            |
| Ethylbenzene              | 50.0  | 52.0   |             | ug/Kg |   | 104  | 80 - 120            |
| Isopropylbenzene          | 50.0  | 50.7   | l           | ug/Kg |   | 101  | 72 - 120            |
| Methyl acetate            | 100   | 88.7   | l           | ug/Kg |   | 89   | 55 - 136            |
| Methyl tert-butyl ether   | 50.0  | 48.3   |             | ug/Kg |   | 97   | 63 - 125            |
| Methylcyclohexane         | 50.0  | 53.2   | l           | ug/Kg |   | 106  | 60 - 140            |
| Methylene Chloride        | 50.0  | 52.2   | l           | ug/Kg |   | 104  | 61 - 127            |
| Styrene                   | 50.0  | 52.1   |             | ug/Kg |   | 104  | 80 - 120            |
| Tetrachloroethene         | 50.0  | 57.1   | l           | ug/Kg |   | 114  | 74 - 122            |
| Toluene                   | 50.0  | 51.3   | l           | ug/Kg |   | 103  | 74 - 128            |
| trans-1,2-Dichloroethene  | 50.0  | 53.0   |             | ug/Kg |   | 106  | 78 - 126            |
| trans-1,3-Dichloropropene | 50.0  | 51.6   | ι           | ug/Kg |   | 103  | 73 - 123            |
| Trichloroethene           | 50.0  | 53.4   | ι           | ug/Kg |   | 107  | 77 - 129            |
| Trichlorofluoromethane    | 50.0  | 57.9   |             | ug/Kg |   | 116  | 65 - 146            |
| Vinyl chloride            | 50.0  | 47.9   |             | ug/Kg |   | 96   | 61 <sub>-</sub> 133 |

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| 1,2-Dichloroethane-d4 (Surr) | 99        |           | 64 - 126 |
| 4-Bromofluorobenzene (Surr)  | 104       |           | 72 - 126 |
| Dibromofluoromethane (Surr)  | 104       |           | 60 - 140 |
| Toluene-d8 (Surr)            | 100       |           | 71 - 125 |

Lab Sample ID: 480-125579-1 MS

**Matrix: Solid** 

**Analysis Batch: 382134** 

Client Sample ID: MW-8 (4-6) Prep Type: Total/NA

**Prep Batch: 382187** 

|                                     | Sample | Sample    | Spike | MS     | MS        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | %Rec.    |  |
|-------------------------------------|--------|-----------|-------|--------|-----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|--|
| Analyte                             | Result | Qualifier | Added | Result | Qualifier | Unit  | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %Rec | Limits   |  |
| 1,1,1-Trichloroethane               | ND     |           | 48.0  | 41.6   |           | ug/Kg | <del>\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\</del> | 87   | 77 - 121 |  |
| 1,1,2,2-Tetrachloroethane           | ND     | F1        | 48.0  | 39.9   |           | ug/Kg | ☼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83   | 80 - 120 |  |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | ND     |           | 48.0  | 42.5   |           | ug/Kg | ☼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89   | 60 - 140 |  |
| ne                                  |        |           |       |        |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |          |  |
| 1,1,2-Trichloroethane               | ND     | F1        | 48.0  | 40.5   |           | ug/Kg | ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 84   | 78 - 122 |  |
| 1,1-Dichloroethane                  | ND     |           | 48.0  | 43.8   |           | ug/Kg | ☼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91   | 73 - 126 |  |
| 1,1-Dichloroethene                  | ND     |           | 48.0  | 40.0   |           | ug/Kg | ☼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83   | 59 - 125 |  |
| 1,2,4-Trichlorobenzene              | ND     | F1        | 48.0  | 18.8   | F1        | ug/Kg |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39   | 64 - 120 |  |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1
Project/Site: RGE - Park St.

## Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-125579-1 MS

Matrix: Solid

Analysis Batch: 382134

Client Sample ID: MW-8 (4-6) Prep Type: Total/NA Prep Batch: 382187

| Analyte                     | -    | Sample<br>Qualifier | Spike<br>Added |      | MS<br>Qualifier | Unit  | D            | %Rec | %Rec.<br>Limits     |
|-----------------------------|------|---------------------|----------------|------|-----------------|-------|--------------|------|---------------------|
| 1,2-Dibromo-3-Chloropropane | ND   |                     | 48.0           | 25.8 |                 | ug/Kg | <del>\</del> | 54   | 63 - 124            |
| 1,2-Dibromoethane           | ND   | F1                  | 48.0           | 35.6 | F1              | ug/Kg | ☼            | 74   | 78 - 120            |
| 1,2-Dichlorobenzene         | ND   | F1                  | 48.0           | 33.9 | F1              | ug/Kg | ₩.           | 71   | 75 - 120            |
| 1,2-Dichloroethane          | ND   | F1                  | 48.0           | 37.5 |                 | ug/Kg | ₽            | 78   | 77 - 122            |
| 1,2-Dichloropropane         | ND   |                     | 48.0           | 42.3 |                 | ug/Kg | ₽            | 88   | 75 - 124            |
| 1,3-Dichlorobenzene         | ND   | F1                  | 48.0           | 34.2 | F1              | ug/Kg |              | 71   | 74 - 120            |
| 1,4-Dichlorobenzene         | ND   | F1                  | 48.0           | 32.3 | F1              | ug/Kg | ₽            | 67   | 73 - 120            |
| 2-Butanone (MEK)            | ND   | F1                  | 240            | 146  | F1              | ug/Kg | ₽            | 61   | 70 - 134            |
| 2-Hexanone                  | ND   | F1                  | 240            | 153  |                 | ug/Kg |              | 64   | 59 - 130            |
| 4-Methyl-2-pentanone (MIBK) | ND   | F1                  | 240            | 161  |                 | ug/Kg | ₽            | 67   | 65 - 133            |
| Acetone                     | 13   | J F1                | 240            | 156  | F1              | ug/Kg | ₽            | 59   | 61 - 137            |
| Benzene                     | 1.5  | . j                 | 48.0           | 45.2 |                 | ug/Kg |              | 91   | 79 - 127            |
| Bromodichloromethane        | ND   |                     | 48.0           | 43.3 |                 | ug/Kg | ₽            | 90   | 80 - 122            |
| Bromoform                   | ND   | F1 *                | 48.0           | 37.4 |                 | ug/Kg | ₽            | 78   | 68 - 126            |
| Bromomethane                | ND   |                     | 48.0           | 46.1 |                 | ug/Kg |              | 96   | 37 - 149            |
| Carbon disulfide            | ND   | F1                  | 48.0           | 34.7 |                 | ug/Kg | ☼            | 72   | 64 - 131            |
| Carbon tetrachloride        | ND   |                     | 48.0           | 39.9 |                 | ug/Kg | ☼            | 83   | 75 - 135            |
| Chlorobenzene               | ND   | F1                  | 48.0           | 40.1 |                 | ug/Kg |              | 83   | 76 - 124            |
| Chloroethane                | ND   |                     | 48.0           | 44.2 |                 | ug/Kg | ☼            | 92   | 69 - 135            |
| Chloroform                  | ND   |                     | 48.0           | 43.5 |                 | ug/Kg | ☼            | 91   | 80 - 120            |
| Chloromethane               | ND   |                     | 48.0           | 33.4 |                 | ug/Kg |              | 70   | 63 - 127            |
| cis-1,2-Dichloroethene      | ND   | F1                  | 48.0           | 39.7 |                 | ug/Kg | ☼            | 83   | 80 - 120            |
| cis-1,3-Dichloropropene     | ND   | F1                  | 48.0           | 36.8 | F1              | ug/Kg | ₽            | 77   | 80 - 120            |
| Cyclohexane                 | ND   |                     | 48.0           | 36.7 |                 | ug/Kg |              | 76   | 65 - 120            |
| Dibromochloromethane        | ND   | F1                  | 48.0           | 38.8 |                 | ug/Kg | ☼            | 81   | 76 <sub>-</sub> 125 |
| Dichlorodifluoromethane     | ND   |                     | 48.0           | 49.0 |                 | ug/Kg | ☼            | 102  | 57 - 142            |
| Ethylbenzene                | ND   | F1                  | 48.0           | 41.4 |                 | ug/Kg |              | 86   | 80 - 120            |
| Isopropylbenzene            | ND   |                     | 48.0           | 45.9 |                 | ug/Kg | ☼            | 96   | 72 - 120            |
| Methyl acetate              | ND   |                     | 96.0           | 62.2 |                 | ug/Kg | ₽            | 65   | 55 - 136            |
| Methyl tert-butyl ether     | ND   |                     | 48.0           | 40.8 |                 | ug/Kg |              | 85   | 63 - 125            |
| Methylcyclohexane           | ND   |                     | 48.0           | 34.2 |                 | ug/Kg | ₽            | 71   | 60 - 140            |
| Methylene Chloride          | ND   |                     | 48.0           | 43.0 |                 | ug/Kg | ₽            | 90   | 61 - 127            |
| Styrene                     | 0.28 | J F1                | 48.0           | 38.3 | F1              | ug/Kg |              | 79   | 80 - 120            |
| Tetrachloroethene           | ND   |                     | 48.0           | 43.9 |                 | ug/Kg | ₽            | 91   | 74 - 122            |
| Toluene                     | 1.8  | J                   | 48.0           | 46.7 |                 | ug/Kg | ₽            | 94   | 74 - 128            |
| trans-1,2-Dichloroethene    | ND   | F1                  | 48.0           | 37.9 |                 | ug/Kg |              | 79   | 78 - 126            |
| Trichloroethene             | ND   | F1                  | 48.0           | 38.9 |                 | ug/Kg | ☼            | 81   | 77 - 129            |
| Trichlorofluoromethane      | ND   |                     | 48.0           | 48.3 |                 | ug/Kg | ☼            | 101  | 65 <sub>-</sub> 146 |
| Vinyl chloride              | ND   |                     | 48.0           | 35.4 |                 | ug/Kg |              | 74   | 61 - 133            |

| ИS | MS |
|----|----|

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| 1,2-Dichloroethane-d4 (Surr) | 87        |           | 64 - 126 |
| 4-Bromofluorobenzene (Surr)  | 95        |           | 72 - 126 |
| Dibromofluoromethane (Surr)  | 100       |           | 60 - 140 |
| Toluene-d8 (Surr)            | 104       |           | 71 - 125 |

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

## Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-125579-1 MSD Matrix: Solid

Client Sample ID: MW-8 (4-6) **Prep Type: Total/NA** 

| Analysis Batch: 382134              | Sample | Sample    | Spike | MSD  | MSD       |       |                                       |      | Prep Batch: 38218<br>%Rec. |     |      |
|-------------------------------------|--------|-----------|-------|------|-----------|-------|---------------------------------------|------|----------------------------|-----|------|
| Analyte                             | -      | Qualifier | Added | _    | Qualifier | Unit  | D                                     | %Rec | Limits                     | RPD | Limi |
| 1,1,1-Trichloroethane               | ND     | <u> </u>  | 54.9  | 47.0 |           | ug/Kg | <del>-</del>                          | 86   | 77 - 121                   | 12  | 30   |
| 1,1,2,2-Tetrachloroethane           |        | F1        | 54.9  | 42.9 | F1        | ug/Kg | ₩                                     | 78   | 80 - 120                   | 7   | 30   |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | ND     |           | 54.9  | 45.1 |           | ug/Kg | ₽                                     | 82   | 60 - 140                   | 6   | 30   |
| 1,1,2-Trichloroethane               | ND     | F1        | 54.9  | 41.1 | F1        | ug/Kg | · · · · · · · · · · · · · · · · · · · | 75   | 78 - 122                   | 2   | 30   |
| 1,1-Dichloroethane                  | ND     |           | 54.9  | 47.0 |           | ug/Kg | ₩                                     | 86   | 73 <sub>-</sub> 126        | 7   | 3    |
| 1,1-Dichloroethene                  | ND     |           | 54.9  | 41.3 |           | ug/Kg | ₩                                     | 75   | 59 <sub>-</sub> 125        | 3   | 30   |
| 1,2,4-Trichlorobenzene              | ND     | F1        | 54.9  | 19.1 | F1        | ug/Kg | ₩.                                    | 35   | 64 - 120                   | 1   | 3    |
| 1,2-Dibromo-3-Chloropropane         | ND     | F1        | 54.9  | 30.1 | F1        | ug/Kg | ₩                                     | 55   | 63 - 124                   | 15  | 3    |
| 1,2-Dibromoethane                   | ND     | F1        | 54.9  | 32.7 | F1        | ug/Kg | ₩                                     | 60   | 78 <sub>-</sub> 120        | 9   | 3    |
| 1,2-Dichlorobenzene                 | ND     | F1        | 54.9  | 33.0 | F1        | ug/Kg | · · · · · · · · · · · · · · · · · · · | 60   | 75 - 120                   | 3   | 3    |
| 1,2-Dichloroethane                  | ND     | F1        | 54.9  | 36.2 |           | ug/Kg | ₩                                     | 66   | 77 - 122                   | 3   | 3    |
| 1,2-Dichloropropane                 | ND     |           | 54.9  | 45.3 |           | ug/Kg | ₩                                     | 83   | 75 <sub>-</sub> 124        | 7   | 3    |
| 1,3-Dichlorobenzene                 | ND     | F1        | 54.9  | 31.9 | F1        | ug/Kg |                                       | 58   | 74 - 120                   | 7   | 3    |
| 1,4-Dichlorobenzene                 | ND     |           | 54.9  | 29.5 |           | ug/Kg | ₩                                     | 54   | 73 - 120                   | 9   | 30   |
| 2-Butanone (MEK)                    | ND     | F1        | 274   | 155  |           | ug/Kg | ☼                                     | 56   | 70 - 134                   | 6   | 30   |
| 2-Hexanone                          | ND     | F1        | 274   | 154  | F1        | ug/Kg | · · · · · · · · · · · · · · · · · · · | 56   | 59 - 130                   | 1   | 30   |
| 4-Methyl-2-pentanone (MIBK)         | ND     | F1        | 274   | 173  | F1        | ug/Kg | ₩                                     | 63   | 65 - 133                   | 7   | 30   |
| Acetone                             | 13     | J F1      | 274   | 181  |           | ug/Kg | ₩                                     | 61   | 61 - 137                   | 15  | 30   |
| Benzene                             | 1.5    | J         | 54.9  | 46.4 |           | ug/Kg | · · · · · · · · · · · · · · · · · · · | 82   | 79 - 127                   | 2   | 30   |
| Bromodichloromethane                | ND     |           | 54.9  | 44.0 |           | ug/Kg | ₩                                     | 80   | 80 - 122                   | 2   | 30   |
| Bromoform                           | ND     | F1 *      | 54.9  | 36.4 | F1        | ug/Kg | ₩                                     | 66   | 68 - 126                   | 3   | 30   |
| Bromomethane                        | ND     |           | 54.9  | 47.7 |           | ug/Kg | ·                                     | 87   | 37 - 149                   | 3   | 30   |
| Carbon disulfide                    | ND     | F1        | 54.9  | 28.1 | F1        | ug/Kg | ₩                                     | 51   | 64 - 131                   | 21  | 30   |
| Carbon tetrachloride                | ND     |           | 54.9  | 45.6 |           | ug/Kg | ₩                                     | 83   | 75 - 135                   | 13  | 30   |
| Chlorobenzene                       | ND     | F1        | 54.9  | 37.2 | F1        | ug/Kg | · · · · · · · · · · · · · · · · · · · | 68   | 76 - 124                   | 7   | 30   |
| Chloroethane                        | ND     |           | 54.9  | 44.9 |           | ug/Kg | ₩                                     | 82   | 69 <sub>-</sub> 135        | 2   | 30   |
| Chloroform                          | ND     |           | 54.9  | 45.4 |           | ug/Kg | ₩                                     | 83   | 80 - 120                   | 4   | 30   |
| Chloromethane                       | ND     |           | 54.9  | 34.6 |           | ug/Kg | · · · · · · · · · · · · · · · · · · · | 63   | 63 - 127                   | 4   | 30   |
| cis-1,2-Dichloroethene              | ND     | F1        | 54.9  | 35.4 | F1        | ug/Kg | ₩                                     | 65   | 80 - 120                   | 12  | 30   |
| cis-1,3-Dichloropropene             | ND     | F1        | 54.9  | 31.9 | F1        | ug/Kg | ₩                                     | 58   | 80 - 120                   | 14  | 30   |
| Cyclohexane                         | ND     |           | 54.9  | 37.7 |           | ug/Kg |                                       | 69   | 65 - 120                   | 3   | 30   |
| Dibromochloromethane                | ND     | F1        | 54.9  | 37.2 | F1        | ug/Kg | ₩                                     | 68   | 76 <sub>-</sub> 125        | 4   | 30   |
| Dichlorodifluoromethane             | ND     |           | 54.9  | 53.4 |           | ug/Kg | ₩                                     | 97   | 57 <sub>-</sub> 142        | 8   | 30   |
| Ethylbenzene                        | ND     | F1        | 54.9  | 41.0 | F1        | ug/Kg | ₩.                                    | 75   | 80 - 120                   | 1   | 30   |
| Isopropylbenzene                    | ND     |           | 54.9  | 48.6 |           | ug/Kg | ₩                                     | 89   | 72 - 120                   | 6   | 30   |
| Methyl acetate                      | ND     |           | 110   | 66.3 |           | ug/Kg | ₩                                     | 60   | 55 <sub>-</sub> 136        | 6   | 30   |
| Methyl tert-butyl ether             | ND     |           | 54.9  | 46.2 |           | ug/Kg | ₩.                                    | 84   | 63 - 125                   | 12  | 30   |
| Methylcyclohexane                   | ND     |           | 54.9  | 35.0 |           | ug/Kg | ₩                                     | 64   | 60 - 140                   | 2   | 30   |
| Methylene Chloride                  | ND     |           | 54.9  | 39.6 |           | ug/Kg | ☼                                     | 72   | 61 - 127                   | 8   | 30   |
| Styrene                             |        | J F1      | 54.9  | 35.3 | F1        | ug/Kg |                                       | 64   | 80 - 120                   | 8   | 30   |
| Tetrachloroethene                   | ND     |           | 54.9  | 44.0 |           | ug/Kg | ☼                                     | 80   | 74 - 122                   | 0   | 30   |
| Toluene                             | 1.8    | J         | 54.9  | 45.5 |           | ug/Kg | ☼                                     | 80   | 74 <sub>-</sub> 128        | 2   | 30   |
| trans-1,2-Dichloroethene            | ND     |           | 54.9  | 31.4 | F1        | ug/Kg | · · · · · · · · · · · · · · · · · · · | 57   | 78 - 126                   | 19  | 30   |
| Trichloroethene                     | ND     |           | 54.9  | 37.3 |           | ug/Kg | ₩                                     | 68   | 77 - 129                   | 4   | 30   |
| Trichlorofluoromethane              | ND     |           | 54.9  | 52.1 |           | ug/Kg | ₽                                     | 95   | 65 - 146                   | 8   | 30   |
| Vinyl chloride                      | ND     |           | 54.9  | 35.2 |           | ug/Kg |                                       | 64   | 61 - 133                   | 0   | 30   |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-125579-1 MSD

**Matrix: Solid** 

**Analysis Batch: 382134** 

Client Sample ID: MW-8 (4-6) **Prep Type: Total/NA** 

**Prep Batch: 382187** 

|                              | MSD       | MSD       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| 1,2-Dichloroethane-d4 (Surr) | 87        | -         | 64 - 126 |
| 4-Bromofluorobenzene (Surr)  | 94        |           | 72 - 126 |
| Dibromofluoromethane (Surr)  | 103       |           | 60 - 140 |
| Toluene-d8 (Surr)            | 106       |           | 71 - 125 |

Lab Sample ID: MB 480-382381/7 **Client Sample ID: Method Blank Prep Type: Total/NA** 

**Matrix: Water** 

**Analysis Batch: 382381** 

|                                       | MB     | MB        |     |      |      |   |          |                |         |
|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 10/18/17 11:20 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 10/18/17 11:20 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 10/18/17 11:20 | 1       |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L |   |          | 10/18/17 11:20 | 1       |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 10/18/17 11:20 | 1       |
| 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L |   |          | 10/18/17 11:20 | 1       |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 10/18/17 11:20 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L |   |          | 10/18/17 11:20 | 1       |
| 1,2-Dibromoethane                     | ND     |           | 1.0 | 0.73 | ug/L |   |          | 10/18/17 11:20 | 1       |
| 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79 | ug/L |   |          | 10/18/17 11:20 | 1       |
| 1,2-Dichloroethane                    | ND     |           | 1.0 | 0.21 | ug/L |   |          | 10/18/17 11:20 | 1       |
| 1,2-Dichloropropane                   | ND     |           | 1.0 | 0.72 | ug/L |   |          | 10/18/17 11:20 | 1       |
| 1,3-Dichlorobenzene                   | ND     |           | 1.0 | 0.78 | ug/L |   |          | 10/18/17 11:20 | 1       |
| 1,4-Dichlorobenzene                   | ND     |           | 1.0 | 0.84 | ug/L |   |          | 10/18/17 11:20 | 1       |
| 2-Butanone (MEK)                      | ND     |           | 10  | 1.3  | ug/L |   |          | 10/18/17 11:20 | 1       |
| 2-Hexanone                            | ND     |           | 5.0 | 1.2  | ug/L |   |          | 10/18/17 11:20 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 5.0 | 2.1  | ug/L |   |          | 10/18/17 11:20 | 1       |
| Acetone                               | ND     |           | 10  | 3.0  | ug/L |   |          | 10/18/17 11:20 | 1       |
| Benzene                               | ND     |           | 1.0 | 0.41 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Bromodichloromethane                  | ND     |           | 1.0 | 0.39 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Bromoform                             | ND     |           | 1.0 | 0.26 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Bromomethane                          | ND     |           | 1.0 | 0.69 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Carbon disulfide                      | ND     |           | 1.0 | 0.19 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Carbon tetrachloride                  | ND     |           | 1.0 | 0.27 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Chlorobenzene                         | ND     |           | 1.0 | 0.75 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Chloroethane                          | ND     |           | 1.0 | 0.32 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Chloroform                            | ND     |           | 1.0 | 0.34 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Chloromethane                         | ND     |           | 1.0 | 0.35 | ug/L |   |          | 10/18/17 11:20 | 1       |
| cis-1,2-Dichloroethene                | ND     |           | 1.0 | 0.81 | ug/L |   |          | 10/18/17 11:20 | 1       |
| cis-1,3-Dichloropropene               | ND     |           | 1.0 | 0.36 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Cyclohexane                           | ND     |           | 1.0 | 0.18 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Dibromochloromethane                  | ND     |           | 1.0 | 0.32 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Dichlorodifluoromethane               | ND     |           | 1.0 | 0.68 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Ethylbenzene                          | ND     |           | 1.0 | 0.74 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Isopropylbenzene                      | ND     |           | 1.0 | 0.79 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Methyl acetate                        | ND     |           | 2.5 | 1.3  | ug/L |   |          | 10/18/17 11:20 | 1       |
| Methyl tert-butyl ether               | ND     |           | 1.0 |      | ug/L |   |          | 10/18/17 11:20 | 1       |
| Methylcyclohexane                     | ND     |           | 1.0 |      | ug/L |   |          | 10/18/17 11:20 | 1       |

TestAmerica Buffalo

10/24/2017 Page 33 of 914

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St.

TestAmerica Job ID: 480-125579-1

## Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-382381/7

**Matrix: Water** 

Analysis Batch: 382381

| Client Sam | ple ID | : Meth | od Bl | ank |
|------------|--------|--------|-------|-----|
|            | Prep   | Type:  | Total | /NA |

|                           | MB     | MB        |     |      |      |   |          |                |         |
|---------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                   | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Methylene Chloride        | ND     |           | 1.0 | 0.44 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Styrene                   | ND     |           | 1.0 | 0.73 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Tetrachloroethene         | ND     |           | 1.0 | 0.36 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Toluene                   | ND     |           | 1.0 | 0.51 | ug/L |   |          | 10/18/17 11:20 | 1       |
| trans-1,2-Dichloroethene  | ND     |           | 1.0 | 0.90 | ug/L |   |          | 10/18/17 11:20 | 1       |
| trans-1,3-Dichloropropene | ND     |           | 1.0 | 0.37 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Trichloroethene           | ND     |           | 1.0 | 0.46 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Trichlorofluoromethane    | ND     |           | 1.0 | 0.88 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Vinyl chloride            | ND     |           | 1.0 | 0.90 | ug/L |   |          | 10/18/17 11:20 | 1       |
| Xylenes, Total            | ND     |           | 2.0 | 0.66 | ug/L |   |          | 10/18/17 11:20 | 1       |
|                           |        |           |     |      |      |   |          |                |         |

MB MB

| Surrogate                    | %Recovery Qualifi | er Limits | Prepared | Analyzed      | Dil Fac |
|------------------------------|-------------------|-----------|----------|---------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 97                | 77 - 120  |          | 0/18/17 11:20 | 1       |
| 4-Bromofluorobenzene (Surr)  | 105               | 73 - 120  | 10       | 0/18/17 11:20 | 1       |
| Dibromofluoromethane (Surr)  | 100               | 75 - 123  | 10       | 0/18/17 11:20 | 1       |
| Toluene-d8 (Surr)            | 104               | 80 - 120  | 10       | 0/18/17 11:20 | 1       |

Lab Sample ID: LCS 480-382381/5

**Matrix: Water** 

**Analysis Batch: 382381** 

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

| Analysis Batch. 302301              | Spike | LCS    | LCS       |      |   |      | %Rec.               |
|-------------------------------------|-------|--------|-----------|------|---|------|---------------------|
| Analyte                             | Added | Result | Qualifier | Unit | D | %Rec | Limits              |
| 1,1,1-Trichloroethane               | 25.0  | 24.5   |           | ug/L |   | 98   | 73 - 126            |
| 1,1,2,2-Tetrachloroethane           | 25.0  | 24.8   |           | ug/L |   | 99   | 76 <sub>-</sub> 120 |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 25.0  | 22.3   |           | ug/L |   | 89   | 61 <sub>-</sub> 148 |
| ne                                  |       |        |           |      |   |      |                     |
| 1,1,2-Trichloroethane               | 25.0  | 23.8   |           | ug/L |   | 95   | 76 - 122            |
| 1,1-Dichloroethane                  | 25.0  | 23.8   |           | ug/L |   | 95   | 77 <sub>-</sub> 120 |
| 1,1-Dichloroethene                  | 25.0  | 20.7   |           | ug/L |   | 83   | 66 - 127            |
| 1,2,4-Trichlorobenzene              | 25.0  | 24.1   |           | ug/L |   | 96   | 79 - 122            |
| 1,2-Dibromo-3-Chloropropane         | 25.0  | 22.9   |           | ug/L |   | 92   | 56 - 134            |
| 1,2-Dibromoethane                   | 25.0  | 24.5   |           | ug/L |   | 98   | 77 - 120            |
| 1,2-Dichlorobenzene                 | 25.0  | 25.2   |           | ug/L |   | 101  | 80 - 124            |
| 1,2-Dichloroethane                  | 25.0  | 23.1   |           | ug/L |   | 93   | 75 <sub>-</sub> 120 |
| 1,2-Dichloropropane                 | 25.0  | 24.0   |           | ug/L |   | 96   | 76 <sub>-</sub> 120 |
| 1,3-Dichlorobenzene                 | 25.0  | 24.8   |           | ug/L |   | 99   | 77 - 120            |
| 1,4-Dichlorobenzene                 | 25.0  | 24.9   |           | ug/L |   | 99   | 80 - 120            |
| 2-Butanone (MEK)                    | 125   | 135    |           | ug/L |   | 108  | 57 <sub>-</sub> 140 |
| 2-Hexanone                          | 125   | 137    |           | ug/L |   | 110  | 65 - 127            |
| 4-Methyl-2-pentanone (MIBK)         | 125   | 132    |           | ug/L |   | 106  | 71 <sub>-</sub> 125 |
| Acetone                             | 125   | 152    |           | ug/L |   | 121  | 56 <sub>-</sub> 142 |
| Benzene                             | 25.0  | 23.5   |           | ug/L |   | 94   | 71 - 124            |
| Bromodichloromethane                | 25.0  | 25.2   |           | ug/L |   | 101  | 80 - 122            |
| Bromoform                           | 25.0  | 25.9   |           | ug/L |   | 104  | 61 - 132            |
| Bromomethane                        | 25.0  | 24.7   |           | ug/L |   | 99   | 55 - 144            |
| Carbon disulfide                    | 25.0  | 22.6   |           | ug/L |   | 90   | 59 <sub>-</sub> 134 |
| Carbon tetrachloride                | 25.0  | 29.7   |           | ug/L |   | 119  | 72 - 134            |
| Chlorobenzene                       | 25.0  | 24.6   |           | ug/L |   | 98   | 80 - 120            |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-382381/5

**Matrix: Water** 

Analysis Batch: 382381

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

| Analysis Batch. 302301    | Spike | LCS    | LCS       |      |   |      | %Rec.    |
|---------------------------|-------|--------|-----------|------|---|------|----------|
| Analyte                   | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
| Chloroethane              | 25.0  | 24.0   |           | ug/L |   | 96   | 69 - 136 |
| Chloroform                | 25.0  | 23.4   |           | ug/L |   | 93   | 73 - 127 |
| Chloromethane             | 25.0  | 25.4   |           | ug/L |   | 102  | 68 - 124 |
| cis-1,2-Dichloroethene    | 25.0  | 23.7   |           | ug/L |   | 95   | 74 - 124 |
| cis-1,3-Dichloropropene   | 25.0  | 23.9   |           | ug/L |   | 95   | 74 - 124 |
| Cyclohexane               | 25.0  | 23.1   |           | ug/L |   | 93   | 59 - 135 |
| Dibromochloromethane      | 25.0  | 25.9   |           | ug/L |   | 103  | 75 - 125 |
| Dichlorodifluoromethane   | 25.0  | 25.5   |           | ug/L |   | 102  | 59 - 135 |
| Ethylbenzene              | 25.0  | 23.9   |           | ug/L |   | 96   | 77 - 123 |
| Isopropylbenzene          | 25.0  | 24.9   |           | ug/L |   | 99   | 77 - 122 |
| Methyl acetate            | 50.0  | 49.5   |           | ug/L |   | 99   | 74 - 133 |
| Methyl tert-butyl ether   | 25.0  | 24.0   |           | ug/L |   | 96   | 77 - 120 |
| Methylcyclohexane         | 25.0  | 21.7   |           | ug/L |   | 87   | 68 - 134 |
| Methylene Chloride        | 25.0  | 19.8   |           | ug/L |   | 79   | 75 - 124 |
| Styrene                   | 25.0  | 25.1   |           | ug/L |   | 101  | 80 - 120 |
| Tetrachloroethene         | 25.0  | 24.3   |           | ug/L |   | 97   | 74 - 122 |
| Toluene                   | 25.0  | 24.8   |           | ug/L |   | 99   | 80 - 122 |
| trans-1,2-Dichloroethene  | 25.0  | 22.2   |           | ug/L |   | 89   | 73 - 127 |
| trans-1,3-Dichloropropene | 25.0  | 25.2   |           | ug/L |   | 101  | 80 - 120 |
| Trichloroethene           | 25.0  | 23.1   |           | ug/L |   | 92   | 74 - 123 |
| Trichlorofluoromethane    | 25.0  | 25.3   |           | ug/L |   | 101  | 62 - 150 |
| Vinyl chloride            | 25.0  | 25.7   |           | ug/L |   | 103  | 65 - 133 |

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| 1,2-Dichloroethane-d4 (Surr) | 99        |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 106       |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 104       |           | 75 - 123 |
| Toluene-d8 (Surr)            | 104       |           | 80 - 120 |

### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-381332/1-A

**Matrix: Solid** 

**Analysis Batch: 382085** 

**Client Sample ID: Method Blank** Prep Type: Total/NA

**Prep Batch: 381332** 

|                       | MB     | MB        |      |     |       |   |                | •              |         |
|-----------------------|--------|-----------|------|-----|-------|---|----------------|----------------|---------|
| Analyte               | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| 2,4,5-Trichlorophenol | ND     |           | 170  | 45  | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| 2,4,6-Trichlorophenol | ND     |           | 170  | 34  | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| 2,4-Dichlorophenol    | ND     |           | 170  | 18  | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| 2,4-Dimethylphenol    | ND     |           | 170  | 41  | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| 2,4-Dinitrophenol     | ND     |           | 1600 | 770 | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| 2,4-Dinitrotoluene    | ND     |           | 170  | 35  | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| 2,6-Dinitrotoluene    | ND     |           | 170  | 20  | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| 2-Chloronaphthalene   | ND     |           | 170  | 28  | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| 2-Chlorophenol        | ND     |           | 170  | 31  | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| 2-Methylnaphthalene   | ND     |           | 170  | 34  | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| 2-Methylphenol        | ND     |           | 170  | 20  | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| 2-Nitroaniline        | ND     |           | 330  | 25  | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |

TestAmerica Buffalo

Page 35 of 914

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-381332/1-A

**Matrix: Solid** 

**Analysis Batch: 382085** 

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 381332

|                               | MB       |           |            |     |                | _ | _              |                |         |
|-------------------------------|----------|-----------|------------|-----|----------------|---|----------------|----------------|---------|
| Analyte                       |          | Qualifier | RL         |     | Unit           | D | Prepared       | Analyzed       | Dil Fac |
| 2-Nitrophenol                 | ND       |           | 170        | 47  | ug/Kg          |   |                | 10/16/17 20:13 | 1       |
| 3,3'-Dichlorobenzidine        | ND       |           | 330        |     | ug/Kg          |   |                | 10/16/17 20:13 | 1       |
| 3-Nitroaniline                | ND       |           | 330        |     | ug/Kg          |   |                | 10/16/17 20:13 | 1       |
| 4,6-Dinitro-2-methylphenol    | ND       |           | 330        |     | ug/Kg          |   |                | 10/16/17 20:13 | 1       |
| 4-Bromophenyl phenyl ether    | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 | 1       |
| 4-Chloro-3-methylphenol       | ND       |           | 170        |     | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| 4-Chloroaniline               | ND       |           | 170        | 41  | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| 4-Chlorophenyl phenyl ether   | ND       |           | 170        | 21  | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| 4-Methylphenol                | ND       |           | 330        | 20  | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | •       |
| 4-Nitroaniline                | ND       |           | 330        | 88  | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 |         |
| 4-Nitrophenol                 | ND       |           | 330        | 120 | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Acenaphthene                  | ND       |           | 170        | 25  | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | •       |
| Acenaphthylene                | ND       |           | 170        | 22  | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Acetophenone                  | ND       |           | 170        | 23  | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Anthracene                    | ND       |           | 170        | 41  | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Atrazine                      | ND       |           | 170        | 58  | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Benzaldehyde                  | ND       |           | 170        | 130 | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Benzo[a]anthracene            | ND       |           | 170        | 17  | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Benzo[a]pyrene                | ND       |           | 170        | 25  | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Benzo[b]fluoranthene          | ND       |           | 170        | 27  | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Benzo[g,h,i]perylene          | ND       |           | 170        |     | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Benzo[k]fluoranthene          | ND       |           | 170        |     | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Biphenyl                      | ND       |           | 170        |     | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| bis (2-chloroisopropyl) ether | ND       |           | 170        |     | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Bis(2-chloroethoxy)methane    | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Bis(2-chloroethyl)ether       | ND       |           | 170        |     | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 |         |
| Bis(2-ethylhexyl) phthalate   | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Butyl benzyl phthalate        | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Caprolactam                   | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Carbazole                     | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Chrysene                      | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Dibenz(a,h)anthracene         | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Dibenzofuran                  | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Diethyl phthalate             | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Dimethyl phthalate            | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Di-n-butyl phthalate          | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Di-n-octyl phthalate          | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 | ,       |
| Fluoranthene                  | ND       |           | 170        |     | ug/Kg<br>ug/Kg |   |                | 10/16/17 20:13 | ,       |
| Fluorene                      | ND<br>ND |           | 170        |     | ug/Kg<br>ug/Kg |   |                | 10/16/17 20:13 |         |
|                               |          |           |            |     |                |   |                |                | 1       |
| Hexachlorobenzene             | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 | 1       |
| Hexachlorobutadiene           | ND       |           | 170<br>170 |     | ug/Kg          |   |                | 10/16/17 20:13 | 1       |
| Hexachlorocyclopentadiene     | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Hexachloroethane              | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Indeno[1,2,3-cd]pyrene        | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Isophorone                    | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 |         |
| Naphthalene                   | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 | •       |
| Nitrobenzene                  | ND       |           | 170        |     | ug/Kg          |   |                | 10/16/17 20:13 | •       |
| N-Nitrosodi-n-propylamine     | ND       |           | 170        | 29  | ug/Kg          |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-381332/1-A

**Matrix: Solid** 

**Analysis Batch: 382085** 

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 381332

|                        | MB N     | /IB       |     |     |       |   |                |                |         |
|------------------------|----------|-----------|-----|-----|-------|---|----------------|----------------|---------|
| Analyte                | Result C | Qualifier | RL  | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| N-Nitrosodiphenylamine | ND       |           | 170 | 140 | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Pentachlorophenol      | ND       |           | 330 | 170 | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Phenanthrene           | ND       |           | 170 | 25  | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Phenol                 | ND       |           | 170 | 26  | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
| Pyrene                 | ND       |           | 170 | 20  | ug/Kg |   | 10/11/17 14:06 | 10/16/17 20:13 | 1       |
|                        |          |           |     |     |       |   |                |                |         |

| MB        | MB                                      |                      |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|-----------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| %Recovery | Qualifier                               | Limits               | Prepared                                                                                                                                                                                         | Analyzed                                                                                                                                                                                                                                                                                                                             | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 86        |                                         | 54 - 120             | <u>10/11/17 14:06</u>                                                                                                                                                                            | 10/16/17 20:13                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 84        |                                         | 60 - 120             | 10/11/17 14:06                                                                                                                                                                                   | 10/16/17 20:13                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 77        |                                         | 52 - 120             | 10/11/17 14:06                                                                                                                                                                                   | 10/16/17 20:13                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 73        |                                         | 53 - 120             | 10/11/17 14:06                                                                                                                                                                                   | 10/16/17 20:13                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 80        |                                         | 54 - 120             | 10/11/17 14:06                                                                                                                                                                                   | 10/16/17 20:13                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 101       |                                         | 65 - 121             | 10/11/17 14:06                                                                                                                                                                                   | 10/16/17 20:13                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | %Recovery<br>86<br>84<br>77<br>73<br>80 | 84<br>77<br>73<br>80 | %Recovery         Qualifier         Limits           86         54 - 120           84         60 - 120           77         52 - 120           73         53 - 120           80         54 - 120 | %Recovery         Qualifier         Limits         Prepared           86         54 - 120         10/11/17 14:06           84         60 - 120         10/11/17 14:06           77         52 - 120         10/11/17 14:06           73         53 - 120         10/11/17 14:06           80         54 - 120         10/11/17 14:06 | %Recovery         Qualifier         Limits         Prepared         Analyzed           86         54 - 120         10/11/17 14:06         10/16/17 20:13           84         60 - 120         10/11/17 14:06         10/16/17 20:13           77         52 - 120         10/11/17 14:06         10/16/17 20:13           73         53 - 120         10/11/17 14:06         10/16/17 20:13           80         54 - 120         10/11/17 14:06         10/16/17 20:13 |

Lab Sample ID: LCS 480-381332/2-A

**Matrix: Solid** 

**Analysis Batch: 382085** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA Prep Batch: 381332

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 2,4,5-Trichlorophenol 1620 1350 ug/Kg 83 59 - 126 2,4,6-Trichlorophenol 1620 1290 ug/Kg 80 59 - 123 1620 80 2,4-Dichlorophenol 1310 ug/Kg 61 - 1201620 80 59 - 120 2,4-Dimethylphenol 1300 ug/Kg 2,4-Dinitrophenol 3250 1870 ug/Kg 58 41 - 146 2,4-Dinitrotoluene 1620 1380 ug/Kg 85 63 - 12083 2,6-Dinitrotoluene 1620 1350 ug/Kg 66 - 120 2-Chloronaphthalene 1620 1250 ug/Kg 77 57 - 120 2-Chlorophenol 1620 1180 ug/Kg 73 53 - 120 59 - 120 1620 79 2-Methylnaphthalene 1280 ug/Kg 2-Methylphenol 1620 1270 ug/Kg 78 54 - 120 2-Nitroaniline 1620 1260 78 61 - 120 ug/Kg 2-Nitrophenol 1620 1220 75 56 - 120 ug/Kg 3,3'-Dichlorobenzidine 3250 54 - 120 2940 91 ug/Kg 80 48 - 120 3-Nitroaniline 1620 1300 ug/Kg 49 - 122 4,6-Dinitro-2-methylphenol 3250 2620 81 ug/Kg 4-Bromophenyl phenyl ether 1620 1490 ug/Kg 92 58 - 1201620 61 - 120 4-Chloro-3-methylphenol 1340 ug/Kg 83 4-Chloroaniline 1620 1180 73 38 - 120 ug/Kg 4-Chlorophenyl phenyl ether 1620 1360 ug/Kg 84 63 - 1244-Methylphenol 1620 1330 82 55 - 120 ug/Kg 4-Nitroaniline 1620 1310 ug/Kg 81 56 - 120 4-Nitrophenol 3250 2720 84 43 - 147 ug/Kg 1620 1330 82 62 - 120 Acenaphthene ug/Kg 1620 81 58 - 121 Acenaphthylene 1310 ug/Kg Acetophenone 1620 1230 ug/Kg 76 54 - 120 62 - 120 Anthracene 1620 1480 91 ug/Kg Atrazine 3250 3030 ug/Kg 93 60 - 1273250 66 10 - 150 Benzaldehyde 2130 ug/Kg

TestAmerica Buffalo

Page 37 of 914

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St.

TestAmerica Job ID: 480-125579-1

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-381332/2-A

**Matrix: Solid** 

**Analysis Batch: 382085** 

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA Prep Batch: 381332** 

| •                             | Spike | LCS    | LCS            |      |      | %Rec.    |
|-------------------------------|-------|--------|----------------|------|------|----------|
| Analyte                       | Added | Result | Qualifier Unit | D    | %Rec | Limits   |
| Benzo[a]anthracene            | 1620  | 1510   | ug/Kg          |      | 93   | 65 - 120 |
| Benzo[a]pyrene                | 1620  | 1860   | ug/Kg          |      | 115  | 64 - 120 |
| Benzo[b]fluoranthene          | 1620  | 1940   | ug/Kg          | I    | 119  | 64 - 120 |
| Benzo[g,h,i]perylene          | 1620  | 1970   | ug/Kg          | l    | 122  | 45 - 145 |
| Benzo[k]fluoranthene          | 1620  | 1770   | ug/Kg          |      | 109  | 65 - 120 |
| Biphenyl                      | 1620  | 1300   | ug/Kg          | I    | 80   | 59 - 120 |
| bis (2-chloroisopropyl) ether | 1620  | 1140   | ug/Kg          | I    | 70   | 44 - 120 |
| Bis(2-chloroethoxy)methane    | 1620  | 1180   | ug/Kg          |      | 73   | 55 - 120 |
| Bis(2-chloroethyl)ether       | 1620  | 1150   | ug/Kg          | I    | 71   | 45 - 120 |
| Bis(2-ethylhexyl) phthalate   | 1620  | 1490   | ug/Kg          | I    | 92   | 61 - 133 |
| Butyl benzyl phthalate        | 1620  | 1480   | ug/Kg          |      | 91   | 61 - 129 |
| Caprolactam                   | 3250  | 2790   | ug/Kg          | I    | 86   | 47 - 120 |
| Carbazole                     | 1620  | 1510   | ug/Kg          | I    | 93   | 65 - 120 |
| Chrysene                      | 1620  | 1490   | ug/Kg          | <br> | 92   | 64 - 120 |
| Dibenz(a,h)anthracene         | 1620  | 1950   | ug/Kg          | I    | 120  | 54 - 132 |
| Dibenzofuran                  | 1620  | 1360   | ug/Kg          | I    | 84   | 63 - 120 |
| Diethyl phthalate             | 1620  | 1440   | ug/Kg          | <br> | 89   | 66 - 120 |
| Dimethyl phthalate            | 1620  | 1420   | ug/Kg          | I    | 88   | 65 - 124 |
| Di-n-butyl phthalate          | 1620  | 1510   | ug/Kg          | I    | 93   | 58 - 130 |
| Di-n-octyl phthalate          | 1620  | 1540   | ug/Kg          |      | 95   | 57 - 133 |
| Fluoranthene                  | 1620  | 1530   | ug/Kg          | I    | 94   | 62 - 120 |
| Fluorene                      | 1620  | 1350   | ug/Kg          | I    | 83   | 63 - 120 |
| Hexachlorobenzene             | 1620  | 1500   | ug/Kg          |      | 92   | 60 - 120 |
| Hexachlorobutadiene           | 1620  | 1220   | ug/Kg          | I    | 75   | 45 - 120 |
| Hexachlorocyclopentadiene     | 1620  | 1160   | ug/Kg          | I    | 71   | 47 - 120 |
| Hexachloroethane              | 1620  | 1160   | ug/Kg          |      | 72   | 41 - 120 |
| Indeno[1,2,3-cd]pyrene        | 1620  | 1940   | ug/Kg          | I    | 120  | 56 - 134 |
| Isophorone                    | 1620  | 1300   | ug/Kg          | I    | 80   | 56 - 120 |
| Naphthalene                   | 1620  | 1230   | ug/Kg          |      | 76   | 55 - 120 |
| Nitrobenzene                  | 1620  | 1240   | ug/Kg          | I    | 77   | 54 - 120 |
| N-Nitrosodi-n-propylamine     | 1620  | 1220   | ug/Kg          | I    | 75   | 52 - 120 |
| Pentachlorophenol             | 3250  | 2440   | ug/Kg          |      | 75   | 51 - 120 |
| Phenanthrene                  | 1620  | 1480   | ug/Kg          | I    | 91   | 60 - 120 |
| Phenol                        | 1620  | 1290   | ug/Kg          | I    | 80   | 53 - 120 |
| Pyrene                        | 1620  | 1480   | ug/Kg          |      | 91   | 61 - 133 |

LCS LCS

| Surrogate            | %Recovery | Qualifier | Limits   |
|----------------------|-----------|-----------|----------|
| 2,4,6-Tribromophenol | 95        |           | 54 - 120 |
| 2-Fluorobiphenyl     | 80        |           | 60 - 120 |
| 2-Fluorophenol       | 76        |           | 52 - 120 |
| Nitrobenzene-d5      | 77        |           | 53 - 120 |
| Phenol-d5            | 78        |           | 54 - 120 |
| p-Terphenyl-d14      | 96        |           | 65 - 121 |

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-125579-1 MS

**Matrix: Solid** 

Client Sample ID: MW-8 (4-6)
Prep Type: Total/NA
Prep Batch: 381332

| Analysis Batch: 382085        | Sample | Sample    | Spike        | MS             | MS             |                |              |             | Prep Batch: 381332<br>%Rec. |
|-------------------------------|--------|-----------|--------------|----------------|----------------|----------------|--------------|-------------|-----------------------------|
| Analyte                       | Result | Qualifier | Added        | Result         | Qualifier      | Unit           | D            | %Rec        | Limits                      |
| 2,4,5-Trichlorophenol         | ND     |           | 1930         | ND             |                | ug/Kg          | ☼            | NC          | 46 - 120                    |
| 2,4,6-Trichlorophenol         | ND     |           | 1930         | ND             |                | ug/Kg          | ₩            | NC          | 41 - 123                    |
| 2,4-Dichlorophenol            | ND     |           | 1930         | ND             |                | ug/Kg          | ₩            | NC          | 45 - 120                    |
| 2,4-Dimethylphenol            | ND     |           | 1930         | ND             |                | ug/Kg          | ₩.           | NC          | 52 - 120                    |
| 2,4-Dinitrophenol             | ND     |           | 3850         | ND             |                | ug/Kg          | ₩            | NC          | 41 - 146                    |
| 2,4-Dinitrotoluene            | ND     |           | 1930         | ND             |                | ug/Kg          | ₩            | NC          | 63 - 125                    |
| 2,6-Dinitrotoluene            | ND     |           | 1930         | ND             |                | ug/Kg          | ₩.           | NC          | 66 - 120                    |
| 2-Chloronaphthalene           | ND     |           | 1930         | ND             |                | ug/Kg          | ₩            | NC          | 57 <sub>-</sub> 120         |
| 2-Chlorophenol                | ND     |           | 1930         | ND             |                | ug/Kg          | ₩            | NC          | 43 - 120                    |
| 2-Methylnaphthalene           | ND     |           | 1930         | 4060           | j              | ug/Kg          |              | NC          | 55 - 120                    |
| 2-Methylphenol                | ND     |           | 1930         | ND             |                | ug/Kg          | ₩            | NC          | 48 - 120                    |
| 2-Nitroaniline                | ND     |           | 1930         | ND             |                | ug/Kg          | ₩            | NC          | 61 <sub>-</sub> 120         |
| 2-Nitrophenol                 | ND     |           | 1930         | ND             |                | ug/Kg          |              | NC          | 37 - 120                    |
| 3,3'-Dichlorobenzidine        | ND     |           | 3850         | ND             |                | ug/Kg          | ₩            | NC          | 37 - 126                    |
| 3-Nitroaniline                | ND     |           | 1930         | ND             |                | ug/Kg          | ₽            | NC          | 48 - 120                    |
| 4,6-Dinitro-2-methylphenol    | ND     |           | 3850         | ND             |                | ug/Kg          |              | NC          | 23 - 149                    |
| 4-Bromophenyl phenyl ether    | ND     |           | 1930         | ND             |                | ug/Kg          | ₩            | NC          | 58 - 120                    |
| 4-Chloro-3-methylphenol       | ND     |           | 1930         | ND             |                | ug/Kg          | ₩            | NC          | 49 - 125                    |
| 4-Chloroaniline               | ND     |           | 1930         | ND             |                | ug/Kg          |              | NC NC       | 38 - 120                    |
| 4-Chlorophenyl phenyl ether   | ND     |           | 1930         | ND             |                | ug/Kg          | ₩            | NC          | 63 - 124                    |
| 4-Methylphenol                | ND     |           | 1930         | ND             |                | ug/Kg          | ₩            | NC          | 50 - 120                    |
| 4-Nitroaniline                | ND     |           | 1930         | ND             |                | ug/Kg          |              | NC          | 47 - 120                    |
| 4-Nitrophenol                 | ND     |           | 3850         | ND             |                | ug/Kg<br>ug/Kg | ₩            | NC          | 31 - 147                    |
| Acenaphthene                  | 3800   | J F1      | 1930         | 5760           | 1              | ug/Kg<br>ug/Kg | ₩            | 101         | 60 - 120                    |
| Acenaphthylene                | 17000  |           | 1930         | 16700          |                | ug/Kg          |              | 3           | 58 - 121                    |
| Acetophenone                  | ND     | 012       | 1930         | ND             | J <del>4</del> | ug/Kg<br>ug/Kg | ₩            | NC          | 47 <sub>-</sub> 120         |
| Anthracene                    | 40000  | E2        | 1930         | 39700          | 1              | ug/Kg<br>ug/Kg | ☼            | -38         | 62 <sub>-</sub> 120         |
| Atrazine                      | ND     |           | 3850         | ND             |                | ug/Kg<br>ug/Kg |              | NC          | 60 - 150                    |
| Benzaldehyde                  | ND     |           | 3850         | ND             |                |                | ☼            | NC          | 10 <sub>-</sub> 150         |
| •                             | 87000  | F2        | 1930         | 78500          | 1              | ug/Kg          | ₽            | -442        | 65 <sub>-</sub> 120         |
| Benzo[a]anthracene            |        |           |              |                |                | ug/Kg          |              | 224         | 64 - 120                    |
| Benzo[a]pyrene                | 69000  |           | 1930<br>1930 | 73300<br>79300 |                | ug/Kg          | ₩            | -206        | 64 - 120<br>64 - 120        |
| Benzo[b]fluoranthene          | 83000  |           |              | 41300          |                | ug/Kg          | ₩            | -206<br>179 |                             |
| Benzo[g,h,i]perylene          | 38000  | FZ        | 1930         |                |                | ug/Kg          | <del>.</del> |             | 45 - 145                    |
| Benzo[k]fluoranthene          | 34000  |           | 1930         | 47600          | 4              | ug/Kg          |              | 694<br>NG   | 65 <sub>-</sub> 120         |
| Biphenyl                      | ND     |           | 1930         | ND             |                | ug/Kg          | ☆ **         | NC          | 58 <sub>-</sub> 120         |
| bis (2-chloroisopropyl) ether | ND     |           | 1930         | ND             |                | ug/Kg          |              | NC          | 31 - 120                    |
| Bis(2-chloroethoxy)methane    | ND     |           | 1930         | ND             |                | ug/Kg          | *            | NC          | 52 - 120                    |
| Bis(2-chloroethyl)ether       | ND     |           | 1930         | ND             |                | ug/Kg          | <b>☆</b>     | NC          | 45 - 120                    |
| Bis(2-ethylhexyl) phthalate   | ND     |           | 1930         | ND             |                | ug/Kg          |              | NC          | 61 - 133                    |
| Butyl benzyl phthalate        | ND     |           | 1930         | ND             |                | ug/Kg          | <b>☆</b>     | NC          | 61 - 120                    |
| Caprolactam                   | ND     |           | 3850         | ND             |                | ug/Kg          |              | NC          | 37 - 133                    |
| Carbazole                     | ND     | F2        | 1930         | 3420           |                | ug/Kg          | <b>;</b>     | NC          | 59 - 120                    |
| Chrysene                      |        | F2        | 1930         | 64700          | 4              | ug/Kg          | <b>‡</b>     | -291        | 64 - 120                    |
| Dibenz(a,h)anthracene         | ND     |           | 1930         | ND             |                | ug/Kg          | <b>‡</b>     | NC          | 54 - 132                    |
| Dibenzofuran                  | 9100   | JF2       | 1930         | 13100          | J 4            | ug/Kg          |              | 209         | 62 - 120                    |
| Diethyl phthalate             | ND     |           | 1930         | ND             |                | ug/Kg          | <b>‡</b>     | NC          | 66 - 120                    |
| Dimethyl phthalate            | ND     |           | 1930         | ND             |                | ug/Kg          | ₩            | NC          | 65 - 124                    |
| Di-n-butyl phthalate          | ND     |           | 1930         | ND             |                | ug/Kg          | ☼            | NC          | 58 - 130                    |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-125579-1 MS

**Matrix: Solid** 

**Analysis Batch: 382085** 

Client Sample ID: MW-8 (4-6)
Prep Type: Total/NA
Prep Batch: 381332

| Analysis Daton. 302003    | Sample | Sample    | Spike | MS     | MS        |       |    |      | %Rec.    |
|---------------------------|--------|-----------|-------|--------|-----------|-------|----|------|----------|
| Analyte                   | Result | Qualifier | Added | Result | Qualifier | Unit  | D  | %Rec | Limits   |
| Di-n-octyl phthalate      | ND     |           | 1930  | ND     |           | ug/Kg | ☼  | NC   | 57 - 133 |
| Fluoranthene              | 170000 | F2        | 1930  | 152000 | 4         | ug/Kg | ₽  | -705 | 62 - 120 |
| Fluorene                  | 18000  | J F2      | 1930  | 22000  | 4         | ug/Kg | ☼  | 232  | 63 - 120 |
| Hexachlorobenzene         | ND     |           | 1930  | ND     |           | ug/Kg | ₩. | NC   | 60 - 120 |
| Hexachlorobutadiene       | ND     |           | 1930  | ND     |           | ug/Kg | ☼  | NC   | 45 - 120 |
| Hexachlorocyclopentadiene | ND     |           | 1930  | ND     |           | ug/Kg | ☼  | NC   | 31 - 120 |
| Hexachloroethane          | ND     |           | 1930  | ND     |           | ug/Kg | ₩. | NC   | 21 - 120 |
| Indeno[1,2,3-cd]pyrene    | 36000  | F2        | 1930  | 40800  | 4         | ug/Kg | ☼  | 236  | 56 - 134 |
| Isophorone                | ND     |           | 1930  | ND     |           | ug/Kg | ☼  | NC   | 56 - 120 |
| Naphthalene               | ND     |           | 1930  | 3040   | J         | ug/Kg | ₩. | NC   | 46 - 120 |
| Nitrobenzene              | ND     |           | 1930  | ND     |           | ug/Kg | ☼  | NC   | 49 - 120 |
| N-Nitrosodi-n-propylamine | ND     |           | 1930  | ND     |           | ug/Kg | ☼  | NC   | 46 - 120 |
| Pentachlorophenol         | ND     |           | 3850  | ND     |           | ug/Kg | \$ | NC   | 25 - 136 |
| Phenanthrene              | 110000 | F2        | 1930  | 117000 | 4         | ug/Kg | ₽  | 420  | 60 - 122 |
| Phenol                    | ND     |           | 1930  | ND     |           | ug/Kg | ☼  | NC   | 50 - 120 |
| Pyrene                    | 130000 | F2        | 1930  | 124000 | 4         | ug/Kg | ₽  | -527 | 61 - 133 |

MS MS

| Surrogate            | %Recovery | Qualifier | Limits   |
|----------------------|-----------|-----------|----------|
| 2,4,6-Tribromophenol |           | X         | 54 - 120 |
| 2-Fluorobiphenyl     | 0         | Χ         | 60 - 120 |
| 2-Fluorophenol       | 0         | Χ         | 52 - 120 |
| Nitrobenzene-d5      | 0         | X         | 53 - 120 |
| Phenol-d5            | 0         | X         | 54 - 120 |
| p-Terphenvl-d14      | 0         | X         | 65 - 121 |

Lab Sample ID: 480-125579-1 MSD

**Matrix: Solid** 

**Analysis Batch: 382085** 

Client Sample ID: MW-8 (4-6)
Prep Type: Total/NA

Prep Batch: 381332

| Analysis Batch: 002000     | Sample | Sample                 | Spike | MSD | MSD       |                |                |      | %Rec.               | <i>1</i> (011. 00 | RPD   |
|----------------------------|--------|------------------------|-------|-----|-----------|----------------|----------------|------|---------------------|-------------------|-------|
| Analyte                    | Result | •                      | Added |     | Qualifier | Unit           | D              | %Rec | Limits              | RPD               | Limit |
| 2,4,5-Trichlorophenol      | ND     | <del>- Qualifier</del> | 1940  | ND  | Quannon   | ug/Kg          | — <del> </del> | NC   | 46 - 120            | NC                | 18    |
| 2,4,6-Trichlorophenol      | ND     |                        | 1940  | ND  |           | ug/Kg<br>ug/Kg | ☆              | NC   | 41 - 123            | NC                | 19    |
| 2,4-Dichlorophenol         | ND     |                        | 1940  | ND  |           | ug/Kg<br>ug/Kg | ₽              | NC   | 45 - 120            | NC                | 19    |
| 2,4-Dimethylphenol         | ND     |                        | 1940  | ND  |           | ug/Kg          |                | NC   | 52 - 120            | NC                | 42    |
| 2,4-Dinitrophenol          | ND     |                        | 3870  | ND  |           | ug/Kg          | ₽              | NC   | 41 - 146            | NC                | 22    |
| 2,4-Dinitrotoluene         | ND     |                        | 1940  | ND  |           | ug/Kg          | ☼              | NC   | 63 - 125            | NC                | 20    |
| 2,6-Dinitrotoluene         | ND     |                        | 1940  | ND  |           | ug/Kg          |                | NC   | 66 - 120            | NC                | 15    |
| 2-Chloronaphthalene        | ND     |                        | 1940  | ND  |           | ug/Kg          | ☼              | NC   | 57 <sub>-</sub> 120 | NC                | 21    |
| 2-Chlorophenol             | ND     |                        | 1940  | ND  |           | ug/Kg          | ☼              | NC   | 43 - 120            | NC                | 25    |
| 2-Methylnaphthalene        | ND     |                        | 1940  | ND  |           | ug/Kg          | ₩.             | NC   | 55 - 120            | NC                | 21    |
| 2-Methylphenol             | ND     |                        | 1940  | ND  |           | ug/Kg          | ₽              | NC   | 48 - 120            | NC                | 27    |
| 2-Nitroaniline             | ND     |                        | 1940  | ND  |           | ug/Kg          | ₽              | NC   | 61 - 120            | NC                | 15    |
| 2-Nitrophenol              | ND     |                        | 1940  | ND  |           | ug/Kg          | ₩.             | NC   | 37 - 120            | NC                | 18    |
| 3,3'-Dichlorobenzidine     | ND     |                        | 3870  | ND  |           | ug/Kg          | ₽              | NC   | 37 - 126            | NC                | 25    |
| 3-Nitroaniline             | ND     |                        | 1940  | ND  |           | ug/Kg          | ☼              | NC   | 48 - 120            | NC                | 19    |
| 4,6-Dinitro-2-methylphenol | ND     |                        | 3870  | ND  |           | ug/Kg          | ₩.             | NC   | 23 - 149            | NC                | 15    |
| 4-Bromophenyl phenyl ether | ND     |                        | 1940  | ND  |           | ug/Kg          | ☼              | NC   | 58 - 120            | NC                | 15    |
| 4-Chloro-3-methylphenol    | ND     |                        | 1940  | ND  |           | ug/Kg          | ₽              | NC   | 49 - 125            | NC                | 27    |

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

Client Sample ID: MW-8 (4-6)

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-125579-1 MSD

| Matrix: Solid                 | T WOD  |           |       |        |           |       |              | Onem c | Prep Ty  |     | •     |
|-------------------------------|--------|-----------|-------|--------|-----------|-------|--------------|--------|----------|-----|-------|
| Analysis Batch: 382085        |        |           |       |        |           |       |              |        | Prep Ba  |     |       |
| 7 mary 510 Zatom 502000       | Sample | Sample    | Spike | MSD    | MSD       |       |              |        | %Rec.    |     | RPD   |
| Analyte                       | -      | Qualifier | Added | Result | Qualifier | Unit  | D            | %Rec   | Limits   | RPD | Limit |
| 4-Chloroaniline               | ND     |           | 1940  | ND     |           | ug/Kg | <del>\</del> | NC     | 38 - 120 | NC  | 22    |
| 4-Chlorophenyl phenyl ether   | ND     |           | 1940  | ND     |           | ug/Kg | ₩.           | NC     | 63 - 124 | NC  | 16    |
| 4-Methylphenol                | ND     |           | 1940  | ND     |           | ug/Kg | ☼            | NC     | 50 - 120 | NC  | 24    |
| 4-Nitroaniline                | ND     |           | 1940  | ND     |           | ug/Kg | ₩.           | NC     | 47 - 120 | NC  | 24    |
| 4-Nitrophenol                 | ND     |           | 3870  | ND     |           | ug/Kg | ☼            | NC     | 31 - 147 | NC  | 25    |
| Acenaphthene                  | 3800   | JF1       | 1940  | 7940   | JF1       | ug/Kg | ☼            | 213    | 60 - 120 | 32  | 35    |
| Acenaphthylene                | 17000  | JF2       | 1940  | 26500  | 4 F2      | ug/Kg |              | 505    | 58 - 121 | 45  | 18    |
| Acetophenone                  | ND     |           | 1940  | ND     |           | ug/Kg | ☼            | NC     | 47 - 120 | NC  | 20    |
| Anthracene                    | 40000  | F2        | 1940  | 60700  | 4 F2      | ug/Kg | ☼            | 1042   | 62 - 120 | 42  | 15    |
| Atrazine                      | ND     |           | 3870  | ND     |           | ug/Kg |              | NC     | 60 - 150 | NC  | 20    |
| Benzaldehyde                  | ND     |           | 3870  | ND     |           | ug/Kg | ₽            | NC     | 10 - 150 | NC  | 20    |
| Benzo[a]anthracene            | 87000  | F2        | 1940  | 120000 | 4 F2      | ug/Kg | ☼            | 1687   | 65 - 120 | 42  | 15    |
| Benzo[a]pyrene                | 69000  | F2        | 1940  | 113000 | 4 F2      | ug/Kg |              | 2250   | 64 - 120 | 42  | 15    |
| Benzo[b]fluoranthene          | 83000  | F2        | 1940  | 137000 | 4 F2      | ug/Kg | ☼            | 2768   | 64 - 120 | 53  | 15    |
| Benzo[g,h,i]perylene          | 38000  | F2        | 1940  | 62700  | 4 F2      | ug/Kg | ☼            | 1283   | 45 - 145 | 41  | 15    |
| Benzo[k]fluoranthene          | 34000  |           | 1940  | 55000  | 4         | ug/Kg |              | 1071   | 65 - 120 | 14  | 22    |
| Biphenyl                      | ND     |           | 1940  | ND     |           | ug/Kg | ☼            | NC     | 58 - 120 | NC  | 20    |
| bis (2-chloroisopropyl) ether | ND     |           | 1940  | ND     |           | ug/Kg | ☼            | NC     | 31 - 120 | NC  | 24    |
| Bis(2-chloroethoxy)methane    | ND     |           | 1940  | ND     |           | ug/Kg |              | NC     | 52 - 120 | NC  | 17    |
| Bis(2-chloroethyl)ether       | ND     |           | 1940  | ND     |           | ug/Kg | ☼            | NC     | 45 - 120 | NC  | 21    |
| Bis(2-ethylhexyl) phthalate   | ND     |           | 1940  | ND     |           | ug/Kg | ☼            | NC     | 61 - 133 | NC  | 15    |
| Butyl benzyl phthalate        | ND     |           | 1940  | ND     |           | ug/Kg | ₩.           | NC     | 61 - 120 | NC  | 16    |
| Caprolactam                   | ND     |           | 3870  | ND     |           | ug/Kg | ☼            | NC     | 37 - 133 | NC  | 20    |
| Carbazole                     | ND     | F2        | 1940  | 4700   | JF2       | ug/Kg | ☼            | NC     | 59 - 120 | 31  | 20    |
| Chrysene                      | 70000  | F2        | 1940  | 98100  | 4 F2      | ug/Kg | \$           | 1437   | 64 - 120 | 41  | 15    |
| Dibenz(a,h)anthracene         | ND     |           | 1940  | ND     |           | ug/Kg | ☼            | NC     | 54 - 132 | NC  | 15    |
| Dibenzofuran                  | 9100   | JF2       | 1940  | 15500  | J 4 F2    | ug/Kg | ☼            | 332    | 62 - 120 | 17  | 15    |
| Diethyl phthalate             | ND     |           | 1940  | ND     |           | ug/Kg | ₩.           | NC     | 66 - 120 | NC  | 15    |
| Dimethyl phthalate            | ND     |           | 1940  | ND     |           | ug/Kg | ₽            | NC     | 65 - 124 | NC  | 15    |
| Di-n-butyl phthalate          | ND     |           | 1940  | ND     |           | ug/Kg | ₽            | NC     | 58 - 130 | NC  | 15    |
| Di-n-octyl phthalate          | ND     |           | 1940  | ND     |           | ug/Kg | ₩.           | NC     | 57 - 133 | NC  | 16    |
| Fluoranthene                  | 170000 | F2        | 1940  | 233000 | 4 F2      | ug/Kg | ☼            | 3468   | 62 - 120 | 42  | 15    |
| Fluorene                      | 18000  | JF2       | 1940  | 29500  | 4 F2      | ug/Kg | ☼            | 622    | 63 - 120 | 29  | 15    |
| Hexachlorobenzene             | ND     |           | 1940  | ND     |           | ug/Kg |              | NC     | 60 - 120 | NC  | 15    |
| Hexachlorobutadiene           | ND     |           | 1940  | ND     |           | ug/Kg | ☼            | NC     | 45 - 120 | NC  | 44    |
| Hexachlorocyclopentadiene     | ND     |           | 1940  | ND     |           | ug/Kg | ☼            | NC     | 31 - 120 | NC  | 49    |
| Hexachloroethane              | ND     |           | 1940  | ND     |           | ug/Kg |              | NC     | 21 - 120 | NC  | 46    |
| Indeno[1,2,3-cd]pyrene        | 36000  | F2        | 1940  | 63400  | 4 F2      | ug/Kg | ☼            | 1404   | 56 - 134 | 43  | 15    |
| Isophorone                    | ND     |           | 1940  | ND     |           | ug/Kg | ☼            | NC     | 56 - 120 | NC  | 17    |
| Naphthalene                   | ND     |           | 1940  | 4050   | J         | ug/Kg | \$           | NC     | 46 - 120 | 28  | 29    |
| Nitrobenzene                  | ND     |           | 1940  | ND     |           | ug/Kg | ₽            | NC     | 49 - 120 | NC  | 24    |
| N-Nitrosodi-n-propylamine     | ND     |           | 1940  | ND     |           | ug/Kg | ₽            | NC     | 46 - 120 | NC  | 31    |
| Pentachlorophenol             | ND     |           | 3870  | ND     |           | ug/Kg | ₽            | NC     | 25 - 136 | NC  | 35    |
| Phenanthrene                  | 110000 | F2        | 1940  | 165000 | 4 F2      | ug/Kg | ₽            | 2906   | 60 - 122 | 34  | 15    |
| Phenol                        | ND     |           | 1940  | ND     |           | ug/Kg | ₽            | NC     | 50 - 120 | NC  | 35    |
| Pyrene                        | 130000 | F2        | 1940  | 189000 | 4 F2      | ug/Kg | ₽            | 2852   | 61 - 133 | 42  | 35    |
| -                             |        |           |       |        |           | 5 0   |              |        |          |     |       |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-125579-1 MSD

**Matrix: Solid** 

**Analysis Batch: 382085** 

Project/Site: RGE - Park St.

Client Sample ID: MW-8 (4-6)
Prep Type: Total/NA
Prep Batch: 381332

|                      | MSD       | MSD       |          |
|----------------------|-----------|-----------|----------|
| Surrogate            | %Recovery | Qualifier | Limits   |
| 2,4,6-Tribromophenol | 0         | X         | 54 - 120 |
| 2-Fluorobiphenyl     | 75        |           | 60 - 120 |
| 2-Fluorophenol       | 47        | X         | 52 - 120 |
| Nitrobenzene-d5      | 63        |           | 53 - 120 |
| Phenol-d5            | 0         | Χ         | 54 - 120 |
| p-Terphenyl-d14      | 119       |           | 65 - 121 |

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-381758/1-A

**Matrix: Solid** 

**Analysis Batch: 382167** 

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 381758

|           | МВ     | MB        |      |       |       |   |                |                |         |
|-----------|--------|-----------|------|-------|-------|---|----------------|----------------|---------|
| Analyte   | Result | Qualifier | RL   | MDL   | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Aluminum  | ND     |           | 9.5  | 4.2   | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Antimony  | ND     |           | 14.2 | 0.38  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Arsenic   | ND     |           | 1.9  | 0.38  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Barium    | ND     |           | 0.47 | 0.10  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Beryllium | ND     |           | 0.19 | 0.027 | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Cadmium   | ND     |           | 0.19 | 0.028 | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Calcium   | 6.53   | J         | 47.3 | 3.1   | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Chromium  | ND     |           | 0.47 | 0.19  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Cobalt    | ND     |           | 0.47 | 0.047 | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Copper    | ND     |           | 0.95 | 0.20  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Iron      | ND     |           | 9.5  | 3.3   | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Lead      | ND     |           | 0.95 | 0.23  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Magnesium | ND     |           | 18.9 | 0.88  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Manganese | ND     |           | 0.19 | 0.030 | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Nickel    | ND     |           | 4.7  | 0.22  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Potassium | ND     |           | 28.4 | 18.9  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Selenium  | ND     |           | 3.8  | 0.38  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Silver    | ND     |           | 0.57 | 0.19  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Sodium    | ND     |           | 133  | 12.3  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Thallium  | ND     |           | 5.7  | 0.28  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Vanadium  | ND     |           | 0.47 | 0.10  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |
| Zinc      | ND     | ^         | 1.9  | 0.61  | mg/Kg |   | 10/13/17 16:34 | 10/16/17 11:43 | 1       |

Lab Sample ID: LCDSRM 480-381758/3-A

**Matrix: Solid** 

**Analysis Batch: 382167** 

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 381758 %Rec. RPD

|          | Spike | LCDSRM | LCDSRM    |       |   |       | %Rec.       |     | RPD   |
|----------|-------|--------|-----------|-------|---|-------|-------------|-----|-------|
| Analyte  | Added | Result | Qualifier | Unit  | D | %Rec  | Limits      | RPD | Limit |
| Aluminum | 8090  | 9312   |           | mg/Kg |   | 115.1 | 39.6 - 160. | 2   | 20    |
|          |       |        |           |       |   |       | 7           |     |       |
| Antimony | 99.3  | 62.56  |           | mg/Kg |   | 63.0  | 21.6 - 256. | 1   | 20    |
|          |       |        |           |       |   |       | 8           |     |       |
| Arsenic  | 100   | 89.24  |           | mg/Kg |   | 89.2  | 69.6 - 131. | 2   | 20    |
|          |       |        |           |       |   |       | 0           |     |       |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

#### Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCDSRM 480-381758/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 382167 Prep Batch: 381758** Spike LCDSRM LCDSRM %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 217 Barium 185.7 mg/Kg 85.6 73.7 - 128. 0 20 147 75.5 - 125. 2 Beryllium 130.8 mg/Kg 89.0 20 Cadmium 71.20 2 20 83.7 85.1 73.2 - 131. mg/Kg Calcium 6010 5438 3 20 90.5 73.7 - 126. mg/Kg Chromium 107 20 94.17 88.0 mg/Kg 69.4 - 134. 1 Cobalt 123 127.0 103.2 74.3 - 130 2 20 mg/Kg 75.3 - 128 166 141.7 3 20 Copper mg/Kg 85.4 Iron 14600 15770 ^ 108.0 36.1 - 163. 20 mg/Kg 104.6 Lead 88.4 92.44 69.9 - 130 1 20 mg/Kg 65.9 - 134 2930 2744 93.6 3 20 Magnesium mg/Kg 5 Manganese 311 272.9 87.7 74.9 - 125. 1 20 mg/Kg Nickel 49.8 52.11 69.1 - 135. 2 20 mg/Kg 104.6 61.1 - 138 Potassium 2620 2635 100.6 2 20 mg/Kg Selenium 87.7 80.75 92.1 64.1 - 135. 3 20 mg/Kg 3 Silver 41.4 35.46 85.7 65.9 - 133. 20 mg/Kg 242.2 2 Sodium 252 96.1 32.9 - 167. 20 mg/Kg Thallium 58.1 62.62 3 20 mg/Kg 107.8 63.9 - 136. Vanadium 140 132.4 2 20 mg/Kg 69.9 - 129. Zinc 145 129.6 67.7 - 132. 2 20 mg/Kg

Lab Sample ID: LCSSRM 480-381758/2-A

**Matrix: Solid** 

**Analysis Batch: 382167** 

| <b>Client Sample ID:</b> | Lab  | Contro | I Sample |
|--------------------------|------|--------|----------|
|                          | Prer | Type:  | Total/NA |

**Prep Batch: 381758** 

| 7 maryolo Batom 602107 | Spike | LCSSRM | LCSSRM    |       |   |       | %Rec.            |
|------------------------|-------|--------|-----------|-------|---|-------|------------------|
| Analyte                | Added | Result | Qualifier | Unit  | D | %Rec  | Limits           |
| Aluminum               | 8090  | 9097   |           | mg/Kg |   | 112.4 | 39.6 - 160.<br>7 |
| Antimony               | 99.3  | 61.79  |           | mg/Kg |   | 62.2  | 21.6 - 256.<br>8 |
| Arsenic                | 100   | 87.66  |           | mg/Kg |   | 87.7  | 69.6 - 131.<br>0 |
| Barium                 | 217   | 185.3  |           | mg/Kg |   | 85.4  | 73.7 - 128.<br>1 |
| Beryllium              | 147   | 128.7  |           | mg/Kg |   | 87.5  | 75.5 - 125.<br>9 |

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

#### Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-381758/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 382167 Prep Batch: 381758** Spike LCSSRM LCSSRM %Rec. Analyte Added Result Qualifier Unit %Rec Limits Cadmium 83.7 69.57 73.2 - 131. mg/Kg 83.1 Calcium 6010 73.7 - 126. 5274 mg/Kg 87.8 Chromium 107 92.96 86.9 69.4 - 134. mg/Kg Cobalt 123 124.6 101.3 74.3 - 130. mg/Kg 137.8 Copper 166 mg/Kg 83.0 75.3 - 128. Iron 14600 15210 ^ 104.2 mg/Kg 36.1 - 163. 88.4 91.16 69.9 - 130. Lead mg/Kg 103.1 2930 2668 65.9 - 134. Magnesium 91.0 mg/Kg 5 311 275.4 74.9 - 125. Manganese mg/Kg 88.5 Nickel 51.05 69.1 - 135. 49.8 102.5 mg/Kg Potassium 2620 2594 99.0 61.1 - 138. mg/Kg Selenium 87.7 78.35 64.1 - 135. mg/Kg 89.3 65.9 - 133. Silver 41.4 34.32 mg/Kg 82.9 Sodium 252 238.4 94.6 32.9 - 167. mg/Kg Thallium 58.1 60.51 104.2 mg/Kg 63.9 - 136. 3 140 130.3 69.9 - 129 Vanadium mg/Kg 93.1 3 127.1 87.7 67.7 - 132. Zinc 145 mg/Kg 4

Lab Sample ID: 480-125579-1 MS

**Matrix: Solid** 

Analysis Batch: 382167

Client Sample ID: MW-8 (4-6)

Prep Type: Total/NA Prep Batch: 381758

| Analysis Datch. 302107 | Sample | Sample    | Spike | MS     | MS        |       |    |      | %Rec.               |
|------------------------|--------|-----------|-------|--------|-----------|-------|----|------|---------------------|
| Analyte                | Result | Qualifier | Added | Result | Qualifier | Unit  | D  | %Rec | Limits              |
| Aluminum               | 15400  |           | 2280  | 25540  | 4         | mg/Kg | ☆  | 445  | 75 - 125            |
| Antimony               | ND     | F1        | 45.5  | 21.37  | F1        | mg/Kg | ₩  | 47   | 75 - 125            |
| Arsenic                | 18.5   |           | 45.5  | 58.09  |           | mg/Kg | ₩  | 87   | 75 - 125            |
| Barium                 | 184    | F1        | 45.5  | 276.7  | 4         | mg/Kg | ₩. | 204  | 75 - 125            |
| Beryllium              | 0.96   |           | 45.5  | 41.70  |           | mg/Kg | ₩  | 89   | 75 - 125            |
| Cadmium                | 1.1    |           | 45.5  | 43.03  |           | mg/Kg | ₩  | 92   | 75 - 125            |
| Calcium                | 26100  | F2 B      | 2280  | 35650  | 4         | mg/Kg | ₩  | 419  | 75 - 125            |
| Chromium               | 31.3   |           | 45.5  | 76.35  |           | mg/Kg | ₩  | 99   | 75 - 125            |
| Cobalt                 | 13.1   |           | 45.5  | 57.92  |           | mg/Kg | ₩  | 98   | 75 - 125            |
| Copper                 | 60.5   | F2 F1     | 45.5  | 125.5  | F1        | mg/Kg | ₩. | 143  | 75 - 125            |
| Iron                   | 25000  | ٨         | 2280  | 22220  | ^ 4       | mg/Kg | ₩  | -123 | 75 - 125            |
| Lead                   | 679    |           | 45.5  | 463.7  | 4         | mg/Kg | ≎  | -473 | 75 - 125            |
| Magnesium              | 5870   | F1        | 2280  | 10190  | F1        | mg/Kg | ₩  | 190  | 75 <sub>-</sub> 125 |

Client: ARCADIS U.S. Inc. Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

Client Sample ID: MW-8 (4-6)

#### Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-125579-1 MS

**Matrix: Solid** 

Prep Type: Total/NA **Analysis Batch: 382167 Prep Batch: 381758** MS MS Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits Analyte ☼ 127 Manganese 308 45.5 365.9 mg/Kg 75 - 125 Nickel 39.1 45.5 79.55 mg/Kg ₩ 89 75 - 125 ₩ 223 Potassium 4310 F1 2280 9390 F1 mg/Kg 75 - 125 ₩ Selenium 4.0 45.5 45.48 91 75 - 125 mg/Kg ά Silver 0.26 11.4 11.15 mg/Kg 96 75 - 125Sodium 565 2280 ф 94 75 - 125 2699

44.79

86.26

400.8 4

45.5

45.5

45.5

Lab Sample ID: 480-125579-1 MSD

ND

29.1 F1

482

**Matrix: Solid** 

Thallium

Zinc

Vanadium

**Analysis Batch: 382167** 

Client Sample ID: MW-8 (4-6) Prep Type: Total/NA

75 - 125

75 - 125

75 - 125

**Prep Batch: 381758** Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier hahhA Result Qualifier ח %Rec Limits **RPD** Limit **Analyte** Unit ₩ Aluminum 15400 2300 27000 4 503 75 - 125 6 20 mg/Kg ₽ 20 ND 46.1 22.79 49 75 - 125 6 Antimony F1 F1 mg/Kg ₩ Arsenic 18.5 46.1 55.84 mg/Kg 81 75 - 125 4 20 ά 128 13 20 Barium F1 46.1 242.5 F1 75 - 125184 mg/Kg ₩ Beryllium 0.96 46.1 42.09 mq/Kq 89 75 - 1251 20 ₩ 46.1 91 75 - 125 0 Cadmium 1.1 42.91 mg/Kg 20 ₩ Calcium 26100 F2 B 2300 26210 4 F2 4 75 - 125 31 20 mg/Kg ä Chromium 31.3 46.1 80.08 mg/Kg 106 75 - 1255 20 Cobalt 46.1 57.95 ₩ 97 75 - 1250 20 13.1 mg/Kg ä Copper 60.5 F2 F1 46.1 91.59 F2 F1 mg/Kg 67 75 - 12531 20 25000 2300 26580 ^ 4 Ö 68 75 - 125 18 20 Iron mg/Kg ä 46.1 530.8 4 -322 75 - 125 13 20 Lead 679 mg/Kg ₩ 75 - 125 2300 5870 F1 9143 F1 142 11 20 Magnesium mg/Kg Ö 75 - 125 Manganese 308 46 1 331.0 4 mg/Kg 50 10 20 ₽ Nickel 46.1 80.48 90 75 - 12520 39.1 mg/Kg 1 \$ Potassium 4310 F1 2300 9786 F1 mg/Kg 238 75 - 12520 ₩ 75 - 125 Selenium 4.0 46.1 44.12 mg/Kg 87 3 20 ₽ Silver 0.26 11.5 11.11 mg/Kg 94 75 - 125 0 20 ₩ Sodium 565 2310 2685 mg/Kg 92 75 - 125 1 20 ₽ Thallium 46.1 99 75 - 125 2 20 ND 45 53 mg/Kg ä Vanadium 29.1 F1 46.1 88.19 F1 mg/Kg 128 75 - 1252 20 Zinc 482 46.1 331.6 4 -326 75 - 125 19 20 mg/Kg

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-381100/1-A

**Matrix: Solid** 

**Analysis Batch: 381152** 

Prep Type: Total/NA **Prep Batch: 381100** MR MR

mg/Kg

mg/Kg

mg/Kg

mg/Kg

ά

ά

ά

98

125

-178

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Mercury ND 10/10/17 13:30 10/10/17 15:02 0.021 0.0083 mg/Kg

**Client Sample ID: Method Blank** 

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1

Project/Site: RGE - Park St.

| Method: 7471B - Mercury | (CVAA) ( | (Continued) |
|-------------------------|----------|-------------|
|-------------------------|----------|-------------|

| Lab Sample ID: LCSSRM 480-381100/2-A ^10 |       |        |           | Clien | t Saı | mple II | D: Lab Cor  | ntrol Sample |
|------------------------------------------|-------|--------|-----------|-------|-------|---------|-------------|--------------|
| Matrix: Solid                            |       |        |           |       |       |         | Prep Ty     | pe: Total/NA |
| Analysis Batch: 381152                   |       |        |           |       |       |         | Prep Ba     | atch: 381100 |
| •                                        | Spike | LCSSRM | LCSSRM    |       |       |         | %Rec.       |              |
| Analyte                                  | Added | Result | Qualifier | Unit  | D     | %Rec    | Limits      |              |
| Mercury                                  | 12.6  | 11.17  |           | mg/Kg |       | 88.7    | 44.4 - 128. |              |

| Lab Sample ID: 480-125579 | 9-1 MS |           |       |        |           |       |   | Client S | Sample ID: I | MW-8 (4-6) |
|---------------------------|--------|-----------|-------|--------|-----------|-------|---|----------|--------------|------------|
| Matrix: Solid             |        |           |       |        |           |       |   |          | Prep Type    | : Total/NA |
| Analysis Batch: 381152    |        |           |       |        |           |       |   |          | Prep Bate    | ch: 381100 |
| _                         | Sample | Sample    | Spike | MS     | MS        |       |   |          | %Rec.        |            |
| Analyte                   | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec     | Limits       |            |
| Mercury                   | 0.35   |           | 0.398 | 0.773  | -         | mg/Kg | ☼ | 107      | 80 - 120     |            |

| Lab Sample ID: 480-125579<br>Matrix: Solid | 9-1 MSD |           |       |        |           |       |   | Client S | Sample ID<br>Prep Ty |          | •     |
|--------------------------------------------|---------|-----------|-------|--------|-----------|-------|---|----------|----------------------|----------|-------|
| Analysis Batch: 381152                     |         |           |       |        |           |       |   |          | Prep Ba              | atch: 38 | 31100 |
| _                                          | Sample  | Sample    | Spike | MSD    | MSD       |       |   |          | %Rec.                |          | RPD   |
| Analyte                                    | Result  | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec     | Limits               | RPD      | Limit |
| Mercury                                    | 0.35    |           | 0.405 | 0.756  | -         | mg/Kg | ₩ | 101      | 80 - 120             | 2        | 20    |

6

# **Definitions/Glossary**

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1

Project/Site: RGE - Park St.

### Qualifiers

#### **GC/MS VOA**

| Qualifier | Qualifier Description                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|
| F1        | MS and/or MSD Recovery is outside acceptance limits.                                                           |
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |
| *         | LCS or LCSD is outside acceptance limits.                                                                      |

#### **GC/MS Semi VOA**

| Qualifier | Qualifier Description                                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| X         | Surrogate is outside control limits                                                                                                                       |
| F1        | MS and/or MSD Recovery is outside acceptance limits.                                                                                                      |
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.                                            |
| F2        | MS/MSD RPD exceeds control limits                                                                                                                         |
| 4         | MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable. |

#### **Metals**

| Qualifier | Qualifier Description                                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| F1        | MS and/or MSD Recovery is outside acceptance limits.                                                                                                      |
| В         | Compound was found in the blank and sample.                                                                                                               |
| F2        | MS/MSD RPD exceeds control limits                                                                                                                         |
| ٨         | ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.                                            |
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.                                            |
| 4         | MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable. |
| W         | PS: Post-digestion spike was outside control limits                                                                                                       |
| V         | Serial Dilution exceeds the control limits                                                                                                                |

### Glossary

TEQ

Toxicity Equivalent Quotient (Dioxin)

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |
| PQL            | Practical Quantitation Limit                                                                                |
| QC             | Quality Control                                                                                             |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |

# **QC Association Summary**

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1 Project/Site: RGE - Park St.

### GC/MS VOA

| <b>Analysis</b> | Batch: | 381944 |
|-----------------|--------|--------|
|-----------------|--------|--------|

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 480-125579-1       | MW-8 (4-6)         | Total/NA  | Solid  | 8260C  | 382014     |
| 480-125579-2       | MW-8 (13-14)       | Total/NA  | Solid  | 8260C  | 382014     |
| MB 480-382014/2-A  | Method Blank       | Total/NA  | Solid  | 8260C  | 382014     |
| LCS 480-382014/1-A | Lab Control Sample | Total/NA  | Solid  | 8260C  | 382014     |

#### **Prep Batch: 382014**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method  | Prep Batch |
|--------------------|--------------------|-----------|--------|---------|------------|
| 480-125579-1       | MW-8 (4-6)         | Total/NA  | Solid  | 5035A_L |            |
| 480-125579-2       | MW-8 (13-14)       | Total/NA  | Solid  | 5035A_L |            |
| MB 480-382014/2-A  | Method Blank       | Total/NA  | Solid  | 5035A_L |            |
| LCS 480-382014/1-A | Lab Control Sample | Total/NA  | Solid  | 5035A_L |            |

#### **Analysis Batch: 382134**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 480-125579-3       | DUP-100817         | Total/NA  | Solid  | 8260C  | 382187     |
| MB 480-382187/2-A  | Method Blank       | Total/NA  | Solid  | 8260C  | 382187     |
| LCS 480-382187/1-A | Lab Control Sample | Total/NA  | Solid  | 8260C  | 382187     |
| 480-125579-1 MS    | MW-8 (4-6)         | Total/NA  | Solid  | 8260C  | 382187     |
| 480-125579-1 MSD   | MW-8 (4-6)         | Total/NA  | Solid  | 8260C  | 382187     |

#### **Prep Batch: 382187**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method  | Prep Batch |
|--------------------|--------------------|-----------|--------|---------|------------|
| 480-125579-3       | DUP-100817         | Total/NA  | Solid  | 5035A_L |            |
| MB 480-382187/2-A  | Method Blank       | Total/NA  | Solid  | 5035A_L |            |
| LCS 480-382187/1-A | Lab Control Sample | Total/NA  | Solid  | 5035A_L |            |
| 480-125579-1 MS    | MW-8 (4-6)         | Total/NA  | Solid  | 5035A_L |            |
| 480-125579-1 MSD   | MW-8 (4-6)         | Total/NA  | Solid  | 5035A_L |            |

#### **Analysis Batch: 382381**

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 480-125579-4     | TRIP BLANK         | Total/NA  | Water  | 8260C  |            |
| MB 480-382381/7  | Method Blank       | Total/NA  | Water  | 8260C  |            |
| LCS 480-382381/5 | Lab Control Sample | Total/NA  | Water  | 8260C  |            |

#### **GC/MS Semi VOA**

#### Prep Batch: 381332

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 480-125579-1       | MW-8 (4-6)         | Total/NA  | Solid  | 3550C  |            |
| 480-125579-2       | MW-8 (13-14)       | Total/NA  | Solid  | 3550C  |            |
| 480-125579-3       | DUP-100817         | Total/NA  | Solid  | 3550C  |            |
| MB 480-381332/1-A  | Method Blank       | Total/NA  | Solid  | 3550C  |            |
| LCS 480-381332/2-A | Lab Control Sample | Total/NA  | Solid  | 3550C  |            |
| 480-125579-1 MS    | MW-8 (4-6)         | Total/NA  | Solid  | 3550C  |            |
| 480-125579-1 MSD   | MW-8 (4-6)         | Total/NA  | Solid  | 3550C  |            |

#### **Analysis Batch: 381534**

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|---------------|------------------|-----------|--------|--------|------------|
| 480-125579-2  | MW-8 (13-14)     | Total/NA  | Solid  | 8270D  | 381332     |
| 480-125579-3  | DUP-100817       | Total/NA  | Solid  | 8270D  | 381332     |

# **QC Association Summary**

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

### GC/MS Semi VOA (Continued)

#### **Analysis Batch: 382085**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 480-125579-1       | MW-8 (4-6)         | Total/NA  | Solid  | 8270D  | 381332     |
| MB 480-381332/1-A  | Method Blank       | Total/NA  | Solid  | 8270D  | 381332     |
| LCS 480-381332/2-A | Lab Control Sample | Total/NA  | Solid  | 8270D  | 381332     |
| 480-125579-1 MS    | MW-8 (4-6)         | Total/NA  | Solid  | 8270D  | 381332     |
| 480-125579-1 MSD   | MW-8 (4-6)         | Total/NA  | Solid  | 8270D  | 381332     |

#### **Metals**

#### **Prep Batch: 381100**

| Lab Sample ID            | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------------|--------------------|-----------|--------|--------|------------|
| 480-125579-1             | MW-8 (4-6)         | Total/NA  | Solid  | 7471B  |            |
| 480-125579-2             | MW-8 (13-14)       | Total/NA  | Solid  | 7471B  |            |
| 480-125579-3             | DUP-100817         | Total/NA  | Solid  | 7471B  |            |
| MB 480-381100/1-A        | Method Blank       | Total/NA  | Solid  | 7471B  |            |
| LCSSRM 480-381100/2-A ^1 | Lab Control Sample | Total/NA  | Solid  | 7471B  |            |
| 480-125579-1 MS          | MW-8 (4-6)         | Total/NA  | Solid  | 7471B  |            |
| 480-125579-1 MSD         | MW-8 (4-6)         | Total/NA  | Solid  | 7471B  |            |

### Analysis Batch: 381152

| Lab Sample ID            | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------------|--------------------|-----------|--------|--------|------------|
| 480-125579-1             | MW-8 (4-6)         | Total/NA  | Solid  | 7471B  | 381100     |
| 480-125579-2             | MW-8 (13-14)       | Total/NA  | Solid  | 7471B  | 381100     |
| 480-125579-3             | DUP-100817         | Total/NA  | Solid  | 7471B  | 381100     |
| MB 480-381100/1-A        | Method Blank       | Total/NA  | Solid  | 7471B  | 381100     |
| LCSSRM 480-381100/2-A ^1 | Lab Control Sample | Total/NA  | Solid  | 7471B  | 381100     |
| 480-125579-1 MS          | MW-8 (4-6)         | Total/NA  | Solid  | 7471B  | 381100     |
| 480-125579-1 MSD         | MW-8 (4-6)         | Total/NA  | Solid  | 7471B  | 381100     |

#### **Prep Batch: 381758**

| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-----------------------|------------------------|-----------|--------|--------|------------|
| 480-125579-1          | MW-8 (4-6)             | Total/NA  | Solid  | 3050B  |            |
| 480-125579-2          | MW-8 (13-14)           | Total/NA  | Solid  | 3050B  |            |
| 480-125579-3          | DUP-100817             | Total/NA  | Solid  | 3050B  |            |
| MB 480-381758/1-A     | Method Blank           | Total/NA  | Solid  | 3050B  |            |
| LCDSRM 480-381758/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 3050B  |            |
| LCSSRM 480-381758/2-A | Lab Control Sample     | Total/NA  | Solid  | 3050B  |            |
| 480-125579-1 MS       | MW-8 (4-6)             | Total/NA  | Solid  | 3050B  |            |
| 480-125579-1 MSD      | MW-8 (4-6)             | Total/NA  | Solid  | 3050B  |            |

### **Analysis Batch: 382167**

| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-----------------------|------------------------|-----------|--------|--------|------------|
| 480-125579-1          | MW-8 (4-6)             | Total/NA  | Solid  | 6010C  | 381758     |
| 480-125579-2          | MW-8 (13-14)           | Total/NA  | Solid  | 6010C  | 381758     |
| 480-125579-3          | DUP-100817             | Total/NA  | Solid  | 6010C  | 381758     |
| MB 480-381758/1-A     | Method Blank           | Total/NA  | Solid  | 6010C  | 381758     |
| LCDSRM 480-381758/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 6010C  | 381758     |
| LCSSRM 480-381758/2-A | Lab Control Sample     | Total/NA  | Solid  | 6010C  | 381758     |
| 480-125579-1 MS       | MW-8 (4-6)             | Total/NA  | Solid  | 6010C  | 381758     |
| 480-125579-1 MSD      | MW-8 (4-6)             | Total/NA  | Solid  | 6010C  | 381758     |

# **QC Association Summary**

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1

Project/Site: RGE - Park St.

# **General Chemistry**

#### **Analysis Batch: 381195**

| Lab Sample ID    | Client Sample ID | Prep Type | Matrix | Method   | Prep Batch |
|------------------|------------------|-----------|--------|----------|------------|
| 480-125579-1     | MW-8 (4-6)       | Total/NA  | Solid  | Moisture |            |
| 480-125579-2     | MW-8 (13-14)     | Total/NA  | Solid  | Moisture |            |
| 480-125579-3     | DUP-100817       | Total/NA  | Solid  | Moisture |            |
| 480-125579-1 MS  | MW-8 (4-6)       | Total/NA  | Solid  | Moisture |            |
| 480-125579-1 MSD | MW-8 (4-6)       | Total/NA  | Solid  | Moisture |            |

#### **Lab Chronicle**

Client: ARCADIS U.S. Inc Project/Site: RGE - Park St. TestAmerica Job ID: 480-125579-1

Client Sample ID: MW-8 (4-6)

Date Collected: 10/08/17 11:30

Lab Sample ID: 480-125579-1 **Matrix: Solid** 

Date Received: 10/10/17 09:50

|           | Batch    | Batch    |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|----------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method   | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | Moisture |     | 1        | 381195 | 10/11/17 04:49 | CSW     | TAL BUF |

Client Sample ID: MW-8 (4-6)

Date Collected: 10/08/17 11:30 Date Received: 10/10/17 09:50

Lab Sample ID: 480-125579-1

**Matrix: Solid** Percent Solids: 84.4

|           | Batch    | Batch   |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method  | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035A_L |     |          | 382014 | 10/10/17 10:30 | CDC     | TAL BUF |
| Total/NA  | Analysis | 8260C   |     | 1        | 381944 | 10/16/17 18:28 | CDC     | TAL BUF |
| Total/NA  | Prep     | 3550C   |     |          | 381332 | 10/11/17 14:06 | BEK     | TAL BUF |
| Total/NA  | Analysis | 8270D   |     | 100      | 382085 | 10/16/17 21:58 | DMR     | TAL BUF |
| Total/NA  | Prep     | 3050B   |     |          | 381758 | 10/13/17 16:34 | MJW     | TAL BUF |
| Total/NA  | Analysis | 6010C   |     | 1        | 382167 | 10/16/17 12:07 | LMH     | TAL BUF |
| Total/NA  | Prep     | 7471B   |     |          | 381100 | 10/10/17 13:30 | BMB     | TAL BUF |
| Total/NA  | Analysis | 7471B   |     | 1        | 381152 | 10/10/17 15:10 | BMB     | TAL BUF |

Client Sample ID: MW-8 (13-14)

Date Collected: 10/08/17 12:00 Date Received: 10/10/17 09:50

Lab Sample ID: 480-125579-2

**Matrix: Solid** 

|           | Batch    | Batch    |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|----------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method   | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | Moisture |     | 1        | 381195 | 10/11/17 04:49 | CSW     | TAL BUF |

Client Sample ID: MW-8 (13-14)

Date Collected: 10/08/17 12:00

Date Received: 10/10/17 09:50

Lab Sample ID: 480-125579-2 **Matrix: Solid** 

Percent Solids: 81.6

|           | Batch    | Batch   |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method  | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035A_L |     |          | 382014 | 10/10/17 10:30 | CDC     | TAL BUF |
| Total/NA  | Analysis | 8260C   |     | 1        | 381944 | 10/16/17 18:54 | CDC     | TAL BUF |
| Total/NA  | Prep     | 3550C   |     |          | 381332 | 10/11/17 14:06 | BEK     | TAL BUF |
| Total/NA  | Analysis | 8270D   |     | 5        | 381534 | 10/13/17 08:02 | DMR     | TAL BUF |
| Total/NA  | Prep     | 3050B   |     |          | 381758 | 10/13/17 16:34 | MJW     | TAL BUF |
| Total/NA  | Analysis | 6010C   |     | 1        | 382167 | 10/16/17 12:25 | LMH     | TAL BUF |
| Total/NA  | Prep     | 7471B   |     |          | 381100 | 10/10/17 13:30 | BMB     | TAL BUF |
| Total/NA  | Analysis | 7471B   |     | 1        | 381152 | 10/10/17 15:16 | BMB     | TAL BUF |

#### **Lab Chronicle**

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1

Project/Site: RGE - Park St.

Date Received: 10/10/17 09:50

Total/NA

Client Sample ID: DUP-100817

Analysis

Moisture

Lab Sample ID: 480-125579-3 Date Collected: 10/08/17 00:00

**Matrix: Solid** 

TAL BUF

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab

Client Sample ID: DUP-100817 Lab Sample ID: 480-125579-3

381195 10/11/17 04:49 CSW

Date Collected: 10/08/17 00:00 **Matrix: Solid** Date Received: 10/10/17 09:50 Percent Solids: 84.7

| _         | Batch    | Batch   |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method  | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035A_L |     |          | 382187 | 10/10/17 10:30 | CDC     | TAL BUF |
| Total/NA  | Analysis | 8260C   |     | 1        | 382134 | 10/17/17 14:11 | CDC     | TAL BUF |
| Total/NA  | Prep     | 3550C   |     |          | 381332 | 10/11/17 14:06 | BEK     | TAL BUF |
| Total/NA  | Analysis | 8270D   |     | 10       | 381534 | 10/13/17 08:28 | DMR     | TAL BUF |
| Total/NA  | Prep     | 3050B   |     |          | 381758 | 10/13/17 16:34 | MJW     | TAL BUF |
| Total/NA  | Analysis | 6010C   |     | 1        | 382167 | 10/16/17 12:39 | LMH     | TAL BUF |
| Total/NA  | Prep     | 7471B   |     |          | 381100 | 10/10/17 13:30 | BMB     | TAL BUF |
| Total/NA  | Analysis | 7471B   |     | 1        | 381152 | 10/10/17 15:22 | BMB     | TAL BUF |

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-125579-4 Date Collected: 10/08/17 00:00 **Matrix: Water** 

Date Received: 10/10/17 09:50

| _         | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260C  |     |          | 382381 | 10/18/17 18:32 | RLB     | TAL BUF |

#### **Laboratory References:**

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

# **Accreditation/Certification Summary**

Client: ARCADIS U.S. Inc TestAmerica Job ID: 480-125579-1

Project/Site: RGE - Park St.

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| ıthority        | Program                               |                                  | EPA Region                         | Identification Number | er Expiration Date |
|-----------------|---------------------------------------|----------------------------------|------------------------------------|-----------------------|--------------------|
| v York          | NELAP                                 |                                  | 2                                  | 10026                 | 03-31-18           |
| ,               | are included in this repo             |                                  |                                    | , ,                   | uthority:          |
| 0 ,             | ·                                     | rt, but accreditation/<br>Matrix | certification is not off<br>Analyt | , ,                   | uthority:          |
| Analysis Method | are included in this repo Prep Method | Matrix                           | Analyt                             | e                     | uthority:          |
| 0 ,             | ·                                     |                                  | Analyt                             | , ,                   | uthority:          |

# Method 8260C

Volatile Organic Compounds (GC/MS) by Method 8260C

# FORM II GC/MS VOA SURROGATE RECOVERY

| Lab Name: TestAmerica Buffalo | Job | No.: | 480-125579-1 |
|-------------------------------|-----|------|--------------|
|-------------------------------|-----|------|--------------|

SDG No.:

Matrix: Solid Level: Low

GC Column (1): ZB-624 (30) ID: 0.25(mm)

| Client Sample ID | Lab Sample ID         | DBFM # | DCA # | TOL # | BFB # |
|------------------|-----------------------|--------|-------|-------|-------|
| MW-8 (4-6)       | 480-125579-1          | 103    | 98    | 100   | 100   |
| MW-8 (13-14)     | 480-125579-2          | 106    | 107   | 98    | 105   |
| DUP-100817       | 480-125579-3          | 104    | 107   | 98    | 103   |
|                  | MB<br>480-382014/2-A  | 108    | 100   | 99    | 104   |
|                  | MB<br>480-382187/2-A  | 102    | 101   | 101   | 106   |
|                  | LCS<br>480-382014/1-A | 105    | 98    | 98    | 103   |
|                  | LCS<br>480-382187/1-A | 104    | 99    | 100   | 104   |
| MW-8 (4-6) MS    | 480-125579-1 MS       | 100    | 87    | 104   | 95    |
| MW-8 (4-6) MSD   | 480-125579-1 MSD      | 103    | 87    | 106   | 94    |

|                                    | QC LIMITS |
|------------------------------------|-----------|
| DBFM = Dibromofluoromethane (Surr) | 60-140    |
| DCA = 1,2-Dichloroethane-d4 (Surr) | 64-126    |
| TOL = Toluene-d8 (Surr)            | 71-125    |
| BFB = 4-Bromofluorobenzene (Surr)  | 72-126    |

 $<sup>\</sup>ensuremath{\text{\#}}$  Column to be used to flag recovery values

# FORM II GC/MS VOA SURROGATE RECOVERY

| Lab Name: TestAmerica Buffalo Job No.: 480-1255 | 79 | - | . ] |
|-------------------------------------------------|----|---|-----|
|-------------------------------------------------|----|---|-----|

SDG No.:

Matrix: Water Level: Low

GC Column (1): ZB-624 (60) ID: 0.25 (mm)

| Client Sample ID | Lab Sample ID    | DBFM # | DCA # | TOL # | BFB # |
|------------------|------------------|--------|-------|-------|-------|
| TRIP BLANK       | 480-125579-4     | 102    | 107   | 100   | 102   |
|                  | MB 480-382381/7  | 100    | 97    | 104   | 105   |
|                  | LCS 480-382381/5 | 104    | 99    | 104   | 106   |

|                                    | QC LIMITS |
|------------------------------------|-----------|
| DBFM = Dibromofluoromethane (Surr) | 75-123    |
| DCA = 1,2-Dichloroethane-d4 (Surr) | 77-120    |
| TOL = Toluene-d8 (Surr)            | 80-120    |
| BFB = 4-Bromofluorobenzene (Surr)  | 73-120    |

 $\ensuremath{\text{\#}}$  Column to be used to flag recovery values

| Lab Nam | e: TestAmerica Buff | alo        | Job No.: 480 | -125579-1 |
|---------|---------------------|------------|--------------|-----------|
| SDG No. | :                   |            |              |           |
| Matrix: | Solid               | Level: Low | Lab File ID: | F8271.D   |
| Lab ID: | LCS 480-382014/1-A  |            | Client ID:   |           |

|                                | SPIKE   | LCS           | LCS | QC     |   |
|--------------------------------|---------|---------------|-----|--------|---|
|                                | ADDED   | CONCENTRATION | 용   | LIMITS | # |
| COMPOUND                       | (ug/Kg) | (ug/Kg)       | REC | REC    |   |
| 1,1,1-Trichloroethane          | 50.0    | 55.4          | 111 | 77-121 |   |
| 1,1,2,2-Tetrachloroethane      | 50.0    | 47.5          | 95  | 80-120 |   |
| 1,1,2-Trichloro-1,2,2-trifluor | 50.0    | 52.2          | 104 | 60-140 |   |
| oethane                        |         |               |     |        |   |
| 1,1,2-Trichloroethane          | 50.0    | 49.2          | 98  |        |   |
| 1,1-Dichloroethane             | 50.0    | 51.9          | 104 |        |   |
| 1,1-Dichloroethene             | 50.0    | 52.3          | 105 |        |   |
| 1,2,4-Trichlorobenzene         | 50.0    | 53.6          | 107 |        |   |
| 1,2-Dibromo-3-Chloropropane    | 50.0    | 51.4          | 103 |        |   |
| 1,2-Dibromoethane              | 50.0    | 52.4          | 105 |        |   |
| 1,2-Dichlorobenzene            | 50.0    | 49.5          | 99  |        |   |
| 1,2-Dichloroethane             | 50.0    | 49.5          | 99  |        |   |
| 1,2-Dichloropropane            | 50.0    | 52.0          | 104 |        |   |
| 1,3-Dichlorobenzene            | 50.0    | 49.6          | 99  | 74-120 |   |
| 1,4-Dichlorobenzene            | 50.0    | 49.6          | 99  |        |   |
| 2-Butanone (MEK)               | 250     | 239           | 96  | 70-134 |   |
| 2-Hexanone                     | 250     | 236           | 94  | 59-130 |   |
| 4-Methyl-2-pentanone (MIBK)    | 250     | 230           | 92  | 65-133 |   |
| Acetone                        | 250     | 247           | 99  | 61-137 |   |
| Benzene                        | 50.0    | 50.9          | 102 | 79-127 |   |
| Bromodichloromethane           | 50.0    | 60.9          | 122 | 80-122 |   |
| Bromoform                      | 50.0    | 71.5          | 143 | 68-126 | * |
| Bromomethane                   | 50.0    | 50.8          | 102 | 37-149 |   |
| Carbon disulfide               | 50.0    | 57.6          | 115 | 64-131 |   |
| Carbon tetrachloride           | 50.0    | 67.5          | 135 | 75-135 |   |
| Chlorobenzene                  | 50.0    | 52.0          | 104 |        |   |
| Chloroethane                   | 50.0    | 50.6          | 101 | 69-135 |   |
| Chloroform                     | 50.0    | 51.0          | 102 | 80-120 |   |
| Chloromethane                  | 50.0    | 42.6          | 85  | 63-127 |   |
| cis-1,2-Dichloroethene         | 50.0    | 51.7          | 103 |        |   |
| cis-1,3-Dichloropropene        | 50.0    | 57.7          | 115 |        |   |
| Cyclohexane                    | 50.0    | 51.2          | 102 | 65-120 |   |
| Dibromochloromethane           | 50.0    | 59.5          | 119 |        |   |
| Dichlorodifluoromethane        | 50.0    | 59.7          | 119 | 57-142 |   |
| Ethylbenzene                   | 50.0    | 50.4          | 101 | 80-120 |   |
| Isopropylbenzene               | 50.0    | 49.0          | 98  | 72-120 |   |
| Methyl acetate                 | 100     | 92.1          | 92  | 55-136 |   |
| Methyl tert-butyl ether        | 50.0    | 48.4          | 97  | 63-125 |   |
| Methylcyclohexane              | 50.0    | 52.7          | 105 | 60-140 |   |
| Methylene Chloride             | 50.0    | 52.8          | 106 | 61-127 |   |
| Styrene                        | 50.0    | 50.8          | 102 | 80-120 |   |
| Tetrachloroethene              | 50.0    | 55.3          | 111 | 74-122 |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8260C}$ 

| Lab Nam | e: <u>TestAmerica Buff</u> | alo        | Job No.: 480-125579-1 |
|---------|----------------------------|------------|-----------------------|
| SDG No. | :                          |            |                       |
| Matrix: | Solid                      | Level: Low | Lab File ID: F8271.D  |
| Lab ID: | LCS 480-382014/1-A         |            | Client ID:            |

|                           | SPIKE<br>ADDED | LCS<br>CONCENTRATION | LCS | QC<br>LIMITS | # |
|---------------------------|----------------|----------------------|-----|--------------|---|
| COMPOUND                  | (ug/Kg)        | (ug/Kg)              | REC | REC          |   |
| Toluene                   | 50.0           | 49.8                 | 100 | 74-128       |   |
| trans-1,2-Dichloroethene  | 50.0           | 52.3                 | 105 | 78-126       |   |
| trans-1,3-Dichloropropene | 50.0           | 55.9                 | 112 | 73-123       |   |
| Trichloroethene           | 50.0           | 52.8                 | 106 | 77-129       |   |
| Trichlorofluoromethane    | 50.0           | 54.4                 | 109 | 65-146       |   |
| Vinyl chloride            | 50.0           | 47.4                 | 95  | 61-133       |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8260C}$ 

| Lab Name | e: TestAmerica Buff | alo        | Job No.: 480-125579-1 |
|----------|---------------------|------------|-----------------------|
| SDG No.  | :                   |            |                       |
| Matrix:  | Solid               | Level: Low | Lab File ID: F8296.D  |
| Lab ID:  | LCS 480-382187/1-A  |            | Client ID:            |

|                                | SPIKE   | LCS           | LCS | QC     |   |
|--------------------------------|---------|---------------|-----|--------|---|
|                                | ADDED   | CONCENTRATION | 용   | LIMITS | # |
| COMPOUND                       | (ug/Kg) | (ug/Kg)       | REC | REC    |   |
| 1,1,1-Trichloroethane          | 50.0    | 52.8          | 106 | 77-121 |   |
| 1,1,2,2-Tetrachloroethane      | 50.0    | 48.4          | 97  | 80-120 |   |
| 1,1,2-Trichloro-1,2,2-trifluor | 50.0    | 53.1          | 106 | 60-140 |   |
| oethane                        |         |               |     |        |   |
| 1,1,2-Trichloroethane          | 50.0    | 50.2          | 100 |        |   |
| 1,1-Dichloroethane             | 50.0    | 50.4          | 101 |        |   |
| 1,1-Dichloroethene             | 50.0    | 52.1          | 104 |        |   |
| 1,2,4-Trichlorobenzene         | 50.0    | 54.9          | 110 |        |   |
| 1,2-Dibromo-3-Chloropropane    | 50.0    | 45.0          | 90  |        |   |
| 1,2-Dibromoethane              | 50.0    | 52.4          | 105 |        |   |
| 1,2-Dichlorobenzene            | 50.0    | 50.5          | 101 |        |   |
| 1,2-Dichloroethane             | 50.0    | 48.4          | 97  |        |   |
| 1,2-Dichloropropane            | 50.0    | 50.7          | 101 | 75-124 |   |
| 1,3-Dichlorobenzene            | 50.0    | 50.9          | 102 |        |   |
| 1,4-Dichlorobenzene            | 50.0    | 51.0          | 102 | 73-120 |   |
| 2-Butanone (MEK)               | 250     | 234           | 94  | 70-134 |   |
| 2-Hexanone                     | 250     | 230           | 92  | 59-130 |   |
| 4-Methyl-2-pentanone (MIBK)    | 250     | 224           | 89  | 65-133 |   |
| Acetone                        | 250     | 242           | 97  | 61-137 |   |
| Benzene                        | 50.0    | 51.1          | 102 | 79-127 |   |
| Bromodichloromethane           | 50.0    | 57.1          | 114 | 80-122 |   |
| Bromoform                      | 50.0    | 59.9          | 120 | 68-126 |   |
| Bromomethane                   | 50.0    | 52.5          | 105 | 37-149 |   |
| Carbon disulfide               | 50.0    | 54.9          | 110 | 64-131 |   |
| Carbon tetrachloride           | 50.0    | 57.6          | 115 | 75-135 |   |
| Chlorobenzene                  | 50.0    | 52.7          | 105 | 76-124 |   |
| Chloroethane                   | 50.0    | 50.8          | 102 | 69-135 |   |
| Chloroform                     | 50.0    | 50.6          | 101 | 80-120 |   |
| Chloromethane                  | 50.0    | 40.7          | 81  | 63-127 |   |
| cis-1,2-Dichloroethene         | 50.0    | 51.1          | 102 | 81-120 |   |
| cis-1,3-Dichloropropene        | 50.0    | 54.0          | 108 | 80-120 |   |
| Cyclohexane                    | 50.0    | 49.4          | 99  | 65-120 |   |
| Dibromochloromethane           | 50.0    | 52.8          | 106 |        |   |
| Dichlorodifluoromethane        | 50.0    | 60.0          | 120 | 57-142 |   |
| Ethylbenzene                   | 50.0    | 52.0          | 104 | 80-120 |   |
| Isopropylbenzene               | 50.0    | 50.7          | 101 | 72-120 |   |
| Methyl acetate                 | 100     | 88.7          | 89  | 55-136 |   |
| Methyl tert-butyl ether        | 50.0    | 48.3          | 97  |        |   |
| Methylcyclohexane              | 50.0    | 53.2          | 106 | 60-140 |   |
| Methylene Chloride             | 50.0    | 52.2          | 104 |        |   |
| Styrene                        | 50.0    | 52.1          | 104 |        |   |
| Tetrachloroethene              | 50.0    | 57.1          | 114 | 74-122 |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8260C}$ 

| Lab Nam | e: TestAmerica Buff | TestAmerica Buffalo |                      | 480-125579-1 |  |  |
|---------|---------------------|---------------------|----------------------|--------------|--|--|
| SDG No. | :                   |                     |                      |              |  |  |
| Matrix: | Solid               | Level: Low          | Lab File ID: F8296.D |              |  |  |
| Lab ID: | LCS 480-382187/1-A  |                     | Client ID:           |              |  |  |

|                           | SPIKE<br>ADDED | LCS<br>CONCENTRATION | LCS | QC<br>LIMITS | # |
|---------------------------|----------------|----------------------|-----|--------------|---|
| COMPOUND                  | (ug/Kg)        | (ug/Kg)              | REC | REC          |   |
| Toluene                   | 50.0           | 51.3                 | 103 | 74-128       |   |
| trans-1,2-Dichloroethene  | 50.0           | 53.0                 | 106 | 78-126       |   |
| trans-1,3-Dichloropropene | 50.0           | 51.6                 | 103 | 73-123       |   |
| Trichloroethene           | 50.0           | 53.4                 | 107 | 77-129       |   |
| Trichlorofluoromethane    | 50.0           | 57.9                 | 116 | 65-146       |   |
| Vinyl chloride            | 50.0           | 47.9                 | 96  | 61-133       |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8260C}$ 

| Lab Name | e: TestAmerica Bufi | falo       | Job No.: 480 | -125579-1 |  |
|----------|---------------------|------------|--------------|-----------|--|
| SDG No.  | :                   |            |              |           |  |
| Matrix:  | Water               | Level: Low | Lab File ID: | 93255P.D  |  |
| Lab ID:  | LCS 480-382381/5    |            | Client ID:   |           |  |

|                                | SPIKE  | LCS           | LCS | QC     |   |
|--------------------------------|--------|---------------|-----|--------|---|
|                                | ADDED  | CONCENTRATION | 용   | LIMITS | # |
| COMPOUND                       | (ug/L) | (ug/L)        | REC | REC    | " |
| 1,1,1-Trichloroethane          | 25.0   | 24.5          | 98  |        |   |
| 1,1,2,2-Tetrachloroethane      | 25.0   | 24.8          | 99  | 76-120 |   |
| 1,1,2-Trichloro-1,2,2-trifluor | 25.0   | 22.3          | 89  |        |   |
| oethane                        |        |               |     |        |   |
| 1,1,2-Trichloroethane          | 25.0   | 23.8          | 95  | 76-122 |   |
| 1,1-Dichloroethane             | 25.0   | 23.8          | 95  | 77-120 |   |
| 1,1-Dichloroethene             | 25.0   | 20.7          | 83  | 66-127 |   |
| 1,2,4-Trichlorobenzene         | 25.0   | 24.1          | 96  | 79-122 |   |
| 1,2-Dibromo-3-Chloropropane    | 25.0   | 22.9          | 92  | 56-134 |   |
| 1,2-Dibromoethane              | 25.0   | 24.5          | 98  | 77-120 |   |
| 1,2-Dichlorobenzene            | 25.0   | 25.2          | 101 | 80-124 |   |
| 1,2-Dichloroethane             | 25.0   | 23.1          | 93  | 75-120 |   |
| 1,2-Dichloropropane            | 25.0   | 24.0          | 96  | 76-120 |   |
| 1,3-Dichlorobenzene            | 25.0   | 24.8          | 99  | 77-120 |   |
| 1,4-Dichlorobenzene            | 25.0   | 24.9          | 99  | 80-120 |   |
| 2-Butanone (MEK)               | 125    | 135           | 108 | 57-140 |   |
| 2-Hexanone                     | 125    | 137           | 110 | 65-127 |   |
| 4-Methyl-2-pentanone (MIBK)    | 125    | 132           | 106 | 71-125 |   |
| Acetone                        | 125    | 152           | 121 | 56-142 |   |
| Benzene                        | 25.0   | 23.5          | 94  | 71-124 |   |
| Bromodichloromethane           | 25.0   | 25.2          | 101 | 80-122 |   |
| Bromoform                      | 25.0   | 25.9          | 104 | 61-132 |   |
| Bromomethane                   | 25.0   | 24.7          | 99  | 55-144 |   |
| Carbon disulfide               | 25.0   | 22.6          | 90  | 59-134 |   |
| Carbon tetrachloride           | 25.0   | 29.7          | 119 | 72-134 |   |
| Chlorobenzene                  | 25.0   | 24.6          | 98  | 80-120 |   |
| Chloroethane                   | 25.0   | 24.0          | 96  | 69-136 |   |
| Chloroform                     | 25.0   | 23.4          | 93  | 73-127 |   |
| Chloromethane                  | 25.0   | 25.4          | 102 | 68-124 |   |
| cis-1,2-Dichloroethene         | 25.0   | 23.7          | 95  | 74-124 |   |
| cis-1,3-Dichloropropene        | 25.0   | 23.9          | 95  | 74-124 |   |
| Cyclohexane                    | 25.0   | 23.1          | 93  | 59-135 |   |
| Dibromochloromethane           | 25.0   | 25.9          | 103 | 75-125 |   |
| Dichlorodifluoromethane        | 25.0   | 25.5          | 102 | 59-135 |   |
| Ethylbenzene                   | 25.0   | 23.9          | 96  | 77-123 |   |
| Isopropylbenzene               | 25.0   | 24.9          | 99  | 77-122 |   |
| Methyl acetate                 | 50.0   | 49.5          | 99  | 74-133 |   |
| Methyl tert-butyl ether        | 25.0   | 24.0          | 96  | 77-120 |   |
| Methylcyclohexane              | 25.0   | 21.7          | 87  | 68-134 |   |
| Methylene Chloride             | 25.0   | 19.8          | 79  | 75-124 |   |
| Styrene                        | 25.0   | 25.1          | 101 | 80-120 |   |
| Tetrachloroethene              | 25.0   | 24.3          | 97  | 74-122 |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8260C}$ 

| Lab Nam | e: TestAmerica Buft | falo       | Job No.: 480 | 180-125579-1 |  |  |
|---------|---------------------|------------|--------------|--------------|--|--|
| SDG No. | :                   |            |              |              |  |  |
| Matrix: | Water               | Level: Low | Lab File ID: | 93255P.D     |  |  |
| Lab ID: | LCS 480-382381/5    |            | Client ID:   |              |  |  |

|                           | SPIKE<br>ADDED | LCS<br>CONCENTRATION | LCS<br>% | QC<br>LIMITS | # |
|---------------------------|----------------|----------------------|----------|--------------|---|
| COMPOUND                  | (ug/L)         | (ug/L)               | REC      | REC          |   |
| Toluene                   | 25.0           | 24.8                 | 99       | 80-122       |   |
| trans-1,2-Dichloroethene  | 25.0           | 22.2                 | 89       | 73-127       |   |
| trans-1,3-Dichloropropene | 25.0           | 25.2                 | 101      | 80-120       |   |
| Trichloroethene           | 25.0           | 23.1                 | 92       | 74-123       |   |
| Trichlorofluoromethane    | 25.0           | 25.3                 | 101      | 62-150       |   |
| Vinyl chloride            | 25.0           | 25.7                 | 103      | 65-133       |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8260C}$ 

# FORM III GC/MS VOA MATRIX SPIKE RECOVERY

| Lab Nam | Name: TestAmerica Buffalo |            | Job No.: 480-125579-1      |  |
|---------|---------------------------|------------|----------------------------|--|
| SDG No. | :                         |            |                            |  |
| Matrix: | Solid                     | Level: Low | Lab File ID: F8306.D       |  |
| Lah ID• | 480-125579-1 MS           |            | Client ID: $MW-8$ (4-6) MS |  |

|                                | SPIKE   | SAMPLE        | MS      | MS  | QC     |    |
|--------------------------------|---------|---------------|---------|-----|--------|----|
|                                | ADDED   | CONCENTRATION | _       | _   | LIMITS | #  |
| COMPOUND                       | (ug/Kg) | (ug/Kg)       | (ug/Kg) | REC | REC    |    |
| 1,1,1-Trichloroethane          | 48.0    | ND            | 41.6    | 87  | 77-121 |    |
| 1,1,2,2-Tetrachloroethane      | 48.0    | ND            | 39.9    | 83  | 80-120 |    |
| 1,1,2-Trichloro-1,2,2-trifluor | 48.0    | ND            | 42.5    | 89  |        |    |
| oethane                        |         |               |         |     |        |    |
| 1,1,2-Trichloroethane          | 48.0    | ND            | 40.5    | 84  | 78-122 |    |
| 1,1-Dichloroethane             | 48.0    | ND            | 43.8    | 91  | 73-126 |    |
| 1,1-Dichloroethene             | 48.0    | ND            | 40.0    | 83  | 59-125 |    |
| 1,2,4-Trichlorobenzene         | 48.0    | ND            | 18.8    | 39  | 64-120 | F1 |
| 1,2-Dibromo-3-Chloropropane    | 48.0    | ND            | 25.8    | 54  | 63-124 | F1 |
| 1,2-Dibromoethane              | 48.0    | ND            | 35.6    | 74  | 78-120 | F1 |
| 1,2-Dichlorobenzene            | 48.0    | ND            | 33.9    | 71  | 75-120 | F1 |
| 1,2-Dichloroethane             | 48.0    | ND            | 37.5    | 78  | 77-122 |    |
| 1,2-Dichloropropane            | 48.0    | ND            | 42.3    | 88  | 75-124 |    |
| 1,3-Dichlorobenzene            | 48.0    | ND            | 34.2    | 71  | 74-120 | F1 |
| 1,4-Dichlorobenzene            | 48.0    | ND            | 32.3    | 67  | 73-120 | F1 |
| 2-Butanone (MEK)               | 240     | ND            | 146     | 61  | 70-134 | F1 |
| 2-Hexanone                     | 240     | ND            | 153     | 64  | 59-130 |    |
| 4-Methyl-2-pentanone (MIBK)    | 240     | ND            | 161     | 67  | 65-133 |    |
| Acetone                        | 240     | 13 J          | 156     | 59  | 61-137 | F1 |
| Benzene                        | 48.0    | 1.5 J         | 45.2    | 91  | 79-127 |    |
| Bromodichloromethane           | 48.0    | ND            | 43.3    | 90  | 80-122 |    |
| Bromoform                      | 48.0    | ND            | 37.4    | 78  | 68-126 |    |
| Bromomethane                   | 48.0    | ND            | 46.1    | 96  | 37-149 |    |
| Carbon disulfide               | 48.0    | ND            | 34.7    | 72  | 64-131 |    |
| Carbon tetrachloride           | 48.0    | ND            | 39.9    | 83  | 75-135 |    |
| Chlorobenzene                  | 48.0    | ND            | 40.1    | 83  | 76-124 |    |
| Chloroethane                   | 48.0    | ND            | 44.2    | 92  | 69-135 |    |
| Chloroform                     | 48.0    | ND            | 43.5    | 91  | 80-120 |    |
| Chloromethane                  | 48.0    | ND            | 33.4    | 70  | 63-127 |    |
| cis-1,2-Dichloroethene         | 48.0    | ND            | 39.7    | 83  | 80-120 |    |
| cis-1,3-Dichloropropene        | 48.0    | ND            | 36.8    | 77  | 80-120 | F1 |
| Cyclohexane                    | 48.0    | ND            | 36.7    | 76  | 65-120 |    |
| Dibromochloromethane           | 48.0    | ND            | 38.8    | 81  | 76-125 |    |
| Dichlorodifluoromethane        | 48.0    | ND            | 49.0    | 102 | 57-142 |    |
| Ethylbenzene                   | 48.0    | ND            | 41.4    | 86  |        |    |
| Isopropylbenzene               | 48.0    | ND            | 45.9    | 96  |        |    |
| Methyl acetate                 | 96.0    | ND            | 62.2    | 65  |        |    |
| Methyl tert-butyl ether        | 48.0    | ND            | 40.8    | 85  |        |    |
| Methylcyclohexane              | 48.0    | ND            | 34.2    | 71  | 60-140 |    |
| Methylene Chloride             | 48.0    | ND            | 43.0    | 90  |        |    |
| Styrene                        | 48.0    | 0.28 J        | 38.3    | 79  |        | F1 |
| Tetrachloroethene              | 48.0    | ND            | 43.9    | 91  | 74-122 |    |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8260C}$ 

# FORM III GC/MS VOA MATRIX SPIKE RECOVERY

| Lab Name | e: TestAmerica Buff | falo       | Job No.: 480-125579-1    |  |  |  |  |
|----------|---------------------|------------|--------------------------|--|--|--|--|
| SDG No.  | :                   |            |                          |  |  |  |  |
| Matrix:  | Solid               | Level: Low | Lab File ID: F8306.D     |  |  |  |  |
| Lab ID:  | 480-125579-1 MS     |            | Client ID: MW-8 (4-6) MS |  |  |  |  |

|                          | SPIKE   | SAMPLE        | MS            | MS  | QC     |   |
|--------------------------|---------|---------------|---------------|-----|--------|---|
|                          | ADDED   | CONCENTRATION | CONCENTRATION | %   | LIMITS | # |
| COMPOUND                 | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC | REC    |   |
| Toluene                  | 48.0    | 1.8 J         | 46.7          | 94  | 74-128 |   |
| trans-1,2-Dichloroethene | 48.0    | ND            | 37.9          | 79  | 78-126 |   |
| Trichloroethene          | 48.0    | ND            | 38.9          | 81  | 77-129 |   |
| Trichlorofluoromethane   | 48.0    | ND            | 48.3          | 101 | 65-146 |   |
| Vinyl chloride           | 48.0    | ND            | 35.4          | 74  | 61-133 |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8260C}$ 

# FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | e: <u>TestAmerica Buff</u> | falo       | Job No.: 480-125579-1     |
|----------|----------------------------|------------|---------------------------|
| SDG No.  | <b>:</b>                   |            |                           |
| Matrix:  | Solid                      | Level: Low | Lab File ID: F8307.D      |
| Lab ID:  | 480-125579-1 MSD           |            | Client ID: MW-8 (4-6) MSD |

|                                | SPIKE   | MSD           | MSD |     | QC LI | IMITS            |       |
|--------------------------------|---------|---------------|-----|-----|-------|------------------|-------|
|                                | ADDED   | CONCENTRATION | 용   | 8   |       |                  | #     |
| COMPOUND                       | (ug/Kg) | (ug/Kg)       | REC | RPD | RPD   | REC              |       |
| 1,1,1-Trichloroethane          | 54.9    | 47.0          | 86  |     | 30    | 77-121           |       |
| 1,1,2,2-Tetrachloroethane      | 54.9    | 42.9          | 78  | 7   | 30    | 80-120           | F1    |
| 1,1,2-Trichloro-1,2,2-trifluor | 54.9    | 45.1          | 82  | 6   | 30    | 60-140           |       |
| oethane                        |         |               |     |     |       |                  |       |
| 1,1,2-Trichloroethane          | 54.9    | 41.1          | 75  | 2   | 30    | 78-122           | F1    |
| 1,1-Dichloroethane             | 54.9    | 47.0          | 86  | 7   | 30    | 73-126           |       |
| 1,1-Dichloroethene             | 54.9    | 41.3          | 75  | 3   | 30    | 59-125           |       |
| 1,2,4-Trichlorobenzene         | 54.9    | 19.1          | 35  | 1   | 30    | 64-120           |       |
| 1,2-Dibromo-3-Chloropropane    | 54.9    | 30.1          | 55  | 15  | 30    | 63-124           | F1    |
| 1,2-Dibromoethane              | 54.9    | 32.7          | 60  | 9   | 30    | 78-120           | F1    |
| 1,2-Dichlorobenzene            | 54.9    | 33.0          | 60  | 3   | 30    | 75-120           | F1    |
| 1,2-Dichloroethane             | 54.9    | 36.2          | 66  | 3   | 30    | 77-122           | F1    |
| 1,2-Dichloropropane            | 54.9    | 45.3          | 83  | 7   | 30    | 75-124           |       |
| 1,3-Dichlorobenzene            | 54.9    | 31.9          | 58  | 7   | 30    | 74-120           | F1    |
| 1,4-Dichlorobenzene            | 54.9    | 29.5          | 54  | 9   | 30    | 73-120           | F1    |
| 2-Butanone (MEK)               | 274     | 155           | 56  | 6   | 30    | 70-134           | F1    |
| 2-Hexanone                     | 274     | 154           | 56  | 1   | 30    | 59-130           | F1    |
| 4-Methyl-2-pentanone (MIBK)    | 274     | 173           | 63  | 7   | 30    | 65-133           | F1    |
| Acetone                        | 274     | 181           | 61  | 15  | 30    | 61-137           |       |
| Benzene                        | 54.9    | 46.4          | 82  | 2   | 30    | 79-127           |       |
| Bromodichloromethane           | 54.9    | 44.0          | 80  | 2   | 30    | 80-122           |       |
| Bromoform                      | 54.9    | 36.4          | 66  | 3   | 30    | 68-126           | F1    |
| Bromomethane                   | 54.9    | 47.7          | 87  | 3   | 30    | 37-149           |       |
| Carbon disulfide               | 54.9    | 28.1          | 51  | 21  | 30    | 64-131           | F1    |
| Carbon tetrachloride           | 54.9    | 45.6          | 83  | 13  | 30    | 75-135           |       |
| Chlorobenzene                  | 54.9    | 37.2          | 68  | 7   | 30    | 76-124           | F1    |
| Chloroethane                   | 54.9    | 44.9          | 82  | 2   | 30    | 69-135           |       |
| Chloroform                     | 54.9    | 45.4          | 83  | 4   | 30    | 80-120           |       |
| Chloromethane                  | 54.9    | 34.6          | 63  | 4   | 30    | 63-127           |       |
| cis-1,2-Dichloroethene         | 54.9    | 35.4          | 65  | 12  | 30    | 80-120           | F1    |
| cis-1,3-Dichloropropene        | 54.9    | 31.9          | 58  | 14  | 30    | 80-120           | F1    |
| Cyclohexane                    | 54.9    | 37.7          | 69  | 3   | 30    | 65-120           |       |
| Dibromochloromethane           | 54.9    | 37.2          | 68  | 4   | 30    | 76-125           | F1    |
| Dichlorodifluoromethane        | 54.9    | 53.4          | 97  |     | 30    | 57-142           |       |
| Ethylbenzene                   | 54.9    | 41.0          | 75  |     | 30    | 80-120           | F1    |
| Isopropylbenzene               | 54.9    | 48.6          | 89  |     | 30    | 72-120           |       |
| Methyl acetate                 | 110     | 66.3          | 60  |     | 30    | 55-136           |       |
| Methyl tert-butyl ether        | 54.9    | 46.2          | 84  |     | 30    | 63-125           |       |
|                                | 54.9    | 35.0          | 64  |     | 30    |                  |       |
| Methylone Chloride             |         |               |     |     |       | 60-140<br>61-127 |       |
| Methylene Chloride             | 54.9    | 39.6          | 72  |     | 30    |                  | T:: 1 |
| Styrene                        | 54.9    | 35.3          | 64  |     | 30    | 80-120           |       |
| Tetrachloroethene              | 54.9    | 44.0          | 80  | 0   | 30    | 74-122           |       |

<sup>#</sup> Column to be used to flag recovery and RPD values

# FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | e: TestAmerica Buff | falo       | Job No.: 480-125579-1     |
|----------|---------------------|------------|---------------------------|
| SDG No.  | :                   |            |                           |
| Matrix:  | Solid               | Level: Low | Lab File ID: F8307.D      |
| Lab ID:  | 480-125579-1 MSD    |            | Client ID: MW-8 (4-6) MSD |

|                          | SPIKE<br>ADDED | MSD<br>CONCENTRATION | MSD<br>% | olo | QC L1 | IMITS  | #  |
|--------------------------|----------------|----------------------|----------|-----|-------|--------|----|
| COMPOUND                 | (ug/Kg)        | (ug/Kg)              | REC      | RPD | RPD   | REC    | π  |
| Toluene                  | 54.9           | 45.5                 | 80       | 2   | 30    | 74-128 |    |
| trans-1,2-Dichloroethene | 54.9           | 31.4                 | 57       | 19  | 30    | 78-126 | F1 |
| Trichloroethene          | 54.9           | 37.3                 | 68       | 4   | 30    | 77-129 | F1 |
| Trichlorofluoromethane   | 54.9           | 52.1                 | 95       | 8   | 30    | 65-146 |    |
| Vinyl chloride           | 54.9           | 35.2                 | 64       | 0   | 30    | 61-133 |    |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8260C}$ 

# FORM IV GC/MS VOA METHOD BLANK SUMMARY

| Lab Name: TestAmerica Buffalo        | Job No.: 480-125579-1            |
|--------------------------------------|----------------------------------|
| SDG No.:                             |                                  |
| Lab File ID: F8273.D                 | Lab Sample ID: MB 480-382014/2-A |
| Matrix: Solid                        | Heated Purge: (Y/N) Y            |
| Instrument ID: HP5973F               | Date Analyzed: 10/16/2017 13:08  |
| GC Column: ZB-624 (30) ID: 0.25 (mm) |                                  |

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

|                  |                    | LAB     |                  |
|------------------|--------------------|---------|------------------|
| CLIENT SAMPLE ID | LAB SAMPLE ID      | FILE ID | DATE ANALYZED    |
|                  | LCS 480-382014/1-A | F8271.D | 10/16/2017 12:17 |
| MW-8 (4-6)       | 480-125579-1       | F8285.D | 10/16/2017 18:28 |
| MW-8 (13-14)     | 480-125579-2       | F8286.D | 10/16/2017 18:54 |

# FORM IV GC/MS VOA METHOD BLANK SUMMARY

| Lab Name: TestAmerica Buffalo       | Job No.: 480-125579-1            |
|-------------------------------------|----------------------------------|
| SDG No.:                            |                                  |
| Lab File ID: F8298.D                | Lab Sample ID: MB 480-382187/2-A |
| Matrix: Solid                       | Heated Purge: (Y/N) Y            |
| Instrument ID: HP5973F              | Date Analyzed: 10/17/2017 10:58  |
| GC Column: ZB-624 (30) ID: 0.25(mm) |                                  |

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

|                  |                    | LAB     |                  |
|------------------|--------------------|---------|------------------|
| CLIENT SAMPLE ID | LAB SAMPLE ID      | FILE ID | DATE ANALYZED    |
|                  | LCS 480-382187/1-A | F8296.D | 10/17/2017 10:07 |
| DUP-100817       | 480-125579-3       | F8305.D | 10/17/2017 14:11 |
| MW-8 (4-6) MS    | 480-125579-1 MS    | F8306.D | 10/17/2017 14:36 |
| MW-8 (4-6) MSD   | 480-125579-1 MSD   | F8307.D | 10/17/2017 15:02 |

# FORM IV GC/MS VOA METHOD BLANK SUMMARY

| Lab Name: TestAmerica Buffalo       | Job No.: 480-125579-1           |
|-------------------------------------|---------------------------------|
| SDG No.:                            |                                 |
| Lab File ID: 93257P.D               | Lab Sample ID: MB 480-382381/7  |
| Matrix: Water                       | Heated Purge: (Y/N) N           |
| Instrument ID: HP5973P              | Date Analyzed: 10/18/2017 11:20 |
| GC Column: ZB-624 (60) ID: 0.25(mm) |                                 |

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

|                  |                  | LAB      |                  |
|------------------|------------------|----------|------------------|
| CLIENT SAMPLE ID | LAB SAMPLE ID    | FILE ID  | DATE ANALYZED    |
|                  | LCS 480-382381/5 | 93255P.D | 10/18/2017 10:25 |
| TRIP BLANK       | 480-125579-4     | 93272P.D | 10/18/2017 18:32 |

# FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab File ID: F7934.D BFB Injection Date: 09/29/2017

Instrument ID: HP5973F BFB Injection Time: 15:08

Analysis Batch No.: 379439

| M/E | ION ABUNDANCE CRITERIA             | % RELATIVE<br>ABUNDANCE |          |
|-----|------------------------------------|-------------------------|----------|
| 50  | 15.0 - 40.0 % of mass 95           | 19.8                    |          |
| 75  | 30.0 - 60.0 % of mass 95           | 45.5                    |          |
| 95  | Base Peak, 100% relative abundance | 100.0                   |          |
| 96  | 5.0 - 9.0 % of mass 95             | 6.7                     |          |
| 173 | Less than 2.0 % of mass 174        | 0.1                     | (0.2) 1  |
| 174 | 50.0 - 120.00 % of mass 95         | 81.5                    |          |
| 175 | 5.0 - 9.0 % of mass 174            | 6.4                     | (7.9) 1  |
| 176 | 95.0 - 101.0 % of mass 174         | 78.7                    | (96.6) 1 |
| 177 | 5.0 - 9.0 % of mass 176            | 5.4                     | (6.9) 2  |

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

| CLIENT SAMPLE ID | LAB SAMPLE ID      | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|------------------|--------------------|----------------|------------------|------------------|
|                  | IC 480-379439/6    | F7936.D        | 09/29/2017       | 15:58            |
|                  | IC 480-379439/7    | F7937.D        | 09/29/2017       | 16:24            |
|                  | IC 480-379439/8    | F7938.D        | 09/29/2017       | 16:50            |
|                  | IC 480-379439/9    | F7939.D        | 09/29/2017       | 17:16            |
|                  | ICIS 480-379439/10 | F7940.D        | 09/29/2017       | 17:41            |
|                  | IC 480-379439/11   | F7941.D        | 09/29/2017       | 18:07            |
|                  | IC 480-379439/12   | F7942.D        | 09/29/2017       | 18:33            |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab File ID: F8268.D BFB Injection Date: 10/16/2017

Instrument ID: HP5973F BFB Injection Time: 10:20

Analysis Batch No.: 381944

| M/E | ION ABUNDANCE CRITERIA             | % RELATIVE<br>ABUNDANCE |          |
|-----|------------------------------------|-------------------------|----------|
| 50  | 15.0 - 40.0 % of mass 95           | 18.0                    |          |
| 75  | 30.0 - 60.0 % of mass 95           | 45.4                    |          |
| 95  | Base Peak, 100% relative abundance | 100.0                   |          |
| 96  | 5.0 - 9.0 % of mass 95             | 7.3                     |          |
| 173 | Less than 2.0 % of mass 174        | 0.1                     | (0.1) 1  |
| 174 | 50.0 - 120.00 % of mass 95         | 88.0                    |          |
| 175 | 5.0 - 9.0 % of mass 174            | 6.5                     | (7.4) 1  |
| 176 | 95.0 - 101.0 % of mass 174         | 84.8                    | (96.3) 1 |
| 177 | 5.0 - 9.0 % of mass 176            | 5.5                     | (6.5) 2  |

1-Value is % mass 174

2-Value is % mass 176

| CLIENT SAMPLE ID | LAB SAMPLE ID      | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|------------------|--------------------|----------------|------------------|------------------|
|                  | CCVIS 480-381944/4 | F8269.D        | 10/16/2017       | 10:53            |
|                  | LCS 480-382014/1-A | F8271.D        | 10/16/2017       | 12:17            |
|                  | MB 480-382014/2-A  | F8273.D        | 10/16/2017       | 13:08            |
| MW-8 (4-6)       | 480-125579-1       | F8285.D        | 10/16/2017       | 18:28            |
| MW-8 (13-14)     | 480-125579-2       | F8286.D        | 10/16/2017       | 18:54            |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab File ID: F8293.D BFB Injection Date: 10/17/2017

Instrument ID: HP5973F BFB Injection Time: 08:39

Analysis Batch No.: 382134

| M/E | ION ABUNDANCE CRITERIA             | % RELATIVE<br>ABUNDANCE |          |
|-----|------------------------------------|-------------------------|----------|
| 50  | 15.0 - 40.0 % of mass 95           | 17.2                    |          |
| 75  | 30.0 - 60.0 % of mass 95           | 43.9                    |          |
| 95  | Base Peak, 100% relative abundance | 100.0                   |          |
| 96  | 5.0 - 9.0 % of mass 95             | 7.1                     |          |
| 173 | Less than 2.0 % of mass 174        | 0.0                     | (0.0) 1  |
| 174 | 50.0 - 120.00 % of mass 95         | 91.5                    |          |
| 175 | 5.0 - 9.0 % of mass 174            | 7.3                     | (7.9) 1  |
| 176 | 95.0 - 101.0 % of mass 174         | 87.4                    | (95.5) 1 |
| 177 | 5.0 - 9.0 % of mass 176            | 4.4                     | (5.0) 2  |

1-Value is % mass 174

2-Value is % mass 176

| CLIENT SAMPLE ID | LAB SAMPLE ID      | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|------------------|--------------------|----------------|------------------|------------------|
|                  | CCVIS 480-382134/3 | F8294.D        | 10/17/2017       | 09:07            |
|                  | LCS 480-382187/1-A | F8296.D        | 10/17/2017       | 10:07            |
|                  | MB 480-382187/2-A  | F8298.D        | 10/17/2017       | 10:58            |
| DUP-100817       | 480-125579-3       | F8305.D        | 10/17/2017       | 14:11            |
| MW-8 (4-6) MS    | 480-125579-1 MS    | F8306.D        | 10/17/2017       | 14:36            |
| MW-8 (4-6) MSD   | 480-125579-1 MSD   | F8307.D        | 10/17/2017       | 15:02            |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab File ID: P3040P.D BFB Injection Date: 10/10/2017

Instrument ID: HP5973P BFB Injection Time: 15:02

Analysis Batch No.: 381079

| M/E | ION ABUNDANCE CRITERIA             | % RELATIVE<br>ABUNDANCE |          |
|-----|------------------------------------|-------------------------|----------|
| 50  | 15.0 - 40.0 % of mass 95           | 32.9                    |          |
| 75  | 30.0 - 60.0 % of mass 95           | 53.5                    |          |
| 95  | Base Peak, 100% relative abundance | 100.0                   |          |
| 96  | 5.0 - 9.0 % of mass 95             | 7.4                     |          |
| 173 | Less than 2.0 % of mass 174        | 0.4                     | (0.4) 1  |
| 174 | 50.0 - 120.00 % of mass 95         | 84.0                    |          |
| 175 | 5.0 - 9.0 % of mass 174            | 6.6                     | (7.9) 1  |
| 176 | 95.0 - 101.0 % of mass 174         | 82.3                    | (98.0) 1 |
| 177 | 5.0 - 9.0 % of mass 176            | 6.1                     | (7.4) 2  |

1-Value is % mass 174

2-Value is % mass 176

| CLIENT SAMPLE ID | LAB SAMPLE ID     | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|------------------|-------------------|----------------|------------------|------------------|
|                  | IC 480-381079/5   | P3042P.D       | 10/10/2017       | 16:02            |
|                  | IC 480-381079/6   | P3043P.D       | 10/10/2017       | 16:29            |
|                  | IC 480-381079/7   | P3044P.D       | 10/10/2017       | 16:56            |
|                  | IC 480-381079/8   | P3045P.D       | 10/10/2017       | 17:24            |
|                  | ICIS 480-381079/9 | P3046P.D       | 10/10/2017       | 17:51            |
|                  | IC 480-381079/10  | P3047P.D       | 10/10/2017       | 19:55            |
|                  | IC 480-381079/11  | P3048P.D       | 10/10/2017       | 20:22            |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab File ID: 93252P.D BFB Injection Date: 10/18/2017

Instrument ID: HP5973P BFB Injection Time: 09:04

Analysis Batch No.: 382381

| M/E | ION ABUNDANCE CRITERIA             | % RELATIVE<br>ABUNDANCE |          |
|-----|------------------------------------|-------------------------|----------|
| 50  | 15.0 - 40.0 % of mass 95           | 36.2                    |          |
| 75  | 30.0 - 60.0 % of mass 95           | 51.7                    |          |
| 95  | Base Peak, 100% relative abundance | 100.0                   |          |
| 96  | 5.0 - 9.0 % of mass 95             | 6.4                     |          |
| 173 | Less than 2.0 % of mass 174        | 0.5                     | (0.6) 1  |
| 174 | 50.0 - 120.00 % of mass 95         | 95.9                    |          |
| 175 | 5.0 - 9.0 % of mass 174            | 7.5                     | (7.9) 1  |
| 176 | 95.0 - 101.0 % of mass 174         | 91.3                    | (95.2) 1 |
| 177 | 5.0 - 9.0 % of mass 176            | 5.2                     | (5.7) 2  |

1-Value is % mass 174

2-Value is % mass 176

| CLIENT SAMPLE ID | LAB SAMPLE ID      | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|------------------|--------------------|----------------|------------------|------------------|
|                  | CCVIS 480-382381/3 | 93253P.D       | 10/18/2017       | 09:31            |
|                  | LCS 480-382381/5   | 93255P.D       | 10/18/2017       | 10:25            |
|                  | MB 480-382381/7    | 93257P.D       | 10/18/2017       | 11:20            |
| TRIP BLANK       | 480-125579-4       | 93272P.D       | 10/18/2017       | 18:32            |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Sample No.: ICIS 480-379439/10 Date Analyzed: 09/29/2017 17:41

Instrument ID: <u>HP5973F</u> GC Column: ZB-624 (30) ID: 0.25(mm)

Lab File ID (Standard): F7940.D Heated Purge: (Y/N) Y

Calibration ID: 31629

|                               |                  | FB     |      | CBNZd5  |      | DCBd4   |       |
|-------------------------------|------------------|--------|------|---------|------|---------|-------|
|                               |                  | AREA # | RT # | AREA #  | RT # | AREA #  | RT #  |
| INITIAL CALIBRATION MID-POINT |                  | 274919 | 5.20 | 549368  | 7.99 | 566141  | 10.36 |
| UPPER LIMIT                   |                  | 549838 | 5.70 | 1098736 | 8.49 | 1132282 | 10.86 |
| LOWER LIMIT                   |                  | 137460 | 4.70 | 274684  | 7.49 | 283071  | 9.86  |
| LAB SAMPLE ID                 | CLIENT SAMPLE ID |        |      |         |      |         |       |
| CCVIS 480-381944/4            |                  | 291050 | 5.19 | 615889  | 7.99 | 662491  | 10.36 |
| CCVIS 480-382134/3            |                  | 275571 | 5.20 | 565500  | 7.99 | 604551  | 10.36 |

FB = Fluorobenzene (IS)
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit =  $\pm$  0.5 minutes of internal standard RT

# Column used to flag values outside QC limits

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Sample No.: CCVIS 480-381944/4 Date Analyzed: 10/16/2017 10:53

Instrument ID: <u>HP5973F</u> GC Column: ZB-624 (30) ID: 0.25(mm)

Lab File ID (Standard): F8269.D Heated Purge: (Y/N) Y

Calibration ID: 31632

|                    |                  | FB     |      | CBNZd5  |      | DCBd.   | 4     |
|--------------------|------------------|--------|------|---------|------|---------|-------|
|                    |                  | AREA # | RT # | AREA #  | RT # | AREA #  | RT #  |
| 12/24 HOUR STD     |                  | 291050 | 5.19 | 615889  | 7.99 | 662491  | 10.36 |
| UPPER LIMIT        |                  | 582100 | 5.69 | 1231778 | 8.49 | 1324982 | 10.86 |
| LOWER LIMIT        |                  | 145525 | 4.69 | 307945  | 7.49 | 331246  | 9.86  |
| LAB SAMPLE ID      | CLIENT SAMPLE ID |        |      |         |      |         |       |
| LCS 480-382014/1-A |                  | 289139 | 5.19 | 604935  | 7.99 | 646823  | 10.36 |
| MB 480-382014/2-A  |                  | 266370 | 5.20 | 566057  | 7.99 | 606218  | 10.36 |
| 480-125579-1       | MW-8 (4-6)       | 255785 | 5.19 | 524083  | 7.99 | 520201  | 10.36 |
| 480-125579-2       | MW-8 (13-14)     | 250857 | 5.19 | 535782  | 7.99 | 571765  | 10.36 |

FB = Fluorobenzene (IS)
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit =  $\pm$  0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$  Column used to flag values outside QC limits

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Sample No.: CCVIS 480-382134/3 Date Analyzed: 10/17/2017 09:07

Instrument ID: <u>HP5973F</u> GC Column: ZB-624 (30) ID: 0.25(mm)

Lab File ID (Standard): F8294.D Heated Purge: (Y/N) Y

Calibration ID: 31632

|                    |                  | FB     |      | CBNZd5  |      | DCBd4   |       |
|--------------------|------------------|--------|------|---------|------|---------|-------|
|                    |                  | AREA # | RT # | AREA #  | RT # | AREA #  | RT #  |
| 12/24 HOUR STD     |                  | 275571 | 5.20 | 565500  | 7.99 | 604551  | 10.36 |
| UPPER LIMIT        |                  | 551142 | 5.70 | 1131000 | 8.49 | 1209102 | 10.86 |
| LOWER LIMIT        |                  | 137786 | 4.70 | 282750  | 7.49 | 302276  | 9.86  |
| LAB SAMPLE ID      | CLIENT SAMPLE ID |        |      |         |      |         |       |
| LCS 480-382187/1-A |                  | 270885 | 5.19 | 560814  | 7.99 | 595966  | 10.36 |
| MB 480-382187/2-A  |                  | 244765 | 5.19 | 500962  | 7.99 | 540122  | 10.36 |
| 480-125579-3       | DUP-100817       | 245420 | 5.19 | 514800  | 7.99 | 535008  | 10.36 |
| 480-125579-1 MS    | MW-8 (4-6) MS    | 253909 | 5.20 | 488993  | 7.99 | 433524  | 10.36 |
| 480-125579-1 MSD   | MW-8 (4-6) MSD   | 249751 | 5.19 | 485423  | 7.99 | 414471  | 10.36 |

FB = Fluorobenzene (IS)
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit =  $\pm$  0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$  Column used to flag values outside QC limits

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Sample No.: ICIS 480-381079/9 Date Analyzed: 10/10/2017 17:51

Instrument ID: HP5973P GC Column: ZB-624 (60) ID: 0.25(mm)

Lab File ID (Standard): P3046P.D Heated Purge: (Y/N) N

Calibration ID: 31704

|                                | FB     |       | CBNZd5 |       | DCBd4  |       |
|--------------------------------|--------|-------|--------|-------|--------|-------|
|                                | AREA # | RT #  | AREA # | RT #  | AREA # | RT #  |
| INITIAL CALIBRATION MID-POINT  | 179568 | 10.43 | 401868 | 14.39 | 439698 | 17.35 |
| UPPER LIMIT                    | 359136 | 10.93 | 803736 | 14.89 | 879396 | 17.85 |
| LOWER LIMIT                    | 89784  | 9.93  | 200934 | 13.89 | 219849 | 16.85 |
| LAB SAMPLE ID CLIENT SAMPLE ID |        |       |        |       |        |       |
| CCVIS 480-382381/3             | 182584 | 10.43 | 401251 | 14.38 | 445448 | 17.34 |

FB = Fluorobenzene (IS)
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit =  $\pm$  0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$  Column used to flag values outside QC limits

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Sample No.: CCVIS 480-382381/3 Date Analyzed: 10/18/2017 09:31

Instrument ID: <u>HP5973P</u> GC Column: ZB-624 (60) ID: 0.25(mm)

Lab File ID (Standard): 93253P.D Heated Purge: (Y/N) N

Calibration ID: 31702

|                  |                  | FB     |       | CBNZd5 |       | DCBd   | 4     |
|------------------|------------------|--------|-------|--------|-------|--------|-------|
|                  |                  | AREA # | RT #  | AREA # | RT #  | AREA # | RT #  |
| 12/24 HOUR STD   |                  | 182584 | 10.43 | 401251 | 14.38 | 445448 | 17.34 |
| UPPER LIMIT      |                  | 365168 | 10.93 | 802502 | 14.88 | 890896 | 17.84 |
| LOWER LIMIT      | LOWER LIMIT      |        | 9.93  | 200626 | 13.88 | 222724 | 16.84 |
| LAB SAMPLE ID    | CLIENT SAMPLE ID |        |       |        |       |        |       |
| LCS 480-382381/5 |                  | 196682 | 10.43 | 423713 | 14.38 | 458294 | 17.34 |
| MB 480-382381/7  |                  | 190146 | 10.43 | 403178 | 14.38 | 424452 | 17.34 |
| 480-125579-4     | TRIP BLANK       | 174601 | 10.43 | 385417 | 14.38 | 405625 | 17.35 |

FB = Fluorobenzene (IS)
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit =  $\pm$  0.5 minutes of internal standard RT

# Column used to flag values outside QC limits

# FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo  | Job No.: 480-125579-1               |
|--------------------------------|-------------------------------------|
| SDG No.:                       |                                     |
| Client Sample ID: MW-8 (4-6)   | Lab Sample ID: 480-125579-1         |
| Matrix: Solid                  | Lab File ID: F8285.D                |
| Analysis Method: 8260C         | Date Collected: 10/08/2017 11:30    |
| Sample wt/vol: <u>5.881(g)</u> | Date Analyzed: 10/16/2017 18:28     |
| Soil Aliquot Vol:              | Dilution Factor: 1                  |
| Soil Extract Vol.:             | GC Column: ZB-624 (30) ID: 0.25(mm) |
| % Moisture: 15.6               | Level: (low/med) Low                |
| Analysis Batch No.: 381944     | Units: ug/Kg                        |

| CAS NO.    | COMPOUND NAME                          | RESULT | Q    | RL  | MDL  |
|------------|----------------------------------------|--------|------|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                  | ND     |      | 5.0 | 0.37 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane              | ND     | F1   | 5.0 | 0.82 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan e | ND     |      | 5.0 | 1.1  |
| 79-00-5    | 1,1,2-Trichloroethane                  | ND     | F1   | 5.0 | 0.65 |
| 75-34-3    | 1,1-Dichloroethane                     | ND     |      | 5.0 | 0.61 |
| 75-35-4    | 1,1-Dichloroethene                     | ND     |      | 5.0 | 0.62 |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | ND     | F1   | 5.0 | 0.31 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane            | ND     | F1   | 5.0 | 2.5  |
| 106-93-4   | 1,2-Dibromoethane                      | ND     | F1   | 5.0 | 0.65 |
| 95-50-1    | 1,2-Dichlorobenzene                    | ND     | F1   | 5.0 | 0.39 |
| 107-06-2   | 1,2-Dichloroethane                     | ND     | F1   | 5.0 | 0.25 |
| 78-87-5    | 1,2-Dichloropropane                    | ND     |      | 5.0 | 2.5  |
| 541-73-1   | 1,3-Dichlorobenzene                    | ND     | F1   | 5.0 | 0.26 |
| 106-46-7   | 1,4-Dichlorobenzene                    | ND     | F1   | 5.0 | 0.71 |
| 78-93-3    | 2-Butanone (MEK)                       | ND     | F1   | 25  | 1.8  |
| 591-78-6   | 2-Hexanone                             | ND     | F1   | 25  | 2.5  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)            | ND     | F1   | 25  | 1.7  |
| 67-64-1    | Acetone                                | 13     | J F1 | 25  | 4.2  |
| 71-43-2    | Benzene                                | 1.5    | J    | 5.0 | 0.25 |
| 75-27-4    | Bromodichloromethane                   | ND     |      | 5.0 | 0.68 |
| 75-25-2    | Bromoform                              | ND     | F1 * | 5.0 | 2.5  |
| 74-83-9    | Bromomethane                           | ND     |      | 5.0 | 0.45 |
| 75-15-0    | Carbon disulfide                       | ND     | F1   | 5.0 | 2.5  |
| 56-23-5    | Carbon tetrachloride                   | ND     |      | 5.0 | 0.49 |
| 108-90-7   | Chlorobenzene                          | ND     | F1   | 5.0 | 0.67 |
| 75-00-3    | Chloroethane                           | ND     |      | 5.0 | 1.1  |
| 67-66-3    | Chloroform                             | ND     |      | 5.0 | 0.31 |
| 74-87-3    | Chloromethane                          | ND     |      | 5.0 | 0.30 |
| 156-59-2   | cis-1,2-Dichloroethene                 | ND     | F1   | 5.0 | 0.64 |
| 10061-01-5 | cis-1,3-Dichloropropene                | ND     | F1   | 5.0 | 0.73 |
| 110-82-7   | Cyclohexane                            | ND     |      | 5.0 | 0.71 |
| 124-48-1   | Dibromochloromethane                   | ND     | F1   | 5.0 | 0.64 |
| 75-71-8    | Dichlorodifluoromethane                | ND     |      | 5.0 | 0.42 |
| 100-41-4   | Ethylbenzene                           | ND     | F1   | 5.0 | 0.35 |
| 98-82-8    | Isopropylbenzene                       | ND     |      | 5.0 | 0.76 |

## FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (4-6) Lab Sample ID: 480-125579-1

Matrix: Solid Lab File ID: F8285.D

Analysis Method: 8260C Date Collected: 10/08/2017 11:30

Sample wt/vol: 5.881(g) Date Analyzed: 10/16/2017 18:28

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: \_\_\_\_\_ GC Column: <u>ZB-624 (30)</u> ID: <u>0.25 (mm)</u>

% Moisture: 15.6 Level: (low/med) Low

Analysis Batch No.: 381944 Units: ug/Kg

| CAS NO.    | COMPOUND NAME             | RESULT | Q    | RL  | MDL  |
|------------|---------------------------|--------|------|-----|------|
| 79-20-9    | Methyl acetate            | ND     |      | 25  | 3.0  |
| 1634-04-4  | Methyl tert-butyl ether   | ND     |      | 5.0 | 0.49 |
| 108-87-2   | Methylcyclohexane         | ND     |      | 5.0 | 0.77 |
| 75-09-2    | Methylene Chloride        | ND     |      | 5.0 | 2.3  |
| 100-42-5   | Styrene                   | 0.28   | J F1 | 5.0 | 0.25 |
| 127-18-4   | Tetrachloroethene         | ND     |      | 5.0 | 0.68 |
| 108-88-3   | Toluene                   | 1.8    | J    | 5.0 | 0.38 |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     | F1   | 5.0 | 0.52 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     | F1   | 5.0 | 2.2  |
| 79-01-6    | Trichloroethene           | ND     | F1   | 5.0 | 1.1  |
| 75-69-4    | Trichlorofluoromethane    | ND     |      | 5.0 | 0.48 |
| 75-01-4    | Vinyl chloride            | ND     |      | 5.0 | 0.61 |
| 1330-20-7  | Xylenes, Total            | 0.85   | J F1 | 10  | 0.85 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 98   |   | 64-126 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 100  |   | 72-126 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 103  |   | 60-140 |
| 2037-26-5  | Toluene-d8 (Surr)            | 100  |   | 71-125 |

Report Date: 17-Oct-2017 09:00:28 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Target Compound Quantitation Report

Lims ID: 480-125579-B-1-A

Client ID: MW-8 (4-6)

Sample Type: Client

Data File:

Inject. Date: 16-Oct-2017 18:28:30 ALS Bottle#: 12 Worklist Smp#: 20

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-125579-B-1-A Misc. Info.: 480-0066422-020

Operator ID: CDC Instrument ID: HP5973F

Method: \ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update:17-Oct-2017 08:59:01Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK026

First Level Reviewer: cwiklinc Date: 17-Oct-2017 09:00:28

| First Level Reviewer: cwiklinc    | ewer: cwiklinc Date: 17-Oct-2017 09:00:28 |        |        |        |    |          |           |       |
|-----------------------------------|-------------------------------------------|--------|--------|--------|----|----------|-----------|-------|
|                                   |                                           | RT     | Adj RT | Dlt RT |    |          | OnCol Amt |       |
| Compound                          | Sig                                       | (min.) | (min.) | (min.) | Q  | Response | ug/kg     | Flags |
| * 450 51 (10)                     | 7.0                                       | E 404  | E 404  | 0.000  | 00 | 055705   | 50.0      |       |
| * 153 Fluorobenzene (IS)          | 70                                        | 5.191  | 5.191  | 0.000  | 99 | 255785   | 50.0      |       |
| * 2 Chlorobenzene-d5              | 82                                        | 7.989  | 7.989  | 0.000  | 85 | 524083   | 50.0      |       |
| * 3 1,4-Dichlorobenzene-d4        | 152                                       | 10.356 | 10.356 | 0.000  | 94 | 520201   | 50.0      |       |
| \$ 154 Dibromofluoromethane (Surr |                                           | 4.674  | 4.674  | 0.000  | 94 | 326685   | 51.5      |       |
| \$ 41,2-Dichloroethane-d4 (Sur    | 67                                        | 4.954  | 4.953  | 0.001  | 0  | 198970   | 48.9      |       |
| \$ 5 Toluene-d8 (Surr)            | 98                                        | 6.560  | 6.559  | 0.001  | 92 | 1289039  | 49.9      |       |
| \$ 6 4-Bromofluorobenzene (Surr   | 174                                       | 9.218  | 9.218  | 0.000  | 94 | 423530   | 50.1      |       |
| 10 Dichlorodifluoromethane        | 85                                        |        | 1.814  |        |    |          | ND        |       |
| 12 Chloromethane                  | 50                                        |        | 1.997  |        |    |          | ND        |       |
| 13 Vinyl chloride                 | 62                                        |        | 2.088  |        |    |          | ND        |       |
| 14 Bromomethane                   | 94                                        |        | 2.362  |        |    |          | ND        |       |
| 15 Chloroethane                   | 64                                        |        | 2.410  |        |    |          | ND        |       |
| 17 Trichlorofluoromethane         | 101                                       |        | 2.611  |        |    |          | ND        |       |
| 21 1,1,2-Trichloro-1,2,2-trif     | 101                                       |        | 2.958  |        |    |          | ND        |       |
| 22 1,1-Dichloroethene             | 96                                        |        | 2.976  |        |    |          | ND        |       |
| 23 Acetone                        | 43                                        | 3.031  | 3.025  | 0.006  | 99 | 35559    | 13.4      |       |
| 26 Carbon disulfide               | 76                                        |        | 3.177  |        |    |          | ND        |       |
| 27 Methyl acetate                 | 43                                        |        | 3.238  |        |    |          | ND        |       |
| 30 Methylene Chloride             | 84                                        |        | 3.353  |        |    |          | ND        |       |
| 32 Methyl tert-butyl ether        | 73                                        |        | 3.499  |        |    |          | ND        |       |
| 34 trans-1,2-Dichloroethene       | 96                                        |        | 3.530  |        |    |          | ND        |       |
| 39 1,1-Dichloroethane             | 63                                        |        | 3.858  |        |    |          | ND        |       |
| 43 2-Butanone (MEK)               | 43                                        |        | 4.290  |        |    |          | ND        |       |
| 45 cis-1,2-Dichloroethene         | 96                                        |        | 4.302  |        |    |          | ND        |       |
| 50 Chloroform                     | 83                                        |        | 4.540  |        |    |          | ND        |       |
| 51 1,1,1-Trichloroethane          | 97                                        |        | 4.680  |        |    |          | ND        |       |
| 52 Cyclohexane                    | 56                                        |        | 4.710  |        |    |          | ND        |       |
| 55 Carbon tetrachloride           | 117                                       |        | 4.807  |        |    |          | ND        |       |
| 57 Benzene                        | 78                                        | 4.978  | 4.978  | 0.000  | 96 | 41955    | 1.47      |       |
| 58 1,2-Dichloroethane             | 62                                        |        | 5.014  |        |    | ĺ        | ND        |       |
| 62 Trichloroethene                | 95                                        |        | 5.495  |        |    | ĺ        | ND        |       |
|                                   |                                           |        |        |        |    |          |           |       |

Page 82 of 914

Report Date: 17-Oct-2017 09:00:28
Data File: \ChromNA\Buffa 

| Data File: \\Cnrom\vA\B        | unalo\ | Data File: \(\Cnromiva\buttaio\CnromData\HP5973F\20171016-66422.b\F8285.D |        |        |    |           |            |       |  |
|--------------------------------|--------|---------------------------------------------------------------------------|--------|--------|----|-----------|------------|-------|--|
|                                |        | RT                                                                        | Adj RT | Dlt RT |    |           | OnCol Amt  |       |  |
| Compound                       | Sig    | (min.)                                                                    | (min.) | (min.) | Q  | Response  | ug/kg      | Flags |  |
|                                |        |                                                                           |        |        |    |           |            |       |  |
| 64 Methylcyclohexane           | 83     |                                                                           | 5.629  |        |    |           | ND         |       |  |
| 65 1,2-Dichloropropane         | 63     |                                                                           | 5.714  |        |    |           | ND         |       |  |
| 68 Dichlorobromomethane        | 83     |                                                                           | 5.951  |        |    |           | ND         |       |  |
| 72 cis-1,3-Dichloropropene     | 75     |                                                                           | 6.328  |        |    |           | ND         |       |  |
| 73 4-Methyl-2-pentanone (MIBK  | 43     |                                                                           | 6.432  |        |    |           | ND         |       |  |
| 74 Toluene                     | 92     | 6.621                                                                     | 6.620  | 0.001  | 98 | 33137     | 1.78       |       |  |
| 77 trans-1,3-Dichloropropene   | 75     |                                                                           | 6.845  |        |    |           | ND         |       |  |
| 79 1,1,2-Trichloroethane       | 83     |                                                                           | 7.040  |        |    |           | ND         |       |  |
| 81 Tetrachloroethene           | 166    | 7.138                                                                     | 7.137  | 0.001  | 92 | 4385      | 0.5480     |       |  |
| 80 2-Hexanone                  | 43     |                                                                           | 7.223  |        |    |           | ND         |       |  |
| 83 Chlorodibromomethane        | 129    |                                                                           | 7.442  |        |    |           | ND         |       |  |
| 84 Ethylene Dibromide          | 107    |                                                                           | 7.569  |        |    |           | ND         |       |  |
| 87 Chlorobenzene               | 112    |                                                                           | 8.020  |        |    |           | ND         |       |  |
| 88 Ethylbenzene                | 91     |                                                                           | 8.086  |        |    |           | ND         |       |  |
| 90 m-Xylene & p-Xylene         | 106    | 8.202                                                                     | 8.202  | 0.000  | 98 | 11644     | 0.8461     |       |  |
| 91 o-Xylene                    | 106    |                                                                           | 8.628  |        |    |           | ND         |       |  |
| 92 Styrene                     | 104    | 8.652                                                                     | 8.652  | 0.000  | 91 | 6299      | 0.2751     |       |  |
| 95 Bromoform                   | 173    |                                                                           | 8.920  |        |    |           | ND         |       |  |
| 94 Isopropylbenzene            | 105    |                                                                           | 8.999  |        |    |           | ND         |       |  |
| 97 1,1,2,2-Tetrachloroethane   | 83     |                                                                           | 9.388  |        |    |           | ND         |       |  |
| 111 1,3-Dichlorobenzene        | 146    |                                                                           | 10.301 |        |    |           | ND         |       |  |
| 113 1,4-Dichlorobenzene        | 146    |                                                                           | 10.380 |        |    |           | ND         |       |  |
| 116 1,2-Dichlorobenzene        | 146    |                                                                           | 10.733 |        |    |           | ND         |       |  |
| 117 1,2-Dibromo-3-Chloropropan | 75     |                                                                           | 11.414 |        |    |           | ND         |       |  |
| 119 1,2,4-Trichlorobenzene     | 180    |                                                                           | 12.053 |        |    |           | ND         |       |  |
| S 124 Xylenes, Total           | 1      |                                                                           |        |        | 0  |           | 0.8461     |       |  |
| Reagents:                      |        |                                                                           |        |        |    |           |            |       |  |
| F 8260 SURR_00263              |        | Amount                                                                    | Added. | 1.00   | 1  | Jnits: uL | Run Reager | nt    |  |
| F 8260 IS_00580                |        | Amount                                                                    |        | 1.00   |    | Inits: uL | Run Reager |       |  |
| 1 0200 13_00300                |        | AIIIUUIII                                                                 | Auucu. | 1.00   | C  | niits. ul | Kun Keagei | IL    |  |

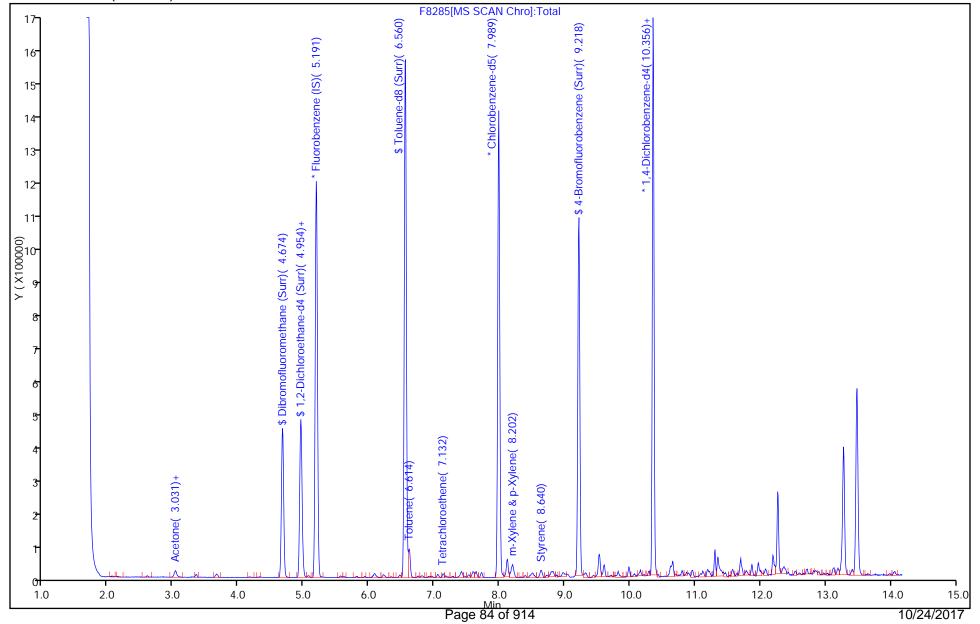
Report Date: 17-Oct-2017 09:00:28 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: Injection Date: 16-Oct-2017 18:28:30 Instrument ID: HP5973F Lab Sample ID: 480-125579-1

Lims ID: 480-125579-B-1-A

MW-8 (4-6)


Purge Vol: 5.000 mL

Dil. Factor: 1.0000

F-8260 SOIL Limit Group: MV - 8260C ICAL Method:

Column: ZB-624 (0.25 mm)

Client ID:



Operator ID:

ALS Bottle#:

Worklist Smp#:

CDC

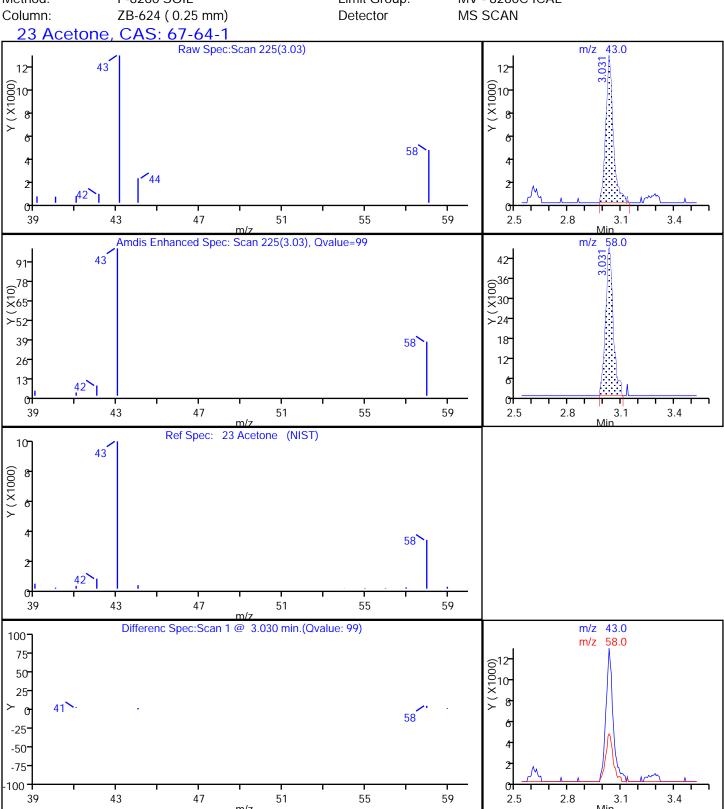
20

12

Report Date: 17-Oct-2017 09:00:28 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8285.D


 Injection Date:
 16-Oct-2017 18:28:30
 Instrument ID:
 HP5973F

 Lims ID:
 480-125579-B-1-A
 Lab Sample ID:
 480-125579-1

Client ID: MW-8 (4-6)

Operator ID: CDC ALS Bottle#: 12 Worklist Smp#: 20

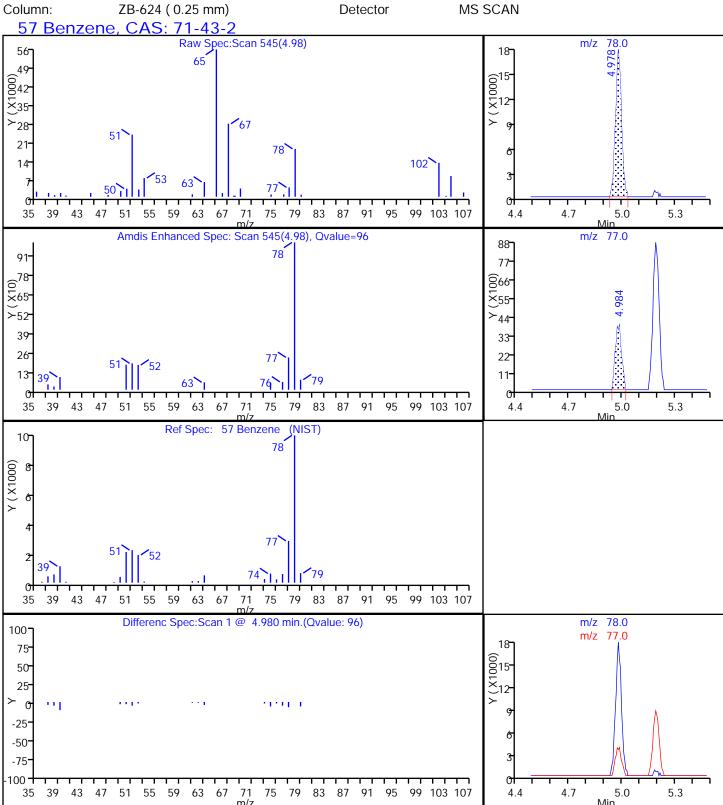
Purge Vol: 5.000 mL Dil. Factor: 1.0000



Report Date: 17-Oct-2017 09:00:28 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8285.D


 Injection Date:
 16-Oct-2017 18:28:30
 Instrument ID:
 HP5973F

 Lims ID:
 480-125579-B-1-A
 Lab Sample ID:
 480-125579-1

Client ID: MW-8 (4-6)

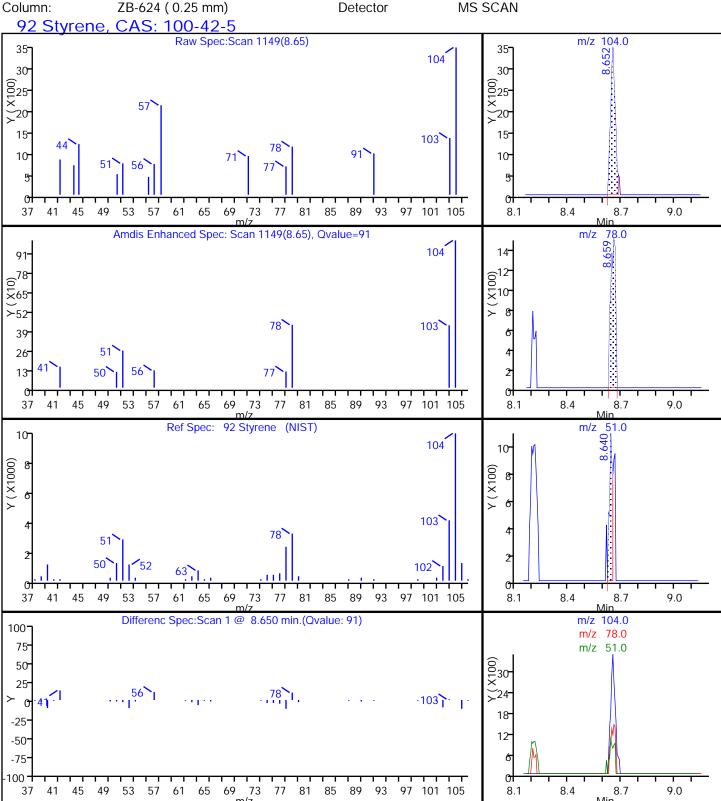
Operator ID: CDC ALS Bottle#: 12 Worklist Smp#: 20

Purge Vol: 5.000 mL Dil. Factor: 1.0000



TestAmerica Buffalo

Data File: Injection Date: 16-Oct-2017 18:28:30 Instrument ID: HP5973F Lims ID: 480-125579-B-1-A Lab Sample ID: 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: **CDC** ALS Bottle#: 12 Worklist Smp#: 20

Dil. Factor: 1.0000 Purge Vol: 5.000 mL

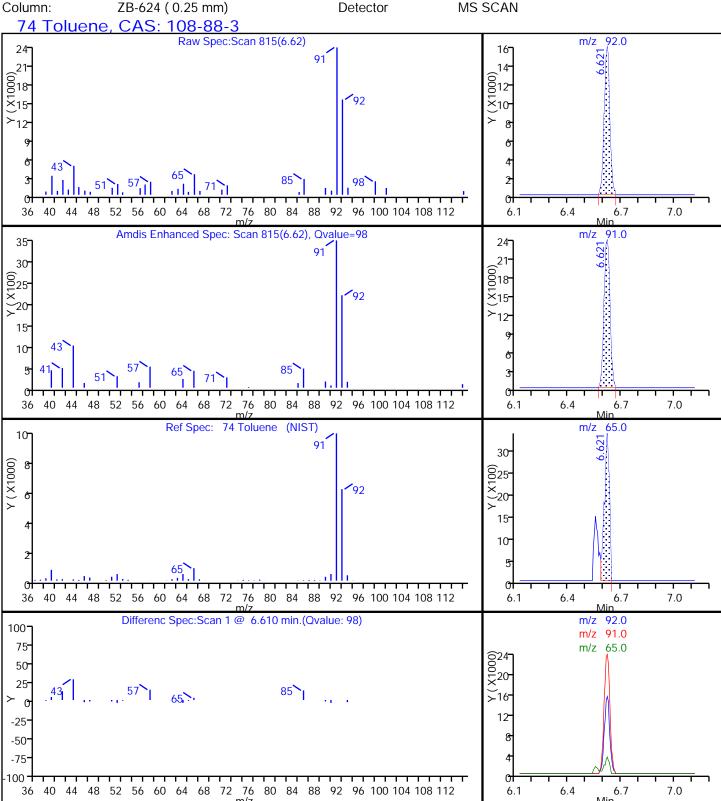
F-8260 SOIL MV - 8260C ICAL Method: Limit Group:

Detector



TestAmerica Buffalo

Data File: Injection Date: 16-Oct-2017 18:28:30 Instrument ID: HP5973F Lims ID: 480-125579-B-1-A Lab Sample ID: 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: **CDC** ALS Bottle#: 12 Worklist Smp#: 20

Dil. Factor: Purge Vol: 5.000 mL 1.0000

MV - 8260C ICAL Method: F-8260 SOIL Limit Group:

Detector



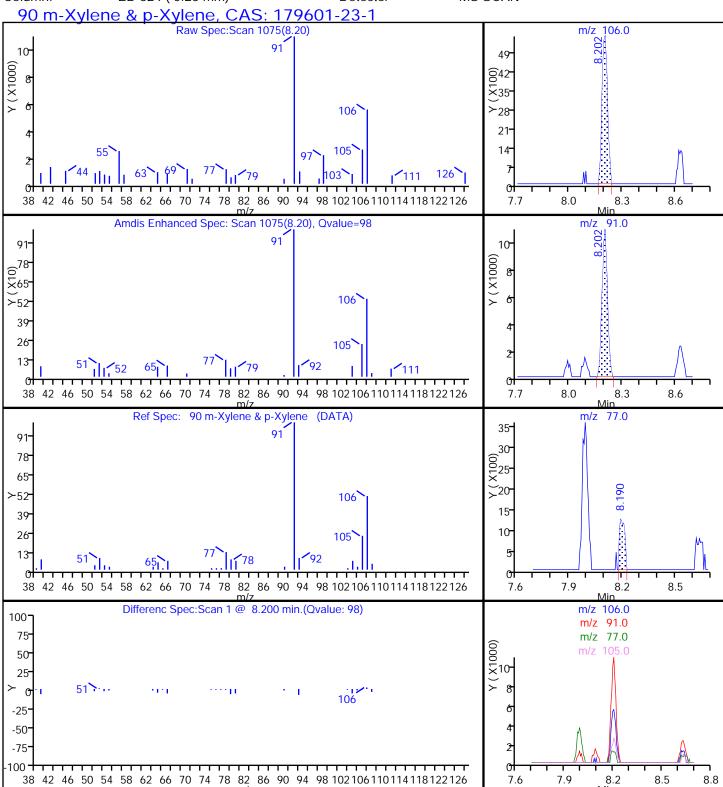
Report Date: 17-Oct-2017 09:00:28 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8285.D

 Injection Date:
 16-Oct-2017 18:28:30
 Instrument ID:
 HP5973F

 Lims ID:
 480-125579-B-1-A
 Lab Sample ID:
 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: CDC ALS Bottle#: 12 Worklist Smp#: 20

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN



#### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 |                                     |  |  |
|-----------------------------------------------------|-------------------------------------|--|--|
| SDG No.:                                            |                                     |  |  |
| Client Sample ID: MW-8 (13-14)                      | Lab Sample ID: 480-125579-2         |  |  |
| Matrix: Solid                                       | Lab File ID: F8286.D                |  |  |
| Analysis Method: 8260C                              | Date Collected: 10/08/2017 12:00    |  |  |
| Sample wt/vol: 6.956(g)                             | Date Analyzed: 10/16/2017 18:54     |  |  |
| Soil Aliquot Vol:                                   | Dilution Factor: 1                  |  |  |
| Soil Extract Vol.:                                  | GC Column: ZB-624 (30) ID: 0.25(mm) |  |  |
| % Moisture: 18.4                                    | Level: (low/med) Low                |  |  |

Units: ug/Kg

| CAS NO.    | COMPOUND NAME                          | RESULT | Q | RL  | MDL  |
|------------|----------------------------------------|--------|---|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                  | ND     |   | 4.4 | 0.32 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane              | ND     |   | 4.4 | 0.71 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan e | ND     |   | 4.4 | 1.0  |
| 79-00-5    | 1,1,2-Trichloroethane                  | ND     |   | 4.4 | 0.57 |
| 75-34-3    | 1,1-Dichloroethane                     | ND     |   | 4.4 | 0.54 |
| 75-35-4    | 1,1-Dichloroethene                     | ND     |   | 4.4 | 0.54 |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | ND     |   | 4.4 | 0.27 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane            | ND     |   | 4.4 | 2.2  |
| 106-93-4   | 1,2-Dibromoethane                      | ND     |   | 4.4 | 0.57 |
| 95-50-1    | 1,2-Dichlorobenzene                    | ND     |   | 4.4 | 0.34 |
| 107-06-2   | 1,2-Dichloroethane                     | ND     |   | 4.4 | 0.22 |
| 78-87-5    | 1,2-Dichloropropane                    | ND     |   | 4.4 | 2.2  |
| 541-73-1   | 1,3-Dichlorobenzene                    | ND     |   | 4.4 | 0.23 |
| 106-46-7   | 1,4-Dichlorobenzene                    | ND     |   | 4.4 | 0.62 |
| 78-93-3    | 2-Butanone (MEK)                       | ND     |   | 22  | 1.6  |
| 591-78-6   | 2-Hexanone                             | ND     |   | 22  | 2.2  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)            | ND     |   | 22  | 1.4  |
| 67-64-1    | Acetone                                | 21     | J | 22  | 3.7  |
| 71-43-2    | Benzene                                | ND     |   | 4.4 | 0.22 |
| 75-27-4    | Bromodichloromethane                   | ND     |   | 4.4 | 0.59 |
| 75-25-2    | Bromoform                              | ND     | * | 4.4 | 2.2  |
| 74-83-9    | Bromomethane                           | ND     |   | 4.4 | 0.40 |
| 75-15-0    | Carbon disulfide                       | ND     |   | 4.4 | 2.2  |
| 56-23-5    | Carbon tetrachloride                   | ND     |   | 4.4 | 0.43 |
| 108-90-7   | Chlorobenzene                          | ND     |   | 4.4 | 0.58 |
| 75-00-3    | Chloroethane                           | ND     |   | 4.4 | 0.99 |
| 67-66-3    | Chloroform                             | ND     |   | 4.4 | 0.27 |
| 74-87-3    | Chloromethane                          | ND     |   | 4.4 | 0.27 |
| 156-59-2   | cis-1,2-Dichloroethene                 | ND     |   | 4.4 | 0.56 |
| 10061-01-5 | cis-1,3-Dichloropropene                | ND     |   | 4.4 | 0.63 |
| 110-82-7   | Cyclohexane                            | ND     |   | 4.4 | 0.62 |
| 124-48-1   | Dibromochloromethane                   | ND     |   | 4.4 | 0.56 |
| 75-71-8    | Dichlorodifluoromethane                | ND     |   | 4.4 | 0.36 |
| 100-41-4   | Ethylbenzene                           | ND     |   | 4.4 | 0.30 |
| 98-82-8    | Isopropylbenzene                       | ND     |   | 4.4 | 0.66 |

Analysis Batch No.: 381944

## FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (13-14) Lab Sample ID: 480-125579-2

Matrix: Solid Lab File ID: F8286.D

Analysis Method: 8260C Date Collected: 10/08/2017 12:00

Sample wt/vol: 6.956(g) Date Analyzed: 10/16/2017 18:54

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: \_\_\_\_\_ GC Column: <u>ZB-624 (30)</u> ID: <u>0.25 (mm)</u>

% Moisture: 18.4 Level: (low/med) Low

Analysis Batch No.: 381944 Units: ug/Kg

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL  |
|------------|---------------------------|--------|---|-----|------|
| 79-20-9    | Methyl acetate            | ND     |   | 22  | 2.7  |
| 1634-04-4  | Methyl tert-butyl ether   | ND     |   | 4.4 | 0.43 |
| 108-87-2   | Methylcyclohexane         | ND     |   | 4.4 | 0.67 |
| 75-09-2    | Methylene Chloride        | ND     |   | 4.4 | 2.0  |
| 100-42-5   | Styrene                   | ND     |   | 4.4 | 0.22 |
| 127-18-4   | Tetrachloroethene         | 0.70   | J | 4.4 | 0.59 |
| 108-88-3   | Toluene                   | ND     |   | 4.4 | 0.33 |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |   | 4.4 | 0.45 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 4.4 | 1.9  |
| 79-01-6    | Trichloroethene           | ND     |   | 4.4 | 0.97 |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 4.4 | 0.42 |
| 75-01-4    | Vinyl chloride            | ND     |   | 4.4 | 0.54 |
| 1330-20-7  | Xylenes, Total            | ND     |   | 8.8 | 0.74 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 107  |   | 64-126 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 105  |   | 72-126 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 106  |   | 60-140 |
| 2037-26-5  | Toluene-d8 (Surr)            | 98   |   | 71-125 |

Report Date: 17-Oct-2017 09:01:08 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8286.D

Lims ID: 480-125579-B-2-A Client ID: MW-8 (13-14)

Sample Type: Client

Inject. Date: 16-Oct-2017 18:54:30 ALS Bottle#: 13 Worklist Smp#: 21

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-125579-B-2-A Misc. Info.: 480-0066422-021

Operator ID: CDC Instrument ID: HP5973F

Method: \ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update:17-Oct-2017 09:01:08Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK026

First Level Reviewer: cwiklinc Date: 17-Oct-2017 09:01:08

| First Level Reviewer: cwiklinc                          |            |        | D              | ate:   |    | 17-Oct-201 | 7 09:01:08 |       |
|---------------------------------------------------------|------------|--------|----------------|--------|----|------------|------------|-------|
|                                                         |            | RT     | Adj RT         | Dlt RT |    |            | OnCol Amt  |       |
| Compound                                                | Sig        | (min.) | (min.)         | (min.) | Q  | Response   | ug/kg      | Flags |
| * 450 51 (10)                                           |            | E 404  | E 404          |        |    | 050057     | 50.0       |       |
| * 153 Fluorobenzene (IS)                                | 70         | 5.191  | 5.191          | 0.000  | 99 | 250857     | 50.0       |       |
| * 2 Chlorobenzene-d5                                    | 82         | 7.989  | 7.989          | 0.000  | 85 | 535782     | 50.0       |       |
| * 3 1,4-Dichlorobenzene-d4                              | 152        | 10.356 | 10.356         | 0.000  | 95 | 571765     | 50.0       |       |
| \$ 154 Dibromofluoromethane (Surr                       |            | 4.674  | 4.674          | 0.000  | 94 | 330496     | 53.1       |       |
| \$ 41,2-Dichloroethane-d4 (Sur                          | 67         | 4.954  | 4.953          | 0.001  | 0  | 213725     | 53.5       |       |
| \$ 5 Toluene-d8 (Surr)                                  | 98         | 6.560  | 6.559          | 0.001  | 93 | 1295243    | 49.1       |       |
| \$ 6 4-Bromofluorobenzene (Surr                         | 174        | 9.218  | 9.218          | 0.000  | 94 | 452884     | 52.4       |       |
| 10 Dichlorodifluoromethane                              | 85         |        | 1.814          |        |    |            | ND         |       |
| 12 Chloromethane                                        | 50         |        | 1.997          |        |    |            | ND         |       |
| 13 Vinyl chloride                                       | 62         |        | 2.088          |        |    |            | ND         |       |
| 14 Bromomethane                                         | 94         |        | 2.362          |        |    |            | ND<br>ND   |       |
| 15 Chloroethane                                         | 64         |        | 2.410          |        |    |            | ND         |       |
| 17 Trichlorofluoromethane 21 1,1,2-Trichloro-1,2,2-trif | 101<br>101 |        | 2.611<br>2.958 |        |    |            | ND<br>ND   |       |
|                                                         | 96         |        | 2.936<br>2.976 |        |    |            | ND<br>ND   |       |
| 22 1,1-Dichloroethene 23 Acetone                        | 43         | 3.037  | 3.025          | 0.012  | 97 | 61478      | 23.6       |       |
| 26 Carbon disulfide                                     | 43<br>76   | 3.037  | 3.025          | 0.012  | 91 |            | 23.0<br>VD |       |
| 27 Methyl acetate                                       | 43         |        | 3.177          |        |    |            | ND<br>ND   |       |
| 30 Methylene Chloride                                   | 43<br>84   |        | 3.256          |        |    |            | ND<br>ND   |       |
| 32 Methyl tert-butyl ether                              | 73         |        | 3.499          |        |    |            | ND<br>ND   |       |
| 34 trans-1,2-Dichloroethene                             | 73<br>96   |        | 3.530          |        |    |            | ND         |       |
| 39 1,1-Dichloroethane                                   | 63         |        | 3.858          |        |    |            | ND         |       |
| 43 2-Butanone (MEK)                                     | 43         |        | 4.290          |        |    |            | ND         |       |
| 45 cis-1,2-Dichloroethene                               | 96         |        | 4.302          |        |    |            | ND         |       |
| 50 Chloroform                                           | 83         |        | 4.540          |        |    |            | ND         |       |
| 51 1,1,1-Trichloroethane                                | 97         |        | 4.680          |        |    |            | ND         |       |
| 52 Cyclohexane                                          | 56         |        | 4.710          |        |    |            | ND         |       |
| 55 Carbon tetrachloride                                 | 117        |        | 4.807          |        |    |            | ND         |       |
| 57 Benzene                                              | 78         |        | 4.978          |        |    |            | ND         |       |
| 58 1,2-Dichloroethane                                   | 62         |        | 5.014          |        |    |            | ND         |       |
| 62 Trichloroethene                                      | 95         |        | 5.495          |        |    |            | ND         |       |
| oz monorodnono                                          | , 0        |        | 0.770          |        |    | '          |            |       |

Page 92 of 914

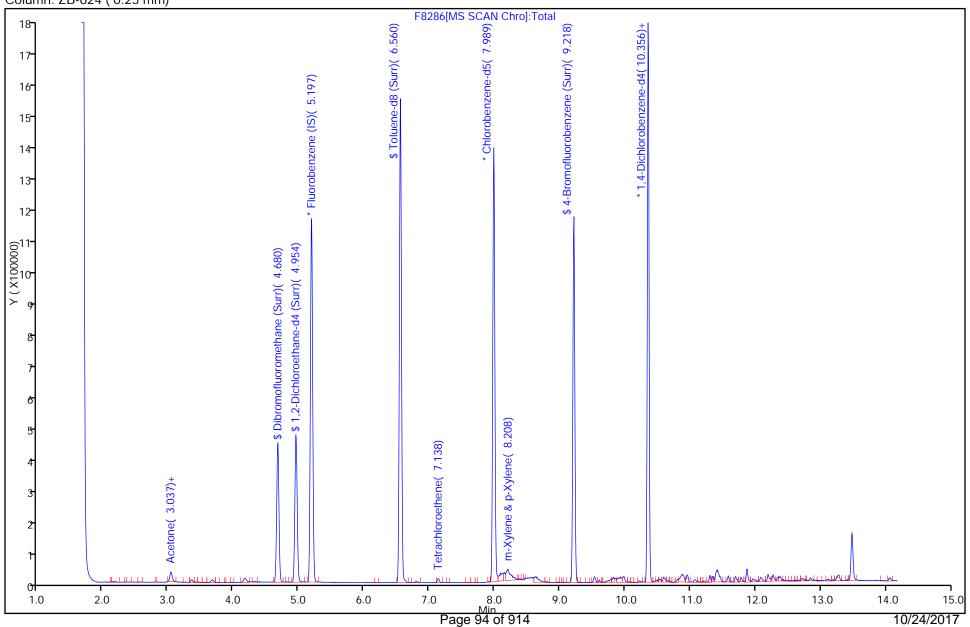
| Data File: \\Cnrom\vA\B        | unalo\ | Chromba  | (a\HP59) | 31/201/10 | J 16-66 | 0422.D\F8286. | υ              |       |
|--------------------------------|--------|----------|----------|-----------|---------|---------------|----------------|-------|
|                                |        | RT       | Adj RT   | Dlt RT    |         |               | OnCol Amt      |       |
| Compound                       | Sig    | (min.)   | (min.)   | (min.)    | Q       | Response      | ug/kg          | Flags |
|                                |        |          |          |           |         |               |                |       |
| 64 Methylcyclohexane           | 83     |          | 5.629    |           |         |               | ND             |       |
| 65 1,2-Dichloropropane         | 63     |          | 5.714    |           |         |               | ND             |       |
| 68 Dichlorobromomethane        | 83     |          | 5.951    |           |         |               | ND             |       |
| 72 cis-1,3-Dichloropropene     | 75     |          | 6.328    |           |         |               | ND             |       |
| 73 4-Methyl-2-pentanone (MIBK  | 43     |          | 6.432    |           |         |               | ND             |       |
| 74 Toluene                     | 92     |          | 6.620    |           |         |               | ND             |       |
| 77 trans-1,3-Dichloropropene   | 75     |          | 6.845    |           |         |               | ND             |       |
| 79 1,1,2-Trichloroethane       | 83     |          | 7.040    |           |         |               | ND             |       |
| 81 Tetrachloroethene           | 166    | 7.144    | 7.137    | 0.007     | 95      | 6474          | 0.7914         |       |
| 80 2-Hexanone                  | 43     |          | 7.223    |           |         |               | ND             |       |
| 83 Chlorodibromomethane        | 129    |          | 7.442    |           |         |               | ND             |       |
| 84 Ethylene Dibromide          | 107    |          | 7.569    |           |         |               | ND             |       |
| 87 Chlorobenzene               | 112    |          | 8.020    |           |         |               | ND             |       |
| 88 Ethylbenzene                | 91     |          | 8.086    |           |         |               | ND             |       |
| 90 m-Xylene & p-Xylene         | 106    | 8.202    | 8.202    | 0.000     | 95      | 3634          | 0.2583         |       |
| 91 o-Xylene                    | 106    |          | 8.628    |           |         |               | ND             |       |
| 92 Styrene                     | 104    |          | 8.652    |           |         |               | ND             |       |
| 95 Bromoform                   | 173    |          | 8.920    |           |         |               | ND             |       |
| 94 Isopropylbenzene            | 105    |          | 8.999    |           |         |               | ND             |       |
| 97 1,1,2,2-Tetrachloroethane   | 83     |          | 9.388    |           |         |               | ND             |       |
| 111 1,3-Dichlorobenzene        | 146    |          | 10.301   |           |         |               | ND             |       |
| 113 1,4-Dichlorobenzene        | 146    |          | 10.380   |           |         |               | ND             |       |
| 116 1,2-Dichlorobenzene        | 146    |          | 10.733   |           |         |               | ND             |       |
| 117 1,2-Dibromo-3-Chloropropan | 75     |          | 11.414   |           |         |               | ND             |       |
| 119 1,2,4-Trichlorobenzene     | 180    |          | 12.053   |           |         |               | ND             |       |
| S 124 Xylenes, Total           | 1      |          |          |           | 0       |               | 0.2583         |       |
| Reagents:                      |        |          |          |           |         |               |                |       |
| F 8260 SURR_00263              |        | Amount   | Added:   | 1.00      | l       | Jnits: uL     | Run Reager     | nt    |
| F 8260 IS_00580                |        | Amount   |          | 1.00      |         | Jnits: uL     | Run Reager     |       |
| . 626310_00000                 |        | , unount | ,        |           |         | Jimo. GL      | . tair iteagei |       |

Report Date: 17-Oct-2017 09:01:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8286.D

 Injection Date:
 16-Oct-2017 18:54:30
 Instrument ID:
 HP5973F


 Lims ID:
 480-125579-B-2-A
 Lab Sample ID:
 480-125579-2

Client ID: MW-8 (13-14)

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

CDC

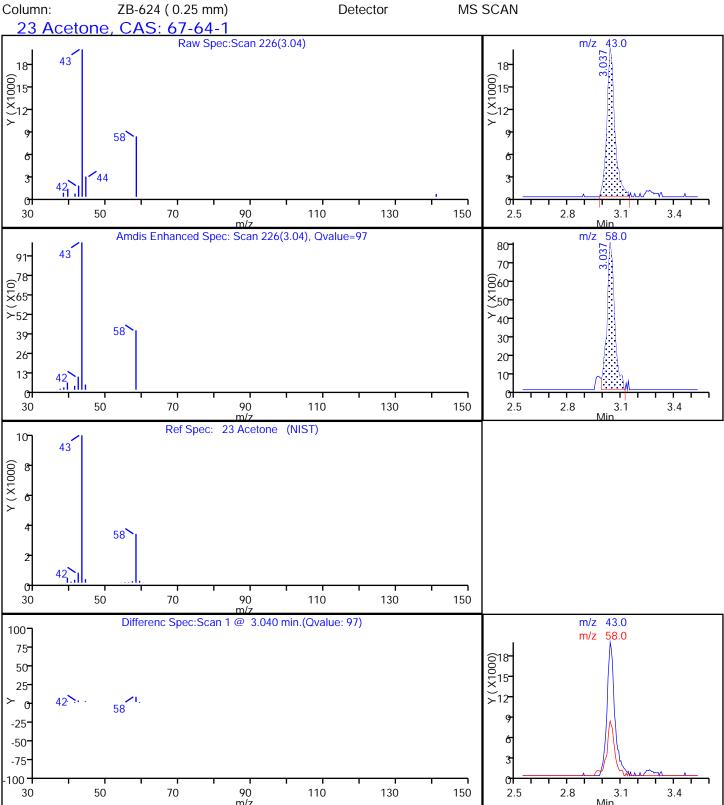
21

13

Report Date: 17-Oct-2017 09:01:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8286.D


 Injection Date:
 16-Oct-2017 18:54:30
 Instrument ID:
 HP5973F

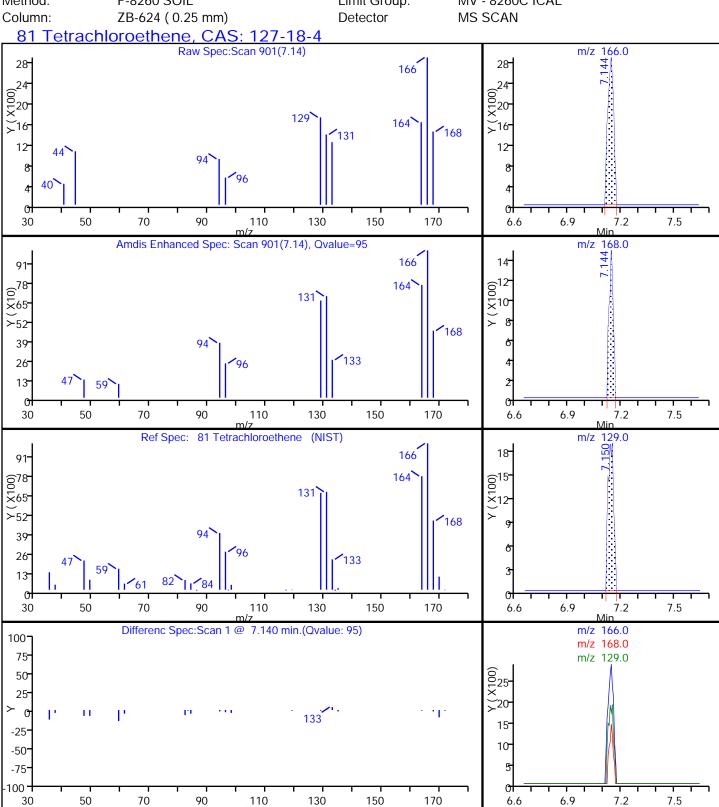
 Lims ID:
 480-125579-B-2-A
 Lab Sample ID:
 480-125579-2

Client ID: MW-8 (13-14)

Operator ID: CDC ALS Bottle#: 13 Worklist Smp#: 21

Purge Vol: 5.000 mL Dil. Factor: 1.0000




TestAmerica Buffalo

Data File: Injection Date: 16-Oct-2017 18:54:30 Instrument ID: HP5973F Lims ID: 480-125579-B-2-A Lab Sample ID: 480-125579-2

Client ID: MW-8 (13-14)

Operator ID: **CDC** ALS Bottle#: 13 Worklist Smp#: 21

Purge Vol: 5.000 mL Dil. Factor: 1.0000



#### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1               |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID: DUP-100817  | Lab Sample ID: 480-125579-3         |
| Matrix: Solid                 | Lab File ID: F8305.D                |
| Analysis Method: 8260C        | Date Collected: 10/08/2017 00:00    |
| Sample wt/vol: 6.748(g)       | Date Analyzed: 10/17/2017 14:11     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (30) ID: 0.25(mm) |
| % Moisture: 15.3              | Level: (low/med) Low                |
| Analysis Batch No.: 382134    | Units: ug/Kg                        |

| CAS NO.    | COMPOUND NAME                          | RESULT | Q | RL  | MDL  |
|------------|----------------------------------------|--------|---|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                  | ND     |   | 4.4 | 0.32 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane              | ND     |   | 4.4 | 0.71 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan e | ND     |   | 4.4 | 1.0  |
| 79-00-5    | 1,1,2-Trichloroethane                  | ND     |   | 4.4 | 0.5  |
| 75-34-3    | 1,1-Dichloroethane                     | ND     |   | 4.4 | 0.5  |
| 75-35-4    | 1,1-Dichloroethene                     | ND     |   | 4.4 | 0.5  |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | ND     |   | 4.4 | 0.2  |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane            | ND     |   | 4.4 | 2.   |
| 106-93-4   | 1,2-Dibromoethane                      | ND     |   | 4.4 | 0.5  |
| 95-50-1    | 1,2-Dichlorobenzene                    | ND     |   | 4.4 | 0.3  |
| 107-06-2   | 1,2-Dichloroethane                     | ND     |   | 4.4 | 0.2  |
| 78-87-5    | 1,2-Dichloropropane                    | ND     |   | 4.4 | 2.   |
| 541-73-1   | 1,3-Dichlorobenzene                    | ND     |   | 4.4 | 0.2  |
| 106-46-7   | 1,4-Dichlorobenzene                    | ND     |   | 4.4 | 0.6  |
| 78-93-3    | 2-Butanone (MEK)                       | 2.6    | J | 22  | 1.   |
| 591-78-6   | 2-Hexanone                             | ND     |   | 22  | 2.   |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)            | ND     |   | 22  | 1.   |
| 67-64-1    | Acetone                                | 42     |   | 22  | 3.   |
| 71-43-2    | Benzene                                | ND     |   | 4.4 | 0.2  |
| 75-27-4    | Bromodichloromethane                   | ND     |   | 4.4 | 0.5  |
| 75-25-2    | Bromoform                              | ND     |   | 4.4 | 2.   |
| 74-83-9    | Bromomethane                           | ND     |   | 4.4 | 0.3  |
| 75-15-0    | Carbon disulfide                       | ND     |   | 4.4 | 2.   |
| 56-23-5    | Carbon tetrachloride                   | ND     |   | 4.4 | 0.4  |
| 108-90-7   | Chlorobenzene                          | ND     |   | 4.4 | 0.5  |
| 75-00-3    | Chloroethane                           | ND     |   | 4.4 | 0.9  |
| 67-66-3    | Chloroform                             | ND     |   | 4.4 | 0.2  |
| 74-87-3    | Chloromethane                          | ND     |   | 4.4 | 0.2  |
| 156-59-2   | cis-1,2-Dichloroethene                 | ND     |   | 4.4 | 0.5  |
| 10061-01-5 | cis-1,3-Dichloropropene                | ND     |   | 4.4 | 0.6  |
| 110-82-7   | Cyclohexane                            | ND     |   | 4.4 | 0.6  |
| 124-48-1   | Dibromochloromethane                   | ND     |   | 4.4 | 0.5  |
| 75-71-8    | Dichlorodifluoromethane                | ND     |   | 4.4 | 0.3  |
| 100-41-4   | Ethylbenzene                           | ND     |   | 4.4 | 0.3  |
| 98-82-8    | Isopropylbenzene                       | ND     |   | 4.4 | 0.6  |

#### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: DUP-100817 Lab Sample ID: 480-125579-3

Matrix: Solid Lab File ID: F8305.D

Analysis Method: 8260C Date Collected: 10/08/2017 00:00

Sample wt/vol: 6.748(g) Date Analyzed: 10/17/2017 14:11

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: \_\_\_\_\_ GC Column: <u>ZB-624 (30)</u> ID: <u>0.25 (mm)</u>

% Moisture: 15.3 Level: (low/med) Low

Analysis Batch No.: 382134 Units: ug/Kg

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL  |
|------------|---------------------------|--------|---|-----|------|
| 79-20-9    | Methyl acetate            | ND     |   | 22  | 2.6  |
| 1634-04-4  | Methyl tert-butyl ether   | ND     |   | 4.4 | 0.43 |
| 108-87-2   | Methylcyclohexane         | ND     |   | 4.4 | 0.67 |
| 75-09-2    | Methylene Chloride        | ND     |   | 4.4 | 2.0  |
| 100-42-5   | Styrene                   | ND     |   | 4.4 | 0.22 |
| 127-18-4   | Tetrachloroethene         | 0.62   | J | 4.4 | 0.59 |
| 108-88-3   | Toluene                   | ND     |   | 4.4 | 0.33 |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |   | 4.4 | 0.45 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 4.4 | 1.9  |
| 79-01-6    | Trichloroethene           | ND     |   | 4.4 | 0.96 |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 4.4 | 0.41 |
| 75-01-4    | Vinyl chloride            | ND     |   | 4.4 | 0.53 |
| 1330-20-7  | Xylenes, Total            | ND     |   | 8.8 | 0.74 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 107  |   | 64-126 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 103  |   | 72-126 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 104  |   | 60-140 |
| 2037-26-5  | Toluene-d8 (Surr)            | 98   |   | 71-125 |

Report Date: 17-Oct-2017 14:48:20 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8305.D

Lims ID: 480-125579-C-3-A Client ID: DUP-100817

Sample Type: Client

Inject. Date: 17-Oct-2017 14:11:30 ALS Bottle#: 7 Worklist Smp#: 14

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-125579-C-3-A Misc. Info.: 480-0066449-014

Operator ID: CDC Instrument ID: HP5973F

Method: \ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update:17-Oct-2017 14:48:20Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK026

First Level Reviewer: cwiklinc Date: 17-Oct-2017 14:48:20

| First Level Reviewer: cwiklinc    |     |              | D                | Date:            |    | 17-Oct-2017 14:48:20 |                    |       |
|-----------------------------------|-----|--------------|------------------|------------------|----|----------------------|--------------------|-------|
| Compound                          | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q  | Response             | OnCol Amt<br>ug/kg | Flags |
| Compound                          | Olg | (111111.)    | (111111.)        | (111111)         |    | response             | ugrkg              | Tidgs |
| * 153 Fluorobenzene (IS)          | 70  | 5.191        | 5.197            | -0.006           | 99 | 245420               | 50.0               |       |
| * 2 Chlorobenzene-d5              | 82  | 7.989        | 7.989            | 0.000            | 85 | 514800               | 50.0               |       |
| * 3 1,4-Dichlorobenzene-d4        | 152 | 10.356       | 10.356           | 0.000            | 94 | 535008               | 50.0               |       |
| \$ 154 Dibromofluoromethane (Surr | 113 | 4.673        | 4.680            | -0.007           | 94 | 316876               | 52.0               |       |
| \$ 41,2-Dichloroethane-d4 (Sur    | 67  | 4.953        | 4.960            | -0.007           | 0  | 209603               | 53.7               |       |
| \$ 5 Toluene-d8 (Surr)            | 98  | 6.559        | 6.560            | -0.001           | 92 | 1244697              | 49.1               |       |
| \$ 6 4-Bromofluorobenzene (Surr   | 174 | 9.218        | 9.218            | 0.000            | 94 | 427826               | 51.5               |       |
| 10 Dichlorodifluoromethane        | 85  |              | 1.820            |                  |    | I                    | ND                 |       |
| 12 Chloromethane                  | 50  |              | 2.003            |                  |    | I                    | ND                 |       |
| 13 Vinyl chloride                 | 62  |              | 2.094            |                  |    | I                    | ND                 |       |
| 14 Bromomethane                   | 94  |              | 2.368            |                  |    | I                    | ND                 |       |
| 15 Chloroethane                   | 64  |              | 2.417            |                  |    | ĺ                    | ND                 |       |
| 17 Trichlorofluoromethane         | 101 |              | 2.617            |                  |    |                      | ND                 |       |
| 21 1,1,2-Trichloro-1,2,2-trif     | 101 |              | 2.958            |                  |    |                      | ND                 |       |
| 22 1,1-Dichloroethene             | 96  |              | 2.976            |                  |    | !                    | ND                 |       |
| 23 Acetone                        | 43  | 3.037        | 3.031            | 0.006            | 98 | 121968               | 47.8               |       |
| 26 Carbon disulfide               | 76  |              | 3.183            |                  |    |                      | ND                 |       |
| 27 Methyl acetate                 | 43  |              | 3.244            |                  |    | I                    | ND                 |       |
| 30 Methylene Chloride             | 84  |              | 3.354            |                  |    |                      | ND                 |       |
| 32 Methyl tert-butyl ether        | 73  |              | 3.506            |                  |    |                      | ND                 |       |
| 34 trans-1,2-Dichloroethene       | 96  |              | 3.536            |                  |    |                      | ND                 |       |
| 39 1,1-Dichloroethane             | 63  |              | 3.858            |                  |    |                      | ND                 |       |
| 43 2-Butanone (MEK)               | 43  | 4.315        | 4.315            | 0.018            | 99 | 10863                | 3.01               | M     |
| 45 cis-1,2-Dichloroethene         | 96  |              | 4.303            |                  |    |                      | ND                 |       |
| 50 Chloroform                     | 83  |              | 4.540            |                  |    |                      | ND                 |       |
| 51 1,1,1-Trichloroethane          | 97  |              | 4.680            |                  |    |                      | ND                 |       |
| 52 Cyclohexane                    | 56  |              | 4.710            |                  |    |                      | ND                 |       |
| 55 Carbon tetrachloride           | 117 |              | 4.807            |                  |    |                      | ND                 |       |
| 57 Benzene                        | 78  |              | 4.984            |                  |    |                      | ND                 |       |
| 58 1,2-Dichloroethane             | 62  |              | 5.020            |                  |    |                      | ND                 |       |
| 62 Trichloroethene                | 95  |              | 5.495            |                  |    | I                    | ND                 |       |
|                                   |     |              |                  |                  |    |                      |                    |       |

Page 99 of 914

Report Date: 17-Oct-2017 14:48:20

| Data File: \\ChromNA\B         | uffalo\ | ChromDa | ta\HP5973 | SF\201710 | 17-66 | 449.b\F8305.l | )         |       |
|--------------------------------|---------|---------|-----------|-----------|-------|---------------|-----------|-------|
|                                |         | RT      | Adj RT    | Dlt RT    |       |               | OnCol Amt |       |
| Compound                       | Sig     | (min.)  | (min.)    | (min.)    | Q     | Response      | ug/kg     | Flags |
|                                |         |         |           |           |       |               |           |       |
| 64 Methylcyclohexane           | 83      |         | 5.635     |           |       |               | ND        |       |
| 65 1,2-Dichloropropane         | 63      |         | 5.714     |           |       |               | ND        |       |
| 68 Dichlorobromomethane        | 83      |         | 5.957     |           |       |               | ND        |       |
| 72 cis-1,3-Dichloropropene     | 75      |         | 6.334     |           |       |               | ND        |       |
| 73 4-Methyl-2-pentanone (MIBK  | 43      |         | 6.438     |           |       |               | ND        |       |
| 74 Toluene                     | 92      |         | 6.620     |           |       |               | ND        |       |
| 77 trans-1,3-Dichloropropene   | 75      |         | 6.845     |           |       |               | ND        |       |
| 79 1,1,2-Trichloroethane       | 83      |         | 7.040     |           |       |               | ND        |       |
| 81 Tetrachloroethene           | 166     | 7.137   | 7.137     | 0.000     | 93    | 5604          | 0.7130    |       |
| 80 2-Hexanone                  | 43      |         | 7.223     |           |       | I             | ND        |       |
| 83 Chlorodibromomethane        | 129     |         | 7.442     |           |       | I             | ND        |       |
| 84 Ethylene Dibromide          | 107     |         | 7.569     |           |       | 1             | ND        |       |
| 87 Chlorobenzene               | 112     |         | 8.020     |           |       | 1             | ND        |       |
| 88 Ethylbenzene                | 91      |         | 8.087     |           |       | 1             | ND        |       |
| 90 m-Xylene & p-Xylene         | 106     | 8.202   | 8.202     | 0.000     | 91    | 2711          | 0.2005    |       |
| 91 o-Xylene                    | 106     |         | 8.634     |           |       | İ             | ND        |       |
| 92 Styrene                     | 104     |         | 8.652     |           |       | ļ             | ND        |       |
| 95 Bromoform                   | 173     |         | 8.926     |           |       | ļ             | ND        |       |
| 94 Isopropylbenzene            | 105     |         | 8.999     |           |       | ļ             | ND        |       |
| 97 1,1,2,2-Tetrachloroethane   | 83      |         | 9.388     |           |       | ļ             | ND        |       |
| 111 1,3-Dichlorobenzene        | 146     |         | 10.301    |           |       | !             | ND        |       |
| 113 1,4-Dichlorobenzene        | 146     |         | 10.380    |           |       | 1             | ND        |       |
| 116 1,2-Dichlorobenzene        | 146     |         | 10.733    |           |       | !             | ND        |       |
| 117 1,2-Dibromo-3-Chloropropan | 75      |         | 11.420    |           |       | I             | ND        |       |
| 119 1,2,4-Trichlorobenzene     | 180     |         | 12.053    |           |       | 1             | ND        |       |
| S 124 Xylenes, Total           | 1       |         |           |           | 0     |               | 0.2005    |       |
| QC Flag Legend<br>Review Flags |         |         |           |           |       |               |           |       |

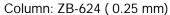
Review Flags

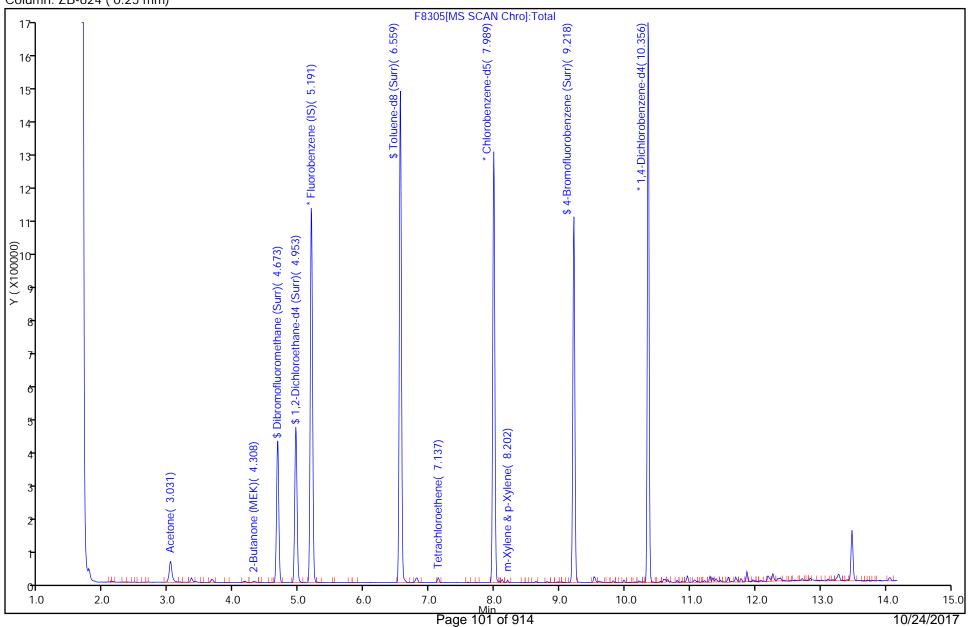
M - Manually Integrated

### Reagents:

F 8260 SURR\_00263 Amount Added: 1.00 Units: uL Run Reagent Amount Added: 1.00 F 8260 IS\_00580 Units: uL Run Reagent Report Date: 17-Oct-2017 14:48:20 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo


Data File: Injection Date: 17-Oct-2017 14:11:30 Instrument ID: HP5973F Lims ID: 480-125579-C-3-A Lab Sample ID: 480-125579-3


Client ID: DUP-100817

Purge Vol: 5.000 mL

Dil. Factor: 1.0000

F-8260 SOIL Limit Group: MV - 8260C ICAL Method:





Operator ID:

ALS Bottle#:

Worklist Smp#:

CDC

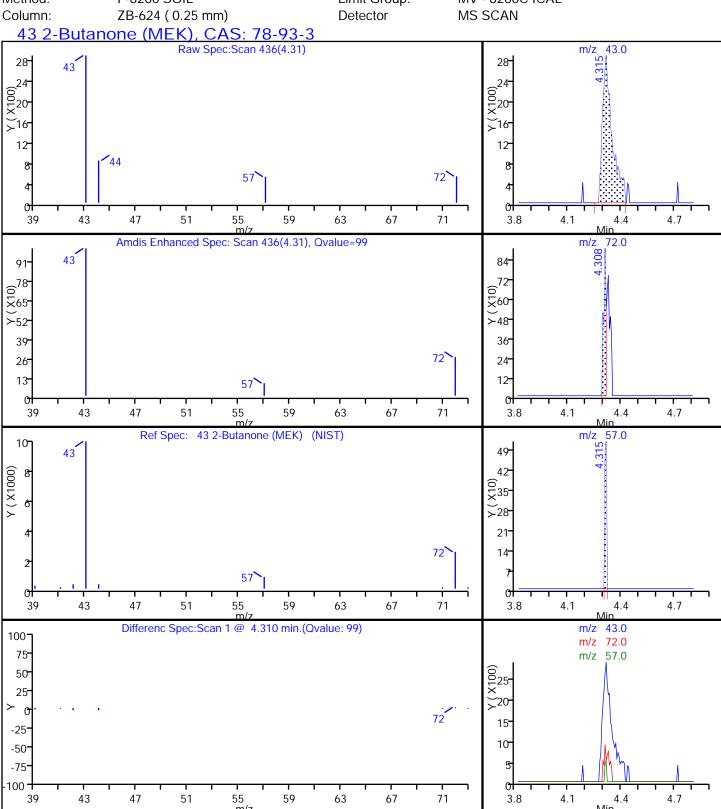
14

7

Report Date: 17-Oct-2017 14:48:20 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8305.D


 Injection Date:
 17-Oct-2017 14:11:30
 Instrument ID:
 HP5973F

 Lims ID:
 480-125579-C-3-A
 Lab Sample ID:
 480-125579-3

Client ID: DUP-100817

Operator ID: CDC ALS Bottle#: 7 Worklist Smp#: 14

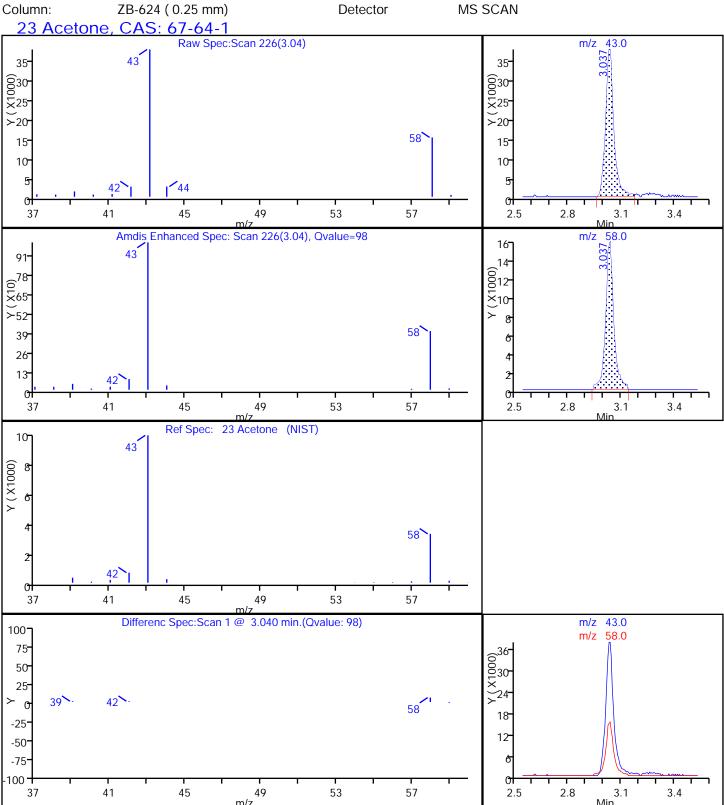
Purge Vol: 5.000 mL Dil. Factor: 1.0000



Report Date: 17-Oct-2017 14:48:20 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8305.D


 Injection Date:
 17-Oct-2017 14:11:30
 Instrument ID:
 HP5973F

 Lims ID:
 480-125579-C-3-A
 Lab Sample ID:
 480-125579-3

Client ID: DUP-100817

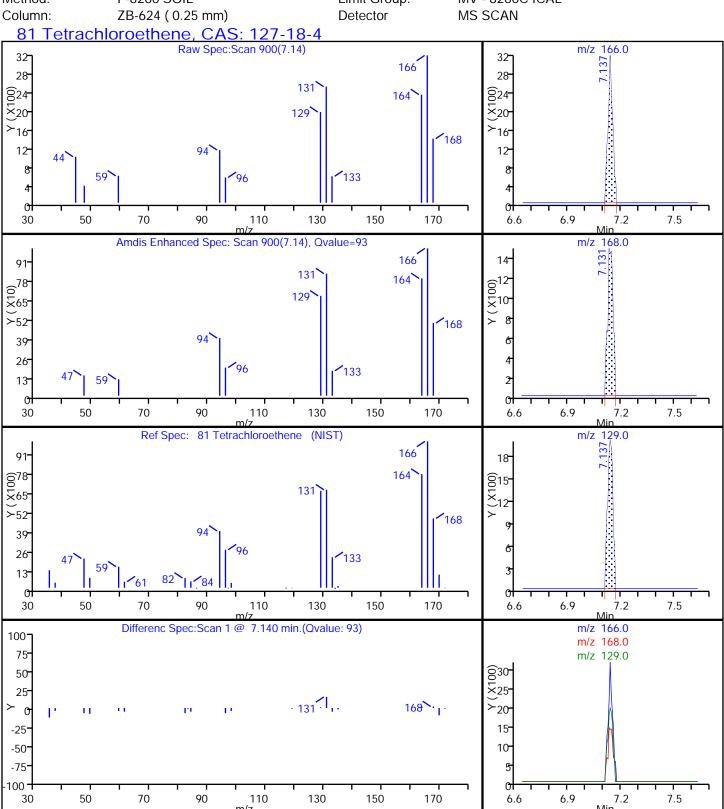
Operator ID: CDC ALS Bottle#: 7 Worklist Smp#: 14

Purge Vol: 5.000 mL Dil. Factor: 1.0000



TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8305.D


 Injection Date:
 17-Oct-2017 14:11:30
 Instrument ID:
 HP5973F

 Lims ID:
 480-125579-C-3-A
 Lab Sample ID:
 480-125579-3

Client ID: DUP-100817

Operator ID: CDC ALS Bottle#: 7 Worklist Smp#: 14

Purge Vol: 5.000 mL Dil. Factor: 1.0000



#### TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8305.D

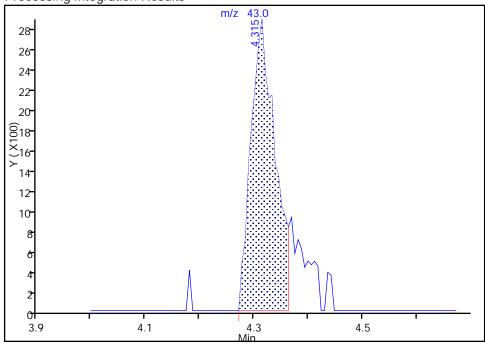
 Injection Date:
 17-Oct-2017 14:11:30
 Instrument ID:
 HP5973F

 Lims ID:
 480-125579-C-3-A
 Lab Sample ID:
 480-125579-3

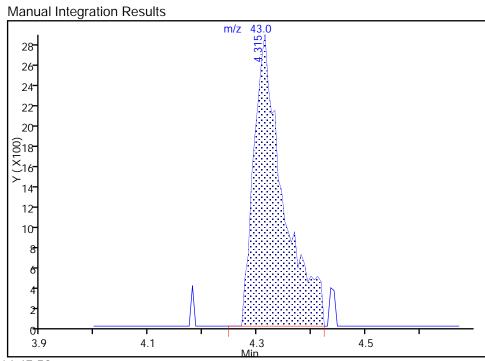
Client ID: DUP-100817

Operator ID: CDC ALS Bottle#: 7 Worklist Smp#: 14

Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN


### 43 2-Butanone (MEK), CAS: 78-93-3

Signal: 1

RT: 4.31 Area: 8986 Amount: 2.493420 Amount Units: ug/kg **Processing Integration Results** 



RT: 4.31 Area: 10863 Amount: 3.014246 Amount Units: ug/kg



Reviewer: cwiklinc, 17-Oct-2017 14:47:59

Audit Action: Manually Integrated

Audit Reason: Incomplete Integration

Page 105 of 914

# FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo   | Job No.: 480-125579-1               |  |  |  |  |  |  |
|---------------------------------|-------------------------------------|--|--|--|--|--|--|
| SDG No.:                        |                                     |  |  |  |  |  |  |
| Client Sample ID: TRIP BLANK    | Lab Sample ID: 480-125579-4         |  |  |  |  |  |  |
| Matrix: Water                   | Lab File ID: 93272P.D               |  |  |  |  |  |  |
| Analysis Method: 8260C          | Date Collected: 10/08/2017 00:00    |  |  |  |  |  |  |
| Sample wt/vol: $5 \text{ (mL)}$ | Date Analyzed: 10/18/2017 18:32     |  |  |  |  |  |  |
| Soil Aliquot Vol:               | Dilution Factor: 1                  |  |  |  |  |  |  |
| Soil Extract Vol.:              | GC Column: ZB-624 (60) ID: 0.25(mm) |  |  |  |  |  |  |
| % Moisture:                     | Level: (low/med) Low                |  |  |  |  |  |  |
| Analysis Batch No.: 382381      | Units: ug/L                         |  |  |  |  |  |  |
|                                 |                                     |  |  |  |  |  |  |

| CAS NO.    | COMPOUND NAME                          | RESULT | Q | RL  | MDL  |
|------------|----------------------------------------|--------|---|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                  | ND     |   | 1.0 | 0.82 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane              | ND     |   | 1.0 | 0.21 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan e | ND     |   | 1.0 | 0.31 |
| 79-00-5    | 1,1,2-Trichloroethane                  | ND     |   | 1.0 | 0.23 |
| 75-34-3    | 1,1-Dichloroethane                     | ND     |   | 1.0 | 0.38 |
| 75-35-4    | 1,1-Dichloroethene                     | ND     |   | 1.0 | 0.29 |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | ND     |   | 1.0 | 0.41 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane            | ND     |   | 1.0 | 0.39 |
| 106-93-4   | 1,2-Dibromoethane                      | ND     |   | 1.0 | 0.73 |
| 95-50-1    | 1,2-Dichlorobenzene                    | ND     |   | 1.0 | 0.79 |
| 107-06-2   | 1,2-Dichloroethane                     | ND     |   | 1.0 | 0.21 |
| 78-87-5    | 1,2-Dichloropropane                    | ND     |   | 1.0 | 0.72 |
| 541-73-1   | 1,3-Dichlorobenzene                    | ND     |   | 1.0 | 0.78 |
| 106-46-7   | 1,4-Dichlorobenzene                    | ND     |   | 1.0 | 0.84 |
| 78-93-3    | 2-Butanone (MEK)                       | ND     |   | 10  | 1.3  |
| 591-78-6   | 2-Hexanone                             | ND     |   | 5.0 | 1.2  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)            | ND     |   | 5.0 | 2.1  |
| 67-64-1    | Acetone                                | ND     |   | 10  | 3.0  |
| 71-43-2    | Benzene                                | ND     |   | 1.0 | 0.41 |
| 75-27-4    | Bromodichloromethane                   | ND     |   | 1.0 | 0.39 |
| 75-25-2    | Bromoform                              | ND     |   | 1.0 | 0.26 |
| 74-83-9    | Bromomethane                           | ND     |   | 1.0 | 0.69 |
| 75-15-0    | Carbon disulfide                       | ND     |   | 1.0 | 0.19 |
| 56-23-5    | Carbon tetrachloride                   | ND     |   | 1.0 | 0.27 |
| 108-90-7   | Chlorobenzene                          | ND     |   | 1.0 | 0.75 |
| 75-00-3    | Chloroethane                           | ND     |   | 1.0 | 0.32 |
| 67-66-3    | Chloroform                             | ND     |   | 1.0 | 0.34 |
| 74-87-3    | Chloromethane                          | ND     |   | 1.0 | 0.35 |
| 156-59-2   | cis-1,2-Dichloroethene                 | ND     |   | 1.0 | 0.81 |
| 10061-01-5 | cis-1,3-Dichloropropene                | ND     |   | 1.0 | 0.36 |
| 110-82-7   | Cyclohexane                            | ND     |   | 1.0 | 0.18 |
| 124-48-1   | Dibromochloromethane                   | ND     |   | 1.0 | 0.32 |
| 75-71-8    | Dichlorodifluoromethane                | ND     |   | 1.0 | 0.68 |
| 100-41-4   | Ethylbenzene                           | ND     |   | 1.0 | 0.74 |
| 98-82-8    | Isopropylbenzene                       | ND     |   | 1.0 | 0.79 |

### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

 Lab Name: TestAmerica Buffalo
 Job No.: 480-125579-1

 SDG No.:
 Client Sample ID: TRIP BLANK
 Lab Sample ID: 480-125579-4

 Matrix: Water
 Lab File ID: 93272P.D

 Analysis Method: 8260C
 Date Collected: 10/08/2017 00:00

 Sample wt/vol: 5(mL)
 Date Analyzed: 10/18/2017 18:32

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: ZB-624 (60) ID: 0.25(mm)

 % Moisture:
 Level: (low/med) Low

Analysis Batch No.: 382381 Units: ug/L

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL  |
|------------|---------------------------|--------|---|-----|------|
| 79-20-9    | Methyl acetate            | ND     |   | 2.5 | 1.3  |
| 1634-04-4  | Methyl tert-butyl ether   | ND     |   | 1.0 | 0.16 |
| 108-87-2   | Methylcyclohexane         | ND     |   | 1.0 | 0.16 |
| 75-09-2    | Methylene Chloride        | ND     |   | 1.0 | 0.44 |
| 100-42-5   | Styrene                   | ND     |   | 1.0 | 0.73 |
| 127-18-4   | Tetrachloroethene         | ND     |   | 1.0 | 0.36 |
| 108-88-3   | Toluene                   | ND     |   | 1.0 | 0.51 |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |   | 1.0 | 0.90 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 1.0 | 0.37 |
| 79-01-6    | Trichloroethene           | ND     |   | 1.0 | 0.46 |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 1.0 | 0.88 |
| 75-01-4    | Vinyl chloride            | ND     |   | 1.0 | 0.90 |
| 1330-20-7  | Xylenes, Total            | ND     |   | 2.0 | 0.66 |
|            |                           |        |   |     |      |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 107  |   | 77-120 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 102  |   | 73-120 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 102  |   | 75-123 |
| 2037-26-5  | Toluene-d8 (Surr)            | 100  |   | 80-120 |

Report Date: 19-Oct-2017 09:00:27 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\93272P.D

Lims ID: 480-125579-A-4 Client ID: TRIP BLANK

Sample Type: Client

Inject. Date: 18-Oct-2017 18:32:30 ALS Bottle#: 22 Worklist Smp#: 21

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-125579-a-4 Misc. Info.: 480-0066487-021

Operator ID: RF/RB Instrument ID: HP5973P

Method: \ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\P-8260H2O.m

Limit Group: MV - 8260C ICAL

Last Update:19-Oct-2017 09:00:27Calib Date:11-Oct-2017 00:40:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3056P.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK007

First Level Reviewer: baroner Date: 19-Oct-2017 09:00:27

| First Level Reviewer: baroner     |      |            | Da     | ate:   |     | 19-Oct-201 | 7 09:00:27 |       |
|-----------------------------------|------|------------|--------|--------|-----|------------|------------|-------|
| O a marray of                     | C! - | RT (mails) | Adj RT | Dlt RT |     | D          | OnCol Amt  | Eleme |
| Compound                          | Sig  | (min.)     | (min.) | (min.) | Q   | Response   | ug/L       | Flags |
| * 147 Fluorobenzene (IS)          | 70   | 10.434     | 10.434 | 0.000  | 97  | 174601     | 25.0       |       |
| * 2 Chlorobenzene-d5              | 82   | 14.382     | 14.388 | -0.006 | 93  | 385417     | 25.0       |       |
| * 3 1,4-Dichlorobenzene-d4        | 152  | 17.345     | 17.338 | 0.007  | 95  | 405625     | 25.0       |       |
| \$ 148 Dibromofluoromethane (Surr |      | 9.637      | 9.637  | 0.000  | 92  | 251558     | 25.5       |       |
| \$ 41,2-Dichloroethane-d4 (Sur    | 67   | 10.087     | 10.093 | -0.006 | 0   | 181616     | 26.6       |       |
| \$ 5 Toluene-d8 (Surr)            | 98   | 12.423     | 12.423 | 0.000  | 95  | 862440     | 25.1       |       |
| \$ 6 4-Bromofluorobenzene (Surr   | 174  | 15.885     | 15.878 | 0.007  | 93  | 319053     | 25.5       |       |
| 10 Dichlorodifluoromethane        | 85   |            | 4.332  | 0.007  | , 0 |            | ND         |       |
| 11 Chloromethane                  | 50   |            | 4.764  |        |     |            | ND         |       |
| 17 Vinyl chloride                 | 62   |            | 4.964  |        |     |            | ND         |       |
| 12 Bromomethane                   | 94   |            | 5.615  |        |     |            | ND         |       |
| 13 Chloroethane                   | 64   |            | 5.707  |        |     | İ          | ND         |       |
| 14 Trichlorofluoromethane         | 101  |            | 6.090  |        |     | ĺ          | ND         |       |
| 16 1,1,2-Trichloro-1,2,2-trif     | 101  |            | 6.735  |        |     | 1          | ND         |       |
| 25 1,1-Dichloroethene             | 96   |            | 6.844  |        |     | 1          | ND         |       |
| 24 Acetone                        | 43   | 6.881      | 6.881  | -0.006 | 85  | 17611      | 1.99       | 7M    |
| 30 Methyl acetate                 | 43   |            | 7.252  |        |     | 1          | ND         |       |
| 27 Carbon disulfide               | 76   |            | 7.270  |        |     | I          | ND         |       |
| 31 Methylene Chloride             | 84   |            | 7.507  |        |     | İ          | ND         |       |
| 32 Methyl tert-butyl ether        | 73   |            | 7.684  |        |     | İ          | ND         |       |
| 35 trans-1,2-Dichloroethene       | 96   |            | 7.781  |        |     | ĺ          | ND         |       |
| 40 1,1-Dichloroethane             | 63   |            | 8.335  |        |     |            | ND         |       |
| 44 2-Butanone (MEK)               | 43   |            | 9.022  |        |     |            | ND         |       |
| 43 cis-1,2-Dichloroethene         | 96   |            | 9.053  |        |     |            | ND         |       |
| 49 Chloroform                     | 83   |            | 9.418  |        |     |            | ND         |       |
| 52 1,1,1-Trichloroethane          | 97   |            | 9.649  |        |     |            | ND         |       |
| 54 Cyclohexane                    | 56   |            | 9.691  |        |     |            | ND         |       |
| 55 Carbon tetrachloride           | 117  |            | 9.850  |        |     |            | ND         |       |
| 57 Benzene                        | 78   |            | 10.129 |        |     |            | ND         |       |
| 60 1,2-Dichloroethane             | 62   |            | 10.184 |        |     |            | ND         |       |
| 62 Trichloroethene                | 95   |            | 10.884 |        |     | 1          | ND         |       |
|                                   |      |            |        |        |     |            |            |       |

Report Date: 19-Oct-2017 09:00:27

| Data File: \\ChromNA\B         | uffalo\ | ChromDa | ta\HP5973 | 3P\201710 | )18-66 | 487.b\93272F | P.D       |       |
|--------------------------------|---------|---------|-----------|-----------|--------|--------------|-----------|-------|
|                                |         | RT      | Adj RT    | Dlt RT    |        |              | OnCol Amt |       |
| Compound                       | Sig     | (min.)  | (min.)    | (min.)    | Q      | Response     | ug/L      | Flags |
|                                |         |         |           |           |        |              |           |       |
| 64 Methylcyclohexane           | 83      |         | 11.084    |           |        |              | ND        |       |
| 63 1,2-Dichloropropane         | 63      |         | 11.224    |           |        |              | ND        |       |
| 70 Dichlorobromomethane        | 83      |         | 11.559    |           |        |              | ND        |       |
| 73 cis-1,3-Dichloropropene     | 75      |         | 12.094    |           |        |              | ND        |       |
| 75 4-Methyl-2-pentanone (MIBK  | 43      |         | 12.198    |           |        |              | ND        |       |
| 76 Toluene                     | 92      |         | 12.514    |           |        |              | ND        |       |
| 78 trans-1,3-Dichloropropene   | 75      |         | 12.806    |           |        |              | ND        |       |
| 79 1,1,2-Trichloroethane       | 83      |         | 13.092    |           |        |              | ND        |       |
| 80 Tetrachloroethene           | 166     |         | 13.244    |           |        |              | ND        |       |
| 83 2-Hexanone                  | 43      |         | 13.287    |           |        |              | ND        |       |
| 81 Chlorodibromomethane        | 129     |         | 13.676    |           |        |              | ND        |       |
| 85 Ethylene Dibromide          | 107     |         | 13.871    |           |        |              | ND        |       |
| 87 Chlorobenzene               | 112     |         | 14.424    |           |        |              | ND        |       |
| 89 Ethylbenzene                | 91      |         | 14.467    |           |        |              | ND        |       |
| 90 m-Xylene & p-Xylene         | 106     |         | 14.601    |           |        |              | ND        |       |
| 93 o-Xylene                    | 106     |         | 15.154    |           |        | I            | ND        |       |
| 94 Styrene                     | 104     |         | 15.179    |           |        | I            | ND        |       |
| 92 Bromoform                   | 173     |         | 15.568    |           |        | 1            | ND        |       |
| 95 Isopropylbenzene            | 105     |         | 15.580    |           |        | 1            | ND        |       |
| 97 1,1,2,2-Tetrachloroethane   | 83      |         | 16.055    |           |        | 1            | ND        |       |
| 110 1,3-Dichlorobenzene        | 146     |         | 17.265    |           |        | I            | ND        |       |
| 111 1,4-Dichlorobenzene        | 146     |         | 17.375    |           |        | I            | ND        |       |
| 116 1,2-Dichlorobenzene        | 146     |         | 17.874    |           |        | I            | ND        |       |
| 117 1,2-Dibromo-3-Chloropropan | 75      |         | 18.920    |           |        | I            | ND        |       |
| 119 1,2,4-Trichlorobenzene     | 180     |         | 20.027    |           |        | I            | ND        |       |
| S 126 Xylenes, Total           | 1       |         | 30.000    |           |        | I            | ND        |       |
| QC Flag Legend                 |         |         |           |           |        |              |           |       |

Processing Flags

7 - Failed Limit of Detection

Review Flags

M - Manually Integrated

## Reagents:

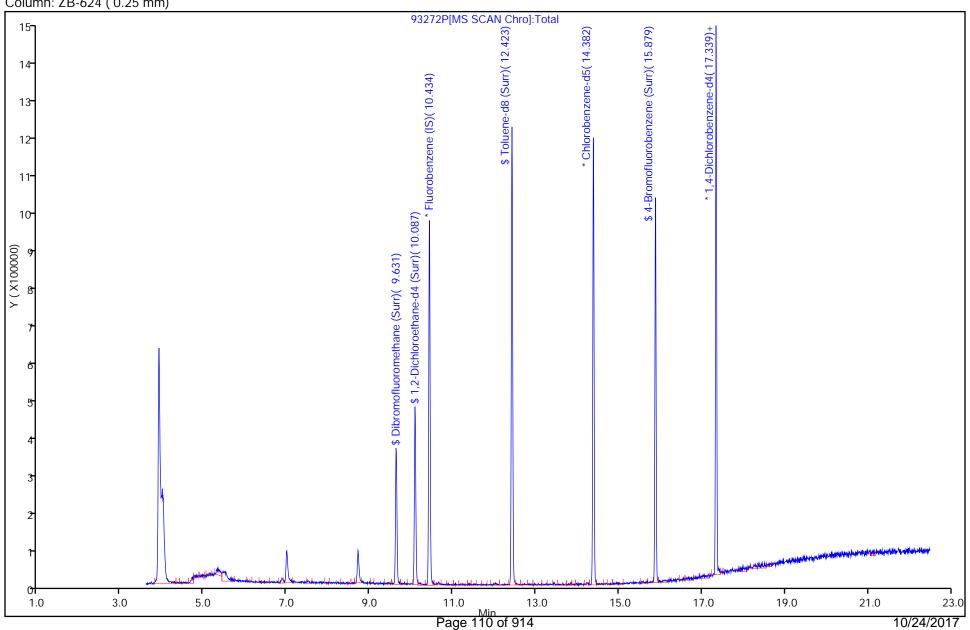
P 8260 IS\_00248 Run Reagent Amount Added: 1.25 Units: uL P 8260 Surr.\_00243 Run Reagent Amount Added: 1.25 Units: uL

Report Date: 19-Oct-2017 09:00:27 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: HP5973P Injection Date: 18-Oct-2017 18:32:30 Instrument ID:

480-125579-A-4 Lab Sample ID: 480-125579-4


Client ID: TRIP BLANK

Purge Vol: Dil. Factor: 1.0000 22 5.000 mL ALS Bottle#:

P-8260H2O Limit Group: MV - 8260C ICAL Method:

Column: ZB-624 (0.25 mm)

Lims ID:



Operator ID:

Worklist Smp#:

RF/RB

Report Date: 19-Oct-2017 09:00:27 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

### TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\\93272P.D

 Injection Date:
 18-Oct-2017 18:32:30
 Instrument ID:
 HP5973P

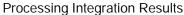
 Lims ID:
 480-125579-A-4
 Lab Sample ID:
 480-125579-4

Client ID: TRIP BLANK

Operator ID: RF/RB ALS Bottle#: 22 Worklist Smp#: 21

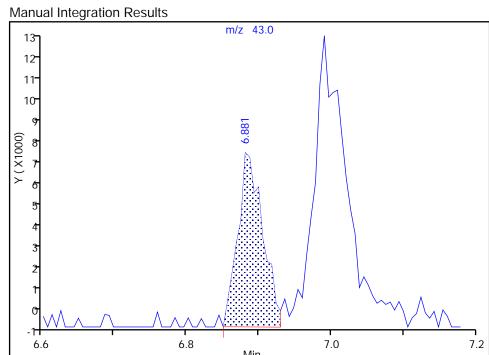
Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL


Column: ZB-624 ( 0.25 mm) Detector MS SCAN


## 24 Acetone, CAS: 67-64-1

Signal: 1


Not Detected

Expected RT: 6.89





RT: 6.88
Area: 17611
Amount: 1.989481
Amount Units: ug/L



Reviewer: baroner, 19-Oct-2017 08:59:20 Audit Action: Assigned Compound ID

Audit Reason: Poor chromatography

Page 111 of 914

Report Date: 19-Oct-2017 09:00:27 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

### TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\93272P.D

 Injection Date:
 18-Oct-2017 18:32:30
 Instrument ID:
 HP5973P

 Lims ID:
 480-125579-A-4
 Lab Sample ID:
 480-125579-4

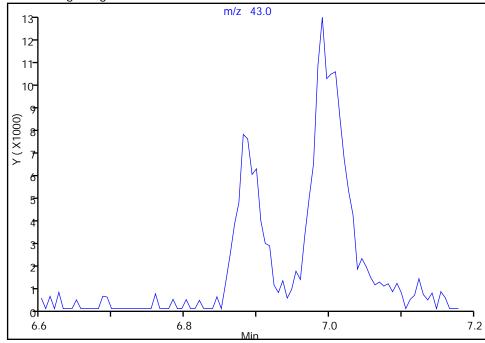
Client ID: TRIP BLANK

Operator ID: RF/RB ALS Bottle#: 22 Worklist Smp#: 21

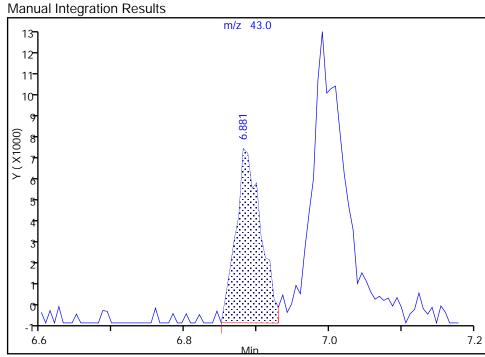
Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN


## 24 Acetone, CAS: 67-64-1

Signal: 1


Not Detected

Expected RT: 6.89





RT: 6.88
Area: 17611
Amount: 1.989481
Amount Units: ug/L



Reviewer: baroner, 19-Oct-2017 08:59:45

Audit Action: Manually Integrated

Audit Reason: Poor chromatography

Page 112 of 914

# GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379439

SDG No.:

Instrument ID:  $\underline{\text{HP5973F}}$  GC Column:  $\underline{\text{ZB-624}}$  (30) ID: 0.25(mm) Heated Purge: (Y/N) Y

#### Calibration Files:

| LEVEL:  | LAB SAMPLE ID:     | LAB FILE ID: |
|---------|--------------------|--------------|
| Level 1 | IC 480-379439/6    | F7936.D      |
| Level 2 | IC 480-379439/7    | F7937.D      |
| Level 3 | IC 480-379439/8    | F7938.D      |
| Level 4 | IC 480-379439/9    | F7939.D      |
| Level 5 | ICIS 480-379439/10 | F7940.D      |
| Level 6 | IC 480-379439/11   | F7941.D      |
| Level 7 | IC 480-379439/12   | F7942.D      |

| ANALYTE                               |                  |                  | RRF    |        |        | CURVE |   | COEFFICIE | NT : | MIN RRF | %RSD | # | MAX  | R^2    | # | MIN R^2 |
|---------------------------------------|------------------|------------------|--------|--------|--------|-------|---|-----------|------|---------|------|---|------|--------|---|---------|
|                                       | LVL 1<br>LVL 6   | LVL 2<br>LVL 7   | LVL 3  | LVL 4  | LVL 5  | TYPE  | В | M1        | M2   |         |      |   | %RSD | OR COD |   | OR COD  |
| Dichlorodifluoromethane               | 1.3306<br>1.3169 |                  | 1.3457 | 1.3806 | 1.3078 | Ave   |   | 1.3249    |      | 0.1000  | 3.4  |   | 20.0 |        |   |         |
| Chloromethane                         | 1.3370<br>1.1211 | 1.3424<br>1.1001 | 1.2426 | 1.2610 | 1.1858 | Ave   |   | 1.2271    |      | 0.1000  | 7.9  |   | 20.0 |        |   |         |
| Butadiene                             | 1.2608<br>1.1126 |                  | 1.2429 | 1.2940 | 1.1948 | Ave   |   | 1.2178    |      |         | 7.6  |   | 20.0 |        |   |         |
| Vinyl chloride                        | 1.2415<br>1.1313 |                  | 1.2361 | 1.3062 | 1.1980 | Ave   |   | 1.2217    |      | 0.1000  | 6.0  |   | 20.0 |        |   |         |
| Bromomethane                          | 0.6156<br>0.5200 |                  | 0.5477 | 0.5659 | 0.5685 | Ave   |   | 0.5682    |      | 0.1000  | 6.1  |   | 20.0 |        |   |         |
| Chloroethane                          | 0.5488<br>0.4741 |                  | 0.5304 | 0.5186 | 0.5003 | Ave   |   | 0.5170    |      | 0.1000  | 5.9  |   | 20.0 |        |   |         |
| Dichlorofluoromethane                 | 1.6866<br>1.4888 |                  | 1.5962 | 1.6522 | 1.5734 | Ave   |   | 1.5939    |      |         | 5.6  |   | 20.0 |        |   |         |
| Trichlorofluoromethane                | 1.6750<br>1.4648 |                  | 1.5881 | 1.5976 | 1.5191 | Ave   |   | 1.5559    |      | 0.1000  | 5.0  |   | 20.0 |        |   |         |
| Ethyl ether                           | 0.9789<br>0.8835 |                  | 1.2014 | 0.9601 | 0.9433 | Ave   |   | 0.9679    |      |         | 11.7 |   | 20.0 |        |   |         |
| Acrolein                              | 0.2393<br>0.2521 |                  | 0.2379 | 0.2573 | 0.2456 | Ave   |   | 0.2435    |      |         | 3.4  |   | 20.0 |        |   |         |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.3617<br>1.2789 |                  | 1.3036 | 1.3197 | 1.2847 | Ave   |   | 1.3044    |      | 0.1000  | 3.8  |   | 20.0 |        |   |         |
| 1,1-Dichloroethene                    | 1.2950<br>1.2186 |                  | 1.2610 | 1.2389 | 1.2249 | Ave   |   | 1.2375    |      | 0.1000  | 3.6  |   | 20.0 |        |   |         |
| Acetone                               | +++++<br>0.5169  |                  | 0.5381 | 0.5519 | 0.5085 | Ave   |   | 0.5194    |      | 0.1000  | 5.6  |   | 20.0 |        |   |         |
| Iodomethane                           | 2.2954<br>2.2001 |                  | 2.2283 | 2.1872 | 2.1973 | Ave   |   | 2.1969    |      |         | 2.6  |   | 20.0 | -      |   |         |

## GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379439

SDG No.:

Instrument ID:  $\underline{\text{HP5973F}}$  GC Column:  $\underline{\text{ZB-624}}$  (30) ID:  $\underline{\text{0.25}}$  (mm) Heated Purge: (Y/N) Y

| ANALYTE                  |        |        | RRF    |        |        | CURVE |        | COEFFICIE | NT | # MIN RRF | %RSD | <br>MAX | R^2    |               | MIN R^2 |
|--------------------------|--------|--------|--------|--------|--------|-------|--------|-----------|----|-----------|------|---------|--------|---------------|---------|
|                          | LVL 1  | LVL 2  | LVL 3  | LVL 4  | LVL 5  | TYPE  | В      | M1        | M2 |           |      | ≹RSD    | OR COD | ı             | OR COD  |
|                          | LVL 6  | LVL 7  |        |        |        |       |        |           |    |           |      |         |        |               |         |
| Carbon disulfide         | 3.6996 | 3.6136 | 3.7556 | 3.8420 | 3.9839 | Ave   |        | 3.8206    |    | 0.1000    | 3.9  | 20.0    |        |               |         |
|                          | 4.0328 | 3.8165 |        |        |        |       |        |           |    |           |      |         |        |               |         |
| Allyl chloride           | 2.4426 |        | 2.3527 | 2.2710 | 2.2652 | Ave   |        | 2.2754    |    |           | 5.7  | 20.0    |        |               |         |
|                          | 2.2389 | 2.0267 |        |        |        |       |        |           |    |           |      |         |        | $\perp$       |         |
| Methyl acetate           | 1.1746 | 1.1231 |        | 1.2104 | 1.1259 | Ave   |        | 1.1359    |    | 0.1000    | 4.5  | 20.0    |        |               |         |
|                          | 1.1650 | 1.0689 |        |        |        |       |        |           |    |           |      |         |        |               |         |
| Methylene Chloride       | 2.6317 |        | 1.7208 | 1.5542 | 1.5063 | Lin1  | 3.2038 | 1.4019    |    | 0.1000    |      |         | 0.9990 |               | 0.9900  |
|                          | 1.4746 | 1.3887 |        |        |        |       |        |           |    |           |      |         |        |               |         |
| 2-Methyl-2-propanol      | 0.1876 | 0.1685 | 0.1752 | 0.2052 | 0.1910 | Ave   |        | 0.1924    |    |           | 9.1  | 20.0    |        |               |         |
|                          | 0.2197 | 0.1994 |        |        |        |       |        |           |    |           |      |         |        |               |         |
| Methyl tert-butyl ether  | 4.1827 | 4.1291 | 4.1937 | 4.2431 | 4.2410 | Ave   |        | 4.1714    |    | 0.1000    | 2.3  | 20.0    |        |               |         |
|                          | 4.2403 | 3.9701 |        |        |        |       |        |           |    |           |      |         |        |               |         |
| trans-1,2-Dichloroethene | 1.4700 | 1.4724 | 1.4535 | 1.4054 | 1.4160 | Ave   |        | 1.4193    |    | 0.1000    | 3.8  | 20.0    |        |               |         |
|                          | 1.4023 | 1.3155 |        |        |        |       |        |           |    |           |      |         |        |               |         |
| Acrylonitrile            | 0.6279 | 0.6061 | 0.6026 | 0.6565 | 0.6113 | Ave   |        | 0.6075    |    |           | 6.1  | 20.0    |        |               |         |
|                          | 0.6135 | 0.5347 |        |        |        |       |        |           |    |           |      |         |        |               |         |
| Hexane                   | 4.2385 | 3.6035 | 3.1020 | 2.9084 | 2.7274 | Lin1  | 4.9701 | 2.5563    |    |           |      |         | 0.9980 |               | 0.9900  |
|                          | 2.7194 | 2.4961 |        |        |        |       |        |           |    |           |      |         |        |               |         |
| Vinyl acetate            | 2.5513 | 2.4996 | 2.5955 | 2.7334 | 2.7069 | Ave   |        | 2.6116    |    |           | 4.5  | 20.0    |        |               |         |
|                          | 2.7395 | 2.4549 |        |        |        |       |        |           |    |           |      |         |        |               |         |
| 1,1-Dichloroethane       | 2.9092 | 2.7703 | 2.7795 | 2.7500 | 2.7162 | Ave   |        | 2.7244    |    | 0.2000    | 4.9  | 20.0    |        |               |         |
|                          | 2.6780 | 2.4677 |        |        |        |       |        |           |    |           |      |         |        |               |         |
| 2-Butanone (MEK)         | 0.7163 | 0.7138 | 0.7100 | 0.8110 | 0.7416 | Ave   |        | 0.7342    |    | 0.1000    | 6.0  | 20.0    |        |               |         |
|                          | 0.7680 | 0.6789 |        |        |        |       |        |           |    |           |      |         |        |               |         |
| 2,2-Dichloropropane      | 2.0004 | 1.8390 | 1.9075 | 1.9148 | 1.9077 | Ave   |        | 1.8997    |    |           | 3.2  | 20.0    |        |               |         |
|                          | 1.9137 | 1.8147 |        |        |        |       |        |           |    |           |      |         |        |               |         |
| cis-1,2-Dichloroethene   | 1.6210 | 1.6061 |        | 1.6010 | 1.6002 | Ave   |        | 1.5930    |    | 0.1000    | 2.6  | 20.0    |        |               |         |
|                          | 1.6003 | 1.5020 |        | 0 5100 | 0 5100 |       |        | 0.7044    |    |           |      |         |        |               |         |
| Chlorobromomethane       | 0.6840 | 0.7048 | 0.7352 | 0.7188 | 0.7430 | Ave   |        | 0.7241    |    |           | 3.3  | 20.0    |        |               |         |
|                          | 0.7553 | 0.7274 | 0 1000 | 0.5100 | 0.1661 | _     |        | 0.1665    |    |           |      |         |        |               |         |
| Tetrahydrofuran          | 0.4818 | 0.4466 | 0.4376 | 0.5123 | 0.4664 | Ave   |        | 0.4665    |    |           | 6.0  | 20.0    |        |               |         |
| 01.1                     | 0.4833 | 0.4374 | 0 4065 | 0 0601 | 0 2700 |       |        | 0 2005    |    | 0.000     | 4 7  | 000     |        | $\rightarrow$ |         |
| Chloroform               | +++++  | 2.5525 | 2.4365 | 2.3631 | 2.3780 | Ave   |        | 2.3825    |    | 0.2000    | 4.7  | 20.0    |        | .             |         |
| 1 1 1 m. '-1-1           | 2.3548 | 2.2100 | 1 0200 | 1 0574 | 1 0050 | 7     |        | 1 0500    |    | 0.1000    | 1 -  | 20.0    |        | +             |         |
| 1,1,1-Trichloroethane    | 1.9783 | 1.9704 | 1.9328 | 1.95/4 | 1.9653 | Ave   |        | 1.9588    |    | 0.1000    | 1.5  | 20.0    |        | .             |         |
| 0 -1-1-                  | 1.9974 | 1.9100 | 2 1557 | 2 1044 | 2 0074 | 7     |        | 3.1022    |    | 0.1000    | 7 4  | 20.0    |        | +             |         |
| Cyclohexane              | 3.4391 |        | 3.1557 | 3.1244 | 3.0274 | Ave   |        | 3.1022    |    | 0.1000    | 7.4  | 20.0    |        | .             |         |
| 1 1 7'-11                | 2.9645 | 2.7277 | 1 0401 | 1 0400 | 1 0000 | 7     |        | 1 0401    |    |           | 2 7  | 20.0    |        | +             |         |
| 1,1-Dichloropropene      | 1.9518 |        | 1.8481 | 1.8480 | 1.8297 | Ave   |        | 1.8491    |    |           | 3.7  | 20.0    |        | .             |         |
|                          | 1.8407 | 1.7267 |        |        |        | 1     |        |           |    |           |      |         |        |               |         |

## GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379439

SDG No.:

Instrument ID: HP5973F GC Column: ZB-624 (30) ID: 0.25(mm) Heated Purge: (Y/N) Y

| ANALYTE                     |        |        | RRF    |        |        | CURVE |   | COEFFICIE | ENT | MIN RRF | %RSD | <br>MAX | R^2    | <br>MIN R^2 |
|-----------------------------|--------|--------|--------|--------|--------|-------|---|-----------|-----|---------|------|---------|--------|-------------|
|                             | LVL 1  | LVL 2  | LVL 3  | LVL 4  | LVL 5  | TYPE  | В | M1        | M2  |         |      | %RSD    | OR COD | OR COD      |
|                             | LVL 6  | LVL 7  |        |        |        |       |   |           |     |         |      |         |        |             |
| Carbon tetrachloride        | 1.3881 | 1.3637 | 1.3974 | 1.4308 | 1.5158 | Ave   |   | 1.4774    |     | 0.1000  | 7.5  | 20.0    |        |             |
|                             | 1.6327 | 1.6136 |        |        |        |       |   |           |     |         |      |         |        |             |
| Isobutyl alcohol            | 0.0622 |        | 0.0604 | 0.0712 | 0.0687 | Ave   |   | 0.0680    |     |         | 13.5 | 20.0    |        |             |
|                             | 0.0824 |        |        |        |        |       |   |           |     |         |      |         |        |             |
| Benzene                     | 5.8920 |        | 5.6809 | 5.6487 | 5.5677 | Ave   |   | 5.5709    |     | 0.5000  | 4.7  | 20.0    |        |             |
|                             | 5.5326 |        |        |        |        |       |   |           |     |         |      |         |        |             |
| 1,2-Dichloroethane          | 2.3152 |        | 2.1545 | 2.0858 | 2.0855 | Ave   |   | 2.1092    |     | 0.1000  | 5.8  | 20.0    |        |             |
|                             | 2.0665 |        |        |        |        |       |   |           |     |         |      |         |        |             |
| n-Heptane                   | 2.8604 |        | 2.6593 | 2.5303 | 2.4420 | Ave   |   | 2.5326    |     |         | 9.5  | 20.0    |        |             |
|                             | 2.4014 |        | 1 1010 | 4 0054 | 4 4440 |       |   | 1 1110    |     |         |      | 000     |        |             |
| Trichloroethene             | 1.4511 |        |        | 1.3851 | 1.4113 | Ave   |   | 1.4110    |     | 0.2000  | 2.3  | 20.0    |        |             |
|                             | 1.4477 |        |        | 0.6604 | 0 6010 | _     |   | 0.6500    |     | 0.1000  | 1 0  | 000     |        |             |
| Methylcyclohexane           | 2.8554 |        | 2.6644 | 2.6694 | 2.6210 | Ave   |   | 2.6593    |     | 0.1000  | 4.2  | 20.0    |        |             |
| 1.0.7/.11                   | 2.6232 |        | 1 5500 | 1 5100 | 1 5074 | _     |   | 1 5150    |     | 0.1000  | 2 1  | 000     |        |             |
| 1,2-Dichloropropane         | 1.5801 |        | 1.5533 | 1.5128 | 1.5074 | Ave   |   | 1.5157    |     | 0.1000  | 3.1  | 20.0    |        |             |
| 1.4.7.                      | 1.5445 |        | 0.0076 | 0.0080 | 0.0082 |       |   | 0.0078    |     |         | 10 5 | 20.0    |        |             |
| 1,4-Dioxane                 | 0.0090 |        | 0.0076 | 0.0080 | 0.0082 | Ave   |   | 0.0078    |     |         | 12.5 | 20.0    |        |             |
| Dibromomethane              | 0.7629 |        | 0 7696 | 0.7745 | 0.7960 | 70    |   | 0.7835    |     | 0.1000  | 3.3  | 20.0    |        |             |
| Dibromomechane              | 0.7629 |        | 0.7666 | 0.7743 | 0.7900 | Ave   |   | 0.7633    |     | 0.1000  | 3.3  | 20.0    |        |             |
| Bromodichloromethane        | 1.3444 |        | 1.4166 | 1.4433 | 1.6005 | 7770  |   | 1.4992    |     | 0.2000  | 10 5 | 20.0    |        |             |
| Bromodichiolomechane        | 1.7019 |        | 1.4100 | 1.4455 | 1.0003 | AVE   |   | 1.4332    |     | 0.2000  | 10.5 | 20.0    |        |             |
| 2-Chloroethyl vinyl ether   | 0.7287 |        | 0.8128 | 0.8543 | 0.8865 | Ave   |   | 0.8397    |     |         | 8.9  | 20.0    |        |             |
| 2 chiclocomy vinyi conci    | 0.9361 |        | 0.0120 | 0.0010 | 0.0000 | 1110  |   | 0.0007    |     |         | 0.3  | 20.0    |        |             |
| cis-1,3-Dichloropropene     | 1.6658 |        | 1.8084 | 1.8270 | 1.9959 | Ave   |   | 1.8689    |     | 0.2000  | 8.9  | 20.0    |        |             |
| old 1,0 Biomicropiopene     | 2.0917 | 2.0092 | 1.0001 | 1.0270 | 1.3303 | 1110  |   | 1.0003    |     | 0.2000  | 0.5  | 20.0    |        |             |
| 4-Methyl-2-pentanone (MIBK) | 0.7044 |        | 0.6982 | 0.7917 | 0.7189 | Ave   |   | 0.6944    |     | 0.1000  | 8.6  | 20.0    |        | -           |
| , ,                         | 0.6949 |        |        |        |        |       |   |           |     |         |      |         |        |             |
| Toluene                     | ++++   | 1.8829 | 1.8532 | 1.7894 | 1.7870 | Ave   |   | 1.7805    |     | 0.4000  | 5.0  | 20.0    |        |             |
|                             | 1.7394 | 1.6310 |        |        |        |       |   |           |     |         |      |         |        |             |
| trans-1,3-Dichloropropene   | 0.7243 | 0.6941 | 0.7690 | 0.8109 | 0.8778 | Ave   |   | 0.8090    |     | 0.1000  | 10.3 | 20.0    |        |             |
|                             | 0.9102 | 0.8765 |        |        |        |       |   |           |     |         |      |         |        |             |
| Ethyl methacrylate          | ++++   | 0.7054 | 0.7640 | 0.8396 | 0.8694 | Ave   |   | 0.8218    |     |         | 8.8  | 20.0    |        |             |
| _                           | 0.8942 | 0.8585 |        |        |        |       |   |           |     |         |      |         |        |             |
| 1,1,2-Trichloroethane       | 0.4723 | 0.4541 | 0.4637 | 0.4730 | 0.4774 | Ave   |   | 0.4701    |     | 0.1000  | 2.2  | 20.0    |        |             |
|                             | 0.4856 | 0.4643 |        |        |        |       |   |           |     |         |      |         |        |             |
| Tetrachloroethene           | 0.8034 |        | 0.7793 | 0.7545 | 0.7676 | Ave   |   | 0.7634    |     | 0.2000  | 3.4  | 20.0    |        |             |
|                             | 0.7530 |        |        |        |        |       |   |           |     |         |      |         |        |             |
| 1,3-Dichloropropane         | 0.9724 |        |        | 1.0046 | 0.9850 | Ave   |   | 0.9676    |     |         | 3.3  | 20.0    |        |             |
|                             | 0.9825 | 0.9156 |        |        |        | 1     |   |           |     |         |      |         |        |             |

## GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379439

SDG No.:

Instrument ID:  $\underline{\text{HP5973F}}$  GC Column:  $\underline{\text{ZB-624}}$  (30) ID: 0.25(mm) Heated Purge: (Y/N) Y

| ANALYTE                     |                  |        | RRF      |        |          | CURVE    |        | COEFFICI | ENT #     | MIN RRF | %RSD | #   | MAX<br>%RSD | R^2<br>OR COD | <br>MIN R^2<br>OR COD |
|-----------------------------|------------------|--------|----------|--------|----------|----------|--------|----------|-----------|---------|------|-----|-------------|---------------|-----------------------|
|                             | LVL 1            | LVL 2  | LVL 3    | LVL 4  | LVL 5    | TYPE     | В      | M1       | M2        |         |      |     | *RSD        | OR COD        | OR COD I              |
|                             | LVL 6            | LVL 7  |          |        |          |          |        |          |           |         |      |     |             |               |                       |
| 2-Hexanone                  | 0.4928           | 0.4818 | 0.5006   | 0.5802 | 0.5239   | Ave      |        | 0.5060   |           | 0.1000  | 8.4  | П   | 20.0        |               |                       |
|                             | 0.5199           | 0.4430 |          |        |          |          |        |          |           |         |      |     |             |               |                       |
| Dibromochloromethane        | +++++            |        | 0.4151   | 0.4619 | 0.5417   | Lin1     | -1.778 | 0.6184   |           | 0.1000  |      |     |             | 0.9970        | 0.9900                |
|                             | 0.6070           |        |          |        |          |          |        |          |           |         |      |     |             |               |                       |
| 1,2-Dibromoethane           | 0.5349           |        | 0.5578   | 0.5836 | 0.5976   | Ave      |        | 0.5717   |           |         | 6.0  |     | 20.0        |               |                       |
|                             | 0.6169           |        |          |        |          |          |        |          |           |         |      |     |             |               |                       |
| Chlorobenzene               | 2.0599           |        | 1.9562   | 1.9291 | 1.9282   | Ave      |        | 1.9167   |           | 0.5000  | 4.7  |     | 20.0        |               |                       |
|                             | 1.8866           |        |          |        |          |          |        |          |           |         |      |     |             |               |                       |
| Ethylbenzene                | 3.4615           |        | 3.3429   | 3.3002 | 3.2461   | Ave      |        | 3.2120   |           | 0.1000  | 7.6  |     | 20.0        |               |                       |
|                             | 3.0952           | 2.7172 |          |        |          |          |        |          |           |         |      |     |             |               |                       |
| 1,1,1,2-Tetrachloroethane   | 0.4979           |        | 0.5228   | 0.5579 | 0.6121   | Ave      |        | 0.5627   |           |         | 10.4 |     | 20.0        |               |                       |
|                             | 0.6317           |        | 4 04 0 6 | 1 0000 | 1 0005   | 1        |        | 1 0100   |           |         | 0 4  |     |             |               |                       |
| m,p-Xylene                  | 1.3382           |        |          | 1.3390 | 1.3295   | Ave      |        | 1.3129   |           | 0.1000  | 3.1  |     | 20.0        |               |                       |
|                             | 1.3052           |        |          |        |          |          |        |          |           |         |      |     |             |               |                       |
| o-Xylene                    | 1.3009           |        | 1.2861   | 1.2904 | 1.3014   | Ave      |        | 1.2661   |           | 0.3000  | 3.5  |     | 20.0        |               |                       |
|                             | 1.2657           |        | 0.0010   | 0.000  | 0.0545   | <u> </u> |        | 0.1010   |           |         |      |     |             |               |                       |
| Styrene                     | 2.2401           |        | 2.2049   | 2.2236 | 2.2547   | Ave      |        | 2.1849   |           | 0.3000  | 4.0  |     | 20.0        |               |                       |
| 7                           | 2.1974           |        | 0 0055   | 0.0404 | 0 2010   |          | 0 000  | 0.0000   | 0.0010060 | 0 1000  |      |     |             | 1 0000        |                       |
| Bromoform                   | 0.1634           |        | 0.2055   | 0.2434 | 0.3012   | Qua      | -0.330 | 0.2389   | 0.0013360 | 0.1000  |      |     |             | 1.0000        | 0.9900                |
| 7 11                        | 0.3690           | +++++  | 2 2460   | 2 0020 | 0 1055   | _        |        | 2 2222   |           | 0 1000  | 6 0  |     | 000         |               |                       |
| Isopropylbenzene            | 3.4900           |        |          | 3.2830 | 3.1957   | Ave      |        | 3.2088   |           | 0.1000  | 6.8  |     | 20.0        |               |                       |
| D                           | 3.0938<br>0.9481 | 2.8036 |          | 0.8355 | 0.8446   | 7 -      |        | 0.0507   |           |         |      |     | 20.0        |               |                       |
| Bromobenzene                |                  |        |          | 0.8355 | 0.8446   | Ave      |        | 0.8527   |           |         | 5.3  |     | 20.0        |               | l                     |
| 1,1,2,2-Tetrachloroethane   | 0.8398           |        |          | 0.7521 | 0.7411   | 7        |        | 0.7250   |           | 0.3000  | 3.9  |     | 20.0        |               |                       |
| 1,1,2,2-Tetrachioroethane   | 0.6820           |        | 0.7158   | 0.7521 | 0.7411   | Ave      |        | 0.7250   |           | 0.3000  | 3.9  |     | 20.0        |               |                       |
| trans-1,4-Dichloro-2-butene | 0.7347           |        | 0.2386   | 0.2581 | 0.2575   | 7        |        | 0.2496   |           |         | 4.0  |     | 20.0        |               |                       |
| trans-1,4-Dichioro-2-Dutene | 0.2478           |        | 0.2386   | 0.2381 | 0.25/5   | Ave      |        | 0.2496   |           |         | 4.0  |     | 20.0        |               | l                     |
| N-Propylbenzene             | 3.9957           |        | 3.8860   | 3.7674 | 3.6607   | 7        |        | 3.6528   |           |         | 9.1  |     | 20.0        |               |                       |
| N-Propylbenzene             | 3.4703           |        | 3.8860   | 3./6/4 | 3.0007   | Ave      |        | 3.6528   |           |         | 9.1  |     | 20.0        |               |                       |
| 1,2,3-Trichloropropane      | 0.2495           |        | 0.2473   | 0.2529 | 0.2397   | 7        |        | 0.2423   |           |         | 3.8  |     | 20.0        |               |                       |
| 1,2,3-111CHIOTOPIOPANE      | 0.2455           |        |          | 0.2329 | 0.2397   | Ave      |        | 0.2423   |           |         | 3.0  |     | 20.0        |               | l                     |
| 2-Chlorotoluene             | 0.8578           |        |          | 0.7886 | 0.7875   | 7770     |        | 0.7902   |           |         | 4.4  |     | 20.0        |               |                       |
| 2 curorocordene             | 0.7710           |        |          | 0.7000 | 0.7073   | Ave      |        | 0.7302   |           |         | 4.4  |     | 20.0        |               | ı                     |
| 1,3,5-Trimethylbenzene      | 2.8841           |        |          | 2.7930 | 2.7474   | Δτιο     |        | 2.7152   |           |         | 6.2  | +   | 20.0        |               |                       |
| 1,0,0 IIIIMechylbenzene     | 2.6257           | 2.7622 | 2.010/   | 2.7550 | 2./17/19 | 1100     |        | 2.1132   |           |         | 0.2  |     | 20.0        |               |                       |
| 4-Chlorotoluene             | 0.8593           |        | 0.8612   | 0.8152 | 0.8195   | Δττο     |        | 0.8192   |           | +       | 4.3  | + + | 20.0        |               |                       |
| - Curorocornene             | 0.7953           |        | 0.0012   | 0.0132 | 0.0193   | 1700     |        | 0.0172   |           |         | 1.3  |     | 20.0        |               | ı                     |
| tert-Butylbenzene           | 0.7955           |        | 0.6145   | 0.6141 | 0.6062   | Ave      |        | 0.6096   |           | +       | 3.8  | + + | 20.0        |               |                       |
| cere paclinenzene           | 0.5984           |        | 0.0140   | 0.0141 | 0.0002   | 1100     |        | 0.0000   |           |         | 3.0  |     | 20.0        |               |                       |
|                             | 0.3304           | 0.0021 |          |        |          |          |        |          |           | 1       | 1    | 1   |             | 1             |                       |

# GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379439

SDG No.:

Instrument ID: HP5973F GC Column: ZB-624 (30) ID: 0.25(mm) Heated Purge: (Y/N) Y

| ANALYTE                      |                  |        | RRF    |         |        | CURVE |        | COEFFICI  | ENT | # | MIN RRF | %RSD |      | R^2    | # MIN R^2 |
|------------------------------|------------------|--------|--------|---------|--------|-------|--------|-----------|-----|---|---------|------|------|--------|-----------|
|                              | LVL 1            | LVL 2  | LVL 3  | LVL 4   | LVL 5  | TYPE  | В      | M1        | M2  |   |         |      | %RSD | OR COD | OR COD    |
|                              | LVL 6            | LVL 7  |        |         |        |       |        |           |     |   |         |      |      |        |           |
| 1,2,4-Trimethylbenzene       | 3.0342           | 2.8478 | 2.9111 | 2.8895  | 2.8328 | 7770  |        | 2.8063    |     |   |         | 7.0  | 20.0 |        |           |
| 1,2,4 IIIMethylbenzene       | 2.7077           | 2.4210 | 2.7111 | 2.0055  | 2.0320 | Ave   |        | 2.0003    |     |   |         | 7.0  | 20.0 |        |           |
| sec-Butylbenzene             | 3.6951           | 3.4988 | 3.6127 | 3.5607  | 3.4518 | Ave   |        | 3.4257    |     |   |         | 8.1  | 20.0 |        |           |
|                              | 3.2929           | 2.8681 |        |         |        |       |        |           |     |   |         |      |      |        |           |
| 4-Isopropyltoluene           | 3.2312           | 3.1036 | 3.1314 | 3.1074  | 3.0233 | Ave   |        | 3.0034    |     |   |         | 7.7  | 20.0 |        |           |
|                              | 2.8904           | 2.5366 |        |         |        |       |        |           |     |   |         |      |      |        |           |
| 1,3-Dichlorobenzene          | 1.7434           | 1.6135 | 1.6561 | 1.6514  | 1.6202 | Ave   |        | 1.6185    |     |   | 0.6000  | 5.2  | 20.0 |        |           |
|                              | 1.5758           |        |        |         |        |       |        |           |     |   |         |      |      |        |           |
| 1,4-Dichlorobenzene          | 1.8298           | 1.6666 |        | 1.6590  | 1.6555 | Ave   |        | 1.6547    |     |   | 0.5000  | 6.3  | 20.0 |        |           |
|                              | 1.5894           | 1.4870 |        |         |        |       |        |           |     |   |         |      |      |        |           |
| n-Butylbenzene               | 2.8641           | 2.7304 |        | 2.7141  | 2.6715 | Ave   |        | 2.6436    |     |   |         | 7.7  | 20.0 |        |           |
|                              | 2.5355           | 2.2383 |        |         |        |       |        |           |     |   |         |      |      |        |           |
| 1,2-Dichlorobenzene          | 1.6049           |        | 1.5732 | 1.5637  | 1.5557 | Ave   |        | 1.5446    |     |   | 0.4000  | 3.5  | 20.0 |        |           |
|                              | 1.5298           | 1.4337 |        |         |        |       |        |           |     |   |         |      |      |        |           |
| 1,2-Dibromo-3-Chloropropane  | +++++            | 0.0823 | 0.0906 | 0.1141  | 0.1240 | Lin1  | -0.407 | 0.1412    |     |   | 0.0500  |      |      | 0.9980 | 0.9900    |
|                              | 0.1377           | 0.1417 | 4 0540 | 4 0545  | 4 0000 |       |        | 1 0 6 6 0 |     |   | 0.000   |      |      |        |           |
| 1,2,4-Trichlorobenzene       | 1.1297           | 1.0592 | 1.0543 | 1.0715  | 1.0803 | Ave   |        | 1.0668    |     |   | 0.2000  | 3.2  | 20.0 |        |           |
|                              | 1.0562           | 1.0164 | 0.6005 | 0.6040  | 0 6107 | _     |        | 0.6040    |     |   |         | 0 7  | 000  |        |           |
| Hexachlorobutadiene          | 0.6344           |        | 0.6005 | 0.6040  | 0.6137 | Ave   |        | 0.6040    |     |   |         | 2.7  | 20.0 |        |           |
| Manhahalana                  | 0.5989           | 0.5882 | 2.5338 | 2.7664  | 2.7718 | 7     |        | 2.6369    |     |   |         | 1 7  | 20.0 |        |           |
| Naphthalene                  | 2.6676<br>2.7232 | 2.5131 | 2.5338 | 2./664  | 2.//18 | Ave   |        | 2.6369    |     |   |         | 4.7  | 20.0 |        |           |
| 1,2,3-Trichlorobenzene       | 1.0608           | 0.9630 | 0 0707 | 1.0238  | 1.0288 | 7     |        | 1.0042    |     |   |         | 3.6  | 20.0 |        |           |
| 1,2,3-IIICHIOIODEHZEHE       | 1.0003           | 0.9030 | 0.9767 | 1.0236  | 1.0200 | Ave   |        | 1.0042    |     |   |         | 3.0  | 20.0 |        |           |
| Dibromofluoromethane (Surr)  | 1.2139           | 1.2354 | 1.2207 | 1 10/15 | 1.2484 | 7770  |        | 1.2405    |     |   |         | 3.0  | 20.0 |        |           |
| Dibiomoffuolomechane (Suff)  | 1.3053           | 1.2653 | 1.2207 | 1.1743  | 1.2101 | Ave   |        | 1.2403    |     |   |         | 3.0  | 20.0 |        |           |
| 1,2-Dichloroethane-d4 (Surr) | 0.7891           | 0.7961 | 0.7968 | 0.7766  | 0.7978 | Ave   |        | 0.7957    |     |   |         | 1.7  | 20.0 |        |           |
| 1,2 220m20200mane ar (barr)  | 0.8217           | 0.7919 |        |         | 0.7570 |       |        | " "       |     |   |         | ±• ′ | 20.0 |        |           |
| Toluene-d8 (Surr)            | 2.4054           | 2.4347 |        | 2.4314  | 2.4905 | Ave   |        | 2.4627    |     |   |         | 1.9  | 20.0 |        |           |
| ,                            | 2.5394           | 2.4929 |        |         |        |       |        |           |     |   |         |      |      |        |           |
| 4-Bromofluorobenzene (Surr)  | 0.7843           | 0.7893 | 0.7945 | 0.7964  | 0.8212 | Ave   |        | 0.8068    |     |   |         | 2.6  | 20.0 |        |           |
| , ,                          | 0.8428           | 0.8186 |        |         |        |       |        |           |     |   |         |      |      |        |           |

## GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379439

SDG No.:

Instrument ID:  $\underline{\text{HP5973F}}$  GC Column:  $\underline{\text{ZB-624 (30)}}$  ID: 0.25(mm) Heated Purge: (Y/N) Y

#### Calibration Files:

| LEVEL:  | LAB SAMPLE ID:     | LAB FILE ID: |
|---------|--------------------|--------------|
| Level 1 | IC 480-379439/6    | F7936.D      |
| Level 2 | IC 480-379439/7    | F7937.D      |
| Level 3 | IC 480-379439/8    | F7938.D      |
| Level 4 | IC 480-379439/9    | F7939.D      |
| Level 5 | ICIS 480-379439/10 | F7940.D      |
| Level 6 | IC 480-379439/11   | F7941.D      |
| Level 7 | IC 480-379439/12   | F7942.D      |

| ANALYTE                                | IS  | CURVE |                  |                  | RESPONSE |        |         |                | CONCEN         | ITRATION (U | G/KG) |       |
|----------------------------------------|-----|-------|------------------|------------------|----------|--------|---------|----------------|----------------|-------------|-------|-------|
|                                        | REF | TYPE  | LVL 1<br>LVL 6   | LVL 2<br>LVL 7   | LVL 3    | LVL 4  | LVL 5   | LVL 1<br>LVL 6 | LVL 2<br>LVL 7 | LVL 3       | LVL 4 | LVL 5 |
| Dichlorodifluoromethane                | FB  | Ave   | 17777<br>715324  | 36338<br>1381126 | 74558    | 149155 | 359526  | 2.50<br>100    | 5.00<br>200    | 10.0        | 20.0  | 50.0  |
| Chloromethane                          | FB  | Ave   | 17863<br>608992  | 36021<br>1226641 | 68848    | 136238 | 325986  | 2.50<br>100    | 5.00<br>200    | 10.0        | 20.0  | 50.0  |
| Butadiene                              | FB  | Ave   | 16845<br>604356  | 35800<br>1209747 | 68863    | 139802 | 328485  | 2.50<br>100    | 5.00<br>200    | 10.0        | 20.0  | 50.0  |
| Vinyl chloride                         | FB  | Ave   | 16587<br>614518  | 35086<br>1261579 | 68490    | 141116 | 329359  | 2.50<br>100    | 5.00<br>200    | 10.0        | 20.0  | 50.0  |
| Bromomethane                           | FB  | Ave   | 8225<br>282463   | 16408<br>611118  | 30347    | 61135  | 156278  | 2.50<br>100    | 5.00<br>200    | 10.0        | 20.0  | 50.0  |
| Chloroethane                           | FB  | Ave   | 7332<br>257535   | 14941<br>546018  | 29390    | 56028  | 137537  | 2.50<br>100    | 5.00<br>200    | 10.0        | 20.0  | 50.0  |
| Dichlorofluoromethane                  | FB  | Ave   | 22533<br>808716  | 45374<br>1638123 | 88442    | 178503 | 432547  | 2.50<br>100    | 5.00<br>200    | 10.0        | 20.0  | 50.0  |
| Trichlorofluoromethane                 | FB  | Ave   | 22378<br>795681  | 42521<br>1629850 | 87993    | 172605 | 417622  | 2.50<br>100    | 5.00<br>200    | 10.0        | 20.0  | 50.0  |
| Ethyl ether                            | FB  | Ave   | 13078<br>479914  | 25794<br>944384  | 66565    | 103730 | 259319  | 2.50<br>100    | 5.00<br>200    | 10.0        | 20.0  | 50.0  |
| Acrolein                               | FB  | Ave   | 15983<br>684591  | 31650<br>1319601 | 65908    | 138966 | 337623  | 12.5<br>500    | 25.0<br>1000   | 50.0        | 100   | 250   |
| 1,1,2-Trichloro-1,2,2-trifluoroetha ne | FB  | Ave   | 18192<br>694701  | 36557<br>1360001 | 72227    | 142582 | 353196  | 2.50<br>100    | 5.00<br>200    | 10.0        | 20.0  | 50.0  |
| 1,1-Dichloroethene                     | FB  | Ave   | 17302<br>661926  | 33995<br>1290573 | 69868    | 133842 | 336752  | 2.50<br>100    | 5.00<br>200    | 10.0        | 20.0  | 50.0  |
| Acetone                                | FB  | Ave   | +++++<br>1403888 | 71361<br>2616680 | 149065   | 298138 | 698963  | ++++<br>500    | 25.0<br>1000   | 50.0        | 100   | 250   |
| Iodomethane                            | FB  | Ave   | 30667<br>1195109 | 58021<br>2350376 | 123462   | 236295 | 604077  | 2.50<br>100    | 5.00<br>200    | 10.0        | 20.0  | 50.0  |
| Carbon disulfide                       | FB  | Ave   | 49428<br>2190612 | 96962<br>4255612 | 208084   | 415075 | 1095257 | 2.50<br>100    | 5.00<br>200    | 10.0        | 20.0  | 50.0  |

## GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379439

SDG No.:

Instrument ID:  $\underline{\text{HP5973F}}$  GC Column:  $\underline{\text{ZB-624}}$  (30) ID:  $\underline{\text{0.25}}$  (mm) Heated Purge: (Y/N) Y

| ANALYTE                  | IS  | CURVE |                  |                   | RESPONSE |        |         |                | CONCEN         | TRATION (U | G/KG) |       |
|--------------------------|-----|-------|------------------|-------------------|----------|--------|---------|----------------|----------------|------------|-------|-------|
|                          | REF | TYPE  | LVL 1<br>LVL 6   | LVL 2<br>LVL 7    | LVL 3    | LVL 4  | LVL 5   | LVL 1<br>LVL 6 | LVL 2<br>LVL 7 | LVL 3      | LVL 4 | LVL 5 |
| Allyl chloride           | FB  | Ave   | 32634<br>1216196 | 62539<br>2259849  | 130353   | 245349 | 622760  | 2.50<br>100    | 5.00           | 10.0       | 20.0  | 50.0  |
| Methyl acetate           | FB  | Ave   | 31386<br>1265638 | 60270<br>2383791  | 120092   | 261528 | 619045  | 5.00           | 10.0           | 20.0       | 40.0  | 100   |
| Methylene Chloride       | FB  | Lin1  | 35160<br>800995  | 55050<br>1548468  | 95343    | 167915 | 414115  | 2.50<br>100    | 5.00           | 10.0       | 20.0  | 50.0  |
| 2-Methyl-2-propanol      | FB  | Ave   | 25066<br>1193444 | 45218<br>2223875  | 97084    | 221730 | 525080  | 25.0<br>1000   | 50.0<br>2000   | 100        | 200   | 500   |
| Methyl tert-butyl ether  | FB  | Ave   | 55882            | 110796<br>4426896 | 232356   | 458408 | 1165929 | 2.50           | 5.00           | 10.0       | 20.0  | 50.0  |
| trans-1,2-Dichloroethene | FB  | Ave   | 2303311          | 39509             | 80534    | 151832 | 389276  | 2.50           | 5.00           | 10.0       | 20.0  | 50.0  |
| Acrylonitrile            | FB  | Ave   | 761705<br>83886  | 1466849<br>162643 | 333859   | 709268 | 1680514 | 100<br>25.0    | 200<br>50.0    | 100        | 200   | 500   |
| Hexane                   | FB  | Lin1  | 3332721<br>56627 | 5962310<br>96691  | 171871   | 314216 | 749815  | 1000<br>2.50   | 2000           | 10.0       | 20.0  | 50.0  |
| Vinyl acetate            | FB  | Ave   | 1477180<br>68173 | 2783308<br>134143 | 287613   | 590609 | 1488357 | 100<br>5.00    | 200<br>10.0    | 20.0       | 40.0  | 100   |
| 1,1-Dichloroethane       | FB  | Ave   | 2976155<br>38868 | 5474652<br>74334  | 154002   | 297106 | 746727  | 200            | 400<br>5.00    | 10.0       | 20.0  | 50.0  |
| 2-Butanone (MEK)         | FB  | Ave   | 1454698<br>47848 | 2751623<br>95762  | 196706   | 438086 | 1019451 | 100<br>12.5    | 200<br>25.0    | 50.0       | 100   | 250   |
| 2,2-Dichloropropane      | FB  | Ave   | 2085932<br>26726 | 3784810<br>49345  | 105687   | 206874 | 524460  | 500<br>2.50    | 1000           | 10.0       | 20.0  | 50.0  |
| cis-1,2-Dichloroethene   | FB  | Ave   | 1039533<br>21657 | 2023477<br>43097  | 89787    | 172968 | 439935  | 100<br>2.50    | 200<br>5.00    | 10.0       | 20.0  | 50.0  |
| Chlorobromomethane       | FB  | Ave   | 869268<br>9139   | 1674798<br>18913  | 40735    | 77654  | 204266  | 100<br>2.50    | 200            | 10.0       | 20.0  | 50.0  |
| Tetrahydrofuran          | FB  | Ave   | 410262<br>12875  | 811093<br>23969   | 48489    | 110699 | 256433  | 100            | 200            | 20.0       | 40.0  | 100   |
| Chloroform               | FB  |       | 525074           | 975465<br>68491   | 134997   | 255304 | 653746  | 200            | 400            | 10.0       | 20.0  | 50.0  |
|                          |     | Ave   | 1279112          | 2464202           |          |        |         | 100            | 200            |            |       |       |
| 1,1,1-Trichloroethane    | FB  | Ave   | 26431<br>1084989 | 52871<br>2129785  | 107090   | 211474 | 540307  | 2.50<br>100    | 5.00<br>200    | 10.0       | 20.0  | 50.0  |
| Cyclohexane              | FB  | Ave   | 45947<br>1610303 | 87920<br>3041563  | 174844   | 337554 | 832295  | 2.50<br>100    | 5.00<br>200    | 10.0       | 20.0  | 50.0  |
| 1,1-Dichloropropene      | FB  | Ave   | 26076<br>999878  | 50946<br>1925403  | 102397   | 199649 | 503010  | 2.50<br>100    | 5.00<br>200    | 10.0       | 20.0  | 50.0  |
| Carbon tetrachloride     | FB  | Ave   | 18545<br>886893  | 36592<br>1799208  | 77424    | 154577 | 416714  | 2.50<br>100    | 5.00<br>200    | 10.0       | 20.0  | 50.0  |
| Isobutyl alcohol         | FB  | Ave   | 20769<br>1119308 | 37450<br>2090091  | 83653    | 192178 | 472240  | 62.5<br>2500   | 125<br>5000    | 250        | 500   | 1250  |

## GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379439

SDG No.:

Instrument ID: HP5973F GC Column: ZB-624 (30) ID: 0.25(mm) Heated Purge: (Y/N) Y

| ANALYTE                     | IS         | CURVE |                  |                   | RESPONSE |        |         | CONCENTRATION (UG/KG) |                |       |       |       |  |
|-----------------------------|------------|-------|------------------|-------------------|----------|--------|---------|-----------------------|----------------|-------|-------|-------|--|
|                             | REF        | TYPE  | LVL 1<br>LVL 6   | LVL 2<br>LVL 7    | LVL 3    | LVL 4  | LVL 5   | LVL 1<br>LVL 6        | LVL 2<br>LVL 7 | LVL 3 | LVL 4 | LVL 5 |  |
| Benzene                     | FB         | Ave   | 78718<br>3005300 | 151421<br>5610199 | 314758   | 610266 | 1530653 | 2.50<br>100           | 5.00           | 10.0  | 20.0  | 50.0  |  |
| 1,2-Dichloroethane          | FB         | Ave   | 30931<br>1122508 | 57671<br>2127613  | 119371   | 225343 | 573341  | 2.50<br>100           | 5.00<br>200    | 10.0  | 20.0  | 50.0  |  |
| n-Heptane                   | FB         | Ave   | 38216<br>1304424 | 72669<br>2371312  | 147341   | 273371 | 671352  | 2.50<br>100           | 5.00<br>200    | 10.0  | 20.0  | 50.0  |  |
| Trichloroethene             | FB         | Ave   | 19387<br>786394  | 37415<br>1520456  | 78909    | 149638 | 387988  | 2.50<br>100           | 5.00<br>200    | 10.0  | 20.0  | 50.0  |  |
| Methylcyclohexane           | FB         | Ave   | 38149<br>1424922 | 72576<br>2762163  | 147624   | 288399 | 720571  | 2.50<br>100           | 5.00<br>200    | 10.0  | 20.0  | 50.0  |  |
| 1,2-Dichloropropane         | FB         | Ave   | 21110<br>838977  | 39131<br>1620506  | 86064    | 163435 | 414412  | 2.50<br>100           | 5.00<br>200    | 10.0  | 20.0  | 50.0  |  |
| 1,4-Dioxane                 | CBNZ<br>d5 | Ave   | +++++<br>199744  | 6548<br>355935    | 17047    | 34254  | 89671   | ++++<br>2000          | 100<br>4000    | 200   | 400   | 1000  |  |
| Dibromomethane              | FB         | Ave   | 10193<br>453308  | 20364<br>880008   | 42584    | 83674  | 218832  | 2.50<br>100           | 5.00<br>200    | 10.0  | 20.0  | 50.0  |  |
| Bromodichloromethane        | FB         | Ave   | 17962<br>924495  | 35301<br>1864083  | 78491    | 155933 | 440017  | 2.50<br>100           | 5.00           | 10.0  | 20.0  | 50.0  |  |
| 2-Chloroethyl vinyl ether   | FB         | Ave   | 9735<br>508464   | 20550<br>996896   | 45034    | 92292  | 243717  | 2.50                  | 5.00           | 10.0  | 20.0  | 50.0  |  |
| cis-1,3-Dichloropropene     | FB         | Ave   | 22256<br>1136210 | 45205<br>2240362  | 100196   | 197379 | 548702  | 2.50<br>100           | 5.00           | 10.0  | 20.0  | 50.0  |  |
| 4-Methyl-2-pentanone (MIBK) | CBNZ<br>d5 | Ave   | 94721<br>3873181 | 179311<br>6716955 | 390958   | 851152 | 1974696 | 12.5<br>500           | 25.0<br>1000   | 50.0  | 100   | 250   |  |
| Toluene                     | CBNZ<br>d5 | Ave   | +++++<br>1939030 | 102447<br>3691113 | 207542   | 384744 | 981735  | +++++                 | 5.00           | 10.0  | 20.0  | 50.0  |  |
| trans-1,3-Dichloropropene   | CBNZ<br>d5 | Ave   | 19478<br>1014715 | 37768<br>1983500  | 86121    | 174351 | 482242  | 2.50                  | 5.00           | 10.0  | 20.0  | 50.0  |  |
| Ethyl methacrylate          | CBNZ<br>d5 | Ave   | +++++<br>996835  | 38380<br>1942731  | 85564    | 180521 | 477615  | +++++                 | 5.00           | 10.0  | 20.0  | 50.0  |  |
| 1,1,2-Trichloroethane       | CBNZ<br>d5 | Ave   | 12702<br>541355  | 24710<br>1050749  | 51927    | 101705 | 262250  | 2.50<br>100           | 5.00           | 10.0  | 20.0  | 50.0  |  |
| Tetrachloroethene           | CBNZ<br>d5 | Ave   | 21605<br>839475  | 41749<br>1626660  | 87271    | 162228 | 421721  | 2.50<br>100           | 5.00           | 10.0  | 20.0  | 50.0  |  |
| 1,3-Dichloropropane         | CBNZ<br>d5 | Ave   | 26152<br>1095273 | 50739<br>2071996  | 109773   | 216014 | 541145  | 2.50<br>100           | 5.00           | 10.0  | 20.0  | 50.0  |  |
| 2-Hexanone                  | CBNZ<br>d5 | Ave   | 66266<br>2897627 | 131080<br>5013063 | 280311   | 623735 | 1438966 | 12.5<br>500           | 25.0<br>1000   | 50.0  | 100   | 250   |  |
| Dibromochloromethane        | CBNZ<br>d5 | Lin1  | +++++<br>676657  | 20596<br>1407231  | 46491    | 99322  | 297615  | +++++                 | 5.00           | 10.0  | 20.0  | 50.0  |  |
| 1,2-Dibromoethane           | CBNZ<br>d5 | Ave   | 14385<br>687746  | 28401<br>1332665  | 62473    | 125484 | 328315  | 2.50<br>100           | 5.00           | 10.0  | 20.0  | 50.0  |  |

## GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379439

SDG No.:

Instrument ID: HP5973F GC Column: ZB-624 (30) ID: 0.25(mm) Heated Purge: (Y/N) Y

| ANALYTE                     | IS         | CURVE |                   |                   | RESPONSE |        |         |                | CONCEN         | TRATION (U | G/KG) |       |
|-----------------------------|------------|-------|-------------------|-------------------|----------|--------|---------|----------------|----------------|------------|-------|-------|
|                             | REF        | TYPE  | LVL 1<br>LVL 6    | LVL 2<br>LVL 7    | LVL 3    | LVL 4  | LVL 5   | LVL 1<br>LVL 6 | LVL 2<br>LVL 7 | LVL 3      | LVL 4 | LVL 5 |
| Chlorobenzene               | CBNZ<br>d5 | Ave   | 55396<br>2103132  | 103353<br>3977025 | 219078   | 414785 | 1059273 | 2.50<br>100    | 5.00           | 10.0       | 20.0  | 50.0  |
| Ethylbenzene                | CBNZ<br>d5 | Ave   | 93089<br>3450523  | 180709<br>6149215 | 374375   | 709591 | 1783284 | 2.50<br>100    | 5.00           | 10.0       | 20.0  | 50.0  |
| 1,1,1,2-Tetrachloroethane   | CBNZ<br>d5 | Ave   | 13389<br>704163   | 27046<br>1401529  | 58554    | 119961 | 336245  | 2.50<br>100    | 5.00           | 10.0       | 20.0  | 50.0  |
| m,p-Xylene                  | CBNZ<br>d5 | Ave   | 35989<br>1454964  | 72673<br>2773350  | 147562   | 287906 | 730385  | 2.50<br>100    | 5.00           | 10.0       | 20.0  | 50.0  |
| o-Xylene                    | CBNZ<br>d5 | Ave   | 34986<br>1410986  | 67482<br>2665200  | 144037   | 277466 | 714936  | 2.50<br>100    | 5.00<br>200    | 10.0       | 20.0  | 50.0  |
| Styrene                     | CBNZ<br>d5 | Ave   | 60244<br>2449569  | 118452<br>4518222 | 246932   | 478101 | 1238643 | 2.50<br>100    | 5.00           | 10.0       | 20.0  | 50.0  |
| Bromoform                   | CBNZ<br>d5 | Qua   | 4394<br>411396    | 10166             | 23014    | 52342  | 165468  | 2.50<br>100    | 5.00           | 10.0       | 20.0  | 50.0  |
| Isopropylbenzene            | DCBd<br>4  | Ave   | 91689<br>3524639  | 176217<br>6356209 | 374212   | 718530 | 1809206 | 2.50<br>100    | 5.00           | 10.0       | 20.0  | 50.0  |
| Bromobenzene                | DCBd<br>4  | Ave   | 24908<br>956723   | 45595<br>1824091  | 95723    | 182867 | 478168  | 2.50<br>100    | 5.00           | 10.0       | 20.0  | 50.0  |
| 1,1,2,2-Tetrachloroethane   | DCBd<br>4  | Ave   | 17916<br>859855   | 37699<br>1665250  | 80053    | 164609 | 419557  | 2.50           | 5.00           | 10.0       | 20.0  | 50.0  |
| trans-1,4-Dichloro-2-butene | DCBd<br>4  | Ave   | 6509<br>299551    | 12859<br>556262   | 26690    | 56480  | 145760  | 2.50           | 5.00           | 10.0       | 20.0  | 50.0  |
| N-Propylbenzene             | DCBd<br>4  | Ave   | 104973<br>3953628 | 205638<br>6796208 | 434610   | 824541 | 2072474 | 2.50           | 5.00           | 10.0       | 20.0  | 50.0  |
| 1,2,3-Trichloropropane      | DCBd<br>4  | Ave   | 6556<br>279683    | 12292<br>531962   | 27661    | 55343  | 135728  | 2.50           | 5.00           | 10.0       | 20.0  | 50.0  |
| 2-Chlorotoluene             | DCBd<br>4  | Ave   | 22537<br>878370   | 43134<br>1683401  | 88173    | 172603 | 445864  | 2.50<br>100    | 5.00           | 10.0       | 20.0  | 50.0  |
| 1,3,5-Trimethylbenzene      | DCBd<br>4  | Ave   | 75769<br>2991313  | 149801<br>5385441 | 315236   | 611286 | 1555399 | 2.50<br>100    | 5.00           | 10.0       | 20.0  | 50.0  |
| 4-Chlorotoluene             | DCBd<br>4  | Ave   | 22576<br>906102   | 44673<br>1723176  | 96315    | 178415 | 463948  | 2.50<br>100    | 5.00           | 10.0       | 20.0  | 50.0  |
| tert-Butylbenzene           | DCBd<br>4  | Ave   | 17209<br>681680   | 32368<br>1319836  | 68730    | 134411 | 343173  | 2.50<br>100    | 5.00           | 10.0       | 20.0  | 50.0  |
| 1,2,4-Trimethylbenzene      | DCBd<br>4  | Ave   | 79713<br>3084807  | 154441<br>5488825 | 325576   | 632390 | 1603783 | 2.50           | 5.00           | 10.0       | 20.0  | 50.0  |
| sec-Butylbenzene            | DCBd<br>4  | Ave   | 97077<br>3751473  | 189745<br>6502541 | 404040   | 779296 | 1954198 | 2.50           | 5.00           | 10.0       | 20.0  | 50.0  |
| 4-Isopropyltoluene          | DCBd<br>4  | Ave   | 84889<br>3292907  | 168314<br>5751027 | 350208   | 680092 | 1711634 | 2.50           | 5.00           | 10.0       | 20.0  | 50.0  |
| 1,3-Dichlorobenzene         | DCBd<br>4  | Ave   | 45801<br>1795303  | 87502<br>3331087  | 185213   | 361420 | 917286  | 2.50           | 5.00           | 10.0       | 20.0  | 50.0  |

## GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379439

SDG No.:

Instrument ID: HP5973F GC Column: ZB-624 (30) ID: 0.25(mm) Heated Purge: (Y/N) Y

| ANALYTE                      | IS         | CURVE |                    |                    | RESPONSE |         |         |                | CONCEN         | CENTRATION (UG/KG) |       |       |  |
|------------------------------|------------|-------|--------------------|--------------------|----------|---------|---------|----------------|----------------|--------------------|-------|-------|--|
|                              | REF        | TYPE  | LVL 1<br>LVL 6     | LVL 2<br>LVL 7     | LVL 3    | LVL 4   | LVL 5   | LVL 1<br>LVL 6 | LVL 2<br>LVL 7 | LVL 3              | LVL 4 | LVL 5 |  |
| 1,4-Dichlorobenzene          | DCBd<br>4  | Ave   | 48072<br>1810782   | 90380<br>3371249   | 189660   | 363097  | 937232  | 2.50<br>100    | 5.00<br>200    | 10.0               | 20.0  | 50.0  |  |
| n-Butylbenzene               | DCBd<br>4  | Ave   | 75245<br>2888602   | 148072<br>5074696  | 307673   | 594002  | 1512447 | 2.50<br>100    | 5.00<br>200    | 10.0               | 20.0  | 50.0  |  |
| 1,2-Dichlorobenzene          | DCBd<br>4  | Ave   | 42163<br>1742822   | 84120<br>3250482   | 175944   | 342227  | 880773  | 2.50<br>100    | 5.00<br>200    | 10.0               | 20.0  | 50.0  |  |
| 1,2-Dibromo-3-Chloropropane  | DCBd<br>4  | Lin1  | +++++<br>156931    | 4464<br>321279     | 10130    | 24973   | 70197   | +++++<br>100   | 5.00<br>200    | 10.0               | 20.0  | 50.0  |  |
| 1,2,4-Trichlorobenzene       | DCBd<br>4  | Ave   | 29678<br>1203330   | 57444<br>2304296   | 117910   | 234515  | 611619  | 2.50<br>100    | 5.00<br>200    | 10.0               | 20.0  | 50.0  |  |
| Hexachlorobutadiene          | DCBd<br>4  | Ave   | 16667<br>682281    | 31915<br>1333618   | 67159    | 132202  | 347414  | 2.50<br>100    | 5.00<br>200    | 10.0               | 20.0  | 50.0  |  |
| Naphthalene                  | DCBd<br>4  | Ave   | 70082<br>3102404   | 136288<br>5628639  | 283378   | 605469  | 1569236 | 2.50<br>100    | 5.00<br>200    | 10.0               | 20.0  | 50.0  |  |
| 1,2,3-Trichlorobenzene       | DCBd<br>4  | Ave   | 27868<br>1143051   | 52223<br>2200927   | 109460   | 224069  | 582459  | 2.50<br>100    | 5.00<br>200    | 10.0               | 20.0  | 50.0  |  |
| Dibromofluoromethane (Surr)  | FB         | Ave   | 324352<br>354533   | 331493<br>352712   | 338160   | 322631  | 343198  | 50.0<br>50.0   | 50.0<br>50.0   | 50.0               | 50.0  | 50.0  |  |
| 1,2-Dichloroethane-d4 (Surr) | FB         | Ave   | 210844<br>223183   | 213612<br>220761   | 220748   | 209755  | 219321  | 50.0<br>50.0   | 50.0<br>50.0   | 50.0               | 50.0  | 50.0  |  |
| Toluene-d8 (Surr)            | CBNZ<br>d5 | Ave   | 1293753<br>1415411 | 1324731<br>1410360 | 1368921  | 1306979 | 1368200 | 50.0<br>50.0   | 50.0<br>50.0   | 50.0               | 50.0  | 50.0  |  |
| 4-Bromofluorobenzene (Surr)  | CBNZ<br>d5 | Ave   | 421858<br>469781   | 429483<br>463160   | 444875   | 428115  | 451166  | 50.0<br>50.0   | 50.0<br>50.0   | 50.0               | 50.0  | 50.0  |  |

Curve Type Legend:

Ave = Average ISTD

Lin1 = Linear 1/conc ISTD

Qua = Quadratic ISTD

Report Date: 02-Oct-2017 14:08:51 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7936.D

Lims ID: IC

Client ID:

Sample Type: IC Calib Level: 1

Inject. Date: 29-Sep-2017 15:58:30 ALS Bottle#: 2 Worklist Smp#: 6

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC

Misc. Info.: 480-0066009-006

Operator ID: CDC Instrument ID: HP5973F

Sublist: chrom-F-8260 SOIL\*sub27

Method: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update: 02-Oct-2017 14:08:49 Calib Date: 29-Sep-2017 21:59:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration

Column 1 : ZB-624 ( 0.25 mm)

Process Host: XAWRK030

First Level Reviewer: cwiklinc Date: 29-Sep-2017 17:04:57

| First Level Reviewer, Cwikilitic     |     |        | D.     | ale.   |     | 29-3ep-20 | 17 17.04.37 |           |       |
|--------------------------------------|-----|--------|--------|--------|-----|-----------|-------------|-----------|-------|
|                                      |     | RT     | Adj RT | Dlt RT |     |           | Cal Amt     | OnCol Amt |       |
| Compound                             | Sig | (min.) | (min.) | (min.) | Q   | Response  | ug/kg       | ug/kg     | Flags |
|                                      |     |        |        |        |     |           |             |           |       |
| * 153 Fluorobenzene (IS)             | 70  | 5.191  | 5.191  | 0.000  | 99  | 267204    | 50.0        | 50.0      |       |
| <ul><li>2 Chlorobenzene-d5</li></ul> | 82  | 7.989  | 7.989  | 0.000  | 87  | 537858    | 50.0        | 50.0      |       |
| * 3 1,4-Dichlorobenzene-d4           | 152 | 10.356 | 10.356 | 0.000  | 96  | 525434    | 50.0        | 50.0      |       |
| \$ 154 Dibromofluoromethane (Surr    | 113 | 4.674  | 4.674  | 0.000  | 94  | 324352    | 50.0        | 48.9      |       |
| \$ 41,2-Dichloroethane-d4 (Sur       | 67  | 4.954  | 4.960  | -0.006 | 0   | 210844    | 50.0        | 49.6      |       |
| \$ 5 Toluene-d8 (Surr)               | 98  | 6.560  | 6.560  | 0.000  | 93  | 1293753   | 50.0        | 48.8      |       |
| \$ 6 4-Bromofluorobenzene (Surr      | 174 | 9.218  | 9.218  | 0.000  | 90  | 421858    | 50.0        | 48.6      |       |
| 10 Dichlorodifluoromethane           | 85  | 1.814  | 1.827  | -0.013 | 98  | 17777     | 2.50        | 2.51      |       |
| 12 Chloromethane                     | 50  | 2.003  | 2.003  | 0.000  | 100 | 17863     | 2.50        | 2.72      |       |
| 151 Butadiene                        | 54  | 2.082  | 2.088  | -0.006 | 87  | 16845     | 2.50        | 2.59      |       |
| 13 Vinyl chloride                    | 62  | 2.094  | 2.094  | 0.000  | 76  | 16587     | 2.50        | 2.54      |       |
| 14 Bromomethane                      | 94  | 2.356  | 2.362  | -0.006 | 95  | 8225      | 2.50        | 2.71      |       |
| 15 Chloroethane                      | 64  | 2.405  | 2.417  | -0.012 | 97  | 7332      | 2.50        | 2.65      |       |
| 16 Dichlorofluoromethane             | 67  | 2.569  | 2.569  | 0.000  | 97  | 22533     | 2.50        | 2.65      |       |
| 17 Trichlorofluoromethane            | 101 | 2.599  | 2.617  | -0.018 | 50  | 22378     | 2.50        | 2.69      |       |
| 18 Ethyl ether                       | 59  | 2.763  | 2.770  | -0.007 | 86  | 13078     | 2.50        | 2.53      |       |
| 20 Acrolein                          | 56  | 2.916  | 2.922  | -0.006 | 93  | 15983     | 12.5        | 12.3      |       |
| 21 1,1,2-Trichloro-1,2,2-trif        | 101 | 2.952  | 2.958  | -0.006 | 92  | 18192     | 2.50        | 2.61      |       |
| 22 1,1-Dichloroethene                | 96  | 2.976  | 2.982  | -0.006 | 94  | 17302     | 2.50        | 2.62      |       |
| 23 Acetone                           | 43  | 3.025  | 3.031  | -0.006 | 99  | 41616     | 12.5        | 15.0      |       |
| 25 lodomethane                       | 142 | 3.129  | 3.135  | -0.007 | 98  | 30667     | 2.50        | 2.61      |       |
| 26 Carbon disulfide                  | 76  | 3.183  | 3.183  | 0.000  | 99  | 49428     | 2.50        | 2.42      |       |
| 27 Methyl acetate                    | 43  | 3.250  | 3.244  | 0.006  | 72  | 31386     | 5.00        | 5.17      |       |
| 28 3-Chloro-1-propene                | 41  | 3.244  | 3.244  | 0.000  | 88  | 32634     | 2.50        | 2.68      |       |
| 30 Methylene Chloride                | 84  | 3.354  | 3.354  | 0.000  | 98  | 35160     | 2.50        | 2.41      |       |
| 31 2-Methyl-2-propanol               | 59  | 3.414  | 3.414  | 0.000  | 91  | 25066     | 25.0        | 24.4      |       |
| 32 Methyl tert-butyl ether           | 73  | 3.506  | 3.500  | 0.006  | 96  | 55882     | 2.50        | 2.51      |       |
| 34 trans-1,2-Dichloroethene          | 96  | 3.530  | 3.536  | -0.006 | 94  | 19640     | 2.50        | 2.59      |       |
| 33 Acrylonitrile                     | 53  | 3.554  | 3.554  | 0.000  | 100 | 83886     | 25.0        | 25.8      |       |
| 35 Hexane                            | 57  | 3.670  | 3.670  | 0.000  | 87  | 56627     | 2.50        | 2.20      |       |
|                                      |     |        |        |        |     |           |             |           |       |

Det: MS SCAN

Report Date: 02-Oct-2017 14:08:51

Data File:

| Data File: \\Cnromina\B                                     | unaio\(   |                |                |        | 729-00<br>T | 0009.b\F /936.L |              | I a a        |       |
|-------------------------------------------------------------|-----------|----------------|----------------|--------|-------------|-----------------|--------------|--------------|-------|
| Compound                                                    | Cic       | RT (min.)      | Adj RT         | Dlt RT |             | Doctores        | Cal Amt      | OnCol Amt    | Elege |
| Compound                                                    | Sig       | (min.)         | (min.)         | (min.) | Q           | Response        | ug/kg        | ug/kg        | Flags |
| 37 Vinyl acetate                                            | 43        | 3.846          | 3.846          | 0.000  | 98          | 68173           | 5.00         | 4.88         |       |
| 39 1,1-Dichloroethane                                       | 63        | 3.865          | 3.865          | 0.000  | 96          | 38868           | 2.50         | 2.67         |       |
| 43 2-Butanone (MEK)                                         | 43        | 4.297          | 4.290          | 0.000  | 95          | 47848           | 12.5         | 12.2         |       |
| 44 2,2-Dichloropropane                                      | 77        | 4.297          | 4.297          | 0.007  | 54          | 26726           | 2.50         | 2.63         |       |
| 45 cis-1,2-Dichloroethene                                   | 96        | 4.309          | 4.309          | 0.000  | 86          | 21657           | 2.50         | 2.54         |       |
| 48 Chlorobromomethane                                       | 128       | 4.503          | 4.509          | -0.006 | 95          | 9139            | 2.50         | 2.36         |       |
| 49 Tetrahydrofuran                                          | 42        | 4.540          | 4.528          | 0.012  | 47          | 12875           | 5.00         | 5.16         | М     |
| 50 Chloroform                                               | 83        | 4.546          | 4.546          | 0.000  | 95          | 37063           | 2.50         | 2.91         | IVI   |
| 51 1,1,1-Trichloroethane                                    | 97        | 4.680          | 4.686          | -0.006 | 44          | 26431           | 2.50         | 2.52         |       |
| 52 Cyclohexane                                              | 56        | 4.710          | 4.710          | 0.000  | 91          | 45947           | 2.50         | 2.77         |       |
| 54 1,1-Dichloropropene                                      | 75        | 4.801          | 4.710          | 0.000  | 92          | 26076           | 2.50         | 2.64         |       |
| 55 Carbon tetrachloride                                     | 73<br>117 | 4.808          | 4.808          | 0.000  | 74          | 18545           | 2.50         | 2.35         |       |
| 53 Isobutyl alcohol                                         | 43        | 4.881          | 4.868          | 0.000  | 94          | 20769           | 62.5         | 57.2         |       |
| 57 Benzene                                                  | 78        | 4.978          | 4.984          | -0.006 | 96          | 78718           | 2.50         | 2.64         |       |
| 58 1,2-Dichloroethane                                       | 62        | 5.020          | 5.020          | 0.000  | 96          | 30931           | 2.50         | 2.74         |       |
| 59 n-Heptane                                                | 43        | 5.020          | 5.020          | -0.006 | 92          | 38216           | 2.50         | 2.74         |       |
| 62 Trichloroethene                                          | 43<br>95  | 5.495          | 5.495          | 0.000  | 96          | 19387           | 2.50         | 2.57         |       |
| 64 Methylcyclohexane                                        | 83        | 5.629          | 5.629          | 0.000  | 95          | 38149           | 2.50         | 2.68         |       |
| 65 1,2-Dichloropropane                                      | 63        | 5.714          | 5.714          | 0.000  | 95          | 21110           | 2.50         | 2.61         |       |
| 66 1,4-Dioxane                                              | 88        | 5.830          | 5.824          | 0.006  | 95<br>1     | 2831            | 50.0         | 33.9         | М     |
| 67 Dibromomethane                                           | 93        | 5.842          | 5.842          | 0.000  | 95          | 10193           | 2.50         | 2.43         | IVI   |
| 68 Dichlorobromomethane                                     | 93<br>83  | 5.951          | 5.957          | -0.006 | 93<br>98    | 17962           | 2.50         | 2.43         |       |
|                                                             | 63        | 6.164          | 6.164          | 0.000  | 90<br>90    | 9735            | 2.50         | 2.24         |       |
| 69 2-Chloroethyl vinyl ether                                |           |                |                | 0.000  | 90<br>92    | 22256           |              |              |       |
| 72 cis-1,3-Dichloropropene<br>73 4-Methyl-2-pentanone (MIBK | 75<br>43  | 6.335<br>6.438 | 6.328<br>6.438 | 0.007  | 92<br>96    | 94721           | 2.50<br>12.5 | 2.23<br>12.7 |       |
| 73 4-Metriyi-z-peritarione (MIBK                            | 43<br>92  | 6.620          | 6.620          | 0.000  | 90<br>99    | 56149           | 2.50         | 2.93         |       |
|                                                             |           |                |                |        |             |                 |              |              |       |
| 77 trans-1,3-Dichloropropene                                | 75<br>40  | 6.846<br>6.852 | 6.846          | 0.000  | 90<br>82    | 19478           | 2.50         | 2.24         |       |
| 75 Ethyl methacrylate                                       | 69<br>83  | 7.040          | 6.852<br>7.040 | 0.000  |             | 18598<br>12702  | 2.50         | 2.10         |       |
| 79 1,1,2-Trichloroethane                                    |           |                |                | 0.000  | 94          |                 | 2.50         | 2.51         |       |
| 81 Tetrachloroethene                                        | 166       | 7.144<br>7.204 | 7.144<br>7.204 | 0.000  | 97<br>93    | 21605           | 2.50         | 2.63         |       |
| 82 1,3-Dichloropropane                                      | 76        |                |                | 0.000  |             | 26152           | 2.50         | 2.51         |       |
| 80 2-Hexanone                                               | 43        | 7.229          | 7.223          | 0.006  | 95          | 66266           | 12.5         | 12.2         |       |
| 83 Chlorodibromomethane                                     | 129       | 7.442          | 7.442          | 0.000  | 92<br>05    | 10510           | 2.50         | 4.45         |       |
| 84 Ethylene Dibromide                                       | 107       | 7.563          | 7.569          | -0.006 | 95          | 14385           | 2.50         | 2.34         |       |
| 87 Chlorobenzene                                            | 112       | 8.020          | 8.020          | 0.000  | 96          | 55396           | 2.50         | 2.69         |       |
| 88 Ethylbenzene                                             | 91        | 8.087          | 8.087          | 0.000  | 98          | 93089           | 2.50         | 2.69         |       |
| 89 1,1,1,2-Tetrachloroethane                                | 131       | 8.099          | 8.105          | -0.006 | 89          | 13389           | 2.50         | 2.21         |       |
| 90 m-Xylene & p-Xylene                                      | 106       | 8.208          | 8.202          | 0.006  | 99          | 35989           | 2.50         | 2.55         |       |
| 91 o-Xylene                                                 | 106       | 8.634          | 8.634          | 0.000  | 97          | 34986           | 2.50         | 2.57         |       |
| 92 Styrene                                                  | 104       | 8.658          | 8.652          | 0.006  | 94          | 60244           | 2.50         | 2.56         |       |
| 95 Bromoform                                                | 173       | 8.926          | 8.926          | 0.000  | 89          | 4394            | 2.50         | 3.04         |       |
| 94 Isopropylbenzene                                         | 105       | 9.005          | 9.005          | 0.000  | 96          | 91689           | 2.50         | 2.72         |       |
| 97 1,1,2,2-Tetrachloroethane                                | 83        | 9.395          | 9.388          | 0.007  | 72          | 17916           | 2.50         | 2.35         |       |
| 101 Bromobenzene                                            | 156       | 9.389          | 9.388          | 0.000  | 92          | 24908           | 2.50         | 2.78         |       |
| 98 trans-1,4-Dichloro-2-buten                               | 53        | 9.431          | 9.437          | -0.006 | 40          | 6509            | 2.50         | 2.48         |       |
| 99 N-Propylbenzene                                          | 91        | 9.437          | 9.437          | 0.000  | 98          | 104973          | 2.50         | 2.73         |       |
| 100 1,2,3-Trichloropropane                                  | 110       | 9.443          | 9.443          | 0.000  | 50          | 6556            | 2.50         | 2.57         |       |
| 103 2-Chlorotoluene                                         | 126       | 9.565          | 9.565          | 0.000  | 97          | 22537           | 2.50         | 2.71         |       |
| 102 1,3,5-Trimethylbenzene                                  | 105       | 9.608          | 9.607          | 0.001  | 94          | 75769           | 2.50         | 2.66         |       |
| 105 4-Chlorotoluene                                         | 126       | 9.674          | 9.674          | 0.000  | 98          | 22576           | 2.50         | 2.62         |       |
| 106 tert-Butylbenzene                                       | 134       | 9.930          | 9.936          | -0.006 | 93          | 17209           | 2.50         | 2.69         |       |
| 107 1,2,4-Trimethylbenzene                                  | 105       | 9.985          | 9.985          | 0.000  | 97          | 79713           | 2.50         | 2.70         |       |
|                                                             |           |                |                |        |             |                 |              |              |       |

Report Date: 02-Oct-2017 14:08:51

F 8260 IS\_00576

| Data File: \\ChromNA\B           | uffalo\ | ChromDat | ta\HP5973 | 3F\201709 | 929-6 | 6009.b\F7936. | D         |           |       |
|----------------------------------|---------|----------|-----------|-----------|-------|---------------|-----------|-----------|-------|
|                                  |         | RT       | Adj RT    | Dlt RT    |       |               | Cal Amt   | OnCol Amt |       |
| Compound                         | Sig     | (min.)   | (min.)    | (min.)    | Q     | Response      | ug/kg     | ug/kg     | Flags |
|                                  |         |          |           |           |       |               |           |           |       |
| 109 sec-Butylbenzene             | 105     | 10.143   | 10.143    | 0.000     | 94    | 97077         | 2.50      | 2.70      |       |
| 110 4-Isopropyltoluene           | 119     | 10.271   | 10.271    | 0.000     | 97    | 84889         | 2.50      | 2.69      |       |
| 111 1,3-Dichlorobenzene          | 146     | 10.301   | 10.301    | 0.000     | 97    | 45801         | 2.50      | 2.69      |       |
| 113 1,4-Dichlorobenzene          | 146     | 10.386   | 10.380    | 0.006     | 94    | 48072         | 2.50      | 2.76      |       |
| 115 n-Butylbenzene               | 91      | 10.648   | 10.648    | 0.000     | 98    | 75245         | 2.50      | 2.71      |       |
| 116 1,2-Dichlorobenzene          | 146     | 10.733   | 10.733    | 0.000     | 98    | 42163         | 2.50      | 2.60      |       |
| 117 1,2-Dibromo-3-Chloropropan   | 75      | 11.420   | 11.420    | 0.000     | 79    | 2088          | 2.50      | 4.29      |       |
| 119 1,2,4-Trichlorobenzene       | 180     | 12.053   | 12.053    | 0.000     | 95    | 29678         | 2.50      | 2.65      |       |
| 120 Hexachlorobutadiene          | 225     | 12.144   | 12.150    | -0.006    | 96    | 16667         | 2.50      | 2.63      |       |
| 121 Naphthalene                  | 128     | 12.272   | 12.272    | 0.000     | 97    | 70082         | 2.50      | 2.53      |       |
| 122 1,2,3-Trichlorobenzene       | 180     | 12.479   | 12.473    | 0.006     | 96    | 27868         | 2.50      | 2.64      |       |
| S 125 1,2-Dichloroethene, Total  | 1       |          |           |           | 0     |               |           | 5.13      |       |
| S 126 1,3-Dichloropropene, Total | 1       |          |           |           | 0     |               |           | 4.47      |       |
| S 123 Total BTEX                 | 1       |          |           |           | 0     |               |           | 13.4      |       |
| S 124 Xylenes, Total             | 1       |          |           |           | 0     |               |           | 5.12      |       |
| QC Flag Legend                   |         |          |           |           |       |               |           |           |       |
| Review Flags                     |         |          |           |           |       |               |           |           |       |
| M - Manually Integrated          |         |          |           |           |       |               |           |           |       |
| Reagents:                        |         |          |           |           |       |               |           |           |       |
| 8260 CORP mix_00111              |         | Amount   | Added: 2  | 2.50      |       | Units: uL     |           |           |       |
| GAS CORP mix_00243               |         | Amount   | Added: 2  | 2.50      |       | Units: uL     |           |           |       |
| F 8260 SURR_00259                |         | Amount   |           | 1.00      |       | Units: uL     | Run Reage | nt        |       |
|                                  |         |          |           |           |       |               |           |           |       |

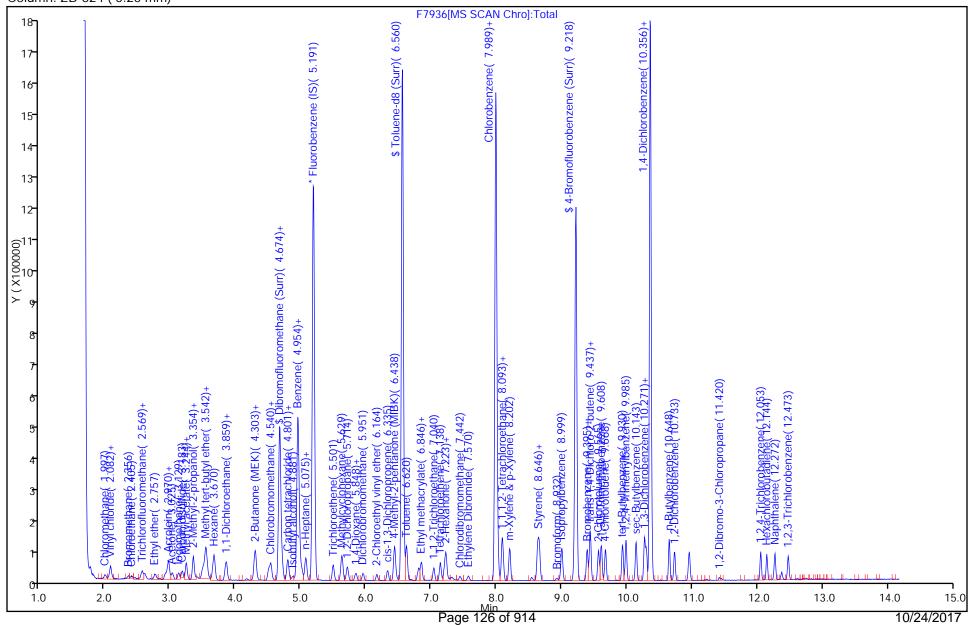
Units: uL

Run Reagent

Amount Added: 1.00

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7936.D Injection Date: 29-Sep-2017 15:58:30 Instrument ID: HP5973F


Lims ID: IC

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



CDC

6

2

Operator ID:

ALS Bottle#:

Worklist Smp#:

Report Date: 02-Oct-2017 14:08:51 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

### TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7936.D Injection Date: 29-Sep-2017 15:58:30 Instrument ID: HP5973F

Lims ID: IC

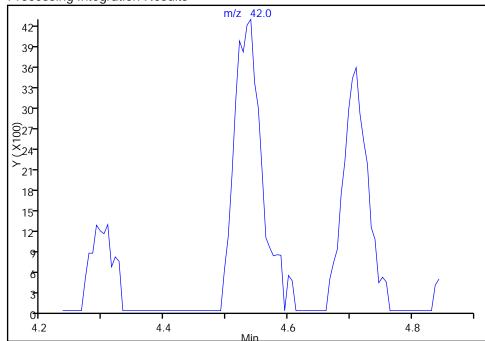
Client ID:

Operator ID: CDC ALS Bottle#: 2 Worklist Smp#: 6

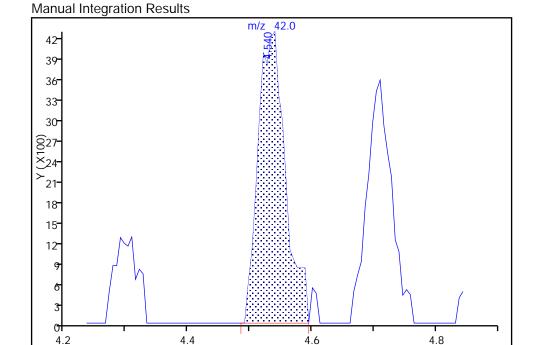
Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN


## 49 Tetrahydrofuran, CAS: 109-99-9

Signal: 1


Not Detected

Expected RT: 4.53





RT: 4.54
Area: 12875
Amount: 5.164470
Amount Units: ug/kg



Reviewer: cwiklinc, 02-Oct-2017 10:36:09

Audit Action: Assigned Compound ID

Audit Reason: Incomplete Integration

Page 127 of 914

Report Date: 02-Oct-2017 14:08:51 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

### TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7936.D Injection Date: 29-Sep-2017 15:58:30 Instrument ID: HP5973F

Lims ID: IC

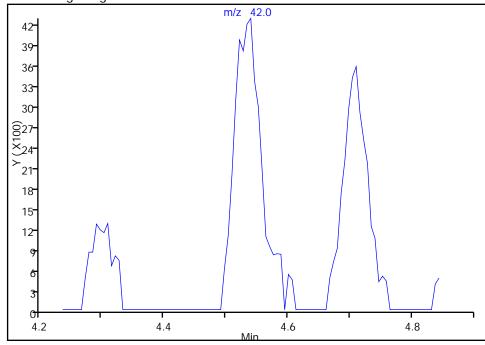
Client ID:

Operator ID: CDC ALS Bottle#: 2 Worklist Smp#: 6

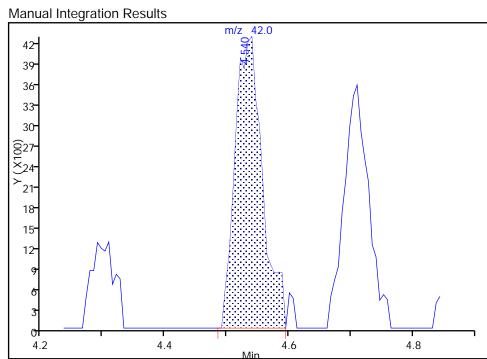
Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN


## 49 Tetrahydrofuran, CAS: 109-99-9

Signal: 1


Not Detected

Expected RT: 4.53

### **Processing Integration Results**



RT: 4.54
Area: 12875
Amount: 5.164470
Amount Units: ug/kg



Reviewer: cwiklinc, 02-Oct-2017 10:36:22

Audit Action: Manually Integrated

Audit Reason: Incomplete Integration Page 128 of 914

10/24/2017

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report Report Date: 02-Oct-2017 14:08:51

TestAmerica Buffalo

Data File: Injection Date: 29-Sep-2017 15:58:30 Instrument ID: HP5973F

Lims ID: IC

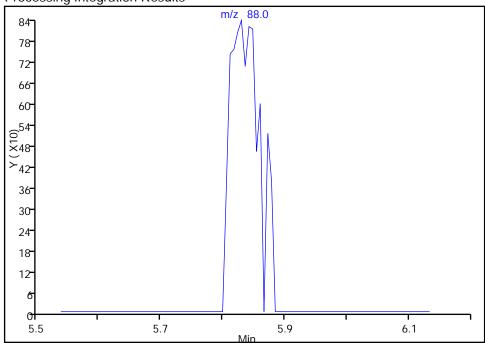
Client ID:

Operator ID: CDC ALS Bottle#: 2 Worklist Smp#: 6

5.000 mL Purge Vol: Dil. Factor: 1.0000

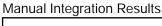
Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

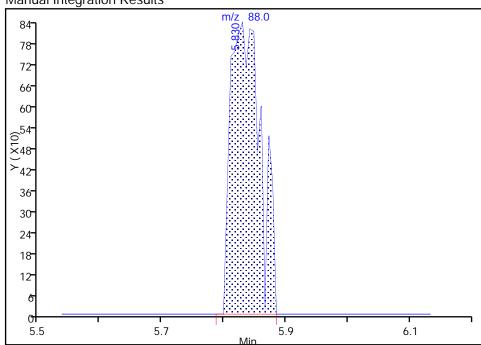
Column: ZB-624 (0.25 mm) Detector MS SCAN


## 66 1,4-Dioxane, CAS: 123-91-1

Signal: 1

Not Detected


Expected RT: 5.82






RT: 5.83 Area: 2831 33.901192 Amount:

Amount Units: ug/kg





Reviewer: cwiklinc, 02-Oct-2017 10:36:31

Audit Action: Assigned Compound ID

Audit Reason: Incomplete Integration

Page 129 of 914

Report Date: 02-Oct-2017 14:08:51 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7936.D Injection Date: 29-Sep-2017 15:58:30 Instrument ID: HP5973F

Lims ID: IC

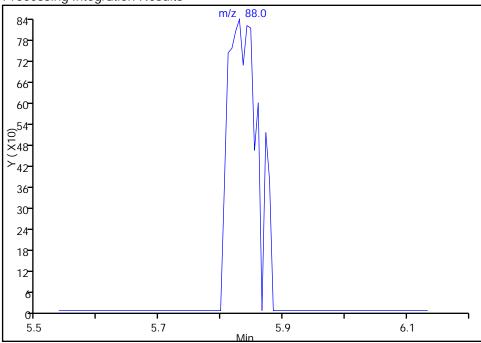
Client ID:

Operator ID: CDC ALS Bottle#: 2 Worklist Smp#: 6

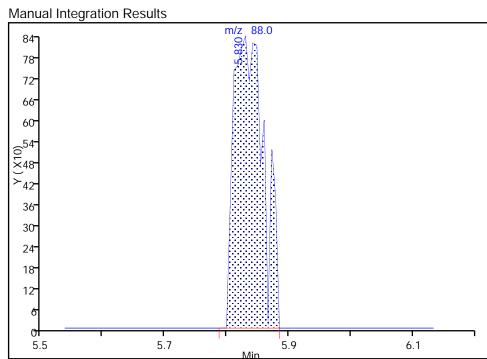
Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN


### 66 1,4-Dioxane, CAS: 123-91-1

Signal: 1


Not Detected

Expected RT: 5.82

Processing Integration Results



RT: 5.83
Area: 2831
Amount: 33.901192
Amount Units: ug/kg



Reviewer: cwiklinc, 02-Oct-2017 10:36:36

Audit Action: Manually Integrated

Audit Reason: Incomplete Integration

Page 130 of 914 10/24/2017

Report Date: 02-Oct-2017 14:08:53 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7937.D

Lims ID: IC 2

Client ID:

Sample Type: IC Calib Level: 2

Inject. Date: 29-Sep-2017 16:24:30 ALS Bottle#: 3 Worklist Smp#: 7

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 2

Misc. Info.: 480-0066009-007

Operator ID: CDC Instrument ID: HP5973F

Sublist: chrom-F-8260 SOIL\*sub27

Limit Group: MV - 8260C ICAL

Last Update:02-Oct-2017 14:08:52Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1: ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK030

First Level Reviewer: cwiklinc Date: 02-Oct-2017 10:41:25

| First Level Reviewer: cwiklinc         |     |        | D.     | ate:   |    | 02-Oct-201 | 7 10:41:25 |           |       |
|----------------------------------------|-----|--------|--------|--------|----|------------|------------|-----------|-------|
|                                        |     | RT     | Adj RT | Dlt RT |    |            | Cal Amt    | OnCol Amt |       |
| Compound                               | Sig | (min.) | (min.) | (min.) | Q  | Response   | ug/kg      | ug/kg     | Flags |
|                                        |     |        | -      | -      |    | -          |            | -         |       |
| * 153 Fluorobenzene (IS)               | 70  | 5.191  | 5.191  | 0.000  | 99 | 268328     | 50.0       | 50.0      |       |
| <ul><li>* 2 Chlorobenzene-d5</li></ul> | 82  | 7.989  | 7.989  | 0.000  | 88 | 544102     | 50.0       | 50.0      |       |
| * 3 1,4-Dichlorobenzene-d4             | 152 | 10.356 | 10.356 | 0.000  | 95 | 542316     | 50.0       | 50.0      |       |
| \$ 154 Dibromofluoromethane (Surr      | 113 | 4.680  | 4.674  | 0.006  | 94 | 331493     | 50.0       | 49.8      |       |
| \$ 41,2-Dichloroethane-d4 (Sur         | 67  | 4.954  | 4.960  | -0.006 | 0  | 213612     | 50.0       | 50.0      |       |
| \$ 5 Toluene-d8 (Surr)                 | 98  | 6.560  | 6.560  | 0.000  | 94 | 1324731    | 50.0       | 49.4      |       |
| \$ 6 4-Bromofluorobenzene (Surr        | 174 | 9.218  | 9.218  | 0.000  | 90 | 429483     | 50.0       | 48.9      |       |
| 10 Dichlorodifluoromethane             | 85  | 1.827  | 1.827  | 0.000  | 96 | 36338      | 5.00       | 5.11      |       |
| 12 Chloromethane                       | 50  | 2.003  | 2.003  | 0.000  | 99 | 36021      | 5.00       | 5.47      | M     |
| 151 Butadiene                          | 54  | 2.082  | 2.088  | -0.006 | 84 | 35800      | 5.00       | 5.48      |       |
| 13 Vinyl chloride                      | 62  | 2.094  | 2.094  | 0.000  | 92 | 35086      | 5.00       | 5.35      |       |
| 14 Bromomethane                        | 94  | 2.362  | 2.362  | 0.000  | 92 | 16408      | 5.00       | 5.38      |       |
| 15 Chloroethane                        | 64  | 2.417  | 2.417  | 0.000  | 98 | 14941      | 5.00       | 5.39      |       |
| 16 Dichlorofluoromethane               | 67  | 2.569  | 2.569  | 0.000  | 97 | 45374      | 5.00       | 5.30      |       |
| 17 Trichlorofluoromethane              | 101 | 2.611  | 2.617  | -0.006 | 98 | 42521      | 5.00       | 5.09      |       |
| 18 Ethyl ether                         | 59  | 2.770  | 2.770  | 0.000  | 88 | 25794      | 5.00       | 4.97      |       |
| 20 Acrolein                            | 56  | 2.922  | 2.922  | 0.000  | 97 | 31650      | 25.0       | 24.2      |       |
| 21 1,1,2-Trichloro-1,2,2-trif          | 101 | 2.964  | 2.958  | 0.006  | 92 | 36557      | 5.00       | 5.22      |       |
| 22 1,1-Dichloroethene                  | 96  | 2.983  | 2.982  | 0.001  | 94 | 33995      | 5.00       | 5.12      |       |
| 23 Acetone                             | 43  | 3.037  | 3.031  | 0.006  | 98 | 71361      | 25.0       | 25.6      |       |
| 25 Iodomethane                         | 142 | 3.129  | 3.135  | -0.006 | 99 | 58021      | 5.00       | 4.92      |       |
| 26 Carbon disulfide                    | 76  | 3.183  | 3.183  | 0.000  | 99 | 96962      | 5.00       | 4.73      |       |
| 28 3-Chloro-1-propene                  | 41  | 3.244  | 3.244  | 0.000  | 90 | 62539      | 5.00       | 5.12      |       |
| 27 Methyl acetate                      | 43  | 3.250  | 3.244  | 0.006  | 72 | 60270      | 10.0       | 9.89      |       |
| 30 Methylene Chloride                  | 84  | 3.360  | 3.354  | 0.006  | 98 | 55050      | 5.00       | 5.03      |       |
| 31 2-Methyl-2-propanol                 | 59  | 3.408  | 3.414  | -0.006 | 92 | 45218      | 50.0       | 43.8      |       |
| 32 Methyl tert-butyl ether             | 73  | 3.500  | 3.500  | 0.000  | 96 | 110796     | 5.00       | 4.95      |       |
| 34 trans-1,2-Dichloroethene            | 96  | 3.536  | 3.536  | 0.000  | 96 | 39509      | 5.00       | 5.19      |       |
| 33 Acrylonitrile                       | 53  | 3.554  | 3.554  | 0.000  | 99 | 162643     | 50.0       | 49.9      |       |
| 35 Hexane                              | 57  | 3.670  | 3.670  | 0.000  | 88 | 96691      | 5.00       | 5.10      |       |
|                                        |     |        |        |        |    |            |            |           |       |

Report Date: 02-Oct-2017 14:08:53

Data File:

| Data File: \\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7937.D |     |        |        |        |    |           |         |                   |       |  |
|-------------------------------------------------------------------------|-----|--------|--------|--------|----|-----------|---------|-------------------|-------|--|
|                                                                         |     | RT     | Adj RT | Dlt RT |    | _         | Cal Amt | OnCol Amt         | E     |  |
| Compound                                                                | Sig | (min.) | (min.) | (min.) | Q  | Response  | ug/kg   | ug/kg             | Flags |  |
| 27 Weed a salate                                                        | 40  | 0.050  | 2.04/  | 0.007  | 07 | 104140    | 10.0    | 0.57              |       |  |
| 37 Vinyl acetate                                                        | 43  | 3.853  | 3.846  | 0.006  | 97 | 134143    | 10.0    | 9.57              |       |  |
| 39 1,1-Dichloroethane                                                   | 63  | 3.859  | 3.865  | -0.006 | 96 | 74334     | 5.00    | 5.08              |       |  |
| 43 2-Butanone (MEK)                                                     | 43  | 4.297  | 4.290  | 0.007  | 98 | 95762     | 25.0    | 24.3              | М     |  |
| 44 2,2-Dichloropropane                                                  | 77  | 4.297  | 4.297  | 0.000  | 86 | 49345     | 5.00    | 4.84              |       |  |
| 45 cis-1,2-Dichloroethene                                               | 96  | 4.303  | 4.309  | -0.006 | 85 | 43097     | 5.00    | 5.04              |       |  |
| 48 Chlorobromomethane                                                   | 128 | 4.510  | 4.509  | 0.001  | 97 | 18913     | 5.00    | 4.87              |       |  |
| 49 Tetrahydrofuran                                                      | 42  | 4.534  | 4.528  | 0.006  | 56 | 23969     | 10.0    | 9.57              |       |  |
| 50 Chloroform                                                           | 83  | 4.546  | 4.546  | 0.000  | 96 | 68491     | 5.00    | 5.36              |       |  |
| 51 1,1,1-Trichloroethane                                                | 97  | 4.686  | 4.686  | 0.000  | 98 | 52871     | 5.00    | 5.03              |       |  |
| 52 Cyclohexane                                                          | 56  | 4.710  | 4.710  | 0.000  | 91 | 87920     | 5.00    | 5.28              |       |  |
| 54 1,1-Dichloropropene                                                  | 75  | 4.802  | 4.801  | 0.001  | 95 | 50946     | 5.00    | 5.13              |       |  |
| 55 Carbon tetrachloride                                                 | 117 | 4.814  | 4.808  | 0.006  | 80 | 36592     | 5.00    | 4.62              |       |  |
| 53 Isobutyl alcohol                                                     | 43  | 4.881  | 4.868  | 0.013  | 95 | 37450     | 125.0   | 102.7             |       |  |
| 57 Benzene                                                              | 78  | 4.978  | 4.984  | -0.006 | 97 | 151421    | 5.00    | 5.06              |       |  |
| 58 1,2-Dichloroethane                                                   | 62  | 5.021  | 5.020  | 0.001  | 94 | 57671     | 5.00    | 5.09              |       |  |
| 59 n-Heptane                                                            | 43  | 5.075  | 5.081  | -0.006 | 93 | 72669     | 5.00    | 5.35              |       |  |
| 62 Trichloroethene                                                      | 95  | 5.495  | 5.495  | 0.000  | 97 | 37415     | 5.00    | 4.94              |       |  |
| 64 Methylcyclohexane                                                    | 83  | 5.629  | 5.629  | 0.000  | 94 | 72576     | 5.00    | 5.09              |       |  |
| 65 1,2-Dichloropropane                                                  | 63  | 5.714  | 5.714  | 0.000  | 96 | 39131     | 5.00    | 4.81              |       |  |
| 66 1,4-Dioxane                                                          | 88  | 5.836  | 5.824  | 0.012  | 30 | 6548      | 100.0   | 77.5              |       |  |
| 67 Dibromomethane                                                       | 93  | 5.848  | 5.842  | 0.006  | 95 | 20364     | 5.00    | 4.84              |       |  |
| 68 Dichlorobromomethane                                                 | 83  | 5.957  | 5.957  | 0.000  | 98 | 35301     | 5.00    | 4.39              |       |  |
| 69 2-Chloroethyl vinyl ether                                            | 63  | 6.164  | 6.164  | 0.000  | 91 | 20550     | 5.00    | 4.56              |       |  |
| 72 cis-1,3-Dichloropropene                                              | 75  | 6.329  | 6.328  | 0.001  | 94 | 45205     | 5.00    | 4.51              |       |  |
| 73 4-Methyl-2-pentanone (MIBK                                           | 43  | 6.432  | 6.438  | -0.006 | 95 | 179311    | 25.0    | 23.7              |       |  |
| 74 Toluene                                                              | 92  | 6.621  | 6.620  | 0.001  | 98 | 102447    | 5.00    | 5.29              |       |  |
| 77 trans-1,3-Dichloropropene                                            | 75  | 6.846  | 6.846  | 0.000  | 96 | 37768     | 5.00    | 4.29              |       |  |
| 75 Ethyl methacrylate                                                   | 69  | 6.852  | 6.852  | 0.000  | 91 | 38380     | 5.00    | 4.29              |       |  |
| 79 1,1,2-Trichloroethane                                                | 83  | 7.040  | 7.040  | 0.000  | 94 | 24710     | 5.00    | 4.83              |       |  |
| 81 Tetrachloroethene                                                    | 166 | 7.144  | 7.144  | 0.000  | 98 | 41749     | 5.00    | 5.03              |       |  |
| 82 1,3-Dichloropropane                                                  | 76  | 7.205  | 7.204  | 0.001  | 95 | 50739     | 5.00    | 4.82              |       |  |
| 80 2-Hexanone                                                           | 43  | 7.223  | 7.223  | 0.000  | 93 | 131080    | 25.0    | 23.8              |       |  |
| 83 Chlorodibromomethane                                                 | 129 | 7.442  | 7.442  | 0.000  | 89 | 20596     | 5.00    | 5.94              |       |  |
| 84 Ethylene Dibromide                                                   | 107 | 7.563  | 7.569  | -0.006 | 99 | 28401     | 5.00    | 4.57              |       |  |
| 87 Chlorobenzene                                                        | 112 | 8.020  | 8.020  | 0.000  | 95 | 103353    | 5.00    | 4.96              |       |  |
| 88 Ethylbenzene                                                         | 91  | 8.087  | 8.087  | 0.000  | 98 | 180709    | 5.00    | 5.17              |       |  |
| _                                                                       |     | 8.099  | 8.105  | -0.006 | 90 | 27046     | 5.00    | 4.42              |       |  |
| 89 1,1,1,2-Tetrachloroethane                                            | 131 |        |        |        |    |           |         |                   |       |  |
| 90 m-Xylene & p-Xylene                                                  | 106 | 8.202  | 8.202  | 0.000  | 99 | 72673     | 5.00    | 5.09              |       |  |
| 91 o-Xylene                                                             | 106 | 8.628  | 8.634  | -0.006 | 97 | 67482     | 5.00    | 4.90              |       |  |
| 92 Styrene                                                              | 104 | 8.659  | 8.652  | 0.007  | 96 | 118452    | 5.00    | 4.98              |       |  |
| 95 Bromoform                                                            | 173 | 8.926  | 8.926  | 0.000  | 96 | 10166     | 5.00    | 5.14              |       |  |
| 94 Isopropylbenzene                                                     | 105 | 9.005  | 9.005  | 0.000  | 96 | 176217    | 5.00    | 5.06              |       |  |
| 101 Bromobenzene                                                        | 156 | 9.389  | 9.388  | 0.001  | 93 | 45595     | 5.00    | 4.93              |       |  |
| 97 1,1,2,2-Tetrachloroethane                                            | 83  | 9.395  | 9.388  | 0.007  | 77 | 37699     | 5.00    | 4.79              |       |  |
| 99 N-Propylbenzene                                                      | 91  | 9.437  | 9.437  | 0.000  | 98 | 205638    | 5.00    | 5.19              |       |  |
| 98 trans-1,4-Dichloro-2-buten                                           | 53  | 9.437  | 9.437  | 0.000  | 42 | 12859     | 5.00    | 4.75              |       |  |
| 100 1,2,3-Trichloropropane                                              | 110 | 9.443  | 9.443  | 0.000  | 52 | 12292     | 5.00    | 4.68              |       |  |
| 103 2-Chlorotoluene                                                     | 126 | 9.565  | 9.565  | 0.000  | 97 | 43134     | 5.00    | 5.03              |       |  |
| 102 1,3,5-Trimethylbenzene                                              | 105 | 9.608  | 9.607  | 0.001  | 94 | 149801    | 5.00    | 5.09              |       |  |
| 105 4-Chlorotoluene                                                     | 126 | 9.674  | 9.674  | 0.000  | 98 | 44673     | 5.00    | 5.03              |       |  |
| 106 tert-Butylbenzene                                                   | 134 | 9.936  | 9.936  | 0.000  | 93 | 32368     | 5.00    | 4.90              |       |  |
| 107 1,2,4-Trimethylbenzene                                              | 105 | 9.985  | 9.985  | 0.000  | 97 | 154441    | 5.00    | 5.07              |       |  |
| , ,                                                                     |     |        |        |        |    | - · · · · |         | 2. <del>-</del> . |       |  |

Report Date: 02-Oct-2017 14:08:53

| Data File: \\ChromNA\B                              | uffalo\ | ChromDat         | (a\HP597             | 3F\201/09    | 129-6 | 6009.b\F /937.l        | ט         |           |       |
|-----------------------------------------------------|---------|------------------|----------------------|--------------|-------|------------------------|-----------|-----------|-------|
|                                                     |         | RT               | Adj RT               | Dlt RT       |       |                        | Cal Amt   | OnCol Amt |       |
| Compound                                            | Sig     | (min.)           | (min.)               | (min.)       | Q     | Response               | ug/kg     | ug/kg     | Flags |
|                                                     |         |                  |                      |              |       |                        |           |           |       |
| 109 sec-Butylbenzene                                | 105     | 10.143           | 10.143               | 0.000        | 94    | 189745                 | 5.00      | 5.11      |       |
| 110 4-Isopropyltoluene                              | 119     | 10.271           | 10.271               | 0.000        | 97    | 168314                 | 5.00      | 5.17      |       |
| 111 1,3-Dichlorobenzene                             | 146     | 10.301           | 10.301               | 0.000        | 98    | 87502                  | 5.00      | 4.98      |       |
| 113 1,4-Dichlorobenzene                             | 146     | 10.380           | 10.380               | 0.000        | 94    | 90380                  | 5.00      | 5.04      |       |
| 115 n-Butylbenzene                                  | 91      | 10.648           | 10.648               | 0.000        | 98    | 148072                 | 5.00      | 5.16      |       |
| 116 1,2-Dichlorobenzene                             | 146     | 10.733           | 10.733               | 0.000        | 97    | 84120                  | 5.00      | 5.02      |       |
| 117 1,2-Dibromo-3-Chloropropan                      | 75      | 11.420           | 11.420               | 0.000        | 79    | 4464                   | 5.00      | 5.80      |       |
| 119 1,2,4-Trichlorobenzene                          | 180     | 12.053           | 12.053               | 0.000        | 95    | 57444                  | 5.00      | 4.96      |       |
| 120 Hexachlorobutadiene                             | 225     | 12.144           | 12.150               | -0.006       | 97    | 31915                  | 5.00      | 4.87      |       |
| 121 Naphthalene                                     | 128     | 12.272           | 12.272               | 0.000        | 97    | 136288                 | 5.00      | 4.77      |       |
| 122 1,2,3-Trichlorobenzene                          | 180     | 12.473           | 12.473               | 0.000        | 96    | 52223                  | 5.00      | 4.79      |       |
| S 123 Total BTEX                                    | 1       |                  |                      |              | 0     |                        |           | 25.5      |       |
| S 124 Xylenes, Total                                | 1       |                  |                      |              | 0     |                        |           | 9.98      |       |
| S 125 1,2-Dichloroethene, Total                     | 1       |                  |                      |              | 0     |                        |           | 10.2      |       |
| S 126 1,3-Dichloropropene, Total                    | 1       |                  |                      |              | 0     |                        |           | 8.80      |       |
| QC Flag Legend Review Flags M - Manually Integrated |         |                  |                      |              |       |                        |           |           |       |
| Reagents:                                           |         | A                | ۸ ما ما ما ۱         | - 00         |       | laka                   |           |           |       |
| 8260 CORP mix_00111                                 |         | Amount           |                      | 5.00         |       | Jnits: uL              |           |           |       |
| GAS CORP mix_00243<br>F 8260 SURR_00259             |         | Amount<br>Amount | Added: 3<br>Added: 1 | 5.00<br>I 00 |       | Jnits: uL<br>Jnits: uL | Run Reage | nt        |       |
|                                                     |         |                  |                      | •            | •     |                        |           |           |       |

Units: uL

Run Reagent

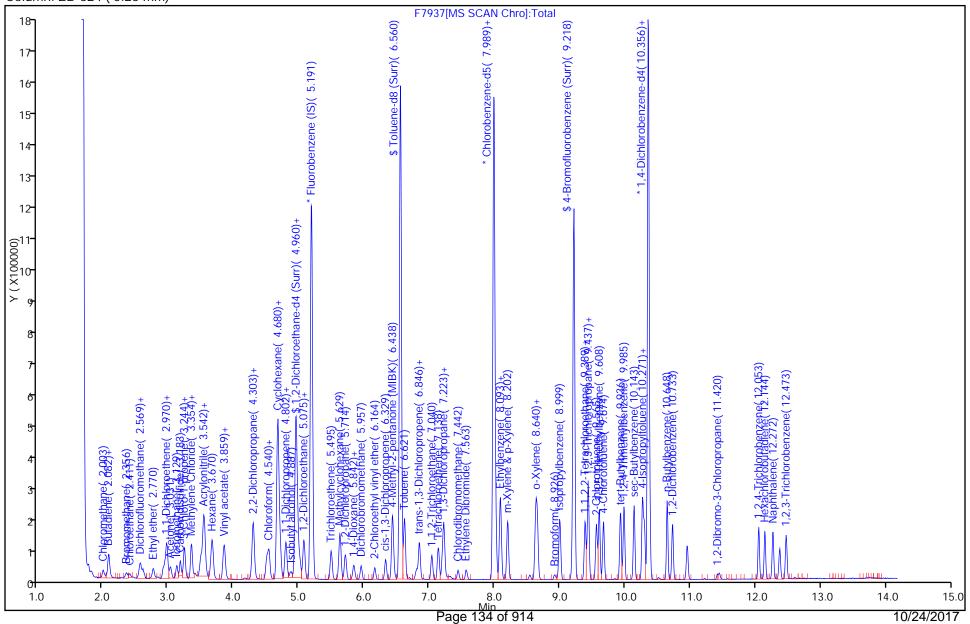
Amount Added: 1.00

F 8260 IS\_00576

Report Date: 02-Oct-2017 14:08:53 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7937.D Injection Date: 29-Sep-2017 16:24:30 Instrument ID: HP5973F


Lims ID: IC 2

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

CDC

7

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report Report Date: 02-Oct-2017 14:08:53

### TestAmerica Buffalo

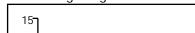
Data File: Injection Date: 29-Sep-2017 16:24:30 Instrument ID: HP5973F

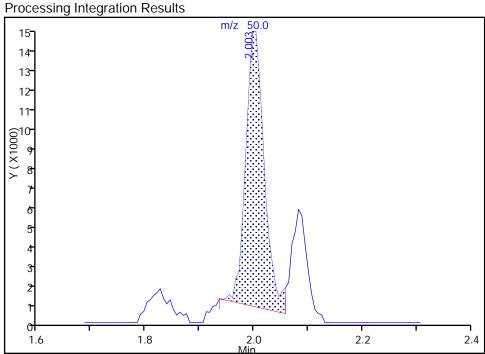
Lims ID: IC 2

Client ID:

Operator ID: CDC ALS Bottle#: 3 Worklist Smp#: 7

Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: F-8260 SOIL Limit Group: MV - 8260C ICAL


Column: ZB-624 (0.25 mm) Detector MS SCAN

## 12 Chloromethane, CAS: 74-87-3

Signal: 1

RT: 2.00 Area: 31819 Amount: 4.900903 Amount Units: ug/kg





RT: 2.00 Area: 36021 5.469692 Amount: Amount Units: ug/kg



Reviewer: cwiklinc, 02-Oct-2017 10:41:09

Audit Action: Manually Integrated

Audit Reason: Baseline

Page 135 of 914

Report Date: 02-Oct-2017 14:08:53 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

### TestAmerica Buffalo

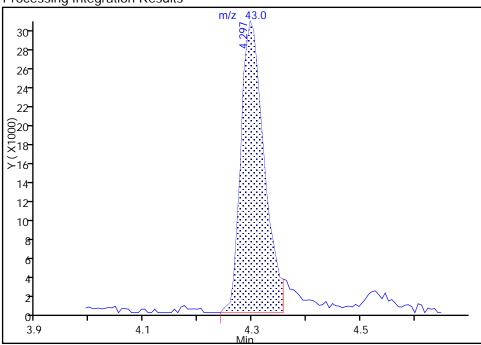
Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7937.D Injection Date: 29-Sep-2017 16:24:30 Instrument ID: HP5973F

Lims ID: IC 2

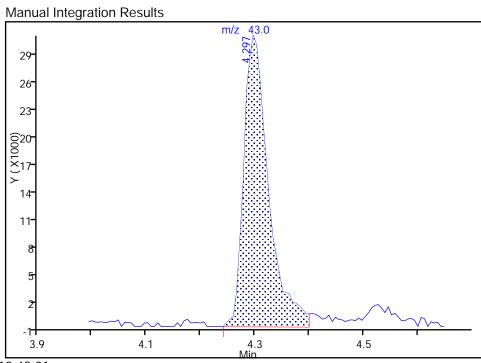
Client ID:

Operator ID: CDC ALS Bottle#: 3 Worklist Smp#: 7

Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN


## 43 2-Butanone (MEK), CAS: 78-93-3

Signal: 1

RT: 4.30 Area: 89910 Amount: 23.013484 Amount Units: ug/kg **Processing Integration Results** 



RT: 4.30
Area: 95762
Amount: 24.303349
Amount Units: ug/kg



Reviewer: cwiklinc, 02-Oct-2017 10:42:01

Audit Action: Manually Integrated

Audit Reason: Incomplete Integration

Page 136 of 914

Report Date: 02-Oct-2017 14:08:56 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7938.D

Lims ID: IC 3

Client ID:

Sample Type: IC Calib Level: 3

Inject. Date: 29-Sep-2017 16:50:30 ALS Bottle#: 4 Worklist Smp#: 8

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 3

Misc. Info.: 480-0066009-008

Operator ID: CDC Instrument ID: HP5973F

Sublist: chrom-F-8260 SOIL\*sub27

Method: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update:02-Oct-2017 14:08:54Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1: ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK030

First Level Reviewer: cwiklinc Date: 29-Sep-2017 17:03:50

| First Level Reviewer: cwikling    |     |        | D      | ate:   |     | 29-5ep-20 | 17 17:03:50 |           |       |
|-----------------------------------|-----|--------|--------|--------|-----|-----------|-------------|-----------|-------|
|                                   |     | RT     | Adj RT | Dlt RT |     |           | Cal Amt     | OnCol Amt |       |
| Compound                          | Sig | (min.) | (min.) | (min.) | Q   | Response  | ug/kg       | ug/kg     | Flags |
|                                   |     |        |        | -      |     |           |             | -         |       |
| * 153 Fluorobenzene (IS)          | 70  | 5.191  | 5.191  | 0.000  | 99  | 277032    | 50.0        | 50.0      |       |
| * 2 Chlorobenzene-d5              | 82  | 7.989  | 7.989  | 0.000  | 87  | 559961    | 50.0        | 50.0      |       |
| * 3 1,4-Dichlorobenzene-d4        | 152 | 10.362 | 10.356 | 0.006  | 95  | 559194    | 50.0        | 50.0      |       |
| \$ 154 Dibromofluoromethane (Surr | 113 | 4.674  | 4.674  | 0.000  | 93  | 338160    | 50.0        | 49.2      |       |
| \$ 41,2-Dichloroethane-d4 (Sur    | 67  | 4.954  | 4.960  | -0.006 | 0   | 220748    | 50.0        | 50.1      |       |
| \$ 5 Toluene-d8 (Surr)            | 98  | 6.554  | 6.560  | -0.006 | 93  | 1368921   | 50.0        | 49.6      |       |
| \$ 6 4-Bromofluorobenzene (Surr   | 174 | 9.218  | 9.218  | 0.000  | 90  | 444875    | 50.0        | 49.2      |       |
| 10 Dichlorodifluoromethane        | 85  | 1.808  | 1.827  | -0.019 | 99  | 74558     | 10.0        | 10.2      |       |
| 12 Chloromethane                  | 50  | 1.997  | 2.003  | -0.006 | 99  | 68848     | 10.0        | 10.1      | M     |
| 151 Butadiene                     | 54  | 2.076  | 2.088  | -0.012 | 85  | 68863     | 10.0        | 10.2      |       |
| 13 Vinyl chloride                 | 62  | 2.088  | 2.094  | -0.006 | 98  | 68490     | 10.0        | 10.1      |       |
| 14 Bromomethane                   | 94  | 2.356  | 2.362  | -0.006 | 91  | 30347     | 10.0        | 9.64      |       |
| 15 Chloroethane                   | 64  | 2.405  | 2.417  | -0.012 | 98  | 29390     | 10.0        | 10.3      |       |
| 16 Dichlorofluoromethane          | 67  | 2.569  | 2.569  | 0.000  | 97  | 88442     | 10.0        | 10.0      |       |
| 17 Trichlorofluoromethane         | 101 | 2.611  | 2.617  | -0.006 | 97  | 87993     | 10.0        | 10.2      |       |
| 18 Ethyl ether                    | 59  | 2.764  | 2.770  | -0.006 | 91  | 66565     | 10.0        | 12.4      |       |
| 20 Acrolein                       | 56  | 2.916  | 2.922  | -0.006 | 100 | 65908     | 50.0        | 48.8      |       |
| 21 1,1,2-Trichloro-1,2,2-trif     | 101 | 2.958  | 2.958  | 0.000  | 92  | 72227     | 10.0        | 10.0      |       |
| 22 1,1-Dichloroethene             | 96  | 2.977  | 2.982  | -0.006 | 95  | 69868     | 10.0        | 10.2      |       |
| 23 Acetone                        | 43  | 3.025  | 3.031  | -0.006 | 100 | 149065    | 50.0        | 51.8      |       |
| 25 Iodomethane                    | 142 | 3.129  | 3.135  | -0.006 | 99  | 123462    | 10.0        | 10.1      |       |
| 26 Carbon disulfide               | 76  | 3.183  | 3.183  | 0.000  | 100 | 208084    | 10.0        | 9.83      |       |
| 27 Methyl acetate                 | 43  | 3.238  | 3.244  | -0.006 | 77  | 120092    | 20.0        | 19.1      |       |
| 28 3-Chloro-1-propene             | 41  | 3.238  | 3.244  | -0.006 | 88  | 130353    | 10.0        | 10.3      |       |
| 30 Methylene Chloride             | 84  | 3.348  | 3.354  | -0.006 | 97  | 95343     | 10.0        | 9.99      |       |
| 31 2-Methyl-2-propanol            | 59  | 3.408  | 3.414  | -0.006 | 99  | 97084     | 100.0       | 91.1      |       |
| 32 Methyl tert-butyl ether        | 73  | 3.500  | 3.500  | 0.000  | 96  | 232356    | 10.0        | 10.1      |       |
| 34 trans-1,2-Dichloroethene       | 96  | 3.530  | 3.536  | -0.006 | 94  | 80534     | 10.0        | 10.2      |       |
| 33 Acrylonitrile                  | 53  | 3.548  | 3.554  | -0.006 | 99  | 333859    | 100.0       | 99.2      |       |
| 35 Hexane                         | 57  | 3.664  | 3.670  | -0.006 | 88  | 171871    | 10.0        | 10.2      |       |
|                                   |     |        |        |        |     |           |             |           |       |

| Data File: \\ChromNA\B        | uffalo\0 | ChromDa | ta\HP5973      | 3F\20170 | 929-6 <i>6</i> | 5009.b\F7938.E | <u> </u> |           |       |
|-------------------------------|----------|---------|----------------|----------|----------------|----------------|----------|-----------|-------|
|                               |          | RT      | Adj RT         | Dlt RT   |                |                | Cal Amt  | OnCol Amt |       |
| Compound                      | Sig      | (min.)  | (min.)         | (min.)   | Q              | Response       | ug/kg    | ug/kg     | Flags |
|                               |          |         |                |          |                |                |          |           |       |
| 37 Vinyl acetate              | 43       | 3.846   | 3.846          | 0.000    | 97             | 287613         | 20.0     | 19.9      |       |
| 39 1,1-Dichloroethane         | 63       | 3.859   | 3.865          | -0.006   | 96             | 154002         | 10.0     | 10.2      |       |
| 43 2-Butanone (MEK)           | 43       | 4.291   | 4.290          | 0.001    | 99             | 196706         | 50.0     | 48.4      |       |
| 44 2,2-Dichloropropane        | 77       | 4.291   | 4.297          | -0.006   | 65             | 105687         | 10.0     | 10.0      |       |
| 45 cis-1,2-Dichloroethene     | 96       | 4.303   | 4.309          | -0.006   | 86             | 89787          | 10.0     | 10.2      |       |
| 48 Chlorobromomethane         | 128      | 4.503   | 4.509          | -0.006   | 97             | 40735          | 10.0     | 10.2      |       |
| 49 Tetrahydrofuran            | 42       | 4.522   | 4.528          | -0.006   | 90             | 48489          | 20.0     | 18.8      |       |
| 50 Chloroform                 | 83       | 4.540   | 4.546          | -0.006   | 96             | 134997         | 10.0     | 10.2      |       |
| 51 1,1,1-Trichloroethane      | 97       | 4.680   | 4.686          | -0.006   | 55             | 107090         | 10.0     | 9.87      |       |
| 52 Cyclohexane                | 56       | 4.710   | 4.710          | 0.000    | 92             | 174844         | 10.0     | 10.2      |       |
| 54 1,1-Dichloropropene        | 75       | 4.795   | 4.801          | -0.006   | 93             | 102397         | 10.0     | 10.0      |       |
| 55 Carbon tetrachloride       | 117      | 4.808   | 4.808          | 0.000    | 98             | 77424          | 10.0     | 9.46      |       |
| 53 Isobutyl alcohol           | 43       | 4.875   | 4.868          | 0.007    | 95             | 83653          | 250.0    | 222.2     |       |
| 57 Benzene                    | 78       | 4.978   | 4.984          | -0.006   | 97             | 314758         | 10.0     | 10.2      |       |
| 58 1,2-Dichloroethane         | 62       | 5.015   | 5.020          | -0.006   | 96             | 119371         | 10.0     | 10.2      |       |
| 59 n-Heptane                  | 43       | 5.075   | 5.081          | -0.006   | 92             | 147341         | 10.0     | 10.5      |       |
| 62 Trichloroethene            | 95       | 5.495   | 5.495          | 0.000    | 98             | 78909          | 10.0     | 10.1      |       |
| 64 Methylcyclohexane          | 83       | 5.629   | 5.629          | 0.000    | 94             | 147624         | 10.0     | 10.0      |       |
| 65 1,2-Dichloropropane        | 63       | 5.714   | 5.714          | 0.000    | 97             | 86064          | 10.0     | 10.2      |       |
| 66 1,4-Dioxane                | 88       | 5.830   | 5.824          | 0.006    | 96             | 17047          | 200.0    | 196.1     |       |
| 67 Dibromomethane             | 93       | 5.848   | 5.842          | 0.006    | 95             | 42584          | 10.0     | 9.81      |       |
| 68 Dichlorobromomethane       | 83       | 5.957   | 5.957          | 0.000    | 99             | 78491          | 10.0     | 9.45      |       |
| 69 2-Chloroethyl vinyl ether  | 63       | 6.164   | 6.164          | 0.000    | 90             | 45034          | 10.0     | 9.68      |       |
| 72 cis-1,3-Dichloropropene    | 75       | 6.329   | 6.328          | 0.001    | 95             | 100196         | 10.0     | 9.68      |       |
| 73 4-Methyl-2-pentanone (MIBK | 43       | 6.432   | 6.438          | -0.006   | 94             | 390958         | 50.0     | 50.3      |       |
| 74 Toluene                    | 92       | 6.621   | 6.620          | 0.001    | 98             | 207542         | 10.0     | 10.4      |       |
| 77 trans-1,3-Dichloropropene  | 75       | 6.846   | 6.846          | 0.000    | 97             | 86121          | 10.0     | 9.51      |       |
| 75 Ethyl methacrylate         | 69       | 6.852   | 6.852          | 0.000    | 88             | 85564          | 10.0     | 9.30      |       |
| 79 1,1,2-Trichloroethane      | 83       | 7.040   | 7.040          | 0.000    | 92             | 51927          | 10.0     | 9.86      |       |
| 81 Tetrachloroethene          | 166      | 7.144   | 7.144          | 0.000    | 98             | 87271          | 10.0     | 10.2      |       |
| 82 1,3-Dichloropropane        | 76       | 7.205   | 7.204          | 0.001    | 95             | 109773         | 10.0     | 10.1      |       |
| 80 2-Hexanone                 | 43       | 7.223   | 7.223          | 0.000    | 94             | 280311         | 50.0     | 49.5      |       |
| 83 Chlorodibromomethane       | 129      | 7.448   | 7.442          | 0.006    | 90             | 46491          | 10.0     | 9.59      |       |
| 84 Ethylene Dibromide         | 107      | 7.570   | 7.569          | 0.001    | 98             | 62473          | 10.0     | 9.76      |       |
| 87 Chlorobenzene              | 112      | 8.020   | 8.020          | 0.000    | 95             | 219078         | 10.0     | 10.2      |       |
| 88 Ethylbenzene               | 91       | 8.087   | 8.087          | 0.000    | 98             | 374375         | 10.0     | 10.4      |       |
| 89 1,1,1,2-Tetrachloroethane  | 131      | 8.105   | 8.105          | 0.000    | 92             | 58554          | 10.0     | 9.29      |       |
| 90 m-Xylene & p-Xylene        | 106      | 8.202   | 8.202          | 0.000    | 100            | 147562         | 10.0     | 10.0      |       |
| 91 o-Xylene                   | 106      | 8.628   | 8.634          | -0.006   | 97             | 144037         | 10.0     | 10.2      |       |
| 92 Styrene                    | 104      | 8.652   | 8.652          | 0.000    | 95             | 246932         | 10.0     | 10.1      |       |
| 95 Bromoform                  | 173      | 8.926   | 8.926          | 0.000    | 97             | 23014          | 10.0     | 9.48      |       |
| 94 Isopropylbenzene           | 105      | 8.999   | 9.005          | -0.006   | 96             | 374212         | 10.0     | 10.4      |       |
| 97 1,1,2,2-Tetrachloroethane  | 83       | 9.395   | 9.388          | 0.007    | 84             | 80053          | 10.0     | 9.87      |       |
| 101 Bromobenzene              | 156      | 9.395   | 9.388          | 0.007    | 92             | 95723          | 10.0     | 10.0      |       |
| 98 trans-1,4-Dichloro-2-buten | 53       | 9.437   | 9.437          | 0.007    | 41             | 26690          | 10.0     | 9.56      |       |
| 99 N-Propylbenzene            | 91       | 9.437   | 9.437          | 0.000    | 98             | 434610         | 10.0     | 10.6      |       |
| 100 1,2,3-Trichloropropane    | 110      | 9.443   | 9.443          | 0.000    | 52             | 27661          | 10.0     | 10.0      |       |
| 103 2-Chlorotoluene           | 126      | 9.443   | 9.443<br>9.565 | 0.000    | 96             | 88173          | 10.0     | 9.98      |       |
| 102 1,3,5-Trimethylbenzene    | 105      | 9.608   | 9.607          | 0.000    | 94             | 315236         | 10.0     | 10.4      |       |
| 105 4-Chlorotoluene           | 126      | 9.675   | 9.607<br>9.674 | 0.001    | 94<br>98       | 96315          | 10.0     | 10.4      |       |
|                               |          |         |                |          |                |                | 10.0     |           |       |
| 106 tert-Butylbenzene         | 134      | 9.930   | 9.936          | -0.006   | 93             | 68730          |          | 10.1      |       |
| 107 1,2,4-Trimethylbenzene    | 105      | 9.985   | 9.985          | 0.000    | 96             | 325576         | 10.0     | 10.4      |       |

Report Date: 02-Oct-2017 14:08:56

Data File

F 8260 IS\_00576

| Data File: \\Cnromina\burraio\CnromData\HP5973F\20170929-66009.b\F7938.D |     |                                            |        |        |    |                        |             |           |       |
|--------------------------------------------------------------------------|-----|--------------------------------------------|--------|--------|----|------------------------|-------------|-----------|-------|
|                                                                          |     | RT                                         | Adj RT | Dlt RT |    |                        | Cal Amt     | OnCol Amt |       |
| Compound                                                                 | Sig | (min.)                                     | (min.) | (min.) | Q  | Response               | ug/kg       | ug/kg     | Flags |
|                                                                          |     |                                            |        |        |    |                        |             |           |       |
| 109 sec-Butylbenzene                                                     | 105 | 10.143                                     | 10.143 | 0.000  | 94 | 404040                 | 10.0        | 10.5      |       |
| 110 4-Isopropyltoluene                                                   | 119 | 10.271                                     | 10.271 | 0.000  | 97 | 350208                 | 10.0        | 10.4      |       |
| 111 1,3-Dichlorobenzene                                                  | 146 | 10.295                                     | 10.301 | -0.006 | 98 | 185213                 | 10.0        | 10.2      |       |
| 113 1,4-Dichlorobenzene                                                  | 146 | 10.380                                     | 10.380 | 0.000  | 96 | 189660                 | 10.0        | 10.2      |       |
| 115 n-Butylbenzene                                                       | 91  | 10.648                                     | 10.648 | 0.000  | 97 | 307673                 | 10.0        | 10.4      |       |
| 116 1,2-Dichlorobenzene                                                  | 146 | 10.733                                     | 10.733 | 0.000  | 97 | 175944                 | 10.0        | 10.2      |       |
| 117 1,2-Dibromo-3-Chloropropan                                           | 75  | 11.421                                     | 11.420 | 0.000  | 81 | 10130                  | 10.0        | 9.30      |       |
| 119 1,2,4-Trichlorobenzene                                               | 180 | 12.053                                     | 12.053 | 0.000  | 95 | 117910                 | 10.0        | 9.88      |       |
| 120 Hexachlorobutadiene                                                  | 225 | 12.144                                     | 12.150 | -0.006 | 97 | 67159                  | 10.0        | 9.94      |       |
| 121 Naphthalene                                                          | 128 | 12.272                                     | 12.272 | 0.000  | 96 | 283378                 | 10.0        | 9.61      |       |
| 122 1,2,3-Trichlorobenzene                                               | 180 | 12.473                                     | 12.473 | 0.000  | 96 | 109460                 | 10.0        | 9.75      |       |
| S 125 1,2-Dichloroethene, Total                                          | 1   |                                            |        |        | 0  |                        |             | 20.4      |       |
| S 126 1,3-Dichloropropene, Total                                         | 1   |                                            |        |        | 0  |                        |             | 19.2      |       |
| S 123 Total BTEX                                                         | 1   |                                            |        |        | 0  |                        |             | 51.2      |       |
| S 124 Xylenes, Total                                                     | 1   |                                            |        |        | 0  |                        |             | 20.2      |       |
| OC Flag Legend Review Flags M - Manually Integrated                      |     |                                            |        |        |    |                        |             |           |       |
| Reagents: 8260 CORP mix_00111 GAS CORP mix_00243                         |     | Amount Added: 10.00<br>Amount Added: 10.00 |        |        |    | Units: uL<br>Units: uL |             |           |       |
| F 8260 SURR_00259                                                        |     | Amount Added: 1.00                         |        |        |    | Units: uL              | Run Reagent |           |       |

Amount Added: 1.00

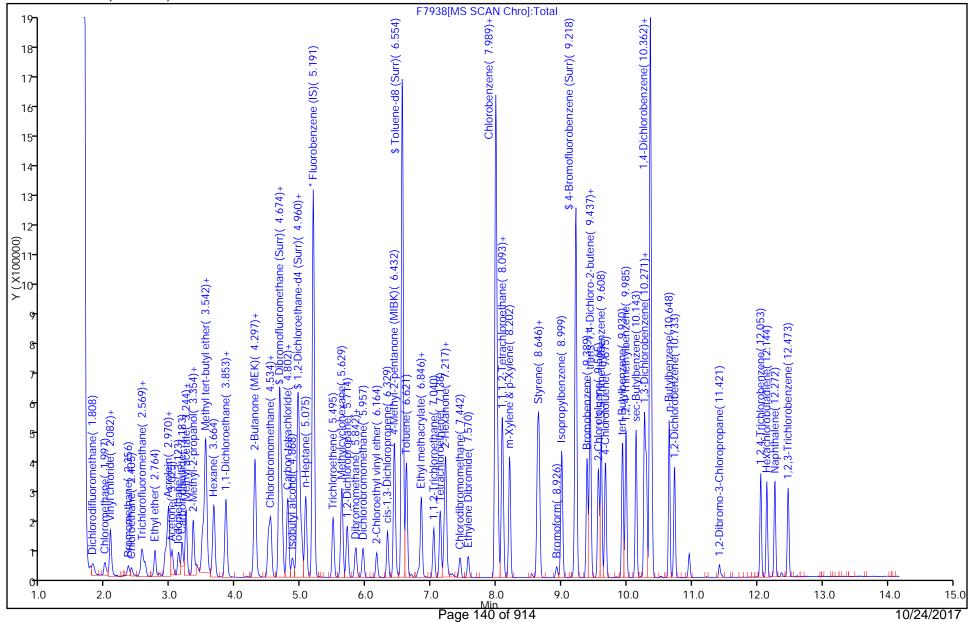
Run Reagent

Units: uL

Report Date: 02-Oct-2017 14:08:56 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7938.D Injection Date: 29-Sep-2017 16:50:30 Instrument ID: HP5973F


Lims ID: IC 3

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

CDC

8

Report Date: 02-Oct-2017 14:08:56 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

### TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7938.D Injection Date: 29-Sep-2017 16:50:30 Instrument ID: HP5973F

Lims ID: IC 3

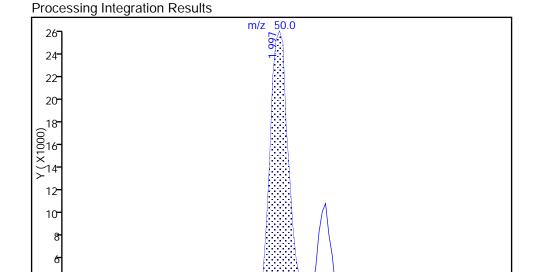
Client ID:

Operator ID: CDC ALS Bottle#: 4 Worklist Smp#: 8

Purge Vol: 5.000 mL Dil. Factor: 1.0000

0

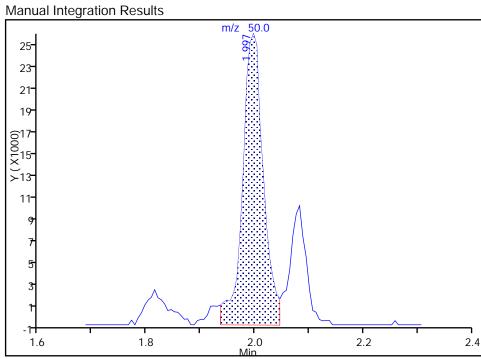
1.6


Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN

## 12 Chloromethane, CAS: 74-87-3

Signal: 1


RT: 2.00 Area: 60813 Amount: 8.907680 Amount Units: ug/kg



2.0

2.2

RT: 2.00 Area: 68848 Amount: 10.125920 Amount Units: ug/kg



Reviewer: cwiklinc, 02-Oct-2017 10:43:25

Audit Action: Manually Integrated

Audit Reason: Incomplete Integration

Page 141 of 914

1.8

2.4

Report Date: 02-Oct-2017 14:08:59 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7939.D

Lims ID: IC 4

Client ID:

Sample Type: IC Calib Level: 4

Inject. Date: 29-Sep-2017 17:16:30 ALS Bottle#: 5 Worklist Smp#: 9

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 4

Misc. Info.: 480-0066009-009

Operator ID: CDC Instrument ID: HP5973F

Sublist: chrom-F-8260 SOIL\*sub27

Limit Group: MV - 8260C ICAL

Last Update:02-Oct-2017 14:08:57Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1: ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK030

First Level Reviewer: cwiklinc Date: 02-Oct-2017 10:41:35

| First Level Reviewer. CWIKIIIIC        |     |        |        | ale.   |     | 02-001-201 | 1 10.41.33 |           |        |
|----------------------------------------|-----|--------|--------|--------|-----|------------|------------|-----------|--------|
|                                        |     | RT     | Adj RT | Dlt RT |     |            | Cal Amt    | OnCol Amt |        |
| Compound                               | Sig | (min.) | (min.) | (min.) | Q   | Response   | ug/kg      | ug/kg     | Flags  |
|                                        |     |        |        |        |     |            |            | •         |        |
| * 153 Fluorobenzene (IS)               | 70  | 5.191  | 5.191  | 0.000  | 99  | 270093     | 50.0       | 50.0      |        |
| <ul><li>* 2 Chlorobenzene-d5</li></ul> | 82  | 7.989  | 7.989  | 0.000  | 86  | 537539     | 50.0       | 50.0      |        |
| * 3 1,4-Dichlorobenzene-d4             | 152 | 10.362 | 10.356 | 0.006  | 95  | 547154     | 50.0       | 50.0      |        |
| \$ 154 Dibromofluoromethane (Surr      | 113 | 4.674  | 4.674  | 0.000  | 94  | 322631     | 50.0       | 48.1      |        |
| \$ 41,2-Dichloroethane-d4 (Sur         | 67  | 4.954  | 4.960  | -0.006 | 0   | 209755     | 50.0       | 48.8      |        |
| \$ 5 Toluene-d8 (Surr)                 | 98  | 6.560  | 6.560  | 0.000  | 93  | 1306979    | 50.0       | 49.4      |        |
| \$ 6 4-Bromofluorobenzene (Surr        | 174 | 9.218  | 9.218  | 0.000  | 90  | 428115     | 50.0       | 49.4      |        |
| 10 Dichlorodifluoromethane             | 85  | 1.815  | 1.827  | -0.013 | 99  | 149155     | 20.0       | 20.8      |        |
| 12 Chloromethane                       | 50  | 1.997  | 2.003  | -0.006 | 99  | 136238     | 20.0       | 20.6      | M      |
| 151 Butadiene                          | 54  | 2.082  | 2.088  | -0.006 | 85  | 139802     | 20.0       | 21.3      |        |
| 13 Vinyl chloride                      | 62  | 2.088  | 2.094  | -0.006 | 98  | 141116     | 20.0       | 21.4      |        |
| 14 Bromomethane                        | 94  | 2.356  | 2.362  | -0.006 | 91  | 61135      | 20.0       | 19.9      |        |
| 15 Chloroethane                        | 64  | 2.405  | 2.417  | -0.012 | 100 | 56028      | 20.0       | 20.1      |        |
| 16 Dichlorofluoromethane               | 67  | 2.563  | 2.569  | -0.006 | 98  | 178503     | 20.0       | 20.7      |        |
| 17 Trichlorofluoromethane              | 101 | 2.611  | 2.617  | -0.006 | 99  | 172605     | 20.0       | 20.5      |        |
| 18 Ethyl ether                         | 59  | 2.764  | 2.770  | -0.006 | 89  | 103730     | 20.0       | 19.8      |        |
| 20 Acrolein                            | 56  | 2.922  | 2.922  | 0.000  | 100 | 138966     | 100.0      | 105.6     |        |
| 21 1,1,2-Trichloro-1,2,2-trif          | 101 | 2.952  | 2.958  | -0.006 | 93  | 142582     | 20.0       | 20.2      |        |
| 22 1,1-Dichloroethene                  | 96  | 2.976  | 2.982  | -0.006 | 95  | 133842     | 20.0       | 20.0      |        |
| 23 Acetone                             | 43  | 3.025  | 3.031  | -0.006 | 99  | 298138     | 100.0      | 106.3     |        |
| 25 Iodomethane                         | 142 | 3.129  | 3.135  | -0.006 | 98  | 236295     | 20.0       | 19.9      |        |
| 26 Carbon disulfide                    | 76  | 3.183  | 3.183  | 0.000  | 99  | 415075     | 20.0       | 20.1      |        |
| 28 3-Chloro-1-propene                  | 41  | 3.244  | 3.244  | 0.000  | 89  | 245349     | 20.0       | 20.0      |        |
| 27 Methyl acetate                      | 43  | 3.238  | 3.244  | -0.006 | 80  | 261528     | 40.0       | 42.6      |        |
| 30 Methylene Chloride                  | 84  | 3.354  | 3.354  | 0.000  | 98  | 167915     | 20.0       | 19.9      |        |
| 31 2-Methyl-2-propanol                 | 59  | 3.408  | 3.414  | -0.006 | 99  | 221730     | 200.0      | 213.4     |        |
| 32 Methyl tert-butyl ether             | 73  | 3.506  | 3.500  | 0.006  | 96  | 458408     | 20.0       | 20.3      |        |
| 34 trans-1,2-Dichloroethene            | 96  | 3.536  | 3.536  | 0.000  | 94  | 151832     | 20.0       | 19.8      |        |
| 33 Acrylonitrile                       | 53  | 3.548  | 3.554  | -0.006 | 99  | 709268     | 200.0      | 216.1     |        |
| 35 Hexane                              | 57  | 3.670  | 3.670  | 0.000  | 88  | 314216     | 20.0       | 20.8      |        |
| Dama 440 of 044                        |     |        |        |        |     |            |            |           | 1/0047 |

| Data File: \\ChromNA\B        | Suffalo\0 | ChromDa | ta\HP5973      | 3F\201709 | 929-66   | 6009.b\F7939.E | <u> </u> |              |       |
|-------------------------------|-----------|---------|----------------|-----------|----------|----------------|----------|--------------|-------|
|                               |           | RT      | Adj RT         | Dlt RT    |          |                | Cal Amt  | OnCol Amt    |       |
| Compound                      | Sig       | (min.)  | (min.)         | (min.)    | Q        | Response       | ug/kg    | ug/kg        | Flags |
|                               |           |         |                |           |          |                |          |              |       |
| 37 Vinyl acetate              | 43        | 3.846   | 3.846          | 0.000     | 97       | 590609         | 40.0     | 41.9         |       |
| 39 1,1-Dichloroethane         | 63        | 3.859   | 3.865          | -0.006    | 97       | 297106         | 20.0     | 20.2         |       |
| 43 2-Butanone (MEK)           | 43        | 4.291   | 4.290          | 0.001     | 99       | 438086         | 100.0    | 110.5        |       |
| 44 2,2-Dichloropropane        | 77        | 4.291   | 4.297          | -0.006    | 62       | 206874         | 20.0     | 20.2         |       |
| 45 cis-1,2-Dichloroethene     | 96        | 4.303   | 4.309          | -0.006    | 85       | 172968         | 20.0     | 20.1         |       |
| 48 Chlorobromomethane         | 128       | 4.510   | 4.509          | 0.001     | 97       | 77654          | 20.0     | 19.9         |       |
| 49 Tetrahydrofuran            | 42        | 4.528   | 4.528          | 0.000     | 89       | 110699         | 40.0     | 43.9         |       |
| 50 Chloroform                 | 83        | 4.540   | 4.546          | -0.006    | 96       | 255304         | 20.0     | 19.8         |       |
| 51 1,1,1-Trichloroethane      | 97        | 4.680   | 4.686          | -0.006    | 97       | 211474         | 20.0     | 20.0         |       |
| 52 Cyclohexane                | 56        | 4.710   | 4.710          | 0.000     | 91       | 337554         | 20.0     | 20.1         |       |
| 54 1,1-Dichloropropene        | 75        | 4.802   | 4.801          | 0.001     | 95       | 199649         | 20.0     | 20.0         |       |
| 55 Carbon tetrachloride       | 117       | 4.808   | 4.808          | 0.000     | 98       | 154577         | 20.0     | 19.4         |       |
| 53 Isobutyl alcohol           | 43        | 4.875   | 4.868          | 0.007     | 93       | 192178         | 500.0    | 523.5        |       |
| 57 Benzene                    | 78        | 4.984   | 4.984          | 0.000     | 96       | 610266         | 20.0     | 20.3         |       |
| 58 1,2-Dichloroethane         | 62        | 5.014   | 5.020          | -0.006    | 96       | 225343         | 20.0     | 19.8         |       |
| 59 n-Heptane                  | 43        | 5.075   | 5.081          | -0.006    | 92       | 273371         | 20.0     | 20.0         |       |
| 62 Trichloroethene            | 95        | 5.495   | 5.495          | 0.000     | 97       | 149638         | 20.0     | 19.6         |       |
| 64 Methylcyclohexane          | 83        | 5.629   | 5.629          | 0.000     | 94       | 288399         | 20.0     | 20.1         |       |
| 65 1,2-Dichloropropane        | 63        | 5.714   | 5.714          | 0.000     | 97       | 163435         | 20.0     | 20.0         |       |
| 66 1,4-Dioxane                | 88        | 5.824   | 5.824          | 0.000     | 97       | 34254          | 400.0    | 410.4        |       |
| 67 Dibromomethane             | 93        | 5.842   | 5.842          | 0.000     | 95       | 83674          | 20.0     | 19.8         |       |
| 68 Dichlorobromomethane       | 83        | 5.957   | 5.957          | 0.000     | 99       | 155933         | 20.0     | 19.3         |       |
| 69 2-Chloroethyl vinyl ether  | 63        | 6.164   | 6.164          | 0.000     | 91       | 92292          | 20.0     | 20.3         |       |
| 72 cis-1,3-Dichloropropene    | 75        | 6.329   | 6.328          | 0.001     | 95       | 197379         | 20.0     | 19.6         |       |
| 73 4-Methyl-2-pentanone (MIBK | 43        | 6.438   | 6.438          | 0.000     | 94       | 851152         | 100.0    | 114.0        |       |
| 74 Toluene                    | 92        | 6.621   | 6.620          | 0.001     | 98       | 384744         | 20.0     | 20.1         |       |
| 77 trans-1,3-Dichloropropene  | 75        | 6.846   | 6.846          | 0.000     | 97       | 174351         | 20.0     | 20.0         |       |
| 75 Ethyl methacrylate         | 69        | 6.852   | 6.852          | 0.000     | 91       | 180521         | 20.0     | 20.4         |       |
| 79 1,1,2-Trichloroethane      | 83        | 7.040   | 7.040          | 0.000     | 92       | 101705         | 20.0     | 20.1         |       |
| 81 Tetrachloroethene          | 166       | 7.138   | 7.144          | -0.006    | 97       | 162228         | 20.0     | 19.8         |       |
| 82 1,3-Dichloropropane        | 76        | 7.198   | 7.204          | -0.006    | 96       | 216014         | 20.0     | 20.8         |       |
| 80 2-Hexanone                 | 43        | 7.223   | 7.223          | 0.000     | 95       | 623735         | 100.0    | 114.7        |       |
| 83 Chlorodibromomethane       | 129       | 7.442   | 7.442          | 0.000     | 91       | 99322          | 20.0     | 17.8         |       |
| 84 Ethylene Dibromide         | 107       | 7.570   | 7.569          | 0.001     | 99       | 125484         | 20.0     | 20.4         |       |
| 87 Chlorobenzene              | 112       | 8.020   | 8.020          | 0.000     | 95       | 414785         | 20.0     | 20.1         |       |
| 88 Ethylbenzene               | 91        | 8.087   | 8.087          | 0.000     | 98       | 709591         | 20.0     | 20.5         |       |
| 89 1,1,1,2-Tetrachloroethane  | 131       | 8.105   | 8.105          | 0.000     | 92       | 119961         | 20.0     | 19.8         |       |
| 90 m-Xylene & p-Xylene        | 106       | 8.202   | 8.202          | 0.000     | 99       | 287906         | 20.0     | 20.4         |       |
| 91 o-Xylene                   | 106       | 8.634   | 8.634          | 0.000     | 96       | 277466         | 20.0     | 20.4         |       |
| 92 Styrene                    | 104       | 8.652   | 8.652          | 0.000     | 95       | 478101         | 20.0     | 20.4         |       |
| 95 Bromoform                  | 173       | 8.920   | 8.926          | -0.006    | 97       | 52342          | 20.0     | 19.6         |       |
| 94 Isopropylbenzene           | 105       | 8.999   | 9.005          | -0.006    | 95       | 718530         | 20.0     | 20.5         |       |
| 101 Bromobenzene              | 156       | 9.389   | 9.388          | 0.001     | 94       | 182867         | 20.0     | 19.6         |       |
| 97 1,1,2,2-Tetrachloroethane  | 83        | 9.389   | 9.388          | 0.001     | 78       | 164609         | 20.0     | 20.7         |       |
| 99 N-Propylbenzene            | 91        | 9.437   | 9.437          | 0.000     | 98       | 824541         | 20.0     | 20.6         |       |
| 98 trans-1,4-Dichloro-2-buten | 53        | 9.437   | 9.437          | 0.000     | 59       | 56480          | 20.0     | 20.7         |       |
| 100 1,2,3-Trichloropropane    | 110       | 9.443   | 9.443          | 0.000     | 83       | 55343          | 20.0     | 20.7         |       |
| 103 2-Chlorotoluene           | 126       | 9.443   | 9.443<br>9.565 | 0.000     | 97       | 172603         | 20.0     | 20.9         |       |
| 102 1,3,5-Trimethylbenzene    | 105       | 9.608   | 9.505<br>9.607 | 0.000     | 91       | 611286         | 20.0     | 20.6         |       |
| 105 4-Chlorotoluene           | 126       | 9.668   | 9.607<br>9.674 | -0.001    | 94<br>98 | 178415         | 20.0     | 20.6<br>19.9 |       |
|                               |           |         |                |           |          |                |          |              |       |
| 106 tert-Butylbenzene         | 134       | 9.936   | 9.936          | 0.000     | 93       | 134411         | 20.0     | 20.1         |       |
| 107 1,2,4-Trimethylbenzene    | 105       | 9.985   | 9.985          | 0.000     | 96       | 632390         | 20.0     | 20.6         |       |

ct-2017 14:08:59 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7939.D Report Date: 02-Oct-2017 14:08:59

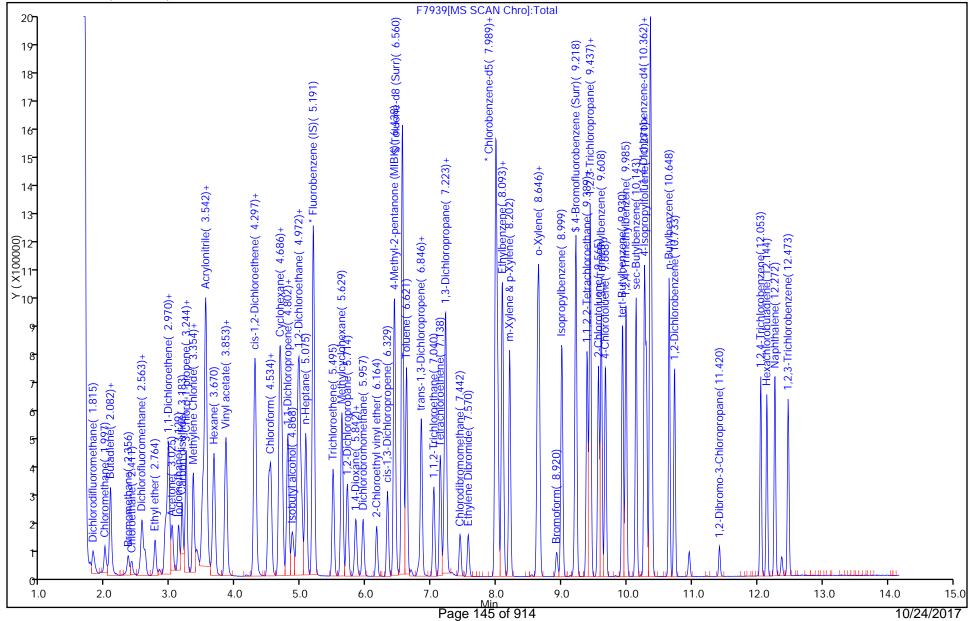
| Data File: \\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7939.D |      |        |          |        |    |           |         |           |       |
|-------------------------------------------------------------------------|------|--------|----------|--------|----|-----------|---------|-----------|-------|
| 0                                                                       | C! a | RT     | Adj RT   | Dlt RT |    | D         | Cal Amt | OnCol Amt | E1    |
| Compound                                                                | Sig  | (min.) | (min.)   | (min.) | Q  | Response  | ug/kg   | ug/kg     | Flags |
|                                                                         |      |        |          |        |    |           |         |           |       |
| 109 sec-Butylbenzene                                                    | 105  | 10.143 | 10.143   | 0.000  | 94 | 779296    | 20.0    | 20.8      |       |
| 110 4-Isopropyltoluene                                                  | 119  | 10.271 | 10.271   | 0.000  | 97 | 680092    | 20.0    | 20.7      |       |
| 111 1,3-Dichlorobenzene                                                 | 146  | 10.301 | 10.301   | 0.000  | 98 | 361420    | 20.0    | 20.4      |       |
| 113 1,4-Dichlorobenzene                                                 | 146  | 10.380 | 10.380   | 0.000  | 95 | 363097    | 20.0    | 20.1      |       |
| 115 n-Butylbenzene                                                      | 91   | 10.648 | 10.648   | 0.000  | 97 | 594002    | 20.0    | 20.5      |       |
| 116 1,2-Dichlorobenzene                                                 | 146  | 10.733 | 10.733   | 0.000  | 98 | 342227    | 20.0    | 20.2      |       |
| 117 1,2-Dibromo-3-Chloropropan                                          | 75   | 11.420 | 11.420   | 0.000  | 83 | 24973     | 20.0    | 19.0      |       |
| 119 1,2,4-Trichlorobenzene                                              | 180  | 12.053 | 12.053   | 0.000  | 95 | 234515    | 20.0    | 20.1      |       |
| 120 Hexachlorobutadiene                                                 | 225  | 12.144 | 12.150   | -0.006 | 97 | 132202    | 20.0    | 20.0      |       |
| 121 Naphthalene                                                         | 128  | 12.272 | 12.272   | 0.000  | 97 | 605469    | 20.0    | 21.0      |       |
| 122 1,2,3-Trichlorobenzene                                              | 180  | 12.473 | 12.473   | 0.000  | 97 | 224069    | 20.0    | 20.4      |       |
| S 123 Total BTEX                                                        | 1    |        |          |        | 0  |           |         | 101.7     |       |
| S 124 Xylenes, Total                                                    | 1    |        |          |        | 0  |           |         | 40.8      |       |
| S 125 1,2-Dichloroethene, Total                                         | 1    |        |          |        | 0  |           |         | 39.9      |       |
| S 126 1,3-Dichloropropene, Total                                        | 1    |        |          |        | 0  |           |         | 39.6      |       |
| QC Flag Legend Review Flags M - Manually Integrated Reagents:           |      |        |          |        |    |           |         |           |       |
| 8260 CORP mix_00111                                                     |      | Amount | Added: 1 | 0.00   | ι  | Jnits: uL |         |           |       |

Amount Added: 10.00 GAS CORP mix\_00243 Units: uL F 8260 SURR\_00259 Run Reagent Amount Added: 1.00 Units: uL Run Reagent F 8260 IS\_00576 Amount Added: 1.00 Units: uL

Report Date: 02-Oct-2017 14:08:59 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7939.D Injection Date: 29-Sep-2017 17:16:30 Instrument ID: HP5973F


Lims ID: IC 4

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

CDC

9

5

Report Date: 02-Oct-2017 14:08:59

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

### TestAmerica Buffalo

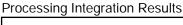
Data File: Injection Date: 29-Sep-2017 17:16:30 Instrument ID: HP5973F

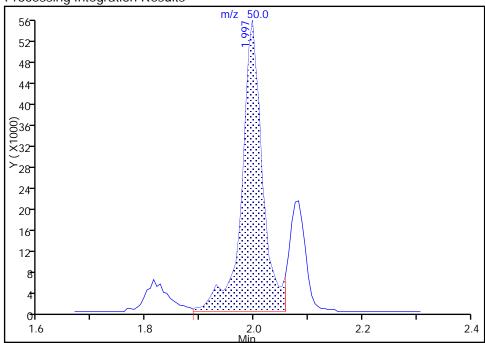
Lims ID: IC 4

Client ID:

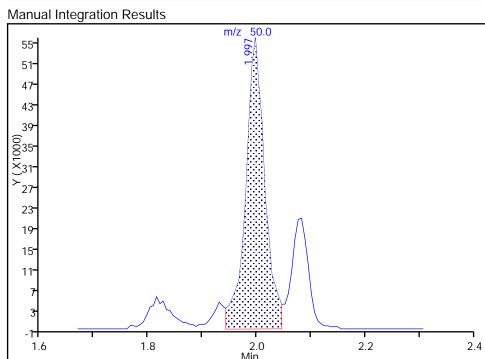
Operator ID: CDC ALS Bottle#: 5 Worklist Smp#: 9

Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: F-8260 SOIL Limit Group: MV - 8260C ICAL


Column: ZB-624 (0.25 mm) Detector MS SCAN

### 12 Chloromethane, CAS: 74-87-3


Signal: 1

RT: 2.00 Area: 147779 Amount: 21.835152 Amount Units: ug/kg





RT: 2.00 Area: 136238 20.552187 Amount: Amount Units: ug/kg



Reviewer: cwiklinc, 02-Oct-2017 10:44:41

Audit Action: Manually Integrated

Audit Reason: Other

Page 146 of 914

Report Date: 02-Oct-2017 14:09:02 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7940.D

Lims ID: ICIS 5

Client ID:

Sample Type: ICIS Calib Level: 5

Inject. Date: 29-Sep-2017 17:41:30 ALS Bottle#: 6 Worklist Smp#: 10

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: ICIS 5

Misc. Info.: 480-0066009-010

Operator ID: CDC Instrument ID: HP5973F

Sublist: chrom-F-8260 SOIL\*sub27

Limit Group: MV - 8260C ICAL

Last Update:02-Oct-2017 14:09:00Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1: ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK030

First Level Reviewer: cwiklinc Date: 02-Oct-2017 10:35:33

| First Level Reviewer: cwiklinc       |     |        | Date:  |        |     | 02-Oct-201 | 7 10:35:33 |           |          |
|--------------------------------------|-----|--------|--------|--------|-----|------------|------------|-----------|----------|
|                                      |     | RT     | Adj RT | Dlt RT |     |            | Cal Amt    | OnCol Amt |          |
| Compound                             | Sig | (min.) | (min.) | (min.) | Q   | Response   | ug/kg      | ug/kg     | Flags    |
|                                      |     |        |        |        |     | -          |            | -         | <u> </u> |
| * 153 Fluorobenzene (IS)             | 70  | 5.197  | 5.197  | 0.000  | 99  | 274919     | 50.0       | 50.0      |          |
| <ul><li>2 Chlorobenzene-d5</li></ul> | 82  | 7.989  | 7.989  | 0.000  | 87  | 549368     | 50.0       | 50.0      |          |
| * 3 1,4-Dichlorobenzene-d4           | 152 | 10.356 | 10.356 | 0.000  | 94  | 566141     | 50.0       | 50.0      |          |
| \$ 154 Dibromofluoromethane (Surr    | 113 | 4.674  | 4.674  | 0.000  | 94  | 343198     | 50.0       | 50.3      |          |
| \$ 41,2-Dichloroethane-d4 (Sur       | 67  | 4.960  | 4.960  | 0.000  | 0   | 219321     | 50.0       | 50.1      |          |
| \$ 5 Toluene-d8 (Surr)               | 98  | 6.560  | 6.560  | 0.000  | 93  | 1368200    | 50.0       | 50.6      |          |
| \$ 6 4-Bromofluorobenzene (Surr      | 174 | 9.218  | 9.218  | 0.000  | 91  | 451166     | 50.0       | 50.9      |          |
| 10 Dichlorodifluoromethane           | 85  | 1.827  | 1.827  | 0.000  | 100 | 359526     | 50.0       | 49.4      |          |
| 12 Chloromethane                     | 50  | 2.003  | 2.003  | 0.000  | 99  | 325986     | 50.0       | 48.3      |          |
| 151 Butadiene                        | 54  | 2.088  | 2.088  | 0.000  | 86  | 328485     | 50.0       | 49.1      |          |
| 13 Vinyl chloride                    | 62  | 2.094  | 2.094  | 0.000  | 98  | 329359     | 50.0       | 49.0      |          |
| 14 Bromomethane                      | 94  | 2.362  | 2.362  | 0.000  | 91  | 156278     | 50.0       | 50.0      |          |
| 15 Chloroethane                      | 64  | 2.417  | 2.417  | 0.000  | 100 | 137537     | 50.0       | 48.4      |          |
| 16 Dichlorofluoromethane             | 67  | 2.569  | 2.569  | 0.000  | 98  | 432547     | 50.0       | 49.4      |          |
| 17 Trichlorofluoromethane            | 101 | 2.617  | 2.617  | 0.000  | 96  | 417622     | 50.0       | 48.8      |          |
| 18 Ethyl ether                       | 59  | 2.770  | 2.770  | 0.000  | 88  | 259319     | 50.0       | 48.7      |          |
| 20 Acrolein                          | 56  | 2.922  | 2.922  | 0.000  | 99  | 337623     | 250.0      | 252.1     |          |
| 21 1,1,2-Trichloro-1,2,2-trif        | 101 | 2.958  | 2.958  | 0.000  | 93  | 353196     | 50.0       | 49.2      |          |
| 22 1,1-Dichloroethene                | 96  | 2.982  | 2.982  | 0.000  | 95  | 336752     | 50.0       | 49.5      |          |
| 23 Acetone                           | 43  | 3.031  | 3.031  | 0.000  | 99  | 698963     | 250.0      | 244.7     |          |
| 25 Iodomethane                       | 142 | 3.135  | 3.135  | 0.000  | 98  | 604077     | 50.0       | 50.0      |          |
| 26 Carbon disulfide                  | 76  | 3.183  | 3.183  | 0.000  | 99  | 1095257    | 50.0       | 52.1      |          |
| 27 Methyl acetate                    | 43  | 3.244  | 3.244  | 0.000  | 76  | 619045     | 100.0      | 99.1      |          |
| 28 3-Chloro-1-propene                | 41  | 3.244  | 3.244  | 0.000  | 89  | 622760     | 50.0       | 49.8      |          |
| 30 Methylene Chloride                | 84  | 3.354  | 3.354  | 0.000  | 97  | 414115     | 50.0       | 51.4      |          |
| 31 2-Methyl-2-propanol               | 59  | 3.414  | 3.414  | 0.000  | 99  | 525080     | 500.0      | 496.4     |          |
| 32 Methyl tert-butyl ether           | 73  | 3.500  | 3.500  | 0.000  | 96  | 1165929    | 50.0       | 50.8      |          |
| 34 trans-1,2-Dichloroethene          | 96  | 3.536  | 3.536  | 0.000  | 95  | 389276     | 50.0       | 49.9      |          |
| 33 Acrylonitrile                     | 53  | 3.554  | 3.554  | 0.000  | 99  | 1680514    | 500.0      | 503.1     |          |
| 35 Hexane                            | 57  | 3.670  | 3.670  | 0.000  | 87  | 749815     | 50.0       | 51.4      |          |
|                                      |     |        |        |        |     |            |            |           |          |

ct-2017 14:09:02 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7940.D Report Date: 02-Oct-2017 14:09:02

Data File:

| Data File: \\ChromNA\B        | uttalo\( |            |        |        | 129-66 | 6009.b\F7940.E |         |           |       |
|-------------------------------|----------|------------|--------|--------|--------|----------------|---------|-----------|-------|
|                               |          | RT (mater) | Adj RT | Dlt RT |        | D.             | Cal Amt | OnCol Amt |       |
| Compound                      | Sig      | (min.)     | (min.) | (min.) | Q      | Response       | ug/kg   | ug/kg     | Flags |
| 27 March a salata             | 40       | 2.047      | 2.047  | 0.000  | 07     | 1400057        | 100.0   | 100 /     |       |
| 37 Vinyl acetate              | 43       | 3.846      | 3.846  | 0.000  | 97     | 1488357        | 100.0   | 103.6     |       |
| 39 1,1-Dichloroethane         | 63       | 3.865      | 3.865  | 0.000  | 96     | 746727         | 50.0    | 49.8      |       |
| 43 2-Butanone (MEK)           | 43       | 4.290      | 4.290  | 0.000  | 99     | 1019451        | 250.0   | 252.5     |       |
| 44 2,2-Dichloropropane        | 77       | 4.297      | 4.297  | 0.000  | 61     | 524460         | 50.0    | 50.2      |       |
| 45 cis-1,2-Dichloroethene     | 96       | 4.309      | 4.309  | 0.000  | 85     | 439935         | 50.0    | 50.2      |       |
| 48 Chlorobromomethane         | 128      | 4.509      | 4.509  | 0.000  | 97     | 204266         | 50.0    | 51.3      |       |
| 49 Tetrahydrofuran            | 42       | 4.528      | 4.528  | 0.000  | 91     | 256433         | 100.0   | 100.0     |       |
| 50 Chloroform                 | 83       | 4.546      | 4.546  | 0.000  | 96     | 653746         | 50.0    | 49.9      |       |
| 51 1,1,1-Trichloroethane      | 97       | 4.686      | 4.686  | 0.000  | 98     | 540307         | 50.0    | 50.2      |       |
| 52 Cyclohexane                | 56       | 4.710      | 4.710  | 0.000  | 91     | 832295         | 50.0    | 48.8      |       |
| 54 1,1-Dichloropropene        | 75       | 4.801      | 4.801  | 0.000  | 95     | 503010         | 50.0    | 49.5      |       |
| 55 Carbon tetrachloride       | 117      | 4.808      | 4.808  | 0.000  | 98     | 416714         | 50.0    | 51.3      |       |
| 53 Isobutyl alcohol           | 43       | 4.868      | 4.868  | 0.000  | 94     | 472240         | 1250.0  | 1263.9    |       |
| 57 Benzene                    | 78       | 4.984      | 4.984  | 0.000  | 98     | 1530653        | 50.0    | 50.0      |       |
| 58 1,2-Dichloroethane         | 62       | 5.020      | 5.020  | 0.000  | 97     | 573341         | 50.0    | 49.4      |       |
| 59 n-Heptane                  | 43       | 5.081      | 5.081  | 0.000  | 91     | 671352         | 50.0    | 48.2      |       |
| 62 Trichloroethene            | 95       | 5.495      | 5.495  | 0.000  | 98     | 387988         | 50.0    | 50.0      |       |
| 64 Methylcyclohexane          | 83       | 5.629      | 5.629  | 0.000  | 94     | 720571         | 50.0    | 49.3      |       |
| 65 1,2-Dichloropropane        | 63       | 5.714      | 5.714  | 0.000  | 97     | 414412         | 50.0    | 49.7      |       |
| 66 1,4-Dioxane                | 88       | 5.824      | 5.824  | 0.000  | 97     | 89671          | 1000.0  | 1051.3    |       |
| 67 Dibromomethane             | 93       | 5.842      | 5.842  | 0.000  | 95     | 218832         | 50.0    | 50.8      |       |
| 68 Dichlorobromomethane       | 83       | 5.957      | 5.957  | 0.000  | 99     | 440017         | 50.0    | 53.4      |       |
| 69 2-Chloroethyl vinyl ether  | 63       | 6.164      | 6.164  | 0.000  | 91     | 243717         | 50.0    | 52.8      |       |
| 72 cis-1,3-Dichloropropene    | 75       | 6.328      | 6.328  | 0.000  | 95     | 548702         | 50.0    | 53.4      |       |
| 73 4-Methyl-2-pentanone (MIBK | 43       | 6.438      | 6.438  | 0.000  | 93     | 1974696        | 250.0   | 258.8     |       |
| 74 Toluene                    | 92       | 6.620      | 6.620  | 0.000  | 99     | 981735         | 50.0    | 50.2      |       |
| 77 trans-1,3-Dichloropropene  | 75       | 6.846      | 6.846  | 0.000  | 95     | 482242         | 50.0    | 54.3      |       |
| 75 Ethyl methacrylate         | 69       | 6.852      | 6.852  | 0.000  | 89     | 477615         | 50.0    | 52.9      |       |
| 79 1,1,2-Trichloroethane      | 83       | 7.040      | 7.040  | 0.000  | 93     | 262250         | 50.0    | 50.8      |       |
| 81 Tetrachloroethene          | 166      | 7.144      | 7.144  | 0.000  | 99     | 421721         | 50.0    | 50.3      |       |
| 82 1,3-Dichloropropane        | 76       | 7.204      | 7.204  | 0.000  | 96     | 541145         | 50.0    | 50.9      |       |
| 80 2-Hexanone                 | 43       | 7.223      | 7.223  | 0.000  | 92     | 1438966        | 250.0   | 258.8     |       |
| 83 Chlorodibromomethane       | 129      | 7.442      | 7.442  | 0.000  | 90     | 297615         | 50.0    | 46.7      |       |
| 84 Ethylene Dibromide         | 107      | 7.569      | 7.569  | 0.000  | 98     | 328315         | 50.0    | 52.3      |       |
| 87 Chlorobenzene              | 112      | 8.020      | 8.020  | 0.000  | 95     | 1059273        | 50.0    | 50.3      |       |
| 88 Ethylbenzene               | 91       | 8.087      | 8.087  | 0.000  | 98     | 1783284        | 50.0    | 50.5      |       |
| 89 1,1,1,2-Tetrachloroethane  | 131      | 8.105      | 8.105  | 0.000  | 94     | 336245         | 50.0    | 54.4      |       |
| 90 m-Xylene & p-Xylene        | 106      | 8.202      | 8.202  | 0.000  | 99     | 730385         | 50.0    | 50.6      |       |
| 91 o-Xylene                   | 106      | 8.634      | 8.634  | 0.000  | 96     | 714936         | 50.0    | 51.4      |       |
| 92 Styrene                    | 104      | 8.652      | 8.652  | 0.000  | 95     | 1238643        | 50.0    | 51.6      |       |
| 95 Bromoform                  | 173      | 8.926      | 8.926  | 0.000  | 97     | 165468         | 50.0    | 50.3      |       |
| 94 Isopropylbenzene           | 105      | 9.005      | 9.005  | 0.000  | 96     | 1809206        | 50.0    | 49.8      |       |
| 97 1,1,2,2-Tetrachloroethane  | 83       | 9.388      | 9.388  | 0.000  | 92     | 419557         | 50.0    | 51.1      |       |
| 101 Bromobenzene              | 156      | 9.388      | 9.388  | 0.000  | 93     | 478168         | 50.0    | 49.5      |       |
| 98 trans-1,4-Dichloro-2-buten | 53       | 9.437      | 9.437  | 0.000  | 59     | 145760         | 50.0    | 51.6      |       |
| 99 N-Propylbenzene            | 91       | 9.437      | 9.437  | 0.000  | 98     | 2072474        | 50.0    | 50.1      |       |
| 100 1,2,3-Trichloropropane    | 110      | 9.443      | 9.443  | 0.000  | 82     | 135728         | 50.0    | 49.5      |       |
| 103 2-Chlorotoluene           | 126      | 9.565      | 9.565  | 0.000  | 97     | 445864         | 50.0    | 49.8      |       |
| 102 1,3,5-Trimethylbenzene    | 105      | 9.607      | 9.607  | 0.000  | 94     | 1555399        | 50.0    | 50.6      |       |
| 105 4-Chlorotoluene           | 126      | 9.674      | 9.674  | 0.000  | 97     | 463948         | 50.0    | 50.0      |       |
| 106 tert-Butylbenzene         | 134      | 9.936      | 9.936  | 0.000  | 93     | 343173         | 50.0    | 49.7      |       |
| -                             | 105      | 9.985      |        | 0.000  | 96     |                | 50.0    | 50.5      |       |
| 107 1,2,4-Trimethylbenzene    | 103      | 7.700      | 9.985  | 0.000  | 90     | 1603783        | ວບ.ບ    | 0.00      |       |

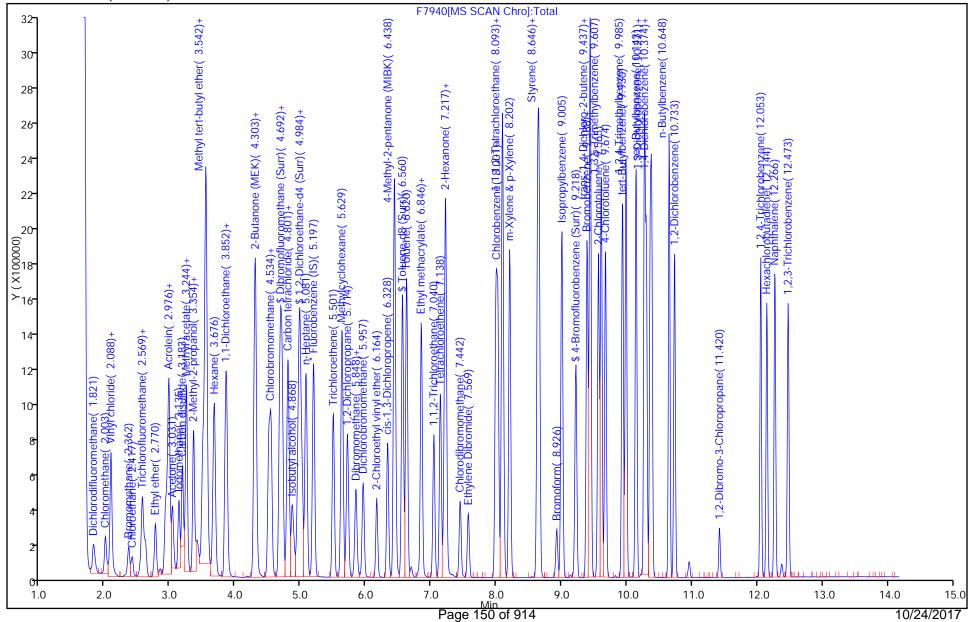
Report Date: 02-Oct-2017 14:09:02
Data File: \ChromNA\Buffa ct-2017 14:09:02 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7940.D

| Data File: \\Cnromina\B        | Data File: \(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ticle}}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ticle}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texitile}\text{\text{\text{\texit}\xi}\text{\text{\text{\text{\texitile}\tint{\text{\texicleft{\texictex{\texit{\text{\texi{\texi{\texi}\texitileftent{\ter |        |          |        |    |           |           |           |       |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------|----|-----------|-----------|-----------|-------|
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RT     | Adj RT   | Dlt RT |    |           | Cal Amt   | OnCol Amt |       |
| Compound                       | Sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (min.) | (min.)   | (min.) | Q  | Response  | ug/kg     | ug/kg     | Flags |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |        |    |           |           |           |       |
| 109 sec-Butylbenzene           | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.143 | 10.143   | 0.000  | 94 | 1954198   | 50.0      | 50.4      |       |
| 110 4-Isopropyltoluene         | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.271 | 10.271   | 0.000  | 97 | 1711634   | 50.0      | 50.3      |       |
| 111 1,3-Dichlorobenzene        | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.301 | 10.301   | 0.000  | 98 | 917286    | 50.0      | 50.1      |       |
| 113 1,4-Dichlorobenzene        | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.380 | 10.380   | 0.000  | 95 | 937232    | 50.0      | 50.0      |       |
| 115 n-Butylbenzene             | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.648 | 10.648   | 0.000  | 97 | 1512447   | 50.0      | 50.5      |       |
| 116 1,2-Dichlorobenzene        | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.733 | 10.733   | 0.000  | 98 | 880773    | 50.0      | 50.4      |       |
| 117 1,2-Dibromo-3-Chloropropan | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.420 | 11.420   | 0.000  | 86 | 70197     | 50.0      | 46.8      |       |
| 119 1,2,4-Trichlorobenzene     | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.053 | 12.053   | 0.000  | 95 | 611619    | 50.0      | 50.6      |       |
| 120 Hexachlorobutadiene        | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.150 | 12.150   | 0.000  | 97 | 347414    | 50.0      | 50.8      |       |
| 121 Naphthalene                | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.272 | 12.272   | 0.000  | 97 | 1569236   | 50.0      | 52.6      |       |
| 122 1,2,3-Trichlorobenzene     | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.473 | 12.473   | 0.000  | 96 | 582459    | 50.0      | 51.2      |       |
| Reagents:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |        |    |           |           |           |       |
| 8260 CORP mix_00111            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amount | Added: 2 | 5.00   | Į  | Jnits: uL |           |           |       |
| GAS CORP mix_00243             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amount | Added: 2 | 5.00   | Į  | Jnits: uL |           |           |       |
| F 8260 SURR_00259              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amount | Added: 1 | .00    | Į  | Jnits: uL | Run Reage | nt        |       |
| F 8260 IS_00576                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amount | Added: 1 | .00    | ι  | Jnits: uL | Run Reage |           |       |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |        |    |           |           |           |       |

Report Date: 02-Oct-2017 14:09:02 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7940.D Injection Date: 29-Sep-2017 17:41:30 Instrument ID: HP5973F


Lims ID: ICIS 5

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

**CDC** 

10

6

Report Date: 02-Oct-2017 14:09:04 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7941.D

Lims ID: IC 6

Client ID:

Sample Type: IC Calib Level: 6

Inject. Date: 29-Sep-2017 18:07:30 ALS Bottle#: 7 Worklist Smp#: 11

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 6

Misc. Info.: 480-0066009-011

Operator ID: CDC Instrument ID: HP5973F

Sublist: chrom-F-8260 SOIL\*sub27

Limit Group: MV - 8260C ICAL

Last Update:02-Oct-2017 14:09:03Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK030

First Level Reviewer: cwiklinc Date: 02-Oct-2017 10:46:29

| First Level Reviewer: cwiklinc       |     |        | D      | ate:   |     | 02-Oct-2017 10:46:29 |         |           |       |
|--------------------------------------|-----|--------|--------|--------|-----|----------------------|---------|-----------|-------|
|                                      |     | RT     | Adj RT | Dlt RT |     |                      | Cal Amt | OnCol Amt |       |
| Compound                             | Sig | (min.) | (min.) | (min.) | Q   | Response             | ug/kg   | ug/kg     | Flags |
|                                      |     |        |        |        |     |                      |         |           |       |
| * 153 Fluorobenzene (IS)             | 70  | 5.191  | 5.197  | -0.006 | 99  | 271600               | 50.0    | 50.0      |       |
| <ul><li>2 Chlorobenzene-d5</li></ul> | 82  | 7.989  | 7.989  | 0.000  | 86  | 557391               | 50.0    | 50.0      |       |
| * 3 1,4-Dichlorobenzene-d4           | 152 | 10.356 | 10.356 | 0.000  | 94  | 569632               | 50.0    | 50.0      |       |
| \$ 154 Dibromofluoromethane (Surr    | 113 | 4.674  | 4.674  | 0.000  | 93  | 354533               | 50.0    | 52.6      |       |
| \$ 41,2-Dichloroethane-d4 (Sur       | 67  | 4.954  | 4.960  | -0.006 | 0   | 223183               | 50.0    | 51.6      |       |
| \$ 5 Toluene-d8 (Surr)               | 98  | 6.560  | 6.560  | 0.000  | 93  | 1415411              | 50.0    | 51.6      |       |
| \$ 6 4-Bromofluorobenzene (Surr      | 174 | 9.218  | 9.218  | 0.000  | 91  | 469781               | 50.0    | 52.2      |       |
| 10 Dichlorodifluoromethane           | 85  | 1.814  | 1.827  | -0.013 | 100 | 715324               | 100.0   | 99.4      |       |
| 12 Chloromethane                     | 50  | 1.997  | 2.003  | -0.006 | 99  | 608992               | 100.0   | 91.4      |       |
| 151 Butadiene                        | 54  | 2.082  | 2.088  | -0.006 | 86  | 604356               | 100.0   | 91.4      |       |
| 13 Vinyl chloride                    | 62  | 2.088  | 2.094  | -0.006 | 99  | 614518               | 100.0   | 92.6      |       |
| 14 Bromomethane                      | 94  | 2.356  | 2.362  | -0.006 | 90  | 282463               | 100.0   | 91.5      |       |
| 15 Chloroethane                      | 64  | 2.405  | 2.417  | -0.012 | 99  | 257535               | 100.0   | 91.7      |       |
| 16 Dichlorofluoromethane             | 67  | 2.563  | 2.569  | -0.006 | 98  | 808716               | 100.0   | 93.4      |       |
| 17 Trichlorofluoromethane            | 101 | 2.611  | 2.617  | -0.006 | 98  | 795681               | 100.0   | 94.1      |       |
| 18 Ethyl ether                       | 59  | 2.763  | 2.770  | -0.007 | 88  | 479914               | 100.0   | 91.3      |       |
| 20 Acrolein                          | 56  | 2.916  | 2.922  | -0.006 | 100 | 684591               | 500.0   | 517.5     |       |
| 21 1,1,2-Trichloro-1,2,2-trif        | 101 | 2.952  | 2.958  | -0.006 | 93  | 694701               | 100.0   | 98.0      |       |
| 22 1,1-Dichloroethene                | 96  | 2.970  | 2.982  | -0.012 | 96  | 661926               | 100.0   | 98.5      |       |
| 23 Acetone                           | 43  | 3.025  | 3.031  | -0.006 | 98  | 1403888              | 500.0   | 497.6     |       |
| 25 Iodomethane                       | 142 | 3.128  | 3.135  | -0.007 | 98  | 1195109              | 100.0   | 100.1     |       |
| 26 Carbon disulfide                  | 76  | 3.177  | 3.183  | -0.006 | 99  | 2190612              | 100.0   | 105.6     |       |
| 28 3-Chloro-1-propene                | 41  | 3.238  | 3.244  | -0.006 | 89  | 1216196              | 100.0   | 98.4      |       |
| 27 Methyl acetate                    | 43  | 3.238  | 3.244  | -0.006 | 97  | 1265638              | 200.0   | 205.1     |       |
| 30 Methylene Chloride                | 84  | 3.354  | 3.354  | 0.000  | 96  | 800995               | 100.0   | 102.9     |       |
| 31 2-Methyl-2-propanol               | 59  | 3.402  | 3.414  | -0.012 | 99  | 1193444              | 1000.0  | 1142.0    |       |
| 32 Methyl tert-butyl ether           | 73  | 3.500  | 3.500  | 0.000  | 96  | 2303311              | 100.0   | 101.7     |       |
| 34 trans-1,2-Dichloroethene          | 96  | 3.530  | 3.536  | -0.006 | 96  | 761705               | 100.0   | 98.8      |       |
| 33 Acrylonitrile                     | 53  | 3.542  | 3.554  | -0.012 | 98  | 3332721              | 1000.0  | 1009.9    |       |
| 35 Hexane                            | 57  | 3.664  | 3.670  | -0.006 | 87  | 1477180              | 100.0   | 104.4     |       |
|                                      |     |        |        |        |     |                      |         |           |       |

ct-2017 14:09:04 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7941.D Report Date: 02-Oct-2017 14:09:04

Data File:

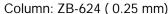
| Data File: \\ChromNA\B        | uttalo\( |            |        |        | 129-66 | 6009.b\F7941.E |         |           |       |
|-------------------------------|----------|------------|--------|--------|--------|----------------|---------|-----------|-------|
|                               |          | RT (mater) | Adj RT | Dlt RT |        | D.             | Cal Amt | OnCol Amt | E     |
| Compound                      | Sig      | (min.)     | (min.) | (min.) | Q      | Response       | ug/kg   | ug/kg     | Flags |
| 27 1/2-1 1-1-                 | 40       | 2.047      | 2.047  | 0.000  | 07     | 007/455        | 200.0   | 200.0     |       |
| 37 Vinyl acetate              | 43       | 3.846      | 3.846  | 0.000  | 97     | 2976155        | 200.0   | 209.8     |       |
| 39 1,1-Dichloroethane         | 63       | 3.859      | 3.865  | -0.007 | 96     | 1454698        | 100.0   | 98.3      |       |
| 43 2-Butanone (MEK)           | 43       | 4.290      | 4.290  | 0.000  | 99     | 2085932        | 500.0   | 523.0     |       |
| 44 2,2-Dichloropropane        | 77       | 4.290      | 4.297  | -0.007 | 58     | 1039533        | 100.0   | 100.7     |       |
| 45 cis-1,2-Dichloroethene     | 96       | 4.303      | 4.309  | -0.006 | 84     | 869268         | 100.0   | 100.5     |       |
| 48 Chlorobromomethane         | 128      | 4.503      | 4.509  | -0.006 | 98     | 410262         | 100.0   | 104.3     |       |
| 49 Tetrahydrofuran            | 42       | 4.522      | 4.528  | -0.006 | 89     | 525074         | 200.0   | 207.2     |       |
| 50 Chloroform                 | 83       | 4.540      | 4.546  | -0.006 | 94     | 1279112        | 100.0   | 98.8      |       |
| 51 1,1,1-Trichloroethane      | 97       | 4.680      | 4.686  | -0.006 | 99     | 1084989        | 100.0   | 102.0     |       |
| 52 Cyclohexane                | 56       | 4.710      | 4.710  | 0.000  | 90     | 1610303        | 100.0   | 95.6      |       |
| 54 1,1-Dichloropropene        | 75       | 4.795      | 4.801  | -0.006 | 97     | 999878         | 100.0   | 99.5      |       |
| 55 Carbon tetrachloride       | 117      | 4.808      | 4.808  | 0.000  | 98     | 886893         | 100.0   | 110.5     |       |
| 53 Isobutyl alcohol           | 43       | 4.862      | 4.868  | -0.006 | 94     | 1119308        | 2500.0  | 3032.4    |       |
| 57 Benzene                    | 78       | 4.978      | 4.984  | -0.006 | 98     | 3005300        | 100.0   | 99.3      |       |
| 58 1,2-Dichloroethane         | 62       | 5.014      | 5.020  | -0.006 | 97     | 1122508        | 100.0   | 98.0      |       |
| 59 n-Heptane                  | 43       | 5.075      | 5.081  | -0.006 | 90     | 1304424        | 100.0   | 94.8      |       |
| 62 Trichloroethene            | 95       | 5.495      | 5.495  | 0.000  | 98     | 786394         | 100.0   | 102.6     |       |
| 64 Methylcyclohexane          | 83       | 5.629      | 5.629  | 0.000  | 93     | 1424922        | 100.0   | 98.6      |       |
| 65 1,2-Dichloropropane        | 63       | 5.714      | 5.714  | 0.000  | 98     | 838977         | 100.0   | 101.9     |       |
| 66 1,4-Dioxane                | 88       | 5.817      | 5.824  | -0.007 | 98     | 199744         | 2000.0  | 2308.1    |       |
| 67 Dibromomethane             | 93       | 5.842      | 5.842  | 0.000  | 95     | 453308         | 100.0   | 106.5     |       |
| 68 Dichlorobromomethane       | 83       | 5.957      | 5.957  | 0.000  | 99     | 924495         | 100.0   | 113.5     |       |
| 69 2-Chloroethyl vinyl ether  | 63       | 6.164      | 6.164  | 0.000  | 92     | 508464         | 100.0   | 111.5     |       |
| 72 cis-1,3-Dichloropropene    | 75       | 6.328      | 6.328  | 0.000  | 96     | 1136210        | 100.0   | 111.9     |       |
| 73 4-Methyl-2-pentanone (MIBK | 43       | 6.432      | 6.438  | -0.006 | 93     | 3873181        | 500.0   | 500.3     |       |
| 74 Toluene                    | 92       | 6.620      | 6.620  | 0.000  | 99     | 1939030        | 100.0   | 97.7      |       |
| 77 trans-1,3-Dichloropropene  | 75       | 6.846      | 6.846  | 0.000  | 94     | 1014715        | 100.0   | 112.5     |       |
| 75 Ethyl methacrylate         | 69       | 6.852      | 6.852  | 0.000  | 89     | 996835         | 100.0   | 108.8     |       |
| 79 1,1,2-Trichloroethane      | 83       | 7.040      | 7.040  | 0.000  | 92     | 541355         | 100.0   | 103.3     |       |
| 81 Tetrachloroethene          | 166      | 7.138      | 7.144  | -0.006 | 99     | 839475         | 100.0   | 98.6      |       |
| 82 1,3-Dichloropropane        | 76       | 7.204      | 7.204  | 0.000  | 99     | 1095273        | 100.0   | 101.5     |       |
| 80 2-Hexanone                 | 43       | 7.223      | 7.223  | 0.000  | 91     | 2897627        | 500.0   | 513.7     |       |
| 83 Chlorodibromomethane       | 129      | 7.442      | 7.442  | 0.000  | 90     | 676657         | 100.0   | 101.0     |       |
| 84 Ethylene Dibromide         | 107      | 7.569      | 7.569  | 0.000  | 98     | 687746         | 100.0   | 107.9     |       |
| 87 Chlorobenzene              | 112      | 8.020      | 8.020  | 0.000  | 95     | 2103132        | 100.0   | 98.4      |       |
| 88 Ethylbenzene               | 91       | 8.087      | 8.087  | 0.000  | 98     | 3450523        | 100.0   | 96.4      |       |
| 89 1,1,1,2-Tetrachloroethane  | 131      | 8.099      | 8.105  | -0.006 | 95     | 704163         | 100.0   | 112.3     |       |
| 90 m-Xylene & p-Xylene        | 106      | 8.202      | 8.202  | 0.000  | 99     | 1454964        | 100.0   | 99.4      |       |
| 91 o-Xylene                   | 106      | 8.634      | 8.634  | 0.000  | 96     | 1410986        | 100.0   | 100.0     |       |
| 92 Styrene                    | 104      | 8.652      | 8.652  | 0.000  | 95     | 2449569        | 100.0   | 100.6     |       |
| 95 Bromoform                  | 173      | 8.926      | 8.926  | 0.000  | 97     | 411396         | 100.0   | 100.0     |       |
| 94 Isopropylbenzene           | 105      | 8.999      | 9.005  | -0.006 | 96     | 3524639        | 100.0   | 96.4      |       |
| 101 Bromobenzene              | 156      | 9.388      | 9.388  | 0.000  | 91     | 956723         | 100.0   | 98.5      |       |
| 97 1,1,2,2-Tetrachloroethane  | 83       | 9.388      | 9.388  | 0.000  | 78     | 859855         | 100.0   | 104.1     |       |
| 99 N-Propylbenzene            | 91       | 9.437      | 9.437  | 0.000  | 98     | 3953628        | 100.0   | 95.0      |       |
| 98 trans-1,4-Dichloro-2-buten | 53       | 9.437      | 9.437  | 0.000  | 60     | 299551         | 100.0   | 105.3     |       |
| 100 1,2,3-Trichloropropane    | 110      | 9.443      | 9.443  | 0.000  | 82     | 279683         | 100.0   | 101.3     |       |
| 103 2-Chlorotoluene           | 126      | 9.565      | 9.565  | 0.000  | 97     | 878370         | 100.0   | 97.6      |       |
| 102 1,3,5-Trimethylbenzene    | 105      | 9.607      | 9.607  | 0.000  | 95     | 2991313        | 100.0   | 96.7      |       |
| 105 4-Chlorotoluene           | 126      | 9.674      | 9.674  | 0.000  | 97     | 906102         | 100.0   | 97.1      |       |
| 106 tert-Butylbenzene         | 134      | 9.936      | 9.936  | 0.000  | 93     | 681680         | 100.0   | 98.2      |       |
| -                             | 105      |            |        | 0.000  | 96     |                | 100.0   | 96.5      |       |
| 107 1,2,4-Trimethylbenzene    | 103      | 9.985      | 9.985  | 0.000  | 90     | 3084807        | 100.0   | 90.5      |       |

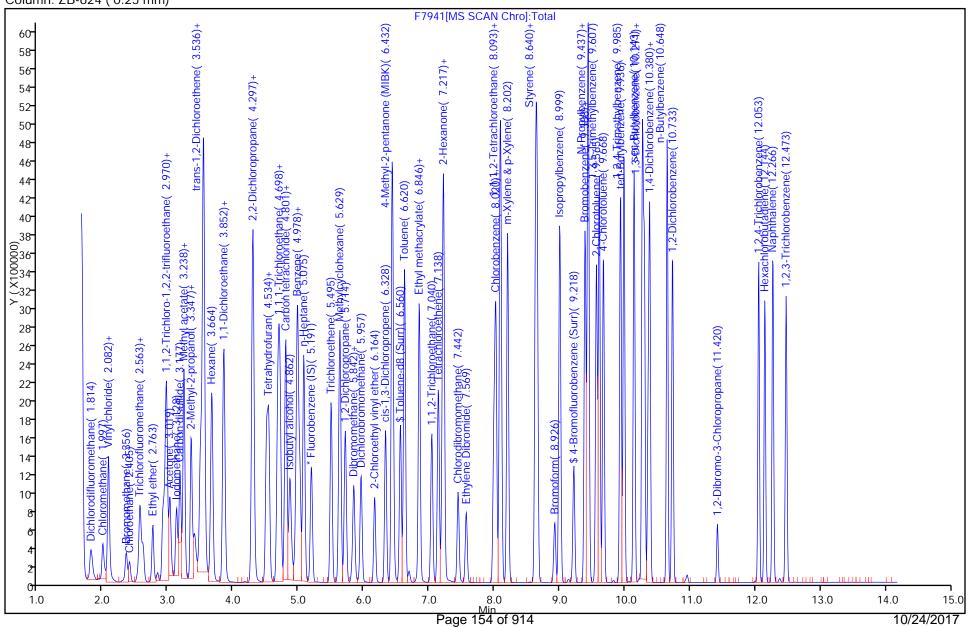
Report Date: 02-Oct-2017 14:09:04
Data File: \ChromNA\Buffa ct-2017 14:09:04 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7941.D

| Data File: \(\Cnromina\bullalo\CnromData\HP5973F\20170929-66009.b\F7941.D |     |         |          |        |    |           |            |           |       |
|---------------------------------------------------------------------------|-----|---------|----------|--------|----|-----------|------------|-----------|-------|
|                                                                           |     | RT      | Adj RT   | DIt RT |    |           | Cal Amt    | OnCol Amt |       |
| Compound                                                                  | Sig | (min.)  | (min.)   | (min.) | Q  | Response  | ug/kg      | ug/kg     | Flags |
|                                                                           |     |         |          |        |    |           |            |           |       |
| 109 sec-Butylbenzene                                                      | 105 | 10.143  | 10.143   | 0.000  | 94 | 3751473   | 100.0      | 96.1      |       |
| 110 4-Isopropyltoluene                                                    | 119 | 10.271  | 10.271   | 0.000  | 97 | 3292907   | 100.0      | 96.2      |       |
| 111 1,3-Dichlorobenzene                                                   | 146 | 10.301  | 10.301   | 0.000  | 98 | 1795303   | 100.0      | 97.4      |       |
| 113 1,4-Dichlorobenzene                                                   | 146 | 10.380  | 10.380   | 0.000  | 96 | 1810782   | 100.0      | 96.1      |       |
| 115 n-Butylbenzene                                                        | 91  | 10.648  | 10.648   | 0.000  | 97 | 2888602   | 100.0      | 95.9      |       |
| 116 1,2-Dichlorobenzene                                                   | 146 | 10.733  | 10.733   | 0.000  | 98 | 1742822   | 100.0      | 99.0      |       |
| 117 1,2-Dibromo-3-Chloropropan                                            | 75  | 11.420  | 11.420   | 0.000  | 88 | 156931    | 100.0      | 100.4     |       |
| 119 1,2,4-Trichlorobenzene                                                | 180 | 12.053  | 12.053   | 0.000  | 95 | 1203330   | 100.0      | 99.0      |       |
| 120 Hexachlorobutadiene                                                   | 225 | 12.144  | 12.150   | -0.006 | 96 | 682281    | 100.0      | 99.1      |       |
| 121 Naphthalene                                                           | 128 | 12.272  | 12.272   | 0.000  | 97 | 3102404   | 100.0      | 103.3     |       |
| 122 1,2,3-Trichlorobenzene                                                | 180 | 12.473  | 12.473   | 0.000  | 96 | 1143051   | 100.0      | 99.9      |       |
| S 123 Total BTEX                                                          | 1   |         |          |        | 0  |           |            | 492.7     |       |
| S 124 Xylenes, Total                                                      | 1   |         |          |        | 0  |           |            | 199.4     |       |
| S 125 1,2-Dichloroethene, Total                                           | 1   |         |          |        | 0  |           |            | 199.3     |       |
| S 126 1,3-Dichloropropene, Total                                          | 1   |         |          |        | 0  |           |            | 224.4     |       |
| Reagents:                                                                 |     |         |          |        |    |           |            |           |       |
| 8260 CORP mix_00111                                                       |     | Amount  | Added: 5 | 0.00   |    | Units: uL |            |           |       |
| GAS CORP mix_00243                                                        |     |         | Added: 5 |        |    | Units: uL |            |           |       |
| F 8260 SURR_00259                                                         |     | Amount  |          | 1.00   |    | Units: uL | Run Reage  | nt        |       |
| F 8260 IS_00576                                                           |     | Amount  |          | 1.00   |    | Units: uL | Run Reage  |           |       |
| 1 0200 13_00370                                                           |     | MINOUIL | radea.   |        | ,  | orms. uL  | itan itage | 111       |       |

Report Date: 02-Oct-2017 14:09:04 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo


Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7941.D Injection Date: 29-Sep-2017 18:07:30 Instrument ID: HP5973F


Lims ID: IC 6

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000 ALS Bottle#:

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL





Operator ID:

Worklist Smp#:

CDC

11

7

Report Date: 02-Oct-2017 14:09:07 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7942.D

Lims ID: IC 7

Client ID:

Sample Type: IC Calib Level: 7

Inject. Date: 29-Sep-2017 18:33:30 ALS Bottle#: 8 Worklist Smp#: 12

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 7

Misc. Info.: 480-0066009-012

Operator ID: CDC Instrument ID: HP5973F

Sublist: chrom-F-8260 SOIL\*sub27

Method: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update:02-Oct-2017 14:09:05Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1: ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK030

First Level Reviewer: cwiklinc Date: 02-Oct-2017 10:47:42

| First Level Reviewer: cwiklinc    |     |        | Date:  |        |     | 02-Oct-2017 10:47:42 |         |           |        |
|-----------------------------------|-----|--------|--------|--------|-----|----------------------|---------|-----------|--------|
|                                   |     | RT     | Adj RT | Dlt RT |     |                      | Cal Amt | OnCol Amt |        |
| Compound                          | Sig | (min.) | (min.) | (min.) | Q   | Response             | ug/kg   | ug/kg     | Flags  |
|                                   |     |        |        |        |     |                      |         |           |        |
| * 153 Fluorobenzene (IS)          | 70  | 5.197  | 5.197  | 0.000  | 99  | 278762               | 50.0    | 50.0      |        |
| * 2 Chlorobenzene-d5              | 82  | 7.989  | 7.989  | 0.000  | 86  | 565762               | 50.0    | 50.0      |        |
| * 3 1,4-Dichlorobenzene-d4        | 152 | 10.362 | 10.356 | 0.006  | 94  | 566797               | 50.0    | 50.0      |        |
| \$ 154 Dibromofluoromethane (Suri |     | 4.673  | 4.674  | -0.001 | 93  | 352712               | 50.0    | 51.0      |        |
| \$ 41,2-Dichloroethane-d4 (Sur    | 67  | 4.959  | 4.960  | -0.001 | 0   | 220761               | 50.0    | 49.8      |        |
| \$ 5 Toluene-d8 (Surr)            | 98  | 6.559  | 6.560  | -0.001 | 93  | 1410360              | 50.0    | 50.6      |        |
| \$ 6 4-Bromofluorobenzene (Surr   | 174 | 9.218  | 9.218  | 0.000  | 91  | 463160               | 50.0    | 50.7      |        |
| 10 Dichlorodifluoromethane        | 85  | 1.820  | 1.827  | -0.007 | 100 | 1381126              | 200.0   | 187.0     |        |
| 12 Chloromethane                  | 50  | 1.997  | 2.003  | -0.006 | 99  | 1226641              | 200.0   | 179.3     | M      |
| 151 Butadiene                     | 54  | 2.082  | 2.088  | -0.006 | 86  | 1209747              | 200.0   | 178.2     |        |
| 13 Vinyl chloride                 | 62  | 2.094  | 2.094  | 0.000  | 99  | 1261579              | 200.0   | 185.2     |        |
| 14 Bromomethane                   | 94  | 2.356  | 2.362  | -0.006 | 90  | 611118               | 200.0   | 192.9     |        |
| 15 Chloroethane                   | 64  | 2.410  | 2.417  | -0.007 | 99  | 546018               | 200.0   | 189.4     |        |
| 16 Dichlorofluoromethane          | 67  | 2.568  | 2.569  | -0.001 | 98  | 1638123              | 200.0   | 184.3     |        |
| 17 Trichlorofluoromethane         | 101 | 2.611  | 2.617  | -0.006 | 99  | 1629850              | 200.0   | 187.9     |        |
| 18 Ethyl ether                    | 59  | 2.763  | 2.770  | -0.007 | 88  | 944384               | 200.0   | 175.0     |        |
| 20 Acrolein                       | 56  | 2.921  | 2.922  | -0.001 | 100 | 1319601              | 1000.0  | 971.9     |        |
| 21 1,1,2-Trichloro-1,2,2-trif     | 101 | 2.958  | 2.958  | 0.000  | 93  | 1360001              | 200.0   | 187.0     |        |
| 22 1,1-Dichloroethene             | 96  | 2.976  | 2.982  | -0.006 | 99  | 1290573              | 200.0   | 187.1     |        |
| 23 Acetone                        | 43  | 3.025  | 3.031  | -0.006 | 98  | 2616680              | 1000.0  | 903.6     |        |
| 25 lodomethane                    | 142 | 3.128  | 3.135  | -0.007 | 99  | 2350376              | 200.0   | 191.9     |        |
| 26 Carbon disulfide               | 76  | 3.183  | 3.183  | 0.000  | 99  | 4255612              | 200.0   | 199.8     |        |
| 27 Methyl acetate                 | 43  | 3.238  | 3.244  | -0.006 | 96  | 2383791              | 400.0   | 376.4     |        |
| 28 3-Chloro-1-propene             | 41  | 3.244  | 3.244  | 0.000  | 91  | 2259849              | 200.0   | 178.1     |        |
| 30 Methylene Chloride             | 84  | 3.353  | 3.354  | -0.001 | 95  | 1548468              | 200.0   | 195.8     |        |
| 31 2-Methyl-2-propanol            | 59  | 3.402  | 3.414  | -0.012 | 99  | 2223875              | 2000.0  | 2073.3    |        |
| 32 Methyl tert-butyl ether        | 73  | 3.499  | 3.500  | -0.001 | 96  | 4426896              | 200.0   | 190.3     |        |
| 34 trans-1,2-Dichloroethene       | 96  | 3.536  | 3.536  | 0.000  | 97  | 1466849              | 200.0   | 185.4     |        |
| 33 Acrylonitrile                  | 53  | 3.548  | 3.554  | -0.006 | 97  | 5962310              | 2000.0  | 1760.3    |        |
| 35 Hexane                         | 57  | 3.670  | 3.670  | 0.000  | 86  | 2783308              | 200.0   | 193.4     |        |
|                                   |     |        | _      |        |     |                      |         | 40/0      | 4/004= |

| Data File: \\ChromNA\B        | Suffalo\0 | ChromDa | ta\HP5973 | 3F\20170 | 929-66 | 6009.b\F7942.E | <u> </u> |           |       |
|-------------------------------|-----------|---------|-----------|----------|--------|----------------|----------|-----------|-------|
|                               |           | RT      | Adj RT    | Dlt RT   |        |                | Cal Amt  | OnCol Amt |       |
| Compound                      | Sig       | (min.)  | (min.)    | (min.)   | Q      | Response       | ug/kg    | ug/kg     | Flags |
|                               |           |         |           |          |        |                |          |           |       |
| 37 Vinyl acetate              | 43        | 3.846   | 3.846     | 0.000    | 97     | 5474652        | 400.0    | 376.0     |       |
| 39 1,1-Dichloroethane         | 63        | 3.858   | 3.865     | -0.007   | 96     | 2751623        | 200.0    | 181.2     |       |
| 43 2-Butanone (MEK)           | 43        | 4.290   | 4.290     | 0.000    | 99     | 3784810        | 1000.0   | 924.6     |       |
| 44 2,2-Dichloropropane        | 77        | 4.290   | 4.297     | -0.007   | 93     | 2023477        | 200.0    | 191.1     |       |
| 45 cis-1,2-Dichloroethene     | 96        | 4.302   | 4.309     | -0.007   | 84     | 1674798        | 200.0    | 188.6     |       |
| 48 Chlorobromomethane         | 128       | 4.503   | 4.509     | -0.006   | 98     | 811093         | 200.0    | 200.9     |       |
| 49 Tetrahydrofuran            | 42        | 4.521   | 4.528     | -0.007   | 88     | 975465         | 400.0    | 375.1     |       |
| 50 Chloroform                 | 83        | 4.540   | 4.546     | -0.006   | 95     | 2464202        | 200.0    | 185.5     |       |
| 51 1,1,1-Trichloroethane      | 97        | 4.686   | 4.686     | 0.000    | 99     | 2129785        | 200.0    | 195.0     |       |
| 52 Cyclohexane                | 56        | 4.710   | 4.710     | 0.000    | 90     | 3041563        | 200.0    | 175.9     |       |
| 54 1,1-Dichloropropene        | 75        | 4.801   | 4.801     | 0.000    | 97     | 1925403        | 200.0    | 186.8     |       |
| 55 Carbon tetrachloride       | 117       | 4.807   | 4.808     | -0.001   | 97     | 1799208        | 200.0    | 218.4     |       |
| 53 Isobutyl alcohol           | 43        | 4.862   | 4.868     | -0.006   | 94     | 2090091        | 5000.0   | 5517.0    |       |
| 57 Benzene                    | 78        | 4.984   | 4.984     | 0.000    | 97     | 5610199        | 200.0    | 180.6     |       |
| 58 1,2-Dichloroethane         | 62        | 5.020   | 5.020     | 0.000    | 97     | 2127613        | 200.0    | 180.9     |       |
| 59 n-Heptane                  | 43        | 5.081   | 5.081     | 0.000    | 89     | 2371312        | 200.0    | 167.9     |       |
| 62 Trichloroethene            | 95        | 5.501   | 5.495     | 0.006    | 98     | 1520456        | 200.0    | 193.3     |       |
| 64 Methylcyclohexane          | 83        | 5.629   | 5.629     | 0.000    | 92     | 2762163        | 200.0    | 186.3     |       |
| 65 1,2-Dichloropropane        | 63        | 5.714   | 5.714     | 0.000    | 97     | 1620506        | 200.0    | 191.8     |       |
| 66 1,4-Dioxane                | 88        | 5.817   | 5.824     | -0.007   | 97     | 355935         | 4000.0   | 4052.1    |       |
| 67 Dibromomethane             | 93        | 5.841   | 5.842     | -0.001   | 94     | 880008         | 200.0    | 201.5     |       |
| 68 Dichlorobromomethane       | 83        | 5.957   | 5.957     | 0.000    | 100    | 1864083        | 200.0    | 223.0     |       |
| 69 2-Chloroethyl vinyl ether  | 63        | 6.164   | 6.164     | 0.000    | 91     | 996896         | 200.0    | 212.9     |       |
| 72 cis-1,3-Dichloropropene    | 75        | 6.334   | 6.328     | 0.006    | 96     | 2240362        | 200.0    | 215.0     |       |
| 73 4-Methyl-2-pentanone (MIBK | 43        | 6.432   | 6.438     | -0.006   | 90     | 6716955        | 1000.0   | 854.9     |       |
| 74 Toluene                    | 92        | 6.620   | 6.620     | 0.000    | 97     | 3691113        | 200.0    | 183.2     |       |
| 77 trans-1,3-Dichloropropene  | 75        | 6.845   | 6.846     | -0.001   | 95     | 1983500        | 200.0    | 216.7     |       |
| 75 Ethyl methacrylate         | 69        | 6.851   | 6.852     | -0.001   | 87     | 1942731        | 200.0    | 208.9     |       |
| 79 1,1,2-Trichloroethane      | 83        | 7.040   | 7.040     | 0.000    | 92     | 1050749        | 200.0    | 197.6     |       |
| 81 Tetrachloroethene          | 166       | 7.143   | 7.144     | -0.001   | 98     | 1626660        | 200.0    | 188.3     |       |
| 82 1,3-Dichloropropane        | 76        | 7.204   | 7.204     | 0.000    | 98     | 2071996        | 200.0    | 189.3     |       |
| 80 2-Hexanone                 | 43        | 7.222   | 7.223     | -0.001   | 88     | 5013063        | 1000.0   | 875.5     |       |
| 83 Chlorodibromomethane       | 129       | 7.448   | 7.442     | 0.006    | 90     | 1407231        | 200.0    | 204.0     |       |
| 84 Ethylene Dibromide         | 107       | 7.569   | 7.569     | 0.000    | 98     | 1332665        | 200.0    | 206.0     |       |
| 87 Chlorobenzene              | 112       | 8.019   | 8.020     | -0.001   | 94     | 3977025        | 200.0    | 183.4     |       |
| 88 Ethylbenzene               | 91        | 8.086   | 8.087     | -0.001   | 97     | 6149215        | 200.0    | 169.2     |       |
| 89 1,1,1,2-Tetrachloroethane  | 131       | 8.105   | 8.105     | 0.000    | 95     | 1401529        | 200.0    | 220.1     |       |
| 90 m-Xylene & p-Xylene        | 106       | 8.202   | 8.202     | 0.000    | 97     | 2773350        | 200.0    | 186.7     |       |
| 91 o-Xylene                   | 106       | 8.634   | 8.634     | 0.000    | 95     | 2665200        | 200.0    | 186.0     |       |
| 92 Styrene                    | 104       | 8.652   | 8.652     | 0.000    | 94     | 4518222        | 200.0    | 182.8     |       |
| 95 Bromoform                  | 173       | 8.926   | 8.926     | 0.000    | 98     | 917770         | 200.0    | 173.2     |       |
| 94 Isopropylbenzene           | 105       | 9.005   | 9.005     | 0.000    | 96     | 6356209        | 200.0    | 174.7     |       |
| 97 1,1,2,2-Tetrachloroethane  | 83        | 9.388   | 9.388     | 0.000    | 80     | 1665250        | 200.0    | 202.6     |       |
| 101 Bromobenzene              | 156       | 9.394   | 9.388     | 0.006    | 89     | 1824091        | 200.0    | 188.7     |       |
| 98 trans-1,4-Dichloro-2-buten | 53        | 9.437   | 9.437     | 0.000    | 56     | 556262         | 200.0    | 196.6     |       |
| 99 N-Propylbenzene            | 91        | 9.437   | 9.437     | 0.000    | 96     | 6796208        | 200.0    | 164.1     |       |
| 100 1,2,3-Trichloropropane    | 110       | 9.443   | 9.443     | 0.000    | 76     | 531962         | 200.0    | 193.7     |       |
| 103 2-Chlorotoluene           | 126       | 9.565   | 9.565     | 0.000    | 97     | 1683401        | 200.0    | 187.9     |       |
| 102 1,3,5-Trimethylbenzene    | 105       | 9.607   | 9.607     | 0.000    | 96     | 5385441        | 200.0    | 175.0     |       |
| 105 4-Chlorotoluene           | 126       | 9.674   | 9.674     | 0.000    | 97     | 1723176        | 200.0    | 185.6     |       |
| 106 tert-Butylbenzene         | 134       | 9.936   | 9.936     | 0.000    | 92     | 1319836        | 200.0    | 191.0     |       |
| 107 1,2,4-Trimethylbenzene    | 105       | 9.984   | 9.985     | -0.001   | 95     | 5488825        | 200.0    | 171.5     |       |
| TO TIZIT THINGHIYIDENZENE     | 100       | 7.704   | 7.700     | -0.00 i  | / 5    | J-0002J        | 200.0    | 172.5     |       |

ct-2017 14:09:07 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7942.D Report Date: 02-Oct-2017 14:09:07

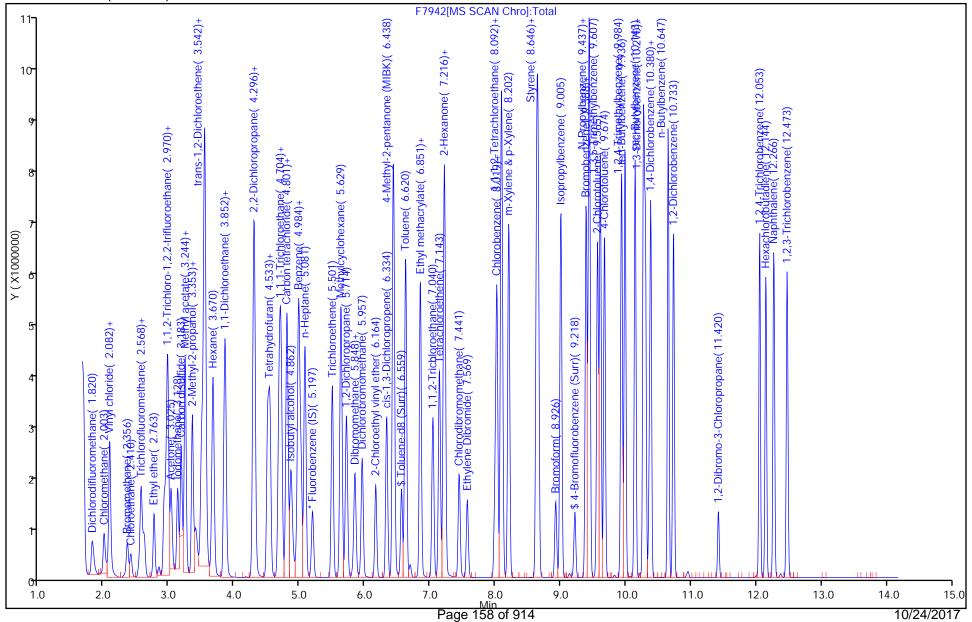
| Data File: \\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7942.D |     |        |           |        |    |           |         |           |       |
|-------------------------------------------------------------------------|-----|--------|-----------|--------|----|-----------|---------|-----------|-------|
|                                                                         |     | RT     | Adj RT    | Dlt RT |    |           | Cal Amt | OnCol Amt |       |
| Compound                                                                | Sig | (min.) | (min.)    | (min.) | Q  | Response  | ug/kg   | ug/kg     | Flags |
|                                                                         |     |        |           |        |    |           |         |           |       |
| 109 sec-Butylbenzene                                                    | 105 | 10.143 | 10.143    | 0.000  | 95 | 6502541   | 200.0   | 167.4     |       |
| 110 4-Isopropyltoluene                                                  | 119 | 10.270 | 10.271    | -0.001 | 95 | 5751027   | 200.0   | 168.9     |       |
| 111 1,3-Dichlorobenzene                                                 | 146 | 10.301 | 10.301    | 0.000  | 98 | 3331087   | 200.0   | 181.6     |       |
| 113 1,4-Dichlorobenzene                                                 | 146 | 10.380 | 10.380    | 0.000  | 95 | 3371249   | 200.0   | 179.7     |       |
| 115 n-Butylbenzene                                                      | 91  | 10.647 | 10.648    | -0.001 | 94 | 5074696   | 200.0   | 169.3     |       |
| 116 1,2-Dichlorobenzene                                                 | 146 | 10.733 | 10.733    | 0.000  | 97 | 3250482   | 200.0   | 185.6     |       |
| 117 1,2-Dibromo-3-Chloropropan                                          | 75  | 11.420 | 11.420    | 0.000  | 90 | 321279    | 200.0   | 203.6     |       |
| 119 1,2,4-Trichlorobenzene                                              | 180 | 12.053 | 12.053    | 0.000  | 95 | 2304296   | 200.0   | 190.5     |       |
| 120 Hexachlorobutadiene                                                 | 225 | 12.144 | 12.150    | -0.006 | 96 | 1333618   | 200.0   | 194.8     |       |
| 121 Naphthalene                                                         | 128 | 12.266 | 12.272    | -0.006 | 98 | 5628639   | 200.0   | 188.3     |       |
| 122 1,2,3-Trichlorobenzene                                              | 180 | 12.473 | 12.473    | 0.000  | 96 | 2200927   | 200.0   | 193.3     |       |
| S 125 1,2-Dichloroethene, Total                                         | 1   |        |           |        | 0  |           |         | 373.9     |       |
| S 126 1,3-Dichloropropene, Total                                        | 1   |        |           |        | 0  |           |         | 431.7     |       |
| S 123 Total BTEX                                                        | 1   |        |           |        | 0  |           |         | 905.8     |       |
| S 124 Xylenes, Total                                                    | 1   |        |           |        | 0  |           |         | 372.7     |       |
| QC Flag Legend                                                          |     |        |           |        |    |           |         |           |       |
| Review Flags                                                            |     |        |           |        |    |           |         |           |       |
| M - Manually Integrated                                                 |     |        |           |        |    |           |         |           |       |
| , ,                                                                     |     |        |           |        |    |           |         |           |       |
| Reagents:                                                               |     |        |           |        | _  |           |         |           |       |
| 8260 CORP mix_00111                                                     |     | Amount | Added: 10 | 00.00  | L  | Inits: uL |         |           |       |

GAS CORP mix\_00243 Amount Added: 100.00 Units: uL F 8260 SURR\_00259 Run Reagent Amount Added: 1.00 Units: uL F 8260 IS\_00576 Run Reagent Amount Added: 1.00 Units: uL

Report Date: 02-Oct-2017 14:09:07 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7942.D Injection Date: 29-Sep-2017 18:33:30 Instrument ID: HP5973F


Lims ID: IC 7

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

CDC

12

8

Report Date: 02-Oct-2017 14:09:07 Chrom Revision: 2.2 16-A

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

TestAmerica Buffalo

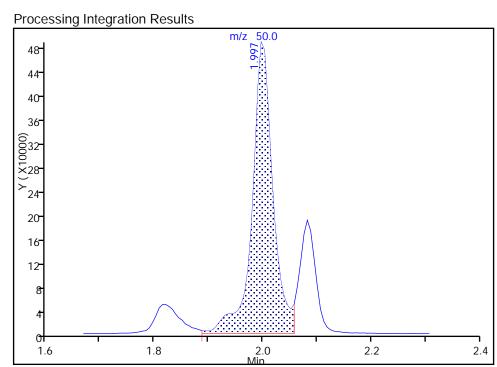
Data File: \\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7942.D Injection Date: 29-Sep-2017 18:33:30 Instrument ID: HP5973F

Lims ID: IC 7

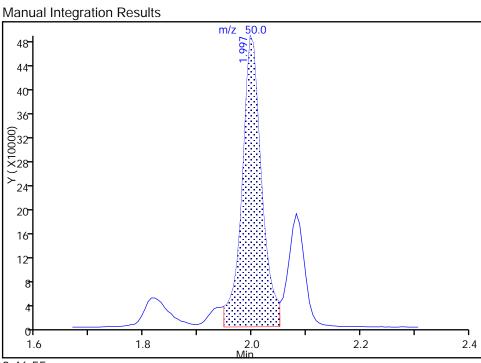
Client ID:

Operator ID: CDC ALS Bottle#: 8 Worklist Smp#: 12

Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN


### 12 Chloromethane, CAS: 74-87-3

Signal: 1

RT: 2.00 Area: 1308458 Amount: 189.6293 Amount Units: ug/kg



RT: 2.00 Area: 1226641 Amount: 179.2904 Amount Units: ug/kg



Reviewer: cwiklinc, 02-Oct-2017 10:46:55

Audit Action: Manually Integrated

Audit Reason: Other

Page 159 of 914

## GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 381079

SDG No.:

Instrument ID: HP5973P GC Column: ZB-624 (60) ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/10/2017 16:02 Calibration End Date: 10/10/2017 20:22 Calibration ID: 31704

#### Calibration Files:

| LEVEL:  | LAB SAMPLE ID:    | LAB FILE ID: |
|---------|-------------------|--------------|
| Level 1 | IC 480-381079/5   | P3042P.D     |
| Level 2 | IC 480-381079/6   | P3043P.D     |
| Level 3 | IC 480-381079/7   | P3044P.D     |
| Level 4 | IC 480-381079/8   | P3045P.D     |
| Level 5 | ICIS 480-381079/9 | P3046P.D     |
| Level 6 | IC 480-381079/10  | P3047P.D     |
| Level 7 | IC 480-381079/11  | P3048P.D     |

| ANALYTE                               |                  |                  | RRF    |        |        | CURVE |   | COEFFICIE | NT # | MIN RRF | %RSD | " | AX  | R^2    | # | MIN R^2 |
|---------------------------------------|------------------|------------------|--------|--------|--------|-------|---|-----------|------|---------|------|---|-----|--------|---|---------|
|                                       | LVL 1<br>LVL 6   | LVL 2<br>LVL 7   | LVL 3  | LVL 4  | LVL 5  | TYPE  | В | M1        | M2   |         |      | % | RSD | OR COD |   | OR COD  |
| Dichlorodifluoromethane               | 1.7810<br>2.4437 | 1.8339<br>1.9323 | 2.1802 | 2.4340 | 1.9617 | Ave   |   | 2.0810    |      | 0.1000  | 13.2 | 2 | 0.0 |        |   |         |
| Chloromethane                         | +++++<br>4.8406  | 4.8563<br>4.0029 | 4.3771 | 5.0119 | 4.2218 | Ave   |   | 4.5518    |      | 0.1000  | 8.9  | 2 | 0.0 |        |   |         |
| Vinyl chloride                        | ++++<br>3.2088   | 2.4397<br>2.7152 | 2.7293 | 3.1112 | 2.6904 | Ave   |   | 2.8157    |      | 0.1000  | 10.3 | 2 | 0.0 |        |   |         |
| Butadiene                             | 3.4363<br>3.7126 |                  | 3.2493 | 3.6964 | 3.1770 | Ave   |   | 3.3800    |      |         | 7.1  | 2 | 0.0 |        |   |         |
| Bromomethane                          | 1.4238<br>1.7047 |                  | 1.5637 | 1.7245 | 1.5203 | Ave   |   | 1.5311    |      | 0.1000  | 9.4  | 2 | 0.0 |        |   |         |
| Chloroethane                          | 1.7028<br>1.7959 |                  | 1.5285 | 1.8397 | 1.5617 | Ave   |   | 1.6173    |      | 0.1000  | 10.1 | 2 | 0.0 |        |   |         |
| Dichlorofluoromethane                 | +++++<br>4.0485  |                  | 3.6198 | 4.2261 | 3.5385 | Ave   |   | 3.6536    |      |         | 11.6 | 2 | 0.0 |        |   |         |
| Trichlorofluoromethane                | +++++<br>3.6886  |                  | 2.9277 | 3.2346 | 2.9308 | Ave   |   | 2.9913    |      | 0.1000  | 16.6 | 2 | 0.0 |        |   |         |
| Ethyl ether                           | 1.9429 2.3053    |                  | 1.9095 | 2.2972 | 2.0349 | Ave   |   | 2.0421    |      |         | 9.1  | 2 | 0.0 |        |   |         |
| Acrolein                              | +++++<br>0.3435  |                  | 0.3154 | 0.3452 | 0.3618 | Ave   |   | 0.3341    |      |         | 8.3  | 2 | 0.0 |        |   |         |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.6636<br>2.0183 | 1.4605<br>1.6672 | 1.9053 | 1.9829 | 1.7561 | Ave   |   | 1.7791    |      | 0.1000  | 11.3 | 2 | 0.0 |        |   |         |
| 1,1-Dichloroethene                    | +++++<br>1.9275  |                  | 1.8548 | 1.8578 | 1.6960 | Ave   |   | 1.8387    |      | 0.1000  | 8.2  | 2 | 0.0 |        |   |         |
| Acetone                               | +++++<br>1.3124  |                  | 1.1150 | 1.2694 | 1.3300 | Ave   |   | 1.2675    |      | 0.1000  | 6.5  | 2 | 0.0 |        |   |         |
| Iodomethane                           | 2.9703<br>3.6266 | 2.7987<br>3.1407 | 3.1981 | 3.6520 | 3.2448 | Ave   |   | 3.2330    |      |         | 9.8  | 2 | 0.0 |        |   |         |

# GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 381079

SDG No.:

Instrument ID:  $\underline{\text{HP5973P}}$  GC Column:  $\underline{\text{ZB-624}}$  (60) ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/10/2017 16:02 Calibration End Date: 10/10/2017 20:22 Calibration ID: 31704

| ANALYTE                  |        |        | RRF     |         |        | CURVE    |        | COEFFICIEN | T # | MIN RRF | %RSD | # MA |     | R^2    | #  | MIN R^2 |
|--------------------------|--------|--------|---------|---------|--------|----------|--------|------------|-----|---------|------|------|-----|--------|----|---------|
|                          | LVL 1  | LVL 2  | LVL 3   | LVL 4   | LVL 5  | TYPE     | В      | M1         | M2  |         |      | *RS  | 5D  | OR COD |    | OR COD  |
|                          | LVL 6  | LVL 7  |         |         |        |          |        |            |     |         |      |      |     |        |    |         |
| Methyl acetate           | 2.4809 | 2.8673 | 2.6165  | 3.2252  | 3.2542 | Ave      |        | 2.9490     |     | 0.1000  | 10.6 | 20   | .0  |        |    |         |
|                          | 3.2325 | 2.9668 |         |         |        |          |        |            |     |         |      |      |     |        |    | ļ       |
| Carbon disulfide         | 5.9197 | 5.2815 | 6.4125  | 7.1950  | 6.4025 | Ave      |        | 6.3830     |     | 0.1000  | 10.8 | 20   | .0  |        |    |         |
|                          | 7.2400 | 6.2297 |         |         |        |          |        |            |     |         |      |      |     |        |    | ļ       |
| Allyl chloride           | ++++   | 4.7162 | 5.1354  | 5.6559  | 5.0328 | Ave      |        | 5.2076     |     |         | 8.0  | 20   | .0  |        |    |         |
|                          | 5.7677 | 4.9375 |         |         |        |          |        |            |     |         |      |      |     |        |    |         |
| 2-Methyl-2-propanol      | 0.3599 | 0.3208 | 0.3192  | 0.3789  | 0.4211 | Ave      |        | 0.3743     |     |         | 11.6 | 20   | .0  |        |    |         |
|                          | 0.4232 | 0.3968 |         |         |        |          |        |            |     |         |      |      |     |        |    |         |
| Methylene Chloride       | ++++   | 4.3597 | 2.3319  | 2.6531  | 2.0266 | Lin1     | 2.0887 | 2.1620     |     | 0.1000  |      |      |     | 0.9920 |    | 0.9900  |
|                          | 2.2795 | +++++  |         |         |        |          |        |            |     |         |      |      |     |        |    |         |
| Methyl tert-butyl ether  | 5.3976 | 4.9144 | 5.2900  | 6.2011  | 5.5813 | Ave      |        | 5.5904     |     | 0.1000  | 8.3  | 20   | .0  |        |    | ļ       |
|                          | 6.1702 | 5.5784 |         |         |        |          |        |            |     |         |      |      |     |        |    |         |
| trans-1,2-Dichloroethene | ++++   | 1.9905 | 1.8007  | 2.0674  | 1.7221 | Ave      |        | 1.8729     |     | 0.1000  | 8.6  | 20   | .0  |        |    | ļ       |
|                          | 1.9814 | 1.6750 |         |         |        |          |        |            |     |         |      |      |     |        |    |         |
| Acrylonitrile            | 1.2111 |        | 1.0933  | 1.2617  | 1.3436 | Ave      |        | 1.2256     |     |         | 7.5  | 20   | .0  |        |    | ļ       |
|                          | 1.2999 |        |         |         |        |          |        |            |     |         |      |      |     |        |    |         |
| Hexane                   | ++++   | 2.7822 | 3.1339  | 3.5315  | 2.9655 | Ave      |        | 3.1214     |     |         | 10.7 | 20   | .0  |        |    | ļ       |
|                          | 3.5076 | 2.8079 |         |         | _      |          |        |            |     |         |      |      |     |        |    |         |
| Vinyl acetate            | ++++   | 6.3311 | 6.4007  | 7.5447  | 7.4794 | Ave      |        | 6.9396     |     |         | 7.7  | 20   | .0  |        |    | ļ       |
|                          | 7.1659 | 6.7159 |         |         |        |          |        |            |     |         |      |      |     |        |    |         |
| 1,1-Dichloroethane       |        |        | 3.8468  | 4.3401  | 3.8154 | Ave      |        | 3.8634     |     | 0.2000  | 8.9  | 20   | .0  |        |    | ļ       |
|                          | 4.2843 |        | 4 5 600 | 4 04 44 | 0 0050 | <u> </u> |        | 4 0564     |     | 0.1000  | 400  |      |     |        |    |         |
| 2-Butanone (MEK)         | 1.9173 |        | 1.5692  | 1.9141  | 2.0757 | Ave      |        | 1.8564     |     | 0.1000  | 10.0 | 20   | .0  |        |    | ļ       |
| 0.0.71.11                | 1.9737 |        | 1 7000  | 1 00.60 | 1 6474 | _        |        | 1 6010     |     |         | 11 6 | 0.0  | _   |        |    |         |
| 2,2-Dichloropropane      | 1.6754 |        | 1.7932  | 1.9260  | 1.6474 | Ave      |        | 1.6319     |     |         | 11.6 | 20   | .0  |        |    | ļ       |
| 1 1 0 7 1 1 1            | 1.4926 | 1.3773 | 1 0000  | 0 1055  | 1 0515 | _        |        | 1 0770     |     | 0 1000  |      | 0.0  | 0   |        |    |         |
| cis-1,2-Dichloroethene   |        | 1.9801 | 1.9202  | 2.1857  | 1.8517 | Ave      |        | 1.9779     |     | 0.1000  | 7.3  | 20   | .0  |        |    | ļ       |
| Chlorobromomethane       | 2.1111 |        | 1.0112  | 1.1335  | 0.9605 | 7 -      |        | 0.9919     |     |         | 10 4 | 20   | .0  |        |    |         |
| Chloropromomethane       | 1.0070 |        | 1.0112  | 1.1335  | 0.9605 | Ave      |        | 0.9919     |     |         | 10.4 | 2.0  | . 0 |        |    | ļ       |
| Tetrahydrofuran          | 1.0773 |        | 1.0257  | 1.2060  | 1.2756 | 7        |        | 1.1766     |     |         | 7.5  | 2.0  | .0  |        |    |         |
| retranydroluran          | 1.2346 | 1.12/9 | 1.0257  | 1.2060  | 1.2/56 | Ave      |        | 1.1/00     |     |         | 7.5  | 20   | . 0 |        |    | ļ       |
| Chloroform               |        | 2.9845 | 3.2683  | 3.7946  | 3.2875 | 7.770    |        | 3.3090     |     | 0.2000  | 9.2  | 2.0  | .0  |        |    |         |
| CHIOLOLOLIN              | 3.6477 |        | 3.2003  | 3.7940  | 3.2073 | Ave      |        | 3.3090     |     | 0.2000  | 9.2  | 20   | • 0 |        |    | ļ       |
| 1,1,1-Trichloroethane    | 2.7414 | 2.4092 | 2.8484  | 3.1844  | 2.7412 | 7770     |        | 2.8208     |     | 0.1000  | 9.3  | 20   | .0  |        |    |         |
| 1,1,1 IIICIIIOIOECIIAIIE | 3.1138 | 2.7075 | 2.0104  | 3.1044  | 2./112 | 1100     |        | 2.0200     |     | 0.1000  | ,.,  | 2.0  | • • |        |    | ļ       |
| Cyclohexane              | 3.1130 | 3.4806 | 4.1340  | 4.6858  | 4.0864 | Δττο     |        | 4.1905     |     | 0.1000  | 11 1 | 20   | .0  |        | -+ |         |
| oyotonexane              | 4.7303 | 4.0259 | 4.1040  | 0000    | 7.0004 | 1110     |        | 1.1700     |     | 0.1000  |      |      | • - |        |    | ļ       |
| 1,1-Dichloropropene      | 2.2941 |        | 2.3499  | 2.6544  | 2.3520 | Ave      |        | 2.3617     |     |         | 7.9  | 20   | .0  |        | -  |         |
| 1,1 Didniolopropene      |        | 2.2603 | 2.0400  | 2.0544  | 2.3320 | 1100     |        | 2.501/     |     |         | '. ' |      | • • |        |    | ļ       |
|                          | 2.5569 | 2.2003 |         |         |        |          |        |            |     |         |      |      |     |        |    |         |

# GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 381079

SDG No.:

Instrument ID:  $\underline{\text{HP5973P}}$  GC Column:  $\underline{\text{ZB-624}}$  (60) ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/10/2017 16:02 Calibration End Date: 10/10/2017 20:22 Calibration ID: 31704

| ANALYTE                               |        |        | RRF    |        |        | CURVE |   | COEFFICIE | INT # | MIN RRF | %RSD | # | MAX<br>%RSD | R^2<br>OR COD | # | MIN R^2<br>OR COD |
|---------------------------------------|--------|--------|--------|--------|--------|-------|---|-----------|-------|---------|------|---|-------------|---------------|---|-------------------|
|                                       | LVL 1  | LVL 2  | LVL 3  | LVL 4  | LVL 5  | TYPE  | В | M1        | M2    |         |      |   | *RSD        | OR COD        |   | OR COD            |
|                                       | LVL 6  | LVL 7  |        |        |        |       |   |           |       |         |      |   |             |               |   |                   |
| Carbon tetrachloride                  | +++++  | 1.6763 | 1.9267 | 2.2076 | 2.0085 | Ave   |   | 2.1042    |       | 0.1000  | 15.9 |   | 20.0        |               |   |                   |
|                                       | 2.6745 |        |        |        |        |       |   |           |       |         |      |   |             |               |   |                   |
| Isobutyl alcohol                      | +++++  |        | 0.1539 | 0.1949 | 0.2181 | Ave   |   | 0.1933    |       |         | 14.2 |   | 20.0        |               |   |                   |
|                                       | 0.2169 |        |        |        |        |       |   |           |       |         |      |   |             |               |   |                   |
| Benzene                               | 6.2691 |        | 6.5317 | 7.4486 | 6.4720 | Ave   |   | 6.5655    |       | 0.5000  | 9.3  |   | 20.0        |               |   |                   |
|                                       | 7.2554 |        |        |        |        |       |   |           |       |         |      |   |             |               |   |                   |
| n-Heptane                             | 3.5539 |        | 2.9126 | 3.6715 | 3.1058 | Ave   |   | 3.3173    |       |         | 10.9 |   | 20.0        |               |   |                   |
|                                       | 3.7372 |        |        |        |        |       |   |           |       |         |      |   |             |               |   |                   |
| 1,2-Dichloroethane                    | 3.7671 |        | 3.5203 | 4.1416 | 3.6238 | Ave   |   | 3.6639    |       | 0.1000  | 9.0  |   | 20.0        |               |   |                   |
|                                       | 3.9691 | 3.4710 |        |        |        |       |   |           |       |         |      |   |             |               |   |                   |
| Trichloroethene                       |        |        | 1.8568 | 2.0590 | 1.7822 | Ave   |   | 1.8601    |       | 0.2000  | 7.2  |   | 20.0        |               |   |                   |
|                                       | 2.0358 |        |        |        |        |       |   |           |       |         |      |   |             |               |   |                   |
| Methylcyclohexane                     | +++++  |        | 2.3736 | 2.8117 | 2.4070 | Ave   |   | 2.4924    |       | 0.1000  | 9.8  |   | 20.0        |               |   |                   |
|                                       | 2.7896 |        | 0 0504 | 0.000  |        |       |   | 0.1111    |       | 0.1000  |      |   |             |               |   |                   |
| 1,2-Dichloropropane                   | 2.1399 |        | 2.0581 | 2.3725 | 2.0352 | Ave   |   | 2.1141    |       | 0.1000  | 8.0  |   | 20.0        |               |   |                   |
|                                       | 2.2963 | 2.0090 | 0 0000 | 0.0101 | 0 0101 |       |   | 2 2222    |       |         | 45.4 |   |             |               |   |                   |
| 1,4-Dioxane                           | +++++  |        | 0.0072 | 0.0104 | 0.0101 | Ave   |   | 0.0098    |       |         | 15.4 |   | 20.0        |               |   |                   |
| Dibromomethane                        | 0.0111 |        | 1.1788 | 1 2706 | 1.2517 | 7 .   |   | 1.2635    |       | 0.1000  | 5.8  |   | 20.0        |               |   |                   |
| Dibromomethane                        | 1.3134 |        | 1.1/88 | 1.3/06 | 1.251/ | Ave   |   | 1.2033    |       | 0.1000  | 3.8  |   | 20.0        |               |   |                   |
| Bromodichloromethane                  | +++++  |        | 2.3411 | 2.8342 | 2.4840 | 7     |   | 2.4726    |       | 0.2000  | 15 1 |   | 20.0        |               |   |                   |
| Bromodichioromethane                  | 2.8619 |        |        | 2.0342 | 2.4040 | Ave   |   | 2.4/20    |       | 0.2000  | 13.1 |   | 20.0        |               |   |                   |
| 2-Chloroethyl vinyl ether             | +++++  |        |        | 1.6076 | 1.5749 | 7270  |   | 1.4840    |       |         | 11.6 |   | 20.0        |               |   |                   |
| 2 Chioloechyl vinyl ethel             | 1.6319 |        |        | 1.0070 | 1.3/43 | Ave   |   | 1.4040    |       |         | 11.0 |   | 20.0        |               |   |                   |
| cis-1,3-Dichloropropene               | +++++  |        |        | 3.1529 | 2.8124 | Δττο  |   | 2.8139    |       | 0.2000  | 9.4  |   | 20.0        |               |   |                   |
| cis 1,3 bieniolopiopene               | 3.0636 |        | 2.0703 | 3.1323 | 2.0121 | 2100  |   | 2.0133    |       | 0.2000  | 7.4  |   | 20.0        |               |   |                   |
| 4-Methyl-2-pentanone (MIBK)           | +++++  |        | 1.5334 | 1.8499 | 1.9091 | Ave   |   | 1.7383    |       | 0.1000  | 8.5  |   | 20.0        |               |   |                   |
| I notify a ponounone (mast)           | 1.8139 |        |        | 1.0133 | 1.3031 | 1110  |   | 11,7000   |       | 0.1000  | 0.0  |   | 20.0        |               |   |                   |
| Toluene                               | 1.7097 |        |        | 2.0434 | 1.8155 | Ave   |   | 1.8352    |       | 0.4000  | 7.7  |   | 20.0        |               |   |                   |
|                                       | 2.0008 |        |        |        |        |       |   |           |       |         |      |   |             |               |   |                   |
| Ethyl methacrylate                    | ++++   |        | 0.9027 | 1.1052 | 1.0901 | Ave   |   | 1.0267    |       |         | 13.9 |   | 20.0        |               |   |                   |
|                                       | 1.1379 |        |        |        |        |       |   |           |       |         |      |   |             |               |   |                   |
| trans-1,3-Dichloropropene             | +++++  | 1.1108 | 1.1727 | 1.4238 | 1.2640 | Ave   |   | 1.2725    |       | 0.1000  | 9.5  |   | 20.0        |               |   |                   |
| · · · · · · · · · · · · · · · · · · · | 1.3905 |        |        |        |        |       |   |           |       |         |      |   |             |               |   |                   |
| 1,1,2-Trichloroethane                 | 0.6396 |        |        | 0.6707 | 0.6289 | Ave   |   | 0.6343    |       | 0.1000  | 3.9  |   | 20.0        |               |   |                   |
|                                       | 0.6582 | 0.6142 |        |        |        |       |   |           |       |         |      |   |             |               |   |                   |
| Tetrachloroethene                     | 0.8984 |        | 0.8861 | 0.9750 | 0.8548 | Ave   |   | 0.8961    |       | 0.2000  | 5.5  |   | 20.0        |               |   |                   |
|                                       | 0.9432 | 0.8296 |        |        |        |       |   |           |       |         |      |   |             |               |   |                   |
| 2-Hexanone                            | +++++  |        | 1.0866 | 1.2903 | 1.3773 | Ave   |   | 1.2471    |       | 0.1000  | 8.8  |   | 20.0        |               |   |                   |
|                                       | 1.3008 | 1.2872 |        |        |        |       |   |           |       |         |      |   |             |               |   |                   |

## GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 381079

SDG No.:

Instrument ID:  $\underline{\text{HP5973P}}$  GC Column:  $\underline{\text{ZB-624}}$  (60) ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/10/2017 16:02 Calibration End Date: 10/10/2017 20:22 Calibration ID: 31704

| ANALYTE                               |                  |                  | RRF    |        |        | CURVE |   | COEFFICIE | NT # | MIN RRF | %RSD | MAX<br>%RSD | R^2    | # | MIN R^2 |
|---------------------------------------|------------------|------------------|--------|--------|--------|-------|---|-----------|------|---------|------|-------------|--------|---|---------|
|                                       | LVL 1            | LVL 2            | LVL 3  | LVL 4  | LVL 5  | TYPE  | В | M1        | M2   |         |      | 6RSD        | OR COD |   | OR COD  |
|                                       | LVL 6            | LVL 7            |        |        |        |       |   |           |      |         |      |             |        |   |         |
| 1,3-Dichloropropane                   | 1.2166           | 1.0535           | 1.1617 | 1.4022 | 1.2331 | Ave   |   | 1.2323    |      |         | 9.1  | 20.0        |        |   |         |
|                                       | 1.3289           | 1.2297           |        |        |        |       |   |           |      |         |      |             |        |   |         |
| Dibromochloromethane                  | ++++             | 0.7574           | 0.7884 | 0.9596 | 0.8860 | Ave   |   | 0.8865    |      | 0.1000  | 10.9 | 20.0        |        |   |         |
|                                       | 1.0010           | 0.9263           |        |        |        |       |   |           |      |         |      |             |        |   |         |
| 1,2-Dibromoethane                     | ++++             | 0.7764           | 0.7441 | 0.8805 | 0.8217 | Ave   |   | 0.8151    |      |         | 6.2  | 20.0        |        |   |         |
|                                       | 0.8600           | 0.8080           |        |        |        |       |   |           |      |         |      |             |        |   |         |
| Chlorobenzene                         | +++++            | 1.9212           | 2.1606 | 2.5431 | 2.2059 | Ave   |   | 2.2294    |      | 0.5000  | 9.7  | 20.0        |        |   |         |
| 7.1.11                                | 2.3940           | 2.1516           | 2 4442 | 2 0704 | 2 4106 | _     |   | 2 5204    |      | 0 1000  | 6 0  | 000         |        |   |         |
| Ethylbenzene                          | ++++<br>3.8074   | 3.2493<br>3.4395 | 3.4443 | 3.8704 | 3.4196 | Ave   |   | 3.5384    |      | 0.1000  | 6.9  | 20.0        |        |   |         |
| 1,1,1,2-Tetrachloroethane             | 0.8422           | 0.6576           | 0.7603 | 0.9182 | 0.8226 | 70    |   | 0.8265    |      |         | 11.5 | 20.0        |        |   |         |
| 1,1,1,2-Tetrachioroethane             | 0.0422           | 0.8492           | 0.7603 | 0.9102 | 0.0220 | Ave   |   | 0.0203    |      |         | 11.5 | 20.0        |        |   |         |
| m,p-Xylene                            | 1.2782           | 1.1636           | 1.3452 | 1 5641 | 1.3635 | Δττο  |   | 1.3727    |      | 0.1000  | 9.7  | 20.0        |        |   |         |
| m, p Ayrene                           | 1.5018           | 1.3925           | 1.5452 | 1.5041 | 1.3033 | 1100  |   | 1.3727    |      | 0.1000  | J. 1 | 20.0        |        |   |         |
| o-Xylene                              | 1.2755           |                  | 1.2738 | 1.5165 | 1.3581 | Ave   |   | 1.3634    |      | 0.3000  | 8.0  | 20.0        |        |   |         |
|                                       | 1.4983           |                  |        |        |        |       |   |           |      |         |      |             |        |   |         |
| Styrene                               | ++++             | 1.7990           | 2.0417 | 2.4983 | 2.2344 | Ave   |   | 2.2497    |      | 0.3000  | 12.8 | 20.0        |        |   |         |
|                                       | 2.5542           | 2.3705           |        |        |        |       |   |           |      |         |      |             |        |   |         |
| Bromoform                             | ++++             | 0.5231           | 0.5900 | 0.6974 | 0.7012 | Ave   |   | 0.6691    |      | 0.1000  | 13.9 | 20.0        |        |   |         |
|                                       | 0.7617           | 0.7412           |        |        |        |       |   |           |      |         |      |             |        |   |         |
| Isopropylbenzene                      | 2.8517           |                  | 2.9865 | 3.5093 | 3.0169 | Ave   |   | 3.0604    |      | 0.1000  | 9.8  | 20.0        |        |   |         |
|                                       | 3.4097           | 2.9827           |        |        |        |       |   |           |      |         |      |             |        |   |         |
| 1,1,2,2-Tetrachloroethane             | 0.9162           | 0.9254           | 0.8703 | 1.0414 | 0.9735 | Ave   |   | 0.9458    |      | 0.3000  | 5.9  | 20.0        |        |   |         |
|                                       | 0.9769           | 0.9168           | 0 1556 | 0.5006 | 0 5560 |       |   | 0.5544    |      |         |      |             |        |   |         |
| trans-1,4-Dichloro-2-butene           | 0.5548<br>0.5840 | 0.5131           | 0.4776 | 0.5896 | 0.5760 | Ave   |   | 0.5514    |      |         | 7.5  | 20.0        |        |   |         |
| N. Danaralla annon                    |                  | 0.5646           | 2 (007 | 4.2586 | 3.6172 | 7     |   | 3.7464    |      |         | 0 1  | 20.0        |        |   |         |
| N-Propylbenzene                       | 4.0396           | 3.3922<br>3.5160 | 3.6887 | 4.2386 | 3.01/2 | Ave   |   | 3./404    |      |         | 8.1  | ∠∪.0        |        |   |         |
| Bromobenzene                          | 1.0593           | 0.8531           | 0.9744 | 1.0990 | 0.9744 | 7770  |   | 0.9922    |      |         | 8.6  | 20.0        |        |   |         |
| DIOMODENZENE                          | 1.0563           | 0.9288           | 0.5/44 | 1.0550 | 0.3/44 | AVE   |   | 0.3322    |      |         | 0.0  | 20.0        |        |   |         |
| 1,2,3-Trichloropropane                | 0.3167           | 0.2954           | 0.2768 | 0.3366 | 0.3166 | Ave   |   | 0.3083    |      |         | 6.1  | 20.0        |        |   |         |
|                                       | 0.3117           | 0.3045           | 3.2.30 | 3.0000 | 3.0100 |       |   | 3.3333    |      |         | "    |             |        |   |         |
| 1,3,5-Trimethylbenzene                | +++++            |                  | 2.5397 | 2.9889 | 2.5947 | Ave   |   | 2.6786    |      | 1       | 8.9  | 20.0        |        |   |         |
| · · · · · · · · · · · · · · · · · · · | 2.9596           | 2.5802           |        |        |        |       |   |           |      |         |      |             |        |   |         |
| 2-Chlorotoluene                       | 0.7950           | 0.6832           | 0.8264 | 0.9648 | 0.8165 | Ave   |   | 0.8300    |      |         | 11.0 | 20.0        |        |   |         |
|                                       | 0.9224           | 0.8018           |        |        |        |       |   |           |      |         |      |             |        |   |         |
| 4-Chlorotoluene                       | ++++             | 0.7930           | 0.8326 | 0.9750 | 0.8461 | Ave   |   | 0.8724    |      |         | 8.3  | 20.0        |        |   |         |
|                                       | 0.9492           | 0.8387           |        |        |        |       |   |           |      |         |      |             |        |   |         |
| tert-Butylbenzene                     | +++++            | 0.5752           | 0.5758 | 0.6766 | 0.5693 | Ave   |   | 0.6041    |      |         | 8.8  | 20.0        |        |   |         |
|                                       | 0.6685           | 0.5590           |        |        |        |       |   |           |      |         |      |             |        |   |         |

# GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 381079

SDG No.:

Instrument ID:  $\underline{\text{HP5973P}}$  GC Column:  $\underline{\text{ZB-624 (60)}}$  ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/10/2017 16:02 Calibration End Date: 10/10/2017 20:22 Calibration ID: 31704

| ANALYTE                      |                  |        | RRF    |        |        | CURVE |          | COEFFICI | ENT | # | MIN RRF | %RSD |      | R^2    | # MIN R^2 |
|------------------------------|------------------|--------|--------|--------|--------|-------|----------|----------|-----|---|---------|------|------|--------|-----------|
|                              | LVL 1            | LVL 2  | LVL 3  | LVL 4  | LVL 5  | TYPE  | В        | M1       | M2  |   |         |      | %RSD | OR COD | OR COD    |
|                              | LVL 6            | LVL 7  |        |        |        |       |          |          |     |   |         |      |      |        |           |
| 1,2,4-Trimethylbenzene       | 2.5604           | 2.4729 | 2.6858 | 3.2153 | 2.7318 | 7770  |          | 2.7890   |     |   |         | 10.0 | 20.  | n      |           |
| 1,2,4 IIIMethylbenzene       | 3.1234           | 2.7333 | 2.0030 | 3.2133 | 2.7510 | Ave   |          | 2.7000   |     |   |         | 10.0 | 20.  |        |           |
| sec-Butylbenzene             | 3.0150           | 2.8679 | 3.0455 | 3.6851 | 3.0537 | Ave   |          | 3.1862   |     |   |         | 10.4 | 20.  | 0      |           |
|                              | 3.6423           | 2.9942 |        |        |        |       |          |          |     |   |         |      |      |        |           |
| 4-Isopropyltoluene           | ++++             | 2.7091 | 2.7875 | 3.3992 | 2.8616 | Ave   |          | 3.0037   |     |   |         | 10.2 | 20.  | 0      |           |
|                              | 3.3832           | 2.8814 |        |        |        |       |          |          |     |   |         |      |      |        |           |
| 1,3-Dichlorobenzene          | ++++             | 1.7143 |        | 2.0772 | 1.7639 | Ave   |          | 1.8372   |     |   | 0.6000  | 8.1  | 20.  | 0      |           |
|                              | 1.9651           | 1.7293 |        |        |        |       |          |          |     |   |         |      |      |        |           |
| 1,4-Dichlorobenzene          | 1.8860           |        |        | 2.1320 | 1.8176 | Ave   |          | 1.9074   |     |   | 0.5000  | 7.0  | 20.  | 0      |           |
|                              | 2.0563           | 1.7955 |        |        |        |       |          |          |     |   |         |      |      |        |           |
| n-Butylbenzene               | 2.7460           | 2.3291 |        | 2.9483 | 2.3758 | Ave   |          | 2.5617   |     |   |         | 10.3 | 20.  | 0      |           |
|                              | 2.8114           | 2.3275 |        |        |        |       |          |          |     |   |         |      |      |        |           |
| 1,2-Dichlorobenzene          | 1.6724           |        |        | 2.0315 | 1.7578 | Ave   |          | 1.7818   |     |   | 0.4000  | 8.6  | 20.  | 0      |           |
| 1.0.7'                       | 1.9499           | 1.7096 |        | 0.0464 | 0.0455 | - 1 4 | 0 1 60 4 | 0.0004   |     |   | 0.0500  |      |      | 0.000  | 0.000     |
| 1,2-Dibromo-3-Chloropropane  | 0.5304<br>0.2505 | 0.4481 | 0.2572 | 0.2464 | 0.2455 | Lini  | 0.1604   | 0.2394   |     |   | 0.0500  |      |      | 0.9990 | 0.9900    |
| 1,2,4-Trichlorobenzene       | +++++            | 1.1748 | 1 2205 | 1.4953 | 1 2/07 | 70    |          | 1.3084   |     |   | 0.2000  | 10 6 | 20.  | 2      |           |
| 1,2,4-IIICHIOIODEHZEHE       | 1.4723           | 1.2210 |        | 1.4933 | 1.240/ | Ave   |          | 1.3004   |     |   | 0.2000  | 10.0 | 20.  | 7      |           |
| Hexachlorobutadiene          | 0.5617           | 0.6462 |        | 0.6277 | 0 4901 | Δττο  |          | 0.5555   |     |   |         | 12.2 | 20.  | 1      |           |
| nexaciiioiobutaaiciic        | 0.5834           | 0.4803 |        | 0.0277 | 0.4501 | 2100  |          | 0.3333   |     |   |         | 12.2 | 20.  |        |           |
| Naphthalene                  | 3.2024           | 3.0744 |        | 3.7927 | 3.5640 | Ave   |          | 3.4323   |     |   |         | 9.5  | 20.  | 0      |           |
|                              | 3.8198           | 3.5241 |        |        |        | 1     |          |          |     |   |         |      |      |        |           |
| 1,2,3-Trichlorobenzene       | ++++             | 1.2559 | 1.1801 | 1.4730 | 1.2067 | Ave   |          | 1.2924   |     |   |         | 10.0 | 20.  | 0      |           |
|                              | 1.4387           | 1.2001 |        |        |        |       |          |          |     |   |         |      |      |        |           |
| Dibromofluoromethane (Surr)  | 1.4169           | 1.3802 | 1.3916 | 1.4404 | 1.4374 | Ave   |          | 1.4102   |     |   |         | 1.6  | 20.  | 0      |           |
|                              | 1.4083           | 1.3964 |        |        |        |       |          |          |     |   |         |      |      |        |           |
| 1,2-Dichloroethane-d4 (Surr) | 1.0014           | 0.9369 | 0.9679 | 0.9885 | 1.0010 | Ave   |          | 0.9762   |     |   |         | 2.4  | 20.  | 0      |           |
|                              | 0.9802           | 0.9576 |        |        |        |       |          |          |     |   |         |      |      |        |           |
| Toluene-d8 (Surr)            | 2.2043           | 2.2530 | 2.2095 | 2.2468 | 2.2143 | Ave   |          | 2.2281   |     |   |         | 0.9  | 20.  | 0      |           |
|                              | 2.2317           | 2.2371 |        |        |        |       |          |          |     |   |         |      |      |        |           |
| 4-Bromofluorobenzene (Surr)  | 0.7904           | 0.8301 | 0.7820 | 0.8241 | 0.8148 | Ave   |          | 0.8126   |     |   |         | 2.4  | 20.  | 0      |           |
|                              | 0.8160           | 0.8308 |        |        |        |       |          |          |     |   |         |      |      |        |           |

### GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

 Lab Name:
 TestAmerica Buffalo
 Job No.:
 480-125579-1
 Analy Batch No.:
 381079

 SDG No.:
 Instrument ID:
 HP5973P
 GC Column:
 ZB-624 (60) ID:
 0.25 (mm)
 Heated Purge: (Y/N) N

Calibration Start Date: 10/10/2017 16:02 Calibration End Date: 10/10/2017 20:22 Calibration ID: 31704

#### Calibration Files:

| LEVEL:  | LAB SAMPLE ID:    | LAB FILE ID: |
|---------|-------------------|--------------|
| Level 1 | IC 480-381079/5   | P3042P.D     |
| Level 2 | IC 480-381079/6   | P3043P.D     |
| Level 3 | IC 480-381079/7   | P3044P.D     |
| Level 4 | IC 480-381079/8   | P3045P.D     |
| Level 5 | ICIS 480-381079/9 | P3046P.D     |
| Level 6 | IC 480-381079/10  | P3047P.D     |
| Level 7 | IC 480-381079/11  | P3048P.D     |

| ANALYTE                                | IS  | CURVE |                  |                  | RESPONSE |        |         |                | CONCE          | NTRATION (U | JG/L) |       |
|----------------------------------------|-----|-------|------------------|------------------|----------|--------|---------|----------------|----------------|-------------|-------|-------|
|                                        | REF | TYPE  | LVL 1<br>LVL 6   | LVL 2<br>LVL 7   | LVL 3    | LVL 4  | LVL 5   | LVL 1<br>LVL 6 | LVL 2<br>LVL 7 | LVL 3       | LVL 4 | LVL 5 |
| Dichlorodifluoromethane                | FB  | Ave   | 6192<br>918506   | 13221<br>1506370 | 76925    | 173023 | 352250  | 0.500<br>50.0  | 1.00           | 5.00        | 10.0  | 25.0  |
| Chloromethane                          | FB  | Ave   | +++++<br>1819431 | 35010<br>3120558 | 154436   | 356273 | 758092  | +++++<br>50.0  | 1.00<br>100    | 5.00        | 10.0  | 25.0  |
| Vinyl chloride                         | FB  | Ave   | +++++<br>1206067 | 17588<br>2116698 | 96297    | 221163 | 483104  | +++++<br>50.0  | 1.00<br>100    | 5.00        | 10.0  | 25.0  |
| Butadiene                              | FB  | Ave   | 11947<br>1395456 | 23126<br>2479388 | 114644   | 262764 | 570491  | 0.500<br>50.0  | 1.00<br>100    | 5.00        | 10.0  | 25.0  |
| Bromomethane                           | FB  | Ave   | 4950<br>640743   | 9647<br>1124468  | 55173    | 122590 | 273000  | 0.500<br>50.0  | 1.00<br>100    | 5.00        | 10.0  | 25.0  |
| Chloroethane                           | FB  | Ave   | 5920<br>675006   | 10142<br>1158173 | 53930    | 130777 | 280432  | 0.500<br>50.0  | 1.00           | 5.00        | 10.0  | 25.0  |
| Dichlorofluoromethane                  | FB  | Ave   | +++++<br>1521707 | 22151<br>2663320 | 127717   | 300416 | 635395  | +++++<br>50.0  | 1.00           | 5.00        | 10.0  | 25.0  |
| Trichlorofluoromethane                 | FB  | Ave   | +++++<br>1386411 | 15621<br>2337946 | 103299   | 229935 | 526285  | +++++<br>50.0  | 1.00           | 5.00        | 10.0  | 25.0  |
| Ethyl ether                            | FB  | Ave   | 6755<br>866475   | 13301<br>1527694 | 67373    | 163301 | 365394  | 0.500<br>50.0  | 1.00           | 5.00        | 10.0  | 25.0  |
| Acrolein                               | FB  | Ave   | +++++<br>645611  | 10361<br>1369306 | 55639    | 122699 | 324883  | +++++<br>250   | 5.00<br>500    | 25.0        | 50.0  | 125   |
| 1,1,2-Trichloro-1,2,2-trifluoroetha ne | FB  | Ave   | 5784<br>758601   | 10529<br>1299676 | 67223    | 140959 | 315331  | 0.500<br>50.0  | 1.00           | 5.00        | 10.0  | 25.0  |
| 1,1-Dichloroethene                     | FB  | Ave   | +++++<br>724483  | 14795<br>1281396 | 65444    | 132066 | 304549  | +++++<br>50.0  | 1.00<br>100    | 5.00        | 10.0  | 25.0  |
| Acetone                                | FB  | Ave   | +++++<br>2466416 | 47977<br>4860760 | 196695   | 451181 | 1194169 | +++++<br>250   | 5.00<br>500    | 25.0        | 50.0  | 125   |
| Iodomethane                            | FB  | Ave   | 10327<br>1363124 | 20176<br>2448447 | 112839   | 259609 | 582668  | 0.500<br>50.0  | 1.00<br>100    | 5.00        | 10.0  | 25.0  |
| Methyl acetate                         | FB  | Ave   | 17251<br>2429979 | 41341<br>4625698 | 184633   | 458527 | 1168710 | 1.00           | 2.00           | 10.0        | 20.0  | 50.0  |

## GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 381079

SDG No.:

Instrument ID: HP5973P GC Column: ZB-624 (60) ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/10/2017 16:02 Calibration End Date: 10/10/2017 20:22 Calibration ID: 31704

| ANALYTE                  | IS<br>REF | CURVE |                  |                   | RESPONSE |         |         |                | CONCE          | NTRATION (U | JG/L) |       |
|--------------------------|-----------|-------|------------------|-------------------|----------|---------|---------|----------------|----------------|-------------|-------|-------|
|                          | KEF       | TYPE  | LVL 1<br>LVL 6   | LVL 2<br>LVL 7    | LVL 3    | LVL 4   | LVL 5   | LVL 1<br>LVL 6 | LVL 2<br>LVL 7 | LVL 3       | LVL 4 | LVL 5 |
| Carbon disulfide         | FB        | Ave   | 20581<br>2721274 | 38075<br>4856548  | 226252   | 511466  | 1149690 | 0.500<br>50.0  | 1.00           | 5.00        | 10.0  | 25.0  |
| Allyl chloride           | FB        | Ave   | ++++<br>2167875  | 34000<br>3849160  | 181192   | 402052  | 903732  | ++++<br>50.0   | 1.00<br>100    | 5.00        | 10.0  | 25.0  |
| 2-Methyl-2-propanol      | FB        | Ave   | 12513<br>1590692 | 23126<br>3093103  | 112615   | 269368  | 756154  | 5.00<br>500    | 10.0<br>1000   | 50.0        | 100   | 250   |
| Methylene Chloride       | FB        | Lin1  | ++++<br>856769   | 31430             | 82276    | 188595  | 363906  | ++++<br>50.0   | 1.00           | 5.00        | 10.0  | 25.0  |
| Methyl tert-butyl ether  | FB        | Ave   | 18766<br>2319151 | 35429<br>4348816  | 186646   | 440808  | 1002226 | 0.500<br>50.0  | 1.00           | 5.00        | 10.0  | 25.0  |
| trans-1,2-Dichloroethene | FB        | Ave   | +++++<br>744733  | 14350<br>1305820  | 63533    | 146961  | 309242  | +++++<br>50.0  | 1.00           | 5.00        | 10.0  | 25.0  |
| Acrylonitrile            | FB        | Ave   | 42107<br>4885868 | 80675<br>9750085  | 385737   | 896885  | 2412765 | 5.00<br>500    | 10.0           | 50.0        | 100   | 250   |
| Hexane                   | FB        | Ave   | +++++<br>1318373 | 20057<br>2188958  | 110574   | 251039  | 532505  | +++++          | 1.00           | 5.00        | 10.0  | 25.0  |
| Vinyl acetate            | FB        | Ave   | +++++<br>5386868 | 91284<br>10471043 | 451674   | 1072652 | 2686123 | ++++           | 2.00           | 10.0        | 20.0  | 50.0  |
| 1,1-Dichloroethane       | FB        | Ave   | 12556<br>1610304 | 24475<br>2923890  | 135725   | 308519  | 685120  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| 2-Butanone (MEK)         | FB        | Ave   | 33329<br>3709233 | 58700<br>7470045  | 276828   | 680320  | 1863634 | 2.50<br>250    | 5.00           | 25.0        | 50.0  | 125   |
| 2,2-Dichloropropane      | FB        | Ave   | 5825<br>561024   | 10895<br>1073748  | 63269    | 136915  | 295827  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| cis-1,2-Dichloroethene   | FB        | Ave   | +++++<br>793491  | 14275<br>1417643  | 67751    | 155372  | 332507  | +++++          | 1.00           | 5.00        | 10.0  | 25.0  |
| Chlorobromomethane       | FB        | Ave   | 3501<br>404932   | 5868<br>732468    | 35677    | 80576   | 172471  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| Tetrahydrofuran          | FB        | Ave   | +++++<br>928086  | 16263<br>1855505  | 72382    | 171456  | 458102  | +++++          | 2.00           | 10.0        | 20.0  | 50.0  |
| Chloroform               | FB        | Ave   | 10546<br>1371063 | 21516<br>2453445  | 115317   | 269740  | 590322  | 0.500<br>50.0  | 1.00           | 5.00        | 10.0  | 25.0  |
| 1,1,1-Trichloroethane    | FB        | Ave   | 9531<br>1170383  | 17368<br>2110676  | 100501   | 226364  | 492237  | 0.500<br>50.0  | 1.00           | 5.00        | 10.0  | 25.0  |
| Cyclohexane              | FB        | Ave   | +++++<br>1777953 | 25092<br>3138520  | 145859   | 333098  | 733781  | ++++<br>50.0   | 1.00           | 5.00        | 10.0  | 25.0  |
| 1,1-Dichloropropene      | FB        | Ave   | 7976<br>954295   | 15011<br>1762096  | 82913    | 188689  | 422340  | 0.500<br>50.0  | 1.00           | 5.00        | 10.0  | 25.0  |
| Carbon tetrachloride     | FB        | Ave   | +++++<br>1005256 | 12085<br>1661571  | 67979    | 156933  | 360654  | ++++           | 1.00           | 5.00        | 10.0  | 25.0  |
| Isobutyl alcohol         | FB        | Ave   | +++++<br>2037808 | 29931<br>4093827  | 135746   | 346375  | 979227  | +++++<br>1250  | 25.0<br>2500   | 125         | 250   | 625   |

## GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 381079

SDG No.:

Instrument ID: <u>HP5973P</u> GC Column: <u>ZB-624</u> (60) ID: <u>0.25(mm)</u> Heated Purge: (Y/N) N

Calibration Start Date: 10/10/2017 16:02 Calibration End Date: 10/10/2017 20:22 Calibration ID: 31704

| ANALYTE                     | IS         | CURVE |                  |                    | RESPONSE |         |         |                | CONCE          | NTRATION (U | JG/L) |       |
|-----------------------------|------------|-------|------------------|--------------------|----------|---------|---------|----------------|----------------|-------------|-------|-------|
|                             | REF        | TYPE  | LVL 1<br>LVL 6   | LVL 2<br>LVL 7     | LVL 3    | LVL 4   | LVL 5   | LVL 1<br>LVL 6 | LVL 2<br>LVL 7 | LVL 3       | LVL 4 | LVL 5 |
| Benzene                     | FB         | Ave   | 21796<br>2727047 | 40681<br>4941436   | 230457   | 529491  | 1162159 | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| n-Heptane                   | FB         | Ave   | 12356<br>1404689 | 24428<br>2222772   | 102766   | 260991  | 557706  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| 1,2-Dichloroethane          | FB         | Ave   | 13097<br>1491848 | 22743<br>2705944   | 124207   | 294408  | 650724  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| Trichloroethene             | FB         | Ave   | 6247<br>765203   | 12417<br>1378147   | 65512    | 146363  | 320023  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| Methylcyclohexane           | FB         | Ave   | +++++<br>1048534 | 16333<br>1798265   | 83746    | 199875  | 432229  | +++++          | 1.00           | 5.00        | 10.0  | 25.0  |
| 1,2-Dichloropropane         | FB         | Ave   | 7440<br>863093   | 13609<br>1566199   | 72617    | 168649  | 365450  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| 1,4-Dioxane                 | CBNZ<br>d5 | Ave   | ++++<br>185191   | +++++<br>344874    | 11298    | 32760   | 81432   | ++++           | +++++          | 100         | 200   | 500   |
| Dibromomethane              | FB         | Ave   | ++++<br>493667   | 9221<br>925691     | 41592    | 97427   | 224759  | ++++           | 1.00           | 5.00        | 10.0  | 25.0  |
| Bromodichloromethane        | FB         | Ave   | +++++<br>1075676 | 13273<br>1928316   | 82600    | 201472  | 446039  | ++++<br>50.0   | 1.00           | 5.00        | 10.0  | 25.0  |
| 2-Chloroethyl vinyl ether   | FB         | Ave   | ++++<br>613393   | 8921<br>1215256    | 45621    | 114280  | 282799  | ++++<br>50.0   | 1.00           | 5.00        | 10.0  | 25.0  |
| cis-1,3-Dichloropropene     | FB         | Ave   | ++++<br>1151508  | 17523<br>2141619   | 94449    | 224128  | 505015  | ++++<br>50.0   | 1.00           | 5.00        | 10.0  | 25.0  |
| 4-Methyl-2-pentanone (MIBK) | CBNZ<br>d5 | Ave   | +++++<br>7560549 | 119972<br>14678897 | 602724   | 1457243 | 3836099 | ++++<br>250    | 5.00           | 25.0        | 50.0  | 125   |
| Toluene                     | CBNZ<br>d5 | Ave   | 13324<br>1667836 | 24868<br>3090757   | 141840   | 321944  | 729601  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| Ethyl methacrylate          | CBNZ<br>d5 | Ave   | ++++<br>948552   | 11927<br>1923333   | 70960    | 174128  | 438095  | ++++<br>50.0   | 1.00           | 5.00        | 10.0  | 25.0  |
| trans-1,3-Dichloropropene   | CBNZ<br>d5 | Ave   | ++++<br>1159133  | 16664<br>2168452   | 92184    | 224317  | 507946  | ++++<br>50.0   | 1.00           | 5.00        | 10.0  | 25.0  |
| 1,1,2-Trichloroethane       | CBNZ<br>d5 | Ave   | 4984<br>548661   | 8996<br>1046069    | 49412    | 105674  | 252742  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| Tetrachloroethene           | CBNZ<br>d5 | Ave   | 7001<br>786243   | 13282<br>1412801   | 69656    | 153615  | 343526  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| 2-Hexanone                  | CBNZ<br>d5 | Ave   | +++++<br>5421607 | 85543<br>10960565  | 427075   | 1016410 | 2767473 | ++++<br>250    | 5.00           | 25.0        | 50.0  | 125   |
| 1,3-Dichloropropane         | CBNZ<br>d5 | Ave   | 9481<br>1107782  | 15804<br>2094245   | 91324    | 220913  | 495554  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| Dibromochloromethane        | CBNZ<br>d5 | Ave   | ++++<br>834420   | 11362<br>1577516   | 61979    | 151194  | 356036  | ++++<br>50.0   | 1.00           | 5.00        | 10.0  | 25.0  |
| 1,2-Dibromoethane           | CBNZ<br>d5 | Ave   | ++++<br>716925   | 11647<br>1375996   | 58492    | 138725  | 330223  | ++++<br>50.0   | 1.00           | 5.00        | 10.0  | 25.0  |

## GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 381079

SDG No.:

Instrument ID:  $\underline{\text{HP5973P}}$  GC Column:  $\underline{\text{ZB-624}}$  (60) ID:  $\underline{\text{0.25}}$  (mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/10/2017 16:02 Calibration End Date: 10/10/2017 20:22 Calibration ID: 31704

| ANALYTE                     | IS         | CURVE |                 |                  | RESPONSE |             |         |                | CONCE          | NTRATION (U | JG/L) |       |
|-----------------------------|------------|-------|-----------------|------------------|----------|-------------|---------|----------------|----------------|-------------|-------|-------|
|                             | REF        | TYPE  | LVL 1<br>LVL 6  | LVL 2<br>LVL 7   | LVL 3    | LVL 4       | LVL 5   | LVL 1<br>LVL 6 | LVL 2<br>LVL 7 | LVL 3       | LVL 4 | LVL 5 |
| Chlorobenzene               | CBNZ       | Ave   | +++++           | 28820            | 169850   | 400675      | 886492  | +++++          | 1.00           | 5.00        | 10.0  | 25.0  |
|                             | d5         |       | 1995674         | 3664293          |          |             |         | 50.0           | 100            |             |       |       |
| Ethylbenzene                | CBNZ       | Ave   | ++++            | 48743            | 270764   | 609781      | 1374233 | +++++          | 1.00           | 5.00        | 10.0  | 25.0  |
| 1 1 1 0 7 1 1 1 1 1 1       | d5         |       | 3173847         | 5857536          | 50760    | 1.4.4.6.6.0 | 220550  | 50.0           | 100            | F 00        | 10.0  | 05.0  |
| 1,1,1,2-Tetrachloroethane   | CBNZ<br>d5 | Ave   | 6563<br>779565  | 9865<br>1446251  | 59768    | 144668      | 330559  | 0.500<br>50.0  | 1.00<br>100    | 5.00        | 10.0  | 25.0  |
| m,p-Xylene                  | CBNZ       | Ave   | 9961            | 17455            | 105745   | 246433      | 547960  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| m, p xyrene                 | d5         | Ave   | 1251865         | 2371464          | 103743   | 240433      | 347300  | 50.0           | 100            | 3.00        | 10.0  | 23.0  |
| o-Xylene                    | CBNZ       | Ave   | 9940            | 18705            | 100133   | 238920      | 545790  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
|                             | d5         |       | 1248964         | 2341113          |          |             |         | 50.0           | 100            |             |       |       |
| Styrene                     | CBNZ       | Ave   | +++++           | 26987            | 160504   | 393613      | 897953  | +++++          | 1.00           | 5.00        | 10.0  | 25.0  |
|                             | d5         |       | 2129175         | 4036982          |          |             |         | 50.0           | 100            |             |       |       |
| Bromoform                   | CBNZ       | Ave   | +++++           | 7847             | 46381    | 109870      | 281781  | +++++          | 1.00           | 5.00        | 10.0  | 25.0  |
|                             | d5         |       | 634943          | 1262274          |          |             |         | 50.0           | 100            |             |       |       |
| Isopropylbenzene            | DCBd       | Ave   | 23054           | 43504            | 251051   | 598219      | 1326529 | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| 1 1 0 0 metusehleusethese   | 4 DCD 4    | 7     | 3100485<br>7407 | 5726024<br>15102 | 72160    | 177519      | 428065  | 50.0<br>0.500  | 100            | 5.00        | 10.0  | 25.0  |
| 1,1,2,2-Tetrachloroethane   | DCBd<br>4  | Ave   | 888284          | 1759968          | 73162    | 1//519      | 428065  | 50.0           | 1.00<br>100    | 5.00        | 10.0  | 25.0  |
| trans-1,4-Dichloro-2-butene | DCBd       | Ave   | 4485            | 8374             | 40150    | 100509      | 253255  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
| cians 1,4 Dichiolo 2 Ducene | 4          | Ave   | 531024          | 1083841          | 40130    | 100303      | 233233  | 50.0           | 100            | 3.00        | 10.0  | 23.0  |
| N-Propylbenzene             | DCBd       | Ave   | 30014           | 55356            | 310086   | 725957      | 1590484 | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
|                             | 4          |       | 3673269         | 6749775          |          |             |         | 50.0           | 100            |             |       |       |
| Bromobenzene                | DCBd       | Ave   | 8564            | 13921            | 81907    | 187348      | 428420  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
|                             | 4          |       | 960525          | 1783067          |          |             |         | 50.0           | 100            |             |       |       |
| 1,2,3-Trichloropropane      | DCBd       | Ave   | 2560            | 4821             | 23269    | 57372       | 139228  | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
|                             | 4          |       | 283394          | 584485           |          |             |         | 50.0           | 100            |             |       |       |
| 1,3,5-Trimethylbenzene      | DCBd       | Ave   | +++++           | 39300            | 213491   | 509518      | 1140863 | +++++          | 1.00           | 5.00        | 10.0  | 25.0  |
| 0.01.1                      | 4          | -     | 2691214         | 4953366          | 60460    | 1.6.1.1.6.0 | 250006  | 50.0           | 100            | F 00        | 10.0  | 0.5.0 |
| 2-Chlorotoluene             | DCBd<br>4  | Ave   | 6427<br>838716  | 11149<br>1539264 | 69469    | 164462      | 359026  | 0.500<br>50.0  | 1.00<br>100    | 5.00        | 10.0  | 25.0  |
| 4-Chlorotoluene             | DCBd       | Ave   | 838716<br>+++++ | 12941            | 69987    | 166200      | 372016  | +++++          | 1.00           | 5.00        | 10.0  | 25.0  |
| 4-Ciliolocoluelle           | 4          | Ave   | 863120          | 1610013          | 09907    | 100200      | 372010  | 50.0           | 100            | 3.00        | 10.0  | 23.0  |
| tert-Butylbenzene           | DCBd       | Ave   | ++++            | 9387             | 48405    | 115330      | 250341  | +++++          | 1.00           | 5.00        | 10.0  | 25.0  |
|                             | 4          | 1110  | 607878          | 1073113          | 10100    | 110000      | 200011  | 50.0           | 100            | 0.00        | 10.0  | 20.0  |
| 1,2,4-Trimethylbenzene      | DCBd       | Ave   | 20699           | 40355            | 225777   | 548109      | 1201157 | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
|                             | 4          |       | 2840153         | 5247304          |          |             |         | 50.0           | 100            |             |       |       |
| sec-Butylbenzene            | DCBd       | Ave   | 24374           | 46801            | 256011   | 628195      | 1342703 | 0.500          | 1.00           | 5.00        | 10.0  | 25.0  |
|                             | 4          |       | 3311933         | 5748163          |          |             |         | 50.0           | 100            |             |       |       |
| 4-Isopropyltoluene          | DCBd       | Ave   | ++++            | 44210            | 234322   | 579456      | 1258243 | +++++          | 1.00           | 5.00        | 10.0  | 25.0  |
|                             | 4          | 1     | 3076325         | 5531617          |          | 0.5.1.1.1   | 55-11   | 50.0           | 100            |             |       |       |
| 1,3-Dichlorobenzene         | DCBd       | Ave   | +++++           | 27976            | 149063   | 354095      | 775605  | +++++          | 1.00           | 5.00        | 10.0  | 25.0  |
|                             | 4          |       | 1786843         | 3319784          |          |             |         | 50.0           | 100            |             |       |       |

## GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 381079

SDG No.:

Instrument ID: HP5973P GC Column: ZB-624 (60) ID: 0.25 (mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/10/2017 16:02 Calibration End Date: 10/10/2017 20:22 Calibration ID: 31704

| ANALYTE                      | IS         | CURVE |                  |                  | RESPONSE |        |         |                | CONCE          | NTRATION ( | UG/L) |       |
|------------------------------|------------|-------|------------------|------------------|----------|--------|---------|----------------|----------------|------------|-------|-------|
|                              | REF        | TYPE  | LVL 1<br>LVL 6   | LVL 2<br>LVL 7   | LVL 3    | LVL 4  | LVL 5   | LVL 1<br>LVL 6 | LVL 2<br>LVL 7 | LVL 3      | LVL 4 | LVL 5 |
| 1,4-Dichlorobenzene          | DCBd<br>4  | Ave   | 15247<br>1869766 | 29294<br>3446992 | 157122   | 363441 | 799185  | 0.500<br>50.0  | 1.00           | 5.00       | 10.0  | 25.0  |
| n-Butylbenzene               | DCBd<br>4  | Ave   | 22200<br>2556462 | 38008<br>4468247 | 201239   | 502587 | 1044618 | 0.500<br>50.0  | 1.00<br>100    | 5.00       | 10.0  | 25.0  |
| 1,2-Dichlorobenzene          | DCBd<br>4  | Ave   | 13520<br>1773101 | 26119<br>3282012 | 147145   | 346311 | 772922  | 0.500<br>50.0  | 1.00<br>100    | 5.00       | 10.0  | 25.0  |
| 1,2-Dibromo-3-Chloropropane  | DCBd<br>4  | Lin1  | 4288<br>227760   | 7312<br>457726   | 21618    | 42010  | 107964  | 0.500<br>50.0  | 1.00<br>100    | 5.00       | 10.0  | 25.0  |
| 1,2,4-Trichlorobenzene       | DCBd<br>4  | Ave   | +++++<br>1338784 | 19171<br>2344041 | 104110   | 254898 | 549071  | ++++<br>50.0   | 1.00<br>100    | 5.00       | 10.0  | 25.0  |
| Hexachlorobutadiene          | DCBd<br>4  | Ave   | 4541<br>530503   | 10546<br>922117  | 41977    | 106994 | 215500  | 0.500<br>50.0  | 1.00           | 5.00       | 10.0  | 25.0  |
| Naphthalene                  | DCBd<br>4  | Ave   | 25889<br>3473370 | 50170<br>6765359 | 256299   | 646535 | 1567096 | 0.500<br>50.0  | 1.00           | 5.00       | 10.0  | 25.0  |
| 1,2,3-Trichlorobenzene       | DCBd<br>4  | Ave   | +++++<br>1308210 | 20495<br>2303868 | 99206    | 251101 | 530605  | ++++<br>50.0   | 1.00<br>100    | 5.00       | 10.0  | 25.0  |
| Dibromofluoromethane (Surr)  | FB         | Ave   | 246309<br>264657 | 248745<br>272147 | 245504   | 255973 | 258120  | 25.0<br>25.0   | 25.0<br>25.0   | 25.0       | 25.0  | 25.0  |
| 1,2-Dichloroethane-d4 (Surr) | FB         | Ave   | 174074<br>184210 | 168857<br>186635 | 170749   | 175676 | 179745  | 25.0<br>25.0   | 25.0<br>25.0   | 25.0       | 25.0  | 25.0  |
| Toluene-d8 (Surr)            | CBNZ<br>d5 | Ave   | 858904<br>930160 | 844935<br>952474 | 868443   | 884953 | 889851  | 25.0<br>25.0   | 25.0<br>25.0   | 25.0       | 25.0  | 25.0  |
| 4-Bromofluorobenzene (Surr)  | CBNZ<br>d5 | Ave   | 307976<br>340116 | 311328<br>353734 | 307388   | 324602 | 327459  | 25.0<br>25.0   | 25.0<br>25.0   | 25.0       | 25.0  | 25.0  |

Curve Type Legend:

Ave = Average ISTD

Lin1 = Linear 1/conc ISTD

Report Date: 11-Oct-2017 12:02:08 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3042P.D

Lims ID: IC

Client ID:

Sample Type: IC Calib Level: 1

Inject. Date: 10-Oct-2017 16:02:30 ALS Bottle#: 4 Worklist Smp#: 5

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC

Misc. Info.: 480-0066269-005

Operator ID: RF Instrument ID: HP5973P

Sublist: chrom-P-8260H2O\*sub11

Method: \ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P-8260H2O.m

Limit Group: MV - 8260C ICAL

Last Update:11-Oct-2017 12:02:07Calib Date:11-Oct-2017 00:40:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3056P.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK031

First Level Reviewer: farrellr Date: 11-Oct-2017 08:44:55

| First Level Reviewer: farrellr       |       |        | D      | ate:   |    | 11-Oct-201 | 7 08:44:55 |           |       |
|--------------------------------------|-------|--------|--------|--------|----|------------|------------|-----------|-------|
|                                      |       | RT     | Adj RT | Dlt RT |    |            | Cal Amt    | OnCol Amt |       |
| Compound                             | Sig   | (min.) | (min.) | (min.) | Q  | Response   | ug/L       | ug/L      | Flags |
|                                      |       |        | -      |        |    |            |            |           |       |
| * 147 Fluorobenzene (IS)             | 70    | 10.433 | 10.434 | -0.001 | 97 | 173836     | 25.0       | 25.0      |       |
| <ul><li>2 Chlorobenzene-d5</li></ul> | 82    | 14.388 | 14.382 | 0.006  | 92 | 389648     | 25.0       | 25.0      |       |
| * 3 1,4-Dichlorobenzene-d4           | 152   | 17.344 | 17.345 | -0.001 | 95 | 404218     | 25.0       | 25.0      |       |
| \$ 148 Dibromofluoromethane (Sur     | r 113 | 9.636  | 9.637  | -0.001 | 92 | 246309     | 25.0       | 25.1      |       |
| \$ 41,2-Dichloroethane-d4 (Sur       | 67    | 10.086 | 10.093 | -0.007 | 0  | 174074     | 25.0       | 25.6      |       |
| \$ 5 Toluene-d8 (Surr)               | 98    | 12.423 | 12.423 | 0.000  | 96 | 858904     | 25.0       | 24.7      |       |
| \$ 6 4-Bromofluorobenzene (Surr      | 174   | 15.884 | 15.878 | 0.006  | 88 | 307976     | 25.0       | 24.3      |       |
| 10 Dichlorodifluoromethane           | 85    | 4.344  | 4.338  | 0.006  | 1  | 6192       | 0.5000     | 0.4279    | M     |
| 11 Chloromethane                     | 50    | 4.788  | 4.770  | 0.018  | 41 | 20220      | 0.5000     | 0.6389    |       |
| 17 Vinyl chloride                    | 62    | 4.964  | 4.971  | -0.007 | 38 | 8026       | 0.5000     | 0.4099    | M     |
| 144 Butadiene                        | 54    | 5.007  | 5.001  | 0.006  | 94 | 11947      | 0.5000     | 0.5083    |       |
| 12 Bromomethane                      | 94    | 5.633  | 5.609  | 0.024  | 10 | 4950       | 0.5000     | 0.4649    | M     |
| 13 Chloroethane                      | 64    | 5.700  | 5.695  | 0.006  | 46 | 5920       | 0.5000     | 0.5264    |       |
| 19 Dichlorofluoromethane             | 67    | 6.017  | 6.023  | -0.006 | 13 | 10909      | 0.5000     | 0.4294    |       |
| 14 Trichlorofluoromethane            | 101   | 6.132  | 6.090  | 0.042  | 1  | 4985       | 0.5000     | 0.2397    |       |
| 20 Ethyl ether                       | 59    | 6.388  | 6.388  | 0.000  | 92 | 6755       | 0.5000     | 0.4757    |       |
| 22 Acrolein                          | 56    | 6.692  | 6.698  | -0.006 | 47 | 4952       | 2.50       | 2.13      |       |
| 16 1,1,2-Trichloro-1,2,2-trif        | 101   | 6.734  | 6.735  | -0.001 | 27 | 5784       | 0.5000     | 0.4675    |       |
| 25 1,1-Dichloroethene                | 96    | 6.844  | 6.832  | 0.012  | 80 | 8738       | 0.5000     | 0.6834    |       |
| 24 Acetone                           | 43    | 6.886  | 6.887  | -0.001 | 96 | 27671      | 2.50       | 3.14      |       |
| 18 lodomethane                       | 142   | 7.124  | 7.124  | 0.000  | 49 | 10327      | 0.5000     | 0.4594    |       |
| 30 Methyl acetate                    | 43    | 7.245  | 7.252  | -0.007 | 96 | 17251      | 1.00       | 0.8413    |       |
| 27 Carbon disulfide                  | 76    | 7.270  | 7.270  | 0.000  | 66 | 20581      | 0.5000     | 0.4637    | M     |
| 28 3-Chloro-1-propene                | 41    | 7.282  | 7.276  | 0.006  | 88 | 24370      | 0.5000     | 0.6730    |       |
| 31 Methylene Chloride                | 84    | 7.507  | 7.501  | 0.006  | 86 | 24333      | 0.5000     | 0.6525    |       |
| 33 2-Methyl-2-propanol               | 59    | 7.495  | 7.501  | -0.006 | 35 | 12513      | 5.00       | 4.81      |       |
| 32 Methyl tert-butyl ether           | 73    | 7.677  | 7.690  | -0.013 | 83 | 18766      | 0.5000     | 0.4828    |       |
| 35 trans-1,2-Dichloroethene          | 96    | 7.787  | 7.781  | 0.006  | 71 | 4543       | 0.5000     | 0.3489    |       |
| 34 Acrylonitrile                     | 53    | 7.817  | 7.812  | 0.005  | 94 | 42107      | 5.00       | 4.94      |       |
| 36 Hexane                            | 57    | 7.988  | 7.976  | 0.012  | 86 | 9385       | 0.5000     | 0.4324    |       |
|                                      |       |        |        |        |    |            |            |           |       |

Page 170 of 914

Report Date: 11-Oct-2017 12:02:08

Data File:

| Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3042P.D |     |        |        |        |          |          |         |           |       |
|--------------------------------------------------------------------------|-----|--------|--------|--------|----------|----------|---------|-----------|-------|
|                                                                          |     | RT     | Adj RT | Dlt RT |          |          | Cal Amt | OnCol Amt |       |
| Compound                                                                 | Sig | (min.) | (min.) | (min.) | Q        | Response | ug/L    | ug/L      | Flags |
|                                                                          |     |        |        |        |          |          |         |           |       |
| 38 Vinyl acetate                                                         | 43  | 8.280  | 8.280  | 0.000  | 97       | 43414    | 1.00    | 0.8997    |       |
| 40 1,1-Dichloroethane                                                    | 63  | 8.334  | 8.335  | -0.001 | 44       | 12556    | 0.5000  | 0.4674    |       |
| 44 2-Butanone (MEK)                                                      | 43  | 9.028  | 9.022  | 0.006  | 95       | 33329    | 2.50    | 2.58      |       |
| 45 2,2-Dichloropropane                                                   | 77  | 9.040  | 9.034  | 0.006  | 51       | 5825     | 0.5000  | 0.5133    |       |
| 43 cis-1,2-Dichloroethene                                                | 96  | 9.046  | 9.053  | -0.007 | 61       | 8801     | 0.5000  | 0.6399    |       |
| 50 Chlorobromomethane                                                    | 128 | 9.381  | 9.387  | -0.006 | 67       | 3501     | 0.5000  | 0.5076    |       |
| 51 Tetrahydrofuran                                                       | 42  | 9.399  | 9.399  | 0.000  | 90       | 9714     | 1.00    | 1.19      |       |
| 49 Chloroform                                                            | 83  | 9.417  | 9.418  | -0.001 | 91       | 10546    | 0.5000  | 0.4583    |       |
| 52 1,1,1-Trichloroethane                                                 | 97  | 9.655  | 9.655  | -0.001 | 39       | 9531     | 0.5000  | 0.4859    |       |
| 54 Cyclohexane                                                           | 56  | 9.691  | 9.698  | -0.007 | 62       | 11753    | 0.5000  | 0.4034    |       |
| 56 1,1-Dichloropropene                                                   | 75  | 9.837  | 9.831  | 0.006  | 76       | 7976     | 0.5000  | 0.4857    |       |
| 55 Carbon tetrachloride                                                  | 117 | 9.849  | 9.837  | 0.012  | 65       | 5103     | 0.5000  | 0.3488    |       |
| 53 Isobutyl alcohol                                                      | 43  | 9.849  | 9.844  | 0.005  | 83       | 13372    | 12.5    | 9.95      |       |
| 57 Benzene                                                               | 78  | 10.123 | 10.129 | -0.006 | 83       | 21796    | 0.5000  | 0.4774    |       |
| 60 1,2-Dichloroethane                                                    | 62  | 10.184 | 10.184 | 0.000  | 92       | 13097    | 0.5000  | 0.5141    |       |
| 59 n-Heptane                                                             | 43  | 10.184 | 10.184 | 0.000  | 76       | 12356    | 0.5000  | 0.5357    |       |
| 62 Trichloroethene                                                       | 95  | 10.883 | 10.884 | -0.001 | 90       | 6247     | 0.5000  | 0.4830    |       |
| 64 Methylcyclohexane                                                     | 83  | 11.084 | 11.078 | 0.006  | 90       | 7708     | 0.5000  | 0.4448    |       |
| 63 1,2-Dichloropropane                                                   | 63  | 11.236 | 11.224 | 0.012  | 45       | 7440     | 0.5000  | 0.5061    |       |
| 68 1,4-Dioxane                                                           | 88  |        | 11.352 |        |          |          |         | ND        |       |
| 69 Dibromomethane                                                        | 93  | 11.431 | 11.431 | 0.000  | 90       | 3592     | 0.5000  | 0.4089    |       |
| 70 Dichlorobromomethane                                                  | 83  | 11.565 | 11.565 | 0.000  | 90       | 7035     | 0.5000  | 0.4092    |       |
| 71 2-Chloroethyl vinyl ether                                             | 63  | 11.814 | 11.815 | -0.001 | 29       | 4158     | 0.5000  | 0.4030    |       |
| 73 cis-1,3-Dichloropropene                                               | 75  | 12.100 | 12.094 | 0.006  | 77       | 8642     | 0.5000  | 0.4417    |       |
| 75 4-Methyl-2-pentanone (MIBK                                            | 43  | 12.197 | 12.198 | -0.001 | 97       | 60326    | 2.50    | 2.23      |       |
| 76 Toluene                                                               | 92  | 12.520 | 12.520 | 0.000  | 96       | 13324    | 0.5000  | 0.4658    |       |
| 77 Ethyl methacrylate                                                    | 69  | 12.733 | 12.739 | -0.006 | 86       | 6373     | 0.5000  | 0.3983    |       |
| 78 trans-1,3-Dichloropropene                                             | 75  | 12.806 | 12.812 | -0.006 | 89       | 8778     | 0.5000  | 0.4426    |       |
| 79 1,1,2-Trichloroethane                                                 | 83  | 13.098 | 13.098 | 0.000  | 92       | 4984     | 0.5000  | 0.5042    |       |
| 80 Tetrachloroethene                                                     | 166 | 13.244 | 13.238 | 0.006  | 90       | 7001     | 0.5000  | 0.5013    |       |
| 83 2-Hexanone                                                            | 43  | 13.286 | 13.287 | -0.001 | 96       | 43545    | 2.50    | 2.24      |       |
| 82 1,3-Dichloropropane                                                   | 76  | 13.323 | 13.329 | -0.006 | 59       | 9481     | 0.5000  | 0.4937    |       |
| 81 Chlorodibromomethane                                                  | 129 | 13.676 | 13.670 | 0.006  | 62       | 5848     | 0.5000  | 0.4233    |       |
| 85 Ethylene Dibromide                                                    | 107 | 13.877 | 13.871 | 0.005  | 77       | 5157     | 0.5000  | 0.4059    |       |
| 87 Chlorobenzene                                                         | 112 | 14.424 | 14.424 | 0.000  | 38       | 15042    | 0.5000  | 0.4329    |       |
| 89 Ethylbenzene                                                          | 91  | 14.473 | 14.467 | 0.006  | 96       | 24951    | 0.5000  | 0.4524    |       |
| 88 1,1,1,2-Tetrachloroethane                                             | 131 | 14.503 | 14.510 | -0.007 | 36       | 6563     | 0.5000  | 0.5095    |       |
| 90 m-Xylene & p-Xylene                                                   | 106 | 14.600 | 14.607 | -0.007 | 0        | 9961     | 0.5000  | 0.4656    |       |
| 93 o-Xylene                                                              | 106 | 15.166 | 15.154 | 0.012  | 82       | 9940     | 0.5000  | 0.4678    |       |
| 94 Styrene                                                               | 104 | 15.184 | 15.179 | 0.005  | 82       | 14991    | 0.5000  | 0.4275    |       |
| 92 Bromoform                                                             | 173 | 15.574 | 15.568 | 0.006  | 43       | 3994     | 0.5000  | 0.3830    |       |
| 95 Isopropylbenzene                                                      | 105 | 15.580 | 15.580 | 0.000  | 97       | 23054    | 0.5000  | 0.4659    |       |
| 97 1,1,2,2-Tetrachloroethane                                             | 83  | 16.054 | 16.055 | -0.001 | 82       | 7407     | 0.5000  | 0.4844    |       |
| 98 trans-1,4-Dichloro-2-buten                                            | 53  | 16.103 | 16.104 | -0.001 | 48       | 4485     | 0.5000  | 0.5031    |       |
| 99 N-Propylbenzene                                                       | 91  | 16.109 | 16.110 | -0.001 | 96       | 30014    | 0.5000  | 0.4955    |       |
| 100 Bromobenzene                                                         | 156 | 16.134 | 16.118 | 0.006  | 79       | 8564     | 0.5000  | 0.5338    |       |
| 101 1,2,3-Trichloropropane                                               | 110 | 16.154 | 16.152 | 0.006  | 39       | 2560     | 0.5000  | 0.5336    |       |
| 102 1,3,5-Trimethylbenzene                                               | 105 | 16.138 | 16.132 | 0.000  | 94       | 17511    | 0.5000  | 0.5135    |       |
| 103 2-Chlorotoluene                                                      | 126 | 16.296 | 16.246 | -0.006 | 93       | 6427     | 0.5000  | 0.4043    |       |
| 105 4-Chlorotoluene                                                      | 126 | 16.310 | 16.316 | 0.000  | 93<br>96 | 6006     | 0.5000  | 0.4769    |       |
|                                                                          |     |        |        |        |          |          |         |           |       |
| 106 tert-Butylbenzene                                                    | 134 | 16.736 | 16.736 | 0.000  | 95<br>07 | 3577     | 0.5000  | 0.3662    |       |
| 107 1,2,4-Trimethylbenzene                                               | 105 | 16.797 | 16.797 | 0.000  | 97       | 20699    | 0.5000  | 0.4590    |       |

Report Date: 11-Oct-2017 12:02:08 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Data File: \ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3042P.D

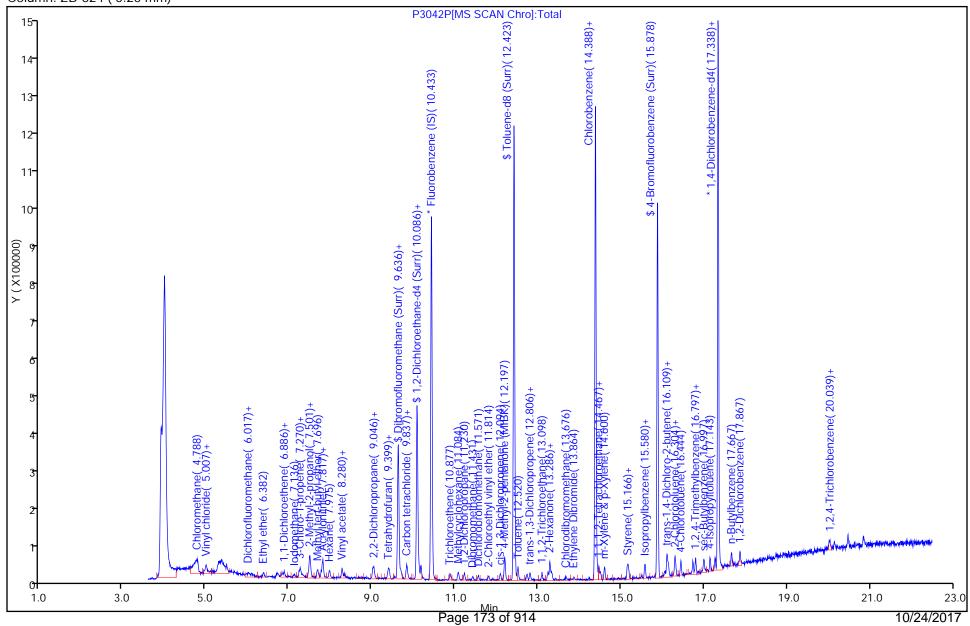
| Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3042P.D                                      |     |        |        |        |    |          |         |           |       |
|---------------------------------------------------------------------------------------------------------------|-----|--------|--------|--------|----|----------|---------|-----------|-------|
|                                                                                                               | 0:  | , RT   | Adj RT | Dlt RT |    | 1        | Cal Amt | OnCol Amt | E     |
| Compound                                                                                                      | Sig | (min.) | (min.) | (min.) | Q  | Response | ug/L    | ug/L      | Flags |
| 109 sec-Butylbenzene                                                                                          | 105 | 16.997 | 17.004 | -0.007 | 95 | 24374    | 0.5000  | 0.4731    |       |
| 3                                                                                                             |     |        |        |        |    |          |         |           |       |
| 112 4-Isopropyltoluene                                                                                        | 119 | 17.156 | 17.150 | 0.006  | 97 | 20778    | 0.5000  | 0.4278    |       |
| 110 1,3-Dichlorobenzene                                                                                       | 146 | 17.271 | 17.272 | -0.001 | 96 | 13478    | 0.5000  | 0.4537    |       |
| 111 1,4-Dichlorobenzene                                                                                       | 146 | 17.375 | 17.375 | 0.000  | 38 | 15247    | 0.5000  | 0.4944    |       |
| 115 n-Butylbenzene                                                                                            | 91  | 17.667 | 17.661 | 0.006  | 96 | 22200    | 0.5000  | 0.5360    |       |
| 116 1,2-Dichlorobenzene                                                                                       | 146 | 17.873 | 17.874 | -0.001 | 89 | 13520    | 0.5000  | 0.4693    |       |
| 117 1,2-Dibromo-3-Chloropropan                                                                                | 75  | 18.914 | 18.920 | -0.006 | 1  | 4288     | 0.5000  | 0.4376    |       |
| 119 1,2,4-Trichlorobenzene                                                                                    | 180 | 20.027 | 20.027 | 0.000  | 89 | 8537     | 0.5000  | 0.4035    |       |
| 120 Hexachlorobutadiene                                                                                       | 225 | 20.155 | 20.143 | 0.012  | 1  | 4541     | 0.5000  | 0.5055    |       |
| 121 Naphthalene                                                                                               | 128 | 20.471 | 20.472 | -0.001 | 95 | 25889    | 0.5000  | 0.4665    |       |
| 122 1,2,3-Trichlorobenzene                                                                                    | 180 | 20.848 | 20.849 | -0.001 | 88 | 8700     | 0.5000  | 0.4163    |       |
| S 123 1,2-Dichloroethene, Total                                                                               | 1   |        |        |        | 0  |          |         | 0.9888    |       |
| S 124 1,3-Dichloropropene, Total                                                                              | 1   |        |        |        | 0  |          |         | 0.8843    |       |
| S 125 Total BTEX                                                                                              | 1   |        |        |        | 0  |          |         | 2.33      |       |
| S 126 Xylenes, Total                                                                                          | 1   |        |        |        | 0  |          |         | 0.9334    |       |
| OC Flag Legend Processing Flags ND - Not Detected or Marked NI Review Flags M - Manually Integrated Reagents: | )   |        |        |        |    |          |         |           |       |

| Amount Added: | 0.50                           | Units: uL                                                                   |                                                              |
|---------------|--------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------|
| Amount Added: | 0.50                           | Units: uL                                                                   |                                                              |
| Amount Added: | 1.25                           | Units: uL                                                                   | Run Reagent                                                  |
| Amount Added: | 1.25                           | Units: uL                                                                   | Run Reagent                                                  |
|               | Amount Added:<br>Amount Added: | Amount Added: 0.50 Amount Added: 0.50 Amount Added: 1.25 Amount Added: 1.25 | Amount Added: 0.50 Units: uL<br>Amount Added: 1.25 Units: uL |

Report Date: 11-Oct-2017 12:02:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3042P.D Injection Date: 10-Oct-2017 16:02:30 Instrument ID: HP5973P


Lims ID: IC

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



RF

5

4

Operator ID:

ALS Bottle#:

Worklist Smp#:

### TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3042P.D Injection Date: 10-Oct-2017 16:02:30 Instrument ID: HP5973P

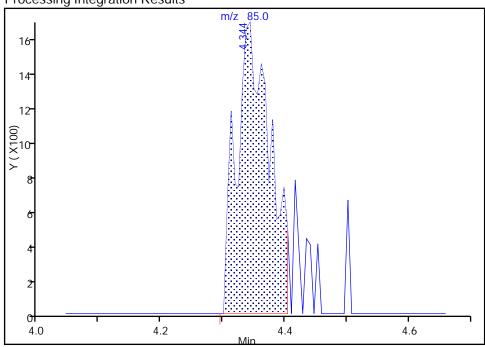
Lims ID: IC

Client ID:

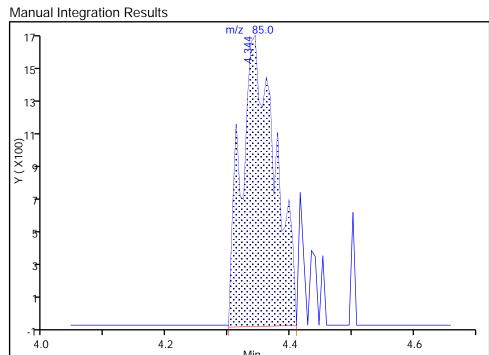
Operator ID: RF ALS Bottle#: 4 Worklist Smp#: 5

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL


Column: ZB-624 ( 0.25 mm) Detector MS SCAN

### 10 Dichlorodifluoromethane, CAS: 75-71-8


Signal: 1

RT: 4.34 Area: 6147 Amount: 0.449218 Amount Units: ug/L





RT: 4.34
Area: 6192
Amount: 0.427923
Amount Units: ug/L



Reviewer: HillL, 11-Oct-2017 11:05:26 Audit Action: Manually Integrated

Audit Reason: Poor chromatography

Page 174 of 914

TestAmerica Buffalo

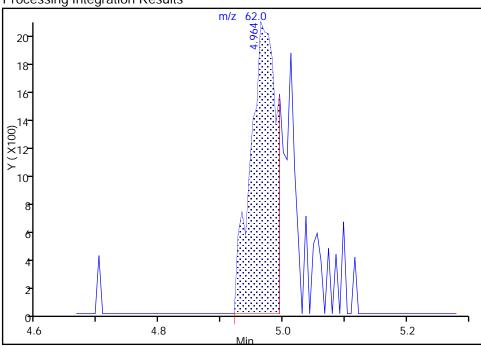
Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3042P.D Injection Date: 10-Oct-2017 16:02:30 Instrument ID: HP5973P

Lims ID: IC

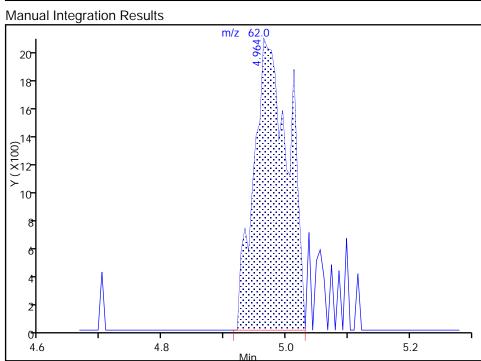
Client ID:

Operator ID: RF ALS Bottle#: 4 Worklist Smp#: 5

Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN


### 17 Vinyl chloride, CAS: 75-01-4

Signal: 1

RT: 4.96 Area: 5975 Amount: 0.454463 Amount Units: ug/L **Processing Integration Results** 



RT: 4.96 Area: 8026 Amount: 0.409926 Amount Units: ug/L



Reviewer: farrellr, 11-Oct-2017 08:41:22

Audit Action: Manually Integrated

Audit Reason: Poor chromatography

Page 175 of 914

TestAmerica Buffalo

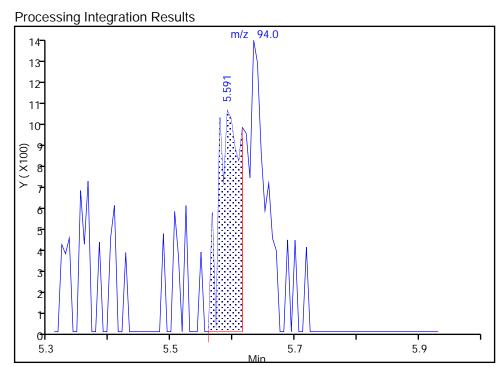
Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3042P.D Injection Date: 10-Oct-2017 16:02:30 Instrument ID: HP5973P

Lims ID: IC

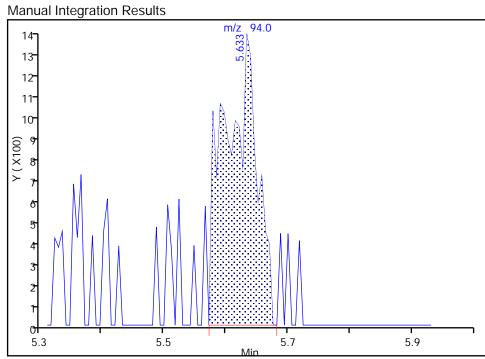
Client ID:

Operator ID: RF ALS Bottle#: 4 Worklist Smp#: 5

Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN


### 12 Bromomethane, CAS: 74-83-9

Signal: 1

RT: 5.59
Area: 2522
Amount: 0.387803
Amount Units: ug/L



RT: 5.63
Area: 4950
Amount: 0.464949
Amount Units: ug/L



Reviewer: farrellr, 11-Oct-2017 08:41:38

Audit Action: Manually Integrated

Audit Reason: Poor chromatography

Page 176 of 914

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3042P.D Injection Date: 10-Oct-2017 16:02:30 Instrument ID: HP5973P

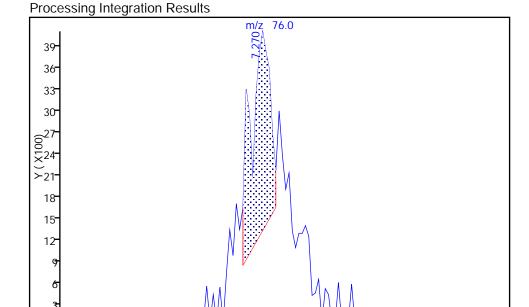
Lims ID: IC

Client ID:

Operator ID: RF ALS Bottle#: 4 Worklist Smp#: 5

Purge Vol: 5.000 mL Dil. Factor: 1.0000

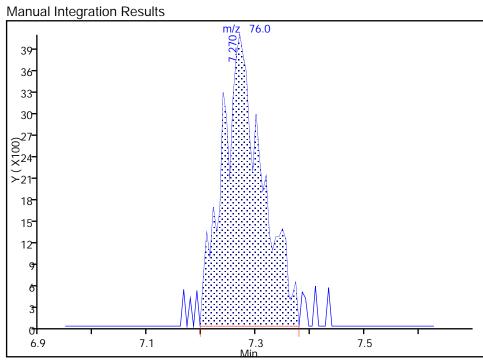
0<del>|</del> 6.9


Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN

### 27 Carbon disulfide, CAS: 75-15-0

Signal: 1


RT: 7.27 Area: 7111 Amount: 0.401537 Amount Units: ug/L



7.3

7.5

RT: 7.27
Area: 20581
Amount: 0.463706
Amount Units: ug/L



Reviewer: farrellr, 11-Oct-2017 08:42:39

Audit Action: Manually Integrated

Audit Reason: Poor chromatography

Page 177 of 914

7.1

Report Date: 11-Oct-2017 12:02:13 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3043P.D

Lims ID: IC 2

Client ID:

Sample Type: IC Calib Level: 2

Inject. Date: 10-Oct-2017 16:29:30 ALS Bottle#: 5 Worklist Smp#: 6

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 2

Misc. Info.: 480-0066269-006

Operator ID: RF Instrument ID: HP5973P

Sublist: chrom-P-8260H2O\*sub11

Method: \ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P-8260H2O.m

Limit Group: MV - 8260C ICAL

Last Update: 11-Oct-2017 12:02:12 Calib Date: 11-Oct-2017 00:40:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\ChromNA\\Buffalo\ChromData\\HP5973P\20171010-66269.b\\P3056P.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK031

First Level Reviewer: farrellr Date: 11-Oct-2017 08:46:57

| First Level Reviewer: farrellr       | Date: |        |        |        | 11-Oct-201 | 7 08:46:57 |         |           |       |
|--------------------------------------|-------|--------|--------|--------|------------|------------|---------|-----------|-------|
|                                      |       | RT     | Adj RT | Dlt RT |            |            | Cal Amt | OnCol Amt |       |
| Compound                             | Sig   | (min.) | (min.) | (min.) | Q          | Response   | ug/L    | ug/L      | Flags |
|                                      |       |        |        | -      |            |            |         | -         |       |
| * 147 Fluorobenzene (IS)             | 70    | 10.434 | 10.434 | 0.000  | 97         | 180229     | 25.0    | 25.0      |       |
| <ul><li>2 Chlorobenzene-d5</li></ul> | 82    | 14.388 | 14.382 | 0.006  | 92         | 375029     | 25.0    | 25.0      |       |
| * 3 1,4-Dichlorobenzene-d4           | 152   | 17.344 | 17.345 | -0.001 | 95         | 407971     | 25.0    | 25.0      |       |
| \$ 148 Dibromofluoromethane (Suri    | r 113 | 9.637  | 9.637  | 0.000  | 92         | 248745     | 25.0    | 24.5      |       |
| \$ 41,2-Dichloroethane-d4 (Sur       | 67    | 10.087 | 10.093 | -0.006 | 0          | 168857     | 25.0    | 24.0      |       |
| \$ 5 Toluene-d8 (Surr)               | 98    | 12.423 | 12.423 | 0.000  | 96         | 844935     | 25.0    | 25.3      |       |
| \$ 6 4-Bromofluorobenzene (Surr      | 174   | 15.884 | 15.878 | 0.006  | 91         | 311328     | 25.0    | 25.5      |       |
| 10 Dichlorodifluoromethane           | 85    | 4.362  | 4.338  | 0.024  | 52         | 13221      | 1.00    | 0.8813    | M     |
| 11 Chloromethane                     | 50    | 4.788  | 4.770  | 0.018  | 79         | 35010      | 1.00    | 1.07      |       |
| 17 Vinyl chloride                    | 62    | 4.989  | 4.971  | 0.018  | 36         | 17588      | 1.00    | 0.8664    |       |
| 144 Butadiene                        | 54    | 5.001  | 5.001  | 0.000  | 96         | 23126      | 1.00    | 0.9491    |       |
| 12 Bromomethane                      | 94    | 5.634  | 5.609  | 0.025  | 42         | 9647       | 1.00    | 0.8740    |       |
| 13 Chloroethane                      | 64    | 5.707  | 5.695  | 0.013  | 69         | 10142      | 1.00    | 0.8699    |       |
| 19 Dichlorofluoromethane             | 67    | 6.023  | 6.023  | 0.000  | 34         | 22151      | 1.00    | 0.8410    |       |
| 14 Trichlorofluoromethane            | 101   | 6.090  | 6.090  | 0.000  | 30         | 15621      | 1.00    | 0.7244    | M     |
| 20 Ethyl ether                       | 59    | 6.388  | 6.388  | 0.000  | 89         | 13301      | 1.00    | 0.9035    |       |
| 22 Acrolein                          | 56    | 6.698  | 6.698  | 0.000  | 94         | 10361      | 5.00    | 4.30      |       |
| 16 1,1,2-Trichloro-1,2,2-trif        | 101   | 6.735  | 6.735  | 0.000  | 87         | 10529      | 1.00    | 0.8209    |       |
| 25 1,1-Dichloroethene                | 96    | 6.832  | 6.832  | 0.000  | 59         | 14795      | 1.00    | 1.12      |       |
| 24 Acetone                           | 43    | 6.887  | 6.887  | 0.000  | 96         | 47977      | 5.00    | 5.25      |       |
| 18 lodomethane                       | 142   | 7.136  | 7.124  | 0.012  | 95         | 20176      | 1.00    | 0.8656    |       |
| 30 Methyl acetate                    | 43    | 7.258  | 7.252  | 0.006  | 99         | 41341      | 2.00    | 1.94      |       |
| 27 Carbon disulfide                  | 76    | 7.270  | 7.270  | 0.000  | 88         | 38075      | 1.00    | 0.8274    |       |
| 28 3-Chloro-1-propene                | 41    | 7.276  | 7.276  | 0.000  | 88         | 34000      | 1.00    | 0.9056    |       |
| 33 2-Methyl-2-propanol               | 59    | 7.495  | 7.501  | -0.006 | 55         | 23126      | 10.0    | 8.57      |       |
| 31 Methylene Chloride                | 84    | 7.513  | 7.501  | 0.012  | 88         | 31430      | 1.00    | 1.05      |       |
| 32 Methyl tert-butyl ether           | 73    | 7.690  | 7.690  | 0.000  | 89         | 35429      | 1.00    | 0.8791    |       |
| 35 trans-1,2-Dichloroethene          | 96    | 7.781  | 7.781  | 0.000  | 88         | 14350      | 1.00    | 1.06      |       |
| 34 Acrylonitrile                     | 53    | 7.812  | 7.812  | 0.000  | 99         | 80675      | 10.0    | 9.13      |       |
| 36 Hexane                            | 57    | 7.970  | 7.976  | -0.006 | 92         | 20057      | 1.00    | 0.8913    |       |
|                                      |       |        |        |        |            |            |         |           |       |

| Data File: \\ChromNA\B        | uttaio\ |        | 1      |        | J10-66 | 6269.b\P3043P |         |           |       |
|-------------------------------|---------|--------|--------|--------|--------|---------------|---------|-----------|-------|
|                               |         | RT     | Adj RT | Dlt RT |        | _             | Cal Amt | OnCol Amt | El    |
| Compound                      | Sig     | (min.) | (min.) | (min.) | Q      | Response      | ug/L    | ug/L      | Flags |
| 001/11                        | 4.0     | 0.000  | 0.000  | 0.000  | 0.7    | 04004         | 0.00    | 4.00      |       |
| 38 Vinyl acetate              | 43      | 8.280  | 8.280  | 0.000  | 97     | 91284         | 2.00    | 1.82      |       |
| 40 1,1-Dichloroethane         | 63      | 8.329  | 8.335  | -0.006 | 96     | 24475         | 1.00    | 0.8788    |       |
| 44 2-Butanone (MEK)           | 43      | 9.022  | 9.022  | 0.000  | 95     | 58700         | 5.00    | 4.39      |       |
| 45 2,2-Dichloropropane        | 77      | 9.022  | 9.034  | -0.012 | 54     | 10895         | 1.00    | 0.9261    |       |
| 43 cis-1,2-Dichloroethene     | 96      | 9.046  | 9.053  | -0.007 | 87     | 14275         | 1.00    | 1.00      |       |
| 50 Chlorobromomethane         | 128     | 9.387  | 9.387  | 0.000  | 83     | 5868          | 1.00    | 0.8206    |       |
| 51 Tetrahydrofuran            | 42      | 9.399  | 9.399  | 0.000  | 89     | 16263         | 2.00    | 1.92      |       |
| 49 Chloroform                 | 83      | 9.418  | 9.418  | 0.000  | 93     | 21516         | 1.00    | 0.9019    |       |
| 52 1,1,1-Trichloroethane      | 97      | 9.655  | 9.655  | 0.000  | 19     | 17368         | 1.00    | 0.8541    |       |
| 54 Cyclohexane                | 56      | 9.704  | 9.698  | 0.006  | 88     | 25092         | 1.00    | 0.8306    |       |
| 56 1,1-Dichloropropene        | 75      | 9.825  | 9.831  | -0.006 | 65     | 15011         | 1.00    | 0.8817    |       |
| 55 Carbon tetrachloride       | 117     | 9.843  | 9.837  | 0.006  | 61     | 12085         | 1.00    | 0.7967    |       |
| 53 Isobutyl alcohol           | 43      | 9.843  | 9.844  | -0.001 | 77     | 29931         | 25.0    | 21.5      |       |
| 57 Benzene                    | 78      | 10.129 | 10.129 | 0.000  | 94     | 40681         | 1.00    | 0.8595    |       |
| 59 n-Heptane                  | 43      | 10.184 | 10.184 | 0.000  | 92     | 24428         | 1.00    | 1.02      |       |
| 60 1,2-Dichloroethane         | 62      | 10.184 | 10.184 | 0.000  | 94     | 22743         | 1.00    | 0.8610    |       |
| 62 Trichloroethene            | 95      | 10.884 | 10.884 | 0.000  | 91     | 12417         | 1.00    | 0.9260    |       |
| 64 Methylcyclohexane          | 83      | 11.084 | 11.078 | 0.006  | 90     | 16333         | 1.00    | 0.9090    |       |
| 63 1,2-Dichloropropane        | 63      | 11.224 | 11.224 | 0.000  | 87     | 13609         | 1.00    | 0.8929    |       |
| 68 1,4-Dioxane                | 88      | 11.346 | 11.352 | -0.006 | 14     | 2164          | 20.0    | 14.7      |       |
| 69 Dibromomethane             | 93      | 11.431 | 11.431 | 0.000  | 94     | 9221          | 1.00    | 1.01      |       |
| 70 Dichlorobromomethane       | 83      | 11.559 | 11.565 | -0.006 | 91     | 13273         | 1.00    | 0.7446    |       |
| 71 2-Chloroethyl vinyl ether  | 63      | 11.815 | 11.815 | 0.000  | 58     | 8921          | 1.00    | 0.8339    |       |
| 73 cis-1,3-Dichloropropene    | 75      | 12.100 | 12.094 | 0.006  | 83     | 17523         | 1.00    | 0.8638    |       |
| 75 4-Methyl-2-pentanone (MIBK | 43      | 12.198 | 12.198 | 0.000  | 96     | 119972        | 5.00    | 4.60      |       |
| 76 Toluene                    | 92      | 12.520 | 12.520 | 0.000  | 95     | 24868         | 1.00    | 0.9033    |       |
| 77 Ethyl methacrylate         | 69      | 12.733 | 12.739 | -0.006 | 82     | 11927         | 1.00    | 0.7744    |       |
| 78 trans-1,3-Dichloropropene  | 75      | 12.806 | 12.812 | -0.006 | 83     | 16664         | 1.00    | 0.8730    |       |
| 79 1,1,2-Trichloroethane      | 83      | 13.098 | 13.098 | 0.000  | 89     | 8996          | 1.00    | 0.9455    |       |
| 80 Tetrachloroethene          | 166     | 13.238 | 13.238 | 0.000  | 91     | 13282         | 1.00    | 0.9881    |       |
| 83 2-Hexanone                 | 43      | 13.287 | 13.287 | 0.000  | 97     | 85543         | 5.00    | 4.57      |       |
| 82 1,3-Dichloropropane        | 76      | 13.329 | 13.329 | 0.000  | 91     | 15804         | 1.00    | 0.8550    |       |
| 81 Chlorodibromomethane       | 129     | 13.676 | 13.670 | 0.006  | 86     | 11362         | 1.00    | 0.8544    |       |
| 85 Ethylene Dibromide         | 107     | 13.871 | 13.871 | 0.000  | 92     | 11647         | 1.00    | 0.9525    |       |
| 87 Chlorobenzene              | 112     | 14.424 | 14.424 | 0.000  | 95     | 28820         | 1.00    | 0.8617    |       |
| 89 Ethylbenzene               | 91      | 14.473 | 14.467 | 0.006  | 96     | 48743         | 1.00    | 0.9183    |       |
| 88 1,1,1,2-Tetrachloroethane  | 131     | 14.510 | 14.510 | 0.000  | 90     | 9865          | 1.00    | 0.7957    |       |
| 90 m-Xylene & p-Xylene        | 106     | 14.601 | 14.607 | -0.006 | 0      | 17455         | 1.00    | 0.8477    |       |
| 93 o-Xylene                   | 106     | 15.154 | 15.154 | 0.000  | 98     | 18705         | 1.00    | 0.9146    |       |
| 94 Styrene                    | 104     | 15.179 | 15.179 | 0.000  | 92     | 26987         | 1.00    | 0.7997    |       |
| 92 Bromoform                  | 173     | 15.568 | 15.568 | 0.000  | 88     | 7847          | 1.00    | 0.7818    |       |
| 95 Isopropylbenzene           | 105     | 15.580 | 15.580 | 0.000  | 97     | 43504         | 1.00    | 0.8711    |       |
| 97 1,1,2,2-Tetrachloroethane  | 83      | 16.055 | 16.055 | 0.000  | 93     | 15102         | 1.00    | 0.9785    |       |
| 98 trans-1,4-Dichloro-2-buten | 53      | 16.103 | 16.104 | -0.001 | 45     | 8374          | 1.00    | 0.9307    |       |
| 99 N-Propylbenzene            | 91      | 16.110 | 16.110 | 0.000  | 98     | 55356         | 1.00    | 0.9054    |       |
| 100 Bromobenzene              | 156     | 16.134 | 16.128 | 0.006  | 92     | 13921         | 1.00    | 0.8598    |       |
| 101 1,2,3-Trichloropropane    | 110     | 16.152 | 16.152 | 0.000  | 89     | 4821          | 1.00    | 0.9582    |       |
| 102 1,3,5-Trimethylbenzene    | 105     | 16.298 | 16.298 | 0.000  | 96     | 39300         | 1.00    | 0.8991    |       |
| 103 2-Chlorotoluene           | 126     | 16.316 | 16.316 | 0.000  | 93     | 11149         | 1.00    | 0.8231    |       |
| 105 4-Chlorotoluene           | 126     | 16.450 | 16.444 | 0.006  | 96     | 12941         | 1.00    | 0.9090    |       |
| 106 tert-Butylbenzene         | 134     | 16.736 | 16.736 | 0.000  | 96     | 9387          | 1.00    | 0.9522    |       |
| 5                             |         |        |        |        |        |               |         |           |       |
| 107 1,2,4-Trimethylbenzene    | 105     | 16.797 | 16.797 | 0.000  | 97     | 40355         | 1.00    | 0.8867    |       |

P 8260 IS\_00247

P 8260 Surr.\_00242

| ags |
|-----|
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |

Amount Added: 1.25

Amount Added: 1.25

Run Reagent

Run Reagent

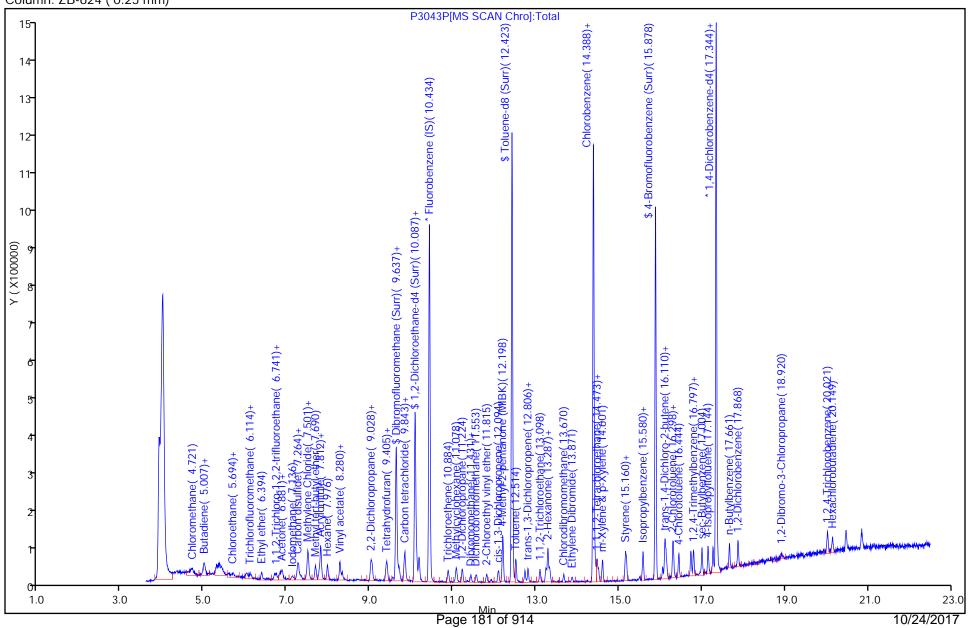
Units: uL

Units: uL

Report Date: 11-Oct-2017 12:02:13 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3043P.D Injection Date: 10-Oct-2017 16:29:30 Instrument ID: HP5973P


Lims ID: IC 2

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



RF

6

5

Operator ID:

ALS Bottle#:

Worklist Smp#:

Report Date: 11-Oct-2017 12:02:13 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3043P.D Injection Date: 10-Oct-2017 16:29:30 Instrument ID: HP5973P

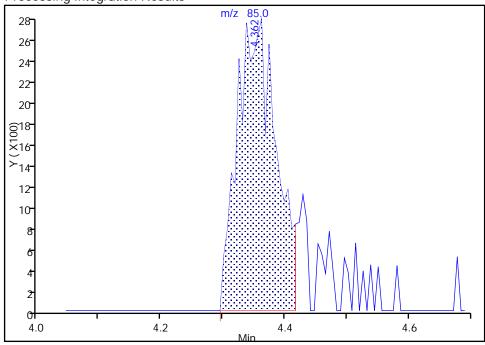
Lims ID: IC 2

Client ID:

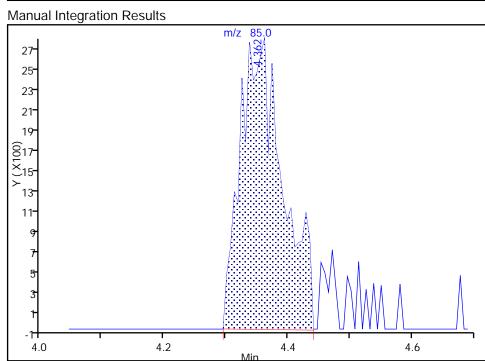
Operator ID: RF ALS Bottle#: 5 Worklist Smp#: 6

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL


Column: ZB-624 ( 0.25 mm) Detector MS SCAN

## 10 Dichlorodifluoromethane, CAS: 75-71-8


Signal: 1

RT: 4.36 Area: 12159 Amount: 0.856248 Amount Units: ug/L





RT: 4.36
Area: 13221
Amount: 0.881280
Amount Units: ug/L



Reviewer: HillL, 11-Oct-2017 11:05:51 Audit Action: Manually Integrated

Audit Reason: Poor chromatography

Page 182 of 914

Report Date: 11-Oct-2017 12:02:13 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3043P.D Injection Date: 10-Oct-2017 16:29:30 Instrument ID: HP5973P

Lims ID: IC 2

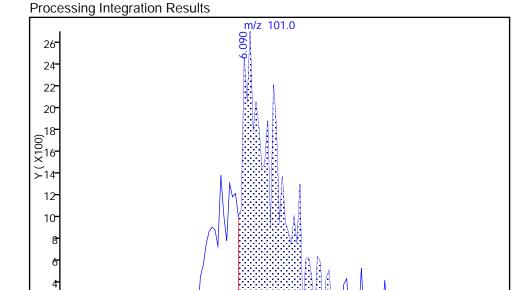
Client ID:

Operator ID: RF ALS Bottle#: 5 Worklist Smp#: 6

5.9

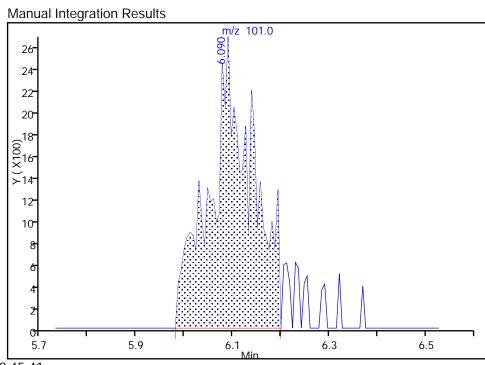
Purge Vol: 5.000 mL Dil. Factor: 1.0000

o<del>l</del> 5.7


Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN

## 14 Trichlorofluoromethane, CAS: 75-69-4


Signal: 1

RT: 6.09 Area: 12747 Amount: 0.872218 Amount Units: ug/L



6.1

RT: 6.09 Area: 15621 Amount: 0.724385 Amount Units: ug/L



Reviewer: farrellr, 11-Oct-2017 08:45:41

Audit Action: Manually Integrated

Audit Reason: Poor chromatography

Page 183 of 914

6.5

6.3

Report Date: 11-Oct-2017 12:02:19 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3044P.D

Lims ID: IC 3

Client ID:

Sample Type: IC Calib Level: 3

Inject. Date: 10-Oct-2017 16:56:30 ALS Bottle#: 6 Worklist Smp#: 7

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 3

Misc. Info.: 480-0066269-007

Operator ID: RF Instrument ID: HP5973P

Sublist: chrom-P-8260H2O\*sub11

Limit Group: MV - 8260C ICAL

Last Update: 11-Oct-2017 12:02:17 Calib Date: 11-Oct-2017 00:40:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3056P.D

Column 1: ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK031

First Level Reviewer: farrellr Date: 11-Oct-2017 08:50:19

| First Level Reviewer: farrellr    |     |        | D      | ate:   |     | 11-Oct-2017 08:50:19 |         |           |       |
|-----------------------------------|-----|--------|--------|--------|-----|----------------------|---------|-----------|-------|
|                                   |     | RT     | Adj RT | Dlt RT |     |                      | Cal Amt | OnCol Amt |       |
| Compound                          | Sig | (min.) | (min.) | (min.) | Q   | Response             | ug/L    | ug/L      | Flags |
|                                   |     |        |        |        |     |                      |         |           |       |
| * 147 Fluorobenzene (IS)          | 70  | 10.433 | 10.434 | -0.001 | 97  | 176415               | 25.0    | 25.0      |       |
| * 2 Chlorobenzene-d5              | 82  | 14.388 | 14.382 | 0.006  | 92  | 393056               | 25.0    | 25.0      |       |
| * 3 1,4-Dichlorobenzene-d4        | 152 | 17.344 | 17.345 | -0.001 | 95  | 420314               | 25.0    | 25.0      |       |
| \$ 148 Dibromofluoromethane (Surr | 113 | 9.636  | 9.637  | -0.001 | 92  | 245504               | 25.0    | 24.7      |       |
| \$ 41,2-Dichloroethane-d4 (Sur    | 67  | 10.093 | 10.093 | 0.000  | 0   | 170749               | 25.0    | 24.8      |       |
| \$ 5 Toluene-d8 (Surr)            | 98  | 12.423 | 12.423 | 0.000  | 96  | 868443               | 25.0    | 24.8      |       |
| \$ 6 4-Bromofluorobenzene (Surr   | 174 | 15.884 | 15.878 | 0.006  | 89  | 307388               | 25.0    | 24.1      |       |
| 10 Dichlorodifluoromethane        | 85  | 4.338  | 4.338  | 0.000  | 98  | 76925                | 5.00    | 5.24      | M     |
| 11 Chloromethane                  | 50  | 4.776  | 4.770  | 0.006  | 99  | 154436               | 5.00    | 4.81      |       |
| 17 Vinyl chloride                 | 62  | 4.976  | 4.971  | 0.005  | 97  | 96297                | 5.00    | 4.85      |       |
| 144 Butadiene                     | 54  | 5.007  | 5.001  | 0.006  | 99  | 114644               | 5.00    | 4.81      |       |
| 12 Bromomethane                   | 94  | 5.609  | 5.609  | 0.000  | 90  | 55173                | 5.00    | 5.11      |       |
| 13 Chloroethane                   | 64  | 5.712  | 5.695  | 0.018  | 94  | 53930                | 5.00    | 4.73      |       |
| 19 Dichlorofluoromethane          | 67  | 6.029  | 6.023  | 0.006  | 96  | 127717               | 5.00    | 4.95      |       |
| 14 Trichlorofluoromethane         | 101 | 6.102  | 6.090  | 0.012  | 78  | 103299               | 5.00    | 4.89      |       |
| 20 Ethyl ether                    | 59  | 6.394  | 6.388  | 0.006  | 91  | 67373                | 5.00    | 4.68      |       |
| 22 Acrolein                       | 56  | 6.698  | 6.698  | 0.000  | 97  | 55639                | 25.0    | 23.6      |       |
| 16 1,1,2-Trichloro-1,2,2-trif     | 101 | 6.722  | 6.735  | -0.013 | 91  | 67223                | 5.00    | 5.35      |       |
| 25 1,1-Dichloroethene             | 96  | 6.832  | 6.832  | 0.000  | 90  | 65444                | 5.00    | 5.04      |       |
| 24 Acetone                        | 43  | 6.887  | 6.887  | 0.000  | 97  | 196695               | 25.0    | 22.0      |       |
| 18 lodomethane                    | 142 | 7.124  | 7.124  | 0.000  | 100 | 112839               | 5.00    | 4.95      |       |
| 30 Methyl acetate                 | 43  | 7.252  | 7.252  | 0.000  | 99  | 184633               | 10.0    | 8.87      |       |
| 27 Carbon disulfide               | 76  | 7.270  | 7.270  | 0.000  | 83  | 226252               | 5.00    | 5.02      |       |
| 28 3-Chloro-1-propene             | 41  | 7.282  | 7.276  | 0.006  | 88  | 181192               | 5.00    | 4.93      |       |
| 31 Methylene Chloride             | 84  | 7.501  | 7.501  | 0.000  | 87  | 82276                | 5.00    | 4.43      |       |
| 33 2-Methyl-2-propanol            | 59  | 7.501  | 7.501  | 0.000  | 76  | 112615               | 50.0    | 42.6      |       |
| 32 Methyl tert-butyl ether        | 73  | 7.690  | 7.690  | 0.000  | 91  | 186646               | 5.00    | 4.73      |       |
| 35 trans-1,2-Dichloroethene       | 96  | 7.781  | 7.781  | 0.000  | 90  | 63533                | 5.00    | 4.81      |       |
| 34 Acrylonitrile                  | 53  | 7.811  | 7.812  | -0.001 | 98  | 385737               | 50.0    | 44.6      |       |
| 36 Hexane                         | 57  | 7.975  | 7.976  | -0.001 | 94  | 110574               | 5.00    | 5.02      |       |
|                                   |     |        |        |        |     |                      |         |           |       |

| Data File: \\ChromNA\B          | uttaio\  |        |        |        | UTU-60   | 6269.b\P3044F |         |           |       |
|---------------------------------|----------|--------|--------|--------|----------|---------------|---------|-----------|-------|
|                                 |          | RT     | Adj RT | Dlt RT |          |               | Cal Amt | OnCol Amt |       |
| Compound                        | Sig      | (min.) | (min.) | (min.) | Q        | Response      | ug/L    | ug/L      | Flags |
|                                 |          |        |        |        |          |               |         |           |       |
| 38 Vinyl acetate                | 43       | 8.280  | 8.280  | 0.000  | 97       | 451674        | 10.0    | 9.22      |       |
| 40 1,1-Dichloroethane           | 63       | 8.341  | 8.335  | 0.005  | 97       | 135725        | 5.00    | 4.98      |       |
| 44 2-Butanone (MEK)             | 43       | 9.022  | 9.022  | 0.000  | 95       | 276828        | 25.0    | 21.1      |       |
| 45 2,2-Dichloropropane          | 77       | 9.028  | 9.034  | -0.006 | 54       | 63269         | 5.00    | 5.49      |       |
| 43 cis-1,2-Dichloroethene       | 96       | 9.052  | 9.053  | -0.001 | 89       | 67751         | 5.00    | 4.85      |       |
| 50 Chlorobromomethane           | 128      | 9.387  | 9.387  | 0.000  | 85       | 35677         | 5.00    | 5.10      |       |
| 51 Tetrahydrofuran              | 42       | 9.399  | 9.399  | 0.000  | 86       | 72382         | 10.0    | 8.72      |       |
| 49 Chloroform                   | 83       | 9.417  | 9.418  | -0.001 | 91       | 115317        | 5.00    | 4.94      |       |
| 52 1,1,1-Trichloroethane        | 97       | 9.655  | 9.655  | 0.000  | 73       | 100501        | 5.00    | 5.05      |       |
| 54 Cyclohexane                  | 56       | 9.697  | 9.698  | -0.001 | 96       | 145859        | 5.00    | 4.93      |       |
| 56 1,1-Dichloropropene          | 75       | 9.831  | 9.831  | 0.000  | 76       | 82913         | 5.00    | 4.98      |       |
| 55 Carbon tetrachloride         | 117      | 9.849  | 9.837  | 0.012  | 63       | 67979         | 5.00    | 4.58      |       |
| 53 Isobutyl alcohol             | 43       | 9.843  | 9.844  | -0.001 | 88       | 135746        | 125.0   | 99.5      |       |
| 57 Benzene                      | 78       | 10.129 | 10.129 | 0.000  | 94       | 230457        | 5.00    | 4.97      |       |
| 60 1,2-Dichloroethane           | 62       | 10.184 | 10.184 | 0.000  | 94       | 124207        | 5.00    | 4.80      |       |
| 59 n-Heptane                    | 43       | 10.184 | 10.184 | 0.000  | 92       | 102766        | 5.00    | 4.39      |       |
| 62 Trichloroethene              | 95       | 10.877 | 10.884 | -0.007 | 92       | 65512         | 5.00    | 4.99      |       |
| 64 Methylcyclohexane            | 83       | 11.084 | 11.078 | 0.006  | 90       | 83746         | 5.00    | 4.76      |       |
| 63 1,2-Dichloropropane          | 63       | 11.230 | 11.224 | 0.006  | 81       | 72617         | 5.00    | 4.87      |       |
| 68 1,4-Dioxane                  | 88       | 11.358 | 11.352 | 0.006  | 90       | 11298         | 100.0   | 73.4      |       |
| 69 Dibromomethane               | 93       | 11.437 | 11.431 | 0.006  | 96       | 41592         | 5.00    | 4.66      |       |
| 70 Dichlorobromomethane         | 83       | 11.559 | 11.565 | -0.006 | 93       | 82600         | 5.00    | 4.73      |       |
| 71 2-Chloroethyl vinyl ether    | 63       | 11.814 | 11.815 | -0.001 | 83       | 45621         | 5.00    | 4.36      |       |
| 73 cis-1,3-Dichloropropene      | 75       | 12.094 | 12.094 | 0.000  | 79       | 94449         | 5.00    | 4.76      |       |
| 75 4-Methyl-2-pentanone (MIBK   | 43       | 12.204 | 12.198 | 0.006  | 97       | 602724        | 25.0    | 22.1      |       |
| 76 Toluene                      | 92       | 12.520 | 12.170 | 0.000  | 96       | 141840        | 5.00    | 4.92      |       |
| 77 Ethyl methacrylate           | 69       | 12.739 | 12.739 | 0.000  | 84       | 70960         | 5.00    | 4.40      |       |
| 78 trans-1,3-Dichloropropene    | 75       | 12.737 | 12.737 | -0.006 | 85       | 92184         | 5.00    | 4.61      |       |
| 79 1,1,2-Trichloroethane        | 83       | 13.098 | 13.098 | 0.000  | 93       | 49412         | 5.00    | 4.96      |       |
| 80 Tetrachloroethene            | 166      | 13.250 | 13.238 | 0.000  | 92       | 69656         | 5.00    | 4.94      |       |
| 83 2-Hexanone                   | 43       | 13.286 | 13.287 | -0.001 | 95       | 427075        | 25.0    | 21.8      |       |
| 82 1,3-Dichloropropane          | 43<br>76 | 13.200 | 13.267 | 0.000  | 93<br>88 | 91324         | 5.00    | 4.71      |       |
|                                 |          |        |        |        |          |               |         |           |       |
| 81 Chlorodibromomethane         | 129      | 13.676 | 13.670 | 0.006  | 88       | 61979         | 5.00    | 4.45      |       |
| 85 Ethylene Dibromide           | 107      | 13.870 | 13.871 | -0.001 | 96       | 58492         | 5.00    | 4.56      |       |
| 87 Chlorobenzene                | 112      | 14.424 | 14.424 | 0.000  | 97       | 169850        | 5.00    | 4.85      |       |
| 89 Ethylbenzene                 | 91       | 14.467 | 14.467 | 0.000  | 97       | 270764        | 5.00    | 4.87      |       |
| 88 1,1,1,2-Tetrachloroethane    | 131      | 14.509 | 14.510 | -0.001 | 92       | 59768         | 5.00    | 4.60      |       |
| 90 m-Xylene & p-Xylene          | 106      | 14.607 | 14.607 | 0.000  | 0        | 105745        | 5.00    | 4.90      |       |
| 93 o-Xylene                     | 106      | 15.154 | 15.154 | 0.000  | 98       | 100133        | 5.00    | 4.67      |       |
| 94 Styrene                      | 104      | 15.178 | 15.179 | -0.001 | 90       | 160504        | 5.00    | 4.54      |       |
| 92 Bromoform                    | 173      | 15.568 | 15.568 | 0.000  | 89       | 46381         | 5.00    | 4.41      |       |
| 95 Isopropylbenzene             | 105      | 15.580 | 15.580 | 0.000  | 97       | 251051        | 5.00    | 4.88      |       |
| 97 1,1,2,2-Tetrachloroethane    | 83       | 16.054 | 16.055 | -0.001 | 96       | 73162         | 5.00    | 4.60      |       |
| 98 trans-1,4-Dichloro-2-buten   | 53       | 16.109 | 16.104 | 0.005  | 46       | 40150         | 5.00    | 4.33      |       |
| 99 N-Propylbenzene              | 91       | 16.109 | 16.110 | -0.001 | 98       | 310086        | 5.00    | 4.92      |       |
| 100 Bromobenzene                | 156      | 16.134 | 16.128 | 0.006  | 87       | 81907         | 5.00    | 4.91      |       |
| 101 1,2,3-Trichloropropane      | 110      | 16.146 | 16.152 | -0.006 | 86       | 23269         | 5.00    | 4.49      |       |
| 102 1,3,5-Trimethylbenzene      | 105      | 16.298 | 16.298 | 0.000  | 94       | 213491        | 5.00    | 4.74      |       |
| 103 2-Chlorotoluene             | 126      | 16.316 | 16.316 | 0.000  | 93       | 69469         | 5.00    | 4.98      |       |
| 105 4-Chlorotoluene             | 126      | 16.444 | 16.444 | 0.000  | 97       | 69987         | 5.00    | 4.77      |       |
| 106 tert-Butylbenzene           | 134      | 16.736 | 16.736 | 0.000  | 96       | 48405         | 5.00    | 4.77      |       |
| 107 1,2,4-Trimethylbenzene      | 105      | 16.797 | 16.797 | 0.000  | 98       | 225777        | 5.00    | 4.82      |       |
| 107 1,2,4-11IIIIcii yibelizelle | 103      | 10.777 | 10.777 | 0.000  | 70       | 220111        | 3.00    | 4.02      |       |

Amount Added: 1.25

Amount Added: 1.25

P 8260 IS\_00247

P 8260 Surr.\_00242

| Data File: \\ChromNA\Buffalo\ChromData\HP59/3P\201/1010-66269.b\P3044P.D |     |        |          |        |    |           |         |           |       |  |
|--------------------------------------------------------------------------|-----|--------|----------|--------|----|-----------|---------|-----------|-------|--|
|                                                                          |     | RT     | Adj RT   | Dlt RT |    |           | Cal Amt | OnCol Amt |       |  |
| Compound                                                                 | Sig | (min.) | (min.)   | (min.) | Q  | Response  | ug/L    | ug/L      | Flags |  |
|                                                                          |     |        |          |        |    |           |         |           |       |  |
| 109 sec-Butylbenzene                                                     | 105 | 17.004 | 17.004   | 0.000  | 97 | 256011    | 5.00    | 4.78      |       |  |
| 112 4-Isopropyltoluene                                                   | 119 | 17.150 | 17.150   | 0.000  | 98 | 234322    | 5.00    | 4.64      |       |  |
| 110 1,3-Dichlorobenzene                                                  | 146 | 17.265 | 17.272   | -0.007 | 96 | 149063    | 5.00    | 4.83      |       |  |
| 111 1,4-Dichlorobenzene                                                  | 146 | 17.375 | 17.375   | 0.000  | 95 | 157122    | 5.00    | 4.90      |       |  |
| 115 n-Butylbenzene                                                       | 91  | 17.661 | 17.661   | 0.000  | 97 | 201239    | 5.00    | 4.67      |       |  |
| 116 1,2-Dichlorobenzene                                                  | 146 | 17.873 | 17.874   | -0.001 | 95 | 147145    | 5.00    | 4.91      |       |  |
| 117 1,2-Dibromo-3-Chloropropan                                           | 75  | 18.920 | 18.920   | 0.000  | 73 | 21618     | 5.00    | 4.70      |       |  |
| 119 1,2,4-Trichlorobenzene                                               | 180 | 20.027 | 20.027   | 0.000  | 93 | 104110    | 5.00    | 4.73      |       |  |
| 120 Hexachlorobutadiene                                                  | 225 | 20.155 | 20.143   | 0.012  | 95 | 41977     | 5.00    | 4.49      |       |  |
| 121 Naphthalene                                                          | 128 | 20.477 | 20.472   | 0.005  | 97 | 256299    | 5.00    | 4.44      |       |  |
| 122 1,2,3-Trichlorobenzene                                               | 180 | 20.854 | 20.849   | 0.005  | 93 | 99206     | 5.00    | 4.57      |       |  |
| S 123 1,2-Dichloroethene, Total                                          | 1   |        |          |        | 0  |           |         | 9.66      |       |  |
| S 124 1,3-Dichloropropene, Total                                         | 1   |        |          |        | 0  |           |         | 9.36      |       |  |
| S 125 Total BTEX                                                         | 1   |        |          |        | 0  |           |         | 24.3      |       |  |
| S 126 Xylenes, Total                                                     | 1   |        |          |        | 0  |           |         | 9.57      |       |  |
| QC Flag Legend                                                           |     |        |          |        |    |           |         |           |       |  |
| Review Flags                                                             |     |        |          |        |    |           |         |           |       |  |
| M - Manually Integrated                                                  |     |        |          |        |    |           |         |           |       |  |
| Reagents:                                                                |     |        |          |        |    |           |         |           |       |  |
| 8260 CORP mix_00112                                                      |     | Amount | Added: ! | 5.00   |    | Units: uL |         |           |       |  |
| GAS CORP mix_00245                                                       |     | Amount | Added: ! | 5.00   |    | Units: uL |         |           |       |  |

Run Reagent

Run Reagent

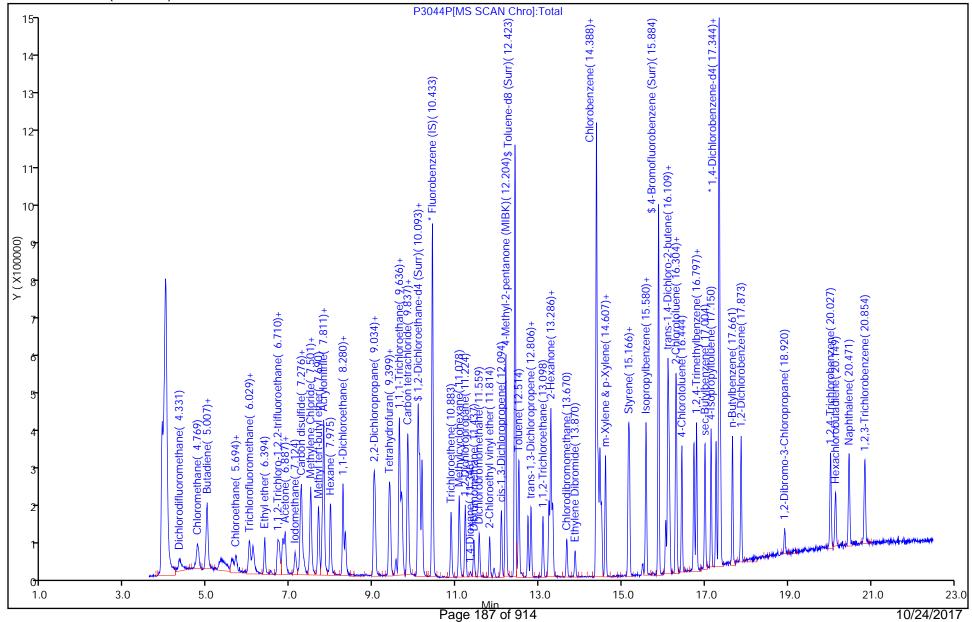
Units: uL

Units: uL

Report Date: 11-Oct-2017 12:02:19 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3044P.D Injection Date: 10-Oct-2017 16:56:30 Instrument ID: HP5973P


Lims ID: IC 3

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

RF

7

6

Report Date: 11-Oct-2017 12:02:19 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

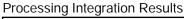
Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3044P.D Injection Date: 10-Oct-2017 16:56:30 Instrument ID: HP5973P

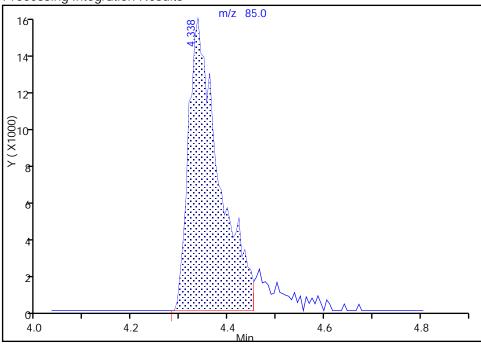
Lims ID: IC 3

Client ID:

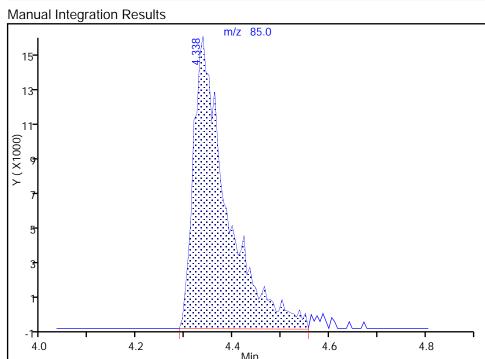
Operator ID: RF ALS Bottle#: 6 Worklist Smp#: 7

Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: P-8260H2O Limit Group: MV - 8260C ICAL


Column: ZB-624 ( 0.25 mm) Detector MS SCAN

## 10 Dichlorodifluoromethane, CAS: 75-71-8


Signal: 1

RT: 4.34 Area: 69794 Amount: 4.968135 Amount Units: ug/L





RT: 4.34
Area: 76925
Amount: 5.238494
Amount Units: ug/L



Reviewer: HillL, 11-Oct-2017 11:06:18

Audit Action: Manually Integrated

Audit Reason: Poor chromatography

Page 188 of 914

Report Date: 11-Oct-2017 12:02:23 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3045P.D

Lims ID: IC 4

Client ID:

Sample Type: IC Calib Level: 4

Inject. Date: 10-Oct-2017 17:24:30 ALS Bottle#: 7 Worklist Smp#: 8

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 4

Misc. Info.: 480-0066269-008

Operator ID: RF Instrument ID: HP5973P

Sublist: chrom-P-8260H2O\*sub11

Method: \ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P-8260H2O.m

Limit Group: MV - 8260C ICAL

Last Update: 11-Oct-2017 12:02:21 Calib Date: 11-Oct-2017 00:40:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3056P.D

Column 1: ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK031

First Level Reviewer: farrellr Date: 11-Oct-2017 08:52:34

| First Level Reviewer: farrellr       |     |        | D      | ate:   |    | 11-Oct-2017 08:52:34 |         |           |       |
|--------------------------------------|-----|--------|--------|--------|----|----------------------|---------|-----------|-------|
|                                      |     | RT     | Adj RT | Dlt RT |    |                      | Cal Amt | OnCol Amt |       |
| Compound                             | Sig | (min.) | (min.) | (min.) | Q  | Response             | ug/L    | ug/L      | Flags |
|                                      |     |        |        |        |    |                      |         |           |       |
| * 147 Fluorobenzene (IS)             | 70  | 10.434 | 10.434 | 0.000  | 97 | 177715               | 25.0    | 25.0      |       |
| <ul><li>2 Chlorobenzene-d5</li></ul> | 82  | 14.388 | 14.388 | 0.000  | 91 | 393879               | 25.0    | 25.0      |       |
| * 3 1,4-Dichlorobenzene-d4           | 152 | 17.345 | 17.345 | 0.000  | 95 | 426169               | 25.0    | 25.0      |       |
| \$ 148 Dibromofluoromethane (Suri    | 113 | 9.637  | 9.637  | 0.000  | 92 | 255973               | 25.0    | 25.5      |       |
| \$ 41,2-Dichloroethane-d4 (Sur       | 67  | 10.093 | 10.093 | 0.000  | 0  | 175676               | 25.0    | 25.3      |       |
| \$ 5 Toluene-d8 (Surr)               | 98  | 12.423 | 12.423 | 0.000  | 96 | 884953               | 25.0    | 25.2      |       |
| \$ 6 4-Bromofluorobenzene (Surr      | 174 | 15.884 | 15.884 | 0.000  | 89 | 324602               | 25.0    | 25.4      |       |
| 10 Dichlorodifluoromethane           | 85  | 4.332  | 4.332  | 0.000  | 97 | 173023               | 10.0    | 11.7      | M     |
| 11 Chloromethane                     | 50  | 4.764  | 4.764  | 0.000  | 99 | 356273               | 10.0    | 11.0      |       |
| 17 Vinyl chloride                    | 62  | 4.971  | 4.971  | 0.000  | 96 | 221163               | 10.0    | 11.0      |       |
| 144 Butadiene                        | 54  | 5.001  | 5.001  | 0.000  | 99 | 262764               | 10.0    | 10.9      |       |
| 12 Bromomethane                      | 94  | 5.609  | 5.609  | 0.000  | 91 | 122590               | 10.0    | 11.3      |       |
| 13 Chloroethane                      | 64  | 5.701  | 5.701  | 0.000  | 94 | 130777               | 10.0    | 11.4      |       |
| 19 Dichlorofluoromethane             | 67  | 6.023  | 6.023  | 0.000  | 96 | 300416               | 10.0    | 11.6      |       |
| 14 Trichlorofluoromethane            | 101 | 6.102  | 6.102  | 0.000  | 95 | 229935               | 10.0    | 10.8      |       |
| 20 Ethyl ether                       | 59  | 6.388  | 6.388  | 0.000  | 88 | 163301               | 10.0    | 11.2      |       |
| 22 Acrolein                          | 56  | 6.698  | 6.698  | 0.000  | 97 | 122699               | 50.0    | 51.7      |       |
| 16 1,1,2-Trichloro-1,2,2-trif        | 101 | 6.729  | 6.729  | 0.000  | 94 | 140959               | 10.0    | 11.1      |       |
| 25 1,1-Dichloroethene                | 96  | 6.826  | 6.826  | 0.000  | 91 | 132066               | 10.0    | 10.1      |       |
| 24 Acetone                           | 43  | 6.881  | 6.881  | 0.000  | 96 | 451181               | 50.0    | 50.1      |       |
| 18 lodomethane                       | 142 | 7.124  | 7.124  | 0.000  | 98 | 259609               | 10.0    | 11.3      |       |
| 30 Methyl acetate                    | 43  | 7.252  | 7.252  | 0.000  | 99 | 458527               | 20.0    | 21.9      |       |
| 27 Carbon disulfide                  | 76  | 7.276  | 7.276  | 0.000  | 74 | 511466               | 10.0    | 11.3      |       |
| 28 3-Chloro-1-propene                | 41  | 7.276  | 7.276  | 0.000  | 86 | 402052               | 10.0    | 10.9      |       |
| 33 2-Methyl-2-propanol               | 59  | 7.501  | 7.501  | 0.000  | 78 | 269368               | 100.0   | 101.2     |       |
| 31 Methylene Chloride                | 84  | 7.507  | 7.507  | 0.000  | 87 | 188595               | 10.0    | 11.3      |       |
| 32 Methyl tert-butyl ether           | 73  | 7.690  | 7.690  | 0.000  | 91 | 440808               | 10.0    | 11.1      |       |
| 35 trans-1,2-Dichloroethene          | 96  | 7.781  | 7.781  | 0.000  | 89 | 146961               | 10.0    | 11.0      |       |
| 34 Acrylonitrile                     | 53  | 7.818  | 7.818  | 0.000  | 96 | 896885               | 100.0   | 102.9     |       |
| 36 Hexane                            | 57  | 7.976  | 7.976  | 0.000  | 94 | 251039               | 10.0    | 11.3      |       |
|                                      |     |        |        |        |    |                      |         |           |       |

Page 189 of 914

| Data File: \\ChromNA\B        | urralo    |           |        |        | J 10-66  | 6269.b\P3045P |         |           |       |
|-------------------------------|-----------|-----------|--------|--------|----------|---------------|---------|-----------|-------|
| 0                             |           | RT (mala) | Adj RT | Dlt RT |          | Descri        | Cal Amt | OnCol Amt | E1.   |
| Compound                      | Sig       | (min.)    | (min.) | (min.) | Q        | Response      | ug/L    | ug/L      | Flags |
| 20 Minute and the             | 40        | 0.000     | 0.000  | 0.000  | 07       | 1072/52       | 20.0    | 24.7      |       |
| 38 Vinyl acetate              | 43        | 8.280     | 8.280  | 0.000  | 97       | 1072652       | 20.0    | 21.7      |       |
| 40 1,1-Dichloroethane         | 63        | 8.341     | 8.341  | 0.000  | 97       | 308519        | 10.0    | 11.2      |       |
| 44 2-Butanone (MEK)           | 43        | 9.022     | 9.022  | 0.000  | 95<br>51 | 680320        | 50.0    | 51.6      |       |
| 45 2,2-Dichloropropane        | 77        | 9.028     | 9.028  | 0.000  | 51       | 136915        | 10.0    | 11.8      |       |
| 43 cis-1,2-Dichloroethene     | 96        | 9.053     | 9.053  | 0.000  | 88       | 155372        | 10.0    | 11.1      |       |
| 50 Chlorobromomethane         | 128       | 9.381     | 9.381  | 0.000  | 85       | 80576         | 10.0    | 11.4      |       |
| 51 Tetrahydrofuran            | 42        | 9.399     | 9.399  | 0.000  | 86       | 171456        | 20.0    | 20.5      |       |
| 49 Chloroform                 | 83        | 9.412     | 9.412  | 0.000  | 94       | 269740        | 10.0    | 11.5      |       |
| 52 1,1,1-Trichloroethane      | 97        | 9.655     | 9.655  | 0.000  | 96       | 226364        | 10.0    | 11.3      |       |
| 54 Cyclohexane                | 56        | 9.697     | 9.697  | 0.000  | 96       | 333098        | 10.0    | 11.2      |       |
| 56 1,1-Dichloropropene        | 75<br>117 | 9.831     | 9.831  | 0.000  | 75       | 188689        | 10.0    | 11.2      |       |
| 55 Carbon tetrachloride       | 117       | 9.843     | 9.843  | 0.000  | 61       | 156933        | 10.0    | 10.5      |       |
| 53 Isobutyl alcohol           | 43        | 9.850     | 9.850  | 0.000  | 87       | 346375        | 250.0   | 252.0     |       |
| 57 Benzene                    | 78        | 10.129    | 10.129 | 0.000  | 94       | 529491        | 10.0    | 11.3      |       |
| 59 n-Heptane                  | 43        | 10.184    | 10.184 | 0.000  | 93       | 260991        | 10.0    | 11.1      |       |
| 60 1,2-Dichloroethane         | 62        | 10.190    | 10.190 | 0.000  | 94       | 294408        | 10.0    | 11.3      |       |
| 62 Trichloroethene            | 95        | 10.884    | 10.884 | 0.000  | 91       | 146363        | 10.0    | 11.1      |       |
| 64 Methylcyclohexane          | 83        | 11.078    | 11.078 | 0.000  | 91       | 199875        | 10.0    | 11.3      |       |
| 63 1,2-Dichloropropane        | 63        | 11.224    | 11.224 | 0.000  | 80       | 168649        | 10.0    | 11.2      |       |
| 68 1,4-Dioxane                | 88        | 11.346    | 11.346 | 0.000  | 94       | 32760         | 200.0   | 212.4     | M     |
| 69 Dibromomethane             | 93        | 11.431    | 11.431 | 0.000  | 95       | 97427         | 10.0    | 10.8      |       |
| 70 Dichlorobromomethane       | 83        | 11.565    | 11.565 | 0.000  | 94       | 201472        | 10.0    | 11.5      |       |
| 71 2-Chloroethyl vinyl ether  | 63        | 11.815    | 11.815 | 0.000  | 84       | 114280        | 10.0    | 10.8      |       |
| 73 cis-1,3-Dichloropropene    | 75        | 12.094    | 12.094 | 0.000  | 80       | 224128        | 10.0    | 11.2      |       |
| 75 4-Methyl-2-pentanone (MIBK | 43        | 12.198    | 12.198 | 0.000  | 97       | 1457243       | 50.0    | 53.2      |       |
| 76 Toluene                    | 92        | 12.514    | 12.514 | 0.000  | 95       | 321944        | 10.0    | 11.1      |       |
| 77 Ethyl methacrylate         | 69        | 12.733    | 12.733 | 0.000  | 84       | 174128        | 10.0    | 10.8      |       |
| 78 trans-1,3-Dichloropropene  | 75        | 12.812    | 12.812 | 0.000  | 88       | 224317        | 10.0    | 11.2      |       |
| 79 1,1,2-Trichloroethane      | 83        | 13.092    | 13.092 | 0.000  | 94       | 105674        | 10.0    | 10.6      |       |
| 80 Tetrachloroethene          | 166       | 13.244    | 13.244 | 0.000  | 91       | 153615        | 10.0    | 10.9      |       |
| 83 2-Hexanone                 | 43        | 13.287    | 13.287 | 0.000  | 96       | 1016410       | 50.0    | 51.7      |       |
| 82 1,3-Dichloropropane        | 76        | 13.335    | 13.335 | 0.000  | 90       | 220913        | 10.0    | 11.4      |       |
| 81 Chlorodibromomethane       | 129       | 13.676    | 13.676 | 0.000  | 89       | 151194        | 10.0    | 10.8      |       |
| 85 Ethylene Dibromide         | 107       | 13.865    | 13.865 | 0.000  | 98       | 138725        | 10.0    | 10.8      |       |
| 87 Chlorobenzene              | 112       | 14.424    | 14.424 | 0.000  | 96       | 400675        | 10.0    | 11.4      |       |
| 89 Ethylbenzene               | 91        | 14.467    | 14.467 | 0.000  | 96       | 609781        | 10.0    | 10.9      |       |
| 88 1,1,1,2-Tetrachloroethane  | 131       | 14.510    | 14.510 | 0.000  | 91       | 144668        | 10.0    | 11.1      |       |
| 90 m-Xylene & p-Xylene        | 106       | 14.607    | 14.607 | 0.000  | 0        | 246433        | 10.0    | 11.4      |       |
| 93 o-Xylene                   | 106       | 15.154    | 15.154 | 0.000  | 97       | 238920        | 10.0    | 11.1      |       |
| 94 Styrene                    | 104       | 15.179    | 15.179 | 0.000  | 91       | 393613        | 10.0    | 11.1      |       |
| 92 Bromoform                  | 173       | 15.568    | 15.568 | 0.000  | 89       | 109870        | 10.0    | 10.4      |       |
| 95 Isopropylbenzene           | 105       | 15.580    | 15.580 | 0.000  | 97       | 598219        | 10.0    | 11.5      |       |
| 97 1,1,2,2-Tetrachloroethane  | 83        | 16.055    | 16.055 | 0.000  | 97       | 177519        | 10.0    | 11.0      |       |
| 98 trans-1,4-Dichloro-2-buten | 53        | 16.103    | 16.103 | 0.000  | 57       | 100509        | 10.0    | 10.7      |       |
| 99 N-Propylbenzene            | 91        | 16.110    | 16.110 | 0.000  | 98       | 725957        | 10.0    | 11.4      |       |
| 100 Bromobenzene              | 156       | 16.134    | 16.134 | 0.000  | 87       | 187348        | 10.0    | 11.1      |       |
| 101 1,2,3-Trichloropropane    | 110       | 16.146    | 16.146 | 0.000  | 88       | 57372         | 10.0    | 10.9      |       |
| 102 1,3,5-Trimethylbenzene    | 105       | 16.298    | 16.298 | 0.000  | 95       | 509518        | 10.0    | 11.2      |       |
| 103 2-Chlorotoluene           | 126       | 16.316    | 16.316 | 0.000  | 94       | 164462        | 10.0    | 11.6      |       |
| 105 4-Chlorotoluene           | 126       | 16.444    | 16.444 | 0.000  | 97       | 166200        | 10.0    | 11.2      |       |
| 106 tert-Butylbenzene         | 134       | 16.736    | 16.736 | 0.000  | 96       | 115330        | 10.0    | 11.2      |       |
| 107 1,2,4-Trimethylbenzene    | 105       | 16.797    | 16.797 | 0.000  | 98       | 548109        | 10.0    | 11.5      |       |
| 101 1,2,7 THINGHIYIDGHZGHG    | 100       | 10.171    | 10.171 | 0.000  | /0       | J-10107       | 10.0    | 11.5      |       |

| Data File: \\ChromNA\B                                        | Data File: \\ChromNA\Buffalo\ChromData\HP59/3P\201/1010-66269.b\P3045P.D |                            |        |                      |    |                                     |           |           |       |  |  |
|---------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------|--------|----------------------|----|-------------------------------------|-----------|-----------|-------|--|--|
|                                                               |                                                                          | RT                         | Adj RT | DIt RT               |    |                                     | Cal Amt   | OnCol Amt |       |  |  |
| Compound                                                      | Sig                                                                      | (min.)                     | (min.) | (min.)               | Q  | Response                            | ug/L      | ug/L      | Flags |  |  |
|                                                               |                                                                          |                            |        |                      |    |                                     |           |           |       |  |  |
| 109 sec-Butylbenzene                                          | 105                                                                      | 17.004                     | 17.004 | 0.000                | 96 | 628195                              | 10.0      | 11.6      |       |  |  |
| 112 4-Isopropyltoluene                                        | 119                                                                      | 17.150                     | 17.150 | 0.000                | 97 | 579456                              | 10.0      | 11.3      |       |  |  |
| 110 1,3-Dichlorobenzene                                       | 146                                                                      | 17.272                     | 17.272 | 0.000                | 97 | 354095                              | 10.0      | 11.3      |       |  |  |
| 111 1,4-Dichlorobenzene                                       | 146                                                                      | 17.375                     | 17.375 | 0.000                | 92 | 363441                              | 10.0      | 11.2      |       |  |  |
| 115 n-Butylbenzene                                            | 91                                                                       | 17.667                     | 17.667 | 0.000                | 97 | 502587                              | 10.0      | 11.5      |       |  |  |
| 116 1,2-Dichlorobenzene                                       | 146                                                                      | 17.874                     | 17.874 | 0.000                | 96 | 346311                              | 10.0      | 11.4      |       |  |  |
| 117 1,2-Dibromo-3-Chloropropan                                | 75                                                                       | 18.920                     | 18.920 | 0.000                | 75 | 42010                               | 10.0      | 9.62      |       |  |  |
| 119 1,2,4-Trichlorobenzene                                    | 180                                                                      | 20.027                     | 20.027 | 0.000                | 93 | 254898                              | 10.0      | 11.4      |       |  |  |
| 120 Hexachlorobutadiene                                       | 225                                                                      | 20.149                     | 20.149 | 0.000                | 94 | 106994                              | 10.0      | 11.3      |       |  |  |
| 121 Naphthalene                                               | 128                                                                      | 20.471                     | 20.471 | 0.000                | 97 | 646535                              | 10.0      | 11.1      |       |  |  |
| 122 1,2,3-Trichlorobenzene                                    | 180                                                                      | 20.849                     | 20.849 | 0.000                | 93 | 251101                              | 10.0      | 11.4      |       |  |  |
| S 125 Total BTEX                                              | 1                                                                        |                            |        |                      | 0  |                                     |           | 55.9      |       |  |  |
| S 126 Xylenes, Total                                          | 1                                                                        |                            |        |                      | 0  |                                     |           | 22.5      |       |  |  |
| S 123 1,2-Dichloroethene, Total                               | 1                                                                        |                            |        |                      | 0  |                                     |           | 22.1      |       |  |  |
| S 124 1,3-Dichloropropene, Total                              | 1                                                                        |                            |        |                      | 0  |                                     |           | 22.4      |       |  |  |
| OC Flag Legend Review Flags M - Manually Integrated Reagents: |                                                                          |                            |        |                      |    |                                     |           |           |       |  |  |
| 8260 CORP mix_00112<br>GAS CORP mix_00245<br>P 8260 IS_00247  |                                                                          | Amount<br>Amount<br>Amount |        | 5.00<br>5.00<br>1.25 |    | Units: uL<br>Units: uL<br>Units: uL | Run Reage | nt        |       |  |  |
| <del>-</del>                                                  |                                                                          |                            |        |                      |    |                                     | 3         |           |       |  |  |

Units: uL

Run Reagent

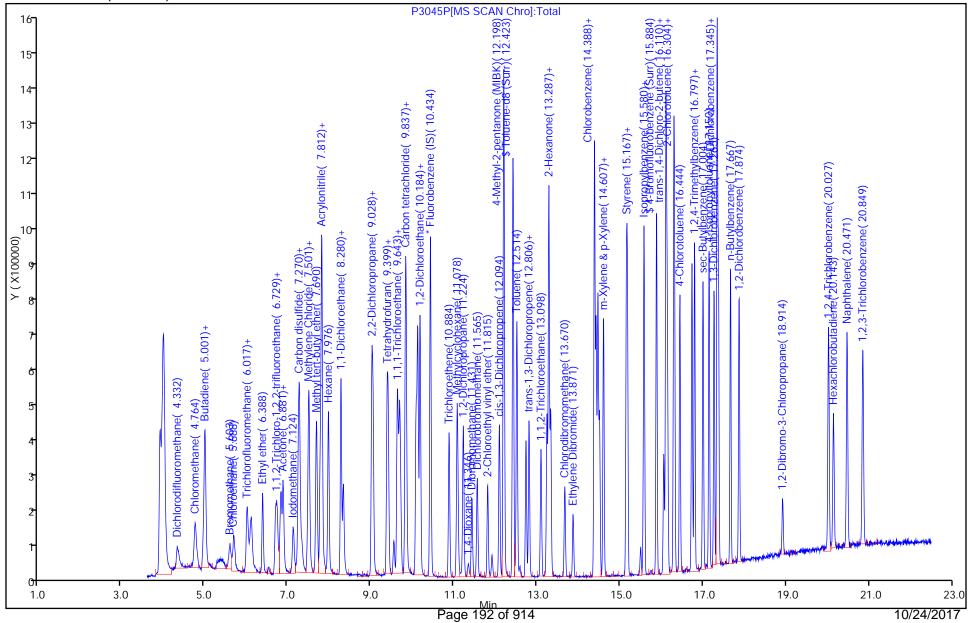
Amount Added: 1.25

P 8260 Surr.\_00242

Report Date: 11-Oct-2017 12:02:23 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3045P.D Injection Date: 10-Oct-2017 17:24:30 Instrument ID: HP5973P


Lims ID: IC 4

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



RF

8

7

Operator ID:

ALS Bottle#:

Worklist Smp#:

Report Date: 11-Oct-2017 12:02:23 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

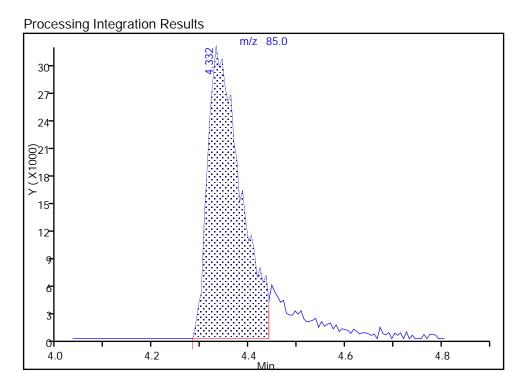
Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3045P.D Injection Date: 10-Oct-2017 17:24:30 Instrument ID: HP5973P

Lims ID: IC 4

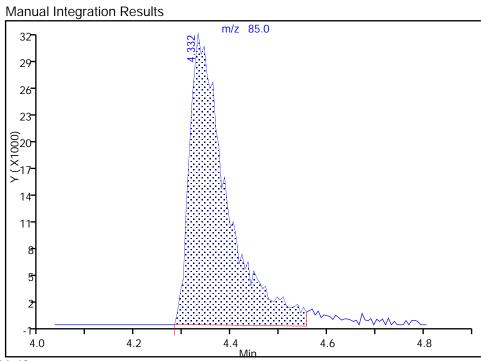
Client ID:

Operator ID: RF ALS Bottle#: 7 Worklist Smp#: 8

Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN


## 10 Dichlorodifluoromethane, CAS: 75-71-8

Signal: 1

RT: 4.33 Area: 151967 Amount: 10.584801 Amount Units: ug/L



RT: 4.33 Area: 173023 Amount: 11.696453 Amount Units: ug/L



Reviewer: HillL, 11-Oct-2017 11:06:43
Audit Action: Manually Integrated

Audit Reason: Poor chromatography

Page 193 of 914

Report Date: 11-Oct-2017 12:02:23 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

TestAmerica Buffalo

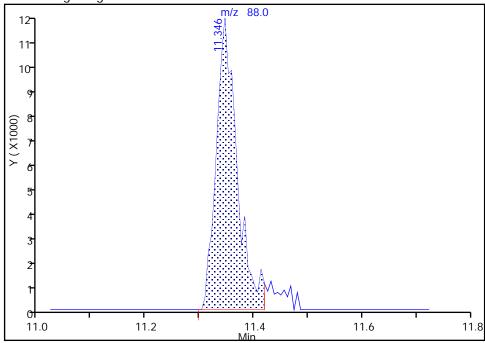
Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3045P.D Injection Date: 10-Oct-2017 17:24:30 Instrument ID: HP5973P

Lims ID: IC 4

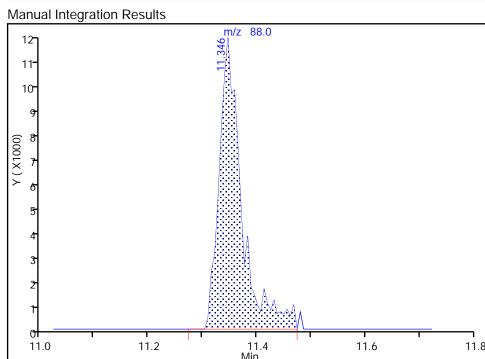
Client ID:

Operator ID: RF ALS Bottle#: 7 Worklist Smp#: 8

Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN


## 68 1,4-Dioxane, CAS: 123-91-1

Signal: 1

RT: 11.35 Area: 30593 Amount: 210.0488 Amount Units: ug/L **Processing Integration Results** 



RT: 11.35 Area: 32760 Amount: 212.4032 Amount Units: ug/L



Reviewer: farrellr, 11-Oct-2017 08:51:32

Audit Action: Manually Integrated

Audit Reason: Poor chromatography

Page 194 of 914

Report Date: 11-Oct-2017 12:02:28 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3046P.D

Lims ID: ICIS 5

Client ID:

Sample Type: ICIS Calib Level: 5

Inject. Date: 10-Oct-2017 17:51:30 ALS Bottle#: 8 Worklist Smp#: 9

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: ICIS 5

Misc. Info.: 480-0066269-009

Operator ID: RF Instrument ID: HP5973P

Sublist: chrom-P-8260H2O\*sub11

Method: \ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P-8260H2O.m

Limit Group: MV - 8260C ICAL

Last Update: 11-Oct-2017 12:02:26 Calib Date: 11-Oct-2017 00:40:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\ChromNA\\Buffalo\ChromData\\HP5973P\20171010-66269.b\\P3056P.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK031

First Level Reviewer: farrellr Date: 11-Oct-2017 08:40:45

| First Level Reviewer: farrellr         |     |        | D.     | ate:   |    | 11-Oct-201 | 7 08:40:45 |           |       |
|----------------------------------------|-----|--------|--------|--------|----|------------|------------|-----------|-------|
|                                        |     | RT     | Adj RT | DIt RT |    |            | Cal Amt    | OnCol Amt |       |
| Compound                               | Sig | (min.) | (min.) | (min.) | Q  | Response   | ug/L       | ug/L      | Flags |
|                                        |     |        |        |        |    |            |            | -         |       |
| * 147 Fluorobenzene (IS)               | 70  | 10.434 | 10.434 | 0.000  | 97 | 179568     | 25.0       | 25.0      |       |
| <ul><li>* 2 Chlorobenzene-d5</li></ul> | 82  | 14.388 | 14.388 | 0.000  | 91 | 401868     | 25.0       | 25.0      |       |
| * 3 1,4-Dichlorobenzene-d4             | 152 | 17.345 | 17.345 | 0.000  | 94 | 439698     | 25.0       | 25.0      |       |
| \$ 148 Dibromofluoromethane (Surr      | 113 | 9.637  | 9.637  | 0.000  | 92 | 258120     | 25.0       | 25.5      |       |
| \$ 41,2-Dichloroethane-d4 (Sur         | 67  | 10.093 | 10.093 | 0.000  | 0  | 179745     | 25.0       | 25.6      |       |
| \$ 5 Toluene-d8 (Surr)                 | 98  | 12.423 | 12.423 | 0.000  | 96 | 889851     | 25.0       | 24.8      |       |
| \$ 6 4-Bromofluorobenzene (Surr        | 174 | 15.878 | 15.878 | 0.000  | 90 | 327459     | 25.0       | 25.1      |       |
| 10 Dichlorodifluoromethane             | 85  | 4.338  | 4.338  | 0.000  | 97 | 352250     | 25.0       | 23.6      |       |
| 11 Chloromethane                       | 50  | 4.770  | 4.770  | 0.000  | 99 | 758092     | 25.0       | 23.2      |       |
| 17 Vinyl chloride                      | 62  | 4.971  | 4.971  | 0.000  | 97 | 483104     | 25.0       | 23.9      |       |
| 144 Butadiene                          | 54  | 5.001  | 5.001  | 0.000  | 99 | 570491     | 25.0       | 23.5      |       |
| 12 Bromomethane                        | 94  | 5.609  | 5.609  | 0.000  | 92 | 273000     | 25.0       | 24.8      |       |
| 13 Chloroethane                        | 64  | 5.695  | 5.695  | 0.000  | 94 | 280432     | 25.0       | 24.1      |       |
| 19 Dichlorofluoromethane               | 67  | 6.023  | 6.023  | 0.000  | 97 | 635395     | 25.0       | 24.2      |       |
| 14 Trichlorofluoromethane              | 101 | 6.090  | 6.090  | 0.000  | 97 | 526285     | 25.0       | 24.5      |       |
| 20 Ethyl ether                         | 59  | 6.388  | 6.388  | 0.000  | 90 | 365394     | 25.0       | 24.9      |       |
| 22 Acrolein                            | 56  | 6.698  | 6.698  | 0.000  | 98 | 324883     | 125.0      | 135.4     |       |
| 16 1,1,2-Trichloro-1,2,2-trif          | 101 | 6.735  | 6.735  | 0.000  | 93 | 315331     | 25.0       | 24.7      |       |
| 25 1,1-Dichloroethene                  | 96  | 6.832  | 6.832  | 0.000  | 90 | 304549     | 25.0       | 23.1      |       |
| 24 Acetone                             | 43  | 6.887  | 6.887  | 0.000  | 96 | 1194169    | 125.0      | 131.2     |       |
| 18 lodomethane                         | 142 | 7.124  | 7.124  | 0.000  | 99 | 582668     | 25.0       | 25.1      |       |
| 30 Methyl acetate                      | 43  | 7.252  | 7.252  | 0.000  | 99 | 1168710    | 50.0       | 55.2      |       |
| 27 Carbon disulfide                    | 76  | 7.270  | 7.270  | 0.000  | 81 | 1149690    | 25.0       | 25.1      |       |
| 28 3-Chloro-1-propene                  | 41  | 7.276  | 7.276  | 0.000  | 89 | 903732     | 25.0       | 24.2      |       |
| 31 Methylene Chloride                  | 84  | 7.501  | 7.501  | 0.000  | 87 | 363906     | 25.0       | 22.5      |       |
| 33 2-Methyl-2-propanol                 | 59  | 7.501  | 7.501  | 0.000  | 89 | 756154     | 250.0      | 281.3     |       |
| 32 Methyl tert-butyl ether             | 73  | 7.690  | 7.690  | 0.000  | 91 | 1002226    | 25.0       | 25.0      |       |
| 35 trans-1,2-Dichloroethene            | 96  | 7.781  | 7.781  | 0.000  | 88 | 309242     | 25.0       | 23.0      |       |
| 34 Acrylonitrile                       | 53  | 7.812  | 7.812  | 0.000  | 96 | 2412765    | 250.0      | 274.1     |       |
| 36 Hexane                              | 57  | 7.976  | 7.976  | 0.000  | 92 | 532505     | 25.0       | 23.8      |       |
|                                        |     |        |        |        |    |            |            |           |       |

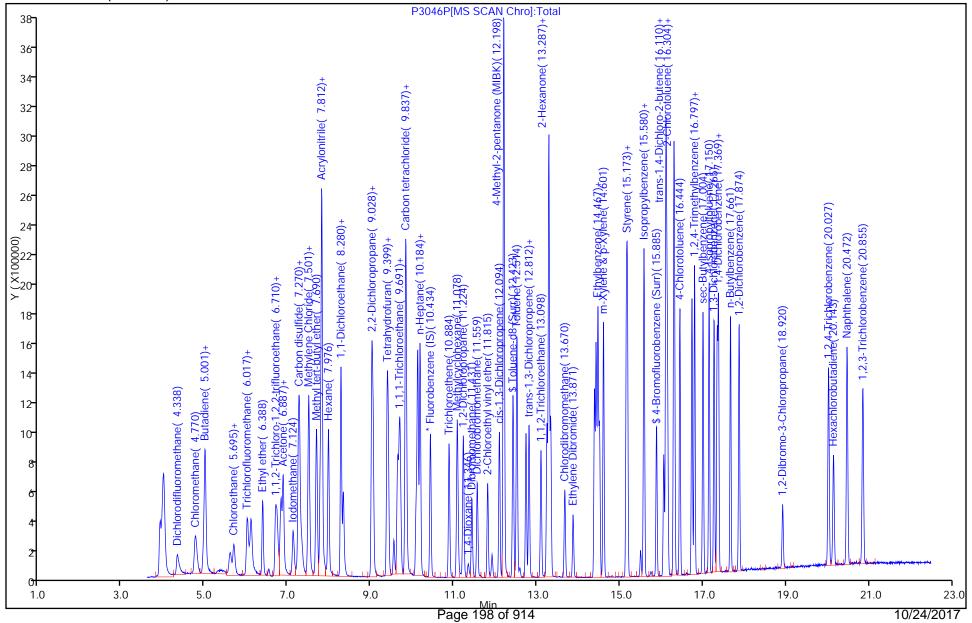
| Data File: \\ChromNA\B        | uttaio\ |        | 1      |        | J10-66 | 6269.b\P3046P |         |           |       |
|-------------------------------|---------|--------|--------|--------|--------|---------------|---------|-----------|-------|
|                               |         | RT     | Adj RT | Dlt RT |        | _             | Cal Amt | OnCol Amt | El    |
| Compound                      | Sig     | (min.) | (min.) | (min.) | Q      | Response      | ug/L    | ug/L      | Flags |
| 20 Minutes at the             | 40      | 0.000  | 0.000  | 0.000  | 0.7    | 0/0/400       | F0.0    | F2.0      |       |
| 38 Vinyl acetate              | 43      | 8.280  | 8.280  | 0.000  | 97     | 2686123       | 50.0    | 53.9      |       |
| 40 1,1-Dichloroethane         | 63      | 8.335  | 8.335  | 0.000  | 97     | 685120        | 25.0    | 24.7      |       |
| 44 2-Butanone (MEK)           | 43      | 9.022  | 9.022  | 0.000  | 95     | 1863634       | 125.0   | 139.8     |       |
| 45 2,2-Dichloropropane        | 77      | 9.034  | 9.034  | 0.000  | 81     | 295827        | 25.0    | 25.2      |       |
| 43 cis-1,2-Dichloroethene     | 96      | 9.053  | 9.053  | 0.000  | 90     | 332507        | 25.0    | 23.4      |       |
| 50 Chlorobromomethane         | 128     | 9.387  | 9.387  | 0.000  | 85     | 172471        | 25.0    | 24.2      |       |
| 51 Tetrahydrofuran            | 42      | 9.399  | 9.399  | 0.000  | 90     | 458102        | 50.0    | 54.2      |       |
| 49 Chloroform                 | 83      | 9.418  | 9.418  | 0.000  | 94     | 590322        | 25.0    | 24.8      |       |
| 52 1,1,1-Trichloroethane      | 97      | 9.655  | 9.655  | 0.000  | 95     | 492237        | 25.0    | 24.3      |       |
| 54 Cyclohexane                | 56      | 9.698  | 9.698  | 0.000  | 96     | 733781        | 25.0    | 24.4      |       |
| 56 1,1-Dichloropropene        | 75      | 9.831  | 9.831  | 0.000  | 89     | 422340        | 25.0    | 24.9      |       |
| 55 Carbon tetrachloride       | 117     | 9.837  | 9.837  | 0.000  | 56     | 360654        | 25.0    | 23.9      |       |
| 53 Isobutyl alcohol           | 43      | 9.844  | 9.844  | 0.000  | 90     | 979227        | 625.0   | 705.2     |       |
| 57 Benzene                    | 78      | 10.129 | 10.129 | 0.000  | 94     | 1162159       | 25.0    | 24.6      |       |
| 60 1,2-Dichloroethane         | 62      | 10.184 | 10.184 | 0.000  | 94     | 650724        | 25.0    | 24.7      |       |
| 59 n-Heptane                  | 43      | 10.184 | 10.184 | 0.000  | 88     | 557706        | 25.0    | 23.4      |       |
| 62 Trichloroethene            | 95      | 10.884 | 10.884 | 0.000  | 92     | 320023        | 25.0    | 24.0      |       |
| 64 Methylcyclohexane          | 83      | 11.078 | 11.078 | 0.000  | 92     | 432229        | 25.0    | 24.1      |       |
| 63 1,2-Dichloropropane        | 63      | 11.224 | 11.224 | 0.000  | 81     | 365450        | 25.0    | 24.1      |       |
| 68 1,4-Dioxane                | 88      | 11.352 | 11.352 | 0.000  | 89     | 81432         | 500.0   | 517.5     |       |
| 69 Dibromomethane             | 93      | 11.431 | 11.431 | 0.000  | 95     | 224759        | 25.0    | 24.8      |       |
| 70 Dichlorobromomethane       | 83      | 11.565 | 11.565 | 0.000  | 94     | 446039        | 25.0    | 25.1      |       |
| 71 2-Chloroethyl vinyl ether  | 63      | 11.815 | 11.815 | 0.000  | 85     | 282799        | 25.0    | 26.5      |       |
| 73 cis-1,3-Dichloropropene    | 75      | 12.094 | 12.094 | 0.000  | 79     | 505015        | 25.0    | 25.0      |       |
| 75 4-Methyl-2-pentanone (MIBK | 43      | 12.198 | 12.198 | 0.000  | 97     | 3836099       | 125.0   | 137.3     |       |
| 76 Toluene                    | 92      | 12.520 | 12.520 | 0.000  | 96     | 729601        | 25.0    | 24.7      |       |
| 77 Ethyl methacrylate         | 69      | 12.739 | 12.739 | 0.000  | 84     | 438095        | 25.0    | 26.5      |       |
| 78 trans-1,3-Dichloropropene  | 75      | 12.812 | 12.812 | 0.000  | 87     | 507946        | 25.0    | 24.8      |       |
| 79 1,1,2-Trichloroethane      | 83      | 13.098 | 13.098 | 0.000  | 94     | 252742        | 25.0    | 24.8      |       |
| 80 Tetrachloroethene          | 166     | 13.238 | 13.238 | 0.000  | 94     | 343526        | 25.0    | 23.8      |       |
| 83 2-Hexanone                 | 43      | 13.287 | 13.287 | 0.000  | 97     | 2767473       | 125.0   | 138.1     |       |
| 82 1,3-Dichloropropane        | 76      | 13.329 | 13.329 | 0.000  | 95     | 495554        | 25.0    | 25.0      |       |
| 81 Chlorodibromomethane       | 129     | 13.670 | 13.670 | 0.000  | 89     | 356036        | 25.0    | 25.0      |       |
| 85 Ethylene Dibromide         | 107     | 13.871 | 13.871 | 0.000  | 98     | 330223        | 25.0    | 25.2      |       |
| 87 Chlorobenzene              | 112     | 14.424 | 14.424 | 0.000  | 95     | 886492        | 25.0    | 24.7      |       |
| 89 Ethylbenzene               | 91      | 14.467 | 14.467 | 0.000  | 97     | 1374233       | 25.0    | 24.2      |       |
| 88 1,1,1,2-Tetrachloroethane  | 131     | 14.510 | 14.510 | 0.000  | 93     | 330559        | 25.0    | 24.9      |       |
| 90 m-Xylene & p-Xylene        | 106     | 14.607 | 14.607 | 0.000  | 0      | 547960        | 25.0    | 24.8      |       |
| 93 o-Xylene                   | 106     | 15.154 | 15.154 | 0.000  | 97     | 545790        | 25.0    | 24.9      |       |
| 94 Styrene                    | 104     | 15.179 | 15.179 | 0.000  | 92     | 897953        | 25.0    | 24.8      |       |
| 92 Bromoform                  | 173     | 15.568 | 15.568 | 0.000  | 91     | 281781        | 25.0    | 26.2      |       |
| 95 Isopropylbenzene           | 105     | 15.580 | 15.580 | 0.000  | 97     | 1326529       | 25.0    | 24.6      |       |
| 97 1,1,2,2-Tetrachloroethane  | 83      | 16.055 | 16.055 | 0.000  | 97     | 428065        | 25.0    | 25.7      |       |
| 98 trans-1,4-Dichloro-2-buten | 53      | 16.104 | 16.104 | 0.000  | 46     | 253255        | 25.0    | 26.1      |       |
| 99 N-Propylbenzene            | 91      | 16.110 | 16.110 | 0.000  | 97     | 1590484       | 25.0    | 24.1      |       |
| 100 Bromobenzene              | 156     | 16.128 | 16.118 | 0.000  | 87     | 428420        | 25.0    | 24.6      |       |
| 101 1,2,3-Trichloropropane    | 110     | 16.152 | 16.152 | 0.000  | 88     | 139228        | 25.0    | 25.7      |       |
| 102 1,3,5-Trimethylbenzene    | 105     | 16.298 | 16.132 | 0.000  | 96     | 1140863       | 25.0    | 24.2      |       |
| 103 2-Chlorotoluene           | 126     | 16.316 | 16.316 | 0.000  | 94     | 359026        | 25.0    | 24.6      |       |
| 105 4-Chlorotoluene           | 126     | 16.444 | 16.444 | 0.000  | 97     | 372016        | 25.0    | 24.2      |       |
| 106 tert-Butylbenzene         | 134     | 16.736 | 16.736 | 0.000  | 96     | 250341        | 25.0    | 23.6      |       |
| 3                             |         |        |        |        |        |               |         |           |       |
| 107 1,2,4-Trimethylbenzene    | 105     | 16.797 | 16.797 | 0.000  | 97     | 1201157       | 25.0    | 24.5      |       |

| Data File. IICHIOHIVAIDullaloiChiohiDataith 37731 (2017) 1010-00207.Dit 30401.D |     |        |          |        |    |           |           |           |       |  |
|---------------------------------------------------------------------------------|-----|--------|----------|--------|----|-----------|-----------|-----------|-------|--|
|                                                                                 |     | RT     | Adj RT   | Dlt RT |    |           | Cal Amt   | OnCol Amt |       |  |
| Compound                                                                        | Sig | (min.) | (min.)   | (min.) | Q  | Response  | ug/L      | ug/L      | Flags |  |
|                                                                                 |     |        |          |        |    |           |           |           |       |  |
| 109 sec-Butylbenzene                                                            | 105 | 17.004 | 17.004   | 0.000  | 96 | 1342703   | 25.0      | 24.0      |       |  |
| 112 4-Isopropyltoluene                                                          | 119 | 17.150 | 17.150   | 0.000  | 97 | 1258243   | 25.0      | 23.8      |       |  |
| 110 1,3-Dichlorobenzene                                                         | 146 | 17.272 | 17.272   | 0.000  | 97 | 775605    | 25.0      | 24.0      |       |  |
| 111 1,4-Dichlorobenzene                                                         | 146 | 17.375 | 17.375   | 0.000  | 92 | 799185    | 25.0      | 23.8      |       |  |
| 115 n-Butylbenzene                                                              | 91  | 17.661 | 17.661   | 0.000  | 97 | 1044618   | 25.0      | 23.2      |       |  |
| 116 1,2-Dichlorobenzene                                                         | 146 | 17.874 | 17.874   | 0.000  | 96 | 772922    | 25.0      | 24.7      |       |  |
| 117 1,2-Dibromo-3-Chloropropan                                                  | 75  | 18.920 | 18.920   | 0.000  | 76 | 107964    | 25.0      | 25.0      |       |  |
| 119 1,2,4-Trichlorobenzene                                                      | 180 | 20.027 | 20.027   | 0.000  | 94 | 549071    | 25.0      | 23.9      |       |  |
| 120 Hexachlorobutadiene                                                         | 225 | 20.143 | 20.143   | 0.000  | 94 | 215500    | 25.0      | 22.1      |       |  |
| 121 Naphthalene                                                                 | 128 | 20.472 | 20.472   | 0.000  | 97 | 1567096   | 25.0      | 26.0      |       |  |
| 122 1,2,3-Trichlorobenzene                                                      | 180 | 20.849 | 20.849   | 0.000  | 93 | 530605    | 25.0      | 23.3      |       |  |
| Reagents:                                                                       |     |        |          |        |    |           |           |           |       |  |
| 8260 CORP mix_00112                                                             |     | Amount | Added: 1 | 2.50   | Į  | Jnits: uL |           |           |       |  |
| GAS CORP mix_00245                                                              |     | Amount | Added: 1 | 2.50   | Į  | Jnits: uL |           |           |       |  |
| P 8260 IS_00247                                                                 |     | Amount | Added: 1 | .25    | Į  | Jnits: uL | Run Reage | nt        |       |  |
| P 8260 Surr00242                                                                |     | Amount | Added: 1 | .25    | l  | Jnits: uL | Run Reage |           |       |  |

Report Date: 11-Oct-2017 12:02:28 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3046P.D Injection Date: 10-Oct-2017 17:51:30 Instrument ID: HP5973P


Lims ID: ICIS 5

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

RF

9

8

Report Date: 11-Oct-2017 12:02:31 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3047P.D

Lims ID: IC 6

Client ID:

Sample Type: IC Calib Level: 6

Inject. Date: 10-Oct-2017 19:55:30 ALS Bottle#: 9 Worklist Smp#: 10

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 6

Misc. Info.: 480-0066269-010

Operator ID: RF Instrument ID: HP5973P

Sublist: chrom-P-8260H2O\*sub11

Method: \ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P-8260H2O.m

Limit Group: MV - 8260C ICAL

Last Update:11-Oct-2017 12:02:29Calib Date:11-Oct-2017 00:40:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3056P.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK031

First Level Reviewer: farrellr Date: 11-Oct-2017 08:53:34

| First Level Reviewer: farrellr    |     |        | D      | ate:   |    | 11-Oct-2017 08:53:34 |         |           |       |
|-----------------------------------|-----|--------|--------|--------|----|----------------------|---------|-----------|-------|
|                                   |     | RT     | Adj RT | Dlt RT |    |                      | Cal Amt | OnCol Amt |       |
| Compound                          | Sig | (min.) | (min.) | (min.) | Q  | Response             | ug/L    | ug/L      | Flags |
|                                   |     |        |        |        |    |                      |         |           |       |
| * 147 Fluorobenzene (IS)          | 70  | 10.434 | 10.434 | 0.000  | 97 | 187933               | 25.0    | 25.0      |       |
| * 2 Chlorobenzene-d5              | 82  | 14.382 | 14.388 | -0.006 | 93 | 416802               | 25.0    | 25.0      |       |
| * 3 1,4-Dichlorobenzene-d4        | 152 | 17.345 | 17.345 | 0.000  | 95 | 454653               | 25.0    | 25.0      |       |
| \$ 148 Dibromofluoromethane (Suri |     | 9.637  | 9.637  | 0.000  | 92 | 264657               | 25.0    | 25.0      |       |
| \$ 41,2-Dichloroethane-d4 (Sur    | 67  | 10.093 | 10.093 | 0.000  | 0  | 184210               | 25.0    | 25.1      |       |
| \$ 5 Toluene-d8 (Surr)            | 98  | 12.423 | 12.423 | 0.000  | 96 | 930160               | 25.0    | 25.0      |       |
| \$ 6 4-Bromofluorobenzene (Surr   | 174 | 15.885 | 15.878 | 0.007  | 89 | 340116               | 25.0    | 25.1      |       |
| 10 Dichlorodifluoromethane        | 85  | 4.332  | 4.338  | -0.006 | 96 | 918506               | 50.0    | 58.7      | M     |
| 11 Chloromethane                  | 50  | 4.770  | 4.770  | 0.000  | 99 | 1819431              | 50.0    | 53.2      |       |
| 17 Vinyl chloride                 | 62  | 4.977  | 4.971  | 0.006  | 97 | 1206067              | 50.0    | 57.0      |       |
| 144 Butadiene                     | 54  | 5.013  | 5.001  | 0.012  | 98 | 1395456              | 50.0    | 54.9      |       |
| 12 Bromomethane                   | 94  | 5.615  | 5.609  | 0.006  | 92 | 640743               | 50.0    | 55.7      |       |
| 13 Chloroethane                   | 64  | 5.713  | 5.695  | 0.019  | 94 | 675006               | 50.0    | 55.5      |       |
| 19 Dichlorofluoromethane          | 67  | 6.035  | 6.023  | 0.012  | 97 | 1521707              | 50.0    | 55.4      |       |
| 14 Trichlorofluoromethane         | 101 | 6.102  | 6.090  | 0.012  | 97 | 1386411              | 50.0    | 61.7      |       |
| 20 Ethyl ether                    | 59  | 6.394  | 6.388  | 0.006  | 92 | 866475               | 50.0    | 56.4      |       |
| 22 Acrolein                       | 56  | 6.698  | 6.698  | 0.000  | 99 | 645611               | 250.0   | 257.0     |       |
| 16 1,1,2-Trichloro-1,2,2-trif     | 101 | 6.747  | 6.735  | 0.012  | 93 | 758601               | 50.0    | 56.7      |       |
| 25 1,1-Dichloroethene             | 96  | 6.850  | 6.832  | 0.018  | 90 | 724483               | 50.0    | 52.4      |       |
| 24 Acetone                        | 43  | 6.887  | 6.887  | 0.000  | 96 | 2466416              | 250.0   | 258.9     |       |
| 18 lodomethane                    | 142 | 7.136  | 7.124  | 0.012  | 99 | 1363124              | 50.0    | 56.1      |       |
| 30 Methyl acetate                 | 43  | 7.252  | 7.252  | 0.000  | 99 | 2429979              | 100.0   | 109.6     |       |
| 27 Carbon disulfide               | 76  | 7.270  | 7.270  | 0.000  | 85 | 2721274              | 50.0    | 56.7      |       |
| 28 3-Chloro-1-propene             | 41  | 7.282  | 7.276  | 0.006  | 81 | 2167875              | 50.0    | 55.4      | M     |
| 33 2-Methyl-2-propanol            | 59  | 7.501  | 7.501  | 0.000  | 95 | 1590692              | 500.0   | 565.4     |       |
| 31 Methylene Chloride             | 84  | 7.507  | 7.501  | 0.006  | 88 | 856769               | 50.0    | 51.7      |       |
| 32 Methyl tert-butyl ether        | 73  | 7.690  | 7.690  | 0.000  | 91 | 2319151              | 50.0    | 55.2      |       |
| 35 trans-1,2-Dichloroethene       | 96  | 7.781  | 7.781  | 0.000  | 89 | 744733               | 50.0    | 52.9      |       |
| 34 Acrylonitrile                  | 53  | 7.818  | 7.812  | 0.006  | 96 | 4885868              | 500.0   | 530.3     |       |
| 36 Hexane                         | 57  | 7.976  | 7.976  | 0.000  | 94 | 1318373              | 50.0    | 56.2      |       |
|                                   |     |        | _      |        |    |                      |         |           |       |

| Data File: \\ChromNA\B        | uttalo |        | 1      |        | J10-66 | 6269.b\P3047P |         |           |       |
|-------------------------------|--------|--------|--------|--------|--------|---------------|---------|-----------|-------|
|                               |        | RT     | Adj RT | Dlt RT |        |               | Cal Amt | OnCol Amt | El    |
| Compound                      | Sig    | (min.) | (min.) | (min.) | Q      | Response      | ug/L    | ug/L      | Flags |
| 20 Minutes at the             | 40     | 0.000  | 0.000  | 0.000  | 0.7    | E20/0/0       | 100.0   | 100.0     |       |
| 38 Vinyl acetate              | 43     | 8.280  | 8.280  | 0.000  | 97     | 5386868       | 100.0   | 103.3     |       |
| 40 1,1-Dichloroethane         | 63     | 8.335  | 8.335  | 0.000  | 97     | 1610304       | 50.0    | 55.4      |       |
| 44 2-Butanone (MEK)           | 43     | 9.022  | 9.022  | 0.000  | 95     | 3709233       | 250.0   | 265.8     |       |
| 45 2,2-Dichloropropane        | 77     | 9.028  | 9.034  | -0.006 | 81     | 561024        | 50.0    | 45.7      |       |
| 43 cis-1,2-Dichloroethene     | 96     | 9.053  | 9.053  | 0.000  | 90     | 793491        | 50.0    | 53.4      |       |
| 50 Chlorobromomethane         | 128    | 9.387  | 9.387  | 0.000  | 86     | 404932        | 50.0    | 54.3      |       |
| 51 Tetrahydrofuran            | 42     | 9.399  | 9.399  | 0.000  | 89     | 928086        | 100.0   | 104.9     |       |
| 49 Chloroform                 | 83     | 9.418  | 9.418  | 0.000  | 94     | 1371063       | 50.0    | 55.1      |       |
| 52 1,1,1-Trichloroethane      | 97     | 9.649  | 9.655  | -0.006 | 96     | 1170383       | 50.0    | 55.2      |       |
| 54 Cyclohexane                | 56     | 9.698  | 9.698  | 0.000  | 96     | 1777953       | 50.0    | 56.4      |       |
| 56 1,1-Dichloropropene        | 75     | 9.825  | 9.831  | -0.006 | 89     | 954295        | 50.0    | 53.8      |       |
| 55 Carbon tetrachloride       | 117    | 9.844  | 9.837  | 0.007  | 58     | 1005256       | 50.0    | 63.6      |       |
| 53 Isobutyl alcohol           | 43     | 9.844  | 9.844  | 0.000  | 89     | 2037808       | 1250.0  | 1402.2    |       |
| 57 Benzene                    | 78     | 10.129 | 10.129 | 0.000  | 94     | 2727047       | 50.0    | 55.3      |       |
| 59 n-Heptane                  | 43     | 10.184 | 10.184 | 0.000  | 93     | 1404689       | 50.0    | 56.3      |       |
| 60 1,2-Dichloroethane         | 62     | 10.184 | 10.184 | 0.000  | 94     | 1491848       | 50.0    | 54.2      |       |
| 62 Trichloroethene            | 95     | 10.884 | 10.884 | 0.000  | 93     | 765203        | 50.0    | 54.7      |       |
| 64 Methylcyclohexane          | 83     | 11.078 | 11.078 | 0.000  | 91     | 1048534       | 50.0    | 56.0      |       |
| 63 1,2-Dichloropropane        | 63     | 11.225 | 11.224 | 0.000  | 84     | 863093        | 50.0    | 54.3      |       |
| 68 1,4-Dioxane                | 88     | 11.346 | 11.352 | -0.006 | 90     | 185191        | 1000.0  | 1134.7    |       |
| 69 Dibromomethane             | 93     | 11.431 | 11.431 | 0.000  | 94     | 493667        | 50.0    | 52.0      |       |
| 70 Dichlorobromomethane       | 83     | 11.559 | 11.565 | -0.006 | 94     | 1075676       | 50.0    | 57.9      |       |
| 71 2-Chloroethyl vinyl ether  | 63     | 11.815 | 11.815 | 0.000  | 85     | 613393        | 50.0    | 55.0      |       |
| 73 cis-1,3-Dichloropropene    | 75     | 12.094 | 12.094 | 0.000  | 78     | 1151508       | 50.0    | 54.4      |       |
| 75 4-Methyl-2-pentanone (MIBK | 43     | 12.204 | 12.198 | 0.006  | 98     | 7560549       | 250.0   | 260.9     |       |
| 76 Toluene                    | 92     | 12.520 | 12.520 | 0.000  | 97     | 1667836       | 50.0    | 54.5      |       |
| 77 Ethyl methacrylate         | 69     | 12.739 | 12.739 | 0.000  | 85     | 948552        | 50.0    | 55.4      |       |
| 78 trans-1,3-Dichloropropene  | 75     | 12.812 | 12.812 | 0.000  | 88     | 1159133       | 50.0    | 54.6      |       |
| 79 1,1,2-Trichloroethane      | 83     | 13.098 | 13.098 | 0.000  | 94     | 548661        | 50.0    | 51.9      |       |
| 80 Tetrachloroethene          | 166    | 13.244 | 13.238 | 0.006  | 95     | 786243        | 50.0    | 52.6      |       |
| 83 2-Hexanone                 | 43     | 13.287 | 13.287 | 0.000  | 96     | 5421607       | 250.0   | 260.8     |       |
| 82 1,3-Dichloropropane        | 76     | 13.329 | 13.329 | 0.000  | 91     | 1107782       | 50.0    | 53.9      |       |
| 81 Chlorodibromomethane       | 129    | 13.670 | 13.670 | 0.000  | 88     | 834420        | 50.0    | 56.5      |       |
| 85 Ethylene Dibromide         | 107    | 13.871 | 13.871 | 0.000  | 99     | 716925        | 50.0    | 52.8      |       |
| 87 Chlorobenzene              | 112    | 14.424 | 14.424 | 0.000  | 92     | 1995674       | 50.0    | 53.7      |       |
| 89 Ethylbenzene               | 91     | 14.467 | 14.467 | 0.000  | 97     | 3173847       | 50.0    | 53.8      |       |
| 88 1,1,1,2-Tetrachloroethane  | 131    | 14.510 | 14.510 | 0.000  | 92     | 779565        | 50.0    | 56.6      |       |
| 90 m-Xylene & p-Xylene        | 106    | 14.607 | 14.607 | 0.000  | 0      | 1251865       | 50.0    | 54.7      |       |
| 93 o-Xylene                   | 106    | 15.154 | 15.154 | 0.000  | 97     | 1248964       | 50.0    | 54.9      |       |
| 94 Styrene                    | 104    | 15.179 | 15.179 | 0.000  | 92     | 2129175       | 50.0    | 56.8      |       |
| 92 Bromoform                  | 173    | 15.568 | 15.568 | 0.000  | 91     | 634943        | 50.0    | 56.9      |       |
| 95 Isopropylbenzene           | 105    | 15.586 | 15.580 | 0.006  | 97     | 3100485       | 50.0    | 55.7      |       |
| 97 1,1,2,2-Tetrachloroethane  | 83     | 16.055 | 16.055 | 0.000  | 97     | 888284        | 50.0    | 51.6      |       |
| 98 trans-1,4-Dichloro-2-buten | 53     | 16.104 | 16.104 | 0.000  | 62     | 531024        | 50.0    | 53.0      |       |
| 99 N-Propylbenzene            | 91     | 16.110 | 16.110 | 0.000  | 98     | 3673269       | 50.0    | 53.9      |       |
| 100 Bromobenzene              | 156    | 16.134 | 16.128 | 0.006  | 90     | 960525        | 50.0    | 53.2      |       |
| 101 1,2,3-Trichloropropane    | 110    | 16.152 | 16.152 | 0.000  | 86     | 283394        | 50.0    | 50.5      |       |
| 102 1,3,5-Trimethylbenzene    | 105    | 16.298 | 16.298 | 0.000  | 95     | 2691214       | 50.0    | 55.2      |       |
| 103 2-Chlorotoluene           | 126    | 16.316 | 16.316 | 0.000  | 95     | 838716        | 50.0    | 55.6      |       |
| 105 4-Chlorotoluene           | 126    | 16.444 | 16.444 | 0.000  | 97     | 863120        | 50.0    | 54.4      |       |
| 106 tert-Butylbenzene         | 134    | 16.736 | 16.736 | 0.000  | 96     | 607878        | 50.0    | 55.3      |       |
| 3                             |        |        |        |        |        |               |         |           |       |
| 107 1,2,4-Trimethylbenzene    | 105    | 16.797 | 16.797 | 0.000  | 97     | 2840153       | 50.0    | 56.0      |       |

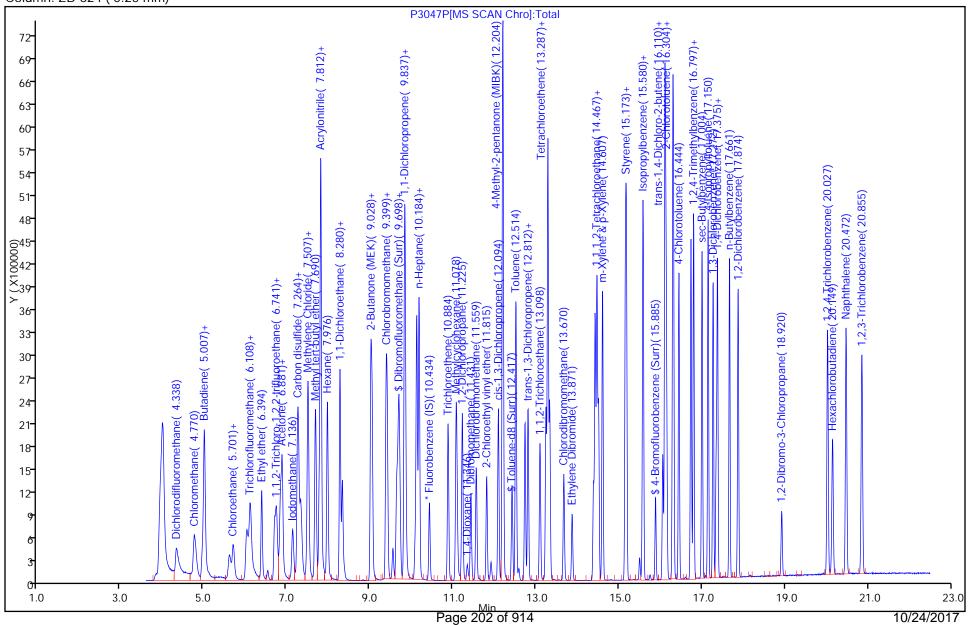
| Data File: \\ChromNA\B                                        | uffalo\ | ChromDa    | ta\HP5973 | 3P\201/10 | )10-6 | 6269.b\P3047F | ².D     |           |       |
|---------------------------------------------------------------|---------|------------|-----------|-----------|-------|---------------|---------|-----------|-------|
| 2                                                             | C'      | RT (mater) | Adj RT    | Dlt RT    |       | D             | Cal Amt | OnCol Amt | E1    |
| Compound                                                      | Sig     | (min.)     | (min.)    | (min.)    | Q     | Response      | ug/L    | ug/L      | Flags |
| 100 and Dutulhanzana                                          | 105     | 17.004     | 17.004    | 0.000     | 07    | 2211022       | F0.0    | F7 2      |       |
| 109 sec-Butylbenzene                                          | 105     | 17.004     | 17.004    | 0.000     | 96    | 3311933       | 50.0    | 57.2      |       |
| 112 4-Isopropyltoluene                                        | 119     | 17.150     | 17.150    | 0.000     | 97    | 3076325       | 50.0    | 56.3      |       |
| 110 1,3-Dichlorobenzene                                       | 146     | 17.272     | 17.272    | 0.000     | 97    | 1786843       | 50.0    | 53.5      |       |
| 111 1,4-Dichlorobenzene                                       | 146     | 17.375     | 17.375    | 0.000     | 92    | 1869766       | 50.0    | 53.9      |       |
| 115 n-Butylbenzene                                            | 91      | 17.661     | 17.661    | 0.000     | 97    | 2556462       | 50.0    | 54.9      |       |
| 116 1,2-Dichlorobenzene                                       | 146     | 17.874     | 17.874    | 0.000     | 96    | 1773101       | 50.0    | 54.7      |       |
| 117 1,2-Dibromo-3-Chloropropan                                | 75      | 18.920     | 18.920    | 0.000     | 77    | 227760        | 50.0    | 51.6      |       |
| 119 1,2,4-Trichlorobenzene                                    | 180     | 20.027     | 20.027    | 0.000     | 94    | 1338784       | 50.0    | 56.3      |       |
| 120 Hexachlorobutadiene                                       | 225     | 20.143     | 20.143    | 0.000     | 95    | 530503        | 50.0    | 52.5      |       |
| 121 Naphthalene                                               | 128     | 20.472     | 20.472    | 0.000     | 97    | 3473370       | 50.0    | 55.6      |       |
| 122 1,2,3-Trichlorobenzene                                    | 180     | 20.849     | 20.849    | 0.000     | 93    | 1308210       | 50.0    | 55.7      |       |
| S 125 Total BTEX                                              | 1       |            |           |           | 0     |               |         | 273.2     |       |
| S 126 Xylenes, Total                                          | 1       |            |           |           | 0     |               |         | 109.6     |       |
| S 123 1,2-Dichloroethene, Total                               | 1       |            |           |           | 0     |               |         | 106.3     |       |
| S 124 1,3-Dichloropropene, Total                              | 1       |            |           |           | 0     |               |         | 109.1     |       |
| QC Flag Legend Review Flags M - Manually Integrated Reagents: |         |            |           |           |       |               |         |           |       |
| 8260 CORP mix_00112                                           |         | Amount     | Added: 2  | 5.00      | ı     | Units: uL     |         |           |       |

Amount Added: 25.00 GAS CORP mix\_00245 Units: uL P 8260 IS\_00247 Run Reagent Amount Added: 1.25 Units: uL Run Reagent P 8260 Surr.\_00242 Amount Added: 1.25 Units: uL

Report Date: 11-Oct-2017 12:02:31 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3047P.D Injection Date: 10-Oct-2017 19:55:30 Instrument ID: HP5973P


Lims ID: IC 6

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

RF

10

9

Report Date: 11-Oct-2017 12:02:31 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

TestAmerica Buffalo

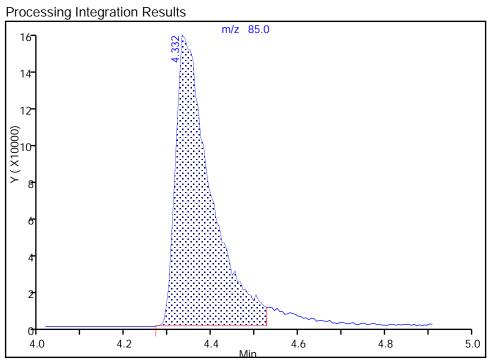
Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3047P.D Injection Date: 10-Oct-2017 19:55:30 Instrument ID: HP5973P

Lims ID: IC 6

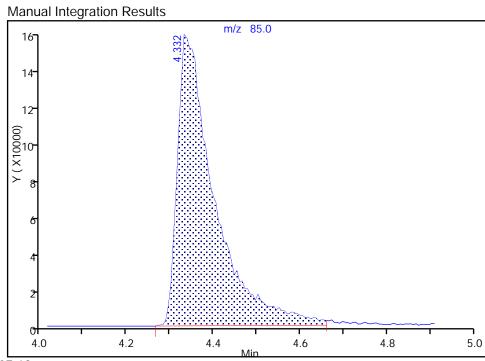
Client ID:

Operator ID: RF ALS Bottle#: 9 Worklist Smp#: 10

Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN


## 10 Dichlorodifluoromethane, CAS: 75-71-8

Signal: 1

RT: 4.33 Area: 868584 Amount: 56.035239 Amount Units: ug/L



RT: 4.33 Area: 918506 Amount: 58.715583 Amount Units: ug/L



Reviewer: HillL, 11-Oct-2017 11:07:12

Audit Action: Manually Integrated

Audit Reason: Poor chromatography

Page 203 of 914

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report Report Date: 11-Oct-2017 12:02:31

#### TestAmerica Buffalo

Data File: Injection Date: 10-Oct-2017 19:55:30 Instrument ID: HP5973P

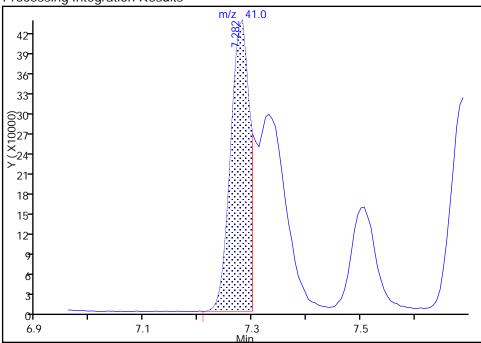
Lims ID: IC 6

Client ID:

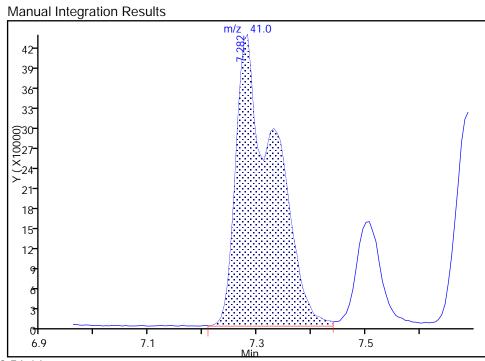
Operator ID: RF ALS Bottle#: 9 Worklist Smp#: 10

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL


Column: ZB-624 (0.25 mm) Detector MS SCAN

## 28 3-Chloro-1-propene, CAS: 107-05-1


Signal: 1

RT: 7.28 Area: 1062726 Amount: 28.022131 Amount Units: ug/L

**Processing Integration Results** 



RT: 7.28 Area: 2167875 55.377772 Amount: Amount Units: ug/L



Reviewer: farrellr, 11-Oct-2017 08:56:14

Audit Action: Manually Integrated

Audit Reason: Poor chromatography

Page 204 of 914

Report Date: 11-Oct-2017 12:02:34 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3048P.D

Lims ID: IC 7

Client ID:

Sample Type: IC Calib Level: 7

Inject. Date: 10-Oct-2017 20:22:30 ALS Bottle#: 10 Worklist Smp#: 11

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 7

Misc. Info.: 480-0066269-011

Operator ID: RF Instrument ID: HP5973P

Sublist: chrom-P-8260H2O\*sub11

Limit Group: MV - 8260C ICAL

Last Update:11-Oct-2017 12:02:33Calib Date:11-Oct-2017 00:40:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3056P.D

Column 1: ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK031

First Level Reviewer: farrellr Date: 11-Oct-2017 08:58:28

| First Level Reviewer: farrelir       |     |        | D      | ate:   |    | 11-001-201 | 7 08:58:28 |           |       |
|--------------------------------------|-----|--------|--------|--------|----|------------|------------|-----------|-------|
|                                      |     | RT     | Adj RT | Dlt RT |    |            | Cal Amt    | OnCol Amt |       |
| Compound                             | Sig | (min.) | (min.) | (min.) | Q  | Response   | ug/L       | ug/L      | Flags |
|                                      |     |        |        |        |    |            |            | -         |       |
| * 147 Fluorobenzene (IS)             | 70  | 10.433 | 10.434 | -0.001 | 97 | 194894     | 25.0       | 25.0      |       |
| <ul><li>2 Chlorobenzene-d5</li></ul> | 82  | 14.388 | 14.388 | 0.000  | 91 | 425757     | 25.0       | 25.0      |       |
| * 3 1,4-Dichlorobenzene-d4           | 152 | 17.344 | 17.345 | -0.001 | 95 | 479939     | 25.0       | 25.0      |       |
| \$ 148 Dibromofluoromethane (Surr    | 113 | 9.630  | 9.637  | -0.007 | 92 | 272147     | 25.0       | 24.8      |       |
| \$ 41,2-Dichloroethane-d4 (Sur       | 67  | 10.093 | 10.093 | 0.000  | 0  | 186635     | 25.0       | 24.5      |       |
| \$ 5 Toluene-d8 (Surr)               | 98  | 12.423 | 12.423 | 0.000  | 95 | 952474     | 25.0       | 25.1      |       |
| \$ 6 4-Bromofluorobenzene (Surr      | 174 | 15.884 | 15.878 | 0.006  | 88 | 353734     | 25.0       | 25.6      |       |
| 10 Dichlorodifluoromethane           | 85  | 4.338  | 4.338  | 0.000  | 97 | 1506370    | 100.0      | 92.9      |       |
| 11 Chloromethane                     | 50  | 4.770  | 4.770  | 0.000  | 99 | 3120558    | 100.0      | 87.9      |       |
| 17 Vinyl chloride                    | 62  | 4.970  | 4.971  | -0.001 | 97 | 2116698    | 100.0      | 96.4      |       |
| 144 Butadiene                        | 54  | 5.007  | 5.001  | 0.006  | 99 | 2479388    | 100.0      | 94.1      |       |
| 12 Bromomethane                      | 94  | 5.609  | 5.609  | 0.000  | 92 | 1124468    | 100.0      | 94.2      |       |
| 13 Chloroethane                      | 64  | 5.706  | 5.695  | 0.012  | 94 | 1158173    | 100.0      | 91.9      |       |
| 19 Dichlorofluoromethane             | 67  | 6.029  | 6.023  | 0.006  | 97 | 2663320    | 100.0      | 93.5      |       |
| 14 Trichlorofluoromethane            | 101 | 6.096  | 6.090  | 0.006  | 97 | 2337946    | 100.0      | 100.3     |       |
| 20 Ethyl ether                       | 59  | 6.394  | 6.388  | 0.006  | 91 | 1527694    | 100.0      | 96.0      |       |
| 22 Acrolein                          | 56  | 6.698  | 6.698  | 0.000  | 99 | 1369306    | 500.0      | 525.7     |       |
| 16 1,1,2-Trichloro-1,2,2-trif        | 101 | 6.741  | 6.735  | 0.006  | 93 | 1299676    | 100.0      | 93.7      |       |
| 25 1,1-Dichloroethene                | 96  | 6.838  | 6.832  | 0.006  | 89 | 1281396    | 100.0      | 89.4      |       |
| 24 Acetone                           | 43  | 6.887  | 6.887  | 0.000  | 96 | 4860760    | 500.0      | 491.9     |       |
| 18 lodomethane                       | 142 | 7.130  | 7.124  | 0.006  | 98 | 2448447    | 100.0      | 97.1      |       |
| 30 Methyl acetate                    | 43  | 7.252  | 7.252  | 0.000  | 99 | 4625698    | 200.0      | 201.2     |       |
| 27 Carbon disulfide                  | 76  | 7.270  | 7.270  | 0.000  | 97 | 4856548    | 100.0      | 97.6      |       |
| 28 3-Chloro-1-propene                | 41  | 7.276  | 7.276  | 0.000  | 86 | 3849160    | 100.0      | 94.8      |       |
| 31 Methylene Chloride                | 84  | 7.507  | 7.501  | 0.006  | 88 | 1436954    | 100.0      | 84.3      |       |
| 33 2-Methyl-2-propanol               | 59  | 7.501  | 7.501  | 0.000  | 96 | 3093103    | 1000.0     | 1060.1    |       |
| 32 Methyl tert-butyl ether           | 73  | 7.690  | 7.690  | 0.000  | 92 | 4348816    | 100.0      | 99.8      |       |
| 35 trans-1,2-Dichloroethene          | 96  | 7.781  | 7.781  | 0.000  | 88 | 1305820    | 100.0      | 89.4      |       |
| 34 Acrylonitrile                     | 53  | 7.817  | 7.812  | 0.005  | 96 | 9750085    | 1000.0     | 1020.5    |       |
| 36 Hexane                            | 57  | 7.976  | 7.976  | 0.000  | 93 | 2188958    | 100.0      | 90.0      |       |
|                                      |     |        |        |        |    |            |            |           |       |

ct-2017 12:02:34 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3048P.D Report Date: 11-Oct-2017 12:02:34

| Data File: \\ChromNA\B        | uffalo\ | <u>ChromDa</u> | Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3048P.D |        |    |          |         |           |       |  |
|-------------------------------|---------|----------------|--------------------------------------------------------------------------|--------|----|----------|---------|-----------|-------|--|
|                               |         | RT             | Adj RT                                                                   | Dlt RT |    |          | Cal Amt | OnCol Amt |       |  |
| Compound                      | Sig     | (min.)         | (min.)                                                                   | (min.) | Q  | Response | ug/L    | ug/L      | Flags |  |
|                               |         |                |                                                                          |        |    |          |         |           |       |  |
| 38 Vinyl acetate              | 43      | 8.280          | 8.280                                                                    | 0.000  | 97 | 10471043 | 200.0   | 193.6     |       |  |
| 40 1,1-Dichloroethane         | 63      | 8.335          | 8.335                                                                    | 0.000  | 97 | 2923890  | 100.0   | 97.1      |       |  |
| 44 2-Butanone (MEK)           | 43      | 9.022          | 9.022                                                                    | 0.000  | 96 | 7470045  | 500.0   | 516.2     |       |  |
| 45 2,2-Dichloropropane        | 77      | 9.034          | 9.034                                                                    | 0.000  | 84 | 1073748  | 100.0   | 84.4      |       |  |
| 43 cis-1,2-Dichloroethene     | 96      | 9.052          | 9.053                                                                    | -0.001 | 90 | 1417643  | 100.0   | 91.9      |       |  |
| 50 Chlorobromomethane         | 128     | 9.387          | 9.387                                                                    | 0.000  | 86 | 732468   | 100.0   | 94.7      |       |  |
| 51 Tetrahydrofuran            | 42      | 9.399          | 9.399                                                                    | 0.000  | 90 | 1855505  | 200.0   | 202.3     |       |  |
| 49 Chloroform                 | 83      | 9.417          | 9.418                                                                    | -0.001 | 94 | 2453445  | 100.0   | 95.1      |       |  |
| 52 1,1,1-Trichloroethane      | 97      | 9.655          | 9.655                                                                    | 0.000  | 95 | 2110676  | 100.0   | 96.0      |       |  |
| 54 Cyclohexane                | 56      | 9.697          | 9.698                                                                    | -0.001 | 96 | 3138520  | 100.0   | 96.1      |       |  |
| 56 1,1-Dichloropropene        | 75      | 9.831          | 9.831                                                                    | 0.000  | 90 | 1762096  | 100.0   | 95.7      |       |  |
| 55 Carbon tetrachloride       | 117     | 9.843          | 9.837                                                                    | 0.006  | 94 | 1661571  | 100.0   | 101.3     |       |  |
| 53 Isobutyl alcohol           | 43      | 9.843          | 9.844                                                                    | -0.001 | 91 | 4093827  | 2500.0  | 2716.4    |       |  |
| 57 Benzene                    | 78      | 10.129         | 10.129                                                                   | 0.000  | 93 | 4941436  | 100.0   | 96.5      |       |  |
| 60 1,2-Dichloroethane         | 62      | 10.184         | 10.184                                                                   | 0.000  | 94 | 2705944  | 100.0   | 94.7      |       |  |
| 59 n-Heptane                  | 43      | 10.184         | 10.184                                                                   | 0.000  | 87 | 2222772  | 100.0   | 86.0      |       |  |
| 62 Trichloroethene            | 95      | 10.884         | 10.884                                                                   | 0.000  | 93 | 1378147  | 100.0   | 95.0      |       |  |
| 64 Methylcyclohexane          | 83      | 11.078         | 11.078                                                                   | 0.000  | 91 | 1798265  | 100.0   | 92.6      |       |  |
| 63 1,2-Dichloropropane        | 63      | 11.230         | 11.224                                                                   | 0.006  | 82 | 1566199  | 100.0   | 95.0      |       |  |
| 68 1,4-Dioxane                | 88      | 11.346         | 11.352                                                                   | -0.006 | 88 | 344874   | 2000.0  | 2068.6    |       |  |
| 69 Dibromomethane             | 93      | 11.431         | 11.431                                                                   | 0.000  | 94 | 925691   | 100.0   | 94.0      |       |  |
| 70 Dichlorobromomethane       | 83      | 11.559         | 11.565                                                                   | -0.006 | 95 | 1928316  | 100.0   | 100.0     |       |  |
| 71 2-Chloroethyl vinyl ether  | 63      | 11.814         | 11.815                                                                   | -0.001 | 85 | 1215256  | 100.0   | 105.0     |       |  |
| 73 cis-1,3-Dichloropropene    | 75      | 12.094         | 12.094                                                                   | 0.000  | 80 | 2141619  | 100.0   | 97.6      |       |  |
| 75 4-Methyl-2-pentanone (MIBK | 43      | 12.198         | 12.198                                                                   | 0.000  | 98 | 14678897 | 500.0   | 495.8     |       |  |
| 76 Toluene                    | 92      | 12.520         | 12.520                                                                   | 0.000  | 98 | 3090757  | 100.0   | 98.9      |       |  |
| 77 Ethyl methacrylate         | 69      | 12.733         | 12.739                                                                   | -0.006 | 85 | 1923333  | 100.0   | 110.0     |       |  |
| 78 trans-1,3-Dichloropropene  | 75      | 12.812         | 12.812                                                                   | 0.000  | 88 | 2168452  | 100.0   | 100.1     |       |  |
| 79 1,1,2-Trichloroethane      | 83      | 13.098         | 13.098                                                                   | 0.000  | 93 | 1046069  | 100.0   | 96.8      |       |  |
| 80 Tetrachloroethene          | 166     | 13.244         | 13.238                                                                   | 0.006  | 93 | 1412801  | 100.0   | 92.6      |       |  |
| 83 2-Hexanone                 | 43      | 13.287         | 13.287                                                                   | 0.000  | 98 | 10960565 | 500.0   | 516.1     |       |  |
| 82 1,3-Dichloropropane        | 76      | 13.329         | 13.329                                                                   | 0.000  | 92 | 2094245  | 100.0   | 99.8      |       |  |
| 81 Chlorodibromomethane       | 129     | 13.670         | 13.670                                                                   | 0.000  | 89 | 1577516  | 100.0   | 104.5     |       |  |
| 85 Ethylene Dibromide         | 107     | 13.871         | 13.871                                                                   | 0.000  | 98 | 1375996  | 100.0   | 99.1      |       |  |
| 87 Chlorobenzene              | 112     | 14.424         | 14.424                                                                   | 0.000  | 94 | 3664293  | 100.0   | 96.5      |       |  |
| 89 Ethylbenzene               | 91      | 14.467         | 14.467                                                                   | 0.000  | 97 | 5857536  | 100.0   | 97.2      |       |  |
| 88 1,1,1,2-Tetrachloroethane  | 131     | 14.509         | 14.510                                                                   | -0.001 | 93 | 1446251  | 100.0   | 102.8     |       |  |
| 90 m-Xylene & p-Xylene        | 106     | 14.607         | 14.607                                                                   | 0.000  | 0  | 2371464  | 100.0   | 101.4     |       |  |
| 93 o-Xylene                   | 106     | 15.154         | 15.154                                                                   | 0.000  | 95 | 2341113  | 100.0   | 100.8     |       |  |
| 94 Styrene                    | 104     | 15.179         | 15.179                                                                   | 0.000  | 92 | 4036982  | 100.0   | 105.4     |       |  |
| 92 Bromoform                  | 173     | 15.568         | 15.568                                                                   | 0.000  | 91 | 1262274  | 100.0   | 110.8     |       |  |
| 95 Isopropylbenzene           | 105     | 15.580         | 15.580                                                                   | 0.000  | 97 | 5726024  | 100.0   | 97.5      |       |  |
| 97 1,1,2,2-Tetrachloroethane  | 83      | 16.055         | 16.055                                                                   | 0.000  | 96 | 1759968  | 100.0   | 96.9      |       |  |
| 98 trans-1,4-Dichloro-2-buten | 53      | 16.103         | 16.104                                                                   | -0.001 | 56 | 1083841  | 100.0   | 102.4     |       |  |
| 99 N-Propylbenzene            | 91      | 16.109         | 16.110                                                                   | -0.001 | 98 | 6749775  | 100.0   | 93.8      |       |  |
| 100 Bromobenzene              | 156     | 16.128         | 16.128                                                                   | 0.000  | 87 | 1783067  | 100.0   | 93.6      |       |  |
| 101 1,2,3-Trichloropropane    | 110     | 16.152         | 16.152                                                                   | 0.000  | 90 | 584485   | 100.0   | 98.7      |       |  |
| 102 1,3,5-Trimethylbenzene    | 105     | 16.298         | 16.298                                                                   | 0.000  | 95 | 4953366  | 100.0   | 96.3      |       |  |
| 103 2-Chlorotoluene           | 126     | 16.316         | 16.316                                                                   | 0.000  | 95 | 1539264  | 100.0   | 96.6      |       |  |
| 105 4-Chlorotoluene           | 126     | 16.444         | 16.444                                                                   | 0.000  | 97 | 1610013  | 100.0   | 96.1      |       |  |
| 106 tert-Butylbenzene         | 134     | 16.736         | 16.736                                                                   | 0.000  | 96 | 1073113  | 100.0   | 90.1      |       |  |
| 5                             |         |                |                                                                          |        |    |          |         |           |       |  |
| 107 1,2,4-Trimethylbenzene    | 105     | 16.797         | 16.797                                                                   | 0.000  | 97 | 5247304  | 100.0   | 98.0      |       |  |

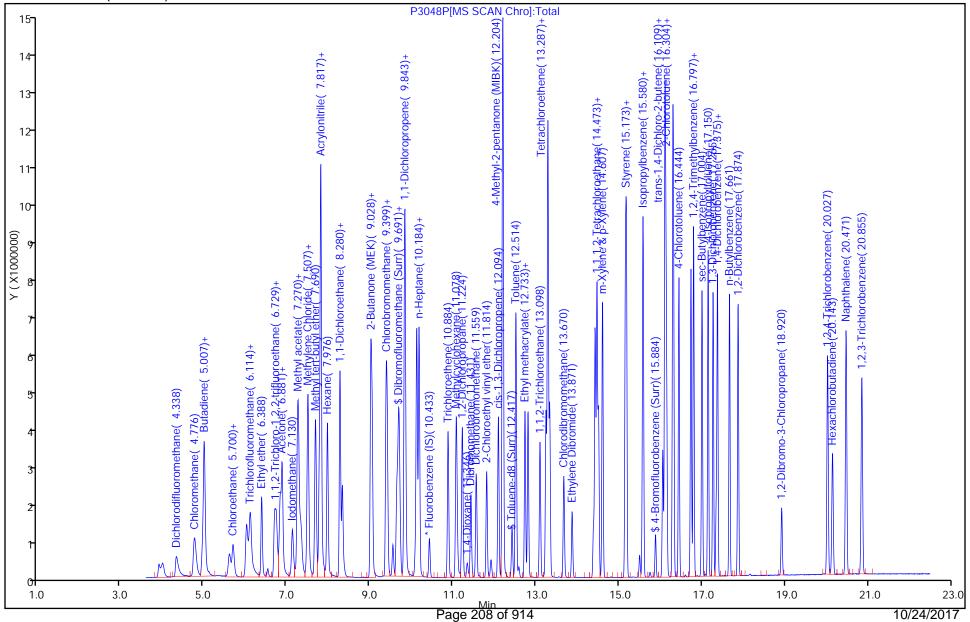
ct-2017 12:02:34 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3048P.D Report Date: 11-Oct-2017 12:02:34

| Data File. (ICHIOHINA)           | ullalu | CHIOHDa | la\nr5973 | DF 1201710 | J 10-C | 00209.D\F3040I | ٠.٠       |           |       |
|----------------------------------|--------|---------|-----------|------------|--------|----------------|-----------|-----------|-------|
|                                  |        | RT      | Adj RT    | DIt RT     |        |                | Cal Amt   | OnCol Amt |       |
| Compound                         | Sig    | (min.)  | (min.)    | (min.)     | Q      | Response       | ug/L      | ug/L      | Flags |
|                                  |        |         |           |            |        |                |           |           |       |
| 109 sec-Butylbenzene             | 105    | 17.004  | 17.004    | 0.000      | 96     | 5748163        | 100.0     | 94.0      |       |
| 112 4-Isopropyltoluene           | 119    | 17.150  | 17.150    | 0.000      | 98     | 5531617        | 100.0     | 95.9      |       |
| 110 1,3-Dichlorobenzene          | 146    | 17.271  | 17.272    | -0.001     | 97     | 3319784        | 100.0     | 94.1      |       |
| 111 1,4-Dichlorobenzene          | 146    | 17.375  | 17.375    | 0.000      | 95     | 3446992        | 100.0     | 94.1      |       |
| 115 n-Butylbenzene               | 91     | 17.661  | 17.661    | 0.000      | 97     | 4468247        | 100.0     | 90.9      |       |
| 116 1,2-Dichlorobenzene          | 146    | 17.874  | 17.874    | 0.000      | 96     | 3282012        | 100.0     | 96.0      |       |
| 117 1,2-Dibromo-3-Chloropropan   | 75     | 18.920  | 18.920    | 0.000      | 89     | 457726         | 100.0     | 98.9      |       |
| 119 1,2,4-Trichlorobenzene       | 180    | 20.027  | 20.027    | 0.000      | 94     | 2344041        | 100.0     | 93.3      |       |
| 120 Hexachlorobutadiene          | 225    | 20.149  | 20.143    | 0.006      | 95     | 922117         | 100.0     | 86.5      |       |
| 121 Naphthalene                  | 128    | 20.471  | 20.472    | -0.001     | 97     | 6765359        | 100.0     | 102.7     |       |
| 122 1,2,3-Trichlorobenzene       | 180    | 20.855  | 20.849    | 0.006      | 93     | 2303868        | 100.0     | 92.9      |       |
| S 123 1,2-Dichloroethene, Total  | 1      |         |           |            | 0      |                |           | 181.4     |       |
| S 124 1,3-Dichloropropene, Total | 1      |         |           |            | 0      |                |           | 197.7     |       |
| S 125 Total BTEX                 | 1      |         |           |            | 0      |                |           | 494.9     |       |
| S 126 Xylenes, Total             | 1      |         |           |            | 0      |                |           | 202.3     |       |
| Reagents:                        |        |         |           |            |        |                |           |           |       |
| 8260 CORP mix_00112              |        | Amount  | Added: 5  | 0.00       |        | Units: uL      |           |           |       |
| GAS CORP mix_00245               |        | Amount  | Added: 5  | 0.00       |        | Units: uL      |           |           |       |
| P 8260 IS_00247                  |        | Amount  | Added: 1  | 1.25       |        | Units: uL      | Run Reage | nt        |       |
| P 8260 Surr00242                 |        | Amount  | Added: 1  | 1.25       |        | Units: uL      | Run Reage | nt        |       |
|                                  |        |         |           |            |        |                |           |           |       |

Report Date: 11-Oct-2017 12:02:34 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3048P.D Injection Date: 10-Oct-2017 20:22:30 Instrument ID: HP5973P


Lims ID: IC 7

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



RF

11

10

Operator ID:

ALS Bottle#:

Worklist Smp#:

# FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: CCVIS 480-381944/4 Calibration Date: 10/16/2017 10:53

Instrument ID: HP5973F Calib Start Date: 09/29/2017 15:58

GC Column:  $\underline{\text{ZB-624 (30)}}$  ID:  $\underline{\text{0.25 (mm)}}$  Calib End Date:  $\underline{\text{09/29/2017 18:33}}$ 

Lab File ID: F8269.D Conc. Units: ug/L Heated Purge: (Y/N) Y

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|----------------------------------------|---------------|---------|--------|---------|----------------|-----------------|-------|-----------|
| Dichlorodifluoromethane                | Ave           | 1.325   | 1.667  | 0.1000  | 62.9           | 50.0            | 25.8  | 50.0      |
| Chloromethane                          | Ave           | 1.227   | 0.9912 | 0.1000  | 40.4           | 50.0            | -19.2 | 20.0      |
| Butadiene                              | Ave           | 1.218   | 1.125  |         | 46.2           | 50.0            | -7.6  | 20.0      |
| Vinyl chloride                         | Ave           | 1.222   | 1.210  | 0.1000  | 49.5           | 50.0            | -1.0  | 20.0      |
| Bromomethane                           | Ave           | 0.5682  | 0.5860 | 0.1000  | 51.6           | 50.0            | 3.1   | 50.0      |
| Chloroethane                           | Ave           | 0.5170  | 0.5271 | 0.1000  | 51.0           | 50.0            | 2.0   | 50.0      |
| Dichlorofluoromethane                  | Ave           | 1.594   | 1.642  |         | 51.5           | 50.0            | 3.0   | 20.0      |
| Trichlorofluoromethane                 | Ave           | 1.556   | 1.768  | 0.1000  | 56.8           | 50.0            | 13.6  | 20.0      |
| Ethyl ether                            | Ave           | 0.9679  | 1.033  |         | 53.4           | 50.0            | 6.8   | 20.0      |
| Acrolein                               | Ave           | 0.2435  | 0.2390 |         | 245            | 250             | -1.9  | 50.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 1.304   | 1.427  | 0.1000  | 54.7           | 50.0            | 9.4   | 20.0      |
| 1,1-Dichloroethene                     | Ave           | 1.238   | 1.338  | 0.1000  | 54.1           | 50.0            | 8.1   | 20.0      |
| Acetone                                | Ave           | 0.5194  | 0.5691 | 0.1000  | 274            | 250             | 9.6   | 50.0      |
| Iodomethane                            | Ave           | 2.197   | 2.465  |         | 56.1           | 50.0            | 12.2  | 20.0      |
| Carbon disulfide                       | Ave           | 3.821   | 4.620  | 0.1000  | 60.5           | 50.0            | 20.9* | 20.0      |
| Allyl chloride                         | Ave           | 2.275   | 2.452  |         | 53.9           | 50.0            | 7.8   | 20.0      |
| Methyl acetate                         | Ave           | 1.136   | 1.120  | 0.1000  | 98.6           | 100             | -1.4  | 50.0      |
| Methylene Chloride                     | Lin1          |         | 1.566  | 0.1000  | 53.6           | 50.0            | 7.2   | 20.0      |
| 2-Methyl-2-propanol                    | Ave           | 0.1924  | 0.2026 |         | 527            | 500             | 5.3   | 50.0      |
| Methyl tert-butyl ether                | Ave           | 4.171   | 4.199  | 0.1000  | 50.3           | 50.0            | 0.7   | 20.0      |
| trans-1,2-Dichloroethene               | Ave           | 1.419   | 1.549  | 0.1000  | 54.6           | 50.0            | 9.1   | 20.0      |
| Acrylonitrile                          | Ave           | 0.6075  | 0.6328 |         | 521            | 500             | 4.2   | 20.0      |
| Hexane                                 | Lin1          |         | 3.143  |         | 59.5           | 50.0            | 19.0  | 20.0      |
| Vinyl acetate                          | Ave           | 2.612   | 2.783  |         | 107            | 100             | 6.6   | 20.0      |
| 1,1-Dichloroethane                     | Ave           | 2.724   | 2.942  | 0.2000  | 54.0           | 50.0            | 8.0   | 20.0      |
| 2,2-Dichloropropane                    | Ave           | 1.900   | 2.061  |         | 54.3           | 50.0            | 8.5   | 20.0      |
| 2-Butanone (MEK)                       | Ave           | 0.7342  | 0.7778 | 0.1000  | 265            | 250             | 5.9   | 20.0      |
| cis-1,2-Dichloroethene                 | Ave           | 1.593   | 1.700  | 0.1000  | 53.4           | 50.0            | 6.7   | 20.0      |
| Chlorobromomethane                     | Ave           | 0.7241  | 0.8259 |         | 57.0           | 50.0            | 14.1  | 20.0      |
| Tetrahydrofuran                        | Ave           | 0.4665  | 0.4846 |         | 104            | 100             | 3.9   | 20.0      |
| Chloroform                             | Ave           | 2.382   | 2.514  | 0.2000  | 52.8           | 50.0            | 5.5   | 20.0      |
| 1,1,1-Trichloroethane                  | Ave           | 1.959   | 2.277  | 0.1000  | 58.1           | 50.0            | 16.3  | 20.0      |
| Cyclohexane                            | Ave           | 3.102   | 3.334  | 0.1000  | 53.7           | 50.0            | 7.5   | 20.0      |
| 1,1-Dichloropropene                    | Ave           | 1.849   | 2.090  |         | 56.5           | 50.0            | 13.0  | 20.0      |
| Carbon tetrachloride                   | Ave           | 1.477   | 2.091  | 0.1000  | 70.8           | 50.0            | 41.5* | 20.0      |
| Isobutyl alcohol                       | Ave           | 0.0680  | 0.0772 |         | 1420           | 1250            | 13.6  | 50.0      |
| Benzene                                | Ave           | 5.571   | 5.895  | 0.5000  | 52.9           | 50.0            | 5.8   | 20.0      |
| 1,2-Dichloroethane                     | Ave           | 2.109   | 2.192  | 0.1000  | 52.0           | 50.0            | 3.9   | 20.0      |
| n-Heptane                              | Ave           | 2.533   | 2.654  |         | 52.4           | 50.0            | 4.8   | 20.0      |
| Trichloroethene                        | Ave           | 1.411   | 1.558  | 0.2000  | 55.2           | 50.0            | 10.4  | 20.0      |

## FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: CCVIS 480-381944/4 Calibration Date: 10/16/2017 10:53

Instrument ID: HP5973F Calib Start Date: 09/29/2017 15:58

GC Column:  $\underline{\text{ZB-624 (30)}}$  ID:  $\underline{\text{0.25 (mm)}}$  Calib End Date:  $\underline{\text{09/29/2017 18:33}}$ 

Lab File ID:  $\underline{\text{F8269.D}}$  Conc. Units:  $\underline{\text{ug/L}}$  Heated Purge:  $(\underline{\text{Y/N}})$   $\underline{\text{Y}}$ 

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|-----------------------------|---------------|---------|--------|---------|----------------|-----------------|-------|-----------|
| Methylcyclohexane           | Ave           | 2.659   | 2.914  | 0.1000  | 54.8           | 50.0            | 9.6   | 20.0      |
| 1,2-Dichloropropane         | Ave           | 1.516   | 1.646  | 0.1000  | 54.3           | 50.0            | 8.6   | 20.0      |
| 1,4-Dioxane                 | Ave           | 0.0078  | 0.0090 |         | 1160           | 1000            | 16.4  | 50.0      |
| Dibromomethane              | Ave           | 0.7835  | 0.8564 | 0.1000  | 54.6           | 50.0            | 9.3   | 20.0      |
| Bromodichloromethane        | Ave           | 1.499   | 1.934  | 0.2000  | 64.5           | 50.0            | 29.0* | 20.0      |
| 2-Chloroethyl vinyl ether   | Ave           | 0.8397  | 0.9685 |         | 57.7           | 50.0            | 15.3  | 20.0      |
| cis-1,3-Dichloropropene     | Ave           | 1.869   | 2.272  | 0.2000  | 60.8           | 50.0            | 21.5* | 20.0      |
| 4-Methyl-2-pentanone (MIBK) | Ave           | 0.6944  | 0.6851 | 0.1000  | 247            | 250             | -1.3  | 20.0      |
| Toluene                     | Ave           | 1.780   | 1.827  | 0.4000  | 51.3           | 50.0            | 2.6   | 20.0      |
| Ethyl methacrylate          | Ave           | 0.8218  | 0.8267 |         | 50.3           | 50.0            | 0.6   | 20.0      |
| trans-1,3-Dichloropropene   | Ave           | 0.8090  | 0.9516 | 0.1000  | 58.8           | 50.0            | 17.6  | 20.0      |
| 1,1,2-Trichloroethane       | Ave           | 0.4701  | 0.4743 | 0.1000  | 50.5           | 50.0            | 0.9   | 20.0      |
| Tetrachloroethene           | Ave           | 0.7634  | 0.8623 | 0.2000  | 56.5           | 50.0            | 12.9  | 20.0      |
| 1,3-Dichloropropane         | Ave           | 0.9676  | 0.9929 |         | 51.3           | 50.0            | 2.6   | 20.0      |
| 2-Hexanone                  | Ave           | 0.5060  | 0.5176 | 0.1000  | 256            | 250             | 2.3   | 20.0      |
| Dibromochloromethane        | Lin1          |         | 0.7256 | 0.1000  | 61.5           | 50.0            | 23.1* | 20.0      |
| 1,2-Dibromoethane           | Ave           | 0.5717  | 0.6213 |         | 54.3           | 50.0            | 8.7   | 20.0      |
| Chlorobenzene               | Ave           | 1.917   | 2.036  | 0.5000  | 53.1           | 50.0            | 6.2   | 20.0      |
| Ethylbenzene                | Ave           | 3.212   | 3.336  | 0.1000  | 51.9           | 50.0            | 3.9   | 20.0      |
| 1,1,1,2-Tetrachloroethane   | Ave           | 0.5627  | 0.7203 |         | 64.0           | 50.0            | 28.0* | 20.0      |
| m,p-Xylene                  | Ave           | 1.313   | 1.399  | 0.1000  | 53.3           | 50.0            | 6.5   | 20.0      |
| o-Xylene                    | Ave           | 1.266   | 1.324  | 0.3000  | 52.3           | 50.0            | 4.6   | 20.0      |
| Styrene                     | Ave           | 2.185   | 2.285  | 0.3000  | 52.3           | 50.0            | 4.6   | 20.0      |
| Bromoform                   | Qua           |         | 0.5047 | 0.1000  | 75.3           | 50.0            | 50.6* | 50.0      |
| Isopropylbenzene            | Ave           | 3.209   | 3.216  | 0.1000  | 50.1           | 50.0            | 0.2   | 20.0      |
| 1,1,2,2-Tetrachloroethane   | Ave           | 0.7250  | 0.7182 | 0.3000  | 49.5           | 50.0            | -1.0  | 20.0      |
| Bromobenzene                | Ave           | 0.8527  | 0.8403 |         | 49.3           | 50.0            | -1.5  | 20.0      |
| N-Propylbenzene             | Ave           | 3.653   | 3.652  |         | 50.0           | 50.0            | -0.0  | 20.0      |
| trans-1,4-Dichloro-2-butene | Ave           | 0.2496  | 0.2639 |         | 52.9           | 50.0            | 5.7   | 50.0      |
| 1,2,3-Trichloropropane      | Ave           | 0.2423  | 0.2379 |         | 49.1           | 50.0            | -1.8  | 20.0      |
| 2-Chlorotoluene             | Ave           | 0.7902  | 0.8027 |         | 50.8           | 50.0            | 1.6   | 20.0      |
| 1,3,5-Trimethylbenzene      | Ave           | 2.715   | 2.760  |         | 50.8           | 50.0            | 1.7   | 20.0      |
| 4-Chlorotoluene             | Ave           | 0.8192  | 0.8371 |         | 51.1           | 50.0            | 2.2   | 20.0      |
| tert-Butylbenzene           | Ave           | 0.6096  | 0.6286 |         | 51.6           | 50.0            | 3.1   | 20.0      |
| 1,2,4-Trimethylbenzene      | Ave           | 2.806   | 2.816  |         | 50.2           | 50.0            | 0.3   | 20.0      |
| sec-Butylbenzene            | Ave           | 3.426   | 3.510  |         | 51.2           | 50.0            | 2.5   | 20.0      |
| 4-Isopropyltoluene          | Ave           | 3.003   | 3.129  |         | 52.1           | 50.0            | 4.2   | 20.0      |
| 1,3-Dichlorobenzene         | Ave           | 1.619   | 1.647  | 0.6000  | 50.9           | 50.0            | 1.7   | 20.0      |
| 1,4-Dichlorobenzene         | Ave           | 1.655   | 1.679  | 0.5000  | 50.7           | 50.0            | 1.5   | 20.0      |
| n-Butylbenzene              | Ave           | 2.644   | 2.717  |         | 51.4           | 50.0            | 2.8   | 20.0      |
| 1,2-Dichlorobenzene         | Ave           | 1.545   | 1.565  | 0.4000  | 50.7           | 50.0            | 1.3   | 20.0      |

# FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: CCVIS 480-381944/4 Calibration Date: 10/16/2017 10:53

Instrument ID: HP5973F Calib Start Date: 09/29/2017 15:58

GC Column:  $\underline{\text{ZB-624 (30)}}$  ID:  $\underline{\text{0.25 (mm)}}$  Calib End Date:  $\underline{\text{09/29/2017 18:33}}$ 

Lab File ID:  $\underline{\text{F8269.D}}$  Conc. Units:  $\underline{\text{ug/L}}$  Heated Purge:  $(\underline{\text{Y/N}})$   $\underline{\text{Y}}$ 

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D   | MAX<br>%D |
|------------------------------|---------------|---------|--------|---------|----------------|-----------------|------|-----------|
| 1,2-Dibromo-3-Chloropropane  | Lin1          |         | 0.1469 | 0.0500  | 54.9           | 50.0            | 9.8  | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 1.067   | 1.162  | 0.2000  | 54.5           | 50.0            | 8.9  | 20.0      |
| Hexachlorobutadiene          | Ave           | 0.6040  | 0.6961 |         | 57.6           | 50.0            | 15.2 | 20.0      |
| Naphthalene                  | Ave           | 2.637   | 2.734  |         | 51.8           | 50.0            | 3.7  | 20.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 1.004   | 1.062  |         | 52.9           | 50.0            | 5.8  | 20.0      |
| Dibromofluoromethane (Surr)  | Ave           | 1.240   | 1.329  |         | 53.6           | 50.0            | 7.1  | 20.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.7957  | 0.7972 |         | 50.1           | 50.0            | 0.2  | 20.0      |
| Toluene-d8 (Surr)            | Ave           | 2.463   | 2.421  |         | 49.1           | 50.0            | -1.7 | 20.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.8068  | 0.8379 |         | 51.9           | 50.0            | 3.9  | 20.0      |

Report Date: 16-Oct-2017 11:56:13 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8269.D

Lims ID: CCVIS

Client ID:

Sample Type: CCVIS

Inject. Date: 16-Oct-2017 10:53:30 ALS Bottle#: 1 Worklist Smp#: 4

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: CCVIS

Misc. Info.: 480-0066422-004

Operator ID: CDC Instrument ID: HP5973F

Sublist: chrom-F-8260 SOIL\*sub27

Limit Group: MV - 8260C ICAL

Last Update:16-Oct-2017 11:56:09Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1: ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK011

First Level Reviewer: cwiklinc Date: 16-Oct-2017 11:07:34

| First Level Reviewer: cwiklinc       |     |        | D.     | ate:   |     | 16-Oct-201 | 7 11:07:34 |           |       |
|--------------------------------------|-----|--------|--------|--------|-----|------------|------------|-----------|-------|
|                                      |     | RT     | Adj RT | Dlt RT |     |            | Cal Amt    | OnCol Amt |       |
| Compound                             | Sig | (min.) | (min.) | (min.) | Q   | Response   | ug/kg      | ug/kg     | Flags |
|                                      |     |        |        |        |     |            |            |           |       |
| * 153 Fluorobenzene (IS)             | 70  | 5.191  | 5.191  | 0.000  | 99  | 291050     | 50.0       | 50.0      |       |
| <ul><li>2 Chlorobenzene-d5</li></ul> | 82  | 7.989  | 7.989  | 0.000  | 86  | 615889     | 50.0       | 50.0      |       |
| * 3 1,4-Dichlorobenzene-d4           | 152 | 10.356 | 10.356 | 0.000  | 94  | 662491     | 50.0       | 50.0      |       |
| \$ 154 Dibromofluoromethane (Surr    | 113 | 4.674  | 4.674  | 0.000  | 93  | 386830     | 50.0       | 53.6      |       |
| \$ 41,2-Dichloroethane-d4 (Sur       | 67  | 4.953  | 4.953  | 0.000  | 0   | 232020     | 50.0       | 50.1      |       |
| \$ 5 Toluene-d8 (Surr)               | 98  | 6.559  | 6.559  | 0.000  | 92  | 1490871    | 50.0       | 49.1      |       |
| \$ 6 4-Bromofluorobenzene (Surr      | 174 | 9.218  | 9.218  | 0.000  | 97  | 516068     | 50.0       | 51.9      |       |
| 10 Dichlorodifluoromethane           | 85  | 1.814  | 1.814  | 0.000  | 99  | 485216     | 50.0       | 62.9      |       |
| 12 Chloromethane                     | 50  | 1.997  | 1.997  | 0.000  | 99  | 288493     | 50.0       | 40.4      |       |
| 151 Butadiene                        | 54  | 2.088  | 2.088  | 0.000  | 86  | 327532     | 50.0       | 46.2      |       |
| 13 Vinyl chloride                    | 62  | 2.088  | 2.088  | 0.000  | 98  | 352199     | 50.0       | 49.5      |       |
| 14 Bromomethane                      | 94  | 2.362  | 2.362  | 0.000  | 92  | 170546     | 50.0       | 51.6      |       |
| 15 Chloroethane                      | 64  | 2.410  | 2.410  | 0.000  | 99  | 153418     | 50.0       | 51.0      |       |
| 16 Dichlorofluoromethane             | 67  | 2.575  | 2.575  | 0.000  | 97  | 478047     | 50.0       | 51.5      |       |
| 17 Trichlorofluoromethane            | 101 | 2.611  | 2.611  | 0.000  | 99  | 514519     | 50.0       | 56.8      |       |
| 18 Ethyl ether                       | 59  | 2.763  | 2.763  | 0.000  | 89  | 300757     | 50.0       | 53.4      |       |
| 20 Acrolein                          | 56  | 2.915  | 2.915  | 0.000  | 100 | 347837     | 250.0      | 245.4     |       |
| 21 1,1,2-Trichloro-1,2,2-trif        | 101 | 2.958  | 2.958  | 0.000  | 92  | 415198     | 50.0       | 54.7      |       |
| 22 1,1-Dichloroethene                | 96  | 2.976  | 2.976  | 0.000  | 95  | 389429     | 50.0       | 54.1      |       |
| 23 Acetone                           | 43  | 3.025  | 3.025  | 0.000  | 98  | 828238     | 250.0      | 273.9     |       |
| 25 Iodomethane                       | 142 | 3.128  | 3.128  | 0.000  | 98  | 717574     | 50.0       | 56.1      |       |
| 26 Carbon disulfide                  | 76  | 3.177  | 3.177  | 0.000  | 99  | 1344628    | 50.0       | 60.5      |       |
| 27 Methyl acetate                    | 43  | 3.238  | 3.238  | 0.000  | 81  | 651766     | 100.0      | 98.6      |       |
| 28 3-Chloro-1-propene                | 41  | 3.238  | 3.238  | 0.000  | 91  | 713750     | 50.0       | 53.9      |       |
| 30 Methylene Chloride                | 84  | 3.353  | 3.353  | 0.000  | 97  | 455879     | 50.0       | 53.6      |       |
| 31 2-Methyl-2-propanol               | 59  | 3.402  | 3.402  | 0.000  | 99  | 589783     | 500.0      | 526.6     |       |
| 32 Methyl tert-butyl ether           | 73  | 3.499  | 3.499  | 0.000  | 96  | 1222057    | 50.0       | 50.3      |       |
| 34 trans-1,2-Dichloroethene          | 96  | 3.530  | 3.530  | 0.000  | 95  | 450853     | 50.0       | 54.6      |       |
| 33 Acrylonitrile                     | 53  | 3.548  | 3.548  | 0.000  | 99  | 1841809    | 500.0      | 520.8     |       |
| 35 Hexane                            | 57  | 3.664  | 3.664  | 0.000  | 86  | 914625     | 50.0       | 59.5      |       |
|                                      |     |        |        |        |     |            |            |           |       |

| Data File: \\ChromNA\B        | uttalo\( |            |        |        | U16-66 | 5422.b\F8269.E |         |           |       |
|-------------------------------|----------|------------|--------|--------|--------|----------------|---------|-----------|-------|
|                               |          | RT (mails) | Adj RT | Dlt RT |        | D.             | Cal Amt | OnCol Amt |       |
| Compound                      | Sig      | (min.)     | (min.) | (min.) | Q      | Response       | ug/kg   | ug/kg     | Flags |
| 27 March a salata             | 40       | 2.047      | 2.047  | 0.000  | 0.7    | 1/10070        | 100.0   | 10//      |       |
| 37 Vinyl acetate              | 43       | 3.846      | 3.846  | 0.000  | 97     | 1619879        | 100.0   | 106.6     |       |
| 39 1,1-Dichloroethane         | 63       | 3.858      | 3.858  | 0.000  | 96     | 856264         | 50.0    | 54.0      |       |
| 43 2-Butanone (MEK)           | 43       | 4.290      | 4.290  | 0.000  | 100    | 1131912        | 250.0   | 264.8     |       |
| 44 2,2-Dichloropropane        | 77       | 4.290      | 4.290  | 0.000  | 90     | 599946         | 50.0    | 54.3      |       |
| 45 cis-1,2-Dichloroethene     | 96       | 4.302      | 4.302  | 0.000  | 90     | 494720         | 50.0    | 53.4      |       |
| 48 Chlorobromomethane         | 128      | 4.503      | 4.503  | 0.000  | 97     | 240368         | 50.0    | 57.0      |       |
| 49 Tetrahydrofuran            | 42       | 4.528      | 4.528  | 0.000  | 88     | 282083         | 100.0   | 103.9     |       |
| 50 Chloroform                 | 83       | 4.540      | 4.540  | 0.000  | 94     | 731740         | 50.0    | 52.8      |       |
| 51 1,1,1-Trichloroethane      | 97       | 4.680      | 4.680  | 0.000  | 99     | 662854         | 50.0    | 58.1      |       |
| 52 Cyclohexane                | 56       | 4.710      | 4.710  | 0.000  | 90     | 970398         | 50.0    | 53.7      |       |
| 54 1,1-Dichloropropene        | 75       | 4.795      | 4.795  | 0.000  | 97     | 608284         | 50.0    | 56.5      |       |
| 55 Carbon tetrachloride       | 117      | 4.807      | 4.807  | 0.000  | 97     | 608580         | 50.0    | 70.8      |       |
| 53 Isobutyl alcohol           | 43       | 4.868      | 4.868  | 0.000  | 95     | 561789         | 1250.0  | 1420.3    |       |
| 57 Benzene                    | 78       | 4.978      | 4.978  | 0.000  | 97     | 1715860        | 50.0    | 52.9      |       |
| 58 1,2-Dichloroethane         | 62       | 5.014      | 5.014  | 0.000  | 97     | 637877         | 50.0    | 52.0      |       |
| 59 n-Heptane                  | 43       | 5.075      | 5.075  | 0.000  | 90     | 772540         | 50.0    | 52.4      |       |
| 62 Trichloroethene            | 95       | 5.495      | 5.495  | 0.000  | 97     | 453461         | 50.0    | 55.2      |       |
| 64 Methylcyclohexane          | 83       | 5.629      | 5.629  | 0.000  | 92     | 848161         | 50.0    | 54.8      |       |
| 65 1,2-Dichloropropane        | 63       | 5.714      | 5.714  | 0.000  | 97     | 479147         | 50.0    | 54.3      |       |
| 66 1,4-Dioxane                | 88       | 5.823      | 5.823  | 0.000  | 96     | 111297         | 1000.0  | 1163.9    |       |
| 67 Dibromomethane             | 93       | 5.842      | 5.842  | 0.000  | 94     | 249245         | 50.0    | 54.6      |       |
| 68 Dichlorobromomethane       | 83       | 5.951      | 5.951  | 0.000  | 100    | 562819         | 50.0    | 64.5      |       |
| 69 2-Chloroethyl vinyl ether  | 63       | 6.164      | 6.164  | 0.000  | 91     | 281890         | 50.0    | 57.7      |       |
| 72 cis-1,3-Dichloropropene    | 75       | 6.328      | 6.328  | 0.000  | 96     | 661177         | 50.0    | 60.8      |       |
| 73 4-Methyl-2-pentanone (MIBK | 43       | 6.432      | 6.432  | 0.000  | 93     | 2109859        | 250.0   | 246.7     |       |
| 74 Toluene                    | 92       | 6.620      | 6.620  | 0.000  | 99     | 1125333        | 50.0    | 51.3      |       |
| 75 Ethyl methacrylate         | 69       | 6.845      | 6.845  | 0.000  | 89     | 509147         | 50.0    | 50.3      |       |
| 77 trans-1,3-Dichloropropene  | 75       | 6.845      | 6.845  | 0.000  | 96     | 586086         | 50.0    | 58.8      |       |
| 79 1,1,2-Trichloroethane      | 83       | 7.040      | 7.040  | 0.000  | 92     | 292112         | 50.0    | 50.5      |       |
| 81 Tetrachloroethene          | 166      | 7.137      | 7.137  | 0.000  | 98     | 531060         | 50.0    | 56.5      |       |
| 82 1,3-Dichloropropane        | 76       | 7.204      | 7.204  | 0.000  | 99     | 611531         | 50.0    | 51.3      |       |
| 80 2-Hexanone                 | 43       | 7.223      | 7.223  | 0.000  | 90     | 1593830        | 250.0   | 255.7     |       |
| 83 Chlorodibromomethane       | 129      | 7.442      | 7.442  | 0.000  | 90     | 446881         | 50.0    | 61.5      |       |
| 84 Ethylene Dibromide         | 107      | 7.569      | 7.569  | 0.000  | 99     | 382674         | 50.0    | 54.3      |       |
| 87 Chlorobenzene              | 112      | 8.020      | 8.020  | 0.000  | 96     | 1253717        | 50.0    | 53.1      |       |
| 88 Ethylbenzene               | 91       | 8.086      | 8.086  | 0.000  | 98     | 2054877        | 50.0    | 51.9      |       |
| 89 1,1,1,2-Tetrachloroethane  | 131      | 8.099      | 8.099  | 0.000  | 94     | 443612         | 50.0    | 64.0      |       |
| 90 m-Xylene & p-Xylene        | 106      | 8.202      | 8.202  | 0.000  | 99     | 861325         | 50.0    | 53.3      |       |
| 91 o-Xylene                   | 106      | 8.628      | 8.628  | 0.000  | 96     | 815610         | 50.0    | 52.3      |       |
| 92 Styrene                    | 104      | 8.652      | 8.652  | 0.000  | 95     | 1407169        | 50.0    | 52.3      |       |
| 95 Bromoform                  | 173      | 8.920      | 8.920  | 0.000  | 98     | 310820         | 50.0    | 75.3      |       |
| 94 Isopropylbenzene           | 105      | 8.999      | 8.999  | 0.000  | 95     | 2130372        | 50.0    | 50.1      |       |
| 97 1,1,2,2-Tetrachloroethane  | 83       | 9.388      | 9.388  | 0.000  | 77     | 475770         | 50.0    | 49.5      |       |
| 101 Bromobenzene              | 156      | 9.388      | 9.388  | 0.000  | 90     | 556718         | 50.0    | 49.3      |       |
| 99 N-Propylbenzene            | 91       | 9.437      | 9.437  | 0.000  | 98     | 2419178        | 50.0    | 50.0      |       |
| 98 trans-1,4-Dichloro-2-buten | 53       | 9.437      | 9.437  | 0.000  | 57     | 174801         | 50.0    | 52.9      |       |
| 100 1,2,3-Trichloropropane    | 110      | 9.443      | 9.443  | 0.000  | 79     | 157625         | 50.0    | 49.1      |       |
| 103 2-Chlorotoluene           | 126      | 9.565      | 9.565  | 0.000  | 97     | 531746         | 50.0    | 50.8      |       |
| 102 1,3,5-Trimethylbenzene    | 105      | 9.607      | 9.607  | 0.000  | 94     | 1828554        | 50.0    | 50.8      |       |
| 105 4-Chlorotoluene           | 126      | 9.668      | 9.668  | 0.000  | 97     | 554539         | 50.0    | 51.1      |       |
| 106 tert-Butylbenzene         | 134      | 9.930      | 9.930  | 0.000  | 92     | 416439         | 50.0    | 51.6      |       |
| 3                             | 105      |            |        | 0.000  | 96     |                | 50.0    | 50.2      |       |
| 107 1,2,4-Trimethylbenzene    | 105      | 9.985      | 9.985  | 0.000  | 90     | 1865472        | 50.0    | 30.2      |       |

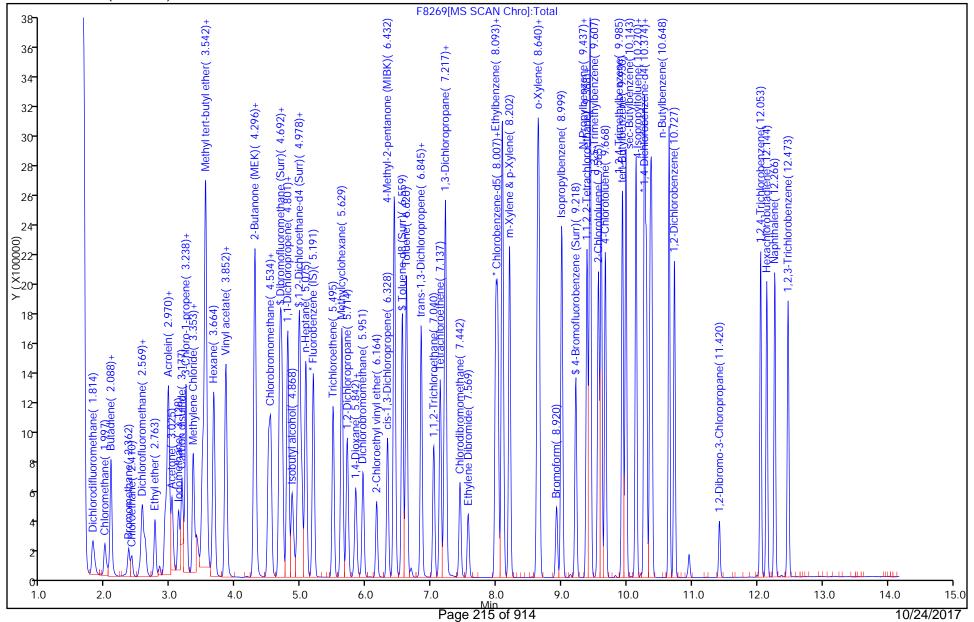
Report Date: 16-Oct-2017 11:56:13

| Data File. ((CHIOHINA)DI       | anaio | Onioniba | .4111 0776 | 71 1201710 |    | 0 122:011 0207:1 |           |           |       |
|--------------------------------|-------|----------|------------|------------|----|------------------|-----------|-----------|-------|
|                                |       | RT       | Adj RT     | DIt RT     |    |                  | Cal Amt   | OnCol Amt |       |
| Compound                       | Sig   | (min.)   | (min.)     | (min.)     | Q  | Response         | ug/kg     | ug/kg     | Flags |
|                                |       |          |            |            |    |                  |           |           |       |
| 109 sec-Butylbenzene           | 105   | 10.143   | 10.143     | 0.000      | 94 | 2325386          | 50.0      | 51.2      |       |
| 110 4-Isopropyltoluene         | 119   | 10.270   | 10.270     | 0.000      | 97 | 2072905          | 50.0      | 52.1      |       |
| 111 1,3-Dichlorobenzene        | 146   | 10.301   | 10.301     | 0.000      | 98 | 1090817          | 50.0      | 50.9      |       |
| 113 1,4-Dichlorobenzene        | 146   | 10.380   | 10.380     | 0.000      | 96 | 1112447          | 50.0      | 50.7      |       |
| 115 n-Butylbenzene             | 91    | 10.648   | 10.648     | 0.000      | 97 | 1799696          | 50.0      | 51.4      |       |
| 116 1,2-Dichlorobenzene        | 146   | 10.733   | 10.733     | 0.000      | 99 | 1036807          | 50.0      | 50.7      |       |
| 117 1,2-Dibromo-3-Chloropropan | 75    | 11.414   | 11.414     | 0.000      | 90 | 97310            | 50.0      | 54.9      |       |
| 119 1,2,4-Trichlorobenzene     | 180   | 12.053   | 12.053     | 0.000      | 95 | 769959           | 50.0      | 54.5      |       |
| 120 Hexachlorobutadiene        | 225   | 12.144   | 12.144     | 0.000      | 95 | 461184           | 50.0      | 57.6      |       |
| 121 Naphthalene                | 128   | 12.266   | 12.266     | 0.000      | 97 | 1811064          | 50.0      | 51.8      |       |
| 122 1,2,3-Trichlorobenzene     | 180   | 12.473   | 12.473     | 0.000      | 97 | 703615           | 50.0      | 52.9      |       |
| Reagents:                      |       |          |            |            |    |                  |           |           |       |
| 8260 CORP mix_00112            |       | Amount   | Added: 2   | 5.00       | Į  | Jnits: uL        |           |           |       |
| GAS CORP mix_00245             |       | Amount   | Added: 2   | 5.00       | Į  | Jnits: uL        |           |           |       |
| F 8260 SURR_00263              |       | Amount   | Added: 1   | .00        | Į  | Jnits: uL        | Run Reage | nt        |       |
| F 8260 IS_00580                |       | Amount   | Added: 1   | .00        | l  | Jnits: uL        | Run Reage |           |       |

Report Date: 16-Oct-2017 11:56:13 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8269.D Injection Date: 16-Oct-2017 10:53:30 Instrument ID: HP5973F


Lims ID: CCVIS

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000 ALS Bottle#: 1

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

Worklist Smp#:

CDC

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: CCVIS 480-382134/3 Calibration Date: 10/17/2017 09:07

Instrument ID: HP5973F Calib Start Date: 09/29/2017 15:58

GC Column:  $\underline{\text{ZB-624 (30)}}$  ID:  $\underline{\text{0.25 (mm)}}$  Calib End Date:  $\underline{\text{09/29/2017 18:33}}$ 

Lab File ID: F8294.D Conc. Units: ug/L Heated Purge: (Y/N) Y

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|----------------------------------------|---------------|---------|--------|---------|----------------|-----------------|--------|-----------|
| Dichlorodifluoromethane                | Ave           | 1.325   | 1.439  | 0.1000  | 54.3           | 50.0            | 8.6    | 50.0      |
| Chloromethane                          | Ave           | 1.227   | 0.9531 | 0.1000  | 38.8           | 50.0            | -22.3* | 20.0      |
| Vinyl chloride                         | Ave           | 1.222   | 1.071  | 0.1000  | 43.8           | 50.0            | -12.3  | 20.0      |
| Butadiene                              | Ave           | 1.218   | 1.012  |         | 41.6           | 50.0            | -16.9  | 20.0      |
| Bromomethane                           | Ave           | 0.5682  | 0.5468 | 0.1000  | 48.1           | 50.0            | -3.8   | 50.0      |
| Chloroethane                           | Ave           | 0.5170  | 0.4882 | 0.1000  | 47.2           | 50.0            | -5.6   | 50.0      |
| Dichlorofluoromethane                  | Ave           | 1.594   | 1.512  |         | 47.4           | 50.0            | -5.2   | 20.0      |
| Trichlorofluoromethane                 | Ave           | 1.556   | 1.629  | 0.1000  | 52.4           | 50.0            | 4.7    | 20.0      |
| Ethyl ether                            | Ave           | 0.9679  | 0.7843 |         | 40.5           | 50.0            | -19.0  | 20.0      |
| Acrolein                               | Ave           | 0.2435  | 0.2166 |         | 222            | 250             | -11.1  | 50.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 1.304   | 1.300  | 0.1000  | 49.8           | 50.0            | -0.3   | 20.0      |
| 1,1-Dichloroethene                     | Ave           | 1.238   | 1.224  | 0.1000  | 49.5           | 50.0            | -1.1   | 20.0      |
| Acetone                                | Ave           | 0.5194  | 0.5162 | 0.1000  | 248            | 250             | -0.6   | 50.0      |
| Iodomethane                            | Ave           | 2.197   | 2.278  |         | 51.9           | 50.0            | 3.7    | 20.0      |
| Carbon disulfide                       | Ave           | 3.821   | 3.965  | 0.1000  | 51.9           | 50.0            | 3.8    | 20.0      |
| Allyl chloride                         | Ave           | 2.275   | 2.066  |         | 45.4           | 50.0            | -9.2   | 20.0      |
| Methyl acetate                         | Ave           | 1.136   | 1.024  | 0.1000  | 90.2           | 100             | -9.8   | 50.0      |
| Methylene Chloride                     | Lin1          |         | 1.504  | 0.1000  | 51.4           | 50.0            | 2.7    | 20.0      |
| 2-Methyl-2-propanol                    | Ave           | 0.1924  | 0.1843 |         | 479            | 500             | -4.2   | 50.0      |
| Methyl tert-butyl ether                | Ave           | 4.171   | 4.004  | 0.1000  | 48.0           | 50.0            | -4.0   | 20.0      |
| trans-1,2-Dichloroethene               | Ave           | 1.419   | 1.420  | 0.1000  | 50.0           | 50.0            | 0.0    | 20.0      |
| Acrylonitrile                          | Ave           | 0.6075  | 0.5827 |         | 480            | 500             | -4.1   | 20.0      |
| Hexane                                 | Lin1          |         | 2.813  |         | 53.1           | 50.0            | 6.1    | 20.0      |
| Vinyl acetate                          | Ave           | 2.612   | 2.424  |         | 92.8           | 100             | -7.2   | 20.0      |
| 1,1-Dichloroethane                     | Ave           | 2.724   | 2.707  | 0.2000  | 49.7           | 50.0            | -0.7   | 20.0      |
| 2,2-Dichloropropane                    | Ave           | 1.900   | 1.738  |         | 45.7           | 50.0            | -8.5   | 20.0      |
| 2-Butanone (MEK)                       | Ave           | 0.7342  | 0.7071 | 0.1000  | 241            | 250             | -3.7   | 20.0      |
| cis-1,2-Dichloroethene                 | Ave           | 1.593   | 1.600  | 0.1000  | 50.2           | 50.0            | 0.5    | 20.0      |
| Chlorobromomethane                     | Ave           | 0.7241  | 0.7668 |         | 52.9           | 50.0            | 5.9    | 20.0      |
| Tetrahydrofuran                        | Ave           | 0.4665  | 0.4304 |         | 92.3           | 100             | -7.7   | 20.0      |
| Chloroform                             | Ave           | 2.382   | 2.357  | 0.2000  | 49.5           | 50.0            | -1.1   | 20.0      |
| 1,1,1-Trichloroethane                  | Ave           | 1.959   | 1.992  | 0.1000  | 50.8           | 50.0            | 1.7    | 20.0      |
| Cyclohexane                            | Ave           | 3.102   | 2.982  | 0.1000  | 48.1           | 50.0            | -3.9   | 20.0      |
| 1,1-Dichloropropene                    | Ave           | 1.849   | 1.909  |         | 51.6           | 50.0            | 3.2    | 20.0      |
| Carbon tetrachloride                   | Ave           | 1.477   | 1.647  | 0.1000  | 55.8           | 50.0            | 11.5   | 20.0      |
| Isobutyl alcohol                       | Ave           | 0.0680  | 0.0685 |         | 1260           | 1250            | 0.8    | 50.0      |
| Benzene                                | Ave           | 5.571   | 5.521  | 0.5000  | 49.6           | 50.0            | -0.9   | 20.0      |
| 1,2-Dichloroethane                     | Ave           | 2.109   | 2.043  | 0.1000  | 48.4           | 50.0            | -3.2   | 20.0      |
| n-Heptane                              | Ave           | 2.533   | 2.296  |         | 45.3           | 50.0            | -9.3   | 20.0      |
| Trichloroethene                        | Ave           | 1.411   | 1.443  | 0.2000  | 51.1           | 50.0            | 2.2    | 20.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: CCVIS 480-382134/3 Calibration Date: 10/17/2017 09:07

Instrument ID: HP5973F Calib Start Date: 09/29/2017 15:58

GC Column: ZB-624 (30) ID: 0.25(mm) Calib End Date: 09/29/2017 18:33

Lab File ID: F8294.D Conc. Units: ug/L Heated Purge: (Y/N) Y

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D   | MAX<br>%D |
|-----------------------------|---------------|---------|--------|---------|----------------|-----------------|------|-----------|
| Methylcyclohexane           | Ave           | 2.659   | 2.711  | 0.1000  | 51.0           | 50.0            | 1.9  | 20.0      |
| 1,2-Dichloropropane         | Ave           | 1.516   | 1.507  | 0.1000  | 49.7           | 50.0            | -0.6 | 20.0      |
| 1,4-Dioxane                 | Ave           | 0.0078  | 0.0089 |         | 1140           | 1000            | 14.0 | 50.0      |
| Dibromomethane              | Ave           | 0.7835  | 0.8071 | 0.1000  | 51.5           | 50.0            | 3.0  | 20.0      |
| Bromodichloromethane        | Ave           | 1.499   | 1.662  | 0.2000  | 55.4           | 50.0            | 10.8 | 20.0      |
| 2-Chloroethyl vinyl ether   | Ave           | 0.8397  | 0.8950 |         | 53.3           | 50.0            | 6.6  | 20.0      |
| cis-1,3-Dichloropropene     | Ave           | 1.869   | 1.965  | 0.2000  | 52.6           | 50.0            | 5.1  | 20.0      |
| 4-Methyl-2-pentanone (MIBK) | Ave           | 0.6944  | 0.6358 | 0.1000  | 229            | 250             | -8.4 | 20.0      |
| Toluene                     | Ave           | 1.780   | 1.754  | 0.4000  | 49.3           | 50.0            | -1.5 | 20.0      |
| trans-1,3-Dichloropropene   | Ave           | 0.8090  | 0.8200 | 0.1000  | 50.7           | 50.0            | 1.4  | 20.0      |
| Ethyl methacrylate          | Ave           | 0.8218  | 0.8070 |         | 49.1           | 50.0            | -1.8 | 20.0      |
| 1,1,2-Trichloroethane       | Ave           | 0.4701  | 0.4647 | 0.1000  | 49.4           | 50.0            | -1.1 | 20.0      |
| Tetrachloroethene           | Ave           | 0.7634  | 0.8212 | 0.2000  | 53.8           | 50.0            | 7.6  | 20.0      |
| 1,3-Dichloropropane         | Ave           | 0.9676  | 0.9629 |         | 49.8           | 50.0            | -0.5 | 20.0      |
| 2-Hexanone                  | Ave           | 0.5060  | 0.4788 | 0.1000  | 237            | 250             | -5.4 | 20.0      |
| Dibromochloromethane        | Lin1          |         | 0.6182 | 0.1000  | 52.9           | 50.0            | 5.7  | 20.0      |
| 1,2-Dibromoethane           | Ave           | 0.5717  | 0.5901 |         | 51.6           | 50.0            | 3.2  | 20.0      |
| Chlorobenzene               | Ave           | 1.917   | 1.959  | 0.5000  | 51.1           | 50.0            | 2.2  | 20.0      |
| Ethylbenzene                | Ave           | 3.212   | 3.196  | 0.1000  | 49.8           | 50.0            | -0.5 | 20.0      |
| 1,1,1,2-Tetrachloroethane   | Ave           | 0.5627  | 0.6262 |         | 55.6           | 50.0            | 11.3 | 20.0      |
| m,p-Xylene                  | Ave           | 1.313   | 1.338  | 0.1000  | 51.0           | 50.0            | 1.9  | 20.0      |
| o-Xylene                    | Ave           | 1.266   | 1.278  | 0.3000  | 50.5           | 50.0            | 1.0  | 20.0      |
| Styrene                     | Ave           | 2.185   | 2.201  | 0.3000  | 50.4           | 50.0            | 0.7  | 20.0      |
| Bromoform                   | Qua           |         | 0.3818 | 0.1000  | 60.7           | 50.0            | 21.4 | 50.0      |
| Isopropylbenzene            | Ave           | 3.209   | 3.087  | 0.1000  | 48.1           | 50.0            | -3.8 | 20.0      |
| 1,1,2,2-Tetrachloroethane   | Ave           | 0.7250  | 0.6946 | 0.3000  | 47.9           | 50.0            | -4.2 | 20.0      |
| Bromobenzene                | Ave           | 0.8527  | 0.8242 |         | 48.3           | 50.0            | -3.4 | 20.0      |
| N-Propylbenzene             | Ave           | 3.653   | 3.494  |         | 47.8           | 50.0            | -4.4 | 20.0      |
| trans-1,4-Dichloro-2-butene | Ave           | 0.2496  | 0.2265 |         | 45.4           | 50.0            | -9.3 | 50.0      |
| 1,2,3-Trichloropropane      | Ave           | 0.2423  | 0.2332 |         | 48.1           | 50.0            | -3.8 | 20.0      |
| 2-Chlorotoluene             | Ave           | 0.7902  | 0.7677 |         | 48.6           | 50.0            | -2.8 | 20.0      |
| 1,3,5-Trimethylbenzene      | Ave           | 2.715   | 2.651  |         | 48.8           | 50.0            | -2.3 | 20.0      |
| 4-Chlorotoluene             | Ave           | 0.8192  | 0.8005 |         | 48.9           | 50.0            | -2.3 | 20.0      |
| tert-Butylbenzene           | Ave           | 0.6096  | 0.5998 |         | 49.2           | 50.0            | -1.6 | 20.0      |
| 1,2,4-Trimethylbenzene      | Ave           | 2.806   | 2.732  |         | 48.7           | 50.0            | -2.7 | 20.0      |
| sec-Butylbenzene            | Ave           | 3.426   | 3.372  |         | 49.2           | 50.0            | -1.6 | 20.0      |
| 4-Isopropyltoluene          | Ave           | 3.003   | 3.029  |         | 50.4           | 50.0            | 0.9  | 20.0      |
| 1,3-Dichlorobenzene         | Ave           | 1.619   | 1.603  | 0.6000  | 49.5           | 50.0            | -1.0 | 20.0      |
| 1,4-Dichlorobenzene         | Ave           | 1.655   | 1.623  | 0.5000  | 49.0           | 50.0            | -1.9 | 20.0      |
| n-Butylbenzene              | Ave           | 2.644   | 2.597  |         | 49.1           | 50.0            | -1.8 | 20.0      |
| 1,2-Dichlorobenzene         | Ave           | 1.545   | 1.520  | 0.4000  | 49.2           | 50.0            | -1.6 | 20.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: CCVIS 480-382134/3 Calibration Date: 10/17/2017 09:07

Instrument ID: HP5973F Calib Start Date: 09/29/2017 15:58

GC Column:  $\underline{\text{ZB-624 (30)}}$  ID:  $\underline{\text{0.25 (mm)}}$  Calib End Date:  $\underline{\text{09/29/2017 18:33}}$ 

Lab File ID:  $\underline{\text{F8294.D}}$  Conc. Units:  $\underline{\text{ug/L}}$  Heated Purge: (Y/N)  $\underline{\text{Y}}$ 

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D   | MAX<br>%D |
|------------------------------|---------------|---------|--------|---------|----------------|-----------------|------|-----------|
| 1,2-Dibromo-3-Chloropropane  | Lin1          |         | 0.1252 | 0.0500  | 47.2           | 50.0            | -5.6 | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 1.067   | 1.145  | 0.2000  | 53.7           | 50.0            | 7.3  | 20.0      |
| Hexachlorobutadiene          | Ave           | 0.6040  | 0.6785 |         | 56.2           | 50.0            | 12.3 | 20.0      |
| Naphthalene                  | Ave           | 2.637   | 2.698  |         | 51.2           | 50.0            | 2.3  | 20.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 1.004   | 1.039  |         | 51.8           | 50.0            | 3.5  | 20.0      |
| Dibromofluoromethane (Surr)  | Ave           | 1.240   | 1.292  |         | 52.1           | 50.0            | 4.2  | 20.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.7957  | 0.7960 |         | 50.0           | 50.0            | 0.0  | 20.0      |
| Toluene-d8 (Surr)            | Ave           | 2.463   | 2.457  |         | 49.9           | 50.0            | -0.2 | 20.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.8068  | 0.8352 |         | 51.8           | 50.0            | 3.5  | 20.0      |

Report Date: 17-Oct-2017 09:47:31 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8294.D

Lims ID: CCVIS

Client ID:

Sample Type: CCVIS

Inject. Date: 17-Oct-2017 09:07:30 ALS Bottle#: 1 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: ccvis

Misc. Info.: 480-0066449-003

Operator ID: CDC Instrument ID: HP5973F

Sublist: chrom-F-8260 SOIL\*sub27

Method: \ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update:17-Oct-2017 09:47:29Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1: ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK026

First Level Reviewer: cwiklinc Date: 17-Oct-2017 09:47:29

| First Level Reviewer: cwiklinc         |     |        | D.     | ate:   |    | 17-Oct-201 | 7 09:47:29 |           |       |
|----------------------------------------|-----|--------|--------|--------|----|------------|------------|-----------|-------|
|                                        |     | RT     | Adj RT | DIt RT |    |            | Cal Amt    | OnCol Amt |       |
| Compound                               | Sig | (min.) | (min.) | (min.) | Q  | Response   | ug/kg      | ug/kg     | Flags |
|                                        |     |        | -      |        |    | -          |            | -         |       |
| * 153 Fluorobenzene (IS)               | 70  | 5.197  | 5.197  | 0.000  | 99 | 275571     | 50.0       | 50.0      |       |
| <ul><li>* 2 Chlorobenzene-d5</li></ul> | 82  | 7.989  | 7.989  | 0.000  | 86 | 565500     | 50.0       | 50.0      |       |
| * 3 1,4-Dichlorobenzene-d4             | 152 | 10.356 | 10.356 | 0.000  | 93 | 604551     | 50.0       | 50.0      |       |
| \$ 154 Dibromofluoromethane (Surr      | 113 | 4.674  | 4.674  | 0.000  | 94 | 356118     | 50.0       | 52.1      |       |
| \$ 41,2-Dichloroethane-d4 (Sur         | 67  | 4.960  | 4.960  | 0.000  | 0  | 219346     | 50.0       | 50.0      |       |
| \$ 5 Toluene-d8 (Surr)                 | 98  | 6.560  | 6.560  | 0.000  | 93 | 1389502    | 50.0       | 49.9      |       |
| \$ 6 4-Bromofluorobenzene (Surr        | 174 | 9.218  | 9.218  | 0.000  | 93 | 472277     | 50.0       | 51.8      |       |
| 10 Dichlorodifluoromethane             | 85  | 1.820  | 1.820  | 0.000  | 99 | 396632     | 50.0       | 54.3      |       |
| 12 Chloromethane                       | 50  | 2.003  | 2.003  | 0.000  | 99 | 262650     | 50.0       | 38.8      | M     |
| 13 Vinyl chloride                      | 62  | 2.094  | 2.094  | 0.000  | 98 | 295188     | 50.0       | 43.8      |       |
| 151 Butadiene                          | 54  | 2.100  | 2.100  | 0.000  | 86 | 278902     | 50.0       | 41.6      |       |
| 14 Bromomethane                        | 94  | 2.368  | 2.368  | 0.000  | 91 | 150668     | 50.0       | 48.1      |       |
| 15 Chloroethane                        | 64  | 2.417  | 2.417  | 0.000  | 99 | 134546     | 50.0       | 47.2      |       |
| 16 Dichlorofluoromethane               | 67  | 2.575  | 2.575  | 0.000  | 98 | 416549     | 50.0       | 47.4      |       |
| 17 Trichlorofluoromethane              | 101 | 2.617  | 2.617  | 0.000  | 98 | 448929     | 50.0       | 52.4      |       |
| 18 Ethyl ether                         | 59  | 2.769  | 2.769  | 0.000  | 87 | 216117     | 50.0       | 40.5      |       |
| 20 Acrolein                            | 56  | 2.922  | 2.922  | 0.000  | 99 | 298380     | 250.0      | 222.3     |       |
| 21 1,1,2-Trichloro-1,2,2-trif          | 101 | 2.958  | 2.958  | 0.000  | 92 | 358291     | 50.0       | 49.8      |       |
| 22 1,1-Dichloroethene                  | 96  | 2.976  | 2.976  | 0.000  | 95 | 337369     | 50.0       | 49.5      |       |
| 23 Acetone                             | 43  | 3.031  | 3.031  | 0.000  | 98 | 711195     | 250.0      | 248.4     |       |
| 25 Iodomethane                         | 142 | 3.134  | 3.134  | 0.000  | 98 | 627836     | 50.0       | 51.9      |       |
| 26 Carbon disulfide                    | 76  | 3.183  | 3.183  | 0.000  | 99 | 1092697    | 50.0       | 51.9      |       |
| 28 3-Chloro-1-propene                  | 41  | 3.244  | 3.244  | 0.000  | 88 | 569248     | 50.0       | 45.4      |       |
| 27 Methyl acetate                      | 43  | 3.244  | 3.244  | 0.000  | 81 | 564615     | 100.0      | 90.2      |       |
| 30 Methylene Chloride                  | 84  | 3.354  | 3.354  | 0.000  | 94 | 414531     | 50.0       | 51.4      |       |
| 31 2-Methyl-2-propanol                 | 59  | 3.408  | 3.408  | 0.000  | 99 | 507955     | 500.0      | 479.0     |       |
| 32 Methyl tert-butyl ether             | 73  | 3.506  | 3.506  | 0.000  | 95 | 1103327    | 50.0       | 48.0      |       |
| 34 trans-1,2-Dichloroethene            | 96  | 3.536  | 3.536  | 0.000  | 95 | 391295     | 50.0       | 50.0      |       |
| 33 Acrylonitrile                       | 53  | 3.554  | 3.554  | 0.000  | 99 | 1605736    | 500.0      | 479.6     |       |
| 35 Hexane                              | 57  | 3.670  | 3.670  | 0.000  | 85 | 775089     | 50.0       | 53.1      |       |
|                                        |     |        |        |        |    |            |            |           |       |

Report Date: 17-Oct-2017 09:47:31

Data File:

| Data File: \\ChromNA\B        | uttalo\( |            |        |        | UT /-66 | 5449.b\F8294.E |         |           |       |
|-------------------------------|----------|------------|--------|--------|---------|----------------|---------|-----------|-------|
|                               |          | RT (mater) | Adj RT | Dlt RT |         | D.             | Cal Amt | OnCol Amt | E     |
| Compound                      | Sig      | (min.)     | (min.) | (min.) | Q       | Response       | ug/kg   | ug/kg     | Flags |
| 27 March a salata             | 40       | 0.050      | 2.052  | 0.000  | 0.7     | 1005771        | 100.0   | 00.0      |       |
| 37 Vinyl acetate              | 43       | 3.852      | 3.852  | 0.000  | 97      | 1335771        | 100.0   | 92.8      |       |
| 39 1,1-Dichloroethane         | 63       | 3.858      | 3.858  | 0.000  | 96      | 745836         | 50.0    | 49.7      |       |
| 43 2-Butanone (MEK)           | 43       | 4.296      | 4.296  | 0.000  | 99      | 974243         | 250.0   | 240.8     |       |
| 44 2,2-Dichloropropane        | 77       | 4.296      | 4.296  | 0.000  | 63      | 478827         | 50.0    | 45.7      |       |
| 45 cis-1,2-Dichloroethene     | 96       | 4.303      | 4.303  | 0.000  | 83      | 440967         | 50.0    | 50.2      |       |
| 48 Chlorobromomethane         | 128      | 4.509      | 4.509  | 0.000  | 95      | 211297         | 50.0    | 52.9      |       |
| 49 Tetrahydrofuran            | 42       | 4.528      | 4.528  | 0.000  | 87      | 237222         | 100.0   | 92.3      |       |
| 50 Chloroform                 | 83       | 4.540      | 4.540  | 0.000  | 93      | 649605         | 50.0    | 49.5      |       |
| 51 1,1,1-Trichloroethane      | 97       | 4.680      | 4.680  | 0.000  | 99      | 548919         | 50.0    | 50.8      |       |
| 52 Cyclohexane                | 56       | 4.710      | 4.710  | 0.000  | 89      | 821752         | 50.0    | 48.1      |       |
| 54 1,1-Dichloropropene        | 75       | 4.801      | 4.801  | 0.000  | 96      | 525990         | 50.0    | 51.6      |       |
| 55 Carbon tetrachloride       | 117      | 4.807      | 4.807  | 0.000  | 97      | 453994         | 50.0    | 55.8      |       |
| 53 Isobutyl alcohol           | 43       | 4.874      | 4.874  | 0.000  | 93      | 471838         | 1250.0  | 1259.9    |       |
| 57 Benzene                    | 78       | 4.984      | 4.984  | 0.000  | 97      | 1521370        | 50.0    | 49.6      |       |
| 58 1,2-Dichloroethane         | 62       | 5.020      | 5.020  | 0.000  | 97      | 562930         | 50.0    | 48.4      |       |
| 59 n-Heptane                  | 43       | 5.081      | 5.081  | 0.000  | 89      | 632781         | 50.0    | 45.3      |       |
| 62 Trichloroethene            | 95       | 5.495      | 5.495  | 0.000  | 97      | 397528         | 50.0    | 51.1      |       |
| 64 Methylcyclohexane          | 83       | 5.635      | 5.635  | 0.000  | 91      | 746945         | 50.0    | 51.0      |       |
| 65 1,2-Dichloropropane        | 63       | 5.714      | 5.714  | 0.000  | 97      | 415214         | 50.0    | 49.7      |       |
| 66 1,4-Dioxane                | 88       | 5.830      | 5.830  | 0.000  | 95      | 100050         | 1000.0  | 1139.5    |       |
| 67 Dibromomethane             | 93       | 5.842      | 5.842  | 0.000  | 94      | 222419         | 50.0    | 51.5      |       |
| 68 Dichlorobromomethane       | 83       | 5.957      | 5.957  | 0.000  | 100     | 457880         | 50.0    | 55.4      |       |
| 69 2-Chloroethyl vinyl ether  | 63       | 6.164      | 6.164  | 0.000  | 90      | 246626         | 50.0    | 53.3      |       |
| 72 cis-1,3-Dichloropropene    | 75       | 6.334      | 6.334  | 0.000  | 97      | 541486         | 50.0    | 52.6      |       |
| 73 4-Methyl-2-pentanone (MIBK | 43       | 6.438      | 6.438  | 0.000  | 92      | 1797572        | 250.0   | 228.9     |       |
| 74 Toluene                    | 92       | 6.620      | 6.620  | 0.000  | 99      | 991826         | 50.0    | 49.3      |       |
| 77 trans-1,3-Dichloropropene  | 75       | 6.845      | 6.845  | 0.000  | 95      | 463692         | 50.0    | 50.7      |       |
| 75 Ethyl methacrylate         | 69       | 6.852      | 6.852  | 0.000  | 87      | 456351         | 50.0    | 49.1      |       |
| 79 1,1,2-Trichloroethane      | 83       | 7.040      | 7.040  | 0.000  | 91      | 262785         | 50.0    | 49.4      |       |
| 81 Tetrachloroethene          | 166      | 7.137      | 7.137  | 0.000  | 98      | 464380         | 50.0    | 53.8      |       |
| 82 1,3-Dichloropropane        | 76       | 7.204      | 7.204  | 0.000  | 97      | 544516         | 50.0    | 49.8      |       |
| 80 2-Hexanone                 | 43       | 7.223      | 7.223  | 0.000  | 94      | 1353681        | 250.0   | 236.5     |       |
| 83 Chlorodibromomethane       | 129      | 7.442      | 7.442  | 0.000  | 90      | 349563         | 50.0    | 52.9      |       |
| 84 Ethylene Dibromide         | 107      | 7.569      | 7.569  | 0.000  | 98      | 333710         | 50.0    | 51.6      |       |
| 87 Chlorobenzene              | 112      | 8.020      | 8.020  | 0.000  | 96      | 1108090        | 50.0    | 51.1      |       |
| 88 Ethylbenzene               | 91       | 8.087      | 8.087  | 0.000  | 98      | 1807487        | 50.0    | 49.8      |       |
| 89 1,1,1,2-Tetrachloroethane  | 131      | 8.099      | 8.099  | 0.000  | 93      | 354124         | 50.0    | 55.6      |       |
| 90 m-Xylene & p-Xylene        | 106      | 8.202      | 8.202  | 0.000  | 99      | 756823         | 50.0    | 51.0      |       |
| 91 o-Xylene                   | 106      | 8.634      | 8.634  | 0.000  | 95      | 722888         | 50.0    | 50.5      |       |
| 92 Styrene                    | 104      | 8.652      | 8.652  | 0.000  | 95      | 1244407        | 50.0    | 50.4      |       |
| 95 Bromoform                  | 173      | 8.926      | 8.926  | 0.000  | 98      | 215915         | 50.0    | 60.7      |       |
| 94 Isopropylbenzene           | 105      | 8.999      | 8.999  | 0.000  | 95      | 1866100        | 50.0    | 48.1      |       |
| 101 Bromobenzene              | 156      | 9.388      | 9.388  | 0.000  | 90      | 498255         | 50.0    | 48.3      |       |
| 97 1,1,2,2-Tetrachloroethane  | 83       | 9.388      | 9.388  | 0.000  | 78      | 419942         | 50.0    | 47.9      |       |
| 98 trans-1,4-Dichloro-2-buten | 53       | 9.437      | 9.437  | 0.000  | 60      | 136917         | 50.0    | 45.4      |       |
| 99 N-Propylbenzene            | 91       | 9.437      | 9.437  | 0.000  | 98      | 2112155        | 50.0    | 47.8      |       |
| 100 1,2,3-Trichloropropane    | 110      | 9.443      | 9.443  | 0.000  | 82      | 141002         | 50.0    | 48.1      |       |
| 103 2-Chlorotoluene           | 126      | 9.565      | 9.565  | 0.000  | 97      | 464102         | 50.0    | 48.6      |       |
| 102 1,3,5-Trimethylbenzene    | 105      | 9.607      | 9.607  | 0.000  | 94      | 1602940        | 50.0    | 48.8      |       |
| 105 4-Chlorotoluene           | 126      | 9.674      | 9.674  | 0.000  | 97      | 483948         | 50.0    | 48.9      |       |
| 106 tert-Butylbenzene         | 134      | 9.936      | 9.936  | 0.000  | 92      | 362594         | 50.0    | 49.2      |       |
| -                             | 105      | 9.985      |        | 0.000  | 96      |                | 50.0    | 48.7      |       |
| 107 1,2,4-Trimethylbenzene    | 103      | 7.700      | 9.985  | 0.000  | 90      | 1651541        | 50.0    | 40.7      |       |

Report Date: 17-Oct-2017 09:47:31 Chrom Revision: 2.2 16-Aug-2017 16:24:46

Data File: 

| Data File. Memorini Wilbandio Territori Data (il il 1977) (2017) (1977). Di |     |              |                  |                  |    |          |                  |                    |       |  |  |
|-----------------------------------------------------------------------------|-----|--------------|------------------|------------------|----|----------|------------------|--------------------|-------|--|--|
| Compound                                                                    | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q  | Response | Cal Amt<br>ug/kg | OnCol Amt<br>ug/kg | Flags |  |  |
|                                                                             |     |              |                  |                  |    |          |                  |                    |       |  |  |
| 109 sec-Butylbenzene                                                        | 105 | 10.143       | 10.143           | 0.000            | 94 | 2038507  | 50.0             | 49.2               |       |  |  |
| 110 4-Isopropyltoluene                                                      | 119 | 10.271       | 10.271           | 0.000            | 97 | 1831326  | 50.0             | 50.4               |       |  |  |
| 111 1,3-Dichlorobenzene                                                     | 146 | 10.301       | 10.301           | 0.000            | 97 | 968887   | 50.0             | 49.5               |       |  |  |
| 113 1,4-Dichlorobenzene                                                     | 146 | 10.380       | 10.380           | 0.000            | 95 | 981326   | 50.0             | 49.0               |       |  |  |
| 115 n-Butylbenzene                                                          | 91  | 10.648       | 10.648           | 0.000            | 97 | 1569752  | 50.0             | 49.1               |       |  |  |
| 116 1,2-Dichlorobenzene                                                     | 146 | 10.733       | 10.733           | 0.000            | 99 | 919195   | 50.0             | 49.2               |       |  |  |
| 117 1,2-Dibromo-3-Chloropropan                                              | 75  | 11.420       | 11.420           | 0.000            | 90 | 75687    | 50.0             | 47.2               |       |  |  |
| 119 1,2,4-Trichlorobenzene                                                  | 180 | 12.053       | 12.053           | 0.000            | 94 | 692192   | 50.0             | 53.7               |       |  |  |
| 120 Hexachlorobutadiene                                                     | 225 | 12.144       | 12.144           | 0.000            | 95 | 410185   | 50.0             | 56.2               |       |  |  |
| 121 Naphthalene                                                             | 128 | 12.266       | 12.266           | 0.000            | 97 | 1631330  | 50.0             | 51.2               |       |  |  |
| 122 1,2,3-Trichlorobenzene                                                  | 180 | 12.473       | 12.473           | 0.000            | 96 | 628419   | 50.0             | 51.8               |       |  |  |

# QC Flag Legend Review Flags

M - Manually Integrated

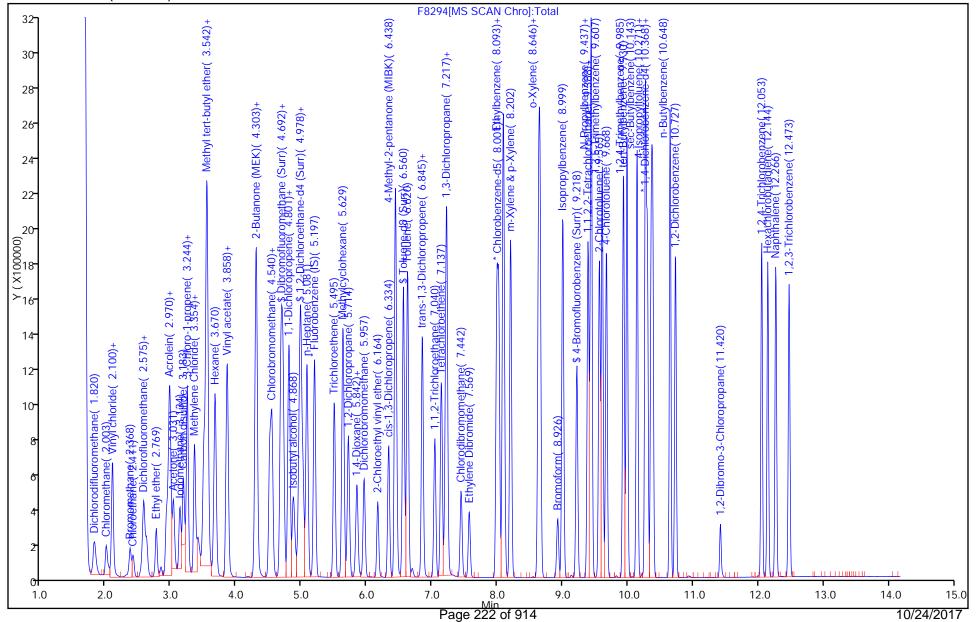
### Reagents:

| 8260 CORP mix_001 | 12 Amount A | Added: 25.00 | Units: uL |             |
|-------------------|-------------|--------------|-----------|-------------|
| GAS CORP mix_002  | 46 Amount A | Added: 25.00 | Units: uL |             |
| F 8260 SURR_00263 | Amount A    | Added: 1.00  | Units: uL | Run Reagent |
| F 8260 IS_00580   | Amount A    | Added: 1.00  | Units: uL | Run Reagent |

Report Date: 17-Oct-2017 09:47:31 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8294.D Injection Date: 17-Oct-2017 09:07:30 Instrument ID: HP5973F


Lims ID: CCVIS

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000 ALS Bottle#: 1

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

Worklist Smp#:

CDC

Report Date: 17-Oct-2017 09:47:31 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8294.D Injection Date: 17-Oct-2017 09:07:30 Instrument ID: HP5973F

Lims ID: CCVIS

Client ID:

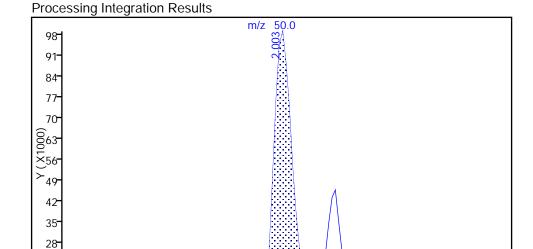
Operator ID: CDC ALS Bottle#: 1 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

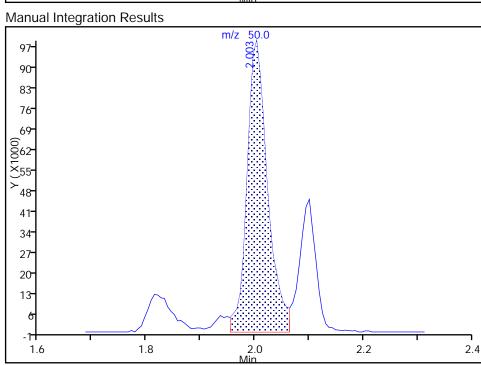
21<sup>\*</sup>

О

1.6


Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN


### 12 Chloromethane, CAS: 74-87-3

Signal: 1

RT: 2.00 Area: 231241 Amount: 34.190420 Amount Units: ug/kg



RT: 2.00
Area: 262650
Amount: 38.834436
Amount Units: ug/kg



2.0

2.2

Reviewer: cwiklinc, 17-Oct-2017 09:28:06

Audit Action: Manually Integrated

Audit Reason: Baseline

Page 223 of 914

1.8

2.4

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: <u>CCVIS 480-382381/3</u> Calibration Date: 10/18/2017 09:31

Instrument ID: HP5973P Calib Start Date: 10/10/2017 16:02

GC Column:  $\underline{\text{ZB-624 (60)}}$  ID:  $\underline{\text{0.25 (mm)}}$  Calib End Date:  $\underline{\text{10/10/2017 20:22}}$ 

Lab File ID: 93253P.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|----------------------------------------|---------------|---------|--------|---------|----------------|-----------------|-------|-----------|
| Dichlorodifluoromethane                | Ave           | 2.081   | 2.226  | 0.1000  | 26.7           | 25.0            | 7.0   | 50.0      |
| Chloromethane                          | Ave           | 4.552   | 5.273  | 0.1000  | 29.0           | 25.0            | 15.9  | 20.0      |
| Vinyl chloride                         | Ave           | 2.816   | 3.102  | 0.1000  | 27.5           | 25.0            | 10.2  | 20.0      |
| Butadiene                              | Ave           | 3.380   | 3.590  |         | 26.6           | 25.0            | 6.2   | 20.0      |
| Bromomethane                           | Ave           | 1.531   | 1.665  | 0.1000  | 27.2           | 25.0            | 8.8   | 50.0      |
| Chloroethane                           | Ave           | 1.617   | 1.693  | 0.1000  | 26.2           | 25.0            | 4.7   | 50.0      |
| Dichlorofluoromethane                  | Ave           | 3.654   | 3.651  |         | 25.0           | 25.0            | -0.0  | 20.0      |
| Trichlorofluoromethane                 | Ave           | 2.991   | 3.223  | 0.1000  | 26.9           | 25.0            | 7.7   | 20.0      |
| Ethyl ether                            | Ave           | 2.042   | 2.086  |         | 25.5           | 25.0            | 2.2   | 20.0      |
| Acrolein                               | Ave           | 0.3341  | 0.3331 |         | 125            | 125             | -0.3  | 50.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 1.779   | 1.657  | 0.1000  | 23.3           | 25.0            | -6.9  | 20.0      |
| 1,1-Dichloroethene                     | Ave           | 1.839   | 1.617  | 0.1000  | 22.0           | 25.0            | -12.0 | 20.0      |
| Acetone                                | Ave           | 1.267   | 1.660  | 0.1000  | 164            | 125             | 30.9  | 50.0      |
| Iodomethane                            | Ave           | 3.233   | 3.243  |         | 25.1           | 25.0            | 0.3   | 20.0      |
| Methyl acetate                         | Ave           | 2.949   | 3.144  | 0.1000  | 53.3           | 50.0            | 6.6   | 50.0      |
| Carbon disulfide                       | Ave           | 6.383   | 6.044  | 0.1000  | 23.7           | 25.0            | -5.3  | 20.0      |
| Allyl chloride                         | Ave           | 5.208   | 5.091  |         | 24.4           | 25.0            | -2.2  | 20.0      |
| 2-Methyl-2-propanol                    | Ave           | 0.3743  | 0.3909 |         | 261            | 250             | 4.4   | 50.0      |
| Methylene Chloride                     | Lin1          |         | 1.911  | 0.1000  | 21.1           | 25.0            | -15.5 | 20.0      |
| Methyl tert-butyl ether                | Ave           | 5.590   | 5.589  | 0.1000  | 25.0           | 25.0            | -0.0  | 20.0      |
| trans-1,2-Dichloroethene               | Ave           | 1.873   | 1.687  | 0.1000  | 22.5           | 25.0            | -9.9  | 20.0      |
| Acrylonitrile                          | Ave           | 1.226   | 1.322  |         | 270            | 250             | 7.8   | 20.0      |
| Hexane                                 | Ave           | 3.121   | 2.818  |         | 22.6           | 25.0            | -9.7  | 20.0      |
| Vinyl acetate                          | Ave           | 6.940   | 7.642  |         | 55.1           | 50.0            | 10.1  | 20.0      |
| 1,1-Dichloroethane                     | Ave           | 3.863   | 3.793  | 0.2000  | 24.5           | 25.0            | -1.8  | 20.0      |
| 2-Butanone (MEK)                       | Ave           | 1.856   | 2.103  | 0.1000  | 142            | 125             | 13.3  | 20.0      |
| 2,2-Dichloropropane                    | Ave           | 1.632   | 1.901  |         | 29.1           | 25.0            | 16.5  | 20.0      |
| cis-1,2-Dichloroethene                 | Ave           | 1.978   | 1.869  | 0.1000  | 23.6           | 25.0            | -5.5  | 20.0      |
| Chlorobromomethane                     | Ave           | 0.9919  | 0.998  |         | 25.2           | 25.0            | 0.6   | 20.0      |
| Tetrahydrofuran                        | Ave           | 1.177   | 1.233  |         | 52.4           | 50.0            | 4.7   | 20.0      |
| Chloroform                             | Ave           | 3.309   | 3.188  | 0.2000  | 24.1           | 25.0            | -3.7  | 20.0      |
| 1,1,1-Trichloroethane                  | Ave           | 2.821   | 2.852  | 0.1000  | 25.3           | 25.0            | 1.1   | 20.0      |
| Cyclohexane                            | Ave           | 4.190   | 3.684  | 0.1000  | 22.0           | 25.0            | -12.1 | 20.0      |
| 1,1-Dichloropropene                    | Ave           | 2.362   | 2.216  |         | 23.5           | 25.0            | -6.2  | 20.0      |
| Isobutyl alcohol                       | Ave           | 0.1933  | 0.1998 |         | 646            | 625             | 3.4   | 50.0      |
| Carbon tetrachloride                   | Ave           | 2.104   | 2.507  | 0.1000  | 29.8           | 25.0            | 19.2  | 20.0      |
| Benzene                                | Ave           | 6.565   | 6.359  | 0.5000  | 24.2           | 25.0            | -3.1  | 20.0      |
| 1,2-Dichloroethane                     | Ave           | 3.664   | 3.651  | 0.1000  | 24.9           | 25.0            | -0.4  | 20.0      |
| n-Heptane                              | Ave           | 3.317   | 2.940  |         | 22.2           | 25.0            | -11.4 | 20.0      |
| Trichloroethene                        | Ave           | 1.860   | 1.727  | 0.2000  | 23.2           | 25.0            | -7.1  | 20.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: <u>CCVIS 480-382381/3</u> Calibration Date: 10/18/2017 09:31

Instrument ID: HP5973P Calib Start Date: 10/10/2017 16:02

GC Column:  $\underline{\text{ZB-624 (60)}}$  ID:  $\underline{\text{0.25 (mm)}}$  Calib End Date:  $\underline{\text{10/10/2017 20:22}}$ 

Lab File ID: 93253P.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|-----------------------------|---------------|---------|--------|---------|----------------|-----------------|-------|-----------|
| Methylcyclohexane           | Ave           | 2.492   | 2.145  | 0.1000  | 21.5           | 25.0            | -14.0 | 20.0      |
| 1,2-Dichloropropane         | Ave           | 2.114   | 2.104  | 0.1000  | 24.9           | 25.0            | -0.5  | 20.0      |
| 1,4-Dioxane                 | Ave           | 0.0098  | 0.0105 |         | 539            | 500             | 7.7   | 50.0      |
| Dibromomethane              | Ave           | 1.263   | 1.237  | 0.1000  | 24.5           | 25.0            | -2.1  | 20.0      |
| Bromodichloromethane        | Ave           | 2.473   | 2.591  | 0.2000  | 26.2           | 25.0            | 4.8   | 20.0      |
| 2-Chloroethyl vinyl ether   | Ave           | 1.484   | 1.576  |         | 26.6           | 25.0            | 6.2   | 20.0      |
| cis-1,3-Dichloropropene     | Ave           | 2.814   | 2.884  | 0.2000  | 25.6           | 25.0            | 2.5   | 20.0      |
| 4-Methyl-2-pentanone (MIBK) | Ave           | 1.738   | 1.849  | 0.1000  | 133            | 125             | 6.4   | 20.0      |
| Toluene                     | Ave           | 1.835   | 1.816  | 0.4000  | 24.7           | 25.0            | -1.1  | 20.0      |
| Ethyl methacrylate          | Ave           | 1.027   | 0.996  |         | 24.3           | 25.0            | -3.0  | 20.0      |
| trans-1,3-Dichloropropene   | Ave           | 1.273   | 1.311  | 0.1000  | 25.7           | 25.0            | 3.0   | 20.0      |
| 1,1,2-Trichloroethane       | Ave           | 0.6343  | 0.6187 | 0.1000  | 24.4           | 25.0            | -2.5  | 20.0      |
| Tetrachloroethene           | Ave           | 0.8961  | 0.8598 | 0.2000  | 24.0           | 25.0            | -4.1  | 20.0      |
| 2-Hexanone                  | Ave           | 1.247   | 1.382  | 0.1000  | 139            | 125             | 10.8  | 20.0      |
| 1,3-Dichloropropane         | Ave           | 1.232   | 1.262  |         | 25.6           | 25.0            | 2.4   | 20.0      |
| Dibromochloromethane        | Ave           | 0.8865  | 0.9538 | 0.1000  | 26.9           | 25.0            | 7.6   | 20.0      |
| 1,2-Dibromoethane           | Ave           | 0.8151  | 0.8231 |         | 25.2           | 25.0            | 1.0   | 20.0      |
| Chlorobenzene               | Ave           | 2.229   | 2.210  | 0.5000  | 24.8           | 25.0            | -0.9  | 20.0      |
| Ethylbenzene                | Ave           | 3.538   | 3.385  | 0.1000  | 23.9           | 25.0            | -4.3  | 20.0      |
| 1,1,1,2-Tetrachloroethane   | Ave           | 0.8265  | 0.8693 |         | 26.3           | 25.0            | 5.2   | 20.0      |
| m,p-Xylene                  | Ave           | 1.373   | 1.371  | 0.1000  | 25.0           | 25.0            | -0.1  | 20.0      |
| o-Xylene                    | Ave           | 1.363   | 1.353  | 0.3000  | 24.8           | 25.0            | -0.8  | 20.0      |
| Styrene                     | Ave           | 2.250   | 2.271  | 0.3000  | 25.2           | 25.0            | 0.9   | 20.0      |
| Bromoform                   | Ave           | 0.6691  | 0.7249 | 0.1000  | 27.1           | 25.0            | 8.3   | 50.0      |
| Isopropylbenzene            | Ave           | 3.060   | 2.921  | 0.1000  | 23.9           | 25.0            | -4.5  | 20.0      |
| 1,1,2,2-Tetrachloroethane   | Ave           | 0.9458  | 0.9295 | 0.3000  | 24.6           | 25.0            | -1.7  | 20.0      |
| trans-1,4-Dichloro-2-butene | Ave           | 0.5514  | 0.5483 |         | 24.9           | 25.0            | -0.6  | 50.0      |
| N-Propylbenzene             | Ave           | 3.746   | 3.502  |         | 23.4           | 25.0            | -6.5  | 20.0      |
| Bromobenzene                | Ave           | 0.9922  | 0.9914 |         | 25.0           | 25.0            | -0.0  | 20.0      |
| 1,2,3-Trichloropropane      | Ave           | 0.3083  | 0.3017 |         | 24.5           | 25.0            | -2.1  | 20.0      |
| 1,3,5-Trimethylbenzene      | Ave           | 2.679   | 2.542  |         | 23.7           | 25.0            | -5.1  | 20.0      |
| 2-Chlorotoluene             | Ave           | 0.8300  | 0.8111 |         | 24.4           | 25.0            | -2.3  | 20.0      |
| 4-Chlorotoluene             | Ave           | 0.8724  | 0.8419 |         | 24.1           | 25.0            | -3.5  | 20.0      |
| tert-Butylbenzene           | Ave           | 0.6041  | 0.5609 |         | 23.2           | 25.0            | -7.1  | 20.0      |
| 1,2,4-Trimethylbenzene      | Ave           | 2.789   | 2.744  |         | 24.6           | 25.0            | -1.6  | 20.0      |
| sec-Butylbenzene            | Ave           | 3.186   | 2.953  |         | 23.2           | 25.0            | -7.3  | 20.0      |
| 4-Isopropyltoluene          | Ave           | 3.004   | 2.786  |         | 23.2           | 25.0            | -7.2  | 20.0      |
| 1,3-Dichlorobenzene         | Ave           | 1.837   | 1.773  | 0.6000  | 24.1           | 25.0            | -3.5  | 20.0      |
| 1,4-Dichlorobenzene         | Ave           | 1.907   | 1.856  | 0.5000  | 24.3           | 25.0            | -2.7  | 20.0      |
| n-Butylbenzene              | Ave           | 2.562   | 2.286  |         | 22.3           | 25.0            | -10.8 | 20.0      |
| 1,2-Dichlorobenzene         | Ave           | 1.782   | 1.780  | 0.4000  | 25.0           | 25.0            | -0.0  | 20.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: CCVIS 480-382381/3 Calibration Date: 10/18/2017 09:31

Instrument ID: HP5973P Calib Start Date: 10/10/2017 16:02

GC Column:  $\underline{\text{ZB-624 (60)}}$  ID:  $\underline{\text{0.25 (mm)}}$  Calib End Date:  $\underline{\text{10/10/2017 20:22}}$ 

Lab File ID: 93253P.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------------|---------------|---------|--------|---------|----------------|-----------------|-------|-----------|
| 1,2-Dibromo-3-Chloropropane  | Lin1          |         | 0.2322 | 0.0500  | 23.6           | 25.0            | -5.7  | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 1.308   | 1.239  | 0.2000  | 23.7           | 25.0            | -5.3  | 20.0      |
| Hexachlorobutadiene          | Ave           | 0.5555  | 0.4808 |         | 21.6           | 25.0            | -13.4 | 20.0      |
| Naphthalene                  | Ave           | 3.432   | 3.361  |         | 24.5           | 25.0            | -2.1  | 20.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 1.292   | 1.169  |         | 22.6           | 25.0            | -9.5  | 20.0      |
| Dibromofluoromethane (Surr)  | Ave           | 1.410   | 1.529  |         | 27.1           | 25.0            | 8.4   | 20.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.9762  | 1.005  |         | 25.7           | 25.0            | 2.9   | 20.0      |
| Toluene-d8 (Surr)            | Ave           | 2.228   | 2.381  |         | 26.7           | 25.0            | 6.9   | 20.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.8126  | 0.8600 |         | 26.5           | 25.0            | 5.8   | 20.0      |

Report Date: 18-Oct-2017 10:04:26 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\93253P.D

Lims ID: CCVIS

Client ID:

Sample Type: CCVIS

Inject. Date: 18-Oct-2017 09:31:30 ALS Bottle#: 3 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: ccvis

Misc. Info.: 480-0066487-003

Operator ID: RF/RB Instrument ID: HP5973P

Sublist: chrom-P-8260H2O\*sub11

Method: \ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\P-8260H2O.m

Limit Group: MV - 8260C ICAL

Last Update: 18-Oct-2017 10:04:25 Calib Date: 11-Oct-2017 00:40:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3056P.D

Column 1: ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK019

First Level Reviewer: farrellr Date: 18-Oct-2017 10:04:25

| T II St Level Never. Idifelii     |     |        |        | ato.   |     | 10 001 201 | 7 10.04.23 |           |       |
|-----------------------------------|-----|--------|--------|--------|-----|------------|------------|-----------|-------|
|                                   |     | RT     | Adj RT | Dlt RT |     |            | Cal Amt    | OnCol Amt |       |
| Compound                          | Sig | (min.) | (min.) | (min.) | Q   | Response   | ug/L       | ug/L      | Flags |
|                                   |     |        |        |        |     |            |            |           |       |
| * 147 Fluorobenzene (IS)          | 70  | 10.434 | 10.434 | 0.000  | 97  | 182584     | 25.0       | 25.0      |       |
| * 2 Chlorobenzene-d5              | 82  | 14.382 | 14.382 | 0.000  | 91  | 401251     | 25.0       | 25.0      |       |
| * 3 1,4-Dichlorobenzene-d4        | 152 | 17.344 | 17.344 | 0.000  | 94  | 445448     | 25.0       | 25.0      |       |
| \$ 148 Dibromofluoromethane (Surr |     | 9.631  | 9.631  | 0.000  | 92  | 279144     | 25.0       | 27.1      |       |
| \$ 41,2-Dichloroethane-d4 (Sur    | 67  | 10.087 | 10.087 | 0.000  | 0   | 183446     | 25.0       | 25.7      |       |
| \$ 5 Toluene-d8 (Surr)            | 98  | 12.423 | 12.423 | 0.000  | 96  | 955403     | 25.0       | 26.7      |       |
| \$ 6 4-Bromofluorobenzene (Surr   | 174 | 15.884 | 15.884 | 0.000  | 93  | 345064     | 25.0       | 26.5      |       |
| 10 Dichlorodifluoromethane        | 85  | 4.332  | 4.332  | 0.000  | 97  | 406475     | 25.0       | 26.7      |       |
| 11 Chloromethane                  | 50  | 4.764  | 4.764  | 0.000  | 99  | 962821     | 25.0       | 29.0      |       |
| 17 Vinyl chloride                 | 62  | 4.964  | 4.964  | 0.000  | 97  | 566340     | 25.0       | 27.5      |       |
| 144 Butadiene                     | 54  | 5.013  | 5.013  | 0.000  | 100 | 655541     | 25.0       | 26.6      |       |
| 12 Bromomethane                   | 94  | 5.615  | 5.615  | 0.000  | 94  | 304053     | 25.0       | 27.2      |       |
| 13 Chloroethane                   | 64  | 5.707  | 5.707  | 0.000  | 93  | 309138     | 25.0       | 26.2      |       |
| 19 Dichlorofluoromethane          | 67  | 6.029  | 6.029  | 0.000  | 97  | 666558     | 25.0       | 25.0      |       |
| 14 Trichlorofluoromethane         | 101 | 6.090  | 6.090  | 0.000  | 84  | 588407     | 25.0       | 26.9      |       |
| 20 Ethyl ether                    | 59  | 6.388  | 6.388  | 0.000  | 89  | 380896     | 25.0       | 25.5      |       |
| 22 Acrolein                       | 56  | 6.692  | 6.692  | 0.000  | 98  | 304115     | 125.0      | 124.6     |       |
| 16 1,1,2-Trichloro-1,2,2-trif     | 101 | 6.735  | 6.735  | 0.000  | 93  | 302463     | 25.0       | 23.3      |       |
| 25 1,1-Dichloroethene             | 96  | 6.844  | 6.844  | 0.000  | 88  | 295266     | 25.0       | 22.0      |       |
| 24 Acetone                        | 43  | 6.887  | 6.887  | 0.000  | 96  | 1514996    | 125.0      | 163.7     |       |
| 18 lodomethane                    | 142 | 7.142  | 7.142  | 0.000  | 99  | 592087     | 25.0       | 25.1      |       |
| 30 Methyl acetate                 | 43  | 7.252  | 7.252  | 0.000  | 99  | 1148238    | 50.0       | 53.3      |       |
| 27 Carbon disulfide               | 76  | 7.270  | 7.270  | 0.000  | 79  | 1103594    | 25.0       | 23.7      |       |
| 28 3-Chloro-1-propene             | 41  | 7.276  | 7.276  | 0.000  | 86  | 929462     | 25.0       | 24.4      |       |
| 33 2-Methyl-2-propanol            | 59  | 7.507  | 7.507  | 0.000  | 94  | 713747     | 250.0      | 261.1     |       |
| 31 Methylene Chloride             | 84  | 7.507  | 7.507  | 0.000  | 87  | 348864     | 25.0       | 21.1      |       |
| 32 Methyl tert-butyl ether        | 73  | 7.684  | 7.684  | 0.000  | 90  | 1020432    | 25.0       | 25.0      |       |
| 35 trans-1,2-Dichloroethene       | 96  | 7.781  | 7.781  | 0.000  | 89  | 307988     | 25.0       | 22.5      |       |
| 34 Acrylonitrile                  | 53  | 7.812  | 7.812  | 0.000  | 96  | 2413421    | 250.0      | 269.6     |       |
| 36 Hexane                         | 57  | 7.976  | 7.976  | 0.000  | 93  | 514595     | 25.0       | 22.6      |       |
|                                   |     |        | _      |        |     |            |            | 40/0      |       |

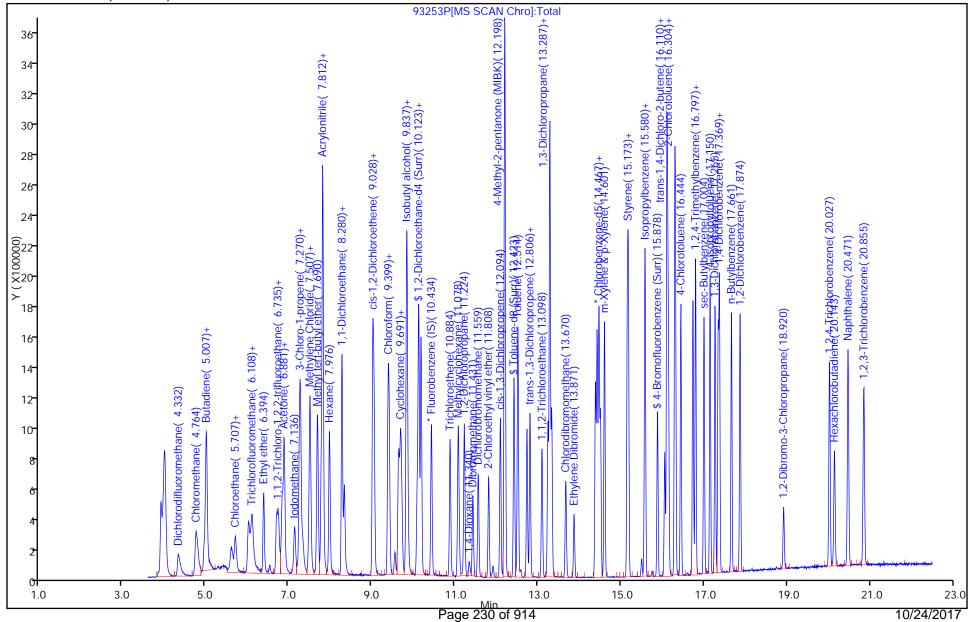
| Data File: \\ChromNA\B        |     |        |        |        |     |          |         |           |       |
|-------------------------------|-----|--------|--------|--------|-----|----------|---------|-----------|-------|
|                               |     | RT     | Adj RT | Dlt RT |     | 5        | Cal Amt | OnCol Amt | El    |
| Compound                      | Sig | (min.) | (min.) | (min.) | Q   | Response | ug/L    | ug/L      | Flags |
| 001//                         | 4.0 | 0.000  | 0.000  | 0.000  | 0.7 | 0700700  | 50.0    | FF 4      |       |
| 38 Vinyl acetate              | 43  | 8.280  | 8.280  | 0.000  | 97  | 2790722  | 50.0    | 55.1      |       |
| 40 1,1-Dichloroethane         | 63  | 8.335  | 8.335  | 0.000  | 97  | 692481   | 25.0    | 24.5      |       |
| 44 2-Butanone (MEK)           | 43  | 9.022  | 9.022  | 0.000  | 95  | 1919636  | 125.0   | 141.6     |       |
| 45 2,2-Dichloropropane        | 77  | 9.034  | 9.034  | 0.000  | 80  | 347081   | 25.0    | 29.1      |       |
| 43 cis-1,2-Dichloroethene     | 96  | 9.053  | 9.053  | 0.000  | 91  | 341194   | 25.0    | 23.6      |       |
| 50 Chlorobromomethane         | 128 | 9.387  | 9.387  | 0.000  | 86  | 182240   | 25.0    | 25.2      |       |
| 51 Tetrahydrofuran            | 42  | 9.399  | 9.399  | 0.000  | 90  | 450069   | 50.0    | 52.4      |       |
| 49 Chloroform                 | 83  | 9.418  | 9.418  | 0.000  | 93  | 582063   | 25.0    | 24.1      |       |
| 52 1,1,1-Trichloroethane      | 97  | 9.649  | 9.649  | 0.000  | 95  | 520709   | 25.0    | 25.3      |       |
| 54 Cyclohexane                | 56  | 9.691  | 9.691  | 0.000  | 95  | 672641   | 25.0    | 22.0      |       |
| 56 1,1-Dichloropropene        | 75  | 9.831  | 9.831  | 0.000  | 89  | 404564   | 25.0    | 23.5      |       |
| 53 Isobutyl alcohol           | 43  | 9.843  | 9.843  | 0.000  | 92  | 912041   | 625.0   | 646.0     |       |
| 55 Carbon tetrachloride       | 117 | 9.850  | 9.850  | 0.000  | 57  | 457797   | 25.0    | 29.8      |       |
| 57 Benzene                    | 78  | 10.129 | 10.129 | 0.000  | 94  | 1160997  | 25.0    | 24.2      |       |
| 60 1,2-Dichloroethane         | 62  | 10.184 | 10.184 | 0.000  | 95  | 666539   | 25.0    | 24.9      |       |
| 59 n-Heptane                  | 43  | 10.184 | 10.184 | 0.000  | 85  | 536789   | 25.0    | 22.2      |       |
| 62 Trichloroethene            | 95  | 10.884 | 10.884 | 0.000  | 92  | 315353   | 25.0    | 23.2      |       |
| 64 Methylcyclohexane          | 83  | 11.084 | 11.084 | 0.000  | 90  | 391556   | 25.0    | 21.5      |       |
| 63 1,2-Dichloropropane        | 63  | 11.224 | 11.224 | 0.000  | 81  | 384194   | 25.0    | 24.9      |       |
| 68 1,4-Dioxane                | 88  | 11.340 | 11.340 | 0.000  | 87  | 84615    | 500.0   | 538.5     |       |
| 69 Dibromomethane             | 93  | 11.431 | 11.431 | 0.000  | 95  | 225780   | 25.0    | 24.5      |       |
| 70 Dichlorobromomethane       | 83  | 11.559 | 11.559 | 0.000  | 94  | 473103   | 25.0    | 26.2      |       |
| 71 2-Chloroethyl vinyl ether  | 63  | 11.815 | 11.815 | 0.000  | 85  | 287813   | 25.0    | 26.6      |       |
| 73 cis-1,3-Dichloropropene    | 75  | 12.094 | 12.094 | 0.000  | 79  | 526547   | 25.0    | 25.6      |       |
| 75 4-Methyl-2-pentanone (MIBK | 43  | 12.198 | 12.198 | 0.000  | 97  | 3710234  | 125.0   | 133.0     |       |
| 76 Toluene                    | 92  | 12.514 | 12.514 | 0.000  | 96  | 728473   | 25.0    | 24.7      |       |
| 77 Ethyl methacrylate         | 69  | 12.733 | 12.733 | 0.000  | 83  | 399707   | 25.0    | 24.3      |       |
| 78 trans-1,3-Dichloropropene  | 75  | 12.806 | 12.806 | 0.000  | 85  | 525895   | 25.0    | 25.7      |       |
| 79 1,1,2-Trichloroethane      | 83  | 13.092 | 13.092 | 0.000  | 93  | 248260   | 25.0    | 24.4      |       |
| 80 Tetrachloroethene          | 166 | 13.244 | 13.244 | 0.000  | 94  | 344983   | 25.0    | 24.0      |       |
| 83 2-Hexanone                 | 43  | 13.287 | 13.287 | 0.000  | 96  | 2773131  | 125.0   | 138.5     |       |
| 82 1,3-Dichloropropane        | 76  | 13.329 | 13.329 | 0.000  | 91  | 506268   | 25.0    | 25.6      |       |
| 81 Chlorodibromomethane       | 129 | 13.676 | 13.676 | 0.000  | 88  | 382697   | 25.0    | 26.9      |       |
| 85 Ethylene Dibromide         | 107 | 13.871 | 13.871 | 0.000  | 97  | 330255   | 25.0    | 25.2      |       |
| 87 Chlorobenzene              | 112 | 14.424 | 14.424 | 0.000  | 95  | 886932   | 25.0    | 24.8      |       |
| 89 Ethylbenzene               | 91  | 14.467 | 14.467 | 0.000  | 97  | 1358041  | 25.0    | 23.9      |       |
| 88 1,1,1,2-Tetrachloroethane  | 131 | 14.510 | 14.510 | 0.000  | 92  | 348799   | 25.0    | 26.3      |       |
| 90 m-Xylene & p-Xylene        | 106 | 14.601 | 14.601 | 0.000  | 0   | 549996   | 25.0    | 25.0      |       |
| 93 o-Xylene                   | 106 | 15.154 | 15.154 | 0.000  | 97  | 542702   | 25.0    | 24.8      |       |
| 94 Styrene                    | 104 | 15.179 | 15.179 | 0.000  | 92  | 911123   | 25.0    | 25.2      |       |
| 92 Bromoform                  | 173 | 15.568 | 15.568 | 0.000  | 91  | 290872   | 25.0    | 27.1      |       |
| 95 Isopropylbenzene           | 105 | 15.580 | 15.580 | 0.000  | 97  | 1301238  | 25.0    | 23.9      |       |
| 97 1,1,2,2-Tetrachloroethane  | 83  | 16.055 | 16.055 | 0.000  | 96  | 414037   | 25.0    | 24.6      |       |
| 98 trans-1,4-Dichloro-2-buten | 53  | 16.103 | 16.103 | 0.000  | 56  | 244228   | 25.0    | 24.9      |       |
| 99 N-Propylbenzene            | 91  | 16.110 | 16.110 | 0.000  | 97  | 1559886  | 25.0    | 23.4      |       |
| 100 Bromobenzene              | 156 | 16.128 | 16.128 | 0.000  | 85  | 441604   | 25.0    | 25.0      |       |
| 101 1,2,3-Trichloropropane    | 110 | 16.146 | 16.146 | 0.000  | 89  | 134387   | 25.0    | 24.5      |       |
| 102 1,3,5-Trimethylbenzene    | 105 | 16.298 | 16.298 | 0.000  | 95  | 1132169  | 25.0    | 23.7      |       |
| 103 2-Chlorotoluene           | 126 | 16.316 | 16.316 | 0.000  | 95  | 361288   | 25.0    | 24.4      |       |
| 105 4-Chlorotoluene           | 126 | 16.444 | 16.444 | 0.000  | 98  | 375007   | 25.0    | 24.1      |       |
| 106 tert-Butylbenzene         | 134 | 16.736 | 16.736 | 0.000  | 96  | 249845   | 25.0    | 23.2      |       |
| 3                             |     |        |        |        |     |          |         |           |       |
| 107 1,2,4-Trimethylbenzene    | 105 | 16.797 | 16.797 | 0.000  | 97  | 1222105  | 25.0    | 24.6      |       |

| Data File. //CII/OHINA/D       | unalu | Chiomba | (a)(11/37/ | 1 1201710 | 710-0 | 0407.01732336 | ٠.٠       |           |       |
|--------------------------------|-------|---------|------------|-----------|-------|---------------|-----------|-----------|-------|
|                                |       | RT      | Adj RT     | DIt RT    |       |               | Cal Amt   | OnCol Amt |       |
| Compound                       | Sig   | (min.)  | (min.)     | (min.)    | Q     | Response      | ug/L      | ug/L      | Flags |
|                                |       |         |            |           |       |               |           |           |       |
| 109 sec-Butylbenzene           | 105   | 17.004  | 17.004     | 0.000     | 96    | 1315403       | 25.0      | 23.2      |       |
| 112 4-Isopropyltoluene         | 119   | 17.150  | 17.150     | 0.000     | 98    | 1241160       | 25.0      | 23.2      |       |
| 110 1,3-Dichlorobenzene        | 146   | 17.265  | 17.265     | 0.000     | 97    | 789568        | 25.0      | 24.1      |       |
| 111 1,4-Dichlorobenzene        | 146   | 17.375  | 17.375     | 0.000     | 93    | 826722        | 25.0      | 24.3      |       |
| 115 n-Butylbenzene             | 91    | 17.661  | 17.661     | 0.000     | 97    | 1018437       | 25.0      | 22.3      |       |
| 116 1,2-Dichlorobenzene        | 146   | 17.874  | 17.874     | 0.000     | 96    | 792944        | 25.0      | 25.0      |       |
| 117 1,2-Dibromo-3-Chloropropan | 75    | 18.920  | 18.920     | 0.000     | 77    | 103446        | 25.0      | 23.6      |       |
| 119 1,2,4-Trichlorobenzene     | 180   | 20.027  | 20.027     | 0.000     | 94    | 551948        | 25.0      | 23.7      |       |
| 120 Hexachlorobutadiene        | 225   | 20.149  | 20.149     | 0.000     | 95    | 214185        | 25.0      | 21.6      |       |
| 121 Naphthalene                | 128   | 20.471  | 20.471     | 0.000     | 97    | 1497368       | 25.0      | 24.5      |       |
| 122 1,2,3-Trichlorobenzene     | 180   | 20.855  | 20.855     | 0.000     | 93    | 520747        | 25.0      | 22.6      |       |
| Reagents:                      |       |         |            |           |       |               |           |           |       |
| 8260 CORP mix_00110            |       | Amount  | Added: 1   | 2.50      | Į     | Units: uL     |           |           |       |
| GAS CORP mix_00246             |       | Amount  | Added: 1   | 2.50      | Į     | Units: uL     |           |           |       |
| P 8260 IS_00248                |       | Amount  | Added: 1   | .25       | Į     | Units: uL     | Run Reage | nt        |       |
| P 8260 Surr00243               |       | Amount  | Added: 1   | .25       | l     | Units: uL     | Run Reage |           |       |
|                                |       |         |            |           |       |               |           |           |       |

Report Date: 18-Oct-2017 10:04:26 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\93253P.D Injection Date: 18-Oct-2017 09:31:30 Instrument ID: HP5973P


Lims ID: CCVIS

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

RF/RB

3

Report Date: 29-Sep-2017 15:10:01 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

**Target Compound Quantitation Report** 

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7934.D

Lims ID: BFB

Client ID:

Sample Type: BFB

Inject. Date: 29-Sep-2017 15:08:30 ALS Bottle#: 1 Worklist Smp#: 4

Injection Vol: 1.0 uL Dil. Factor: 1.0000

Sample Info: BFB

Misc. Info.: 480-0066009-004

Operator ID: CDC Instrument ID: HP5973F

Method: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update:29-Sep-2017 15:10:00Calib Date:25-Sep-2017 19:12:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973F\20170925-65871.b\F7808.D

Column 1: ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK019

First Level Reviewer: cwiklinc Date: 29-Sep-2017 15:10:00

| Compound  | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q | Response | Cal Amt<br>ug/kg | OnCol Amt<br>ug/kg | Flags |
|-----------|-----|--------------|------------------|------------------|---|----------|------------------|--------------------|-------|
| \$ 61 BFB | 95  | 5.339        | 5.339            | 0.000            | 0 | 138362   | NR               | NR                 |       |

### QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Reagents:

BFB\_WRK\_00065 Amount Added: 1.00 Units: uL

Report Date: 29-Sep-2017 15:10:01 Chrom Revision: 2.2 16-Aug-2017 16:24:46

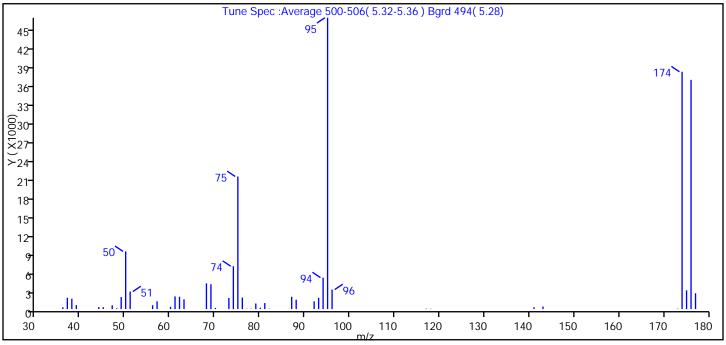
MS Tune Report

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7934.D Injection Date: 29-Sep-2017 15:08:30 Instrument ID: HP5973F

Lims ID: BFB

Client ID:


Operator ID: CDC ALS Bottle#: 1 Worklist Smp#: 4

Injection Vol: 1.0 uL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Tune Method: BFB Method 8260

### \$ 61 BFB



| m/z | Ion Abundance Criteria                         | % Relative<br>Abundance |
|-----|------------------------------------------------|-------------------------|
| 95  | Base peak, 100% relative abundance             | 100.0                   |
| 50  | 15 to 40% of m/z 95                            | 19.8                    |
| 75  | 30 to 60% of m/z 95                            | 45.5                    |
| 96  | 5 to 9% of m/z 95                              | 6.7                     |
| 173 | Less than 2% of m/z 174                        | 0.1 (0.2)               |
| 174 | 50 to 120% of m/z 95                           | 81.5                    |
| 175 | 5 to 9% of m/z 174                             | 6.4 (7.9)               |
| 176 | Greater than 95% but less than 101% of m/z 174 | 78.7 (96.6)             |
| 177 | 5 to 9% of m/z 176                             | 5.4 (6.9)               |

Report Date: 29-Sep-2017 15:10:01 Chrom Revision: 2.2 16-Aug-2017 16:24:46

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7934.D\F-8260 SOIL.rslt\spectra.d

Injection Date: 29-Sep-2017 15:08:30

Spectrum: Tune Spec :Average 500-506( 5.32-5.36 ) Bgrd 494( 5.28)

Base Peak: 95.00 Minimum % Base Peak: 0 Number of Points: 46

| m/z   | Υ    | m/z   | Υ     | m/z   | Υ     | m/z    | Υ     |
|-------|------|-------|-------|-------|-------|--------|-------|
| 36.00 | 285  | 57.00 | 1254  | 77.00 | 50    | 96.00  | 3124  |
| 37.00 | 1810 | 60.00 | 366   | 78.00 | 51    | 117.00 | 62    |
| 38.00 | 1652 | 61.00 | 2029  | 79.00 | 893   | 118.00 | 52    |
| 39.00 | 633  | 62.00 | 1971  | 80.00 | 211   | 141.00 | 292   |
| 44.00 | 326  | 63.00 | 1557  | 81.00 | 960   | 143.00 | 402   |
| 45.00 | 293  | 68.00 | 4120  | 82.00 | 62    | 173.00 | 59    |
| 47.00 | 602  | 69.00 | 3971  | 87.00 | 1971  | 174.00 | 37984 |
| 48.00 | 120  | 70.00 | 184   | 88.00 | 1501  | 175.00 | 3000  |
| 49.00 | 1926 | 73.00 | 1779  | 92.00 | 1245  | 176.00 | 36688 |
| 50.00 | 9234 | 74.00 | 6860  | 93.00 | 1797  | 177.00 | 2532  |
| 51.00 | 2802 | 75.00 | 21224 | 94.00 | 5036  |        |       |
| 56.00 | 615  | 76.00 | 1842  | 95.00 | 46632 |        |       |

Report Date: 16-Oct-2017 10:23:57 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

**Target Compound Quantitation Report** 

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8268.D

Lims ID: BFB

Client ID:

Sample Type: BFB

Inject. Date: 16-Oct-2017 10:20:30 ALS Bottle#: 1 Worklist Smp#: 3

Injection Vol: 1.0 uL Dil. Factor: 1.0000

Sample Info: BFB

Misc. Info.: 480-0066422-003

Operator ID: CDC Instrument ID: HP5973F

Method: \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update: 16-Oct-2017 10:23:57 Calib Date: 29-Sep-2017 21:59:30 Integrator: RTE ID Type: Deconvolution ID Uniternal Standard Quant By: Initial Calibration \\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK011

First Level Reviewer: cwiklinc Date: 16-Oct-2017 10:23:57

| Compound  | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q | Response | Cal Amt<br>ug/kg | OnCol Amt<br>ug/kg | Flags |
|-----------|-----|--------------|------------------|------------------|---|----------|------------------|--------------------|-------|
| \$ 61 BFB | 95  | 5.339        | 5.339            | 0.000            | 0 | 128191   | NR               | NR                 |       |

## QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Reagents:

BFB\_WRK\_00065 Amount Added: 1.00 Units: uL

Chrom Revision: 2.2 16-Aug-2017 16:24:46 MS Tune Report Report Date: 16-Oct-2017 10:23:57

TestAmerica Buffalo

Data File: Injection Date: 16-Oct-2017 10:20:30 Instrument ID: HP5973F

Lims ID: **BFB** 

Client ID:

Operator ID: CDC ALS Bottle#: 1 Worklist Smp#: 3

1.0 uL Injection Vol: Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Tune Method: BFB Method 8260

### \$ 61 BFB



| m/z | Ion Abundance Criteria                         | % Relative<br>Abundance |
|-----|------------------------------------------------|-------------------------|
| 95  | Base peak, 100% relative abundance             | 100.0                   |
| 50  | 15 to 40% of m/z 95                            | 18.0                    |
| 75  | 30 to 60% of m/z 95                            | 45.4                    |
| 96  | 5 to 9% of m/z 95                              | 7.3                     |
| 173 | Less than 2% of m/z 174                        | 0.1 (0.1)               |
| 174 | 50 to 120% of m/z 95                           | 88.0                    |
| 175 | 5 to 9% of m/z 174                             | 6.5 (7.4)               |
| 176 | Greater than 95% but less than 101% of m/z 174 | 84.8 (96.3)             |
| 177 | 5 to 9% of m/z 176                             | 5.5 (6.5)               |

Report Date: 16-Oct-2017 10:23:57 Chrom Revision: 2.2 16-Aug-2017 16:24:46

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8268.D\F-8260 SOIL.rslt\spectra.d

Injection Date: 16-Oct-2017 10:20:30

Spectrum: Tune Spec :Average 500-506( 5.32-5.36 ) Bgrd 494( 5.28)

Base Peak: 95.00 Minimum % Base Peak: 0 Number of Points: 47

| m/z   | Υ    | m/z   | Υ    | m/z   | Υ     | m/z    | Υ     |
|-------|------|-------|------|-------|-------|--------|-------|
| 36.00 | 287  | 56.00 | 518  | 75.00 | 19864 | 95.00  | 43752 |
| 37.00 | 1635 | 57.00 | 1025 | 76.00 | 1764  | 96.00  | 3186  |
| 38.00 | 1488 | 60.00 | 301  | 77.00 | 130   | 117.00 | 117   |
| 39.00 | 467  | 61.00 | 1882 | 79.00 | 805   | 119.00 | 107   |
| 40.00 | 244  | 62.00 | 2034 | 80.00 | 117   | 141.00 | 318   |
| 44.00 | 456  | 63.00 | 1350 | 81.00 | 825   | 143.00 | 415   |
| 45.00 | 321  | 68.00 | 3783 | 82.00 | 58    | 173.00 | 52    |
| 47.00 | 646  | 69.00 | 3975 | 87.00 | 1618  | 174.00 | 38504 |
| 48.00 | 50   | 70.00 | 64   | 88.00 | 1489  | 175.00 | 2859  |
| 49.00 | 1596 | 72.00 | 57   | 92.00 | 1179  | 176.00 | 37088 |
| 50.00 | 7869 | 73.00 | 1587 | 93.00 | 1662  | 177.00 | 2398  |
| 51.00 | 2617 | 74.00 | 6234 | 94.00 | 5048  |        |       |

Report Date: 17-Oct-2017 08:43:16 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

**Target Compound Quantitation Report** 

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8293.D

Lims ID: BFB

Client ID:

Sample Type: BFB

Inject. Date: 17-Oct-2017 08:39:30 ALS Bottle#: 1 Worklist Smp#: 2

Injection Vol: 1.0 uL Dil. Factor: 1.0000

Sample Info: bfb

Misc. Info.: 480-0066449-002

Operator ID: CDC Instrument ID: HP5973F

Method: \ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update:17-Oct-2017 08:43:15Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK026

First Level Reviewer: cwiklinc Date: 17-Oct-2017 08:43:15

| Compound  | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q | Response | Cal Amt<br>ug/kg | OnCol Amt<br>ug/kg | Flags |
|-----------|-----|--------------|------------------|------------------|---|----------|------------------|--------------------|-------|
| \$ 61 BFB | 95  | 5.339        | 5.339            | 0.000            | 0 | 106290   | NR               | NR                 |       |

### **QC Flag Legend**

Processing Flags

NR - Missing Quant Standard

Reagents:

BFB\_WRK\_00065 Amount Added: 1.00 Units: uL

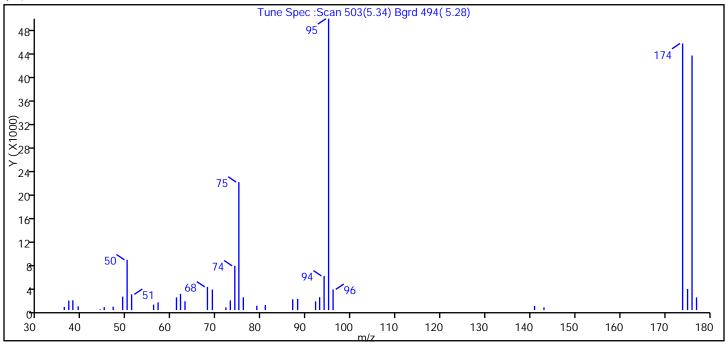
Chrom Revision: 2.2 16-Aug-2017 16:24:46 MS Tune Report Report Date: 17-Oct-2017 08:43:16

TestAmerica Buffalo

Data File: Injection Date: 17-Oct-2017 08:39:30 Instrument ID: HP5973F

Lims ID: **BFB** 

Client ID:


Operator ID: CDC ALS Bottle#: 1 Worklist Smp#: 2

1.0 uL Injection Vol: Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Tune Method: BFB Method 8260

### \$ 61 BFB



| m/z | Ion Abundance Criteria                         | % Relative<br>Abundance |
|-----|------------------------------------------------|-------------------------|
| 95  | Base peak, 100% relative abundance             | 100.0                   |
| 50  | 15 to 40% of m/z 95                            | 17.2                    |
| 75  | 30 to 60% of m/z 95                            | 43.9                    |
| 96  | 5 to 9% of m/z 95                              | 7.1                     |
| 173 | Less than 2% of m/z 174                        | 0.0 (0.0)               |
| 174 | 50 to 120% of m/z 95                           | 91.5                    |
| 175 | 5 to 9% of m/z 174                             | 7.3 (7.9)               |
| 176 | Greater than 95% but less than 101% of m/z 174 | 87.4 (95.5)             |
| 177 | 5 to 9% of m/z 176                             | 4.4 (5.0)               |

Report Date: 17-Oct-2017 08:43:16 Chrom Revision: 2.2 16-Aug-2017 16:24:46

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8293.D\F-8260 SOIL.rslt\spectra.d

Injection Date: 17-Oct-2017 08:39:30

Spectrum: Tune Spec :Scan 503(5.34) Bgrd 494( 5.28)

Base Peak: 95.00 Minimum % Base Peak: 0 Number of Points: 37

| m/z   | Υ    | m/z   | Υ    | m/z   | Υ     | m/z    | Υ     |
|-------|------|-------|------|-------|-------|--------|-------|
| 36.10 | 536  | 56.00 | 923  | 75.00 | 21720 | 96.00  | 3510  |
| 37.10 | 1617 | 57.00 | 1305 | 76.00 | 2173  | 140.90 | 715   |
| 38.00 | 1657 | 61.10 | 2150 | 79.00 | 738   | 143.00 | 463   |
| 39.20 | 621  | 62.00 | 2751 | 80.90 | 871   | 173.90 | 45248 |
| 44.10 | 118  | 63.00 | 1498 | 87.00 | 1826  | 175.00 | 3586  |
| 45.00 | 487  | 68.00 | 3928 | 88.10 | 1883  | 176.00 | 43200 |
| 47.00 | 581  | 69.10 | 3482 | 92.10 | 1479  | 177.00 | 2153  |
| 49.10 | 2294 | 72.10 | 457  | 93.00 | 2188  |        |       |
| 50.10 | 8525 | 73.10 | 1646 | 94.00 | 5795  |        |       |
| 51.10 | 2663 | 74.10 | 7505 | 95.00 | 49448 |        |       |

Report Date: 10-Oct-2017 15:07:35 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

**Target Compound Quantitation Report** 

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3040P.D

Lims ID: BFB

Client ID:

Sample Type: BFB

Inject. Date: 10-Oct-2017 15:02:30 ALS Bottle#: 2 Worklist Smp#: 3

Injection Vol: 1.0 uL Dil. Factor: 1.0000

Sample Info: BFB

Misc. Info.: 480-0066269-002

Operator ID: RF Instrument ID: HP5973P

Method: \ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P-8260H2O.m

Limit Group: MV - 8260C ICAL

Last Update:10-Oct-2017 15:07:35Calib Date:06-Oct-2017 20:35:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973P\20171006-66198.b\P30168.D

Column 1: ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK006

First Level Reviewer: farrellr Date: 10-Oct-2017 15:07:35

| Compound | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q | Response | Cal Amt<br>ug/L | OnCol Amt<br>ug/L | Flags |
|----------|-----|--------------|------------------|------------------|---|----------|-----------------|-------------------|-------|
|          |     |              |                  |                  |   |          |                 |                   |       |

\$ 21 BFB 95 7.627 7.627 0.000 0 118145 NR NR

QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Reagents:

BFB\_WRK\_00065 Amount Added: 1.00 Units: uL

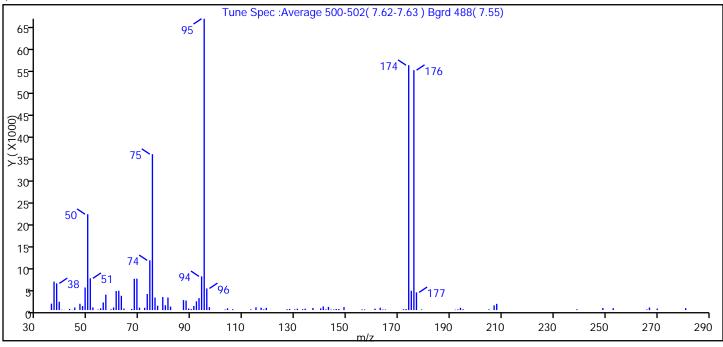
Chrom Revision: 2.2 16-Aug-2017 16:24:46 MS Tune Report Report Date: 10-Oct-2017 15:07:35

TestAmerica Buffalo

Data File: Injection Date: 10-Oct-2017 15:02:30 Instrument ID: HP5973P

Lims ID: **BFB** 

Client ID:


Operator ID: RF ALS Bottle#: 2 Worklist Smp#: 3

Injection Vol: 1.0 uL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL

Tune Method: BFB Method 8260

### \$ 21 BFB



| m/z | Ion Abundance Criteria                         | % Relative<br>Abundance |  |  |
|-----|------------------------------------------------|-------------------------|--|--|
| 95  | Base peak, 100% relative abundance             | 100.0                   |  |  |
| 50  | 15 to 40% of m/z 95                            | 32.9                    |  |  |
| 75  | 30 to 60% of m/z 95                            | 53.5                    |  |  |
| 96  | 5 to 9% of m/z 95                              | 7.4                     |  |  |
| 173 | Less than 2% of m/z 174                        | 0.4 (0.4)               |  |  |
| 174 | 50 to 120% of m/z 95                           | 84.0                    |  |  |
| 175 | 5 to 9% of m/z 174                             | 6.6 (7.9)               |  |  |
| 176 | Greater than 95% but less than 101% of m/z 174 | 82.3 (98.0)             |  |  |
| 177 | 5 to 9% of m/z 176                             | 6.1 (7.4)               |  |  |

Report Date: 10-Oct-2017 15:07:35 Chrom Revision: 2.2 16-Aug-2017 16:24:46

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3040P.D\P-8260H2O.rslt\spectra.d

Injection Date: 10-Oct-2017 15:02:30

Spectrum: Tune Spec :Average 500-502( 7.62-7.63 ) Bgrd 488( 7.55)

Base Peak: 95.00 Minimum % Base Peak: 0 Number of Points: 101

| m/z   | Υ     | m/z    | Υ     | m/z    | Υ   | m/z    | Υ     |
|-------|-------|--------|-------|--------|-----|--------|-------|
| 36.00 | 1460  | 68.00  | 7104  | 106.00 | 190 | 164.00 | 127   |
| 37.00 | 6480  | 69.00  | 7148  | 113.00 | 171 | 165.00 | 121   |
| 38.00 | 6066  | 70.00  | 555   | 115.00 | 628 | 172.00 | 174   |
| 39.00 | 1892  | 72.00  | 513   | 117.00 | 535 | 173.00 | 241   |
| 40.00 | 85    | 73.00  | 3655  | 118.00 | 163 | 174.00 | 55680 |
| 41.00 | 39    | 74.00  | 11301 | 119.00 | 506 | 175.00 | 4384  |
| 43.00 | 224   | 75.00  | 35456 | 127.00 | 183 | 176.00 | 54552 |
| 44.00 | 48    | 76.00  | 2843  | 128.00 | 259 | 177.00 | 4031  |
| 45.00 | 585   | 77.00  | 994   | 130.00 | 143 | 179.00 | 128   |
| 47.00 | 1432  | 79.00  | 2963  | 131.00 | 313 | 192.00 | 79    |
| 48.00 | 915   | 80.00  | 1099  | 133.00 | 190 | 193.00 | 158   |
| 49.00 | 5138  | 81.00  | 2852  | 134.00 | 302 | 194.00 | 520   |
| 50.00 | 21792 | 82.00  | 794   | 137.00 | 482 | 195.00 | 186   |
| 51.00 | 7226  | 87.00  | 2261  | 140.00 | 387 | 205.00 | 168   |
| 52.00 | 596   | 88.00  | 2161  | 141.00 | 813 | 207.00 | 1072  |
| 54.00 | 116   | 89.00  | 358   | 142.00 | 157 | 208.00 | 1413  |
| 55.00 | 388   | 90.00  | 212   | 143.00 | 720 | 239.00 | 181   |
| 56.00 | 1739  | 91.00  | 923   | 144.00 | 119 | 249.00 | 469   |
| 57.00 | 3515  | 92.00  | 1979  | 145.00 | 123 | 253.00 | 432   |
| 59.00 | 173   | 93.00  | 2727  | 146.00 | 243 | 266.00 | 146   |
| 60.00 | 588   | 94.00  | 7664  | 147.00 | 239 | 267.00 | 592   |
| 61.00 | 4334  | 95.00  | 66248 | 149.00 | 672 | 270.00 | 338   |
| 62.00 | 4392  | 96.00  | 4916  | 156.00 | 157 | 281.00 | 447   |
| 63.00 | 3249  | 97.00  | 670   | 157.00 | 127 |        |       |
| 64.00 | 343   | 103.00 | 106   | 161.00 | 317 |        |       |
| 67.00 | 259   | 104.00 | 403   | 163.00 | 535 |        |       |

Report Date: 18-Oct-2017 09:08:06 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

**Target Compound Quantitation Report** 

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\93252P.D

Lims ID: BFB

Client ID:

Sample Type: BFB

Inject. Date: 18-Oct-2017 09:04:30 ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 uL Dil. Factor: 1.0000

Sample Info: bfb

Misc. Info.: 480-0066487-002

Operator ID: RF/RB Instrument ID: HP5973P

Method: \\ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\P-8260H2O.m

Limit Group: MV - 8260C ICAL

Last Update:18-Oct-2017 09:08:05Calib Date:11-Oct-2017 00:40:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3056P.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK019

First Level Reviewer: farrellr Date: 18-Oct-2017 09:08:05

|   | Compound  | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q | Response | Cal Amt<br>ug/L | OnCol Amt<br>ug/L | Flags |
|---|-----------|-----|--------------|------------------|------------------|---|----------|-----------------|-------------------|-------|
| - | \$ 21 BFB | 95  | 7.627        | 7.627            | 0.000            | 0 | 134920   | NR              | NR                |       |

QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Reagents:

BFB\_WRK\_00065 Amount Added: 1.00 Units: uL

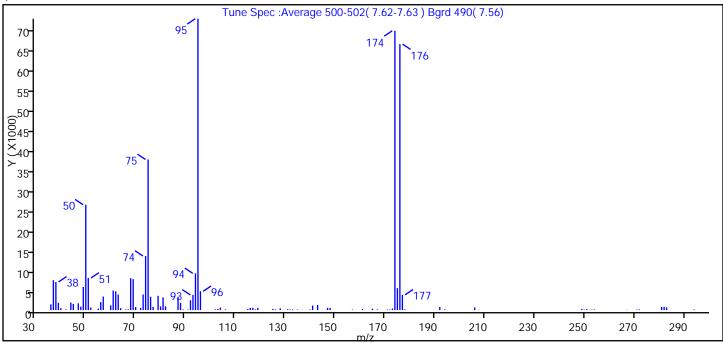
Chrom Revision: 2.2 16-Aug-2017 16:24:46 MS Tune Report Report Date: 18-Oct-2017 09:08:06

TestAmerica Buffalo

Data File: Injection Date: 18-Oct-2017 09:04:30 Instrument ID: HP5973P

Lims ID: **BFB** 

Client ID:


Operator ID: RF/RB ALS Bottle#: 2 Worklist Smp#: 2

1.0 uL Injection Vol: Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL

Tune Method: BFB Method 8260

### \$ 21 BFB



| m/z | Ion Abundance Criteria                         | % Relative<br>Abundance |
|-----|------------------------------------------------|-------------------------|
| 95  | Base peak, 100% relative abundance             | 100.0                   |
| 50  | 15 to 40% of m/z 95                            | 36.2                    |
| 75  | 30 to 60% of m/z 95                            | 51.7                    |
| 96  | 5 to 9% of m/z 95                              | 6.4                     |
| 173 | Less than 2% of m/z 174                        | 0.5 (0.6)               |
| 174 | 50 to 120% of m/z 95                           | 95.9                    |
| 175 | 5 to 9% of m/z 174                             | 7.5 (7.9)               |
| 176 | Greater than 95% but less than 101% of m/z 174 | 91.3 (95.2)             |
| 177 | 5 to 9% of m/z 176                             | 5.2 (5.7)               |

Report Date: 18-Oct-2017 09:08:06 Chrom Revision: 2.2 16-Aug-2017 16:24:46

Data File: \ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\93252P.D\P-8260H2O.rslt\spectra.d

Injection Date: 18-Oct-2017 09:04:30

Spectrum: Tune Spec :Average 500-502( 7.62-7.63 ) Bgrd 490( 7.56)

Base Peak: 95.00 Minimum % Base Peak: 0 Number of Points: 97

| m/z   | Υ     | m/z    | Υ     | m/z    | Υ    | m/z    | Υ     |
|-------|-------|--------|-------|--------|------|--------|-------|
| 36.00 | 1415  | 69.00  | 7674  | 115.00 | 238  | 174.00 | 69176 |
| 37.00 | 7409  | 70.00  | 746   | 116.00 | 522  | 175.00 | 5441  |
| 38.00 | 6975  | 72.00  | 544   | 117.00 | 576  | 176.00 | 65880 |
| 39.00 | 1796  | 73.00  | 3867  | 118.00 | 144  | 177.00 | 3773  |
| 40.00 | 478   | 74.00  | 13386 | 119.00 | 553  | 178.00 | 190   |
| 42.00 | 145   | 75.00  | 37304 | 125.00 | 280  | 192.00 | 746   |
| 44.00 | 1884  | 76.00  | 3283  | 126.00 | 164  | 193.00 | 42    |
| 45.00 | 1511  | 77.00  | 777   | 128.00 | 428  | 194.00 | 159   |
| 47.00 | 1669  | 79.00  | 3527  | 131.00 | 221  | 206.00 | 646   |
| 48.00 | 852   | 80.00  | 899   | 132.00 | 137  | 208.00 | 43    |
| 49.00 | 5719  | 81.00  | 3138  | 133.00 | 142  | 249.00 | 319   |
| 50.00 | 26088 | 82.00  | 930   | 135.00 | 122  | 250.00 | 122   |
| 51.00 | 7942  | 87.00  | 3257  | 137.00 | 43   | 251.00 | 212   |
| 52.00 | 636   | 88.00  | 1789  | 140.00 | 149  | 253.00 | 100   |
| 55.00 | 373   | 89.00  | 156   | 141.00 | 1124 | 254.00 | 142   |
| 56.00 | 1979  | 91.00  | 114   | 143.00 | 1259 | 267.00 | 72    |
| 57.00 | 3354  | 92.00  | 2430  | 147.00 | 569  | 271.00 | 118   |
| 60.00 | 1159  | 93.00  | 3745  | 148.00 | 498  | 272.00 | 170   |
| 61.00 | 4841  | 94.00  | 9087  | 157.00 | 123  | 281.00 | 747   |
| 62.00 | 4648  | 95.00  | 72160 | 161.00 | 242  | 282.00 | 785   |
| 63.00 | 3841  | 96.00  | 4646  | 165.00 | 350  | 283.00 | 669   |
| 64.00 | 465   | 102.00 | 155   | 167.00 | 146  | 294.00 | 131   |
| 66.00 | 119   | 103.00 | 265   | 171.00 | 129  |        |       |
| 67.00 | 153   | 104.00 | 619   | 172.00 | 117  |        |       |
| 68.00 | 7895  | 106.00 | 161   | 173.00 | 386  |        |       |

### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1               |  |  |  |  |  |  |
|-------------------------------|-------------------------------------|--|--|--|--|--|--|
| SDG No.:                      |                                     |  |  |  |  |  |  |
| Client Sample ID:             | Lab Sample ID: MB 480-382014/2-A    |  |  |  |  |  |  |
| Matrix: Solid                 | Lab File ID: F8273.D                |  |  |  |  |  |  |
| Analysis Method: 8260C        | Date Collected:                     |  |  |  |  |  |  |
| Sample wt/vol: 5(g)           | Date Analyzed: 10/16/2017 13:08     |  |  |  |  |  |  |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |  |  |  |  |  |  |
| Soil Extract Vol.:            | GC Column: ZB-624 (30) ID: 0.25(mm) |  |  |  |  |  |  |
| % Moisture:                   | Level: (low/med) Low                |  |  |  |  |  |  |
| Analysis Batch No.: 381944    | Units: ນα/Κα                        |  |  |  |  |  |  |

| CAS NO.    | COMPOUND NAME                          | RESULT | Q | RL  | MDL  |
|------------|----------------------------------------|--------|---|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                  | ND     |   | 5.0 | 0.36 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane              | ND     |   | 5.0 | 0.81 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan e | ND     |   | 5.0 | 1.1  |
| 79-00-5    | 1,1,2-Trichloroethane                  | ND     |   | 5.0 | 0.65 |
| 75-34-3    | 1,1-Dichloroethane                     | ND     |   | 5.0 | 0.61 |
| 75-35-4    | 1,1-Dichloroethene                     | ND     |   | 5.0 | 0.61 |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | ND     |   | 5.0 | 0.30 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane            | ND     |   | 5.0 | 2.5  |
| 106-93-4   | 1,2-Dibromoethane                      | ND     |   | 5.0 | 0.64 |
| 95-50-1    | 1,2-Dichlorobenzene                    | ND     |   | 5.0 | 0.39 |
| 107-06-2   | 1,2-Dichloroethane                     | ND     |   | 5.0 | 0.25 |
| 78-87-5    | 1,2-Dichloropropane                    | ND     |   | 5.0 | 2.5  |
| 541-73-1   | 1,3-Dichlorobenzene                    | ND     |   | 5.0 | 0.26 |
| 106-46-7   | 1,4-Dichlorobenzene                    | ND     |   | 5.0 | 0.70 |
| 78-93-3    | 2-Butanone (MEK)                       | ND     |   | 25  | 1.8  |
| 591-78-6   | 2-Hexanone                             | ND     |   | 25  | 2.5  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)            | ND     |   | 25  | 1.6  |
| 67-64-1    | Acetone                                | ND     |   | 25  | 4.2  |
| 71-43-2    | Benzene                                | ND     |   | 5.0 | 0.25 |
| 75-27-4    | Bromodichloromethane                   | ND     |   | 5.0 | 0.67 |
| 75-25-2    | Bromoform                              | ND     |   | 5.0 | 2.5  |
| 74-83-9    | Bromomethane                           | ND     |   | 5.0 | 0.45 |
| 75-15-0    | Carbon disulfide                       | ND     |   | 5.0 | 2.5  |
| 56-23-5    | Carbon tetrachloride                   | ND     |   | 5.0 | 0.48 |
| 108-90-7   | Chlorobenzene                          | ND     |   | 5.0 | 0.66 |
| 75-00-3    | Chloroethane                           | ND     |   | 5.0 | 1.1  |
| 67-66-3    | Chloroform                             | ND     |   | 5.0 | 0.31 |
| 74-87-3    | Chloromethane                          | ND     |   | 5.0 | 0.30 |
| 156-59-2   | cis-1,2-Dichloroethene                 | ND     |   | 5.0 | 0.64 |
| 10061-01-5 | cis-1,3-Dichloropropene                | ND     |   | 5.0 | 0.72 |
| 110-82-7   | Cyclohexane                            | ND     |   | 5.0 | 0.70 |
| 124-48-1   | Dibromochloromethane                   | ND     |   | 5.0 | 0.64 |
| 75-71-8    | Dichlorodifluoromethane                | ND     |   | 5.0 | 0.41 |
| 100-41-4   | Ethylbenzene                           | ND     |   | 5.0 | 0.35 |
| 98-82-8    | Isopropylbenzene                       | ND     |   | 5.0 | 0.75 |

## FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1             |     |  |  |  |  |
|-------------------------------|-----------------------------------|-----|--|--|--|--|
| SDG No.:                      |                                   |     |  |  |  |  |
| Client Sample ID:             | Lab Sample ID: MB 480-382014/2-A  |     |  |  |  |  |
| Matrix: Solid                 | Lab File ID: F8273.D              |     |  |  |  |  |
| Analysis Method: 8260C        | Date Collected:                   |     |  |  |  |  |
| Sample wt/vol: 5(g)           | Date Analyzed: 10/16/2017 13:08   |     |  |  |  |  |
| Soil Aliquot Vol:             | Dilution Factor: 1                |     |  |  |  |  |
| Soil Extract Vol.:            | GC Column: ZB-624 (30) ID: 0.25(m | ım) |  |  |  |  |
| % Moisture:                   | Level: (low/med) Low              |     |  |  |  |  |
| Analysis Batch No.: 381944    | Units: ug/Kg                      |     |  |  |  |  |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL  |
|------------|---------------------------|--------|---|-----|------|
| 79-20-9    | Methyl acetate            | ND     |   | 25  | 3.0  |
| 1634-04-4  | Methyl tert-butyl ether   | ND     |   | 5.0 | 0.49 |
| 108-87-2   | Methylcyclohexane         | ND     |   | 5.0 | 0.76 |
| 75-09-2    | Methylene Chloride        | ND     |   | 5.0 | 2.3  |
| 100-42-5   | Styrene                   | ND     |   | 5.0 | 0.25 |
| 127-18-4   | Tetrachloroethene         | ND     |   | 5.0 | 0.67 |
| 108-88-3   | Toluene                   | ND     |   | 5.0 | 0.38 |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |   | 5.0 | 0.52 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 5.0 | 2.2  |
| 79-01-6    | Trichloroethene           | ND     |   | 5.0 | 1.1  |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 5.0 | 0.47 |
| 75-01-4    | Vinyl chloride            | ND     |   | 5.0 | 0.61 |
| 1330-20-7  | Xylenes, Total            | ND     |   | 10  | 0.84 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 100  |   | 64-126 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 104  |   | 72-126 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 108  |   | 60-140 |
| 2037-26-5  | Toluene-d8 (Surr)            | 99   |   | 71-125 |

Report Date: 16-Oct-2017 13:28:48 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8273.D

Lims ID: MB 480-382014/2-A

Client ID:

Sample Type: MB

Inject. Date: 16-Oct-2017 13:08:30 ALS Bottle#: 5 Worklist Smp#: 8

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: MB

Misc. Info.: 480-0066422-008

Operator ID: CDC Instrument ID: HP5973F

Method: \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update:16-Oct-2017 11:17:40Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK011

First Level Reviewer: cwiklinc Date: 16-Oct-2017 13:28:47

| First Level Reviewer: cwiklinc        |     |        | D.     | ate:      |    | 16-Oct-201 | 7 13:28:47 |           |        |
|---------------------------------------|-----|--------|--------|-----------|----|------------|------------|-----------|--------|
|                                       |     | RT     | Adj RT | DIt RT    |    |            | Cal Amt    | OnCol Amt |        |
| Compound                              | Sig | (min.) | (min.) | (min.)    | Q  | Response   | ug/kg      | ug/kg     | Flags  |
|                                       |     |        |        |           |    |            |            |           | _      |
| * 153 Fluorobenzene (IS)              | 70  | 5.197  | 5.191  | 0.006     | 99 | 266370     | 50.0       | 50.0      |        |
| * 2 Chlorobenzene-d5                  | 82  | 7.989  | 7.989  | 0.000     | 86 | 566057     | 50.0       | 50.0      |        |
| * 3 1,4-Dichlorobenzene-d4            | 152 | 10.356 | 10.356 | 0.000     | 94 | 606218     | 50.0       | 50.0      |        |
| \$ 154 Dibromofluoromethane (Surr     |     | 4.674  | 4.674  | 0.000     | 94 | 357884     | 50.0       | 54.2      |        |
| \$ 41,2-Dichloroethane-d4 (Sur        | 67  | 4.960  | 4.953  | 0.007     | 0  | 212931     | 50.0       | 50.2      |        |
| \$ 5 Toluene-d8 (Surr)                | 98  | 6.559  | 6.559  | 0.000     | 93 | 1378656    | 50.0       | 49.4      |        |
| \$ 6 4-Bromofluorobenzene (Surr       | 174 | 9.218  | 9.218  | 0.000     | 94 | 476330     | 50.0       | 52.2      |        |
| 10 Dichlorodifluoromethane            | 85  |        | 1.814  |           |    |            |            | ND        |        |
| 11 Chlorodifluoromethane              | 51  |        | 1.833  |           |    |            |            | ND        |        |
| 12 Chloromethane                      | 50  |        | 1.997  |           |    |            |            | ND        |        |
| 151 Butadiene                         | 54  |        | 2.088  |           |    |            |            | ND        |        |
| 13 Vinyl chloride                     | 62  |        | 2.088  |           |    |            |            | ND        |        |
| 14 Bromomethane                       | 94  |        | 2.362  |           |    |            |            | ND        |        |
| 15 Chloroethane                       | 64  |        | 2.410  |           |    |            |            | ND        |        |
| 16 Dichlorofluoromethane              | 67  |        | 2.575  |           |    |            |            | ND        |        |
| 17 Trichlorofluoromethane             | 101 |        | 2.611  |           |    |            |            | ND        |        |
| 148 Ethanol                           | 45  |        | 2.745  |           |    |            |            | ND        |        |
| 18 Ethyl ether                        | 59  |        | 2.763  |           |    |            |            | ND        |        |
| 19 Propene oxide                      | 58  |        | 2.861  |           |    |            |            | ND        |        |
| 20 Acrolein                           | 56  |        | 2.915  |           |    |            |            | ND        |        |
| 21 1,1,2-Trichloro-1,2,2-trif         | 101 |        | 2.958  |           |    |            |            | ND        |        |
| 22 1,1-Dichloroethene                 | 96  |        | 2.976  |           |    |            |            | ND        |        |
| 23 Acetone                            | 43  | 3.043  | 3.025  | 0.018     | 64 | 3794       |            | 1.37      |        |
| 24 Isopropyl alcohol                  | 45  |        | 3.122  |           |    |            |            | ND        |        |
| 25 Iodomethane                        | 142 |        | 3.128  |           |    |            |            | ND        |        |
| 26 Carbon disulfide                   | 76  |        | 3.177  |           |    |            |            | ND        |        |
| 27 Methyl acetate                     | 43  |        | 3.238  |           |    |            |            | ND        |        |
| 28 3-Chloro-1-propene                 | 41  |        | 3.238  |           |    |            |            | ND        |        |
| 29 Acetonitrile                       | 40  |        | 3.281  |           |    |            |            | ND        |        |
| 31 2-Methyl-2-propanol                | 59  |        | 3.402  |           |    |            |            | ND        |        |
| 32 Methyl tert-butyl ether            | 73  |        | 3.499  |           |    |            |            | ND        |        |
| , , , , , , , , , , , , , , , , , , , |     |        | -      | 0.40 (0.4 |    |            |            | 40/0      | 4/0047 |

Report Date: 16-Oct-2017 13:28:48

Data File:

| Data File: \\Cnromina\B                                | uiiaio\(  | nromData\HP597   |                  | 10-00 | )422.D\F82/3.L |                  |                    |       |
|--------------------------------------------------------|-----------|------------------|------------------|-------|----------------|------------------|--------------------|-------|
| Compound                                               | Sig       | RT Adj RT (min.) | Dlt RT<br>(min.) | Q     | Response       | Cal Amt<br>ug/kg | OnCol Amt<br>ug/kg | Flags |
| 34 trans-1,2-Dichloroethene                            | 96        | 3.530            |                  |       |                |                  | ND                 |       |
| 33 Acrylonitrile                                       | 53        | 3.548            |                  |       |                |                  | ND                 |       |
| 134 Halothane                                          | 117       | 3.816            |                  |       |                |                  | ND                 |       |
| 36 Isopropyl ether                                     | 45        | 3.822            |                  |       |                |                  | ND                 |       |
| 37 Vinyl acetate                                       | 43        | 3.846            |                  |       |                |                  | ND                 |       |
| 39 1,1-Dichloroethane                                  | 63        | 3.858            |                  |       |                |                  | ND                 |       |
| 38 1,1-Dimethoxyethane                                 | 75        | 3.895            |                  |       |                |                  | ND                 |       |
| 40 2-Chloro-1,3-butadiene                              | 53        | 3.913            |                  |       |                |                  | ND                 |       |
| 41 Tert-butyl ethyl ether                              | 59        | 4.096            |                  |       |                |                  | ND                 |       |
| 43 2-Butanone (MEK)                                    | 43        | 4.290            |                  |       |                |                  | ND                 |       |
| 44 2,2-Dichloropropane                                 | 77        | 4.290            |                  |       |                |                  | ND                 |       |
| 42 Ethyl acetate                                       | 43        | 4.290            |                  |       |                |                  | ND                 |       |
| 45 cis-1,2-Dichloroethene                              | 96        | 4.302            |                  |       |                |                  | ND                 |       |
| 46 Propionitrile                                       | 54        | 4.388            |                  |       |                |                  | ND                 |       |
| 47 Methacrylonitrile                                   | 41        | 4.479            |                  |       |                |                  | ND                 |       |
| 48 Chlorobromomethane                                  | 128       | 4.503            |                  |       |                |                  | ND                 |       |
| 49 Tetrahydrofuran                                     | 42        | 4.528            |                  |       |                |                  | ND                 |       |
| 50 Chloroform                                          | 83        | 4.540            |                  |       |                |                  | ND                 |       |
| 51 1,1,1-Trichloroethane                               | 97        | 4.680            |                  |       |                |                  | ND                 |       |
| 52 Cyclohexane                                         | 56        | 4.710            |                  |       |                |                  | ND                 |       |
| 54 1,1-Dichloropropene                                 | 75        | 4.715            |                  |       |                |                  | ND                 |       |
| 55 Carbon tetrachloride                                | 117       | 4.793            |                  |       |                |                  | ND                 |       |
| 53 Isobutyl alcohol                                    | 43        | 4.868            |                  |       |                |                  | ND                 |       |
| 147 t-Amyl alcohol                                     | 59        | 4.941            |                  |       |                |                  | ND                 |       |
| 152 Isooctane                                          | 57        | 4.954            |                  |       |                |                  | ND                 |       |
| 57 Benzene                                             | 78        | 4.978            |                  |       |                |                  | ND                 |       |
|                                                        | 73        | 5.002            |                  |       |                |                  | ND                 |       |
| 56 Tert-amyl methyl ether                              | 73<br>62  | 5.014            |                  |       |                |                  | ND                 |       |
| 58 1,2-Dichloroethane                                  | 62<br>43  | 5.014<br>5.075   |                  |       |                |                  | ND<br>ND           |       |
| 59 n-Heptane                                           | 43<br>114 | 5.258            |                  |       |                |                  | ND                 |       |
| 1 1,4-Difluorobenzene<br>136 2,4,4-Trimethyl-1-pentene | 55        | 5.385            |                  |       |                |                  | ND<br>ND           |       |
| <b>9</b> .                                             | 56        | 5.410            |                  |       |                |                  |                    |       |
| 60 n-Butanol                                           |           |                  |                  |       |                |                  | ND                 |       |
| 62 Trichloroethene                                     | 95<br>55  | 5.495            |                  |       |                |                  | ND                 |       |
| 137 Ethyl acrylate                                     | 55<br>07  | 5.568            |                  |       |                |                  | ND                 |       |
| 135 2,4,4-Trimethyl-2-pentene                          | 97        | 5.568            |                  |       |                |                  | ND                 |       |
| 64 Methylcyclohexane                                   | 83        | 5.629            |                  |       |                |                  | ND                 |       |
| 65 1,2-Dichloropropane                                 | 63        | 5.714            |                  |       |                |                  | ND                 |       |
| 63 Methyl methacrylate                                 | 41        | 5.732            |                  |       |                |                  | ND                 |       |
| 66 1,4-Dioxane                                         | 88        | 5.823            |                  |       |                |                  | ND                 |       |
| 67 Dibromomethane                                      | 93        | 5.842            |                  |       |                |                  | ND                 |       |
| 68 Dichlorobromomethane                                | 83        | 5.951            |                  |       |                |                  | ND                 |       |
| 69 2-Chloroethyl vinyl ether                           | 63        | 6.164            |                  |       |                |                  | ND                 |       |
| 70 2-Nitropropane                                      | 43        | 6.164            |                  |       |                |                  | ND                 |       |
| 71 Epichlorohydrin                                     | 57        | 6.274            |                  |       |                |                  | ND                 |       |
| 72 cis-1,3-Dichloropropene                             | 75        | 6.328            |                  |       |                |                  | ND                 |       |
| 73 4-Methyl-2-pentanone (MIBK                          | 43        | 6.432            |                  |       |                |                  | ND                 |       |
| 74 Toluene                                             | 92        | 6.620            |                  |       |                |                  | ND                 |       |
| 76 2-Methylthiophene                                   | 97        | 6.754            |                  |       |                |                  | ND                 |       |
| 75 Ethyl methacrylate                                  | 69        | 6.845            |                  |       |                |                  | ND                 |       |
| 77 trans-1,3-Dichloropropene                           | 75        | 6.845            |                  |       |                |                  | ND                 |       |
| 78 3-Methylthiophene                                   | 97        | 6.906            |                  |       |                |                  | ND                 |       |
| 79 1,1,2-Trichloroethane                               | 83        | 7.040            |                  |       |                |                  | ND                 |       |
|                                                        |           |                  |                  |       |                |                  |                    |       |

Report Date: 16-Oct-2017 13:28:48

Data File:

| Data File. (CITOTIIVA)B          | analo\ |              |                  |                  | 10-00 | 1422.D\F6273.L |                  | On Col Arest       |       |
|----------------------------------|--------|--------------|------------------|------------------|-------|----------------|------------------|--------------------|-------|
| Compound                         | Sig    | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q     | Response       | Cal Amt<br>ug/kg | OnCol Amt<br>ug/kg | Flags |
| 81 Tetrachloroethene             | 166    | 7.137        | 7.137            | 0.000            | 95    | 4231           |                  | 0.4895             |       |
| 82 1,3-Dichloropropane           | 76     | 7.137        | 7.137            | 0.000            | 73    | 4231           |                  | 0.4073<br>ND       |       |
| 80 2-Hexanone                    | 43     |              | 7.204            |                  |       |                |                  | ND                 |       |
| 155 n-Butyl acetate              | 43     |              | 7.223            |                  |       |                |                  |                    |       |
| 83 Chlorodibromomethane          | 129    |              | 7.442            |                  |       |                |                  | ND<br>ND           |       |
| 84 Ethylene Dibromide            | 107    |              | 7.569            |                  |       |                |                  | ND                 |       |
| 146 1-Chlorohexane               | 55     |              | 7.922            |                  |       |                |                  | ND                 |       |
| 85 3-Chlorobenzotrifluoride      | 180    |              | 7.928            |                  |       |                |                  | ND                 |       |
| 86 4-Chlorobenzotrifluoride      | 180    |              | 7.983            |                  |       |                |                  | ND                 |       |
| 87 Chlorobenzene                 | 112    |              | 8.020            |                  |       |                |                  | ND                 |       |
| 88 Ethylbenzene                  | 91     |              | 8.086            |                  |       |                |                  | ND                 |       |
| 89 1,1,1,2-Tetrachloroethane     | 131    |              | 8.099            |                  |       |                |                  | ND                 |       |
| 90 m-Xylene & p-Xylene           | 106    |              | 8.202            |                  |       |                |                  | ND                 |       |
| 91 o-Xylene                      | 106    |              | 8.628            |                  |       |                |                  | ND                 |       |
| 93 2-Chlorobenzotrifluoride      | 180    |              | 8.914            |                  |       |                |                  | ND                 |       |
| 95 Bromoform                     | 173    |              | 8.920            |                  |       |                |                  | ND                 |       |
| 94 Isopropylbenzene              | 105    |              | 8.999            |                  |       |                |                  | ND                 |       |
| 96 Cyclohexanone                 | 55     |              | 9.200            |                  |       |                |                  | ND                 |       |
| 97 1,1,2,2-Tetrachloroethane     | 83     |              | 9.388            |                  |       |                |                  | ND                 |       |
| 101 Bromobenzene                 | 156    |              | 9.388            |                  |       |                |                  | ND                 |       |
| 99 N-Propylbenzene               | 91     |              | 9.437            |                  |       |                |                  | ND                 |       |
| 98 trans-1,4-Dichloro-2-buten    | 53     |              | 9.437            |                  |       |                |                  | ND                 |       |
| 100 1,2,3-Trichloropropane       | 110    |              | 9.443            |                  |       |                |                  | ND                 |       |
| 103 2-Chlorotoluene              | 126    |              | 9.565            |                  |       |                |                  | ND                 |       |
| 102 1,3,5-Trimethylbenzene       | 105    |              | 9.607            |                  |       |                |                  | ND                 |       |
| 104 3-Chlorotoluene              | 126    |              | 9.626            |                  |       |                |                  | ND                 |       |
| 105 4-Chlorotoluene              | 126    |              | 9.668            |                  |       |                |                  | ND                 |       |
| 106 tert-Butylbenzene            | 134    |              | 9.930            |                  |       |                |                  | ND                 |       |
| 107 1,2,4-Trimethylbenzene       | 105    |              | 9.985            |                  |       |                |                  | ND                 |       |
| 108 Pentachloroethane            | 167    |              | 10.009           |                  |       |                |                  | ND                 |       |
| 109 sec-Butylbenzene             | 105    |              | 10.143           |                  |       |                |                  | ND                 |       |
| 110 4-Isopropyltoluene           | 119    |              | 10.143           |                  |       |                |                  | ND                 |       |
| 111 1,3-Dichlorobenzene          | 146    |              | 10.270           |                  |       |                |                  | ND                 |       |
| 113 1,4-Dichlorobenzene          | 146    |              | 10.380           |                  |       |                |                  | ND                 |       |
| 112 1,2,3-Trimethylbenzene       | 105    |              | 10.398           |                  |       |                |                  | ND                 |       |
| 150 Benzyl chloride              | 126    |              | 10.508           |                  |       |                |                  | ND                 |       |
| 115 n-Butylbenzene               | 91     |              | 10.508           |                  |       |                |                  | ND                 |       |
| 116 1,2-Dichlorobenzene          | 146    |              | 10.733           |                  |       |                |                  | ND                 |       |
|                                  | 75     |              | 10.733           |                  |       |                |                  | ND                 |       |
| 117 1,2-Dibromo-3-Chloropropan   |        |              | 11.548           |                  |       |                |                  |                    |       |
| 118 1,3,5-Trichlorobenzene       | 180    |              |                  |                  |       |                |                  | ND                 |       |
| 119 1,2,4-Trichlorobenzene       | 180    |              | 12.053           |                  |       |                |                  | ND                 |       |
| 120 Hexachlorobutadiene          | 225    |              | 12.144           |                  |       |                |                  | ND                 |       |
| 121 Naphthalene                  | 128    |              | 12.266           |                  |       |                |                  | ND                 |       |
| 122 1,2,3-Trichlorobenzene       | 180    |              | 12.473           |                  |       |                |                  | ND                 |       |
| 149 2-Methylnaphthalene          | 142    |              | 13.276           |                  |       |                |                  | ND                 |       |
| 156 1-Chloro-1-fluoroethane TI   | 1      |              | 0.000            |                  |       |                |                  | ND                 |       |
| 145 Ethylene oxide TIC           | 1      |              | 0.000            |                  |       |                |                  | ND                 |       |
| 143 Propene oxide TIC            | 1      |              | 0.000            |                  |       |                |                  | ND                 |       |
| 144 1-Bromopropane TIC           | 1      |              | 0.000            |                  |       |                |                  | ND                 |       |
| S 125 1,2-Dichloroethene, Total  | 1      |              | 30.000           |                  |       |                |                  | ND                 |       |
| S 126 1,3-Dichloropropene, Total | 1      |              | 30.000           |                  |       |                |                  | ND                 |       |
| S 123 Total BTEX                 | 1      |              | 30.000           |                  |       |                |                  | ND                 |       |

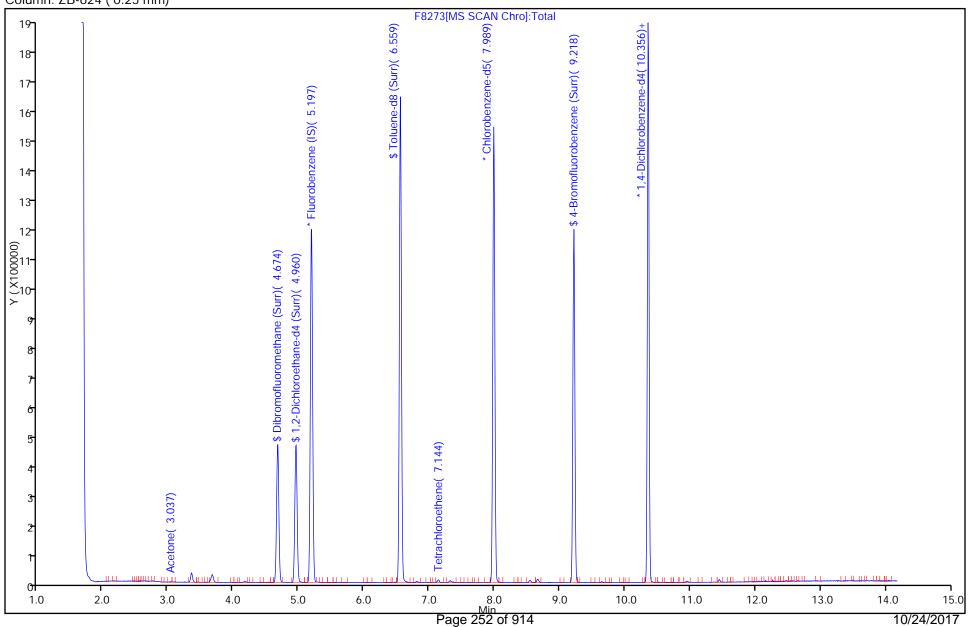
Report Date: 16-Oct-2017 13:28:48
Data File: \ChromNA\Buffa ct-2017 13:28:48 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8273.D

| Data File: \\Chromiva\B          | ulialo | Chrombata    | 1/P597           | 3F\2U1/1U        | 10-00 | 0422.D\F82/3.L | )                |                    |       |  |
|----------------------------------|--------|--------------|------------------|------------------|-------|----------------|------------------|--------------------|-------|--|
| Compound                         | Sig    | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q     | Response       | Cal Amt<br>ug/kg | OnCol Amt<br>ug/kg | Flags |  |
|                                  |        |              |                  |                  |       |                |                  |                    |       |  |
| S 124 Xylenes, Total             | 1      |              | 30.000           |                  |       |                |                  | ND                 |       |  |
| T 7 Ethylene oxide               | 1      |              | 0.000            |                  |       |                |                  | ND                 |       |  |
| T 138 Aziridine TIC              | 1      |              | 0.000            |                  |       |                |                  | ND                 |       |  |
| T 130 Hexachloroethane           | 117    |              | 0.000            |                  |       |                |                  | ND                 |       |  |
| T 140 bis(chloromethyl)ether TIC | 1      |              | 0.000            |                  |       |                |                  | ND                 |       |  |
| T 132 Methyl acrylate            | 1      |              | 0.000            |                  |       |                |                  | ND                 |       |  |
| T 141 Pentachloroethane TIC      | 1      |              | 0.000            |                  |       |                | ND               |                    |       |  |
| T 142 1-Bromopropane             | 1      |              | 0.000            |                  |       |                | ND               |                    |       |  |
| T 133 cis-1,4-Dichloro-2-butene  | 88     |              | 0.000            |                  |       |                |                  | ND                 |       |  |
| T 131 Nitrobenzene               | 77     |              | 0.000            |                  |       |                |                  | ND                 |       |  |
| T 139 Bromoethane TIC            | 1      |              | 0.000            |                  |       |                |                  | ND                 |       |  |
| T 9 bis(2-chloromethyl)ether T   | 1      |              | 0.000            |                  |       |                |                  | ND                 |       |  |
| T 129 tert-amyl alcohol TIC      | 59     |              | 0.000            |                  |       |                |                  | ND                 |       |  |
| T 128 Hexachloroethane TIC       | 1      |              | 0.000            |                  |       |                |                  | ND                 |       |  |
| T 127 Ethanol TIC                | 45     |              | 0.000            |                  |       |                |                  | ND                 |       |  |
| Reagents:                        |        |              |                  |                  |       |                |                  |                    |       |  |
| F 8260 SURR_00263                |        | Amount A     | Added:           | 1.00             | ι     | Jnits: uL      | Run Reage        | nt                 |       |  |
| F 8260 IS_00580                  |        | Amount A     | Added:           | 1.00             | l     | Jnits: uL      | Run Reage        | nt                 |       |  |

Report Date: 16-Oct-2017 13:28:48 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8273.D Injection Date: 16-Oct-2017 13:08:30 Instrument ID: HP5973F


Lims ID: MB 480-382014/2-A

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

CDC

8

5

### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1               |  |  |  |  |  |  |
|-------------------------------|-------------------------------------|--|--|--|--|--|--|
| SDG No.:                      |                                     |  |  |  |  |  |  |
| Client Sample ID:             | Lab Sample ID: MB 480-382187/2-A    |  |  |  |  |  |  |
| Matrix: Solid                 | Lab File ID: F8298.D                |  |  |  |  |  |  |
| Analysis Method: 8260C        | Date Collected:                     |  |  |  |  |  |  |
| Sample wt/vol: 5(g)           | Date Analyzed: 10/17/2017 10:58     |  |  |  |  |  |  |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |  |  |  |  |  |  |
| Soil Extract Vol.:            | GC Column: ZB-624 (30) ID: 0.25(mm) |  |  |  |  |  |  |
| % Moisture:                   | Level: (low/med) Low                |  |  |  |  |  |  |
| Analysis Batch No.: 382134    | Units: ug/Kg                        |  |  |  |  |  |  |

| CAS NO.    | COMPOUND NAME                          | RESULT | Q | RL  | MDL  |
|------------|----------------------------------------|--------|---|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                  | ND     |   | 5.0 | 0.36 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane              | ND     |   | 5.0 | 0.81 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan e | ND     |   | 5.0 | 1.1  |
| 79-00-5    | 1,1,2-Trichloroethane                  | ND     |   | 5.0 | 0.65 |
| 75-34-3    | 1,1-Dichloroethane                     | ND     |   | 5.0 | 0.61 |
| 75-35-4    | 1,1-Dichloroethene                     | ND     |   | 5.0 | 0.61 |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | ND     |   | 5.0 | 0.30 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane            | ND     |   | 5.0 | 2.5  |
| 106-93-4   | 1,2-Dibromoethane                      | ND     |   | 5.0 | 0.64 |
| 95-50-1    | 1,2-Dichlorobenzene                    | ND     |   | 5.0 | 0.39 |
| 107-06-2   | 1,2-Dichloroethane                     | ND     |   | 5.0 | 0.25 |
| 78-87-5    | 1,2-Dichloropropane                    | ND     |   | 5.0 | 2.5  |
| 541-73-1   | 1,3-Dichlorobenzene                    | ND     |   | 5.0 | 0.26 |
| 106-46-7   | 1,4-Dichlorobenzene                    | ND     |   | 5.0 | 0.70 |
| 78-93-3    | 2-Butanone (MEK)                       | ND     |   | 25  | 1.8  |
| 591-78-6   | 2-Hexanone                             | ND     |   | 25  | 2.5  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)            | ND     |   | 25  | 1.6  |
| 67-64-1    | Acetone                                | ND     |   | 25  | 4.2  |
| 71-43-2    | Benzene                                | ND     |   | 5.0 | 0.25 |
| 75-27-4    | Bromodichloromethane                   | ND     |   | 5.0 | 0.67 |
| 75-25-2    | Bromoform                              | ND     |   | 5.0 | 2.5  |
| 74-83-9    | Bromomethane                           | ND     |   | 5.0 | 0.45 |
| 75-15-0    | Carbon disulfide                       | ND     |   | 5.0 | 2.5  |
| 56-23-5    | Carbon tetrachloride                   | ND     |   | 5.0 | 0.48 |
| 108-90-7   | Chlorobenzene                          | ND     |   | 5.0 | 0.66 |
| 75-00-3    | Chloroethane                           | ND     |   | 5.0 | 1.1  |
| 67-66-3    | Chloroform                             | ND     |   | 5.0 | 0.31 |
| 74-87-3    | Chloromethane                          | ND     |   | 5.0 | 0.30 |
| 156-59-2   | cis-1,2-Dichloroethene                 | ND     |   | 5.0 | 0.64 |
| 10061-01-5 | cis-1,3-Dichloropropene                | ND     |   | 5.0 | 0.72 |
| 110-82-7   | Cyclohexane                            | ND     |   | 5.0 | 0.70 |
| 124-48-1   | Dibromochloromethane                   | ND     |   | 5.0 | 0.64 |
| 75-71-8    | Dichlorodifluoromethane                | ND     |   | 5.0 | 0.41 |
| 100-41-4   | Ethylbenzene                           | ND     |   | 5.0 | 0.35 |
| 98-82-8    | Isopropylbenzene                       | ND     |   | 5.0 | 0.75 |

## FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: <u>480-125579-1</u>        |  |  |  |  |  |  |
|-------------------------------|-------------------------------------|--|--|--|--|--|--|
| SDG No.:                      |                                     |  |  |  |  |  |  |
| Client Sample ID:             | Lab Sample ID: MB 480-382187/2-A    |  |  |  |  |  |  |
| Matrix: Solid                 | Lab File ID: F8298.D                |  |  |  |  |  |  |
| Analysis Method: 8260C        | Date Collected:                     |  |  |  |  |  |  |
| Sample wt/vol: 5(g)           | Date Analyzed: 10/17/2017 10:58     |  |  |  |  |  |  |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |  |  |  |  |  |  |
| Soil Extract Vol.:            | GC Column: ZB-624 (30) ID: 0.25(mm) |  |  |  |  |  |  |
| % Moisture:                   | Level: (low/med) Low                |  |  |  |  |  |  |
| Analysis Batch No.: 382134    | <br>Units: ug/Kg                    |  |  |  |  |  |  |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL  |
|------------|---------------------------|--------|---|-----|------|
| 79-20-9    | Methyl acetate            | ND     |   | 25  | 3.0  |
| 1634-04-4  | Methyl tert-butyl ether   | ND     |   | 5.0 | 0.49 |
| 108-87-2   | Methylcyclohexane         | ND     |   | 5.0 | 0.76 |
| 75-09-2    | Methylene Chloride        | ND     |   | 5.0 | 2.3  |
| 100-42-5   | Styrene                   | ND     |   | 5.0 | 0.25 |
| 127-18-4   | Tetrachloroethene         | ND     |   | 5.0 | 0.67 |
| 108-88-3   | Toluene                   | ND     |   | 5.0 | 0.38 |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |   | 5.0 | 0.52 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 5.0 | 2.2  |
| 79-01-6    | Trichloroethene           | ND     |   | 5.0 | 1.1  |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 5.0 | 0.47 |
| 75-01-4    | Vinyl chloride            | ND     |   | 5.0 | 0.61 |
| 1330-20-7  | Xylenes, Total            | ND     |   | 10  | 0.84 |
|            |                           |        |   |     |      |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 101  |   | 64-126 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 106  |   | 72-126 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 102  |   | 60-140 |
| 2037-26-5  | Toluene-d8 (Surr)            | 101  |   | 71-125 |

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Report Date: 17-Oct-2017 12:45:14

TestAmerica Buffalo

**Target Compound Quantitation Report** 

Data File: 

Lims ID: MB 480-382187/2-A

Client ID:

Sample Type: MB

Inject. Date: 17-Oct-2017 10:58:30 ALS Bottle#: 5 Worklist Smp#: 7

Purge Vol: Dil. Factor: 5.000 mL 1.0000

Sample Info: mb

Misc. Info.: 480-0066449-007

Operator ID: CDC Instrument ID: HP5973F

Method: \\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update: 17-Oct-2017 12:42:19 Calib Date: 29-Sep-2017 21:59:30 Integrator: **RTE** ID Type: **Deconvolution ID** Quant By: Quant Method: Internal Standard **Initial Calibration** Last ICal File:

Column 1: ZB-624 (0.25 mm) Det: MS SCAN

Process Host: XAWRK026

21.12. 0047404540

| First Level Reviewer: cwiklinc                                                       |           |                | D              | ate:   |          | 17-Oct-201 | 7 12:45:12 |              |       |
|--------------------------------------------------------------------------------------|-----------|----------------|----------------|--------|----------|------------|------------|--------------|-------|
|                                                                                      |           | RT             | Adj RT         | Dlt RT |          |            | Cal Amt    | OnCol Amt    |       |
| Compound                                                                             | Sig       | (min.)         | (min.)         | (min.) | Q        | Response   | ug/kg      | ug/kg        | Flags |
| * 150 50(10)                                                                         | 70        | F 404          | F 407          | 0.007  | 00       | 044775     | F0.0       | F0.0         |       |
| * 153 Fluorobenzene (IS)                                                             | 70        | 5.191          | 5.197          | -0.006 | 99       | 244765     | 50.0       | 50.0         |       |
| * 2 Chlorobenzene-d5                                                                 | 82        | 7.989          | 7.989          | 0.000  | 85       | 500962     | 50.0       | 50.0         |       |
| * 3 1,4-Dichlorobenzene-d4                                                           | 152       | 10.356         | 10.356         | 0.000  | 94       | 540122     | 50.0       | 50.0         |       |
| \$ 154 Dibromofluoromethane (Surr                                                    |           | 4.674          | 4.680          | -0.006 | 94       | 311132     | 50.0       | 51.2         |       |
| \$ 41,2-Dichloroethane-d4 (Sur                                                       | 67        | 4.947          | 4.960          | -0.013 | 0        | 195983     | 50.0       | 50.3         |       |
| \$ 5 Toluene-d8 (Surr)                                                               | 98<br>174 | 6.560<br>9.218 | 6.560<br>9.218 | 0.000  | 93<br>05 | 1248031    | 50.0       | 50.6<br>53.2 |       |
| <ul><li>\$ 6 4-Bromofluorobenzene (Surr</li><li>10 Dichlorodifluoromethane</li></ul> | 174<br>85 | 9.218          | 9.218<br>1.820 | 0.000  | 95       | 430396     | 50.0       | 53.2<br>ND   |       |
| 11 Chlorodifluoromethane                                                             | 85<br>51  |                | 1.820          |        |          |            |            | ND<br>ND     |       |
| 12 Chloromethane                                                                     | 50        |                | 2.003          |        |          |            |            | ND<br>ND     |       |
| 13 Vinyl chloride                                                                    | 62        |                | 2.003          |        |          |            |            | ND<br>ND     |       |
| 151 Butadiene                                                                        | 54        |                | 2.100          |        |          |            |            | ND<br>ND     |       |
| 14 Bromomethane                                                                      | 94        |                | 2.368          |        |          |            |            | ND<br>ND     |       |
| 15 Chloroethane                                                                      | 64        |                | 2.300          |        |          |            |            | ND<br>ND     |       |
| 16 Dichlorofluoromethane                                                             | 67        |                | 2.575          |        |          |            |            | ND           |       |
| 17 Trichlorofluoromethane                                                            | 101       |                | 2.617          |        |          |            |            | ND           |       |
| 148 Ethanol                                                                          | 45        |                | 2.751          |        |          |            |            | ND           |       |
| 18 Ethyl ether                                                                       | 59        |                | 2.769          |        |          |            |            | ND           |       |
| 19 Propene oxide                                                                     | 58        |                | 2.861          |        |          |            |            | ND           |       |
| 20 Acrolein                                                                          | 56        |                | 2.922          |        |          |            |            | ND           |       |
| 21 1,1,2-Trichloro-1,2,2-trif                                                        | 101       |                | 2.958          |        |          |            |            | ND           |       |
| 22 1,1-Dichloroethene                                                                | 96        |                | 2.976          |        |          |            |            | ND           |       |
| 23 Acetone                                                                           | 43        |                | 3.031          |        |          |            |            | ND           |       |
| 24 Isopropyl alcohol                                                                 | 45        |                | 3.122          |        |          |            |            | ND           |       |
| 25 Iodomethane                                                                       | 142       |                | 3.134          |        |          |            |            | ND           |       |
| 26 Carbon disulfide                                                                  | 76        |                | 3.183          |        |          |            |            | ND           |       |
| 28 3-Chloro-1-propene                                                                | 41        |                | 3.244          |        |          |            |            | ND           |       |
| 27 Methyl acetate                                                                    | 43        |                | 3.244          |        |          |            |            | ND           |       |
| 29 Acetonitrile                                                                      | 40        |                | 3.287          |        |          |            |            | ND           |       |
| 30 Methylene Chloride                                                                | 84        | 3.354          | 3.354          | 0.000  | 92       | 20396      |            | 0.6867       |       |
| 31 2-Methyl-2-propanol                                                               | 59        | 0.50 1         | 3.408          | 0.000  |          | _00,0      |            | ND           |       |
| o moniji z propanoi                                                                  | 0,        |                | 0.100          |        |          |            |            |              |       |

ct-2017 12:45:14 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8298.D Report Date: 17-Oct-2017 12:45:14

| Data File: \\ChromNA\B                                 | uttalo\( |              | 1                |                  | 71/-66 | 449.b\F8298.[ |                  |                    |       |
|--------------------------------------------------------|----------|--------------|------------------|------------------|--------|---------------|------------------|--------------------|-------|
| Compound                                               | Sig      | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q      | Response      | Cal Amt<br>ug/kg | OnCol Amt<br>ug/kg | Flags |
| 22 Mathyl tart butyl other                             | 73       |              | 2 504            |                  |        |               |                  | ND                 |       |
| 32 Methyl tert-butyl ether 34 trans-1,2-Dichloroethene | 73<br>96 |              | 3.506<br>3.536   |                  |        |               |                  | ND                 |       |
| 33 Acrylonitrile                                       | 53       |              | 3.554            |                  |        |               |                  | ND                 |       |
| 134 Halothane                                          | 117      |              | 3.822            |                  |        |               |                  | ND                 |       |
| 36 Isopropyl ether                                     | 45       |              | 3.822            |                  |        |               |                  | ND                 |       |
| 37 Vinyl acetate                                       | 43       |              | 3.852            |                  |        |               |                  | ND                 |       |
| 39 1,1-Dichloroethane                                  | 63       |              | 3.858            |                  |        |               |                  | ND                 |       |
| 38 1,1-Dimethoxyethane                                 | 75       |              | 3.895            |                  |        |               |                  | ND                 |       |
| 40 2-Chloro-1,3-butadiene                              | 53       |              | 3.913            |                  |        |               |                  | ND                 |       |
| 41 Tert-butyl ethyl ether                              | 59       |              | 4.096            |                  |        |               |                  | ND                 |       |
| 42 Ethyl acetate                                       | 43       |              | 4.291            |                  |        |               |                  | ND                 |       |
| 43 2-Butanone (MEK)                                    | 43       |              | 4.296            |                  |        |               |                  | ND                 |       |
| 44 2,2-Dichloropropane                                 | 77       |              | 4.296            |                  |        |               |                  | ND                 |       |
| 45 cis-1,2-Dichloroethene                              | 96       |              | 4.303            |                  |        |               |                  | ND                 |       |
| 46 Propionitrile                                       | 54       |              | 4.388            |                  |        |               |                  | ND                 |       |
| 47 Methacrylonitrile                                   | 41       |              | 4.479            |                  |        |               |                  | ND                 |       |
| 48 Chlorobromomethane                                  | 128      |              | 4.509            |                  |        |               |                  | ND                 |       |
| 49 Tetrahydrofuran                                     | 42       |              | 4.528            |                  |        |               |                  | ND                 |       |
| 50 Chloroform                                          | 83       |              | 4.540            |                  |        |               |                  | ND                 |       |
| 51 1,1,1-Trichloroethane                               | 97       |              | 4.680            |                  |        |               |                  | ND                 |       |
| 52 Cyclohexane                                         | 56       |              | 4.710            |                  |        |               |                  | ND                 |       |
| 54 1,1-Dichloropropene                                 | 75       |              | 4.801            |                  |        |               |                  | ND                 |       |
| 55 Carbon tetrachloride                                | 117      |              | 4.807            |                  |        |               |                  | ND                 |       |
| 53 Isobutyl alcohol                                    | 43       |              | 4.874            |                  |        |               |                  | ND                 |       |
| 147 t-Amyl alcohol                                     | 59       |              | 4.948            |                  |        |               |                  | ND                 |       |
| 152 Isooctane                                          | 57       |              | 4.954            |                  |        |               |                  | ND                 |       |
| 57 Benzene                                             | 78       |              | 4.984            |                  |        |               |                  | ND                 |       |
| 56 Tert-amyl methyl ether                              | 73       |              | 5.002            |                  |        |               |                  | ND                 |       |
| 58 1,2-Dichloroethane                                  | 62       |              | 5.020            |                  |        |               |                  | ND                 |       |
| 59 n-Heptane                                           | 43       |              | 5.081            |                  |        |               |                  | ND                 |       |
| 1 1,4-Difluorobenzene                                  | 114      |              | 5.264            |                  |        |               |                  | ND                 |       |
| 136 2,4,4-Trimethyl-1-pentene                          | 55       |              | 5.386            |                  |        |               |                  | ND                 |       |
| 60 n-Butanol                                           | 56       |              | 5.410            |                  |        |               |                  | ND                 |       |
| 62 Trichloroethene                                     | 95       |              | 5.495            |                  |        |               |                  | ND                 |       |
| 137 Ethyl acrylate                                     | 55       |              | 5.568            |                  |        |               |                  | ND                 |       |
| 135 2,4,4-Trimethyl-2-pentene                          | 97       |              | 5.568            |                  |        |               |                  | ND                 |       |
| 64 Methylcyclohexane                                   | 83       |              | 5.635            |                  |        |               |                  | ND                 |       |
| 65 1,2-Dichloropropane                                 | 63       |              | 5.714            |                  |        |               |                  | ND                 |       |
| 63 Methyl methacrylate                                 | 41       |              | 5.732            |                  |        |               |                  | ND                 |       |
| 66 1,4-Dioxane                                         | 88       |              | 5.830            |                  |        |               |                  | ND                 |       |
| 67 Dibromomethane                                      | 93       |              | 5.842            |                  |        |               |                  | ND                 |       |
| 68 Dichlorobromomethane                                | 83       |              | 5.957            |                  |        |               |                  | ND                 |       |
| 69 2-Chloroethyl vinyl ether                           | 63       |              | 6.164            |                  |        |               |                  | ND                 |       |
| 70 2-Nitropropane                                      | 43       |              | 6.170            |                  |        |               |                  | ND                 |       |
| 71 Epichlorohydrin                                     | 57       |              | 6.280            |                  |        |               |                  | ND                 |       |
| 72 cis-1,3-Dichloropropene                             | 75       |              | 6.334            |                  |        |               |                  | ND                 |       |
| 73 4-Methyl-2-pentanone (MIBK                          | 43       |              | 6.438            |                  |        |               |                  | ND                 |       |
| 74 Toluene                                             | 92       |              | 6.620            |                  |        |               |                  | ND                 |       |
| 76 2-Methylthiophene                                   | 97       |              | 6.754            |                  |        |               |                  | ND                 |       |
| 77 trans-1,3-Dichloropropene                           | 75       |              | 6.845            |                  |        |               |                  | ND                 |       |
| 75 Ethyl methacrylate                                  | 69       |              | 6.852            |                  |        |               |                  | ND                 |       |
| 78 3-Methylthiophene                                   | 97       |              | 6.906            |                  |        |               |                  | ND                 |       |
| •                                                      |          |              |                  |                  |        |               |                  |                    |       |

ct-2017 12:45:14 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8298.D Report Date: 17-Oct-2017 12:45:14

| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Data File: \\Cnrom\\A\B\                | ulialo |              |                  |                  | 717-00 | 0449.D\F8298.L |                  |                    |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|--------------|------------------|------------------|--------|----------------|------------------|--------------------|-------|
| 81 Tetrachloroethene 166 7.144 7.137 0.007 88 2513 0.3285 82 13.0.1chloropropane 76 7.204 ND ND 82 1.3.0chloropropane 76 7.204 ND ND 82 1.55 n.Butyl acctate 43 7.223 ND ND 83 Chlorodibromomethane 129 7.442 ND ND 84 Ethylene Dibromide 107 7.569 ND ND 84 Ethylene Dibromide 107 7.569 ND ND 84 Ethylene Dibromide 180 7.929 ND ND 86 4.Chlorobenzotrifluoride 180 7.929 ND ND 86 4.Chlorobenzotrifluoride 180 7.929 ND ND 86 4.Chlorobenzotrifluoride 180 7.989 ND ND 87 Chlorobenzotrifluoride 180 8.037 ND ND 87 1.1.1.2.Futerachioroethane 112 8.020 ND ND 87 1.1.1.2.Futerachioroethane 131 8.099 ND ND ND 90 m.Xylene 8.p.Xylene 106 8.202 ND ND 91 0.Xylene 8.p.Xylene 106 8.634 ND ND 92 Styrene 106 8.634 ND ND 93 2.Chlorobenzotrifluoride 180 8.914 ND 93 2.Chlorobenzotrifluoride 180 8.914 ND 93 2.Chlorobenzotrifluoride 180 8.914 ND 93 2.Chlorobenzotrifluoride 180 8.914 ND 94 Isopropylbenzene 156 9.388 ND 97 1.1.2.2.Futerachioroethane 83 9.388 ND 97 1.1.2.2.Futerachioroethane 83 9.388 ND 97 1.1.2.2.Futerachioroethane 84 9.388 ND 97 1.1.2.2.Futerachioroethane 85 9.200 ND ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND  | Compound                                | Sig    | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q      | Response       | Cal Amt<br>ug/kg | OnCol Amt<br>ug/kg | Flags |
| 81 Tetrachloroethene 166 7.144 7.137 0.007 88 2513 0.3285 82 13.0.1chloropropane 76 7.204 ND ND 82 1.3.0chloropropane 76 7.204 ND ND 82 1.55 n.Butyl acctate 43 7.223 ND ND 83 Chlorodibromomethane 129 7.442 ND ND 84 Ethylene Dibromide 107 7.569 ND ND 84 Ethylene Dibromide 107 7.569 ND ND 84 Ethylene Dibromide 180 7.929 ND ND 86 4.Chlorobenzotrifluoride 180 7.929 ND ND 86 4.Chlorobenzotrifluoride 180 7.929 ND ND 86 4.Chlorobenzotrifluoride 180 7.989 ND ND 87 Chlorobenzotrifluoride 180 8.037 ND ND 87 1.1.1.2.Futerachioroethane 112 8.020 ND ND 87 1.1.1.2.Futerachioroethane 131 8.099 ND ND ND 90 m.Xylene 8.p.Xylene 106 8.202 ND ND 91 0.Xylene 8.p.Xylene 106 8.634 ND ND 92 Styrene 106 8.634 ND ND 93 2.Chlorobenzotrifluoride 180 8.914 ND 93 2.Chlorobenzotrifluoride 180 8.914 ND 93 2.Chlorobenzotrifluoride 180 8.914 ND 93 2.Chlorobenzotrifluoride 180 8.914 ND 94 Isopropylbenzene 156 9.388 ND 97 1.1.2.2.Futerachioroethane 83 9.388 ND 97 1.1.2.2.Futerachioroethane 83 9.388 ND 97 1.1.2.2.Futerachioroethane 84 9.388 ND 97 1.1.2.2.Futerachioroethane 85 9.200 ND ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND 90 ND  | 70.1.1.2 Trichloroothono                | 0.2    |              | 7.040            |                  |        |                |                  | ND                 |       |
| 82 1.3-Dichloropropane 76 7. 204 ND 80 2-Hexanone 43 7.223 ND 155 n-Butyl acetate 43 7.302 ND 183 Chlorodibromomethane 129 7.442 ND 184 Ethylene Dibromide 107 7.569 ND 146 1-Chlorobexane 55 7.922 ND 185 3-Chlorobenzotrifluoride 180 7.929 ND 185 3-Chlorobenzotrifluoride 180 7.929 ND 185 3-Chlorobenzotrifluoride 180 7.929 ND 185 11.1,2-Tetrachloroethane 131 8.020 ND 188 Ethylbenzene 91 8.087 ND 197 Chlorobenzene 112 8.020 ND 188 Ethylbenzene 91 8.087 ND 197 Chlorobenzene 1131 8.099 ND 197 Chlorobenzene 106 8.624 ND 197 Chlorobenzene 106 8.624 ND 197 Chlorobenzene 106 8.624 ND 197 Chlorobenzene 107 ND 197 Chlorobenzene 108 8.914 ND 197 Chlorobenzene 108 8.914 ND 197 Chlorobenzene 108 8.914 ND 197 Chlorobenzene 105 8.999 ND 197 Chlorobenzene 105 8.999 ND 197 Chlorobenzene 105 8.999 ND 197 Chlorobenzene 105 8.999 ND 197 Chlorobenzene 105 8.999 ND 197 Chlorobenzene 105 8.999 ND 197 Chlorobenzene 105 8.999 ND 197 Chlorobenzene 105 9.388 ND 197 Chlorobenzene 105 9.388 ND 197 Chlorobenzene 105 9.437 ND 197 Chlorobenzene 105 9.437 ND 197 Chlorobenzene 105 9.437 ND 197 Chlorobenzene 105 9.437 ND 197 Chlorobenzene 105 9.607 ND 197 Chlorobenzene 105 9.607 ND 197 Chlorobenzene 105 9.607 ND 197 Chlorobenzene 105 9.607 ND 197 Chlorobenzene 105 9.607 ND 197 Chlorobenzene 105 9.607 ND 197 Chlorobenzene 105 9.965 ND 197 Chlorobenzene 105 9.965 ND 197 Chlorobenzene 105 10.143 ND 197 Chlorobenzene 105 10.143 ND 197 Chlorobenzene 105 10.143 ND 197 Chlorobenzene 105 10.143 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10.398 ND 197 Chlorobenzene 105 10 |                                         |        | 7 1 1 1      |                  | 0.007            | 00     | 0540           |                  |                    |       |
| 80 2 - Hexanone         43         7.223         ND           185 n-Butyl acetate         43         7.302         ND           83 Chlorodiformomethane         129         7.442         ND           84 Ethylene Dibromide         107         7.569         ND           45 Chlorobenzoriffluoride         180         7.922         ND           85 3 Chlorobenzoriffluoride         180         7.929         ND           86 4 Chlorobenzoriffluoride         180         7.929         ND           87 Chlorobenzene         112         8.020         ND           88 Ethylbenzene         91         8.087         ND           89 1,1,1,2-Tetrachloroeihane         131         8.099         ND           90 m-Xylene & P-Xylene         106         8.202         ND           91 o-Xylene         106         8.202         ND           91 o-Xylene         106         8.634         ND           92 Styrene         104         8.652         ND           93 2-Chlorobenzotrifluoride         180         8.914         ND           95 Bromoform         173         8.926         ND           94 Isopripylbenzene         105         8.999         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |        | 7.144        |                  | 0.007            | 88     | 2513           |                  |                    |       |
| 155 n. Butyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 83 Chlorodibromomethane   129   7,442   ND   144 Ethylene Dibromide   107   7,569   ND   146 1-Chlorohexane   55   7,922   ND   185 3-Chlorobenzotriffuoride   180   7,929   ND   186 3-Chlorobenzotriffuoride   180   7,929   ND   187 Chlorobenzotriffuoride   112   8,020   ND   187 Chlorobenzotren   112   8,020   ND   188 Ethylbenzene   91   8,087   ND   189 11,1,2-Tetrachloroethane   131   8,099   ND   190 m-Xylene & p-Xylene   106   8,202   ND   191 n-Xylene   106   8,634   ND   191 n-Xylene   104   8,652   ND   192 Styrene   104   8,652   ND   193 2-Chlorobenzotriffuoride   180   8,914   ND   195 Bromoform   173   8,926   ND   195 Bromoform   173   8,926   ND   101 Bromobenzene   156   9,388   ND   101 Bromobenzene   156   9,388   ND   101 Bromobenzene   156   9,388   ND   101 1,2,2-Tetrachloroethane   83   9,388   ND   101 1,2,2-Titrichoroethane   83   9,388   ND   101 1,2,2-Titrichoroethane   109   4,437   ND   101 2,3-Tirichloropropane   110   9,443   ND   103 2-Chlorotoluene   126   9,565   ND   104 3-Chlorotoluene   126   9,626   ND   104 3-Chlorotoluene   126   9,626   ND   105 4-Chlorotoluene   126   9,626   ND   106 14-Tirimethylbenzene   105   9,985   ND   107 1,2,4-Tirimethylbenzene   105   9,985   ND   107 1,2-Tirimethylbenzene   105   9,985   ND   108 Pentachloroethane   167   10,009   ND   109 Pentachloroethane   167   10,009   ND   110 1,3-Dichlorobenzene   146   10,380   ND   111 1,3-Dichlorobenzene   146   10,380   ND   112 1,2-Tirmethylbenzene   156   10,514   ND   115 1,8-Dutylbenzene   167   10,009   ND   116 1,1-Dichlorobenzene   146   10,380   ND   117 1,2-Dibromo-3-Chloropropan   75   11,420   ND   118 1,3-Frichlorobenzene   146   10,380   ND   119 1,2-Dibromo-3-Chloropropan   150   11,542   ND   119 1,2-Dibromo-3-Chloropropan   150   11,542   ND   119 1,2-Dibromo-3-Chloropropan   150   11,542   ND   119 1,2-Dibromo-3-Chloropropan   150   11,542   ND   119 1,2-Dibromo-3-Chloropropan   150   11,542   ND   119 1,2-Dibromo-3-Chloropropan   150   11,542   ND   119 1,2-Dibromo-3-Chloropropan    |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 84 Ethylene Dibromide         107         7.569         ND           146 1-Chlorobexane         55         7.922         ND           85 3-Chlorobenzolifiluoride         180         7.929         ND           86 4-Chlorobenzene         112         8.020         ND           87 Chlorobenzene         112         8.020         ND           88 Ethylbenzene         91         8.087         ND           99 1.1.2-Tetrachloroethane         131         8.099         ND           90 m.Xylene & p.Xylene         106         8.202         ND           91 o.Xylene & p.Xylene         106         8.632         ND           92 Styrene         104         8.652         ND           93 2-Chlorobenzoriffluoride         180         8.914         ND           95 Bromoform         173         8.926         ND           94 Isopropylbenzene         105         8.999         ND           94 Cylohexanone         55         9.200         ND           97 1.1.2.2-Tetrachloroethane         83         9.388         ND           97 1.2.2-Tetrachoroethane         83         9.388         ND           98 trans-1-4-Dichloro-brace         10         9.437         ND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                       |        |              |                  |                  |        |                |                  |                    |       |
| 1461-Chlorobexane   55   7.922   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 85 3-Chlorobenzotirifluoride         180         7,929         ND           86 4-Chlorobenzene         112         8,020         ND           88 Ethylbenzene         91         8,087         ND           88 Ethylbenzene         91         8,087         ND           98 1,1,1,2-Tertachloroethane         131         8,099         ND           90 m-Xylene         106         8,634         ND           92 Styrene         104         8,652         ND           93 2-Chlorobenzotrifluoride         180         8,914         ND           95 Bromoform         173         8,926         ND           94 Isopropylbenzene         105         8,999         ND           96 Cyclohexanone         55         9,200         ND           97 1,1,2,2-Tetrachloroethane         83         9,388         ND           97 1,1,2,2-Tetrachloroethane         83         9,388         ND           97 1,1,2,2-Tirchloropropane         110         9,437         ND           101 2,3-Trichloropropane         110         9,437         ND           102 1,3,5-Trimethylbenzene         105         9,607         ND           103 2-Chlorotoluene         126         9,636 <td< td=""><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                |        |              |                  |                  |        |                |                  |                    |       |
| 86 4-Chlorobenzotrifluoride         180         7,989         ND           87 Chlorobenzene         91         8.087         ND           89 1,1,1,2-Tetrachloroethane         131         8.099         ND           90 m-Xylene & p-Xylene         106         8.202         ND           91 o-Xylene         106         8.634         ND           92 Styrene         104         8.652         ND           93 2-Chlorobenzotrifluoride         180         8.914         ND           95 Bromoform         173         8.926         ND           94 Isopropylbenzene         105         8.999         ND           96 Cyclobexanone         55         9.200         ND           101 Bromobenzene         156         9.388         ND           97 1,1,2-7etrachloroethane         83         9.388         ND           97 1,1,2,2-Tetrachloroethane         83         9.388         ND           97 1,1,2,2-Trichloroethane         83         9.388         ND           97 1,1,2,2-Trichloroethane         83         9.388         ND           90 1,2,3-Trichloroethane         126         9.437         ND           90 1,2,3-Trichlorotopnae         11         9.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 87 Chlorobenzene 112 8.020 ND 88 Ethylbenzene 91 8.087 ND 89 1.1.1.2-Tetrachloroethane 131 8.099 ND 90 m-Xylene & p-Xylene 106 8.202 ND 91 o-Xylene & p-Xylene 106 8.202 ND 91 o-Xylene & p-Xylene 104 8.652 ND 92 Styrene 104 8.652 ND 93 2-Chlorobenzotrifluoride 180 8.914 ND 95 Bromoform 173 8.926 ND 96 Gyclohexanone 105 8.999 ND 96 Cyclohexanone 55 9.200 ND 101 Bromobenzene 156 9.388 ND 97 1.1.2.2-Tetrachloroethane 83 9.388 ND 97 1.1.2.2-Tetrachloroethane 83 9.388 ND 98 trans-1.4-Dichloro-2-buten 53 9.437 ND 100 12.3-Trichloropropane 110 9.443 ND 103 2-Chlorotoluene 126 9.655 ND 102 1.3,5-Trimethylbenzene 105 9.607 ND 104 3-Chlorotoluene 126 9.666 ND 105 4-Chlorotoluene 126 9.667 ND 106 1et-I Butylbenzene 105 9.985 ND 107 1.2.4-Trimethylbenzene 105 9.985 ND 107 1.2.4-Trimethylbenzene 105 9.985 ND 108 Pentachloroethane 167 10.009 ND 109 sec-Butylbenzene 105 10.143 ND 109 sec-Butylbenzene 105 10.143 ND 110 1-Isopropyltoluene 119 10.271 ND 110 1.1-Dichlorobenzene 146 10.301 ND 115 n-Butylbenzene 105 10.398 ND 115 n-Butylbenzene 105 10.398 ND 116 1.2-Dichlorobenzene 146 10.374 ND 116 1.2-Dichlorobenzene 146 10.374 ND 117 1.3-Dichlorobenzene 146 10.374 ND 116 1.2-Dichlorobenzene 146 10.374 ND 117 1.3-Dichlorobenzene 146 10.374 ND 118 1.3-Trimethylbenzene 105 10.398 ND 119 1.1-Dichlorobenzene 146 ND 110 1.1-Dichlorobenzene 146 ND 111 1.3-Dichlorobenzene 146 ND 112 1.2.3-Trimethylbenzene 105 ND 114 1.2-Dichlorobenzene 146 ND 115 n-Butylbenzene 170 ND 116 1.2-Dichlorobenzene 180 11.542 ND 117 1.2-Dibromo-3-Chloropropan 75 11.420 ND 119 1.2-A-Trichlorobenzene 180 11.542 ND 119 1.2-A-Trichlorobenzene 180 11.542 ND 119 1.2-A-Trichlorobenzene 180 12.053 ND 110 12.1.2,3-Trichlorobenzene 180 12.473 ND 110 12-Methylnaphthalene 142 13.276 ND 114 9-Methylnaphthalene 142 13.276 ND                                                                                                                                                                                                                                                                |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 88 Ethylbenzene         91         8.087         ND           89 1,1,1,2-Tetrachloroethane         131         8.099         ND           90 m-Xylene         106         8.202         ND           91 o-Xylene         106         8.634         ND           92 Styrene         104         8.652         ND           93 2-Chlorobenzotriffuoride         180         8.914         ND           95 Bromoform         173         8.926         ND           94 Isopropylbenzene         105         8.999         ND           96 Cyclohexanone         55         9.200         ND           101 Bromobenzene         156         9.338         ND           97 1,1,2,2-Tetrachloroethane         83         9.388         ND           98 Irans-1,4-Dichloro-2-buten         53         9.437         ND           99 N-Propylbenzene         91         9.437         ND           100 1,2,3-Trichloropropane         110         9.443         ND           103 2-Chlorotoluene         126         9.565         ND           102 1,3,5-Trimethylbenzene         105         9.607         ND           103 4-Chlorotoluene         126         9.626         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 89 1,1,1,2-Tetrachloroethane         131         8.099         ND           90 m-Xylene & p-Xylene         106         8.202         ND           91 o-Xylene         106         8.634         ND           92 Styrene         104         8.652         ND           93 2-Chlorobenzotrifluoride         180         8.914         ND           95 Bromoform         173         8.926         ND           94 Isopropylbenzene         105         8.999         ND           94 Isopropylbenzene         156         9.388         ND           97 1,1,2,2-Tetrachloroethane         83         9.388         ND           97 1,1,2,2-Tetrachloroethane         83         9.388         ND           97 1,1,2,2-Tetrachloroephane         53         9.437         ND           90 N-Propylbenzene         91         9.437         ND           100 1,2,3-Trichloropropane         110         9.443         ND           103 2-Chlorotoluene         126         9.565         ND           104 3-Chlorotoluene         126         9.565         ND           104 3-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         126         9.674         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 90 m-Xylene & p-Xylene         106         8.202         ND           91 o-Xylene         106         8.634         ND           92 Styrene         104         8.652         ND           93 2-Chlorobenzotrifluoride         180         8.914         ND           95 Bromoform         173         8.926         ND           94 Isopropylbenzene         105         8.999         ND           96 Cyclohexanone         55         9.200         ND           101 Bromobenzene         156         9.388         ND           97 1,1,2,2-Tetrachloroethane         83         9.388         ND           98 Trans-1,4-Dichloro-2-buten         53         9.437         ND           99 N-Propylbenzene         91         9.437         ND           100 1,2,3-Trichloropropane         110         9.443         ND           103 2-Chlorotoluene         126         9.565         ND           104 3-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         126         9.674         ND           106 tert-Butylbenzene         105         9.685         ND           107 9 sec-Butylbenzene         105         10.143         ND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 91 o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 92 Styrene 104 8.652 ND 93 2-Chlorobenzotrifluoride 180 8.914 ND 95 Bromoform 173 8.926 ND 94 Isopropylbenzene 105 8.999 ND 96 Cyclohexanone 55 9.200 ND 97 1,1,2,2-Tetrachloroethane 83 9.388 ND 97 1,1,2,2-Tetrachloroethane 83 9.388 ND 98 Irans-1,4-Dichloro-2-buten 53 9.437 ND 101 Bromobenzene 91 9.437 ND 103 2-Chlorotoluene 126 9.565 ND 102 1,3,5-Trimethylbenzene 105 9.607 ND 103 2-Chlorotoluene 126 9.565 ND 104 3-Chlorotoluene 126 9.626 ND 105 4-Chlorotoluene 126 9.674 ND 106 Ietr-Bulylbenzene 105 9.607 ND 107 1,2,4-Trimethylbenzene 105 9.985 ND 108 Pentachloroethane 167 10.009 ND 108 Pentachloroethane 167 10.009 ND 109 sec-Bulylbenzene 105 10.143 ND 110 4-Isopropyltoluene 119 10.271 ND 111 1,3-Dichlorobenzene 146 10.301 ND 114 Dicyclopentadiene 66 10.374 ND 115 Denzyl chlorobenzene 146 10.380 ND 116 1,2-3-Trimethylbenzene 105 10.488 ND 117 1,2-1-Trimethylbenzene 105 10.398 ND 118 1,3-5-Trimethylbenzene 105 10.398 ND 119 1,2-3-Trimethylbenzene 105 10.398 ND 110 11,3-Trimethylbenzene 105 10.398 ND 110 11,3-Trimethylbenzene 105 10.398 ND 111 1,3-Trimethylbenzene 105 10.398 ND 112 1,2,3-Trimethylbenzene 105 10.398 ND 115 Denzyl chloride 126 10.514 ND 116 1,2-Dichlorobenzene 146 10.733 ND 117 1,2-Dichlorobenzene 146 ND 118 1,3-5-Trichlorobenzene 180 11.542 ND 119 1,2,4-Trichlorobenzene 180 11.542 ND 119 1,2,4-Trichlorobenzene 180 11.542 ND 119 1,2,4-Trichlorobenzene 180 12.053 ND 120 Hexachlorobutadiene 225 12.144 ND 121 Naphthalene 128 12.266 ND 122 1,2,3-Trichlorobenzene 180 12.473 ND 156 1-Chloro-1-fluoroethane TI 1 0.000 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 93 2 - Chlorobenzotrifluoride         180         8.914         ND           98 Bromoform         173         8.926         ND           94 Isopropylbenzene         105         8.999         ND           96 Cyclohexanone         55         9.200         ND           101 Bromobenzene         156         9.388         ND           97 1.1,2.2-Tetrachloroethane         83         9.388         ND           98 Irans-1,4-Dichloro-2-buten         53         9.437         ND           99 N-Propylbenzene         91         9.437         ND           100 1,2,3-Trichloropropane         110         9.443         ND           103 2-Chlorotoluene         126         9.565         ND           102 1,3,5-Trimethylbenzene         105         9.607         ND           104 3-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         126         9.674         ND           105 4-Chlorotoluene         126         9.674         ND           106 letri-Butylbenzene         134         9.936         ND           107 1,2,4-Trimethylbenzene         105         9.985         ND           108 Pentachloroethane         167         10.009 </td <td><b>3</b></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>3</b>                                |        |              |                  |                  |        |                |                  |                    |       |
| 95 Bromoform         173         8.926         ND           94 Isopropylbenzene         105         8.999         ND           96 Cyclohexanone         55         9.200         ND           101 Bromobenzene         156         9.388         ND           97 1,1,2,2-Tetrachloroethane         83         9.388         ND           98 trans-1,4-Dichloro-2-buten         53         9.437         ND           99 N-Propylbenzene         91         9.437         ND           100 1,2,3-Trichloropropane         110         9.443         ND           103 2-Chlorotoluene         126         9.565         ND           103 1,3,5-Trimethylbenzene         105         9.607         ND           104 3-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         126         9.674         ND           105 4-Chlorotoluene         126         9.674         ND           105 tetr-Butylbenzene         105         9.985         ND           108 Pentachloroethane         167         10.009         ND           109 sec-Butylbenzene         105         10.143         ND           111 1,3-Dichlorobenzene         146         10.301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                       |        |              |                  |                  |        |                |                  |                    |       |
| 94 Isopropylbenzene         105         8.999         ND           96 Cyclohexanone         55         9.200         ND           101 Bromobenzene         156         9.388         ND           97 1,1,2,2-Tetrachloroethane         83         9.388         ND           98 trans-1,4-Dichloro-2-buten         53         9.437         ND           99 N-Propylbenzene         91         9.437         ND           100 1,2,3-Trichloropropane         110         9.443         ND           103 2-Chlorotoluene         126         9.565         ND           102 1,3,5-Trimethylbenzene         105         9.607         ND           104 3-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         134         9.936         ND           105 4-Chlorotoluene         134         9.936         ND           105 4-Chlorotoluene         105         9.985         ND           108 Pentachloroethane         167         10.009         ND           109 sec-Butylbenzene         105         10.143         ND           110 4-Isopropyloluene         119         10.271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 96 Cyclohexanone         55         9.200         ND           101 Bromobenzene         156         9.388         ND           97 1,1,2,2-Tetrachloroethane         83         9.388         ND           98 trans-1,4-Dichloro-2-buten         53         9.437         ND           99 N-Propylbenzene         91         9.437         ND           100 1,2,3-Trichloropropane         110         9.443         ND           103 2-Chlorotoluene         126         9.565         ND           102 1,3,5-Trimethylbenzene         105         9.607         ND           104 3-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         126         9.674         ND           106 tert-Butylbenzene         105         9.985         ND           107 1,2,4-Trimethylbenzene         105         9.985         ND           108 Pentachloroethane         167         10.009         ND           109 sec-Butylbenzene         105         10.143         ND           110 4-Isopropyltoluene         119         10.271         ND           111 1,3-Dichlorobenzene         146         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 101 Bromobenzene         156         9.388         ND           97 1,1,2,2-Tetrachloroethane         83         9.388         ND           98 trans-1,4-Dichloro-2-buten         53         9.437         ND           99 N-Propylbenzene         91         9.437         ND           100 1,2,3-Trichloropropane         110         9.443         ND           103 2-Chlorotoluene         126         9.565         ND           102 1,3,5-Trimethylbenzene         105         9.607         ND           104 3-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         126         9.674         ND           105 4-Chlorotoluene         134         9.936         ND           105 4-Chlorotoluene         134         9.936         ND           106 tert-Butylbenzene         105         9.985         ND           108 Pentachloroethane         167         10.009         ND           109 sec-Butylbenzene         105         10.143         ND           110 4-Isopropyltoluene         119         10.271         ND           111 1,3-Dichlorobenzene         146         10.301         ND           114 Dicyclopentadiene         66         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·   |        |              |                  |                  |        |                |                  |                    |       |
| 97 1,1,2,2-Tetrachloroethane         83         9.388         ND           98 trans-1,4-Dichloro-2-buten         53         9,437         ND           99 N-Propylbenzene         91         9,437         ND           100 1,2,3-Trichloropropane         110         9,443         ND           102 2,3-Trichloropropane         126         9,565         ND           102 1,3,5-Trimethylbenzene         105         9,607         ND           104 3-Chlorotoluene         126         9,626         ND           105 4-Chlorotoluene         126         9,674         ND           105 4-Chlorotoluene         126         9,674         ND           106 tert-Butylbenzene         134         9,936         ND           107 1,2,4-Trimethylbenzene         105         9,985         ND           108 Pentachloroethane         167         10,009         ND           109 sec-Butylbenzene         105         10,143         ND           104 -Isopropyltoluene         119         10,271         ND           110 4-Isopropyltoluene         119         10,271         ND           111 1,3-Dichlorobenzene         146         10,301         ND           112 1,2,3-Trimethylbenzene <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 98 trans-1,4-Dichloro-2-buten         53         9.437         ND           99 N-Propylbenzene         91         9.437         ND           100 1,2,3-Trichloropropane         110         9.443         ND           103 2-Chlorotoluene         126         9.565         ND           104 3-Chlorotoluene         126         9.607         ND           104 3-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         126         9.674         ND           105 tert-Butylbenzene         134         9.936         ND           106 tert-Butylbenzene         105         9.985         ND           107 1,2,4-Trimethylbenzene         105         9.985         ND           108 Pentachloroethane         167         10.009         ND           109 sec-Butylbenzene         105         10.143         ND           110 4-Isopropyltoluene         119         10.271         ND           111 1,3-Dichlorobenzene         146         10.301         ND           114 Dicyclopentadiene         66         10.374         ND           113 1,4-Dichlorobenzene         146         10.380         ND           115 n-Butylbenzene         105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 99 N-Propylbenzene         91         9.437         ND           100 1,2,3-Trichloropropane         110         9.443         ND           103 2-Chlorotoluene         126         9.565         ND           102 1,3,5-Trimethylbenzene         105         9.607         ND           104 3-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         126         9.674         ND           105 tert-Butylbenzene         134         9.936         ND           107 1,2,4-Trimethylbenzene         105         9.985         ND           108 Pentachloroethane         167         10.009         ND           109 sec-Butylbenzene         105         10.143         ND           110 4-Isopropyltoluene         119         10.271         ND           111 1,3-Dichlorobenzene         146         10.301         ND           111 1,3-Dichlorobenzene         146         10.374         ND           112 1,2,3-Trimethylbenzene         105         10.380         ND           113 1,4-Dichlorobenzene         105         10.398         ND           150 Benzyl chloride         126         10.514         ND           115 n-Butylbenzene         91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 100 1,2,3-Trichloropropane         110         9.443         ND           103 2-Chlorotoluene         126         9.565         ND           102 1,3,5-Trimethylbenzene         105         9.607         ND           104 3-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         126         9.674         ND           106 tert-Butylbenzene         134         9.936         ND           107 1,2,4-Trimethylbenzene         105         9.985         ND           108 Pentachloroethane         167         10.009         ND           109 sec-Butylbenzene         105         10.143         ND           110 4-Isopropyltoluene         119         10.271         ND           111 1,3-Dichlorobenzene         146         10.301         ND           114 Dicyclopentadiene         66         10.374         ND           113 1,4-Dichlorobenzene         146         10.380         ND           115 0 Benzyl chloride         126         10.514         ND           115 n-Butylbenzene         91         10.648         ND           115 n-Butylbenzene         146         10.733         ND           117 1,2-Dibromo-3-Chloropropan         75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 103 2-Chlorotoluene         126         9.565         ND           102 1,3,5-Trimethylbenzene         105         9.607         ND           104 3-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         126         9.674         ND           106 tert-Butylbenzene         134         9.936         ND           107 1,2,4-Trimethylbenzene         105         9.985         ND           108 Pentachloroethane         167         10.009         ND           109 sec-Butylbenzene         105         10.143         ND           110 4-Isopropylloluene         119         10.271         ND           111 1,3-Dichlorobenzene         146         10.301         ND           114 Dicyclopentadiene         66         10.374         ND           113 1,4-Dichlorobenzene         146         10.380         ND           112 1,2,3-Trimethylbenzene         105         10.398         ND           150 Benzyl chloride         126         10.514         ND           115 n-Butylbenzene         91         10.648         ND           116 1,2-Dichlorobenzene         146         10.733         ND           117 1,2-Dibromo-3-Chloropropan         75 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 102 1,3,5-Trimethylbenzene         105         9.607         ND           104 3-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         126         9.674         ND           106 tert-Butylbenzene         134         9.936         ND           107 1,2,4-Trimethylbenzene         105         9.985         ND           108 Pentachloroethane         167         10.009         ND           109 sec-Butylbenzene         105         10.143         ND           110 4-Isopropyltoluene         119         10.271         ND           111 1,3-Dichlorobenzene         146         10.301         ND           114 Dicyclopentadiene         66         10.374         ND           113 1,4-Dichlorobenzene         146         10.380         ND           112 1,2,3-Trimethylbenzene         105         10.398         ND           115 n-Butylbenzene         105         10.514         ND           115 n-Butylbenzene         91         10.648         ND           116 1,2-Dichlorobenzene         146         10.733         ND           117 1,2-Dibromo-3-Chloropropan         75         11.420         ND           118 1,3,5-Trichlorobenzene <td< td=""><td>• •</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • •                                     |        |              |                  |                  |        |                |                  |                    |       |
| 104 3-Chlorotoluene         126         9.626         ND           105 4-Chlorotoluene         126         9.674         ND           106 tert-Butylbenzene         134         9.936         ND           107 1,2,4-Trimethylbenzene         105         9.985         ND           108 Pentachloroethane         167         10.009         ND           109 sec-Butylbenzene         105         10.143         ND           110 4-Isopropyltoluene         119         10.271         ND           111 1,3-Dichlorobenzene         146         10.301         ND           114 Dicyclopentadiene         66         10.374         ND           113 1,4-Dichlorobenzene         146         10.380         ND           112 1,2,3-Trimethylbenzene         105         10.398         ND           150 Benzyl chloride         126         10.514         ND           115 n-Butylbenzene         91         10.648         ND           116 1,2-Dichlorobenzene         146         10.733         ND           117 1,2-Dibromo-3-Chloropropan         75         11.420         ND           118 1,3,5-Trichlorobenzene         180         11.542         ND           119 1,2,4-Trichlorobenzene         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 105 4-Chlorotoluene       126       9.674       ND         106 tert-Butylbenzene       134       9.936       ND         107 1,2,4-Trimethylbenzene       105       9.985       ND         108 Pentachloroethane       167       10.009       ND         109 sec-Butylbenzene       105       10.143       ND         110 4-Isopropyltoluene       119       10.271       ND         111 1,3-Dichlorobenzene       146       10.301       ND         114 Dicyclopentadiene       66       10.374       ND         113 1,4-Dichlorobenzene       146       10.380       ND         112 1,2,3-Trimethylbenzene       105       10.398       ND         150 Benzyl chloride       126       10.514       ND         115 n-Butylbenzene       91       10.648       ND         116 1,2-Dichlorobenzene       146       10.733       ND         117 1,2-Diibromo-3-Chloropropan       75       11.420       ND         118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                |        |              |                  |                  |        |                |                  |                    |       |
| 106 tert-Butylbenzene       134       9.936       ND         107 1,2,4-Trimethylbenzene       105       9.985       ND         108 Pentachloroethane       167       10.009       ND         109 sec-Butylbenzene       105       10.143       ND         110 4-Isopropyltoluene       119       10.271       ND         111 1,3-Dichlorobenzene       146       10.301       ND         114 Dicyclopentadiene       66       10.374       ND         113 1,4-Dichlorobenzene       146       10.380       ND         112 1,2,3-Trimethylbenzene       105       10.398       ND         150 Benzyl chloride       126       10.514       ND         115 n-Butylbenzene       91       10.648       ND         116 1,2-Dichlorobenzene       146       10.733       ND         117 1,2-Dibromo-3-Chloropropan       75       11.420       ND         118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       11.542       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 107 1,2,4-Trimethylbenzene       105       9.985       ND         108 Pentachloroethane       167       10.009       ND         109 sec-Butylbenzene       105       10.143       ND         110 4-Isopropyltoluene       119       10.271       ND         111 1,3-Dichlorobenzene       146       10.301       ND         114 Dicyclopentadiene       66       10.374       ND         113 1,4-Dichlorobenzene       146       10.380       ND         112 1,2,3-Trimethylbenzene       105       10.398       ND         150 Benzyl chloride       126       10.514       ND         115 n-Butylbenzene       91       10.648       ND         116 1,2-Dichlorobenzene       146       10.733       ND         117 1,2-Dibromo-3-Chloropropan       75       11.420       ND         118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 108 Pentachloroethane       167       10.009       ND         109 sec-Butylbenzene       105       10.143       ND         110 4-Isopropyltoluene       119       10.271       ND         111 1,3-Dichlorobenzene       146       10.301       ND         114 Dicyclopentadiene       66       10.374       ND         113 1,4-Dichlorobenzene       146       10.380       ND         112 1,2,3-Trimethylbenzene       105       10.398       ND         150 Benzyl chloride       126       10.514       ND         150 Benzyl chloride       126       10.514       ND         115 n-Butylbenzene       91       10.648       ND         116 1,2-Dichlorobenzene       146       10.733       ND         117 1,2-Dibromo-3-Chloropropan       75       11.420       ND         118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                       |        |              |                  |                  |        |                |                  |                    |       |
| 109 sec-Butylbenzene       105       10.143       ND         110 4-Isopropyltoluene       119       10.271       ND         111 1,3-Dichlorobenzene       146       10.301       ND         114 Dicyclopentadiene       66       10.374       ND         113 1,4-Dichlorobenzene       146       10.380       ND         112 1,2,3-Trimethylbenzene       105       10.398       ND         150 Benzyl chloride       126       10.514       ND         115 n-Butylbenzene       91       10.648       ND         116 1,2-Dichlorobenzene       146       10.733       ND         117 1,2-Dibromo-3-Chloropropan       75       11.420       ND         118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                |        |              |                  |                  |        |                |                  |                    |       |
| 110 4-Isopropyltoluene       119       10.271       ND         111 1,3-Dichlorobenzene       146       10.301       ND         114 Dicyclopentadiene       66       10.374       ND         113 1,4-Dichlorobenzene       146       10.380       ND         112 1,2,3-Trimethylbenzene       105       10.398       ND         150 Benzyl chloride       126       10.514       ND         115 n-Butylbenzene       91       10.648       ND         116 1,2-Dichlorobenzene       146       10.733       ND         117 1,2-Dibromo-3-Chloropropan       75       11.420       ND         118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 111 1,3-Dichlorobenzene       146       10.301       ND         114 Dicyclopentadiene       66       10.374       ND         113 1,4-Dichlorobenzene       146       10.380       ND         112 1,2,3-Trimethylbenzene       105       10.398       ND         150 Benzyl chloride       126       10.514       ND         115 n-Butylbenzene       91       10.648       ND         116 1,2-Dichlorobenzene       146       10.733       ND         117 1,2-Dibromo-3-Chloropropan       75       11.420       ND         118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                       |        |              |                  |                  |        |                |                  |                    |       |
| 114 Dicyclopentadiene       66       10.374       ND         113 1,4-Dichlorobenzene       146       10.380       ND         112 1,2,3-Trimethylbenzene       105       10.398       ND         150 Benzyl chloride       126       10.514       ND         115 n-Butylbenzene       91       10.648       ND         116 1,2-Dichlorobenzene       146       10.733       ND         117 1,2-Dibromo-3-Chloropropan       75       11.420       ND         118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 113 1,4-Dichlorobenzene       146       10.380       ND         112 1,2,3-Trimethylbenzene       105       10.398       ND         150 Benzyl chloride       126       10.514       ND         115 n-Butylbenzene       91       10.648       ND         116 1,2-Dichlorobenzene       146       10.733       ND         117 1,2-Dibromo-3-Chloropropan       75       11.420       ND         118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                       |        |              |                  |                  |        |                |                  |                    |       |
| 112 1,2,3-Trimethylbenzene       105       10.398       ND         150 Benzyl chloride       126       10.514       ND         115 n-Butylbenzene       91       10.648       ND         116 1,2-Dichlorobenzene       146       10.733       ND         117 1,2-Dibromo-3-Chloropropan       75       11.420       ND         118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - · · · · · · · · · · · · · · · · · · · |        |              |                  |                  |        |                |                  |                    |       |
| 150 Benzyl chloride       126       10.514       ND         115 n-Butylbenzene       91       10.648       ND         116 1,2-Dichlorobenzene       146       10.733       ND         117 1,2-Dibromo-3-Chloropropan       75       11.420       ND         118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 115 n-Butylbenzene       91       10.648       ND         116 1,2-Dichlorobenzene       146       10.733       ND         117 1,2-Dibromo-3-Chloropropan       75       11.420       ND         118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 116 1,2-Dichlorobenzene       146       10.733       ND         117 1,2-Dibromo-3-Chloropropan       75       11.420       ND         118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                       |        |              |                  |                  |        |                |                  |                    |       |
| 117 1,2-Dibromo-3-Chloropropan       75       11.420       ND         118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>-</del>                            |        |              |                  |                  |        |                |                  |                    |       |
| 118 1,3,5-Trichlorobenzene       180       11.542       ND         119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 119 1,2,4-Trichlorobenzene       180       12.053       ND         120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 120 Hexachlorobutadiene       225       12.144       ND         121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 121 Naphthalene       128       12.266       ND         122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 122 1,2,3-Trichlorobenzene       180       12.473       ND         149 2-Methylnaphthalene       142       13.276       ND         156 1-Chloro-1-fluoroethane TI       1       0.000       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |        |              |                  |                  |        |                |                  |                    |       |
| 149 2-Methylnaphthalene14213.276ND156 1-Chloro-1-fluoroethane TI10.000ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       |        |              |                  |                  |        |                |                  |                    |       |
| 156 1-Chloro-1-fluoroethane TI 1 0.000 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |        |              |                  |                  |        |                |                  |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - · · · · · · · · · · · · · · · · · · · | 142    |              |                  |                  |        |                |                  |                    |       |
| 145 Ethylene oxide TIC 1 0 000 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 1      |              |                  |                  |        |                |                  | ND                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 145 Ethylene oxide TIC                  | 1      |              | 0.000            |                  |        |                |                  | ND                 |       |
| 143 Propene oxide TIC 1 0.000 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 1      |              |                  |                  |        |                |                  | ND                 |       |
| 144 1-Bromopropane TIC 1 0.000 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 144 1-Bromopropane TIC                  | 1      |              | 0.000            |                  |        |                |                  | ND                 |       |

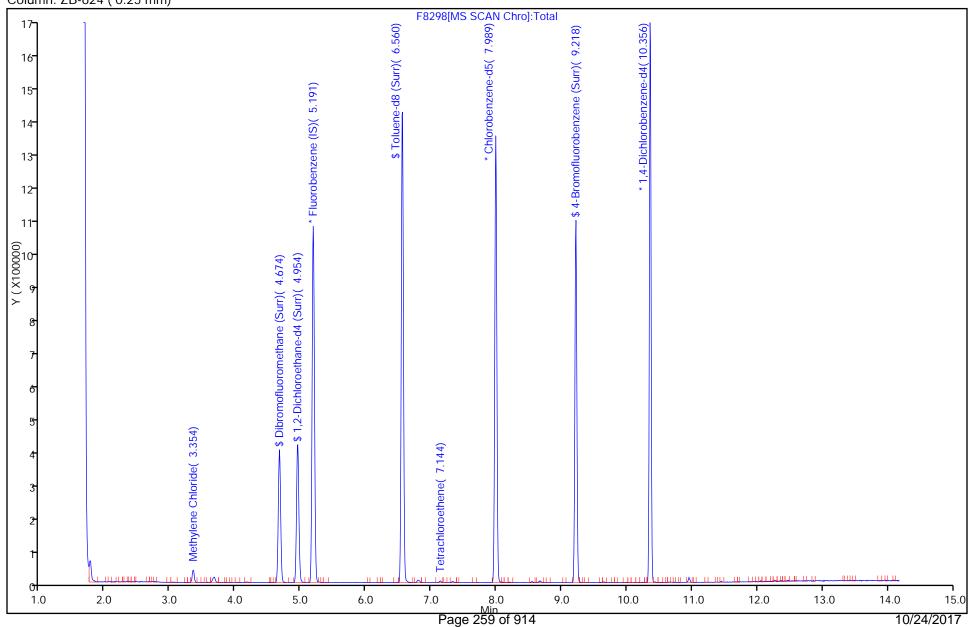
Report Date: 17-Oct-2017 12:45:14 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8298.D

| Data File: \\ChromNA\B           | ullalu | ChromData\HP59 | 731 (2017) | J 1 7 - 0C | 1447.D\I 0270.L |           |           |       |  |  |
|----------------------------------|--------|----------------|------------|------------|-----------------|-----------|-----------|-------|--|--|
|                                  |        | RT Adj R1      |            |            |                 | Cal Amt   | OnCol Amt |       |  |  |
| Compound                         | Sig    | (min.) (min.)  | (min.)     | Q          | Response        | ug/kg     | ug/kg     | Flags |  |  |
|                                  |        |                |            |            |                 |           |           |       |  |  |
| S 123 Total BTEX                 | 1      | 30.000         |            |            |                 | ND        |           |       |  |  |
| S 124 Xylenes, Total             | 1      | 30.000         |            |            |                 |           | ND        |       |  |  |
| S 125 1,2-Dichloroethene, Total  | 1      | 30.000         |            |            |                 |           | ND        |       |  |  |
| S 126 1,3-Dichloropropene, Total | 1      | 30.000         |            |            |                 |           | ND        |       |  |  |
| T 139 Bromoethane TIC            | 1      | 0.000          |            |            |                 |           | ND        |       |  |  |
| T 131 Nitrobenzene               | 77     | 0.000          |            |            |                 |           | ND        |       |  |  |
| T 133 cis-1,4-Dichloro-2-butene  | 88     | 0.000          |            |            |                 |           | ND        |       |  |  |
| T 9 bis(2-chloromethyl)ether T   | 1      | 0.000          |            |            |                 |           | ND        |       |  |  |
| T 127 Ethanol TIC                | 45     | 0.000          |            |            |                 | ND        |           |       |  |  |
| T 128 Hexachloroethane TIC       | 1      | 0.000          |            |            |                 | ND        |           |       |  |  |
| T 129 tert-amyl alcohol TIC      | 59     | 0.000          |            |            |                 |           | ND        |       |  |  |
| T 130 Hexachloroethane           | 117    | 0.000          |            |            |                 |           | ND        |       |  |  |
| T 138 Aziridine TIC              | 1      | 0.000          |            |            |                 |           | ND        |       |  |  |
| T 7 Ethylene oxide               | 1      | 0.000          |            |            |                 |           | ND        |       |  |  |
| T 140 bis(chloromethyl)ether TIC | 1      | 0.000          |            |            |                 |           | ND        |       |  |  |
| T 142 1-Bromopropane             | 1      | 0.000          |            |            |                 |           | ND        |       |  |  |
| T 141 Pentachloroethane TIC      | 1      | 0.000          |            |            |                 |           | ND        |       |  |  |
| T 132 Methyl acrylate            | 1      | 0.000          | 0.000 ND   |            |                 |           |           |       |  |  |
| Reagents:                        |        |                |            |            |                 |           |           |       |  |  |
| F 8260 SURR_00263                |        | Amount Added:  | 1.00       | Į          | Jnits: uL       | Run Reage | nt        |       |  |  |
| F 8260 IS_00580                  |        | Amount Added:  | 1.00       | l          | Jnits: uL       | Run Reage |           |       |  |  |

Report Date: 17-Oct-2017 12:45:14 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8298.D Injection Date: 17-Oct-2017 10:58:30 Instrument ID: HP5973F


Lims ID: MB 480-382187/2-A

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

CDC

7

5

### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1               |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: MB 480-382381/7      |
| Matrix: Water                 | Lab File ID: 93257P.D               |
| Analysis Method: 8260C        | Date Collected:                     |
| Sample wt/vol: 5(mL)          | Date Analyzed: 10/18/2017 11:20     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analysis Batch No.: 382381    | <br>Units: ug/L                     |

| CAS NO.    | COMPOUND NAME                        | RESULT | Q | RL  | MDL  |
|------------|--------------------------------------|--------|---|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                | ND     |   | 1.0 | 0.82 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane            | ND     |   | 1.0 | 0.21 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     |   | 1.0 | 0.31 |
| 79-00-5    | 1,1,2-Trichloroethane                | ND     |   | 1.0 | 0.23 |
| 75-34-3    | 1,1-Dichloroethane                   | ND     |   | 1.0 | 0.38 |
| 75-35-4    | 1,1-Dichloroethene                   | ND     |   | 1.0 | 0.29 |
| 120-82-1   | 1,2,4-Trichlorobenzene               | ND     |   | 1.0 | 0.41 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane          | ND     |   | 1.0 | 0.39 |
| 106-93-4   | 1,2-Dibromoethane                    | ND     |   | 1.0 | 0.73 |
| 95-50-1    | 1,2-Dichlorobenzene                  | ND     |   | 1.0 | 0.79 |
| 107-06-2   | 1,2-Dichloroethane                   | ND     |   | 1.0 | 0.21 |
| 78-87-5    | 1,2-Dichloropropane                  | ND     |   | 1.0 | 0.72 |
| 541-73-1   | 1,3-Dichlorobenzene                  | ND     |   | 1.0 | 0.78 |
| 106-46-7   | 1,4-Dichlorobenzene                  | ND     |   | 1.0 | 0.84 |
| 78-93-3    | 2-Butanone (MEK)                     | ND     |   | 10  | 1.3  |
| 591-78-6   | 2-Hexanone                           | ND     |   | 5.0 | 1.2  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)          | ND     |   | 5.0 | 2.1  |
| 67-64-1    | Acetone                              | ND     |   | 10  | 3.0  |
| 71-43-2    | Benzene                              | ND     |   | 1.0 | 0.41 |
| 75-27-4    | Bromodichloromethane                 | ND     |   | 1.0 | 0.39 |
| 75-25-2    | Bromoform                            | ND     |   | 1.0 | 0.26 |
| 74-83-9    | Bromomethane                         | ND     |   | 1.0 | 0.69 |
| 75-15-0    | Carbon disulfide                     | ND     |   | 1.0 | 0.19 |
| 56-23-5    | Carbon tetrachloride                 | ND     |   | 1.0 | 0.27 |
| 108-90-7   | Chlorobenzene                        | ND     |   | 1.0 | 0.75 |
| 75-00-3    | Chloroethane                         | ND     |   | 1.0 | 0.32 |
| 67-66-3    | Chloroform                           | ND     |   | 1.0 | 0.34 |
| 74-87-3    | Chloromethane                        | ND     |   | 1.0 | 0.35 |
| 156-59-2   | cis-1,2-Dichloroethene               | ND     |   | 1.0 | 0.81 |
| 10061-01-5 | cis-1,3-Dichloropropene              | ND     |   | 1.0 | 0.36 |
| 110-82-7   | Cyclohexane                          | ND     |   | 1.0 | 0.18 |
| 124-48-1   | Dibromochloromethane                 | ND     |   | 1.0 | 0.32 |
| 75-71-8    | Dichlorodifluoromethane              | ND     |   | 1.0 | 0.68 |
| 100-41-4   | Ethylbenzene                         | ND     |   | 1.0 | 0.74 |
| 98-82-8    | Isopropylbenzene                     | ND     |   | 1.0 | 0.79 |

## FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1               |  |  |  |  |  |
|-------------------------------|-------------------------------------|--|--|--|--|--|
| SDG No.:                      |                                     |  |  |  |  |  |
| Client Sample ID:             | Lab Sample ID: MB 480-382381/7      |  |  |  |  |  |
| Matrix: Water                 | Lab File ID: 93257P.D               |  |  |  |  |  |
| Analysis Method: 8260C        | Date Collected:                     |  |  |  |  |  |
| Sample wt/vol: 5(mL)          | Date Analyzed: 10/18/2017 11:20     |  |  |  |  |  |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |  |  |  |  |  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |  |  |  |  |  |
| % Moisture:                   | Level: (low/med) Low                |  |  |  |  |  |
| Analysis Batch No.: 382381    | Units: ug/L                         |  |  |  |  |  |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL  |
|------------|---------------------------|--------|---|-----|------|
| 79-20-9    | Methyl acetate            | ND     |   | 2.5 | 1.3  |
| 1634-04-4  | Methyl tert-butyl ether   | ND     |   | 1.0 | 0.16 |
| 108-87-2   | Methylcyclohexane         | ND     |   | 1.0 | 0.16 |
| 75-09-2    | Methylene Chloride        | ND     |   | 1.0 | 0.44 |
| 100-42-5   | Styrene                   | ND     |   | 1.0 | 0.73 |
| 127-18-4   | Tetrachloroethene         | ND     |   | 1.0 | 0.36 |
| 108-88-3   | Toluene                   | ND     |   | 1.0 | 0.51 |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |   | 1.0 | 0.90 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 1.0 | 0.37 |
| 79-01-6    | Trichloroethene           | ND     |   | 1.0 | 0.46 |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 1.0 | 0.88 |
| 75-01-4    | Vinyl chloride            | ND     |   | 1.0 | 0.90 |
| 1330-20-7  | Xylenes, Total            | ND     |   | 2.0 | 0.66 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 97   |   | 77-120 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 105  |   | 73-120 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 100  |   | 75-123 |
| 2037-26-5  | Toluene-d8 (Surr)            | 104  |   | 80-120 |

Page 261 of 914

Report Date: 18-Oct-2017 11:40:36 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\93257P.D

Lims ID: MB

Client ID:

Sample Type: MB

Inject. Date: 18-Oct-2017 11:20:30 ALS Bottle#: 7 Worklist Smp#: 7

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: mb

Misc. Info.: 480-0066487-007

Operator ID: RF/RB Instrument ID: HP5973P

Method: \ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\P-8260H2O.m

Limit Group: MV - 8260C ICAL

Last Update:18-Oct-2017 11:40:35Calib Date:11-Oct-2017 00:40:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3056P.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK019

First Level Reviewer: farrellr Date: 18-Oct-2017 11:40:35

| First Level Reviewer: farrellr       |     |        | D.     | ate:   |    | 18-Oct-201 | / 11:40:3 <u>5</u> |           |       |
|--------------------------------------|-----|--------|--------|--------|----|------------|--------------------|-----------|-------|
|                                      |     | RT     | Adj RT | DIt RT |    |            | Cal Amt            | OnCol Amt |       |
| Compound                             | Sig | (min.) | (min.) | (min.) | Q  | Response   | ug/L               | ug/L      | Flags |
|                                      |     |        |        |        |    |            |                    |           |       |
| * 147 Fluorobenzene (IS)             | 70  | 10.433 | 10.434 | -0.001 | 96 | 190146     | 25.0               | 25.0      |       |
| <ul><li>2 Chlorobenzene-d5</li></ul> | 82  | 14.382 | 14.388 | -0.006 | 93 | 403178     | 25.0               | 25.0      |       |
| * 3 1,4-Dichlorobenzene-d4           | 152 | 17.338 | 17.338 | 0.000  | 95 | 424452     | 25.0               | 25.0      |       |
| \$ 148 Dibromofluoromethane (Surr    | 113 | 9.636  | 9.637  | -0.001 | 93 | 267863     | 25.0               | 25.0      |       |
| \$ 41,2-Dichloroethane-d4 (Sur       | 67  | 10.093 | 10.093 | 0.000  | 0  | 179789     | 25.0               | 24.2      |       |
| \$ 5 Toluene-d8 (Surr)               | 98  | 12.423 | 12.423 | 0.000  | 96 | 934864     | 25.0               | 26.0      |       |
| \$ 6 4-Bromofluorobenzene (Surr      | 174 | 15.878 | 15.878 | 0.000  | 91 | 342862     | 25.0               | 26.2      |       |
| 10 Dichlorodifluoromethane           | 85  |        | 4.332  |        |    |            |                    | ND        |       |
| 15 Chlorodifluoromethane             | 51  |        | 4.374  |        |    |            |                    | ND        |       |
| 11 Chloromethane                     | 50  |        | 4.764  |        |    |            |                    | ND        |       |
| 17 Vinyl chloride                    | 62  |        | 4.964  |        |    |            |                    | ND        |       |
| 144 Butadiene                        | 54  |        | 5.013  |        |    |            |                    | ND        |       |
| 12 Bromomethane                      | 94  |        | 5.615  |        |    |            |                    | ND        |       |
| 13 Chloroethane                      | 64  |        | 5.707  |        |    |            |                    | ND        |       |
| 19 Dichlorofluoromethane             | 67  |        | 6.029  |        |    |            |                    | ND        |       |
| 14 Trichlorofluoromethane            | 101 |        | 6.090  |        |    |            |                    | ND        |       |
| 141 Ethanol                          | 45  |        | 6.315  |        |    |            |                    | ND        |       |
| 20 Ethyl ether                       | 59  |        | 6.388  |        |    |            |                    | ND        |       |
| 26 Propene oxide                     | 58  |        | 6.577  |        |    |            |                    | ND        |       |
| 22 Acrolein                          | 56  |        | 6.692  |        |    |            |                    | ND        |       |
| 16 1,1,2-Trichloro-1,2,2-trif        | 101 |        | 6.735  |        |    |            |                    | ND        |       |
| 25 1,1-Dichloroethene                | 96  |        | 6.844  |        |    |            |                    | ND        |       |
| 24 Acetone                           | 43  |        | 6.887  |        |    |            |                    | ND        |       |
| 23 Isopropyl alcohol                 | 45  |        | 6.996  |        |    |            |                    | ND        |       |
| 18 lodomethane                       | 142 |        | 7.142  |        |    |            |                    | ND        |       |
| 30 Methyl acetate                    | 43  |        | 7.252  |        |    |            |                    | ND        |       |
| 27 Carbon disulfide                  | 76  |        | 7.270  |        |    |            |                    | ND        |       |
| 28 3-Chloro-1-propene                | 41  |        | 7.276  |        |    |            |                    | ND        |       |
| 29 Acetonitrile                      | 40  |        | 7.337  |        |    |            |                    | ND        |       |
| 33 2-Methyl-2-propanol               | 59  |        | 7.507  |        |    |            |                    | ND        |       |
| 31 Methylene Chloride                | 84  |        | 7.507  |        |    |            |                    | ND        |       |
|                                      |     |        |        |        |    |            |                    |           |       |

ct-2017 11:40:36 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\93257P.D Report Date: 18-Oct-2017 11:40:36

| Data File: \\Cnromina\B       | uiiaio\( | nromData\HP597   | ·                | 18-00 | 0407.D\Y3257P |                 |                   |       |
|-------------------------------|----------|------------------|------------------|-------|---------------|-----------------|-------------------|-------|
| Compound                      | Sig      | RT Adj RT (min.) | Dlt RT<br>(min.) | Q     | Response      | Cal Amt<br>ug/L | OnCol Amt<br>ug/L | Flags |
| 32 Methyl tert-butyl ether    | 73       | 7.684            |                  |       |               |                 | ND                |       |
| 35 trans-1,2-Dichloroethene   | 96       | 7.781            |                  |       |               |                 | ND                |       |
| 34 Acrylonitrile              | 53       | 7.731            |                  |       |               |                 | ND                |       |
| 36 Hexane                     | 57       | 7.976            |                  |       |               |                 | ND                |       |
| 37 Isopropyl ether            | 45       | 8.201            |                  |       |               |                 | ND                |       |
| 38 Vinyl acetate              | 43       | 8.280            |                  |       |               |                 | ND                |       |
| 40 1,1-Dichloroethane         | 63       | 8.335            |                  |       |               |                 | ND                |       |
| 39 1,1-Dimethoxyethane        | 75       | 8.341            |                  |       |               |                 | ND                |       |
| 41 2-Chloro-1,3-butadiene     | 53       | 8.408            |                  |       |               |                 | ND                |       |
| 42 Tert-butyl ethyl ether     | 59       | 8.657            |                  |       |               |                 | ND                |       |
| 46 Ethyl acetate              | 43       | 8.980            |                  |       |               |                 | ND                |       |
| 44 2-Butanone (MEK)           | 43       | 9.022            |                  |       |               |                 | ND                |       |
| 45 2,2-Dichloropropane        | 77       | 9.034            |                  |       |               |                 | ND                |       |
| 43 cis-1,2-Dichloroethene     | 96       | 9.053            |                  |       |               |                 | ND                |       |
| 47 Propionitrile              | 54       | 9.186            |                  |       |               |                 | ND                |       |
| 48 Methacrylonitrile          | 41       | 9.339            |                  |       |               |                 | ND                |       |
| 50 Chlorobromomethane         | 128      | 9.387            |                  |       |               |                 | ND                |       |
| 51 Tetrahydrofuran            | 42       | 9.399            |                  |       |               |                 | ND                |       |
| 49 Chloroform                 | 83       | 9.418            |                  |       |               |                 | ND                |       |
| 52 1,1,1-Trichloroethane      | 97       | 9.649            |                  |       |               |                 | ND                |       |
| 66 2-Methylthiophene          | 97       | 9.687            |                  |       |               |                 | ND                |       |
| 54 Cyclohexane                | 56       | 9.691            |                  |       |               |                 | ND                |       |
| 56 1,1-Dichloropropene        | 75       | 9.831            |                  |       |               |                 | ND                |       |
| 53 Isobutyl alcohol           | 43       | 9.843            |                  |       |               |                 | ND                |       |
| 55 Carbon tetrachloride       | 117      | 9.850            |                  |       |               |                 | ND                |       |
| 67 3-Methylthiophene          | 97       | 9.894            |                  |       |               |                 | ND                |       |
| 140 t-Amyl alcohol            | 59       | 9.965            |                  |       |               |                 | ND                |       |
| 146 Isooctane                 | 57       | 10.020           |                  |       |               |                 | ND                |       |
| 58 Tert-amyl methyl ether     | 73       | 10.087           |                  |       |               |                 | ND                |       |
| 57 Benzene                    | 78       | 10.129           |                  |       |               |                 | ND                |       |
| 60 1,2-Dichloroethane         | 62       | 10.184           |                  |       |               |                 | ND                |       |
| 59 n-Heptane                  | 43       | 10.184           |                  |       |               |                 | ND                |       |
| 1 1,4-Difluorobenzene         | 114      | 10.507           |                  |       |               |                 | ND                |       |
| 61 n-Butanol                  | 56       | 10.653           |                  |       |               |                 | ND                |       |
| 145 Ethyl acrylate            | 55       | 10.859           |                  |       |               |                 | ND                |       |
| 62 Trichloroethene            | 95       | 10.884           |                  |       |               |                 | ND                |       |
| 64 Methylcyclohexane          | 83       | 11.084           |                  |       |               |                 | ND                |       |
| 65 Methyl methacrylate        | 41       | 11.164           |                  |       |               |                 | ND                |       |
| 63 1,2-Dichloropropane        | 63       | 11.224           |                  |       |               |                 | ND                |       |
| 68 1,4-Dioxane                | 88       | 11.340           |                  |       |               |                 | ND                |       |
| 69 Dibromomethane             | 93       | 11.431           |                  |       |               |                 | ND                |       |
| 70 Dichlorobromomethane       | 83       | 11.559           |                  |       |               |                 | ND                |       |
| 71 2-Chloroethyl vinyl ether  | 63       | 11.815           |                  |       |               |                 | ND                |       |
| 72 2-Nitropropane             | 43       | 11.869           |                  |       |               |                 | ND                |       |
| 74 Epichlorohydrin            | 57       | 12.021           |                  |       |               |                 | ND                |       |
| 73 cis-1,3-Dichloropropene    | 75       | 12.094           |                  |       |               |                 | ND                |       |
| 75 4-Methyl-2-pentanone (MIBK | 43       | 12.198           |                  |       |               |                 | ND                |       |
| 76 Toluene                    | 92       | 12.514           |                  |       |               |                 | ND                |       |
| 77 Ethyl methacrylate         | 69       | 12.733           |                  |       |               |                 | ND                |       |
| 78 trans-1,3-Dichloropropene  | 75       | 12.806           |                  |       |               |                 | ND                |       |
| 79 1,1,2-Trichloroethane      | 83       | 13.092           |                  |       |               |                 | ND                |       |
| 80 Tetrachloroethene          | 166      | 13.244           |                  |       |               |                 | ND                |       |
|                               |          |                  |                  |       |               |                 |                   |       |

ct-2017 11:40:36 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\93257P.D Report Date: 18-Oct-2017 11:40:36

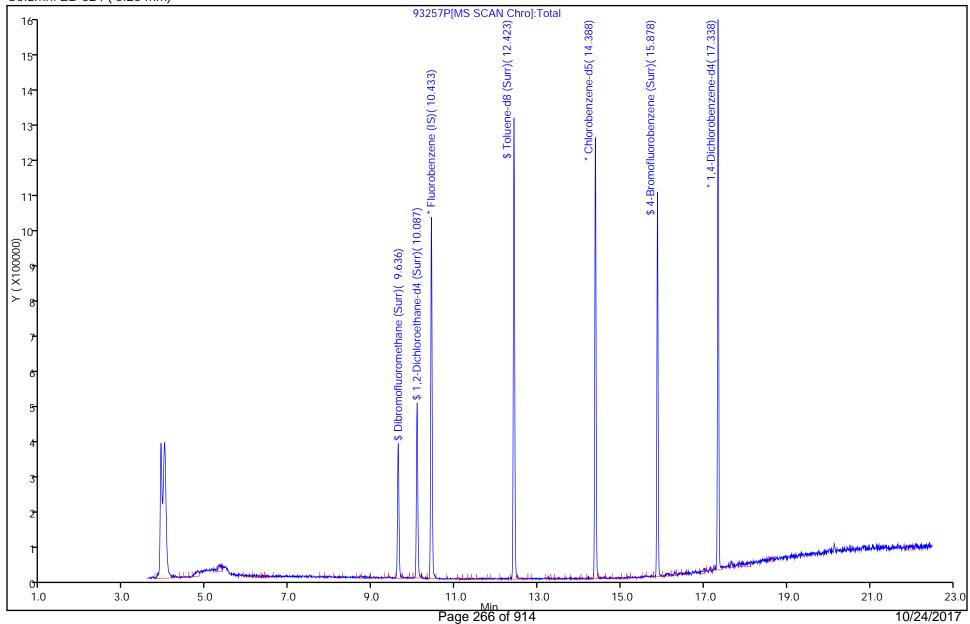
| Data File: \\Cnrom\\A\B                       | uiiaio\   |              |                  |                  | 018-66 | 5487.D\93257P |                 |                   |       |
|-----------------------------------------------|-----------|--------------|------------------|------------------|--------|---------------|-----------------|-------------------|-------|
| Compound                                      | Sig       | RT<br>(min.) | Adj RT<br>(min.) | DIt RT<br>(min.) | Q      | Response      | Cal Amt<br>ug/L | OnCol Amt<br>ug/L | Flags |
| 83 2-Hexanone                                 | 43        |              | 12 207           |                  |        |               |                 | ND                |       |
|                                               | 43<br>76  |              | 13.287<br>13.329 |                  |        |               |                 | ND                |       |
| 82 1,3-Dichloropropane<br>149 n-Butyl acetate | 43        |              | 13.342           |                  |        |               |                 | ND                |       |
| 81 Chlorodibromomethane                       | 43<br>129 |              | 13.542           |                  |        |               |                 | ND                |       |
| 85 Ethylene Dibromide                         | 107       |              | 13.871           |                  |        |               |                 | ND                |       |
| 84 3-Chlorobenzotrifluoride                   | 180       |              | 14.205           |                  |        |               |                 | ND                |       |
| 139 1-Chlorohexane                            | 55        |              | 14.203           |                  |        |               |                 | ND                |       |
| 86 4-Chlorobenzotrifluoride                   | 180       |              | 14.278           |                  |        |               |                 | ND                |       |
| 87 Chlorobenzene                              | 112       |              | 14.424           |                  |        |               |                 | ND                |       |
| 89 Ethylbenzene                               | 91        |              | 14.467           |                  |        |               |                 | ND                |       |
| 88 1,1,1,2-Tetrachloroethane                  | 131       |              | 14.510           |                  |        |               |                 | ND                |       |
| 90 m-Xylene & p-Xylene                        | 106       |              | 14.601           |                  |        |               |                 | ND                |       |
| 93 o-Xylene                                   | 106       |              | 15.154           |                  |        |               |                 | ND                |       |
| 94 Styrene                                    | 104       |              | 15.179           |                  |        |               |                 | ND                |       |
| 91 2-Chlorobenzotrifluoride                   | 180       |              | 15.177           |                  |        |               |                 | ND                |       |
| 92 Bromoform                                  | 173       |              | 15.568           |                  |        |               |                 | ND                |       |
| 95 Isopropylbenzene                           | 105       |              | 15.580           |                  |        |               |                 | ND                |       |
| 96 Cyclohexanone                              | 55        |              | 15.891           |                  |        |               |                 | ND                |       |
| 97 1,1,2,2-Tetrachloroethane                  | 83        |              | 16.055           |                  |        |               |                 | ND                |       |
| 98 trans-1,4-Dichloro-2-buten                 | 53        |              | 16.103           |                  |        |               |                 | ND                |       |
| 99 N-Propylbenzene                            | 91        |              | 16.110           |                  |        |               |                 | ND                |       |
| 100 Bromobenzene                              | 156       |              | 16.118           |                  |        |               |                 | ND                |       |
| 101 1,2,3-Trichloropropane                    | 110       |              | 16.126           |                  |        |               |                 | ND                |       |
| 102 1,3,5-Trimethylbenzene                    | 105       |              | 16.298           |                  |        |               |                 | ND                |       |
| 103 2-Chlorotoluene                           | 126       |              | 16.316           |                  |        |               |                 | ND                |       |
| 104 3-Chlorotoluene                           | 126       |              | 16.383           |                  |        |               |                 | ND                |       |
| 105 4-Chlorotoluene                           | 126       |              | 16.444           |                  |        |               |                 | ND                |       |
| 106 tert-Butylbenzene                         | 134       |              | 16.736           |                  |        |               |                 | ND                |       |
| 107 1,2,4-Trimethylbenzene                    | 105       |              | 16.797           |                  |        |               |                 | ND                |       |
| 108 Pentachloroethane                         | 167       |              | 16.870           |                  |        |               |                 | ND                |       |
| 109 sec-Butylbenzene                          | 105       |              | 17.004           |                  |        |               |                 | ND                |       |
| 112 4-Isopropyltoluene                        | 119       |              | 17.150           |                  |        |               |                 | ND                |       |
| 110 1,3-Dichlorobenzene                       | 146       |              | 17.165           |                  |        |               |                 | ND                |       |
| 113 1,2,3-Trimethylbenzene                    | 105       |              | 17.357           |                  |        |               |                 | ND                |       |
| 111 1,4-Dichlorobenzene                       | 146       |              | 17.375           |                  |        |               |                 | ND                |       |
| 114 Dicyclopentadiene                         | 66        |              | 17.375           |                  |        |               |                 | ND                |       |
| 143 Benzyl chloride                           | 126       |              | 17.539           |                  |        |               |                 | ND                |       |
| 115 n-Butylbenzene                            | 91        |              | 17.661           |                  |        |               |                 | ND                |       |
| 116 1,2-Dichlorobenzene                       | 146       |              | 17.874           |                  |        |               |                 | ND                |       |
| 117 1,2-Dibromo-3-Chloropropan                |           |              | 18.920           |                  |        |               |                 | ND                |       |
| 118 1,3,5-Trichlorobenzene                    | 180       |              | 19.097           |                  |        |               |                 | ND                |       |
| 119 1,2,4-Trichlorobenzene                    | 180       |              | 20.027           |                  |        |               |                 | ND                |       |
| 120 Hexachlorobutadiene                       | 225       | 20.137       | 20.149           | -0.012           | 86     | 4517          |                 | 0.4789            |       |
| 121 Naphthalene                               | 128       | 20.107       | 20.149           | 0.012            | 50     | 7017          |                 | 0.4707<br>ND      |       |
| 122 1,2,3-Trichlorobenzene                    | 180       |              | 20.471           |                  |        |               |                 | ND                |       |
| 142 2-Methylnaphthalene                       | 142       |              | 22.424           |                  |        |               |                 | ND                |       |
| 136 Propene oxide TIC                         | 142       |              | 0.000            |                  |        |               |                 | ND                |       |
| 138 Ethylene oxide TIC                        | 1         |              | 0.000            |                  |        |               |                 | ND                |       |
| 137 1-Bromopropane TIC                        | 1         |              | 0.000            |                  |        |               |                 | ND                |       |
| 134 Halothane                                 | 1         |              | 0.000            |                  |        |               |                 | ND                |       |
| 135 Pentachloroethane TIC                     | 1         |              | 0.000            |                  |        |               |                 | ND                |       |
|                                               | •         |              | 30.000           |                  |        |               |                 | ND                |       |
| S 123 1,2-Dichloroethene, Total               | 1         |              | 30.000           |                  |        |               |                 | טאו               |       |

| Data Tile: Notifolii (Manafolii olii olii olii olii olii olii olii |     |          |                  |                  |   |           |                 |                   |       |
|--------------------------------------------------------------------|-----|----------|------------------|------------------|---|-----------|-----------------|-------------------|-------|
| Compound                                                           | Sig |          | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q | Response  | Cal Amt<br>ug/L | OnCol Amt<br>ug/L | Flags |
|                                                                    |     |          |                  |                  |   |           |                 |                   |       |
| S 124 1,3-Dichloropropene, Total                                   | 1   | ;        | 30.000           |                  |   |           | 1               | ND                |       |
| S 125 Total BTEX                                                   | 1   | ;        | 30.000           |                  |   |           |                 | ND                |       |
| S 126 Xylenes, Total                                               | 1   | ;        | 30.000           |                  |   |           |                 | ND                |       |
| T 150 1-Chloro-1-fluoroethane TI                                   | 47  |          | 5.300            |                  |   |           |                 | ND                |       |
| T 129 bis(chloromethyl)ether TIC                                   | 1   |          | 0.000            |                  |   |           | I               | ND                |       |
| T 131 1-Bromopropane                                               | 1   |          | 0.000            |                  |   |           | 1               | ND                |       |
| T 7 Ethylene oxide                                                 | 1   |          | 0.000            |                  |   |           | ĺ               | ND                |       |
| T 130 Bromoethane TIC                                              | 1   |          | 0.000            |                  |   |           | ĺ               | ND                |       |
| T 133 Aziridine TIC                                                | 1   |          | 0.000            |                  |   |           | İ               | ND                |       |
| T 132 tert-amyl alcohol TIC                                        | 1   |          | 0.000            |                  |   |           | İ               | ND                |       |
| T 128 Hexachloroethane TIC                                         | 201 |          | 0.000            |                  |   |           | I               | ND                |       |
| T 9 bis(2-chloromethyl)ether T                                     | 1   |          | 0.000            |                  |   |           | I               | ND                |       |
| T 127 Ethanol TIC                                                  | 45  | 0.000 ND |                  |                  |   |           |                 |                   |       |
| Reagents:                                                          |     |          |                  |                  |   |           |                 |                   |       |
| P 8260 IS_00248                                                    |     | Amount A | dded:            | 1.25             | L | Jnits: uL | Run Reage       | nt                |       |
| P 8260 Surr00243                                                   |     | Amount A |                  | 1.25             |   | Jnits: uL | Run Reage       |                   |       |

Report Date: 18-Oct-2017 11:40:36 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\93257P.D Injection Date: 18-Oct-2017 11:20:30 Instrument ID: HP5973P


Lims ID: MB

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

RF/RB

7

7

### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1               |  |  |  |  |  |
|-------------------------------|-------------------------------------|--|--|--|--|--|
| SDG No.:                      |                                     |  |  |  |  |  |
| Client Sample ID:             | Lab Sample ID: LCS 480-382014/1-A   |  |  |  |  |  |
| Matrix: Solid                 | Lab File ID: F8271.D                |  |  |  |  |  |
| Analysis Method: 8260C        | Date Collected:                     |  |  |  |  |  |
| Sample wt/vol: 5(g)           | Date Analyzed: 10/16/2017 12:17     |  |  |  |  |  |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |  |  |  |  |  |
| Soil Extract Vol.:            | GC Column: ZB-624 (30) ID: 0.25(mm) |  |  |  |  |  |
| % Moisture:                   | Level: (low/med) Low                |  |  |  |  |  |
| Analysis Batch No.: 381944    | Units: ua/Ka                        |  |  |  |  |  |

| CAS NO.    | COMPOUND NAME                          | RESULT | Q | RL  | MDL  |
|------------|----------------------------------------|--------|---|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                  | 55.4   |   | 5.0 | 0.36 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane              | 47.5   |   | 5.0 | 0.81 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan e | 52.2   |   | 5.0 | 1.1  |
| 79-00-5    | 1,1,2-Trichloroethane                  | 49.2   |   | 5.0 | 0.65 |
| 75-34-3    | 1,1-Dichloroethane                     | 51.9   |   | 5.0 | 0.61 |
| 75-35-4    | 1,1-Dichloroethene                     | 52.3   |   | 5.0 | 0.61 |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | 53.6   |   | 5.0 | 0.30 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane            | 51.4   |   | 5.0 | 2.5  |
| 106-93-4   | 1,2-Dibromoethane                      | 52.4   |   | 5.0 | 0.64 |
| 95-50-1    | 1,2-Dichlorobenzene                    | 49.5   |   | 5.0 | 0.39 |
| 107-06-2   | 1,2-Dichloroethane                     | 49.5   |   | 5.0 | 0.25 |
| 78-87-5    | 1,2-Dichloropropane                    | 52.0   |   | 5.0 | 2.5  |
| 541-73-1   | 1,3-Dichlorobenzene                    | 49.6   |   | 5.0 | 0.26 |
| 106-46-7   | 1,4-Dichlorobenzene                    | 49.6   |   | 5.0 | 0.70 |
| 78-93-3    | 2-Butanone (MEK)                       | 239    |   | 25  | 1.8  |
| 591-78-6   | 2-Hexanone                             | 236    |   | 25  | 2.5  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)            | 230    |   | 25  | 1.6  |
| 67-64-1    | Acetone                                | 247    |   | 25  | 4.2  |
| 71-43-2    | Benzene                                | 50.9   |   | 5.0 | 0.25 |
| 75-27-4    | Bromodichloromethane                   | 60.9   |   | 5.0 | 0.67 |
| 75-25-2    | Bromoform                              | 71.5   |   | 5.0 | 2.5  |
| 74-83-9    | Bromomethane                           | 50.8   |   | 5.0 | 0.45 |
| 75-15-0    | Carbon disulfide                       | 57.6   |   | 5.0 | 2.5  |
| 56-23-5    | Carbon tetrachloride                   | 67.5   |   | 5.0 | 0.48 |
| 108-90-7   | Chlorobenzene                          | 52.0   |   | 5.0 | 0.66 |
| 75-00-3    | Chloroethane                           | 50.6   |   | 5.0 | 1.1  |
| 67-66-3    | Chloroform                             | 51.0   |   | 5.0 | 0.31 |
| 74-87-3    | Chloromethane                          | 42.6   |   | 5.0 | 0.30 |
| 156-59-2   | cis-1,2-Dichloroethene                 | 51.7   |   | 5.0 | 0.64 |
| 10061-01-5 | cis-1,3-Dichloropropene                | 57.7   |   | 5.0 | 0.72 |
| 110-82-7   | Cyclohexane                            | 51.2   |   | 5.0 | 0.70 |
| 124-48-1   | Dibromochloromethane                   | 59.5   |   | 5.0 | 0.64 |
| 75-71-8    | Dichlorodifluoromethane                | 59.7   |   | 5.0 | 0.41 |
| 100-41-4   | Ethylbenzene                           | 50.4   |   | 5.0 | 0.35 |
| 98-82-8    | Isopropylbenzene                       | 49.0   |   | 5.0 | 0.75 |

## FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1               |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: LCS 480-382014/1-A   |
| Matrix: Solid                 | Lab File ID: F8271.D                |
| Analysis Method: 8260C        | Date Collected:                     |
| Sample wt/vol: 5(g)           | Date Analyzed: 10/16/2017 12:17     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (30) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analysis Patch No · 2010//    | IInitat ug/Vg                       |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL  |
|------------|---------------------------|--------|---|-----|------|
| 79-20-9    | Methyl acetate            | 92.1   |   | 25  | 3.0  |
| 1634-04-4  | Methyl tert-butyl ether   | 48.4   |   | 5.0 | 0.49 |
| 108-87-2   | Methylcyclohexane         | 52.7   |   | 5.0 | 0.76 |
| 75-09-2    | Methylene Chloride        | 52.8   |   | 5.0 | 2.3  |
| 100-42-5   | Styrene                   | 50.8   |   | 5.0 | 0.25 |
| 127-18-4   | Tetrachloroethene         | 55.3   |   | 5.0 | 0.67 |
| 108-88-3   | Toluene                   | 49.8   |   | 5.0 | 0.38 |
| 156-60-5   | trans-1,2-Dichloroethene  | 52.3   |   | 5.0 | 0.52 |
| 10061-02-6 | trans-1,3-Dichloropropene | 55.9   |   | 5.0 | 2.2  |
| 79-01-6    | Trichloroethene           | 52.8   |   | 5.0 | 1.1  |
| 75-69-4    | Trichlorofluoromethane    | 54.4   |   | 5.0 | 0.47 |
| 75-01-4    | Vinyl chloride            | 47.4   |   | 5.0 | 0.61 |
| 1330-20-7  | Xylenes, Total            | 103    |   | 10  | 0.84 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 98   |   | 64-126 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 103  |   | 72-126 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 105  |   | 60-140 |
| 2037-26-5  | Toluene-d8 (Surr)            | 98   |   | 71-125 |

Report Date: 16-Oct-2017 13:32:07 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

\\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8271.D

Lims ID: LCS 480-382014/1-A

Client ID:

Data File:

Sample Type: LCS

Inject. Date: 16-Oct-2017 12:17:30 ALS Bottle#: 3 Worklist Smp#: 6

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: LCS

Misc. Info.: 480-0066422-006

Operator ID: CDC Instrument ID: HP5973F

Method: \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update:16-Oct-2017 13:32:06Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1: ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK011

First Level Reviewer: cwiklinc Date: 16-Oct-2017 13:32:06

| First Level Reviewer: cwiklinc         |     |        | Date:  |        |     | 16-Oct-2017 13:32:06 |         |           |       |
|----------------------------------------|-----|--------|--------|--------|-----|----------------------|---------|-----------|-------|
|                                        |     | RT     | Adj RT | Dlt RT |     |                      | Cal Amt | OnCol Amt |       |
| Compound                               | Sig | (min.) | (min.) | (min.) | Q   | Response             | ug/kg   | ug/kg     | Flags |
|                                        |     |        |        |        |     |                      |         |           |       |
| * 153 Fluorobenzene (IS)               | 70  | 5.191  | 5.191  | 0.000  | 99  | 289139               | 50.0    | 50.0      |       |
| <ul><li>* 2 Chlorobenzene-d5</li></ul> | 82  | 7.989  | 7.989  | 0.000  | 86  | 604935               | 50.0    | 50.0      |       |
| * 3 1,4-Dichlorobenzene-d4             | 152 | 10.356 | 10.356 | 0.000  | 94  | 646823               | 50.0    | 50.0      |       |
| \$ 154 Dibromofluoromethane (Surr      | 113 | 4.674  | 4.674  | 0.000  | 94  | 377065               | 50.0    | 52.6      |       |
| \$ 41,2-Dichloroethane-d4 (Sur         | 67  | 4.954  | 4.953  | 0.001  | 0   | 225536               | 50.0    | 49.0      |       |
| \$ 5 Toluene-d8 (Surr)                 | 98  | 6.560  | 6.559  | 0.001  | 93  | 1460303              | 50.0    | 49.0      |       |
| \$ 6 4-Bromofluorobenzene (Surr        | 174 | 9.218  | 9.218  | 0.000  | 93  | 505093               | 50.0    | 51.7      |       |
| 10 Dichlorodifluoromethane             | 85  | 1.821  | 1.814  | 0.006  | 100 | 457142               | 50.0    | 59.7      |       |
| 12 Chloromethane                       | 50  | 1.997  | 1.997  | 0.000  | 100 | 302528               | 50.0    | 42.6      |       |
| 151 Butadiene                          | 54  | 2.094  | 2.088  | 0.006  | 86  | 306601               | 50.0    | 43.5      |       |
| 13 Vinyl chloride                      | 62  | 2.094  | 2.088  | 0.006  | 92  | 334726               | 50.0    | 47.4      |       |
| 14 Bromomethane                        | 94  | 2.368  | 2.362  | 0.006  | 90  | 167068               | 50.0    | 50.8      |       |
| 15 Chloroethane                        | 64  | 2.411  | 2.410  | 0.001  | 100 | 151334               | 50.0    | 50.6      |       |
| 16 Dichlorofluoromethane               | 67  | 2.575  | 2.575  | 0.000  | 96  | 464782               | 50.0    | 50.4      |       |
| 17 Trichlorofluoromethane              | 101 | 2.611  | 2.611  | 0.000  | 99  | 489661               | 50.0    | 54.4      |       |
| 18 Ethyl ether                         | 59  | 2.770  | 2.763  | 0.007  | 87  | 236074               | 50.0    | 42.2      |       |
| 20 Acrolein                            | 56  | 2.922  | 2.915  | 0.007  | 100 | 326600               | 250.0   | 231.9     |       |
| 21 1,1,2-Trichloro-1,2,2-trif          | 101 | 2.958  | 2.958  | 0.000  | 92  | 393862               | 50.0    | 52.2      |       |
| 22 1,1-Dichloroethene                  | 96  | 2.976  | 2.976  | 0.000  | 94  | 374131               | 50.0    | 52.3      |       |
| 23 Acetone                             | 43  | 3.031  | 3.025  | 0.006  | 98  | 740496               | 250.0   | 246.5     |       |
| 25 Iodomethane                         | 142 | 3.128  | 3.128  | 0.000  | 98  | 693048               | 50.0    | 54.6      |       |
| 26 Carbon disulfide                    | 76  | 3.183  | 3.177  | 0.006  | 99  | 1271567              | 50.0    | 57.6      |       |
| 27 Methyl acetate                      | 43  | 3.244  | 3.238  | 0.006  | 76  | 604702               | 100.0   | 92.1      |       |
| 28 3-Chloro-1-propene                  | 41  | 3.244  | 3.238  | 0.006  | 90  | 668349               | 50.0    | 50.8      |       |
| 30 Methylene Chloride                  | 84  | 3.354  | 3.353  | 0.001  | 96  | 446933               | 50.0    | 52.8      |       |
| 31 2-Methyl-2-propanol                 | 59  | 3.414  | 3.402  | 0.012  | 99  | 542743               | 500.0   | 487.8     |       |
| 32 Methyl tert-butyl ether             | 73  | 3.500  | 3.499  | 0.001  | 96  | 1168168              | 50.0    | 48.4      |       |
| 34 trans-1,2-Dichloroethene            | 96  | 3.536  | 3.530  | 0.006  | 95  | 429217               | 50.0    | 52.3      |       |
| 33 Acrylonitrile                       | 53  | 3.548  | 3.548  | 0.000  | 99  | 1711806              | 500.0   | 487.3     |       |
| 35 Hexane                              | 57  | 3.670  | 3.664  | 0.006  | 85  | 865351               | 50.0    | 56.6      |       |
| 37 Vinyl acetate                       | 43  | 3.846  | 3.846  | 0.000  | 97  | 1516282              | 100.0   | 100.4     |       |
|                                        |     |        |        |        |     |                      |         |           |       |

ct-2017 13:32:07 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8271.D Report Date: 16-Oct-2017 13:32:07

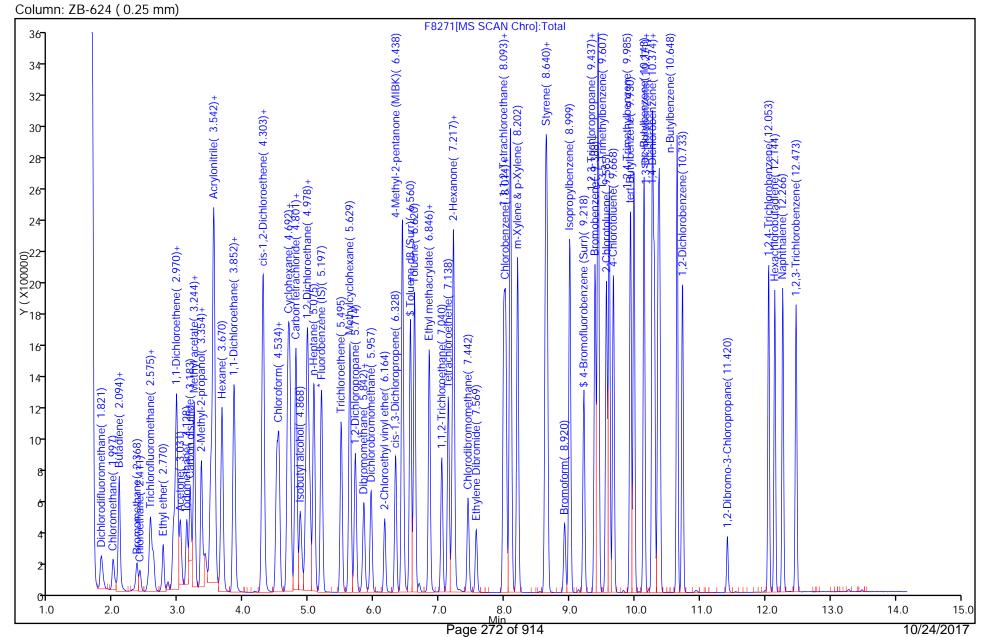
| Data File: \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8271.D |          |                |        |                |           |                  |              |              |       |
|-------------------------------------------------------------------------|----------|----------------|--------|----------------|-----------|------------------|--------------|--------------|-------|
| 0                                                                       | C.       | RT             | Adj RT | Dlt RT         |           | Decus            | Cal Amt      | OnCol Amt    | П     |
| Compound                                                                | Sig      | (min.)         | (min.) | (min.)         | Q         | Response         | ug/kg        | ug/kg        | Flags |
| 20.1.1 Diablaracthana                                                   | / 2      | 2.050          | 2.050  | 0.000          | 07        | 017107           | FO 0         | F1 0         |       |
| 39 1,1-Dichloroethane                                                   | 63       | 3.859          | 3.858  | 0.000          | 96<br>100 | 817187           | 50.0         | 51.9         |       |
| 43 2-Butanone (MEK)                                                     | 43       | 4.297          | 4.290  | 0.007          | 100       | 1016633          | 250.0        | 239.4        |       |
| 44 2,2-Dichloropropane                                                  | 77<br>96 | 4.290          | 4.290  | 0.000          | 91<br>97  | 563833           | 50.0         | 51.3<br>51.7 |       |
| 45 cis-1,2-Dichloroethene                                               |          | 4.303          | 4.302  | 0.001<br>0.006 | 87<br>05  | 476494<br>229296 | 50.0<br>50.0 |              |       |
| 48 Chlorobromomethane                                                   | 128      | 4.509          | 4.503  | 0.000          | 95<br>90  | 229296<br>254771 | 100.0        | 54.8<br>94.4 |       |
| 49 Tetrahydrofuran                                                      | 42<br>83 | 4.528<br>4.540 | 4.528  |                | 89<br>94  |                  | 50.0         | 94.4<br>51.0 |       |
| 50 Chloroform                                                           | 63<br>97 |                | 4.540  | 0.000          |           | 702967           |              |              |       |
| 51 1,1,1-Trichloroethane                                                |          | 4.680          | 4.680  | 0.000          | 98        | 627323           | 50.0         | 55.4         |       |
| 52 Cyclohexane                                                          | 56       | 4.704          | 4.710  | -0.006         | 90        | 918030           | 50.0         | 51.2         |       |
| 54 1,1-Dichloropropene                                                  | 75       | 4.795          | 4.795  | 0.000          | 97<br>07  | 575805           | 50.0         | 53.8         |       |
| 55 Carbon tetrachloride                                                 | 117      | 4.808          | 4.807  | 0.001          | 97<br>05  | 576487           | 50.0         | 67.5         |       |
| 53 Isobutyl alcohol                                                     | 43       | 4.868          | 4.868  | 0.000          | 95<br>07  | 508006           | 1250.0       | 1292.8       |       |
| 57 Benzene                                                              | 78<br>73 | 4.984          | 4.978  | 0.006          | 97<br>07  | 1640718          | 50.0         | 50.9         |       |
| 58 1,2-Dichloroethane                                                   | 62       | 5.014          | 5.014  | 0.000          | 97        | 604235           | 50.0         | 49.5         |       |
| 59 n-Heptane                                                            | 43<br>05 | 5.081          | 5.075  | 0.006          | 90        | 722546           | 50.0         | 49.3         |       |
| 62 Trichloroethene                                                      | 95       | 5.495          | 5.495  | 0.000          | 97        | 430467           | 50.0         | 52.8         |       |
| 64 Methylcyclohexane                                                    | 83       | 5.629          | 5.629  | 0.000          | 92        | 810082           | 50.0         | 52.7         |       |
| 65 1,2-Dichloropropane                                                  | 63       | 5.714          | 5.714  | 0.000          | 97        | 455733           | 50.0         | 52.0         |       |
| 66 1,4-Dioxane                                                          | 88       | 5.823          | 5.823  | 0.000          | 98        | 101656           | 1000.0       | 1082.3       |       |
| 67 Dibromomethane                                                       | 93       | 5.842          | 5.842  | 0.000          | 94        | 238998           | 50.0         | 52.7         |       |
| 68 Dichlorobromomethane                                                 | 83       | 5.957          | 5.951  | 0.006          | 99        | 527714           | 50.0         | 60.9         |       |
| 69 2-Chloroethyl vinyl ether                                            | 63       | 6.164          | 6.164  | 0.000          | 91        | 262454           | 50.0         | 54.0         |       |
| 72 cis-1,3-Dichloropropene                                              | 75       | 6.335          | 6.328  | 0.007          | 96        | 623664           | 50.0         | 57.7         |       |
| 73 4-Methyl-2-pentanone (MIBK                                           | 43       | 6.438          | 6.432  | 0.006          | 92        | 1935141          | 250.0        | 230.3        |       |
| 74 Toluene                                                              | 92       | 6.620          | 6.620  | 0.000          | 99        | 1072136          | 50.0         | 49.8         |       |
| 75 Ethyl methacrylate                                                   | 69       | 6.852          | 6.845  | 0.007          | 87        | 482437           | 50.0         | 48.5         |       |
| 77 trans-1,3-Dichloropropene                                            | 75       | 6.846          | 6.845  | 0.001          | 96        | 546906           | 50.0         | 55.9         |       |
| 79 1,1,2-Trichloroethane                                                | 83       | 7.040          | 7.040  | 0.000          | 93        | 279656           | 50.0         | 49.2         |       |
| 81 Tetrachloroethene                                                    | 166      | 7.138          | 7.137  | 0.001          | 98        | 510373           | 50.0         | 55.3         |       |
| 82 1,3-Dichloropropane                                                  | 76       | 7.204          | 7.204  | 0.000          | 98        | 579299           | 50.0         | 49.5         |       |
| 80 2-Hexanone                                                           | 43       | 7.223          | 7.223  | 0.000          | 91        | 1446114          | 250.0        | 236.2        |       |
| 83 Chlorodibromomethane                                                 | 129      | 7.442          | 7.442  | 0.000          | 90        | 423863           | 50.0         | 59.5         |       |
| 84 Ethylene Dibromide                                                   | 107      | 7.569          | 7.569  | 0.000          | 98        | 362545           | 50.0         | 52.4         |       |
| 87 Chlorobenzene                                                        | 112      | 8.020          | 8.020  | 0.000          | 96        | 1205691          | 50.0         | 52.0         |       |
| 88 Ethylbenzene                                                         | 91       | 8.087          | 8.086  | 0.001          | 98        | 1958990          | 50.0         | 50.4         |       |
| 89 1,1,1,2-Tetrachloroethane                                            | 131      | 8.099          | 8.099  | 0.000          | 95        | 416581           | 50.0         | 61.2         |       |
| 90 m-Xylene & p-Xylene                                                  | 106      | 8.202          | 8.202  | 0.000          | 99        | 817677           | 50.0         | 51.5         |       |
| 91 o-Xylene                                                             | 106      | 8.628          | 8.628  | 0.000          | 96        | 780687           | 50.0         | 51.0         |       |
| 92 Styrene                                                              | 104      | 8.652          | 8.652  | 0.000          | 95        | 1341901          | 50.0         | 50.8         |       |
| 95 Bromoform                                                            | 173      | 8.920          | 8.920  | 0.000          | 98        | 285344           | 50.0         | 71.5         |       |
| 94 Isopropylbenzene                                                     | 105      | 8.999          | 8.999  | 0.000          | 94        | 2035308          | 50.0         | 49.0         |       |
| 97 1,1,2,2-Tetrachloroethane                                            | 83       | 9.388          | 9.388  | 0.000          | 76        | 445845           | 50.0         | 47.5         |       |
| 101 Bromobenzene                                                        | 156      | 9.388          | 9.388  | 0.000          | 90        | 532827           | 50.0         | 48.3         |       |
| 99 N-Propylbenzene                                                      | 91       | 9.437          | 9.437  | 0.000          | 98        | 2309320          | 50.0         | 48.9         |       |
| 98 trans-1,4-Dichloro-2-buten                                           | 53       | 9.431          | 9.437  | -0.006         | 57        | 160456           | 50.0         | 49.7         |       |
| 100 1,2,3-Trichloropropane                                              | 110      | 9.443          | 9.443  | 0.000          | 82        | 146690           | 50.0         | 46.8         |       |
| 103 2-Chlorotoluene                                                     | 126      | 9.565          | 9.565  | 0.000          | 97        | 505283           | 50.0         | 49.4         |       |
| 102 1,3,5-Trimethylbenzene                                              | 105      | 9.607          | 9.607  | 0.000          | 94        | 1735577          | 50.0         | 49.4         |       |
| 105 4-Chlorotoluene                                                     | 126      | 9.674          | 9.668  | 0.006          | 97        | 526312           | 50.0         | 49.7         |       |
| 106 tert-Butylbenzene                                                   | 134      | 9.930          | 9.930  | 0.000          | 92        | 393185           | 50.0         | 49.9         |       |
| 107 1,2,4-Trimethylbenzene                                              | 105      | 9.985          | 9.985  | 0.000          | 96        | 1785067          | 50.0         | 49.2         |       |
| 109 sec-Butylbenzene                                                    | 105      | 10.143         | 10.143 | 0.000          | 94        | 2217629          | 50.0         | 50.0         |       |
| <b>,</b>                                                                |          |                |        |                |           |                  |              |              |       |

ct-2017 13:32:07 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8271.D Report Date: 16-Oct-2017 13:32:07

| Compound                       | Sig | RT<br>(min.) | Adj RT<br>(min.) | DIt RT<br>(min.) | Q   | Response  | Cal Amt<br>ug/kg | OnCol Amt<br>ug/kg | Flags |
|--------------------------------|-----|--------------|------------------|------------------|-----|-----------|------------------|--------------------|-------|
| 440.41                         | 110 | 40.074       | 40.070           | 0.001            | 0.7 | 407/000   | 50.0             | 50.0               |       |
| 110 4-Isopropyltoluene         | 119 | 10.271       | 10.270           | 0.001            | 97  | 1976928   | 50.0             | 50.9               |       |
| 111 1,3-Dichlorobenzene        | 146 | 10.301       | 10.301           | 0.000            | 98  | 1038474   | 50.0             | 49.6               |       |
| 113 1,4-Dichlorobenzene        | 146 | 10.380       | 10.380           | 0.000            | 96  | 1061926   | 50.0             | 49.6               |       |
| 115 n-Butylbenzene             | 91  | 10.648       | 10.648           | 0.000            | 97  | 1726066   | 50.0             | 50.5               |       |
| 116 1,2-Dichlorobenzene        | 146 | 10.733       | 10.733           | 0.000            | 99  | 989462    | 50.0             | 49.5               |       |
| 117 1,2-Dibromo-3-Chloropropan | 75  | 11.420       | 11.414           | 0.006            | 91  | 88604     | 50.0             | 51.4               |       |
| 119 1,2,4-Trichlorobenzene     | 180 | 12.053       | 12.053           | 0.000            | 95  | 739922    | 50.0             | 53.6               |       |
| 120 Hexachlorobutadiene        | 225 | 12.144       | 12.144           | 0.000            | 95  | 440376    | 50.0             | 56.4               |       |
| 121 Naphthalene                | 128 | 12.266       | 12.266           | 0.000            | 97  | 1716594   | 50.0             | 50.3               |       |
| 122 1,2,3-Trichlorobenzene     | 180 | 12.473       | 12.473           | 0.000            | 97  | 675280    | 50.0             | 52.0               |       |
| Reagents:                      |     |              |                  |                  |     |           |                  |                    |       |
| F 8260 SURR_00263              |     | Amount       | Added: 1         | .00              | L   | Jnits: uL | Run Reager       | nt                 |       |
| F 8260 IS_00580                |     | Amount       | Added: 1         | .00              | L   | Inits: uL | Run Reager       | nt                 |       |

Report Date: 16-Oct-2017 13:32:07 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo


Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171016-66422.b\F8271.D Injection Date: 16-Oct-2017 12:17:30 Instrument ID: HP5973F

Lims ID: LCS 480-382014/1-A

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000 ALS Bottle#:

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL



Operator ID:

Worklist Smp#:

CDC

6

3

### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 48U-1255/9-1               |  |  |  |  |  |
|-------------------------------|-------------------------------------|--|--|--|--|--|
| SDG No.:                      |                                     |  |  |  |  |  |
| Client Sample ID:             | Lab Sample ID: LCS 480-382187/1-A   |  |  |  |  |  |
| Matrix: Solid                 | Lab File ID: F8296.D                |  |  |  |  |  |
| Analysis Method: 8260C        | Date Collected:                     |  |  |  |  |  |
| Sample wt/vol: 5(g)           | Date Analyzed: 10/17/2017 10:07     |  |  |  |  |  |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |  |  |  |  |  |
| Soil Extract Vol.:            | GC Column: ZB-624 (30) ID: 0.25(mm) |  |  |  |  |  |
| % Moisture:                   | Level: (low/med) Low                |  |  |  |  |  |
| Analysis Batch No.: 382134    | Units: ug/Kg                        |  |  |  |  |  |

| CAS NO.    | COMPOUND NAME                          | RESULT | Q | RL  | MDL  |
|------------|----------------------------------------|--------|---|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                  | 52.8   |   | 5.0 | 0.36 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane              | 48.4   |   | 5.0 | 0.81 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan e | 53.1   |   | 5.0 | 1.1  |
| 79-00-5    | 1,1,2-Trichloroethane                  | 50.2   |   | 5.0 | 0.65 |
| 75-34-3    | 1,1-Dichloroethane                     | 50.4   |   | 5.0 | 0.61 |
| 75-35-4    | 1,1-Dichloroethene                     | 52.1   |   | 5.0 | 0.61 |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | 54.9   |   | 5.0 | 0.30 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane            | 45.0   |   | 5.0 | 2.5  |
| 106-93-4   | 1,2-Dibromoethane                      | 52.4   |   | 5.0 | 0.64 |
| 95-50-1    | 1,2-Dichlorobenzene                    | 50.5   |   | 5.0 | 0.39 |
| 107-06-2   | 1,2-Dichloroethane                     | 48.4   |   | 5.0 | 0.25 |
| 78-87-5    | 1,2-Dichloropropane                    | 50.7   |   | 5.0 | 2.5  |
| 541-73-1   | 1,3-Dichlorobenzene                    | 50.9   |   | 5.0 | 0.26 |
| 106-46-7   | 1,4-Dichlorobenzene                    | 51.0   |   | 5.0 | 0.70 |
| 78-93-3    | 2-Butanone (MEK)                       | 234    |   | 25  | 1.8  |
| 591-78-6   | 2-Hexanone                             | 230    |   | 25  | 2.5  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)            | 224    |   | 25  | 1.6  |
| 67-64-1    | Acetone                                | 242    |   | 25  | 4.2  |
| 71-43-2    | Benzene                                | 51.1   |   | 5.0 | 0.25 |
| 75-27-4    | Bromodichloromethane                   | 57.1   |   | 5.0 | 0.67 |
| 75-25-2    | Bromoform                              | 59.9   |   | 5.0 | 2.5  |
| 74-83-9    | Bromomethane                           | 52.5   |   | 5.0 | 0.45 |
| 75-15-0    | Carbon disulfide                       | 54.9   |   | 5.0 | 2.5  |
| 56-23-5    | Carbon tetrachloride                   | 57.6   |   | 5.0 | 0.48 |
| 108-90-7   | Chlorobenzene                          | 52.7   |   | 5.0 | 0.66 |
| 75-00-3    | Chloroethane                           | 50.8   |   | 5.0 | 1.1  |
| 67-66-3    | Chloroform                             | 50.6   |   | 5.0 | 0.31 |
| 74-87-3    | Chloromethane                          | 40.7   |   | 5.0 | 0.30 |
| 156-59-2   | cis-1,2-Dichloroethene                 | 51.1   |   | 5.0 | 0.64 |
| 10061-01-5 | cis-1,3-Dichloropropene                | 54.0   |   | 5.0 | 0.72 |
| 110-82-7   | Cyclohexane                            | 49.4   |   | 5.0 | 0.70 |
| 124-48-1   | Dibromochloromethane                   | 52.8   |   | 5.0 | 0.64 |
| 75-71-8    | Dichlorodifluoromethane                | 60.0   |   | 5.0 | 0.41 |
| 100-41-4   | Ethylbenzene                           | 52.0   |   | 5.0 | 0.35 |
| 98-82-8    | Isopropylbenzene                       | 50.7   |   | 5.0 | 0.75 |

### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1               |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: LCS 480-382187/1-A   |
| Matrix: Solid                 | Lab File ID: F8296.D                |
| Analysis Method: 8260C        | Date Collected:                     |
| Sample wt/vol: 5(g)           | Date Analyzed: 10/17/2017 10:07     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (30) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analyzia Patch No · 200124    | IInitat us/Vs                       |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL  |
|------------|---------------------------|--------|---|-----|------|
| 79-20-9    | Methyl acetate            | 88.7   |   | 25  | 3.0  |
| 1634-04-4  | Methyl tert-butyl ether   | 48.3   |   | 5.0 | 0.49 |
| 108-87-2   | Methylcyclohexane         | 53.2   |   | 5.0 | 0.76 |
| 75-09-2    | Methylene Chloride        | 52.2   |   | 5.0 | 2.3  |
| 100-42-5   | Styrene                   | 52.1   |   | 5.0 | 0.25 |
| 127-18-4   | Tetrachloroethene         | 57.1   |   | 5.0 | 0.67 |
| 108-88-3   | Toluene                   | 51.3   |   | 5.0 | 0.38 |
| 156-60-5   | trans-1,2-Dichloroethene  | 53.0   |   | 5.0 | 0.52 |
| 10061-02-6 | trans-1,3-Dichloropropene | 51.6   |   | 5.0 | 2.2  |
| 79-01-6    | Trichloroethene           | 53.4   |   | 5.0 | 1.1  |
| 75-69-4    | Trichlorofluoromethane    | 57.9   |   | 5.0 | 0.47 |
| 75-01-4    | Vinyl chloride            | 47.9   |   | 5.0 | 0.61 |
| 1330-20-7  | Xylenes, Total            | 106    |   | 10  | 0.84 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 99   |   | 64-126 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 104  |   | 72-126 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 104  |   | 60-140 |
| 2037-26-5  | Toluene-d8 (Surr)            | 100  |   | 71-125 |

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Report Date: 17-Oct-2017 12:42:20

> TestAmerica Buffalo **Target Compound Quantitation Report**

Data File: 

Lims ID: LCS 480-382187/1-A

Client ID:

Sample Type: LCS

Inject. Date: 17-Oct-2017 10:07:30 ALS Bottle#: 3 Worklist Smp#: 5

Purge Vol: Dil. Factor: 5.000 mL 1.0000

Sample Info: lcs

Misc. Info.: 480-0066449-005

Operator ID: CDC Instrument ID: HP5973F

Method: \\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update: 17-Oct-2017 12:42:19 Calib Date: 29-Sep-2017 21:59:30 Integrator: **RTE** ID Type: **Deconvolution ID** Quant By: Quant Method: Internal Standard **Initial Calibration** Last ICal File:

Column 1: ZB-624 (0.25 mm) Det: MS SCAN

Process Host: XAWRK026

21.12. 0047404040

| First Level Reviewer: cwiklinc    |     |        | Date:  |        |     | 17-Oct-2017 12:42:19 |         |           |       |
|-----------------------------------|-----|--------|--------|--------|-----|----------------------|---------|-----------|-------|
|                                   |     | RT     | Adj RT | Dlt RT |     |                      | Cal Amt | OnCol Amt |       |
| Compound                          | Sig | (min.) | (min.) | (min.) | Q   | Response             | ug/kg   | ug/kg     | Flags |
|                                   |     |        |        |        |     |                      |         |           |       |
| * 153 Fluorobenzene (IS)          | 70  | 5.191  | 5.197  | -0.006 | 99  | 270885               | 50.0    | 50.0      |       |
| * 2 Chlorobenzene-d5              | 82  | 7.989  | 7.989  | 0.000  | 85  | 560814               | 50.0    | 50.0      |       |
| * 3 1,4-Dichlorobenzene-d4        | 152 | 10.356 | 10.356 | 0.000  | 93  | 595966               | 50.0    | 50.0      |       |
| \$ 154 Dibromofluoromethane (Surr |     | 4.674  | 4.680  | -0.006 | 93  | 349352               | 50.0    | 52.0      |       |
| \$ 41,2-Dichloroethane-d4 (Sur    | 67  | 4.953  | 4.960  | -0.007 | 0   | 213713               | 50.0    | 49.6      |       |
| \$ 5 Toluene-d8 (Surr)            | 98  | 6.559  | 6.560  | -0.001 | 92  | 1376038              | 50.0    | 49.8      |       |
| \$ 6 4-Bromofluorobenzene (Surr   | 174 | 9.218  | 9.218  | 0.000  | 94  | 471543               | 50.0    | 52.1      |       |
| 10 Dichlorodifluoromethane        | 85  | 1.814  | 1.820  | -0.006 | 100 | 430407               | 50.0    | 60.0      |       |
| 12 Chloromethane                  | 50  | 1.991  | 2.003  | -0.012 | 98  | 270308               | 50.0    | 40.7      | M     |
| 13 Vinyl chloride                 | 62  | 2.088  | 2.094  | -0.006 | 98  | 317149               | 50.0    | 47.9      |       |
| 151 Butadiene                     | 54  | 2.088  | 2.100  | -0.012 | 85  | 292865               | 50.0    | 44.4      |       |
| 14 Bromomethane                   | 94  | 2.356  | 2.368  | -0.012 | 91  | 161738               | 50.0    | 52.5      |       |
| 15 Chloroethane                   | 64  | 2.404  | 2.417  | -0.013 | 99  | 142268               | 50.0    | 50.8      |       |
| 16 Dichlorofluoromethane          | 67  | 2.575  | 2.575  | 0.000  | 98  | 451102               | 50.0    | 52.2      |       |
| 17 Trichlorofluoromethane         | 101 | 2.611  | 2.617  | -0.006 | 98  | 487839               | 50.0    | 57.9      |       |
| 18 Ethyl ether                    | 59  | 2.763  | 2.769  | -0.006 | 87  | 212792               | 50.0    | 40.6      |       |
| 20 Acrolein                       | 56  | 2.915  | 2.922  | -0.007 | 100 | 286274               | 250.0   | 217.0     |       |
| 21 1,1,2-Trichloro-1,2,2-trif     | 101 | 2.958  | 2.958  | 0.000  | 92  | 375594               | 50.0    | 53.1      |       |
| 22 1,1-Dichloroethene             | 96  | 2.976  | 2.976  | 0.000  | 95  | 349020               | 50.0    | 52.1      |       |
| 23 Acetone                        | 43  | 3.025  | 3.031  | -0.006 | 98  | 682038               | 250.0   | 242.4     |       |
| 25 Iodomethane                    | 142 | 3.122  | 3.134  | -0.012 | 98  | 638104               | 50.0    | 53.6      |       |
| 26 Carbon disulfide               | 76  | 3.177  | 3.183  | -0.006 | 99  | 1135568              | 50.0    | 54.9      |       |
| 28 3-Chloro-1-propene             | 41  | 3.238  | 3.244  | -0.006 | 87  | 563566               | 50.0    | 45.7      |       |
| 27 Methyl acetate                 | 43  | 3.238  | 3.244  | -0.006 | 81  | 545630               | 100.0   | 88.7      |       |
| 30 Methylene Chloride             | 84  | 3.347  | 3.354  | -0.007 | 94  | 413592               | 50.0    | 52.2      |       |
| 31 2-Methyl-2-propanol            | 59  | 3.408  | 3.408  | 0.000  | 100 | 513792               | 500.0   | 492.9     |       |
| 32 Methyl tert-butyl ether        | 73  | 3.499  | 3.506  | -0.007 | 95  | 1090650              | 50.0    | 48.3      |       |
| 34 trans-1,2-Dichloroethene       | 96  | 3.530  | 3.536  | -0.006 | 96  | 407447               | 50.0    | 53.0      |       |
| 33 Acrylonitrile                  | 53  | 3.548  | 3.554  | -0.006 | 100 | 1544196              | 500.0   | 469.2     |       |
| 35 Hexane                         | 57  | 3.664  | 3.670  | -0.006 | 85  | 786440               | 50.0    | 54.8      |       |
| 37 Vinyl acetate                  | 43  | 3.846  | 3.852  | -0.006 | 97  | 1328892              | 100.0   | 93.9      |       |
| •                                 |     |        |        |        |     |                      |         |           |       |

Report Date: 17-Oct-2017 12:42:20

| Data File: \\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8296.D |     |            |        |        |    |           |         |           |       |
|-------------------------------------------------------------------------|-----|------------|--------|--------|----|-----------|---------|-----------|-------|
|                                                                         |     | RT (mater) | Adj RT | Dlt RT |    | D.        | Cal Amt | OnCol Amt | E     |
| Compound                                                                | Sig | (min.)     | (min.) | (min.) | Q  | Response  | ug/kg   | ug/kg     | Flags |
| 20.1.1 Dioblements                                                      | / 2 | 2.050      | 2.050  | 0.000  | 07 | 744004    | F0.0    | FO 4      |       |
| 39 1,1-Dichloroethane                                                   | 63  | 3.858      | 3.858  | 0.000  | 96 | 744304    | 50.0    | 50.4      |       |
| 43 2-Butanone (MEK)                                                     | 43  | 4.290      | 4.296  | -0.006 | 99 | 930796    | 250.0   | 234.0     |       |
| 44 2,2-Dichloropropane                                                  | 77  | 4.290      | 4.296  | -0.006 | 63 | 493218    | 50.0    | 47.9      |       |
| 45 cis-1,2-Dichloroethene                                               | 96  | 4.302      | 4.303  | -0.001 | 84 | 440597    | 50.0    | 51.1      |       |
| 48 Chlorobromomethane                                                   | 128 | 4.503      | 4.509  | -0.006 | 95 | 212515    | 50.0    | 54.2      |       |
| 49 Tetrahydrofuran                                                      | 42  | 4.521      | 4.528  | -0.007 | 87 | 224403    | 100.0   | 88.8      |       |
| 50 Chloroform                                                           | 83  | 4.540      | 4.540  | 0.000  | 94 | 653441    | 50.0    | 50.6      |       |
| 51 1,1,1-Trichloroethane                                                | 97  | 4.680      | 4.680  | 0.000  | 99 | 560535    | 50.0    | 52.8      |       |
| 52 Cyclohexane                                                          | 56  | 4.704      | 4.710  | -0.006 | 89 | 830072    | 50.0    | 49.4      |       |
| 54 1,1-Dichloropropene                                                  | 75  | 4.795      | 4.801  | -0.006 | 99 | 543702    | 50.0    | 54.3      |       |
| 55 Carbon tetrachloride                                                 | 117 | 4.801      | 4.807  | -0.006 | 97 | 460730    | 50.0    | 57.6      |       |
| 53 Isobutyl alcohol                                                     | 43  | 4.868      | 4.874  | -0.006 | 95 | 468902    | 1250.0  | 1273.7    |       |
| 57 Benzene                                                              | 78  | 4.978      | 4.984  | -0.006 | 97 | 1543768   | 50.0    | 51.1      |       |
| 58 1,2-Dichloroethane                                                   | 62  | 5.014      | 5.020  | -0.006 | 97 | 553145    | 50.0    | 48.4      |       |
| 59 n-Heptane                                                            | 43  | 5.075      | 5.081  | -0.006 | 89 | 641195    | 50.0    | 46.7      |       |
| 62 Trichloroethene                                                      | 95  | 5.495      | 5.495  | 0.000  | 96 | 408023    | 50.0    | 53.4      |       |
| 64 Methylcyclohexane                                                    | 83  | 5.629      | 5.635  | -0.006 | 91 | 766319    | 50.0    | 53.2      |       |
| 65 1,2-Dichloropropane                                                  | 63  | 5.714      | 5.714  | 0.000  | 97 | 416285    | 50.0    | 50.7      |       |
| 66 1,4-Dioxane                                                          | 88  | 5.817      | 5.830  | -0.013 | 97 | 96541     | 1000.0  | 1108.8    |       |
| 67 Dibromomethane                                                       | 93  | 5.842      | 5.842  | 0.000  | 93 | 220725    | 50.0    | 52.0      |       |
| 68 Dichlorobromomethane                                                 | 83  | 5.951      | 5.957  | -0.006 | 99 | 463554    | 50.0    | 57.1      |       |
| 69 2-Chloroethyl vinyl ether                                            | 63  | 6.164      | 6.164  | 0.000  | 91 | 241674    | 50.0    | 53.1      |       |
| 72 cis-1,3-Dichloropropene                                              | 75  | 6.328      | 6.334  | -0.006 | 97 | 547007    | 50.0    | 54.0      |       |
| 73 4-Methyl-2-pentanone (MIBK                                           | 43  | 6.432      | 6.438  | -0.006 | 92 | 1742064   | 250.0   | 223.7     |       |
| 74 Toluene                                                              | 92  | 6.620      | 6.620  | 0.000  | 99 | 1025281   | 50.0    | 51.3      |       |
| 77 trans-1,3-Dichloropropene                                            | 75  | 6.845      | 6.845  | 0.000  | 95 | 468382    | 50.0    | 51.6      |       |
| 75 Ethyl methacrylate                                                   | 69  | 6.851      | 6.852  | -0.001 | 86 | 455396    | 50.0    | 49.4      |       |
| 79 1,1,2-Trichloroethane                                                | 83  | 7.040      | 7.040  | 0.000  | 92 | 264801    | 50.0    | 50.2      |       |
| 81 Tetrachloroethene                                                    | 166 | 7.137      | 7.137  | 0.000  | 98 | 489134    | 50.0    | 57.1      |       |
| 82 1,3-Dichloropropane                                                  | 76  | 7.204      | 7.204  | 0.000  | 98 | 544678    | 50.0    | 50.2      |       |
| 80 2-Hexanone                                                           | 43  | 7.223      | 7.223  | 0.000  | 91 | 1307156   | 250.0   | 230.3     |       |
| 83 Chlorodibromomethane                                                 | 129 | 7.442      | 7.442  | 0.000  | 90 | 346497    | 50.0    | 52.8      |       |
| 84 Ethylene Dibromide                                                   | 107 | 7.569      | 7.569  | 0.000  | 99 | 336101    | 50.0    | 52.4      |       |
| 87 Chlorobenzene                                                        | 112 | 8.020      | 8.020  | 0.000  | 96 | 1132686   | 50.0    | 52.7      |       |
| 88 Ethylbenzene                                                         | 91  | 8.086      | 8.087  | -0.001 | 98 | 1871832   | 50.0    | 52.0      |       |
| 89 1,1,1,2-Tetrachloroethane                                            | 131 | 8.099      | 8.099  | 0.000  | 94 | 354064    | 50.0    | 56.1      |       |
| 90 m-Xylene & p-Xylene                                                  | 106 | 8.202      | 8.202  | 0.000  | 99 | 782246    | 50.0    | 53.1      |       |
| 91 o-Xylene                                                             | 106 | 8.628      | 8.634  | -0.006 | 95 | 748802    | 50.0    | 52.7      |       |
| 92 Styrene                                                              | 104 | 8.652      | 8.652  | 0.000  | 95 | 1275762   | 50.0    | 52.1      |       |
| 95 Bromoform                                                            | 173 | 8.926      | 8.926  | 0.000  | 99 | 210545    | 50.0    | 59.9      |       |
| 94 Isopropylbenzene                                                     | 105 | 8.999      | 8.999  | 0.000  | 95 | 1938703   | 50.0    | 50.7      |       |
| 101 Bromobenzene                                                        | 156 | 9.388      | 9.388  | 0.000  | 89 | 510517    | 50.0    | 50.2      |       |
| 97 1,1,2,2-Tetrachloroethane                                            | 83  | 9.388      | 9.388  | 0.000  | 76 | 418642    | 50.0    | 48.4      |       |
| 98 trans-1,4-Dichloro-2-buten                                           | 53  | 9.437      | 9.437  | 0.000  | 60 | 132575    | 50.0    | 44.6      |       |
| 99 N-Propylbenzene                                                      | 91  | 9.437      | 9.437  | 0.000  | 98 | 2184444   | 50.0    | 50.2      |       |
| 100 1,2,3-Trichloropropane                                              | 110 | 9.437      | 9.443  | -0.006 | 82 | 136880    | 50.0    | 47.4      |       |
| 103 2-Chlorotoluene                                                     | 126 | 9.565      | 9.565  | 0.000  | 97 | 474164    | 50.0    | 50.3      |       |
| 102 1,3,5-Trimethylbenzene                                              | 105 | 9.607      | 9.607  | 0.000  | 94 | 1637852   | 50.0    | 50.6      |       |
| 105 4-Chlorotoluene                                                     | 126 | 9.668      | 9.674  | -0.006 | 97 | 497104    | 50.0    | 50.9      |       |
| 106 tert-Butylbenzene                                                   | 134 | 9.936      | 9.936  | 0.000  | 92 | 374008    | 50.0    | 51.5      |       |
| 107 1,2,4-Trimethylbenzene                                              | 105 | 9.985      | 9.985  | -0.001 | 96 | 1692426   | 50.0    | 50.6      |       |
| 109 sec-Butylbenzene                                                    | 105 | 10.143     | 10.143 | 0.000  | 94 | 2110585   | 50.0    | 51.7      |       |
| 107 Sec-DutyIDelizerie                                                  | 103 | 10.143     | 10.143 | 0.000  | 74 | Z 1 10000 | 50.0    | 51.7      |       |

Report Date: 17-Oct-2017 12:42:20 Chrom Revision: 2.2 16-Aug-2017 16:24:46

\\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8296.D Data File:

| Compound                       | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q  | Response | Cal Amt<br>ug/kg | OnCol Amt<br>ug/kg | Flags |
|--------------------------------|-----|--------------|------------------|------------------|----|----------|------------------|--------------------|-------|
| 110.4 league multalue e        | 110 | 10 270       | 10 271           | 0.001            | 07 | 1077/00  | F0.0             | F2 F               |       |
| 110 4-Isopropyltoluene         | 119 | 10.270       | 10.271           | -0.001           | 97 | 1877682  | 50.0             | 52.5               |       |
| 111 1,3-Dichlorobenzene        | 146 | 10.301       | 10.301           | 0.000            | 98 | 982704   | 50.0             | 50.9               |       |
| 113 1,4-Dichlorobenzene        | 146 | 10.380       | 10.380           | 0.000            | 96 | 1006213  | 50.0             | 51.0               |       |
| 115 n-Butylbenzene             | 91  | 10.648       | 10.648           | 0.000            | 97 | 1625244  | 50.0             | 51.6               |       |
| 116 1,2-Dichlorobenzene        | 146 | 10.733       | 10.733           | 0.000            | 99 | 929973   | 50.0             | 50.5               |       |
| 117 1,2-Dibromo-3-Chloropropan | 75  | 11.420       | 11.420           | 0.000            | 90 | 70821    | 50.0             | 45.0               |       |
| 119 1,2,4-Trichlorobenzene     | 180 | 12.053       | 12.053           | 0.000            | 94 | 698503   | 50.0             | 54.9               |       |
| 120 Hexachlorobutadiene        | 225 | 12.144       | 12.144           | 0.000            | 95 | 417710   | 50.0             | 58.0               |       |
| 121 Naphthalene                | 128 | 12.272       | 12.266           | 0.006            | 97 | 1602643  | 50.0             | 51.0               |       |
| 122 1,2,3-Trichlorobenzene     | 180 | 12.473       | 12.473           | 0.000            | 96 | 628909   | 50.0             | 52.5               |       |

# QC Flag Legend Review Flags

M - Manually Integrated

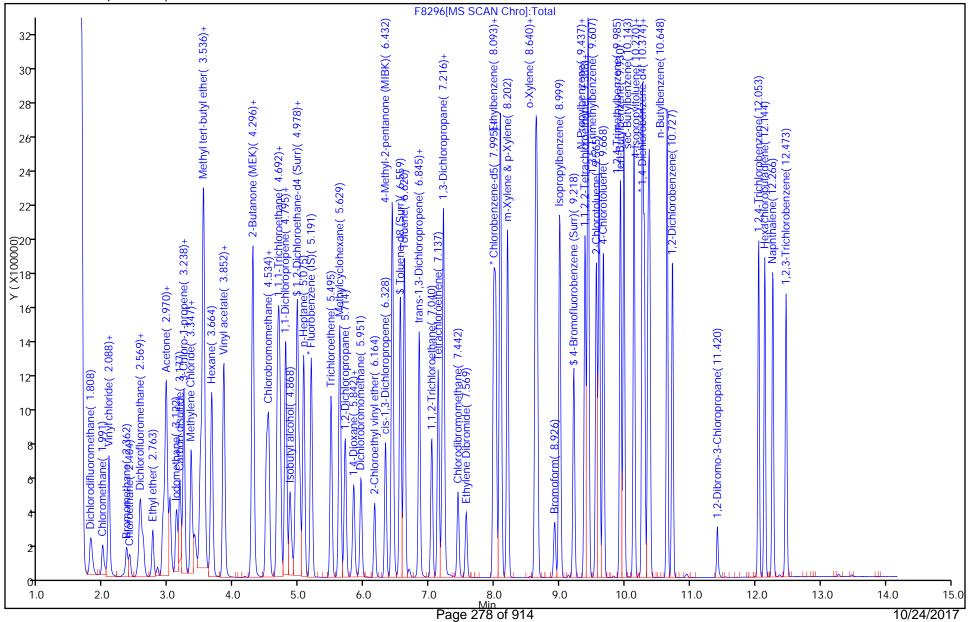
### Reagents:

F 8260 SURR\_00263 Amount Added: 1.00 Units: uL Run Reagent F 8260 IS\_00580 Run Reagent Amount Added: 1.00 Units: uL

Report Date: 17-Oct-2017 12:42:20 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8296.D Injection Date: 17-Oct-2017 10:07:30 Instrument ID: HP5973F


Lims ID: LCS 480-382187/1-A

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

CDC

5

3

Report Date: 17-Oct-2017 12:42:20 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

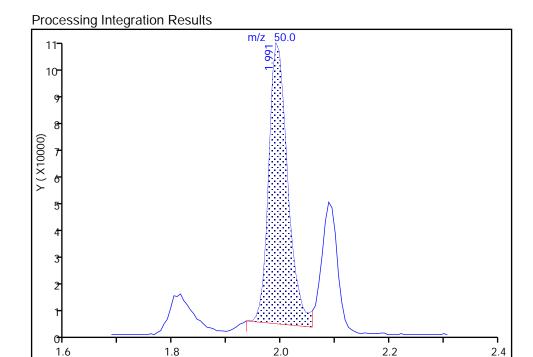
Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8296.D Injection Date: 17-Oct-2017 10:07:30 Instrument ID: HP5973F

Lims ID: LCS 480-382187/1-A

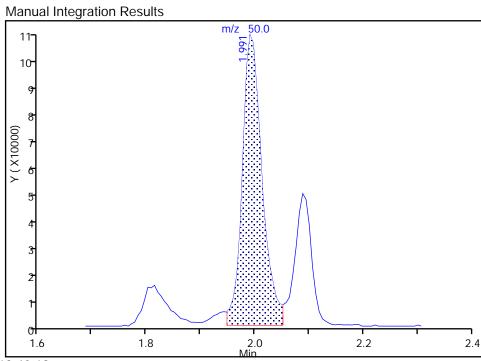
Client ID:

Operator ID: CDC ALS Bottle#: 3 Worklist Smp#: 5

Purge Vol: 5.000 mL Dil. Factor: 1.0000


Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 ( 0.25 mm) Detector MS SCAN


### 12 Chloromethane, CAS: 74-87-3

Signal: 1

RT: 1.99
Area: 249004
Amount: 37.453678
Amount Units: ug/kg



RT: 1.99
Area: 270308
Amount: 40.658097
Amount Units: ug/kg



Reviewer: cwiklinc, 17-Oct-2017 12:40:19

Audit Action: Manually Integrated

Audit Reason: Baseline

Page 279 of 914

## FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1               | 480-125579-1 |  |  |  |  |  |
|-------------------------------|-------------------------------------|--------------|--|--|--|--|--|
| SDG No.:                      |                                     |              |  |  |  |  |  |
| Client Sample ID:             | Lab Sample ID: LCS 480-382381/5     |              |  |  |  |  |  |
| Matrix: Water                 | Lab File ID: 93255P.D               |              |  |  |  |  |  |
| Analysis Method: 8260C        | Date Collected:                     |              |  |  |  |  |  |
| Sample wt/vol: 5(mL)          | Date Analyzed: 10/18/2017 10:25     |              |  |  |  |  |  |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |              |  |  |  |  |  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |              |  |  |  |  |  |
| % Moisture:                   | Level: (low/med) Low                |              |  |  |  |  |  |
| Analysis Batch No.: 382381    | Units: ug/L                         |              |  |  |  |  |  |

| CAS NO.    | COMPOUND NAME                          | RESULT | Q | RL  | MDL  |
|------------|----------------------------------------|--------|---|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                  | 24.5   |   | 1.0 | 0.82 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane              | 24.8   |   | 1.0 | 0.21 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan e | 22.3   |   | 1.0 | 0.31 |
| 79-00-5    | 1,1,2-Trichloroethane                  | 23.8   |   | 1.0 | 0.23 |
| 75-34-3    | 1,1-Dichloroethane                     | 23.8   |   | 1.0 | 0.38 |
| 75-35-4    | 1,1-Dichloroethene                     | 20.7   |   | 1.0 | 0.29 |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | 24.1   |   | 1.0 | 0.41 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane            | 22.9   |   | 1.0 | 0.39 |
| 106-93-4   | 1,2-Dibromoethane                      | 24.5   |   | 1.0 | 0.73 |
| 95-50-1    | 1,2-Dichlorobenzene                    | 25.2   |   | 1.0 | 0.79 |
| 107-06-2   | 1,2-Dichloroethane                     | 23.1   |   | 1.0 | 0.21 |
| 78-87-5    | 1,2-Dichloropropane                    | 24.0   |   | 1.0 | 0.72 |
| 541-73-1   | 1,3-Dichlorobenzene                    | 24.8   |   | 1.0 | 0.78 |
| 106-46-7   | 1,4-Dichlorobenzene                    | 24.9   |   | 1.0 | 0.84 |
| 78-93-3    | 2-Butanone (MEK)                       | 135    |   | 10  | 1.3  |
| 591-78-6   | 2-Hexanone                             | 137    |   | 5.0 | 1.2  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)            | 132    |   | 5.0 | 2.1  |
| 67-64-1    | Acetone                                | 152    |   | 10  | 3.0  |
| 71-43-2    | Benzene                                | 23.5   |   | 1.0 | 0.41 |
| 75-27-4    | Bromodichloromethane                   | 25.2   |   | 1.0 | 0.39 |
| 75-25-2    | Bromoform                              | 25.9   |   | 1.0 | 0.26 |
| 74-83-9    | Bromomethane                           | 24.7   |   | 1.0 | 0.69 |
| 75-15-0    | Carbon disulfide                       | 22.6   |   | 1.0 | 0.19 |
| 56-23-5    | Carbon tetrachloride                   | 29.7   |   | 1.0 | 0.27 |
| 108-90-7   | Chlorobenzene                          | 24.6   |   | 1.0 | 0.75 |
| 75-00-3    | Chloroethane                           | 24.0   |   | 1.0 | 0.32 |
| 67-66-3    | Chloroform                             | 23.4   |   | 1.0 | 0.34 |
| 74-87-3    | Chloromethane                          | 25.4   |   | 1.0 | 0.35 |
| 156-59-2   | cis-1,2-Dichloroethene                 | 23.7   |   | 1.0 | 0.81 |
| 10061-01-5 | cis-1,3-Dichloropropene                | 23.9   |   | 1.0 | 0.36 |
| 110-82-7   | Cyclohexane                            | 23.1   |   | 1.0 | 0.18 |
| 124-48-1   | Dibromochloromethane                   | 25.9   |   | 1.0 | 0.32 |
| 75-71-8    | Dichlorodifluoromethane                | 25.5   |   | 1.0 | 0.68 |
| 100-41-4   | Ethylbenzene                           | 23.9   |   | 1.0 | 0.74 |
| 98-82-8    | Isopropylbenzene                       | 24.9   |   | 1.0 | 0.79 |

## FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1               |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: LCS 480-382381/5     |
| Matrix: Water                 | Lab File ID: 93255P.D               |
| Analysis Method: 8260C        | Date Collected:                     |
| Sample wt/vol: 5(mL)          | Date Analyzed: 10/18/2017 10:25     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analysis Batch No.: 382381    | Units: ug/L                         |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL  |
|------------|---------------------------|--------|---|-----|------|
| 79-20-9    | Methyl acetate            | 49.5   |   | 2.5 | 1.3  |
| 1634-04-4  | Methyl tert-butyl ether   | 24.0   |   | 1.0 | 0.16 |
| 108-87-2   | Methylcyclohexane         | 21.7   |   | 1.0 | 0.16 |
| 75-09-2    | Methylene Chloride        | 19.8   |   | 1.0 | 0.44 |
| 100-42-5   | Styrene                   | 25.1   |   | 1.0 | 0.73 |
| 127-18-4   | Tetrachloroethene         | 24.3   |   | 1.0 | 0.36 |
| 108-88-3   | Toluene                   | 24.8   |   | 1.0 | 0.51 |
| 156-60-5   | trans-1,2-Dichloroethene  | 22.2   |   | 1.0 | 0.90 |
| 10061-02-6 | trans-1,3-Dichloropropene | 25.2   |   | 1.0 | 0.37 |
| 79-01-6    | Trichloroethene           | 23.1   |   | 1.0 | 0.46 |
| 75-69-4    | Trichlorofluoromethane    | 25.3   |   | 1.0 | 0.88 |
| 75-01-4    | Vinyl chloride            | 25.7   |   | 1.0 | 0.90 |
| 1330-20-7  | Xylenes, Total            | 50.3   |   | 2.0 | 0.66 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 99   |   | 77-120 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 106  |   | 73-120 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 104  |   | 75-123 |
| 2037-26-5  | Toluene-d8 (Surr)            | 104  |   | 80-120 |

Report Date: 18-Oct-2017 10:48:58 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\93255P.D

Lims ID: LCS

Client ID:

Sample Type: LCS

Inject. Date: 18-Oct-2017 10:25:30 ALS Bottle#: 5 Worklist Smp#: 5

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: lcs

Misc. Info.: 480-0066487-005

Operator ID: RF/RB Instrument ID: HP5973P

Method: \ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\P-8260H2O.m

Limit Group: MV - 8260C ICAL

Last Update:18-Oct-2017 10:48:58Calib Date:11-Oct-2017 00:40:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973P\20171010-66269.b\P3056P.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK019

First Level Reviewer: farrellr Date: 18-Oct-2017 10:48:57

| First Level Reviewer: farrellr         |     | Date:  |        |         | 18-Oct-201 |          |         |           |        |
|----------------------------------------|-----|--------|--------|---------|------------|----------|---------|-----------|--------|
|                                        |     | RT     | Adj RT | Dlt RT  |            |          | Cal Amt | OnCol Amt |        |
| Compound                               | Sig | (min.) | (min.) | (min.)  | Q          | Response | ug/L    | ug/L      | Flags  |
|                                        |     |        |        |         |            |          |         |           |        |
| * 147 Fluorobenzene (IS)               | 70  | 10.434 | 10.434 | 0.000   | 97         | 196682   | 25.0    | 25.0      |        |
| <ul><li>* 2 Chlorobenzene-d5</li></ul> | 82  | 14.382 | 14.388 | -0.006  | 92         | 423713   | 25.0    | 25.0      |        |
| * 3 1,4-Dichlorobenzene-d4             | 152 | 17.339 | 17.338 | 0.001   | 94         | 458294   | 25.0    | 25.0      |        |
| \$ 148 Dibromofluoromethane (Surr      | 113 | 9.631  | 9.637  | -0.006  | 91         | 287777   | 25.0    | 25.9      |        |
| \$ 41,2-Dichloroethane-d4 (Sur         | 67  | 10.087 | 10.093 | -0.006  | 0          | 189503   | 25.0    | 24.7      |        |
| \$ 5 Toluene-d8 (Surr)                 | 98  | 12.423 | 12.423 | 0.000   | 95         | 979791   | 25.0    | 25.9      |        |
| \$ 6 4-Bromofluorobenzene (Surr        | 174 | 15.879 | 15.878 | 0.000   | 90         | 365058   | 25.0    | 26.5      |        |
| 10 Dichlorodifluoromethane             | 85  | 4.338  | 4.332  | 0.006   | 96         | 417389   | 25.0    | 25.5      |        |
| 11 Chloromethane                       | 50  | 4.764  | 4.764  | 0.000   | 99         | 910212   | 25.0    | 25.4      |        |
| 17 Vinyl chloride                      | 62  | 4.971  | 4.964  | 0.007   | 98         | 569436   | 25.0    | 25.7      |        |
| 144 Butadiene                          | 54  | 5.013  | 5.013  | 0.000   | 99         | 666103   | 25.0    | 25.0      |        |
| 12 Bromomethane                        | 94  | 5.628  | 5.615  | 0.013   | 92         | 297895   | 25.0    | 24.7      |        |
| 13 Chloroethane                        | 64  | 5.707  | 5.707  | 0.000   | 93         | 305756   | 25.0    | 24.0      |        |
| 19 Dichlorofluoromethane               | 67  | 6.029  | 6.029  | 0.000   | 97         | 661177   | 25.0    | 23.0      |        |
| 14 Trichlorofluoromethane              | 101 | 6.090  | 6.090  | 0.000   | 84         | 595199   | 25.0    | 25.3      |        |
| 20 Ethyl ether                         | 59  | 6.388  | 6.388  | 0.000   | 90         | 385901   | 25.0    | 24.0      |        |
| 22 Acrolein                            | 56  | 6.698  | 6.692  | 0.006   | 98         | 292529   | 125.0   | 111.3     |        |
| 16 1,1,2-Trichloro-1,2,2-trif          | 101 | 6.741  | 6.735  | 0.006   | 92         | 312428   | 25.0    | 22.3      |        |
| 25 1,1-Dichloroethene                  | 96  | 6.832  | 6.844  | -0.012  | 89         | 298819   | 25.0    | 20.7      |        |
| 24 Acetone                             | 43  | 6.881  | 6.887  | -0.006  | 96         | 1511985  | 125.0   | 151.6     |        |
| 18 lodomethane                         | 142 | 7.130  | 7.142  | -0.012  | 99         | 627282   | 25.0    | 24.7      |        |
| 30 Methyl acetate                      | 43  | 7.252  | 7.252  | 0.000   | 99         | 1148328  | 50.0    | 49.5      |        |
| 27 Carbon disulfide                    | 76  | 7.276  | 7.270  | 0.006   | 69         | 1135259  | 25.0    | 22.6      |        |
| 28 3-Chloro-1-propene                  | 41  | 7.276  | 7.276  | 0.000   | 88         | 971462   | 25.0    | 23.7      |        |
| 33 2-Methyl-2-propanol                 | 59  | 7.495  | 7.507  | -0.012  | 96         | 744194   | 250.0   | 252.7     |        |
| 31 Methylene Chloride                  | 84  | 7.514  | 7.507  | 0.007   | 87         | 353848   | 25.0    | 19.8      |        |
| 32 Methyl tert-butyl ether             | 73  | 7.684  | 7.684  | 0.000   | 90         | 1057208  | 25.0    | 24.0      |        |
| 35 trans-1,2-Dichloroethene            | 96  | 7.781  | 7.781  | 0.000   | 88         | 326781   | 25.0    | 22.2      |        |
| 34 Acrylonitrile                       | 53  | 7.812  | 7.812  | 0.000   | 96         | 2435029  | 250.0   | 252.5     |        |
| 36 Hexane                              | 57  | 7.976  | 7.976  | 0.000   | 91         | 550748   | 25.0    | 22.4      |        |
| 38 Vinyl acetate                       | 43  | 8.274  | 8.280  | -0.006  | 96         | 2805946  | 50.0    | 51.4      |        |
| -                                      |     |        | -      | 000 (01 |            |          |         | 40/0      | 4/0047 |

Report Date: 18-Oct-2017 10:48:58

| Data File: \\ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\93255P.D |     |        |        |        |          |          |         |           |       |
|--------------------------------------------------------------------------|-----|--------|--------|--------|----------|----------|---------|-----------|-------|
|                                                                          |     | RT     | Adj RT | Dlt RT |          | D.       | Cal Amt | OnCol Amt | E     |
| Compound                                                                 | Sig | (min.) | (min.) | (min.) | Q        | Response | ug/L    | ug/L      | Flags |
| 40.1.1 Diablana di seri                                                  |     | 0.005  | 0.005  | 0.000  | 07       | 70000    | 25.2    | 22.0      |       |
| 40 1,1-Dichloroethane                                                    | 63  | 8.335  | 8.335  | 0.000  | 97<br>05 | 723880   | 25.0    | 23.8      |       |
| 44 2-Butanone (MEK)                                                      | 43  | 9.022  | 9.022  | 0.000  | 95<br>01 | 1976423  | 125.0   | 135.3     |       |
| 45 2,2-Dichloropropane                                                   | 77  | 9.028  | 9.034  | -0.006 | 81       | 351649   | 25.0    | 27.4      |       |
| 43 cis-1,2-Dichloroethene                                                | 96  | 9.053  | 9.053  | 0.000  | 90       | 369211   | 25.0    | 23.7      |       |
| 50 Chlorobromomethane                                                    | 128 | 9.387  | 9.387  | 0.000  | 85       | 192279   | 25.0    | 24.6      |       |
| 51 Tetrahydrofuran                                                       | 42  | 9.400  | 9.399  | 0.001  | 90       | 459475   | 50.0    | 49.6      |       |
| 49 Chloroform                                                            | 83  | 9.418  | 9.418  | 0.000  | 94       | 608098   | 25.0    | 23.4      |       |
| 52 1,1,1-Trichloroethane                                                 | 97  | 9.649  | 9.649  | 0.000  | 95       | 544256   | 25.0    | 24.5      |       |
| 54 Cyclohexane                                                           | 56  | 9.692  | 9.691  | 0.001  | 96       | 762893   | 25.0    | 23.1      |       |
| 56 1,1-Dichloropropene                                                   | 75  | 9.825  | 9.831  | -0.006 | 87       | 433666   | 25.0    | 23.3      |       |
| 53 Isobutyl alcohol                                                      | 43  | 9.844  | 9.843  | 0.001  | 90       | 977946   | 625.0   | 643.0     |       |
| 55 Carbon tetrachloride                                                  | 117 | 9.844  | 9.850  | -0.006 | 93       | 491430   | 25.0    | 29.7      |       |
| 57 Benzene                                                               | 78  | 10.130 | 10.129 | 0.001  | 94       | 1214684  | 25.0    | 23.5      |       |
| 59 n-Heptane                                                             | 43  | 10.184 | 10.184 | 0.000  | 88       | 597382   | 25.0    | 22.9      |       |
| 60 1,2-Dichloroethane                                                    | 62  | 10.184 | 10.184 | 0.000  | 94       | 666935   | 25.0    | 23.1      |       |
| 62 Trichloroethene                                                       | 95  | 10.884 | 10.884 | 0.000  | 92       | 337711   | 25.0    | 23.1      |       |
| 64 Methylcyclohexane                                                     | 83  | 11.079 | 11.084 | -0.005 | 90       | 426468   | 25.0    | 21.7      |       |
| 63 1,2-Dichloropropane                                                   | 63  | 11.225 | 11.224 | 0.001  | 83       | 399699   | 25.0    | 24.0      |       |
| 68 1,4-Dioxane                                                           | 88  | 11.346 | 11.340 | 0.006  | 91       | 89340    | 500.0   | 538.5     |       |
| 69 Dibromomethane                                                        | 93  | 11.425 | 11.431 | -0.006 | 94       | 231653   | 25.0    | 23.3      |       |
| 70 Dichlorobromomethane                                                  | 83  | 11.559 | 11.559 | 0.000  | 94       | 490037   | 25.0    | 25.2      |       |
| 71 2-Chloroethyl vinyl ether                                             | 63  | 11.809 | 11.815 | -0.006 | 85       | 293837   | 25.0    | 25.2      |       |
| 73 cis-1,3-Dichloropropene                                               | 75  | 12.095 | 12.094 | 0.001  | 78       | 528027   | 25.0    | 23.9      |       |
| 75 4-Methyl-2-pentanone (MIBK                                            | 43  | 12.198 | 12.198 | 0.000  | 97       | 3893589  | 125.0   | 132.2     |       |
| 76 Toluene                                                               | 92  | 12.514 | 12.514 | 0.000  | 96       | 771698   | 25.0    | 24.8      |       |
| 77 Ethyl methacrylate                                                    | 69  | 12.739 | 12.733 | 0.006  | 83       | 427568   | 25.0    | 24.6      |       |
| 78 trans-1,3-Dichloropropene                                             | 75  | 12.806 | 12.806 | 0.000  | 88       | 544316   | 25.0    | 25.2      |       |
| 79 1,1,2-Trichloroethane                                                 | 83  | 13.092 | 13.092 | 0.000  | 93       | 255562   | 25.0    | 23.8      |       |
| 80 Tetrachloroethene                                                     | 166 | 13.238 | 13.244 | -0.006 | 95       | 369455   | 25.0    | 24.3      |       |
| 83 2-Hexanone                                                            | 43  | 13.287 | 13.287 | 0.000  | 96       | 2895733  | 125.0   | 137.0     |       |
| 82 1,3-Dichloropropane                                                   | 76  | 13.329 | 13.329 | 0.000  | 89       | 532749   | 25.0    | 25.5      |       |
| 81 Chlorodibromomethane                                                  | 129 | 13.670 | 13.676 | -0.006 | 89       | 388418   | 25.0    | 25.9      |       |
| 85 Ethylene Dibromide                                                    | 107 | 13.871 | 13.871 | 0.000  | 98       | 338535   | 25.0    | 24.5      |       |
| 87 Chlorobenzene                                                         | 112 | 14.425 | 14.424 | 0.001  | 95       | 930454   | 25.0    | 24.6      |       |
| 89 Ethylbenzene                                                          | 91  | 14.467 | 14.467 | 0.000  | 97       | 1436006  | 25.0    | 23.9      |       |
| 88 1,1,1,2-Tetrachloroethane                                             | 131 | 14.504 | 14.510 | -0.006 | 93       | 372078   | 25.0    | 26.6      |       |
| 90 m-Xylene & p-Xylene                                                   | 106 | 14.601 | 14.601 | 0.000  | 0        | 587948   | 25.0    | 25.3      |       |
| 93 o-Xylene                                                              | 106 | 15.155 | 15.154 | 0.001  | 97       | 578179   | 25.0    | 25.0      |       |
| 94 Styrene                                                               | 104 | 15.179 | 15.179 | 0.000  | 92       | 958488   | 25.0    | 25.1      |       |
| 92 Bromoform                                                             | 173 | 15.568 | 15.568 | 0.000  | 91       | 294257   | 25.0    | 25.9      |       |
| 95 Isopropylbenzene                                                      | 105 | 15.580 | 15.580 | 0.000  | 97       | 1394702  | 25.0    | 24.9      |       |
| 97 1,1,2,2-Tetrachloroethane                                             | 83  | 16.055 | 16.055 | 0.000  | 97       | 429905   | 25.0    | 24.8      |       |
| 98 trans-1,4-Dichloro-2-buten                                            | 53  | 16.104 | 16.103 | 0.001  | 56       | 235186   | 25.0    | 23.3      |       |
| 99 N-Propylbenzene                                                       | 91  | 16.104 | 16.110 | -0.006 | 98       | 1662926  | 25.0    | 24.2      |       |
| 100 Bromobenzene                                                         | 156 | 16.128 | 16.128 | 0.000  | 85       | 456652   | 25.0    | 25.1      |       |
| 101 1,2,3-Trichloropropane                                               | 110 | 16.146 | 16.146 | 0.000  | 86       | 142579   | 25.0    | 25.2      |       |
| 102 1,3,5-Trimethylbenzene                                               | 105 | 16.292 | 16.298 | -0.006 | 95       | 1203394  | 25.0    | 24.5      |       |
| 103 2-Chlorotoluene                                                      | 126 | 16.317 | 16.316 | 0.001  | 94       | 380300   | 25.0    | 25.0      |       |
| 105 4-Chlorotoluene                                                      | 126 | 16.444 | 16.444 | 0.000  | 97       | 396436   | 25.0    | 24.8      |       |
| 106 tert-Butylbenzene                                                    | 134 | 16.730 | 16.736 | -0.006 | 96       | 260982   | 25.0    | 23.6      |       |
| 107 1,2,4-Trimethylbenzene                                               | 105 | 16.797 | 16.797 | 0.000  | 97       | 1295113  | 25.0    | 25.3      |       |
|                                                                          |     |        |        | -0.006 |          |          |         |           |       |
| 109 sec-Butylbenzene                                                     | 105 | 16.998 | 17.004 | -0.006 | 96       | 1401370  | 25.0    | 24.0      |       |

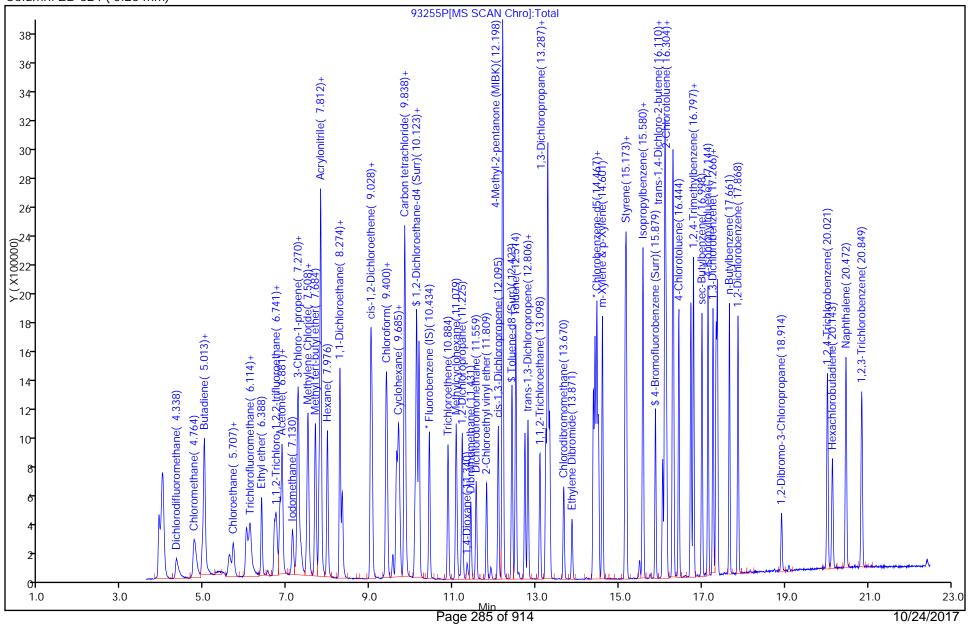
Report Date: 18-Oct-2017 10:48:58

|                                |     | RT                  | Adj RT   | Dlt RT    |           |           | Cal Amt   | OnCol Amt |       |
|--------------------------------|-----|---------------------|----------|-----------|-----------|-----------|-----------|-----------|-------|
| Compound                       | Sig | (min.)              | (min.)   | (min.)    | Q         | Response  | ug/L      | ug/L      | Flags |
| ·                              |     |                     |          |           |           |           |           |           |       |
| 112 4-Isopropyltoluene         | 119 | 17.144              | 17.150   | -0.006    | 98        | 1313971   | 25.0      | 23.9      |       |
| 110 1,3-Dichlorobenzene        | 146 | 17.266              | 17.265   | 0.001     | 97        | 834388    | 25.0      | 24.8      |       |
| 111 1,4-Dichlorobenzene        | 146 | 17.369              | 17.375   | -0.006    | 93        | 869246    | 25.0      | 24.9      |       |
| 115 n-Butylbenzene             | 91  | 17.661              | 17.661   | 0.000     | 97        | 1079145   | 25.0      | 23.0      |       |
| 116 1,2-Dichlorobenzene        | 146 | 17.868              | 17.874   | -0.006    | 96        | 821798    | 25.0      | 25.2      |       |
| 117 1,2-Dibromo-3-Chloropropan | 75  | 18.920              | 18.920   | 0.000     | 76        | 103408    | 25.0      | 22.9      |       |
| 119 1,2,4-Trichlorobenzene     | 180 | 20.021              | 20.027   | -0.006    | 94        | 577759    | 25.0      | 24.1      |       |
| 120 Hexachlorobutadiene        | 225 | 20.137              | 20.149   | -0.012    | 96        | 219518    | 25.0      | 21.6      |       |
| 121 Naphthalene                | 128 | 20.472              | 20.471   | 0.001     | 97        | 1553722   | 25.0      | 24.7      |       |
| 122 1,2,3-Trichlorobenzene     | 180 | 20.849              | 20.855   | -0.006    | 94        | 556391    | 25.0      | 23.5      |       |
| Reagents:                      |     |                     |          |           |           |           |           |           |       |
| 8260 CORP mix_00110            |     | Amount Added: 12.50 |          |           | Units: uL |           |           |           |       |
| GAS CORP mix_00246             |     | Amount Added: 12.50 |          | Units: uL |           |           |           |           |       |
| P 8260 IS_00248                |     | Amount Added: 1.25  |          | Units: uL |           | Run Reage | nt        |           |       |
| P 8260 Surr00243               |     | Amount              | Added: 1 | .25       | l         | Jnits: uL | Run Reage |           |       |

Report Date: 18-Oct-2017 10:48:58 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973P\20171018-66487.b\93255P.D Injection Date: 18-Oct-2017 10:25:30 Instrument ID: HP5973P


Lims ID: LCS

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: P-8260H2O Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



Operator ID:

ALS Bottle#:

Worklist Smp#:

RF/RB

5

5

### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo   | Job No.: 480-125579-1            |
|---------------------------------|----------------------------------|
| SDG No.:                        |                                  |
| Client Sample ID: MW-8 (4-6) MS | Lab Sample ID: 480-125579-1 MS   |
| Matrix: Solid                   | Lab File ID: F8306.D             |
| Analysis Method: 8260C          | Date Collected: 10/08/2017 11:30 |
| Sample wt/vol: 6.172(g)         | Date Analyzed: 10/17/2017 14:36  |
|                                 |                                  |

Soil Aliquot Vol: \_\_\_\_\_ Dilution Factor: 1

Soil Extract Vol.: \_\_\_\_\_ GC Column: <u>ZB-624 (30)</u> ID: <u>0.25(mm)</u>

% Moisture: 15.6 Level: (low/med) Low

Analysis Batch No.: 382134 Units: ug/Kg

| CAS NO.    | COMPOUND NAME                          | RESULT | Q | RL  | MDL  |
|------------|----------------------------------------|--------|---|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                  | 41.6   |   | 4.8 | 0.35 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane              | 39.9   |   | 4.8 | 0.78 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan e | 42.5   |   | 4.8 | 1.1  |
| 79-00-5    | 1,1,2-Trichloroethane                  | 40.5   |   | 4.8 | 0.62 |
| 75-34-3    | 1,1-Dichloroethane                     | 43.8   |   | 4.8 | 0.59 |
| 75-35-4    | 1,1-Dichloroethene                     | 40.0   |   | 4.8 | 0.59 |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | 18.8   |   | 4.8 | 0.29 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane            | 25.8   |   | 4.8 | 2.4  |
| 106-93-4   | 1,2-Dibromoethane                      | 35.6   |   | 4.8 | 0.62 |
| 95-50-1    | 1,2-Dichlorobenzene                    | 33.9   |   | 4.8 | 0.38 |
| 107-06-2   | 1,2-Dichloroethane                     | 37.5   |   | 4.8 | 0.2  |
| 78-87-5    | 1,2-Dichloropropane                    | 42.3   |   | 4.8 | 2.4  |
| 541-73-1   | 1,3-Dichlorobenzene                    | 34.2   |   | 4.8 | 0.2  |
| 106-46-7   | 1,4-Dichlorobenzene                    | 32.3   |   | 4.8 | 0.6  |
| 78-93-3    | 2-Butanone (MEK)                       | 146    |   | 24  | 1.   |
| 591-78-6   | 2-Hexanone                             | 153    |   | 24  | 2.   |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)            | 161    |   | 24  | 1.   |
| 67-64-1    | Acetone                                | 156    |   | 24  | 4.   |
| 71-43-2    | Benzene                                | 45.2   |   | 4.8 | 0.2  |
| 75-27-4    | Bromodichloromethane                   | 43.3   |   | 4.8 | 0.6  |
| 75-25-2    | Bromoform                              | 37.4   |   | 4.8 | 2.   |
| 74-83-9    | Bromomethane                           | 46.1   |   | 4.8 | 0.4  |
| 75-15-0    | Carbon disulfide                       | 34.7   |   | 4.8 | 2.   |
| 56-23-5    | Carbon tetrachloride                   | 39.9   |   | 4.8 | 0.4  |
| 108-90-7   | Chlorobenzene                          | 40.1   |   | 4.8 | 0.6  |
| 75-00-3    | Chloroethane                           | 44.2   |   | 4.8 | 1.   |
| 67-66-3    | Chloroform                             | 43.5   |   | 4.8 | 0.3  |
| 74-87-3    | Chloromethane                          | 33.4   |   | 4.8 | 0.2  |
| 156-59-2   | cis-1,2-Dichloroethene                 | 39.7   |   | 4.8 | 0.6  |
| 10061-01-5 | cis-1,3-Dichloropropene                | 36.8   |   | 4.8 | 0.6  |
| 110-82-7   | Cyclohexane                            | 36.7   |   | 4.8 | 0.6  |
| 124-48-1   | Dibromochloromethane                   | 38.8   |   | 4.8 | 0.6  |
| 75-71-8    | Dichlorodifluoromethane                | 49.0   |   | 4.8 | 0.4  |
| 100-41-4   | Ethylbenzene                           | 41.4   |   | 4.8 | 0.3  |
| 98-82-8    | Isopropylbenzene                       | 45.9   |   | 4.8 | 0.7  |

### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (4-6) MS Lab Sample ID: 480-125579-1 MS

Matrix: Solid Lab File ID: F8306.D

Analysis Method: 8260C Date Collected: 10/08/2017 11:30

Sample wt/vol: 6.172(g) Date Analyzed: 10/17/2017 14:36

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: \_\_\_\_\_ GC Column: <u>ZB-624 (30)</u> ID: <u>0.25 (mm)</u>

% Moisture: 15.6 Level: (low/med) Low

Analysis Batch No.: 382134 Units: ug/Kg

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL  |
|------------|---------------------------|--------|---|-----|------|
| 79-20-9    | Methyl acetate            | 62.2   |   | 24  | 2.9  |
| 1634-04-4  | Methyl tert-butyl ether   | 40.8   |   | 4.8 | 0.47 |
| 108-87-2   | Methylcyclohexane         | 34.2   |   | 4.8 | 0.73 |
| 75-09-2    | Methylene Chloride        | 43.0   |   | 4.8 | 2.2  |
| 100-42-5   | Styrene                   | 38.3   |   | 4.8 | 0.24 |
| 127-18-4   | Tetrachloroethene         | 43.9   |   | 4.8 | 0.64 |
| 108-88-3   | Toluene                   | 46.7   |   | 4.8 | 0.36 |
| 156-60-5   | trans-1,2-Dichloroethene  | 37.9   |   | 4.8 | 0.50 |
| 10061-02-6 | trans-1,3-Dichloropropene | 32.2   |   | 4.8 | 2.1  |
| 79-01-6    | Trichloroethene           | 38.9   |   | 4.8 | 1.1  |
| 75-69-4    | Trichlorofluoromethane    | 48.3   |   | 4.8 | 0.45 |
| 75-01-4    | Vinyl chloride            | 35.4   |   | 4.8 | 0.59 |
| 1330-20-7  | Xylenes, Total            | 86.4   |   | 9.6 | 0.81 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 87   |   | 64-126 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 95   |   | 72-126 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 100  |   | 60-140 |
| 2037-26-5  | Toluene-d8 (Surr)            | 104  |   | 71-125 |

Report Date: 17-Oct-2017 14:48:54 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8306.D

Lims ID: 480-125579-C-1-A MS

Client ID: MW-8 (4-6)

Sample Type: MS

Inject. Date: 17-Oct-2017 14:36:30 ALS Bottle#: 8 Worklist Smp#: 15

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-125579-C-1-A MS

Misc. Info.: 480-0066449-015

Operator ID: CDC Instrument ID: HP5973F

Method: \\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F-8260 SOIL.m

Limit Group: MV - 8260C ICAL

Last Update:17-Oct-2017 14:48:20Calib Date:29-Sep-2017 21:59:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973F\20170929-66009.b\F7950.D

Column 1 : ZB-624 ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK026

First Level Reviewer: cwiklinc Date: 17-Oct-2017 14:48:54

| First Level Reviewer: cwikling    |     |        | D      | ate:   |     | 17-001-201 | 7 14:48:54 |           |       |
|-----------------------------------|-----|--------|--------|--------|-----|------------|------------|-----------|-------|
|                                   |     | RT     | Adj RT | DIt RT |     |            | Cal Amt    | OnCol Amt |       |
| Compound                          | Sig | (min.) | (min.) | (min.) | Q   | Response   | ug/kg      | ug/kg     | Flags |
|                                   |     |        |        |        |     |            |            |           |       |
| * 153 Fluorobenzene (IS)          | 70  | 5.197  | 5.197  | 0.000  | 99  | 253909     | 50.0       | 50.0      |       |
| * 2 Chlorobenzene-d5              | 82  | 7.989  | 7.989  | 0.000  | 86  | 488993     | 50.0       | 50.0      |       |
| * 3 1,4-Dichlorobenzene-d4        | 152 | 10.356 | 10.356 | 0.000  | 93  | 433524     | 50.0       | 50.0      |       |
| \$ 154 Dibromofluoromethane (Surr | 113 | 4.674  | 4.680  | -0.006 | 94  | 315600     | 50.0       | 50.1      |       |
| \$ 41,2-Dichloroethane-d4 (Sur    | 67  | 4.953  | 4.960  | -0.007 | 0   | 175738     | 50.0       | 43.5      |       |
| \$ 5 Toluene-d8 (Surr)            | 98  | 6.560  | 6.560  | 0.000  | 92  | 1253389    | 50.0       | 52.0      |       |
| \$ 6 4-Bromofluorobenzene (Surr   | 174 | 9.218  | 9.218  | 0.000  | 94  | 374427     | 50.0       | 47.5      |       |
| 10 Dichlorodifluoromethane        | 85  | 1.820  | 1.820  | 0.000  | 99  | 343729     | 50.0       | 51.1      |       |
| 12 Chloromethane                  | 50  | 2.003  | 2.003  | 0.000  | 98  | 216589     | 50.0       | 34.8      |       |
| 13 Vinyl chloride                 | 62  | 2.094  | 2.094  | 0.000  | 98  | 228653     | 50.0       | 36.9      |       |
| 14 Bromomethane                   | 94  | 2.374  | 2.368  | 0.006  | 91  | 138667     | 50.0       | 48.1      |       |
| 15 Chloroethane                   | 64  | 2.417  | 2.417  | 0.000  | 99  | 120816     | 50.0       | 46.0      |       |
| 17 Trichlorofluoromethane         | 101 | 2.617  | 2.617  | 0.000  | 98  | 397485     | 50.0       | 50.3      |       |
| 21 1,1,2-Trichloro-1,2,2-trif     | 101 | 2.964  | 2.958  | 0.006  | 91  | 293316     | 50.0       | 44.3      |       |
| 22 1,1-Dichloroethene             | 96  | 2.982  | 2.976  | 0.006  | 96  | 261539     | 50.0       | 41.6      |       |
| 23 Acetone                        | 43  | 3.031  | 3.031  | 0.000  | 98  | 427667     | 250.0      | 162.1     |       |
| 26 Carbon disulfide               | 76  | 3.183  | 3.183  | 0.000  | 99  | 701636     | 50.0       | 36.2      |       |
| 27 Methyl acetate                 | 43  | 3.244  | 3.244  | 0.000  | 86  | 373540     | 100.0      | 64.8      |       |
| 30 Methylene Chloride             | 84  | 3.354  | 3.354  | 0.000  | 93  | 335015     | 50.0       | 44.8      |       |
| 32 Methyl tert-butyl ether        | 73  | 3.500  | 3.506  | -0.006 | 96  | 899685     | 50.0       | 42.5      |       |
| 34 trans-1,2-Dichloroethene       | 96  | 3.536  | 3.536  | 0.000  | 96  | 284286     | 50.0       | 39.4      |       |
| 39 1,1-Dichloroethane             | 63  | 3.865  | 3.858  | 0.007  | 97  | 630945     | 50.0       | 45.6      |       |
| 43 2-Butanone (MEK)               | 43  | 4.296  | 4.296  | 0.000  | 100 | 568044     | 250.0      | 152.4     |       |
| 45 cis-1,2-Dichloroethene         | 96  | 4.303  | 4.303  | 0.000  | 85  | 334800     | 50.0       | 41.4      |       |
| 50 Chloroform                     | 83  | 4.546  | 4.540  | 0.006  | 94  | 547992     | 50.0       | 45.3      |       |
| 51 1,1,1-Trichloroethane          | 97  | 4.686  | 4.680  | 0.006  | 99  | 430679     | 50.0       | 43.3      |       |
| 52 Cyclohexane                    | 56  | 4.710  | 4.710  | 0.000  | 89  | 601996     | 50.0       | 38.2      |       |
| 55 Carbon tetrachloride           | 117 | 4.807  | 4.807  | 0.000  | 96  | 311599     | 50.0       | 41.5      |       |
| 57 Benzene                        | 78  | 4.984  | 4.984  | 0.000  | 97  | 1333349    | 50.0       | 47.1      |       |
| 58 1,2-Dichloroethane             | 62  | 5.020  | 5.020  | 0.000  | 98  | 417976     | 50.0       | 39.0      |       |
| 62 Trichloroethene                | 95  | 5.501  | 5.495  | 0.006  | 96  | 290207     | 50.0       | 40.5      |       |
|                                   |     |        |        |        |     |            |            |           |       |

ct-2017 14:48:54 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8306.D Report Date: 17-Oct-2017 14:48:54

Data File:

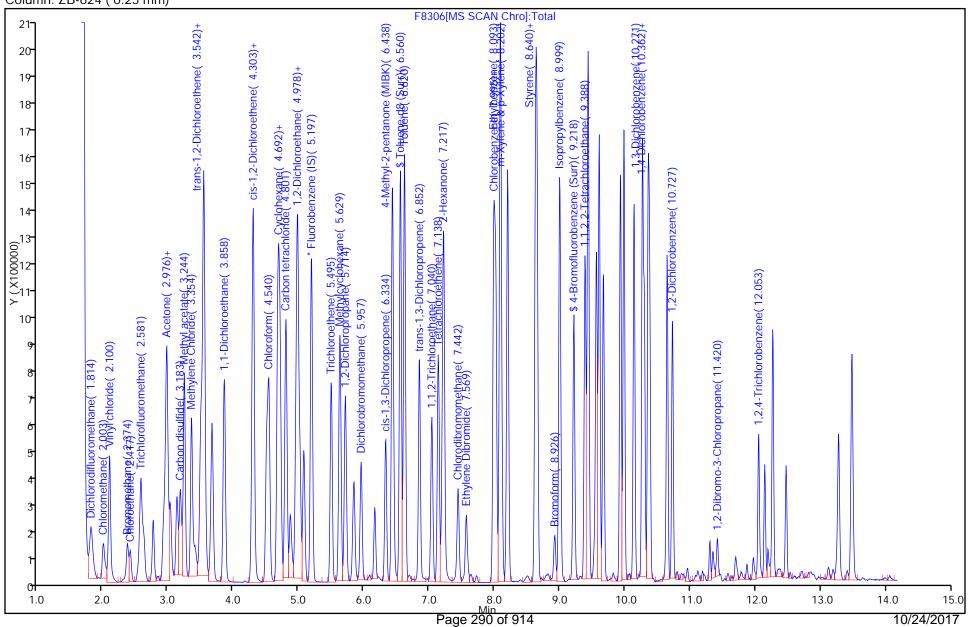
| Bata File. Worldwidth          |     | RT     | Adj RT | Dlt RT |     |           | Cal Amt   | OnCol Amt |       |
|--------------------------------|-----|--------|--------|--------|-----|-----------|-----------|-----------|-------|
| Compound                       | Sig | (min.) | (min.) | (min.) | Q   | Response  | ug/kg     | ug/kg     | Flags |
| and provide the second         | - 3 | \ /    |        | , ,    |     |           | · 3· 3    | - 3. J    | 3     |
| 64 Methylcyclohexane           | 83  | 5.629  | 5.635  | -0.006 | 90  | 480441    | 50.0      | 35.6      |       |
| 65 1,2-Dichloropropane         | 63  | 5.714  | 5.714  | 0.000  | 97  | 339292    | 50.0      | 44.1      |       |
| 68 Dichlorobromomethane        | 83  | 5.957  | 5.957  | 0.000  | 100 | 343385    | 50.0      | 45.1      |       |
| 72 cis-1,3-Dichloropropene     | 75  | 6.334  | 6.334  | 0.000  | 97  | 363757    | 50.0      | 38.3      |       |
| 73 4-Methyl-2-pentanone (MIBK  | 43  | 6.438  | 6.438  | 0.000  | 92  | 1138508   | 250.0     | 167.6     |       |
| 74 Toluene                     | 92  | 6.620  | 6.620  | 0.000  | 99  | 846613    | 50.0      | 48.6      |       |
| 77 trans-1,3-Dichloropropene   | 75  | 6.845  | 6.845  | 0.000  | 94  | 265196    | 50.0      | 33.5      |       |
| 79 1,1,2-Trichloroethane       | 83  | 7.040  | 7.040  | 0.000  | 91  | 194076    | 50.0      | 42.2      |       |
| 81 Tetrachloroethene           | 166 | 7.138  | 7.137  | 0.001  | 98  | 341545    | 50.0      | 45.7      |       |
| 80 2-Hexanone                  | 43  | 7.223  | 7.223  | 0.000  | 90  | 788613    | 250.0     | 159.4     |       |
| 83 Chlorodibromomethane        | 129 | 7.442  | 7.442  | 0.000  | 90  | 226753    | 50.0      | 40.4      |       |
| 84 Ethylene Dibromide          | 107 | 7.569  | 7.569  | 0.000  | 98  | 207358    | 50.0      | 37.1      |       |
| 87 Chlorobenzene               | 112 | 8.020  | 8.020  | 0.000  | 96  | 782370    | 50.0      | 41.7      |       |
| 88 Ethylbenzene                | 91  | 8.087  | 8.087  | 0.000  | 98  | 1354605   | 50.0      | 43.1      |       |
| 90 m-Xylene & p-Xylene         | 106 | 8.202  | 8.202  | 0.000  | 99  | 578177    |           | 45.0      |       |
| 91 o-Xylene                    | 106 | 8.634  | 8.634  | 0.000  | 96  | 557236    |           | 45.0      |       |
| 92 Styrene                     | 104 | 8.652  | 8.652  | 0.000  | 95  | 851481    | 50.0      | 39.8      |       |
| 95 Bromoform                   | 173 | 8.926  | 8.926  | 0.000  | 98  | 107701    | 50.0      | 39.0      |       |
| 94 Isopropylbenzene            | 105 | 8.999  | 8.999  | 0.000  | 95  | 1329193   | 50.0      | 47.8      |       |
| 97 1,1,2,2-Tetrachloroethane   | 83  | 9.388  | 9.388  | 0.000  | 78  | 261271    | 50.0      | 41.6      |       |
| 111 1,3-Dichlorobenzene        | 146 | 10.295 | 10.301 | -0.006 | 98  | 499911    | 50.0      | 35.6      |       |
| 113 1,4-Dichlorobenzene        | 146 | 10.380 | 10.380 | 0.000  | 95  | 482823    | 50.0      | 33.7      |       |
| 116 1,2-Dichlorobenzene        | 146 | 10.727 | 10.733 | -0.006 | 99  | 473413    | 50.0      | 35.3      |       |
| 117 1,2-Dibromo-3-Chloropropan | 75  | 11.414 | 11.420 | -0.006 | 88  | 29382     | 50.0      | 26.9      |       |
| 119 1,2,4-Trichlorobenzene     | 180 | 12.053 | 12.053 | 0.000  | 95  | 181142    | 50.0      | 19.6      |       |
| S 124 Xylenes, Total           | 1   |        |        |        | 0   |           |           | 90.0      |       |
| Reagents:                      |     |        |        |        |     |           |           |           |       |
| F 8260 SURR_00263              |     | Amount | Added: | 1.00   | ι   | Jnits: uL | Run Reage | nt        |       |

F 8260 IS\_00580 Run Reagent Amount Added: 1.00 Units: uL

Report Date: 17-Oct-2017 14:48:54 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8306.D Injection Date: 17-Oct-2017 14:36:30 Instrument ID: HP5973F


Lims ID: 480-125579-C-1-A MS

Client ID: MW-8 (4-6)

Purge Vol: 5.000 mL Dil. Factor: 1.0000 ALS Bottle#: 8

Method: F-8260 SOIL Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.25 mm)



CDC

15

Operator ID:

Worklist Smp#:

#### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (4-6) MSD Lab Sample ID: 480-125579-1 MSD

Matrix: Solid Lab File ID: F8307.D

Analysis Method: 8260C Date Collected: 10/08/2017 11:30

Sample wt/vol: 5.401(g) Date Analyzed: 10/17/2017 15:02

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: \_\_\_\_\_ GC Column: <u>ZB-624 (30)</u> ID: <u>0.25 (mm)</u>

% Moisture: 15.6 Level: (low/med) Low

Analysis Batch No.: 382134 Units: ug/Kg

| CAS NO.    | COMPOUND NAME                          | RESULT | Q | RL  | MDL  |
|------------|----------------------------------------|--------|---|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                  | 47.0   |   | 5.5 | 0.40 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane              | 42.9   |   | 5.5 | 0.89 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan e | 45.1   |   | 5.5 | 1.3  |
| 79-00-5    | 1,1,2-Trichloroethane                  | 41.1   |   | 5.5 | 0.71 |
| 75-34-3    | 1,1-Dichloroethane                     | 47.0   |   | 5.5 | 0.6  |
| 75-35-4    | 1,1-Dichloroethene                     | 41.3   |   | 5.5 | 0.6  |
| 120-82-1   | 1,2,4-Trichlorobenzene                 | 19.1   |   | 5.5 | 0.33 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane            | 30.1   |   | 5.5 | 2.   |
| 106-93-4   | 1,2-Dibromoethane                      | 32.7   |   | 5.5 | 0.70 |
| 95-50-1    | 1,2-Dichlorobenzene                    | 33.0   |   | 5.5 | 0.43 |
| 107-06-2   | 1,2-Dichloroethane                     | 36.2   |   | 5.5 | 0.28 |
| 78-87-5    | 1,2-Dichloropropane                    | 45.3   |   | 5.5 | 2.   |
| 541-73-1   | 1,3-Dichlorobenzene                    | 31.9   |   | 5.5 | 0.28 |
| 106-46-7   | 1,4-Dichlorobenzene                    | 29.5   |   | 5.5 | 0.7  |
| 78-93-3    | 2-Butanone (MEK)                       | 155    |   | 27  | 2.   |
| 591-78-6   | 2-Hexanone                             | 154    |   | 27  | 2.   |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)            | 173    |   | 27  | 1.   |
| 67-64-1    | Acetone                                | 181    |   | 27  | 4.0  |
| 71-43-2    | Benzene                                | 46.4   |   | 5.5 | 0.2  |
| 75-27-4    | Bromodichloromethane                   | 44.0   |   | 5.5 | 0.7  |
| 75-25-2    | Bromoform                              | 36.4   |   | 5.5 | 2.   |
| 74-83-9    | Bromomethane                           | 47.7   |   | 5.5 | 0.4  |
| 75-15-0    | Carbon disulfide                       | 28.1   |   | 5.5 | 2.   |
| 56-23-5    | Carbon tetrachloride                   | 45.6   |   | 5.5 | 0.53 |
| 108-90-7   | Chlorobenzene                          | 37.2   |   | 5.5 | 0.72 |
| 75-00-3    | Chloroethane                           | 44.9   |   | 5.5 | 1.   |
| 67-66-3    | Chloroform                             | 45.4   |   | 5.5 | 0.3  |
| 74-87-3    | Chloromethane                          | 34.6   |   | 5.5 | 0.3  |
| 156-59-2   | cis-1,2-Dichloroethene                 | 35.4   |   | 5.5 | 0.7  |
| 10061-01-5 | cis-1,3-Dichloropropene                | 31.9   |   | 5.5 | 0.7  |
| 110-82-7   | Cyclohexane                            | 37.7   |   | 5.5 | 0.7  |
| 124-48-1   | Dibromochloromethane                   | 37.2   |   | 5.5 | 0.7  |
| 75-71-8    | Dichlorodifluoromethane                | 53.4   |   | 5.5 | 0.4  |
| 100-41-4   | Ethylbenzene                           | 41.0   |   | 5.5 | 0.3  |
| 98-82-8    | Isopropylbenzene                       | 48.6   |   | 5.5 | 0.8  |

### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (4-6) MSD Lab Sample ID: 480-125579-1 MSD

Matrix: Solid Lab File ID: F8307.D

Analysis Method: 8260C Date Collected: 10/08/2017 11:30

Sample wt/vol: 5.401(g) Date Analyzed: 10/17/2017 15:02

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: \_\_\_\_\_ GC Column: <u>ZB-624 (30)</u> ID: <u>0.25 (mm)</u>

% Moisture: 15.6 Level: (low/med) Low

Analysis Batch No.: 382134 Units: ug/Kg

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL  |
|------------|---------------------------|--------|---|-----|------|
| 79-20-9    | Methyl acetate            | 66.3   |   | 27  | 3.3  |
| 1634-04-4  | Methyl tert-butyl ether   | 46.2   |   | 5.5 | 0.54 |
| 108-87-2   | Methylcyclohexane         | 35.0   |   | 5.5 | 0.83 |
| 75-09-2    | Methylene Chloride        | 39.6   |   | 5.5 | 2.5  |
| 100-42-5   | Styrene                   | 35.3   |   | 5.5 | 0.27 |
| 127-18-4   | Tetrachloroethene         | 44.0   |   | 5.5 | 0.74 |
| 108-88-3   | Toluene                   | 45.5   |   | 5.5 | 0.41 |
| 156-60-5   | trans-1,2-Dichloroethene  | 31.4   |   | 5.5 | 0.57 |
| 10061-02-6 | trans-1,3-Dichloropropene | 24.9   |   | 5.5 | 2.4  |
| 79-01-6    | Trichloroethene           | 37.3   |   | 5.5 | 1.2  |
| 75-69-4    | Trichlorofluoromethane    | 52.1   |   | 5.5 | 0.52 |
| 75-01-4    | Vinyl chloride            | 35.2   |   | 5.5 | 0.67 |
| 1330-20-7  | Xylenes, Total            | 86.9   |   | 11  | 0.92 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 87   |   | 64-126 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 94   |   | 72-126 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 103  |   | 60-140 |
| 2037-26-5  | Toluene-d8 (Surr)            | 106  |   | 71-125 |

Report Date: 17-Oct-2017 15:32:49 Chrom Revision: 2.2 16-Aug-2017 16:24:46

> TestAmerica Buffalo **Target Compound Quantitation Report**

Data File: 

Lims ID: 480-125579-C-1-B MSD

Client ID: MW-8 (4-6) Sample Type: **MSD** 

Inject. Date: 17-Oct-2017 15:02:30 ALS Bottle#: 9 Worklist Smp#: 16

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-125579-C-1-B MSD

Misc. Info.: 480-0066449-016

Operator ID: CDC Instrument ID: HP5973F

\\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F-8260 SOIL.m Method:

Limit Group: MV - 8260C ICAL

Last Update: 17-Oct-2017 13:11:36 Calib Date: 29-Sep-2017 21:59:30 Integrator: **RTE** ID Type: **Deconvolution ID** Quant Method: Internal Standard Quant By: **Initial Calibration** Last ICal File:

Column 1: ZB-624 (0.25 mm) Det: MS SCAN

**Process Host:** XAWRK026

First Level Reviewer: cwikling 17-Oct-2017 15:32:48 Date:

| First Level Reviewer: cwikling       |     |        | D      | ate:   |    | 17-001-201 | 7 15:32:48 |           |          |
|--------------------------------------|-----|--------|--------|--------|----|------------|------------|-----------|----------|
|                                      |     | RT     | Adj RT | Dlt RT |    |            | Cal Amt    | OnCol Amt |          |
| Compound                             | Sig | (min.) | (min.) | (min.) | Q  | Response   | ug/kg      | ug/kg     | Flags    |
|                                      |     |        |        |        |    |            |            |           | <u> </u> |
| * 153 Fluorobenzene (IS)             | 70  | 5.191  | 5.197  | -0.006 | 99 | 249751     | 50.0       | 50.0      |          |
| <ul><li>2 Chlorobenzene-d5</li></ul> | 82  | 7.989  | 7.989  | 0.000  | 86 | 485423     | 50.0       | 50.0      |          |
| * 3 1,4-Dichlorobenzene-d4           | 152 | 10.356 | 10.356 | 0.000  | 93 | 414471     | 50.0       | 50.0      |          |
| \$ 154 Dibromofluoromethane (Surr    | 113 | 4.674  | 4.680  | -0.006 | 94 | 319645     | 50.0       | 51.6      |          |
| \$ 41,2-Dichloroethane-d4 (Sur       | 67  | 4.953  | 4.960  | -0.007 | 0  | 172656     | 50.0       | 43.4      |          |
| \$ 5 Toluene-d8 (Surr)               | 98  | 6.559  | 6.560  | -0.001 | 92 | 1265771    | 50.0       | 52.9      |          |
| \$ 6 4-Bromofluorobenzene (Surr      | 174 | 9.218  | 9.218  | 0.000  | 94 | 369037     | 50.0       | 47.1      |          |
| 10 Dichlorodifluoromethane           | 85  | 1.820  | 1.820  | 0.000  | 99 | 322048     | 50.0       | 48.7      |          |
| 12 Chloromethane                     | 50  | 1.997  | 2.003  | -0.006 | 99 | 193518     | 50.0       | 31.6      |          |
| 13 Vinyl chloride                    | 62  | 2.094  | 2.094  | 0.000  | 98 | 195847     | 50.0       | 32.1      |          |
| 14 Bromomethane                      | 94  | 2.374  | 2.368  | 0.006  | 90 | 123336     | 50.0       | 43.5      |          |
| 15 Chloroethane                      | 64  | 2.417  | 2.417  | 0.000  | 99 | 105707     | 50.0       | 40.9      |          |
| 17 Trichlorofluoromethane            | 101 | 2.617  | 2.617  | 0.000  | 98 | 368859     | 50.0       | 47.5      |          |
| 21 1,1,2-Trichloro-1,2,2-trif        | 101 | 2.964  | 2.958  | 0.006  | 91 | 267616     | 50.0       | 41.1      |          |
| 22 1,1-Dichloroethene                | 96  | 2.976  | 2.976  | 0.000  | 96 | 232795     | 50.0       | 37.7      |          |
| 23 Acetone                           | 43  | 3.031  | 3.031  | 0.000  | 98 | 427920     | 250.0      | 164.9     |          |
| 26 Carbon disulfide                  | 76  | 3.183  | 3.183  | 0.000  | 99 | 489512     | 50.0       | 25.7      |          |
| 27 Methyl acetate                    | 43  | 3.244  | 3.244  | 0.000  | 82 | 342690     | 100.0      | 60.4      |          |
| 30 Methylene Chloride                | 84  | 3.353  | 3.354  | -0.001 | 93 | 268944     | 50.0       | 36.1      |          |
| 32 Methyl tert-butyl ether           | 73  | 3.505  | 3.506  | -0.001 | 95 | 877632     | 50.0       | 42.1      |          |
| 34 trans-1,2-Dichloroethene          | 96  | 3.536  | 3.536  | 0.000  | 95 | 202726     | 50.0       | 28.6      |          |
| 39 1,1-Dichloroethane                | 63  | 3.858  | 3.858  | 0.000  | 97 | 583428     | 50.0       | 42.9      |          |
| 43 2-Butanone (MEK)                  | 43  | 4.296  | 4.296  | 0.000  | 98 | 516887     | 250.0      | 140.9     |          |
| 45 cis-1,2-Dichloroethene            | 96  | 4.302  | 4.303  | -0.001 | 85 | 256765     | 50.0       | 32.3      |          |
| 50 Chloroform                        | 83  | 4.540  | 4.540  | 0.000  | 94 | 492501     | 50.0       | 41.4      |          |
| 51 1,1,1-Trichloroethane             | 97  | 4.686  | 4.680  | 0.006  | 99 | 419363     | 50.0       | 42.9      |          |
| 52 Cyclohexane                       | 56  | 4.710  | 4.710  | 0.000  | 88 | 532949     | 50.0       | 34.4      |          |
| 55 Carbon tetrachloride              | 117 | 4.807  | 4.807  | 0.000  | 98 | 306418     | 50.0       | 41.5      |          |
| 57 Benzene                           | 78  | 4.984  | 4.984  | 0.000  | 97 | 1175788    | 50.0       | 42.3      |          |
| 58 1,2-Dichloroethane                | 62  | 5.020  | 5.020  | 0.000  | 97 | 347998     | 50.0       | 33.0      |          |
| 62 Trichloroethene                   | 95  | 5.495  | 5.495  | 0.000  | 96 | 239669     | 50.0       | 34.0      |          |
|                                      |     |        |        |        |    |            |            |           |          |

ct-2017 15:32:49 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8307.D Report Date: 17-Oct-2017 15:32:49

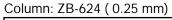
Data File:

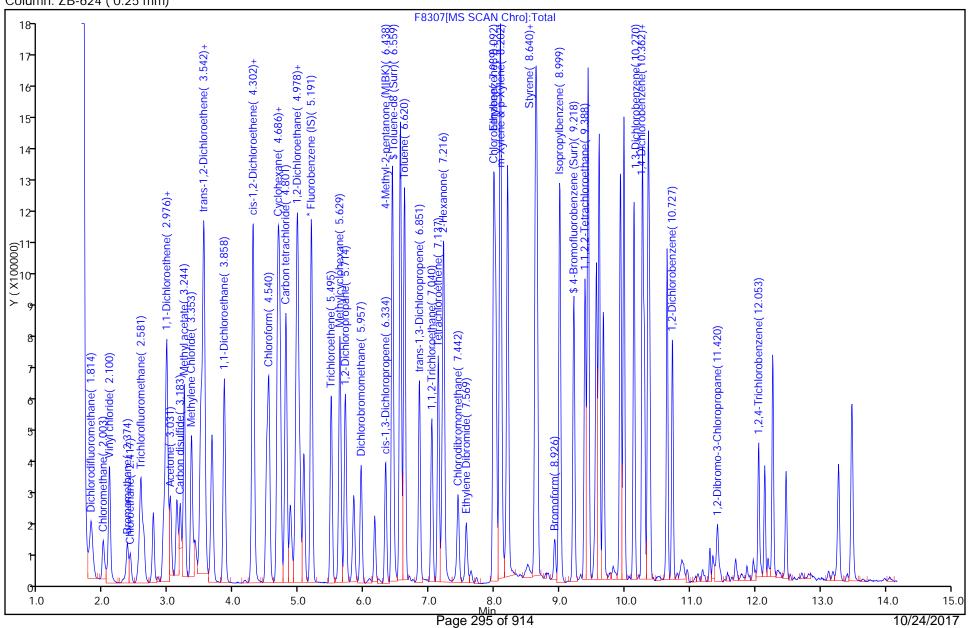
| Data File: \\Cnromina\B        | umaio\ | Chromba | (a\HP597. | 3F\201710 | )1/-66 | 0449.D\F8307.I | )          |           |       |
|--------------------------------|--------|---------|-----------|-----------|--------|----------------|------------|-----------|-------|
|                                |        | RT      | Adj RT    | Dlt RT    |        |                | Cal Amt    | OnCol Amt |       |
| Compound                       | Sig    | (min.)  | (min.)    | (min.)    | Q      | Response       | ug/kg      | ug/kg     | Flags |
|                                |        |         |           |           |        |                |            |           |       |
| 64 Methylcyclohexane           | 83     | 5.629   | 5.635     | -0.006    | 90     | 423737         | 50.0       | 31.9      |       |
| 65 1,2-Dichloropropane         | 63     | 5.714   | 5.714     | 0.000     | 97     | 312488         | 50.0       | 41.3      |       |
| 68 Dichlorobromomethane        | 83     | 5.957   | 5.957     | 0.000     | 99     | 300225         | 50.0       | 40.1      |       |
| 72 cis-1,3-Dichloropropene     | 75     | 6.334   | 6.334     | 0.000     | 97     | 271364         | 50.0       | 29.1      |       |
| 73 4-Methyl-2-pentanone (MIBK  | 43     | 6.438   | 6.438     | 0.000     | 92     | 1060063        | 250.0      | 157.2     |       |
| 74 Toluene                     | 92     | 6.620   | 6.620     | 0.000     | 99     | 717389         | 50.0       | 41.5      |       |
| 77 trans-1,3-Dichloropropene   | 75     | 6.845   | 6.845     | 0.000     | 95     | 177955         | 50.0       | 22.7      |       |
| 79 1,1,2-Trichloroethane       | 83     | 7.040   | 7.040     | 0.000     | 92     | 171143         | 50.0       | 37.5      |       |
| 81 Tetrachloroethene           | 166    | 7.143   | 7.137     | 0.006     | 98     | 297048         | 50.0       | 40.1      |       |
| 80 2-Hexanone                  | 43     | 7.223   | 7.223     | 0.000     | 88     | 690492         | 250.0      | 140.6     |       |
| 83 Chlorodibromomethane        | 129    | 7.442   | 7.442     | 0.000     | 90     | 186403         | 50.0       | 33.9      |       |
| 84 Ethylene Dibromide          | 107    | 7.569   | 7.569     | 0.000     | 98     | 165234         | 50.0       | 29.8      |       |
| 87 Chlorobenzene               | 112    | 8.019   | 8.020     | -0.001    | 96     | 630688         | 50.0       | 33.9      |       |
| 88 Ethylbenzene                | 91     | 8.086   | 8.087     | -0.001    | 98     | 1166074        | 50.0       | 37.4      |       |
| 90 m-Xylene & p-Xylene         | 106    | 8.202   | 8.202     | 0.000     | 99     | 498333         |            | 39.1      |       |
| 91 o-Xylene                    | 106    | 8.634   | 8.634     | 0.000     | 96     | 493185         |            | 40.1      |       |
| 92 Styrene                     | 104    | 8.652   | 8.652     | 0.000     | 96     | 682862         | 50.0       | 32.2      |       |
| 95 Bromoform                   | 173    | 8.926   | 8.926     | 0.000     | 98     | 88104          | 50.0       | 33.2      |       |
| 94 Isopropylbenzene            | 105    | 8.999   | 8.999     | 0.000     | 96     | 1179045        | 50.0       | 44.3      |       |
| 97 1,1,2,2-Tetrachloroethane   | 83     | 9.388   | 9.388     | 0.000     | 81     | 235025         | 50.0       | 39.1      |       |
| 111 1,3-Dichlorobenzene        | 146    | 10.301  | 10.301    | 0.000     | 97     | 389529         | 50.0       | 29.0      |       |
| 113 1,4-Dichlorobenzene        | 146    | 10.380  | 10.380    | 0.000     | 96     | 368722         | 50.0       | 26.9      |       |
| 116 1,2-Dichlorobenzene        | 146    | 10.727  | 10.733    | -0.006    | 99     | 384792         | 50.0       | 30.1      |       |
| 117 1,2-Dibromo-3-Chloropropan | 75     | 11.420  | 11.420    | 0.000     | 82     | 28695          | 50.0       | 27.4      |       |
| 119 1,2,4-Trichlorobenzene     | 180    | 12.053  | 12.053    | 0.000     | 95     | 153770         | 50.0       | 17.4      |       |
| S 124 Xylenes, Total           | 1      |         |           |           | 0      |                |            | 79.2      |       |
| Reagents:                      |        |         |           |           |        |                |            |           |       |
| F 8260 SURR_00263              |        | Amount  | Added: 1  | 1.00      | ι      | Jnits: uL      | Run Reager | nt        |       |

F 8260 IS\_00580 Run Reagent Amount Added: 1.00 Units: uL

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Report Date: 17-Oct-2017 15:32:49

TestAmerica Buffalo


Data File: \\ChromNA\Buffalo\ChromData\HP5973F\20171017-66449.b\F8307.D Injection Date: 17-Oct-2017 15:02:30 HP5973F Instrument ID:


Lims ID: 480-125579-C-1-B MSD

Client ID: MW-8 (4-6)

Purge Vol: 5.000 mL Dil. Factor: 1.0000 ALS Bottle#: 9

F-8260 SOIL Limit Group: MV - 8260C ICAL Method:





CDC

16

Operator ID:

Worklist Smp#:

| Lab Name: | TestAmerica Buffalo | Job No.: 48 | 30-125579-1 |
|-----------|---------------------|-------------|-------------|
| SDG No.:  |                     |             |             |

Instrument ID: <u>HP5973F</u> Start Date: <u>09/29/2017 15:08</u>

Analysis Batch Number: 379439 End Date: 09/30/2017 00:05

| LAB SAMPLE ID      | CLIENT SAMPLE ID | DATE ANALYZED    | DILUTION<br>FACTOR | LAB FILE ID | COLUMN ID             |
|--------------------|------------------|------------------|--------------------|-------------|-----------------------|
|                    |                  |                  | FACION             |             |                       |
| BFB 480-379439/4   |                  | 09/29/2017 15:08 | 1                  | F7934.D     | ZB-624 (30) 0.25 (mm) |
| IC 480-379439/6    |                  | 09/29/2017 15:58 | 1                  | F7936.D     | ZB-624 (30) 0.25 (mm) |
| IC 480-379439/7    |                  | 09/29/2017 16:24 | 1                  | F7937.D     | ZB-624 (30) 0.25(mm)  |
| IC 480-379439/8    |                  | 09/29/2017 16:50 | 1                  | F7938.D     | ZB-624 (30) 0.25(mm)  |
| IC 480-379439/9    |                  | 09/29/2017 17:16 | 1                  | F7939.D     | ZB-624 (30) 0.25(mm)  |
| ICIS 480-379439/10 |                  | 09/29/2017 17:41 | 1                  | F7940.D     | ZB-624 (30) 0.25(mm)  |
| IC 480-379439/11   |                  | 09/29/2017 18:07 | 1                  | F7941.D     | ZB-624 (30) 0.25(mm)  |
| IC 480-379439/12   |                  | 09/29/2017 18:33 | 1                  | F7942.D     | ZB-624 (30) 0.25(mm)  |
| IC 480-379439/14   |                  | 09/29/2017 19:24 | 1                  |             | ZB-624 (30) 0.25 (mm) |
| IC 480-379439/15   |                  | 09/29/2017 19:50 | 1                  |             | ZB-624 (30) 0.25 (mm) |
| IC 480-379439/16   |                  | 09/29/2017 20:16 | 1                  |             | ZB-624 (30) 0.25 (mm) |
| IC 480-379439/17   |                  | 09/29/2017 20:42 | 1                  |             | ZB-624 (30) 0.25 (mm) |
| IC 480-379439/18   |                  | 09/29/2017 21:08 | 1                  |             | ZB-624 (30) 0.25 (mm) |
| IC 480-379439/19   |                  | 09/29/2017 21:33 | 1                  |             | ZB-624 (30) 0.25 (mm) |
| IC 480-379439/20   |                  | 09/29/2017 21:59 | 1                  |             | ZB-624 (30) 0.25 (mm) |
| MDLV 480-379439/22 |                  | 09/29/2017 22:49 | 1                  |             | ZB-624 (30) 0.25 (mm) |
| MDLV 480-379439/23 |                  | 09/29/2017 23:15 | 1                  |             | ZB-624 (30) 0.25 (mm) |
| ICV 480-379439/24  |                  | 09/29/2017 23:40 | 1                  |             | ZB-624 (30) 0.25(mm)  |
| ICV 480-379439/25  |                  | 09/30/2017 00:05 | 1                  |             | ZB-624 (30) 0.25(mm)  |

| Lab Name: TestAmerica Builalo | JOD NO.: 480-1255/9-1        |
|-------------------------------|------------------------------|
| SDG No.:                      |                              |
| Instrument ID: HP5973F        | Start Date: 10/16/2017 10:20 |
| Analysis Batch Number: 381944 | End Date: 10/16/2017 21:01   |

| LAB SAMPLE ID CLIENT SAMPLE ID |  | DATE ANALYZED    | DILUTION | LAB FILE ID | COLUMN ID             |  |
|--------------------------------|--|------------------|----------|-------------|-----------------------|--|
|                                |  |                  | FACTOR   |             |                       |  |
| BFB 480-381944/3               |  | 10/16/2017 10:20 | 1        | F8268.D     | ZB-624 (30) 0.25(mm)  |  |
| CCVIS 480-381944/4             |  | 10/16/2017 10:53 | 1        | F8269.D     | ZB-624 (30) 0.25 (mm) |  |
| CCV 480-381944/5               |  | 10/16/2017 11:31 | 1        |             | ZB-624 (30) 0.25 (mm) |  |
| LCS 480-382014/1-A             |  | 10/16/2017 12:17 | 1        | F8271.D     | ZB-624 (30) 0.25(mm)  |  |
| MB 480-382014/2-A              |  | 10/16/2017 13:08 | 1        | F8273.D     | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ                          |  | 10/16/2017 13:46 | 1        |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ                          |  | 10/16/2017 14:12 | 1        |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ                          |  | 10/16/2017 14:37 | 1        |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ                          |  | 10/16/2017 15:29 | 1        |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ                          |  | 10/16/2017 15:54 | 1        |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ                          |  | 10/16/2017 16:20 | 1        |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ                          |  | 10/16/2017 16:46 | 1        |             | ZB-624 (30) 0.25 (mm) |  |
| ZZZZZ                          |  | 10/16/2017 17:11 | 1        |             | ZB-624 (30) 0.25 (mm) |  |
| ZZZZZ                          |  | 10/16/2017 17:37 | 1        |             | ZB-624 (30) 0.25 (mm) |  |
| ZZZZZ                          |  | 10/16/2017 18:02 | 1        |             | ZB-624 (30) 0.25 (mm) |  |
| 480-125579-1                   |  | 10/16/2017 18:28 | 1        | F8285.D     | ZB-624 (30) 0.25 (mm) |  |
| 480-125579-2                   |  | 10/16/2017 18:54 | 1        | F8286.D     | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ                          |  | 10/16/2017 19:19 | 1        |             | ZB-624 (30) 0.25 (mm) |  |
| ZZZZZ                          |  | 10/16/2017 19:44 | 1        |             | ZB-624 (30) 0.25 (mm) |  |
| ZZZZZ                          |  | 10/16/2017 20:10 | 1        |             | ZB-624 (30) 0.25 (mm) |  |
| ZZZZZ                          |  | 10/16/2017 20:35 | 1        |             | ZB-624 (30) 0.25 (mm) |  |
| ZZZZZ                          |  | 10/16/2017 21:01 | 1        |             | ZB-624 (30) 0.25 (mm) |  |

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1 |
|-------------------------------|-----------------------|
| SDG No.:                      |                       |

Instrument ID: HP5973F Start Date: 10/17/2017 08:39

Analysis Batch Number: 382134 End Date: 10/17/2017 19:43

| LAB SAMPLE ID      | CLIENT SAMPLE ID | DATE ANALYZED    | DILUTION<br>FACTOR | LAB FILE ID | COLUMN ID             |  |
|--------------------|------------------|------------------|--------------------|-------------|-----------------------|--|
| BFB 480-382134/2   |                  | 10/17/2017 08:39 | 1                  | F8293.D     | ZB-624 (30) 0.25(mm)  |  |
| CCVIS 480-382134/3 |                  | 10/17/2017 09:07 | 1                  | F8294.D     | ZB-624 (30) 0.25 (mm) |  |
| CCV 480-382134/4   |                  | 10/17/2017 09:41 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| LCS 480-382187/1-A |                  | 10/17/2017 10:07 | 1                  | F8296.D     | ZB-624 (30) 0.25(mm)  |  |
| RL 480-382134/6    |                  | 10/17/2017 10:33 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| MB 480-382187/2-A  |                  | 10/17/2017 10:58 | 1                  | F8298.D     | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ              |                  | 10/17/2017 11:38 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ              |                  | 10/17/2017 12:03 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ              |                  | 10/17/2017 12:28 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ              |                  | 10/17/2017 12:54 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ              |                  | 10/17/2017 13:20 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ              |                  | 10/17/2017 13:45 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| 480-125579-3       |                  | 10/17/2017 14:11 | 1                  | F8305.D     | ZB-624 (30) 0.25(mm)  |  |
| 480-125579-1 MS    |                  | 10/17/2017 14:36 | 1                  | F8306.D     | ZB-624 (30) 0.25(mm)  |  |
| 480-125579-1 MSD   |                  | 10/17/2017 15:02 | 1                  | F8307.D     | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ              |                  | 10/17/2017 15:53 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ              |                  | 10/17/2017 16:19 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ              |                  | 10/17/2017 16:44 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ              |                  | 10/17/2017 17:09 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ              |                  | 10/17/2017 17:35 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ              |                  | 10/17/2017 18:01 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ              |                  | 10/17/2017 18:26 | 1                  |             | ZB-624 (30) 0.25(mm)  |  |
| ZZZZZ              |                  | 10/17/2017 18:51 | 1                  |             | ZB-624 (30) 0.25 (mm) |  |
| ZZZZZ              |                  | 10/17/2017 19:17 | 1                  |             | ZB-624 (30) 0.25 (mm) |  |
| ZZZZZ              |                  | 10/17/2017 19:43 | 1                  |             | ZB-624 (30) 0.25 (mm) |  |

| Lab Name: TestAmerica H | Buffalo Job No.: | Job No.: 480-125579-1 |  |  |  |  |  |
|-------------------------|------------------|-----------------------|--|--|--|--|--|
| SDG No.:                |                  |                       |  |  |  |  |  |
| Instrument ID: HP5973P  | Start Da         | te: 10/10/2017 15:02  |  |  |  |  |  |

Analysis Batch Number: 381079 End Date: 10/11/2017 02:58

| LAB SAMPLE ID      | CLIENT SAMPLE ID | DATE ANALYZED    | DILUTION | LAB FILE ID | COLUMN ID             |  |
|--------------------|------------------|------------------|----------|-------------|-----------------------|--|
|                    |                  |                  | FACTOR   |             |                       |  |
| BFB 480-381079/3   |                  | 10/10/2017 15:02 | 1        | P3040P.D    | ZB-624 (60) 0.25(mm)  |  |
| IC 480-381079/5    |                  | 10/10/2017 16:02 | 1        | P3042P.D    | ZB-624 (60) 0.25 (mm) |  |
| IC 480-381079/6    |                  | 10/10/2017 16:29 | 1        | P3043P.D    | ZB-624 (60) 0.25 (mm) |  |
| IC 480-381079/7    |                  | 10/10/2017 16:56 | 1        | P3044P.D    | ZB-624 (60) 0.25 (mm) |  |
| IC 480-381079/8    |                  | 10/10/2017 17:24 | 1        | P3045P.D    | ZB-624 (60) 0.25 (mm) |  |
| ICIS 480-381079/9  |                  | 10/10/2017 17:51 | 1        | P3046P.D    | ZB-624 (60) 0.25 (mm) |  |
| IC 480-381079/10   |                  | 10/10/2017 19:55 | 1        | P3047P.D    | ZB-624 (60) 0.25 (mm) |  |
| IC 480-381079/11   |                  | 10/10/2017 20:22 | 1        | P3048P.D    | ZB-624 (60) 0.25 (mm) |  |
| IC 480-381079/13   |                  | 10/10/2017 21:18 | 1        |             | ZB-624 (60) 0.25 (mm) |  |
| IC 480-381079/14   |                  | 10/10/2017 22:17 | 1        |             | ZB-624 (60) 0.25 (mm) |  |
| IC 480-381079/15   |                  | 10/10/2017 22:45 | 1        |             | ZB-624 (60) 0.25(mm)  |  |
| IC 480-381079/16   |                  | 10/10/2017 23:12 | 1        |             | ZB-624 (60) 0.25 (mm) |  |
| IC 480-381079/17   |                  | 10/10/2017 23:40 | 1        |             | ZB-624 (60) 0.25 (mm) |  |
| IC 480-381079/18   |                  | 10/11/2017 00:07 | 1        |             | ZB-624 (60) 0.25 (mm) |  |
| IC 480-381079/19   |                  | 10/11/2017 00:40 | 1        |             | ZB-624 (60) 0.25 (mm) |  |
| MDLV 480-381079/21 |                  | 10/11/2017 01:35 | 1        |             | ZB-624 (60) 0.25 (mm) |  |
| MDLV 480-381079/22 |                  | 10/11/2017 02:02 | 1        |             | ZB-624 (60) 0.25(mm)  |  |
| ICV 480-381079/23  |                  | 10/11/2017 02:30 | 1        |             | ZB-624 (60) 0.25(mm)  |  |
| ICV 480-381079/24  |                  | 10/11/2017 02:58 | 1        |             | ZB-624 (60) 0.25 (mm) |  |

| Lab Name:  | TestAmerica Buffalo  | Job No.: 480-1255/9-1        |
|------------|----------------------|------------------------------|
| SDG No.:   |                      |                              |
| Instrument | : ID: <u>HP5973P</u> | Start Date: 10/18/2017 09:04 |
|            |                      |                              |

| LAB SAMPLE ID      | CLIENT SAMPLE ID | DATE ANALYZED    | DILUTION<br>FACTOR | LAB FILE ID | COLUMN ID             |
|--------------------|------------------|------------------|--------------------|-------------|-----------------------|
| BFB 480-382381/2   |                  | 10/18/2017 09:04 | 1                  | 93252P.D    | ZB-624 (60) 0.25 (mm) |
| CCVIS 480-382381/3 |                  | 10/18/2017 09:31 | 1                  | 93253P.D    | ZB-624 (60) 0.25 (mm) |
| CCV 480-382381/4   |                  | 10/18/2017 09:58 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| LCS 480-382381/5   |                  | 10/18/2017 10:25 | 1                  | 93255P.D    | ZB-624 (60) 0.25(mm)  |
| RL 480-382381/6    |                  | 10/18/2017 10:53 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| MB 480-382381/7    |                  | 10/18/2017 11:20 | 1                  | 93257P.D    | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 12:07 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 12:35 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 13:02 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 13:29 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 13:57 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 14:24 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 14:52 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 15:19 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 15:47 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 16:14 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 16:41 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 17:09 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 17:37 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 18:04 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| 480-125579-4       |                  | 10/18/2017 18:32 | 1                  | 93272P.D    | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 19:00 | 1                  |             | ZB-624 (60) 0.25(mm)  |
| ZZZZZ              |                  | 10/18/2017 19:27 | 1                  |             | ZB-624 (60) 0.25 (mm) |
| ZZZZZ              |                  | 10/18/2017 19:54 | 1                  |             | ZB-624 (60) 0.25(mm)  |

### **GC/MS VOA Worksheet**

Batch Number: 480-382381

Method: 8260C

Analyst: Barone, Rachel L

Date Open: Oct 18 2017 9:04AM

Batch End:

| Lab ID                 | Client ID  | Method Chain | Basis Init | ial weight/volume of<br>sample | Final weight/volume of sample | Initial pH | 8260 CORP<br>mix_00110 | ADD CORP mix_00063 | BFB_WRK_00065 |
|------------------------|------------|--------------|------------|--------------------------------|-------------------------------|------------|------------------------|--------------------|---------------|
| BFB~480-382381/2       | 2          | 8260C        |            | 1 uL                           | 1 uL                          |            |                        |                    | 1 uL          |
| CCVIS~480-38238        | 1/         | 8260C        |            | 5 mL                           | 5 mL                          |            | 12.5 uL                |                    |               |
| CCV~480-382381/-       | 4          | 8260C        |            | 5 mL                           | 5 mL                          |            |                        | 12.5 uL            |               |
| LCS~480-382381/5       | 5          | 8260C        |            | 5 mL                           | 5 mL                          |            | 12.5 uL                |                    |               |
| RL~480-382381/6        |            |              |            | 5 mL                           | 5 mL                          |            | 1 uL                   | 1 uL               |               |
| MB~480-382381/7        |            | 8260C        |            | 5 mL                           | 5 mL                          |            |                        |                    |               |
| 480-125123-A-1         | TRIP BLANK | 8260C        | T          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |
| 480-125509-H-1         | EQ BLANK   | 8260C        | T          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |
| 480-125568-E-2         | L28D       | 8260C        | T          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |
| 480-125568-E-3         | K28D       | 8260C        | T          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |
| 480-125568-E-4         | P28D       | 8260C        | T          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |
| 480-125568-E-5         | G603       | 8260C        | T          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |
| 480-125568-E-6         | R13D       | 8260C        | T          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |
| 480-125568-E-7         | N28D       | 8260C        | Т          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |
| 480-125568-E-8         | M28D       | 8260C        | Т          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |
| 480-125568-E-9         | G36D       | 8260C        | Т          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |
| 480-125568-E-10        | G37D       | 8260C        | Т          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |
| 480-125568-E-11        | G38D       | 8260C        | Т          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |
| 480-125579-A-4         | TRIP BLANK | 8260C        | Т          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |
| 480-125907-P-2         | LF-5       | 8260C        | Т          | 5 mL                           | 5 mL                          | 7 SU       |                        |                    |               |
| 480-125509-H-1~N<br>S  | I          | 8260C        | Т          | 5 mL                           | 5 mL                          | <2 SU      | 12.5 uL                |                    |               |
| 480-125509-H-1~N<br>SD | I          | 8260C        | Т          | 5 mL                           | 5 mL                          | <2 SU      | 12.5 uL                |                    |               |
| 480-125568-A-25        | TB02       | 8260C        | Т          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |
| 480-125568-A-26        | TB03       | 8260C        | T          | 5 mL                           | 5 mL                          | <2 SU      |                        |                    |               |

### **GC/MS VOA Worksheet**

Batch Number: 480-382381

Method: 8260C

Analyst: Barone, Rachel L

Date Open: Oct 18 2017 9:04AM

| 2 ato 6 po 6 ot 16 20 11 | 0.0 |
|--------------------------|-----|
| Batch End:               |     |
|                          |     |
|                          |     |
|                          |     |

| Lab ID                 | Client ID  | Method Chain | Basis GAS CORF | o mix_00246 | P 8260 IS_00248 | P 8260 Surr00243 | 3 |
|------------------------|------------|--------------|----------------|-------------|-----------------|------------------|---|
| BFB~480-382381/2       |            | 8260C        |                |             |                 |                  |   |
| CCVIS~480-38238        | 1/         | 8260C        | 12.            | 5 uL        | 1.25 uL         | 1.25 uL          |   |
| CCV~480-382381/4       | <b>.</b>   | 8260C        |                |             | 1.25 uL         | 1.25 uL          |   |
| LCS~480-382381/5       |            | 8260C        | 12.            | 5 uL        | 1.25 uL         | 1.25 uL          |   |
| RL~480-382381/6        |            |              | 1              | uL          | 1.25 uL         | 1.25 uL          |   |
| MB~480-382381/7        |            | 8260C        |                |             | 1.25 uL         | 1.25 uL          |   |
| 480-125123-A-1         | TRIP BLANK | 8260C        | T              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125509-H-1         | EQ BLANK   | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125568-E-2         | L28D       | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125568-E-3         | K28D       | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125568-E-4         | P28D       | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125568-E-5         | G603       | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125568-E-6         | R13D       | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125568-E-7         | N28D       | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125568-E-8         | M28D       | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125568-E-9         | G36D       | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125568-E-10        | G37D       | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125568-E-11        | G38D       | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125579-A-4         | TRIP BLANK | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125907-P-2         | LF-5       | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125509-H-1~M<br>S  |            | 8260C        | T 12.          | 5 uL        | 1.25 uL         | 1.25 uL          |   |
| 480-125509-H-1~M<br>SD |            | 8260C        | T 12.          | 5 uL        | 1.25 uL         | 1.25 uL          |   |
| 480-125568-A-25        | TB02       | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |
| 480-125568-A-26        | TB03       | 8260C        | Т              |             | 1.25 uL         | 1.25 uL          |   |

Page 302 of 914 10/2時線9275f 3

### **GC/MS VOA Worksheet**

Batch Number: 480-382381

Method: 8260C

Analyst: Barone, Rachel L

Date Open: Oct 18 2017 9:04AM

Batch End:

Comments

| Lab ID                      | Client ID  | Method Chain | Basis | Analysis comment |
|-----------------------------|------------|--------------|-------|------------------|
| BFB~480-382381/2            |            | 8260C        |       |                  |
| CCVIS~480-38238             | 1/         | 8260C        |       |                  |
| 3<br>CCV~480-382381/4       | ļ.         | 8260C        |       |                  |
| LCS~480-382381/5            |            | 8260C        |       |                  |
| RL~480-382381/6             |            |              |       |                  |
| MB~480-382381/7             |            | 8260C        |       |                  |
| 480-125123-A-1              | TRIP BLANK | 8260C        | Т     |                  |
| 480-125509-H-1              | EQ BLANK   | 8260C        | Т     |                  |
| 480-125568-E-2              | L28D       | 8260C        | Т     |                  |
| 180-125568-E-3              | K28D       | 8260C        | Т     |                  |
| 180-125568-E-4              | P28D       | 8260C        | Т     |                  |
| 80-125568-E-5               | G603       | 8260C        | Т     |                  |
| 180-125568-E-6              | R13D       | 8260C        | Т     |                  |
| 480-125568-E-7              | N28D       | 8260C        | Т     | Rerun at 2x      |
| 180-125568-E-8              | M28D       | 8260C        | Т     |                  |
| 480-125568-E-9              | G36D       | 8260C        | T     |                  |
| 180-125568-E-10             | G37D       | 8260C        | Т     |                  |
| 480-125568-E-11             | G38D       | 8260C        | Т     |                  |
| 180-125579-A-4              | TRIP BLANK | 8260C        | Т     |                  |
| 80-125907-P-2               | LF-5       | 8260C        | Т     |                  |
| \80-125509-H-1~N<br>`       |            | 8260C        | Т     |                  |
| S<br>180-125509-H-1~N<br>SD |            | 8260C        | Т     |                  |
| 480-125568-A-25             | TB02       | 8260C        | Т     |                  |
| 480-125568-A-26             | TB03       | 8260C        | Т     |                  |

Page 303 of 914 10/2時線9176f 3

#### GC/MS VOA BATCH WORKSHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Batch Number: 382014 Batch Start Date: 10/16/17 11:39 Batch Analyst: Cwiklinski, Charles D

Batch Method: 5035A L Batch End Date: 10/16/17 14:39

| Lab Sample ID       | Client Sample ID | Method Chain      | Basis | TareWeight | Vial&SampleWt | InitialAmount | FinalAmount | 8260 CORP mix<br>00112 | GAS CORP mix<br>00246 |
|---------------------|------------------|-------------------|-------|------------|---------------|---------------|-------------|------------------------|-----------------------|
| LCS<br>480-382014/1 |                  | 5035A_L,<br>8260C |       | 25.11 g    | 30.11 g       | 5 g           | 5 mL        | 2.5 uL                 | 2.5 uL                |
| MB 480-382014/2     |                  | 5035A_L,<br>8260C |       | 25.06 g    | 30.06 g       | 5 g           | 5 mL        |                        |                       |
| 480-125579-B-1      | MW-8 (4-6)       | 5035A_L,<br>8260C | Т     | +030.869 g | 36.75 g       | 5.881 g       | 5 mL        |                        |                       |
| 480-125579-B-2      | MW-8 (13-14)     | 5035A_L,<br>8260C | Т     | +030.754 g | 37.71 g       | 6.956 g       | 5 mL        |                        |                       |

| Lab Sample ID       | Client Sample ID | Method Chain      | Basis | AnalysisComment |  |  |  |
|---------------------|------------------|-------------------|-------|-----------------|--|--|--|
| LCS<br>480-382014/1 |                  | 5035A_L,<br>8260C |       |                 |  |  |  |
| MB 480-382014/2     |                  | 5035A_L,<br>8260C |       |                 |  |  |  |
| 480-125579-B-1      | MW-8 (4-6)       | 5035A_L,<br>8260C | Т     | TC              |  |  |  |
| 480-125579-B-2      | MW-8 (13-14)     | 5035A_L,<br>8260C | Т     | TC              |  |  |  |

| Batch Notes   |                 |  |  |  |  |  |
|---------------|-----------------|--|--|--|--|--|
| Balance ID    | b202613314      |  |  |  |  |  |
| Batch Comment | sand lot 164908 |  |  |  |  |  |

| Basis | Basis Description |
|-------|-------------------|
| Т     | Total/NA          |

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 1 of 1

#### GC/MS VOA BATCH WORKSHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Batch Number: 382187 Batch Start Date: 10/17/17 09:33 Batch Analyst: Cwiklinski, Charles D

Batch Method: 5035A\_L Batch End Date: 10/17/17 12:33

| Lab Sample ID         | Client Sample ID | Method Chain      | Basis | TareWeight | Vial&SampleWt | InitialAmount | FinalAmount | 8260 CORP mix<br>00112 | GAS CORP mix<br>00246 |
|-----------------------|------------------|-------------------|-------|------------|---------------|---------------|-------------|------------------------|-----------------------|
| LCS<br>480-382187/1   |                  | 5035A_L,<br>8260C |       | 25.09 g    | 30.09 g       | 5 g           | 5 mL        | 2.5 uL                 | 2.5 uL                |
| MB 480-382187/2       |                  | 5035A_L,<br>8260C |       | 25.06 g    | 30.06 g       | 5 g           | 5 mL        |                        |                       |
| 480-125579-C-3        | DUP-100817       | 5035A_L,<br>8260C | Т     | 30.772 g   | 37.52 g       | 6.748 g       | 5 mL        |                        |                       |
| 480-125579-C-1<br>MS  | MW-8 (4-6)       | 5035A_L,<br>8260C | Т     | +030.188 g | 36.36 g       | 6.172 g       | 5 mL        | 2.5 uL                 | 2.5 uL                |
| 480-125579-C-1<br>MSD | MW-8 (4-6)       | 5035A_L,<br>8260C | T     | 30.409 g   | 35.81 g       | 5.401 g       | 5 mL        | 2.5 uL                 | 2.5 uL                |

| Lab Sample ID                   | Client Sample ID | Method Chain      | Basis | AnalysisComment                                     |  |  |  |
|---------------------------------|------------------|-------------------|-------|-----------------------------------------------------|--|--|--|
| LCS                             |                  | 5035A_L,          |       |                                                     |  |  |  |
| 480-382187/1<br>MB 480-382187/2 |                  | 8260C<br>5035A L, |       |                                                     |  |  |  |
| 1110 400 30210772               |                  | 8260C             |       |                                                     |  |  |  |
| 480-125579-C-3                  | DUP-100817       | 5035A_L,<br>8260C | Т     | TC confirm IS                                       |  |  |  |
| 480-125579-C-1<br>MS            | MW-8 (4-6)       | 5035A_L,<br>8260C | Т     | TC client qc<br>confirm SS<br>parent in<br>B:381944 |  |  |  |
| 480-125579-C-1<br>MSD           | MW-8 (4-6)       | 5035A_L,<br>8260C | Т     | TC client qc<br>parent in<br>B:381944               |  |  |  |

| Batch Notes   |                 |  |  |  |  |  |
|---------------|-----------------|--|--|--|--|--|
| Balance ID    | b202613314      |  |  |  |  |  |
| Batch Comment | sand lot 164908 |  |  |  |  |  |

| Basis | Basis Description |
|-------|-------------------|
| Т     | Total/NA          |

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C Page 1 of 1

10/24/2017

# Method 8270D

Semivolatile Organic Compounds (GC/MS) by Method 8270D

## FORM II GC/MS SEMI VOA SURROGATE RECOVERY

| Lab Name: TestAmerica Buffalo | Job | No.: | 480-125579-1 |
|-------------------------------|-----|------|--------------|
|-------------------------------|-----|------|--------------|

SDG No.:

Matrix: Solid Level: Low

GC Column (1): RXI-5Sil MS ID: 0.25(mm)

| Client Sample ID | Lab Sample ID         | 2FP | # | PHL | # | NBZ | # | FBP | # | TBP | # | TPHd14 | 1 # |
|------------------|-----------------------|-----|---|-----|---|-----|---|-----|---|-----|---|--------|-----|
| MW-8 (4-6)       | 480-125579-1          | 0   | Х | 0   | Х | 0   | Χ | 83  |   | 0   | Х | 0      | Х   |
| MW-8 (13-14)     | 480-125579-2          | 73  |   | 82  |   | 55  |   | 88  |   | 111 |   | 98     |     |
| DUP-100817       | 480-125579-3          | 72  |   | 59  |   | 78  |   | 87  |   | 119 |   | 95     |     |
|                  | MB<br>480-381332/1-A  | 77  |   | 80  |   | 73  |   | 84  |   | 86  |   | 101    |     |
|                  | LCS<br>480-381332/2-A | 76  |   | 78  |   | 77  |   | 80  |   | 95  |   | 96     |     |
| MW-8 (4-6) MS    | 480-125579-1 MS       | 0   | Х | 0   | Х | 0   | Х | 0   | Χ | 0   | Х | 0      | Х   |
| MW-8 (4-6) MSD   | 480-125579-1 MSD      | 47  | Х | 0   | Х | 63  |   | 75  |   | 0   | Х | 119    |     |

|                            | QC LIMITS |
|----------------------------|-----------|
| 2FP = 2-Fluorophenol       | 52-120    |
| PHL = Phenol-d5            | 54-120    |
| NBZ = Nitrobenzene-d5      | 53-120    |
| FBP = 2-Fluorobiphenyl     | 60-120    |
| TBP = 2,4,6-Tribromophenol | 54-120    |
| TPHd14 = p-Terphenyl-d14   | 65-121    |

 $<sup>\</sup>ensuremath{\text{\#}}$  Column to be used to flag recovery values

# FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE RECOVERY

| Lab Name | e: <u>TestAmerica Buff</u> | alo        |                        |  |
|----------|----------------------------|------------|------------------------|--|
| SDG No.  | :                          |            |                        |  |
| Matrix:  | Solid                      | Level: Low | Lab File ID: U328232.D |  |
| Lab ID:  | LCS 480-381332/2-A         |            | Client ID:             |  |

|                               | SPIKE   | LCS           | LCS | QC     |   |
|-------------------------------|---------|---------------|-----|--------|---|
|                               | ADDED   | CONCENTRATION | 용   | LIMITS | # |
| COMPOUND                      | (ug/Kg) | (ug/Kg)       | REC | REC    |   |
| 2,4,5-Trichlorophenol         | 1620    | 1350          | 83  | 59-126 |   |
| 2,4,6-Trichlorophenol         | 1620    | 1290          | 80  | 59-123 |   |
| 2,4-Dichlorophenol            | 1620    | 1310          | 80  | 61-120 |   |
| 2,4-Dimethylphenol            | 1620    | 1300          | 80  | 59-120 |   |
| 2,4-Dinitrophenol             | 3250    | 1870          | 58  | 41-146 |   |
| 2,4-Dinitrotoluene            | 1620    | 1380          | 85  | 63-120 |   |
| 2,6-Dinitrotoluene            | 1620    | 1350          | 83  | 66-120 |   |
| 2-Chloronaphthalene           | 1620    | 1250          | 77  | 57-120 |   |
| 2-Chlorophenol                | 1620    | 1180          | 73  | 53-120 |   |
| 2-Methylnaphthalene           | 1620    | 1280          | 79  | 59-120 |   |
| 2-Methylphenol                | 1620    | 1270          | 78  | 54-120 |   |
| 2-Nitroaniline                | 1620    | 1260          | 78  | 61-120 |   |
| 2-Nitrophenol                 | 1620    | 1220          | 75  | 56-120 |   |
| 3,3'-Dichlorobenzidine        | 3250    | 2940          | 91  | 54-120 |   |
| 3-Nitroaniline                | 1620    | 1300          | 80  | 48-120 |   |
| 4,6-Dinitro-2-methylphenol    | 3250    | 2620          | 81  | 49-122 |   |
| 4-Bromophenyl phenyl ether    | 1620    | 1490          | 92  | 58-120 |   |
| 4-Chloro-3-methylphenol       | 1620    | 1340          | 83  | 61-120 |   |
| 4-Chloroaniline               | 1620    | 1180          | 73  | 38-120 |   |
| 4-Chlorophenyl phenyl ether   | 1620    | 1360          | 84  | 63-124 |   |
| 4-Methylphenol                | 1620    | 1330          | 82  | 55-120 |   |
| 4-Nitroaniline                | 1620    | 1310          | 81  | 56-120 |   |
| 4-Nitrophenol                 | 3250    | 2720          | 84  | 43-147 |   |
| Acenaphthene                  | 1620    | 1330          | 82  | 62-120 |   |
| Acenaphthylene                | 1620    | 1310          | 81  | 58-121 |   |
| Acetophenone                  | 1620    | 1230          | 76  | 54-120 |   |
| Anthracene                    | 1620    | 1480          | 91  | 62-120 |   |
| Atrazine                      | 3250    | 3030          | 93  | 60-127 |   |
| Benzaldehyde                  | 3250    | 2130          | 66  | 10-150 |   |
| Benzo[a]anthracene            | 1620    | 1510          | 93  | 65-120 |   |
| Benzo[a]pyrene                | 1620    | 1860          | 115 | 64-120 |   |
| Benzo[b]fluoranthene          | 1620    | 1940          | 119 | 64-120 |   |
| Benzo[g,h,i]perylene          | 1620    | 1970          | 122 | 45-145 |   |
| Benzo[k]fluoranthene          | 1620    | 1770          | 109 | 65-120 |   |
| Biphenyl                      | 1620    | 1300          | 80  |        |   |
| bis (2-chloroisopropyl) ether | 1620    | 1140          | 70  | 44-120 |   |
| Bis(2-chloroethoxy)methane    | 1620    | 1180          | 73  | 55-120 |   |
| Bis(2-chloroethyl)ether       | 1620    | 1150          | 71  | 45-120 |   |
| Bis(2-ethylhexyl) phthalate   | 1620    | 1490          | 92  | 61-133 |   |
| Butyl benzyl phthalate        | 1620    | 1480          | 91  | 61-129 |   |
| Caprolactam                   | 3250    | 2790          | 86  | 47-120 |   |
| Carbazole                     | 1620    | 1510          | 93  | 65-120 |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8270D}$ 

# FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE RECOVERY

| Lab Name | e: <u>TestAmerica Buff</u> | alo        | Job No.: 480-125579-1  |  |
|----------|----------------------------|------------|------------------------|--|
| SDG No.  | :                          |            |                        |  |
| Matrix:  | Solid                      | Level: Low | Lab File ID: U328232.D |  |
| Lab ID:  | LCS 480-381332/2-A         |            | Client ID:             |  |

|                           | SPIKE   | LCS           | LCS | QC     |   |
|---------------------------|---------|---------------|-----|--------|---|
|                           | ADDED   | CONCENTRATION | 왕   | LIMITS | # |
| COMPOUND                  | (ug/Kg) | (ug/Kg)       | REC | REC    |   |
| Chrysene                  | 1620    | 1490          | 92  | 64-120 |   |
| Dibenz(a,h)anthracene     | 1620    | 1950          | 120 | 54-132 |   |
| Dibenzofuran              | 1620    | 1360          | 84  | 63-120 |   |
| Diethyl phthalate         | 1620    | 1440          | 89  | 66-120 |   |
| Dimethyl phthalate        | 1620    | 1420          | 88  | 65-124 |   |
| Di-n-butyl phthalate      | 1620    | 1510          | 93  | 58-130 |   |
| Di-n-octyl phthalate      | 1620    | 1540          | 95  | 57-133 |   |
| Fluoranthene              | 1620    | 1530          | 94  |        |   |
| Fluorene                  | 1620    | 1350          | 83  | 63-120 |   |
| Hexachlorobenzene         | 1620    | 1500          | 92  | 60-120 |   |
| Hexachlorobutadiene       | 1620    | 1220          | 75  | 45-120 |   |
| Hexachlorocyclopentadiene | 1620    | 1160          | 71  | 47-120 |   |
| Hexachloroethane          | 1620    | 1160          | 72  | 41-120 |   |
| Indeno[1,2,3-cd]pyrene    | 1620    | 1940          | 120 | 56-134 |   |
| Isophorone                | 1620    | 1300          | 80  |        |   |
| Naphthalene               | 1620    | 1230          | 76  | 55-120 |   |
| Nitrobenzene              | 1620    | 1240          | 77  |        |   |
| N-Nitrosodi-n-propylamine | 1620    | 1220          | 75  | 52-120 |   |
| Pentachlorophenol         | 3250    | 2440          | 75  | 51-120 |   |
| Phenanthrene              | 1620    | 1480          | 91  | 60-120 |   |
| Phenol                    | 1620    | 1290          | 80  | 53-120 |   |
| Pyrene                    | 1620    | 1480          | 91  | 61-133 |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8270D}$ 

# FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

| Lab Name | ab Name: TestAmerica Buffalo |            | Job No.: 480-125579-1    |  |
|----------|------------------------------|------------|--------------------------|--|
| SDG No.  | : <u> </u>                   |            |                          |  |
| Matrix:  | Solid                        | Level: Low | Lab File ID: U328233.D   |  |
| Lab ID:  | 480-125579-1 MS              |            | Client ID: MW-8 (4-6) MS |  |

|                               | SPIKE   | SAMPLE        | MS      | MS   | QC     |   |
|-------------------------------|---------|---------------|---------|------|--------|---|
|                               | ADDED   | CONCENTRATION | -       | _    | LIMITS | # |
| COMPOUND                      | (ug/Kg) | (ug/Kg)       | (ug/Kg) | REC  | REC    | " |
| 2,4,5-Trichlorophenol         | 1930    | ND ND         | ND      | NC   | 46-120 |   |
| 2,4,6-Trichlorophenol         | 1930    | ND            | ND      | NC   | 41-123 |   |
| 2,4-Dichlorophenol            | 1930    | ND            | ND      | NC   | 45-120 |   |
| 2,4-Dimethylphenol            | 1930    | ND            | ND      | NC   | 52-120 |   |
| 2,4-Dinitrophenol             | 3850    | ND            | ND      | NC   | 41-146 |   |
| 2,4-Dinitrotoluene            | 1930    | ND            | ND      | NC   | 63-125 |   |
| 2,6-Dinitrotoluene            | 1930    | ND            | ND      | NC   | 66-120 |   |
| 2-Chloronaphthalene           | 1930    | ND            | ND      | NC   | 57-120 |   |
| 2-Chlorophenol                | 1930    | ND            | ND      | NC   | 43-120 |   |
| 2-Methylnaphthalene           | 1930    | ND            | 4060 J  | NC   | 55-120 |   |
| 2-Methylphenol                | 1930    | ND            | ND      | NC   | 48-120 |   |
| 2-Nitroaniline                | 1930    | ND            | ND      | NC   | 61-120 |   |
| 2-Nitrophenol                 | 1930    | ND            | ND      | NC   | 37-120 |   |
| 3,3'-Dichlorobenzidine        | 3850    | ND            | ND      | NC   | 37-126 |   |
| 3-Nitroaniline                | 1930    | ND            | ND      | NC   | 48-120 |   |
| 4,6-Dinitro-2-methylphenol    | 3850    | ND            | ND      | NC   | 23-149 |   |
| 4-Bromophenyl phenyl ether    | 1930    | ND            | ND      | NC   | 58-120 |   |
| 4-Chloro-3-methylphenol       | 1930    | ND            | ND      | NC   | 49-125 |   |
| 4-Chloroaniline               | 1930    | ND            | ND      | NC   | 38-120 |   |
| 4-Chlorophenyl phenyl ether   | 1930    | ND            | ND      | NC   | 63-124 |   |
| 4-Methylphenol                | 1930    | ND            | ND      | NC   | 50-120 |   |
| 4-Nitroaniline                | 1930    | ND            | ND      | NC   | 47-120 |   |
| 4-Nitrophenol                 | 3850    | ND            | ND      | NC   | 31-147 |   |
| Acenaphthene                  | 1930    | 3800 J        | 5760 J  | 101  | 60-120 |   |
| Acenaphthylene                | 1930    | 17000 J       | 16700 J | 3    | 58-121 | 4 |
| Acetophenone                  | 1930    | ND            | ND      | NC   | 47-120 |   |
| Anthracene                    | 1930    | 40000         | 39700   | -38  | 62-120 | 4 |
| Atrazine                      | 3850    | ND            | ND      | NC   | 60-150 |   |
| Benzaldehyde                  | 3850    | ND            | ND      | NC   | 10-150 |   |
| Benzo[a]anthracene            | 1930    | 87000         | 78500   | -442 | 65-120 | 4 |
| Benzo[a]pyrene                | 1930    | 69000         | 73300   | 224  | 64-120 | 4 |
| Benzo[b]fluoranthene          | 1930    | 83000         | 79300   | -206 | 64-120 | 4 |
| Benzo[g,h,i]perylene          | 1930    | 38000         | 41300   | 179  |        | 4 |
| Benzo[k]fluoranthene          | 1930    | 34000         | 47600   | 694  | 65-120 | 4 |
| Biphenyl                      | 1930    | ND            | ND      | NC   | 58-120 |   |
| bis (2-chloroisopropyl) ether | 1930    | ND            | ND      | NC   |        |   |
| Bis(2-chloroethoxy)methane    | 1930    | ND            | ND      | NC   | 52-120 |   |
| Bis(2-chloroethyl)ether       | 1930    | ND            | ND      | NC   | 45-120 |   |
| Bis(2-ethylhexyl) phthalate   | 1930    | ND            | ND      | NC   |        |   |
| Butyl benzyl phthalate        | 1930    | ND            | ND      | NC   |        |   |
| Caprolactam                   | 3850    | ND            | ND      | NC   |        |   |
| Carbazole                     | 1930    | ND            | 3420 J  | NC   | 59-120 |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8270D}$ 

# FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

| Lab Name | o Name: TestAmerica Buffalo |            | Job No.: 480-125579-1    |  |  |  |
|----------|-----------------------------|------------|--------------------------|--|--|--|
| SDG No.  | :                           |            |                          |  |  |  |
| Matrix:  | Solid                       | Level: Low | Lab File ID: U328233.D   |  |  |  |
| Lab ID:  | 480-125579-1 MS             |            | Client ID: MW-8 (4-6) MS |  |  |  |

|                           |         | I             |               |      |        |   |
|---------------------------|---------|---------------|---------------|------|--------|---|
|                           | SPIKE   | SAMPLE        | MS            | MS   | QC     |   |
|                           | ADDED   | CONCENTRATION | CONCENTRATION | 용    | LIMITS | # |
| COMPOUND                  | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC  | REC    |   |
| Chrysene                  | 1930    | 70000         | 64700         | -291 | 64-120 | 4 |
| Dibenz(a,h)anthracene     | 1930    | ND            | ND            | NC   | 54-132 |   |
| Dibenzofuran              | 1930    | 9100 J        | 13100 J       | 209  | 62-120 | 4 |
| Diethyl phthalate         | 1930    | ND            | ND            | NC   | 66-120 |   |
| Dimethyl phthalate        | 1930    | ND            | ND            | NC   | 65-124 |   |
| Di-n-butyl phthalate      | 1930    | ND            | ND            | NC   | 58-130 |   |
| Di-n-octyl phthalate      | 1930    | ND            | ND            | NC   | 57-133 |   |
| Fluoranthene              | 1930    | 170000        | 152000        | -705 | 62-120 | 4 |
| Fluorene                  | 1930    | 18000 J       | 22000         | 232  | 63-120 | 4 |
| Hexachlorobenzene         | 1930    | ND            | ND            | NC   | 60-120 |   |
| Hexachlorobutadiene       | 1930    | ND            | ND            | NC   | 45-120 |   |
| Hexachlorocyclopentadiene | 1930    | ND            | ND            | NC   | 31-120 |   |
| Hexachloroethane          | 1930    | ND            | ND            | NC   | 21-120 |   |
| Indeno[1,2,3-cd]pyrene    | 1930    | 36000         | 40800         | 236  | 56-134 | 4 |
| Isophorone                | 1930    | ND            | ND            | NC   | 56-120 |   |
| Naphthalene               | 1930    | ND            | 3040 J        | NC   | 46-120 |   |
| Nitrobenzene              | 1930    | ND            | ND            | NC   | 49-120 |   |
| N-Nitrosodi-n-propylamine | 1930    | ND            | ND            | NC   | 46-120 |   |
| Pentachlorophenol         | 3850    | ND            | ND            | NC   | 25-136 |   |
| Phenanthrene              | 1930    | 110000        | 117000        | 420  | 60-122 | 4 |
| Phenol                    | 1930    | ND            | ND            | NC   | 50-120 |   |
| Pyrene                    | 1930    | 130000        | 124000        | -527 | 61-133 | 4 |
|                           |         |               |               |      |        |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8270D}$ 

## FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | b Name: TestAmerica Buffalo |            | Job No.: 480-125579-1     |  |  |  |
|----------|-----------------------------|------------|---------------------------|--|--|--|
| SDG No.  | :                           |            |                           |  |  |  |
| Matrix:  | Solid                       | Level: Low | Lab File ID: U328234.D    |  |  |  |
| Lab ID:  | 480-125579-1 MSD            |            | Client ID: MW-8 (4-6) MSD |  |  |  |

|                               | SPIKE   | MSD           | MSD  |     | QC LI | MITS   |      |
|-------------------------------|---------|---------------|------|-----|-------|--------|------|
|                               | ADDED   | CONCENTRATION | 용    | 용   |       |        | #    |
| COMPOUND                      | (ug/Kg) | (ug/Kg)       | REC  | RPD | RPD   | REC    |      |
| 2,4,5-Trichlorophenol         | 1940    | ND            | NC   | NC  | 18    | 46-120 |      |
| 2,4,6-Trichlorophenol         | 1940    | ND            | NC   | NC  | 19    | 41-123 |      |
| 2,4-Dichlorophenol            | 1940    | ND            | NC   | NC  | 19    | 45-120 |      |
| 2,4-Dimethylphenol            | 1940    | ND            | NC   | NC  | 42    | 52-120 |      |
| 2,4-Dinitrophenol             | 3870    | ND            | NC   | NC  | 22    | 41-146 |      |
| 2,4-Dinitrotoluene            | 1940    | ND            | NC   | NC  | 20    | 63-125 |      |
| 2,6-Dinitrotoluene            | 1940    | ND            | NC   | NC  | 15    | 66-120 |      |
| 2-Chloronaphthalene           | 1940    | ND            | NC   | NC  | 21    | 57-120 |      |
| 2-Chlorophenol                | 1940    | ND            | NC   | NC  | 25    | 43-120 |      |
| 2-Methylnaphthalene           | 1940    | ND            | NC   | NC  | 21    | 55-120 |      |
| 2-Methylphenol                | 1940    | ND            | NC   | NC  | 27    | 48-120 |      |
| 2-Nitroaniline                | 1940    | ND            | NC   | NC  | 15    | 61-120 |      |
| 2-Nitrophenol                 | 1940    | ND            | NC   | NC  | 18    | 37-120 |      |
| 3,3'-Dichlorobenzidine        | 3870    | ND            | NC   | NC  | 25    | 37-126 |      |
| 3-Nitroaniline                | 1940    | ND            | NC   | NC  | 19    | 48-120 |      |
| 4,6-Dinitro-2-methylphenol    | 3870    | ND            | NC   | NC  | 15    | 23-149 |      |
| 4-Bromophenyl phenyl ether    | 1940    | ND            | NC   | NC  | 15    | 58-120 |      |
| 4-Chloro-3-methylphenol       | 1940    | ND            | NC   | NC  | 27    | 49-125 |      |
| 4-Chloroaniline               | 1940    | ND            | NC   | NC  | 22    | 38-120 |      |
| 4-Chlorophenyl phenyl ether   | 1940    | ND            | NC   | NC  | 16    | 63-124 |      |
| 4-Methylphenol                | 1940    | ND            | NC   | NC  | 24    | 50-120 |      |
| 4-Nitroaniline                | 1940    | ND            | NC   | NC  | 24    | 47-120 |      |
| 4-Nitrophenol                 | 3870    | ND            | NC   | NC  | 25    | 31-147 |      |
| Acenaphthene                  | 1940    | 7940 J        | 213  | 32  | 35    | 60-120 | F1   |
| Acenaphthylene                | 1940    | 26500         | 505  | 45  | 18    | 58-121 | 4 F2 |
| Acetophenone                  | 1940    | ND            | NC   | NC  | 20    | 47-120 |      |
| Anthracene                    | 1940    | 60700         | 1042 | 42  | 15    | 62-120 | 4 F2 |
| Atrazine                      | 3870    | ND            | NC   | NC  | 20    | 60-150 |      |
| Benzaldehyde                  | 3870    | ND            | NC   | NC  | 20    | 10-150 |      |
| Benzo[a]anthracene            | 1940    | 120000        | 1687 | 42  | 15    | 65-120 | 4 F2 |
| Benzo[a]pyrene                | 1940    | 113000        | 2250 | 42  | 15    | 64-120 | 4 F2 |
| Benzo[b]fluoranthene          | 1940    | 137000        | 2768 | 53  | 15    | 64-120 | 4 F2 |
| Benzo[g,h,i]perylene          | 1940    | 62700         | 1283 | 41  | 15    | 45-145 | 4 F2 |
| Benzo[k]fluoranthene          | 1940    | 55000         | 1071 | 14  | 22    | 65-120 | 4    |
| Biphenyl                      | 1940    | ND            | NC   | NC  | 20    | 58-120 |      |
| bis (2-chloroisopropyl) ether | 1940    | ND            | NC   | NC  | 24    | 31-120 |      |
| Bis(2-chloroethoxy)methane    | 1940    | ND            | NC   | NC  | 17    | 52-120 |      |
| Bis(2-chloroethyl)ether       | 1940    | ND            | NC   | NC  | 21    | 45-120 |      |
| Bis(2-ethylhexyl) phthalate   | 1940    | ND            | NC   | NC  | 15    | 61-133 |      |
| Butyl benzyl phthalate        | 1940    | ND            | NC   | NC  | 16    | 61-120 |      |
| Caprolactam                   | 3870    | ND            | NC   | NC  | 20    | 37-133 |      |
| Carbazole                     | 1940    | 4700 J        | NC   | 31  | 20    | 59-120 | F2   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $8270\,\mbox{D}$ 

# FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name: TestAmerica Buffalo |                  | falo       | Job No.: 480-125579-1     |  |  |  |
|-------------------------------|------------------|------------|---------------------------|--|--|--|
| SDG No.                       | :                |            |                           |  |  |  |
| Matrix:                       | Solid            | Level: Low | Lab File ID: U328234.D    |  |  |  |
| Lab ID:                       | 480-125579-1 MSD |            | Client ID: MW-8 (4-6) MSD |  |  |  |

|                           | SPIKE<br>ADDED | MSD<br>CONCENTRATION | MSD  | olo . | QC LI | MITS   | #    |
|---------------------------|----------------|----------------------|------|-------|-------|--------|------|
| COMPOUND                  | (ug/Kg)        | (ug/Kg)              | REC  | RPD   | RPD   | REC    | π    |
| Chrysene                  | 1940           | 98100                | 1437 | 41    | 15    | 64-120 | 4 F2 |
| Dibenz(a,h)anthracene     | 1940           | ND                   | NC   | NC    | 15    | 54-132 |      |
| Dibenzofuran              | 1940           | 15500 J              | 332  | 17    | 15    | 62-120 | 4 F2 |
| Diethyl phthalate         | 1940           | ND                   | NC   | NC    | 15    | 66-120 |      |
| Dimethyl phthalate        | 1940           | ND                   | NC   | NC    | 15    | 65-124 |      |
| Di-n-butyl phthalate      | 1940           | ND                   | NC   | NC    | 15    | 58-130 |      |
| Di-n-octyl phthalate      | 1940           | ND                   | NC   | NC    | 16    | 57-133 |      |
| Fluoranthene              | 1940           | 233000               | 3468 | 42    | 15    | 62-120 | 4 F2 |
| Fluorene                  | 1940           | 29500                | 622  | 29    | 15    | 63-120 | 4 F2 |
| Hexachlorobenzene         | 1940           | ND                   | NC   | NC    | 15    | 60-120 |      |
| Hexachlorobutadiene       | 1940           | ND                   | NC   | NC    | 44    | 45-120 |      |
| Hexachlorocyclopentadiene | 1940           | ND                   | NC   | NC    | 49    | 31-120 |      |
| Hexachloroethane          | 1940           | ND                   | NC   | NC    | 46    | 21-120 |      |
| Indeno[1,2,3-cd]pyrene    | 1940           | 63400                | 1404 | 43    | 15    | 56-134 | 4 F2 |
| Isophorone                | 1940           | ND                   | NC   | NC    | 17    | 56-120 |      |
| Naphthalene               | 1940           | 4050 J               | NC   | 28    | 29    | 46-120 |      |
| Nitrobenzene              | 1940           | ND                   | NC   | NC    | 24    | 49-120 |      |
| N-Nitrosodi-n-propylamine | 1940           | ND                   | NC   | NC    | 31    | 46-120 |      |
| Pentachlorophenol         | 3870           | ND                   | NC   | NC    | 35    | 25-136 |      |
| Phenanthrene              | 1940           | 165000               | 2906 | 34    | 15    | 60-122 | 4 F2 |
| Phenol                    | 1940           | ND                   | NC   | NC    | 35    | 50-120 |      |
| Pyrene                    | 1940           | 189000               | 2852 | 42    | 35    | 61-133 | 4 F2 |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8270D}$ 

#### 

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1            |
|-------------------------------|----------------------------------|
| SDG No.:                      |                                  |
| Lab File ID: U328231.D        | Lab Sample ID: MB 480-381332/1-A |
| Matrix: Solid                 | Date Extracted: 10/11/2017 14:06 |
| Instrument ID: HP5973U        | Date Analyzed: 10/16/2017 20:13  |
| Level: (Low/Med) Low          |                                  |

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

|                  |                    | LAB       |                  |
|------------------|--------------------|-----------|------------------|
| CLIENT SAMPLE ID | LAB SAMPLE ID      | FILE ID   | DATE ANALYZED    |
| MW-8 (13-14)     | 480-125579-2       | X20526.D  | 10/13/2017 08:02 |
| DUP-100817       | 480-125579-3       | X20527.D  | 10/13/2017 08:28 |
|                  | LCS 480-381332/2-A | U328232.D | 10/16/2017 20:39 |
| MW-8 (4-6) MS    | 480-125579-1 MS    | U328233.D | 10/16/2017 21:05 |
| MW-8 (4-6) MSD   | 480-125579-1 MSD   | U328234.D | 10/16/2017 21:32 |
| MW-8 (4-6)       | 480-125579-1       | U328235.D | 10/16/2017 21:58 |

### FORM V GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK

#### DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab File ID: U328216.D DFTPP Injection Date: 10/16/2017

Instrument ID: HP5973U DFTPP Injection Time: 11:41

Analysis Batch No.: 382005

| M/E | ION ABUNDANCE CRITERIA                | % RELATIVE<br>ABUNDANCE |          |
|-----|---------------------------------------|-------------------------|----------|
| 51  | 10-80% of Base Peak                   | 33.2                    |          |
| 68  | Less than 2% of mass 69               | 0.0                     | (0.0) 1  |
| 69  | Mass 69 Relative abundance            | 31.8                    |          |
| 70  | Less than 2% of mass 69               | 0.0                     | (0.0) 1  |
| 127 | 10-80% of Base Peak                   | 46.5                    |          |
| 197 | Less than 2% of mass 198              | 0.6                     |          |
| 198 | Base peak                             | 100.0                   |          |
| 199 | 5-9% of mass 198                      | 5.9                     |          |
| 275 | 10-60% of Base Peak                   | 27.8                    |          |
| 365 | Greater than 1% of mass 198           | 5.7                     |          |
| 441 | present but less than 24% of mass 442 | 15.4                    | (15.6) 2 |
| 442 | Greater than 50% of mass 198          | 98.9                    |          |
| 443 | 15-24% of mass 442                    | 18.7                    | (18.9) 2 |

1-Value is % mass 69

2-Value is % mass 442

| CLIENT SAMPLE ID | TENT SAMPLE ID LAB SAMPLE ID |           | DATE<br>ANALYZED | TIME<br>ANALYZED |  |
|------------------|------------------------------|-----------|------------------|------------------|--|
|                  | IC 480-382005/3              | U328217.D | 10/16/2017       | 12:07            |  |
|                  | IC 480-382005/4              | U328218.D | 10/16/2017       | 12:34            |  |
|                  | ICIS 480-382005/5            | U328219.D | 10/16/2017       | 13:00            |  |
|                  | IC 480-382005/6              | U328220.D | 10/16/2017       | 13:26            |  |
|                  | IC 480-382005/7              | U328221.D | 10/16/2017       | 13:53            |  |
|                  | IC 480-382005/8              | U328222.D | 10/16/2017       | 14:19            |  |

### FORM V

### GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab File ID: U328226.D DFTPP Injection Date: 10/16/2017

Instrument ID: HP5973U DFTPP Injection Time: 18:01

Analysis Batch No.: 382085

| M/E | ION ABUNDANCE CRITERIA                | % RELATIVE<br>ABUNDANCE |          |
|-----|---------------------------------------|-------------------------|----------|
| 51  | 10-80% of Base Peak                   | 32.5                    |          |
| 68  | Less than 2% of mass 69               | 0.0                     | (0.0) 1  |
| 69  | Mass 69 Relative abundance            | 34.3                    |          |
| 70  | Less than 2% of mass 69               | 0.0                     | (0.0) 1  |
| 127 | 10-80% of Base Peak                   | 48.4                    |          |
| 197 | Less than 2% of mass 198              | 0.0                     |          |
| 198 | Base peak                             | 100.0                   |          |
| 199 | 5-9% of mass 198                      | 7.5                     |          |
| 275 | 10-60% of Base Peak                   | 30.0                    |          |
| 365 | Greater than 1% of mass 198           | 6.1                     |          |
| 441 | present but less than 24% of mass 442 | 19.8                    | (17.9) 2 |
| 442 | Greater than 50% of mass 198          | 111.0                   |          |
| 443 | 15-24% of mass 442                    | 20.9                    | (18.8) 2 |

1-Value is % mass 69

2-Value is % mass 442

| CLIENT SAMPLE ID | CLIENT SAMPLE ID LAB SAMPLE ID |           | DATE<br>ANALYZED | TIME<br>ANALYZED |  |
|------------------|--------------------------------|-----------|------------------|------------------|--|
|                  | CCVIS 480-382085/3             | U328227.D | 10/16/2017       | 18:27            |  |
|                  | MB 480-381332/1-A              | U328231.D | 10/16/2017       | 20:13            |  |
|                  | LCS 480-381332/2-A             | U328232.D | 10/16/2017       | 20:39            |  |
| MW-8 (4-6) MS    | 480-125579-1 MS                | U328233.D | 10/16/2017       | 21:05            |  |
| MW-8 (4-6) MSD   | 480-125579-1 MSD               | U328234.D | 10/16/2017       | 21:32            |  |
| MW-8 (4-6)       | 480-125579-1                   | U328235.D | 10/16/2017       | 21:58            |  |

### FORM V

### GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab File ID: X20236.D DFTPP Injection Date: 09/29/2017

Instrument ID: HP5973X DFTPP Injection Time: 19:07

Analysis Batch No.: 379526

| M/E | ION ABUNDANCE CRITERIA                | % RELATIVE<br>ABUNDANCE |          |
|-----|---------------------------------------|-------------------------|----------|
| 51  | 10-80% of Base Peak                   | 36.5                    |          |
| 68  | Less than 2% of mass 69               | 0.2                     | (0.5) 1  |
| 69  | Mass 69 Relative abundance            | 42.0                    |          |
| 70  | Less than 2% of mass 69               | 0.2                     | (0.5) 1  |
| 127 | 10-80% of Base Peak                   | 49.0                    |          |
| 197 | Less than 2% of mass 198              | 0.2                     |          |
| 198 | Base peak                             | 100.0                   |          |
| 199 | 5-9% of mass 198                      | 7.0                     |          |
| 275 | 10-60% of Base Peak                   | 27.6                    |          |
| 365 | Greater than 1% of mass 198           | 3.6                     |          |
| 441 | present but less than 24% of mass 442 | 7.6                     | (14.9) 2 |
| 442 | Greater than 50% of mass 198          | 51.1                    |          |
| 443 | 15-24% of mass 442                    | 9.2                     | (17.9) 2 |

1-Value is % mass 69

2-Value is % mass 442

| CLIENT SAMPLE ID | LAB SAMPLE ID     | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |  |
|------------------|-------------------|----------------|------------------|------------------|--|
|                  | IC 480-379526/3   | X20237.D       | 09/29/2017       | 19:33            |  |
|                  | IC 480-379526/4   | X20238.D       | 09/29/2017       | 19:59            |  |
|                  | ICIS 480-379526/5 | X20239.D       | 09/29/2017       | 20:25            |  |
|                  | IC 480-379526/6   | X20240.D       | 09/29/2017       | 20:52            |  |
|                  | IC 480-379526/7   | X20241.D       | 09/29/2017       | 21:18            |  |
|                  | IC 480-379526/8   | X20242.D       | 09/29/2017       | 21:44            |  |

### FORM V GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK

### DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab File ID: X20508.D DFTPP Injection Date: 10/13/2017

Instrument ID: HP5973X DFTPP Injection Time: 00:06

Analysis Batch No.: 381534

| M/E | ION ABUNDANCE CRITERIA                | % RELATIVE<br>ABUNDANCE |          |
|-----|---------------------------------------|-------------------------|----------|
| 51  | 10-80% of Base Peak                   | 31.5                    |          |
| 68  | Less than 2% of mass 69               | 0.0                     | (0.0) 1  |
| 69  | Mass 69 Relative abundance            | 35.2                    |          |
| 70  | Less than 2% of mass 69               | 0.1                     | (0.3) 1  |
| 127 | 10-80% of Base Peak                   | 44.7                    |          |
| 197 | Less than 2% of mass 198              | 0.2                     |          |
| 198 | Base peak                             | 100.0                   |          |
| 199 | 5-9% of mass 198                      | 6.1                     |          |
| 275 | 10-60% of Base Peak                   | 28.5                    |          |
| 365 | Greater than 1% of mass 198           | 3.6                     |          |
| 441 | present but less than 24% of mass 442 | 9.9                     | (14.3) 2 |
| 442 | Greater than 50% of mass 198          | 69.0                    |          |
| 443 | 15-24% of mass 442                    | 11.5                    | (16.7) 2 |

1-Value is % mass 69

2-Value is % mass 442

| CLIENT SAMPLE ID | LAB SAMPLE ID      | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |  |
|------------------|--------------------|----------------|------------------|------------------|--|
|                  | CCVIS 480-381534/3 | X20509.D       | 10/13/2017       | 00:32            |  |
| MW-8 (13-14)     | 480-125579-2       | X20526.D       | 10/13/2017       | 08:02            |  |
| DUP-100817       | 480-125579-3       | X20527.D       | 10/13/2017       | 08:28            |  |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Sample No.: ICIS 480-382005/5 Date Analyzed: 10/16/2017 13:00

Instrument ID: HP5973U GC Column: RXI-5Sil MS(0.5 ID: 0.25(mm)

Lab File ID (Standard): U328219.D Heated Purge: (Y/N) N

Calibration ID: 31736

|                               |                  | DCBd4  |      | NPT    |      | ANT    |       |
|-------------------------------|------------------|--------|------|--------|------|--------|-------|
|                               |                  | AREA # | RT # | AREA # | RT # | AREA # | RT #  |
| INITIAL CALIBRATION MID-POINT |                  | 98141  | 6.71 | 336235 | 8.23 | 171632 | 10.29 |
| UPPER LIMIT                   | UPPER LIMIT      |        | 7.21 | 672470 | 8.73 | 343264 | 10.79 |
| LOWER LIMIT                   |                  | 49071  | 6.21 | 168118 | 7.73 | 85816  | 9.79  |
| LAB SAMPLE ID                 | CLIENT SAMPLE ID |        |      |        |      |        |       |
| CCVIS 480-382085/3            |                  | 96571  | 6.71 | 327306 | 8.23 | 183173 | 10.29 |

DCBd4 = 1,4-Dichlorobenzene-d4

NPT = Naphthalene-d8

ANT = Acenaphthene-d10

Area Limit = 50%-200% of internal standard area RT Limit =  $\pm$  0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$  Column used to flag values outside QC limits

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Sample No.: ICIS 480-382005/5 Date Analyzed: 10/16/2017 13:00

Instrument ID: HP5973U GC Column: RXI-5Sil MS(0.5 ID: 0.25(mm)

Lab File ID (Standard): U328219.D Heated Purge: (Y/N) N

Calibration ID: 31736

|                                | PHN    |       | CRY    |       | PRY    |       |
|--------------------------------|--------|-------|--------|-------|--------|-------|
|                                | AREA # | RT #  | AREA # | RT #  | AREA # | RT #  |
| INITIAL CALIBRATION MID-POINT  | 386287 | 11.81 | 495900 | 14.19 | 477639 | 15.69 |
| UPPER LIMIT                    | 772574 | 12.31 | 991800 | 14.69 | 955278 | 16.19 |
| LOWER LIMIT                    | 193144 | 11.31 | 247950 | 13.69 | 238820 | 15.19 |
| LAB SAMPLE ID CLIENT SAMPLE ID |        |       |        |       |        |       |
| CCVIS 480-382085/3             | 406535 | 11.81 | 559245 | 14.19 | 541112 | 15.69 |

PHN = Phenanthrene-d10

CRY = Chrysene-d12

PRY = Perylene-d12

Area Limit = 50%-200% of internal standard area RT Limit =  $\pm$  0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$  Column used to flag values outside QC limits

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Sample No.: CCVIS 480-382085/3 Date Analyzed: 10/16/2017 18:27

Instrument ID: HP5973U GC Column: RXI-5Sil MS(0.5 ID: 0.25(mm)

Lab File ID (Standard): U328227.D Heated Purge: (Y/N) N

Calibration ID: 31736

|                    |                  | DCBd4  |      | NPT    |      | ANT    |       |
|--------------------|------------------|--------|------|--------|------|--------|-------|
|                    |                  | AREA # | RT # | AREA # | RT # | AREA # | RT #  |
| 12/24 HOUR STD     |                  | 96571  | 6.71 | 327306 | 8.23 | 183173 | 10.29 |
| UPPER LIMIT        |                  | 193142 | 7.21 | 654612 | 8.73 | 366346 | 10.79 |
| LOWER LIMIT        |                  | 48286  | 6.21 | 163653 | 7.73 | 91587  | 9.79  |
| LAB SAMPLE ID      | CLIENT SAMPLE ID |        |      |        |      |        |       |
| MB 480-381332/1-A  |                  | 154035 | 6.71 | 528736 | 8.23 | 262930 | 10.29 |
| LCS 480-381332/2-A |                  | 92044  | 6.71 | 310349 | 8.23 | 166394 | 10.29 |
| 480-125579-1 MS    | MW-8 (4-6) MS    | 121140 | 6.71 | 386209 | 8.23 | 192391 | 10.29 |
| 480-125579-1 MSD   | MW-8 (4-6) MSD   | 107519 | 6.71 | 362961 | 8.23 | 187134 | 10.29 |
| 480-125579-1       | MW-8 (4-6)       | 94542  | 6.71 | 308019 | 8.23 | 160582 | 10.29 |

DCBd4 = 1,4-Dichlorobenzene-d4

NPT = Naphthalene-d8

ANT = Acenaphthene-d10

Area Limit = 50%-200% of internal standard area RT Limit =  $\pm$  0.5 minutes of internal standard RT

# Column used to flag values outside QC limits

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Sample No.: CCVIS 480-382085/3 Date Analyzed: 10/16/2017 18:27

Instrument ID: HP5973U GC Column: RXI-5Sil MS(0.5 ID: 0.25(mm)

Lab File ID (Standard): U328227.D Heated Purge: (Y/N) N

Calibration ID: 31736

|                    |                  | PHN    |       | CRY     |       | PRY     |       |
|--------------------|------------------|--------|-------|---------|-------|---------|-------|
|                    |                  | AREA # | RT #  | AREA #  | RT #  | AREA #  | RT #  |
| 12/24 HOUR STD     |                  | 406535 | 11.81 | 559245  | 14.19 | 541112  | 15.69 |
| UPPER LIMIT        |                  | 813070 | 12.31 | 1118490 | 14.69 | 1082224 | 16.19 |
| LOWER LIMIT        | LOWER LIMIT      |        | 11.31 | 279623  | 13.69 | 270556  | 15.19 |
| LAB SAMPLE ID      | CLIENT SAMPLE ID |        |       |         |       |         |       |
| MB 480-381332/1-A  |                  | 553477 | 11.81 | 589648  | 14.19 | 371113  | 15.69 |
| LCS 480-381332/2-A |                  | 351816 | 11.81 | 446511  | 14.19 | 344753  | 15.69 |
| 480-125579-1 MS    | MW-8 (4-6) MS    | 403161 | 11.81 | 493583  | 14.19 | 403955  | 15.69 |
| 480-125579-1 MSD   | MW-8 (4-6) MSD   | 416284 | 11.81 | 529808  | 14.19 | 424892  | 15.69 |
| 480-125579-1       | MW-8 (4-6)       | 350957 | 11.81 | 440708  | 14.19 | 417519  | 15.69 |

PHN = Phenanthrene-d10

CRY = Chrysene-d12

PRY = Perylene-d12

Area Limit = 50%-200% of internal standard area RT Limit =  $\pm$  0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$  Column used to flag values outside QC limits

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Sample No.: ICIS 480-379526/5 Date Analyzed: 09/29/2017 20:25

Instrument ID: HP5973X GC Column: RXI-5Sil MS ID: 0.25(mm)

Lab File ID (Standard): X20239.D Heated Purge: (Y/N) N

Calibration ID: 31634

|                       |                  | DCBd4  |        | NPT     |        | ANT    |      |
|-----------------------|------------------|--------|--------|---------|--------|--------|------|
|                       |                  | AREA # | RT #   | AREA #  | RT #   | AREA # | RT # |
| INITIAL CALIBRATION M | 174918           | 5.75   | 608756 | 7.30    | 304192 | 9.36   |      |
| UPPER LIMIT           |                  | 349836 | 6.25   | 1217512 | 7.80   | 608384 | 9.86 |
| LOWER LIMIT           |                  | 87459  | 5.25   | 304378  | 6.80   | 152096 | 8.86 |
| LAB SAMPLE ID         | CLIENT SAMPLE ID |        |        |         |        |        |      |
| CCVIS 480-381534/3    |                  | 181304 | 5.57   | 605227  | 7.12   | 371962 | 9.18 |

DCBd4 = 1,4-Dichlorobenzene-d4

NPT = Naphthalene-d8

ANT = Acenaphthene-d10

Area Limit = 50%-200% of internal standard area RT Limit =  $\pm$  0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$  Column used to flag values outside QC limits

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Sample No.: ICIS 480-379526/5 Date Analyzed: 09/29/2017 20:25

Instrument ID: <a href="https://example.com/html/memory.com/">HP5973X</a>
GC Column: RXI-5Sil MS
ID: 0.25(mm)

Lab File ID (Standard): X20239.D Heated Purge: (Y/N) N

Calibration ID: 31634

|                       |                  | PHN     |        | CRY     |        | PRY     |       |
|-----------------------|------------------|---------|--------|---------|--------|---------|-------|
|                       |                  | AREA #  | RT #   | AREA #  | RT #   | AREA #  | RT #  |
| INITIAL CALIBRATION M | 668632           | 10.96   | 758990 | 13.34   | 702616 | 14.50   |       |
| UPPER LIMIT           |                  | 1337264 | 11.46  | 1517980 | 13.84  | 1405232 | 15.00 |
| LOWER LIMIT           |                  | 334316  | 10.46  | 379495  | 12.84  | 351308  | 14.00 |
| LAB SAMPLE ID         | CLIENT SAMPLE ID |         |        |         |        |         |       |
| CCVIS 480-381534/3    | ·                | 757394  | 10.82  | 943460  | 13.21  | 880860  | 14.37 |

PHN = Phenanthrene-d10

CRY = Chrysene-d12

PRY = Perylene-d12

Area Limit = 50%-200% of internal standard area RT Limit =  $\pm$  0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$  Column used to flag values outside QC limits

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Sample No.: CCVIS 480-381534/3 Date Analyzed: 10/13/2017 00:32

Instrument ID: HP5973X GC Column: RXI-5Sil MS ID: 0.25(mm)

Lab File ID (Standard): X20509.D Heated Purge: (Y/N) N

Calibration ID: 31634

|                |                  | DCBd4  |      | NPT     |      | ANT    |      |
|----------------|------------------|--------|------|---------|------|--------|------|
|                |                  | AREA # | RT # | AREA #  | RT # | AREA # | RT # |
| 12/24 HOUR STD |                  | 181304 | 5.57 | 605227  | 7.12 | 371962 | 9.18 |
| UPPER LIMIT    |                  | 362608 | 6.07 | 1210454 | 7.62 | 743924 | 9.68 |
| LOWER LIMIT    |                  | 90652  | 5.07 | 302614  | 6.62 | 185981 | 8.68 |
| LAB SAMPLE ID  | CLIENT SAMPLE ID |        |      |         |      |        |      |
| 480-125579-2   | MW-8 (13-14)     | 117503 | 5.56 | 415649  | 7.12 | 284808 | 9.19 |
| 480-125579-3   | DUP-100817       | 115868 | 5.56 | 330471  | 7.11 | 287555 | 9.18 |

DCBd4 = 1,4-Dichlorobenzene-d4

NPT = Naphthalene-d8

ANT = Acenaphthene-d10

Area Limit = 50%-200% of internal standard area RT Limit =  $\pm$  0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$  Column used to flag values outside QC limits

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Sample No.: CCVIS 480-381534/3 Date Analyzed: 10/13/2017 00:32

Instrument ID: HP5973X GC Column: RXI-5Sil MS ID: 0.25(mm)

Lab File ID (Standard): X20509.D Heated Purge: (Y/N) N

Calibration ID: 31634

|                |                  | PHN     | PHN    |         |        | PRY     |       |
|----------------|------------------|---------|--------|---------|--------|---------|-------|
|                |                  | AREA #  | RT #   | AREA #  | RT #   | AREA #  | RT #  |
| 12/24 HOUR STD | 757394           | 10.82   | 943460 | 13.21   | 880860 | 14.37   |       |
| UPPER LIMIT    |                  | 1514788 | 11.32  | 1886920 | 13.71  | 1761720 | 14.87 |
| LOWER LIMIT    | LOWER LIMIT      |         | 10.32  | 471730  | 12.71  | 440430  | 13.87 |
| LAB SAMPLE ID  | CLIENT SAMPLE ID |         |        |         |        |         |       |
| 480-125579-2   | MW-8 (13-14)     | 590185  | 10.82  | 684501  | 13.21  | 665780  | 14.37 |
| 480-125579-3   | DUP-100817       | 599520  | 10.82  | 706315  | 13.21  | 656665  | 14.36 |

PHN = Phenanthrene-d10

CRY = Chrysene-d12

PRY = Perylene-d12

Area Limit = 50%-200% of internal standard area RT Limit =  $\pm$  0.5 minutes of internal standard RT

# Column used to flag values outside QC limits

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (4-6) Lab Sample ID: 480-125579-1

Matrix: Solid Lab File ID: U328235.D

Analysis Method: 8270D Date Collected: 10/08/2017 11:30

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.12(g) Date Analyzed: 10/16/2017 21:58

Con. Extract Vol.: 1(mL) Dilution Factor: 100

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 15.6 GPC Cleanup:(Y/N) N

Analysis Batch No.: 382085 Units: ug/Kg

| CAS NO.   | COMPOUND NAME               | RESULT | Q    | RL     | MDL   |
|-----------|-----------------------------|--------|------|--------|-------|
| 95-95-4   | 2,4,5-Trichlorophenol       | ND     |      | 20000  | 5400  |
| 88-06-2   | 2,4,6-Trichlorophenol       | ND     |      | 20000  | 4000  |
| 120-83-2  | 2,4-Dichlorophenol          | ND     |      | 20000  | 2100  |
| 105-67-9  | 2,4-Dimethylphenol          | ND     |      | 20000  | 4800  |
| 51-28-5   | 2,4-Dinitrophenol           | ND     |      | 200000 | 93000 |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     |      | 20000  | 4100  |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     |      | 20000  | 2400  |
| 91-58-7   | 2-Chloronaphthalene         | ND     |      | 20000  | 3300  |
| 95-57-8   | 2-Chlorophenol              | ND     |      | 20000  | 3700  |
| 91-57-6   | 2-Methylnaphthalene         | ND     |      | 20000  | 4000  |
| 95-48-7   | 2-Methylphenol              | ND     |      | 20000  | 2400  |
| 88-74-4   | 2-Nitroaniline              | ND     |      | 39000  | 3000  |
| 88-75-5   | 2-Nitrophenol               | ND     |      | 20000  | 5700  |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     |      | 39000  | 24000 |
| 99-09-2   | 3-Nitroaniline              | ND     |      | 39000  | 5500  |
| 534-52-1  | 4,6-Dinitro-2-methylphenol  | ND     |      | 39000  | 20000 |
| 101-55-3  | 4-Bromophenyl phenyl ether  | ND     |      | 20000  | 2800  |
| 59-50-7   | 4-Chloro-3-methylphenol     | ND     |      | 20000  | 5000  |
| 106-47-8  | 4-Chloroaniline             | ND     |      | 20000  | 5000  |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     |      | 20000  | 2500  |
| 106-44-5  | 4-Methylphenol              | ND     |      | 39000  | 2400  |
| 100-01-6  | 4-Nitroaniline              | ND     |      | 39000  | 11000 |
| 100-02-7  | 4-Nitrophenol               | ND     |      | 39000  | 14000 |
| 83-32-9   | Acenaphthene                | 3800   | J F1 | 20000  | 3000  |
| 208-96-8  | Acenaphthylene              | 17000  | J F2 | 20000  | 2600  |
| 98-86-2   | Acetophenone                | ND     |      | 20000  | 2700  |
| 120-12-7  | Anthracene                  | 40000  | F2   | 20000  | 5000  |
| 1912-24-9 | Atrazine                    | ND     |      | 20000  | 7000  |
| 100-52-7  | Benzaldehyde                | ND     |      | 20000  | 16000 |
| 56-55-3   | Benzo[a]anthracene          | 87000  | F2   | 20000  | 2000  |
| 50-32-8   | Benzo[a]pyrene              | 69000  | F2   | 20000  | 3000  |
| 205-99-2  | Benzo[b]fluoranthene        | 83000  | F2   | 20000  | 3200  |
| 191-24-2  | Benzo[g,h,i]perylene        | 38000  | F2   | 20000  | 2100  |
| 207-08-9  | Benzo[k]fluoranthene        | 34000  |      | 20000  | 2600  |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (4-6) Lab Sample ID: 480-125579-1

Matrix: Solid Lab File ID: U328235.D

Analysis Method: 8270D Date Collected: 10/08/2017 11:30

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.12(g) Date Analyzed: 10/16/2017 21:58

Con. Extract Vol.: 1(mL) Dilution Factor: 100

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 15.6 GPC Cleanup:(Y/N) N

Analysis Batch No.: 382085 Units: ug/Kg

| CAS NO.  | COMPOUND NAME                 | RESULT | Q    | RL    | MDL   |
|----------|-------------------------------|--------|------|-------|-------|
| 92-52-4  | Biphenyl                      | ND     |      | 20000 | 3000  |
| 108-60-1 | bis (2-chloroisopropyl) ether | ND     |      | 20000 | 4000  |
| 111-91-1 | Bis(2-chloroethoxy)methane    | ND     |      | 20000 | 4200  |
| 111-44-4 | Bis(2-chloroethyl)ether       | ND     |      | 20000 | 2600  |
| 117-81-7 | Bis(2-ethylhexyl) phthalate   | ND     |      | 20000 | 6800  |
| 85-68-7  | Butyl benzyl phthalate        | ND     |      | 20000 | 3300  |
| 105-60-2 | Caprolactam                   | ND     |      | 20000 | 6000  |
| 86-74-8  | Carbazole                     | ND     | F2   | 20000 | 2400  |
| 218-01-9 | Chrysene                      | 70000  | F2   | 20000 | 4500  |
| 53-70-3  | Dibenz(a,h)anthracene         | ND     |      | 20000 | 3500  |
| 132-64-9 | Dibenzofuran                  | 9100   | J F2 | 20000 | 2400  |
| 84-66-2  | Diethyl phthalate             | ND     |      | 20000 | 2600  |
| 131-11-3 | Dimethyl phthalate            | ND     |      | 20000 | 2400  |
| 84-74-2  | Di-n-butyl phthalate          | ND     |      | 20000 | 3400  |
| 117-84-0 | Di-n-octyl phthalate          | ND     |      | 20000 | 2400  |
| 206-44-0 | Fluoranthene                  | 170000 | F2   | 20000 | 2100  |
| 86-73-7  | Fluorene                      | 18000  | J F2 | 20000 | 2400  |
| 118-74-1 | Hexachlorobenzene             | ND     |      | 20000 | 2700  |
| 87-68-3  | Hexachlorobutadiene           | ND     |      | 20000 | 3000  |
| 77-47-4  | Hexachlorocyclopentadiene     | ND     |      | 20000 | 2700  |
| 67-72-1  | Hexachloroethane              | ND     |      | 20000 | 2600  |
| 193-39-5 | Indeno[1,2,3-cd]pyrene        | 36000  | F2   | 20000 | 2500  |
| 78-59-1  | Isophorone                    | ND     |      | 20000 | 4200  |
| 91-20-3  | Naphthalene                   | ND     |      | 20000 | 2600  |
| 98-95-3  | Nitrobenzene                  | ND     |      | 20000 | 2200  |
| 621-64-7 | N-Nitrosodi-n-propylamine     | ND     |      | 20000 | 3400  |
| 86-30-6  | N-Nitrosodiphenylamine        | ND     |      | 20000 | 16000 |
| 87-86-5  | Pentachlorophenol             | ND     |      | 39000 | 20000 |
| 85-01-8  | Phenanthrene                  | 110000 | F2   | 20000 | 3000  |
| 108-95-2 | Phenol                        | ND     |      | 20000 | 3100  |
| 129-00-0 | Pyrene                        | 130000 | F2   | 20000 | 2400  |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (4-6) Lab Sample ID: 480-125579-1

Matrix: Solid Lab File ID: U328235.D

Analysis Method: 8270D Date Collected: 10/08/2017 11:30

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.12(g) Date Analyzed: 10/16/2017 21:58

Con. Extract Vol.: 1(mL) Dilution Factor: 100

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 15.6 GPC Cleanup:(Y/N) N

Analysis Batch No.: 382085 Units: ug/Kg

| CAS NO.   | SURROGATE            | %REC | Q | LIMITS |
|-----------|----------------------|------|---|--------|
| 118-79-6  | 2,4,6-Tribromophenol | 0    | X | 54-120 |
| 321-60-8  | 2-Fluorobiphenyl     | 83   |   | 60-120 |
| 367-12-4  | 2-Fluorophenol       | 0    | X | 52-120 |
| 4165-60-0 | Nitrobenzene-d5      | 0    | Х | 53-120 |
| 4165-62-2 | Phenol-d5            | 0    | Х | 54-120 |
| 1718-51-0 | p-Terphenyl-d14      | 0    | Х | 65-121 |

Report Date: 17-Oct-2017 11:38:08 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D

Lims ID: 480-125579-F-1-E

Client ID: MW-8 (4-6)

Sample Type: Client

Inject. Date: 16-Oct-2017 21:58:30 ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 1.0 ul Dil. Factor: 100.0000

Sample Info: 480-0066446-011

Operator ID: DR Instrument ID: HP5973U

Method: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U-8270.m

Limit Group: MB - 8270D ICAL

Last Update:17-Oct-2017 11:35:50Calib Date:16-Oct-2017 14:19:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK024

First Level Reviewer: richardsd Date: 17-Oct-2017 11:22:27

| First Level Reviewer: richardsd |     |              | Date: 17-001-201 |                  | 17-001-201 | 1 11:22:21 |                    |        |  |
|---------------------------------|-----|--------------|------------------|------------------|------------|------------|--------------------|--------|--|
| Compound                        | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q          | Response   | OnCol Amt<br>ng/uL | Flags  |  |
| oon pound                       | 0.9 | ()           | ()               | ()               |            | 1100001100 | 1.9/5-2            | . iago |  |
| * 1 1,4-Dichlorobenzene-d4      | 152 | 6.709        | 6.709            | 0.000            | 94         | 94542      | 40.0               |        |  |
| * 2 Naphthalene-d8              | 136 | 8.226        | 8.226            | 0.000            | 99         | 308019     | 40.0               |        |  |
| * 3 Acenaphthene-d10            | 164 | 10.293       | 10.293           | 0.000            | 94         | 160582     | 40.0               |        |  |
| * 4 Phenanthrene-d10            | 188 | 11.811       | 11.811           | 0.000            | 96         | 350957     | 40.0               |        |  |
| * 5 Chrysene-d12                | 240 | 14.193       | 14.193           | 0.000            | 96         | 440708     | 40.0               |        |  |
| * 6 Perylene-d12                | 264 | 15.689       | 15.689           | 0.000            | 98         | 417519     | 40.0               |        |  |
| \$ 7 2-Fluorophenol             | 112 |              | 5.095            |                  |            | I          | ND                 |        |  |
| \$ 8 Phenol-d5                  | 99  |              | 6.228            |                  |            | I          | ND                 |        |  |
| \$ 9 Nitrobenzene-d5            | 82  |              | 7.355            |                  |            | 1          | ND                 |        |  |
| \$ 10 2-Fluorobiphenyl          | 172 | 9.492        | 9.492            | 0.000            | 1          | 2238       | 0.3301             |        |  |
| \$ 11 2,4,6-Tribromophenol      | 330 |              | 11.121           |                  |            | I          | ND                 |        |  |
| \$ 12 p-Terphenyl-d14           | 244 |              | 13.221           |                  |            | I          | ND                 |        |  |
| 32 Benzaldehyde                 | 77  |              | 6.174            |                  |            | I          | ND                 |        |  |
| 33 Phenol                       | 94  |              | 6.244            |                  |            | I          | ND                 |        |  |
| 35 Bis(2-chloroethyl)ether      | 93  |              | 6.356            |                  |            | İ          | ND                 |        |  |
| 37 2-Chlorophenol               | 128 |              | 6.458            |                  |            | İ          | ND                 |        |  |
| 43 2-Methylphenol               | 108 |              | 6.976            |                  |            | İ          | ND                 |        |  |
| 44 2,2'-oxybis[1-chloropropan   | 45  |              | 7.013            |                  |            | İ          | ND                 |        |  |
| 46 4-Methylphenol               | 108 |              | 7.152            |                  |            | I          | ND                 |        |  |
| 47 N-Nitrosodi-n-propylamine    | 70  |              | 7.157            |                  |            | I          | ND                 |        |  |
| 49 Acetophenone                 | 105 |              | 7.168            |                  |            | I          | ND                 |        |  |
| 53 Hexachloroethane             | 117 |              | 7.328            |                  |            | I          | ND                 |        |  |
| 54 Nitrobenzene                 | 77  |              | 7.376            |                  |            | I          | ND                 |        |  |
| 56 Isophorone                   | 82  |              | 7.654            |                  |            | I          | ND                 |        |  |
| 59 2-Nitrophenol                | 139 |              | 7.761            |                  |            |            | ND                 |        |  |
| 60 2,4-Dimethylphenol           | 107 |              | 7.788            |                  |            | I          | ND                 |        |  |
| 62 Bis(2-chloroethoxy)methane   | 93  |              | 7.895            |                  |            |            | ND                 |        |  |
| 67 2,4-Dichlorophenol           | 162 |              | 8.044            |                  |            | ND         |                    |        |  |
| 70 Naphthalene                  | 128 |              | 8.253            |                  |            | ND         |                    |        |  |
| 72 4-Chloroaniline              | 127 |              | 8.290            |                  |            | ND         |                    |        |  |
| 74 Hexachlorobutadiene          | 225 |              | 8.402            |                  |            |            | ND                 |        |  |
| 76 Caprolactam                  | 113 |              | 8.680            |                  |            | I          | ND                 |        |  |
|                                 |     |              |                  |                  |            |            |                    |        |  |

ct-2017 11:38:08 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D Report Date: 17-Oct-2017 11:38:08

| Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D |     |        |        |        |    |          |           |       |
|--------------------------------------------------------------------------|-----|--------|--------|--------|----|----------|-----------|-------|
|                                                                          |     | RT     | Adj RT | Dlt RT |    |          | OnCol Amt |       |
| Compound                                                                 | Sig | (min.) | (min.) | (min.) | Q  | Response | ng/uL     | Flags |
|                                                                          |     |        |        |        |    |          |           |       |
| 80 4-Chloro-3-methylphenol                                               | 107 |        | 8.851  |        |    |          | ND        |       |
| 83 2-Methylnaphthalene                                                   | 142 | 9.070  | 9.070  | 0.000  | 84 | 2877     | 0.5312    |       |
| 86 Hexachlorocyclopentadiene                                             | 237 |        | 9.273  |        |    |          | ND        |       |
| 89 2,4,6-Trichlorophenol                                                 | 196 |        | 9.396  |        |    |          | ND        |       |
| 91 2,4,5-Trichlorophenol                                                 | 196 |        | 9.444  |        |    |          | ND        |       |
| 94 1,1'-Biphenyl                                                         | 154 |        | 9.615  |        |    |          | ND        |       |
| 95 2-Chloronaphthalene                                                   | 162 |        | 9.652  |        |    |          | ND        |       |
| 98 2-Nitroaniline                                                        | 65  |        | 9.748  |        |    |          | ND        |       |
| 102 Dimethyl phthalate                                                   | 163 |        | 9.946  |        |    |          | ND        |       |
| 104 2,6-Dinitrotoluene                                                   | 165 |        | 10.016 |        |    |          | ND        |       |
| 105 Acenaphthylene                                                       | 152 | 10.133 | 10.133 | 0.000  | 96 | 33331    | 4.24      |       |
| 106 3-Nitroaniline                                                       | 138 |        | 10.213 |        |    |          | ND        |       |
| 107 2,4-Dinitrophenol                                                    | 184 |        | 10.331 |        |    |          | ND        |       |
| 108 Acenaphthene                                                         | 153 | 10.325 | 10.331 | -0.006 | 83 | 5318     | 0.9692    |       |
| 109 4-Nitrophenol                                                        | 109 |        | 10.379 |        |    |          | ND        |       |
| 111 2,4-Dinitrotoluene                                                   | 165 |        | 10.470 |        |    |          | ND        |       |
| 112 Dibenzofuran                                                         | 168 | 10.512 | 10.512 | 0.000  | 95 | 18526    | 2.31      |       |
| 118 Diethyl phthalate                                                    | 149 |        | 10.721 |        |    |          | ND        |       |
| 121 4-Chlorophenyl phenyl ethe                                           | 204 |        | 10.860 |        |    |          | ND        |       |
| 122 4-Nitroaniline                                                       | 138 |        | 10.870 |        |    |          | ND        |       |
| 123 Fluorene                                                             | 166 | 10.876 | 10.876 | 0.000  | 91 | 28789    | 4.45      |       |
| 125 4,6-Dinitro-2-methylphenol                                           | 198 |        | 10.908 |        |    |          | ND        |       |
| 127 N-Nitrosodiphenylamine                                               | 169 |        | 10.977 |        |    |          | ND        |       |
| 137 4-Bromophenyl phenyl ether                                           | 248 |        | 11.356 |        |    |          | ND        |       |
| 139 Hexachlorobenzene                                                    | 284 |        | 11.447 |        |    |          | ND        |       |
| 141 Atrazine                                                             | 200 |        | 11.485 |        |    |          | ND        |       |
| 143 Pentachlorophenol                                                    | 266 |        | 11.629 |        |    |          | ND        |       |
| 150 Phenanthrene                                                         | 178 | 11.832 | 11.832 | 0.000  | 97 | 252062   | 27.7      |       |
| 151 Anthracene                                                           | 178 | 11.880 | 11.880 | 0.000  | 95 | 96661    | 10.3      |       |
| 152 Carbazole                                                            | 167 | 12.014 | 12.014 | 0.000  | 92 | 4817     | 0.5640    |       |
| 155 Di-n-butyl phthalate                                                 | 149 |        | 12.291 |        |    |          | ND        |       |
| 162 Fluoranthene                                                         | 202 | 12.922 | 12.922 | 0.000  | 95 | 478732   | 42.1      |       |
| 165 Pyrene                                                               | 202 | 13.125 | 13.130 | -0.005 | 98 | 400087   | 34.1      |       |
| 172 Butyl benzyl phthalate                                               | 149 |        | 13.616 |        |    |          | ND        |       |
| 178 Bis(2-ethylhexyl) phthalat                                           | 149 |        | 14.097 |        |    |          | ND        |       |
| 179 3,3'-Dichlorobenzidine                                               | 252 |        | 14.124 |        |    |          | ND        |       |
| 181 Benzo[a]anthracene                                                   | 228 | 14.183 | 14.182 | 0.001  | 96 | 270388   | 22.1      |       |
| 182 Chrysene                                                             | 228 | 14.215 | 14.220 | -0.005 | 94 | 208345   | 17.9      |       |
| 183 Di-n-octyl phthalate                                                 | 149 |        | 14.669 |        |    |          | ND        |       |
| 185 Benzo[b]fluoranthene                                                 | 252 | 15.246 | 15.240 | 0.006  | 94 | 268745   | 21.2      |       |
| 187 Benzo[k]fluoranthene                                                 | 252 | 15.267 | 15.272 | -0.005 | 95 | 112713   | 8.70      | M     |
| 190 Benzo[a]pyrene                                                       | 252 | 15.625 | 15.625 | 0.000  | 73 | 207432   | 17.5      |       |
| 193 Dibenz(a,h)anthracene                                                | 278 |        | 17.179 |        |    |          | ND        |       |
| 194 Indeno[1,2,3-cd]pyrene                                               | 276 | 17.174 | 17.179 | -0.005 | 95 | 124601   | 9.21      |       |
| 195 Benzo[g,h,i]perylene                                                 | 276 | 17.634 | 17.639 | -0.005 | 95 | 106929   | 9.63      |       |
|                                                                          |     |        |        |        |    |          |           |       |

Report Date: 17-Oct-2017 11:38:08 Chrom Revision: 2.2 16-Aug-2017 16:24:46

QC Flag Legend Review Flags

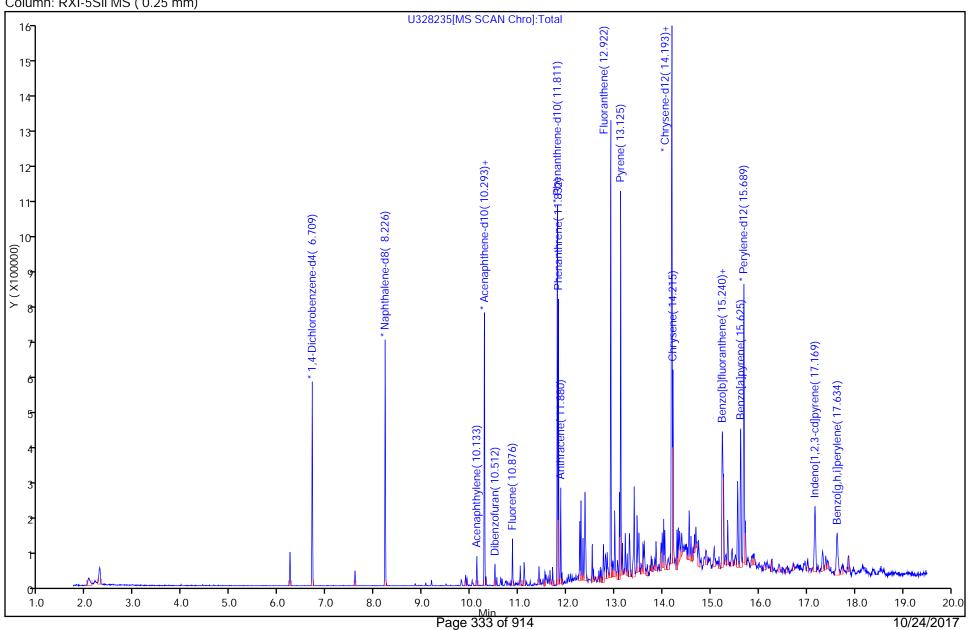
M - Manually Integrated

Reagents:

MB\_INTSTD\_STK\_00039 Amount Added: 20.00 Units: uL Run Reagent

Report Date: 17-Oct-2017 11:38:08 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo


Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D Injection Date: 16-Oct-2017 21:58:30 Instrument ID: HP5973U Lims ID: 480-125579-F-1-E Lab Sample ID: 480-125579-1

Client ID: MW-8 (4-6)

Dil. Factor: Injection Vol: 1.0 ul 100.0000 ALS Bottle#: 11

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



Operator ID:

Worklist Smp#:

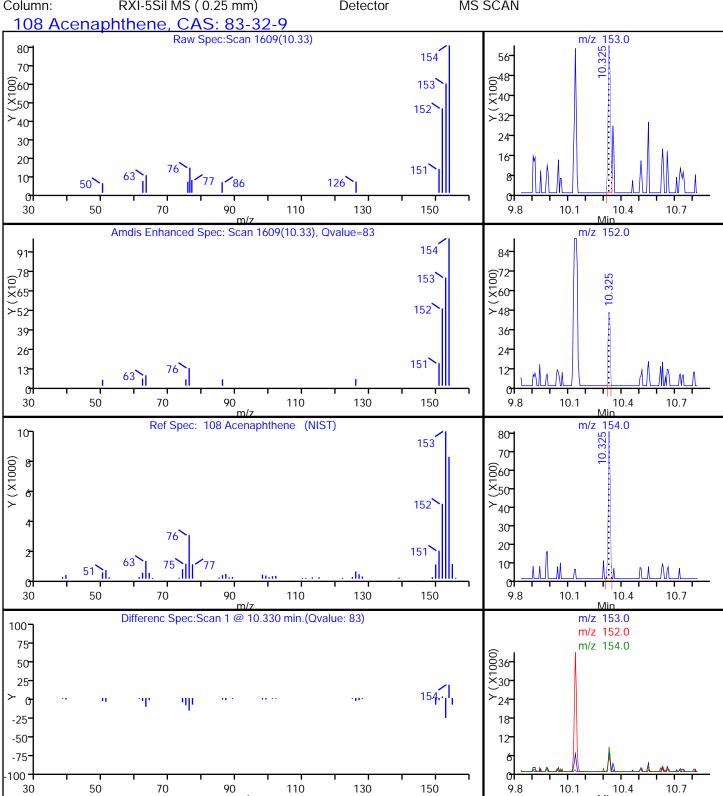
DR

11

Report Date: 17-Oct-2017 11:38:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D Injection Date: 16-Oct-2017 21:58:30 Instrument ID: HP5973U Lims ID: 480-125579-F-1-E Lab Sample ID: 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: Worklist Smp#: 11

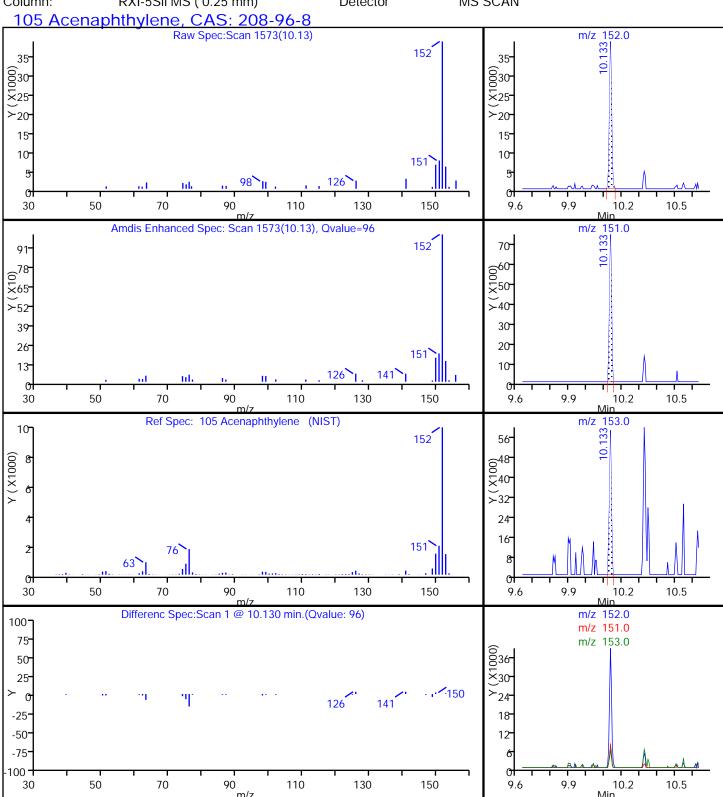
Injection Vol: 1.0 ul Dil. Factor: 100.0000

MB - 8270D ICAL Method: U-8270 Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN



Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D Injection Date: 16-Oct-2017 21:58:30 Instrument ID: HP5973U Lims ID: 480-125579-F-1-E Lab Sample ID: 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: Worklist Smp#: 11

Injection Vol: Dil. Factor: 1.0 ul 100.0000

MB - 8270D ICAL Method: U-8270 Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN



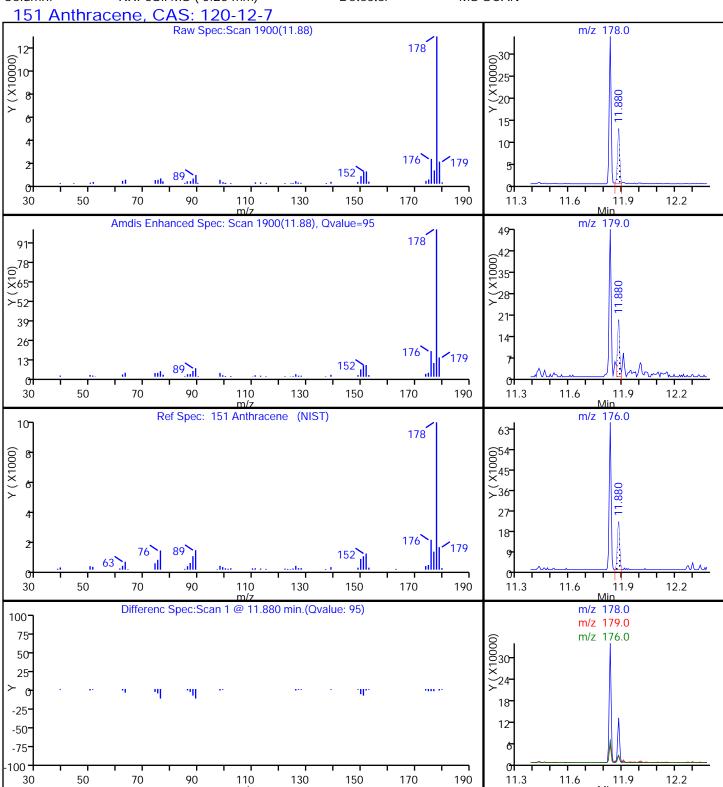
Report Date: 17-Oct-2017 11:38:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D

 Injection Date:
 16-Oct-2017 21:58:30
 Instrument ID:
 HP5973U

 Lims ID:
 480-125579-F-1-E
 Lab Sample ID:
 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 1.0 ul Dil. Factor: 100.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN



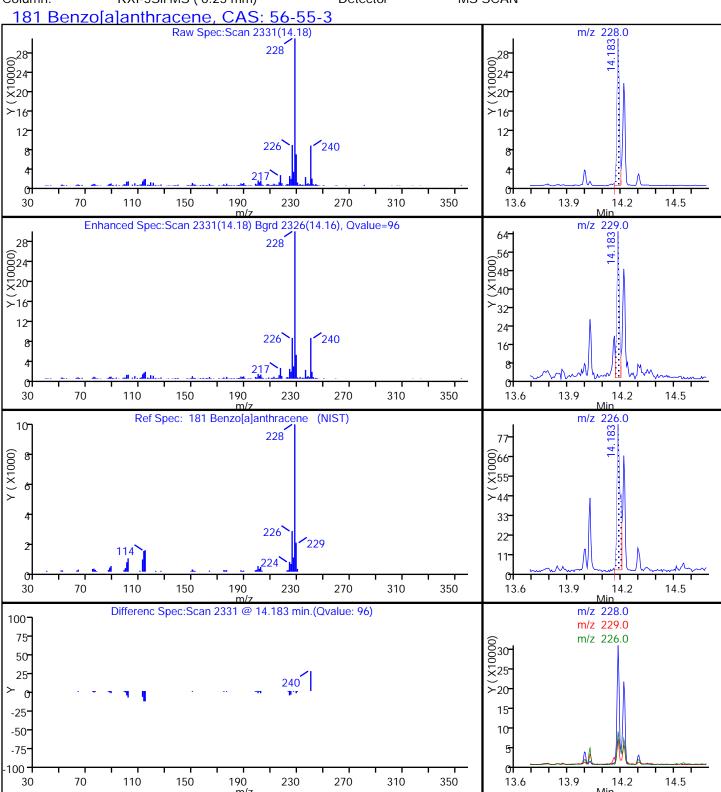
Report Date: 17-Oct-2017 11:38:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D

 Injection Date:
 16-Oct-2017 21:58:30
 Instrument ID:
 HP5973U

 Lims ID:
 480-125579-F-1-E
 Lab Sample ID:
 480-125579-1

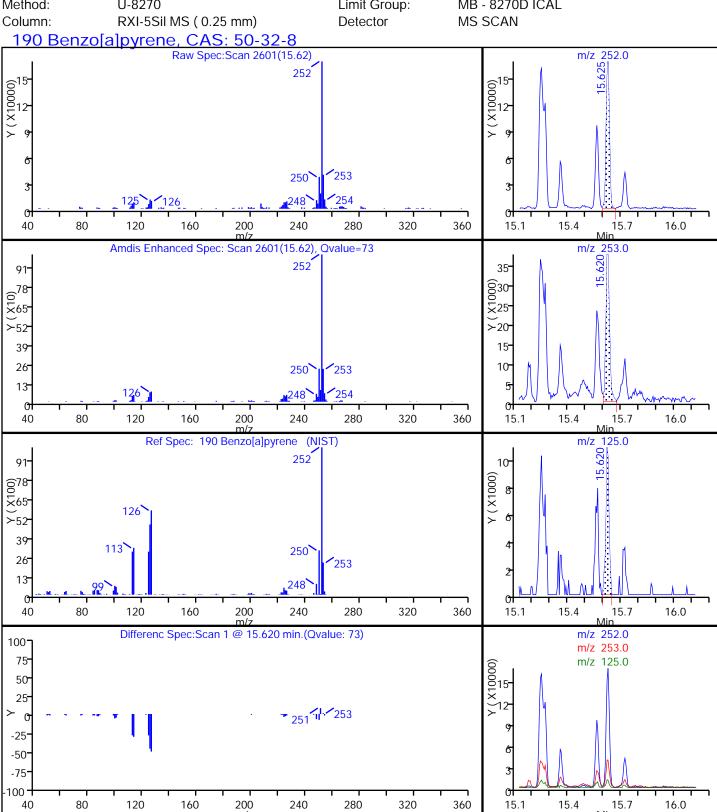

Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 1.0 ul Dil. Factor: 100.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN




Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D **Injection Date:** 16-Oct-2017 21:58:30 Instrument ID: HP5973U Lims ID: 480-125579-F-1-E Lab Sample ID: 480-125579-1

Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: Worklist Smp#: 11

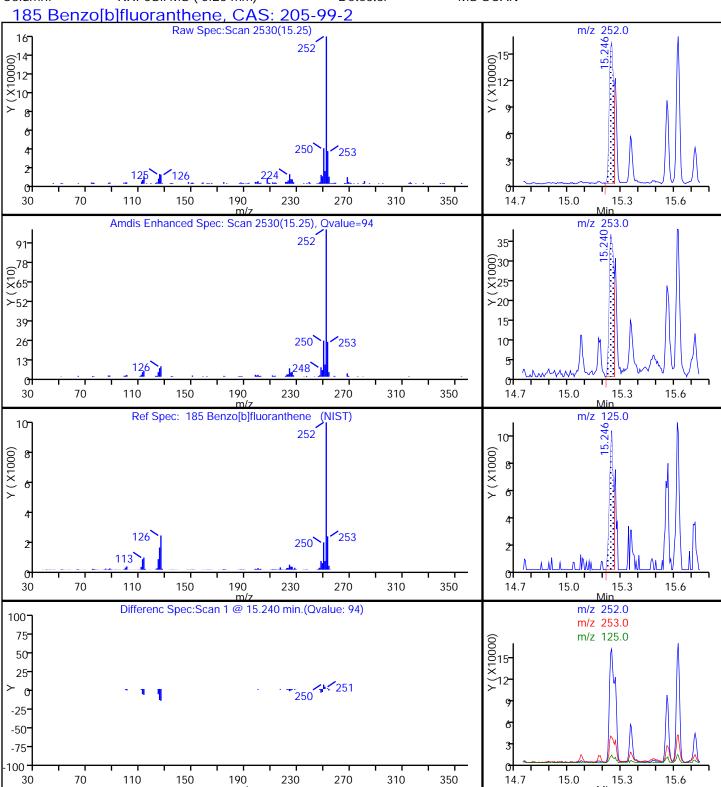
Dil. Factor: Injection Vol: 1.0 ul 100.0000 MB - 8270D ICAL Method: U-8270 Limit Group:



 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D

 Injection Date:
 16-Oct-2017 21:58:30
 Instrument ID:
 HP5973U

 Lims ID:
 480-125579-F-1-E
 Lab Sample ID:
 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 1.0 ul Dil. Factor: 100.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN



 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D

 Injection Date:
 16-Oct-2017 21:58:30
 Instrument ID:
 HP5973U

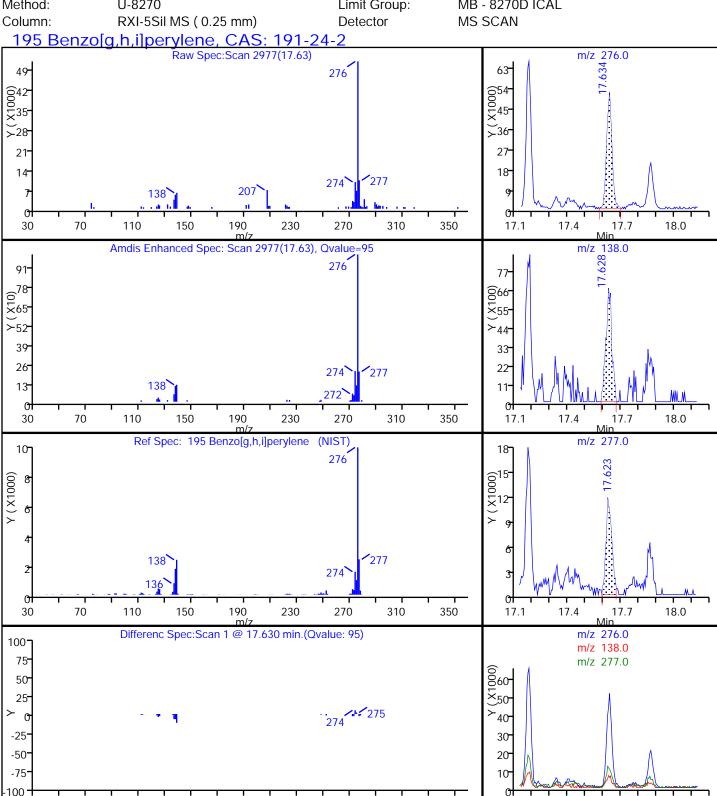
 Lims ID:
 480-125579-F-1-E
 Lab Sample ID:
 480-125579-1

Client ID: MW-8 (4-6)

70

110

150


30

Operator ID: DR ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 1.0 ul Dil. Factor: 100.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Calumna: Detector MS SCAN



310

350

17.1

270

190

230

18.0

17.7

17.4

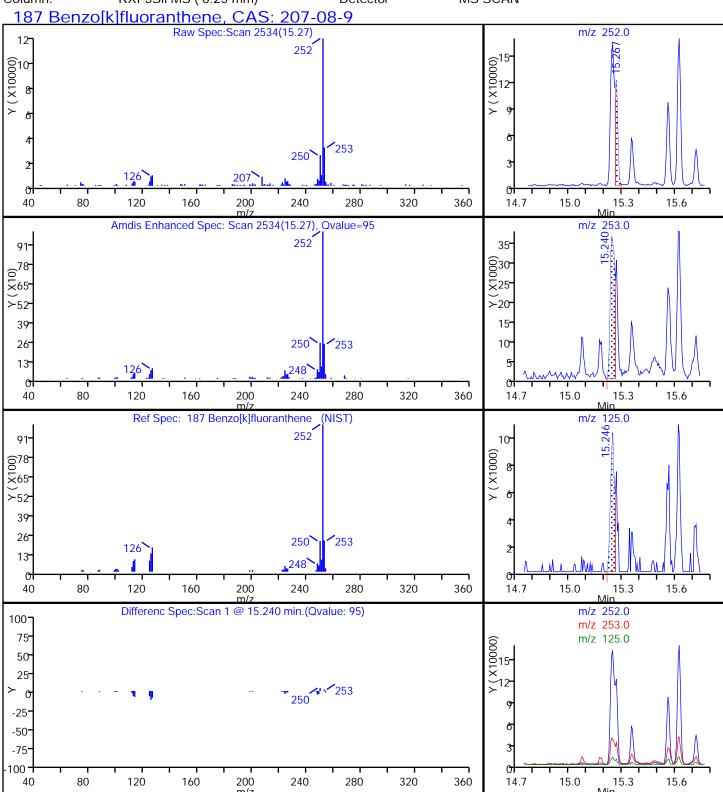
Report Date: 17-Oct-2017 11:38:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D

 Injection Date:
 16-Oct-2017 21:58:30
 Instrument ID:
 HP5973U

 Lims ID:
 480-125579-F-1-E
 Lab Sample ID:
 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: 11 Worklist Smp#: 11

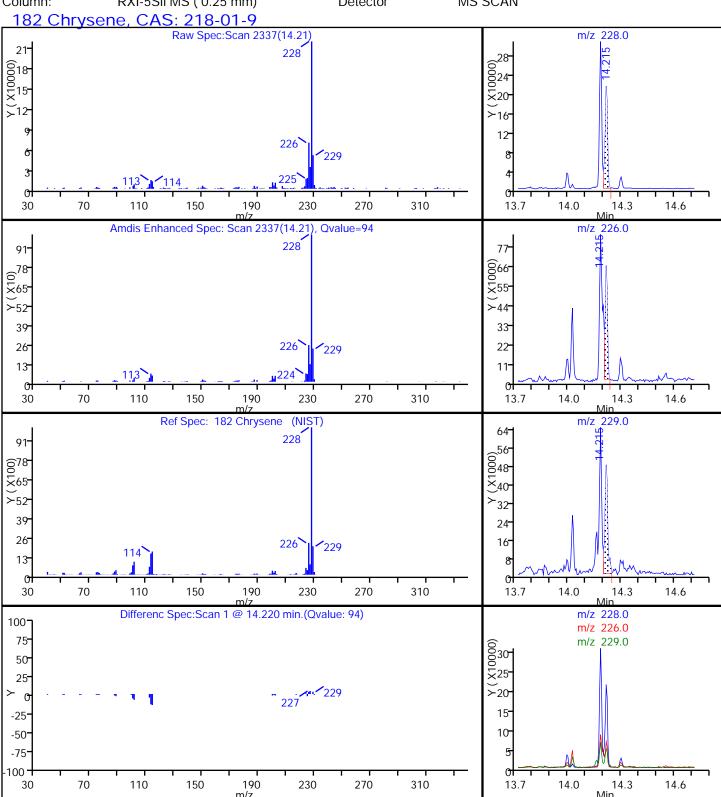
Injection Vol: 1.0 ul Dil. Factor: 100.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN



Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D **Injection Date:** 16-Oct-2017 21:58:30 Instrument ID: HP5973U Lims ID: 480-125579-F-1-E Lab Sample ID: 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: Worklist Smp#: 11

Dil. Factor: Injection Vol: 1.0 ul 100.0000

MB - 8270D ICAL Method: U-8270 Limit Group:

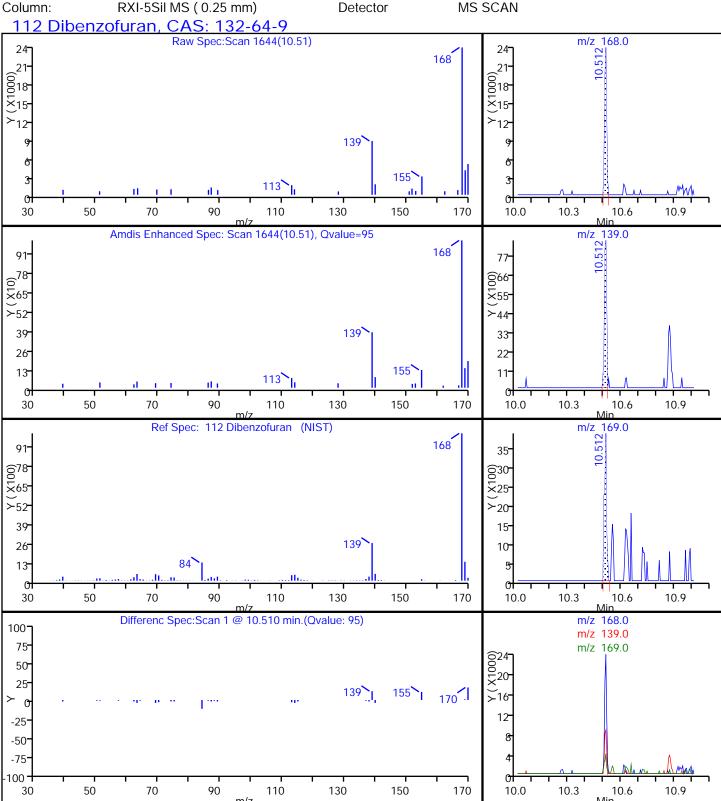
Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN



Report Date: 17-Oct-2017 11:38:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D Injection Date: 16-Oct-2017 21:58:30 Instrument ID: HP5973U Lims ID: 480-125579-F-1-E Lab Sample ID: 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: Worklist Smp#: 11

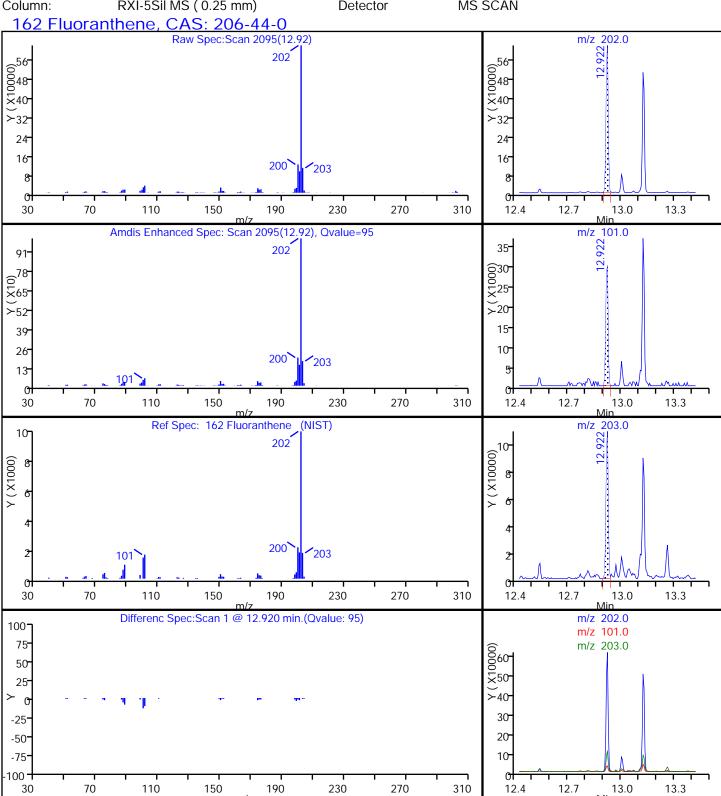
Injection Vol: 1.0 ul Dil. Factor: 100.0000

MB - 8270D ICAL Method: U-8270 Limit Group:

Detector MS SCAN



Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D **Injection Date:** 16-Oct-2017 21:58:30 Instrument ID: HP5973U Lims ID: 480-125579-F-1-E Lab Sample ID: 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: Worklist Smp#: 11

Dil. Factor: Injection Vol: 1.0 ul 100.0000

MB - 8270D ICAL Method: U-8270 Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN



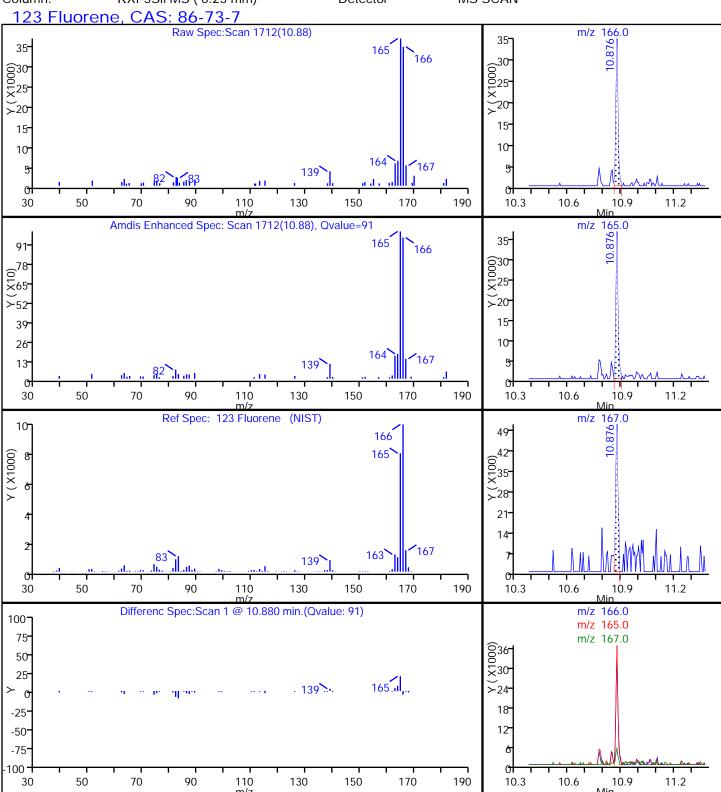
Report Date: 17-Oct-2017 11:38:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D

 Injection Date:
 16-Oct-2017 21:58:30
 Instrument ID:
 HP5973U

 Lims ID:
 480-125579-F-1-E
 Lab Sample ID:
 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: 11 Worklist Smp#: 11

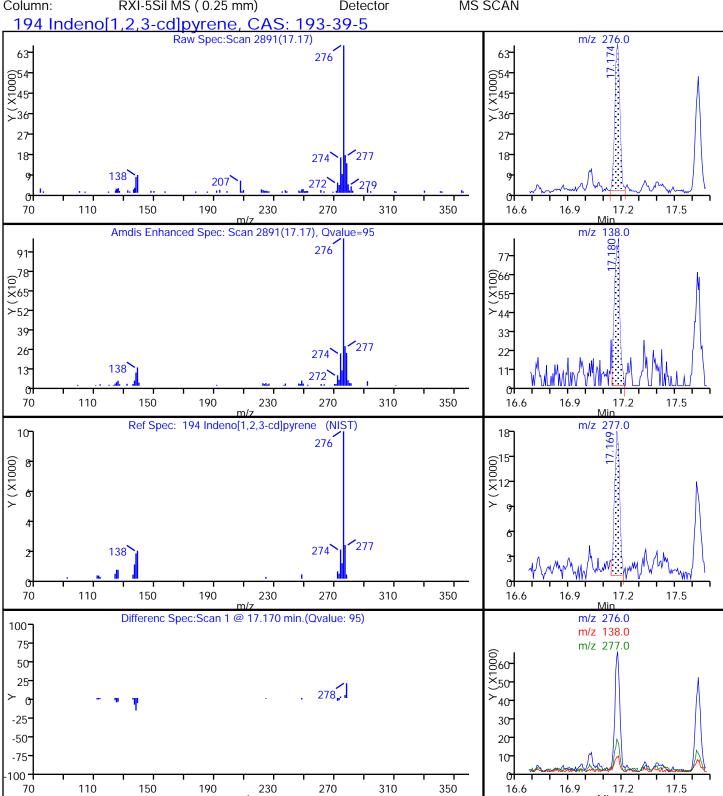
Injection Vol: 1.0 ul Dil. Factor: 100.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN



Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D Injection Date: 16-Oct-2017 21:58:30 Instrument ID: HP5973U Lims ID: 480-125579-F-1-E Lab Sample ID: 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: Worklist Smp#: 11

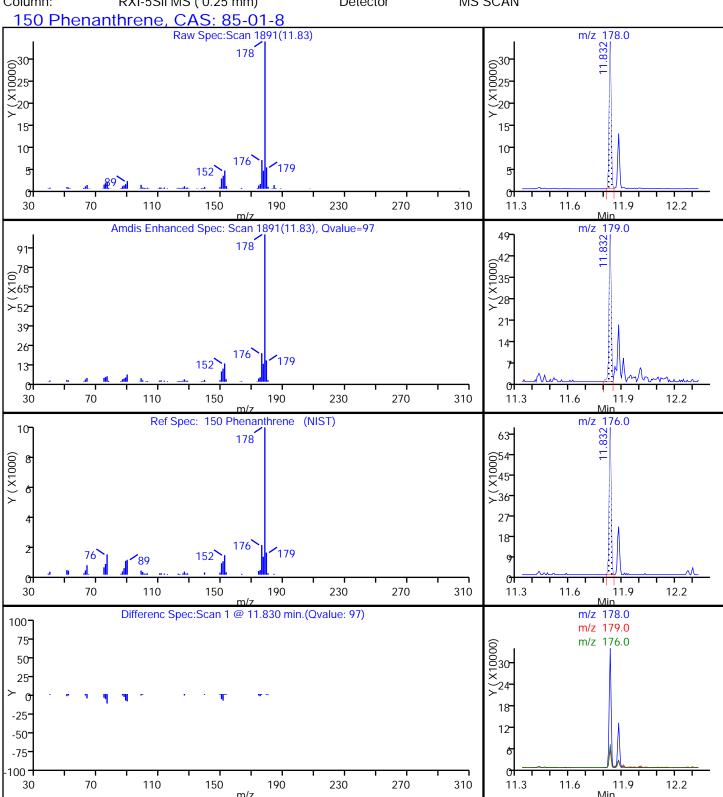
Injection Vol: Dil. Factor: 1.0 ul 100.0000

MB - 8270D ICAL Method: U-8270 Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN



Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D Injection Date: 16-Oct-2017 21:58:30 Instrument ID: HP5973U Lims ID: 480-125579-F-1-E Lab Sample ID: 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: Worklist Smp#: 11

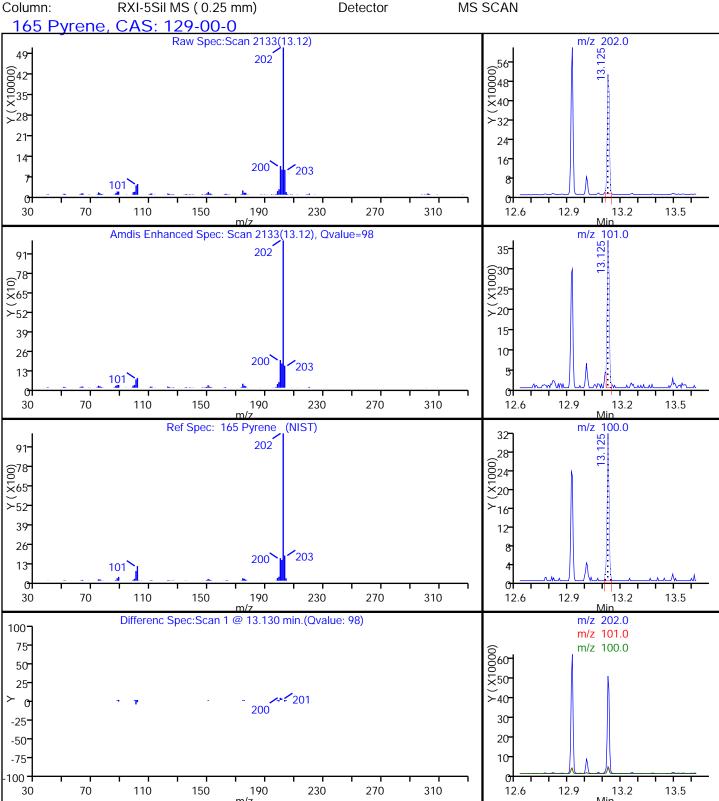
Injection Vol: Dil. Factor: 1.0 ul 100.0000

MB - 8270D ICAL Method: U-8270 Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN



Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D **Injection Date:** 16-Oct-2017 21:58:30 Instrument ID: HP5973U Lims ID: 480-125579-F-1-E Lab Sample ID: 480-125579-1


Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: Worklist Smp#: 11

Dil. Factor: Injection Vol: 1.0 ul 100.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Detector MS SCAN



Report Date: 17-Oct-2017 11:38:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

 Data File:
 \ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328235.D

 Injection Date:
 16-Oct-2017 21:58:30
 Instrument ID:
 HP5973U

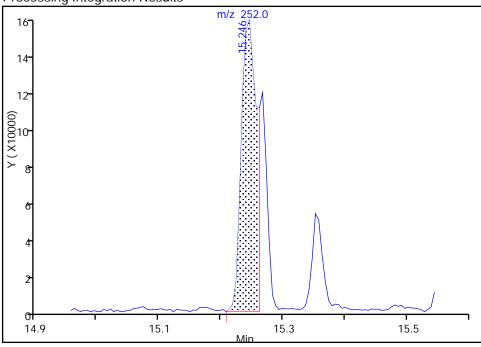
 Lims ID:
 480-125579-F-1-E
 Lab Sample ID:
 480-125579-1

Client ID: MW-8 (4-6)

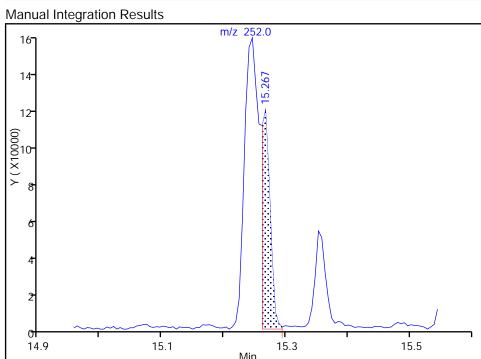
Operator ID: DR ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 1.0 ul Dil. Factor: 100.0000

Method: U-8270 Limit Group: MB - 8270D ICAL


Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN

### 187 Benzo[k]fluoranthene, CAS: 207-08-9


Signal: 1

RT: 15.25 Area: 268745 Amount: 20.740278 Amount Units: ng/uL





RT: 15.27 Area: 112713 Amount: 8.698577 Amount Units: ng/uL



Reviewer: richardsd, 17-Oct-2017 11:21:09

Audit Action: Manually Integrated

Audit Reason: Assign Peak

Page 349 of 914

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (13-14) Lab Sample ID: 480-125579-2

Matrix: Solid Lab File ID: X20526.D

Analysis Method: 8270D Date Collected: 10/08/2017 12:00

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.65(g) Date Analyzed: 10/13/2017 08:02

Con. Extract Vol.: 1(mL) Dilution Factor: 5

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 18.4 GPC Cleanup:(Y/N) N

Analysis Batch No.: 381534 Units: ug/Kg

| CAS NO.   | COMPOUND NAME               | RESULT | Q | RL    | MDL  |
|-----------|-----------------------------|--------|---|-------|------|
| 95-95-4   | 2,4,5-Trichlorophenol       | ND     |   | 1000  | 280  |
| 88-06-2   | 2,4,6-Trichlorophenol       | ND     |   | 1000  | 200  |
| 120-83-2  | 2,4-Dichlorophenol          | ND     |   | 1000  | 110  |
| 105-67-9  | 2,4-Dimethylphenol          | ND     |   | 1000  | 250  |
| 51-28-5   | 2,4-Dinitrophenol           | ND     |   | 10000 | 4700 |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     |   | 1000  | 210  |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     |   | 1000  | 120  |
| 91-58-7   | 2-Chloronaphthalene         | ND     |   | 1000  | 170  |
| 95-57-8   | 2-Chlorophenol              | ND     |   | 1000  | 190  |
| 91-57-6   | 2-Methylnaphthalene         | 220    | J | 1000  | 200  |
| 95-48-7   | 2-Methylphenol              | ND     |   | 1000  | 120  |
| 88-74-4   | 2-Nitroaniline              | ND     |   | 2000  | 150  |
| 88-75-5   | 2-Nitrophenol               | ND     |   | 1000  | 290  |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     |   | 2000  | 1200 |
| 99-09-2   | 3-Nitroaniline              | ND     |   | 2000  | 280  |
| 534-52-1  | 4,6-Dinitro-2-methylphenol  | ND     |   | 2000  | 1000 |
| 101-55-3  | 4-Bromophenyl phenyl ether  | ND     |   | 1000  | 140  |
| 59-50-7   | 4-Chloro-3-methylphenol     | ND     |   | 1000  | 250  |
| 106-47-8  | 4-Chloroaniline             | ND     |   | 1000  | 250  |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     |   | 1000  | 130  |
| 106-44-5  | 4-Methylphenol              | ND     |   | 2000  | 120  |
| 100-01-6  | 4-Nitroaniline              | ND     |   | 2000  | 530  |
| 100-02-7  | 4-Nitrophenol               | ND     |   | 2000  | 710  |
| 83-32-9   | Acenaphthene                | 290    | J | 1000  | 150  |
| 208-96-8  | Acenaphthylene              | 1000   |   | 1000  | 130  |
| 98-86-2   | Acetophenone                | ND     |   | 1000  | 140  |
| 120-12-7  | Anthracene                  | 1800   |   | 1000  | 250  |
| 1912-24-9 | Atrazine                    | ND     |   | 1000  | 350  |
| 100-52-7  | Benzaldehyde                | ND     |   | 1000  | 810  |
| 56-55-3   | Benzo[a]anthracene          | 2100   |   | 1000  | 100  |
| 50-32-8   | Benzo[a]pyrene              | 1500   |   | 1000  | 150  |
| 205-99-2  | Benzo[b]fluoranthene        | 1600   |   | 1000  | 160  |
| 191-24-2  | Benzo[g,h,i]perylene        | 720    | J | 1000  | 110  |
| 207-08-9  | Benzo[k]fluoranthene        | 700    | J | 1000  | 130  |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (13-14) Lab Sample ID: 480-125579-2

Matrix: Solid Lab File ID: X20526.D

Analysis Method: 8270D Date Collected: 10/08/2017 12:00

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.65(g) Date Analyzed: 10/13/2017 08:02

Con. Extract Vol.: 1(mL) Dilution Factor: 5

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 18.4 GPC Cleanup:(Y/N) N

Analysis Batch No.: 381534 Units: ug/Kg

| CAS NO.  | COMPOUND NAME                 | RESULT | Q | RL   | MDL  |
|----------|-------------------------------|--------|---|------|------|
| 92-52-4  | Biphenyl                      | ND     |   | 1000 | 150  |
| 108-60-1 | bis (2-chloroisopropyl) ether | ND     |   | 1000 | 200  |
| 111-91-1 | Bis(2-chloroethoxy)methane    | ND     |   | 1000 | 220  |
| 111-44-4 | Bis(2-chloroethyl)ether       | ND     |   | 1000 | 130  |
| 117-81-7 | Bis(2-ethylhexyl) phthalate   | ND     |   | 1000 | 350  |
| 85-68-7  | Butyl benzyl phthalate        | ND     |   | 1000 | 170  |
| 105-60-2 | Caprolactam                   | ND     |   | 1000 | 310  |
| 86-74-8  | Carbazole                     | 250    | J | 1000 | 120  |
| 218-01-9 | Chrysene                      | 1500   |   | 1000 | 230  |
| 53-70-3  | Dibenz(a,h)anthracene         | ND     |   | 1000 | 180  |
| 132-64-9 | Dibenzofuran                  | 950    | J | 1000 | 120  |
| 84-66-2  | Diethyl phthalate             | ND     |   | 1000 | 130  |
| 131-11-3 | Dimethyl phthalate            | ND     |   | 1000 | 120  |
| 84-74-2  | Di-n-butyl phthalate          | ND     |   | 1000 | 170  |
| 117-84-0 | Di-n-octyl phthalate          | ND     |   | 1000 | 120  |
| 206-44-0 | Fluoranthene                  | 4200   |   | 1000 | 110  |
| 86-73-7  | Fluorene                      | 1600   |   | 1000 | 120  |
| 118-74-1 | Hexachlorobenzene             | ND     |   | 1000 | 140  |
| 87-68-3  | Hexachlorobutadiene           | ND     |   | 1000 | 150  |
| 77-47-4  | Hexachlorocyclopentadiene     | ND     |   | 1000 | 140  |
| 67-72-1  | Hexachloroethane              | ND     |   | 1000 | 130  |
| 193-39-5 | Indeno[1,2,3-cd]pyrene        | 790    | J | 1000 | 130  |
| 78-59-1  | Isophorone                    | ND     |   | 1000 | 220  |
| 91-20-3  | Naphthalene                   | ND     |   | 1000 | 130  |
| 98-95-3  | Nitrobenzene                  | ND     |   | 1000 | 110  |
| 621-64-7 | N-Nitrosodi-n-propylamine     | ND     |   | 1000 | 170  |
| 86-30-6  | N-Nitrosodiphenylamine        | ND     |   | 1000 | 830  |
| 87-86-5  | Pentachlorophenol             | ND     |   | 2000 | 1000 |
| 85-01-8  | Phenanthrene                  | 5000   |   | 1000 | 150  |
| 108-95-2 | Phenol                        | ND     |   | 1000 | 160  |
| 129-00-0 | Pyrene                        | 3300   |   | 1000 | 120  |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (13-14) Lab Sample ID: 480-125579-2

Matrix: Solid Lab File ID: X20526.D

Analysis Method: 8270D Date Collected: 10/08/2017 12:00

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.65(g) Date Analyzed: 10/13/2017 08:02

Con. Extract Vol.: 1(mL) Dilution Factor: 5

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 18.4 GPC Cleanup:(Y/N) N

Analysis Batch No.: 381534 Units: ug/Kg

| CAS NO.   | SURROGATE            | %REC | Q | LIMITS |
|-----------|----------------------|------|---|--------|
| 118-79-6  | 2,4,6-Tribromophenol | 111  |   | 54-120 |
| 321-60-8  | 2-Fluorobiphenyl     | 88   |   | 60-120 |
| 367-12-4  | 2-Fluorophenol       | 73   |   | 52-120 |
| 4165-60-0 | Nitrobenzene-d5      | 55   |   | 53-120 |
| 4165-62-2 | Phenol-d5            | 82   |   | 54-120 |
| 1718-51-0 | p-Terphenyl-d14      | 98   |   | 65-121 |

Report Date: 13-Oct-2017 12:07:25 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D

Lims ID: 480-125579-E-2-A Client ID: MW-8 (13-14)

Sample Type: Client

Inject. Date: 13-Oct-2017 08:02:30 ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 1.0 ul Dil. Factor: 5.0000

Sample Info: 480-0066346-020

Operator ID: DR Instrument ID: HP5973X

Method: \ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X-8270.m

Limit Group: MB - 8270D ICAL

Last Update:13-Oct-2017 12:06:35Calib Date:29-Sep-2017 21:44:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: XAWRK013

First Level Reviewer: richardsd Date: 13-Oct-2017 11:58:17

| T II St Level Neviewel. Helialusu                    |            |                 |                 | aic.             |          | 13-001-201       | 7 11.30.17   |       |
|------------------------------------------------------|------------|-----------------|-----------------|------------------|----------|------------------|--------------|-------|
|                                                      | C'         | RT (min)        | Adj RT          | Dlt RT           |          | Deeman           | OnCol Amt    |       |
| Compound                                             | Sig        | (min.)          | (min.)          | (min.)           | Q        | Response         | ng/uL        | Flags |
| * 11,4-Dichlorobenzene-d4                            | 152        | 5.561           | 5.572           | -0.011           | 94       | 117503           | 40.0         |       |
| * 2 Naphthalene-d8                                   | 136        | 7.116           | 5.572<br>7.115  | 0.001            | 94<br>98 | 415649           | 40.0         |       |
| * 3 Acenaphthene-d10                                 | 164        | 7.116<br>9.188  | 7.115<br>9.183  | 0.001            | 98<br>97 | 415649<br>284808 | 40.0<br>40.0 |       |
| * 4 Phenanthrene-d10                                 | 188        | 10.818          | 9.183<br>10.818 | 0.005            | 97<br>99 | 590185           | 40.0         |       |
| * 5 Chrysene-d12                                     | 240        | 13.211          | 13.211          | 0.000            | 99<br>99 | 684501           | 40.0         |       |
| * 6 Perylene-d12                                     | 264        | 14.365          | 14.365          | 0.000            | 99<br>99 | 665780           | 40.0         |       |
| \$ 7 2-Fluorophenol                                  | 264<br>112 | 3.825           | 3.835           | -0.010           | 99<br>91 | 23192            | 40.0<br>5.87 |       |
| \$ 8 Phenol-d5                                       | 99         | 3.825<br>5.128  | 5.835<br>5.150  | -0.010           | 91<br>91 | 32278            | 5.87<br>6.57 |       |
| \$ 9 Nitrobenzene-d5                                 | 99<br>82   | 5.128<br>6.250  | 5.150<br>6.261  | -0.022<br>-0.011 | 91<br>91 | 32278<br>19401   | 6.57<br>4.40 |       |
| \$ 9 Nilrobenzene-d5<br>\$ 10 2-Fluorobiphenyl       | 82<br>172  | 6.250<br>8.414  | 6.261<br>8.408  | 0.006            | 91<br>99 | 82988            | 4.40<br>7.04 |       |
| \$ 10 2-Fluorobiphenyi<br>\$ 11 2,4,6-Tribromophenol | 330        | 8.414<br>10.091 | 8.408<br>10.091 | 0.006            | 99<br>94 | 82988<br>11923   | 7.04<br>8.85 |       |
| \$ 12 p-Terphenyl-d14                                | 330<br>244 | 12.314          | 12.313          | 0.000            | 94<br>99 | 103642           | 8.85<br>7.87 |       |
| 27 Benzaldehyde                                      | 244<br>77  | 12.314          | 5.011           | 0.001            | 77       |                  | 7.87<br>ND   |       |
| 28 Phenol                                            | 94         |                 | 5.166           |                  |          |                  | ND<br>ND     |       |
| 31 Bis(2-chloroethyl)ether                           | 94<br>93   |                 | 5.166           |                  |          |                  | ND<br>ND     |       |
| 32 2-Chlorophenol                                    | 93<br>128  |                 | 5.236           |                  |          |                  | ND<br>ND     |       |
| 40 2-Methylphenol                                    | 108        |                 | 5.924           |                  |          |                  | ND<br>ND     |       |
| 42 2,2'-oxybis[1-chloropropan                        | 45         |                 | 5.924<br>5.940  |                  |          |                  | ND<br>ND     |       |
| 45 Acetophenone                                      | 105        |                 | 6.084           |                  |          |                  | ND<br>ND     |       |
| 47 N-Nitrosodi-n-propylamine                         | 70         |                 | 6.100           |                  |          |                  | ND           |       |
| 46 4-Methylphenol                                    | 108        |                 | 6.122           |                  |          |                  | ND<br>ND     |       |
| 50 Hexachloroethane                                  | 117        |                 | 6.197           |                  |          |                  | ND           |       |
| 52 Nitrobenzene                                      | 77         |                 | 6.282           |                  |          |                  | ND<br>ND     |       |
| 56 Isophorone                                        | 82         |                 | 6.581           |                  |          |                  | ND<br>ND     |       |
| 58 2-Nitrophenol                                     | 139        |                 | 6.672           |                  |          |                  | ND           |       |
| 59 2,4-Dimethylphenol                                | 107        |                 | 6.758           |                  |          |                  | ND           |       |
| 62 Bis(2-chloroethoxy)methane                        | 93         |                 | 6.859           |                  |          |                  | ND           |       |
| 65 2,4-Dichlorophenol                                | 162        |                 | 6.966           |                  |          |                  | ND           |       |
| 69 Naphthalene                                       | 128        |                 | 7.142           |                  |          |                  | ND           |       |
| 71 4-Chloroaniline                                   | 127        |                 | 7.142           |                  |          |                  | ND           |       |
| 73 Hexachlorobutadiene                               | 225        |                 | 7.220           |                  |          |                  | ND           |       |
| 78 Caprolactam                                       | 113        |                 | 7.513<br>7.644  |                  |          |                  | ND           |       |
| 70 Saproladiam                                       | 113        |                 |                 | 0E0 ~f 04        | 4        | ·                |              |       |
|                                                      |            |                 | 13000           | · 1 ~ + O 1      | л        |                  |              |       |

ct-2017 12:07:25 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D Report Date: 13-Oct-2017 12:07:25

| Compound         Sig         RT (min.)         Adj RT (min.)         Dit RT (min.)         Q         Response         OnCol Amt ng/uL         Flags           79 4-Chloro-3-methylphenol         107         7.826         0.005         94         8184         1.09           82 2-Methylnaphthalene         142         7.970         7.965         0.005         94         8184         1.09           84 Hexachlorocyclopentadiene         237         8.168         ND         ND         ND           86 2,4,6-Trichlorophenol         196         8.312         ND         ND         ND           87 2,4,5-Trichlorophenol         196         8.355         ND         ND         ND           90 1,1'-Biphenyl         154         8.526         8.520         0.006         97         6114         0.4937           91 2-Chloronaphthalene         162         8.531         ND         ND         ND         ND           93 2-Nitroaniline         65         8.665         ND         ND         ND         ND           99 2,6-Dinitrotoluene         165         8.959         ND         ND         ND         ND           102 Acenaphthene         153         9.220         9.220         0.005                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 79 4-Chloro-3-methylphenol         107         7.826         ND           82 2-Methylnaphthalene         142         7.970         7.965         0.005         94         8184         1.09           84 Hexachlorocyclopentadiene         237         8.168         ND           86 2,4,6-Trichlorophenol         196         8.312         ND           87 2,4,5-Trichlorophenol         196         8.355         ND           90 1,1'-Biphenyl         154         8.526         8.520         0.006         97         6114         0.4937           91 2-Chloronaphthalene         162         8.531         ND         ND         93         ND         99         2,6-Dinitrophenol         ND         ND         99         160         ND         ND         ND         99         2,6-Dinitrotoluene         165         8.959         ND         ND         ND         ND         ND         100 Acenaphthylene         152         9.017         9.012         0.005         99         70509         5.03         ND         ND         102 Acenaphthene         153         9.220         0.000         96         13608         1.44         ND         ND         ND         ND         ND         ND         ND <t< th=""></t<> |
| 82 2-Methylnaphthalene       142       7.970       7.965       0.005       94       8184       1.09         84 Hexachlorocyclopentadiene       237       8.168       ND         86 2,4,6-Trichlorophenol       196       8.312       ND         87 2,4,5-Trichlorophenol       196       8.355       ND         90 1,1'-Biphenyl       154       8.526       8.520       0.006       97       6114       0.4937         91 2-Chloronaphthalene       162       8.526       8.520       0.006       97       6114       0.4937         93 2-Nitroaniline       65       8.665       ND       ND         96 Dimethyl phthalate       163       8.900       ND       ND         99 2,6-Dinitrotoluene       165       8.959       ND       ND         100 Acenaphthylene       152       9.017       9.012       0.005       99       70509       5.03         101 3-Nitroaniline       138       9.146       ND       ND         102 Acenaphthene       153       9.220       9.200       0.000       96       13608       1.44         103 2,4-Dinitrophenol       109       9.381       ND       ND         106 2,4-Dinitrotoluene                                                                                                                |
| 82 2-Methylnaphthalene       142       7.970       7.965       0.005       94       8184       1.09         84 Hexachlorocyclopentadiene       237       8.168       ND         86 2,4,6-Trichlorophenol       196       8.312       ND         87 2,4,5-Trichlorophenol       196       8.355       ND         90 1,1'-Biphenyl       154       8.526       8.520       0.006       97       6114       0.4937         91 2-Chloronaphthalene       162       8.526       8.520       0.006       97       6114       0.4937         91 2-Chloronaphthalene       162       8.526       8.520       0.006       97       6114       0.4937         91 2-Chloronaphthalene       163       8.900       ND       ND         96 Dimethyl phthalate       163       8.900       ND       ND         99 2,6-Dinitrotoluene       155       8.959       ND       ND         100 Acenaphthylene       152       9.017       9.012       0.005       99       70509       5.03         101 3-Nitroanilline       138       9.146       ND       ND       ND         104 4-Nitrophenol       109       9.381       ND       ND         106 2                                                                                                              |
| 84 Hexachlorocyclopentadiene       237       8.168       ND         86 2,4,6-Trichlorophenol       196       8.312       ND         87 2,4,5-Trichlorophenol       196       8.355       ND         90 1,1'-Biphenyl       154       8.526       8.520       0.006       97       6114       0.4937         91 2-Chloronaphthalene       162       8.531       ND       ND         93 2-Nitroaniline       65       8.665       ND       ND         96 Dimethyl phthalate       163       8.900       ND       ND         99 2,6-Dinitrotoluene       165       8.959       ND       ND         100 Acenaphthylene       152       9.017       9.012       0.005       99       70509       5.03         101 3-Nitroaniline       138       9.146       ND       ND         102 Acenaphthene       153       9.220       9.220       0.000       96       13608       1.44         103 2,4-Dinitrophenol       184       9.268       ND       ND         104 4-Nitrophenol       109       9.381       ND       ND         107 Dibenzofuran       168       9.423       9.423       0.000       97       68158       4.75     <                                                                                                                   |
| 86 2,4,6-Trichlorophenol       196       8.312       ND         87 2,4,5-Trichlorophenol       196       8.355       ND         90 1,1'-Biphenyl       154       8.526       8.520       0.006       97       6114       0.4937         91 2-Chloronaphthalene       162       8.531       ND       ND         93 2-Nitroaniline       65       8.665       ND       ND         96 Dimethyl phthalate       163       8.900       ND       ND         99 2,6-Dinitrotoluene       165       8.959       ND       ND         100 Acenaphthylene       152       9.017       9.012       0.005       99       70509       5.03         101 3-Nitroaniline       138       9.146       ND       ND       ND         102 Acenaphthene       153       9.220       9.220       0.000       96       13608       1.44         103 2,4-Dinitrophenol       184       9.268       ND       ND         104 4-Nitrophenol       109       9.381       ND         107 Dibenzofuran       168       9.423       9.423       0.000       97       68158       4.75         115 Fluorene       166       9.824       9.819       0.005                                                                                                                          |
| 87 2,4,5-Trichlorophenol       196       8.355       ND         90 1,1'-Biphenyl       154       8.526       8.520       0.006       97       6114       0.4937         91 2-Chloronaphthalene       162       8.531       ND         93 2-Nitroaniline       65       8.665       ND         96 Dimethyl phthalate       163       8.900       ND         99 2,6-Dinitrotoluene       165       8.959       ND         100 Acenaphthylene       152       9.017       9.012       0.005       99       70509       5.03         101 3-Nitroaniline       138       9.146       ND       ND         102 Acenaphthene       153       9.220       9.220       0.000       96       13608       1.44         103 2,4-Dinitrophenol       184       9.268       ND       ND         104 4-Nitrophenol       109       9.381       ND         107 Dibenzofuran       165       9.423       0.000       97       68158       4.75         112 Diethyl phthalate       149       9.728       ND       ND         115 Fluorene       166       9.824       9.819       0.005       99       88994       8.03         116 4                                                                                                                               |
| 90 1,1'-Biphenyl 154 8.526 8.520 0.006 97 6114 0.4937 91 2-Chloronaphthalene 162 8.531 ND 93 2-Nitroaniline 65 8.665 ND 96 Dimethyl phthalate 163 8.900 ND 99 2,6-Dinitrotoluene 165 8.959 ND 100 Acenaphthylene 152 9.017 9.012 0.005 99 70509 5.03 101 3-Nitroaniline 138 9.146 ND 102 Acenaphthene 153 9.220 9.220 0.000 96 13608 1.44 103 2,4-Dinitrophenol 184 9.268 ND 104 4-Nitrophenol 109 9.381 ND 106 2,4-Dinitrotoluene 165 9.423 ND 107 Dibenzofuran 168 9.423 9.423 0.000 97 68158 4.75 112 Diethyl phthalate 149 9.728 ND 115 Fluorene 166 9.824 9.819 0.005 99 88994 8.03 116 4-Chlorophenyl phenyl ethe 204 9.835 ND 118 4-Nitroaniline 138 9.856 ND 119 4,6-Dinitro-2-methylphenol 198 9.893 ND 120 N-Nitrosodiphenylamine 169 9.968 ND 130 4-Bromophenyl phenyl ether 248 10.364 ND                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 91 2-Chloronaphthalene         162         8.531         ND           93 2-Nitroaniline         65         8.665         ND           96 Dimethyl phthalate         163         8.900         ND           99 2,6-Dinitrotoluene         165         8.959         ND           100 Acenaphthylene         152         9.017         9.012         0.005         99         70509         5.03           101 3-Nitroaniline         138         9.146         ND         ND           102 Acenaphthene         153         9.220         9.220         0.000         96         13608         1.44           103 2,4-Dinitrophenol         184         9.268         ND         ND           104 4-Nitrophenol         109         9.381         ND         ND           107 Dibenzofuran         165         9.423         0.000         97         68158         4.75           112 Diethyl phthalate         149         9.728         ND         ND           115 Fluorene         166         9.824         9.819         0.005         99         88994         8.03           116 4-Chlorophenyl phenyl ethe         204         9.835         ND         ND           118 4-Nitroaniline </td                                             |
| 93 2-Nitroaniline         65         8.665         ND           96 Dimethyl phthalate         163         8.900         ND           99 2,6-Dinitrotoluene         165         8.959         ND           100 Acenaphthylene         152         9.017         9.012         0.005         99         70509         5.03           101 3-Nitroaniline         138         9.146         ND         ND           102 Acenaphthene         153         9.220         9.220         0.000         96         13608         1.44           103 2,4-Dinitrophenol         184         9.268         ND         ND           104 4-Nitrophenol         109         9.381         ND         ND           106 2,4-Dinitrotoluene         165         9.423         ND         ND           107 Dibenzofuran         168         9.423         9.423         0.000         97         68158         4.75           112 Diethyl phthalate         149         9.728         ND         ND           115 Fluorene         166         9.824         9.819         0.005         99         88994         8.03           118 4-Nitroaniline         138         9.856         ND         ND                                                                  |
| 96 Dimethyl phthalate         163         8.900         ND           99 2,6-Dinitrotoluene         165         8.959         ND           100 Acenaphthylene         152         9.017         9.012         0.005         99         70509         5.03           101 3-Nitroaniline         138         9.146         ND         ND           102 Acenaphthene         153         9.220         9.220         0.000         96         13608         1.44           103 2,4-Dinitrophenol         184         9.268         ND         ND           104 4-Nitrophenol         109         9.381         ND         ND           106 2,4-Dinitrotoluene         165         9.423         ND         ND           107 Dibenzofuran         168         9.423         9.423         0.000         97         68158         4.75           112 Diethyl phthalate         149         9.728         ND         ND           115 Fluorene         166         9.824         9.819         0.005         99         88994         8.03           116 4-Chlorophenyl phenyl ethe         204         9.835         ND         ND           118 4-Nitroaniline         138         9.893         ND                                                    |
| 99 2,6-Dinitrotoluene         165         8.959         ND           100 Acenaphthylene         152         9.017         9.012         0.005         99         70509         5.03           101 3-Nitroaniline         138         9.146         ND           102 Acenaphthene         153         9.220         9.220         0.000         96         13608         1.44           103 2,4-Dinitrophenol         184         9.268         ND         ND           104 4-Nitrophenol         109         9.381         ND         ND           106 2,4-Dinitrotoluene         165         9.423         ND         ND           107 Dibenzofuran         168         9.423         9.423         ND         ND           112 Diethyl phthalate         149         9.728         ND         ND           115 Fluorene         166         9.824         9.819         0.005         99         88994         8.03           116 4-Chlorophenyl phenyl ethe         204         9.835         ND         ND           118 4-Nitroaniline         138         9.856         ND         ND           119 4,6-Dinitro-2-methylphenol         198         9.893         ND         ND                                                              |
| 100 Acenaphthylene       152       9.017       9.012       0.005       99       70509       5.03         101 3-Nitroaniline       138       9.146       ND         102 Acenaphthene       153       9.220       9.220       0.000       96       13608       1.44         103 2,4-Dinitrophenol       184       9.268       ND       ND         104 4-Nitrophenol       109       9.381       ND       ND         106 2,4-Dinitrotoluene       165       9.423       ND       ND         107 Dibenzofuran       168       9.423       9.423       0.000       97       68158       4.75         112 Diethyl phthalate       149       9.728       ND       ND         115 Fluorene       166       9.824       9.819       0.005       99       88994       8.03         116 4-Chlorophenyl phenyl ethe       204       9.835       ND       ND         118 4-Nitroaniline       138       9.856       ND       ND         119 4,6-Dinitro-2-methylphenol       198       9.893       ND       ND         120 N-Nitrosodiphenyl phenyl ether       248       10.364       ND       ND                                                                                                                                                             |
| 101 3-Nitroaniline       138       9.146       ND         102 Acenaphthene       153       9.220       9.220       0.000       96       13608       1.44         103 2,4-Dinitrophenol       184       9.268       ND       ND         104 4-Nitrophenol       109       9.381       ND       ND         106 2,4-Dinitrotoluene       165       9.423       ND       ND         107 Dibenzofuran       168       9.423       9.423       0.000       97       68158       4.75         112 Diethyl phthalate       149       9.728       ND       ND         115 Fluorene       166       9.824       9.819       0.005       99       88994       8.03         116 4-Chlorophenyl phenyl ethe       204       9.835       ND       ND         118 4-Nitroaniline       138       9.856       ND       ND         120 N-Nitrosodiphenylamine       169       9.968       ND       ND         130 4-Bromophenyl phenyl ether       248       10.364       ND       ND                                                                                                                                                                                                                                                                              |
| 102 Acenaphthene       153       9.220       9.220       0.000       96       13608       1.44         103 2,4-Dinitrophenol       184       9.268       ND       ND         104 4-Nitrophenol       109       9.381       ND       ND         106 2,4-Dinitrotoluene       165       9.423       ND       ND         107 Dibenzofuran       168       9.423       9.423       0.000       97       68158       4.75         112 Diethyl phthalate       149       9.728       ND       ND         115 Fluorene       166       9.824       9.819       0.005       99       88994       8.03         116 4-Chlorophenyl phenyl ethe       204       9.835       ND       ND         118 4-Nitroaniline       138       9.856       ND       ND         120 N-Nitrosodiphenylamine       169       9.968       ND       ND         130 4-Bromophenyl phenyl ether       248       10.364       ND       ND                                                                                                                                                                                                                                                                                                                                        |
| 103 2,4-Dinitrophenol       184       9.268       ND         104 4-Nitrophenol       109       9.381       ND         106 2,4-Dinitrotoluene       165       9.423       ND         107 Dibenzofuran       168       9.423       9.423       0.000       97       68158       4.75         112 Diethyl phthalate       149       9.728       ND       ND         115 Fluorene       166       9.824       9.819       0.005       99       88994       8.03         116 4-Chlorophenyl phenyl ethe       204       9.835       ND         118 4-Nitroaniline       138       9.856       ND         119 4,6-Dinitro-2-methylphenol       198       9.893       ND         120 N-Nitrosodiphenylamine       169       9.968       ND         130 4-Bromophenyl phenyl ether       248       10.364       ND                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 104 4-Nitrophenol       109       9.381       ND         106 2,4-Dinitrotoluene       165       9.423       ND         107 Dibenzofuran       168       9.423       9.423       0.000       97       68158       4.75         112 Diethyl phthalate       149       9.728       ND       ND         115 Fluorene       166       9.824       9.819       0.005       99       88994       8.03         116 4-Chlorophenyl phenyl ethe       204       9.835       ND         118 4-Nitroaniline       138       9.856       ND         119 4,6-Dinitro-2-methylphenol       198       9.893       ND         120 N-Nitrosodiphenylamine       169       9.968       ND         130 4-Bromophenyl phenyl ether       248       10.364       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 106 2,4-Dinitrotoluene       165       9.423       ND         107 Dibenzofuran       168       9.423       9.423       0.000       97       68158       4.75         112 Diethyl phthalate       149       9.728       ND         115 Fluorene       166       9.824       9.819       0.005       99       88994       8.03         116 4-Chlorophenyl phenyl ethe       204       9.835       ND         118 4-Nitroaniline       138       9.856       ND         119 4,6-Dinitro-2-methylphenol       198       9.893       ND         120 N-Nitrosodiphenylamine       169       9.968       ND         130 4-Bromophenyl phenyl ether       248       10.364       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 107 Dibenzofuran       168       9.423       9.423       0.000       97       68158       4.75         112 Diethyl phthalate       149       9.728       ND         115 Fluorene       166       9.824       9.819       0.005       99       88994       8.03         116 4-Chlorophenyl phenyl ethe       204       9.835       ND         118 4-Nitroaniline       138       9.856       ND         119 4,6-Dinitro-2-methylphenol       198       9.893       ND         120 N-Nitrosodiphenylamine       169       9.968       ND         130 4-Bromophenyl phenyl ether       248       10.364       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 112 Diethyl phthalate       149       9.728       ND         115 Fluorene       166       9.824       9.819       0.005       99       88994       8.03         116 4-Chlorophenyl phenyl ethe       204       9.835       ND         118 4-Nitroaniline       138       9.856       ND         119 4,6-Dinitro-2-methylphenol       198       9.893       ND         120 N-Nitrosodiphenylamine       169       9.968       ND         130 4-Bromophenyl phenyl ether       248       10.364       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 115 Fluorene       166       9.824       9.819       0.005       99       88994       8.03         116 4-Chlorophenyl phenyl ethe       204       9.835       ND         118 4-Nitroaniline       138       9.856       ND         119 4,6-Dinitro-2-methylphenol       198       9.893       ND         120 N-Nitrosodiphenylamine       169       9.968       ND         130 4-Bromophenyl phenyl ether       248       10.364       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 116 4-Chlorophenyl phenyl ethe       204       9.835       ND         118 4-Nitroaniline       138       9.856       ND         119 4,6-Dinitro-2-methylphenol       198       9.893       ND         120 N-Nitrosodiphenylamine       169       9.968       ND         130 4-Bromophenyl phenyl ether       248       10.364       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 118 4-Nitroaniline       138       9.856       ND         119 4,6-Dinitro-2-methylphenol       198       9.893       ND         120 N-Nitrosodiphenylamine       169       9.968       ND         130 4-Bromophenyl phenyl ether       248       10.364       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 119 4,6-Dinitro-2-methylphenol1989.893ND120 N-Nitrosodiphenylamine1699.968ND130 4-Bromophenyl phenyl ether24810.364ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 120 N-Nitrosodiphenylamine 169 9.968 ND<br>130 4-Bromophenyl phenyl ether 248 10.364 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 130 4-Bromophenyl phenyl ether 248 10.364 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 131 Hexachlorobenzene 284 10.428 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 133 Atrazine 200 10.561 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 134 Pentachlorophenol 266 10.636 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 141 Phenanthrene 178 10.839 10.839 0.000 99 397186 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 142 Anthracene 178 10.893 10.892 0.000 99 144246 8.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 143 Carbazole 167 11.058 11.058 0.000 99 18802 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 145 Di-n-butyl phthalate 149 11.421 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 152 Fluoranthene 202 11.966 11.966 0.000 98 386773 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 155 Pyrene 202 12.169 12.169 0.000 99 321786 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 162 Butyl benzyl phthalate 149 12.741 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 166 3,3'-Dichlorobenzidine 252 13.184 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 167 Benzo[a]anthracene 228 13.200 13.200 0.000 95 194927 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 172 Bis(2-ethylhexyl) phthalat 149 13.227 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 169 Chrysene 228 13.232 13.232 0.000 98 144258 7.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 168 Di-n-octyl phthalate 149 13.751 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 174 Benzo[b]fluoranthene 252 14.071 14.071 0.000 99 174401 8.22 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 175 Benzo[k]fluoranthene 252 14.087 14.092 -0.005 98 78958 3.49 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 177 Benzo[a]pyrene 252 14.317 14.317 0.000 99 143323 7.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 180 Indeno[1,2,3-cd]pyrene 276 15.246 15.252 -0.006 97 74902 3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 181 Dibenz(a,h)anthracene 278 15.257 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 182 Benzo[g,h,i]perylene 276 15.498 15.503 -0.005 98 61860 3.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Report Date: 13-Oct-2017 12:07:25 Chrom Revision: 2.2 16-Aug-2017 16:24:46

QC Flag Legend Review Flags

M - Manually Integrated

Reagents:

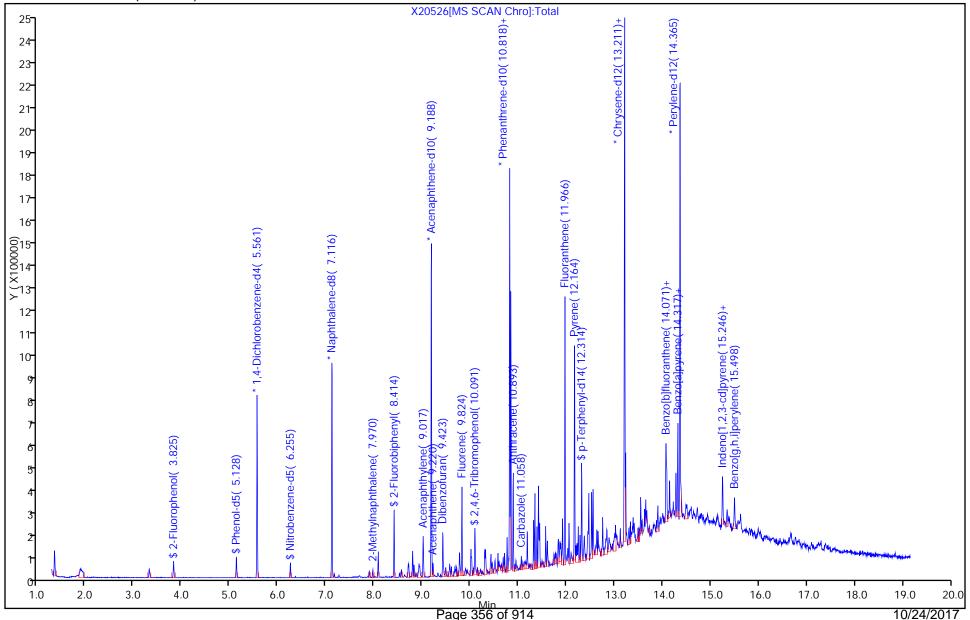
MB\_INTSTD\_STK\_00039 Amount Added: 20.00 Units: uL Run Reagent

Report Date: 13-Oct-2017 12:07:26 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D

 Injection Date:
 13-Oct-2017 08:02:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-2-A
 Lab Sample ID:
 480-125579-2

Client ID: MW-8 (13-14)

Injection Vol: 1.0 ul Dil. Factor: 5.0000 ALS Bottle#: 20

Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



DR

20

Operator ID:

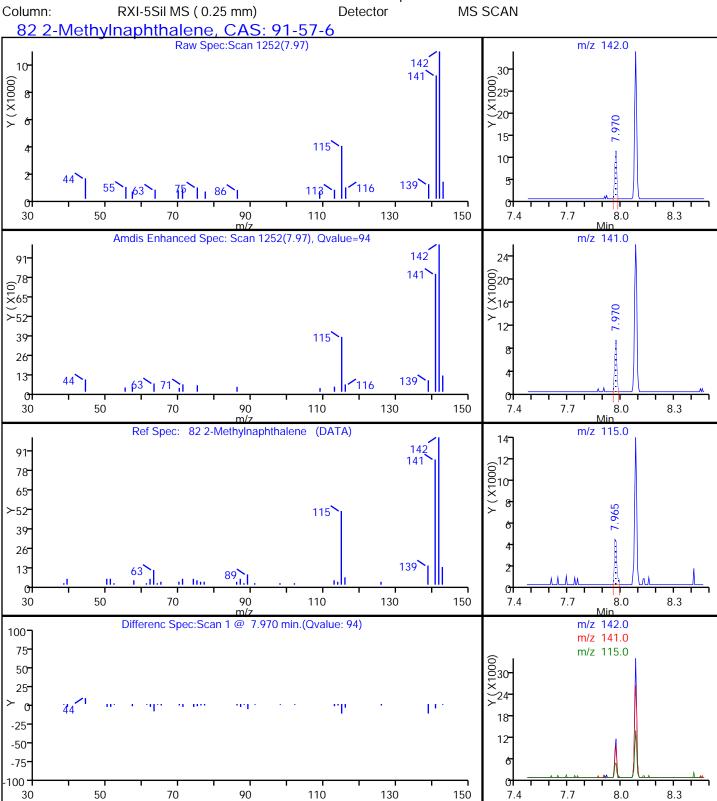
Worklist Smp#:

Report Date: 13-Oct-2017 12:07:26 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D

 Injection Date:
 13-Oct-2017 08:02:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-2-A
 Lab Sample ID:
 480-125579-2

Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 1.0 ul Dil. Factor: 5.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

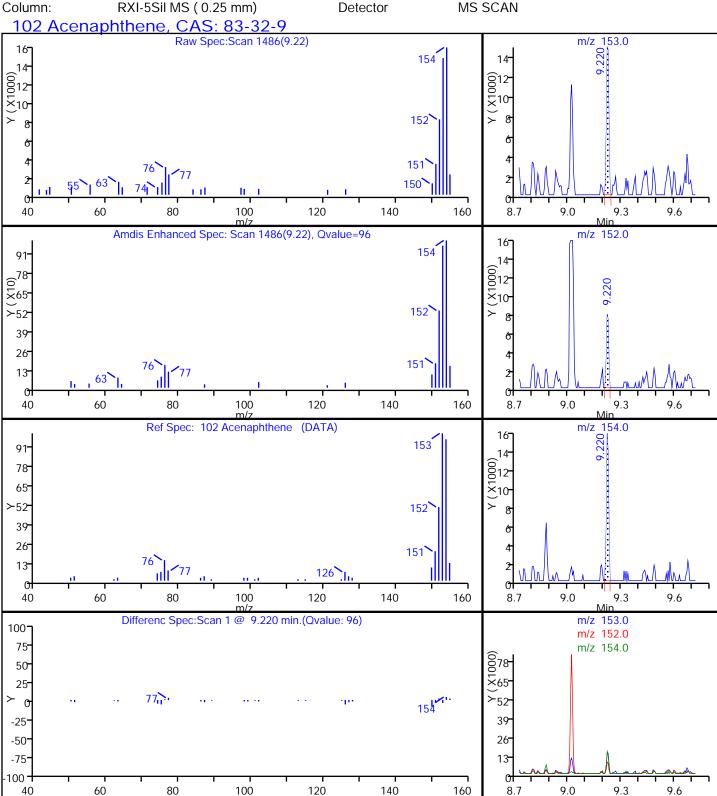


Report Date: 13-Oct-2017 12:07:26 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D

 Injection Date:
 13-Oct-2017 08:02:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-2-A
 Lab Sample ID:
 480-125579-2

Client ID: MW-8 (13-14)

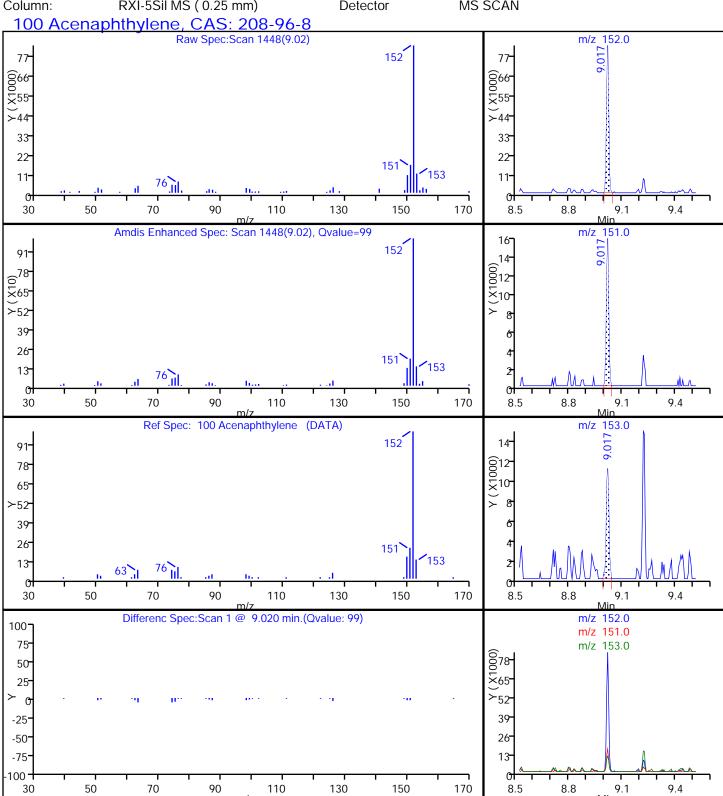
Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 1.0 ul Dil. Factor: 5.0000

Method: X-8270 Limit Group: MB - 8270D ICAL



TestAmerica Buffalo


Data File: Injection Date: 13-Oct-2017 08:02:30 Instrument ID: HP5973X Lims ID: 480-125579-E-2-A Lab Sample ID: 480-125579-2

Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 1.0 ul Dil. Factor: 5.0000

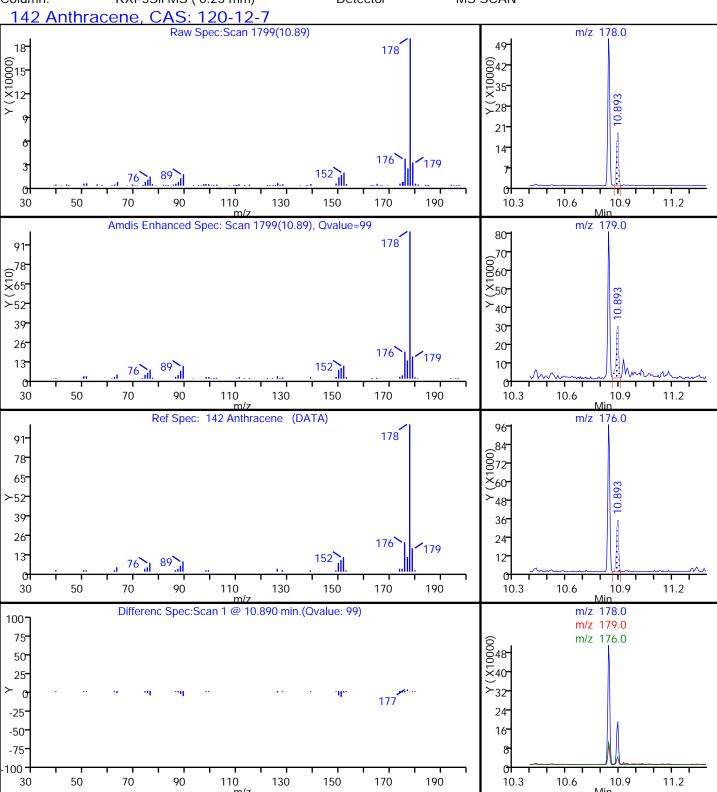
Method: X-8270 MB - 8270D ICAL Limit Group:



TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D

 Injection Date:
 13-Oct-2017 08:02:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-2-A
 Lab Sample ID:
 480-125579-2

Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

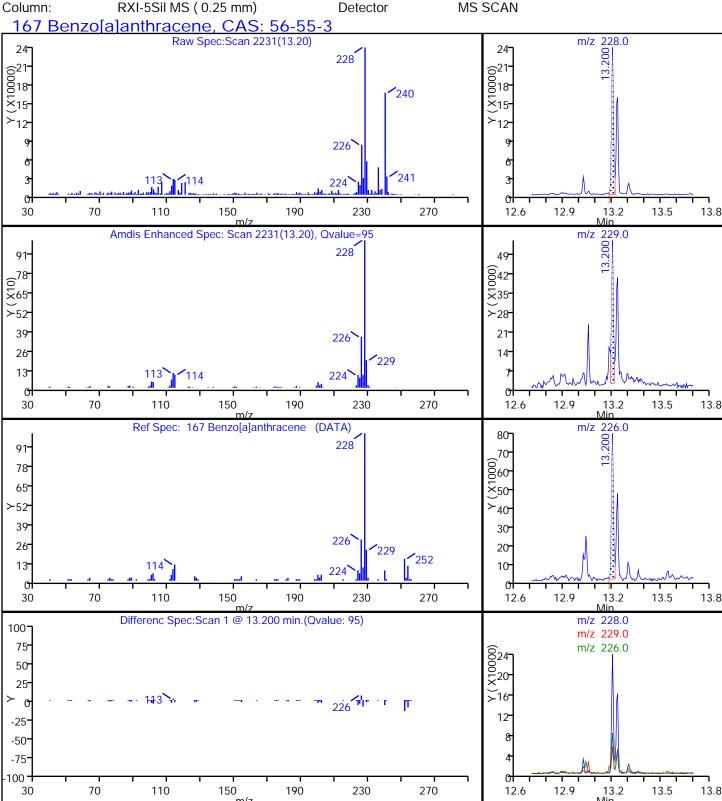
Injection Vol: 1.0 ul Dil. Factor: 5.0000

Method: X-8270 Limit Group: MB - 8270D ICAL



TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D **Injection Date:** 13-Oct-2017 08:02:30 Instrument ID: HP5973X Lims ID: 480-125579-E-2-A Lab Sample ID: 480-125579-2


Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Dil. Factor: Injection Vol: 1.0 ul 5.0000

MB - 8270D ICAL Method: X-8270 Limit Group:

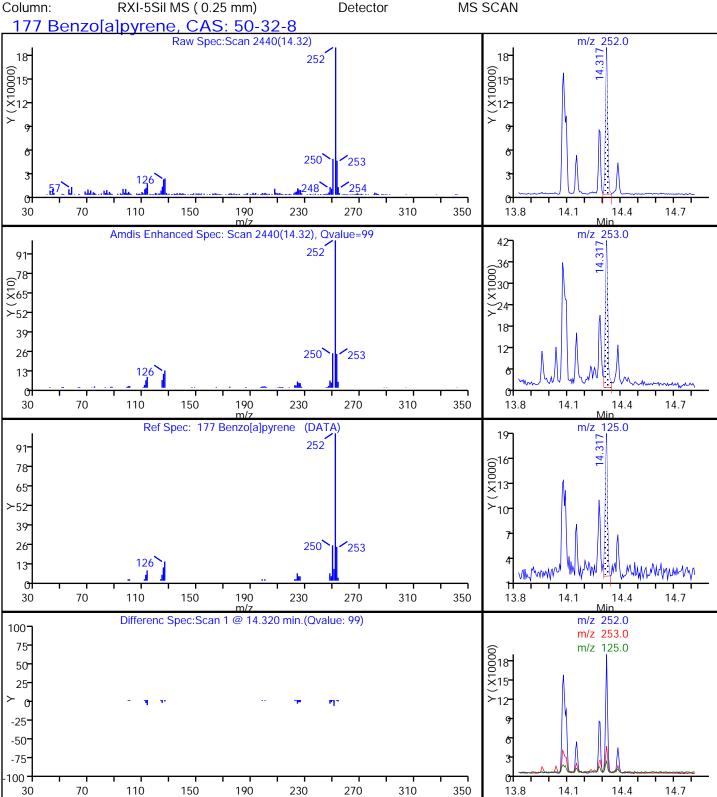
Detector MS SCAN



TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D

 Injection Date:
 13-Oct-2017 08:02:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-2-A
 Lab Sample ID:
 480-125579-2

Client ID: MW-8 (13-14)

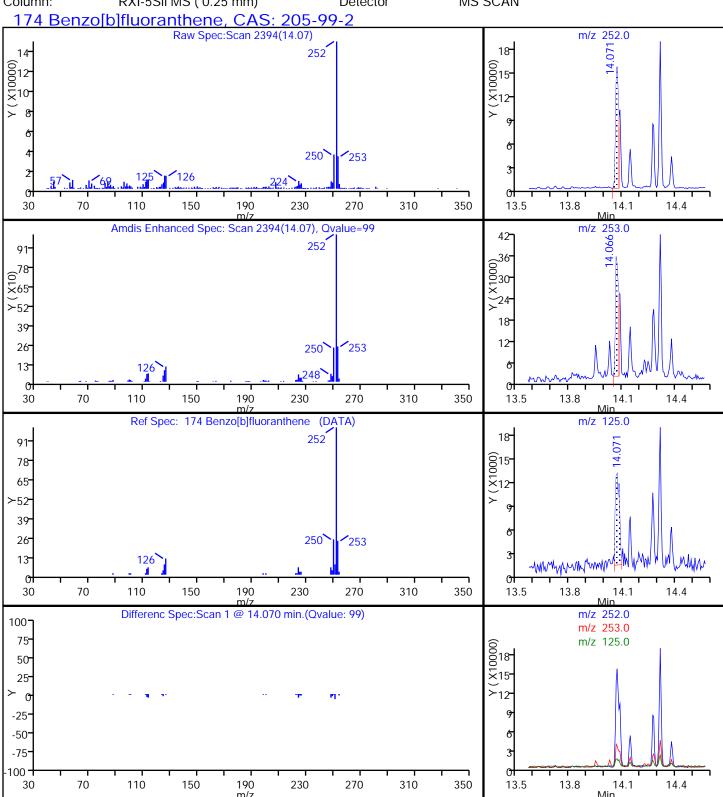
Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 1.0 ul Dil. Factor: 5.0000

Method: X-8270 Limit Group: MB - 8270D ICAL



TestAmerica Buffalo


Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D **Injection Date:** 13-Oct-2017 08:02:30 Instrument ID: HP5973X Lims ID: 480-125579-E-2-A Lab Sample ID: 480-125579-2

Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: Dil. Factor: 5.0000 1.0 ul

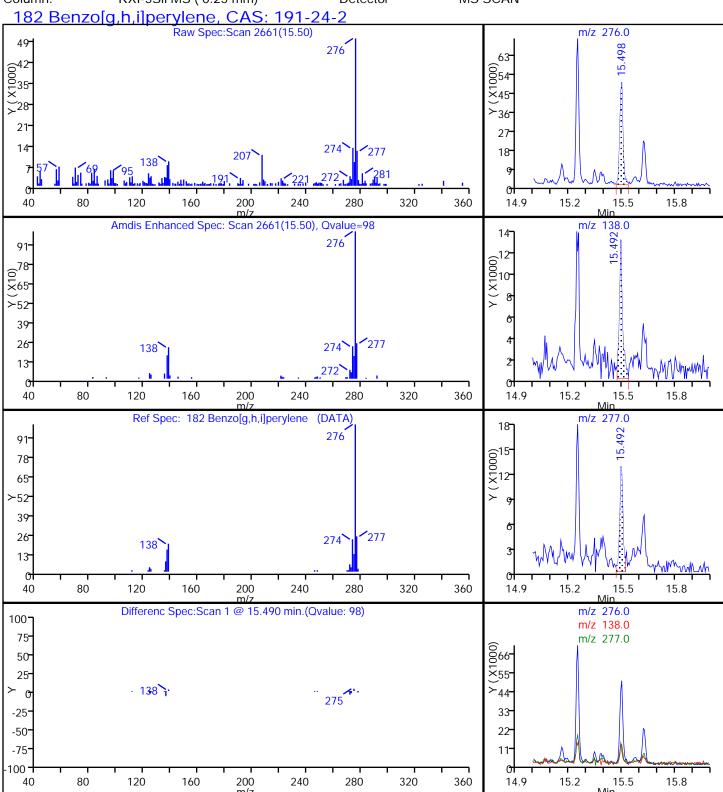
MB - 8270D ICAL Method: X-8270 Limit Group:



TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D

 Injection Date:
 13-Oct-2017 08:02:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-2-A
 Lab Sample ID:
 480-125579-2

Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 1.0 ul Dil. Factor: 5.0000

Method: X-8270 Limit Group: MB - 8270D ICAL



TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D **Injection Date:** 13-Oct-2017 08:02:30 Instrument ID: HP5973X Lims ID: 480-125579-E-2-A Lab Sample ID: 480-125579-2

Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: Dil. Factor: 5.0000 1.0 ul

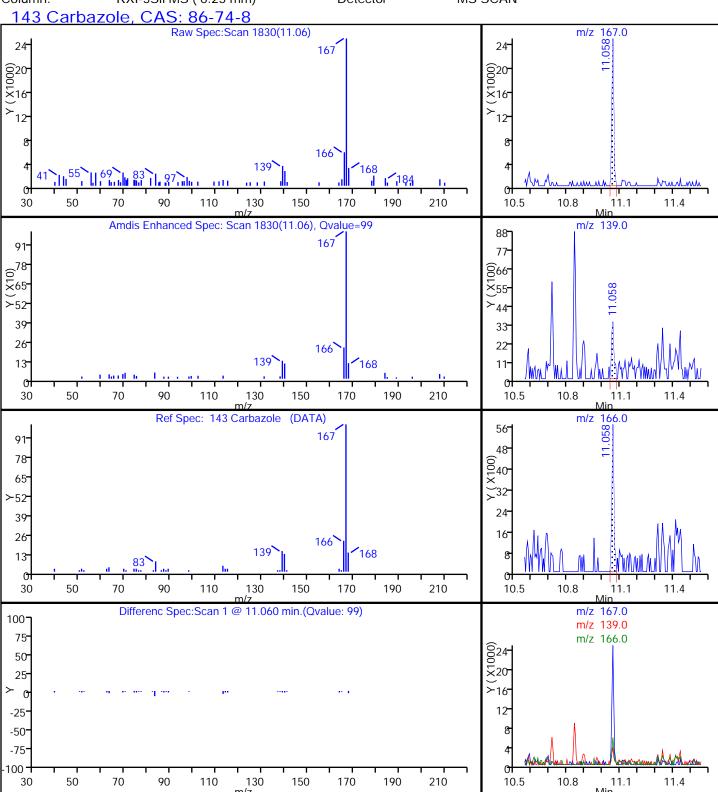
MB - 8270D ICAL Method: X-8270 Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN 175 Benzo[k]fluoranthene, CAS: 207-08-9 Raw Spec:Scan 2397(14.09) m/z 252.0 18 252 672 672 36 253 24 250 12 0 30 150 190 230 270 310 350 13.5 13.8 14.1 14.4 Amdis Enhanced Spec: Scan 2397(14.09), Qvalue=98 m/z 253.0 42 14.066 252 (36 0001× )24 °<sup>78</sup> <del>×</del>65 ≻52 18 39 12 253 26 250 13 126 248 0 350 30 70 110 150 190 230 270 310 13.5 13.8 14.1 14.4 Ref Spec: 175 Benzo[k]fluoranthene (DATA) m/z 125.0 18 252 91 0015 ×12 78 65 ≻52 39 253 250 26 13 0 0 350 30 70 110 150 190 230 270 310 13.5 13.8 14.1 14.4 Differenc Spec:Scan 1 @ 14.070 min.(Qvalue: 98) m/z 252.0 100 m/z 253.0 75 m/z 125.0 (00018 X15 50 25 -25 -50 -75 100 13.8 70 150 190 230 350 13.5 30 110 270 310 14.1 14.4

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D

 Injection Date:
 13-Oct-2017 08:02:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-2-A
 Lab Sample ID:
 480-125579-2

Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 1.0 ul Dil. Factor: 5.0000

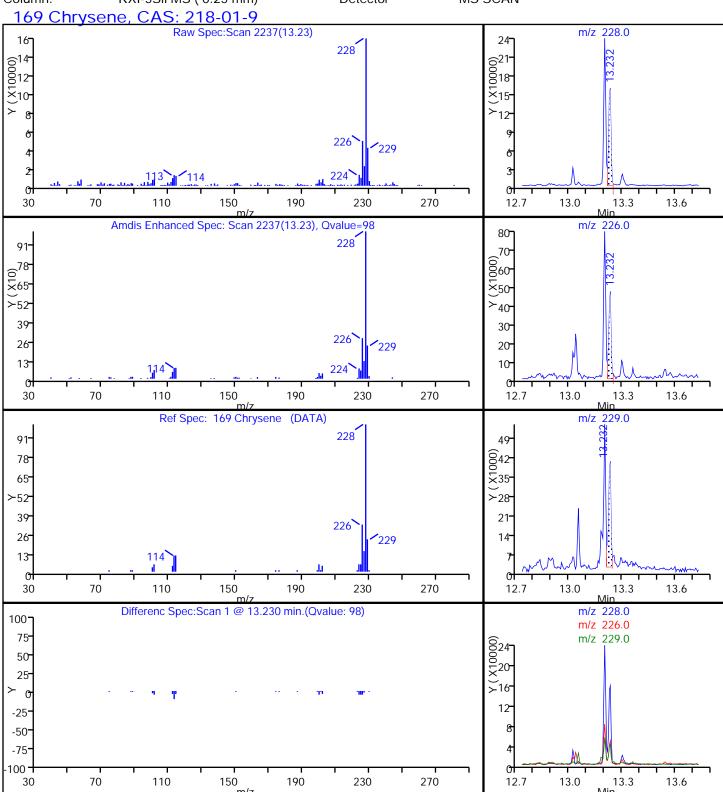
Method: X-8270 Limit Group: MB - 8270D ICAL



TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D

 Injection Date:
 13-Oct-2017 08:02:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-2-A
 Lab Sample ID:
 480-125579-2

Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 1.0 ul Dil. Factor: 5.0000

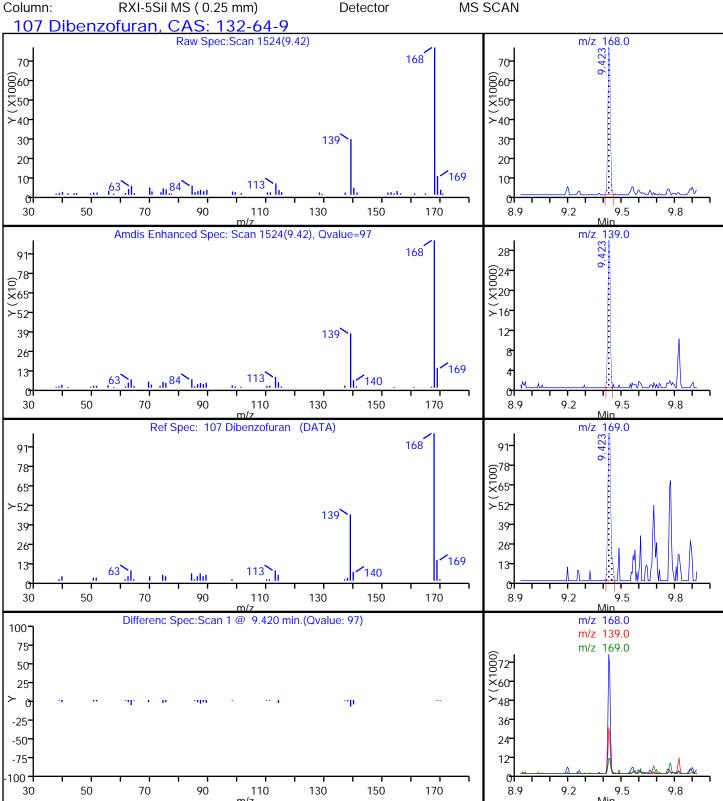
Method: X-8270 Limit Group: MB - 8270D ICAL



TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D

 Injection Date:
 13-Oct-2017 08:02:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-2-A
 Lab Sample ID:
 480-125579-2

Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 1.0 ul Dil. Factor: 5.0000

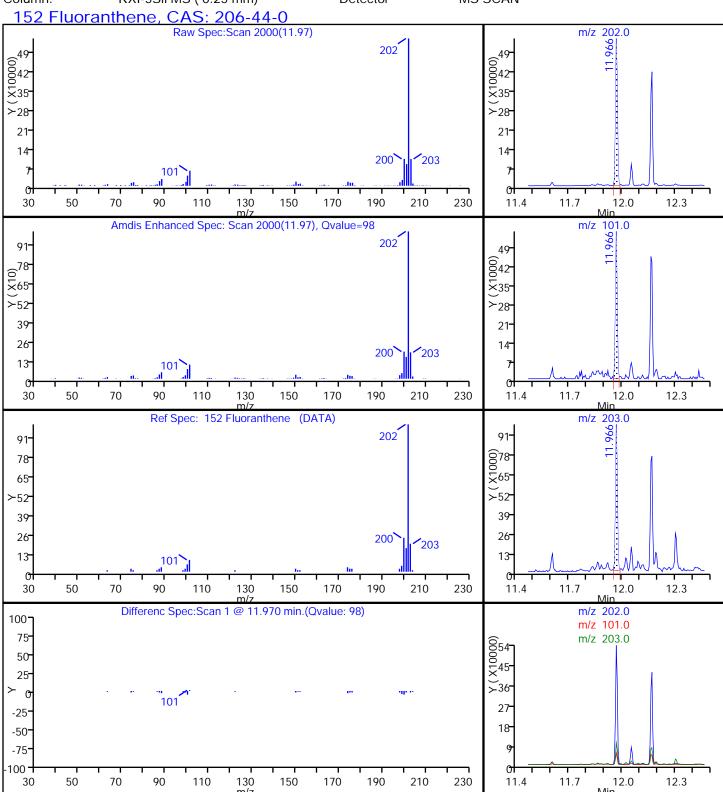
Method: X-8270 Limit Group: MB - 8270D ICAL



TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D

 Injection Date:
 13-Oct-2017 08:02:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-2-A
 Lab Sample ID:
 480-125579-2

Client ID: MW-8 (13-14)

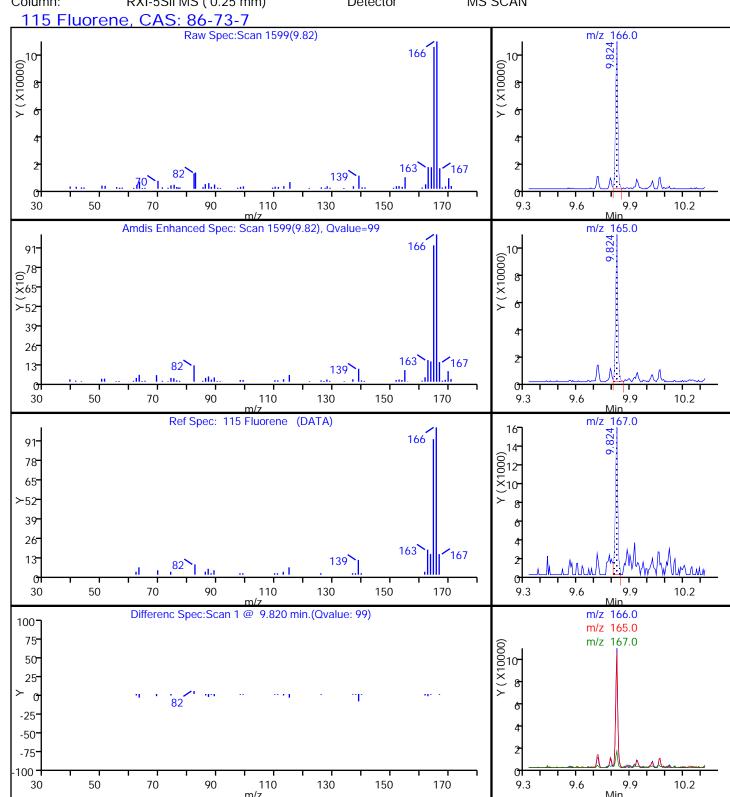
Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 1.0 ul Dil. Factor: 5.0000

Method: X-8270 Limit Group: MB - 8270D ICAL



TestAmerica Buffalo


Data File: Injection Date: 13-Oct-2017 08:02:30 Instrument ID: HP5973X Lims ID: 480-125579-E-2-A Lab Sample ID: 480-125579-2

Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 1.0 ul Dil. Factor: 5.0000

X-8270 Limit Group: MB - 8270D ICAL Method:



TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D Injection Date: 13-Oct-2017 08:02:30 Instrument ID: HP5973X Lims ID: 480-125579-E-2-A Lab Sample ID: 480-125579-2

Client ID: MW-8 (13-14)

100

30

70

110

150

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: Dil. Factor: 5.0000 1.0 ul

MB - 8270D ICAL Method: X-8270 Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN 180 Indeno[1,2,3-cd]pyrene, CAS: 193-39-5 Raw Spec:Scan 2614(15.25) m/z 276.0 276 63 <u>6</u>54 054 ×45 ×45 ≻<sub>36</sub>-≻<sub>36</sub>-27 27 18 18 138 207 0 30 70 150 190 230 270 310 350 14.7 15.0 15.3 15.6 Amdis Enhanced Spec: Scan 2614(15.25), Qvalue=97 m/z 138.0 276 (00010 X) 8 ි<sup>78</sup> <del>×</del>65 ≻52 39 26 138 13 0 190 30 70 110 150 230 270 310 350 14.7 15.0 15.3 15.6 15.246 Ref Spec: 180 Indeno[1,2,3-cd]pyrene (DATA m/z 18 276 91 (0015 X)12 78 65 ≻52 39 278 26 138 13 0 0 70 30 110 150 190 230 270 310 350 14.7 15.0 15.3 15.6 Differenc Spec:Scan 1 @ 15.240 min.(Qvalue: 97) m/z 276.0 100 m/z 138.0 75 m/z 277.0 0066 0066 50 25 -25 33 -50 22 -75 11

310

350

270

190

230

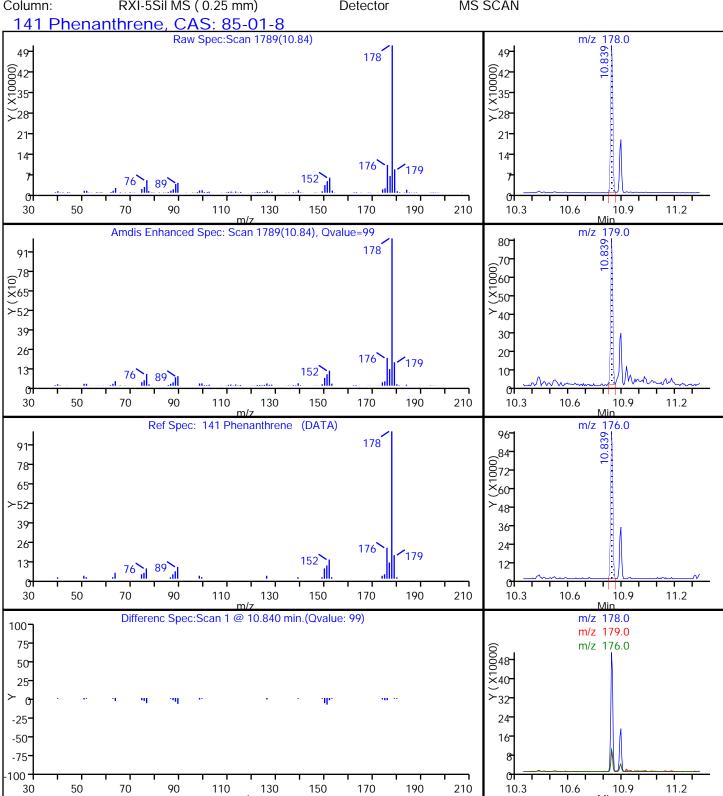
15.6

15.0

15.3

14.7

TestAmerica Buffalo


Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D **Injection Date:** 13-Oct-2017 08:02:30 Instrument ID: HP5973X Lims ID: 480-125579-E-2-A Lab Sample ID: 480-125579-2

Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

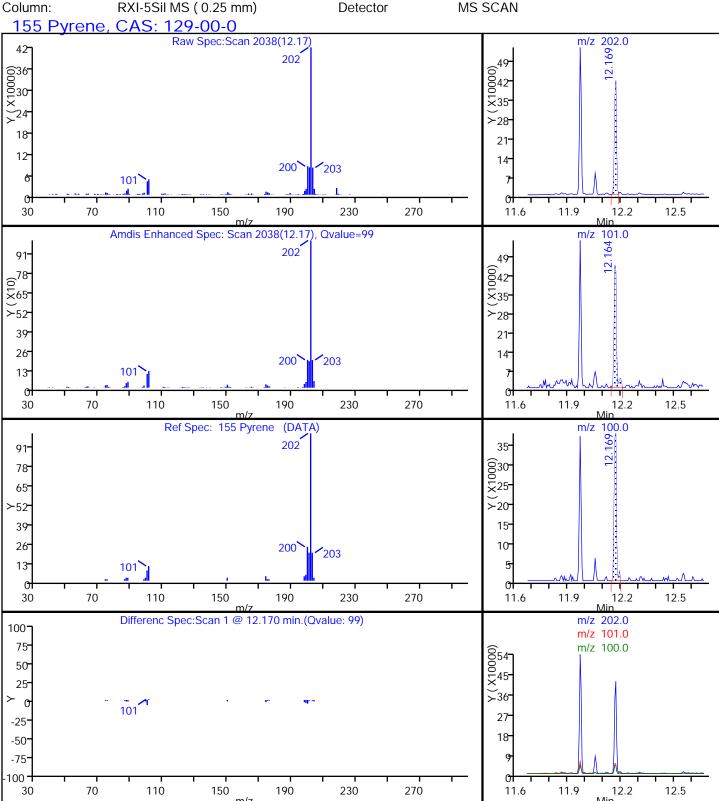
Injection Vol: Dil. Factor: 5.0000 1.0 ul

MB - 8270D ICAL Method: X-8270 Limit Group:



TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D **Injection Date:** 13-Oct-2017 08:02:30 Instrument ID: HP5973X Lims ID: 480-125579-E-2-A Lab Sample ID: 480-125579-2


Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Dil. Factor: Injection Vol: 1.0 ul 5.0000

MB - 8270D ICAL Method: X-8270 Limit Group:

Detector MS SCAN



Report Date: 13-Oct-2017 12:07:26 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

## TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D

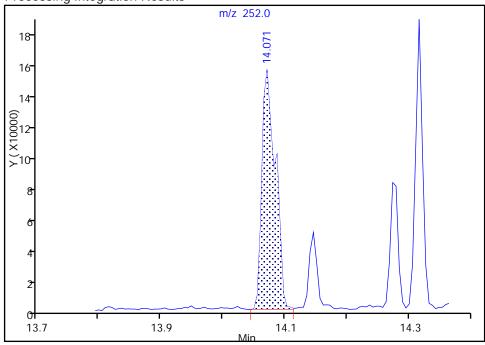
 Injection Date:
 13-Oct-2017 08:02:30
 Instrument ID:
 HP5973X

 Lims ID:
 480-125579-E-2-A
 Lab Sample ID:
 480-125579-2

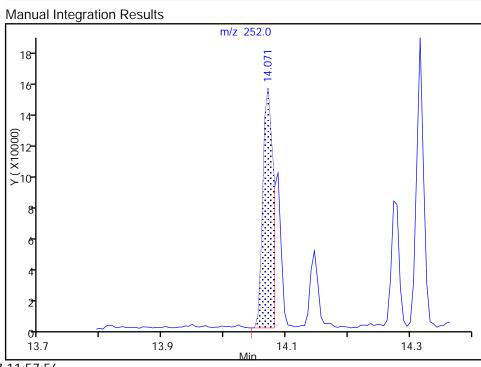
Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 1.0 ul Dil. Factor: 5.0000


Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN


# 174 Benzo[b]fluoranthene, CAS: 205-99-2

Signal: 1

RT: 14.07 Area: 224754 Amount: 10.593377 Amount Units: ng/uL Processing Integration Results



RT: 14.07 Area: 174401 Amount: 8.220078 Amount Units: ng/uL



Reviewer: richardsd, 13-Oct-2017 11:57:56

Audit Action: Split an Integrated Peak

Audit Reason: Split Peak

Page 374 of 914

Report Date: 13-Oct-2017 12:07:26 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

## TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D

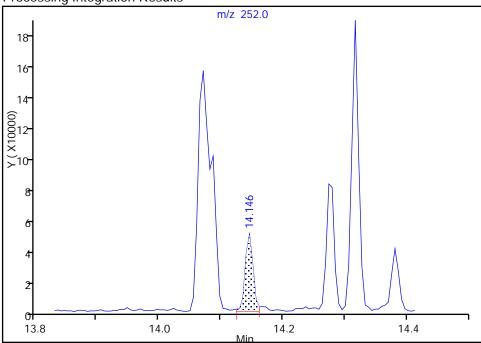
 Injection Date:
 13-Oct-2017 08:02:30
 Instrument ID:
 HP5973X

 Lims ID:
 480-125579-E-2-A
 Lab Sample ID:
 480-125579-2

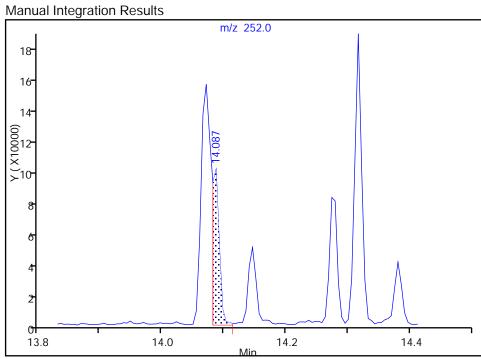
Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 1.0 ul Dil. Factor: 5.0000


Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN


# 175 Benzo[k]fluoranthene, CAS: 207-08-9

Signal: 1

RT: 14.15 Area: 43272 Amount: 1.909986 Amount Units: ng/uL **Processing Integration Results** 



RT: 14.09 Area: 78958 Amount: 3.485133 Amount Units: ng/uL



Reviewer: richardsd, 13-Oct-2017 11:57:58

Audit Action: Assigned Compound ID

Audit Reason: Split Peak

Page 375 of 914

Report Date: 13-Oct-2017 12:07:26 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20526.D

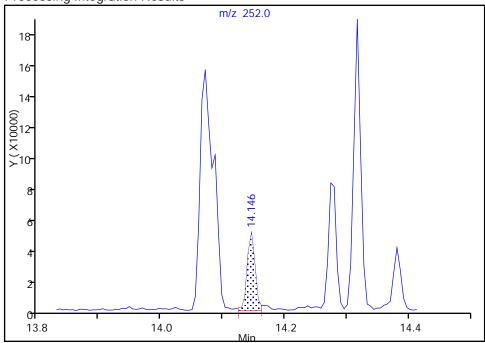
 Injection Date:
 13-Oct-2017 08:02:30
 Instrument ID:
 HP5973X

 Lims ID:
 480-125579-E-2-A
 Lab Sample ID:
 480-125579-2

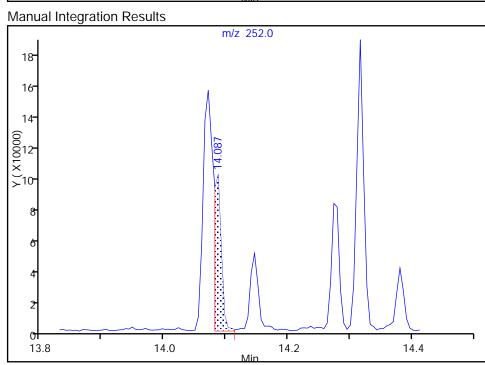
Client ID: MW-8 (13-14)

Operator ID: DR ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 1.0 ul Dil. Factor: 5.0000


Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN


# 175 Benzo[k]fluoranthene, CAS: 207-08-9

Signal: 1

RT: 14.15 Area: 43272 Amount: 1.909986 Amount Units: ng/uL Processing Integration Results



RT: 14.09 Area: 78958 Amount: 3.485133 Amount Units: ng/uL



Reviewer: richardsd, 13-Oct-2017 11:58:02 Audit Action: Split an Integrated Peak

Audit Reason: Split Peak

Page 376 of 914 10/24/2017

## FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: DUP-100817 Lab Sample ID: 480-125579-3

Matrix: Solid Lab File ID: X20527.D

Analysis Method: 8270D Date Collected: 10/08/2017 00:00

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.60(g) Date Analyzed: 10/13/2017 08:28

Con. Extract Vol.: 1(mL) Dilution Factor: 10

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 15.3 GPC Cleanup:(Y/N) N

Analysis Batch No.: 381534 Units: ug/Kg

| CAS NO.   | COMPOUND NAME               | RESULT | Q | RL    | MDL  |
|-----------|-----------------------------|--------|---|-------|------|
| 95-95-4   | 2,4,5-Trichlorophenol       | ND     |   | 2000  | 530  |
| 88-06-2   | 2,4,6-Trichlorophenol       | ND     |   | 2000  | 390  |
| 120-83-2  | 2,4-Dichlorophenol          | ND     |   | 2000  | 210  |
| 105-67-9  | 2,4-Dimethylphenol          | ND     |   | 2000  | 470  |
| 51-28-5   | 2,4-Dinitrophenol           | ND     |   | 19000 | 9100 |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     |   | 2000  | 410  |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     |   | 2000  | 230  |
| 91-58-7   | 2-Chloronaphthalene         | ND     |   | 2000  | 320  |
| 95-57-8   | 2-Chlorophenol              | ND     |   | 2000  | 360  |
| 91-57-6   | 2-Methylnaphthalene         | 620    | J | 2000  | 390  |
| 95-48-7   | 2-Methylphenol              | ND     |   | 2000  | 230  |
| 88-74-4   | 2-Nitroaniline              | ND     |   | 3800  | 290  |
| 88-75-5   | 2-Nitrophenol               | ND     |   | 2000  | 560  |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     |   | 3800  | 2300 |
| 99-09-2   | 3-Nitroaniline              | ND     |   | 3800  | 540  |
| 534-52-1  | 4,6-Dinitro-2-methylphenol  | ND     |   | 3800  | 2000 |
| 101-55-3  | 4-Bromophenyl phenyl ether  | ND     |   | 2000  | 280  |
| 59-50-7   | 4-Chloro-3-methylphenol     | ND     |   | 2000  | 490  |
| 106-47-8  | 4-Chloroaniline             | ND     |   | 2000  | 490  |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     |   | 2000  | 240  |
| 106-44-5  | 4-Methylphenol              | ND     |   | 3800  | 230  |
| 100-01-6  | 4-Nitroaniline              | ND     |   | 3800  | 1000 |
| 100-02-7  | 4-Nitrophenol               | ND     |   | 3800  | 1400 |
| 83-32-9   | Acenaphthene                | 810    | J | 2000  | 290  |
| 208-96-8  | Acenaphthylene              | 2700   |   | 2000  | 250  |
| 98-86-2   | Acetophenone                | ND     |   | 2000  | 270  |
| 120-12-7  | Anthracene                  | 5000   |   | 2000  | 490  |
| 1912-24-9 | Atrazine                    | ND     |   | 2000  | 680  |
| 100-52-7  | Benzaldehyde                | ND     |   | 2000  | 1600 |
| 56-55-3   | Benzo[a]anthracene          | 5800   |   | 2000  | 200  |
| 50-32-8   | Benzo[a]pyrene              | 4300   |   | 2000  | 290  |
| 205-99-2  | Benzo[b]fluoranthene        | 5000   |   | 2000  | 310  |
| 191-24-2  | Benzo[g,h,i]perylene        | 2100   |   | 2000  | 210  |
| 207-08-9  | Benzo[k]fluoranthene        | 2000   |   | 2000  | 250  |

## FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: DUP-100817 Lab Sample ID: 480-125579-3

Matrix: Solid Lab File ID: X20527.D

Analysis Method: 8270D Date Collected: 10/08/2017 00:00

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.60(g) Date Analyzed: 10/13/2017 08:28

Con. Extract Vol.: 1(mL) Dilution Factor: 10

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 15.3 GPC Cleanup:(Y/N) N

Analysis Batch No.: 381534 Units: ug/Kg

| CAS NO.  | COMPOUND NAME                 | RESULT | Q | RL   | MDL  |  |
|----------|-------------------------------|--------|---|------|------|--|
| 92-52-4  | Biphenyl                      | ND     |   | 2000 | 290  |  |
| 108-60-1 | bis (2-chloroisopropyl) ether | ND     |   | 2000 | 390  |  |
| 111-91-1 | Bis(2-chloroethoxy)methane    | ND     |   | 2000 | 420  |  |
| 111-44-4 | Bis(2-chloroethyl)ether       | ND     |   | 2000 | 250  |  |
| 117-81-7 | Bis(2-ethylhexyl) phthalate   | ND     |   | 2000 | 670  |  |
| 85-68-7  | Butyl benzyl phthalate        | ND     |   | 2000 | 320  |  |
| 105-60-2 | Caprolactam                   | ND     |   | 2000 | 590  |  |
| 86-74-8  | Carbazole                     | 630    | J | 2000 | 230  |  |
| 218-01-9 | Chrysene                      | 4200   |   | 2000 | 440  |  |
| 53-70-3  | Dibenz(a,h)anthracene         | ND     |   | 2000 | 350  |  |
| 132-64-9 | Dibenzofuran                  | 2500   |   | 2000 | 230  |  |
| 84-66-2  | Diethyl phthalate             | ND     |   | 2000 | 250  |  |
| 131-11-3 | Dimethyl phthalate            | ND     |   | 2000 | 230  |  |
| 84-74-2  | Di-n-butyl phthalate          | ND     |   | 2000 | 340  |  |
| 117-84-0 | Di-n-octyl phthalate          | ND     |   | 2000 | 230  |  |
| 206-44-0 | Fluoranthene                  | 12000  |   | 2000 | 210  |  |
| 86-73-7  | Fluorene                      | 4300   |   | 2000 | 230  |  |
| 118-74-1 | Hexachlorobenzene             | ND     |   | 2000 | 270  |  |
| 87-68-3  | Hexachlorobutadiene           | ND     |   | 2000 | 290  |  |
| 77-47-4  | Hexachlorocyclopentadiene     | ND     |   | 2000 | 270  |  |
| 67-72-1  | Hexachloroethane              | ND     |   | 2000 | 250  |  |
| 193-39-5 | Indeno[1,2,3-cd]pyrene        | 2300   |   | 2000 | 240  |  |
| 78-59-1  | Isophorone                    | ND     |   | 2000 | 420  |  |
| 91-20-3  | Naphthalene                   | 330    | J | 2000 | 250  |  |
| 98-95-3  | Nitrobenzene                  | ND     |   | 2000 | 220  |  |
| 621-64-7 | N-Nitrosodi-n-propylamine     | ND     |   | 2000 | 340  |  |
| 86-30-6  | N-Nitrosodiphenylamine        | ND     |   | 2000 | 1600 |  |
| 87-86-5  | Pentachlorophenol             | ND     |   | 3800 | 2000 |  |
| 85-01-8  | Phenanthrene                  | 14000  |   | 2000 | 290  |  |
| 108-95-2 | Phenol                        | ND     |   | 2000 | 300  |  |
| 129-00-0 | Pyrene                        | 9000   |   | 2000 | 230  |  |

# FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: DUP-100817 Lab Sample ID: 480-125579-3

Matrix: Solid Lab File ID: X20527.D

Analysis Method: 8270D Date Collected: 10/08/2017 00:00

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.60(g) Date Analyzed: 10/13/2017 08:28

Con. Extract Vol.: 1(mL) Dilution Factor: 10

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 15.3 GPC Cleanup:(Y/N) N

Analysis Batch No.: 381534 Units: ug/Kg

| CAS NO.   | SURROGATE            | %REC | Q | LIMITS |
|-----------|----------------------|------|---|--------|
| 118-79-6  | 2,4,6-Tribromophenol | 119  |   | 54-120 |
| 321-60-8  | 2-Fluorobiphenyl     | 87   |   | 60-120 |
| 367-12-4  | 2-Fluorophenol       | 72   |   | 52-120 |
| 4165-60-0 | Nitrobenzene-d5      | 78   |   | 53-120 |
| 4165-62-2 | Phenol-d5            | 59   |   | 54-120 |
| 1718-51-0 | p-Terphenyl-d14      | 95   |   | 65-121 |

TestAmerica Buffalo

Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D

Lims ID: 480-125579-E-3-A Client ID: DUP-100817

Sample Type: Client

Inject. Date: 13-Oct-2017 08:28:30 ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: 1.0 ul Dil. Factor: 10.0000

Sample Info: 480-0066346-021

Operator ID: DR Instrument ID: HP5973X

Method: \ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X-8270.m

Limit Group: MB - 8270D ICAL

Last Update:13-Oct-2017 12:06:35Calib Date:29-Sep-2017 21:44:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK013

First Level Reviewer: richardsd Date: 13-Oct-2017 12:00:16

| First Level Reviewer: richardsd |     | Date:        |                  | 13-001-2017 12:00:16 |    |             |                    |       |
|---------------------------------|-----|--------------|------------------|----------------------|----|-------------|--------------------|-------|
| Compound                        | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.)     | Q  | Response    | OnCol Amt<br>ng/uL | Flags |
| Compound                        | Oig | (111111.)    | (1111111)        | (111111.)            |    | response    | Hgraz              | riugs |
| * 1 1,4-Dichlorobenzene-d4      | 152 | 5.561        | 5.572            | -0.011               | 94 | 115868      | 40.0               |       |
| * 2 Naphthalene-d8              | 136 | 7.110        | 7.115            | -0.005               | 99 | 330471      | 40.0               |       |
| * 3 Acenaphthene-d10            | 164 | 9.183        | 9.183            | 0.000                | 96 | 287555      | 40.0               |       |
| * 4 Phenanthrene-d10            | 188 | 10.818       | 10.818           | 0.000                | 99 | 599520      | 40.0               |       |
| * 5 Chrysene-d12                | 240 | 13.211       | 13.211           | 0.000                | 99 | 706315      | 40.0               |       |
| * 6 Perylene-d12                | 264 | 14.360       | 14.365           | -0.005               | 99 | 656665      | 40.0               |       |
| \$ 7 2-Fluorophenol             | 112 | 3.836        | 3.835            | 0.001                | 96 | 11160       | 2.86               |       |
| \$ 8 Phenol-d5                  | 99  | 5.134        | 5.150            | -0.016               | 92 | 11353       | 2.34               |       |
| \$ 9 Nitrobenzene-d5            | 82  | 6.250        | 6.261            | -0.011               | 96 | 10914       | 3.12               |       |
| \$ 10 2-Fluorobiphenyl          | 172 | 8.403        | 8.408            | -0.005               | 98 | 41234       | 3.47               |       |
| \$ 11 2,4,6-Tribromophenol      | 330 | 10.091       | 10.091           | 0.000                | 48 | 5046        | 4.74               |       |
| \$ 12 p-Terphenyl-d14           | 244 | 12.314       | 12.313           | 0.001                | 99 | 51690       | 3.80               |       |
| 27 Benzaldehyde                 | 77  |              | 5.011            |                      |    | I           | ND                 |       |
| 28 Phenol                       | 94  |              | 5.166            |                      |    | I           |                    |       |
| 31 Bis(2-chloroethyl)ether      | 93  |              | 5.256            |                      |    | ĺ           |                    |       |
| 32 2-Chlorophenol               | 128 |              | 5.310            |                      |    | ND          |                    |       |
| 40 2-Methylphenol               | 108 |              | 5.924            |                      |    | ND          |                    |       |
| 42 2,2'-oxybis[1-chloropropan   | 45  |              | 5.940            |                      |    | ND          |                    |       |
| 45 Acetophenone                 | 105 |              | 6.084            |                      |    |             |                    |       |
| 47 N-Nitrosodi-n-propylamine    | 70  |              | 6.100            |                      |    |             |                    |       |
| 46 4-Methylphenol               | 108 |              | 6.122            |                      |    |             |                    |       |
| 50 Hexachloroethane             | 117 |              | 6.197            |                      |    |             |                    |       |
| 52 Nitrobenzene                 | 77  |              | 6.282            |                      |    |             |                    |       |
| 56 Isophorone                   | 82  |              | 6.581            |                      |    |             |                    |       |
| 58 2-Nitrophenol                | 139 |              | 6.672            |                      |    |             |                    |       |
| 59 2,4-Dimethylphenol           | 107 |              | 6.758            |                      |    |             |                    |       |
| 62 Bis(2-chloroethoxy)methane   | 93  |              | 6.859            |                      |    |             |                    |       |
| 65 2,4-Dichlorophenol           | 162 |              | 6.966            |                      |    | ND          |                    |       |
| 69 Naphthalene                  | 128 | 7.137        | 7.142            | -0.005               | 96 | 7370 0.8479 |                    |       |
| 71 4-Chloroaniline              | 127 |              | 7.228            |                      |    | I           |                    |       |
| 73 Hexachlorobutadiene          | 225 |              | 7.313            |                      |    | I           |                    |       |
| 78 Caprolactam                  | 113 |              | 7.644            |                      |    | l           | ND                 |       |
|                                 |     |              |                  |                      |    |             |                    |       |

Page 380 of 914

Report Date: 13-Oct-2017 12:07:23

|   | Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D |     |        |        |        |     |          |            |       |
|---|--------------------------------------------------------------------------|-----|--------|--------|--------|-----|----------|------------|-------|
| ſ |                                                                          |     | RT     | Adj RT | Dlt RT |     |          | OnCol Amt  |       |
| l | Compound                                                                 | Sig | (min.) | (min.) | (min.) | Q   | Response | ng/uL      | Flags |
|   |                                                                          |     |        |        |        |     |          |            |       |
|   | 79 4-Chloro-3-methylphenol                                               | 107 |        | 7.826  |        |     |          | ND         |       |
|   | 82 2-Methylnaphthalene                                                   | 142 | 7.960  | 7.965  | -0.005 | 95  | 9597     | 1.61       |       |
|   | 84 Hexachlorocyclopentadiene                                             | 237 |        | 8.168  |        |     |          | ND         |       |
|   | 86 2,4,6-Trichlorophenol                                                 | 196 |        | 8.312  |        |     |          | ND         |       |
|   | 87 2,4,5-Trichlorophenol                                                 | 196 |        | 8.355  |        |     |          | ND         |       |
|   | 90 1,1'-Biphenyl                                                         | 154 | 8.515  | 8.520  | -0.005 | 95  | 8299     | 0.6637     |       |
|   | 91 2-Chloronaphthalene                                                   | 162 |        | 8.531  |        |     |          | ND         |       |
|   | 93 2-Nitroaniline                                                        | 65  |        | 8.665  |        |     |          | ND         |       |
|   | 96 Dimethyl phthalate                                                    | 163 |        | 8.900  |        |     |          | ND         |       |
|   | 99 2,6-Dinitrotoluene                                                    | 165 | 0.040  | 8.959  | 0.000  | 00  |          | ND         |       |
|   | 100 Acenaphthylene                                                       | 152 | 9.012  | 9.012  | 0.000  | 99  | 99182    | 7.01       |       |
|   | 101 3-Nitroaniline                                                       | 138 | 0.045  | 9.146  | 0.005  | 0.5 |          | ND         |       |
|   | 102 Acenaphthene                                                         | 153 | 9.215  | 9.220  | -0.005 | 95  | 20080    | 2.10       |       |
|   | 103 2,4-Dinitrophenol                                                    | 184 |        | 9.268  |        |     |          | ND         |       |
|   | 104 4-Nitrophenol                                                        | 109 |        | 9.381  |        |     |          | ND         |       |
|   | 106 2,4-Dinitrotoluene                                                   | 165 | 0.400  | 9.423  | 0.000  | 07  |          | ND ( ( )   |       |
|   | 107 Dibenzofuran                                                         | 168 | 9.423  | 9.423  | 0.000  | 97  | 95612    | 6.60       |       |
|   | 112 Diethyl phthalate                                                    | 149 | 0.010  | 9.728  | 0.000  | 00  |          | ND         |       |
|   | 115 Fluorene                                                             | 166 | 9.819  | 9.819  | 0.000  | 99  | 124111   | 11.1       |       |
|   | 116 4-Chlorophenyl phenyl ethe                                           | 204 |        | 9.835  |        |     |          | ND         |       |
|   | 118 4-Nitroaniline                                                       | 138 |        | 9.856  |        |     |          | ND         |       |
|   | 119 4,6-Dinitro-2-methylphenol                                           | 198 |        | 9.893  |        |     |          | ND         |       |
|   | 120 N-Nitrosodiphenylamine                                               | 169 |        | 9.968  |        |     |          | ND         |       |
|   | 130 4-Bromophenyl phenyl ether                                           | 248 |        | 10.364 |        |     |          | ND         |       |
|   | 131 Hexachlorobenzene                                                    | 284 |        | 10.428 |        |     |          | ND         |       |
|   | 133 Atrazine                                                             | 200 |        | 10.561 |        |     |          | ND         |       |
|   | 134 Pentachlorophenol                                                    | 266 | 10.020 | 10.636 | 0.000  | 00  |          | ND<br>ar o |       |
|   | 141 Phenanthrene                                                         | 178 | 10.839 | 10.839 | 0.000  | 99  | 579184   | 35.9       |       |
|   | 142 Anthracene                                                           | 178 | 10.893 | 10.892 | 0.001  | 99  | 212823   | 12.8       |       |
|   | 143 Carbazole                                                            | 167 | 11.058 | 11.058 | 0.000  | 99  | 24473    | 1.62       |       |
|   | 145 Di-n-butyl phthalate                                                 | 149 | 11.0// | 11.421 | 0.000  | 00  |          | ND         |       |
|   | 152 Fluoranthene                                                         | 202 | 11.966 | 11.966 | 0.000  | 98  | 565813   | 30.4       |       |
|   | 155 Pyrene                                                               | 202 | 12.169 | 12.169 | 0.000  | 99  | 466519   | 23.2       |       |
|   | 162 Butyl benzyl phthalate                                               | 149 |        | 12.741 |        |     |          | ND         |       |
|   | 166 3,3'-Dichlorobenzidine                                               | 252 | 10.000 | 13.184 | 0.000  | 0.4 |          | ND         |       |
|   | 167 Benzo[a]anthracene                                                   | 228 | 13.200 | 13.200 | 0.000  | 94  | 299351   | 15.1       |       |
|   | 172 Bis(2-ethylhexyl) phthalat                                           | 149 | 40.007 | 13.227 | 0.005  | 0.7 |          | ND         |       |
|   | 169 Chrysene                                                             | 228 | 13.227 | 13.232 | -0.005 | 97  | 214526   | 11.0       |       |
|   | 168 Di-n-octyl phthalate                                                 | 149 | 44074  | 13.751 | 0.000  | 00  |          | ND         | B 4   |
|   | 174 Benzo[b]fluoranthene                                                 | 252 | 14.071 | 14.071 | 0.000  | 99  | 271948   | 13.0       | M     |
|   | 175 Benzo[k]fluoranthene                                                 | 252 | 14.082 | 14.092 | -0.010 | 97  | 114066   | 5.10       | М     |
|   | 177 Benzo[a]pyrene                                                       | 252 | 14.317 | 14.317 | 0.000  | 99  | 212859   | 11.1       |       |
|   | 180 Indeno[1,2,3-cd]pyrene                                               | 276 | 15.247 | 15.252 | -0.005 | 97  | 119062   | 5.88       |       |
|   | 181 Dibenz(a,h)anthracene                                                | 278 | 4=     | 15.257 | 0.65=  | 0.5 |          | ND         |       |
|   | 182 Benzo[g,h,i]perylene                                                 | 276 | 15.498 | 15.503 | -0.005 | 99  | 97390    | 5.45       |       |
|   |                                                                          |     |        |        |        |     |          |            |       |

QC Flag Legend Review Flags

M - Manually Integrated

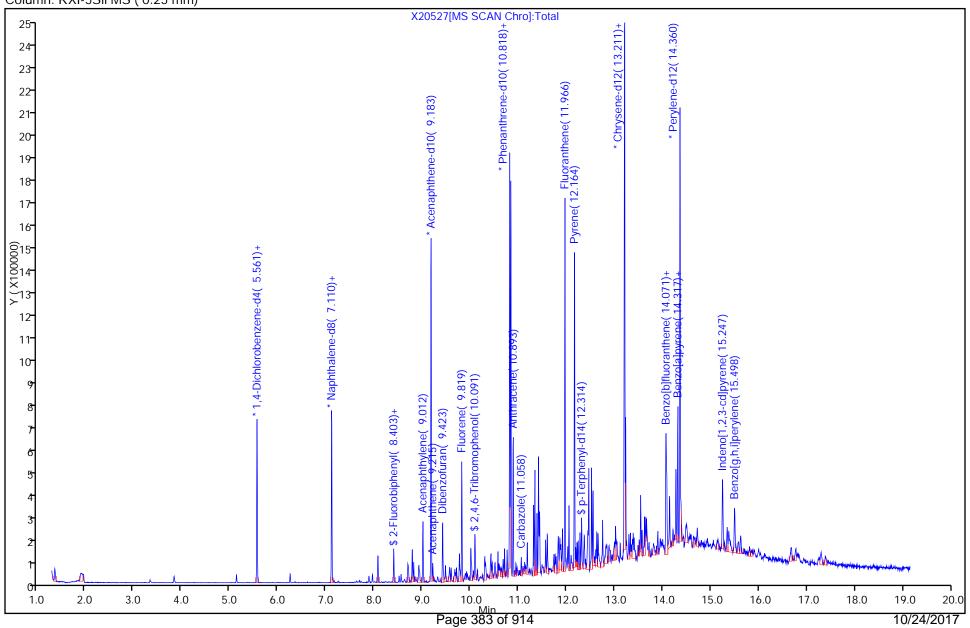
Reagents:

MB\_INTSTD\_STK\_00039 Amount Added: 20.00 Units: uL Run Reagent

TestAmerica Buffalo

 Data File:
 \ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D

 Injection Date:
 13-Oct-2017 08:28:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-3-A
 Lab Sample ID:
 480-125579-3

Client ID: DUP-100817

Injection Vol: 1.0 ul Dil. Factor: 10.0000 ALS Bottle#: 21

Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



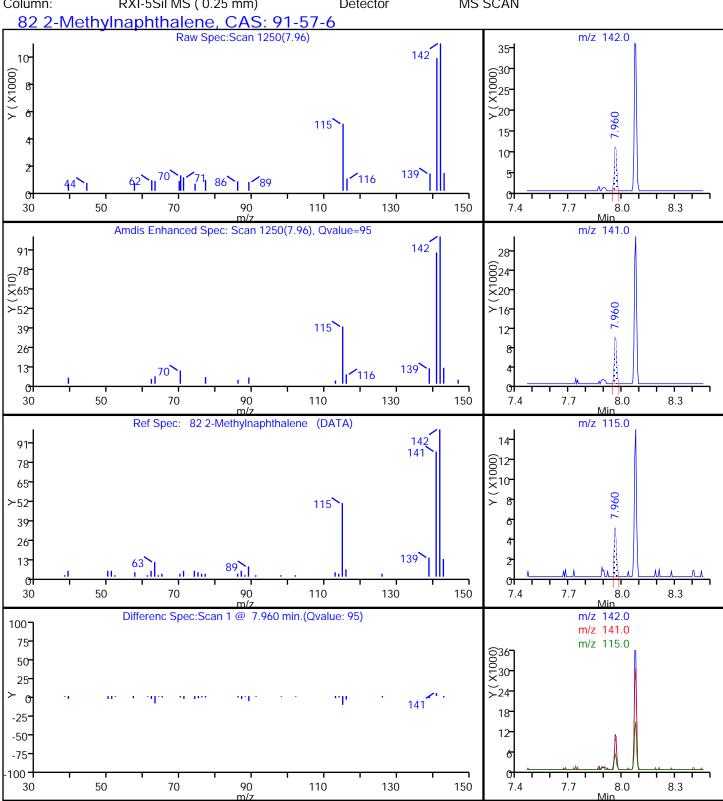
DR

21

Operator ID:

Worklist Smp#:

TestAmerica Buffalo


Data File: **Injection Date:** 13-Oct-2017 08:28:30 Instrument ID: HP5973X Lims ID: 480-125579-E-3-A Lab Sample ID: 480-125579-3

Client ID: DUP-100817

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: Dil. Factor: 1.0 ul 10.0000

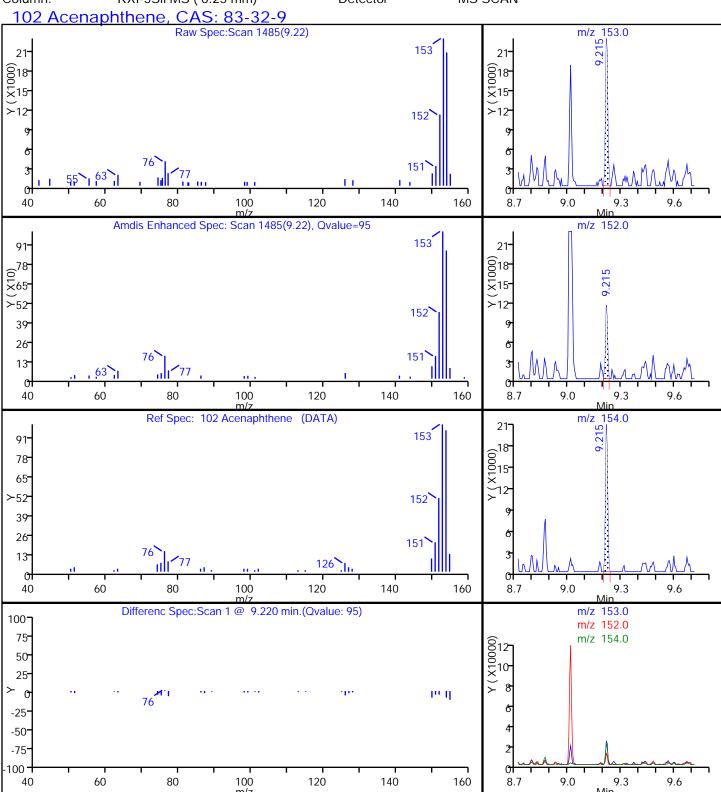
MB - 8270D ICAL Method: X-8270 Limit Group:



TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D

 Injection Date:
 13-Oct-2017 08:28:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-3-A
 Lab Sample ID:
 480-125579-3

Client ID: DUP-100817

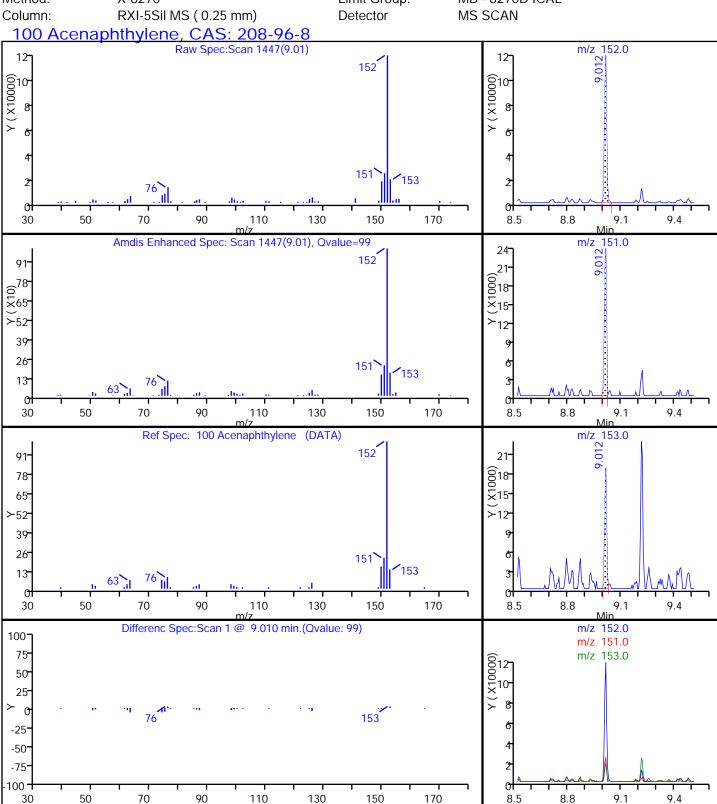
Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: 1.0 ul Dil. Factor: 10.0000

Method: X-8270 Limit Group: MB - 8270D ICAL



TestAmerica Buffalo


Data File: Injection Date: 13-Oct-2017 08:28:30 Instrument ID: HP5973X Lims ID: 480-125579-E-3-A Lab Sample ID: 480-125579-3

Client ID: DUP-100817

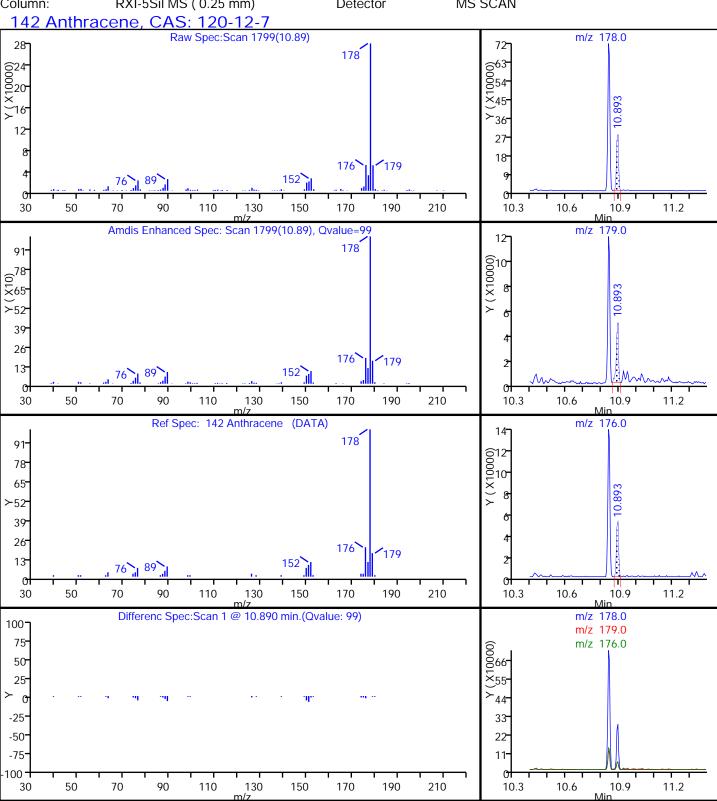
Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: Dil. Factor: 10.0000 1.0 ul

MB - 8270D ICAL Method: X-8270 Limit Group:



TestAmerica Buffalo


Data File: **Injection Date:** 13-Oct-2017 08:28:30 Instrument ID: HP5973X Lims ID: 480-125579-E-3-A Lab Sample ID: 480-125579-3

Client ID: DUP-100817

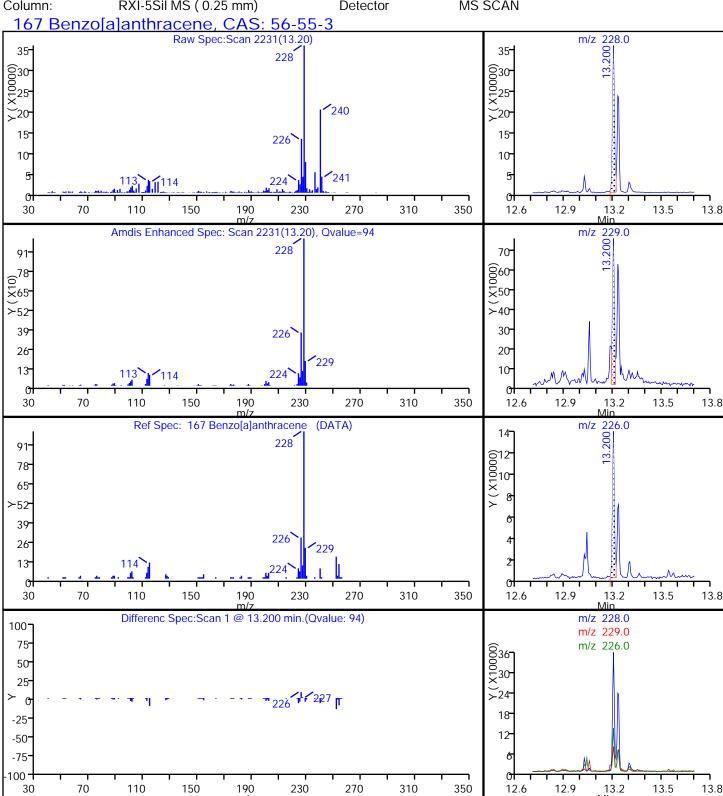
Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: Dil. Factor: 10.0000 1.0 ul

MB - 8270D ICAL Method: X-8270 Limit Group:



TestAmerica Buffalo


Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D **Injection Date:** 13-Oct-2017 08:28:30 Instrument ID: HP5973X Lims ID: 480-125579-E-3-A Lab Sample ID: 480-125579-3

Client ID: DUP-100817

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: Dil. Factor: 1.0 ul 10.0000

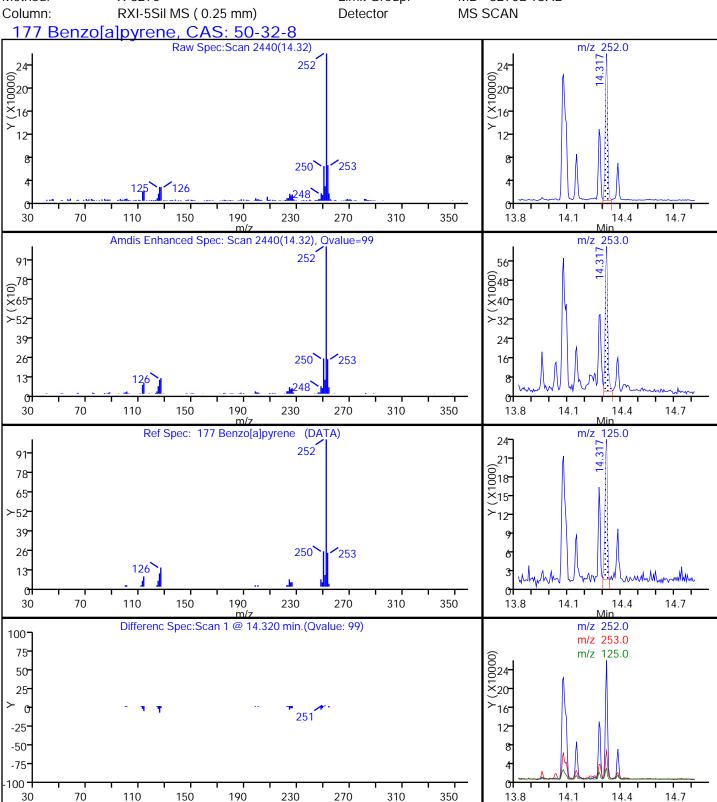
MB - 8270D ICAL Method: X-8270 Limit Group:



TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D

 Injection Date:
 13-Oct-2017 08:28:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-3-A
 Lab Sample ID:
 480-125579-3

Client ID: DUP-100817

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: 1.0 ul Dil. Factor: 10.0000

Method: X-8270 Limit Group: MB - 8270D ICAL



TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D

 Injection Date:
 13-Oct-2017 08:28:30
 Instrument ID:
 HP5973X

 Lims ID:
 480-125579-E-3-A
 Lab Sample ID:
 480-125579-3

Client ID: DUP-100817

-50 -75 100

30

70

110

150

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: 1.0 ul Dil. Factor: 10.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN 174 Benzo[b]fluoranthene, CAS: 205-99-2 Raw Spec:Scan 2394(14.07) m/z 252.0 21 252 (00001X) 12-253 250 0 30 70 110 150 190 230 270 310 350 13.5 13.8 14.1 14.4 Amdis Enhanced Spec: Scan 2394(14.07), Qvalue=99 m/z 253.0 252 91 56 ° 78 <u>648</u> <del>×</del>65 <del>×</del>40 >32 ≻52 39 24 250 **2**53 26 16 13 0 190 30 70 110 150 230 270 310 350 13.5 13.8 14.1 14.4 Ref Spec: 174 Benzo[b]fluoranthene (DATA) m/z 125.0 24 252 91 (0) 18 ×15 78 65<del>-</del> **≻**52 39 250 26 253 13 126 0 0 190 30 70 110 150 230 270 310 350 13.5 13.8 14.1 14.4 Differenc Spec:Scan 1 @ 14.070 min.(Qvalue: 99) m/z 252.0 100 m/z 253.0 75 m/z 125.0 50 25 125 -25

310

350

270

190

230

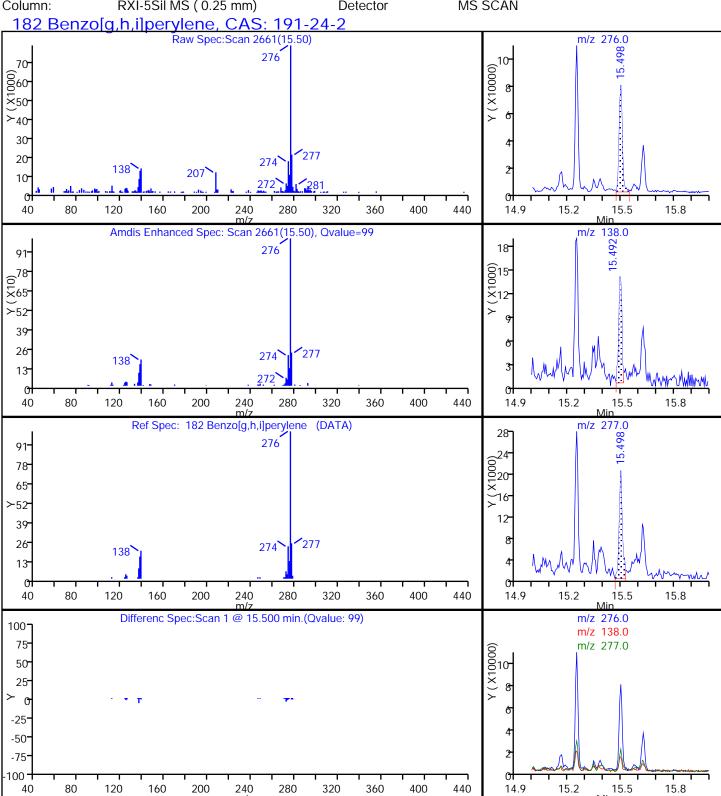
14.4

13.8

14.1

13.5

TestAmerica Buffalo


Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D **Injection Date:** 13-Oct-2017 08:28:30 Instrument ID: HP5973X Lims ID: 480-125579-E-3-A Lab Sample ID: 480-125579-3

Client ID: DUP-100817

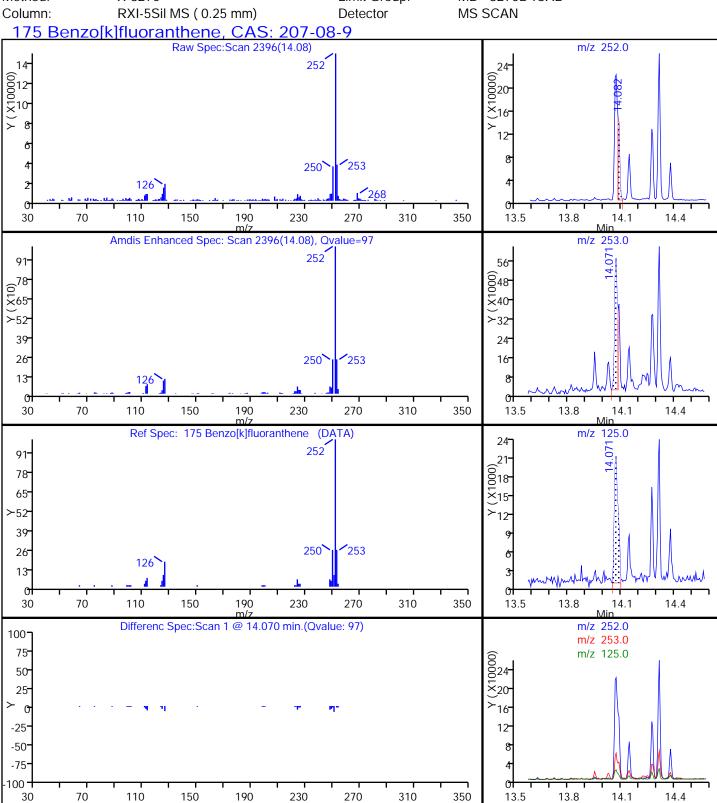
Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Dil. Factor: Injection Vol: 1.0 ul 10.0000

MB - 8270D ICAL Method: X-8270 Limit Group:



TestAmerica Buffalo


Data File: **Injection Date:** 13-Oct-2017 08:28:30 Instrument ID: HP5973X Lims ID: 480-125579-E-3-A Lab Sample ID: 480-125579-3

Client ID: DUP-100817

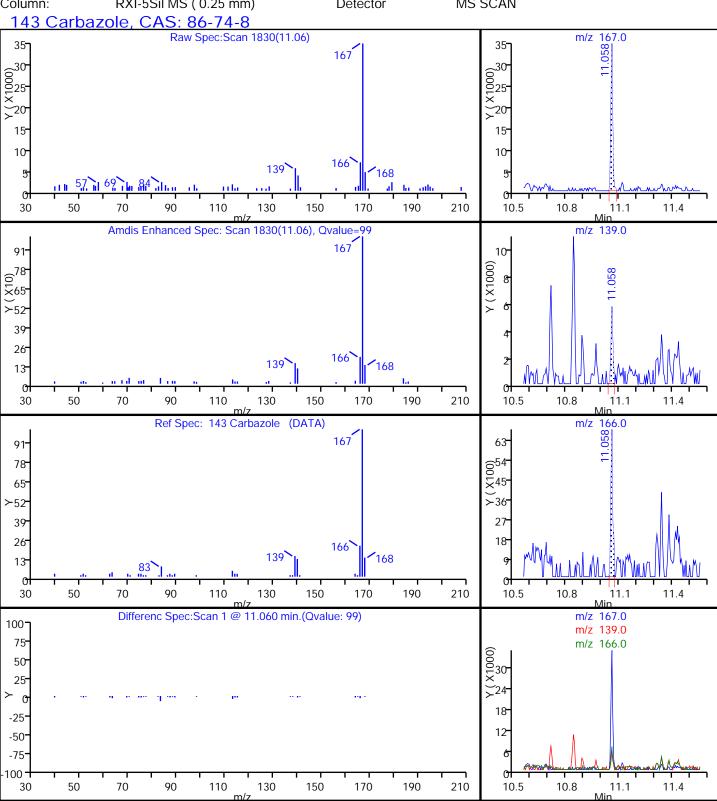
Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: Dil. Factor: 1.0 ul 10.0000

MB - 8270D ICAL Method: X-8270 Limit Group:



TestAmerica Buffalo


Data File: Injection Date: 13-Oct-2017 08:28:30 Instrument ID: HP5973X Lims ID: 480-125579-E-3-A Lab Sample ID: 480-125579-3

Client ID: DUP-100817

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: Dil. Factor: 10.0000 1.0 ul

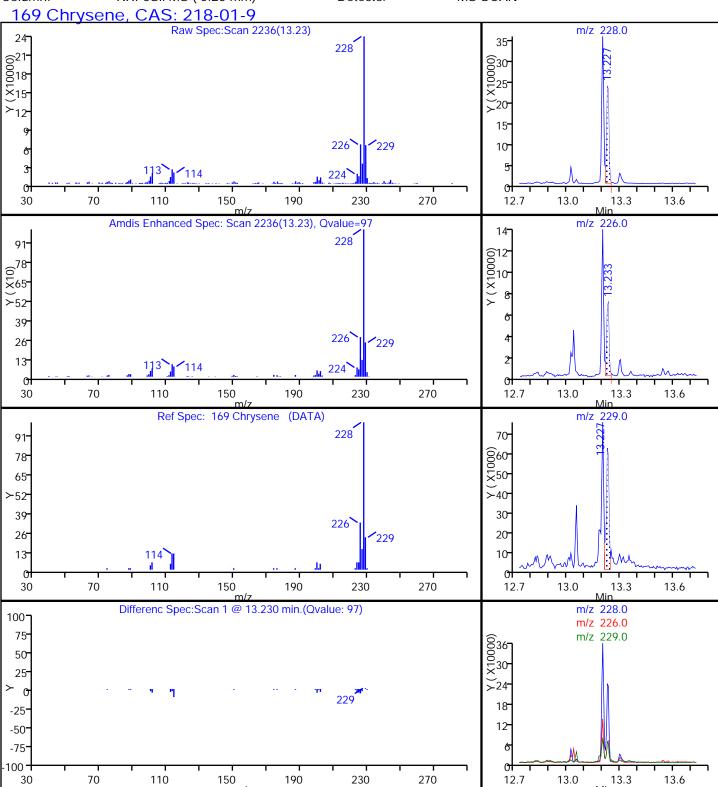
MB - 8270D ICAL Method: X-8270 Limit Group:



TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D

 Injection Date:
 13-Oct-2017 08:28:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-3-A
 Lab Sample ID:
 480-125579-3

Client ID: DUP-100817

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: 1.0 ul Dil. Factor: 10.0000

Method: X-8270 Limit Group: MB - 8270D ICAL



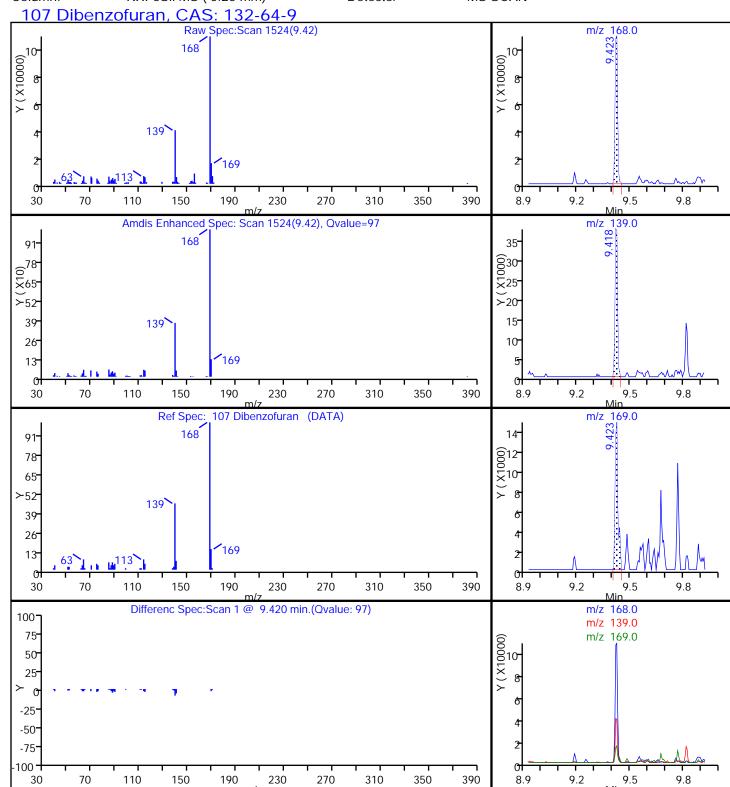
Report Date: 13-Oct-2017 12:07:23 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D

 Injection Date:
 13-Oct-2017 08:28:30
 Instrument ID:
 HP5973X

 Lims ID:
 480-125579-E-3-A
 Lab Sample ID:
 480-125579-3


Client ID: DUP-100817

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: 1.0 ul Dil. Factor: 10.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

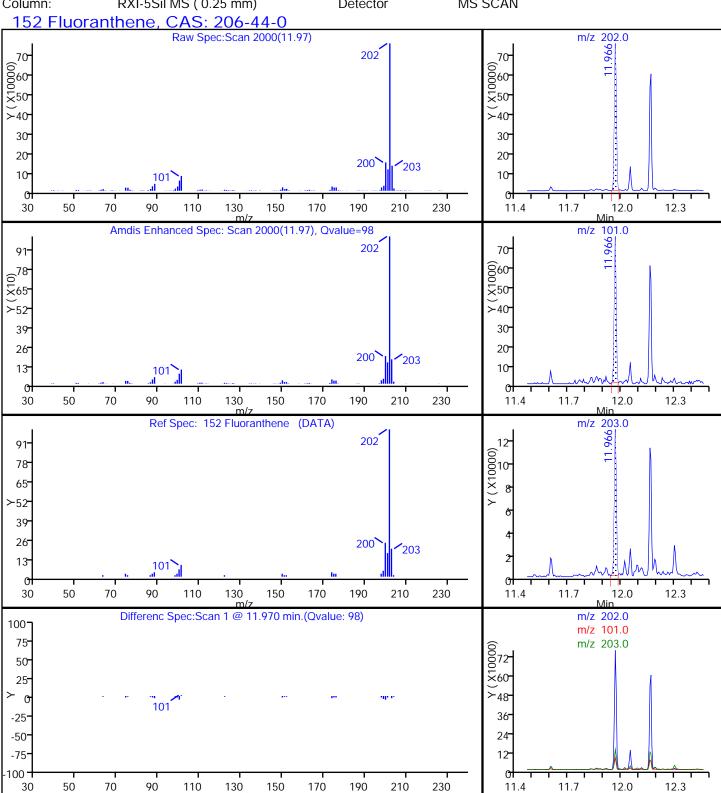
Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN



Report Date: 13-Oct-2017 12:07:24 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: **Injection Date:** 13-Oct-2017 08:28:30 Instrument ID: HP5973X Lims ID: 480-125579-E-3-A Lab Sample ID: 480-125579-3


Client ID: DUP-100817

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: Dil. Factor: 1.0 ul 10.0000

MB - 8270D ICAL Method: X-8270 Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN



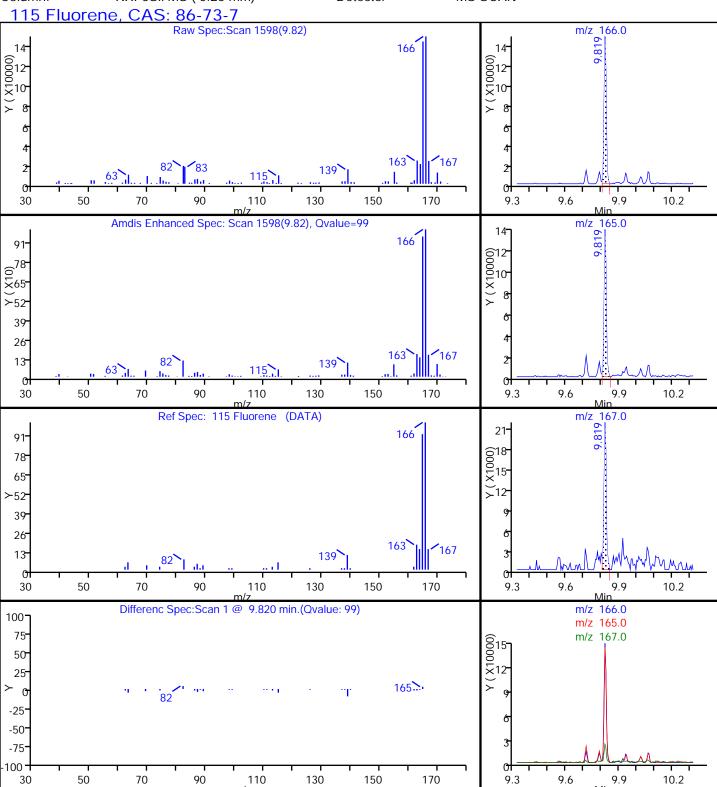
Report Date: 13-Oct-2017 12:07:23 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D

 Injection Date:
 13-Oct-2017 08:28:30
 Instrument ID:
 HP5973X

 Lims ID:
 480-125579-E-3-A
 Lab Sample ID:
 480-125579-3


Client ID: DUP-100817

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: 1.0 ul Dil. Factor: 10.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN

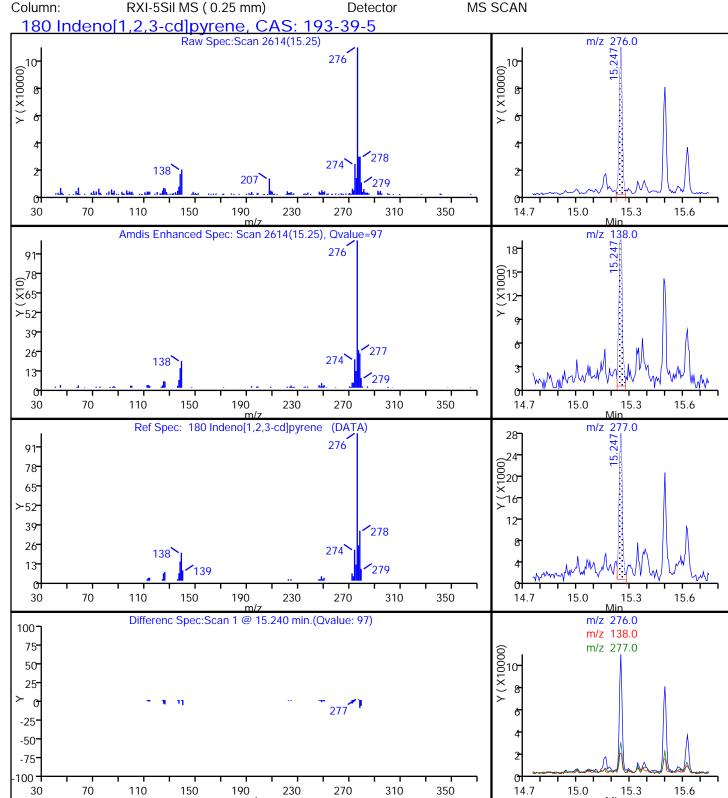


Report Date: 13-Oct-2017 12:07:24 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D

 Injection Date:
 13-Oct-2017 08:28:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-3-A
 Lab Sample ID:
 480-125579-3

Client ID: DUP-100817

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: 1.0 ul Dil. Factor: 10.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

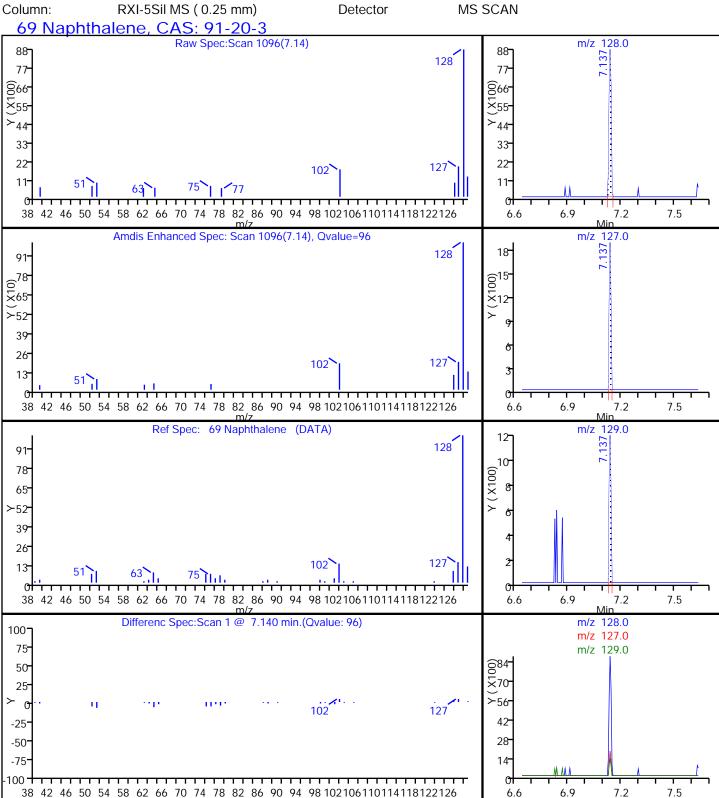


Report Date: 13-Oct-2017 12:07:23 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D

 Injection Date:
 13-Oct-2017 08:28:30
 Instrument ID:
 HP5973X


 Lims ID:
 480-125579-E-3-A
 Lab Sample ID:
 480-125579-3

Client ID: DUP-100817

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: 1.0 ul Dil. Factor: 10.0000

Method: X-8270 Limit Group: MB - 8270D ICAL



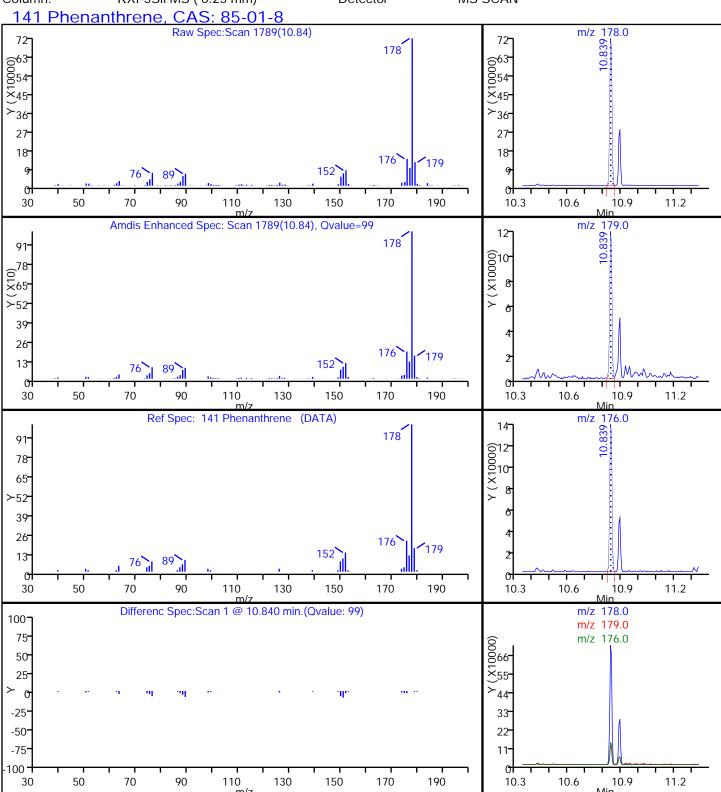
Report Date: 13-Oct-2017 12:07:24 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D

 Injection Date:
 13-Oct-2017 08:28:30
 Instrument ID:
 HP5973X

 Lims ID:
 480-125579-E-3-A
 Lab Sample ID:
 480-125579-3


Client ID: DUP-100817

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: 1.0 ul Dil. Factor: 10.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

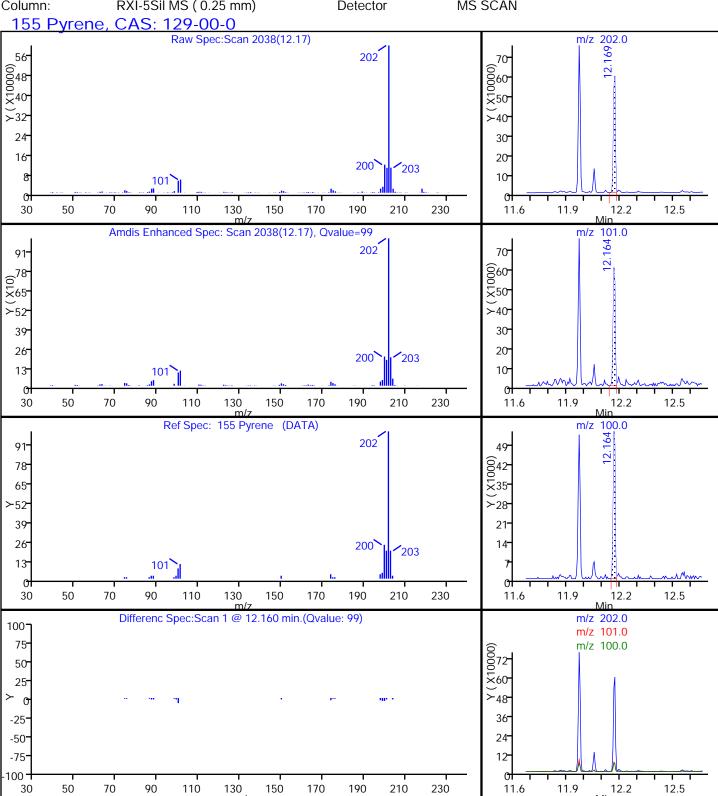
Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN



Report Date: 13-Oct-2017 12:07:24 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: **Injection Date:** 13-Oct-2017 08:28:30 Instrument ID: HP5973X Lims ID: 480-125579-E-3-A Lab Sample ID: 480-125579-3


Client ID: DUP-100817

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Dil. Factor: Injection Vol: 1.0 ul 10.0000

MB - 8270D ICAL Method: X-8270 Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN



Report Date: 13-Oct-2017 12:07:24 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

### TestAmerica Buffalo

 Data File:
 \ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D

 Injection Date:
 13-Oct-2017 08:28:30
 Instrument ID:
 HP5973X

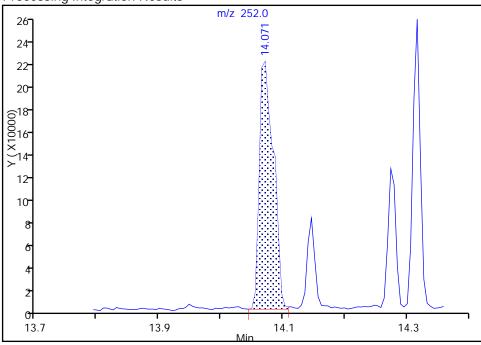
 Lims ID:
 480-125579-E-3-A
 Lab Sample ID:
 480-125579-3

Client ID: DUP-100817

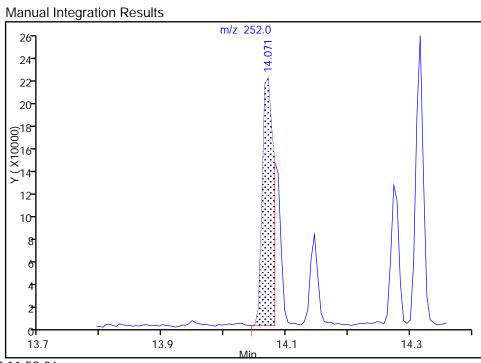
Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: 1.0 ul Dil. Factor: 10.0000

Method: X-8270 Limit Group: MB - 8270D ICAL


Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN

### 174 Benzo[b]fluoranthene, CAS: 205-99-2


Signal: 1

RT: 14.07 Area: 340586 Amount: 16.275737 Amount Units: ng/uL





RT: 14.07 Area: 271948 Amount: 12.995702 Amount Units: ng/uL



Reviewer: richardsd, 13-Oct-2017 11:58:36

Audit Action: Split an Integrated Peak

Audit Reason: Split Peak

Page 402 of 914

Report Date: 13-Oct-2017 12:07:24 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

### TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D

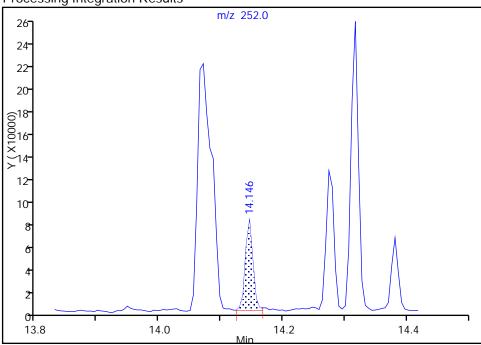
 Injection Date:
 13-Oct-2017 08:28:30
 Instrument ID:
 HP5973X

 Lims ID:
 480-125579-E-3-A
 Lab Sample ID:
 480-125579-3

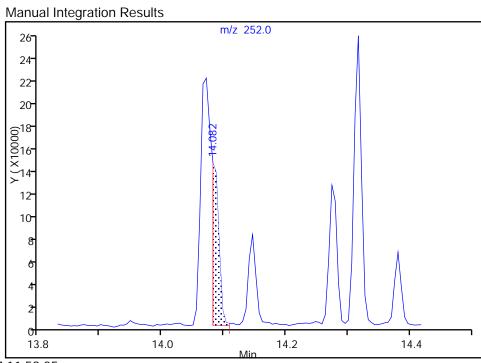
Client ID: DUP-100817

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: 1.0 ul Dil. Factor: 10.0000


Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN


### 175 Benzo[k]fluoranthene, CAS: 207-08-9

Signal: 1

RT: 14.15 Area: 67231 Amount: 3.008705 Amount Units: ng/uL Processing Integration Results



RT: 14.08 Area: 114066 Amount: 5.104654 Amount Units: ng/uL



Reviewer: richardsd, 13-Oct-2017 11:58:25

Audit Action: Assigned Compound ID

Audit Reason: Split Peak

Page 403 of 914

Report Date: 13-Oct-2017 12:07:24 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

 Data File:
 \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20527.D

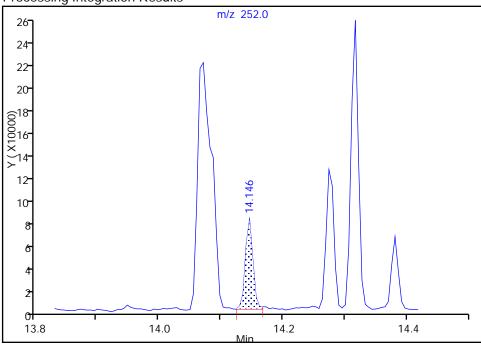
 Injection Date:
 13-Oct-2017 08:28:30
 Instrument ID:
 HP5973X

 Lims ID:
 480-125579-E-3-A
 Lab Sample ID:
 480-125579-3

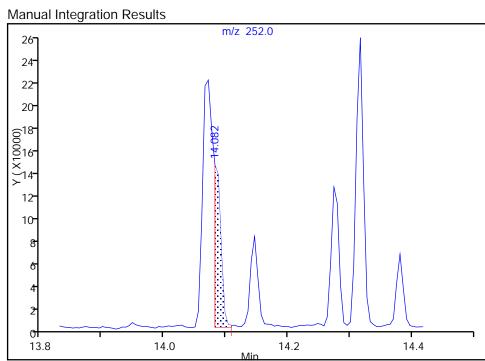
Client ID: DUP-100817

Operator ID: DR ALS Bottle#: 21 Worklist Smp#: 21

Injection Vol: 1.0 ul Dil. Factor: 10.0000


Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN


### 175 Benzo[k]fluoranthene, CAS: 207-08-9

Signal: 1

RT: 14.15 Area: 67231 Amount: 3.008705 Amount Units: ng/uL **Processing Integration Results** 



RT: 14.08 Area: 114066 Amount: 5.104654 Amount Units: ng/uL



Reviewer: richardsd, 13-Oct-2017 11:58:33 Audit Action: Split an Integrated Peak

Audit Reason: Split Peak

Page 404 of 914 10/24/2017

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 382005

SDG No.:

Instrument ID:  $\underline{\text{HP5973U}}$  GC Column:  $\underline{\text{RXI-5Sil}}$  MS ID:  $\underline{\text{0.25}}$  (mm) Heated Purge: (Y/N) N

#### Calibration Files:

| LEVEL:  | LAB SAMPLE ID:    | LAB FILE ID: |
|---------|-------------------|--------------|
| Level 1 | IC 480-382005/3   | U328217.D    |
| Level 2 | IC 480-382005/4   | U328218.D    |
| Level 3 | ICIS 480-382005/5 | U328219.D    |
| Level 4 | IC 480-382005/6   | U328220.D    |
| Level 5 | IC 480-382005/7   | U328221.D    |
| Level 6 | IC 480-382005/8   | U328222.D    |

| ANALYTE                       |                  |        | RRF    |        |        | CURVE |        | COEFFICIE | INT | # MIN RRF | %RSD |     | AX  | R^2    | <br>MIN R^2 |
|-------------------------------|------------------|--------|--------|--------|--------|-------|--------|-----------|-----|-----------|------|-----|-----|--------|-------------|
|                               | LVL 1<br>LVL 6   | LVL 2  | LVL 3  | LVL 4  | LVL 5  | TYPE  | В      | M1        | M2  |           |      | % I | RSD | OR COD | OR COD      |
| 1,4-Dioxane                   | 0.4525<br>0.4327 | 0.4396 | 0.4731 | 0.4549 | 0.4434 | Ave   |        | 0.4494    |     |           | 3.2  | 2   | 0.0 |        |             |
| N-Nitrosodimethylamine        | 0.6774<br>0.6061 | 0.6536 | 0.6664 | 0.6041 | 0.6305 | Lin1  | 0.4839 | 0.6157    |     |           |      |     |     | 0.9990 | 0.9900      |
| Pyridine                      | 0.9432<br>0.9258 | 0.9946 | 1.0327 | 0.9406 | 0.9313 | Lin1  | 0.8775 | 0.9396    |     |           |      |     |     | 0.9980 | 0.9900      |
| Benzaldehyde                  | 0.7701           | 0.8252 | 0.7715 | 0.6564 | 0.5472 | Ave   |        | 0.7141    |     | 0.0100    | 15.6 | 2   | 0.0 |        |             |
| Phenol                        | 1.1719<br>1.1506 | 1.2296 | 1.2331 | 1.1557 | 1.1677 | Ave   |        | 1.1848    |     | 0.8000    | 3.1  | 2   | 0.0 |        |             |
| Aniline                       | 1.5252<br>1.4640 | 1.5547 | 1.5385 | 1.4859 | 1.4630 | Ave   |        | 1.5052    |     |           | 2.6  | 2   | 0.0 |        |             |
| Bis(2-chloroethyl)ether       | 0.9564           | 0.9256 | 0.9340 | 0.8703 | 0.8913 | Ave   |        | 0.9103    |     | 0.7000    | 3.7  | 2   | 0.0 |        |             |
| 2-Chlorophenol                | 1.1870<br>1.1309 | 1.1860 | 1.1806 | 1.1536 | 1.1383 | Ave   |        | 1.1628    |     | 0.8000    | 2.2  | 2   | 0.0 |        |             |
| n-Decane                      | 1.0366<br>1.0653 | 1.2013 | 1.1924 | 1.0716 | 1.0715 | Ave   |        | 1.1065    |     | 0.0100    | 6.4  | 2   | 0.0 |        |             |
| 1,3-Dichlorobenzene           | 1.4264<br>1.3819 | 1.4402 | 1.4903 | 1.3886 | 1.3900 | Ave   |        | 1.4196    |     |           | 2.9  | 2   | 0.0 |        |             |
| 1,4-Dichlorobenzene           | 1.5459<br>1.4033 | 1.4624 | 1.4973 | 1.3859 | 1.3950 | Ave   |        | 1.4483    |     |           | 4.5  | 2   | 0.0 |        |             |
| Benzyl alcohol                | 0.6735<br>0.6914 | 0.7224 | 0.7213 | 0.6775 | 0.6943 | Lin1  | 0.0686 | 0.6933    |     |           |      |     |     | 0.9990 | 0.9900      |
| 1,2-Dichlorobenzene           | 1.3880<br>1.3257 | 1.3775 | 1.4301 | 1.3168 | 1.2730 | Ave   |        | 1.3519    |     |           | 4.2  | 2   | 0.0 |        |             |
| 2-Methylphenol                | 0.9660<br>0.9319 | 0.9879 | 1.0009 | 0.9324 | 0.9180 | Ave   |        | 0.9562    |     | 0.7000    | 3.5  | 2   | 0.0 |        |             |
| bis (2-chloroisopropyl) ether | 1.4176<br>1.1152 | 1.4145 | 1.3522 | 1.2027 | 1.1637 | Ave   |        | 1.2776    |     | 0.0100    | 10.4 | 2   | 0.0 |        |             |

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 382005

SDG No.:

Instrument ID: HP5973U GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

| ANALYTE                                  |                  |        | RRF    |        |         | CURVE    |        | COEFFICIEN | T # | MIN RRF | %RSD |          | AX   | R^2    | <br>IN R^2 |
|------------------------------------------|------------------|--------|--------|--------|---------|----------|--------|------------|-----|---------|------|----------|------|--------|------------|
|                                          | LVL 1            | LVL 2  | LVL 3  | LVL 4  | LVL 5   | TYPE     | В      | M1         | M2  |         |      | 8        | RSD  | OR COD | OR COD     |
|                                          | LVL 6            |        |        |        |         |          |        |            |     |         |      |          |      |        |            |
| Indene                                   | 2.0401           | 1.9625 | 1.9942 | 1.8829 | 1.8424  | Ave      |        | 1.9297     |     |         | 4.2  | 2        | 0.0  |        |            |
|                                          | 1.8559           |        |        |        |         |          |        |            |     |         |      |          |      |        |            |
| 4-Methylphenol                           | 0.9627           | 1.0171 | 1.0692 | 0.9759 | 0.9835  | Ave      |        | 1.0002     |     | 0.6000  | 3.8  | 2        | 0.0  |        |            |
|                                          | 0.9928           |        |        |        |         |          |        |            |     |         |      |          |      |        |            |
| N-Nitrosodi-n-propylamine                | 0.6674           | 0.6939 | 0.6803 | 0.6665 | 0.6660  | Ave      |        | 0.6750     |     | 0.5000  | 1.6  |          | 0.0  |        |            |
|                                          | 0.6756           |        |        |        |         |          |        |            |     |         |      |          |      |        |            |
| Acetophenone                             | 1.7349           | 1.5854 | 1.5882 | 1.4463 | 1.5099  | Linl     | 1.4612 | 1.4876     |     | 0.0100  |      |          |      | 0.9990 | 0.9900     |
|                                          | 1.4949           | 0.5604 | 0 5500 | 0 5405 | 0 5005  | <u> </u> |        | 0.5054     |     |         |      | <u> </u> |      |        |            |
| Hexachloroethane                         | 0.4969           | 0.5601 | 0.5708 | 0.5197 | 0.5297  | Ave      |        | 0.5351     |     | 0.3000  | 5.0  |          | 0.0  |        |            |
| AT' Laster and                           | 0.5332<br>0.3056 | 0.3176 | 0.3253 | 0.3239 | 0.3108  | 7 -      |        | 0.3172     |     | 0.0000  | 0 4  |          |      |        |            |
| Nitrobenzene                             | 0.3056           | 0.3176 | 0.3253 | 0.3239 | 0.3108  | Ave      |        | 0.31/2     |     | 0.2000  | 2.4  | 4        | 0.0  |        |            |
| Isophorone                               | 0.3200           | 0.5478 | 0.5343 | 0.5442 | 0.5238  | 7        |        | 0.5335     |     | 0.4000  | 2.2  |          | 0.0  |        |            |
| Isophorone                               | 0.5340           | 0.3476 | 0.3343 | 0.3442 | 0.3230  | Ave      |        | 0.3333     |     | 0.4000  | 2.2  | -        | .0.0 |        |            |
| 2-Nitrophenol                            | 0.1745           | 0.1981 | 0.1986 | 0.2013 | 0.1949  | Tin1     | _0 111 | 0.2002     |     | 0.1000  |      |          |      | 1.0000 | 0.9900     |
| 2 Nicrophenor                            | 0.2012           | 0.1301 | 0.1300 | 0.2013 | 0.1040  | 11111    | 0.111  | 0.2002     |     | 0.1000  |      |          |      | 1.0000 | 0.5500     |
| 2,4-Dimethylphenol                       | 0.3630           | 0.3609 | 0.3570 | 0.3601 | 0.3508  | Ave      |        | 0.3576     |     | 0.2000  | 1.3  |          | 0.0  |        |            |
| 2,1 Dimeeny iphener                      | 0.3540           | 0.3003 | 0.3370 | 0.3001 | 0.0000  | 1110     |        | 0.3370     |     | 0.2000  | 1.5  | -        |      |        |            |
| Bis(2-chloroethoxy)methane               | 0.3231           | 0.3263 | 0.3317 | 0.3266 | 0.3066  | Ave      |        | 0.3223     |     | 0.3000  | 2.7  | 2        | 0.0  |        |            |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | 0.3198           |        |        |        |         |          |        |            |     |         |      |          |      |        |            |
| Benzoic acid                             | 0.1428           | 0.1942 | 0.2149 | 0.2307 | 0.2358  | Lin1     | -1.915 | 0.2426     |     |         |      |          |      | 0.9980 | 0.9900     |
|                                          | 0.2476           |        |        |        |         |          |        |            |     |         |      |          |      |        |            |
| 2,4-Dichlorophenol                       | 0.3178           | 0.3390 | 0.3453 | 0.3307 | 0.3233  | Lin1     | 0.0632 | 0.3266     |     | 0.2000  |      |          |      | 0.9990 | 0.9900     |
|                                          | 0.3223           |        |        |        |         |          |        |            |     |         |      |          |      |        |            |
| 1,2,4-Trichlorobenzene                   | 0.3852           | 0.3993 | 0.3920 | 0.3826 | 0.3770  | Ave      |        | 0.3860     |     |         | 2.2  | 2        | 0.0  |        |            |
|                                          | 0.3797           |        |        |        |         |          |        |            |     |         |      |          |      |        |            |
| Naphthalene                              | 0.9438           | 0.9555 | 0.9601 | 0.9536 | 0.9043  | Ave      |        | 0.9398     |     | 0.7000  | 2.4  | 2        | 0.0  |        |            |
|                                          | 0.9213           |        |        |        |         |          |        |            |     |         |      |          |      |        |            |
| 4-Chloroaniline                          | 0.4078           | 0.3991 | 0.3906 | 0.4048 | 0.3886  | Ave      |        | 0.3973     |     | 0.0100  | 2.0  |          | 0.0  |        |            |
|                                          | 0.3925           |        | 0.0450 | 0.0055 | 0 04 45 |          |        | 0.0100     |     |         |      |          |      |        |            |
| 2,6-Dichlorophenol                       | 0.3050           | 0.3290 | 0.3152 | 0.3255 | 0.3145  | Ave      |        | 0.3180     |     |         | 2.7  |          | 0.0  |        |            |
| Hexachlorobutadiene                      | 0.3190           | 0.3129 | 0.3234 | 0.3170 | 0.3052  | 7 -      |        | 0.3142     |     | 0.0100  | 1 0  |          |      |        |            |
| nexachiorodutadiene                      | 0.3132           | 0.3129 | 0.3234 | 0.31/0 | 0.3052  | Ave      |        | 0.3142     |     | 0.0100  | 1.9  |          | 0.0  |        |            |
| Caprolactam                              | 0.3134           | 0.0911 | 0.0835 | 0.0866 | 0.0869  | Tin1     | _0 050 | 0.0876     |     | 0.0100  |      |          |      | 0.9990 | 0.9900     |
| Capidiactam                              | 0.0876           | 0.0911 | 0.0033 | 0.0000 | 0.0009  | 11111    | 0.030  | 0.0070     |     | 0.0100  |      |          |      | 0.2230 | 0.2200     |
| 4-Chloro-3-methylphenol                  | 0.0076           | 0.2801 | 0.2853 | 0.3001 | 0.2807  | Lin1     | -0.052 | 0.2872     |     | 0.2000  |      |          |      | 0.9990 | 0.9900     |
| 1 onitoto o meenyiphenoi                 | 0.2854           | 0.2001 | 0.2000 | 0.5001 | 0.2007  | 11111    | 0.032  | 0.2072     |     | 0.2000  |      |          |      | 0.5550 | 0.5500     |
| 2-Methylnaphthalene                      | 0.7097           | 0.7128 | 0.6992 | 0.7122 | 0.6875  | Ave      |        | 0.7033     |     | 0.4000  | 1.4  |          | 0.0  |        |            |
|                                          | 0.6987           | 3.7120 | 3.0332 | 3      | 3.0070  |          |        |            |     | 0.1000  |      | '        |      |        |            |

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 382005

SDG No.:

Instrument ID: HP5973U GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/16/2017 12:07 Calibration End Date: 10/16/2017 14:19 Calibration ID: 31736

| ANALYTE                    |                  |        | RRF    |        |        | CURVE |        | COEFFICIE | NT | # MIN RRF | %RSD | <br>MAX | R^2    |    | N R^2  |
|----------------------------|------------------|--------|--------|--------|--------|-------|--------|-----------|----|-----------|------|---------|--------|----|--------|
|                            | LVL 1            | LVL 2  | LVL 3  | LVL 4  | LVL 5  | TYPE  | В      | M1        | M2 |           |      | %RSD    | OR COD | OF | R COD  |
|                            | LVL 6            |        |        |        |        |       |        |           |    |           |      |         |        |    |        |
| 1-Methylnaphthalene        | 0.6843<br>0.6585 | 0.6673 | 0.6669 | 0.6610 | 0.6518 | Ave   |        | 0.6650    |    | 0.0100    | 1.7  | 20.0    |        |    |        |
| Hexachlorocyclopentadiene  | 0.6611<br>0.7833 | 0.7353 | 0.7511 | 0.7660 | 0.7626 | Lin1  | -0.668 | 0.7763    |    | 0.0500    |      |         | 1.0000 | 0  | .9900  |
| 1,2,4,5-Tetrachlorobenzene | 0.8608<br>0.8621 | 0.8335 | 0.8556 | 0.8438 | 0.8462 | Ave   |        | 0.8503    |    | 0.0100    | 1.3  | 20.0    |        |    |        |
| 2,4,6-Trichlorophenol      | 0.4685<br>0.5154 | 0.5156 | 0.5214 | 0.4990 | 0.5097 | Lin1  | -0.169 | 0.5133    |    | 0.2000    |      |         | 1.0000 | 0  | .9900  |
| 2,4,5-Trichlorophenol      | 0.4686<br>0.5429 | 0.5376 | 0.5575 | 0.5308 | 0.5447 | Lin1  | -0.319 | 0.5462    |    | 0.2000    |      |         | 1.0000 | 0  | .9900  |
| Biphenyl                   | 1.7548<br>1.6895 | 1.7583 | 1.7558 | 1.7122 | 1.6441 | Ave   |        | 1.7191    |    | 0.0100    | 2.7  | 20.0    |        |    |        |
| 2-Chloronaphthalene        | 1.4007<br>1.3034 | 1.3638 | 1.3504 | 1.3183 | 1.2936 | Ave   |        | 1.3384    |    | 0.8000    | 3.0  | 20.0    |        |    |        |
| 2-Nitroaniline             |                  | 0.3275 | 0.3414 | 0.3304 | 0.3323 | Lin1  | -0.027 | 0.3352    |    | 0.0100    |      |         | 1.0000 | 0  | .9900  |
| Dimethyl phthalate         |                  | 1.6115 | 1.5921 | 1.5499 | 1.5101 | Ave   |        | 1.5520    |    | 0.0100    | 2.7  | 20.0    |        |    |        |
| 1,3-Dinitrobenzene         |                  | 0.1393 | 0.1423 | 0.1418 | 0.1442 | Lin1  | -0.207 | 0.1474    |    |           |      |         | 1.0000 | 0  | .9900  |
| 2,6-Dinitrotoluene         |                  | 0.3635 | 0.3582 | 0.3537 | 0.3578 | Lin1  | -0.209 | 0.3600    |    |           |      |         | 1.0000 | 0  | 0.9900 |
| Acenaphthylene             |                  | 2.0125 | 2.0300 | 1.9423 | 1.9273 | Ave   |        | 1.9584    |    | 0.9000    | 2.5  | 20.0    |        |    |        |
| 3-Nitroaniline             |                  | 0.3633 | 0.3594 | 0.3685 | 0.3566 | Lin1  | -0.022 | 0.3635    |    | 0.0100    |      |         | 1.0000 | 0  | .9900  |
| 2,4-Dinitrophenol          |                  | 0.2310 | 0.2602 | 0.2664 | 0.2876 | Lin1  | -1.806 | 0.2930    |    | 0.0100    |      |         | 0.9980 | 0  | .9900  |
| Acenaphthene               |                  | 1.4094 | 1.3915 | 1.3299 | 1.3209 | Ave   |        | 1.3668    |    | 0.9000    | 3.0  | 20.0    |        |    |        |
| 4-Nitrophenol              |                  | 0.3088 | 0.3346 | 0.3263 | 0.3220 | Lin1  | -0.576 | 0.3270    |    | 0.0100    |      |         | 1.0000 | 0  | .9900  |
| 2,4-Dinitrotoluene         |                  | 0.4687 | 0.4853 | 0.4899 | 0.4741 | Lin1  | -0.307 | 0.4852    |    | 0.2000    |      |         | 1.0000 | 0  | .9900  |
| Dibenzofuran               |                  | 2.1112 | 1.9897 | 1.9673 | 1.9070 | Ave   |        | 1.9946    |    | 0.8000    | 4.1  | 20.0    |        |    |        |
| 2,3,4,6-Tetrachlorophenol  |                  | 0.4755 | 0.5437 | 0.5218 | 0.5430 | Lin1  | -0.669 | 0.5427    |    | 0.0100    |      |         | 0.9990 | 0  | .9900  |
| Diethyl phthalate          |                  | 1.7289 | 1.6948 | 1.6418 | 1.6053 | Ave   |        | 1.6663    |    | 0.0100    | 2.7  | 20.0    |        |    |        |

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 382005

SDG No.:

Instrument ID: HP5973U GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

| ANALYTE                     |                  |        | RRF    |        |        | CURVE |        | COEFFICIE | NT # | MIN RRF | %RSD | # | MAX  | R^2    |    | IN R^2   |
|-----------------------------|------------------|--------|--------|--------|--------|-------|--------|-----------|------|---------|------|---|------|--------|----|----------|
|                             | LVL 1<br>LVL 6   | LVL 2  | LVL 3  | LVL 4  | LVL 5  | TYPE  | В      | M1        | M2   |         |      |   | %RSD | OR COD | 0. | R COD    |
| Hexadecane                  | 0.7625           | 0.7567 | 0.7521 | 0.7228 | 0.6897 | Ave   |        | 0.7299    |      | 0.0100  | 4.4  |   | 20.0 |        |    | <u>'</u> |
| 4-Chlorophenyl phenyl ether | 0.9667<br>0.8896 | 0.9195 | 0.9269 | 0.8979 | 0.8924 | Ave   |        | 0.9155    |      | 0.4000  | 3.2  |   | 20.0 |        |    |          |
| 4-Nitroaniline              | 0.4051<br>0.3986 | 0.3842 | 0.3907 | 0.3933 | 0.3818 | Lin1  | 0.0219 | 0.3912    |      | 0.0100  |      |   |      | 1.0000 | (  | 0.9900   |
| Fluorene                    | 1.6894<br>1.5885 | 1.6308 | 1.6393 | 1.5647 | 1.5591 | Ave   |        | 1.6120    |      | 0.9000  | 3.1  |   | 20.0 |        |    |          |
| 4,6-Dinitro-2-methylphenol  | 0.0958<br>0.1408 | 0.1238 | 0.1385 | 0.1468 | 0.1420 | Lin1  | -0.524 | 0.1443    |      | 0.0100  |      |   |      | 0.9990 | (  | 0.9900   |
| Diphenylamine               | 0.5944<br>0.5989 | 0.6358 | 0.6229 | 0.6277 | 0.6132 | Ave   |        | 0.6155    |      |         | 2.7  |   | 20.0 |        |    |          |
| N-Nitrosodiphenylamine      | 0.5082<br>0.5120 | 0.5436 | 0.5325 | 0.5367 | 0.5243 | Ave   |        | 0.5262    |      | 0.0100  | 2.7  |   | 20.0 |        |    |          |
| 1,2-Diphenylhydrazine       | 0.5524<br>0.5406 | 0.5677 | 0.5580 | 0.5782 | 0.5413 | Ave   |        | 0.5564    |      |         | 2.7  |   | 20.0 |        |    |          |
| trans-Azobenzene            | 0.5524<br>0.5406 | 0.5677 | 0.5580 | 0.5782 | 0.5413 | Ave   |        | 0.5564    |      |         | 2.7  |   | 20.0 |        |    |          |
| 4-Bromophenyl phenyl ether  | 0.2510<br>0.2803 | 0.2846 | 0.2833 | 0.2883 | 0.2814 | Lin1  | -0.116 | 0.2839    |      | 0.1000  |      |   |      | 1.0000 | (  | 0.9900   |
| Hexachlorobenzene           | 0.3423           | 0.3364 | 0.3386 | 0.3479 | 0.3375 | Ave   |        | 0.3414    |      | 0.1000  | 1.4  |   | 20.0 |        |    |          |
| Atrazine                    | 0.4881<br>0.4759 | 0.4963 | 0.5044 | 0.4930 | 0.4638 | Ave   |        | 0.4869    |      | 0.0100  | 3.0  |   | 20.0 |        |    |          |
| Pentachlorophenol           | 0.1175<br>0.1971 | 0.1622 | 0.1783 | 0.1926 | 0.1904 | Lin1  | -0.937 | 0.1962    |      | 0.0500  |      |   |      | 0.9990 | (  | 0.9900   |
| n-Octadecane                | 0.3237           | 0.3466 | 0.3568 | 0.3523 | 0.3277 | Ave   |        | 0.3389    |      | 0.0100  | 4.3  |   | 20.0 |        |    |          |
| Phenanthrene                | 1.0831           | 1.0577 | 1.0448 | 1.0392 | 0.9997 | Ave   |        | 1.0361    |      | 0.7000  | 3.3  |   | 20.0 |        |    |          |
| Anthracene                  | 1.1124           | 1.0634 | 1.0820 | 1.0961 | 1.0388 | Ave   |        | 1.0709    |      | 0.7000  | 3.0  |   | 20.0 |        |    |          |
| Carbazole                   | 0.9661<br>0.9435 | 1.0065 | 0.9829 | 1.0058 | 0.9358 | Ave   |        | 0.9734    |      | 0.0100  | 3.1  |   | 20.0 |        |    |          |
| Di-n-butyl phthalate        | 1.1685<br>1.1718 | 1.2083 | 1.2285 | 1.2698 | 1.1866 | Lin1  | 0.0985 | 1.2007    |      | 0.0100  |      |   |      | 0.9990 | (  | 0.9900   |
| Fluoranthene                | 1.3096<br>1.2592 | 1.2870 | 1.3310 | 1.3308 | 1.2545 | Ave   |        | 1.2954    |      | 0.6000  | 2.6  |   | 20.0 |        |    |          |
| Benzidine                   | 0.5800<br>0.3601 | 0.6197 | 0.5517 | 0.5109 | 0.4294 | Ave   |        | 0.5086    |      |         | 19.2 |   | 20.0 |        |    |          |

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 382005

SDG No.:

Instrument ID: HP5973U GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

| ANALYTE                     |                  |        | RRF    |        |        | CURVE |        | COEFFICIE | NT | # MIN RRF | %RSD | # | MAX  | R^2    | # MIN R^2 |
|-----------------------------|------------------|--------|--------|--------|--------|-------|--------|-----------|----|-----------|------|---|------|--------|-----------|
|                             | LVL 1<br>LVL 6   | LVL 2  | LVL 3  | LVL 4  | LVL 5  | TYPE  | В      | M1        | M2 |           |      |   | %RSD | OR COD | OR COD    |
| Pyrene                      | 1.1591<br>0.9938 | 1.1394 | 1.0439 | 1.0232 | 1.0310 | Ave   |        | 1.0651    |    | 0.6000    | 6.3  |   | 20.0 |        |           |
| Butyl benzyl phthalate      | 0.4416<br>0.4449 | 0.4805 | 0.4621 | 0.4576 |        |       | 0.0774 | 0.4540    |    | 0.0100    |      |   |      | 0.9990 | 0.9900    |
| Bis(2-ethylhexyl) phthalate | 0.5911<br>0.6140 | 0.6353 | 0.6441 | 0.6248 |        |       | 0.0191 | 0.6191    |    | 0.0100    |      |   |      | 1.0000 | 0.9900    |
| 3,3'-Dichlorobenzidine      | 0.4528<br>0.4202 | 0.4523 | 0.4463 | 0.4540 |        |       | 0.2494 | 0.4298    |    | 0.0100    |      |   |      | 0.9990 | 0.9900    |
| Benzo[a]anthracene          | 1.1382<br>1.0454 | 1.1736 | 1.1165 | 1.1118 | 1.0743 | Ave   |        | 1.1100    |    | 0.8000    | 4.1  |   | 20.0 |        |           |
| Chrysene                    | 1.1141<br>0.9897 | 1.1117 | 1.0749 | 1.0506 | 1.0114 | Ave   |        | 1.0587    |    | 0.7000    | 4.9  |   | 20.0 |        |           |
| Di-n-octyl phthalate        | 1.0526<br>1.0091 | 1.0465 | 1.0957 | 1.0876 | 0.9927 | Lin1  | 0.4529 | 1.0249    |    | 0.0100    |      |   |      | 0.9980 | 0.9900    |
| Benzo[b]fluoranthene        | 1.2153<br>1.1786 | 1.2407 | 1.2595 | 1.1788 | 1.2259 | Ave   |        | 1.2165    |    | 0.7000    | 2.7  |   | 20.0 |        |           |
| Benzo[k]fluoranthene        | 1.3028           | 1.3658 | 1.2023 | 1.2186 | 1.1386 | Ave   |        | 1.2414    |    | 0.7000    | 6.5  |   | 20.0 |        |           |
| Benzo[a]pyrene              | 1.1229           | 1.1583 | 1.1379 | 1.1399 | 1.1231 | Ave   |        | 1.1338    |    | 0.7000    | 1.3  |   | 20.0 |        |           |
| Dibenz(a,h)anthracene       | 1.1313           | 1.0945 | 1.1783 | 1.1748 | 1.1422 | Lin1  | -0.452 | 1.1746    |    |           |      |   |      | 0.9990 | 0.9900    |
| Indeno[1,2,3-cd]pyrene      | 1.2673<br>1.3991 | 1.2899 | 1.3679 | 1.3991 | 1.3553 | Lin1  | -0.853 | 1.3887    |    | 0.5000    |      |   |      | 1.0000 | 0.9900    |
| Benzo[g,h,i]perylene        | 1.0072<br>1.1668 | 1.0628 | 1.1520 | 1.1729 | 1.1309 | Lin1  | -0.959 | 1.1629    |    | 0.5000    |      |   |      | 1.0000 | 0.9900    |
| 2-Fluorophenol              | 1.0471           | 1.0550 | 1.1241 | 1.0658 | 1.0681 | Ave   |        | 1.0748    |    |           | 2.6  |   | 20.0 |        |           |
| Phenol-d5                   | 1.2365<br>1.2173 | 1.2421 | 1.2449 | 1.1860 | 1.1949 | Ave   |        | 1.2203    |    |           | 2.1  |   | 20.0 |        |           |
| Nitrobenzene-d5             | 0.3425<br>0.3533 | 0.3448 | 0.3454 | 0.3550 | 0.3431 | Ave   |        | 0.3474    |    |           | 1.5  |   | 20.0 |        |           |
| 2-Fluorobiphenyl            | 1.7888<br>1.6331 | 1.7231 | 1.7211 | 1.6490 | 1.6167 | Ave   |        | 1.6886    |    |           | 3.9  |   | 20.0 |        |           |
| 2,4,6-Tribromophenol        | 0.1356<br>0.1938 | 0.1722 | 0.1736 | 0.1823 | 0.1862 | Lin1  | -0.327 | 0.1901    |    |           |      |   |      | 0.9990 | 0.9900    |
| p-Terphenyl-d14             | 0.8273<br>0.7731 | 0.8664 | 0.8239 | 0.7929 | 0.8017 | Ave   |        | 0.8142    |    |           | 4.0  |   | 20.0 |        |           |

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 382005

SDG No.:

Instrument ID: HP5973U GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

#### Calibration Files:

| LEVEL:  | LAB SAMPLE ID:    | LAB FILE ID: |  |
|---------|-------------------|--------------|--|
| Level 1 | IC 480-382005/3   | U328217.D    |  |
| Level 2 | IC 480-382005/4   | U328218.D    |  |
| Level 3 | ICIS 480-382005/5 | U328219.D    |  |
| Level 4 | IC 480-382005/6   | U328220.D    |  |
| Level 5 | IC 480-382005/7   | U328221.D    |  |
| Level 6 | IC 480-382005/8   | U328222.D    |  |

| ANALYTE                       | IS        | CURVE |                  |        | RESPONSE |         |         |                | CONCEN | ITRATION (N | IG/UL) |       |
|-------------------------------|-----------|-------|------------------|--------|----------|---------|---------|----------------|--------|-------------|--------|-------|
|                               | REF       | TYPE  | LVL 1<br>LVL 6   | LVL 2  | LVL 3    | LVL 4   | LVL 5   | LVL 1<br>LVL 6 | LVL 2  | LVL 3       | LVL 4  | LVL 5 |
| 1,4-Dioxane                   | DCBd<br>4 | Ave   | 6679<br>187639   | 29078  | 58043    | 100945  | 152456  | 5.00<br>160    | 20.0   | 50.0        | 80.0   | 120   |
| N-Nitrosodimethylamine        | DCBd<br>4 | Lin1  | 9998<br>262810   | 43236  | 81747    | 134036  | 216793  | 5.00<br>160    | 20.0   | 50.0        | 80.0   | 120   |
| Pyridine                      | DCBd<br>4 | Lin1  | 27842<br>802931  | 131593 | 253367   | 417426  | 640428  | 10.0<br>320    | 40.0   | 100         | 160    | 240   |
| Benzaldehyde                  | DCBd<br>4 | Ave   | 11367<br>+++++   | 54587  | 94645    | 145657  | 188169  | 5.00<br>++++   | 20.0   | 50.0        | 80.0   | 120   |
| Phenol                        | DCBd<br>4 | Ave   | 17297<br>498933  | 81343  | 151268   | 256442  | 401511  | 5.00<br>160    | 20.0   | 50.0        | 80.0   | 120   |
| Aniline                       | DCBd<br>4 | Ave   | 22512<br>634864  | 102848 | 188736   | 329704  | 503052  | 5.00<br>160    | 20.0   | 50.0        | 80.0   | 120   |
| Bis(2-chloroethyl)ether       | DCBd<br>4 | Ave   | 14116<br>383488  | 61228  | 114585   | 193106  | 306460  | 5.00<br>160    | 20.0   | 50.0        | 80.0   | 120   |
| 2-Chlorophenol                | DCBd<br>4 | Ave   | 17520<br>490424  | 78460  | 144831   | 255977  | 391415  | 5.00<br>160    | 20.0   | 50.0        | 80.0   | 120   |
| n-Decane                      | DCBd<br>4 | Ave   | 15300<br>461960  | 79467  | 146281   | 237781  | 368437  | 5.00<br>160    | 20.0   | 50.0        | 80.0   | 120   |
| 1,3-Dichlorobenzene           | DCBd<br>4 | Ave   | 21053<br>599245  | 95276  | 182822   | 308111  | 477945  | 5.00<br>160    | 20.0   | 50.0        | 80.0   | 120   |
| 1,4-Dichlorobenzene           | DCBd<br>4 | Ave   | 22817<br>608533  | 96743  | 183683   | 307509  | 479651  | 5.00<br>160    | 20.0   | 50.0        | 80.0   | 120   |
| Benzyl alcohol                | DCBd<br>4 | Lin1  | 9941<br>299798   | 47790  | 88484    | 150321  | 238717  | 5.00<br>160    | 20.0   | 50.0        | 80.0   | 120   |
| 1,2-Dichlorobenzene           | DCBd<br>4 | Ave   | 20486<br>574893  | 91126  | 175445   | 292178  | 437729  | 5.00<br>160    | 20.0   | 50.0        | 80.0   | 120   |
| 2-Methylphenol                | DCBd<br>4 | Ave   | 14258<br>404120  | 65350  | 122782   | 206877  | 315651  | 5.00<br>160    | 20.0   | 50.0        | 80.0   | 120   |
| bis (2-chloroisopropyl) ether | DCBd<br>4 | Ave   | 20923<br>483600  | 93571  | 165881   | 266871  | 400144  | 5.00<br>160    | 20.0   | 50.0        | 80.0   | 120   |
| Indene                        | DCBd<br>4 | Ave   | 90336<br>2414329 | 389485 | 733915   | 1253353 | 1900518 | 15.0<br>480    | 60.0   | 150         | 240    | 360   |

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 382005

SDG No.:

Instrument ID: HP5973U GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

| ANALYTE                    | IS        | CURVE  |                  |        | RESPONSE |        |         |                | CONCEN | TRATION (N | G/UL) |       |
|----------------------------|-----------|--------|------------------|--------|----------|--------|---------|----------------|--------|------------|-------|-------|
|                            | REF       | TYPE - | LVL 1<br>LVL 6   | LVL 2  | LVL 3    | LVL 4  | LVL 5   | LVL 1<br>LVL 6 | LVL 2  | LVL 3      | LVL 4 | LVL 5 |
| 4-Methylphenol             | DCBd<br>4 | Ave    | 14210<br>430533  | 67284  | 131164   | 216530 | 338185  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| N-Nitrosodi-n-propylamine  | DCBd<br>4 | Ave    | 9851<br>292958   | 45906  | 83462    | 147893 | 229007  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| Acetophenone               | DCBd<br>4 | Lin1   | 25607<br>648242  | 104878 | 194829   | 320921 | 519155  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| Hexachloroethane           | DCBd<br>4 | Ave    | 7334<br>231238   | 37049  | 70020    | 115314 | 182121  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| Nitrobenzene               | NPT       | Ave    | 15257<br>450182  | 72069  | 136728   | 228448 | 353606  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| Isophorone                 | NPT       | Ave    | 25793<br>751265  | 124306 | 224574   | 383814 | 595879  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| 2-Nitrophenol              | NPT       | Lin1   | 8712<br>283011   | 44941  | 83480    | 141930 | 221755  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| 2,4-Dimethylphenol         | NPT       | Ave    | 18122<br>498032  | 81885  | 150046   | 253943 | 399066  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| Bis(2-chloroethoxy)methane | NPT       | Ave    | 16132<br>449911  | 74038  | 139398   | 230325 | 348768  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| Benzoic acid               | NPT       | Lin1   | 21386<br>1044885 | 132180 | 271010   | 488191 | 804633  | 15.0<br>480    | 60.0   | 150        | 240   | 360   |
| 2,4-Dichlorophenol         | NPT       | Lin1   | 15867<br>453475  | 76916  | 145144   | 233208 | 367778  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| 1,2,4-Trichlorobenzene     | NPT       | Ave    | 19230<br>534186  | 90602  | 164739   | 269848 | 428936  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| Naphthalene                | NPT       | Ave    | 47119<br>1296233 | 216809 | 403521   | 672497 | 1028770 | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| 4-Chloroaniline            | NPT       | Ave    | 20360<br>552253  | 90565  | 164183   | 285489 | 442151  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| 2,6-Dichlorophenol         | NPT       | Ave    | 15225<br>448856  | 74655  | 132484   | 229554 | 357742  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| Hexachlorobutadiene        | NPT       | Ave    | 15634<br>440896  | 70991  | 135936   | 223535 | 347213  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| Caprolactam                | NPT       | Lin1   | 3613<br>123303   | 20663  | 35095    | 61096  | 98906   | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| 4-Chloro-3-methylphenol    | NPT       | Lin1   | 13772<br>401488  | 63549  | 119912   | 211626 | 319392  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| 2-Methylnaphthalene        | NPT       | Ave    | 35431<br>982977  | 161740 | 293887   | 502276 | 782142  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| 1-Methylnaphthalene        | NPT       | Ave    | 34164<br>926532  | 151409 | 280278   | 466154 | 741531  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |
| Hexachlorocyclopentadiene  | ANT       | Lin1   | 16499<br>574261  | 86466  | 161143   | 285305 | 449502  | 5.00<br>160    | 20.0   | 50.0       | 80.0  | 120   |

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 382005

SDG No.:

Instrument ID: HP5973U GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/16/2017 12:07 Calibration End Date: 10/16/2017 14:19 Calibration ID: 31736

| ANALYTE                     | IS  | CURVE  |                  |        | RESPONSE |        |         |                | CONCEN | TRATION (N | IG/UL) |       |
|-----------------------------|-----|--------|------------------|--------|----------|--------|---------|----------------|--------|------------|--------|-------|
|                             | REF | TYPE - | LVL 1<br>LVL 6   | LVL 2  | LVL 3    | LVL 4  | LVL 5   | LVL 1<br>LVL 6 | LVL 2  | LVL 3      | LVL 4  | LVL 5 |
| 1,2,4,5-Tetrachlorobenzene  | ANT | Ave    | 21482<br>632055  | 98008  | 183554   | 314292 | 498773  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 2,4,6-Trichlorophenol       | ANT | Lin1   | 11692<br>377867  | 60628  | 111865   | 185870 | 300399  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 2,4,5-Trichlorophenol       | ANT | Lin1   | 11694<br>398021  | 63218  | 119600   | 197730 | 321028  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Biphenyl                    | ANT | Ave    | 43793<br>1238603 | 206760 | 376696   | 637770 | 969043  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 2-Chloronaphthalene         | ANT | Ave    | 34955<br>955571  | 160374 | 289724   | 491061 | 762434  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 2-Nitroaniline              | ANT | Lin1   | 8330<br>247691   | 38506  | 73240    | 123086 | 195843  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Dimethyl phthalate          | ANT | Ave    | 38221<br>1112157 | 189506 | 341575   | 577325 | 890049  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 1,3-Dinitrobenzene          | NPT | Lin1   | 5311<br>209088   | 31606  | 59810    | 100017 | 164037  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 2,6-Dinitrotoluene          | ANT | Lin1   | 7630<br>262984   | 42749  | 76844    | 131731 | 210893  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Acenaphthylene              | ANT | Ave    | 47978<br>1404535 | 236654 | 435525   | 723489 | 1135992 | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 3-Nitroaniline              | ANT | Lin1   | 8973<br>268759   | 42725  | 77115    | 137256 | 210202  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 2,4-Dinitrophenol           | ANT | Lin1   | 7255<br>438566   | 54337  | 111650   | 198496 | 338997  | 10.0<br>320    | 40.0   | 100        | 160    | 240   |
| Acenaphthene                | ANT | Ave    | 35116<br>983815  | 165730 | 298524   | 495348 | 778548  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 4-Nitrophenol               | ANT | Lin1   | 13097<br>472262  | 72623  | 143551   | 243103 | 379629  | 10.0<br>320    | 40.0   | 100        | 160    | 240   |
| 2,4-Dinitrotoluene          | ANT | Lin1   | 10435<br>354649  | 55118  | 104126   | 182495 | 279416  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Dibenzofuran                | ANT | Ave    | 51694<br>1408292 | 248267 | 426874   | 732780 | 1123991 | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 2,3,4,6-Tetrachlorophenol   | ANT | Lin1   | 10837<br>395409  | 55916  | 116649   | 194345 | 320051  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Diethyl phthalate           | ANT | Ave    | 41991<br>1205323 | 203310 | 363600   | 611551 | 946191  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Hexadecane                  | ANT | Ave    | 19028<br>510038  | 88988  | 161347   | 269224 | 406496  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 4-Chlorophenyl phenyl ether | ANT | Ave    | 24125<br>652153  | 108129 | 198856   | 334469 | 525991  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 4-Nitroaniline              | ANT | Lin1   | 10109<br>292219  | 45174  | 83823    | 146481 | 225033  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 382005

SDG No.:

Instrument ID: HP5973U GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

| ANALYTE                     | IS  | CURVE |                  |        | RESPONSE |         |         |                | CONCEN | ITRATION (N | G/UL) |       |
|-----------------------------|-----|-------|------------------|--------|----------|---------|---------|----------------|--------|-------------|-------|-------|
|                             | REF | TYPE  | LVL 1<br>LVL 6   | LVL 2  | LVL 3    | LVL 4   | LVL 5   | LVL 1<br>LVL 6 | LVL 2  | LVL 3       | LVL 4 | LVL 5 |
| Fluorene                    | ANT | Ave   | 42159<br>1164531 | 191771 | 351698   | 582830  | 918965  | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| 4,6-Dinitro-2-methylphenol  | PHN | Lin1  | 10642<br>458892  | 64248  | 133795   | 234551  | 364282  | 10.0<br>320    | 40.0   | 100         | 160   | 240   |
| Diphenylamine               | PHN | Ave   | 28212<br>834573  | 141018 | 257141   | 428671  | 672591  | 4.28<br>137    | 17.1   | 42.8        | 68.4  | 103   |
| N-Nitrosodiphenylamine      | PHN | Ave   | 28212<br>834573  | 141018 | 257141   | 428671  | 672591  | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| 1,2-Diphenylhydrazine       | PHN | Ave   | 30668<br>881132  | 147271 | 269454   | 461865  | 694459  | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| trans-Azobenzene            | PHN | Ave   | 30668<br>881132  | 147271 | 269454   | 461865  | 694459  | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| 4-Bromophenyl phenyl ether  | PHN | Lin1  | 13933<br>456944  | 73822  | 136771   | 230275  | 360930  | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| Hexachlorobenzene           | PHN | Ave   | 19003<br>563046  | 87278  | 163499   | 277875  | 432972  | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| Atrazine                    | ANT | Ave   | 12181<br>348865  | 58364  | 108214   | 183637  | 273344  | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| Pentachlorophenol           | PHN | Lin1  | 13044<br>642536  | 84152  | 172166   | 307624  | 488501  | 10.0           | 40.0   | 100         | 160   | 240   |
| n-Octadecane                | PHN | Ave   | 17969<br>531712  | 89915  | 172306   | 281390  | 420432  | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| Phenanthrene                | PHN | Ave   | 60129<br>1617351 | 274396 | 504504   | 830110  | 1282417 | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| Anthracene                  | PHN | Ave   | 61756<br>1683633 | 275860 | 522440   | 875484  | 1332632 | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| Carbazole                   | PHN | Ave   | 53634<br>1537783 | 261091 | 474608   | 803394  | 1200420 | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| Di-n-butyl phthalate        | PHN | Lin1  | 64870<br>1910030 | 313460 | 593185   | 1014232 | 1522167 | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| Fluoranthene                | PHN | Ave   | 72703<br>2052351 | 333877 | 642707   | 1062995 | 1609335 | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| Benzidine                   | CRY | Ave   | 37905<br>759973  | 189425 | 341983   | 546187  | 681547  | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| Pyrene                      | CRY | Ave   | 75753<br>2097220 | 348280 | 647109   | 1093778 | 1636492 | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| Butyl benzyl phthalate      | CRY | Lin1  | 28857<br>938881  | 146891 | 286420   | 489204  | 730669  | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| Bis(2-ethylhexyl) phthalate | CRY | Lin1  | 38627<br>1295748 | 194200 | 399253   | 667937  | 970162  | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |
| 3,3'-Dichlorobenzidine      | CRY | Lin1  | 29592<br>886817  | 138260 | 276649   | 485362  | 678363  | 5.00<br>160    | 20.0   | 50.0        | 80.0  | 120   |

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 382005

SDG No.:

Instrument ID: HP5973U GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

| ANALYTE                | IS        | CURVE |                  |        | RESPONSE |         |         |                | CONCEN | TRATION (N | IG/UL) |       |
|------------------------|-----------|-------|------------------|--------|----------|---------|---------|----------------|--------|------------|--------|-------|
|                        | REF       | TYPE  | LVL 1<br>LVL 6   | LVL 2  | LVL 3    | LVL 4   | LVL 5   | LVL 1<br>LVL 6 | LVL 2  | LVL 3      | LVL 4  | LVL 5 |
| Benzo[a]anthracene     | CRY       | Ave   | 74385<br>2206157 | 358748 | 692095   | 1188534 | 1705245 | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Chrysene               | CRY       | Ave   | 72809<br>2088585 | 339813 | 666322   | 1123032 | 1605383 | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Di-n-octyl phthalate   | CRY       | Lin1  | 68792<br>2129479 | 319889 | 679167   | 1162583 | 1575722 | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Benzo[b]fluoranthene   | PRY       | Ave   | 71368<br>2324181 | 330655 | 752011   | 1241915 | 1810863 | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Benzo[k]fluoranthene   | PRY       | Ave   | 76506<br>2406450 | 363992 | 717810   | 1283839 | 1681884 | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Benzo[a]pyrene         | PRY       | Ave   | 65943<br>2209732 | 308679 | 679386   | 1200876 | 1659049 | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Dibenz(a,h)anthracene  | PRY       | Lin1  | 66439<br>2350717 | 291690 | 703518   | 1237617 | 1687235 | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Indeno[1,2,3-cd]pyrene | PRY       | Lin1  | 74423<br>2759131 | 343765 | 816722   | 1473985 | 2002058 | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Benzo[g,h,i]perylene   | PRY       | Lin1  | 59152<br>2300944 | 283223 | 687830   | 1235621 | 1670512 | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 2-Fluorophenol         | DCBd<br>4 | Ave   | 15455<br>472211  | 69791  | 137899   | 236489  | 367264  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Phenol-d5              | DCBd<br>4 | Ave   | 18251<br>527891  | 82167  | 152714   | 263158  | 410850  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| Nitrobenzene-d5        | NPT       | Ave   | 17101<br>497034  | 78242  | 145189   | 250338  | 390285  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 2-Fluorobiphenyl       | ANT       | Ave   | 44641<br>1197242 | 202627 | 369246   | 614225  | 952866  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| 2,4,6-Tribromophenol   | PHN       | Lin1  | 7526<br>315899   | 44674  | 83809    | 145633  | 238872  | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |
| p-Terphenyl-d14        | CRY       | Ave   | 54064<br>1631518 | 264856 | 510689   | 847550  | 1272543 | 5.00<br>160    | 20.0   | 50.0       | 80.0   | 120   |

Curve Type Legend:

Ave = Average ISTD

Lin1 = Linear 1/conc ISTD

Report Date: 16-Oct-2017 16:51:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328217.D

Lims ID: IC - List1 5

Client ID:

Sample Type: IC Calib Level: 1

Inject. Date: 16-Oct-2017 12:07:30 ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: IC - LIST1 5

Operator ID: DR Instrument ID: HP5973U

Sublist: chrom-U-8270\*sub56

Method: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U-8270.m

Limit Group: MB - 8270D ICAL

Last Update:16-Oct-2017 16:51:08Calib Date:16-Oct-2017 14:19:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK028

First Level Reviewer: richardsd Date: 16-Oct-2017 13:12:45

| First Level Reviewer: richardsd      |     |        | D      | ate:    |    | 16-Oct-201 | 7 13:12:45 |           |        |
|--------------------------------------|-----|--------|--------|---------|----|------------|------------|-----------|--------|
|                                      |     | RT     | Adj RT | DIt RT  |    |            | Cal Amt    | OnCol Amt |        |
| Compound                             | Sig | (min.) | (min.) | (min.)  | Q  | Response   | ng/uL      | ng/uL     | Flags  |
|                                      |     |        |        |         |    |            |            |           |        |
| * 1 1,4-Dichlorobenzene-d4           | 152 | 6.709  | 6.709  | 0.000   | 94 | 118079     | 40.0       | 40.0      |        |
| <ul><li>* 2 Naphthalene-d8</li></ul> | 136 | 8.226  | 8.231  | -0.005  | 99 | 399397     | 40.0       | 40.0      |        |
| * 3 Acenaphthene-d10                 | 164 | 10.293 | 10.293 | 0.000   | 96 | 199646     | 40.0       | 40.0      |        |
| <ul><li>4 Phenanthrene-d10</li></ul> | 188 | 11.811 | 11.811 | 0.000   | 96 | 444128     | 40.0       | 40.0      |        |
| * 5 Chrysene-d12                     | 240 | 14.193 | 14.193 | 0.000   | 96 | 522821     | 40.0       | 40.0      |        |
| * 6 Perylene-d12                     | 264 | 15.689 | 15.689 | 0.000   | 99 | 469811     | 40.0       | 40.0      |        |
| \$ 7 2-Fluorophenol                  | 112 | 5.095  | 5.095  | 0.000   | 93 | 15455      | 5.00       | 4.87      |        |
| \$ 8 Phenol-d5                       | 99  | 6.228  | 6.228  | 0.000   | 94 | 18251      | 5.00       | 5.07      |        |
| \$ 9 Nitrobenzene-d5                 | 82  | 7.355  | 7.355  | 0.000   | 92 | 17101      | 5.00       | 4.93      |        |
| \$ 10 2-Fluorobiphenyl               | 172 | 9.492  | 9.492  | 0.000   | 98 | 44641      | 5.00       | 5.30      |        |
| \$ 11 2,4,6-Tribromophenol           | 330 | 11.121 | 11.121 | 0.000   | 89 | 7526       | 5.00       | 5.28      |        |
| \$ 12 p-Terphenyl-d14                | 244 | 13.221 | 13.221 | 0.000   | 99 | 54064      | 5.00       | 5.08      |        |
| 23 1,4-Dioxane                       | 88  | 2.611  | 2.606  | 0.005   | 96 | 6679       | 5.00       | 5.03      |        |
| 24 N-Nitrosodimethylamine            | 42  | 3.087  | 3.087  | 0.000   | 80 | 9998       | 5.00       | 4.71      |        |
| 25 Pyridine                          | 52  | 3.183  | 3.188  | -0.005  | 88 | 27842      | 10.0       | 9.10      |        |
| 32 Benzaldehyde                      | 77  | 6.175  | 6.174  | 0.000   | 89 | 11367      | 5.00       | 5.39      |        |
| 33 Phenol                            | 94  | 6.244  | 6.249  | -0.005  | 95 | 17297      | 5.00       | 4.95      |        |
| 34 Aniline                           | 93  | 6.297  | 6.303  | -0.006  | 98 | 22512      | 5.00       | 5.07      |        |
| 35 Bis(2-chloroethyl)ether           | 93  | 6.356  | 6.361  | -0.005  | 99 | 14116      | 5.00       | 5.25      |        |
| 37 2-Chlorophenol                    | 128 | 6.458  | 6.458  | 0.000   | 91 | 17520      | 5.00       | 5.10      |        |
| 38 n-Decane                          | 57  | 6.506  | 6.506  | 0.000   | 90 | 15300      | 5.00       | 4.68      |        |
| 39 1,3-Dichlorobenzene               | 146 | 6.650  | 6.650  | 0.000   | 96 | 21053      | 5.00       | 5.02      |        |
| 40 1,4-Dichlorobenzene               | 146 | 6.730  | 6.730  | 0.000   | 94 | 22817      | 5.00       | 5.34      |        |
| 41 Benzyl alcohol                    | 108 | 6.848  | 6.848  | 0.000   | 88 | 9941       | 5.00       | 4.76      |        |
| 42 1,2-Dichlorobenzene               | 146 | 6.917  | 6.917  | 0.000   | 94 | 20486      | 5.00       | 5.13      |        |
| 43 2-Methylphenol                    | 108 | 6.971  | 6.976  | -0.006  | 95 | 14258      | 5.00       | 5.05      |        |
| 44 2,2'-oxybis[1-chloropropan        | 45  | 7.008  | 7.008  | 0.000   | 50 | 20923      | 5.00       | 5.55      |        |
| 45 Indene                            | 115 | 7.024  | 7.024  | 0.000   | 89 | 90336      | 15.0       | 15.9      |        |
| 46 4-Methylphenol                    | 108 | 7.152  | 7.152  | 0.000   | 88 | 14210      | 5.00       | 4.81      |        |
| 47 N-Nitrosodi-n-propylamine         | 70  | 7.157  | 7.163  | -0.006  | 93 | 9851       | 5.00       | 4.94      |        |
| 49 Acetophenone                      | 105 | 7.168  | 7.168  | 0.000   | 95 | 25607      | 5.00       | 4.85      |        |
| •                                    |     |        | -      | 445 (04 |    |            |            | 40/0      | 4/0047 |

Report Date: 16-Oct-2017 16:51:09

Data File:

| Data File: \\Cnromina\\B       | ulidi0\ |           |        |                  | U 10-00  | 6432.D\U3282 |         |              |       |
|--------------------------------|---------|-----------|--------|------------------|----------|--------------|---------|--------------|-------|
| Compound                       | Ci~     | RT (min.) | Adj RT | Dlt RT           |          | Doctores     | Cal Amt | OnCol Amt    | Elogo |
| Compound                       | Sig     | (min.)    | (min.) | (min.)           | Q        | Response     | ng/uL   | ng/uL        | Flags |
| 53 Hexachloroethane            | 117     | 7.328     | 7.334  | -0.006           | 83       | 7334         | 5.00    | 4.64         |       |
| 54 Nitrobenzene                | 77      | 7.320     | 7.334  | 0.000            | 90       | 15257        | 5.00    | 4.82         |       |
| 56 Isophorone                  | 82      | 7.654     | 7.654  | 0.000            | 96       | 25793        | 5.00    | 4.84         |       |
| 59 2-Nitrophenol               | 139     | 7.761     | 7.761  | 0.000            | 92       | 8712         | 5.00    | 4.91         |       |
| 60 2,4-Dimethylphenol          | 107     | 7.788     | 7.788  | 0.000            | 96       | 18122        | 5.00    | 5.08         |       |
| 62 Bis(2-chloroethoxy)methane  | 93      | 7.700     | 7.700  | 0.000            | 98       | 16132        | 5.00    | 5.01         |       |
| 64 Benzoic acid                | 105     | 7.847     | 7.900  | -0.053           | 68       | 21386        | 15.0    | 16.7         | М     |
| 67 2,4-Dichlorophenol          | 162     | 8.044     | 8.044  | 0.000            | 89       | 15867        | 5.00    | 4.67         | IVI   |
| 68 1,2,4-Trichlorobenzene      | 180     | 8.156     | 8.156  | 0.000            | 92       | 19230        | 5.00    | 4.07         |       |
| 70 Naphthalene                 | 128     | 8.253     | 8.253  | 0.000            | 97       | 47119        | 5.00    | 5.02         |       |
| 72 4-Chloroaniline             | 127     | 8.290     | 8.295  | -0.005           | 97<br>95 | 20360        | 5.00    | 5.02         |       |
| 73 2,6-Dichlorophenol          | 162     | 8.311     | 8.317  | -0.005           | 93       | 15225        | 5.00    | 4.79         |       |
| 74 Hexachlorobutadiene         | 225     | 8.402     | 8.408  | -0.006           | 93<br>92 | 15634        | 5.00    | 4.79         |       |
|                                | 113     | 8.648     | 8.675  |                  | 92<br>1  | 3613         | 5.00    | 4.90<br>4.80 | М     |
| 76 Caprolactam                 | 107     | 8.851     | 8.856  | -0.027<br>-0.005 | 93       | 13772        | 5.00    | 4.00<br>4.99 | IVI   |
| 80 4-Chloro-3-methylphenol     | 142     | 9.070     | 9.070  |                  |          | 35431        | 5.00    |              |       |
| 83 2-Methylnaphthalene         |         |           | 9.070  | 0.000            | 92       |              |         | 5.05         |       |
| 85 1-Methylnaphthalene         | 142     | 9.188     |        | -0.005           | 90       | 34164        | 5.00    | 5.15         |       |
| 86 Hexachlorocyclopentadiene   | 237     | 9.273     | 9.273  | 0.000            | 89       | 16499        | 5.00    | 5.12         |       |
| 87 1,2,4,5-Tetrachlorobenzene  | 216     | 9.278     | 9.278  |                  | 97       | 21482        | 5.00    | 5.06         |       |
| 89 2,4,6-Trichlorophenol       | 196     | 9.396     | 9.401  | -0.005           | 88       | 11692        | 5.00    | 4.89         |       |
| 91 2,4,5-Trichlorophenol       | 196     | 9.439     | 9.444  | -0.005           | 95       | 11694        | 5.00    | 4.87         |       |
| 94 1,1'-Biphenyl               | 154     | 9.615     | 9.620  | -0.005           | 94       | 43793        | 5.00    | 5.10         |       |
| 95 2-Chloronaphthalene         | 162     | 9.652     | 9.652  | 0.000            | 96       | 34955        | 5.00    | 5.23         |       |
| 98 2-Nitroaniline              | 65      | 9.748     | 9.748  | 0.000            | 87       | 8330         | 5.00    | 5.06         |       |
| 102 Dimethyl phthalate         | 163     | 9.946     | 9.946  | 0.000            | 98       | 38221        | 5.00    | 4.93         |       |
| 103 1,3-Dinitrobenzene         | 168     | 9.984     | 9.984  | 0.000            | 86       | 5311         | 5.00    | 5.02         |       |
| 104 2,6-Dinitrotoluene         | 165     | 10.016    | 10.021 | -0.005           | 92       | 7630         | 5.00    | 4.83         |       |
| 105 Acenaphthylene             | 152     | 10.133    | 10.133 | 0.000            | 96       | 47978        | 5.00    | 4.91         |       |
| 106 3-Nitroaniline             | 138     | 10.208    | 10.213 | -0.005           | 89       | 8973         | 5.00    | 5.01         |       |
| 107 2,4-Dinitrophenol          | 184     | 10.325    | 10.325 | 0.000            | 69       | 7255         | 10.0    | 11.1         |       |
| 108 Acenaphthene               | 153     | 10.325    | 10.331 | -0.006           | 91       | 35116        | 5.00    | 5.15         |       |
| 109 4-Nitrophenol              | 109     | 10.374    | 10.379 | -0.005           | 88       | 13097        | 10.0    | 9.79         |       |
| 111 2,4-Dinitrotoluene         | 165     | 10.464    | 10.470 | -0.006           | 93       | 10435        | 5.00    | 4.94         |       |
| 112 Dibenzofuran               | 168     | 10.512    | 10.512 | 0.000            | 94       | 51694        | 5.00    | 5.19         |       |
| 116 2,3,4,6-Tetrachlorophenol  | 232     | 10.641    | 10.641 | 0.000            | 67       | 10837        | 5.00    | 5.23         |       |
| 118 Diethyl phthalate          | 149     | 10.715    | 10.721 | -0.006           | 98       | 41991        | 5.00    | 5.05         |       |
| 119 Hexadecane                 | 57      | 10.737    | 10.737 | 0.000            | 90       | 19028        | 5.00    | 5.22         |       |
| 121 4-Chlorophenyl phenyl ethe | 204     | 10.860    | 10.860 | 0.000            | 87       | 24125        | 5.00    | 5.28         |       |
| 122 4-Nitroaniline             | 138     | 10.865    | 10.870 | -0.005           | 81       | 10109        | 5.00    | 5.12         |       |
| 123 Fluorene                   | 166     | 10.876    | 10.876 | 0.000            | 97       | 42159        | 5.00    | 5.24         |       |
| 125 4,6-Dinitro-2-methylphenol | 198     | 10.908    | 10.908 | 0.000            | 84       | 10642        | 10.0    | 10.3         |       |
| 128 Diphenylamine              | 169     | 10.972    | 10.977 | -0.005           | 94       | 28212        | 4.28    | 4.13         |       |
| 127 N-Nitrosodiphenylamine     | 169     | 10.972    | 10.977 | -0.005           | 61       | 28212        | 5.00    | 4.83         |       |
| 130 Azobenzene                 | 77      | 11.020    | 11.025 | -0.005           | 94       | 30668        | 5.00    | 4.96         |       |
| 129 1,2-Diphenylhydrazine      | 77      | 11.020    | 11.025 | -0.005           | 95       | 30668        | 5.00    | 4.96         |       |
| 137 4-Bromophenyl phenyl ether | 248     | 11.356    | 11.356 | 0.000            | 61       | 13933        | 5.00    | 4.83         |       |
| 139 Hexachlorobenzene          | 284     | 11.447    | 11.453 | -0.006           | 93       | 19003        | 5.00    | 5.01         |       |
| 141 Atrazine                   | 200     | 11.485    | 11.485 | 0.000            | 91       | 12181        | 5.00    | 5.01         |       |
| 143 Pentachlorophenol          | 266     | 11.624    | 11.629 | -0.005           | 92       | 13044        | 10.0    | 10.8         |       |
| 144 n-Octadecane               | 57      | 11.645    | 11.650 | -0.005           | 94       | 17969        | 5.00    | 4.78         |       |
| 150 Phenanthrene               | 178     | 11.832    | 11.832 | 0.000            | 96       | 60129        | 5.00    | 5.23         |       |
| 151 Anthracene                 | 178     | 11.880    | 11.880 | 0.000            | 96       | 61756        | 5.00    | 5.19         |       |
| 191 AHIHAUCHC                  | 170     | 11.000    | 11.000 | 0.000            | 70       | 01750        | 5.00    | J. 17        |       |

Report Date: 16-Oct-2017 16:51:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328217.D

| Data File. //CII/OIII/A/L      | Junaio |        |        |        | 1  | 1432.01032021 |         |           |       |
|--------------------------------|--------|--------|--------|--------|----|---------------|---------|-----------|-------|
|                                |        | RT     | Adj RT | DIt RT |    |               | Cal Amt | OnCol Amt |       |
| Compound                       | Sig    | (min.) | (min.) | (min.) | Q  | Response      | ng/uL   | ng/uL     | Flags |
|                                |        |        |        |        |    |               |         |           |       |
| 152 Carbazole                  | 167    | 12.014 | 12.014 | 0.000  | 95 | 53634         | 5.00    | 4.96      |       |
| 155 Di-n-butyl phthalate       | 149    | 12.291 | 12.291 | 0.000  | 99 | 64870         | 5.00    | 4.78      |       |
| 162 Fluoranthene               | 202    | 12.922 | 12.922 | 0.000  | 94 | 72703         | 5.00    | 5.05      |       |
| 164 Benzidine                  | 184    | 12.997 | 12.997 | 0.000  | 98 | 37905         | 5.00    | 5.70      |       |
| 165 Pyrene                     | 202    | 13.130 | 13.125 | 0.005  | 98 | 75753         | 5.00    | 5.44      |       |
| 172 Butyl benzyl phthalate     | 149    | 13.616 | 13.616 | 0.000  | 93 | 28857         | 5.00    | 4.69      |       |
| 178 Bis(2-ethylhexyl) phthalat | 149    | 14.097 | 14.097 | 0.000  | 94 | 38627         | 5.00    | 4.74      |       |
| 179 3,3'-Dichlorobenzidine     | 252    | 14.124 | 14.124 | 0.000  | 71 | 29592         | 5.00    | 4.69      |       |
| 181 Benzo[a]anthracene         | 228    | 14.183 | 14.183 | 0.001  | 95 | 74385         | 5.00    | 5.13      |       |
| 182 Chrysene                   | 228    | 14.215 | 14.215 | 0.000  | 94 | 72809         | 5.00    | 5.26      |       |
| 183 Di-n-octyl phthalate       | 149    | 14.669 | 14.669 | 0.000  | 97 | 68792         | 5.00    | 4.69      |       |
| 185 Benzo[b]fluoranthene       | 252    | 15.240 | 15.240 | 0.000  | 94 | 71368         | 5.00    | 5.00      |       |
| 187 Benzo[k]fluoranthene       | 252    | 15.267 | 15.267 | 0.000  | 96 | 76506         | 5.00    | 5.25      |       |
| 190 Benzo[a]pyrene             | 252    | 15.625 | 15.625 | 0.000  | 74 | 65943         | 5.00    | 4.95      |       |
| 193 Dibenz(a,h)anthracene      | 278    | 17.169 | 17.174 | -0.005 | 78 | 66439         | 5.00    | 5.20      |       |
| 194 Indeno[1,2,3-cd]pyrene     | 276    | 17.174 | 17.180 | -0.006 | 94 | 74423         | 5.00    | 5.18      |       |
| 195 Benzo[g,h,i]perylene       | 276    | 17.634 | 17.639 | -0.005 | 95 | 59152         | 5.00    | 5.16      |       |
| S 257 3 & 4 Methylphenol       | 108    |        |        |        | 0  |               |         | 4.81      |       |
| S 254 Total Cresols            | 1      |        |        |        | 0  |               |         | 9.86      |       |
| S 256 3-Methylphenol           | 1      |        |        |        | 0  |               |         | 4.81      |       |
| QC Flag Legend                 |        |        |        |        |    |               |         |           |       |

Review Flags

M - Manually Integrated

## Reagents:

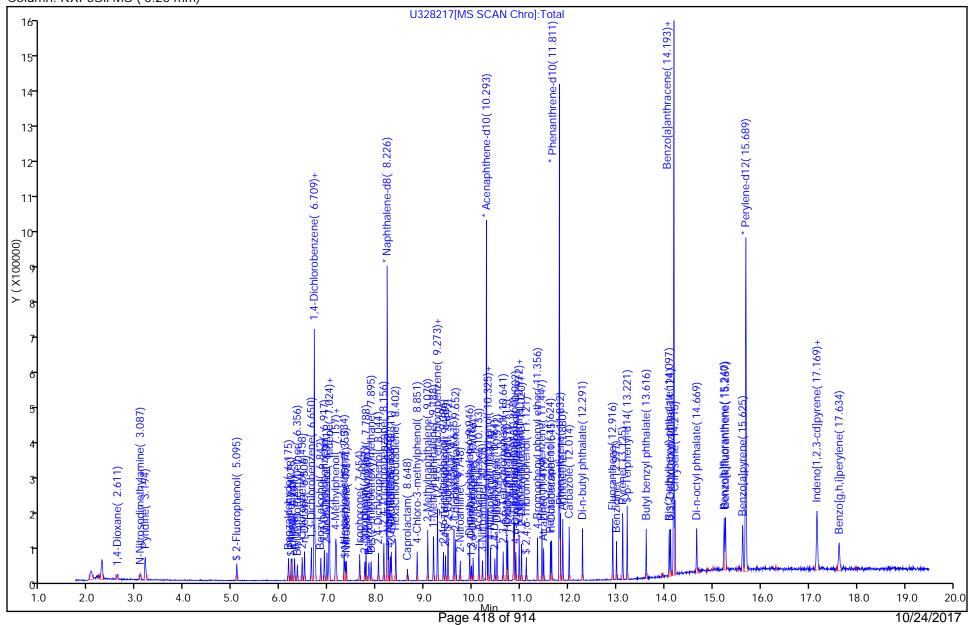
MB\_LIST1\_WRK\_00520 Amount Added: 1.00 Units: mL

MB\_INTSTD\_STK\_00039 Amount Added: 20.00 Units: uL Run Reagent

Report Date: 16-Oct-2017 16:51:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328217.D Injection Date: 16-Oct-2017 12:07:30 Instrument ID: HP5973U


Lims ID: IC - List1 5

Client ID:

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



DR

3

3

Operator ID:

ALS Bottle#:

Worklist Smp#:

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report Report Date: 16-Oct-2017 16:51:09

TestAmerica Buffalo

Data File: Instrument ID: HP5973U

Injection Date: 16-Oct-2017 12:07:30

Lims ID: IC - List1 5

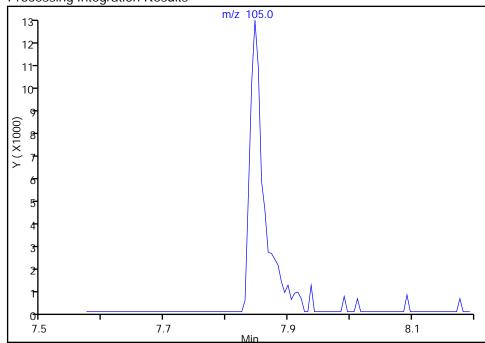
Client ID:

Operator ID: DR ALS Bottle#: 3 Worklist Smp#: 3

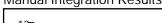
Injection Vol: 1.0 ul Dil. Factor: 1.0000

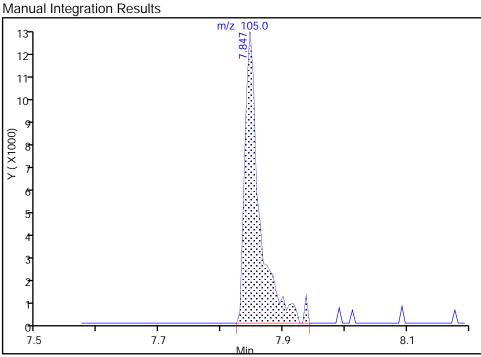
Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN


## 64 Benzoic acid, CAS: 65-85-0

Signal: 1


Not Detected


Expected RT: 7.90





RT: 7.85 Area: 21386 16.723780 Amount: Amount Units: ng/uL





Reviewer: richardsd, 16-Oct-2017 13:13:45

Audit Action: Assigned Compound ID

Audit Reason: Assign Peak

Page 419 of 914

Report Date: 16-Oct-2017 16:51:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

### TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328217.D

Injection Date: 16-Oct-2017 12:07:30

Instrument ID: HP5973U

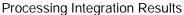
Lims ID: IC - List1 5

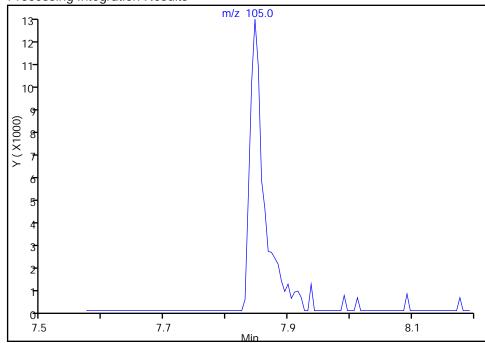
Client ID:

Operator ID: DR ALS Bottle#: 3 Worklist Smp#: 3

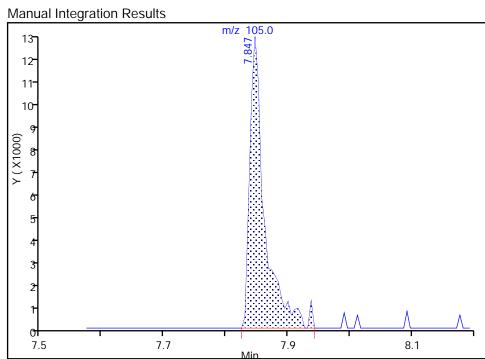
Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL


Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN


### 64 Benzoic acid, CAS: 65-85-0

Signal: 1


Not Detected

Expected RT: 7.90





RT: 7.85
Area: 21386
Amount: 16.723780
Amount Units: ng/uL



Reviewer: richardsd, 16-Oct-2017 13:13:52

Audit Action: Manually Integrated

Audit Reason: Assign Peak

Page 420 of 914 10/24/2017

Report Date: 16-Oct-2017 16:51:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328217.D Injection Date: 16-Oct-2017 12:07:30 Instrument ID: HP5973U

Lims ID: IC - List1 5

Client ID:

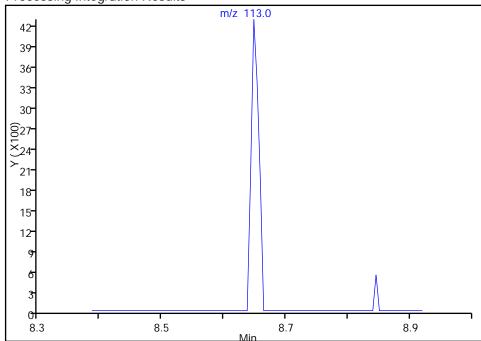
Operator ID: DR ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 ul Dil. Factor: 1.0000

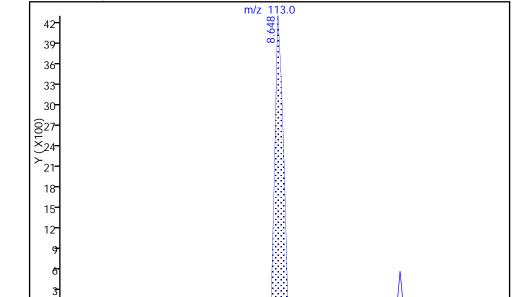
Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN

### 76 Caprolactam, CAS: 105-60-2


Signal: 1

Not Detected


Expected RT: 8.67

### **Processing Integration Results**

Manual Integration Results



RT: 8.65
Area: 3613
Amount: 4.795874
Amount Units: ng/uL



Reviewer: richardsd, 16-Oct-2017 13:13:30

8.3

Audit Action: Assigned Compound ID

Audit Reason: Assign Peak

8.7

Page 421 of 914

8.5

8.9

Report Date: 16-Oct-2017 16:51:09 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328217.D Injection Date: 16-Oct-2017 12:07:30 Instrument ID: HP5973U

Lims ID: IC - List1 5

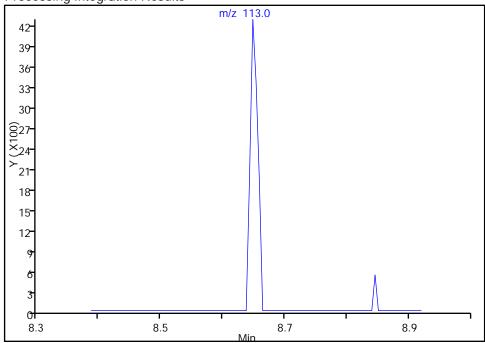
Client ID:

Operator ID: DR ALS Bottle#: 3 Worklist Smp#: 3

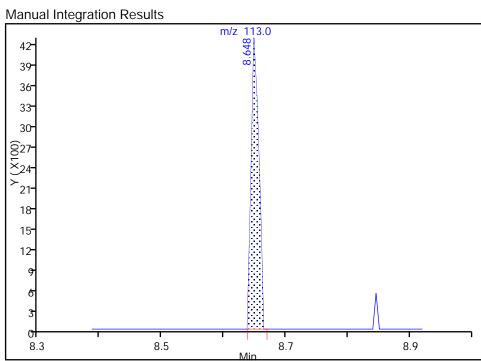
Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN


### 76 Caprolactam, CAS: 105-60-2

Signal: 1


Not Detected

Expected RT: 8.67

**Processing Integration Results** 



RT: 8.65
Area: 3613
Amount: 4.795874
Amount Units: ng/uL



Reviewer: richardsd, 16-Oct-2017 13:13:37

Audit Action: Manually Integrated

Audit Reason: Assign Peak

Page 422 of 914 10/24/2017

Report Date: 16-Oct-2017 16:51:12 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328218.D

Lims ID: IC - List1 20

Client ID:

Sample Type: IC Calib Level: 2

Inject. Date: 16-Oct-2017 12:34:30 ALS Bottle#: 4 Worklist Smp#: 4

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: IC - LIST1 20

Operator ID: DR Instrument ID: HP5973U

Sublist: chrom-U-8270\*sub56

Method: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U-8270.m

Limit Group: MB - 8270D ICAL

Last Update:16-Oct-2017 16:51:11Calib Date:16-Oct-2017 14:19:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK028

First Level Reviewer: richardsd Date: 16-Oct-2017 13:13:26

| First Level Reviewer: richardsd      |     |        | D      | ate:   |    | 16-Oct-201 | / 13:13:2 <u>6</u> |           |       |
|--------------------------------------|-----|--------|--------|--------|----|------------|--------------------|-----------|-------|
|                                      |     | RT     | Adj RT | Dlt RT |    |            | Cal Amt            | OnCol Amt |       |
| Compound                             | Sig | (min.) | (min.) | (min.) | Q  | Response   | ng/uL              | ng/uL     | Flags |
|                                      |     |        |        |        |    |            |                    |           |       |
| * 1 1,4-Dichlorobenzene-d4           | 152 | 6.709  | 6.709  | 0.000  | 95 | 132306     | 40.0               | 40.0      |       |
| <ul><li>2 Naphthalene-d8</li></ul>   | 136 | 8.226  | 8.231  | -0.005 | 99 | 453818     | 40.0               | 40.0      |       |
| * 3 Acenaphthene-d10                 | 164 | 10.293 | 10.293 | 0.000  | 95 | 235185     | 40.0               | 40.0      |       |
| <ul><li>4 Phenanthrene-d10</li></ul> | 188 | 11.811 | 11.811 | 0.000  | 96 | 518831     | 40.0               | 40.0      |       |
| * 5 Chrysene-d12                     | 240 | 14.193 | 14.193 | 0.000  | 96 | 611359     | 40.0               | 40.0      |       |
| * 6 Perylene-d12                     | 264 | 15.689 | 15.689 | 0.000  | 98 | 532997     | 40.0               | 40.0      |       |
| \$ 7 2-Fluorophenol                  | 112 | 5.095  | 5.095  | 0.000  | 92 | 69791      | 20.0               | 19.6      |       |
| \$ 8 Phenol-d5                       | 99  | 6.228  | 6.228  | 0.000  | 95 | 82167      | 20.0               | 20.4      |       |
| \$ 9 Nitrobenzene-d5                 | 82  | 7.355  | 7.355  | 0.000  | 92 | 78242      | 20.0               | 19.9      |       |
| \$ 10 2-Fluorobiphenyl               | 172 | 9.492  | 9.492  | 0.000  | 99 | 202627     | 20.0               | 20.4      |       |
| \$ 11 2,4,6-Tribromophenol           | 330 | 11.121 | 11.121 | 0.000  | 90 | 44674      | 20.0               | 19.8      |       |
| \$ 12 p-Terphenyl-d14                | 244 | 13.221 | 13.221 | 0.000  | 99 | 264856     | 20.0               | 21.3      |       |
| 23 1,4-Dioxane                       | 88  | 2.606  | 2.606  | 0.000  | 96 | 29078      | 20.0               | 19.6      |       |
| 24 N-Nitrosodimethylamine            | 42  | 3.087  | 3.087  | 0.000  | 85 | 43236      | 20.0               | 20.4      |       |
| 25 Pyridine                          | 52  | 3.188  | 3.188  | 0.000  | 80 | 131593     | 40.0               | 41.4      |       |
| 32 Benzaldehyde                      | 77  | 6.174  | 6.174  | 0.000  | 92 | 54587      | 20.0               | 23.1      |       |
| 33 Phenol                            | 94  | 6.244  | 6.249  | -0.005 | 95 | 81343      | 20.0               | 20.8      |       |
| 34 Aniline                           | 93  | 6.303  | 6.303  | 0.000  | 97 | 102848     | 20.0               | 20.7      |       |
| 35 Bis(2-chloroethyl)ether           | 93  | 6.356  | 6.361  | -0.005 | 95 | 61228      | 20.0               | 20.3      |       |
| 37 2-Chlorophenol                    | 128 | 6.458  | 6.458  | 0.000  | 94 | 78460      | 20.0               | 20.4      |       |
| 38 n-Decane                          | 57  | 6.506  | 6.506  | 0.000  | 90 | 79467      | 20.0               | 21.7      |       |
| 39 1,3-Dichlorobenzene               | 146 | 6.650  | 6.650  | 0.000  | 96 | 95276      | 20.0               | 20.3      |       |
| 40 1,4-Dichlorobenzene               | 146 | 6.730  | 6.730  | 0.000  | 94 | 96743      | 20.0               | 20.2      |       |
| 41 Benzyl alcohol                    | 108 | 6.848  | 6.848  | 0.000  | 91 | 47790      | 20.0               | 20.7      |       |
| 42 1,2-Dichlorobenzene               | 146 | 6.917  | 6.917  | 0.000  | 96 | 91126      | 20.0               | 20.4      |       |
| 43 2-Methylphenol                    | 108 | 6.976  | 6.976  | 0.000  | 96 | 65350      | 20.0               | 20.7      |       |
| 44 2,2'-oxybis[1-chloropropan        | 45  | 7.013  | 7.008  | 0.005  | 92 | 93571      | 20.0               | 22.1      |       |
| 45 Indene                            | 115 | 7.024  | 7.024  | 0.000  | 90 | 389485     | 60.0               | 61.0      |       |
| 46 4-Methylphenol                    | 108 | 7.152  | 7.152  | 0.000  | 95 | 67284      | 20.0               | 20.3      |       |
| 47 N-Nitrosodi-n-propylamine         | 70  | 7.157  | 7.163  | -0.006 | 92 | 45906      | 20.0               | 20.6      |       |
| 49 Acetophenone                      | 105 | 7.168  | 7.168  | 0.000  | 95 | 104878     | 20.0               | 20.3      |       |
| ·                                    |     |        |        |        |    |            |                    |           |       |

Report Date: 16-Oct-2017 16:51:12

Data File:

| Data File: \\ChromNA\B         | uttaio\ |        | 1      |        | U16-60 | 6432.b\U32821 |         |           |       |
|--------------------------------|---------|--------|--------|--------|--------|---------------|---------|-----------|-------|
|                                | 6.      | RT     | Adj RT | Dlt RT |        |               | Cal Amt | OnCol Amt |       |
| Compound                       | Sig     | (min.) | (min.) | (min.) | Q      | Response      | ng/uL   | ng/uL     | Flags |
| 50.11                          | 447     | 7.000  | 7.004  | 0.007  | 0.4    | 07040         | 00.0    | 00.0      |       |
| 53 Hexachloroethane            | 117     | 7.328  | 7.334  | -0.006 | 84     | 37049         | 20.0    | 20.9      |       |
| 54 Nitrobenzene                | 77      | 7.376  | 7.376  | 0.000  | 88     | 72069         | 20.0    | 20.0      |       |
| 56 Isophorone                  | 82      | 7.654  | 7.654  | 0.000  | 97     | 124306        | 20.0    | 20.5      |       |
| 59 2-Nitrophenol               | 139     | 7.761  | 7.761  | 0.000  | 94     | 44941         | 20.0    | 20.3      |       |
| 60 2,4-Dimethylphenol          | 107     | 7.788  | 7.788  | 0.000  | 96     | 81885         | 20.0    | 20.2      |       |
| 62 Bis(2-chloroethoxy)methane  | 93      | 7.895  | 7.895  | 0.000  | 99     | 74038         | 20.0    | 20.2      |       |
| 64 Benzoic acid                | 105     | 7.879  | 7.900  | -0.021 | 88     | 132180        | 60.0    | 55.9      |       |
| 67 2,4-Dichlorophenol          | 162     | 8.044  | 8.044  | 0.000  | 92     | 76916         | 20.0    | 20.6      |       |
| 68 1,2,4-Trichlorobenzene      | 180     | 8.156  | 8.156  | 0.000  | 94     | 90602         | 20.0    | 20.7      |       |
| 70 Naphthalene                 | 128     | 8.253  | 8.253  | 0.000  | 97     | 216809        | 20.0    | 20.3      |       |
| 72 4-Chloroaniline             | 127     | 8.290  | 8.295  | -0.005 | 96     | 90565         | 20.0    | 20.1      |       |
| 73 2,6-Dichlorophenol          | 162     | 8.317  | 8.317  | 0.000  | 97     | 74655         | 20.0    | 20.7      |       |
| 74 Hexachlorobutadiene         | 225     | 8.402  | 8.408  | -0.006 | 93     | 70991         | 20.0    | 19.9      |       |
| 76 Caprolactam                 | 113     | 8.664  | 8.675  | -0.011 | 63     | 20663         | 20.0    | 21.5      |       |
| 80 4-Chloro-3-methylphenol     | 107     | 8.851  | 8.856  | -0.005 | 93     | 63549         | 20.0    | 19.7      |       |
| 83 2-Methylnaphthalene         | 142     | 9.070  | 9.070  | 0.000  | 91     | 161740        | 20.0    | 20.3      |       |
| 85 1-Methylnaphthalene         | 142     | 9.193  | 9.193  | 0.000  | 90     | 151409        | 20.0    | 20.1      |       |
| 86 Hexachlorocyclopentadiene   | 237     | 9.273  | 9.273  | 0.000  | 92     | 86466         | 20.0    | 19.8      |       |
| 87 1,2,4,5-Tetrachlorobenzene  | 216     | 9.278  | 9.278  | 0.000  | 96     | 98008         | 20.0    | 19.6      |       |
| 89 2,4,6-Trichlorophenol       | 196     | 9.396  | 9.401  | -0.005 | 91     | 60628         | 20.0    | 20.4      |       |
| 91 2,4,5-Trichlorophenol       | 196     | 9.444  | 9.444  | 0.000  | 96     | 63218         | 20.0    | 20.3      |       |
| 94 1,1'-Biphenyl               | 154     | 9.615  | 9.620  | -0.005 | 95     | 206760        | 20.0    | 20.5      |       |
| 95 2-Chloronaphthalene         | 162     | 9.652  | 9.652  | 0.000  | 96     | 160374        | 20.0    | 20.4      |       |
| 98 2-Nitroaniline              | 65      | 9.748  | 9.748  | 0.000  | 88     | 38506         | 20.0    | 19.6      |       |
| 102 Dimethyl phthalate         | 163     | 9.946  | 9.946  | 0.000  | 99     | 189506        | 20.0    | 20.8      |       |
| 103 1,3-Dinitrobenzene         | 168     | 9.983  | 9.984  | -0.001 | 93     | 31606         | 20.0    | 20.3      |       |
| 104 2,6-Dinitrotoluene         | 165     | 10.016 | 10.021 | -0.005 | 94     | 42749         | 20.0    | 20.8      |       |
| 105 Acenaphthylene             | 152     | 10.133 | 10.133 | 0.000  | 97     | 236654        | 20.0    | 20.6      |       |
| 106 3-Nitroaniline             | 138     | 10.213 | 10.213 | 0.000  | 95     | 42725         | 20.0    | 20.1      |       |
| 107 2,4-Dinitrophenol          | 184     | 10.325 | 10.325 | 0.000  | 89     | 54337         | 40.0    | 37.7      |       |
| 108 Acenaphthene               | 153     | 10.331 | 10.331 | 0.000  | 93     | 165730        | 20.0    | 20.6      |       |
| 109 4-Nitrophenol              | 109     | 10.379 | 10.379 | 0.000  | 86     | 72623         | 40.0    | 39.5      |       |
| 111 2,4-Dinitrotoluene         | 165     | 10.470 | 10.470 | 0.000  | 93     | 55118         | 20.0    | 20.0      |       |
| 112 Dibenzofuran               | 168     | 10.512 | 10.512 | 0.000  | 95     | 248267        | 20.0    | 21.2      |       |
| 116 2,3,4,6-Tetrachlorophenol  | 232     | 10.641 | 10.641 | 0.000  | 69     | 55916         | 20.0    | 18.8      |       |
| 118 Diethyl phthalate          | 149     | 10.715 | 10.721 | -0.006 | 98     | 203310        | 20.0    | 20.8      |       |
| 119 Hexadecane                 | 57      | 10.737 | 10.737 | 0.000  | 93     | 88988         | 20.0    | 20.7      |       |
| 121 4-Chlorophenyl phenyl ethe | 204     | 10.860 | 10.860 | 0.000  | 89     | 108129        | 20.0    | 20.1      |       |
| 122 4-Nitroaniline             | 138     | 10.865 | 10.870 | -0.005 | 83     | 45174         | 20.0    | 19.6      |       |
| 123 Fluorene                   | 166     | 10.876 | 10.876 | 0.000  | 97     | 191771        | 20.0    | 20.2      |       |
| 125 4,6-Dinitro-2-methylphenol | 198     | 10.902 | 10.908 | -0.006 | 89     | 64248         | 40.0    | 38.0      |       |
| 127 N-Nitrosodiphenylamine     | 169     | 10.972 | 10.977 | -0.005 | 61     | 141018        | 20.0    | 20.7      |       |
| 128 Diphenylamine              | 169     | 10.972 | 10.977 | -0.005 | 94     | 141018        | 17.1    | 17.7      |       |
| 129 1,2-Diphenylhydrazine      | 77      | 11.020 | 11.025 | -0.005 | 96     | 147271        | 20.0    | 20.4      |       |
| 130 Azobenzene                 | 77      | 11.020 | 11.025 | -0.005 | 97     | 147271        | 20.0    | 20.4      |       |
| 137 4-Bromophenyl phenyl ether | 248     | 11.356 | 11.356 | 0.000  | 60     | 73822         | 20.0    | 20.5      |       |
| 139 Hexachlorobenzene          | 284     | 11.447 | 11.453 | -0.006 | 95     | 87278         | 20.0    | 19.7      |       |
| 141 Atrazine                   | 200     | 11.485 | 11.485 | 0.000  | 95     | 58364         | 20.0    | 20.4      |       |
| 143 Pentachlorophenol          | 266     | 11.624 | 11.629 | -0.005 | 92     | 84152         | 40.0    | 37.8      |       |
| 144 n-Octadecane               | 57      | 11.650 | 11.650 | 0.000  | 93     | 89915         | 20.0    | 20.5      |       |
| 150 Phenanthrene               | 178     | 11.832 | 11.832 | 0.000  | 96     | 274396        | 20.0    | 20.4      |       |
|                                |         |        |        | 0.000  |        |               | 20.0    | 19.9      |       |
| 151 Anthracene                 | 178     | 11.880 | 11.880 | 0.000  | 96     | 275860        | ∠0.0    | 17.7      |       |

Report Date: 16-Oct-2017 16:51:12

Data File:

|                                |     | RT     | Adj RT   | Dlt RT |     |           | Cal Amt | OnCol Amt |       |
|--------------------------------|-----|--------|----------|--------|-----|-----------|---------|-----------|-------|
| Compound                       | Sig | (min.) | (min.)   | (min.) | Q   | Response  | ng/uL   | ng/uL     | Flags |
|                                |     |        |          |        |     |           | _       |           |       |
| 152 Carbazole                  | 167 | 12.014 | 12.014   | 0.000  | 96  | 261091    | 20.0    | 20.7      |       |
| 155 Di-n-butyl phthalate       | 149 | 12.291 | 12.291   | 0.000  | 100 | 313460    | 20.0    | 20.0      |       |
| 162 Fluoranthene               | 202 | 12.922 | 12.922   | 0.000  | 94  | 333877    | 20.0    | 19.9      |       |
| 164 Benzidine                  | 184 | 12.996 | 12.997   | -0.001 | 98  | 189425    | 20.0    | 24.4      |       |
| 165 Pyrene                     | 202 | 13.125 | 13.125   | 0.000  | 99  | 348280    | 20.0    | 21.4      |       |
| 172 Butyl benzyl phthalate     | 149 | 13.616 | 13.616   | 0.000  | 93  | 146891    | 20.0    | 21.0      |       |
| 178 Bis(2-ethylhexyl) phthalat | 149 | 14.097 | 14.097   | 0.000  | 92  | 194200    | 20.0    | 20.5      |       |
| 179 3,3'-Dichlorobenzidine     | 252 | 14.124 | 14.124   | 0.000  | 72  | 138260    | 20.0    | 20.5      |       |
| 181 Benzo[a]anthracene         | 228 | 14.182 | 14.183   | 0.000  | 96  | 358748    | 20.0    | 21.1      |       |
| 182 Chrysene                   | 228 | 14.215 | 14.215   | 0.000  | 94  | 339813    | 20.0    | 21.0      |       |
| 183 Di-n-octyl phthalate       | 149 | 14.669 | 14.669   | 0.000  | 98  | 319889    | 20.0    | 20.0      |       |
| 185 Benzo[b]fluoranthene       | 252 | 15.240 | 15.240   | 0.000  | 94  | 330655    | 20.0    | 20.4      |       |
| 187 Benzo[k]fluoranthene       | 252 | 15.267 | 15.267   | 0.000  | 96  | 363992    | 20.0    | 22.0      |       |
| 190 Benzo[a]pyrene             | 252 | 15.625 | 15.625   | 0.000  | 73  | 308679    | 20.0    | 20.4      |       |
| 193 Dibenz(a,h)anthracene      | 278 | 17.169 | 17.174   | -0.005 | 85  | 291690    | 20.0    | 19.0      |       |
| 194 Indeno[1,2,3-cd]pyrene     | 276 | 17.174 | 17.180   | -0.006 | 95  | 343765    | 20.0    | 19.2      |       |
| 195 Benzo[g,h,i]perylene       | 276 | 17.634 | 17.639   | -0.005 | 95  | 283223    | 20.0    | 19.1      |       |
| S 254 Total Cresols            | 1   |        |          |        | 0   |           |         | 41.0      |       |
| S 256 3-Methylphenol           | 1   |        |          |        | 0   |           |         | 20.3      |       |
| S 257 3 & 4 Methylphenol       | 108 |        |          |        | 0   |           |         | 20.3      |       |
| Reagents:                      |     |        |          |        |     |           |         |           |       |
| MB_LIST1_WRK_00521             |     | Amount | Added: 1 | 1.00   | L   | Jnits: mL |         |           |       |

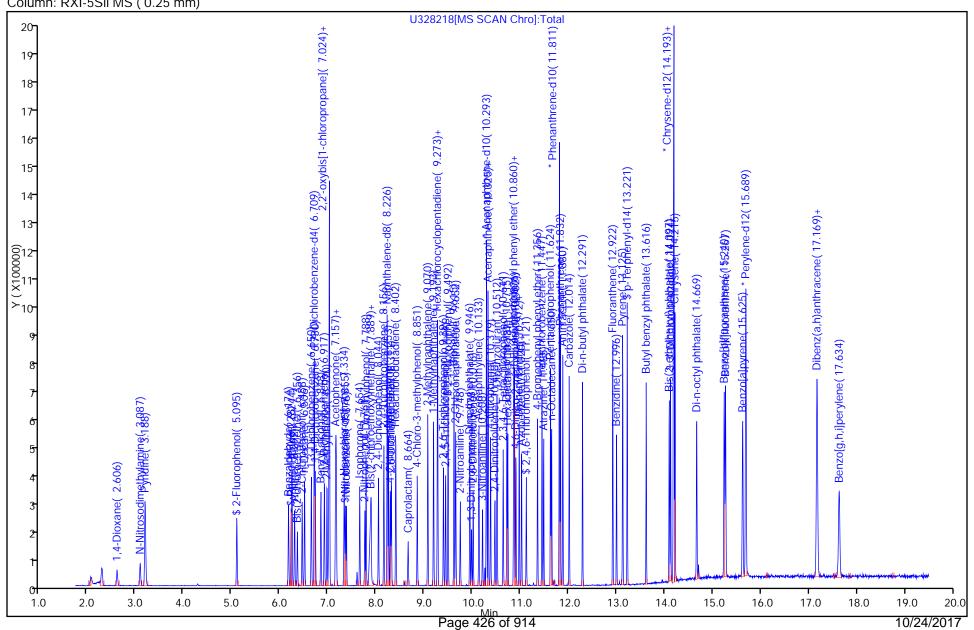
Run Reagent Amount Added: 20.00 Units: uL MB\_INTSTD\_STK\_00039

Report Date: 16-Oct-2017 16:51:12 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328218.D

Injection Date: 16-Oct-2017 12:34:30 Instrument ID: HP5973U


Lims ID: IC - List1 20

Client ID:

1.0 ul Injection Vol: Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



DR

4

4

Operator ID:

ALS Bottle#:

Worklist Smp#:

Report Date: 16-Oct-2017 16:51:15 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328219.D

Lims ID: ICIS - List1 50

Client ID:

Sample Type: ICIS Calib Level: 3

Inject. Date: 16-Oct-2017 13:00:30 ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: ICIS - LIST1 50

Operator ID: DR Instrument ID: HP5973U

Sublist: chrom-U-8270\*sub56

Method: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U-8270.m

Limit Group: MB - 8270D ICAL

Last Update: 16-Oct-2017 16:51:15 Calib Date: 16-Oct-2017 14:19:30

Integrator:RTEID Type:RT Order IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK028

First Level Reviewer: richardsd Date: 16-Oct-2017 16:42:14

| First Level Reviewer: richardsd      |     |        | D      | ate:   |    | 16-Oct-201 | / 16:4 <u>2:14</u> |           |       |
|--------------------------------------|-----|--------|--------|--------|----|------------|--------------------|-----------|-------|
|                                      |     | RT     | Adj RT | Dlt RT |    |            | Cal Amt            | OnCol Amt |       |
| Compound                             | Sig | (min.) | (min.) | (min.) | Q  | Response   | ng/uL              | ng/uL     | Flags |
|                                      |     |        |        |        |    |            |                    |           |       |
| * 1 1,4-Dichlorobenzene-d4           | 152 | 6.709  | 6.709  | 0.000  | 95 | 98141      | 40.0               | 40.0      |       |
| <ul><li>* 2 Naphthalene-d8</li></ul> | 136 | 8.231  | 8.231  | 0.000  | 99 | 336235     | 40.0               | 40.0      |       |
| * 3 Acenaphthene-d10                 | 164 | 10.293 | 10.293 | 0.000  | 95 | 171632     | 40.0               | 40.0      |       |
| <ul><li>4 Phenanthrene-d10</li></ul> | 188 | 11.811 | 11.811 | 0.000  | 96 | 386287     | 40.0               | 40.0      |       |
| * 5 Chrysene-d12                     | 240 | 14.193 | 14.193 | 0.000  | 95 | 495900     | 40.0               | 40.0      |       |
| * 6 Perylene-d12                     | 264 | 15.689 | 15.689 | 0.000  | 99 | 477639     | 40.0               | 40.0      |       |
| \$ 7 2-Fluorophenol                  | 112 | 5.095  | 5.095  | 0.000  | 91 | 137899     | 50.0               | 52.3      |       |
| \$ 8 Phenol-d5                       | 99  | 6.228  | 6.228  | 0.000  | 96 | 152714     | 50.0               | 51.0      |       |
| \$ 9 Nitrobenzene-d5                 | 82  | 7.355  | 7.355  | 0.000  | 91 | 145189     | 50.0               | 49.7      |       |
| \$ 10 2-Fluorobiphenyl               | 172 | 9.492  | 9.492  | 0.000  | 99 | 369246     | 50.0               | 51.0      |       |
| \$ 11 2,4,6-Tribromophenol           | 330 | 11.121 | 11.121 | 0.000  | 91 | 83809      | 50.0               | 47.4      |       |
| \$ 12 p-Terphenyl-d14                | 244 | 13.221 | 13.221 | 0.000  | 99 | 510689     | 50.0               | 50.6      |       |
| 23 1,4-Dioxane                       | 88  | 2.606  | 2.606  | 0.000  | 98 | 58043      | 50.0               | 52.6      |       |
| 24 N-Nitrosodimethylamine            | 42  | 3.087  | 3.087  | 0.000  | 83 | 81747      | 50.0               | 53.3      |       |
| 25 Pyridine                          | 52  | 3.188  | 3.188  | 0.000  | 82 | 253367     | 100.0              | 109.0     |       |
| 32 Benzaldehyde                      | 77  | 6.174  | 6.174  | 0.000  | 90 | 94645      | 50.0               | 54.0      |       |
| 33 Phenol                            | 94  | 6.249  | 6.249  | 0.000  | 95 | 151268     | 50.0               | 52.0      |       |
| 34 Aniline                           | 93  | 6.303  | 6.303  | 0.000  | 96 | 188736     | 50.0               | 51.1      |       |
| 35 Bis(2-chloroethyl)ether           | 93  | 6.361  | 6.361  | 0.000  | 96 | 114585     | 50.0               | 51.3      |       |
| 37 2-Chlorophenol                    | 128 | 6.458  | 6.458  | 0.000  | 94 | 144831     | 50.0               | 50.8      |       |
| 38 n-Decane                          | 57  | 6.506  | 6.506  | 0.000  | 91 | 146281     | 50.0               | 53.9      |       |
| 39 1,3-Dichlorobenzene               | 146 | 6.650  | 6.650  | 0.000  | 97 | 182822     | 50.0               | 52.5      |       |
| 40 1,4-Dichlorobenzene               | 146 | 6.730  | 6.730  | 0.000  | 94 | 183683     | 50.0               | 51.7      |       |
| 41 Benzyl alcohol                    | 108 | 6.848  | 6.848  | 0.000  | 90 | 88484      | 50.0               | 51.9      |       |
| 42 1,2-Dichlorobenzene               | 146 | 6.917  | 6.917  | 0.000  | 95 | 175445     | 50.0               | 52.9      |       |
| 43 2-Methylphenol                    | 108 | 6.976  | 6.976  | 0.000  | 97 | 122782     | 50.0               | 52.3      |       |
| 44 2,2'-oxybis[1-chloropropan        | 45  | 7.008  | 7.008  | 0.000  | 93 | 165881     | 50.0               | 52.9      |       |
| 45 Indene                            | 115 | 7.024  | 7.024  | 0.000  | 89 | 733915     | 150.0              | 155.0     |       |
| 46 4-Methylphenol                    | 108 | 7.152  | 7.152  | 0.000  | 90 | 131164     | 50.0               | 53.4      |       |
| 47 N-Nitrosodi-n-propylamine         | 70  | 7.163  | 7.163  | 0.000  | 90 | 83462      | 50.0               | 50.4      |       |
| 49 Acetophenone                      | 105 | 7.168  | 7.168  | 0.000  | 96 | 194829     | 50.0               | 52.4      |       |
| ·                                    |     |        |        |        |    |            |                    |           |       |

Report Date: 16-Oct-2017 16:51:15

Data File:

| Data File: \\Cnromina\\B               | unaio\    |                |                |        | U 10-00   | 5432.D\U3282 I  |              | T .          |       |
|----------------------------------------|-----------|----------------|----------------|--------|-----------|-----------------|--------------|--------------|-------|
|                                        | C:        | RT             | Adj RT         | Dlt RT |           | D.              | Cal Amt      | OnCol Amt    | E     |
| Compound                               | Sig       | (min.)         | (min.)         | (min.) | Q         | Response        | ng/uL        | ng/uL        | Flags |
| E2 Hoyachlaracthana                    | 117       | 7 224          | 7 224          | 0.000  | ٥r        | 70020           | E0.0         | E2 2         |       |
| 53 Hexachloroethane<br>54 Nitrobenzene | 117<br>77 | 7.334<br>7.376 | 7.334<br>7.376 | 0.000  | 85<br>88  | 70020<br>136728 | 50.0<br>50.0 | 53.3<br>51.3 |       |
|                                        | 82        | 7.376<br>7.654 |                |        | 97        |                 |              |              |       |
| 56 Isophorone                          | 62<br>139 | 7.054<br>7.761 | 7.654<br>7.761 | 0.000  | 97<br>93  | 224574<br>83480 | 50.0         | 50.1<br>50.1 |       |
| 59 2-Nitrophenol                       |           | 7.761<br>7.788 | 7.761          | 0.000  |           |                 | 50.0         | 50.1<br>49.9 |       |
| 60 2,4-Dimethylphenol                  | 107       |                | 7.788          | 0.000  | 96<br>100 | 150046          | 50.0         |              |       |
| 62 Bis(2-chloroethoxy)methane          | 93<br>105 | 7.895          | 7.895          | 0.000  | 100       | 139398          | 50.0         | 51.4         |       |
| 64 Benzoic acid                        | 105       | 7.900          | 7.900          | 0.000  | 87        | 271010          | 150.0        | 140.8        |       |
| 67 2,4-Dichlorophenol                  | 162       | 8.044          | 8.044          | 0.000  | 92        | 145144          | 50.0         | 52.7         |       |
| 68 1,2,4-Trichlorobenzene              | 180       | 8.156          | 8.156          | 0.000  | 94        | 164739          | 50.0         | 50.8         |       |
| 70 Naphthalene                         | 128       | 8.253          | 8.253          | 0.000  | 98        | 403521          | 50.0         | 51.1         |       |
| 72 4-Chloroaniline                     | 127       | 8.295          | 8.295          | 0.000  | 96        | 164183          | 50.0         | 49.2         |       |
| 73 2,6-Dichlorophenol                  | 162       | 8.317          | 8.317          | 0.000  | 96        | 132484          | 50.0         | 49.6         |       |
| 74 Hexachlorobutadiene                 | 225       | 8.408          | 8.408          | 0.000  | 93        | 135936          | 50.0         | 51.5         |       |
| 76 Caprolactam                         | 113       | 8.675          | 8.675          | 0.000  | 80        | 35095           | 50.0         | 48.3         |       |
| 80 4-Chloro-3-methylphenol             | 107       | 8.856          | 8.856          | 0.000  | 93        | 119912          | 50.0         | 49.9         |       |
| 83 2-Methylnaphthalene                 | 142       | 9.070          | 9.070          | 0.000  | 90        | 293887          | 50.0         | 49.7         |       |
| 85 1-Methylnaphthalene                 | 142       | 9.193          | 9.193          | 0.000  | 91<br>05  | 280278          | 50.0         | 50.1         |       |
| 86 Hexachlorocyclopentadiene           | 237       | 9.273          | 9.273          | 0.000  | 95        | 161143          | 50.0         | 49.2         |       |
| 87 1,2,4,5-Tetrachlorobenzene          | 216       | 9.278          | 9.278          | 0.000  | 97        | 183554          | 50.0         | 50.3         |       |
| 89 2,4,6-Trichlorophenol               | 196       | 9.401          | 9.401          | 0.000  | 91        | 111865          | 50.0         | 51.1         |       |
| 91 2,4,5-Trichlorophenol               | 196       | 9.444          | 9.444          | 0.000  | 94        | 119600          | 50.0         | 51.6         |       |
| 94 1,1'-Biphenyl                       | 154       | 9.620          | 9.620          | 0.000  | 94        | 376696          | 50.0         | 51.1         |       |
| 95 2-Chloronaphthalene                 | 162       | 9.652          | 9.652          | 0.000  | 96        | 289724          | 50.0         | 50.5         |       |
| 98 2-Nitroaniline                      | 65        | 9.748          | 9.748          | 0.000  | 86        | 73240           | 50.0         | 51.0         |       |
| 102 Dimethyl phthalate                 | 163       | 9.946          | 9.946          | 0.000  | 99        | 341575          | 50.0         | 51.3         |       |
| 103 1,3-Dinitrobenzene                 | 168       | 9.984          | 9.984          | 0.000  | 94        | 59810           | 50.0         | 49.7         |       |
| 104 2,6-Dinitrotoluene                 | 165       | 10.021         | 10.021         | 0.000  | 94        | 76844           | 50.0         | 50.3         |       |
| 105 Acenaphthylene                     | 152       | 10.133         | 10.133         | 0.000  | 97        | 435525          | 50.0         | 51.8         |       |
| 106 3-Nitroaniline                     | 138       | 10.213         | 10.213         | 0.000  | 92        | 77115           | 50.0         | 49.5         |       |
| 107 2,4-Dinitrophenol                  | 184       | 10.325         | 10.325         | 0.000  | 68        | 111650          | 100.0        | 95.0         |       |
| 108 Acenaphthene                       | 153       | 10.331         | 10.331         | 0.000  | 86        | 298524          | 50.0         | 50.9         |       |
| 109 4-Nitrophenol                      | 109       | 10.379         | 10.379         | 0.000  | 85        | 143551          | 100.0        | 104.1        |       |
| 111 2,4-Dinitrotoluene                 | 165       | 10.470         | 10.470         | 0.000  | 94        | 104126          | 50.0         | 50.6         |       |
| 112 Dibenzofuran                       | 168       | 10.512         | 10.512         | 0.000  | 94        | 426874          | 50.0         | 49.9         |       |
| 116 2,3,4,6-Tetrachlorophenol          | 232       | 10.641         | 10.641         | 0.000  | 69        | 116649          | 50.0         | 51.3         |       |
| 118 Diethyl phthalate                  | 149       | 10.721         | 10.721         | 0.000  | 98        | 363600          | 50.0         | 50.9         |       |
| 119 Hexadecane                         | 57        | 10.737         | 10.737         | 0.000  | 93        | 161347          | 50.0         | 51.5         |       |
| 121 4-Chlorophenyl phenyl ethe         | 204       | 10.860         | 10.860         | 0.000  | 89        | 198856          | 50.0         | 50.6         |       |
| 122 4-Nitroaniline                     | 138       | 10.870         | 10.870         | 0.000  | 82        | 83823           | 50.0         | 49.9         |       |
| 123 Fluorene                           | 166       | 10.876         | 10.876         | 0.000  | 95        | 351698          | 50.0         | 50.8         |       |
| 125 4,6-Dinitro-2-methylphenol         | 198       | 10.908         | 10.908         | 0.000  | 90        | 133795          | 100.0        | 99.7         |       |
| 128 Diphenylamine                      | 169       | 10.977         | 10.977         | 0.000  | 93        | 257141          | 42.8         | 43.3         |       |
| 127 N-Nitrosodiphenylamine             | 169       | 10.977         | 10.977         | 0.000  | 63        | 257141          | 50.0         | 50.6         |       |
| 130 Azobenzene                         | 77        | 11.025         | 11.025         | 0.000  | 97        | 269454          | 50.0         | 50.1         |       |
| 129 1,2-Diphenylhydrazine              | 77        | 11.025         | 11.025         | 0.000  | 97        | 269454          | 50.0         | 50.1         |       |
| 137 4-Bromophenyl phenyl ether         | 248       | 11.356         | 11.356         | 0.000  | 59        | 136771          | 50.0         | 50.3         |       |
| 139 Hexachlorobenzene                  | 284       | 11.453         | 11.453         | 0.000  | 94        | 163499          | 50.0         | 49.6         |       |
| 141 Atrazine                           | 200       | 11.435         | 11.485         | 0.000  | 95        | 103477          | 50.0         | 51.8         |       |
| 143 Pentachlorophenol                  | 266       | 11.629         | 11.629         | 0.000  | 92        | 172166          | 100.0        | 95.6         |       |
| 144 n-Octadecane                       | 200<br>57 | 11.650         | 11.650         | 0.000  | 92<br>93  | 172100          | 50.0         | 93.6<br>52.6 |       |
|                                        |           |                |                |        |           |                 |              |              |       |
| 150 Phenanthrene                       | 178       | 11.832         | 11.832         | 0.000  | 96        | 504504          | 50.0         | 50.4         |       |
| 151 Anthracene                         | 178       | 11.880         | 11.880         | 0.000  | 96        | 522440          | 50.0         | 50.5         |       |

Report Date: 16-Oct-2017 16:51:15

Data File:

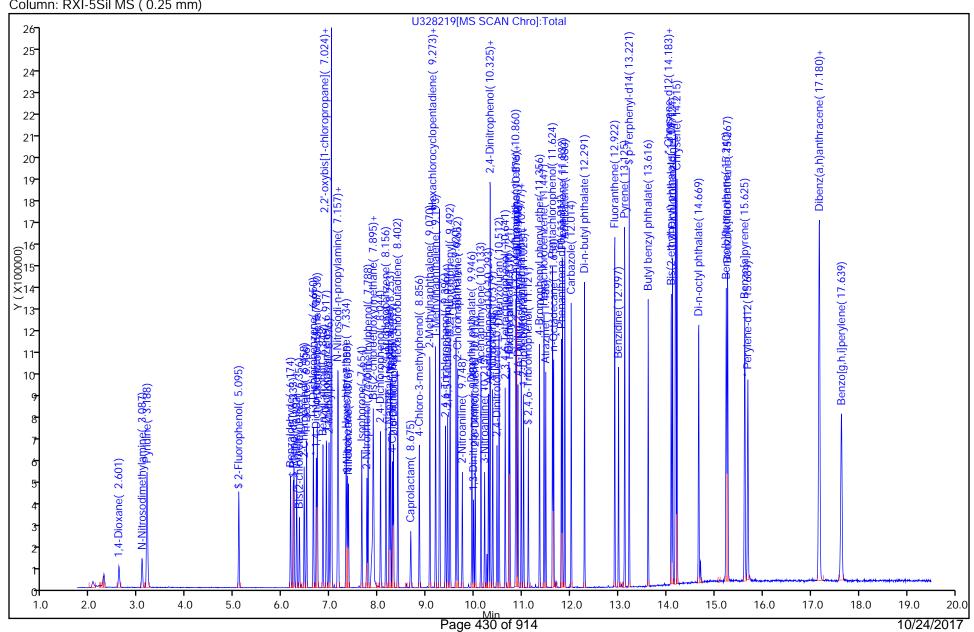
| Data File. ((Chilomita))       | Junaio |           |          |        | 0 10-00 | 7432.0103202 | 1         |           |       |
|--------------------------------|--------|-----------|----------|--------|---------|--------------|-----------|-----------|-------|
|                                |        | RT        | Adj RT   | Dlt RT |         |              | Cal Amt   | OnCol Amt |       |
| Compound                       | Sig    | (min.)    | (min.)   | (min.) | Q       | Response     | ng/uL     | ng/uL     | Flags |
|                                |        |           |          |        |         |              |           | •         |       |
| 152 Carbazole                  | 167    | 12.014    | 12.014   | 0.000  | 96      | 474608       | 50.0      | 50.5      |       |
| 155 Di-n-butyl phthalate       | 149    | 12.291    | 12.291   | 0.000  | 100     | 593185       | 50.0      | 51.1      |       |
| 162 Fluoranthene               | 202    | 12.922    | 12.922   | 0.000  | 95      | 642707       | 50.0      | 51.4      |       |
| 164 Benzidine                  | 184    | 12.997    | 12.997   | 0.000  | 98      | 341983       | 50.0      | 54.2      |       |
| 165 Pyrene                     | 202    | 13.125    | 13.125   | 0.000  | 98      | 647109       | 50.0      | 49.0      |       |
| 172 Butyl benzyl phthalate     | 149    | 13.616    | 13.616   | 0.000  | 94      | 286420       | 50.0      | 50.7      |       |
| 178 Bis(2-ethylhexyl) phthalat | 149    | 14.097    | 14.097   | 0.000  | 93      | 399253       | 50.0      | 52.0      |       |
| 179 3,3'-Dichlorobenzidine     | 252    | 14.124    | 14.124   | 0.000  | 72      | 276649       | 50.0      | 51.3      |       |
| 181 Benzo[a]anthracene         | 228    | 14.183    | 14.183   | 0.000  | 96      | 692095       | 50.0      | 50.3      |       |
| 182 Chrysene                   | 228    | 14.215    | 14.215   | 0.000  | 94      | 666322       | 50.0      | 50.8      |       |
| 183 Di-n-octyl phthalate       | 149    | 14.669    | 14.669   | 0.000  | 98      | 679167       | 50.0      | 53.0      |       |
| 185 Benzo[b]fluoranthene       | 252    | 15.240    | 15.240   | 0.000  | 94      | 752011       | 50.0      | 51.8      |       |
| 187 Benzo[k]fluoranthene       | 252    | 15.267    | 15.267   | 0.000  | 97      | 717810       | 50.0      | 48.4      |       |
| 190 Benzo[a]pyrene             | 252    | 15.625    | 15.625   | 0.000  | 73      | 679386       | 50.0      | 50.2      |       |
| 193 Dibenz(a,h)anthracene      | 278    | 17.174    | 17.174   | 0.000  | 86      | 703518       | 50.0      | 50.5      |       |
| 194 Indeno[1,2,3-cd]pyrene     | 276    | 17.180    | 17.180   | 0.000  | 96      | 816722       | 50.0      | 49.9      |       |
| 195 Benzo[g,h,i]perylene       | 276    | 17.639    | 17.639   | 0.000  | 95      | 687830       | 50.0      | 50.4      |       |
| Reagents:                      |        |           |          |        |         |              |           |           |       |
| MB_LIST1_WRK_00522             |        | Amount    | Added: 1 | 1.00   | 1       | Jnits: mL    |           |           |       |
| MB_INTSTD_STK_00039            |        |           | Added: 2 |        |         | Jnits: uL    | Run Reage | nt        |       |
| MD_INTSTD_STK_00039            |        | AIIIUUIII | Audeu. Z | 0.00   |         | niits. ul    | Run Reage | 111       |       |

Report Date: 16-Oct-2017 16:51:16 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328219.D

Injection Date: 16-Oct-2017 13:00:30 Instrument ID: HP5973U


Lims ID: Client ID:

Injection Vol: 1.0 ul Dil. Factor: 1.0000 ALS Bottle#:

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

ICIS - List1 50



DR

5

5

Operator ID:

Worklist Smp#:

Report Date: 16-Oct-2017 16:51:20 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328220.D

Lims ID: IC - List1 80

Client ID:

Sample Type: IC Calib Level: 4

Inject. Date: 16-Oct-2017 13:26:30 ALS Bottle#: 6 Worklist Smp#: 6

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: IC - LIST1 80

Operator ID: DR Instrument ID: HP5973U

Sublist: chrom-U-8270\*sub56

Method: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U-8270.m

Limit Group: MB - 8270D ICAL

Last Update:16-Oct-2017 16:51:19Calib Date:16-Oct-2017 14:19:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: XAWRK028

|                                                                         |           | RT              | Adj RT Dlt RT   |                     |          | Cal Amt          | OnCol Amt    |              |       |
|-------------------------------------------------------------------------|-----------|-----------------|-----------------|---------------------|----------|------------------|--------------|--------------|-------|
| Compound                                                                | Sig       | (min.)          | (min.)          | in.) (min.) Q Respo |          | Response         | ng/uL        | ng/uL        | Flags |
| * 114 Dichlorobonzono d4                                                | 152       | 6.709           | 6.709           | 0.000               | 94       | 110943           | 40.0         | 40.0         |       |
| <ul><li>* 1 1,4-Dichlorobenzene-d4</li><li>* 2 Naphthalene-d8</li></ul> | 136       | 8.231           | 8.231           | 0.000               | 94<br>99 | 352613           | 40.0         | 40.0         |       |
| * 3 Acenaphthene-d10                                                    | 164       | 10.293          | 10.293          | 0.000               | 93       | 186242           | 40.0         | 40.0         |       |
| * 4 Phenanthrene-d10                                                    | 188       | 10.293          | 10.293          | -0.000              | 93<br>96 | 399381           | 40.0         | 40.0         |       |
| * 5 Chrysene-d12                                                        | 240       | 14.193          | 14.193          | 0.000               | 96<br>95 | 534494           | 40.0         | 40.0         |       |
| * 6 Perylene-d12                                                        | 264       | 15.689          | 15.689          | 0.000               | 93<br>98 | 526754           | 40.0         | 40.0         |       |
| \$ 7 2-Fluorophenol                                                     | 112       | 5.095           | 5.095           | 0.000               | 90<br>92 | 236489           | 80.0         | 79.3         |       |
| •                                                                       | 99        | 6.233           | 6.228           | 0.005               | 92<br>96 | 263158           | 80.0         | 79.3<br>77.8 |       |
| \$ 8 Phenol-d5<br>\$ 9 Nitrobenzene-d5                                  | 99<br>82  | 7.355           | 7.355           | 0.003               | 90<br>90 | 250338           | 80.0         | 77.8<br>81.8 |       |
|                                                                         | o∠<br>172 | 7.333<br>9.497  | 7.333<br>9.492  | 0.000               | 90<br>99 | 614225           | 80.0         | 78.1         |       |
| \$ 10 2-Fluorobiphenyl<br>\$ 11 2,4,6-Tribromophenol                    | 330       | 9.497<br>11.127 | 9.492<br>11.121 | 0.005               | 99<br>90 | 145633           | 80.0         | 76.1<br>78.4 |       |
| \$ 12 p-Terphenyl-d14                                                   | 244       | 13.221          | 13.221          | 0.000               | 90<br>99 | 847550           | 80.0         | 70.4<br>77.9 |       |
| 23 1,4-Dioxane                                                          | 88        | 2.606           | 2.606           | 0.000               | 99<br>99 | 100945           | 80.0         | 81.0         |       |
| 24 N-Nitrosodimethylamine                                               | 42        | 3.087           | 3.087           | 0.000               | 99<br>88 | 134036           | 80.0         | 77.7         |       |
| 25 Pyridine                                                             | 52        | 3.188           | 3.188           | 0.000               | 84       | 417426           | 160.0        | 159.2        |       |
| 32 Benzaldehyde                                                         | 52<br>77  | 5.100<br>6.174  | 5.100<br>6.174  | 0.000               | 90       | 145657           | 80.0         | 73.5         |       |
| 33 Phenol                                                               | 94        | 6.249           | 6.249           | 0.000               | 90<br>95 | 256442           | 80.0         | 73.5<br>78.0 |       |
| 34 Aniline                                                              | 94<br>93  | 6.303           | 6.303           | 0.000               | 93<br>98 | 329704           | 80.0         | 76.0<br>79.0 |       |
|                                                                         | 93<br>93  | 6.361           | 6.361           | 0.000               | 98<br>97 | 329704<br>193106 | 80.0         | 79.0<br>76.5 |       |
| 35 Bis(2-chloroethyl)ether                                              |           |                 |                 |                     | 97       |                  | 80.0         | 76.5<br>79.4 |       |
| 37 2-Chlorophenol                                                       | 128       | 6.458           | 6.458           | 0.000               |          | 255977           |              |              |       |
| 38 n-Decane                                                             | 57        | 6.506           | 6.506           | 0.000               | 87       | 237781           | 80.0         | 77.5<br>78.3 |       |
| 39 1,3-Dichlorobenzene                                                  | 146       | 6.650           | 6.650           | 0.000               | 97<br>04 | 308111           | 80.0<br>80.0 |              |       |
| 40 1,4-Dichlorobenzene                                                  | 146       | 6.730           | 6.730           | 0.000               | 94       | 307509           |              | 76.6         |       |
| 41 Benzyl alcohol                                                       | 108       | 6.848           | 6.848           | 0.000               | 90       | 150321           | 80.0         | 78.1         |       |
| 42 1,2-Dichlorobenzene                                                  | 146       | 6.922           | 6.917           | 0.005               | 97       | 292178           | 80.0         | 77.9         |       |
| 43 2-Methylphenol                                                       | 108       | 6.976           | 6.976           | 0.000               | 96       | 206877           | 80.0         | 78.0         |       |
| 44 2,2'-oxybis[1-chloropropan                                           | 45<br>115 | 7.008           | 7.008           | 0.000               | 92       | 266871           | 80.0         | 75.3         |       |
| 45 Indene                                                               | 115       | 7.029           | 7.024           | 0.005               | 88       | 1253353          | 240.0        | 234.2        |       |
| 46 4-Methylphenol                                                       | 108       | 7.157           | 7.152           | 0.005               | 93       | 216530           | 80.0         | 78.1         |       |
| 47 N-Nitrosodi-n-propylamine                                            | 70        | 7.163           | 7.163           | 0.000               | 89       | 147893           | 80.0         | 79.0         |       |
| 49 Acetophenone                                                         | 105       | 7.173           | 7.168           | 0.005               | 98       | 320921           | 80.0         | 76.8         |       |
| 53 Hexachloroethane                                                     | 117       | 7.334           | 7.334           | 0.000               | 85       | 115314           | 80.0         | 77.7         |       |

Report Date: 16-Oct-2017 16:51:20

Data File:

| Data File: \\Cnromina\B              | ullaio\   |                |                |        | U 10-00  | 6432.D\U32822<br>T |         |              |       |
|--------------------------------------|-----------|----------------|----------------|--------|----------|--------------------|---------|--------------|-------|
| Company                              | Cia       | RT             | Adj RT         | Dlt RT |          | Doonanaa           | Cal Amt | OnCol Amt    | Floor |
| Compound                             | Sig       | (min.)         | (min.)         | (min.) | Q        | Response           | ng/uL   | ng/uL        | Flags |
| 54 Nitrobenzene                      | 77        | 7.382          | 7.376          | 0.006  | 88       | 228448             | 80.0    | 81.7         |       |
| 56 Isophorone                        | 82        | 7.362<br>7.660 | 7.376<br>7.654 | 0.006  | 97       | 383814             | 80.0    | 81.6         |       |
| 59 2-Nitrophenol                     | 139       | 7.761          | 7.054<br>7.761 | 0.000  | 97<br>95 | 141930             | 80.0    | 81.0         |       |
| 60 2,4-Dimethylphenol                | 107       | 7.781          | 7.788          | 0.000  | 93<br>97 | 253943             | 80.0    | 80.6         |       |
| 62 Bis(2-chloroethoxy)methane        | 93        | 7.788          | 7.786<br>7.895 | 0.000  | 97<br>98 | 230325             | 80.0    | 81.1         |       |
| 64 Benzoic acid                      | 93<br>105 | 7.693          | 7.893          | 0.000  | 96<br>87 | 488191             | 240.0   | 236.2        |       |
| 67 2,4-Dichlorophenol                | 162       | 8.050          | 8.044          | 0.032  | 92       | 233208             | 80.0    | 80.8         |       |
| ·                                    | 180       | 8.156          | 8.156          | 0.000  | 92<br>95 | 255206<br>269848   | 80.0    | 79.3         |       |
| 68 1,2,4-Trichlorobenzene            | 128       | 8.253          | 8.253          | 0.000  | 93<br>98 | 672497             | 80.0    | 79.3<br>81.2 |       |
| 70 Naphthalene<br>72 4-Chloroaniline | 120       | 6.253<br>8.295 | 8.295          | 0.000  | 96       | 285489             | 80.0    | 81.5         |       |
|                                      |           |                |                | 0.000  | 90<br>97 |                    |         | 81.9         |       |
| 73 2,6-Dichlorophenol                | 162       | 8.317          | 8.317          |        |          | 229554             | 80.0    |              |       |
| 74 Hexachlorobutadiene               | 225       | 8.407          | 8.408          | -0.001 | 94       | 223535             | 80.0    | 80.7         |       |
| 76 Caprolactam                       | 113       | 8.691          | 8.675          | 0.016  | 80       | 61096              | 80.0    | 79.8         |       |
| 80 4-Chloro-3-methylphenol           | 107       | 8.856          | 8.856          | 0.000  | 94       | 211626             | 80.0    | 83.8         |       |
| 83 2-Methylnaphthalene               | 142       | 9.070          | 9.070          | 0.000  | 90       | 502276             | 80.0    | 81.0         |       |
| 85 1-Methylnaphthalene               | 142       | 9.193          | 9.193          | 0.000  | 91<br>05 | 466154             | 80.0    | 79.5         |       |
| 86 Hexachlorocyclopentadiene         | 237       | 9.273          | 9.273          | 0.000  | 95<br>07 | 285305             | 80.0    | 79.8         |       |
| 87 1,2,4,5-Tetrachlorobenzene        | 216       | 9.278          | 9.278          | 0.000  | 97       | 314292             | 80.0    | 79.4         |       |
| 89 2,4,6-Trichlorophenol             | 196       | 9.401          | 9.401          | 0.000  | 90       | 185870             | 80.0    | 78.1         |       |
| 91 2,4,5-Trichlorophenol             | 196       | 9.444          | 9.444          | 0.000  | 95       | 197730             | 80.0    | 78.3         |       |
| 94 1,1'-Biphenyl                     | 154       | 9.620          | 9.620          | 0.000  | 94       | 637770             | 80.0    | 79.7         |       |
| 95 2-Chloronaphthalene               | 162       | 9.652          | 9.652          | 0.000  | 96       | 491061             | 80.0    | 78.8         |       |
| 98 2-Nitroaniline                    | 65        | 9.748          | 9.748          | 0.000  | 87       | 123086             | 80.0    | 78.9         |       |
| 102 Dimethyl phthalate               | 163       | 9.951          | 9.946          | 0.005  | 99       | 577325             | 0.08    | 79.9         |       |
| 103 1,3-Dinitrobenzene               | 168       | 9.983          | 9.984          | -0.001 | 93       | 100017             | 0.08    | 78.4         |       |
| 104 2,6-Dinitrotoluene               | 165       | 10.021         | 10.021         | 0.000  | 94       | 131731             | 80.0    | 79.2         |       |
| 105 Acenaphthylene                   | 152       | 10.138         | 10.133         | 0.005  | 97       | 723489             | 80.0    | 79.3         |       |
| 106 3-Nitroaniline                   | 138       | 10.213         | 10.213         | 0.000  | 93       | 137256             | 80.0    | 81.2         |       |
| 107 2,4-Dinitrophenol                | 184       | 10.331         | 10.325         | 0.006  | 69       | 198496             | 160.0   | 151.7        |       |
| 108 Acenaphthene                     | 153       | 10.331         | 10.331         | 0.000  | 85       | 495348             | 80.0    | 77.8         |       |
| 109 4-Nitrophenol                    | 109       | 10.384         | 10.379         | 0.005  | 85       | 243103             | 160.0   | 161.4        |       |
| 111 2,4-Dinitrotoluene               | 165       | 10.470         | 10.470         | 0.000  | 94       | 182495             | 80.0    | 81.4         |       |
| 112 Dibenzofuran                     | 168       | 10.518         | 10.512         | 0.006  | 95       | 732780             | 0.08    | 78.9         |       |
| 116 2,3,4,6-Tetrachlorophenol        | 232       | 10.641         | 10.641         | 0.000  | 70       | 194345             | 80.0    | 78.1         |       |
| 118 Diethyl phthalate                | 149       | 10.721         | 10.721         | 0.000  | 98       | 611551             | 80.0    | 78.8         |       |
| 119 Hexadecane                       | 57        | 10.737         | 10.737         | 0.000  | 93       | 269224             | 80.0    | 79.2         |       |
| 121 4-Chlorophenyl phenyl ethe       | 204       | 10.860         | 10.860         | 0.000  | 89       | 334469             | 80.0    | 78.5         |       |
| 122 4-Nitroaniline                   | 138       | 10.870         | 10.870         | 0.000  | 82       | 146481             | 80.0    | 80.4         |       |
| 123 Fluorene                         | 166       | 10.881         | 10.876         | 0.005  | 95       | 582830             | 80.0    | 77.7         |       |
| 125 4,6-Dinitro-2-methylphenol       | 198       | 10.913         | 10.908         | 0.005  | 91       | 234551             | 160.0   | 166.4        |       |
| 127 N-Nitrosodiphenylamine           | 169       | 10.977         | 10.977         | 0.000  | 62       | 428671             | 80.0    | 81.6         |       |
| 128 Diphenylamine                    | 169       | 10.977         | 10.977         | 0.000  | 93       | 428671             | 68.4    | 69.8         |       |
| 129 1,2-Diphenylhydrazine            | 77        | 11.025         | 11.025         | 0.000  | 96       | 461865             | 80.0    | 83.1         |       |
| 130 Azobenzene                       | 77        | 11.025         | 11.025         | 0.000  | 96       | 461865             | 80.0    | 83.1         |       |
| 137 4-Bromophenyl phenyl ether       |           | 11.356         | 11.356         | 0.000  | 59       | 230275             | 80.0    | 81.7         |       |
| 139 Hexachlorobenzene                | 284       | 11.453         | 11.453         | 0.000  | 95       | 277875             | 80.0    | 81.5         |       |
| 141 Atrazine                         | 200       | 11.490         | 11.485         | 0.005  | 94       | 183637             | 80.0    | 81.0         |       |
| 143 Pentachlorophenol                | 266       | 11.629         | 11.629         | 0.000  | 91       | 307624             | 160.0   | 161.8        |       |
| 144 n-Octadecane                     | 57        | 11.650         | 11.650         | 0.000  | 92       | 281390             | 80.0    | 83.2         |       |
| 150 Phenanthrene                     | 178       | 11.837         | 11.832         | 0.005  | 97       | 830110             | 80.0    | 80.2         |       |
| 151 Anthracene                       | 178       | 11.880         | 11.880         | 0.003  | 97       | 875484             | 80.0    | 81.9         |       |
|                                      |           |                |                |        |          |                    |         |              |       |
| 152 Carbazole                        | 167       | 12.019         | 12.014         | 0.005  | 96       | 803394             | 80.0    | 82.7         |       |

Report Date: 16-Oct-2017 16:51:20

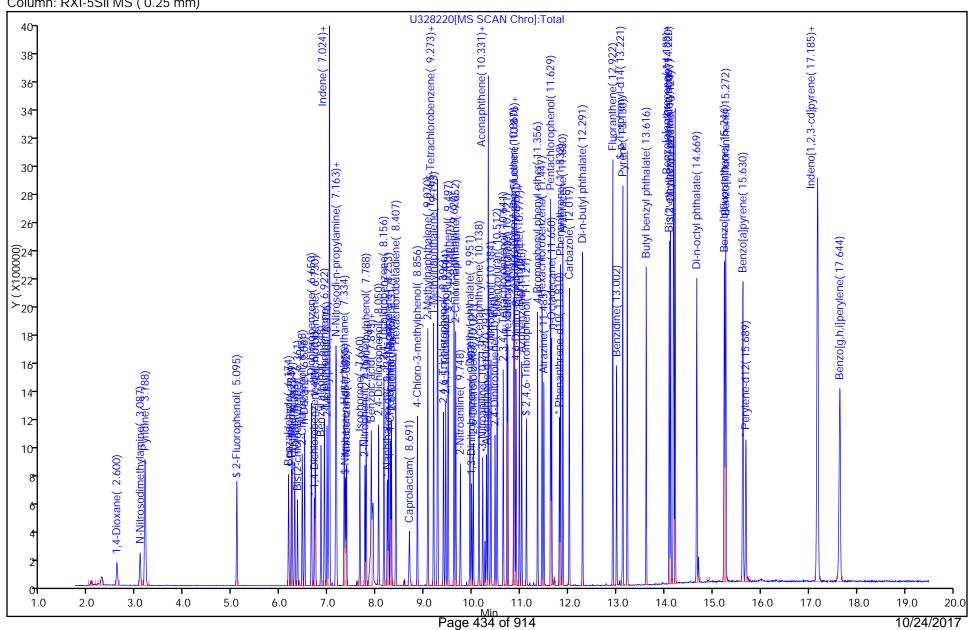
Data File:

| Data File. (ICHIOHINA)         | AlbunalolCinomidata(FF 59730/2017 1010-00432.b/0320220.b/ |                                        |          |        |     |           |            |           |       |  |
|--------------------------------|-----------------------------------------------------------|----------------------------------------|----------|--------|-----|-----------|------------|-----------|-------|--|
|                                | RT Adj RT Dlt RT                                          |                                        |          |        |     |           | Cal Amt    | OnCol Amt |       |  |
| Compound                       | Sig                                                       | (min.)                                 | (min.)   | (min.) | Q   | Response  | ng/uL      | ng/uL     | Flags |  |
|                                |                                                           |                                        |          |        |     |           |            |           |       |  |
| 155 Di-n-butyl phthalate       | 149                                                       | 12.291                                 | 12.291   | 0.000  | 100 | 1014232   | 80.0       | 84.5      |       |  |
| 162 Fluoranthene               | 202                                                       | 12.922                                 | 12.922   | 0.000  | 96  | 1062995   | 80.0       | 82.2      |       |  |
| 164 Benzidine                  | 184                                                       | 13.002                                 | 12.997   | 0.005  | 98  | 546187    | 80.0       | 80.4      |       |  |
| 165 Pyrene                     | 202                                                       | 13.130                                 | 13.125   | 0.005  | 98  | 1093778   | 80.0       | 76.9      |       |  |
| 172 Butyl benzyl phthalate     | 149                                                       | 13.616                                 | 13.616   | 0.000  | 94  | 489204    | 80.0       | 80.5      |       |  |
| 178 Bis(2-ethylhexyl) phthalat | 149                                                       | 14.097                                 | 14.097   | 0.000  | 92  | 667937    | 0.08       | 80.7      |       |  |
| 179 3,3'-Dichlorobenzidine     | 252                                                       | 14.124                                 | 14.124   | 0.000  | 72  | 485362    | 0.08       | 83.9      |       |  |
| 181 Benzo[a]anthracene         | 228                                                       | 14.182                                 | 14.183   | 0.000  | 97  | 1188534   | 80.0       | 80.1      |       |  |
| 182 Chrysene                   | 228                                                       | 14.220                                 | 14.215   | 0.005  | 94  | 1123032   | 80.0       | 79.4      |       |  |
| 183 Di-n-octyl phthalate       | 149                                                       | 14.669                                 | 14.669   | 0.000  | 98  | 1162583   | 80.0       | 84.4      |       |  |
| 185 Benzo[b]fluoranthene       | 252                                                       | 15.246                                 | 15.240   | 0.006  | 94  | 1241915   | 80.0       | 77.5      |       |  |
| 187 Benzo[k]fluoranthene       | 252                                                       | 15.272                                 | 15.267   | 0.005  | 96  | 1283839   | 80.0       | 78.5      |       |  |
| 190 Benzo[a]pyrene             | 252                                                       | 15.630                                 | 15.625   | 0.005  | 73  | 1200876   | 80.0       | 80.4      |       |  |
| 193 Dibenz(a,h)anthracene      | 278                                                       | 17.179                                 | 17.174   | 0.005  | 88  | 1237617   | 80.0       | 80.4      |       |  |
| 194 Indeno[1,2,3-cd]pyrene     | 276                                                       | 17.185                                 | 17.180   | 0.005  | 96  | 1473985   | 80.0       | 81.2      |       |  |
| 195 Benzo[g,h,i]perylene       | 276                                                       | 17.644                                 | 17.639   | 0.005  | 95  | 1235621   | 80.0       | 81.5      |       |  |
| S 254 Total Cresols            | 1                                                         |                                        |          |        | 0   |           |            | 156.1     |       |  |
| S 256 3-Methylphenol           | 1                                                         |                                        |          |        | 0   |           |            | 78.1      |       |  |
| S 257 3 & 4 Methylphenol       | 108                                                       |                                        |          |        | 0   |           |            | 78.1      |       |  |
| Reagents:                      |                                                           |                                        |          |        |     |           |            |           |       |  |
| MB_LIST1_WRK_00523             |                                                           | Amount                                 | Addad: 1 | 1.00   | 1   | Jnits: mL |            |           |       |  |
| MB_INTSTD_STK_00039            |                                                           | Amount Added: 1.00 Amount Added: 20.00 |          |        |     | Jnits: uL | Run Reage  | nt        |       |  |
| MID_IIM I 3 I D_3 I K_00034    |                                                           | Amount                                 | Auueu. Z | 0.00   | (   | nins. ul  | Ruii Reage |           |       |  |

Report Date: 16-Oct-2017 16:51:20 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328220.D


Injection Date: 16-Oct-2017 13:26:30 Instrument ID: HP5973U Lims ID: IC - List1 80

Client ID:

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



DR

6

6

Operator ID:

ALS Bottle#:

Worklist Smp#:

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328221.D

Lims ID: IC - List1 120

Client ID:

Sample Type: IC Calib Level: 5

Inject. Date: 16-Oct-2017 13:53:30 ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: IC - LIST1 120

Operator ID: DR Instrument ID: HP5973U

Sublist: chrom-U-8270\*sub56

Method: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U-8270.m

Limit Group: MB - 8270D ICAL

Last Update:16-Oct-2017 16:51:22Calib Date:16-Oct-2017 14:19:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK028

First Level Reviewer: richardsd Date: 16-Oct-2017 16:13:48

| First Level Reviewer: richardsd      |     |        | D:     | ate:   |    | 16-Oct-201 | 7 16:13:48 |           |       |
|--------------------------------------|-----|--------|--------|--------|----|------------|------------|-----------|-------|
|                                      |     | RT     | Adj RT | Dlt RT |    |            | Cal Amt    | OnCol Amt |       |
| Compound                             | Sig | (min.) | (min.) | (min.) | Q  | Response   | ng/uL      | ng/uL     | Flags |
|                                      |     | •      |        |        | •  |            |            |           |       |
| * 1 1,4-Dichlorobenzene-d4           | 152 | 6.714  | 6.709  | 0.005  | 93 | 114615     | 40.0       | 40.0      |       |
| <ul><li>* 2 Naphthalene-d8</li></ul> | 136 | 8.231  | 8.231  | 0.000  | 99 | 379221     | 40.0       | 40.0      |       |
| * 3 Acenaphthene-d10                 | 164 | 10.293 | 10.293 | 0.000  | 94 | 196469     | 40.0       | 40.0      |       |
| <ul><li>4 Phenanthrene-d10</li></ul> | 188 | 11.811 | 11.811 | 0.000  | 96 | 427612     | 40.0       | 40.0      |       |
| * 5 Chrysene-d12                     | 240 | 14.199 | 14.193 | 0.006  | 95 | 529085     | 40.0       | 40.0      |       |
| * 6 Perylene-d12                     | 264 | 15.689 | 15.689 | 0.000  | 98 | 492386     | 40.0       | 40.0      |       |
| \$ 7 2-Fluorophenol                  | 112 | 5.095  | 5.095  | 0.000  | 92 | 367264     | 120.0      | 119.2     |       |
| \$ 8 Phenol-d5                       | 99  | 6.233  | 6.228  | 0.005  | 95 | 410850     | 120.0      | 117.5     |       |
| \$ 9 Nitrobenzene-d5                 | 82  | 7.361  | 7.355  | 0.005  | 90 | 390285     | 120.0      | 118.5     |       |
| \$ 10 2-Fluorobiphenyl               | 172 | 9.497  | 9.492  | 0.005  | 99 | 952866     | 120.0      | 114.9     |       |
| \$ 11 2,4,6-Tribromophenol           | 330 | 11.127 | 11.121 | 0.006  | 90 | 238872     | 120.0      | 119.3     |       |
| \$ 12 p-Terphenyl-d14                | 244 | 13.221 | 13.221 | 0.000  | 99 | 1272543    | 120.0      | 118.2     |       |
| 23 1,4-Dioxane                       | 88  | 2.606  | 2.606  | 0.000  | 97 | 152456     | 120.0      | 118.4     |       |
| 24 N-Nitrosodimethylamine            | 42  | 3.087  | 3.087  | 0.000  | 86 | 216793     | 120.0      | 122.1     |       |
| 25 Pyridine                          | 52  | 3.188  | 3.188  | 0.000  | 84 | 640428     | 240.0      | 236.9     |       |
| 32 Benzaldehyde                      | 77  | 6.175  | 6.174  | 0.001  | 91 | 188169     | 120.0      | 92.0      |       |
| 33 Phenol                            | 94  | 6.255  | 6.249  | 0.006  | 94 | 401511     | 120.0      | 118.3     |       |
| 34 Aniline                           | 93  | 6.303  | 6.303  | 0.000  | 97 | 503052     | 120.0      | 116.6     |       |
| 35 Bis(2-chloroethyl)ether           | 93  | 6.362  | 6.361  | 0.001  | 99 | 306460     | 120.0      | 117.5     |       |
| 37 2-Chlorophenol                    | 128 | 6.463  | 6.458  | 0.005  | 94 | 391415     | 120.0      | 117.5     |       |
| 38 n-Decane                          | 57  | 6.511  | 6.506  | 0.005  | 88 | 368437     | 120.0      | 116.2     |       |
| 39 1,3-Dichlorobenzene               | 146 | 6.650  | 6.650  | 0.000  | 97 | 477945     | 120.0      | 117.5     |       |
| 40 1,4-Dichlorobenzene               | 146 | 6.730  | 6.730  | 0.000  | 93 | 479651     | 120.0      | 115.6     |       |
| 41 Benzyl alcohol                    | 108 | 6.853  | 6.848  | 0.005  | 91 | 238717     | 120.0      | 120.1     |       |
| 42 1,2-Dichlorobenzene               | 146 | 6.922  | 6.917  | 0.005  | 96 | 437729     | 120.0      | 113.0     |       |
| 43 2-Methylphenol                    | 108 | 6.976  | 6.976  | 0.000  | 96 | 315651     | 120.0      | 115.2     |       |
| 44 2,2'-oxybis[1-chloropropan        | 45  | 7.013  | 7.008  | 0.005  | 91 | 400144     | 120.0      | 109.3     |       |
| 45 Indene                            | 115 | 7.029  | 7.024  | 0.005  | 89 | 1900518    | 360.0      | 343.7     |       |
| 46 4-Methylphenol                    | 108 | 7.158  | 7.152  | 0.006  | 95 | 338185     | 120.0      | 118.0     |       |
| 47 N-Nitrosodi-n-propylamine         | 70  | 7.168  | 7.163  | 0.005  | 88 | 229007     | 120.0      | 118.4     |       |
| 49 Acetophenone                      | 105 | 7.174  | 7.168  | 0.006  | 96 | 519155     | 120.0      | 120.8     |       |
| •                                    |     |        |        |        |    |            |            |           |       |

| Data File: \\Cnromina\\B                           | unalo     |                |                |        | U 10-00  | 5432.D\U32822     |         |           |       |
|----------------------------------------------------|-----------|----------------|----------------|--------|----------|-------------------|---------|-----------|-------|
| Community                                          | Circ      | RT             | Adj RT         | Dlt RT |          | Decrease          | Cal Amt | OnCol Amt | Floor |
| Compound                                           | Sig       | (min.)         | (min.)         | (min.) | Q        | Response          | ng/uL   | ng/uL     | Flags |
| E2 Hoyachloroothana                                | 117       | 7 224          | 7.334          | 0.000  | 84       | 182121            | 120.0   | 118.8     |       |
| 53 Hexachloroethane<br>54 Nitrobenzene             | 77        | 7.334<br>7.382 | 7.334<br>7.376 | 0.006  | 89       | 353606            | 120.0   | 117.6     |       |
| 56 Isophorone                                      | 82        | 7.362<br>7.660 | 7.376<br>7.654 | 0.006  | 97       | 595879            | 120.0   | 117.8     |       |
| 59 2-Nitrophenol                                   | o2<br>139 | 7.060<br>7.767 | 7.054<br>7.761 | 0.006  | 97       | 221755            | 120.0   | 117.6     |       |
| 60 2,4-Dimethylphenol                              | 107       | 7.793          | 7.788          | 0.005  | 93<br>98 | 399066            | 120.0   | 117.4     |       |
| 62 Bis(2-chloroethoxy)methane                      | 93        | 7.793          | 7.786<br>7.895 | 0.005  | 100      | 348768            | 120.0   | 117.7     |       |
| 64 Benzoic acid                                    | 105       | 7.964          | 7.893          | 0.064  | 87       | 804633            | 360.0   | 357.7     |       |
|                                                    | 162       | 7.964<br>8.050 | 7.900<br>8.044 | 0.004  | 92       | 367778            | 120.0   | 118.6     |       |
| 67 2,4-Dichlorophenol<br>68 1,2,4-Trichlorobenzene | 180       | 8.162          | 8.156          | 0.006  | 92<br>95 | 428936            | 120.0   | 117.2     |       |
|                                                    | 128       | 8.258          | 8.253          | 0.005  | 93<br>98 | 426930<br>1028770 | 120.0   | 117.2     |       |
| 70 Naphthalene<br>72 4-Chloroaniline               |           |                |                | 0.003  | 96       |                   |         |           |       |
|                                                    | 127       | 8.295          | 8.295          |        |          | 442151            | 120.0   | 117.4     |       |
| 73 2,6-Dichlorophenol                              | 162       | 8.317          | 8.317          | 0.000  | 97<br>04 | 357742            | 120.0   | 118.7     |       |
| 74 Hexachlorobutadiene                             | 225       | 8.408          | 8.408          | 0.000  | 94       | 347213            | 120.0   | 116.6     |       |
| 76 Caprolactam                                     | 113       | 8.707          | 8.675          | 0.032  | 79       | 98906             | 120.0   | 119.8     |       |
| 80 4-Chloro-3-methylphenol                         | 107       | 8.856          | 8.856          | 0.000  | 94       | 319392            | 120.0   | 117.5     |       |
| 83 2-Methylnaphthalene                             | 142       | 9.075          | 9.070          | 0.005  | 90       | 782142            | 120.0   | 117.3     |       |
| 85 1-Methylnaphthalene                             | 142       | 9.193          | 9.193          | 0.000  | 91       | 741531            | 120.0   | 117.6     |       |
| 86 Hexachlorocyclopentadiene                       | 237       | 9.273          | 9.273          | 0.000  | 94       | 449502            | 120.0   | 118.7     |       |
| 87 1,2,4,5-Tetrachlorobenzene                      | 216       | 9.278          | 9.278          | 0.000  | 97       | 498773            | 120.0   | 119.4     |       |
| 89 2,4,6-Trichlorophenol                           | 196       | 9.401          | 9.401          | 0.000  | 90       | 300399            | 120.0   | 119.5     |       |
| 91 2,4,5-Trichlorophenol                           | 196       | 9.444          | 9.444          | 0.000  | 95       | 321028            | 120.0   | 120.3     |       |
| 94 1,1'-Biphenyl                                   | 154       | 9.620          | 9.620          | 0.000  | 95       | 969043            | 120.0   | 114.8     |       |
| 95 2-Chloronaphthalene                             | 162       | 9.652          | 9.652          | 0.000  | 97       | 762434            | 120.0   | 116.0     |       |
| 98 2-Nitroaniline                                  | 65        | 9.754          | 9.748          | 0.006  | 87       | 195843            | 120.0   | 119.0     |       |
| 102 Dimethyl phthalate                             | 163       | 9.951          | 9.946          | 0.005  | 98       | 890049            | 120.0   | 116.8     |       |
| 103 1,3-Dinitrobenzene                             | 168       | 9.989          | 9.984          | 0.005  | 95       | 164037            | 120.0   | 118.8     |       |
| 104 2,6-Dinitrotoluene                             | 165       | 10.021         | 10.021         | 0.000  | 94       | 210893            | 120.0   | 119.9     |       |
| 105 Acenaphthylene                                 | 152       | 10.138         | 10.133         | 0.005  | 97       | 1135992           | 120.0   | 118.1     |       |
| 106 3-Nitroaniline                                 | 138       | 10.219         | 10.213         | 0.006  | 95       | 210202            | 120.0   | 117.8     |       |
| 107 2,4-Dinitrophenol                              | 184       | 10.336         | 10.325         | 0.011  | 70       | 338997            | 240.0   | 241.7     |       |
| 108 Acenaphthene                                   | 153       | 10.331         | 10.331         | 0.000  | 86       | 778548            | 120.0   | 116.0     |       |
| 109 4-Nitrophenol                                  | 109       | 10.390         | 10.379         | 0.011  | 86       | 379629            | 240.0   | 238.1     |       |
| 111 2,4-Dinitrotoluene                             | 165       | 10.475         | 10.470         | 0.005  | 94       | 279416            | 120.0   | 117.9     |       |
| 112 Dibenzofuran                                   | 168       | 10.518         | 10.512         | 0.006  | 94       | 1123991           | 120.0   | 114.7     |       |
| 116 2,3,4,6-Tetrachlorophenol                      | 232       | 10.646         | 10.641         | 0.005  | 70       | 320051            | 120.0   | 121.3     |       |
| 118 Diethyl phthalate                              | 149       | 10.726         | 10.721         | 0.005  | 98       | 946191            | 120.0   | 115.6     |       |
| 119 Hexadecane                                     | 57        | 10.737         | 10.737         | 0.000  | 93       | 406496            | 120.0   | 113.4     |       |
| 121 4-Chlorophenyl phenyl ethe                     | 204       | 10.860         | 10.860         | 0.000  | 90       | 525991            | 120.0   | 117.0     |       |
| 122 4-Nitroaniline                                 | 138       | 10.881         | 10.870         | 0.011  | 81       | 225033            | 120.0   | 117.1     |       |
| 123 Fluorene                                       | 166       | 10.881         | 10.876         | 0.005  | 96       | 918965            | 120.0   | 116.1     |       |
| 125 4,6-Dinitro-2-methylphenol                     | 198       | 10.913         | 10.908         | 0.005  | 90       | 364282            | 240.0   | 239.8     |       |
| 128 Diphenylamine                                  | 169       | 10.977         | 10.977         | 0.000  | 93       | 672591            | 102.6   | 102.2     |       |
| 127 N-Nitrosodiphenylamine                         | 169       | 10.977         | 10.977         | 0.000  | 63       | 672591            | 120.0   | 119.6     |       |
| 130 Azobenzene                                     | 77        | 11.025         | 11.025         | 0.000  | 96       | 694459            | 120.0   | 116.8     |       |
| 129 1,2-Diphenylhydrazine                          | 77        | 11.025         | 11.025         | 0.000  | 96       | 694459            | 120.0   | 116.8     |       |
| 137 4-Bromophenyl phenyl ether                     | 248       | 11.357         | 11.356         | 0.000  | 59       | 360930            | 120.0   | 119.3     |       |
| 139 Hexachlorobenzene                              | 284       | 11.453         | 11.453         | 0.000  | 95       | 432972            | 120.0   | 118.6     |       |
| 141 Atrazine                                       | 200       | 11.490         | 11.485         | 0.005  | 95       | 273344            | 120.0   | 114.3     |       |
| 143 Pentachlorophenol                              | 266       | 11.629         | 11.629         | 0.000  | 91       | 488501            | 240.0   | 237.7     |       |
| 144 n-Octadecane                                   | 57        | 11.650         | 11.650         | 0.000  | 94       | 420432            | 120.0   | 116.0     |       |
| 150 Phenanthrene                                   | 178       | 11.837         | 11.832         | 0.005  | 94<br>97 | 1282417           | 120.0   | 115.8     |       |
|                                                    |           |                |                |        |          |                   |         |           |       |
| 151 Anthracene                                     | 178       | 11.885         | 11.880         | 0.005  | 97       | 1332632           | 120.0   | 116.4     |       |

Report Date: 16-Oct-2017 16:51:22

Data File:

|                                |     | RT     | Adj RT   | Dlt RT |       |          | Cal Amt | OnCol Amt |       |  |  |  |
|--------------------------------|-----|--------|----------|--------|-------|----------|---------|-----------|-------|--|--|--|
| Compound                       | Sig | (min.) | (min.)   | (min.) | Q     | Response | ng/uL   | ng/uL     | Flags |  |  |  |
|                                |     |        |          |        |       |          | _       |           |       |  |  |  |
| 152 Carbazole                  | 167 | 12.019 | 12.014   | 0.005  | 96    | 1200420  | 120.0   | 115.4     |       |  |  |  |
| 155 Di-n-butyl phthalate       | 149 | 12.291 | 12.291   | 0.000  | 100   | 1522167  | 120.0   | 118.5     |       |  |  |  |
| 162 Fluoranthene               | 202 | 12.922 | 12.922   | 0.000  | 96    | 1609335  | 120.0   | 116.2     |       |  |  |  |
| 164 Benzidine                  | 184 | 13.002 | 12.997   | 0.005  | 99    | 681547   | 120.0   | 101.3     |       |  |  |  |
| 165 Pyrene                     | 202 | 13.130 | 13.125   | 0.005  | 98    | 1636492  | 120.0   | 116.2     |       |  |  |  |
| 172 Butyl benzyl phthalate     | 149 | 13.616 | 13.616   | 0.000  | 95    | 730669   | 120.0   | 121.5     |       |  |  |  |
| 178 Bis(2-ethylhexyl) phthalat | 149 | 14.097 | 14.097   | 0.000  | 120.0 | 0 118.4  |         |           |       |  |  |  |
| 179 3,3'-Dichlorobenzidine     | 252 | 14.129 | 14.124   | 0.005  | 72    | 678363   | 120.0   | 118.7     |       |  |  |  |
| 181 Benzo[a]anthracene         | 228 | 14.188 | 14.183   | 0.006  | 96    | 1705245  | 120.0   | 116.1     |       |  |  |  |
| 182 Chrysene                   | 228 | 14.220 | 14.215   | 0.005  | 94    | 1605383  | 120.0   | 114.6     |       |  |  |  |
| 183 Di-n-octyl phthalate       | 149 | 14.669 | 14.669   | 0.000  | 98    | 1575722  | 120.0   | 115.8     |       |  |  |  |
| 185 Benzo[b]fluoranthene       | 252 | 15.246 | 15.240   | 0.006  | 94    | 1810863  | 120.0   | 120.9     |       |  |  |  |
| 187 Benzo[k]fluoranthene       | 252 | 15.272 | 15.267   | 0.005  | 96    | 1681884  | 120.0   | 110.1     |       |  |  |  |
| 190 Benzo[a]pyrene             | 252 | 15.630 | 15.625   | 0.005  | 73    | 1659049  | 120.0   | 118.9     |       |  |  |  |
| 193 Dibenz(a,h)anthracene      | 278 | 17.185 | 17.174   | 0.011  | 86    | 1687235  | 120.0   | 117.1     |       |  |  |  |
| 194 Indeno[1,2,3-cd]pyrene     | 276 | 17.196 | 17.180   | 0.016  | 95    | 2002058  | 120.0   | 117.7     |       |  |  |  |
| 195 Benzo[g,h,i]perylene       | 276 | 17.650 | 17.639   | 0.011  | 95    | 1670512  | 120.0   | 117.5     |       |  |  |  |
| S 257 3 & 4 Methylphenol       | 108 |        |          |        | 0     |          |         | 118.0     |       |  |  |  |
| S 254 Total Cresols            | 1   |        |          |        |       |          | 233.2   |           |       |  |  |  |
| S 256 3-Methylphenol           | 1   |        |          |        |       |          | 118.0   |           |       |  |  |  |
| Reagents:                      |     |        |          |        |       |          |         |           |       |  |  |  |
| MB_LIST1_WRK_00524             |     | Amount | Added: 1 | 1.00   |       |          |         |           |       |  |  |  |

Run Reagent Amount Added: 20.00 Units: uL MB\_INTSTD\_STK\_00039

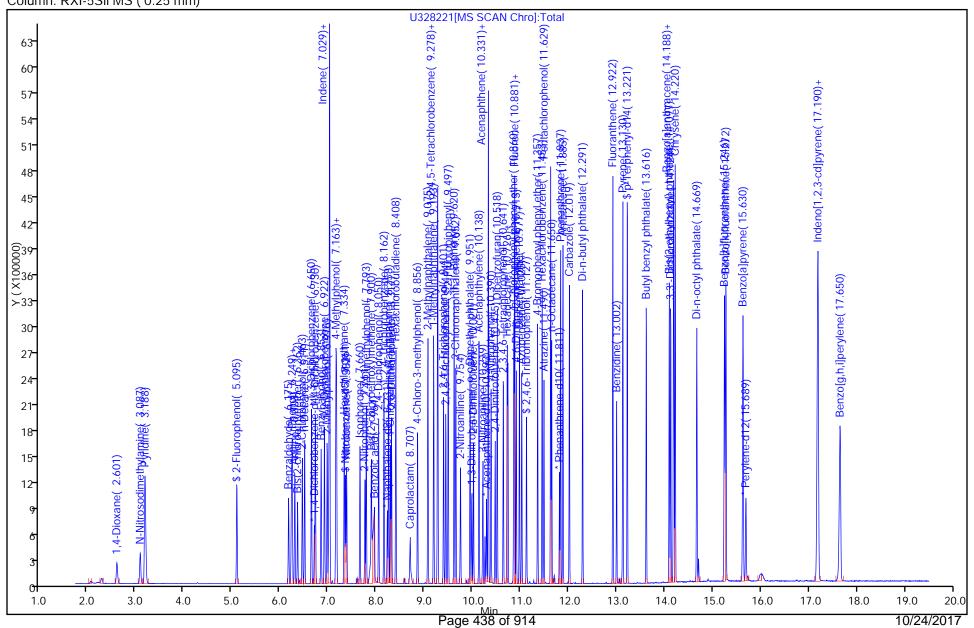
Report Date: 16-Oct-2017 16:51:23 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328221.D

Injection Date: 16-Oct-2017 13:53:30 Instrument ID: HP5973U

Lims ID: Client ID:


Injection Vol: 1.0 ul

IC - List1 120

Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



DR

7

7

Operator ID:

ALS Bottle#:

Worklist Smp#:

Report Date: 16-Oct-2017 16:51:26 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

Lims ID: IC - List1 160

Client ID:

Sample Type: IC Calib Level: 6

Inject. Date: 16-Oct-2017 14:19:30 ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: IC - LIST1 160

Operator ID: DR Instrument ID: HP5973U

Sublist: chrom-U-8270\*sub56

Method: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U-8270.m

Limit Group: MB - 8270D ICAL

Last Update:16-Oct-2017 16:51:25Calib Date:16-Oct-2017 14:19:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK028

First Level Reviewer: richardsd Date: 16-Oct-2017 16:04:36

| First Level Reviewer: richardsd    |     |        | D      | ate:   |    | 16-Oct-201 | / 10:04:36 | 10:04:30  |       |  |
|------------------------------------|-----|--------|--------|--------|----|------------|------------|-----------|-------|--|
|                                    |     | RT     | Adj RT | Dlt RT |    |            | Cal Amt    | OnCol Amt |       |  |
| Compound                           | Sig | (min.) | (min.) | (min.) | Q  | Response   | ng/uL      | ng/uL     | Flags |  |
|                                    |     |        |        |        |    |            |            |           |       |  |
| * 1 1,4-Dichlorobenzene-d4         | 152 | 6.714  | 6.709  | 0.005  | 94 | 108410     | 40.0       | 40.0      |       |  |
| <ul><li>2 Naphthalene-d8</li></ul> | 136 | 8.231  | 8.231  | 0.000  | 99 | 351741     | 40.0       | 40.0      |       |  |
| * 3 Acenaphthene-d10               | 164 | 10.293 | 10.293 | 0.000  | 95 | 183279     | 40.0       | 40.0      |       |  |
| * 4 Phenanthrene-d10               | 188 | 11.811 | 11.811 | 0.000  | 96 | 407484     | 40.0       | 40.0      |       |  |
| * 5 Chrysene-d12                   | 240 | 14.199 | 14.193 | 0.006  | 96 | 527572     | 40.0       | 40.0      |       |  |
| * 6 Perylene-d12                   | 264 | 15.689 | 15.689 | 0.000  | 98 | 493009     | 40.0       | 40.0      |       |  |
| \$ 7 2-Fluorophenol                | 112 | 5.101  | 5.095  | 0.006  | 91 | 472211     | 160.0      | 162.1     |       |  |
| \$ 8 Phenol-d5                     | 99  | 6.239  | 6.228  | 0.011  | 95 | 527891     | 160.0      | 159.6     |       |  |
| \$ 9 Nitrobenzene-d5               | 82  | 7.361  | 7.355  | 0.006  | 90 | 497034     | 160.0      | 162.7     |       |  |
| \$ 10 2-Fluorobiphenyl             | 172 | 9.497  | 9.492  | 0.005  | 99 | 1197242    | 160.0      | 154.7     |       |  |
| \$ 11 2,4,6-Tribromophenol         | 330 | 11.127 | 11.121 | 0.006  | 90 | 315899     | 160.0      | 164.8     |       |  |
| \$ 12 p-Terphenyl-d14              | 244 | 13.226 | 13.221 | 0.005  | 98 | 1631518    | 160.0      | 151.9     |       |  |
| 23 1,4-Dioxane                     | 88  | 2.606  | 2.606  | 0.000  | 97 | 187639     | 160.0      | 154.1     |       |  |
| 24 N-Nitrosodimethylamine          | 42  | 3.092  | 3.087  | 0.005  | 87 | 262810     | 160.0      | 156.7     |       |  |
| 25 Pyridine                        | 52  | 3.188  | 3.188  | 0.000  | 86 | 802931     | 320.0      | 314.4     |       |  |
| 32 Benzaldehyde                    | 77  | 6.175  | 6.174  | 0.001  | 91 | 196657     | 160.0      | 101.6     |       |  |
| 33 Phenol                          | 94  | 6.255  | 6.249  | 0.006  | 95 | 498933     | 160.0      | 155.4     |       |  |
| 34 Aniline                         | 93  | 6.303  | 6.303  | 0.000  | 97 | 634864     | 160.0      | 155.6     |       |  |
| 35 Bis(2-chloroethyl)ether         | 93  | 6.362  | 6.361  | 0.001  | 98 | 383488     | 160.0      | 155.4     |       |  |
| 37 2-Chlorophenol                  | 128 | 6.463  | 6.458  | 0.005  | 94 | 490424     | 160.0      | 155.6     |       |  |
| 38 n-Decane                        | 57  | 6.511  | 6.506  | 0.005  | 86 | 461960     | 160.0      | 154.0     |       |  |
| 39 1,3-Dichlorobenzene             | 146 | 6.650  | 6.650  | 0.000  | 97 | 599245     | 160.0      | 155.8     |       |  |
| 40 1,4-Dichlorobenzene             | 146 | 6.730  | 6.730  | 0.000  | 93 | 608533     | 160.0      | 155.0     |       |  |
| 41 Benzyl alcohol                  | 108 | 6.853  | 6.848  | 0.005  | 91 | 299798     | 160.0      | 159.4     |       |  |
| 42 1,2-Dichlorobenzene             | 146 | 6.923  | 6.917  | 0.005  | 96 | 574893     | 160.0      | 156.9     |       |  |
| 43 2-Methylphenol                  | 108 | 6.981  | 6.976  | 0.005  | 96 | 404120     | 160.0      | 155.9     |       |  |
| 44 2,2'-oxybis[1-chloropropan      | 45  | 7.013  | 7.008  | 0.005  | 90 | 483600     | 160.0      | 139.7     |       |  |
| 45 Indene                          | 115 | 7.029  | 7.024  | 0.005  | 89 | 2414329    | 480.0      | 461.6     |       |  |
| 46 4-Methylphenol                  | 108 | 7.163  | 7.152  | 0.011  | 92 | 430533     | 160.0      | 158.8     |       |  |
| 47 N-Nitrosodi-n-propylamine       | 70  | 7.168  | 7.163  | 0.005  | 87 | 292958     | 160.0      | 160.1     |       |  |
| 49 Acetophenone                    | 105 | 7.179  | 7.168  | 0.011  | 97 | 648242     | 160.0      | 159.8     |       |  |
| •                                  |     |        |        |        |    |            |            |           |       |  |

| Data File: \\Cnrom\vA\B                      | ullaio\ |        |        |                | U 10-00  | 6432.D\U32822<br>T |                |           |       |
|----------------------------------------------|---------|--------|--------|----------------|----------|--------------------|----------------|-----------|-------|
| Commonited                                   | Cir     | RT     | Adj RT | Dlt RT         |          | Doonages           | Cal Amt        | OnCol Amt | Floor |
| Compound                                     | Sig     | (min.) | (min.) | (min.)         | Q        | Response           | ng/uL          | ng/uL     | Flags |
| 53 Hexachloroethane                          | 117     | 7.334  | 7.334  | 0.000          | 84       | 231238             | 160.0          | 159.5     |       |
| 54 Nitrobenzene                              | 77      | 7.334  | 7.334  | 0.000          | 88       | 450182             | 160.0          | 161.4     |       |
| 56 Isophorone                                | 82      | 7.665  | 7.654  | 0.011          | 97       | 751265             | 160.0          | 160.2     |       |
| 59 2-Nitrophenol                             | 139     | 7.767  | 7.761  | 0.006          | 94       | 283011             | 160.0          | 161.3     |       |
| 60 2,4-Dimethylphenol                        | 107     | 7.793  | 7.788  | 0.005          | 97       | 498032             | 160.0          | 158.4     |       |
| 62 Bis(2-chloroethoxy)methane                | 93      | 7.793  | 7.765  | 0.005          | 99       | 449911             | 160.0          | 158.7     |       |
| 64 Benzoic acid                              | 105     | 7.980  | 7.900  | 0.003          | 87       | 1044885            | 480.0          | 497.7     |       |
| 67 2,4-Dichlorophenol                        | 162     | 8.050  | 8.044  | 0.006          | 92       | 453475             | 160.0          | 157.7     |       |
| 68 1,2,4-Trichlorobenzene                    | 180     | 8.162  | 8.156  | 0.006          | 92<br>95 | 534186             | 160.0          | 157.7     |       |
| 70 Naphthalene                               | 128     | 8.258  | 8.253  | 0.005          | 93<br>98 | 1296233            | 160.0          | 157.4     |       |
| 72 4-Chloroaniline                           | 127     | 8.295  | 8.295  | 0.003          | 96       | 552253             | 160.0          | 158.1     |       |
| 73 2,6-Dichlorophenol                        | 162     | 8.317  | 8.317  | 0.000          | 90<br>97 | 448856             | 160.0          | 160.5     |       |
| 73 2,0-Dichlorophenol 74 Hexachlorobutadiene | 225     | 8.408  | 8.408  | 0.000          | 93       | 440896             | 160.0          | 159.6     |       |
|                                              | 113     | 8.718  | 8.675  |                | 93<br>80 |                    | 160.0          | 160.8     |       |
| 76 Caprolactam<br>80 4-Chloro-3-methylphenol | 107     | 8.862  | 8.856  | 0.043<br>0.006 | 93       | 123303<br>401488   | 160.0          | 159.2     |       |
| <b>3</b> .                                   | 142     | 9.075  | 9.070  | 0.005          |          | 982977             |                |           |       |
| 83 2-Methylnaphthalene                       | 142     | 9.075  |        | 0.005          | 90       | 982977             | 160.0          | 158.9     |       |
| 85 1-Methylnaphthalene                       |         | 9.193  | 9.193  | 0.000          | 90<br>95 | 920532<br>574261   | 160.0<br>160.0 | 158.5     |       |
| 86 Hexachlorocyclopentadiene                 | 237     |        | 9.273  |                |          |                    |                | 162.3     |       |
| 87 1,2,4,5-Tetrachlorobenzene                | 216     | 9.284  | 9.278  | 0.006          | 96<br>01 | 632055             | 160.0          | 162.2     |       |
| 89 2,4,6-Trichlorophenol                     | 196     | 9.401  | 9.401  | 0.000          | 91       | 377867             | 160.0          | 161.0     |       |
| 91 2,4,5-Trichlorophenol                     | 196     | 9.449  | 9.444  | 0.005          | 95<br>05 | 398021             | 160.0          | 159.6     |       |
| 94 1,1'-Biphenyl                             | 154     | 9.620  | 9.620  | 0.000          | 95<br>07 | 1238603            | 160.0          | 157.2     |       |
| 95 2-Chloronaphthalene                       | 162     | 9.658  | 9.652  | 0.006          | 97       | 955571             | 160.0          | 155.8     |       |
| 98 2-Nitroaniline                            | 65      | 9.754  | 9.748  | 0.006          | 86       | 247691             | 160.0          | 161.3     |       |
| 102 Dimethyl phthalate                       | 163     | 9.957  | 9.946  | 0.011          | 99       | 1112157            | 160.0          | 156.4     |       |
| 103 1,3-Dinitrobenzene                       | 168     | 9.989  | 9.984  | 0.005          | 96       | 209088             | 160.0          | 162.8     |       |
| 104 2,6-Dinitrotoluene                       | 165     | 10.026 | 10.021 | 0.005          | 95       | 262984             | 160.0          | 160.0     |       |
| 105 Acenaphthylene                           | 152     | 10.139 | 10.133 | 0.006          | 97       | 1404535            | 160.0          | 156.5     |       |
| 106 3-Nitroaniline                           | 138     | 10.219 | 10.213 | 0.006          | 94       | 268759             | 160.0          | 161.4     |       |
| 107 2,4-Dinitrophenol                        | 184     | 10.336 | 10.325 | 0.011          | 90       | 438566             | 320.0          | 332.8     |       |
| 108 Acenaphthene                             | 153     | 10.331 | 10.331 | 0.000          | 93       | 983815             | 160.0          | 157.1     |       |
| 109 4-Nitrophenol                            | 109     | 10.395 | 10.379 | 0.016          | 85       | 472262             | 320.0          | 317.0     |       |
| 111 2,4-Dinitrotoluene                       | 165     | 10.475 | 10.470 | 0.005          | 94       | 354649             | 160.0          | 160.2     |       |
| 112 Dibenzofuran                             | 168     | 10.518 | 10.512 | 0.006          | 95       | 1408292            | 160.0          | 154.1     |       |
| 116 2,3,4,6-Tetrachlorophenol                | 232     | 10.646 | 10.641 | 0.005          | 69       | 395409             | 160.0          | 160.2     |       |
| 118 Diethyl phthalate                        | 149     | 10.726 | 10.721 | 0.005          | 98       | 1205323            | 160.0          | 157.9     |       |
| 119 Hexadecane                               | 57      | 10.742 | 10.737 | 0.005          | 93       | 510038             | 160.0          | 152.5     |       |
| 121 4-Chlorophenyl phenyl ethe               | 204     | 10.860 | 10.860 | 0.000          | 91       | 652153             | 160.0          | 155.5     |       |
| 122 4-Nitroaniline                           | 138     | 10.881 | 10.870 | 0.011          | 58       | 292219             | 160.0          | 163.0     |       |
| 123 Fluorene                                 | 166     | 10.881 | 10.876 | 0.005          | 95       | 1164531            | 160.0          | 157.7     |       |
| 125 4,6-Dinitro-2-methylphenol               | 198     | 10.919 | 10.908 | 0.010          | 89       | 458892             | 320.0          | 315.8     |       |
| 127 N-Nitrosodiphenylamine                   | 169     | 10.983 | 10.977 | 0.006          | 63       | 834573             | 160.0          | 155.7     |       |
| 128 Diphenylamine                            | 169     | 10.983 | 10.977 | 0.006          | 93       | 834573             | 136.8          | 133.1     |       |
| 129 1,2-Diphenylhydrazine                    | 77      | 11.025 | 11.025 | 0.000          | 97       | 881132             | 160.0          | 155.5     |       |
| 130 Azobenzene                               | 77      | 11.025 | 11.025 | 0.000          | 96       | 881132             | 160.0          | 155.5     |       |
| 137 4-Bromophenyl phenyl ether               | 248     | 11.357 | 11.356 | 0.001          | 59       | 456944             | 160.0          | 158.4     |       |
| 139 Hexachlorobenzene                        | 284     | 11.453 | 11.453 | 0.000          | 95       | 563046             | 160.0          | 161.9     |       |
| 141 Atrazine                                 | 200     | 11.490 | 11.485 | 0.005          | 94       | 348865             | 160.0          | 156.4     |       |
| 143 Pentachlorophenol                        | 266     | 11.629 | 11.629 | 0.000          | 92       | 642536             | 320.0          | 326.3     |       |
| 144 n-Octadecane                             | 57      | 11.650 | 11.650 | 0.000          | 94       | 531712             | 160.0          | 154.0     |       |
| 150 Phenanthrene                             | 178     | 11.837 | 11.832 | 0.005          | 97       | 1617351            | 160.0          | 153.2     |       |
|                                              |         |        |        |                |          |                    |                |           |       |
| 151 Anthracene                               | 178     | 11.885 | 11.880 | 0.005          | 97       | 1683633            | 160.0          | 154.3     |       |

Report Date: 16-Oct-2017 16:51:26 Chrom Revision: 2.2 16-Aug-2017 16:24:46

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

|                                |     | RT     |        |        |     | Cal Amt  | OnCol Amt |       |       |
|--------------------------------|-----|--------|--------|--------|-----|----------|-----------|-------|-------|
| Compound                       | Sig | (min.) | (min.) | (min.) | Q   | Response | ng/uL     | ng/uL | Flags |
| 150 Oada I.                    | 4/7 | 10.010 | 10.014 | 0.005  | 07  | 4507700  | 1/00      | 455.4 |       |
| 152 Carbazole                  | 167 | 12.019 | 12.014 | 0.005  | 97  | 1537783  | 160.0     | 155.1 |       |
| 155 Di-n-butyl phthalate       | 149 | 12.291 | 12.291 | 0.000  | 100 | 1910030  | 160.0     | 156.1 |       |
| 162 Fluoranthene               | 202 | 12.922 | 12.922 | 0.000  | 96  | 2052351  | 160.0     | 155.5 |       |
| 164 Benzidine                  | 184 | 13.002 | 12.997 | 0.005  | 98  | 759973   | 160.0     | 113.3 | M     |
| 165 Pyrene                     | 202 | 13.130 | 13.125 | 0.005  | 97  | 2097220  | 160.0     | 149.3 |       |
| 172 Butyl benzyl phthalate     | 149 | 13.622 | 13.616 | 0.006  | 95  | 938881   | 160.0     | 156.6 |       |
| 178 Bis(2-ethylhexyl) phthalat | 149 | 14.097 | 14.097 | 0.000  | 92  | 1295748  | 160.0     | 158.6 |       |
| 179 3,3'-Dichlorobenzidine     | 252 | 14.129 | 14.124 | 0.005  | 72  | 886817   | 160.0     | 155.8 |       |
| 181 Benzo[a]anthracene         | 228 | 14.188 | 14.183 | 0.006  | 96  | 2206157  | 160.0     | 150.7 |       |
| 182 Chrysene                   | 228 | 14.225 | 14.215 | 0.010  | 93  | 2088585  | 160.0     | 149.6 |       |
| 183 Di-n-octyl phthalate       | 149 | 14.669 | 14.669 | 0.000  | 98  | 2129479  | 160.0     | 157.1 |       |
| 185 Benzo[b]fluoranthene       | 252 | 15.251 | 15.240 | 0.011  | 94  | 2324181  | 160.0     | 155.0 |       |
| 187 Benzo[k]fluoranthene       | 252 | 15.278 | 15.267 | 0.011  | 96  | 2406450  | 160.0     | 157.3 |       |
| 190 Benzo[a]pyrene             | 252 | 15.636 | 15.625 | 0.011  | 74  | 2209732  | 160.0     | 158.1 |       |
| 193 Dibenz(a,h)anthracene      | 278 | 17.196 | 17.174 | 0.022  | 89  | 2350717  | 160.0     | 162.8 |       |
| 194 Indeno[1,2,3-cd]pyrene     | 276 | 17.201 | 17.180 | 0.021  | 96  | 2759131  | 160.0     | 161.8 |       |
| 195 Benzo[g,h,i]perylene       | 276 | 17.660 | 17.639 | 0.021  | 95  | 2300944  | 160.0     | 161.4 |       |
| S 254 Total Cresols            | 1   |        |        |        | 0   |          |           | 314.8 |       |
| S 256 3-Methylphenol           | 1   |        |        |        | 0   |          |           | 158.8 |       |
| S 257 3 & 4 Methylphenol       | 108 |        |        |        | 0   |          |           | 158.8 |       |
| QC Flag Legend                 |     |        |        |        |     |          |           |       |       |

Review Flags

M - Manually Integrated

### Reagents:

MB\_LIST1\_WRK\_00525 Amount Added: 1.00 Units: mL

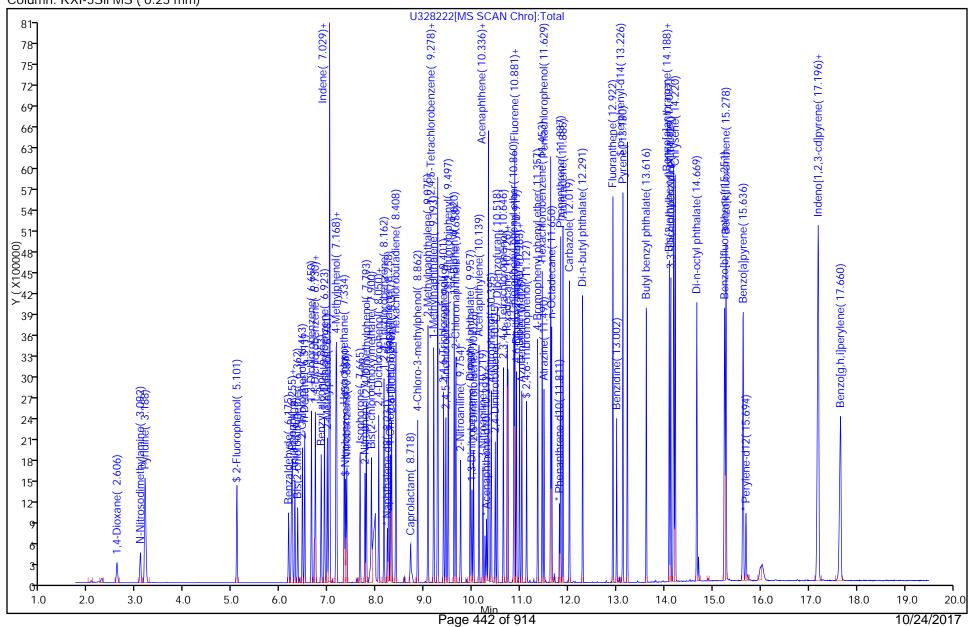
MB\_INTSTD\_STK\_00039 Amount Added: 20.00 Units: uL Run Reagent

Report Date: 16-Oct-2017 16:51:26 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

Injection Date: 16-Oct-2017 14:19:30 Instrument ID: HP5973U


Lims ID: Client ID:

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

IC - List1 160



DR

8

8

Operator ID:

ALS Bottle#:

Worklist Smp#:

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report Report Date: 16-Oct-2017 16:51:26

TestAmerica Buffalo

Data File: Instrument ID: HP5973U

Injection Date: 16-Oct-2017 14:19:30

IC - List1 160

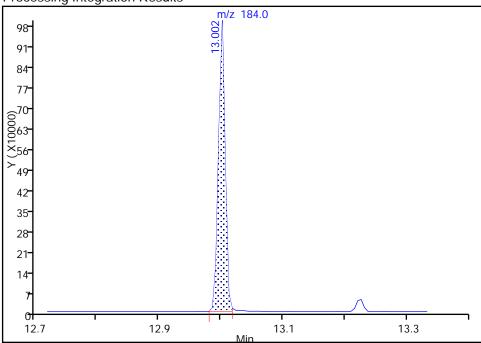
Lims ID:

Client ID:

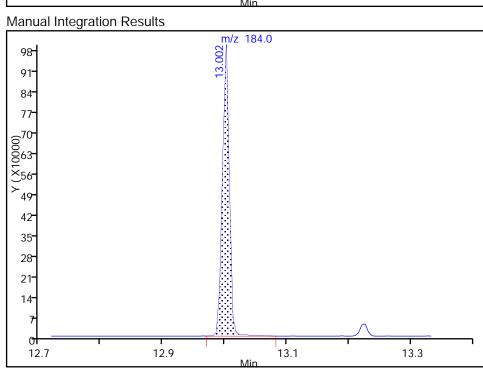
Operator ID: DR ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL


Column: Detector RXI-5Sil MS (0.25 mm) MS SCAN

### 164 Benzidine, CAS: 92-87-5


Signal: 1

RT: 13.00 Area: 749632 Amount: 132.1427 Amount Units: ng/uL

**Processing Integration Results** 



RT: 13.00 Area: 759973 Amount: 113.2832 Amount Units: ng/uL



Reviewer: richardsd, 16-Oct-2017 16:03:11

Audit Action: Manually Integrated

Audit Reason: Baseline

Page 443 of 914

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379526

SDG No.:

Instrument ID: HP5973X GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

#### Calibration Files:

| LEVEL:  | LAB SAMPLE ID:    | LAB FILE ID: |
|---------|-------------------|--------------|
| Level 1 | IC 480-379526/3   | X20237.D     |
| Level 2 | IC 480-379526/4   | X20238.D     |
| Level 3 | ICIS 480-379526/5 | X20239.D     |
| Level 4 | IC 480-379526/6   | X20240.D     |
| Level 5 | IC 480-379526/7   | X20241.D     |
| Level 6 | IC 480-379526/8   | X20242.D     |

| ANALYTE                 |                    |        | RRF    |        |        | CURVE |        | COEFFICIE | NT # | MIN RRF | %RSD |     |     | R^2    | # MIN R^2 |
|-------------------------|--------------------|--------|--------|--------|--------|-------|--------|-----------|------|---------|------|-----|-----|--------|-----------|
|                         | LVL 1 I            | LVL 2  | LVL 3  | LVL 4  | LVL 5  | TYPE  | В      | M1        | M2   |         |      | %RS | 3D  | OR COD | OR COD    |
| 1,4-Dioxane             | 0.8328 0<br>0.8052 | 0.8510 | 0.8411 | 0.8415 | 0.7095 | Ave   |        | 0.8135    |      |         | 6.6  | 20  | 0.0 |        |           |
| N-Nitrosodimethylamine  | 0.7103 0<br>0.7369 | 7606   | 0.7020 | 0.7404 | 0.7269 | Ave   |        | 0.7295    |      |         | 2.9  | 20  | 0.0 |        |           |
| Pyridine                | 0.9155 1<br>1.0903 | 1.0513 | 0.9895 | 1.0214 | 1.0351 | Lin1  | -1.514 | 1.0551    |      |         |      |     |     | 0.9990 | 0.9900    |
| Benzaldehyde            | 1.0719 1<br>1.0716 | 1.2093 | 1.1879 | 1.1142 | 1.1212 | Ave   |        | 1.1293    |      | 0.0100  | 5.1  | 20  | 0.0 |        |           |
| Phenol                  | 1.8160 2<br>1.8453 | 2.0087 | 1.9516 | 1.8791 | 1.9101 | Ave   |        | 1.9018    |      | 0.8000  | 3.7  | 20  | 0.0 |        |           |
| Aniline                 | 2.2169 2<br>2.2124 | 2.3166 | 2.2402 | 2.2392 | 2.2704 | Ave   |        | 2.2493    |      |         | 1.7  | 20  | 0.0 |        |           |
| Bis(2-chloroethyl)ether | 1.4296 1<br>1.3862 | L.4773 | 1.4108 | 1.3982 | 1.4270 | Ave   |        | 1.4215    |      | 0.7000  | 2.3  | 20  | 0.0 |        |           |
| 2-Chlorophenol          | 1.2176 1<br>1.3230 | 1.3512 | 1.3391 | 1.3132 | 1.3628 | Ave   |        | 1.3178    |      | 0.8000  | 4.0  | 20  | 0.0 |        |           |
| n-Decane                | 1.3366 1<br>1.3618 | L.4443 | 1.4032 | 1.3870 | 1.3850 | Ave   |        | 1.3863    |      | 0.0100  | 2.6  | 20  | 0.0 |        |           |
| 1,3-Dichlorobenzene     | 1.5284 1<br>1.5366 | L.5984 | 1.5559 | 1.5163 | 1.5249 | Ave   |        | 1.5434    |      |         | 1.9  | 20  | 0.0 |        |           |
| 1,4-Dichlorobenzene     | 1.5763 1<br>1.5407 | 1.6298 | 1.5560 | 1.5029 | 1.5587 | Ave   |        | 1.5607    |      |         | 2.7  | 20  | 0.0 |        |           |
| Benzyl alcohol          | 0.7240 0<br>0.9332 | .8708  | 0.8996 | 0.9277 | 0.9395 | Lin1  | -1.190 | 0.9422    |      |         |      |     |     | 1.0000 | 0.9900    |
| 1,2-Dichlorobenzene     | 1.4915 1<br>1.4545 | L.4598 | 1.4449 | 1.4051 | 1.4526 | Ave   |        | 1.4514    |      |         | 1.9  | 20  | 0.0 |        |           |
| Indene                  | 0.6188 0<br>0.6146 | 0.6674 | 0.6329 | 0.5981 | 0.6159 | Ave   |        | 0.6246    |      |         | 3.8  | 20  | 0.0 |        |           |
| 2-Methylphenol          | 1.1602 1<br>1.2555 | 1.2397 | 1.2705 | 1.2171 | 1.2566 | Ave   |        | 1.2333    |      | 0.7000  | 3.3  | 20  | 0.0 |        |           |

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379526

SDG No.:

Instrument ID: HP5973X GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

| ANALYTE                       |                  |        | RRF    |        |        | CURVE |        | COEFFICIEN | T  | # MIN RRF | %RSD |    | IAX  | R^2    | #             | MIN R^2 |
|-------------------------------|------------------|--------|--------|--------|--------|-------|--------|------------|----|-----------|------|----|------|--------|---------------|---------|
|                               | LVL 1            | LVL 2  | LVL 3  | LVL 4  | LVL 5  | TYPE  | В      | M1         | M2 |           |      | 96 | RSD  | OR COD |               | OR COD  |
|                               | LVL 6            |        |        |        |        |       |        |            |    |           |      |    |      |        |               |         |
| bis (2-chloroisopropyl) ether | 1.3886           | 1.5714 | 1.4767 | 1.4416 | 1.4625 | Ave   |        | 1.4645     |    | 0.0100    | 4.1  |    | 20.0 |        |               |         |
|                               | 1.4463           |        |        |        |        |       |        |            |    |           |      |    |      |        |               |         |
| Acetophenone                  | 1.8971           | 1.9765 | 1.9900 | 1.9145 | 1.9210 | Ave   |        | 1.9467     |    | 0.0100    | 2.1  |    | 20.0 |        |               |         |
|                               | 1.9812           |        |        |        |        |       |        |            |    |           |      |    |      |        | $\vdash$      |         |
| N-Nitrosodi-n-propylamine     | 0.9111<br>1.0585 | 1.0139 | 1.0352 | 1.0007 | 1.0222 | Ave   |        | 1.0069     |    | 0.5000    | 5.1  |    | 20.0 |        |               |         |
| 4-Methylphenol                | 1.1885           | 1.3322 | 1.3212 | 1.2777 | 1.2963 | 7     |        | 1.2948     |    | 0.6000    | 4.5  |    | 20.0 |        | $\vdash$      |         |
| 4-Methylphenol                | 1.3532           | 1.3322 | 1.3212 | 1.2/// | 1.2903 | Ave   |        | 1.2948     |    | 0.8000    | 4.5  |    | 20.0 |        | ıl            |         |
| Hexachloroethane              | 0.6059           | 0.6035 | 0.6212 | 0.6124 | 0.6108 | Ave   |        | 0.6127     |    | 0.3000    | 1.3  |    | 20.0 |        | $\overline{}$ |         |
| newachioi occinane            | 0.6225           | 0.0000 | 0.0212 | 0.0121 | 0.0100 | 1110  |        | 0.0127     |    | 0.3000    | 1.0  |    | _0.0 |        | ıl            |         |
| Nitrobenzene                  | 0.4119           | 0.4527 | 0.4446 | 0.4498 | 0.4382 | Ave   |        | 0.4391     |    | 0.2000    | 3.3  |    | 20.0 |        |               |         |
|                               | 0.4375           |        |        |        |        |       |        |            |    |           |      |    |      |        | 1             |         |
| Isophorone                    | 0.6715           | 0.7470 | 0.7509 | 0.7762 | 0.7500 | Lin1  | -0.325 | 0.7546     |    | 0.4000    |      |    |      | 0.9990 |               | 0.9900  |
|                               | 0.7339           |        |        |        |        |       |        |            |    |           |      |    |      |        | 1             |         |
| 2-Nitrophenol                 | 0.1544           | 0.1804 | 0.1934 | 0.2032 | 0.2063 | Lin1  | -0.317 | 0.2062     |    | 0.1000    |      |    |      | 0.9990 |               | 0.9900  |
|                               | 0.2040           |        |        |        |        |       |        |            |    |           |      |    |      |        | 1             |         |
| 2,4-Dimethylphenol            | 0.3767           | 0.4221 | 0.4080 | 0.4165 | 0.4141 | Lin1  | -0.101 | 0.4118     |    | 0.2000    |      |    |      | 1.0000 |               | 0.9900  |
|                               | 0.4030           |        |        |        |        |       |        |            |    |           |      |    |      |        | $\vdash$      |         |
| Bis(2-chloroethoxy)methane    | 0.4466<br>0.4635 | 0.4906 | 0.4698 | 0.4644 | 0.4688 | Ave   |        | 0.4673     |    | 0.3000    | 3.0  |    | 20.0 |        |               |         |
| Benzoic acid                  | 0.4633           | 0.2278 | 0.2884 | 0.3215 | 0.3349 | T 2 1 | 2 770  | 0.3363     |    |           |      |    |      | 0.9970 | $\vdash$      | 0.9900  |
| Benzoic acid                  | 0.1301           | 0.2278 | 0.2884 | 0.3215 | 0.3349 | PTUT  | -3.772 | 0.3363     |    |           |      |    |      | 0.9970 | ı             | 0.9900  |
| 2,4-Dichlorophenol            | 0.2905           | 0.3462 | 0.3415 | 0.3423 | 0.3420 | T.in1 | -0.204 | 0.3437     |    | 0.2000    |      |    |      | 1.0000 | $\vdash$      | 0.9900  |
| z, i bieniolophenol           | 0.3387           | 0.0102 | 0.3113 | 0.0120 | 0.5120 |       | 0.201  | 0.0107     |    | 0.2000    |      |    |      | 1.0000 | ıl            | 0.3300  |
| 1,2,4-Trichlorobenzene        | 0.3975           | 0.3989 | 0.3979 | 0.4019 | 0.3910 | Ave   |        | 0.3952     |    |           | 1.6  |    | 20.0 |        | $\overline{}$ |         |
|                               | 0.3842           |        |        |        |        |       |        |            |    |           |      |    |      |        |               |         |
| Naphthalene                   | 1.0299           | 1.1314 | 1.0505 | 1.0568 | 1.0214 | Ave   |        | 1.0521     |    | 0.7000    | 4.0  |    | 20.0 |        |               |         |
|                               | 1.0224           |        |        |        |        |       |        |            |    |           |      |    |      |        |               |         |
| 4-Chloroaniline               | 0.4233           | 0.4697 | 0.4533 | 0.4639 | 0.4511 | Lin1  | -0.063 | 0.4546     |    | 0.0100    |      |    |      | 1.0000 |               | 0.9900  |
|                               | 0.4476           |        |        |        |        |       |        |            |    |           |      |    |      |        |               |         |
| 2,6-Dichlorophenol            | 0.3130           | 0.3381 | 0.3267 | 0.3450 | 0.3325 | Lin1  | -0.061 | 0.3332     |    |           |      |    |      | 0.9990 |               | 0.9900  |
|                               | 0.3256           |        |        |        |        |       |        |            |    |           |      |    |      |        |               |         |
| Hexachlorobutadiene           | 0.2693           | 0.2616 | 0.2504 | 0.2702 | 0.2524 | Ave   |        | 0.2588     |    | 0.0100    | 3.7  |    | 20.0 |        | 1             |         |
|                               | 0.2487           |        |        |        |        |       |        |            |    |           |      |    |      |        | $\perp$       |         |
| Caprolactam                   | 0.0742           | 0.1096 | 0.1132 | 0.1186 | 0.1115 | Lin1  | -0.196 | 0.1168     |    | 0.0100    |      |    |      | 0.9990 |               | 0.9900  |
|                               | 0.1146           |        |        |        |        |       |        |            |    |           |      |    |      |        | $\vdash$      |         |
| 4-Chloro-3-methylphenol       | 0.2924           | 0.3381 | 0.3352 | 0.3462 | 0.3409 | Lin1  | -0.177 | 0.3389     |    | 0.2000    |      |    |      | 0.9990 |               | 0.9900  |
|                               | 0.3269           |        |        |        |        |       |        |            |    |           |      |    |      |        | $\vdash$      |         |
| 2-Methylnaphthalene           | 0.6974           | 0.7667 | 0.7158 | 0.7522 | 0.7088 | Ave   |        | 0.7208     |    | 0.4000    | 4.5  |    | 20.0 |        |               |         |
|                               | 0.6838           |        |        |        |        | 1     |        |            |    | 1         |      |    |      |        |               |         |

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379526

SDG No.:

Instrument ID: HP5973X GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

| ANALYTE                    |                  |        | RRF    |        |        | CURVE |        | COEFFICIEN | T # | MIN RRF | %RSD | <br>MAX | R^2    | # MIN R^2 |
|----------------------------|------------------|--------|--------|--------|--------|-------|--------|------------|-----|---------|------|---------|--------|-----------|
|                            | LVL 1<br>LVL 6   | LVL 2  | LVL 3  | LVL 4  | LVL 5  | TYPE  | В      | M1         | M2  |         |      | %RSD    | OR COD | OR COD    |
| 1-Methylnaphthalene        | 0.6678           | 0.7346 | 0.6787 | 0.7089 | 0.6802 | Ave   |        | 0.6857     |     | 0.0100  | 4.6  | 20.0    |        |           |
| Hexachlorocyclopentadiene  | 0.5376<br>0.6506 | 0.6119 | 0.6446 | 0.6306 | 0.6282 | Lin1  | -0.549 | 0.6448     |     | 0.0500  |      |         | 1.0000 | 0.9900    |
| 1,2,4,5-Tetrachlorobenzene | 0.8168<br>0.8055 |        |        | 0.7928 | 0.7930 |       |        | 0.8107     |     | 0.0100  | 2.0  | 20.0    |        |           |
| 2,4,6-Trichlorophenol      | 0.4194<br>0.5197 | 0.4799 | 0.5062 | 0.5043 | 0.5024 | Lin1  | -0.524 | 0.5149     |     | 0.2000  |      |         | 1.0000 | 0.9900    |
| 2,4,5-Trichlorophenol      | 0.4153<br>0.5442 | 0.5139 | 0.5461 | 0.5385 | 0.5481 | Lin1  | -0.681 | 0.5518     |     | 0.2000  |      |         | 1.0000 | 0.9900    |
| Biphenyl                   | 1.7668<br>1.6855 | 1.7641 | 1.8207 | 1.7369 | 1.6626 | Ave   |        | 1.7394     |     | 0.0100  | 3.3  | 20.0    |        |           |
| 2-Chloronaphthalene        | 1.4114<br>1.3419 | 1.4273 | 1.4056 | 1.3500 | 1.3196 | Ave   |        | 1.3760     |     | 0.8000  | 3.2  | 20.0    |        |           |
| 2-Nitroaniline             | 0.3506<br>0.4410 | 0.3821 | 0.4326 | 0.4275 | 0.4184 | Lin1  | -0.525 | 0.4350     |     | 0.0100  |      |         | 0.9990 | 0.9900    |
| Dimethyl phthalate         | 1.4566<br>1.5678 | 1.5772 | 1.6191 | 1.5722 | 1.5492 | Ave   |        | 1.5570     |     | 0.0100  | 3.5  | 20.0    |        |           |
| 1,3-Dinitrobenzene         | 0.1124<br>0.1484 | 0.1297 | 0.1405 | 0.1557 | 0.1533 | Lin1  | -0.256 | 0.1528     |     |         |      |         | 0.9980 | 0.9900    |
| 2,6-Dinitrotoluene         | 0.2966<br>0.3776 | 0.3448 | 0.3664 | 0.3750 | 0.3715 | Lin1  | -0.462 | 0.3785     |     |         |      |         | 1.0000 | 0.9900    |
| Acenaphthylene             | 1.8264<br>1.9919 | 2.0393 | 2.0175 | 1.9839 | 1.9425 | Ave   |        | 1.9669     |     | 0.9000  | 3.9  | 20.0    |        |           |
| 3-Nitroaniline             | 0.2947           | 0.3653 | 0.3789 | 0.3924 | 0.3862 | Lin1  | -0.512 | 0.3936     |     | 0.0100  |      |         | 1.0000 | 0.9900    |
| Acenaphthene               | 1.2982           | 1.3782 | 1.3455 | 1.3339 | 1.2894 | Ave   |        | 1.3279     |     | 0.9000  | 2.4  | 20.0    |        |           |
| 2,4-Dinitrophenol          | 0.1339<br>0.2838 | 0.2133 | 0.2601 | 0.2765 | 0.2801 | Lin1  | -1.820 | 0.2869     |     | 0.0100  |      |         | 0.9990 | 0.9900    |
| 4-Nitrophenol              | 0.1991<br>0.2813 | 0.2543 | 0.2776 | 0.2708 | 0.2735 | Lin1  | -0.850 | 0.2807     |     | 0.0100  |      |         | 1.0000 | 0.9900    |
| 2,4-Dinitrotoluene         | 0.3490<br>0.5183 | 0.4688 | 0.5006 | 0.5053 | 0.4966 | Lin1  | -0.860 | 0.5162     |     | 0.2000  |      |         | 1.0000 | 0.9900    |
| Dibenzofuran               | 2.0633<br>1.9767 | 2.0856 | 2.0521 | 1.9883 | 1.9173 | Ave   |        | 2.0139     |     | 0.8000  | 3.2  | 20.0    |        |           |
| 2,3,4,6-Tetrachlorophenol  | 0.3251<br>0.4855 | 0.4251 | 0.4689 | 0.4758 | 0.4665 | Lin1  | -0.868 | 0.4847     |     | 0.0100  |      |         | 1.0000 | 0.9900    |
| Diethyl phthalate          | 1.4570<br>1.5637 | 1.5834 | 1.6030 | 1.5835 | 1.5461 | Ave   |        | 1.5561     |     | 0.0100  | 3.4  | 20.0    |        |           |

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379526

SDG No.:

Instrument ID: HP5973X GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

| ANALYTE                     |                  |        | RRF    |        |        | CURVE |        | COEFFICIE | NT : | MIN RRF | %RSD     | # | MAX  | R^2    |               | IIN R^2 |
|-----------------------------|------------------|--------|--------|--------|--------|-------|--------|-----------|------|---------|----------|---|------|--------|---------------|---------|
|                             | LVL 1            | LVL 2  | LVL 3  | LVL 4  | LVL 5  | TYPE  | В      | M1        | M2   |         |          |   | %RSD | OR COD |               | OR COD  |
|                             | LVL 6            |        |        |        |        |       |        |           |      |         |          |   |      |        | $\Box$        |         |
| Hexadecane                  | 0.7946           | 0.8718 | 0.8492 | 0.8658 | 0.8169 | Ave   |        | 0.8376    |      | 0.0100  | 3.6      |   | 20.0 |        |               |         |
|                             | 0.8272           |        |        |        |        |       |        |           |      |         |          |   |      |        |               |         |
| Fluorene                    | 1.4684           | 1.5986 | 1.6022 | 1.5821 | 1.5472 | Ave   |        | 1.5560    |      | 0.9000  | 3.2      |   | 20.0 |        | .             |         |
|                             | 1.5376           |        |        |        |        |       |        |           |      |         |          |   |      |        | $\vdash$      |         |
| 4-Chlorophenyl phenyl ether | 0.8832<br>0.8664 | 0.8872 | 0.8891 | 0.8874 | 0.8589 | Ave   |        | 0.8787    |      | 0.4000  | 1.5      |   | 20.0 |        |               |         |
| 4-Nitroaniline              | 0.3326           | 0.3854 | 0.4056 | 0.4014 | 0.3865 | T.in1 | -0 303 | 0.4003    |      | 0.0100  |          |   |      | 1.0000 | +             | 0.9900  |
| 1 NICIOMILIINO              | 0.3989           | 0.0001 | 0.1000 | 0.1011 | 0.3003 |       | 0.303  | 0.1003    |      | 0.0100  |          |   |      | 1.0000 | .             | 0.3300  |
| 4,6-Dinitro-2-methylphenol  | 0.0823           | 0.1225 | 0.1321 | 0.1448 | 0.1510 | Lin1  | -0.842 | 0.1520    |      | 0.0100  |          |   |      | 0.9980 |               | 0.9900  |
| <u> </u>                    | 0.1527           |        |        |        |        |       |        |           |      |         |          |   |      |        | .             |         |
| Diphenylamine               | 0.6264           | 0.6477 | 0.6314 | 0.6448 | 0.6440 | Ave   |        | 0.6397    |      |         | 1.3      |   | 20.0 |        |               | -       |
|                             | 0.6439           |        |        |        |        |       |        |           |      |         |          |   |      |        | .             |         |
| N-Nitrosodiphenylamine      | 0.5356           | 0.5537 | 0.5399 | 0.5513 | 0.5507 | Ave   |        | 0.5470    |      | 0.0100  | 1.3      |   | 20.0 |        |               |         |
|                             | 0.5506           |        |        |        |        |       |        |           |      |         |          |   |      |        |               |         |
| 1,2-Diphenylhydrazine       | 0.7699           | 0.7682 | 0.7560 | 0.7675 | 0.7626 | Ave   |        | 0.7660    |      |         | 0.8      |   | 20.0 |        | .             |         |
|                             | 0.7720           |        |        |        |        |       |        |           |      |         |          |   |      |        |               |         |
| trans-Azobenzene            | 0.7699<br>0.7720 | 0.7682 | 0.7560 | 0.7675 | 0.7626 | Ave   |        | 0.7660    |      |         | 0.8      |   | 20.0 |        |               | ı       |
| 4-Bromophenyl phenyl ether  | 0.7720           | 0.2459 | 0.2385 | 0.2425 | 0.2475 | 7     |        | 0.2405    |      | 0.1000  | 4.5      |   | 20.0 |        | $\overline{}$ |         |
| 4-Bromophenyi phenyi ether  | 0.2488           | 0.2433 | 0.2303 | 0.2423 | 0.2473 | Ave   |        | 0.2403    |      | 0.1000  | 4.5      |   | 20.0 |        |               |         |
| Hexachlorobenzene           | 0.2402           | 0.2526 | 0.2429 | 0.2445 | 0.2499 | Ave   |        | 0.2460    |      | 0.1000  | 1.9      |   | 20.0 |        |               |         |
|                             | 0.2460           |        |        |        |        |       |        |           |      |         |          |   |      |        | .             |         |
| Atrazine                    | 0.3682           | 0.4647 | 0.4803 | 0.4589 | 0.4483 | Lin1  | -0.239 | 0.4549    |      | 0.0100  |          |   |      | 0.9980 |               | 0.9900  |
|                             | 0.4371           |        |        |        |        |       |        |           |      |         |          |   |      |        |               |         |
| Pentachlorophenol           | 0.0840           | 0.1511 | 0.1525 | 0.1674 | 0.1728 | Lin1  | -0.963 | 0.1742    |      | 0.0500  |          |   |      | 0.9990 |               | 0.9900  |
|                             | 0.1724           |        |        |        |        |       |        |           |      |         |          |   |      |        |               |         |
| n-Octadecane                | 0.3537           | 0.4300 | 0.3914 | 0.4058 | 0.4181 | Lin1  | -0.228 | 0.4132    |      | 0.0100  |          |   |      | 0.9990 | .             | 0.9900  |
|                             | +++++            | 1 1000 | 1 0610 | 4 0040 | 4 0550 |       |        | 4 0750    |      | 0.5000  |          |   |      |        | $\vdash$      |         |
| Phenanthrene                | 1.0798           | 1.1236 | 1.0640 | 1.0719 | 1.0573 | Ave   |        | 1.0759    |      | 0.7000  | 2.3      |   | 20.0 |        | .             |         |
| 7 - 1 1                     | 1.0588           | 1.1592 | 1.0905 | 1.1186 | 1.1149 | 7 -   |        | 1.1053    |      | 0.7000  | 2.4      |   | 20.0 |        | $\vdash$      |         |
| Anthracene                  | 1.0435           | 1.1592 | 1.0905 | 1.1186 | 1.1149 | Ave   |        | 1.1053    |      | 0.7000  | 3.4      |   | 20.0 |        | .             |         |
| Carbazole                   | 0.9115           | 1.0769 | 1.0172 | 1.0119 | 1.0259 | 7770  |        | 1.0080    |      | 0.0100  | 5.3      |   | 20.0 |        | -             |         |
| Calbazole                   | 1.0046           | 1.0703 | 1.01/2 | 1.0117 | 1.0233 | Ave   |        | 1.0000    |      | 0.0100  | ] 3.3    |   | 20.0 |        | .             |         |
| Di-n-butyl phthalate        | 0.9688           | 1.1704 | 1.1748 | 1.1991 | 1.2136 | Lin1  | -1.124 | 1.2080    |      | 0.0100  | <b>-</b> | + |      | 1.0000 | +             | 0.9900  |
|                             | 1.1832           |        |        |        |        |       |        |           |      |         |          |   |      |        | .             |         |
| Fluoranthene                | 1.1464           | 1.2946 | 1.2356 | 1.2590 | 1.2794 | Ave   |        | 1.2400    |      | 0.6000  | 4.2      |   | 20.0 |        |               | -       |
|                             | 1.2252           |        |        |        |        |       |        |           |      |         |          |   |      |        |               |         |
| Benzidine                   | 0.4598           | 0.6484 | 0.6357 | 0.6271 | 0.5988 | Lin1  | -0.402 | 0.6127    |      |         |          |   |      | 0.9970 | $\top$        | 0.9900  |
|                             | 0.5854           |        |        |        |        |       |        |           |      |         |          |   |      |        | .             |         |

# GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379526

SDG No.:

Instrument ID:  $\underline{\text{HP5973X}}$  GC Column:  $\underline{\text{RXI-5Sil MS}}$  ID:  $\underline{\text{0.25(mm)}}$  Heated Purge: (Y/N) N

| ANALYTE                     |                  |        | RRF    |        |        | CURVE |        | COEFFICIE | NT | # MIN RRF | %RSD | # | MAX  | R^2    | # MIN R^2 |
|-----------------------------|------------------|--------|--------|--------|--------|-------|--------|-----------|----|-----------|------|---|------|--------|-----------|
|                             | LVL 1<br>LVL 6   | LVL 2  | LVL 3  | LVL 4  | LVL 5  | TYPE  | В      | M1        | M2 |           |      |   | %RSD | OR COD | OR COD    |
| Pyrene                      | 1.0609           | 1.2051 | 1.1340 | 1.1433 | 1.1453 | Ave   |        | 1.1377    |    | 0.6000    | 4.5  |   | 20.0 |        |           |
| Butyl benzyl phthalate      | 0.3597<br>0.4802 | 0.4530 | 0.4696 | 0.5042 |        |       | -0.732 | 0.4977    |    | 0.0100    |      |   |      | 0.9990 | 0.9900    |
| 3,3'-Dichlorobenzidine      | 0.2932<br>0.4477 | 0.4039 |        |        |        |       |        | 0.4548    |    | 0.0100    |      |   |      | 0.9990 | 0.9900    |
| Benzo[a]anthracene          | 1.0135<br>1.1210 |        |        |        | 1.1330 |       |        | 1.1467    |    | 0.8000    |      |   |      | 0.9990 | 0.9900    |
| Bis(2-ethylhexyl) phthalate | 0.5032<br>0.6920 | 0.6649 |        |        |        |       | -1.057 | 0.7187    |    | 0.0100    |      |   |      | 0.9990 | 0.9900    |
| Chrysene                    | 1.1379<br>1.0585 |        | 1.0883 | 1.0894 | 1.0720 | Ave   |        | 1.1051    |    | 0.7000    | 4.3  |   | 20.0 |        |           |
| Di-n-octyl phthalate        | 0.7577<br>1.1416 | 1.0500 | 1.1469 | 1.2040 | 1.1930 | Lin1  | -2.259 | 1.1955    |    | 0.0100    |      |   |      | 0.9990 | 0.9900    |
| Benzo[b]fluoranthene        | 1.1584<br>1.2984 | 1.3205 | 1.3707 | 1.2515 | 1.2487 | Ave   |        | 1.2747    |    | 0.7000    | 5.7  |   | 20.0 |        |           |
| Benzo[k]fluoranthene        | 1.2791           | 1.4476 | 1.3060 | 1.4400 | 1.3330 | Ave   |        | 1.3612    |    | 0.7000    | 5.7  |   | 20.0 |        |           |
| Benzo[a]pyrene              | 1.0324           | 1.2538 | 1.2191 | 1.2123 | 1.2531 | Lin1  | -0.906 | 1.2471    |    | 0.7000    |      |   |      | 1.0000 | 0.9900    |
| Indeno[1,2,3-cd]pyrene      | 1.1990<br>1.4083 | 1.3849 | 1.3728 | 1.3905 | 1.4254 | Lin1  | -1.078 | 1.4175    |    | 0.5000    |      |   |      | 1.0000 | 0.9900    |
| Dibenz (a, h) anthracene    | 1.0180<br>1.1903 | 1.1963 | 1.1674 | 1.1892 | 1.2015 | Lin1  | -0.808 | 1.2009    |    |           |      |   |      | 1.0000 | 0.9900    |
| Benzo[g,h,i]perylene        | 1.0592<br>1.1999 | 1.2096 | 1.1767 | 1.1796 | 1.2117 | Lin1  | -0.629 | 1.2043    |    | 0.5000    |      |   |      | 1.0000 | 0.9900    |
| 2-Fluorophenol              | 1.2664<br>1.3614 | 1.3405 | 1.4116 | 1.3507 | 1.3394 | Ave   |        | 1.3450    |    |           | 3.5  |   | 20.0 |        |           |
| Phenol-d5                   | 1.5641<br>1.6561 | 1.7137 | 1.6826 | 1.6944 | 1.7277 | Ave   |        | 1.6731    |    |           | 3.5  |   | 20.0 |        |           |
| Nitrobenzene-d5             | 0.3827<br>0.4251 | 0.4276 | 0.4344 | 0.4420 | 0.4317 | Ave   |        | 0.4239    |    |           | 5.0  |   | 20.0 |        |           |
| 2-Fluorobiphenyl            | 1.6519<br>1.6132 | 1.6908 | 1.7313 | 1.6361 | 1.6038 | Ave   |        | 1.6545    |    |           | 2.9  |   | 20.0 |        |           |
| 2,4,6-Tribromophenol        | 0.0828<br>0.1155 | 0.0981 | 0.1042 | 0.1113 | 0.1151 | Lin1  | -0.209 | 0.1150    |    |           |      |   |      | 0.9990 | 0.9900    |
| p-Terphenyl-d14             | 0.7138<br>0.7620 | 0.7970 | 0.7843 | 0.7832 | 0.7788 | Ave   |        | 0.7698    |    |           | 3.9  |   | 20.0 |        |           |

## GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379526

SDG No.:

Instrument ID: HP5973X GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

#### Calibration Files:

| LEVEL:  | LAB SAMPLE ID:    | LAB FILE ID: |  |
|---------|-------------------|--------------|--|
| Level 1 | IC 480-379526/3   | X20237.D     |  |
| Level 2 | IC 480-379526/4   | X20238.D     |  |
| Level 3 | ICIS 480-379526/5 | X20239.D     |  |
| Level 4 | IC 480-379526/6   | X20240.D     |  |
| Level 5 | IC 480-379526/7   | X20241.D     |  |
| Level 6 | IC 480-379526/8   | X20242.D     |  |

| ANALYTE                       | IS        | CURVE |                   |        | RESPONSE |         |         |                | CONCEN | TRATION (N | IG/UL) |       |
|-------------------------------|-----------|-------|-------------------|--------|----------|---------|---------|----------------|--------|------------|--------|-------|
|                               | REF       | TYPE  | LVL 1<br>LVL 6    | LVL 2  | LVL 3    | LVL 4   | LVL 5   | LVL 1<br>LVL 6 | LVL 2  | LVL 3      | LVL 4  | LVL 5 |
| 1,4-Dioxane                   | DCBd<br>4 | Ave   | 17069<br>469654   | 76960  | 183915   | 314748  | 392717  | 5.00<br>120    | 20.0   | 50.0       | 80.0   | 100   |
| N-Nitrosodimethylamine        | DCBd<br>4 | Ave   | 14557<br>429787   | 68789  | 153494   | 276917  | 402316  | 5.00<br>120    | 20.0   | 50.0       | 80.0   | 100   |
| Pyridine                      | DCBd<br>4 | Lin1  | 37528<br>1271890  | 190149 | 432707   | 764057  | 1145830 | 10.0<br>240    | 40.0   | 100        | 160    | 200   |
| Benzaldehyde                  | DCBd<br>4 | Ave   | 21968<br>625016   | 109366 | 259742   | 416729  | 620578  | 5.00<br>120    | 20.0   | 50.0       | 80.0   | 100   |
| Phenol                        | DCBd<br>4 | Ave   | 37219<br>1076313  | 181654 | 426715   | 702826  | 1057225 | 5.00<br>120    | 20.0   | 50.0       | 80.0   | 100   |
| Aniline                       | DCBd<br>4 | Ave   | 45436<br>1290451  | 209506 | 489815   | 837512  | 1256625 | 5.00<br>120    | 20.0   | 50.0       | 80.0   | 100   |
| Bis(2-chloroethyl)ether       | DCBd<br>4 | Ave   | 29300<br>808532   | 133603 | 308466   | 522984  | 789815  | 5.00<br>120    | 20.0   | 50.0       | 80.0   | 100   |
| 2-Chlorophenol                | DCBd<br>4 | Ave   | 24954<br>771659   | 122196 | 292781   | 491170  | 754280  | 5.00<br>120    | 20.0   | 50.0       | 80.0   | 100   |
| n-Decane                      | DCBd<br>4 | Ave   | 27394<br>794290   | 130619 | 306798   | 518777  | 766598  | 5.00<br>120    | 20.0   | 50.0       | 80.0   | 100   |
| 1,3-Dichlorobenzene           | DCBd<br>4 | Ave   | 31324<br>896268   | 144548 | 340189   | 567134  | 844027  | 5.00<br>120    | 20.0   | 50.0       | 80.0   | 100   |
| 1,4-Dichlorobenzene           | DCBd<br>4 | Ave   | 32307<br>898670   | 147393 | 340213   | 562145  | 862702  | 5.00<br>120    | 20.0   | 50.0       | 80.0   | 100   |
| Benzyl alcohol                | DCBd<br>4 | Lin1  | 14838<br>544288   | 78754  | 196694   | 346986  | 520019  | 5.00<br>120    | 20.0   | 50.0       | 80.0   | 100   |
| 1,2-Dichlorobenzene           | DCBd<br>4 | Ave   | 30568<br>848372   | 132020 | 315925   | 525543  | 804003  | 5.00<br>120    | 20.0   | 50.0       | 80.0   | 100   |
| Indene                        | PHN       | Ave   | 141244<br>3989248 | 676564 | 1586989  | 2591227 | 3816966 | 15.0<br>360    | 60.0   | 150        | 240    | 300   |
| 2-Methylphenol                | DCBd<br>4 | Ave   | 23778<br>732292   | 112113 | 277792   | 455216  | 695490  | 5.00<br>120    | 20.0   | 50.0       | 80.0   | 100   |
| bis (2-chloroisopropyl) ether | DCBd<br>4 | Ave   | 28460<br>843583   | 142109 | 322869   | 539194  | 809475  | 5.00<br>120    | 20.0   | 50.0       | 80.0   | 100   |

## GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379526

SDG No.:

Instrument ID: HP5973X GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

| ANALYTE                    | IS        | CURVE |                  |        | RESPONSE |         |         |                | CONCEN | ITRATION (N | G/UL) |       |
|----------------------------|-----------|-------|------------------|--------|----------|---------|---------|----------------|--------|-------------|-------|-------|
|                            | REF       | TYPE  | LVL 1<br>LVL 6   | LVL 2  | LVL 3    | LVL 4   | LVL 5   | LVL 1<br>LVL 6 | LVL 2  | LVL 3       | LVL 4 | LVL 5 |
| Acetophenone               | DCBd<br>4 | Ave   | 38882<br>1155580 | 178746 | 435105   | 716069  | 1063222 | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| N-Nitrosodi-n-propylamine  | DCBd<br>4 | Ave   | 18672<br>617404  | 91693  | 226352   | 374303  | 565762  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| 4-Methylphenol             | DCBd<br>4 | Ave   | 24358<br>789284  | 120475 | 288882   | 477895  | 717486  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| Hexachloroethane           | DCBd<br>4 | Ave   | 12417<br>363066  | 54582  | 135823   | 229043  | 338082  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| Nitrobenzene               | NPT       | Ave   | 27452<br>910715  | 139294 | 338306   | 557002  | 829979  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| Isophorone                 | NPT       | Lin1  | 44749<br>1527736 | 229839 | 571371   | 961158  | 1420450 | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| 2-Nitrophenol              | NPT       | Lin1  | 10290<br>424634  | 55503  | 147156   | 251647  | 390648  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| 2,4-Dimethylphenol         | NPT       | Lin1  | 25105<br>839009  | 129881 | 310451   | 515790  | 784340  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| Bis(2-chloroethoxy)methane | NPT       | Ave   | 29764<br>964851  | 150935 | 357512   | 575008  | 887872  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| Benzoic acid               | NPT       | Lin1  | 27214<br>2066181 | 210285 | 658303   | 1194257 | 1902895 | 15.0<br>360    | 60.0   | 150         | 240   | 300   |
| 2,4-Dichlorophenol         | NPT       | Lin1  | 19356<br>705057  | 106514 | 259897   | 423830  | 647806  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| 1,2,4-Trichlorobenzene     | NPT       | Ave   | 26489<br>799773  | 122734 | 302758   | 497696  | 740470  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| Naphthalene                | NPT       | Ave   | 68632<br>2128351 | 348124 | 799407   | 1308667 | 1934365 | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| 4-Chloroaniline            | NPT       | Lin1  | 28211<br>931677  | 144516 | 344938   | 574470  | 854416  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| 2,6-Dichlorophenol         | NPT       | Lin1  | 20855<br>677895  | 104038 | 248564   | 427242  | 629640  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| Hexachlorobutadiene        | NPT       | Ave   | 17949<br>517736  | 80483  | 190527   | 334537  | 477998  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| Caprolactam                | NPT       | Lin1  | 4942<br>238554   | 33723  | 86102    | 146877  | 211165  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| 4-Chloro-3-methylphenol    | NPT       | Lin1  | 19483<br>680554  | 104028 | 255080   | 428682  | 645724  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| 2-Methylnaphthalene        | NPT       | Ave   | 46475<br>1423466 | 235900 | 544688   | 931482  | 1342331 | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| 1-Methylnaphthalene        | NPT       | Ave   | 44505<br>1340962 | 226018 | 516448   | 877835  | 1288270 | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |
| Hexachlorocyclopentadiene  | ANT       | Lin1  | 18974<br>670396  | 98967  | 245120   | 424720  | 625121  | 5.00<br>120    | 20.0   | 50.0        | 80.0  | 100   |

## GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379526

SDG No.:

Instrument ID: HP5973X GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

| ANALYTE                     | IS  | CURVE |                  |        | RESPONSE |         |         |                | CONCEN | TRATION (N | G/UL)                                   |       |
|-----------------------------|-----|-------|------------------|--------|----------|---------|---------|----------------|--------|------------|-----------------------------------------|-------|
|                             | REF | TYPE  | LVL 1<br>LVL 6   | LVL 2  | LVL 3    | LVL 4   | LVL 5   | LVL 1<br>LVL 6 | LVL 2  | LVL 3      | 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 | LVL 5 |
| 1,2,4,5-Tetrachlorobenzene  | ANT | Ave   | 28828<br>830066  | 133466 | 315844   | 533961  | 789023  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| 2,4,6-Trichlorophenol       | ANT | Lin1  | 14803<br>535555  | 77610  | 192490   | 339677  | 499908  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| 2,4,5-Trichlorophenol       | ANT | Lin1  | 14658<br>560818  | 83110  | 207640   | 362667  | 545332  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| Biphenyl                    | ANT | Ave   | 62353<br>1736870 | 285306 | 692295   | 1169831 | 1654317 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| 2-Chloronaphthalene         | ANT | Ave   | 49811<br>1382801 | 230842 | 534473   | 909277  | 1313036 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| 2-Nitroaniline              | ANT | Lin1  | 12374<br>454413  | 61796  | 164477   | 287932  | 416350  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| Dimethyl phthalate          | ANT | Ave   | 51408<br>1615576 | 255075 | 615652   | 1058955 | 1541522 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| 1,3-Dinitrobenzene          | NPT | Lin1  | 7487<br>309019   | 39891  | 106915   | 192768  | 290272  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| 2,6-Dinitrotoluene          | ANT | Lin1  | 10469<br>389105  | 55760  | 139322   | 252552  | 369686  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| Acenaphthylene              | ANT | Ave   | 64458<br>2052693 | 329826 | 767145   | 1336240 | 1932868 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| 3-Nitroaniline              | ANT | Lin1  | 10402<br>401693  | 59084  | 144070   | 264315  | 384329  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| Acenaphthene                | ANT | Ave   | 45816<br>1362662 | 222895 | 511606   | 898407  | 1283021 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| 2,4-Dinitrophenol           | ANT | Lin1  | 9450<br>584994   | 69003  | 197836   | 372412  | 557443  | 10.0           | 40.0   | 100        | 160                                     | 200   |
| 4-Nitrophenol               | ANT | Lin1  | 14056<br>579663  | 82241  | 211111   | 364750  | 544209  | 10.0<br>240    | 40.0   | 100        | 160                                     | 200   |
| 2,4-Dinitrotoluene          | ANT | Lin1  | 12318<br>534124  | 75824  | 190351   | 340314  | 494117  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| Dibenzofuran                | ANT | Ave   | 72820<br>2037011 | 337313 | 780297   | 1339155 | 1907807 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| 2,3,4,6-Tetrachlorophenol   | ANT | Lin1  | 11475<br>500288  | 68745  | 178312   | 320434  | 464184  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| Diethyl phthalate           | ANT | Ave   | 51420<br>1611395 | 256090 | 609524   | 1066561 | 1538452 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| Hexadecane                  | ANT | Ave   | 28045<br>852475  | 140991 | 322906   | 583136  | 812831  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| Fluorene                    | ANT | Ave   | 51823<br>1584476 | 258539 | 609215   | 1065567 | 1539534 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |
| 4-Chlorophenyl phenyl ether | ANT | Ave   | 31170<br>892876  | 143487 | 338061   | 597712  | 854624  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                    | 100   |

## GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379526

SDG No.:

Instrument ID: HP5973X GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

| ANALYTE                    | IS  | CURVE |                  |        | RESPONSE |         |         |                | CONCEN | TRATION (N | G/UL)                                              |       |
|----------------------------|-----|-------|------------------|--------|----------|---------|---------|----------------|--------|------------|----------------------------------------------------|-------|
|                            | REF | TYPE  | LVL 1<br>LVL 6   | LVL 2  | LVL 3    | LVL 4   | LVL 5   | LVL 1<br>LVL 6 | LVL 2  | LVL 3      | 80.0 160 68.4 80.0 80.0 80.0 80.0 80.0 80.0 80.0 8 | LVL 5 |
| 4-Nitroaniline             | ANT | Lin1  | 11737<br>411114  | 62337  | 154207   | 270371  | 384538  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| 4,6-Dinitro-2-methylphenol | PHN | Lin1  | 12520<br>660918  | 82776  | 220796   | 418290  | 623743  | 10.0<br>240    | 40.0   | 100        | 160                                                | 200   |
| Diphenylamine              | PHN | Ave   | 40748<br>1191207 | 187104 | 451228   | 796105  | 1137499 | 4.28<br>103    | 17.1   | 42.8       | 68.4                                               | 85.5  |
| N-Nitrosodiphenylamine     | PHN | Ave   | 40748<br>1191207 | 187104 | 451228   | 796105  | 1137499 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| 1,2-Diphenylhydrazine      | PHN | Ave   | 58575<br>1670334 | 259554 | 631897   | 1108293 | 1575313 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| trans-Azobenzene           | PHN | Ave   | 58575<br>1670334 | 259554 | 631897   | 1108293 | 1575313 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| 4-Bromophenyl phenyl ether | PHN | Ave   | 16742<br>538286  | 83091  | 199312   | 350245  | 511297  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| Hexachlorobenzene          | PHN | Ave   | 18275<br>532181  | 85367  | 203002   | 353012  | 516151  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| Atrazine                   | ANT | Lin1  | 12993<br>450450  | 75151  | 182620   | 309083  | 446110  | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| Pentachlorophenol          | PHN | Lin1  | 12786<br>746134  | 102080 | 254941   | 483504  | 713797  | 10.0           | 40.0   | 100        | 160                                                | 200   |
| n-Octadecane               | PHN | Lin1  | 26909            | 145309 | 327132   | 585993  | 863696  | 5.00           | 20.0   | 50.0       | 80.0                                               | 100   |
| Phenanthrene               | PHN | Ave   | 82154<br>2290868 | 379662 | 889244   | 1547941 | 2184046 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| Anthracene                 | PHN | Ave   | 79389<br>2391587 | 391688 | 911446   | 1615394 | 2303001 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| Carbazole                  | PHN | Ave   | 69346<br>2173617 | 363864 | 850165   | 1461283 | 2119153 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| Di-n-butyl phthalate       | PHN | Lin1  | 73709<br>2560080 | 395477 | 981910   | 1731582 | 2506957 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| Fluoranthene               | PHN | Ave   | 87223<br>2650881 | 437425 | 1032677  | 1818068 | 2642946 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| Benzidine                  | CRY | Lin1  | 40158<br>1467718 | 246663 | 603072   | 1025911 | 1417943 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| Pyrene                     | CRY | Ave   | 92658<br>+++++   | 458448 | 1075861  | 1870445 | 2712197 | 5.00           | 20.0   | 50.0       | 80.0                                               | 100   |
| Butyl benzyl phthalate     | CRY | Lin1  | 31412<br>1203914 | 172333 | 445485   | 824888  | 1183260 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| 3,3'-Dichlorobenzidine     | CRY | Lin1  | 25611<br>1122560 | 153643 | 397607   | 743081  | 1059761 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |
| Benzo[a]anthracene         | CRY | Lin1  | 88520<br>2810670 | 449725 | 1078561  | 1929622 | 2683148 | 5.00<br>120    | 20.0   | 50.0       | 80.0                                               | 100   |

## GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 Analy Batch No.: 379526

SDG No.:

Instrument ID: HP5973X GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

| ANALYTE                     | IS        | CURVE |                  |        | RESPONSE |         |         |                | CONCEN | ITRATION (N | IG/UL) |       |
|-----------------------------|-----------|-------|------------------|--------|----------|---------|---------|----------------|--------|-------------|--------|-------|
|                             | REF       | TYPE  | LVL 1<br>LVL 6   | LVL 2  | LVL 3    | LVL 4   | LVL 5   | LVL 1<br>LVL 6 | LVL 2  | LVL 3       | LVL 4  | LVL 5 |
| Bis(2-ethylhexyl) phthalate | CRY       | Lin1  | 43953<br>1734937 | 252918 | 656381   | 1185901 | 1698933 | 5.00<br>120    | 20.0   | 50.0        | 80.0   | 100   |
| Chrysene                    | CRY       | Ave   | 99384<br>2653885 | 450533 | 1032466  | 1782333 | 2538644 | 5.00<br>120    | 20.0   | 50.0        | 80.0   | 100   |
| Di-n-octyl phthalate        | CRY       | Lin1  | 66174<br>2862181 | 399422 | 1088066  | 1969900 | 2825186 | 5.00<br>120    | 20.0   | 50.0        | 80.0   | 100   |
| Benzo[b]fluoranthene        | PRY       | Ave   | 94275<br>2910211 | 455850 | 1203820  | 1884788 | 2759843 | 5.00<br>120    | 20.0   | 50.0        | 80.0   | 100   |
| Benzo[k]fluoranthene        | PRY       | Ave   | 104097           | 499747 | 1147004  | 2168666 | 2946292 | 5.00<br>++++   | 20.0   | 50.0        | 80.0   | 100   |
| Benzo[a]pyrene              | PRY       | Lin1  | 84019<br>+++++   | 432821 | 1070720  | 1825712 | 2769615 | 5.00<br>++++   | 20.0   | 50.0        | 80.0   | 100   |
| Indeno[1,2,3-cd]pyrene      | PRY       | Lin1  | 97582<br>3156558 | 478085 | 1205652  | 2094027 | 3150512 | 5.00<br>120    | 20.0   | 50.0        | 80.0   | 100   |
| Dibenz(a,h)anthracene       | PRY       | Lin1  | 82850<br>2668060 | 412967 | 1025260  | 1790949 | 2655601 | 5.00<br>120    | 20.0   | 50.0        | 80.0   | 100   |
| Benzo[g,h,i]perylene        | PRY       | Lin1  | 86201<br>2689570 | 417581 | 1033485  | 1776474 | 2678145 | 5.00<br>120    | 20.0   | 50.0        | 80.0   | 100   |
| 2-Fluorophenol              | DCBd<br>4 | Ave   | 25954<br>794086  | 121231 | 308636   | 505195  | 741313  | 5.00<br>120    | 20.0   | 50.0        | 80.0   | 100   |
| Phenol-d5                   | DCBd<br>4 | Ave   | 32056<br>965950  | 154974 | 367904   | 633750  | 956251  | 5.00<br>120    | 20.0   | 50.0        | 80.0   | 100   |
| Nitrobenzene-d5             | NPT       | Ave   | 25504<br>884906  | 131563 | 330535   | 547267  | 817621  | 5.00<br>120    | 20.0   | 50.0        | 80.0   | 100   |
| 2-Fluorobiphenyl            | ANT       | Ave   | 58301<br>1662390 | 273461 | 658292   | 1101936 | 1595812 | 5.00<br>120    | 20.0   | 50.0        | 80.0   | 100   |
| 2,4,6-Tribromophenol        | PHN       | Lin1  | 6298<br>249877   | 33157  | 87055    | 160744  | 237830  | 5.00<br>120    | 20.0   | 50.0        | 80.0   | 100   |
| p-Terphenyl-d14             | CRY       | Ave   | 62340<br>1910536 | 303172 | 744098   | 1281427 | 1844273 | 5.00<br>120    | 20.0   | 50.0        | 80.0   | 100   |

Curve Type Legend:

Ave = Average ISTD

Lin1 = Linear 1/conc ISTD

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Report Date: 03-Oct-2017 11:56:12

> TestAmerica Buffalo **Target Compound Quantitation Report**

Data File: 

Lims ID: IC - List1 5

Client ID:

Sample Type: IC Calib Level: 1

Inject. Date: 29-Sep-2017 19:33:30 ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 480-0066023-003

Operator ID: DR Instrument ID: HP5973X

Sublist: chrom-X-8270\*sub83

Method: 

Limit Group: MB - 8270D ICAL

Last Update: 03-Oct-2017 11:56:11 Calib Date: 29-Sep-2017 21:44:30 Integrator: **RTE** ID Type: **Deconvolution ID** Quant By: Quant Method: Internal Standard **Initial Calibration** Last ICal File:

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: XAWRK031

. . . . . . . . . . . . . . . 

| First Level Reviewer: pagem   |     |        | D      | ate:   |    | 02-Oct-201 | 7 10:26:17 |           |       |
|-------------------------------|-----|--------|--------|--------|----|------------|------------|-----------|-------|
|                               |     | RT     | Adj RT | Dlt RT |    |            | Cal Amt    | OnCol Amt |       |
| Compound                      | Sig | (min.) | (min.) | (min.) | Q  | Response   | ng/uL      | ng/uL     | Flags |
|                               |     |        |        |        |    |            |            |           |       |
| * 1 1,4-Dichlorobenzene-d4    | 152 | 5.761  | 5.750  | 0.011  | 94 | 163960     | 40.0       | 40.0      |       |
| * 2 Naphthalene-d8            | 136 | 7.251  | 7.300  | -0.049 | 98 | 533114     | 40.0       | 40.0      |       |
| * 3 Acenaphthene-d10          | 164 | 9.313  | 9.356  | -0.043 | 98 | 282339     | 40.0       | 40.0      |       |
| * 4 Phenanthrene-d10          | 188 | 10.954 | 10.959 | -0.005 | 99 | 608655     | 40.0       | 40.0      |       |
| * 5 Chrysene-d12              | 240 | 13.331 | 13.336 | -0.005 | 99 | 698712     | 40.0       | 40.0      |       |
| * 6 Perylene-d12              | 264 | 14.501 | 14.501 | 0.000  | 99 | 651070     | 40.0       | 40.0      |       |
| \$ 7 2-Fluorophenol           | 112 | 4.003  | 3.961  | 0.042  | 95 | 25954      | 5.00       | 4.71      |       |
| \$ 8 Phenol-d5                | 99  | 5.312  | 5.296  | 0.016  | 89 | 32056      | 5.00       | 4.67      |       |
| \$ 9 Nitrobenzene-d5          | 82  | 6.418  | 6.440  | -0.022 | 95 | 25504      | 5.00       | 4.51      |       |
| \$ 10 2-Fluorobiphenyl        | 172 | 8.528  | 8.582  | -0.054 | 98 | 58301      | 5.00       | 4.99      |       |
| \$ 11 2,4,6-Tribromophenol    | 330 | 10.227 | 10.249 | -0.022 | 95 | 6298       | 5.00       | 5.42      |       |
| \$ 12 p-Terphenyl-d14         | 244 | 12.439 | 12.439 | 0.000  | 99 | 62340      | 5.00       | 4.64      |       |
| 15 1,4-Dioxane                | 88  | 1.663  | 1.658  | 0.005  | 94 | 17069      | 5.00       | 5.12      |       |
| 16 N-Nitrosodimethylamine     | 42  | 1.957  | 1.941  | 0.016  | 75 | 14557      | 5.00       | 4.87      |       |
| 17 Pyridine                   | 52  | 2.011  | 1.995  | 0.016  | 87 | 37528      | 10.0       | 10.1      |       |
| 27 Benzaldehyde               | 77  | 5.195  | 5.173  | 0.022  | 87 | 21968      | 5.00       | 4.75      |       |
| 28 Phenol                     | 94  | 5.328  | 5.318  | 0.010  | 85 | 37219      | 5.00       | 4.77      |       |
| 29 Aniline                    | 93  | 5.339  | 5.323  | 0.016  | 97 | 45436      | 5.00       | 4.93      |       |
| 31 Bis(2-chloroethyl)ether    | 93  | 5.435  | 5.425  | 0.010  | 89 | 29300      | 5.00       | 5.03      |       |
| 32 2-Chlorophenol             | 128 | 5.494  | 5.478  | 0.016  | 97 | 24954      | 5.00       | 4.62      |       |
| 35 n-Decane                   | 57  | 5.595  | 5.585  | 0.010  | 94 | 27394      | 5.00       | 4.82      |       |
| 36 1,3-Dichlorobenzene        | 146 | 5.686  | 5.676  | 0.010  | 96 | 31324      | 5.00       | 4.95      |       |
| 37 1,4-Dichlorobenzene        | 146 | 5.777  | 5.772  | 0.005  | 95 | 32307      | 5.00       | 5.05      |       |
| 38 Benzyl alcohol             | 108 | 5.932  | 5.932  | 0.000  | 94 | 14838      | 5.00       | 5.11      |       |
| 39 1,2-Dichlorobenzene        | 146 | 5.964  | 5.964  | 0.000  | 95 | 30568      | 5.00       | 5.14      |       |
| 229 Indene                    | 115 | 6.071  | 6.076  | -0.005 | 84 | 141244     | 15.0       | 14.9      |       |
| 40 2-Methylphenol             | 108 | 6.081  | 6.087  | -0.006 | 94 | 23778      | 5.00       | 4.70      |       |
| 42 2,2'-oxybis[1-chloropropan | 45  | 6.108  | 6.119  | -0.011 | 96 | 28460      | 5.00       | 4.74      |       |
| 45 Acetophenone               | 105 | 6.247  | 6.258  | -0.011 | 90 | 38882      | 5.00       | 4.87      |       |
| 47 N-Nitrosodi-n-propylamine  | 70  | 6.258  | 6.274  | -0.016 | 86 | 18672      | 5.00       | 4.52      |       |
| 46 4-Methylphenol             | 108 | 6.274  | 6.285  | -0.011 | 92 | 24358      | 5.00       | 4.59      |       |
|                               |     |        |        |        |    |            |            |           |       |

Report Date: 03-Oct-2017 11:56:12

Data File:

| Data File: \\Cnromiva\B        | unal0\ |              |        | r      | 727-00<br>T | 5023.D\X2023 <i>1</i> |         |           |       |
|--------------------------------|--------|--------------|--------|--------|-------------|-----------------------|---------|-----------|-------|
| Compound                       | Sia    | RT<br>(min.) | Adj RT | Dlt RT | Q           | Doepopeo              | Cal Amt | OnCol Amt | Flogs |
| Compound                       | Sig    | (111111.)    | (min.) | (min.) | U           | Response              | ng/uL   | ng/uL     | Flags |
| 50 Hexachloroethane            | 117    | 6.365        | 6.381  | -0.016 | 91          | 12417                 | 5.00    | 4.94      |       |
| 52 Nitrobenzene                | 77     | 6.439        | 6.461  | -0.010 | 92          | 27452                 | 5.00    | 4.69      |       |
| 56 Isophorone                  | 82     | 6.723        | 6.755  | -0.033 | 97          | 44749                 | 5.00    | 4.88      |       |
| 58 2-Nitrophenol               | 139    | 6.819        | 6.851  | -0.032 | 90          | 10290                 | 5.00    | 5.28      |       |
| 59 2,4-Dimethylphenol          | 107    | 6.888        | 6.926  | -0.038 | 97          | 25105                 | 5.00    | 4.82      |       |
| 62 Bis(2-chloroethoxy)methane  | 93     | 6.995        | 7.038  | -0.043 | 97          | 29764                 | 5.00    | 4.78      |       |
| 64 Benzoic acid                | 105    | 6.974        | 7.118  | -0.144 | 55          | 27214                 | 15.0    | 17.3      | M     |
| 65 2,4-Dichlorophenol          | 162    | 7.096        | 7.139  | -0.043 | 96          | 19356                 | 5.00    | 4.82      |       |
| 67 1,2,4-Trichlorobenzene      | 180    | 7.193        | 7.241  | -0.048 | 95          | 26489                 | 5.00    | 5.03      |       |
| 69 Naphthalene                 | 128    | 7.278        | 7.326  | -0.048 | 99          | 68632                 | 5.00    | 4.89      |       |
| 71 4-Chloroaniline             | 127    | 7.348        | 7.401  | -0.053 | 96          | 28211                 | 5.00    | 4.79      |       |
| 70 2,6-Dichlorophenol          | 162    | 7.358        | 7.412  | -0.054 | 96          | 20855                 | 5.00    | 4.88      |       |
| 73 Hexachlorobutadiene         | 225    | 7.444        | 7.497  | -0.053 | 96          | 17949                 | 5.00    | 5.20      |       |
| 78 Caprolactam                 | 113    | 7.700        | 7.807  | -0.107 | 72          | 4942                  | 5.00    | 4.85      |       |
| 79 4-Chloro-3-methylphenol     | 107    | 7.930        | 7.989  | -0.059 | 96          | 19483                 | 5.00    | 4.84      |       |
| 82 2-Methylnaphthalene         | 142    | 8.085        | 8.144  | -0.059 | 97          | 46475                 | 5.00    | 4.84      |       |
| 83 1-Methylnaphthalene         | 142    | 8.202        | 8.261  | -0.059 | 96          | 44505                 | 5.00    | 4.87      |       |
| 85 1,2,4,5-Tetrachlorobenzene  | 216    | 8.288        | 8.347  | -0.059 | 96          | 28828                 | 5.00    | 5.04      |       |
| 84 Hexachlorocyclopentadiene   | 237    | 8.288        | 8.347  | -0.059 | 83          | 18974                 | 5.00    | 5.02      |       |
| 86 2,4,6-Trichlorophenol       | 196    | 8.427        | 8.486  | -0.059 | 92          | 14803                 | 5.00    | 5.09      |       |
| 87 2,4,5-Trichlorophenol       | 196    | 8.464        | 8.523  | -0.059 | 96          | 14658                 | 5.00    | 5.00      |       |
| 90 1,1'-Biphenyl               | 154    | 8.640        | 8.694  | -0.054 | 98          | 62353                 | 5.00    | 5.08      |       |
| 91 2-Chloronaphthalene         | 162    | 8.656        | 8.710  | -0.054 | 97          | 49811                 | 5.00    | 5.13      |       |
| 93 2-Nitroaniline              | 65     | 8.779        | 8.833  | -0.054 | 95          | 12374                 | 5.00    | 5.24      |       |
| 96 Dimethyl phthalate          | 163    | 9.014        | 9.063  | -0.049 | 99          | 51408                 | 5.00    | 4.68      |       |
| 97 1,3-Dinitrobenzene          | 168    | 9.025        | 9.079  | -0.054 | 86          | 7487                  | 5.00    | 5.35      |       |
| 99 2,6-Dinitrotoluene          | 165    | 9.073        | 9.121  | -0.048 | 86          | 10469                 | 5.00    | 5.14      |       |
| 100 Acenaphthylene             | 152    | 9.143        | 9.185  | -0.042 | 99          | 64458                 | 5.00    | 4.64      |       |
| 101 3-Nitroaniline             | 138    | 9.265        | 9.314  | -0.049 | 95          | 10402                 | 5.00    | 5.05      |       |
| 102 Acenaphthene               | 153    | 9.351        | 9.394  | -0.043 | 95          | 45816                 | 5.00    | 4.89      |       |
| 103 2,4-Dinitrophenol          | 184    | 9.388        | 9.431  | -0.043 | 88          | 9450                  | 10.0    | 11.0      |       |
| 104 4-Nitrophenol              | 109    | 9.484        | 9.527  | -0.043 | 90          | 14056                 | 10.0    | 10.1      |       |
| 106 2,4-Dinitrotoluene         | 165    | 9.549        | 9.586  | -0.037 | 89          | 12318                 | 5.00    | 5.05      |       |
| 107 Dibenzofuran               | 168    | 9.559        | 9.597  | -0.038 | 96          | 72820                 | 5.00    | 5.12      |       |
| 110 2,3,4,6-Tetrachlorophenol  | 232    | 9.714        | 9.746  | -0.032 | 95          | 11475                 | 5.00    | 5.15      |       |
| 112 Diethyl phthalate          | 149    | 9.858        | 9.885  | -0.027 | 99          | 51420                 | 5.00    | 4.68      |       |
| 138 Hexadecane                 | 57     | 9.901        | 9.923  | -0.022 | 96          | 28045                 | 5.00    | 4.74      |       |
| 115 Fluorene                   | 166    | 9.960        | 9.981  | -0.021 | 99          | 51823                 | 5.00    | 4.72      |       |
| 116 4-Chlorophenyl phenyl ethe | 204    | 9.971        | 9.992  | -0.021 | 94          | 31170                 | 5.00    | 5.03      |       |
| 118 4-Nitroaniline             | 138    | 9.981        | 10.014 | -0.033 | 85          | 11737                 | 5.00    | 4.91      |       |
| 119 4,6-Dinitro-2-methylphenol | 198    | 10.019       | 10.046 | -0.027 | 94          | 12520                 | 10.0    | 11.0      |       |
| 121 Diphenylamine              | 169    | 10.104       | 10.126 | -0.022 | 98          | 40748                 | 4.28    | 4.19      |       |
| 120 N-Nitrosodiphenylamine     | 169    | 10.104       | 10.126 | -0.022 | 98          | 40748                 | 5.00    | 4.90      |       |
| 122 Azobenzene                 | 77     | 10.147       | 10.168 | -0.021 | 94          | 58575                 | 5.00    | 5.03      |       |
| 123 1,2-Diphenylhydrazine      | 77     | 10.147       | 10.168 | -0.021 | 98          | 58575                 | 5.00    | 5.03      |       |
| 130 4-Bromophenyl phenyl ether | 248    | 10.505       | 10.516 | -0.011 | 94          | 16742                 | 5.00    | 4.57      |       |
| 131 Hexachlorobenzene          | 284    | 10.564       | 10.580 | -0.016 | 95          | 18275                 | 5.00    | 4.88      |       |
| 133 Atrazine                   | 200    | 10.686       | 10.703 | -0.017 | 94          | 12993                 | 5.00    | 4.57      |       |
| 134 Pentachlorophenol          | 266    | 10.767       | 10.783 | -0.016 | 94          | 12786                 | 10.0    | 10.4      |       |
| 113 n-Octadecane               | 57     | 10.889       | 10.895 | -0.006 | 89          | 26909                 | 5.00    | 4.83      |       |
| 141 Phenanthrene               | 178    | 10.975       | 10.986 | -0.011 | 98          | 82154                 | 5.00    | 5.02      |       |
| 142 Anthracene                 | 178    | 11.023       | 11.034 | -0.011 | 99          | 79389                 | 5.00    | 4.72      |       |
|                                |        |              |        |        |             |                       |         |           |       |

Report Date: 03-Oct-2017 11:56:12

| Data File: \\ChromNA\          | Buffalo\ |        |        |        | 929-66 | 6023.b\X20237 |         | 1         |       |
|--------------------------------|----------|--------|--------|--------|--------|---------------|---------|-----------|-------|
|                                |          | RT     | Adj RT | Dlt RT |        | 6             | Cal Amt | OnCol Amt |       |
| Compound                       | Sig      | (min.) | (min.) | (min.) | Q      | Response      | ng/uL   | ng/uL     | Flags |
| 142 Carbazala                  | 147      | 11 100 | 11 104 | 0.005  | 00     | 40244         | E 00    | 4.50      |       |
| 143 Carbazole                  | 167      | 11.189 | 11.194 | -0.005 | 99     | 69346         | 5.00    | 4.52      |       |
| 145 Di-n-butyl phthalate       | 149      | 11.541 | 11.547 | -0.006 | 100    | 73709         | 5.00    | 4.94      |       |
| 152 Fluoranthene               | 202      | 12.091 | 12.097 | -0.006 | 99     | 87223         | 5.00    | 4.62      |       |
| 154 Benzidine                  | 184      | 12.214 | 12.220 | -0.006 | 99     | 40158         | 5.00    | 4.41      |       |
| 155 Pyrene                     | 202      | 12.294 | 12.295 | -0.001 | 98     | 92658         | 5.00    | 4.66      |       |
| 162 Butyl benzyl phthalate     | 149      | 12.855 | 12.856 | -0.001 | 98     | 31412         | 5.00    | 5.08      |       |
| 166 3,3'-Dichlorobenzidine     | 252      | 13.299 | 13.304 | -0.005 | 86     | 25611         | 5.00    | 5.15      |       |
| 167 Benzo[a]anthracene         | 228      | 13.326 | 13.326 | 0.000  | 96     | 88520         | 5.00    | 4.75      |       |
| 172 Bis(2-ethylhexyl) phthalat | 149      | 13.342 | 13.342 | 0.000  | 95     | 43953         | 5.00    | 4.97      |       |
| 169 Chrysene                   | 228      | 13.352 | 13.358 | -0.006 | 98     | 99384         | 5.00    | 5.15      |       |
| 168 Di-n-octyl phthalate       | 149      | 13.860 | 13.865 | -0.005 | 100    | 66174         | 5.00    | 5.06      |       |
| 174 Benzo[b]fluoranthene       | 252      | 14.191 | 14.196 | -0.005 | 98     | 94275         | 5.00    | 4.54      |       |
| 175 Benzo[k]fluoranthene       | 252      | 14.212 | 14.218 | -0.006 | 98     | 104097        | 5.00    | 4.70      |       |
| 177 Benzo[a]pyrene             | 252      | 14.453 | 14.458 | -0.005 | 99     | 84019         | 5.00    | 4.87      |       |
| 180 Indeno[1,2,3-cd]pyrene     | 276      | 15.430 | 15.436 | -0.006 | 90     | 97582         | 5.00    | 4.99      |       |
| 181 Dibenz(a,h)anthracene      | 278      | 15.436 | 15.441 | -0.005 | 90     | 82850         | 5.00    | 4.91      |       |
| 182 Benzo[g,h,i]perylene       | 276      | 15.692 | 15.703 | -0.011 | 99     | 86201         | 5.00    | 4.92      |       |
| S 236 3 & 4 Methylphenol       | 108      |        |        |        | 0      |               |         | 4.59      |       |
| S 238 3-Methylphenol           | 1        |        |        |        | 0      |               |         | 4.59      |       |
| S 237 Total Cresols            | 1        |        |        |        | 0      |               |         | 9.29      |       |
| QC Flag Legend<br>Review Flags |          |        |        |        |        |               |         |           |       |

M - Manually Integrated

### Reagents:

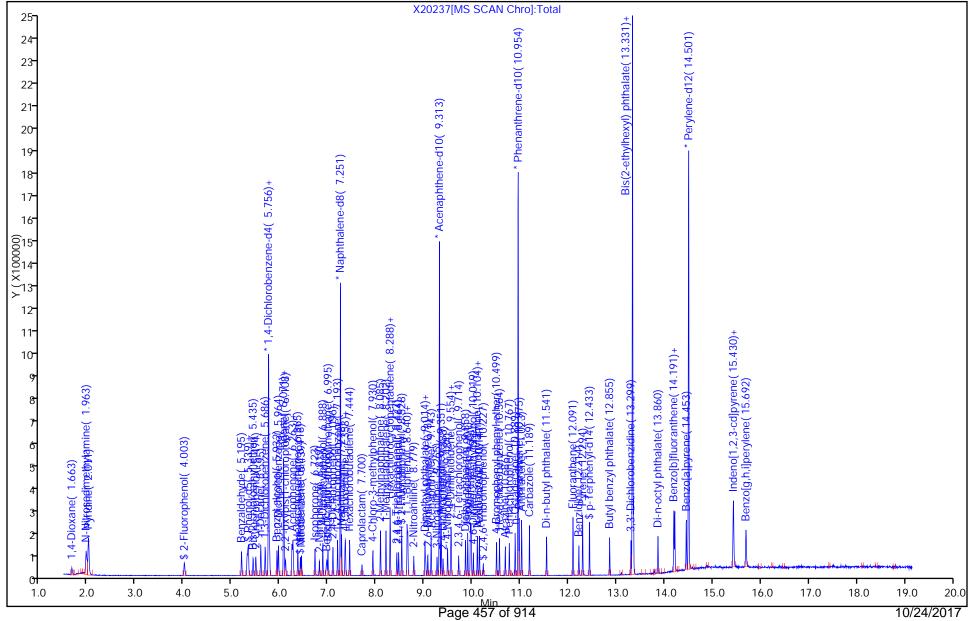
MB\_LIST1\_WRK\_00513 Amount Added: 1.00 Units: mL

MB\_INTSTD\_STK\_00039 Run Reagent Amount Added: 20.00 Units: uL

Report Date: 03-Oct-2017 11:56:12 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20237.D Injection Date: 29-Sep-2017 19:33:30 Instrument ID: HP5973X


Lims ID: IC - List1 5

Client ID:

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



DR

3

3

Operator ID:

ALS Bottle#:

Worklist Smp#:

Report Date: 03-Oct-2017 11:56:12 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20237.D Injection Date: 29-Sep-2017 19:33:30 Instrument ID: HP5973X

Lims ID: IC - List1 5

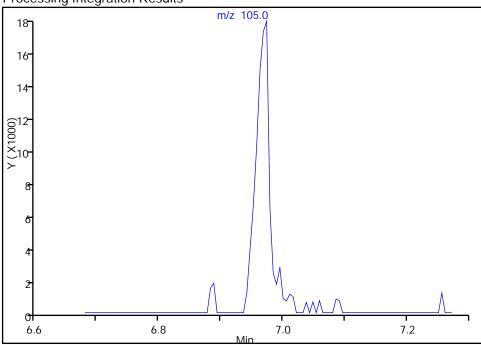
Client ID:

Operator ID: DR ALS Bottle#: 3 Worklist Smp#: 3

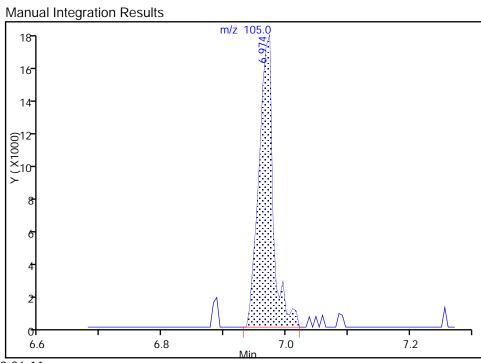
Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN


### 64 Benzoic acid, CAS: 65-85-0

Signal: 1


Not Detected

Expected RT: 7.12

**Processing Integration Results** 



RT: 6.97
Area: 27214
Amount: 17.287020
Amount Units: ng/uL



Reviewer: pagem, 02-Oct-2017 10:26:11 Audit Action: Assigned Compound ID

Audit Reason:

Page 458 of 914

Report Date: 03-Oct-2017 11:56:12 Chrom Revision: 2.2 16-Aug-2017 16:24:46

Manual Integration/User Assign Peak Report

### TestAmerica Buffalo

Data File: Injection Date: 29-Sep-2017 19:33:30 Instrument ID: HP5973X

IC - List1 5 Lims ID:

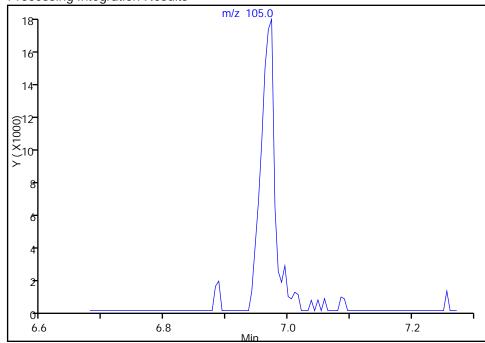
Client ID:

Worklist Smp#: Operator ID: DR ALS Bottle#: 3 3

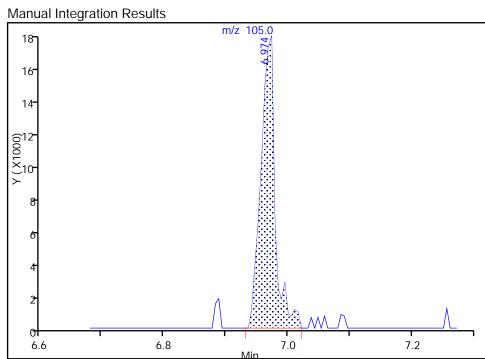
Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN


### 64 Benzoic acid, CAS: 65-85-0

Signal: 1


Not Detected

Expected RT: 7.12

### **Processing Integration Results**



RT: 6.97 Area: 27214 Amount: 17.287020 Amount Units: ng/uL



Reviewer: pagem, 02-Oct-2017 10:27:36

Audit Action: Manually Integrated

Audit Reason: Missed Peak

Page 459 of 914 10/24/2017 Report Date: 03-Oct-2017 11:56:15 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20238.D

Lims ID: IC - List1 20

Client ID:

Sample Type: IC Calib Level: 2

Inject. Date: 29-Sep-2017 19:59:30 ALS Bottle#: 4 Worklist Smp#: 4

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 480-0066023-004

Operator ID: DR Instrument ID: HP5973X

Sublist: chrom-X-8270\*sub83

Method: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Oct-2017 11:56:14Calib Date:29-Sep-2017 21:44:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK031

First Level Reviewer: pagem Date: 02-Oct-2017 10:26:26

| First Level Reviewer: pagem          |     |        | D      | ate:    |     | 02-Oct-201 | 7 10:26:26 |           |        |
|--------------------------------------|-----|--------|--------|---------|-----|------------|------------|-----------|--------|
|                                      |     | RT     | Adj RT | Dlt RT  |     |            | Cal Amt    | OnCol Amt |        |
| Compound                             | Sig | (min.) | (min.) | (min.)  | Q   | Response   | ng/uL      | ng/uL     | Flags  |
|                                      |     |        |        |         |     |            |            |           |        |
| * 1 1,4-Dichlorobenzene-d4           | 152 | 5.756  | 5.750  | 0.006   | 94  | 180870     | 40.0       | 40.0      |        |
| <ul><li>* 2 Naphthalene-d8</li></ul> | 136 | 7.289  | 7.300  | -0.011  | 98  | 615364     | 40.0       | 40.0      |        |
| * 3 Acenaphthene-d10                 | 164 | 9.340  | 9.356  | -0.016  | 97  | 323462     | 40.0       | 40.0      |        |
| <ul><li>4 Phenanthrene-d10</li></ul> | 188 | 10.938 | 10.959 | -0.021  | 99  | 675779     | 40.0       | 40.0      |        |
| * 5 Chrysene-d12                     | 240 | 13.278 | 13.336 | -0.058  | 99  | 760817     | 40.0       | 40.0      |        |
| * 6 Perylene-d12                     | 264 | 14.421 | 14.501 | -0.080  | 99  | 690426     | 40.0       | 40.0      |        |
| \$ 7 2-Fluorophenol                  | 112 | 4.041  | 3.961  | 0.080   | 94  | 121231     | 20.0       | 19.9      |        |
| \$ 8 Phenol-d5                       | 99  | 5.312  | 5.296  | 0.016   | 90  | 154974     | 20.0       | 20.5      |        |
| \$ 9 Nitrobenzene-d5                 | 82  | 6.429  | 6.440  | -0.011  | 93  | 131563     | 20.0       | 20.2      |        |
| \$ 10 2-Fluorobiphenyl               | 172 | 8.571  | 8.582  | -0.011  | 99  | 273461     | 20.0       | 20.4      |        |
| \$ 11 2,4,6-Tribromophenol           | 330 | 10.222 | 10.249 | -0.027  | 97  | 33157      | 20.0       | 18.9      |        |
| \$ 12 p-Terphenyl-d14                | 244 | 12.407 | 12.439 | -0.032  | 100 | 303172     | 20.0       | 20.7      |        |
| 15 1,4-Dioxane                       | 88  | 1.696  | 1.658  | 0.038   | 93  | 76960      | 20.0       | 20.9      |        |
| 16 N-Nitrosodimethylamine            | 42  | 1.995  | 1.941  | 0.054   | 75  | 68789      | 20.0       | 20.9      |        |
| 17 Pyridine                          | 52  | 2.043  | 1.995  | 0.048   | 82  | 190149     | 40.0       | 41.3      |        |
| 27 Benzaldehyde                      | 77  | 5.195  | 5.173  | 0.022   | 90  | 109366     | 20.0       | 21.4      |        |
| 28 Phenol                            | 94  | 5.328  | 5.318  | 0.010   | 83  | 181654     | 20.0       | 21.1      |        |
| 29 Aniline                           | 93  | 5.339  | 5.323  | 0.016   | 96  | 209506     | 20.0       | 20.6      |        |
| 31 Bis(2-chloroethyl)ether           | 93  | 5.435  | 5.425  | 0.010   | 92  | 133603     | 20.0       | 20.8      |        |
| 32 2-Chlorophenol                    | 128 | 5.489  | 5.478  | 0.011   | 99  | 122196     | 20.0       | 20.5      |        |
| 35 n-Decane                          | 57  | 5.590  | 5.585  | 0.005   | 92  | 130619     | 20.0       | 20.8      |        |
| 36 1,3-Dichlorobenzene               | 146 | 5.681  | 5.676  | 0.005   | 97  | 144548     | 20.0       | 20.7      |        |
| 37 1,4-Dichlorobenzene               | 146 | 5.772  | 5.772  | 0.000   | 98  | 147393     | 20.0       | 20.9      |        |
| 38 Benzyl alcohol                    | 108 | 5.927  | 5.932  | -0.005  | 96  | 78754      | 20.0       | 19.7      |        |
| 39 1,2-Dichlorobenzene               | 146 | 5.959  | 5.964  | -0.005  | 97  | 132020     | 20.0       | 20.1      |        |
| 229 Indene                           | 115 | 6.071  | 6.076  | -0.005  | 85  | 676564     | 60.0       | 64.1      |        |
| 40 2-Methylphenol                    | 108 | 6.082  | 6.087  | -0.005  | 95  | 112113     | 20.0       | 20.1      |        |
| 42 2,2'-oxybis[1-chloropropan        | 45  | 6.108  | 6.119  | -0.011  | 95  | 142109     | 20.0       | 21.5      |        |
| 45 Acetophenone                      | 105 | 6.247  | 6.258  | -0.011  | 91  | 178746     | 20.0       | 20.3      |        |
| 47 N-Nitrosodi-n-propylamine         | 70  | 6.263  | 6.274  | -0.011  | 87  | 91693      | 20.0       | 20.1      |        |
| 46 4-Methylphenol                    | 108 | 6.274  | 6.285  | -0.011  | 89  | 120475     | 20.0       | 20.6      |        |
| <b>3</b> .                           |     |        | _      | 100 (04 |     |            |            |           | 4/0047 |

Report Date: 03-Oct-2017 11:56:15

Data File:

| Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20238.D |           |                |                |        |          |                 |              |              |       |  |
|--------------------------------------------------------------------------|-----------|----------------|----------------|--------|----------|-----------------|--------------|--------------|-------|--|
| 0                                                                        |           | RT             | Adj RT         | Dlt RT |          | Descri          | Cal Amt      | OnCol Amt    | EL.   |  |
| Compound                                                                 | Sig       | (min.)         | (min.)         | (min.) | Q        | Response        | ng/uL        | ng/uL        | Flags |  |
| FO I love chlore others                                                  | 117       | ( 270          | / 201          | 0.011  | 02       | F 4F02          | 20.0         | 10.7         |       |  |
| 50 Hexachloroethane                                                      | 117<br>77 | 6.370          | 6.381          | -0.011 | 93       | 54582           | 20.0         | 19.7         |       |  |
| 52 Nitrobenzene                                                          | 77        | 6.450          | 6.461          | -0.011 | 92       | 139294          | 20.0         | 20.6         |       |  |
| 56 Isophorone                                                            | 82        | 6.744          | 6.755          | -0.011 | 97       | 229839          | 20.0         | 20.2         |       |  |
| 58 2-Nitrophenol                                                         | 139       | 6.835<br>6.910 | 6.851<br>6.926 | -0.016 | 89       | 55503<br>129881 | 20.0         | 19.0<br>20.7 |       |  |
| 59 2,4-Dimethylphenol                                                    | 107       |                |                | -0.016 | 98<br>97 | 150935          | 20.0<br>20.0 | 20.7         |       |  |
| 62 Bis(2-chloroethoxy)methane                                            | 93<br>105 | 7.016          | 7.038          | -0.022 |          |                 |              |              |       |  |
| 64 Benzoic acid                                                          | 105       | 7.048          | 7.118          | -0.070 | 83       | 210285          | 60.0         | 51.9         |       |  |
| 65 2,4-Dichlorophenol                                                    | 162       | 7.123          | 7.139          | -0.016 | 96       | 106514          | 20.0         | 20.7         |       |  |
| 67 1,2,4-Trichlorobenzene                                                | 180       | 7.225          | 7.241          | -0.016 | 97       | 122734          | 20.0         | 20.2         |       |  |
| 69 Naphthalene                                                           | 128       | 7.310          | 7.326          | -0.016 | 99       | 348124          | 20.0         | 21.5         |       |  |
| 71 4-Chloroaniline                                                       | 127       | 7.385          | 7.401          | -0.016 | 98       | 144516          | 20.0         | 20.8         |       |  |
| 70 2,6-Dichlorophenol                                                    | 162       | 7.396          | 7.412          | -0.016 | 96       | 104038          | 20.0         | 20.5         |       |  |
| 73 Hexachlorobutadiene                                                   | 225       | 7.481          | 7.497          | -0.016 | 96       | 80483           | 20.0         | 20.2         |       |  |
| 78 Caprolactam                                                           | 113       | 7.764          | 7.807          | -0.043 | 93       | 33723           | 20.0         | 20.5         |       |  |
| 79 4-Chloro-3-methylphenol                                               | 107       | 7.978          | 7.989          | -0.011 | 95<br>07 | 104028          | 20.0         | 20.5         |       |  |
| 82 2-Methylnaphthalene                                                   | 142       | 8.133          | 8.144          | -0.011 | 97       | 235900          | 20.0         | 21.3         |       |  |
| 83 1-Methylnaphthalene                                                   | 142       | 8.245          | 8.261          | -0.016 | 99       | 226018          | 20.0         | 21.4         |       |  |
| 84 Hexachlorocyclopentadiene                                             | 237       | 8.336          | 8.347          | -0.011 | 83       | 98967           | 20.0         | 19.8         |       |  |
| 85 1,2,4,5-Tetrachlorobenzene                                            | 216       | 8.336          | 8.347          | -0.011 | 96       | 133466          | 20.0         | 20.4         |       |  |
| 86 2,4,6-Trichlorophenol                                                 | 196       | 8.469          | 8.486          | -0.017 | 93       | 77610           | 20.0         | 19.7         |       |  |
| 87 2,4,5-Trichlorophenol                                                 | 196       | 8.507          | 8.523          | -0.016 | 94       | 83110           | 20.0         | 19.9         |       |  |
| 90 1,1'-Biphenyl                                                         | 154       | 8.683          | 8.694          | -0.011 | 99       | 285306          | 20.0         | 20.3         |       |  |
| 91 2-Chloronaphthalene                                                   | 162       | 8.694          | 8.710          | -0.016 | 98       | 230842          | 20.0         | 20.7         |       |  |
| 93 2-Nitroaniline                                                        | 65        | 8.817          | 8.833          | -0.016 | 94       | 61796           | 20.0         | 18.8         |       |  |
| 96 Dimethyl phthalate                                                    | 163       | 9.046          | 9.063          | -0.017 | 98       | 255075          | 20.0         | 20.3         |       |  |
| 97 1,3-Dinitrobenzene                                                    | 168       | 9.062          | 9.079          | -0.017 | 91       | 39891           | 20.0         | 18.6         |       |  |
| 99 2,6-Dinitrotoluene                                                    | 165       | 9.105          | 9.121          | -0.016 | 90       | 55760           | 20.0         | 19.4         |       |  |
| 100 Acenaphthylene                                                       | 152       | 9.169          | 9.185          | -0.016 | 99       | 329826          | 20.0         | 20.7         |       |  |
| 101 3-Nitroaniline                                                       | 138       | 9.292          | 9.314          | -0.022 | 97       | 59084           | 20.0         | 19.9         |       |  |
| 102 Acenaphthene                                                         | 153       | 9.378          | 9.394          | -0.016 | 99       | 222895          | 20.0         | 20.8         |       |  |
| 103 2,4-Dinitrophenol                                                    | 184       | 9.410          | 9.431          | -0.021 | 87       | 69003           | 40.0         | 36.1         |       |  |
| 104 4-Nitrophenol                                                        | 109       | 9.501          | 9.527          | -0.026 | 92       | 82241           | 40.0         | 39.3         |       |  |
| 106 2,4-Dinitrotoluene                                                   | 165       | 9.565          | 9.586          | -0.021 | 94       | 75824           | 20.0         | 19.8         |       |  |
| 107 Dibenzofuran                                                         | 168       | 9.575          | 9.597          | -0.022 | 98       | 337313          | 20.0         | 20.7         |       |  |
| 110 2,3,4,6-Tetrachlorophenol                                            | 232       | 9.725          | 9.746          | -0.021 | 95       | 68745           | 20.0         | 19.3         |       |  |
| 112 Diethyl phthalate                                                    | 149       | 9.864          | 9.885          | -0.021 | 99       | 256090          | 20.0         | 20.4         |       |  |
| 138 Hexadecane                                                           | 57        | 9.901          | 9.923          | -0.022 | 95       | 140991          | 20.0         | 20.8         |       |  |
| 115 Fluorene                                                             | 166       | 9.960          | 9.981          | -0.021 | 98       | 258539          | 20.0         | 20.5         |       |  |
| 116 4-Chlorophenyl phenyl ethe                                           | 204       | 9.971          | 9.992          | -0.021 | 95       | 143487          | 20.0         | 20.2         |       |  |
| 118 4-Nitroaniline                                                       | 138       | 9.981          | 10.014         | -0.033 | 88       | 62337           | 20.0         | 20.0         |       |  |
| 119 4,6-Dinitro-2-methylphenol                                           | 198       | 10.019         | 10.046         | -0.027 | 95       | 82776           | 40.0         | 37.8         |       |  |
| 120 N-Nitrosodiphenylamine                                               | 169       | 10.099         | 10.126         | -0.027 | 98       | 187104          | 20.0         | 20.2         |       |  |
| 121 Diphenylamine                                                        | 169       | 10.099         | 10.126         | -0.027 | 99       | 187104          | 17.1         | 17.3         |       |  |
| 123 1,2-Diphenylhydrazine                                                | 77        | 10.142         | 10.168         | -0.026 | 98       | 259554          | 20.0         | 20.1         |       |  |
| 122 Azobenzene                                                           | 77        | 10.142         | 10.168         | -0.026 | 94       | 259554          | 20.0         | 20.1         |       |  |
| 130 4-Bromophenyl phenyl ether                                           | 248       | 10.494         | 10.516         | -0.022 | 96       | 83091           | 20.0         | 20.4         |       |  |
| 131 Hexachlorobenzene                                                    | 284       | 10.553         | 10.580         | -0.027 | 96       | 85367           | 20.0         | 20.5         |       |  |
| 133 Atrazine                                                             | 200       | 10.676         | 10.703         | -0.027 | 94       | 75151           | 20.0         | 21.0         |       |  |
| 134 Pentachlorophenol                                                    | 266       | 10.756         | 10.783         | -0.027 | 96       | 102080          | 40.0         | 40.2         |       |  |
| 113 n-Octadecane                                                         | 57        | 10.874         | 10.895         | -0.021 | 91       | 145309          | 20.0         | 21.4         |       |  |
| 141 Phenanthrene                                                         | 178       | 10.959         | 10.986         | -0.027 | 99       | 379662          | 20.0         | 20.9         |       |  |
| 142 Anthracene                                                           | 178       | 11.007         | 11.034         | -0.027 | 99       | 391688          | 20.0         | 21.0         |       |  |
| 172 AHUHAUCHU                                                            | 170       | 11.007         | 11.054         | -0.027 | 17       | 371000          | 20.0         | 21.0         |       |  |

Report Date: 03-Oct-2017 11:56:15

Data File:

|                                |     | RT     | Adj RT   | Dlt RT |     |           | Cal Amt | OnCol Amt |       |
|--------------------------------|-----|--------|----------|--------|-----|-----------|---------|-----------|-------|
| Compound                       | Sig | (min.) | (min.)   | (min.) | Q   | Response  | ng/uL   | ng/uL     | Flags |
|                                |     |        |          |        |     |           |         |           |       |
| 143 Carbazole                  | 167 | 11.173 | 11.194   | -0.021 | 100 | 363864    | 20.0    | 21.4      |       |
| 145 Di-n-butyl phthalate       | 149 | 11.525 | 11.547   | -0.022 | 99  | 395477    | 20.0    | 20.3      |       |
| 152 Fluoranthene               | 202 | 12.070 | 12.097   | -0.027 | 99  | 437425    | 20.0    | 20.9      |       |
| 154 Benzidine                  | 184 | 12.193 | 12.220   | -0.027 | 99  | 246663    | 20.0    | 21.8      |       |
| 155 Pyrene                     | 202 | 12.268 | 12.295   | -0.027 | 99  | 458448    | 20.0    | 21.2      |       |
| 162 Butyl benzyl phthalate     | 149 | 12.813 | 12.856   | -0.043 | 99  | 172333    | 20.0    | 19.7      |       |
| 166 3,3'-Dichlorobenzidine     | 252 | 13.251 | 13.304   | -0.053 | 86  | 153643    | 20.0    | 19.7      |       |
| 167 Benzo[a]anthracene         | 228 | 13.272 | 13.326   | -0.054 | 96  | 449725    | 20.0    | 21.0      |       |
| 172 Bis(2-ethylhexyl) phthalat | 149 | 13.288 | 13.342   | -0.054 | 95  | 252918    | 20.0    | 20.0      |       |
| 169 Chrysene                   | 228 | 13.299 | 13.358   | -0.059 | 99  | 450533    | 20.0    | 21.4      |       |
| 168 Di-n-octyl phthalate       | 149 | 13.801 | 13.865   | -0.064 | 100 | 399422    | 20.0    | 19.5      |       |
| 174 Benzo[b]fluoranthene       | 252 | 14.122 | 14.196   | -0.074 | 99  | 455850    | 20.0    | 20.7      |       |
| 175 Benzo[k]fluoranthene       | 252 | 14.143 | 14.218   | -0.075 | 97  | 499747    | 20.0    | 21.3      |       |
| 177 Benzo[a]pyrene             | 252 | 14.373 | 14.458   | -0.085 | 99  | 432821    | 20.0    | 20.8      |       |
| 180 Indeno[1,2,3-cd]pyrene     | 276 | 15.318 | 15.436   | -0.118 | 94  | 478085    | 20.0    | 20.3      |       |
| 181 Dibenz(a,h)anthracene      | 278 | 15.329 | 15.441   | -0.112 | 92  | 412967    | 20.0    | 20.6      |       |
| 182 Benzo[g,h,i]perylene       | 276 | 15.580 | 15.703   | -0.123 | 99  | 417581    | 20.0    | 20.6      |       |
| S 238 3-Methylphenol           | 1   |        |          |        | 0   |           |         | 20.6      |       |
| S 237 Total Cresols            | 1   |        |          |        | 0   |           |         | 40.7      |       |
| S 236 3 & 4 Methylphenol       | 108 |        |          |        | 0   |           |         | 20.6      |       |
| Reagents:                      |     |        |          |        |     |           |         |           |       |
| MB_LIST1_WRK_00514             |     | Amount | Added: 1 | 1.00   | L   | Jnits: mL |         |           |       |

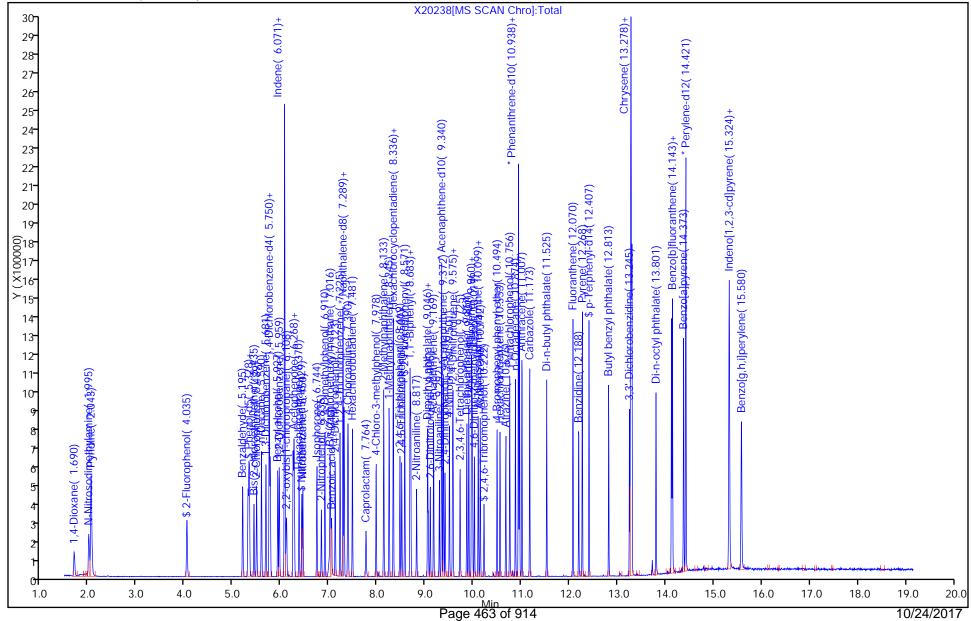
Run Reagent Amount Added: 20.00 Units: uL MB\_INTSTD\_STK\_00039

Page 462 of 914

Report Date: 03-Oct-2017 11:56:15 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20238.D Injection Date: 29-Sep-2017 19:59:30 Instrument ID: HP5973X


Lims ID: IC - List1 20

Client ID:

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



DR

4

4

Operator ID:

ALS Bottle#:

Worklist Smp#:

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Report Date: 03-Oct-2017 11:56:18

> TestAmerica Buffalo **Target Compound Quantitation Report**

Data File: 

Lims ID: ICIS - List1 50

Client ID:

Sample Type: **ICIS** Calib Level: 3

Inject. Date: 29-Sep-2017 20:25:30 ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 480-0066023-005

Operator ID: DR Instrument ID: HP5973X

Sublist: chrom-X-8270\*sub83

Method: 

Limit Group: MB - 8270D ICAL

Last Update: 03-Oct-2017 11:56:17 Calib Date: 29-Sep-2017 21:44:30 Integrator: **RTE** ID Type: **Deconvolution ID** Quant By: Quant Method: Internal Standard **Initial Calibration** Last ICal File: 

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: XAWRK031

. . . . . . . . . . . .

| First Level Reviewer: pagem   |     |        | D      | ate:   |     | 02-Oct-201 |         |           |       |
|-------------------------------|-----|--------|--------|--------|-----|------------|---------|-----------|-------|
|                               |     | RT     | Adj RT | DIt RT |     |            | Cal Amt | OnCol Amt |       |
| Compound                      | Sig | (min.) | (min.) | (min.) | Q   | Response   | ng/uL   | ng/uL     | Flags |
|                               |     |        |        |        |     |            |         |           |       |
| * 11,4-Dichlorobenzene-d4     | 152 | 5.750  | 5.750  | 0.000  | 93  | 174918     | 40.0    | 40.0      |       |
| * 2 Naphthalene-d8            | 136 | 7.300  | 7.300  | 0.000  | 98  | 608756     | 40.0    | 40.0      |       |
| * 3 Acenaphthene-d10          | 164 | 9.356  | 9.356  | 0.000  | 97  | 304192     | 40.0    | 40.0      |       |
| * 4 Phenanthrene-d10          | 188 | 10.959 | 10.959 | 0.000  | 99  | 668632     | 40.0    | 40.0      |       |
| * 5 Chrysene-d12              | 240 | 13.336 | 13.336 | 0.000  | 99  | 758990     | 40.0    | 40.0      |       |
| * 6 Perylene-d12              | 264 | 14.501 | 14.501 | 0.000  | 99  | 702616     | 40.0    | 40.0      |       |
| \$ 7 2-Fluorophenol           | 112 | 3.961  | 3.961  | 0.000  | 96  | 308636     | 50.0    | 52.5      |       |
| \$ 8 Phenol-d5                | 99  | 5.296  | 5.296  | 0.000  | 92  | 367904     | 50.0    | 50.3      |       |
| \$ 9 Nitrobenzene-d5          | 82  | 6.440  | 6.440  | 0.000  | 93  | 330535     | 50.0    | 51.2      |       |
| \$ 10 2-Fluorobiphenyl        | 172 | 8.582  | 8.582  | 0.000  | 99  | 658292     | 50.0    | 52.3      |       |
| \$ 11 2,4,6-Tribromophenol    | 330 | 10.249 | 10.249 | 0.000  | 96  | 87055      | 50.0    | 47.1      |       |
| \$ 12 p-Terphenyl-d14         | 244 | 12.439 | 12.439 | 0.000  | 99  | 744098     | 50.0    | 50.9      |       |
| 15 1,4-Dioxane                | 88  | 1.658  | 1.658  | 0.000  | 95  | 183915     | 50.0    | 51.7      |       |
| 16 N-Nitrosodimethylamine     | 42  | 1.941  | 1.941  | 0.000  | 77  | 153494     | 50.0    | 48.1      |       |
| 17 Pyridine                   | 52  | 1.995  | 1.995  | 0.000  | 83  | 432707     | 100.0   | 95.2      |       |
| 27 Benzaldehyde               | 77  | 5.173  | 5.173  | 0.000  | 87  | 259742     | 50.0    | 52.6      |       |
| 28 Phenol                     | 94  | 5.318  | 5.318  | 0.000  | 87  | 426715     | 50.0    | 51.3      |       |
| 29 Aniline                    | 93  | 5.323  | 5.323  | 0.000  | 97  | 489815     | 50.0    | 49.8      |       |
| 31 Bis(2-chloroethyl)ether    | 93  | 5.425  | 5.425  | 0.000  | 93  | 308466     | 50.0    | 49.6      |       |
| 32 2-Chlorophenol             | 128 | 5.478  | 5.478  | 0.000  | 99  | 292781     | 50.0    | 50.8      |       |
| 35 n-Decane                   | 57  | 5.585  | 5.585  | 0.000  | 93  | 306798     | 50.0    | 50.6      |       |
| 36 1,3-Dichlorobenzene        | 146 | 5.676  | 5.676  | 0.000  | 97  | 340189     | 50.0    | 50.4      |       |
| 37 1,4-Dichlorobenzene        | 146 | 5.772  | 5.772  | 0.000  | 96  | 340213     | 50.0    | 49.8      |       |
| 38 Benzyl alcohol             | 108 | 5.932  | 5.932  | 0.000  | 96  | 196694     | 50.0    | 49.0      |       |
| 39 1,2-Dichlorobenzene        | 146 | 5.964  | 5.964  | 0.000  | 96  | 315925     | 50.0    | 49.8      |       |
| 229 Indene                    | 115 | 6.076  | 6.076  | 0.000  | 85  | 1586989    | 150.0   | 152.0     |       |
| 40 2-Methylphenol             | 108 | 6.087  | 6.087  | 0.000  | 97  | 277792     | 50.0    | 51.5      |       |
| 42 2,2'-oxybis[1-chloropropan | 45  | 6.119  | 6.119  | 0.000  | 95  | 322869     | 50.0    | 50.4      |       |
| 45 Acetophenone               | 105 | 6.258  | 6.258  | 0.000  | 94  | 435105     | 50.0    | 51.1      |       |
| 47 N-Nitrosodi-n-propylamine  | 70  | 6.274  | 6.274  | 0.000  | 87  | 226352     | 50.0    | 51.4      |       |
| 46 4-Methylphenol             | 108 | 6.285  | 6.285  | 0.000  | 96  | 288882     | 50.0    | 51.0      |       |
|                               |     | 0.200  | 0.200  | 0.000  | . • |            |         | 00        |       |

Report Date: 03-Oct-2017 11:56:18

Data File:

| Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20239.D |     |        |        |        |          |          |         |           |       |  |
|--------------------------------------------------------------------------|-----|--------|--------|--------|----------|----------|---------|-----------|-------|--|
|                                                                          |     | RT     | Adj RT | Dlt RT |          | D.       | Cal Amt | OnCol Amt | E     |  |
| Compound                                                                 | Sig | (min.) | (min.) | (min.) | Q        | Response | ng/uL   | ng/uL     | Flags |  |
| FO Hove oblant all and                                                   | 117 | / 201  | / 201  | 0.000  | 00       | 125022   | F0 0    | F0 7      |       |  |
| 50 Hexachloroethane                                                      | 117 | 6.381  | 6.381  | 0.000  | 92       | 135823   | 50.0    | 50.7      |       |  |
| 52 Nitrobenzene                                                          | 77  | 6.461  | 6.461  | 0.000  | 93       | 338306   | 50.0    | 50.6      |       |  |
| 56 Isophorone                                                            | 82  | 6.755  | 6.755  | 0.000  | 97       | 571371   | 50.0    | 50.2      |       |  |
| 58 2-Nitrophenol                                                         | 139 | 6.851  | 6.851  | 0.000  | 87       | 147156   | 50.0    | 48.4      |       |  |
| 59 2,4-Dimethylphenol                                                    | 107 | 6.926  | 6.926  | 0.000  | 97       | 310451   | 50.0    | 49.8      |       |  |
| 62 Bis(2-chloroethoxy)methane                                            | 93  | 7.038  | 7.038  | 0.000  | 95       | 357512   | 50.0    | 50.3      |       |  |
| 64 Benzoic acid                                                          | 105 | 7.118  | 7.118  | 0.000  | 82       | 658303   | 150.0   | 139.8     |       |  |
| 65 2,4-Dichlorophenol                                                    | 162 | 7.139  | 7.139  | 0.000  | 94       | 259897   | 50.0    | 50.3      |       |  |
| 67 1,2,4-Trichlorobenzene                                                | 180 | 7.241  | 7.241  | 0.000  | 96       | 302758   | 50.0    | 50.3      |       |  |
| 69 Naphthalene                                                           | 128 | 7.326  | 7.326  | 0.000  | 99       | 799407   | 50.0    | 49.9      |       |  |
| 71 4-Chloroaniline                                                       | 127 | 7.401  | 7.401  | 0.000  | 99       | 344938   | 50.0    | 50.0      |       |  |
| 70 2,6-Dichlorophenol                                                    | 162 | 7.412  | 7.412  | 0.000  | 96       | 248564   | 50.0    | 49.2      |       |  |
| 73 Hexachlorobutadiene                                                   | 225 | 7.497  | 7.497  | 0.000  | 96       | 190527   | 50.0    | 48.4      |       |  |
| 78 Caprolactam                                                           | 113 | 7.807  | 7.807  | 0.000  | 91       | 86102    | 50.0    | 50.1      |       |  |
| 79 4-Chloro-3-methylphenol                                               | 107 | 7.989  | 7.989  | 0.000  | 96       | 255080   | 50.0    | 50.0      |       |  |
| 82 2-Methylnaphthalene                                                   | 142 | 8.144  | 8.144  | 0.000  | 98       | 544688   | 50.0    | 49.7      |       |  |
| 83 1-Methylnaphthalene                                                   | 142 | 8.261  | 8.261  | 0.000  | 98       | 516448   | 50.0    | 49.5      |       |  |
| 85 1,2,4,5-Tetrachlorobenzene                                            | 216 | 8.347  | 8.347  | 0.000  | 96       | 315844   | 50.0    | 51.2      |       |  |
| 84 Hexachlorocyclopentadiene                                             | 237 | 8.347  | 8.347  | 0.000  | 87       | 245120   | 50.0    | 50.8      |       |  |
| 86 2,4,6-Trichlorophenol                                                 | 196 | 8.486  | 8.486  | 0.000  | 93       | 192490   | 50.0    | 50.2      |       |  |
| 87 2,4,5-Trichlorophenol                                                 | 196 | 8.523  | 8.523  | 0.000  | 95       | 207640   | 50.0    | 50.7      |       |  |
| 90 1,1'-Biphenyl                                                         | 154 | 8.694  | 8.694  | 0.000  | 99       | 692295   | 50.0    | 52.3      |       |  |
| 91 2-Chloronaphthalene                                                   | 162 | 8.710  | 8.710  | 0.000  | 98       | 534473   | 50.0    | 51.1      |       |  |
| 93 2-Nitroaniline                                                        | 65  | 8.833  | 8.833  | 0.000  | 95       | 164477   | 50.0    | 50.9      |       |  |
| 96 Dimethyl phthalate                                                    | 163 | 9.063  | 9.063  | 0.000  | 100      | 615652   | 50.0    | 52.0      |       |  |
| 97 1,3-Dinitrobenzene                                                    | 168 | 9.079  | 9.079  | 0.000  | 92       | 106915   | 50.0    | 47.6      |       |  |
| 99 2,6-Dinitrotoluene                                                    | 165 | 9.121  | 9.121  | 0.000  | 89       | 139322   | 50.0    | 49.6      |       |  |
| 100 Acenaphthylene                                                       | 152 | 9.185  | 9.185  | 0.000  | 100      | 767145   | 50.0    | 51.3      |       |  |
| 101 3-Nitroaniline                                                       | 138 | 9.314  | 9.314  | 0.000  | 96       | 144070   | 50.0    | 49.4      |       |  |
| 102 Acenaphthene                                                         | 153 | 9.394  | 9.394  | 0.000  | 98       | 511606   | 50.0    | 50.7      |       |  |
| 103 2,4-Dinitrophenol                                                    | 184 | 9.431  | 9.431  | 0.000  | 87       | 197836   | 100.0   | 97.0      |       |  |
| 104 4-Nitrophenol                                                        | 109 | 9.527  | 9.527  | 0.000  | 93       | 211111   | 100.0   | 101.9     |       |  |
| 106 2,4-Dinitrotoluene                                                   | 165 | 9.586  | 9.586  | 0.000  | 97       | 190351   | 50.0    | 50.2      |       |  |
| 107 Dibenzofuran                                                         | 168 | 9.597  | 9.597  | 0.000  | 97       | 780297   | 50.0    | 50.9      |       |  |
| 110 2,3,4,6-Tetrachlorophenol                                            | 232 | 9.746  | 9.746  | 0.000  | 95       | 178312   | 50.0    | 50.2      |       |  |
| 112 Diethyl phthalate                                                    | 149 | 9.885  | 9.885  | 0.000  | 100      | 609524   | 50.0    | 51.5      |       |  |
| 138 Hexadecane                                                           | 57  | 9.923  | 9.923  | 0.000  | 96       | 322906   | 50.0    | 50.7      |       |  |
| 115 Fluorene                                                             | 166 | 9.981  | 9.981  | 0.000  | 98       | 609215   | 50.0    | 51.5      |       |  |
| 116 4-Chlorophenyl phenyl ethe                                           | 204 | 9.992  | 9.992  | 0.000  | 96       | 338061   | 50.0    | 50.6      |       |  |
| 118 4-Nitroaniline                                                       | 138 | 10.014 | 10.014 | 0.000  | 88       | 154207   | 50.0    | 51.4      |       |  |
| 119 4,6-Dinitro-2-methylphenol                                           | 198 | 10.046 | 10.046 | 0.000  | 96       | 220796   | 100.0   | 92.4      |       |  |
| 121 Diphenylamine                                                        | 169 | 10.126 | 10.126 | 0.000  | 99       | 451228   | 42.8    | 42.2      |       |  |
| 120 N-Nitrosodiphenylamine                                               | 169 | 10.126 | 10.126 | 0.000  | 98       | 451228   | 50.0    | 49.4      |       |  |
| 122 Azobenzene                                                           | 77  | 10.168 | 10.168 | 0.000  | 94       | 631897   | 50.0    | 49.3      |       |  |
| 123 1,2-Diphenylhydrazine                                                | 77  | 10.168 | 10.168 | 0.000  | 98       | 631897   | 50.0    | 49.3      |       |  |
| 130 4-Bromophenyl phenyl ether                                           | 248 | 10.516 | 10.516 | 0.000  | 95       | 199312   | 50.0    | 49.6      |       |  |
| 131 Hexachlorobenzene                                                    | 284 | 10.580 | 10.580 | 0.000  | 96       | 203002   | 50.0    | 49.4      |       |  |
| 133 Atrazine                                                             | 200 | 10.703 | 10.703 | 0.000  | 94       | 182620   | 50.0    | 53.3      |       |  |
| 134 Pentachlorophenol                                                    | 266 | 10.783 | 10.783 | 0.000  | 97       | 254941   | 100.0   | 93.1      |       |  |
| 113 n-Octadecane                                                         | 57  | 10.705 | 10.705 | 0.000  | 93       | 327132   | 50.0    | 47.9      |       |  |
| 141 Phenanthrene                                                         | 178 | 10.845 | 10.845 | 0.000  | 99       | 889244   | 50.0    | 47.4      |       |  |
|                                                                          |     | 11.034 |        | 0.000  | 99<br>99 |          | 50.0    |           |       |  |
| 142 Anthracene                                                           | 178 | 11.034 | 11.034 | 0.000  | 77       | 911446   | 50.0    | 49.3      |       |  |

Report Date: 03-Oct-2017 11:56:18

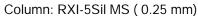
Data File:

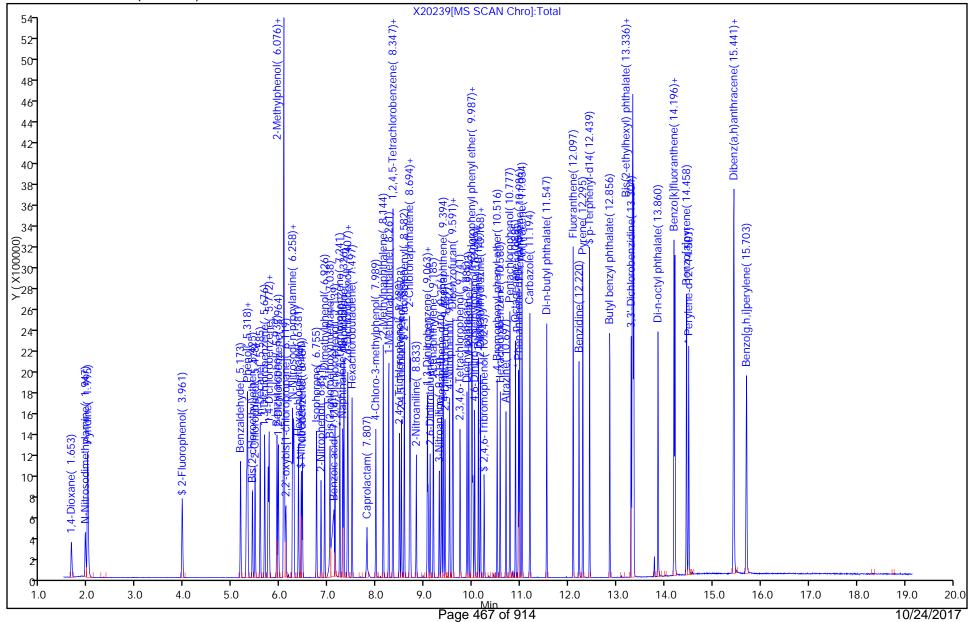
|                                | Data File. //Ciliotiliva/ballato/Ciliotilbata/ii 3773X/20170727-00023.b/X20237.b |        |          |        |      |           |           |           |       |  |  |
|--------------------------------|----------------------------------------------------------------------------------|--------|----------|--------|------|-----------|-----------|-----------|-------|--|--|
|                                |                                                                                  | RT     | Adj RT   | Dlt RT |      |           | Cal Amt   | OnCol Amt |       |  |  |
| Compound                       | Sig                                                                              | (min.) | (min.)   | (min.) | Q    | Response  | ng/uL     | ng/uL     | Flags |  |  |
|                                |                                                                                  |        |          |        |      |           |           |           |       |  |  |
| 143 Carbazole                  | 167                                                                              | 11.194 | 11.194   | 0.000  | 99   | 850165    | 50.0      | 50.5      |       |  |  |
| 145 Di-n-butyl phthalate       | 149                                                                              | 11.547 | 11.547   | 0.000  | 99   | 981910    | 50.0      | 49.6      |       |  |  |
| 152 Fluoranthene               | 202                                                                              | 12.097 | 12.097   | 0.000  | 99   | 1032677   | 50.0      | 49.8      |       |  |  |
| 154 Benzidine                  | 184                                                                              | 12.220 | 12.220   | 0.000  | 100  | 603072    | 50.0      | 52.5      |       |  |  |
| 155 Pyrene                     | 202                                                                              | 12.295 | 12.295   | 0.000  | 99   | 1075861   | 50.0      | 49.8      |       |  |  |
| 162 Butyl benzyl phthalate     | 149                                                                              | 12.856 | 12.856   | 0.000  | 99   | 445485    | 50.0      | 48.6      |       |  |  |
| 166 3,3'-Dichlorobenzidine     | 252                                                                              | 13.304 | 13.304   | 0.000  | 87   | 397607    | 50.0      | 48.0      |       |  |  |
| 167 Benzo[a]anthracene         | 228                                                                              | 13.326 | 13.326   | 0.000  | 96   | 1078561   | 50.0      | 49.9      |       |  |  |
| 172 Bis(2-ethylhexyl) phthalat | 149                                                                              | 13.342 | 13.342   | 0.000  | 96   | 656381    | 50.0      | 49.6      |       |  |  |
| 169 Chrysene                   | 228                                                                              | 13.358 | 13.358   | 0.000  | 98   | 1032466   | 50.0      | 49.2      |       |  |  |
| 168 Di-n-octyl phthalate       | 149                                                                              | 13.865 | 13.865   | 0.000  | 100  | 1088066   | 50.0      | 49.9      |       |  |  |
| 174 Benzo[b]fluoranthene       | 252                                                                              | 14.196 | 14.196   | 0.000  | 100  | 1203820   | 50.0      | 53.8      |       |  |  |
| 175 Benzo[k]fluoranthene       | 252                                                                              | 14.218 | 14.218   | 0.000  | 97   | 1147004   | 50.0      | 48.0      |       |  |  |
| 177 Benzo[a]pyrene             | 252                                                                              | 14.458 | 14.458   | 0.000  | 98   | 1070720   | 50.0      | 49.6      |       |  |  |
| 180 Indeno[1,2,3-cd]pyrene     | 276                                                                              | 15.436 | 15.436   | 0.000  | 92   | 1205652   | 50.0      | 49.2      |       |  |  |
| 181 Dibenz(a,h)anthracene      | 278                                                                              | 15.441 | 15.441   | 0.000  | 90   | 1025260   | 50.0      | 49.3      |       |  |  |
| 182 Benzo[g,h,i]perylene       | 276                                                                              | 15.703 | 15.703   | 0.000  | 100  | 1033485   | 50.0      | 49.4      |       |  |  |
| Reagents:                      | _,0                                                                              | 13.700 | 10.700   | 3.300  | . 50 | 1000100   | 23.0      | 17.1      |       |  |  |
|                                |                                                                                  | A      | A .l.ll4 | . 00   |      | L. 9      |           |           |       |  |  |
| MB_LIST1_WRK_00515             |                                                                                  | Amount |          | .00    |      | Jnits: mL |           |           |       |  |  |
| MB_INTSTD_STK_00039            |                                                                                  | Amount | Added: 2 | 0.00   | L    | Jnits: uL | Run Reage | nt        |       |  |  |

Report Date: 03-Oct-2017 11:56:18 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20239.D Injection Date: 29-Sep-2017 20:25:30 Instrument ID: HP5973X


Lims ID: ICIS - List1 50


Client ID:

Injection Vol: 1.0 ul

1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL





DR

5

5

Operator ID:

ALS Bottle#:

Worklist Smp#:

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Report Date: 03-Oct-2017 11:56:23

> TestAmerica Buffalo **Target Compound Quantitation Report**

Data File: 

Lims ID: IC - List1 80

Client ID:

Sample Type: Calib Level: IC 4

Inject. Date: 29-Sep-2017 20:52:30 ALS Bottle#: Worklist Smp#: 6 6

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 480-0066023-006

Operator ID: DR Instrument ID: HP5973X

Sublist: chrom-X-8270\*sub83

Method: 

Limit Group: MB - 8270D ICAL

Last Update: 03-Oct-2017 11:56:22 Calib Date: 29-Sep-2017 21:44:30 Integrator: **RTE** ID Type: **Deconvolution ID** Quant By: Quant Method: Internal Standard **Initial Calibration** Last ICal File:

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: XAWRK031

. . . . . . . . . . . . 

| First Level Reviewer: pagem          |     |        | D      | ate:   |     | 02-Oct-201 | 7 10:26:52 |           |       |
|--------------------------------------|-----|--------|--------|--------|-----|------------|------------|-----------|-------|
|                                      |     | RT     | Adj RT | Dlt RT |     |            | Cal Amt    | OnCol Amt |       |
| Compound                             | Sig | (min.) | (min.) | (min.) | Q   | Response   | ng/uL      | ng/uL     | Flags |
|                                      |     |        |        |        |     |            |            |           |       |
| * 1 1,4-Dichlorobenzene-d4           | 152 | 5.756  | 5.750  | 0.006  | 94  | 187015     | 40.0       | 40.0      |       |
| <ul><li>* 2 Naphthalene-d8</li></ul> | 136 | 7.305  | 7.300  | 0.005  | 98  | 619138     | 40.0       | 40.0      |       |
| * 3 Acenaphthene-d10                 | 164 | 9.362  | 9.356  | 0.006  | 97  | 336766     | 40.0       | 40.0      |       |
| <ul><li>4 Phenanthrene-d10</li></ul> | 188 | 10.964 | 10.959 | 0.005  | 98  | 722032     | 40.0       | 40.0      |       |
| * 5 Chrysene-d12                     | 240 | 13.336 | 13.336 | 0.000  | 99  | 818037     | 40.0       | 40.0      |       |
| * 6 Perylene-d12                     | 264 | 14.501 | 14.501 | 0.000  | 99  | 753001     | 40.0       | 40.0      |       |
| \$ 7 2-Fluorophenol                  | 112 | 3.982  | 3.961  | 0.021  | 95  | 505195     | 0.08       | 80.3      |       |
| \$ 8 Phenol-d5                       | 99  | 5.307  | 5.296  | 0.011  | 93  | 633750     | 0.08       | 81.0      |       |
| \$ 9 Nitrobenzene-d5                 | 82  | 6.445  | 6.440  | 0.005  | 94  | 547267     | 0.08       | 83.4      |       |
| \$ 10 2-Fluorobiphenyl               | 172 | 8.587  | 8.582  | 0.005  | 100 | 1101936    | 80.0       | 79.1      |       |
| \$ 11 2,4,6-Tribromophenol           | 330 | 10.254 | 10.249 | 0.005  | 98  | 160744     | 0.08       | 79.3      |       |
| \$ 12 p-Terphenyl-d14                | 244 | 12.439 | 12.439 | 0.000  | 100 | 1281427    | 0.08       | 81.4      |       |
| 15 1,4-Dioxane                       | 88  | 1.706  | 1.658  | 0.048  | 95  | 314748     | 80.0       | 82.8      |       |
| 16 N-Nitrosodimethylamine            | 42  | 2.006  | 1.941  | 0.065  | 76  | 276917     | 0.08       | 81.2      |       |
| 17 Pyridine                          | 52  | 2.054  | 1.995  | 0.059  | 83  | 764057     | 160.0      | 156.3     |       |
| 27 Benzaldehyde                      | 77  | 5.184  | 5.173  | 0.011  | 88  | 416729     | 80.0       | 78.9      |       |
| 28 Phenol                            | 94  | 5.323  | 5.318  | 0.005  | 91  | 702826     | 80.0       | 79.0      |       |
| 29 Aniline                           | 93  | 5.334  | 5.323  | 0.011  | 96  | 837512     | 80.0       | 79.6      |       |
| 31 Bis(2-chloroethyl)ether           | 93  | 5.430  | 5.425  | 0.005  | 93  | 522984     | 80.0       | 78.7      |       |
| 32 2-Chlorophenol                    | 128 | 5.483  | 5.478  | 0.005  | 98  | 491170     | 80.0       | 79.7      |       |
| 35 n-Decane                          | 57  | 5.590  | 5.585  | 0.005  | 94  | 518777     | 80.0       | 80.0      |       |
| 36 1,3-Dichlorobenzene               | 146 | 5.681  | 5.676  | 0.005  | 98  | 567134     | 80.0       | 78.6      |       |
| 37 1,4-Dichlorobenzene               | 146 | 5.777  | 5.772  | 0.005  | 97  | 562145     | 80.0       | 77.0      |       |
| 38 Benzyl alcohol                    | 108 | 5.943  | 5.932  | 0.011  | 95  | 346986     | 80.0       | 80.0      |       |
| 39 1,2-Dichlorobenzene               | 146 | 5.969  | 5.964  | 0.005  | 96  | 525543     | 80.0       | 77.4      |       |
| 229 Indene                           | 115 | 6.082  | 6.076  | 0.006  | 84  | 2591227    | 240.0      | 229.8     |       |
| 40 2-Methylphenol                    | 108 | 6.092  | 6.087  | 0.005  | 97  | 455216     | 80.0       | 78.9      |       |
| 42 2,2'-oxybis[1-chloropropan        | 45  | 6.124  | 6.119  | 0.005  | 95  | 539194     | 80.0       | 78.7      |       |
| 45 Acetophenone                      | 105 | 6.263  | 6.258  | 0.005  | 94  | 716069     | 80.0       | 78.7      |       |
| 47 N-Nitrosodi-n-propylamine         | 70  | 6.279  | 6.274  | 0.005  | 88  | 374303     | 80.0       | 79.5      |       |
| 46 4-Methylphenol                    | 108 | 6.295  | 6.285  | 0.010  | 94  | 477895     | 80.0       | 78.9      |       |
| <b>5</b> .                           |     |        |        |        |     |            |            |           |       |

Data File:

| Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20240.D |           |                |        |                |           |                  |              |              |       |
|--------------------------------------------------------------------------|-----------|----------------|--------|----------------|-----------|------------------|--------------|--------------|-------|
| 0                                                                        | C:        | RT             | Adj RT | Dlt RT         |           | Decree           | Cal Amt      | OnCol Amt    | Elec  |
| Compound                                                                 | Sig       | (min.)         | (min.) | (min.)         | Q         | Response         | ng/uL        | ng/uL        | Flags |
| FO I love chlore others                                                  | 117       | / 20/          | / 201  | 0.005          | 02        | 220042           | 00.0         | 00.0         |       |
| 50 Hexachloroethane                                                      | 117<br>77 | 6.386          | 6.381  | 0.005          | 93        | 229043           | 80.0         | 80.0         |       |
| 52 Nitrobenzene                                                          | 77        | 6.466          | 6.461  | 0.005          | 92        | 557002           | 80.0         | 81.9         |       |
| 56 Isophorone                                                            | 82        | 6.765          | 6.755  | 0.010          | 97        | 961158           | 80.0         | 82.7         |       |
| 58 2-Nitrophenol                                                         | 139       | 6.856          | 6.851  | 0.005          | 88        | 251647           | 80.0         | 80.4<br>81.2 |       |
| 59 2,4-Dimethylphenol                                                    | 107       | 6.931<br>7.038 | 6.926  | 0.005<br>0.000 | 97<br>04  | 515790<br>575008 | 80.0<br>80.0 | 79.5         |       |
| 62 Bis(2-chloroethoxy)methane                                            | 93<br>105 |                | 7.038  |                | 96        |                  |              |              |       |
| 64 Benzoic acid                                                          | 105       | 7.161          | 7.118  | 0.043          | 85<br>04  | 1194257          | 240.0        | 240.6        |       |
| 65 2,4-Dichlorophenol                                                    | 162       | 7.145          | 7.139  | 0.006          | 96<br>07  | 423830           | 80.0         | 80.2         |       |
| 67 1,2,4-Trichlorobenzene                                                | 180       | 7.246          | 7.241  | 0.005          | 97<br>100 | 497696           | 80.0         | 81.4         |       |
| 69 Naphthalene                                                           | 128       | 7.332          | 7.326  | 0.006          | 100       | 1308667          | 80.0         | 80.4         |       |
| 71 4-Chloroaniline                                                       | 127       | 7.407          | 7.401  | 0.006          | 98        | 574470           | 80.0         | 81.8         |       |
| 70 2,6-Dichlorophenol                                                    | 162       | 7.417          | 7.412  | 0.005          | 97<br>07  | 427242           | 80.0         | 83.0         |       |
| 73 Hexachlorobutadiene                                                   | 225       | 7.503          | 7.497  | 0.006          | 96<br>01  | 334537           | 80.0         | 83.5         |       |
| 78 Caprolactam                                                           | 113       | 7.834          | 7.807  | 0.027          | 91        | 146877           | 80.0         | 82.9         |       |
| 79 4-Chloro-3-methylphenol                                               | 107       | 7.994          | 7.989  | 0.005          | 97<br>07  | 428682           | 80.0         | 82.3         |       |
| 82 2-Methylnaphthalene                                                   | 142       | 8.149          | 8.144  | 0.005          | 97        | 931482           | 80.0         | 83.5         |       |
| 83 1-Methylnaphthalene                                                   | 142       | 8.261          | 8.261  | 0.000          | 99        | 877835           | 80.0         | 82.7         |       |
| 84 Hexachlorocyclopentadiene                                             | 237       | 8.352          | 8.347  | 0.005          | 96        | 424720           | 80.0         | 79.1         |       |
| 85 1,2,4,5-Tetrachlorobenzene                                            | 216       | 8.352          | 8.347  | 0.005          | 96        | 533961           | 80.0         | 78.2         |       |
| 86 2,4,6-Trichlorophenol                                                 | 196       | 8.486          | 8.486  | 0.000          | 94        | 339677           | 80.0         | 79.4         |       |
| 87 2,4,5-Trichlorophenol                                                 | 196       | 8.528          | 8.523  | 0.005          | 95        | 362667           | 80.0         | 79.3         |       |
| 90 1,1'-Biphenyl                                                         | 154       | 8.699          | 8.694  | 0.005          | 99        | 1169831          | 80.0         | 79.9         |       |
| 91 2-Chloronaphthalene                                                   | 162       | 8.715          | 8.710  | 0.005          | 99        | 909277           | 80.0         | 78.5         |       |
| 93 2-Nitroaniline                                                        | 65        | 8.838          | 8.833  | 0.005          | 95        | 287932           | 80.0         | 79.8         |       |
| 96 Dimethyl phthalate                                                    | 163       | 9.073          | 9.063  | 0.010          | 99        | 1058955          | 80.0         | 80.8         |       |
| 97 1,3-Dinitrobenzene                                                    | 168       | 9.089          | 9.079  | 0.010          | 83        | 192768           | 80.0         | 83.2         |       |
| 99 2,6-Dinitrotoluene                                                    | 165       | 9.127          | 9.121  | 0.006          | 91        | 252552           | 80.0         | 80.5         |       |
| 100 Acenaphthylene                                                       | 152       | 9.191          | 9.185  | 0.006          | 100       | 1336240          | 80.0         | 80.7         |       |
| 101 3-Nitroaniline                                                       | 138       | 9.319          | 9.314  | 0.005          | 97        | 264315           | 80.0         | 81.1         |       |
| 102 Acenaphthene                                                         | 153       | 9.399          | 9.394  | 0.005          | 99        | 898407           | 80.0         | 80.4         |       |
| 103 2,4-Dinitrophenol                                                    | 184       | 9.442          | 9.431  | 0.011          | 85        | 372412           | 160.0        | 160.5        |       |
| 104 4-Nitrophenol                                                        | 109       | 9.538          | 9.527  | 0.011          | 91        | 364750           | 160.0        | 157.4        |       |
| 106 2,4-Dinitrotoluene                                                   | 165       | 9.597          | 9.586  | 0.011          | 97        | 340314           | 80.0         | 80.0         |       |
| 107 Dibenzofuran                                                         | 168       | 9.602          | 9.597  | 0.005          | 97        | 1339155          | 80.0         | 79.0         |       |
| 110 2,3,4,6-Tetrachlorophenol                                            | 232       | 9.752          | 9.746  | 0.006          | 95        | 320434           | 80.0         | 80.3         |       |
| 112 Diethyl phthalate                                                    | 149       | 9.896          | 9.885  | 0.011          | 100       | 1066561          | 80.0         | 81.4         |       |
| 138 Hexadecane                                                           | 57        | 9.928          | 9.923  | 0.005          | 95        | 583136           | 80.0         | 82.7         |       |
| 115 Fluorene                                                             | 166       | 9.987          | 9.981  | 0.006          | 98        | 1065567          | 80.0         | 81.3         |       |
| 116 4-Chlorophenyl phenyl ethe                                           | 204       | 9.998          | 9.992  | 0.006          | 96        | 597712           | 80.0         | 80.8         |       |
| 118 4-Nitroaniline                                                       | 138       | 10.024         | 10.014 | 0.010          | 87        | 270371           | 80.0         | 81.0         |       |
| 119 4,6-Dinitro-2-methylphenol                                           | 198       | 10.056         | 10.046 | 0.010          | 96        | 418290           | 160.0        | 158.0        |       |
| 120 N-Nitrosodiphenylamine                                               | 169       | 10.131         | 10.126 | 0.005          | 98        | 796105           | 80.0         | 80.6         |       |
| 121 Diphenylamine                                                        | 169       | 10.131         | 10.126 | 0.005          | 99        | 796105           | 68.4         | 68.9         |       |
| 123 1,2-Diphenylhydrazine                                                | 77        | 10.174         | 10.168 | 0.006          | 98        | 1108293          | 0.08         | 80.2         |       |
| 122 Azobenzene                                                           | 77        | 10.174         | 10.168 | 0.006          | 95        | 1108293          | 80.0         | 80.2         |       |
| 130 4-Bromophenyl phenyl ether                                           | 248       | 10.521         | 10.516 | 0.005          | 96        | 350245           | 80.0         | 80.7         |       |
| 131 Hexachlorobenzene                                                    | 284       | 10.585         | 10.580 | 0.005          | 96        | 353012           | 80.0         | 79.5         |       |
| 133 Atrazine                                                             | 200       | 10.708         | 10.703 | 0.005          | 94        | 309083           | 80.0         | 81.2         |       |
| 134 Pentachlorophenol                                                    | 266       | 10.783         | 10.783 | 0.000          | 97        | 483504           | 160.0        | 159.3        |       |
| 113 n-Octadecane                                                         | 57        | 10.900         | 10.895 | 0.005          | 92        | 585993           | 80.0         | 79.1         |       |
| 141 Phenanthrene                                                         | 178       | 10.991         | 10.986 | 0.005          | 99        | 1547941          | 80.0         | 79.7         |       |
| 142 Anthracene                                                           | 178       | 11.039         | 11.034 | 0.005          | 100       | 1615394          | 80.0         | 81.0         |       |
| 1 12 / WIWII GOOFIC                                                      | 170       | 11.037         | 11.034 | 0.000          | 100       | 1010074          | 50.0         | 31.0         |       |

Report Date: 03-Oct-2017 11:56:23

Data File:

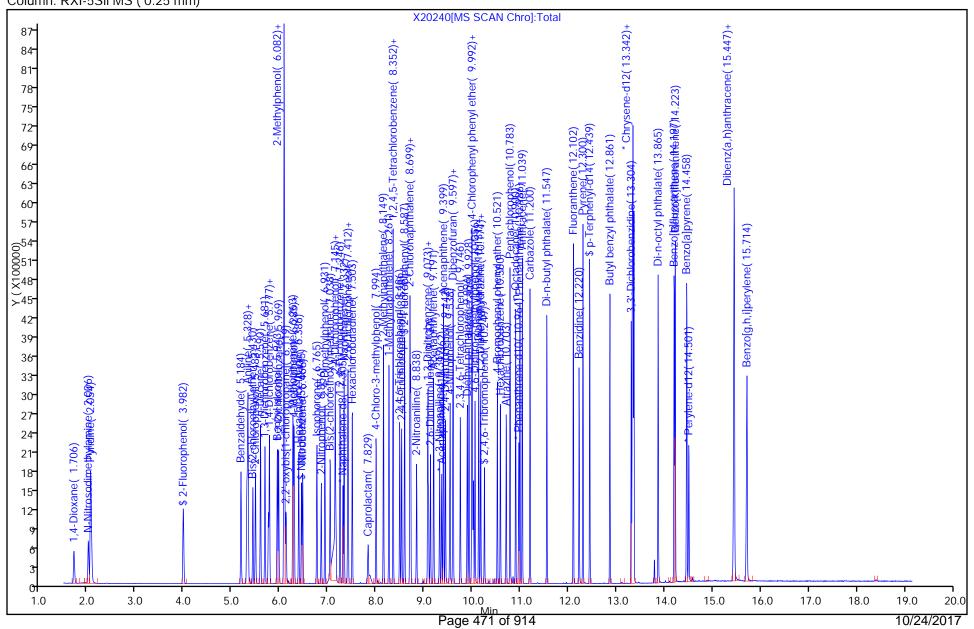
| Bata File. (terriorina) (te    |     | RT        | Adj RT    | Dlt RT    | 1   | 023.60020240 | Cal Amt | OnCol Amt |       |
|--------------------------------|-----|-----------|-----------|-----------|-----|--------------|---------|-----------|-------|
| Compound                       | Sig | (min.)    | (min.)    | (min.)    | Q   | Response     | ng/uL   | ng/uL     | Flags |
| Сотроина                       | Jig | (111111.) | (111111.) | (111111.) | Q   | Response     | TIG/UL  | Tig/uL    | Tays  |
| 143 Carbazole                  | 167 | 11.200    | 11.194    | 0.006     | 99  | 1461283      | 80.0    | 80.3      |       |
| 145 Di-n-butyl phthalate       | 149 | 11.547    | 11.547    | 0.000     | 100 | 1731582      | 80.0    | 80.3      |       |
| 152 Fluoranthene               | 202 | 12.102    | 12.097    | 0.005     | 99  | 1818068      | 80.0    | 81.2      |       |
| 154 Benzidine                  | 184 | 12.220    | 12.220    | 0.000     | 100 | 1025911      | 80.0    | 82.5      |       |
| 155 Pyrene                     | 202 | 12.300    | 12.295    | 0.005     | 99  | 1870445      | 80.0    | 80.4      |       |
| 162 Butyl benzyl phthalate     | 149 | 12.861    | 12.856    | 0.005     | 100 | 824888       | 80.0    | 82.5      |       |
| 166 3,3'-Dichlorobenzidine     | 252 | 13.304    | 13.304    | 0.000     | 86  | 743081       | 80.0    | 81.8      |       |
| 167 Benzo[a]anthracene         | 228 | 13.331    | 13.326    | 0.005     | 96  | 1929622      | 80.0    | 82.6      |       |
| 172 Bis(2-ethylhexyl) phthalat | 149 | 13.342    | 13.342    | 0.000     | 97  | 1185901      | 80.0    | 82.2      |       |
| 169 Chrysene                   | 228 | 13.363    | 13.358    | 0.005     | 98  | 1782333      | 80.0    | 78.9      |       |
| 168 Di-n-octyl phthalate       | 149 | 13.865    | 13.865    | 0.000     | 100 | 1969900      | 80.0    | 82.5      |       |
| 174 Benzo[b]fluoranthene       | 252 | 14.202    | 14.196    | 0.006     | 100 | 1884788      | 80.0    | 78.5      |       |
| 175 Benzo[k]fluoranthene       | 252 | 14.223    | 14.218    | 0.005     | 98  | 2168666      | 80.0    | 84.6      |       |
| 177 Benzo[a]pyrene             | 252 | 14.458    | 14.458    | 0.000     | 100 | 1825712      | 80.0    | 78.5      |       |
| 180 Indeno[1,2,3-cd]pyrene     | 276 | 15.447    | 15.436    | 0.011     | 91  | 2094027      | 80.0    | 79.2      |       |
| 181 Dibenz(a,h)anthracene      | 278 | 15.452    | 15.441    | 0.011     | 92  | 1790949      | 80.0    | 79.9      |       |
| 182 Benzo[g,h,i]perylene       | 276 | 15.714    | 15.703    | 0.011     | 100 | 1776474      | 80.0    | 78.9      |       |
| S 238 3-Methylphenol           | 1   |           |           |           | 0   |              |         | 78.9      |       |
| S 237 Total Cresols            | 1   |           |           |           | 0   |              |         | 157.9     |       |
| S 236 3 & 4 Methylphenol       | 108 |           |           |           | 0   |              |         | 78.9      |       |
| Reagents:                      |     |           |           |           |     |              |         |           |       |
| MB_LIST1_WRK_00516             |     | Amount    | Added: 1  | 1.00      | l   | Jnits: mL    |         |           |       |

MB\_INTSTD\_STK\_00039 Run Reagent Amount Added: 20.00 Units: uL

Report Date: 03-Oct-2017 11:56:23 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20240.D Injection Date: 29-Sep-2017 20:52:30 Instrument ID: HP5973X


Lims ID: IC - List1 80

Client ID:

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



DR

6

6

Operator ID:

ALS Bottle#:

Worklist Smp#:

Report Date: 03-Oct-2017 11:56:26 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20241.D

Lims ID: IC - List1 100

Client ID:

Sample Type: IC Calib Level: 5

Inject. Date: 29-Sep-2017 21:18:30 ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 480-0066023-007

Operator ID: DR Instrument ID: HP5973X

Sublist: chrom-X-8270\*sub83

Method: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Oct-2017 11:56:26Calib Date:29-Sep-2017 21:44:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK031

First Level Reviewer: pagem Date: 02-Oct-2017 10:27:01

| First Level Reviewer: pagem          |     |        | D      | ate:    |     | 02-Oct-201 | 7 10:27:01 |           |        |
|--------------------------------------|-----|--------|--------|---------|-----|------------|------------|-----------|--------|
|                                      |     | RT     | Adj RT | Dlt RT  |     |            | Cal Amt    | OnCol Amt |        |
| Compound                             | Sig | (min.) | (min.) | (min.)  | Q   | Response   | ng/uL      | ng/uL     | Flags  |
|                                      |     |        |        |         |     |            |            |           | _      |
| * 11,4-Dichlorobenzene-d4            | 152 | 5.740  | 5.750  | -0.010  | 94  | 221394     | 40.0       | 40.0      |        |
| <ul><li>* 2 Naphthalene-d8</li></ul> | 136 | 7.305  | 7.300  | 0.005   | 98  | 757566     | 40.0       | 40.0      |        |
| * 3 Acenaphthene-d10                 | 164 | 9.362  | 9.356  | 0.006   | 98  | 398011     | 40.0       | 40.0      |        |
| * 4 Phenanthrene-d10                 | 188 | 10.964 | 10.959 | 0.005   | 99  | 826294     | 40.0       | 40.0      |        |
| * 5 Chrysene-d12                     | 240 | 13.342 | 13.336 | 0.006   | 99  | 947249     | 40.0       | 40.0      |        |
| * 6 Perylene-d12                     | 264 | 14.506 | 14.501 | 0.005   | 99  | 884097     | 40.0       | 40.0      |        |
| \$ 7 2-Fluorophenol                  | 112 | 3.982  | 3.961  | 0.021   | 95  | 741313     | 100.0      | 99.6      |        |
| \$ 8 Phenol-d5                       | 99  | 5.291  | 5.296  | -0.005  | 93  | 956251     | 100.0      | 103.3     |        |
| \$ 9 Nitrobenzene-d5                 | 82  | 6.440  | 6.440  | 0.000   | 94  | 817621     | 100.0      | 101.8     |        |
| \$ 10 2-Fluorobiphenyl               | 172 | 8.593  | 8.582  | 0.010   | 100 | 1595812    | 100.0      | 96.9      |        |
| \$ 11 2,4,6-Tribromophenol           | 330 | 10.254 | 10.249 | 0.005   | 98  | 237830     | 100.0      | 102.0     |        |
| \$ 12 p-Terphenyl-d14                | 244 | 12.444 | 12.439 | 0.005   | 100 | 1844273    | 100.0      | 101.2     |        |
| 15 1,4-Dioxane                       | 88  | 1.706  | 1.658  | 0.048   | 94  | 392717     | 100.0      | 87.2      | M      |
| 16 N-Nitrosodimethylamine            | 42  | 2.011  | 1.941  | 0.070   | 75  | 402316     | 100.0      | 99.6      |        |
| 17 Pyridine                          | 52  | 2.059  | 1.995  | 0.064   | 83  | 1145830    | 200.0      | 197.6     |        |
| 27 Benzaldehyde                      | 77  | 5.163  | 5.173  | -0.010  | 87  | 620578     | 100.0      | 99.3      |        |
| 28 Phenol                            | 94  | 5.312  | 5.318  | -0.006  | 86  | 1057225    | 100.0      | 100.4     |        |
| 29 Aniline                           | 93  | 5.318  | 5.323  | -0.005  | 92  | 1256625    | 100.0      | 100.9     |        |
| 31 Bis(2-chloroethyl)ether           | 93  | 5.414  | 5.425  | -0.011  | 93  | 789815     | 100.0      | 100.4     |        |
| 32 2-Chlorophenol                    | 128 | 5.473  | 5.478  | -0.005  | 99  | 754280     | 100.0      | 103.4     |        |
| 35 n-Decane                          | 57  | 5.579  | 5.585  | -0.006  | 94  | 766598     | 100.0      | 99.9      |        |
| 36 1,3-Dichlorobenzene               | 146 | 5.670  | 5.676  | -0.006  | 97  | 844027     | 100.0      | 98.8      |        |
| 37 1,4-Dichlorobenzene               | 146 | 5.766  | 5.772  | -0.006  | 97  | 862702     | 100.0      | 99.9      |        |
| 38 Benzyl alcohol                    | 108 | 5.937  | 5.932  | 0.005   | 95  | 520019     | 100.0      | 101.0     |        |
| 39 1,2-Dichlorobenzene               | 146 | 5.959  | 5.964  | -0.005  | 95  | 804003     | 100.0      | 100.1     |        |
| 229 Indene                           | 115 | 6.076  | 6.076  | 0.000   | 84  | 3816966    | 300.0      | 295.8     |        |
| 40 2-Methylphenol                    | 108 | 6.087  | 6.087  | 0.000   | 97  | 695490     | 100.0      | 101.9     |        |
| 42 2,2'-oxybis[1-chloropropan        | 45  | 6.114  | 6.119  | -0.005  | 95  | 809475     | 100.0      | 99.9      |        |
| 45 Acetophenone                      | 105 | 6.258  | 6.258  | 0.000   | 93  | 1063222    | 100.0      | 98.7      |        |
| 47 N-Nitrosodi-n-propylamine         | 70  | 6.279  | 6.274  | 0.005   | 86  | 565762     | 100.0      | 101.5     |        |
| 46 4-Methylphenol                    | 108 | 6.290  | 6.285  | 0.005   | 95  | 717486     | 100.0      | 100.1     |        |
| <b>5</b> .                           |     |        | -      | 470 (04 |     |            |            | 40/0      | 4/0047 |

| Data File: \\ChromNA\B         | urralo    |              |        |                | 929-66   | 6023.b\X20241 |         |               |       |
|--------------------------------|-----------|--------------|--------|----------------|----------|---------------|---------|---------------|-------|
| Compound                       | Cia       | RT<br>(min.) | Adj RT | Dlt RT         |          | Docnanas      | Cal Amt | OnCol Amt     | Elece |
| Compound                       | Sig       | (min.)       | (min.) | (min.)         | Q        | Response      | ng/uL   | ng/uL         | Flags |
| 50 Hexachloroethane            | 117       | 6.381        | 6.381  | 0.000          | 92       | 338082        | 100.0   | 99.7          |       |
| 52 Nitrobenzene                | 77        | 6.466        | 6.461  | 0.005          | 92       | 829979        | 100.0   | 99.8          |       |
| 56 Isophorone                  | 82        | 6.765        | 6.755  | 0.003          | 97       | 1420450       | 100.0   | 99.8          |       |
| 58 2-Nitrophenol               | 139       | 6.856        | 6.851  | 0.005          | 88       | 390648        | 100.0   | 101.6         |       |
| 59 2,4-Dimethylphenol          | 107       | 6.931        | 6.926  | 0.005          | 98       | 784340        | 100.0   | 100.8         |       |
| 62 Bis(2-chloroethoxy)methane  | 93        | 7.043        | 7.038  | 0.005          | 95       | 887872        | 100.0   | 100.3         |       |
| 64 Benzoic acid                | 105       | 7.198        | 7.118  | 0.000          | 83       | 1902895       | 300.0   | 310.0         |       |
| 65 2,4-Dichlorophenol          | 162       | 7.176        | 7.110  | 0.006          | 96       | 647806        | 100.0   | 100.1         |       |
| 67 1,2,4-Trichlorobenzene      | 180       | 7.145        | 7.137  | 0.005          | 97       | 740470        | 100.0   | 98.9          |       |
| 69 Naphthalene                 | 128       | 7.240        | 7.326  | 0.006          | 100      | 1934365       | 100.0   | 97.1          |       |
| 71 4-Chloroaniline             | 127       | 7.332        | 7.320  | 0.006          | 96       | 854416        | 100.0   | 99.4          |       |
| 70 2,6-Dichlorophenol          | 162       | 7.417        | 7.412  | 0.005          | 96       | 629640        | 100.0   | 100.0         |       |
| 73 Hexachlorobutadiene         | 225       | 7.417        | 7.412  | 0.000          | 98       | 477998        | 100.0   | 97.5          |       |
| 78 Caprolactam                 | 113       | 7.855        | 7.807  | 0.048          | 93       | 211165        | 100.0   | 97.3<br>97.2  | М     |
| 79 4-Chloro-3-methylphenol     | 107       | 8.000        | 7.989  | 0.040          | 96       | 645724        | 100.0   | 101.1         | IVI   |
| 82 2-Methylnaphthalene         | 142       | 8.149        | 8.144  | 0.005          | 97       | 1342331       | 100.0   | 98.3          |       |
| 83 1-Methylnaphthalene         | 142       | 8.267        | 8.261  | 0.005          | 99       | 1288270       | 100.0   | 99.2          |       |
| 85 1,2,4,5-Tetrachlorobenzene  | 216       | 8.352        | 8.347  | 0.005          | 97       | 789023        | 100.0   | 97.8          |       |
| 84 Hexachlorocyclopentadiene   | 237       | 8.352        | 8.347  | 0.005          | 95       | 625121        | 100.0   | 98.3          |       |
| 86 2,4,6-Trichlorophenol       | 196       | 8.491        | 8.486  | 0.005          | 93<br>94 | 499908        | 100.0   | 98.6          |       |
| •                              | 196       | 8.528        | 8.523  | 0.005          | 94<br>96 | 545332        | 100.0   | 100.6         |       |
| 87 2,4,5-Trichlorophenol       |           |              |        |                | 90<br>99 |               |         |               |       |
| 90 1,1'-Biphenyl               | 154       | 8.705        | 8.694  | 0.011<br>0.005 | 99<br>99 | 1654317       | 100.0   | 95.6<br>95.9  |       |
| 91 2-Chloronaphthalene         | 162       | 8.715        | 8.710  |                |          | 1313036       | 100.0   |               |       |
| 93 2-Nitroaniline              | 65<br>142 | 8.844        | 8.833  | 0.011          | 93       | 416350        | 100.0   | 97.4          |       |
| 96 Dimethyl phthalate          | 163       | 9.079        | 9.063  | 0.016          | 99<br>04 | 1541522       | 100.0   | 99.5<br>103.0 |       |
| 97 1,3-Dinitrobenzene          | 168       | 9.089        | 9.079  | 0.010          | 94       | 290272        | 100.0   | 102.0         |       |
| 99 2,6-Dinitrotoluene          | 165       | 9.132        | 9.121  | 0.011          | 89       | 369686        | 100.0   | 99.4          |       |
| 100 Acenaphthylene             | 152       | 9.196        | 9.185  | 0.011          | 100      | 1932868       | 100.0   | 98.8          |       |
| 101 3-Nitroaniline             | 138       | 9.324        | 9.314  | 0.010          | 97       | 384329        | 100.0   | 99.4          |       |
| 102 Acenaphthene               | 153       | 9.399        | 9.394  | 0.005          | 97       | 1283021       | 100.0   | 97.1          |       |
| 103 2,4-Dinitrophenol          | 184       | 9.447        | 9.431  | 0.016          | 86       | 557443        | 200.0   | 201.6         |       |
| 104 4-Nitrophenol              | 109       | 9.543        | 9.527  | 0.016          | 92       | 544209        | 200.0   | 197.9         |       |
| 106 2,4-Dinitrotoluene         | 165       | 9.597        | 9.586  | 0.011          | 97       | 494117        | 100.0   | 97.9          |       |
| 107 Dibenzofuran               | 168       | 9.602        | 9.597  | 0.005          | 98       | 1907807       | 100.0   | 95.2          |       |
| 110 2,3,4,6-Tetrachlorophenol  | 232       | 9.752        | 9.746  | 0.006          | 96       | 464184        | 100.0   | 98.0          |       |
| 112 Diethyl phthalate          | 149       | 9.896        | 9.885  | 0.011          | 100      | 1538452       | 100.0   | 99.4          |       |
| 138 Hexadecane                 | 57        | 9.933        | 9.923  | 0.010          | 96       | 812831        | 100.0   | 97.5          |       |
| 115 Fluorene                   | 166       | 9.992        | 9.981  | 0.011          | 99       | 1539534       | 100.0   | 99.4          |       |
| 116 4-Chlorophenyl phenyl ethe | 204       | 10.003       | 9.992  | 0.011          | 96       | 854624        | 100.0   | 97.7          |       |
| 118 4-Nitroaniline             | 138       | 10.035       | 10.014 | 0.021          | 89       | 384538        | 100.0   | 97.3          |       |
| 119 4,6-Dinitro-2-methylphenol | 198       | 10.062       | 10.046 | 0.016          | 97       | 623743        | 200.0   | 204.2         |       |
| 121 Diphenylamine              | 169       | 10.136       | 10.126 | 0.010          | 98       | 1137499       | 85.5    | 86.1          |       |
| 120 N-Nitrosodiphenylamine     | 169       | 10.136       | 10.126 | 0.010          | 97       | 1137499       | 100.0   | 100.7         |       |
| 122 Azobenzene                 | 77        | 10.174       | 10.168 | 0.006          | 95       | 1575313       | 100.0   | 99.6          |       |
| 123 1,2-Diphenylhydrazine      | 77        | 10.174       | 10.168 | 0.006          | 99       | 1575313       | 100.0   | 99.6          |       |
| 130 4-Bromophenyl phenyl ether | 248       | 10.521       | 10.516 | 0.005          | 96       | 511297        | 100.0   | 102.9         |       |
| 131 Hexachlorobenzene          | 284       | 10.585       | 10.580 | 0.005          | 97       | 516151        | 100.0   | 101.6         |       |
| 133 Atrazine                   | 200       | 10.713       | 10.703 | 0.010          | 94       | 446110        | 100.0   | 99.1          |       |
| 134 Pentachlorophenol          | 266       | 10.788       | 10.783 | 0.005          | 97       | 713797        | 200.0   | 203.9         |       |
| 113 n-Octadecane               | 57        | 10.900       | 10.895 | 0.005          | 92       | 863696        | 100.0   | 101.8         |       |
| 141 Phenanthrene               | 178       | 10.991       | 10.986 | 0.005          | 99       | 2184046       | 100.0   | 98.3          |       |
| 142 Anthracene                 | 178       | 11.045       | 11.034 | 0.011          | 100      | 2303001       | 100.0   | 100.9         |       |

Report Date: 03-Oct-2017 11:56:26 Chrom Revision: 2.2 16-Aug-2017 16:24:46

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20241.D

| Data File. ((CIIIOIIII)A(I     | Julialo | RT     |                  | Dlt RT | 727-00 | 0023.01820241 | Cal Amt | OnCol Amt |       |
|--------------------------------|---------|--------|------------------|--------|--------|---------------|---------|-----------|-------|
| Compound                       | Sig     | (min.) | Adj RT<br>(min.) | (min.) | Q      | Response      | ng/uL   | ng/uL     | Flags |
|                                |         |        |                  |        | •      |               |         |           |       |
| 143 Carbazole                  | 167     | 11.205 | 11.194           | 0.011  | 99     | 2119153       | 100.0   | 101.8     |       |
| 145 Di-n-butyl phthalate       | 149     | 11.552 | 11.547           | 0.005  | 100    | 2506957       | 100.0   | 101.4     |       |
| 152 Fluoranthene               | 202     | 12.102 | 12.097           | 0.005  | 99     | 2642946       | 100.0   | 103.2     |       |
| 154 Benzidine                  | 184     | 12.225 | 12.220           | 0.005  | 100    | 1417943       | 100.0   | 98.4      |       |
| 155 Pyrene                     | 202     | 12.305 | 12.295           | 0.010  | 99     | 2712197       | 100.0   | 100.7     |       |
| 162 Butyl benzyl phthalate     | 149     | 12.861 | 12.856           | 0.005  | 99     | 1183260       | 100.0   | 101.9     |       |
| 166 3,3'-Dichlorobenzidine     | 252     | 13.310 | 13.304           | 0.006  | 87     | 1059761       | 100.0   | 100.3     |       |
| 167 Benzo[a]anthracene         | 228     | 13.331 | 13.326           | 0.005  | 96     | 2683148       | 100.0   | 99.1      |       |
| 172 Bis(2-ethylhexyl) phthalat | 149     | 13.347 | 13.342           | 0.005  | 96     | 1698933       | 100.0   | 101.3     |       |
| 169 Chrysene                   | 228     | 13.363 | 13.358           | 0.005  | 99     | 2538644       | 100.0   | 97.0      |       |
| 168 Di-n-octyl phthalate       | 149     | 13.865 | 13.865           | 0.000  | 100    | 2825186       | 100.0   | 101.7     |       |
| 174 Benzo[b]fluoranthene       | 252     | 14.202 | 14.196           | 0.006  | 100    | 2759843       | 100.0   | 98.0      |       |
| 175 Benzo[k]fluoranthene       | 252     | 14.229 | 14.218           | 0.011  | 99     | 2946292       | 100.0   | 97.9      | M     |
| 177 Benzo[a]pyrene             | 252     | 14.469 | 14.458           | 0.011  | 100    | 2769615       | 100.0   | 101.2     | M     |
| 180 Indeno[1,2,3-cd]pyrene     | 276     | 15.452 | 15.436           | 0.016  | 91     | 3150512       | 100.0   | 101.3     |       |
| 181 Dibenz(a,h)anthracene      | 278     | 15.457 | 15.441           | 0.016  | 95     | 2655601       | 100.0   | 100.7     |       |
| 182 Benzo[g,h,i]perylene       | 276     | 15.724 | 15.703           | 0.021  | 100    | 2678145       | 100.0   | 101.1     | M     |
| S 236 3 & 4 Methylphenol       | 108     |        |                  |        | 0      |               |         | 100.1     |       |
| S 238 3-Methylphenol           | 1       |        |                  |        | 0      |               |         | 100.1     |       |
| S 237 Total Cresols            | 1       |        |                  |        | 0      |               |         | 202.0     |       |
| QC Flag Legend                 |         |        |                  |        |        |               |         |           |       |

# QC Flag Legend Review Flags

M - Manually Integrated

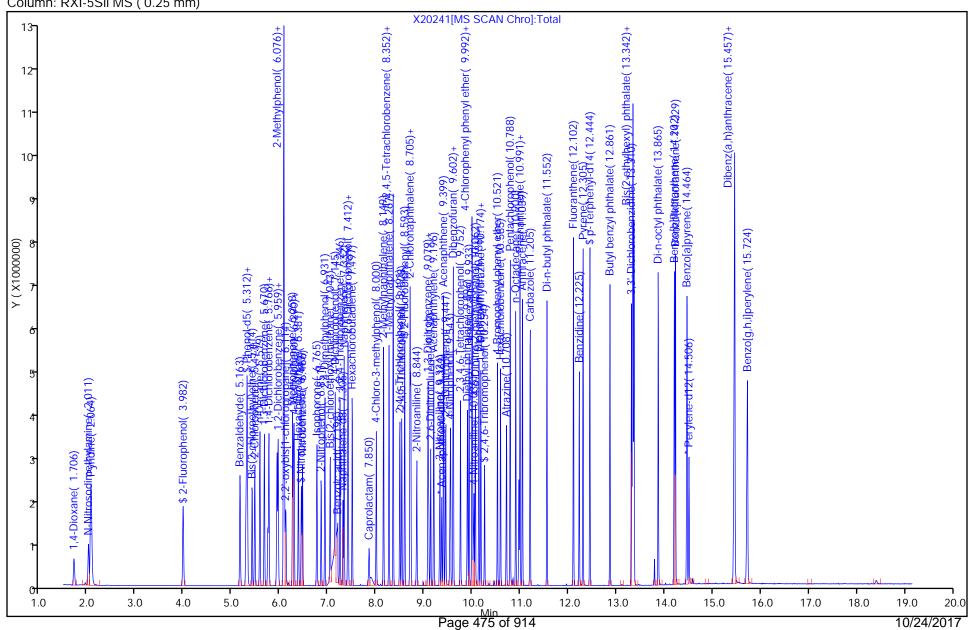
## Reagents:

MB\_LIST1\_WRK\_00517 Amount Added: 1.00 Units: mL

MB\_INTSTD\_STK\_00039 Amount Added: 20.00 Units: uL Run Reagent Report Date: 03-Oct-2017 11:56:27 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20241.D Injection Date: 29-Sep-2017 21:18:30 Instrument ID: HP5973X


Lims ID: IC - List1 100

Client ID:

1.0 ul Injection Vol: Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



DR

7

7

Operator ID:

ALS Bottle#:

Worklist Smp#:

TestAmerica Buffalo

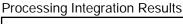
Data File: Injection Date: 29-Sep-2017 21:18:30 Instrument ID: HP5973X

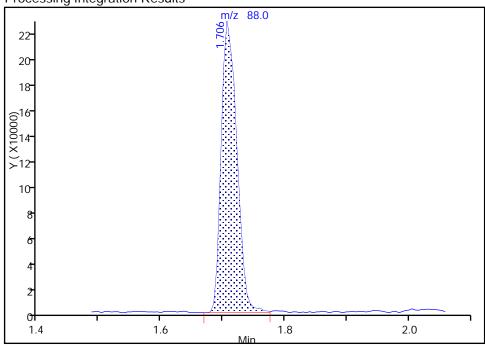
Lims ID: IC - List1 100

Client ID:

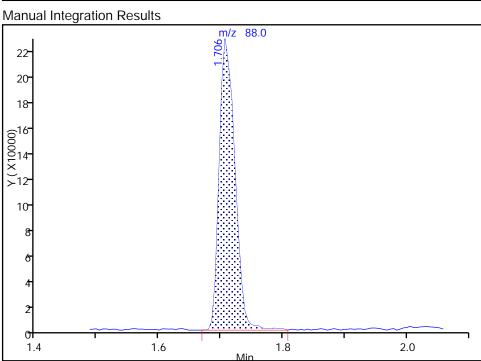
Operator ID: DR ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 1.0 ul Dil. Factor: 1.0000


Method: X-8270 Limit Group: MB - 8270D ICAL


Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

#### 15 1,4-Dioxane, CAS: 123-91-1


Signal: 1

RT: 1.71 Area: 390764 Amount: 86.844996 Amount Units: ng/uL





RT: 1.71 Area: 392717 87.215946 Amount: Amount Units: ng/uL



Reviewer: richardsd, 03-Oct-2017 11:12:47

Audit Action: Manually Integrated

Audit Reason: Incomplete Integration

TestAmerica Buffalo

Data File: Injection Date: 29-Sep-2017 21:18:30 Instrument ID: HP5973X

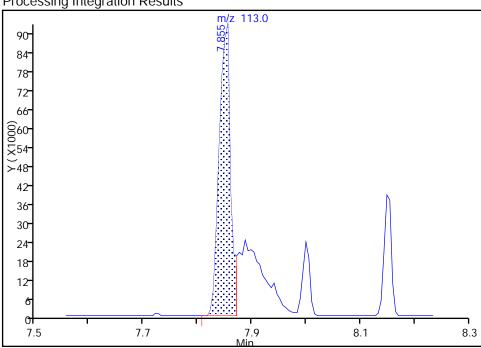
Lims ID: IC - List1 100

Client ID:

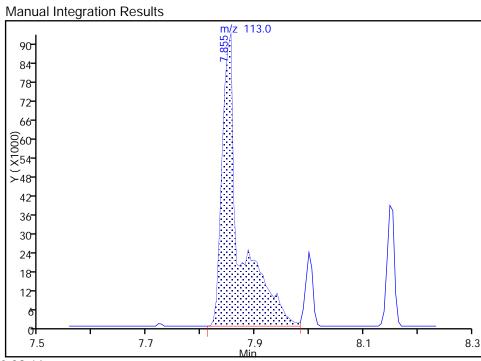
Operator ID: DR ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL


Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

### 78 Caprolactam, CAS: 105-60-2


Signal: 1

RT: 7.86 Area: 136001 Amount: 78.895144 Amount Units: ng/uL

**Processing Integration Results** 



RT: 7.86 Area: 211165 97.166684 Amount: Amount Units: ng/uL



Reviewer: pagem, 02-Oct-2017 10:28:16 Audit Action: Split an Integrated Peak

Audit Reason: Split Peak

Page 477 of 914

#### TestAmerica Buffalo

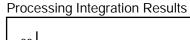
Data File: Injection Date: 29-Sep-2017 21:18:30 Instrument ID: HP5973X

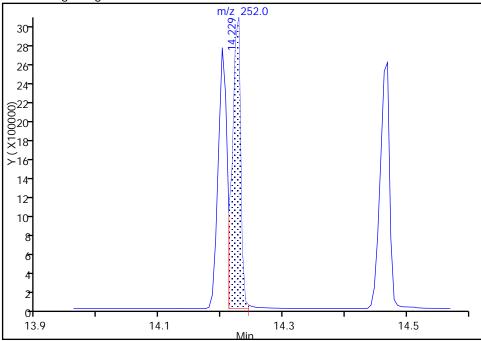
Lims ID: IC - List1 100

Client ID:

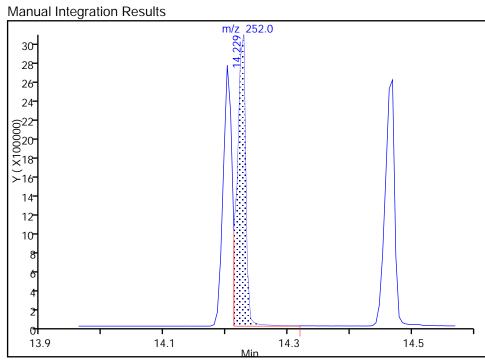
Operator ID: DR ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 1.0 ul Dil. Factor: 1.0000


Method: X-8270 Limit Group: MB - 8270D ICAL


Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

### 175 Benzo[k]fluoranthene, CAS: 207-08-9


Signal: 1

RT: 14.23 Area: 2907347 Amount: 98.006890 Amount Units: ng/uL





RT: 14.23 Area: 2946292 97.933177 Amount: Amount Units: ng/uL



Reviewer: richardsd, 03-Oct-2017 11:41:30

Audit Action: Manually Integrated

Audit Reason: Baseline

Page 478 of 914

TestAmerica Buffalo

Data File: Injection Date: 29-Sep-2017 21:18:30 Instrument ID: HP5973X

Lims ID: IC - List1 100

Client ID:

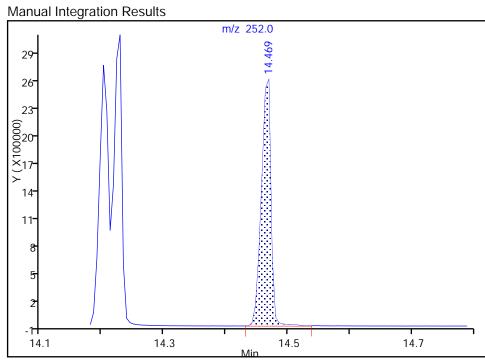
Operator ID: DR ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

#### 177 Benzo[a]pyrene, CAS: 50-32-8


Signal: 1

RT: 14.47 Area: 2722305 Amount: 100.2876 Amount Units: ng/uL





RT: 14.47 Area: 2769615 101.2050 Amount: Amount Units: ng/uL



Reviewer: richardsd, 03-Oct-2017 11:42:07

Audit Action: Manually Integrated

Audit Reason: Baseline

Page 479 of 914

Report Date: 03-Oct-2017 11:56:27 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20241.D Injection Date: 29-Sep-2017 21:18:30 Instrument ID: HP5973X

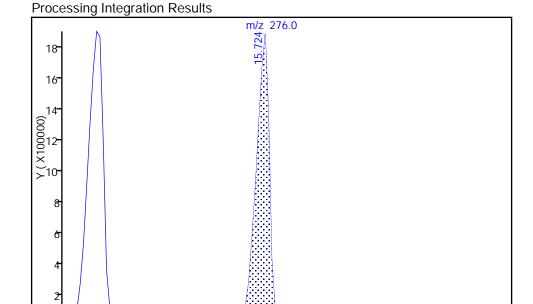
Lims ID: IC - List1 100

Client ID:

Operator ID: DR ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 1.0 ul Dil. Factor: 1.0000

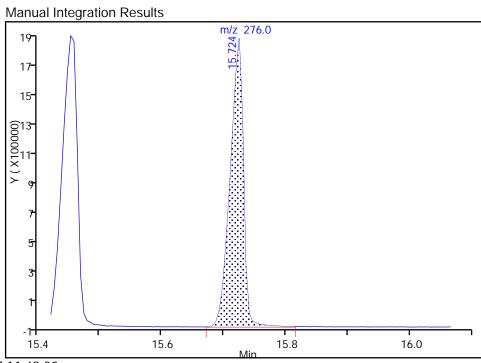
0<del>| -</del> 15.4


Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN

# 182 Benzo[g,h,i]perylene, CAS: 191-24-2

Signal: 1


RT: 15.72 Area: 2665908 Amount: 100.8053 Amount Units: ng/uL



15.8

16.0

RT: 15.72 Area: 2678145 Amount: 101.1332 Amount Units: ng/uL



Reviewer: richardsd, 03-Oct-2017 11:43:00

Audit Action: Manually Integrated

Audit Reason: Baseline

Page 480 of 914

15.6

Report Date: 03-Oct-2017 11:56:30 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D

Lims ID: IC - List1 120

Client ID:

Sample Type: IC Calib Level: 6

Inject. Date: 29-Sep-2017 21:44:30 ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 480-0066023-008

Operator ID: DR Instrument ID: HP5973X

Sublist: chrom-X-8270\*sub83

Method: \ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Oct-2017 11:56:29Calib Date:29-Sep-2017 21:44:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK031

First Level Reviewer: pagem Date: 02-Oct-2017 10:27:20

| First Level Reviewer: pagem          |     |        | D      | ate:    |     | 02-Oct-2017 10:27:20 |         |           |        |
|--------------------------------------|-----|--------|--------|---------|-----|----------------------|---------|-----------|--------|
|                                      |     | RT     | Adj RT | Dlt RT  |     |                      | Cal Amt | OnCol Amt |        |
| Compound                             | Sig | (min.) | (min.) | (min.)  | Q   | Response             | ng/uL   | ng/uL     | Flags  |
|                                      |     |        |        |         |     |                      |         |           |        |
| * 1 1,4-Dichlorobenzene-d4           | 152 | 5.707  | 5.750  | -0.043  | 94  | 194424               | 40.0    | 40.0      |        |
| <ul><li>* 2 Naphthalene-d8</li></ul> | 136 | 7.294  | 7.300  | -0.006  | 99  | 693896               | 40.0    | 40.0      |        |
| * 3 Acenaphthene-d10                 | 164 | 9.362  | 9.356  | 0.006   | 97  | 343501               | 40.0    | 40.0      |        |
| <ul><li>4 Phenanthrene-d10</li></ul> | 188 | 10.964 | 10.959 | 0.005   | 99  | 721219               | 40.0    | 40.0      |        |
| * 5 Chrysene-d12                     | 240 | 13.315 | 13.336 | -0.021  | 99  | 835746               | 40.0    | 40.0      |        |
| * 6 Perylene-d12                     | 264 | 14.458 | 14.501 | -0.043  | 99  | 747151               | 40.0    | 40.0      |        |
| \$ 7 2-Fluorophenol                  | 112 | 3.961  | 3.961  | 0.000   | 94  | 794086               | 120.0   | 121.5     |        |
| \$ 8 Phenol-d5                       | 99  | 5.248  | 5.296  | -0.048  | 93  | 965950               | 120.0   | 118.8     |        |
| \$ 9 Nitrobenzene-d5                 | 82  | 6.423  | 6.440  | -0.017  | 94  | 884906               | 120.0   | 120.3     |        |
| \$ 10 2-Fluorobiphenyl               | 172 | 8.587  | 8.582  | 0.005   | 100 | 1662390              | 120.0   | 117.0     |        |
| \$ 11 2,4,6-Tribromophenol           | 330 | 10.254 | 10.249 | 0.005   | 98  | 249877               | 120.0   | 122.4     |        |
| \$ 12 p-Terphenyl-d14                | 244 | 12.423 | 12.439 | -0.016  | 100 | 1910536              | 120.0   | 118.8     |        |
| 15 1,4-Dioxane                       | 88  | 1.685  | 1.658  | 0.027   | 95  | 469654               | 120.0   | 118.8     |        |
| 16 N-Nitrosodimethylamine            | 42  | 1.979  | 1.941  | 0.038   | 75  | 429787               | 120.0   | 121.2     |        |
| 17 Pyridine                          | 52  | 2.027  | 1.995  | 0.032   | 83  | 1271890              | 240.0   | 249.4     |        |
| 27 Benzaldehyde                      | 77  | 5.120  | 5.173  | -0.053  | 89  | 625016               | 120.0   | 113.9     |        |
| 28 Phenol                            | 94  | 5.269  | 5.318  | -0.049  | 86  | 1076313              | 120.0   | 116.4     |        |
| 29 Aniline                           | 93  | 5.275  | 5.323  | -0.048  | 91  | 1290451              | 120.0   | 118.0     |        |
| 31 Bis(2-chloroethyl)ether           | 93  | 5.376  | 5.425  | -0.049  | 92  | 808532               | 120.0   | 117.0     |        |
| 32 2-Chlorophenol                    | 128 | 5.430  | 5.478  | -0.048  | 99  | 771659               | 120.0   | 120.5     |        |
| 35 n-Decane                          | 57  | 5.537  | 5.585  | -0.048  | 93  | 794290               | 120.0   | 117.9     |        |
| 36 1,3-Dichlorobenzene               | 146 | 5.633  | 5.676  | -0.043  | 98  | 896268               | 120.0   | 119.5     |        |
| 37 1,4-Dichlorobenzene               | 146 | 5.729  | 5.772  | -0.043  | 98  | 898670               | 120.0   | 118.5     |        |
| 38 Benzyl alcohol                    | 108 | 5.905  | 5.932  | -0.027  | 95  | 544288               | 120.0   | 120.1     |        |
| 39 1,2-Dichlorobenzene               | 146 | 5.927  | 5.964  | -0.038  | 97  | 848372               | 120.0   | 120.3     |        |
| 229 Indene                           | 115 | 6.049  | 6.076  | -0.027  | 85  | 3989248              | 360.0   | 354.2     |        |
| 40 2-Methylphenol                    | 108 | 6.060  | 6.087  | -0.027  | 96  | 732292               | 120.0   | 122.2     |        |
| 42 2,2'-oxybis[1-chloropropan        | 45  | 6.087  | 6.119  | -0.032  | 95  | 843583               | 120.0   | 118.5     |        |
| 45 Acetophenone                      | 105 | 6.236  | 6.258  | -0.022  | 93  | 1155580              | 120.0   | 122.1     |        |
| 47 N-Nitrosodi-n-propylamine         | 70  | 6.252  | 6.274  | -0.022  | 86  | 617404               | 120.0   | 126.1     |        |
| 46 4-Methylphenol                    | 108 | 6.268  | 6.285  | -0.017  | 93  | 789284               | 120.0   | 125.4     |        |
|                                      |     |        | -      | 101 (01 |     |                      |         | 40/0      | 4/0047 |

ct-2017 11:56:30 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D Report Date: 03-Oct-2017 11:56:30

Data File:

| Data File: \\Cnromina\\B                          | ullai0\ |                |                |                | 727-00   | 0023.D\X20242<br>T |                |           |       |
|---------------------------------------------------|---------|----------------|----------------|----------------|----------|--------------------|----------------|-----------|-------|
| Compound                                          | Ci~     | RT (min.)      | Adj RT         | Dlt RT         |          | Docnaras           | Cal Amt        | OnCol Amt | Elece |
| Compound                                          | Sig     | (min.)         | (min.)         | (min.)         | Q        | Response           | ng/uL          | ng/uL     | Flags |
| 50 Hexachloroethane                               | 117     | 6.354          | 6.381          | -0.027         | 94       | 363066             | 120.0          | 121.9     |       |
| 52 Nitrobenzene                                   | 77      | 6.445          | 6.461          | -0.027         | 92       | 910715             | 120.0          | 119.6     |       |
| 56 Isophorone                                     | 82      | 6.749          | 6.755          | -0.016         | 97       | 1527736            | 120.0          | 117.0     |       |
| 58 2-Nitrophenol                                  | 139     | 6.840          | 6.851          | -0.000         | 88       | 424634             | 120.0          | 120.3     |       |
| 59 2,4-Dimethylphenol                             | 107     | 6.920          | 6.926          | -0.006         | 97       | 839009             | 120.0          | 120.3     |       |
| 62 Bis(2-chloroethoxy)methane                     | 93      | 7.032          | 7.038          | -0.006         | 95       | 964851             | 120.0          | 117.7     |       |
| 64 Benzoic acid                                   | 105     | 7.032          | 7.038          | 0.075          | 83       | 2066181            | 360.0          | 365.4     |       |
| 65 2,4-Dichlorophenol                             | 162     | 7.133          | 7.110          | 0.000          | 95       | 705057             | 120.0          | 118.8     |       |
| 67 1,2,4-Trichlorobenzene                         | 180     | 7.134          | 7.137          | -0.006         | 97       | 799773             | 120.0          | 116.7     |       |
| 69 Naphthalene                                    | 128     | 7.233          | 7.326          | -0.005         | 99       | 2128351            | 120.0          | 116.7     |       |
| 71 4-Chloroaniline                                | 127     | 7.321          | 7.320          | 0.000          | 99       | 931677             | 120.0          | 118.3     |       |
| 70 2,6-Dichlorophenol                             | 162     | 7.401          | 7.401          | 0.000          | 99<br>97 | 677895             | 120.0          | 117.5     |       |
| 73 Hexachlorobutadiene                            | 225     | 7.412<br>7.492 | 7.412<br>7.497 | -0.005         | 97<br>97 | 517736             | 120.0          | 117.3     |       |
|                                                   | 113     | 7.492<br>7.850 | 7.497<br>7.807 |                | 97<br>91 |                    | 120.0          | 119.5     | М     |
| 78 Caprolactam                                    | 107     | 7.650<br>7.999 | 7.607<br>7.989 | 0.043<br>0.010 | 91<br>96 | 238554<br>680554   | 120.0          | 119.5     | IVI   |
| 79 4-Chloro-3-methylphenol 82 2-Methylnaphthalene | 142     | 7.999<br>8.149 | 7.969<br>8.144 | 0.010          | 90<br>97 |                    | 120.0          | 113.8     |       |
| <b>J</b> .                                        |         |                |                |                | 100      | 1423466<br>1340962 |                | 113.8     |       |
| 83 1-Methylnaphthalene                            | 142     | 8.261<br>8.347 | 8.261<br>8.347 | 0.000          | 95       | 670396             | 120.0<br>120.0 | 112.7     |       |
| 84 Hexachlorocyclopentadiene                      | 237     |                |                | 0.005          |          |                    |                |           |       |
| 85 1,2,4,5-Tetrachlorobenzene                     | 216     | 8.352          | 8.347          |                | 96<br>04 | 830066             | 120.0          | 119.2     |       |
| 86 2,4,6-Trichlorophenol                          | 196     | 8.485          | 8.486          | -0.001         | 94       | 535555             | 120.0          | 122.1     |       |
| 87 2,4,5-Trichlorophenol                          | 196     | 8.528          | 8.523          | 0.005          | 95       | 560818             | 120.0          | 119.6     |       |
| 90 1,1'-Biphenyl                                  | 154     | 8.699          | 8.694          | 0.005          | 99       | 1736870            | 120.0          | 116.3     |       |
| 91 2-Chloronaphthalene                            | 162     | 8.715          | 8.710          | 0.005          | 99       | 1382801            | 120.0          | 117.0     |       |
| 93 2-Nitroaniline                                 | 65      | 8.843          | 8.833          | 0.010          | 93       | 454413             | 120.0          | 122.8     |       |
| 96 Dimethyl phthalate                             | 163     | 9.078          | 9.063          | 0.015          | 99       | 1615576            | 120.0          | 120.8     |       |
| 97 1,3-Dinitrobenzene                             | 168     | 9.089          | 9.079          | 0.010          | 91       | 309019             | 120.0          | 118.2     |       |
| 99 2,6-Dinitrotoluene                             | 165     | 9.132          | 9.121          | 0.011          | 89       | 389105             | 120.0          | 120.9     |       |
| 100 Acenaphthylene                                | 152     | 9.196          | 9.185          | 0.011          | 100      | 2052693            | 120.0          | 121.5     |       |
| 101 3-Nitroaniline                                | 138     | 9.324          | 9.314          | 0.010          | 97       | 401693             | 120.0          | 120.1     |       |
| 102 Acenaphthene                                  | 153     | 9.399          | 9.394          | 0.005          | 96       | 1362662            | 120.0          | 119.5     |       |
| 103 2,4-Dinitrophenol                             | 184     | 9.447          | 9.431          | 0.016          | 87       | 584994             | 240.0          | 243.8     |       |
| 104 4-Nitrophenol                                 | 109     | 9.549          | 9.527          | 0.022          | 92       | 579663             | 240.0          | 243.5     |       |
| 106 2,4-Dinitrotoluene                            | 165     | 9.597          | 9.586          | 0.011          | 96       | 534124             | 120.0          | 122.1     |       |
| 107 Dibenzofuran                                  | 168     | 9.602          | 9.597          | 0.005          | 97       | 2037011            | 120.0          | 117.8     |       |
| 110 2,3,4,6-Tetrachlorophenol                     | 232     | 9.752          | 9.746          | 0.006          | 95       | 500288             | 120.0          | 122.0     |       |
| 112 Diethyl phthalate                             | 149     | 9.896          | 9.885          | 0.011          | 100      | 1611395            | 120.0          | 120.6     |       |
| 138 Hexadecane                                    | 57      | 9.933          | 9.923          | 0.010          | 95       | 852475             | 120.0          | 118.5     |       |
| 115 Fluorene                                      | 166     | 9.992          | 9.981          | 0.011          | 99       | 1584476            | 120.0          | 118.6     |       |
| 116 4-Chlorophenyl phenyl ethe                    | 204     | 10.003         | 9.992          | 0.011          | 96       | 892876             | 120.0          | 118.3     |       |
| 118 4-Nitroaniline                                | 138     | 10.035         | 10.014         | 0.021          | 89       | 411114             | 120.0          | 120.4     |       |
| 119 4,6-Dinitro-2-methylphenol                    | 198     | 10.067         | 10.046         | 0.021          | 96       | 660918             | 240.0          | 246.7     |       |
| 120 N-Nitrosodiphenylamine                        | 169     | 10.136         | 10.126         | 0.010          | 97       | 1191207            | 120.0          | 120.8     |       |
| 121 Diphenylamine                                 | 169     | 10.136         | 10.126         | 0.010          | 98       | 1191207            | 102.6          | 103.3     |       |
| 123 1,2-Diphenylhydrazine                         | 77      | 10.174         | 10.168         | 0.006          | 99       | 1670334            | 120.0          | 120.9     |       |
| 122 Azobenzene                                    | 77      | 10.174         | 10.168         | 0.006          | 95       | 1670334            | 120.0          | 120.9     |       |
| 130 4-Bromophenyl phenyl ether                    | 248     | 10.521         | 10.516         | 0.005          | 96       | 538286             | 120.0          | 124.1     |       |
| 131 Hexachlorobenzene                             | 284     | 10.585         | 10.580         | 0.005          | 97       | 532181             | 120.0          | 120.0     |       |
| 133 Atrazine                                      | 200     | 10.713         | 10.703         | 0.010          | 94       | 450450             | 120.0          | 115.8     |       |
| 134 Pentachlorophenol                             | 266     | 10.788         | 10.783         | 0.005          | 97       | 746134             | 240.0          | 243.1     |       |
| 113 n-Octadecane                                  | 57      | 10.700         | 10.705         | 0.005          | 93       | 852491             | 120.0          | 115.0     |       |
| 141 Phenanthrene                                  | 178     | 10.991         | 10.986         | 0.005          | 99       | 2290868            | 120.0          | 118.1     |       |
| 142 Anthracene                                    | 178     | 11.044         | 11.034         | 0.000          | 100      | 2391587            | 120.0          | 120.0     |       |
| 172 AIRII ACCITO                                  | 170     | 11.044         | 11.034         | 0.010          | 100      | 23/130/            | 120.0          | 120.0     |       |

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Report Date: 03-Oct-2017 11:56:30

Data File: 

|                                |     | RT     | Adj RT | Dlt RT |     |          | Cal Amt | OnCol Amt |       |
|--------------------------------|-----|--------|--------|--------|-----|----------|---------|-----------|-------|
| Compound                       | Sig | (min.) | (min.) | (min.) | Q   | Response | ng/uL   | ng/uL     | Flags |
|                                |     |        |        |        |     |          |         |           | _     |
| 143 Carbazole                  | 167 | 11.205 | 11.194 | 0.011  | 99  | 2173617  | 120.0   | 119.6     |       |
| 145 Di-n-butyl phthalate       | 149 | 11.552 | 11.547 | 0.005  | 100 | 2560080  | 120.0   | 118.5     |       |
| 152 Fluoranthene               | 202 | 12.091 | 12.097 | -0.006 | 99  | 2650881  | 120.0   | 118.6     |       |
| 154 Benzidine                  | 184 | 12.209 | 12.220 | -0.011 | 100 | 1467718  | 120.0   | 115.3     |       |
| 155 Pyrene                     | 202 | 12.284 | 12.295 | -0.011 | 99  | 2707171  | 120.0   | 113.9     | M     |
| 162 Butyl benzyl phthalate     | 149 | 12.834 | 12.856 | -0.022 | 99  | 1203914  | 120.0   | 117.2     |       |
| 166 3,3'-Dichlorobenzidine     | 252 | 13.283 | 13.304 | -0.021 | 86  | 1122560  | 120.0   | 120.0     |       |
| 167 Benzo[a]anthracene         | 228 | 13.304 | 13.326 | -0.022 | 96  | 2810670  | 120.0   | 117.6     |       |
| 172 Bis(2-ethylhexyl) phthalat | 149 | 13.320 | 13.342 | -0.022 | 95  | 1734937  | 120.0   | 117.0     |       |
| 169 Chrysene                   | 228 | 13.336 | 13.358 | -0.022 | 99  | 2653885  | 120.0   | 114.9     |       |
| 168 Di-n-octyl phthalate       | 149 | 13.838 | 13.865 | -0.027 | 100 | 2862181  | 120.0   | 116.5     |       |
| 174 Benzo[b]fluoranthene       | 252 | 14.164 | 14.196 | -0.032 | 99  | 2910211  | 120.0   | 122.2     |       |
| 175 Benzo[k]fluoranthene       | 252 | 14.186 | 14.218 | -0.032 | 99  | 2834892  | 120.0   | 111.5     | M     |
| 177 Benzo[a]pyrene             | 252 | 14.415 | 14.458 | -0.043 | 100 | 2753560  | 120.0   | 118.9     | M     |
| 180 Indeno[1,2,3-cd]pyrene     | 276 | 15.372 | 15.436 | -0.064 | 92  | 3156558  | 120.0   | 120.0     | M     |
| 181 Dibenz(a,h)anthracene      | 278 | 15.377 | 15.441 | -0.064 | 95  | 2668060  | 120.0   | 119.6     | M     |
| 182 Benzo[g,h,i]perylene       | 276 | 15.628 | 15.703 | -0.075 | 100 | 2689570  | 120.0   | 120.1     | M     |
| S 238 3-Methylphenol           | 1   |        |        |        | 0   |          |         | 125.4     |       |
| S 237 Total Cresols            | 1   |        |        |        | 0   |          |         | 247.6     |       |
| S 236 3 & 4 Methylphenol       | 108 |        |        |        | 0   |          |         | 125.4     |       |

# QC Flag Legend Review Flags

M - Manually Integrated

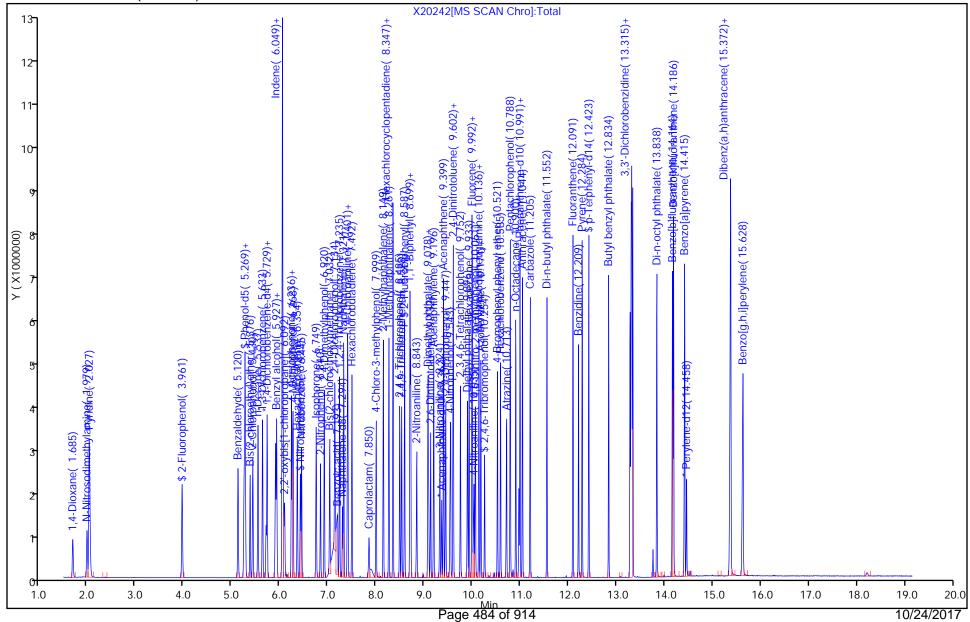
## Reagents:

MB\_LIST1\_WRK\_00518 Units: mL Amount Added: 1.00

MB\_INTSTD\_STK\_00039 Amount Added: 20.00 Units: uL Run Reagent Report Date: 03-Oct-2017 11:56:30 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D Injection Date: 29-Sep-2017 21:44:30 Instrument ID: HP5973X


Lims ID: IC - List1 120

Client ID:

Injection Vol: 1.0 ul Dil. Factor:

Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



1.0000

DR

8

8

Operator ID:

ALS Bottle#:

Worklist Smp#:

Report Date: 03-Oct-2017 11:56:30 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D Injection Date: 29-Sep-2017 21:44:30 Instrument ID: HP5973X

Lims ID: IC - List1 120

Client ID:

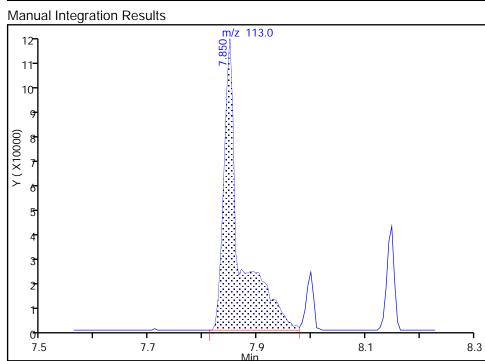
Operator ID: DR ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN

### 78 Caprolactam, CAS: 105-60-2


Signal: 1

RT: 7.85
Area: 162157
Amount: 91.604375
Amount Units: ng/uL





RT: 7.85
Area: 238554
Amount: 119.4500
Amount Units: ng/uL



Reviewer: pagem, 02-Oct-2017 10:28:32 Audit Action: Split an Integrated Peak

Audit Reason: Split Peak

Page 485 of 914

Report Date: 03-Oct-2017 11:56:30 Chrom Revision: 2.2 16

Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

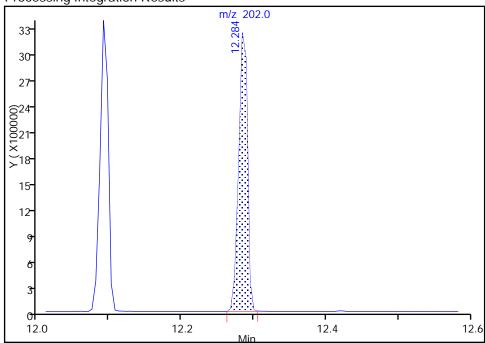
Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D Injection Date: 29-Sep-2017 21:44:30 Instrument ID: HP5973X

Lims ID: IC - List1 120

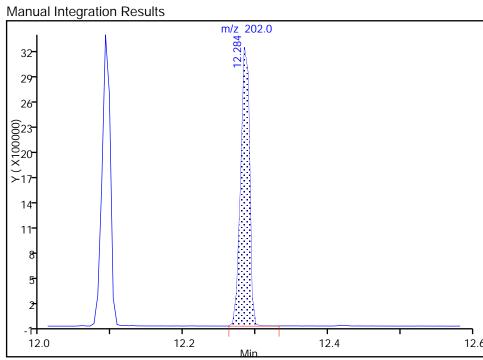
Client ID:

Operator ID: DR ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 1.0 ul Dil. Factor: 1.0000


Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN


#### 155 Pyrene, CAS: 129-00-0

Signal: 1

RT: 12.28 Area: 2701570 Amount: 113.6495 Amount Units: ng/uL **Processing Integration Results** 



RT: 12.28 Area: 2707171 Amount: 113.8851 Amount Units: ng/uL



Reviewer: richardsd, 03-Oct-2017 11:45:06

Audit Action: Manually Integrated

Audit Reason: Peak Tail

Page 486 of 914

TestAmerica Buffalo

Data File: Injection Date: 29-Sep-2017 21:44:30 Instrument ID: HP5973X

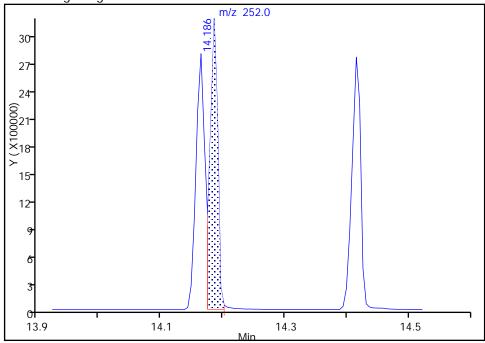
IC - List1 120 Lims ID:

Client ID:

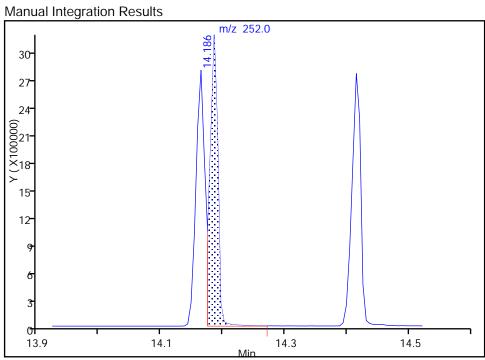
Operator ID: DR ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL


Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

### 175 Benzo[k]fluoranthene, CAS: 207-08-9


Signal: 1

RT: 14.19 Area: 2786510 Amount: 111.4493 Amount Units: ng/uL





RT: 14.19 2834892 Area: 111.5019 Amount: Amount Units: ng/uL



Reviewer: richardsd, 03-Oct-2017 11:40:54

Audit Action: Manually Integrated

Audit Reason: Baseline

Page 487 of 914

TestAmerica Buffalo

Data File: Injection Date: 29-Sep-2017 21:44:30 Instrument ID: HP5973X

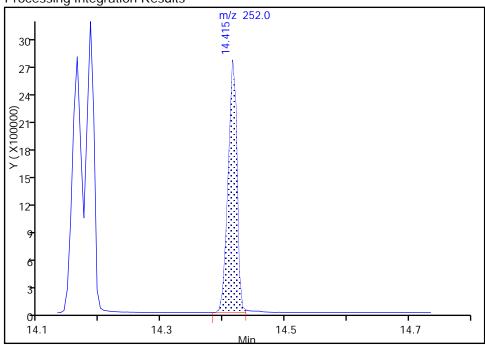
IC - List1 120 Lims ID:

Client ID:

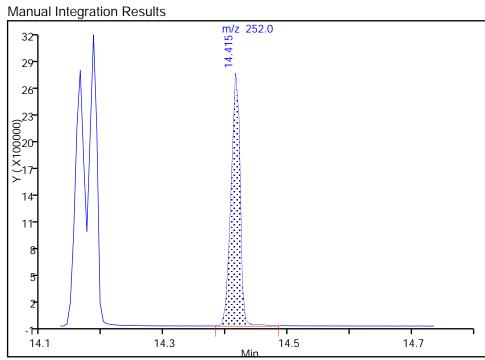
Operator ID: DR ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL


Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

#### 177 Benzo[a]pyrene, CAS: 50-32-8


Signal: 1

RT: 14.42 Area: 2713395 Amount: 118.7756 Amount Units: ng/uL





RT: 14.42 Area: 2753560 118.9326 Amount: Amount Units: ng/uL



Reviewer: richardsd, 03-Oct-2017 11:40:25

Audit Action: Manually Integrated

Audit Reason: Baseline

Page 488 of 914

Report Date: 03-Oct-2017 11:56:30 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

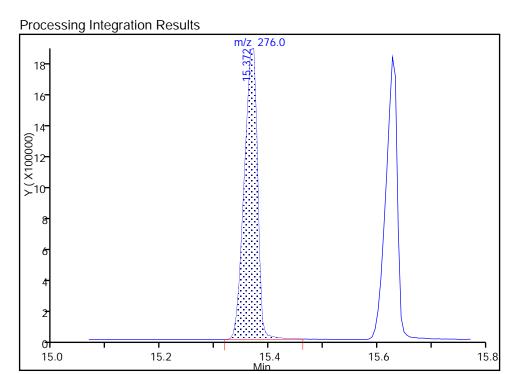
Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D Injection Date: 29-Sep-2017 21:44:30 Instrument ID: HP5973X

Lims ID: IC - List1 120

Client ID:

Operator ID: DR ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 1.0 ul Dil. Factor: 1.0000


Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN

# 180 Indeno[1,2,3-cd]pyrene, CAS: 193-39-5

Signal: 1

RT: 15.37 Area: 3146497 Amount: 119.5850 Amount Units: ng/uL



RT: 15.37 Area: 3156558 Amount: 119.9773 Amount Units: ng/uL



Reviewer: richardsd, 03-Oct-2017 11:39:37

Audit Action: Manually Integrated

Audit Reason: Peak Tail

Page 489 of 914

Report Date: 03-Oct-2017 11:56:30 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

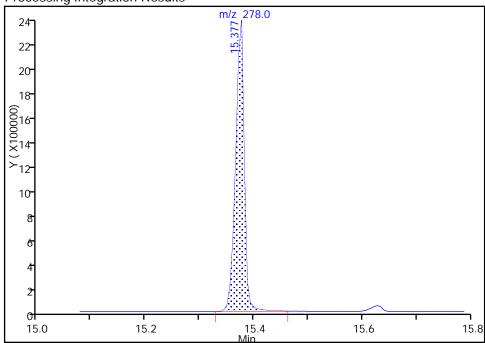
Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D Injection Date: 29-Sep-2017 21:44:30 Instrument ID: HP5973X

Lims ID: IC - List1 120

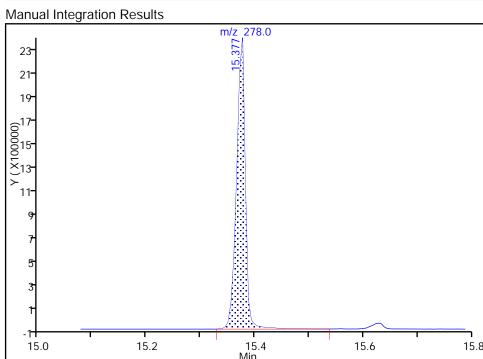
Client ID:

Operator ID: DR ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 1.0 ul Dil. Factor: 1.0000


Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN


### 181 Dibenz(a,h)anthracene, CAS: 53-70-3

Signal: 1

RT: 15.38 Area: 2654977 Amount: 118.8168 Amount Units: ng/uL **Processing Integration Results** 



RT: 15.38
Area: 2668060
Amount: 119.6112
Amount Units: ng/uL



Reviewer: richardsd, 03-Oct-2017 11:36:41

Audit Action: Manually Integrated

Audit Reason: Peak Tail

Page 490 of 914

Report Date: 03-Oct-2017 11:56:31 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D Injection Date: 29-Sep-2017 21:44:30 Instrument ID: HP5973X

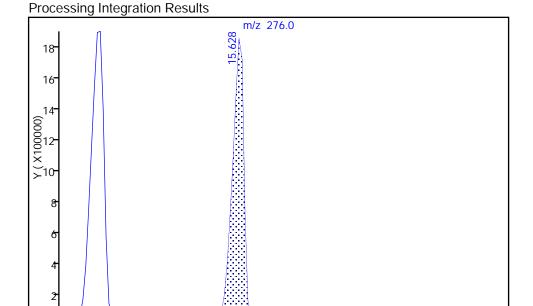
Lims ID: IC - List1 120

Client ID:

Operator ID: DR ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 1.0 ul Dil. Factor: 1.0000

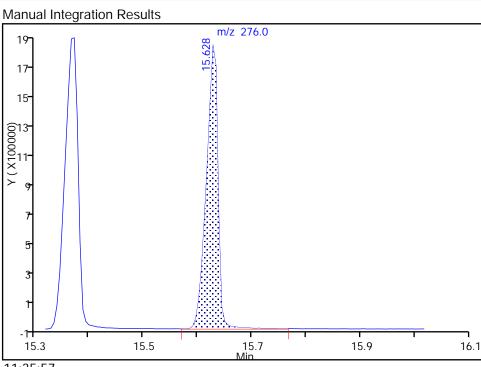
15.3


Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN

# 182 Benzo[g,h,i]perylene, CAS: 191-24-2

Signal: 1


RT: 15.63 Area: 2652474 Amount: 118.7217 Amount Units: ng/uL



15.7

15.9

RT: 15.63
Area: 2689570
Amount: 120.0821
Amount Units: ng/uL



Reviewer: richardsd, 03-Oct-2017 11:35:57

Audit Action: Manually Integrated

Audit Reason: Baseline

Page 491 of 914

15.5

16.1

Lab Name: TestAmerica Buffalo

SDG No.:

Lab Sample ID (1): CCVIS 480-381534/3

Instrument ID (1): HP5973X

GC Column (1): RXI-5Sil MS ID: 0.25(mm) Date Analyzed (1): 10/13/2017 00:32

| ANALYTE                       | RT   | RESOLUTION (%) |
|-------------------------------|------|----------------|
| 2-Fluorophenol                | 3.84 | 100.0          |
| Benzaldehyde                  | 5.01 | 100.0          |
| Phenol-d5                     | 5.15 | 100.0          |
| Phenol                        | 5.17 | 100.0          |
| Bis(2-chloroethyl)ether       | 5.26 | 100.0          |
| 2-Chlorophenol                | 5.31 | 100.0          |
| 2-Methylphenol                | 5.92 | 100.0          |
| bis (2-chloroisopropyl) ether | 5.94 | 100.0          |
| Acetophenone                  | 6.08 | 100.0          |
| N-Nitrosodi-n-propylamine     | 6.10 | 100.0          |
| 4-Methylphenol                | 6.12 | 100.0          |
| Hexachloroethane              | 6.20 | 100.0          |
| Nitrobenzene-d5               | 6.26 | 100.0          |
| Nitrobenzene                  | 6.28 | 100.0          |
| Isophorone                    | 6.58 | 100.0          |
| 2-Nitrophenol                 | 6.67 | 100.0          |
| 2,4-Dimethylphenol            | 6.76 | 100.0          |
| Bis (2-chloroethoxy) methane  | 6.86 | 100.0          |
| 2,4-Dichlorophenol            | 6.97 | 100.0          |
| Naphthalene                   | 7.14 | 100.0          |
| 4-Chloroaniline               | 7.23 | 100.0          |
| Hexachlorobutadiene           | 7.31 | 100.0          |
| Caprolactam                   | 7.64 | 100.0          |
| 4-Chloro-3-methylphenol       | 7.83 | 100.0          |
| 2-Methylnaphthalene           | 7.97 | 100.0          |
| Hexachlorocyclopentadiene     | 8.17 | 100.0          |
| 2,4,6-Trichlorophenol         | 8.31 | 100.0          |
| 2,4,5-Trichlorophenol         | 8.36 | 100.0          |
| 2-Fluorobiphenyl              | 8.41 | 100.0          |
| Biphenyl                      | 8.52 | 100.0          |
| 2-Chloronaphthalene           | 8.53 | 100.0          |
| 2-Nitroaniline                | 8.67 | 100.0          |
| Dimethyl phthalate            | 8.90 | 100.0          |
| 2,6-Dinitrotoluene            | 8.96 | 100.0          |
| Acenaphthylene                | 9.01 | 100.0          |
| 3-Nitroaniline                | 9.15 | 100.0          |
| Acenaphthene                  | 9.22 | 100.0          |
| 2,4-Dinitrophenol             | 9.27 | 100.0          |
| 4-Nitrophenol                 | 9.38 | 100.0          |
| 2,4-Dinitrotoluene            | 9.42 | 100.0          |
| Dibenzofuran                  | 9.42 | 100.0          |
| Diethyl phthalate             | 9.73 | 100.0          |
| Fluorene                      | 9.82 | 100.0          |
| 4-Chlorophenyl phenyl ether   | 9.84 | 100.0          |
| 4-Nitroaniline                | 9.86 | 100.0          |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

GC Column (1): RXI-5Sil MS | ID: 0.25(mm) | Date Analyzed (1): 10/13/2017 | 00:32

| ANALYTE                     | RT    | RESOLUTION (%) |
|-----------------------------|-------|----------------|
| 4,6-Dinitro-2-methylphenol  | 9.89  | 100.0          |
| N-Nitrosodiphenylamine      | 9.97  | 100.0          |
| 2,4,6-Tribromophenol        | 10.09 | 100.0          |
| 4-Bromophenyl phenyl ether  | 10.36 | 100.0          |
| Hexachlorobenzene           | 10.43 | 100.0          |
| Atrazine                    | 10.56 | 100.0          |
| Pentachlorophenol           | 10.64 | 100.0          |
| Phenanthrene                | 10.84 | 100.0          |
| Anthracene                  | 10.89 | 100.0          |
| Carbazole                   | 11.06 | 100.0          |
| Di-n-butyl phthalate        | 11.42 | 100.0          |
| Fluoranthene                | 11.97 | 100.0          |
| Pyrene                      | 12.17 | 100.0          |
| p-Terphenyl-d14             | 12.31 | 100.0          |
| Butyl benzyl phthalate      | 12.74 | 100.0          |
| 3,3'-Dichlorobenzidine      | 13.18 | 100.0          |
| Benzo[a]anthracene          | 13.20 | 100.0          |
| Bis(2-ethylhexyl) phthalate | 13.23 | 100.0          |
| Chrysene                    | 13.23 | 100.0          |
| Di-n-octyl phthalate        | 13.75 | 100.0          |
| Benzo[b]fluoranthene        | 14.07 | 32.00          |
| Benzo[k]fluoranthene        | 14.09 | 100.0          |
| Benzo[a]pyrene              | 14.32 | 100.0          |
| Indeno[1,2,3-cd]pyrene      | 15.25 | 100.0          |
| Dibenz(a,h)anthracene       | 15.26 | 100.0          |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

GC Column (1): RXI-5Sil MS(0 ID: 0.25(mm) Date Analyzed (1): 10/16/2017 18:27

| ANALYTE                       | RT    | RESOLUTION (%) |
|-------------------------------|-------|----------------|
| 2-Fluorophenol                | 5.10  | 100.0          |
| Benzaldehyde                  | 6.17  | 100.0          |
| Phenol-d5                     | 6.23  | 100.0          |
| Phenol                        | 6.24  | 100.0          |
| Bis(2-chloroethyl)ether       | 6.36  | 100.0          |
| 2-Chlorophenol                | 6.46  | 100.0          |
| 2-Methylphenol                | 6.98  | 100.0          |
| bis (2-chloroisopropyl) ether | 7.01  | 100.0          |
| 4-Methylphenol                | 7.15  | 100.0          |
| N-Nitrosodi-n-propylamine     | 7.16  | 100.0          |
| Acetophenone                  | 7.17  | 100.0          |
| Hexachloroethane              | 7.33  | 100.0          |
| Nitrobenzene-d5               | 7.36  | 100.0          |
| Nitrobenzene                  | 7.38  | 100.0          |
| Isophorone                    | 7.65  | 100.0          |
| 2-Nitrophenol                 | 7.76  | 100.0          |
| 2,4-Dimethylphenol            | 7.79  | 100.0          |
| Bis(2-chloroethoxy)methane    | 7.90  | 100.0          |
| 2,4-Dichlorophenol            | 8.04  | 100.0          |
| Naphthalene                   | 8.25  | 100.0          |
| 4-Chloroaniline               | 8.29  | 100.0          |
| Hexachlorobutadiene           | 8.40  | 100.0          |
| Caprolactam                   | 8.68  | 100.0          |
| 4-Chloro-3-methylphenol       | 8.85  | 100.0          |
| 2-Methylnaphthalene           | 9.07  | 100.0          |
| Hexachlorocyclopentadiene     | 9.27  | 100.0          |
| 2,4,6-Trichlorophenol         | 9.40  | 100.0          |
| 2,4,5-Trichlorophenol         | 9.44  | 100.0          |
| 2-Fluorobiphenyl              | 9.49  | 100.0          |
| Biphenyl                      | 9.62  | 100.0          |
| 2-Chloronaphthalene           | 9.65  | 100.0          |
| 2-Nitroaniline                | 9.75  | 100.0          |
| Dimethyl phthalate            | 9.95  | 100.0          |
| 2,6-Dinitrotoluene            | 10.02 | 100.0          |
| Acenaphthylene                | 10.13 | 100.0          |
| 3-Nitroaniline                | 10.21 | 100.0          |
| 2,4-Dinitrophenol             | 10.33 | 100.0          |
| Acenaphthene                  | 10.33 | 100.0          |
| 4-Nitrophenol                 | 10.38 | 100.0          |
| 2,4-Dinitrotoluene            | 10.47 | 100.0          |
| Dibenzofuran                  | 10.51 | 100.0          |
| Diethyl phthalate             | 10.72 | 100.0          |
| 4-Chlorophenyl phenyl ether   | 10.86 | 100.0          |
| 4-Nitroaniline                | 10.87 | 100.0          |
| Fluorene                      | 10.88 | 100.0          |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

GC Column (1): RXI-5Sil MS(0 ID: 0.25(mm) Date Analyzed (1): 10/16/2017 18:27

| ANALYTE                     | RT    | RESOLUTION (%) |
|-----------------------------|-------|----------------|
| 4,6-Dinitro-2-methylphenol  | 10.91 | 100.0          |
| N-Nitrosodiphenylamine      | 10.98 | 100.0          |
| 2,4,6-Tribromophenol        | 11.12 | 100.0          |
| 4-Bromophenyl phenyl ether  | 11.36 | 100.0          |
| Hexachlorobenzene           | 11.45 | 100.0          |
| Atrazine                    | 11.49 | 100.0          |
| Pentachlorophenol           | 11.63 | 100.0          |
| Phenanthrene                | 11.83 | 100.0          |
| Anthracene                  | 11.88 | 100.0          |
| Carbazole                   | 12.01 | 100.0          |
| Di-n-butyl phthalate        | 12.29 | 100.0          |
| Fluoranthene                | 12.92 | 100.0          |
| Pyrene                      | 13.13 | 100.0          |
| p-Terphenyl-d14             | 13.22 | 100.0          |
| Butyl benzyl phthalate      | 13.62 | 100.0          |
| Bis(2-ethylhexyl) phthalate | 14.10 | 100.0          |
| 3,3'-Dichlorobenzidine      | 14.12 | 100.0          |
| Benzo[a]anthracene          | 14.18 | 100.0          |
| Chrysene                    | 14.22 | 100.0          |
| Di-n-octyl phthalate        | 14.67 | 100.0          |
| Benzo[b]fluoranthene        | 15.24 | 35.10          |
| Benzo[k]fluoranthene        | 15.27 | 100.0          |
| Benzo[a]pyrene              | 15.63 | 100.0          |
| Indeno[1,2,3-cd]pyrene      | 17.18 | 100.0          |
| Dibenz(a,h)anthracene       | 17.18 | 100.0          |

# FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: CCVIS 480-382085/3 Calibration Date: 10/16/2017 18:27

Instrument ID: HP5973U Calib Start Date: 10/16/2017 12:07

GC Column: RXI-5Sil MS(0.5 ID: 0.25 (mm) Calib End Date: 10/16/2017 14:19

Lab File ID: U328227.D Conc. Units: ug/L

| ANALYTE                       | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D   | MAX<br>%D |
|-------------------------------|---------------|---------|--------|---------|----------------|-----------------|------|-----------|
| 1,4-Dioxane                   | Ave           | 0.4494  | 0.4190 | 0.0100  | 46600          | 50000           | -6.8 | 20.0      |
| N-Nitrosodimethylamine        | Lin1          |         | 0.6797 | 0.0100  | 54400          | 50000           | 8.8  | 50.0      |
| Pyridine                      | Lin1          |         | 0.9723 | 0.0100  | 103000         | 100000          | 2.5  | 50.0      |
| Benzaldehyde                  | Ave           | 0.7141  | 0.7306 | 0.0100  | 51200          | 50000           | 2.3  | 50.0      |
| Phenol                        | Ave           | 1.185   | 1.164  | 0.8000  | 49100          | 50000           | -1.8 | 20.0      |
| Aniline                       | Ave           | 1.505   | 1.477  | 0.0100  | 49100          | 50000           | -1.8 | 20.0      |
| Bis(2-chloroethyl)ether       | Ave           | 0.9103  | 0.8725 | 0.7000  | 47900          | 50000           | -4.2 | 20.0      |
| 2-Chlorophenol                | Ave           | 1.163   | 1.159  | 0.8000  | 49900          | 50000           | -0.3 | 20.0      |
| n-Decane                      | Ave           | 1.106   | 1.141  | 0.0100  | 51600          | 50000           | 3.1  | 20.0      |
| 1,3-Dichlorobenzene           | Ave           | 1.420   | 1.392  | 0.0100  | 49000          | 50000           | -2.0 | 20.0      |
| 1,4-Dichlorobenzene           | Ave           | 1.448   | 1.476  | 0.0100  | 50900          | 50000           | 1.9  | 20.0      |
| Benzyl alcohol                | Lin1          |         | 0.7079 | 0.0100  | 51000          | 50000           | 1.9  | 20.0      |
| 1,2-Dichlorobenzene           | Ave           | 1.352   | 1.342  | 0.0100  | 49600          | 50000           | -0.7 | 20.0      |
| 2-Methylphenol                | Ave           | 0.9562  | 0.9867 | 0.7000  | 51600          | 50000           | 3.2  | 20.0      |
| bis (2-chloroisopropyl) ether | Ave           | 1.278   | 1.371  | 0.0100  | 53700          | 50000           | 7.3  | 20.0      |
| Indene                        | Ave           | 1.930   | 1.920  | 0.0100  | 149000         | 150000          | -0.5 | 20.0      |
| 4-Methylphenol                | Ave           | 1.000   | 1.046  | 0.6000  | 52300          | 50000           | 4.6  | 20.0      |
| N-Nitrosodi-n-propylamine     | Ave           | 0.6750  | 0.6385 | 0.5000  | 47300          | 50000           | -5.4 | 20.0      |
| Acetophenone                  | Lin1          |         | 1.479  | 0.0100  | 48700          | 50000           | -2.6 | 20.0      |
| Hexachloroethane              | Ave           | 0.5351  | 0.5461 | 0.3000  | 51000          | 50000           | 2.1  | 20.0      |
| Nitrobenzene                  | Ave           | 0.3172  | 0.3254 | 0.2000  | 51300          | 50000           | 2.6  | 20.0      |
| Isophorone                    | Ave           | 0.5335  | 0.5180 | 0.4000  | 48500          | 50000           | -2.9 | 20.0      |
| 2-Nitrophenol                 | Lin1          |         | 0.2073 | 0.1000  | 52300          | 50000           | 4.6  | 20.0      |
| 2,4-Dimethylphenol            | Ave           | 0.3576  | 0.3421 | 0.2000  | 47800          | 50000           | -4.4 | 20.0      |
| Bis(2-chloroethoxy)methane    | Ave           | 0.3223  | 0.3194 | 0.3000  | 49500          | 50000           | -0.9 | 20.0      |
| Benzoic acid                  | Lin1          |         | 0.2088 | 0.0100  | 137000         | 150000          | -8.7 | 50.0      |
| 2,4-Dichlorophenol            | Lin1          |         | 0.3283 | 0.2000  | 50100          | 50000           | 0.1  | 20.0      |
| 1,2,4-Trichlorobenzene        | Ave           | 0.3860  | 0.3891 | 0.0100  | 50400          | 50000           | 0.8  | 20.0      |
| Naphthalene                   | Ave           | 0.9398  | 0.9478 | 0.7000  | 50400          | 50000           | 0.9  | 20.0      |
| 4-Chloroaniline               | Ave           | 0.3973  | 0.4030 | 0.0100  | 50700          | 50000           | 1.4  | 20.0      |
| 2,6-Dichlorophenol            | Ave           | 0.3180  | 0.3225 | 0.0100  | 50700          | 50000           | 1.4  | 20.0      |
| Hexachlorobutadiene           | Ave           | 0.3142  | 0.3241 | 0.0100  | 51600          | 50000           | 3.2  | 20.0      |
| Caprolactam                   | Lin1          |         | 0.0853 | 0.0100  | 49400          | 50000           | -1.3 | 50.0      |
| 4-Chloro-3-methylphenol       | Lin1          |         | 0.2958 | 0.2000  | 51700          | 50000           | 3.4  | 20.0      |
| 2-Methylnaphthalene           | Ave           | 0.7033  | 0.7348 | 0.4000  | 52200          | 50000           | 4.5  | 20.0      |
| 1-Methylnaphthalene           | Ave           | 0.6650  | 0.6863 | 0.0100  | 51600          | 50000           | 3.2  | 20.0      |
| Hexachlorocyclopentadiene     | Lin1          |         | 0.7273 | 0.0500  | 47700          | 50000           | -4.6 | 20.0      |
| 1,2,4,5-Tetrachlorobenzene    | Ave           | 0.8503  | 0.7945 | 0.0100  | 46700          | 50000           | -6.6 | 20.0      |
| 2,4,6-Trichlorophenol         | Lin1          |         | 0.4758 | 0.2000  | 46700          | 50000           | -6.6 | 20.0      |
| 2,4,5-Trichlorophenol         | Lin1          |         | 0.5312 | 0.2000  | 49200          | 50000           | -1.6 | 20.0      |

# FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: CCVIS 480-382085/3 Calibration Date: 10/16/2017 18:27

Instrument ID: HP5973U Calib Start Date: 10/16/2017 12:07

GC Column: RXI-5Sil MS(0.5 ID: 0.25 (mm) Calib End Date: 10/16/2017 14:19

Lab File ID: U328227.D Conc. Units: ug/L

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D   | MAX<br>%D |
|-----------------------------|---------------|---------|--------|---------|----------------|-----------------|------|-----------|
| Biphenyl                    | Ave           | 1.719   | 1.676  | 0.0100  | 48700          | 50000           | -2.5 | 20.0      |
| 2-Chloronaphthalene         | Ave           | 1.338   | 1.279  | 0.8000  | 47800          | 50000           | -4.4 | 20.0      |
| 2-Nitroaniline              | Lin1          |         | 0.3134 | 0.0100  | 46800          | 50000           | -6.4 | 20.0      |
| Dimethyl phthalate          | Ave           | 1.552   | 1.561  | 0.0100  | 50300          | 50000           | 0.6  | 20.0      |
| 1,3-Dinitrobenzene          | Lin1          |         | 0.1529 | 0.0100  | 53300          | 50000           | 6.5  | 20.0      |
| 2,6-Dinitrotoluene          | Lin1          |         | 0.3556 | 0.2000  | 50000          | 50000           | -0.0 | 20.0      |
| Acenaphthylene              | Ave           | 1.958   | 1.952  | 0.9000  | 49800          | 50000           | -0.4 | 20.0      |
| 3-Nitroaniline              | Lin1          |         | 0.3657 | 0.0100  | 50400          | 50000           | 0.7  | 20.0      |
| 2,4-Dinitrophenol           | Lin1          |         | 0.2505 | 0.0100  | 91700          | 100000          | -8.3 | 20.0      |
| Acenaphthene                | Ave           | 1.367   | 1.322  | 0.0100  | 48400          | 50000           | -3.2 | 20.0      |
| 4-Nitrophenol               | Lin1          |         | 0.3285 | 0.0100  | 102000         | 100000          | 2.2  | 20.0      |
| 2,4-Dinitrotoluene          | Lin1          |         | 0.4926 | 0.0100  | 51400          | 50000           | 2.8  | 20.0      |
| Dibenzofuran                | Ave           | 1.995   | 1.966  | 0.8000  | 49300          | 50000           | -1.4 | 20.0      |
| 2,3,4,6-Tetrachlorophenol   | Lin1          |         | 0.5157 | 0.0100  | 48700          | 50000           | -2.5 | 20.0      |
| Diethyl phthalate           | Ave           | 1.666   | 1.685  | 0.0100  | 50600          | 50000           | 1.2  | 20.0      |
| Hexadecane                  | Ave           | 0.7299  | 0.6993 | 0.0100  | 47900          | 50000           | -4.2 | 20.0      |
| 4-Chlorophenyl phenyl ether | Ave           | 0.9155  | 0.9062 | 0.4000  | 49500          | 50000           | -1.0 | 20.0      |
| 4-Nitroaniline              | Lin1          |         | 0.3957 | 0.0100  | 50500          | 50000           | 1.0  | 20.0      |
| Fluorene                    | Ave           | 1.612   | 1.582  | 0.9000  | 49100          | 50000           | -1.8 | 20.0      |
| 4,6-Dinitro-2-methylphenol  | Lin1          |         | 0.1377 | 0.0100  | 99100          | 100000          | -0.9 | 20.0      |
| Diphenylamine               | Ave           | 0.6155  | 0.6197 | 0.0100  | 43000          | 42800           | 0.7  | 20.0      |
| N-Nitrosodiphenylamine      | Ave           | 0.5262  | 0.5299 | 0.0100  | 50300          | 50000           | 0.7  | 20.0      |
| 1,2-Diphenylhydrazine       | Ave           | 0.5564  | 0.5557 | 0.0100  | 49900          | 50000           | -0.1 | 20.0      |
| trans-Azobenzene            | Ave           | 0.5564  | 0.5557 | 0.0100  | 49900          | 50000           | -0.1 | 20.0      |
| 4-Bromophenyl phenyl ether  | Lin1          |         | 0.2863 | 0.1000  | 50800          | 50000           | 1.7  | 20.0      |
| Hexachlorobenzene           | Ave           | 0.3414  | 0.3500 | 0.1000  | 51300          | 50000           | 2.5  | 20.0      |
| Atrazine                    | Ave           | 0.4869  | 0.5106 | 0.0100  | 52400          | 50000           | 4.9  | 20.0      |
| Pentachlorophenol           | Lin1          |         | 0.1836 | 0.0500  | 98300          | 100000          | -1.7 | 20.0      |
| n-Octadecane                | Ave           | 0.3389  | 0.3401 | 0.0100  | 50200          | 50000           | 0.3  | 20.0      |
| Phenanthrene                | Ave           | 1.036   | 1.057  | 0.7000  | 51000          | 50000           | 2.0  | 20.0      |
| Anthracene                  | Ave           | 1.071   | 1.105  | 0.7000  | 51600          | 50000           | 3.2  | 20.0      |
| Carbazole                   | Ave           | 0.9734  | 1.001  | 0.0100  | 51400          | 50000           | 2.9  | 20.0      |
| Di-n-butyl phthalate        | Lin1          |         | 1.300  | 0.0100  | 54100          | 50000           | 8.1  | 20.0      |
| Fluoranthene                | Ave           | 1.295   | 1.361  | 0.6000  | 52500          | 50000           | 5.1  | 20.0      |
| Benzidine                   | Ave           | 0.5086  | 0.5488 | 0.0100  | 53900          | 50000           | 7.9  | 50.0      |
| Pyrene                      | Ave           | 1.065   | 1.034  | 0.6000  | 48500          | 50000           | -2.9 | 20.0      |
| Butyl benzyl phthalate      | Lin1          |         | 0.4586 | 0.0100  | 50300          | 50000           | 0.7  | 20.0      |
| Bis(2-ethylhexyl) phthalate | Lin1          |         | 0.6255 | 0.0100  | 50500          | 50000           | 1.0  | 20.0      |
| 3,3'-Dichlorobenzidine      | Lin1          |         | 0.4505 | 0.0100  | 51800          | 50000           | 3.7  | 50.0      |
| Benzo[a]anthracene          | Ave           | 1.110   | 1.115  | 0.8000  | 50200          | 50000           | 0.4  | 20.0      |
| Chrysene                    | Ave           | 1.059   | 1.085  | 0.7000  | 51200          | 50000           | 2.5  | 20.0      |

# FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: CCVIS 480-382085/3 Calibration Date: 10/16/2017 18:27

Instrument ID: <u>HP5973U</u> Calib Start Date: 10/16/2017 12:07

GC Column: RXI-5Sil MS(0.5 ID: 0.25 (mm) Calib End Date: 10/16/2017 14:19

Lab File ID: U328227.D Conc. Units: ug/L

| ANALYTE                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D   | MAX<br>%D |
|------------------------|---------------|---------|--------|---------|----------------|-----------------|------|-----------|
| Di-n-octyl phthalate   | Lin1          |         | 1.085  | 0.0100  | 52500          | 50000           | 5.0  | 20.0      |
| Benzo[b]fluoranthene   | Ave           | 1.216   | 1.259  | 0.7000  | 51700          | 50000           | 3.5  | 20.0      |
| Benzo[k]fluoranthene   | Ave           | 1.241   | 1.208  | 0.7000  | 48600          | 50000           | -2.7 | 20.0      |
| Benzo[a]pyrene         | Ave           | 1.134   | 1.155  | 0.7000  | 51000          | 50000           | 1.9  | 20.0      |
| Dibenz(a,h)anthracene  | Lin1          |         | 1.194  | 0.4000  | 51200          | 50000           | 2.4  | 20.0      |
| Indeno[1,2,3-cd]pyrene | Lin1          |         | 1.403  | 0.5000  | 51100          | 50000           | 2.2  | 20.0      |
| Benzo[g,h,i]perylene   | Lin1          |         | 1.186  | 0.5000  | 51800          | 50000           | 3.7  | 20.0      |
| 2-Fluorophenol         | Ave           | 1.075   | 1.071  | 0.0100  | 49800          | 50000           | -0.3 | 20.0      |
| Phenol-d5              | Ave           | 1.220   | 1.214  | 0.0100  | 49800          | 50000           | -0.5 | 20.0      |
| Nitrobenzene-d5        | Ave           | 0.3474  | 0.3330 | 0.0100  | 47900          | 50000           | -4.1 | 20.0      |
| 2-Fluorobiphenyl       | Ave           | 1.689   | 1.637  | 0.0100  | 48500          | 50000           | -3.1 | 20.0      |
| 2,4,6-Tribromophenol   | Lin1          |         | 0.1845 | 0.0100  | 50200          | 50000           | 0.5  | 20.0      |
| p-Terphenyl-d14        | Ave           | 0.8142  | 0.7925 | 0.0100  | 48700          | 50000           | -2.7 | 20.0      |

Report Date: 17-Oct-2017 11:38:23 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328227.D

Lims ID: CCVIS

Client ID:

Sample Type: CCVIS

Inject. Date: 16-Oct-2017 18:27:30 ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 480-0066446-003

Operator ID: DR Instrument ID: HP5973U

Sublist: chrom-U-8270\*sub56

Method: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U-8270.m

Limit Group: MB - 8270D ICAL

Last Update:17-Oct-2017 11:38:22Calib Date:16-Oct-2017 14:19:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK024

First Level Reviewer: richardsd Date: 16-Oct-2017 19:05:07

| First Level Reviewer: richardsd |     |        | D      | ate:   |    | 16-Oct-201 |         |           |       |
|---------------------------------|-----|--------|--------|--------|----|------------|---------|-----------|-------|
|                                 |     | RT     | Adj RT | Dlt RT |    |            | Cal Amt | OnCol Amt |       |
| Compound                        | Sig | (min.) | (min.) | (min.) | Q  | Response   | ng/uL   | ng/uL     | Flags |
|                                 |     |        |        |        |    |            |         |           |       |
| * 1 1,4-Dichlorobenzene-d4      | 152 | 6.709  | 6.709  | 0.000  | 94 | 96571      | 40.0    | 40.0      |       |
| * 2 Naphthalene-d8              | 136 | 8.226  | 8.226  | 0.000  | 99 | 327306     | 40.0    | 40.0      |       |
| * 3 Acenaphthene-d10            | 164 | 10.293 | 10.293 | 0.000  | 95 | 183173     | 40.0    | 40.0      |       |
| * 4 Phenanthrene-d10            | 188 | 11.810 | 11.810 | 0.000  | 96 | 406535     | 40.0    | 40.0      |       |
| * 5 Chrysene-d12                | 240 | 14.193 | 14.193 | 0.000  | 95 | 559245     | 40.0    | 40.0      |       |
| * 6 Perylene-d12                | 264 | 15.689 | 15.689 | 0.000  | 99 | 541112     | 40.0    | 40.0      |       |
| \$ 7 2-Fluorophenol             | 112 | 5.095  | 5.095  | 0.000  | 91 | 129301     | 50.0    | 49.8      |       |
| \$ 8 Phenol-d5                  | 99  | 6.228  | 6.228  | 0.000  | 95 | 146586     | 50.0    | 49.8      |       |
| \$ 9 Nitrobenzene-d5            | 82  | 7.355  | 7.355  | 0.000  | 92 | 136253     | 50.0    | 47.9      |       |
| \$ 10 2-Fluorobiphenyl          | 172 | 9.492  | 9.492  | 0.000  | 99 | 374800     | 50.0    | 48.5      |       |
| \$ 11 2,4,6-Tribromophenol      | 330 | 11.121 | 11.121 | 0.000  | 90 | 93732      | 50.0    | 50.2      |       |
| \$ 12 p-Terphenyl-d14           | 244 | 13.221 | 13.221 | 0.000  | 99 | 553985     | 50.0    | 48.7      |       |
| 23 1,4-Dioxane                  | 88  | 2.600  | 2.600  | 0.000  | 98 | 50578      | 50.0    | 46.6      |       |
| 24 N-Nitrosodimethylamine       | 42  | 3.081  | 3.081  | 0.000  | 83 | 82051      | 50.0    | 54.4      |       |
| 25 Pyridine                     | 52  | 3.183  | 3.183  | 0.000  | 84 | 234749     | 100.0   | 102.5     |       |
| 32 Benzaldehyde                 | 77  | 6.174  | 6.174  | 0.000  | 90 | 88191      | 50.0    | 51.2      |       |
| 33 Phenol                       | 94  | 6.244  | 6.244  | 0.000  | 95 | 140482     | 50.0    | 49.1      |       |
| 34 Aniline                      | 93  | 6.297  | 6.297  | 0.000  | 98 | 178349     | 50.0    | 49.1      |       |
| 35 Bis(2-chloroethyl)ether      | 93  | 6.356  | 6.356  | 0.000  | 96 | 105322     | 50.0    | 47.9      |       |
| 37 2-Chlorophenol               | 128 | 6.458  | 6.458  | 0.000  | 94 | 139945     | 50.0    | 49.9      |       |
| 38 n-Decane                     | 57  | 6.506  | 6.506  | 0.000  | 91 | 137715     | 50.0    | 51.6      |       |
| 39 1,3-Dichlorobenzene          | 146 | 6.650  | 6.650  | 0.000  | 97 | 167988     | 50.0    | 49.0      |       |
| 40 1,4-Dichlorobenzene          | 146 | 6.730  | 6.730  | 0.000  | 94 | 178125     | 50.0    | 50.9      |       |
| 41 Benzyl alcohol               | 108 | 6.848  | 6.848  | 0.000  | 90 | 85450      | 50.0    | 51.0      |       |
| 42 1,2-Dichlorobenzene          | 146 | 6.917  | 6.917  | 0.000  | 96 | 161968     | 50.0    | 49.6      |       |
| 43 2-Methylphenol               | 108 | 6.976  | 6.976  | 0.000  | 96 | 119106     | 50.0    | 51.6      |       |
| 44 2,2'-oxybis[1-chloropropan   | 45  | 7.013  | 7.013  | 0.000  | 93 | 165513     | 50.0    | 53.7      |       |
| 45 Indene                       | 115 | 7.024  | 7.024  | 0.000  | 89 | 695482     | 150.0   | 149.3     |       |
| 46 4-Methylphenol               | 108 | 7.152  | 7.152  | 0.000  | 95 | 126302     | 50.0    | 52.3      |       |
| 47 N-Nitrosodi-n-propylamine    | 70  | 7.157  | 7.157  | 0.000  | 93 | 77081      | 50.0    | 47.3      |       |
| 49 Acetophenone                 | 105 | 7.168  | 7.168  | 0.000  | 95 | 178497     | 50.0    | 48.7      |       |
| •                               |     |        |        |        |    |            |         |           |       |

Report Date: 17-Oct-2017 11:38:23

Data File:

| Data File: \\Cnromina\\B               | unaio\    |                |                | r      | U 10-00  | 5446.D\U32822   |              |              |       |
|----------------------------------------|-----------|----------------|----------------|--------|----------|-----------------|--------------|--------------|-------|
|                                        | C:        | RT             | Adj RT         | Dlt RT |          | D.              | Cal Amt      | OnCol Amt    | E     |
| Compound                               | Sig       | (min.)         | (min.)         | (min.) | Q        | Response        | ng/uL        | ng/uL        | Flags |
| E2 Hoyachlaracthana                    | 117       | 7 220          | 7 220          | 0.000  | 0.4      | 45022           | E0.0         | E1 0         |       |
| 53 Hexachloroethane<br>54 Nitrobenzene | 117<br>77 | 7.328<br>7.376 | 7.328<br>7.376 | 0.000  | 84<br>89 | 65922<br>133121 | 50.0<br>50.0 | 51.0<br>51.3 |       |
|                                        |           |                |                |        |          |                 |              |              |       |
| 56 Isophorone                          | 82<br>139 | 7.654<br>7.761 | 7.654          | 0.000  | 97<br>93 | 211925<br>84797 | 50.0         | 48.5         |       |
| 59 2-Nitrophenol 60 2,4-Dimethylphenol |           | 7.761<br>7.788 | 7.761          | 0.000  |          |                 | 50.0         | 52.3         |       |
| <b>3</b> .                             | 107<br>93 | 7.788<br>7.895 | 7.788          | 0.000  | 96<br>99 | 139944          | 50.0<br>50.0 | 47.8<br>49.5 |       |
| 62 Bis(2-chloroethoxy)methane          |           |                | 7.895          | 0.000  |          | 130660          |              |              |       |
| 64 Benzoic acid                        | 105       | 7.911          | 7.911          | 0.000  | 92       | 256264          | 150.0        | 137.0        |       |
| 67 2,4-Dichlorophenol                  | 162       | 8.044          | 8.044          | 0.000  | 92       | 134305          | 50.0         | 50.1         |       |
| 68 1,2,4-Trichlorobenzene              | 180       | 8.156          | 8.156          | 0.000  | 93       | 159203          | 50.0         | 50.4         |       |
| 70 Naphthalene                         | 128       | 8.253          | 8.253          | 0.000  | 98<br>05 | 387759          | 50.0         | 50.4         |       |
| 72 4-Chloroaniline                     | 127       | 8.290          | 8.290          | 0.000  | 95<br>07 | 164861          | 50.0         | 50.7         |       |
| 73 2,6-Dichlorophenol                  | 162       | 8.311          | 8.311          | 0.000  | 97       | 131932          | 50.0         | 50.7         |       |
| 74 Hexachlorobutadiene                 | 225       | 8.402          | 8.402          | 0.000  | 92       | 132607          | 50.0         | 51.6         |       |
| 76 Caprolactam                         | 113       | 8.680          | 8.680          | 0.000  | 78       | 34893           | 50.0         | 49.4         |       |
| 80 4-Chloro-3-methylphenol             | 107       | 8.851          | 8.851          | 0.000  | 93       | 121020          | 50.0         | 51.7         |       |
| 83 2-Methylnaphthalene                 | 142       | 9.070          | 9.070          | 0.000  | 90       | 300626          | 50.0         | 52.2         |       |
| 85 1-Methylnaphthalene                 | 142       | 9.193          | 9.193          | 0.000  | 90       | 280801          | 50.0         | 51.6         |       |
| 86 Hexachlorocyclopentadiene           | 237       | 9.273          | 9.273          | 0.000  | 95<br>07 | 166519          | 50.0         | 47.7         |       |
| 87 1,2,4,5-Tetrachlorobenzene          | 216       | 9.278          | 9.278          | 0.000  | 97       | 181906          | 50.0         | 46.7         |       |
| 89 2,4,6-Trichlorophenol               | 196       | 9.396          | 9.396          | 0.000  | 90       | 108942          | 50.0         | 46.7         |       |
| 91 2,4,5-Trichlorophenol               | 196       | 9.444          | 9.444          | 0.000  | 94       | 121635          | 50.0         | 49.2         |       |
| 94 1,1'-Biphenyl                       | 154       | 9.615          | 9.615          | 0.000  | 94       | 383719          | 50.0         | 48.7         |       |
| 95 2-Chloronaphthalene                 | 162       | 9.652          | 9.652          | 0.000  | 97       | 292906          | 50.0         | 47.8         |       |
| 98 2-Nitroaniline                      | 65        | 9.748          | 9.748          | 0.000  | 87       | 71749           | 50.0         | 46.8         |       |
| 102 Dimethyl phthalate                 | 163       | 9.946          | 9.946          | 0.000  | 99       | 357356          | 50.0         | 50.3         |       |
| 103 1,3-Dinitrobenzene                 | 168       | 9.983          | 9.983          | 0.000  | 93       | 62536           | 50.0         | 53.3         |       |
| 104 2,6-Dinitrotoluene                 | 165       | 10.016         | 10.016         | 0.000  | 95       | 81424           | 50.0         | 50.0         |       |
| 105 Acenaphthylene                     | 152       | 10.133         | 10.133         | 0.000  | 97       | 446844          | 50.0         | 49.8         |       |
| 106 3-Nitroaniline                     | 138       | 10.213         | 10.213         | 0.000  | 94       | 83722           | 50.0         | 50.4         |       |
| 107 2,4-Dinitrophenol                  | 184       | 10.331         | 10.331         | 0.000  | 69       | 114715          | 100.0        | 91.7         |       |
| 108 Acenaphthene                       | 153       | 10.331         | 10.331         | 0.000  | 87       | 302779          | 50.0         | 48.4         |       |
| 109 4-Nitrophenol                      | 109       | 10.379         | 10.379         | 0.000  | 85       | 150428          | 100.0        | 102.2        |       |
| 111 2,4-Dinitrotoluene                 | 165       | 10.470         | 10.470         | 0.000  | 94       | 112787          | 50.0         | 51.4         |       |
| 112 Dibenzofuran                       | 168       | 10.512         | 10.512         | 0.000  | 95       | 450198          | 50.0         | 49.3         |       |
| 116 2,3,4,6-Tetrachlorophenol          | 232       | 10.641         | 10.641         | 0.000  | 69       | 118071          | 50.0         | 48.7         |       |
| 118 Diethyl phthalate                  | 149       | 10.721         | 10.721         | 0.000  | 98       | 385918          | 50.0         | 50.6         |       |
| 119 Hexadecane                         | 57        | 10.737         | 10.737         | 0.000  | 93       | 160107          | 50.0         | 47.9         |       |
| 121 4-Chlorophenyl phenyl ethe         | 204       | 10.860         | 10.860         | 0.000  | 89       | 207480          | 50.0         | 49.5         |       |
| 122 4-Nitroaniline                     | 138       | 10.870         | 10.870         | 0.000  | 83       | 90599           | 50.0         | 50.5         |       |
| 123 Fluorene                           | 166       | 10.876         | 10.876         | 0.000  | 96       | 362293          | 50.0         | 49.1         |       |
| 125 4,6-Dinitro-2-methylphenol         | 198       | 10.908         | 10.908         | 0.000  | 90       | 139983          | 100.0        | 99.1         |       |
| 128 Diphenylamine                      | 169       | 10.977         | 10.977         | 0.000  | 94       | 269265          | 42.8         | 43.0         |       |
| 127 N-Nitrosodiphenylamine             | 169       | 10.977         | 10.977         | 0.000  | 62       | 269265          | 50.0         | 50.3         |       |
| 130 Azobenzene                         | 77        | 11.025         | 11.025         | 0.000  | 95       | 282410          | 50.0         | 49.9         |       |
| 129 1,2-Diphenylhydrazine              | 77        | 11.025         | 11.025         | 0.000  | 95       | 282410          | 50.0         | 49.9         |       |
| 137 4-Bromophenyl phenyl ether         | 248       | 11.356         | 11.356         | 0.000  | 59       | 145466          | 50.0         | 50.8         |       |
| 139 Hexachlorobenzene                  | 284       | 11.447         | 11.447         | 0.000  | 95       | 177865          | 50.0         | 51.3         |       |
| 141 Atrazine                           | 200       | 11.447         | 11.447         | 0.000  | 94       | 116906          | 50.0         | 52.4         |       |
| 143 Pentachlorophenol                  | 266       | 11.629         | 11.629         | 0.000  | 92       | 186578          | 100.0        | 98.3         |       |
| 144 n-Octadecane                       | 200<br>57 | 11.650         | 11.650         | 0.000  | 92<br>93 | 172809          | 50.0         | 90.3<br>50.2 |       |
|                                        |           |                |                |        |          |                 | 50.0         | 50.2<br>51.0 |       |
| 150 Phenanthrene                       | 178       | 11.832         | 11.832         | 0.000  | 97<br>07 | 536894          |              |              |       |
| 151 Anthracene                         | 178       | 11.880         | 11.880         | 0.000  | 97       | 561759          | 50.0         | 51.6         |       |

Report Date: 17-Oct-2017 11:38:23

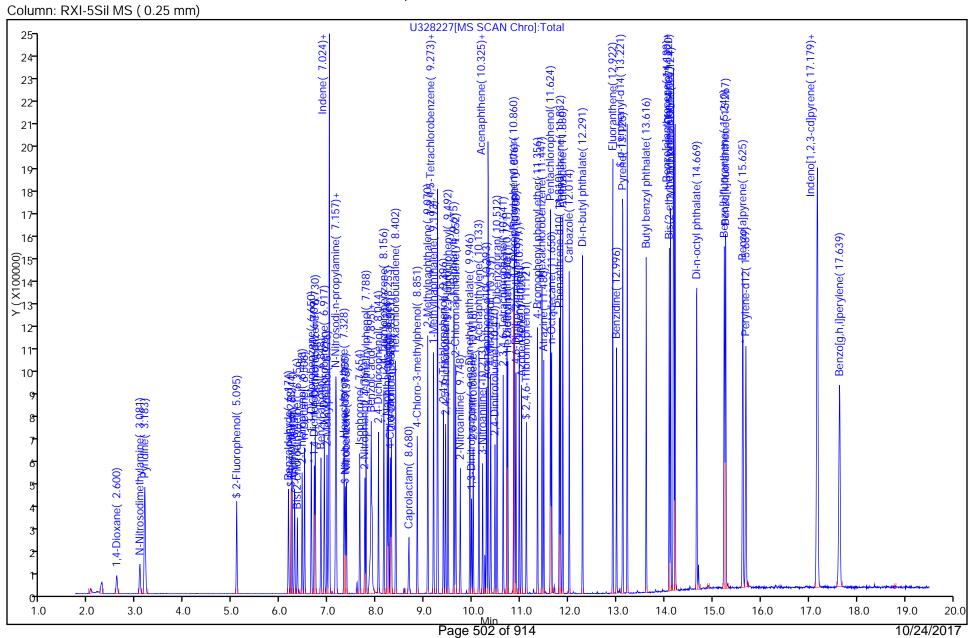
Data File:

| Bata File. Heriteinit/He       | 1   |        |          |        | 1         | I         |             |           |       |
|--------------------------------|-----|--------|----------|--------|-----------|-----------|-------------|-----------|-------|
|                                |     | RT     | Adj RT   | DIt RT |           |           | Cal Amt     | OnCol Amt |       |
| Compound                       | Sig | (min.) | (min.)   | (min.) | Q         | Response  | ng/uL       | ng/uL     | Flags |
|                                |     |        |          |        |           | _         |             |           |       |
| 152 Carbazole                  | 167 | 12.014 | 12.014   | 0.000  | 96        | 508787    | 50.0        | 51.4      |       |
| 155 Di-n-butyl phthalate       | 149 | 12.291 | 12.291   | 0.000  | 100       | 660792    | 50.0        | 54.1      |       |
| 162 Fluoranthene               | 202 | 12.922 | 12.922   | 0.000  | 95        | 691577    | 50.0        | 52.5      |       |
| 164 Benzidine                  | 184 | 13.002 | 13.002   | 0.000  | 99        | 383651    | 50.0        | 53.9      |       |
| 165 Pyrene                     | 202 | 13.130 | 13.130   | 0.000  | 98        | 722672    | 50.0        | 48.5      |       |
| 172 Butyl benzyl phthalate     | 149 | 13.616 | 13.616   | 0.000  | 94        | 320583    | 50.0        | 50.3      |       |
| 178 Bis(2-ethylhexyl) phthalat | 149 | 14.097 | 14.097   | 0.000  | 92        | 437241    | 50.0        | 50.5      |       |
| 179 3,3'-Dichlorobenzidine     | 252 | 14.124 | 14.124   | 0.000  | 72        | 314941    | 50.0        | 51.8      |       |
| 181 Benzo[a]anthracene         | 228 | 14.182 | 14.182   | 0.000  | 96        | 779192    | 50.0        | 50.2      |       |
| 182 Chrysene                   | 228 | 14.220 | 14.220   | 0.000  | 94        | 758332    | 50.0        | 51.2      |       |
| 183 Di-n-octyl phthalate       | 149 | 14.669 | 14.669   | 0.000  | 98        | 758686    | 50.0        | 52.5      |       |
| 185 Benzo[b]fluoranthene       | 252 | 15.240 | 15.240   | 0.000  | 94        | 851356    | 50.0        | 51.7      |       |
| 187 Benzo[k]fluoranthene       | 252 | 15.272 | 15.272   | 0.000  | 96        | 816807    | 50.0        | 48.6      |       |
| 190 Benzo[a]pyrene             | 252 | 15.625 | 15.625   | 0.000  | 74        | 781494    | 50.0        | 51.0      |       |
| 193 Dibenz(a,h)anthracene      | 278 | 17.179 | 17.179   | 0.000  | 87        | 807742    | 50.0        | 51.2      |       |
| 194 Indeno[1,2,3-cd]pyrene     | 276 | 17.179 | 17.179   | 0.000  | 96        | 948835    | 50.0        | 51.1      |       |
| 195 Benzo[g,h,i]perylene       | 276 | 17.639 | 17.639   | 0.000  | 95        | 802465    | 50.0        | 51.8      |       |
| Reagents:                      |     |        |          |        |           |           |             |           |       |
|                                |     | Amount | Addad: 1 | .00    | 1         | Inite: ml |             |           |       |
| MB_LIST1_WRK_00515             |     |        |          |        | Units: mL |           | Dan Danasat |           |       |
| MB_INTSTD_STK_00039            |     | Amount | Added: 2 | 0.00   | Ĺ         | Jnits: uL | Run Reage   | nı        |       |

Report Date: 17-Oct-2017 11:38:23 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328227.D Injection Date: 16-Oct-2017 18:27:30 Instrument ID: HP5973U


Lims ID: **CCVIS** 

Client ID:

1.0 ul Injection Vol:

Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL



DR

3

3

Operator ID:

ALS Bottle#:

Worklist Smp#:

# FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: CCVIS 480-381534/3 Calibration Date: 10/13/2017 00:32

Instrument ID: HP5973X Calib Start Date: 09/29/2017 19:33

GC Column: RXI-5Sil MS ID:  $0.25 \, (mm)$  Calib End Date: 0.9/29/2017 21:44

Lab File ID: X20509.D Conc. Units: ug/L

| ANALYTE                          | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|----------------------------------|---------------|---------|--------|---------|----------------|-----------------|-------|-----------|
| 1,4-Dioxane                      | Ave           | 0.8135  | 0.8114 | 0.0100  | 49900          | 50000           | -0.3  | 20.0      |
| N-Nitrosodimethylamine           | Ave           | 0.7295  | 0.6341 | 0.0100  | 43500          | 50000           | -13.1 | 50.0      |
| Pyridine                         | Lin1          |         | 0.8056 | 0.0100  | 77800          | 100000          | -22.2 | 50.0      |
| Benzaldehyde                     | Ave           | 1.129   | 0.8507 | 0.0100  | 37700          | 50000           | -24.7 | 50.0      |
| Aniline                          | Ave           | 2.249   | 2.061  | 0.0100  | 45800          | 50000           | -8.4  | 20.0      |
| Phenol                           | Ave           | 1.902   | 1.747  | 0.8000  | 45900          | 50000           | -8.1  | 20.0      |
| Bis(2-chloroethyl)ether          | Ave           | 1.422   | 1.346  | 0.7000  | 47300          | 50000           | -5.3  | 20.0      |
| 2-Chlorophenol                   | Ave           | 1.318   | 1.143  | 0.8000  | 43400          | 50000           | -13.2 | 20.0      |
| n-Decane                         | Ave           | 1.386   | 1.391  | 0.0100  | 50200          | 50000           | 0.3   | 20.0      |
| 1,3-Dichlorobenzene              | Ave           | 1.543   | 1.581  | 0.0100  | 51200          | 50000           | 2.4   | 20.0      |
| 1,4-Dichlorobenzene              | Ave           | 1.561   | 1.524  | 0.0100  | 48800          | 50000           | -2.4  | 20.0      |
| Benzyl alcohol                   | Lin1          |         | 0.8728 | 0.0100  | 47600          | 50000           | -4.8  | 20.0      |
| 1,2-Dichlorobenzene              | Ave           | 1.451   | 1.485  | 0.0100  | 51200          | 50000           | 2.3   | 20.0      |
| Indene                           | Ave           | 0.6246  | 0.5645 | 0.0100  | 136000         | 150000          | -9.6  | 20.0      |
| 2-Methylphenol                   | Ave           | 1.233   | 1.186  | 0.7000  | 48100          | 50000           | -3.9  | 20.0      |
| bis (2-chloroisopropyl)<br>ether | Ave           | 1.465   | 1.453  | 0.0100  | 49600          | 50000           | -0.8  | 20.0      |
| Acetophenone                     | Ave           | 1.947   | 1.918  | 0.0100  | 49300          | 50000           | -1.5  | 20.0      |
| N-Nitrosodi-n-propylamine        | Ave           | 1.007   | 0.8710 | 0.5000  | 43200          | 50000           | -13.5 | 20.0      |
| 4-Methylphenol                   | Ave           | 1.295   | 1.265  | 0.6000  | 48900          | 50000           | -2.3  | 20.0      |
| Hexachloroethane                 | Ave           | 0.6127  | 0.6089 | 0.3000  | 49700          | 50000           | -0.6  | 20.0      |
| Nitrobenzene                     | Ave           | 0.4391  | 0.4440 | 0.2000  | 50600          | 50000           | 1.1   | 20.0      |
| Isophorone                       | Lin1          |         | 0.7626 | 0.4000  | 51000          | 50000           | 1.9   | 20.0      |
| 2-Nitrophenol                    | Lin1          |         | 0.2083 | 0.1000  | 52000          | 50000           | 4.1   | 20.0      |
| 2,4-Dimethylphenol               | Lin1          |         | 0.4185 | 0.2000  | 51100          | 50000           | 2.1   | 20.0      |
| Bis(2-chloroethoxy)methane       | Ave           | 0.4673  | 0.4684 | 0.3000  | 50100          | 50000           | 0.2   | 20.0      |
| 2,4-Dichlorophenol               | Lin1          |         | 0.3363 | 0.2000  | 49500          | 50000           | -1.0  | 20.0      |
| Benzoic acid                     | Lin1          |         | 0.2551 | 0.0100  | 125000         | 150000          | -16.7 | 50.0      |
| 1,2,4-Trichlorobenzene           | Ave           | 0.3952  | 0.4174 | 0.0100  | 52800          | 50000           | 5.6   | 20.0      |
| Naphthalene                      | Ave           | 1.052   | 1.061  | 0.7000  | 50400          | 50000           | 0.9   | 20.0      |
| 4-Chloroaniline                  | Lin1          |         | 0.4462 | 0.0100  | 49200          | 50000           | -1.6  | 20.0      |
| 2,6-Dichlorophenol               | Lin1          |         | 0.3456 | 0.0100  | 52000          | 50000           | 4.1   | 20.0      |
| Hexachlorobutadiene              | Ave           | 0.2588  | 0.2700 | 0.0100  | 52200          | 50000           | 4.4   | 20.0      |
| Caprolactam                      | Lin1          |         | 0.1127 | 0.0100  | 49900          | 50000           | -0.1  | 50.0      |
| 4-Chloro-3-methylphenol          | Lin1          |         | 0.3463 | 0.2000  | 51600          | 50000           | 3.2   | 20.0      |
| 2-Methylnaphthalene              | Ave           | 0.7208  | 0.7946 | 0.4000  | 55100          | 50000           | 10.2  | 20.0      |
| 1-Methylnaphthalene              | Ave           | 0.6857  | 0.6995 | 0.0100  | 51000          | 50000           | 2.0   | 20.0      |
| 1,2,4,5-Tetrachlorobenzene       | Ave           | 0.8107  | 0.6973 | 0.0100  | 43000          | 50000           | -14.0 | 20.0      |
| Hexachlorocyclopentadiene        | Lin1          |         | 0.5518 | 0.0500  | 43600          | 50000           | -12.7 | 20.0      |
| 2,4,6-Trichlorophenol            | Lin1          |         | 0.4280 | 0.2000  | 42600          | 50000           | -14.8 | 20.0      |
| 2,4,5-Trichlorophenol            | Lin1          |         | 0.4609 | 0.2000  | 43000          | 50000           | -14.0 | 20.0      |

# FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: CCVIS 480-381534/3 Calibration Date: 10/13/2017 00:32

Instrument ID: HP5973X Calib Start Date: 09/29/2017 19:33

GC Column: RXI-5Sil MS ID: 0.25 (mm) Calib End Date: 0.9/29/2017 21:44

Lab File ID: X20509.D Conc. Units: ug/L

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|-----------------------------|---------------|---------|--------|---------|----------------|-----------------|--------|-----------|
| Biphenyl                    | Ave           | 1.739   | 1.581  | 0.0100  | 45400          | 50000           | -9.1   | 20.0      |
| 2-Chloronaphthalene         | Ave           | 1.376   | 1.238  | 0.8000  | 45000          | 50000           | -10.0  | 20.0      |
| 2-Nitroaniline              | Lin1          |         | 0.3729 | 0.0100  | 44100          | 50000           | -11.9  | 20.0      |
| Dimethyl phthalate          | Ave           | 1.557   | 1.502  | 0.0100  | 48200          | 50000           | -3.6   | 20.0      |
| 1,3-Dinitrobenzene          | Lin1          |         | 0.1659 | 0.0100  | 55900          | 50000           | 11.9   | 20.0      |
| 2,6-Dinitrotoluene          | Lin1          |         | 0.3583 | 0.2000  | 48600          | 50000           | -2.9   | 20.0      |
| Acenaphthylene              | Ave           | 1.967   | 1.957  | 0.9000  | 49700          | 50000           | -0.5   | 20.0      |
| 3-Nitroaniline              | Lin1          |         | 0.3652 | 0.0100  | 47700          | 50000           | -4.6   | 20.0      |
| Acenaphthene                | Ave           | 1.328   | 1.281  | 0.0100  | 48200          | 50000           | -3.5   | 20.0      |
| 2,4-Dinitrophenol           | Lin1          |         | 0.2166 | 0.0100  | 81800          | 100000          | -18.2  | 20.0      |
| 4-Nitrophenol               | Lin1          |         | 0.2373 | 0.0100  | 87600          | 100000          | -12.4  | 20.0      |
| 2,4-Dinitrotoluene          | Lin1          |         | 0.4708 | 0.0100  | 47300          | 50000           | -5.5   | 20.0      |
| Dibenzofuran                | Ave           | 2.014   | 1.895  | 0.8000  | 47000          | 50000           | -5.9   | 20.0      |
| 2,3,4,6-Tetrachlorophenol   | Lin1          |         | 0.3975 | 0.0100  | 42800          | 50000           | -14.4  | 20.0      |
| Diethyl phthalate           | Ave           | 1.556   | 1.446  | 0.0100  | 46500          | 50000           | -7.1   | 20.0      |
| Hexadecane                  | Ave           | 0.8376  | 0.8013 | 0.0100  | 47800          | 50000           | -4.3   | 20.0      |
| Fluorene                    | Ave           | 1.556   | 1.496  | 0.9000  | 48100          | 50000           | -3.9   | 20.0      |
| 4-Chlorophenyl phenyl ether | Ave           | 0.8787  | 0.8312 | 0.4000  | 47300          | 50000           | -5.4   | 20.0      |
| 4-Nitroaniline              | Lin1          |         | 0.3731 | 0.0100  | 47400          | 50000           | -5.3   | 20.0      |
| 4,6-Dinitro-2-methylphenol  | Lin1          |         | 0.1324 | 0.0100  | 92600          | 100000          | -7.4   | 20.0      |
| Diphenylamine               | Ave           | 0.6397  | 0.6396 | 0.0100  | 42700          | 42800           | -0.0   | 20.0      |
| N-Nitrosodiphenylamine      | Ave           | 0.5470  | 0.5469 | 0.0100  | 50000          | 50000           | -0.0   | 20.0      |
| 1,2-Diphenylhydrazine       | Ave           | 0.7660  | 0.7207 | 0.0100  | 47000          | 50000           | -5.9   | 20.0      |
| trans-Azobenzene            | Ave           | 0.7660  | 0.7207 | 0.0100  | 47000          | 50000           | -5.9   | 20.0      |
| 4-Bromophenyl phenyl ether  | Ave           | 0.2405  | 0.2539 | 0.1000  | 52800          | 50000           | 5.6    | 20.0      |
| Hexachlorobenzene           | Ave           | 0.2460  | 0.2551 | 0.1000  | 51800          | 50000           | 3.7    | 20.0      |
| Atrazine                    | Lin1          |         | 0.4180 | 0.0100  | 46500          | 50000           | -7.1   | 20.0      |
| Pentachlorophenol           | Lin1          |         | 0.1147 | 0.0500  | 71400          | 100000          | -28.6* | 20.0      |
| n-Octadecane                | Lin1          |         | 0.3974 | 0.0100  | 48600          | 50000           | -2.7   | 20.0      |
| Phenanthrene                | Ave           | 1.076   | 1.087  | 0.7000  | 50500          | 50000           | 1.0    | 20.0      |
| Anthracene                  | Ave           | 1.105   | 1.166  | 0.7000  | 52700          | 50000           | 5.5    | 20.0      |
| Carbazole                   | Ave           | 1.008   | 1.115  | 0.0100  | 55300          | 50000           | 10.6   | 20.0      |
| Di-n-butyl phthalate        | Lin1          |         | 1.280  | 0.0100  | 53900          | 50000           | 7.9    | 20.0      |
| Fluoranthene                | Ave           | 1.240   | 1.382  | 0.6000  | 55700          | 50000           | 11.4   | 20.0      |
| Benzidine                   | Lin1          |         | 0.5006 | 0.0100  | 41500          | 50000           | -17.0  | 50.0      |
| Pyrene                      | Ave           | 1.138   | 1.136  | 0.6000  | 49900          | 50000           | -0.1   | 20.0      |
| Butyl benzyl phthalate      | Lin1          |         | 0.4706 | 0.0100  | 48700          | 50000           | -2.5   | 20.0      |
| 3,3'-Dichlorobenzidine      | Lin1          |         | 0.4235 | 0.0100  | 48500          | 50000           | -3.0   | 50.0      |
| Benzo[a]anthracene          | Lin1          |         | 1.131  | 0.8000  | 49700          | 50000           | -0.7   | 20.0      |
| Bis(2-ethylhexyl) phthalate | Lin1          |         | 0.6603 | 0.0100  | 47400          | 50000           | -5.2   | 20.0      |
| Chrysene                    | Ave           | 1.105   | 1.078  | 0.7000  | 48800          | 50000           | -2.4   | 20.0      |

# FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Lab Sample ID: CCVIS 480-381534/3 Calibration Date: 10/13/2017 00:32

Instrument ID: HP5973X Calib Start Date: 09/29/2017 19:33

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 09/29/2017 21:44

Lab File ID: X20509.D Conc. Units: ug/L

| ANALYTE                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------|---------------|---------|--------|---------|----------------|-----------------|-------|-----------|
| Di-n-octyl phthalate   | Lin1          |         | 1.114  | 0.0100  | 48500          | 50000           | -3.1  | 20.0      |
| Benzo[b]fluoranthene   | Ave           | 1.275   | 1.337  | 0.7000  | 52400          | 50000           | 4.9   | 20.0      |
| Benzo[k]fluoranthene   | Ave           | 1.361   | 1.243  | 0.7000  | 45700          | 50000           | -8.7  | 20.0      |
| Benzo[a]pyrene         | Lin1          |         | 1.222  | 0.7000  | 49700          | 50000           | -0.6  | 20.0      |
| Indeno[1,2,3-cd]pyrene | Lin1          |         | 1.430  | 0.5000  | 51200          | 50000           | 2.4   | 20.0      |
| Dibenz(a,h)anthracene  | Lin1          |         | 1.216  | 0.4000  | 51300          | 50000           | 2.6   | 20.0      |
| Benzo[g,h,i]perylene   | Lin1          |         | 1.226  | 0.5000  | 51400          | 50000           | 2.9   | 20.0      |
| 2-Fluorophenol         | Ave           | 1.345   | 1.306  | 0.0100  | 48500          | 50000           | -2.9  | 20.0      |
| Phenol-d5              | Ave           | 1.673   | 1.532  | 0.0100  | 45800          | 50000           | -8.4  | 20.0      |
| Nitrobenzene-d5        | Ave           | 0.4239  | 0.4307 | 0.0100  | 50800          | 50000           | 1.6   | 20.0      |
| 2-Fluorobiphenyl       | Ave           | 1.655   | 1.461  | 0.0100  | 44100          | 50000           | -11.7 | 20.0      |
| 2,4,6-Tribromophenol   | Lin1          |         | 0.1102 | 0.0100  | 49700          | 50000           | -0.5  | 20.0      |
| p-Terphenyl-d14        | Ave           | 0.7698  | 0.7854 | 0.0100  | 51000          | 50000           | 2.0   | 20.0      |

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20509.D

Lims ID: CCVIS

Client ID:

Sample Type: CCVIS

Inject. Date: 13-Oct-2017 00:32:30 ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 480-0066346-003

Operator ID: DR Instrument ID: HP5973X

Sublist: chrom-X-8270\*sub83

Method: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X-8270.m

Limit Group: MB - 8270D ICAL

Last Update:13-Oct-2017 12:07:58Calib Date:29-Sep-2017 21:44:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK013

First Level Reviewer: richardsd Date: 13-Oct-2017 11:05:48

| First Level Reviewer: richardsd      |     |        | D      | ate:   |     | 13-Oct-201 | 7 11:05:48 |           |        |
|--------------------------------------|-----|--------|--------|--------|-----|------------|------------|-----------|--------|
|                                      |     | RT     | Adj RT | Dlt RT |     |            | Cal Amt    | OnCol Amt |        |
| Compound                             | Sig | (min.) | (min.) | (min.) | Q   | Response   | ng/uL      | ng/uL     | Flags  |
|                                      |     |        |        |        |     |            |            |           |        |
| * 1 1,4-Dichlorobenzene-d4           | 152 | 5.572  | 5.572  | 0.000  | 94  | 181304     | 40.0       | 40.0      |        |
| <ul><li>* 2 Naphthalene-d8</li></ul> | 136 | 7.115  | 7.115  | 0.000  | 98  | 605227     | 40.0       | 40.0      |        |
| * 3 Acenaphthene-d10                 | 164 | 9.183  | 9.183  | 0.000  | 98  | 371962     | 40.0       | 40.0      |        |
| <ul><li>4 Phenanthrene-d10</li></ul> | 188 | 10.818 | 10.818 | 0.000  | 99  | 757394     | 40.0       | 40.0      |        |
| * 5 Chrysene-d12                     | 240 | 13.211 | 13.211 | 0.000  | 99  | 943460     | 40.0       | 40.0      |        |
| * 6 Perylene-d12                     | 264 | 14.365 | 14.365 | 0.000  | 99  | 880860     | 40.0       | 40.0      |        |
| \$ 7 2-Fluorophenol                  | 112 | 3.835  | 3.835  | 0.000  | 94  | 295970     | 50.0       | 48.5      |        |
| \$ 8 Phenol-d5                       | 99  | 5.150  | 5.150  | 0.000  | 91  | 347240     | 50.0       | 45.8      |        |
| \$ 9 Nitrobenzene-d5                 | 82  | 6.261  | 6.261  | 0.000  | 94  | 325824     | 50.0       | 50.8      |        |
| \$ 10 2-Fluorobiphenyl               | 172 | 8.408  | 8.408  | 0.000  | 100 | 679178     | 50.0       | 44.1      |        |
| \$ 11 2,4,6-Tribromophenol           | 330 | 10.091 | 10.091 | 0.000  | 98  | 104308     | 50.0       | 49.7      |        |
| \$ 12 p-Terphenyl-d14                | 244 | 12.313 | 12.313 | 0.000  | 99  | 926216     | 50.0       | 51.0      |        |
| 15 1,4-Dioxane                       | 88  | 1.576  | 1.576  | 0.000  | 93  | 183893     | 50.0       | 49.9      |        |
| 16 N-Nitrosodimethylamine            | 42  | 1.859  | 1.859  | 0.000  | 82  | 143699     | 50.0       | 43.5      |        |
| 17 Pyridine                          | 52  | 1.901  | 1.901  | 0.000  | 85  | 365161     | 100.0      | 77.8      | M      |
| 27 Benzaldehyde                      | 77  | 5.011  | 5.011  | 0.000  | 86  | 192784     | 50.0       | 37.7      |        |
| 29 Aniline                           | 93  | 5.160  | 5.160  | 0.000  | 93  | 467066     | 50.0       | 45.8      |        |
| 28 Phenol                            | 94  | 5.166  | 5.166  | 0.000  | 87  | 395897     | 50.0       | 45.9      |        |
| 31 Bis(2-chloroethyl)ether           | 93  | 5.256  | 5.256  | 0.000  | 92  | 305085     | 50.0       | 47.3      |        |
| 32 2-Chlorophenol                    | 128 | 5.310  | 5.310  | 0.000  | 99  | 259115     | 50.0       | 43.4      |        |
| 35 n-Decane                          | 57  | 5.411  | 5.411  | 0.000  | 94  | 315269     | 50.0       | 50.2      |        |
| 36 1,3-Dichlorobenzene               | 146 | 5.502  | 5.502  | 0.000  | 97  | 358306     | 50.0       | 51.2      |        |
| 37 1,4-Dichlorobenzene               | 146 | 5.593  | 5.593  | 0.000  | 96  | 345326     | 50.0       | 48.8      |        |
| 38 Benzyl alcohol                    | 108 | 5.764  | 5.764  | 0.000  | 96  | 197798     | 50.0       | 47.6      |        |
| 39 1,2-Dichlorobenzene               | 146 | 5.785  | 5.785  | 0.000  | 94  | 336646     | 50.0       | 51.2      |        |
| 229 Indene                           | 115 | 5.897  | 5.897  | 0.000  | 85  | 1603370    | 150.0      | 135.6     |        |
| 40 2-Methylphenol                    | 108 | 5.924  | 5.924  | 0.000  | 96  | 268689     | 50.0       | 48.1      |        |
| 42 2,2'-oxybis[1-chloropropan        | 45  | 5.940  | 5.940  | 0.000  | 96  | 329313     | 50.0       | 49.6      |        |
| 45 Acetophenone                      | 105 | 6.084  | 6.084  | 0.000  | 92  | 434653     | 50.0       | 49.3      |        |
| 47 N-Nitrosodi-n-propylamine         | 70  | 6.100  | 6.100  | 0.000  | 86  | 197387     | 50.0       | 43.2      |        |
| 46 4-Methylphenol                    | 108 | 6.122  | 6.122  | 0.000  | 94  | 286766     | 50.0       | 48.9      |        |
|                                      |     |        | -      | (04    |     |            |            | 40/0      | 4/0047 |

Report Date: 13-Oct-2017 12:07:59

Data File:

| Data File: \\Cnromina\B        | ullalo\( |              |        |        | U 12-00 | 346.D\X2U5U9 |         |           | _     |
|--------------------------------|----------|--------------|--------|--------|---------|--------------|---------|-----------|-------|
| Compound                       | Sig      | RT<br>(min.) | Adj RT | Dlt RT | Q       | Doepopeo     | Cal Amt | OnCol Amt | Flogs |
| Compound                       | Sig      | (111111.)    | (min.) | (min.) | U       | Response     | ng/uL   | ng/uL     | Flags |
| 50 Hexachloroethane            | 117      | 6.197        | 6.197  | 0.000  | 92      | 138002       | 50.0    | 49.7      |       |
| 52 Nitrobenzene                | 77       | 6.282        | 6.282  | 0.000  | 92      | 335882       | 50.0    | 50.6      |       |
| 56 Isophorone                  | 82       | 6.581        | 6.581  | 0.000  | 97      | 576942       | 50.0    | 51.0      |       |
| 58 2-Nitrophenol               | 139      | 6.672        | 6.672  | 0.000  | 90      | 157566       | 50.0    | 52.0      |       |
| 59 2,4-Dimethylphenol          | 107      | 6.758        | 6.758  | 0.000  | 97      | 316627       | 50.0    | 51.1      |       |
| 62 Bis(2-chloroethoxy)methane  | 93       | 6.859        | 6.859  | 0.000  | 96      | 354350       | 50.0    | 50.1      |       |
| 65 2,4-Dichlorophenol          | 162      | 6.966        | 6.966  | 0.000  | 94      | 254413       | 50.0    | 49.5      |       |
| 64 Benzoic acid                | 105      | 6.977        | 6.977  | 0.000  | 83      | 579038       | 150.0   | 125.0     |       |
| 67 1,2,4-Trichlorobenzene      | 180      | 7.062        | 7.062  | 0.000  | 96      | 315753       | 50.0    | 52.8      |       |
| 69 Naphthalene                 | 128      | 7.142        | 7.142  | 0.000  | 99      | 802811       | 50.0    | 50.4      |       |
| 71 4-Chloroaniline             | 127      | 7.228        | 7.228  | 0.000  | 98      | 337598       | 50.0    | 49.2      |       |
| 70 2,6-Dichlorophenol          | 162      | 7.233        | 7.233  | 0.000  | 98      | 261490       | 50.0    | 52.0      |       |
| 73 Hexachlorobutadiene         | 225      | 7.313        | 7.313  | 0.000  | 96      | 204278       | 50.0    | 52.2      |       |
| 78 Caprolactam                 | 113      | 7.644        | 7.644  | 0.000  | 92      | 85271        | 50.0    | 49.9      |       |
| 79 4-Chloro-3-methylphenol     | 107      | 7.826        | 7.826  | 0.000  | 96      | 261991       | 50.0    | 51.6      |       |
| 82 2-Methylnaphthalene         | 142      | 7.965        | 7.965  | 0.000  | 97      | 601110       | 50.0    | 55.1      |       |
| 83 1-Methylnaphthalene         | 142      | 8.077        | 8.077  | 0.000  | 100     | 529228       | 50.0    | 51.0      |       |
| 85 1,2,4,5-Tetrachlorobenzene  | 216      | 8.168        | 8.168  | 0.000  | 96      | 324214       | 50.0    | 43.0      |       |
| 84 Hexachlorocyclopentadiene   | 237      | 8.168        | 8.168  | 0.000  | 94      | 256567       | 50.0    | 43.6      |       |
| 86 2,4,6-Trichlorophenol       | 196      | 8.312        | 8.312  | 0.000  | 93      | 199012       | 50.0    | 42.6      |       |
| 87 2,4,5-Trichlorophenol       | 196      | 8.355        | 8.355  | 0.000  | 94      | 214317       | 50.0    | 43.0      |       |
| 90 1,1'-Biphenyl               | 154      | 8.520        | 8.520  | 0.000  | 99      | 735046       | 50.0    | 45.4      |       |
| 91 2-Chloronaphthalene         | 162      | 8.531        | 8.531  | 0.000  | 99      | 575830       | 50.0    | 45.0      |       |
| 93 2-Nitroaniline              | 65       | 8.665        | 8.665  | 0.000  | 93      | 173359       | 50.0    | 44.1      |       |
| 96 Dimethyl phthalate          | 163      | 8.900        | 8.900  | 0.000  | 99      | 698148       | 50.0    | 48.2      |       |
| 97 1,3-Dinitrobenzene          | 168      | 8.916        | 8.916  | 0.000  | 90      | 125484       | 50.0    | 55.9      |       |
| 99 2,6-Dinitrotoluene          | 165      | 8.959        | 8.959  | 0.000  | 94      | 166598       | 50.0    | 48.6      |       |
| 100 Acenaphthylene             | 152      | 9.012        | 9.012  | 0.000  | 100     | 909959       | 50.0    | 49.7      |       |
| 101 3-Nitroaniline             | 138      | 9.146        | 9.146  | 0.000  | 97      | 169787       | 50.0    | 47.7      |       |
| 102 Acenaphthene               | 153      | 9.220        | 9.220  | 0.000  | 99      | 595548       | 50.0    | 48.2      |       |
| 103 2,4-Dinitrophenol          | 184      | 9.268        | 9.268  | 0.000  | 87      | 201436       | 100.0   | 81.8      | M     |
| 104 4-Nitrophenol              | 109      | 9.381        | 9.381  | 0.000  | 92      | 220682       | 100.0   | 87.6      |       |
| 106 2,4-Dinitrotoluene         | 165      | 9.423        | 9.423  | 0.000  | 60      | 218903       | 50.0    | 47.3      |       |
| 107 Dibenzofuran               | 168      | 9.423        | 9.423  | 0.000  | 95      | 881094       | 50.0    | 47.0      |       |
| 110 2,3,4,6-Tetrachlorophenol  | 232      | 9.578        | 9.578  | 0.000  | 95      | 184837       | 50.0    | 42.8      |       |
| 112 Diethyl phthalate          | 149      | 9.728        | 9.728  | 0.000  | 100     | 672307       | 50.0    | 46.5      |       |
| 138 Hexadecane                 | 57       | 9.771        | 9.771  | 0.000  | 97      | 372565       | 50.0    | 47.8      |       |
| 115 Fluorene                   | 166      | 9.819        | 9.819  | 0.000  | 99      | 695564       | 50.0    | 48.1      |       |
| 116 4-Chlorophenyl phenyl ethe | 204      | 9.835        | 9.835  | 0.000  | 96      | 386452       | 50.0    | 47.3      |       |
| 118 4-Nitroaniline             | 138      | 9.856        | 9.856  | 0.000  | 87      | 173476       | 50.0    | 47.4      |       |
| 119 4,6-Dinitro-2-methylphenol | 198      | 9.893        | 9.893  | 0.000  | 96      | 250662       | 100.0   | 92.6      |       |
| 121 Diphenylamine              | 169      | 9.968        | 9.968  | 0.000  | 98      | 517764       | 42.8    | 42.7      |       |
| 120 N-Nitrosodiphenylamine     | 169      | 9.968        | 9.968  | 0.000  | 97      | 517764       | 50.0    | 50.0      |       |
| 123 1,2-Diphenylhydrazine      | 77       | 10.011       | 10.011 | 0.000  | 99      | 682277       | 50.0    | 47.0      |       |
| 122 Azobenzene                 | 77       | 10.011       | 10.011 | 0.000  | 95      | 682277       | 50.0    | 47.0      |       |
| 130 4-Bromophenyl phenyl ether | 248      | 10.364       | 10.364 | 0.000  | 95      | 240418       | 50.0    | 52.8      |       |
| 131 Hexachlorobenzene          | 284      | 10.428       | 10.428 | 0.000  | 96      | 241483       | 50.0    | 51.8      |       |
| 133 Atrazine                   | 200      | 10.561       | 10.561 | 0.000  | 94      | 194362       | 50.0    | 46.5      |       |
| 134 Pentachlorophenol          | 266      | 10.636       | 10.636 | 0.000  | 96      | 217203       | 100.0   | 71.4      | M     |
| 113 n-Octadecane               | 57       | 10.764       | 10.764 | 0.000  | 91      | 376205       | 50.0    | 48.6      |       |
| 141 Phenanthrene               | 178      | 10.839       | 10.839 | 0.000  | 99      | 1028722      | 50.0    | 50.5      |       |
| 142 Anthracene                 | 178      | 10.892       | 10.892 | 0.000  | 99      | 1103750      | 50.0    | 52.7      |       |
|                                |          |              |        |        |         |              |         |           |       |

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20509.D

| Data File. ((CHIOIIIIVA))      | Janaio |              | tunn J//         | 7/1/20171        | 012-00 |          | , .D             |                 |       |
|--------------------------------|--------|--------------|------------------|------------------|--------|----------|------------------|-----------------|-------|
| Compound                       | Sig    | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q      | Response | Cal Amt<br>ng/uL | OnCol Amt ng/uL | Flags |
| Compound                       | Sig    | (111111.)    | (111111.)        | (111111.)        | Q      | Response | Hg/uL            | Hg/uL           | Flags |
|                                |        |              |                  |                  |        |          |                  |                 |       |
| 143 Carbazole                  | 167    | 11.058       | 11.058           | 0.000            | 100    | 1055836  | 50.0             | 55.3            |       |
| 145 Di-n-butyl phthalate       | 149    | 11.421       | 11.421           | 0.000            | 99     | 1212274  | 50.0             | 53.9            |       |
| 152 Fluoranthene               | 202    | 11.966       | 11.966           | 0.000            | 99     | 1308119  | 50.0             | 55.7            |       |
| 154 Benzidine                  | 184    | 12.094       | 12.094           | 0.000            | 100    | 590360   | 50.0             | 41.5            |       |
| 155 Pyrene                     | 202    | 12.169       | 12.169           | 0.000            | 99     | 1340270  | 50.0             | 49.9            |       |
| 162 Butyl benzyl phthalate     | 149    | 12.741       | 12.741           | 0.000            | 99     | 555024   | 50.0             | 48.7            |       |
| 166 3,3'-Dichlorobenzidine     | 252    | 13.184       | 13.184           | 0.000            | 86     | 499400   | 50.0             | 48.5            |       |
| 167 Benzo[a]anthracene         | 228    | 13.200       | 13.200           | 0.000            | 96     | 1334224  | 50.0             | 49.7            |       |
| 172 Bis(2-ethylhexyl) phthalat | 149    | 13.227       | 13.227           | 0.000            | 96     | 778698   | 50.0             | 47.4            |       |
| 169 Chrysene                   | 228    | 13.232       | 13.232           | 0.000            | 98     | 1271617  | 50.0             | 48.8            |       |
| 168 Di-n-octyl phthalate       | 149    | 13.751       | 13.751           | 0.000            | 100    | 1313280  | 50.0             | 48.5            |       |
| 174 Benzo[b]fluoranthene       | 252    | 14.071       | 14.071           | 0.000            | 99     | 1471759  | 50.0             | 52.4            |       |
| 175 Benzo[k]fluoranthene       | 252    | 14.092       | 14.092           | 0.000            | 98     | 1368389  | 50.0             | 45.7            |       |
| 177 Benzo[a]pyrene             | 252    | 14.317       | 14.317           | 0.000            | 99     | 1344973  | 50.0             | 49.7            |       |
| 180 Indeno[1,2,3-cd]pyrene     | 276    | 15.252       | 15.252           | 0.000            | 91     | 1574654  | 50.0             | 51.2            |       |
| 181 Dibenz(a,h)anthracene      | 278    | 15.257       | 15.257           | 0.000            | 91     | 1338512  | 50.0             | 51.3            |       |
| 182 Benzo[g,h,i]perylene       | 276    | 15.503       | 15.503           | 0.000            | 100    | 1350113  | 50.0             | 51.4            |       |
|                                |        |              |                  |                  |        |          |                  |                 |       |

### QC Flag Legend

Review Flags

M - Manually Integrated

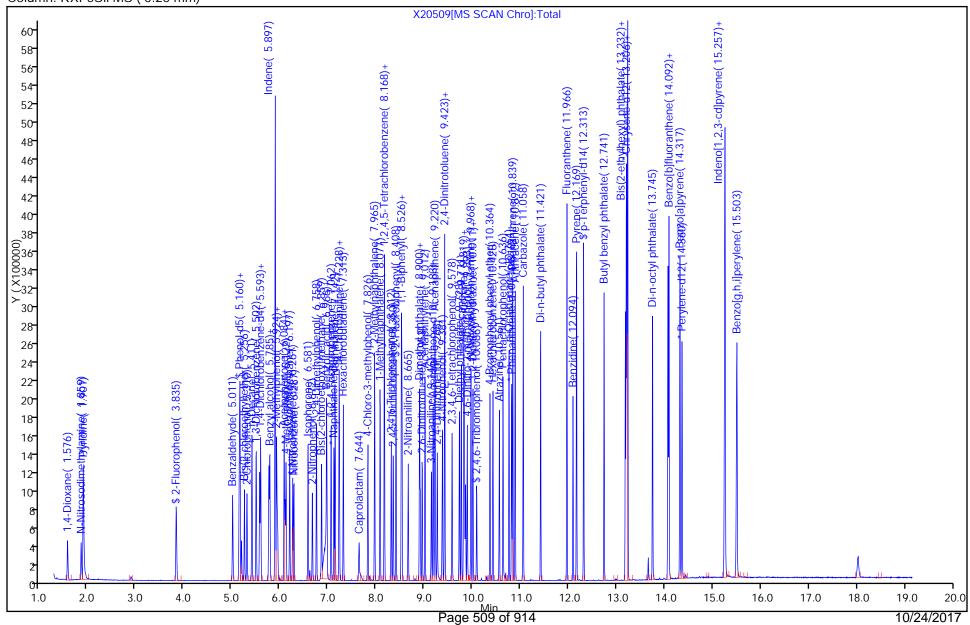
Reagents:

MB\_LIST1\_WRK\_00515 Amount Added: 1.00 Units: mL

MB\_INTSTD\_STK\_00039 Amount Added: 20.00 Units: uL Run Reagent

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20509.D Injection Date: 13-Oct-2017 00:32:30 Instrument ID: HP5973X


Lims ID: CCVIS

Client ID:

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



DR

3

3

Operator ID:

ALS Bottle#:

Worklist Smp#:

Report Date: 13-Oct-2017 12:07:59 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

TestAmerica Buffalo

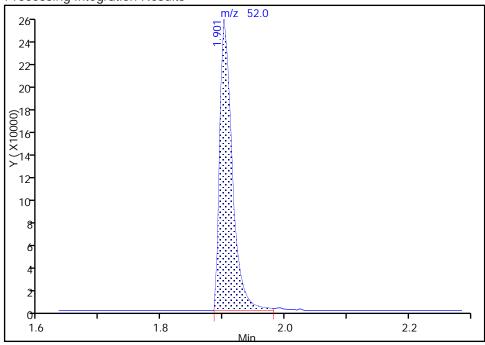
Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20509.D Injection Date: 13-Oct-2017 00:32:30 Instrument ID: HP5973X

Lims ID: CCVIS

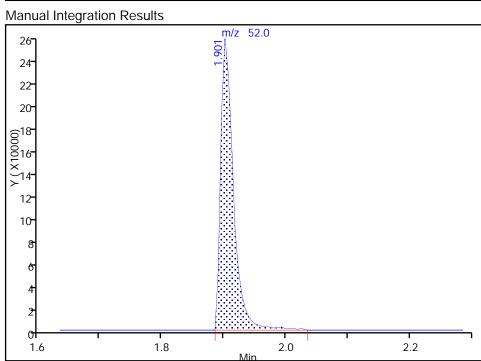
Client ID:

Operator ID: DR ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 ul Dil. Factor: 1.0000


Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN


#### 17 Pyridine, CAS: 110-86-1

Signal: 1

RT: 1.90 Area: 361079 Amount: 76.934141 Amount Units: ng/uL Processing Integration Results



RT: 1.90 Area: 365161 Amount: 77.787662 Amount Units: ng/uL



Reviewer: richardsd, 13-Oct-2017 11:04:04

Audit Action: Manually Integrated

Audit Reason: Incomplete Integration

Page 510 of 914

Report Date: 13-Oct-2017 12:07:59 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

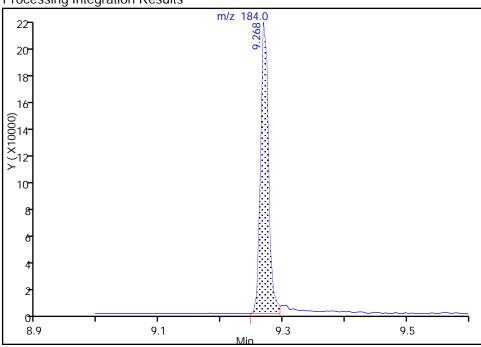
Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20509.D Injection Date: 13-Oct-2017 00:32:30 Instrument ID: HP5973X

Lims ID: CCVIS

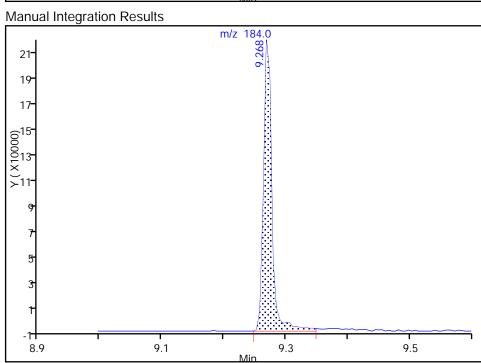
Client ID:

Operator ID: DR ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 ul Dil. Factor: 1.0000


Method: X-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN


#### 103 2,4-Dinitrophenol, CAS: 51-28-5

Signal: 1

RT: 9.27 Area: 190951 Amount: 77.913115 Amount Units: ng/uL **Processing Integration Results** 



RT: 9.27
Area: 201436
Amount: 81.843054
Amount Units: ng/uL



Reviewer: richardsd, 13-Oct-2017 11:04:55

Audit Action: Manually Integrated

Audit Reason: Peak Tail

Page 511 of 914

Report Date: 13-Oct-2017 12:07:59 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20509.D Injection Date: 13-Oct-2017 00:32:30 Instrument ID: HP5973X

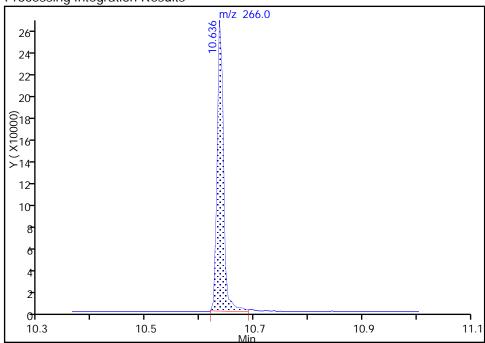
Lims ID: CCVIS

Client ID:

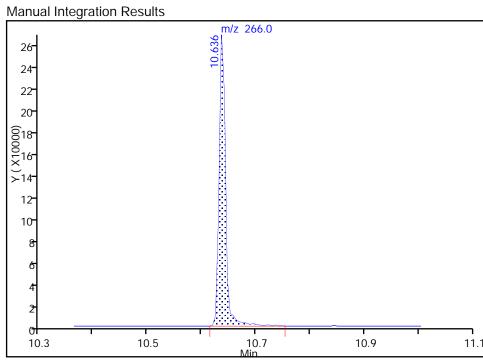
Operator ID: DR ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL


Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN

#### 134 Pentachlorophenol, CAS: 87-86-5


Signal: 1

RT: 10.64
Area: 212460
Amount: 69.949265
Amount Units: ng/uL





RT: 10.64
Area: 217203
Amount: 71.387383
Amount Units: ng/uL



Reviewer: richardsd, 13-Oct-2017 11:05:17

Audit Action: Manually Integrated

Audit Reason: Baseline

Page 512 of 914

TestAmerica Buffalo

**Target Compound Quantitation Report** 

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328216.D

Lims ID: DFTPP

Client ID:

Sample Type: DFTPP

Inject. Date: 16-Oct-2017 11:41:30 ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: DFTPP

Operator ID: DR Instrument ID: HP5973U

Method: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U-8270.m

Limit Group: MB - 8270D ICAL

Last Update:16-Oct-2017 12:14:39Calib Date:02-Sep-2017 00:48:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973U\20170901-65316.b\U327640.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: XAWRK028

First Level Reviewer: richardsd Date: 16-Oct-2017 12:14:39

| Compound                             | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q  | Response | Cal Amt<br>ng/uL | OnCol Amt<br>ng/uL | Flags |
|--------------------------------------|-----|--------------|------------------|------------------|----|----------|------------------|--------------------|-------|
| 248 Pentachlorophenol_T<br>249 DFTPP | 266 | 11.624       | 11.624           | 0.000            | 93 | 51705    | NR               | NR                 | M     |
| 250 Benzidine_T                      | 184 | 13.002       | 13.002           | 0.000            | 99 | 384676   | NR               | NR                 |       |
| 251 4,4'-DDE                         | 246 |              | 13.425           |                  |    |          |                  | ND                 |       |
| 252 4,4'-DDD                         | 235 |              | 13.467           |                  |    |          |                  | ND                 |       |
| 253 4,4'-DDT                         | 235 | 13.734       | 13.734           | 0.000            | 98 | 233068   | NR               | NR                 |       |

#### QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Review Flags

M - Manually Integrated

Reagents:

MB\_DFTPP\_WRK\_00319 Amount Added: 1.00 Units: mL

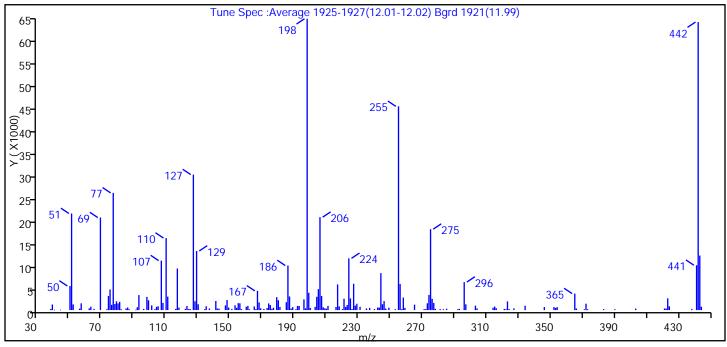
MS Tune Report

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328216.D Injection Date: 16-Oct-2017 11:41:30 Instrument ID: HP5973U

Lims ID: DFTPP

Client ID:


Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Tune Method: DFTPP Method 8270D, BP 198

#### 249 DFTPP



| m/z | Ion Abundance Criteria       | % Relative<br>Abundance |
|-----|------------------------------|-------------------------|
| 198 | base peak, or >90% of 442    | 100.0 (101.1)           |
| 51  | 10-80% of the base peak      | 33.2                    |
| 68  | <2% of mass 69               | 0.0 (0.0)               |
| 69  | Present                      | 31.8                    |
| 70  | <2% of mass 69               | 0.0 (0.0)               |
| 127 | 10-80% of the base peak      | 46.5                    |
| 197 | <2% of mass 198              | 0.6                     |
| 199 | 5-9% of mass 198             | 5.9                     |
| 275 | 10-60% of the base peak      | 27.8                    |
| 365 | >1% of mass 198              | 5.7                     |
| 441 | present but <24% of mass 442 | 15.4 (15.6)             |
| 442 | base peak, or >50% of 198    | 98.9                    |
| 443 | 15-24% of mass 442           | 18.7 (18.9)             |

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328216.D\U-8270.rslt\spectra.d

Injection Date: 16-Oct-2017 11:41:30

Spectrum: Tune Spec :Average 1925-1927(12.01-12.02) Bgrd 1921(11.99)

Base Peak: 198.00 Minimum % Base Peak: 0 Number of Points: 183

| m/z    | Υ     | m/z    | Υ     | m/z    | Υ     | m/z    | Υ     |
|--------|-------|--------|-------|--------|-------|--------|-------|
| 38.00  | 253   | 125.00 | 224   | 197.00 | 383   | 273.00 | 1499  |
| 39.00  | 1229  | 127.00 | 29808 | 198.00 | 64096 | 274.00 | 3327  |
| 40.00  | 0     | 128.00 | 1950  | 199.00 | 3807  | 275.00 | 17800 |
| 44.00  | 0     | 129.00 | 13001 | 200.00 | 449   | 276.00 | 2475  |
| 50.00  | 5298  | 130.00 | 1277  | 203.00 | 716   | 277.00 | 1573  |
| 51.00  | 21248 | 134.00 | 180   | 204.00 | 2916  | 278.00 | 268   |
| 52.00  | 1236  | 135.00 | 845   | 205.00 | 4603  | 281.00 | 212   |
| 56.00  | 308   | 137.00 | 350   | 206.00 | 20432 | 283.00 | 179   |
| 57.00  | 1485  | 141.00 | 2002  | 207.00 | 3110  | 285.00 | 289   |
| 62.00  | 369   | 142.00 | 348   | 208.00 | 612   | 292.00 | 178   |
| 63.00  | 751   | 143.00 | 300   | 209.00 | 379   | 293.00 | 277   |
| 65.00  | 268   | 147.00 | 1028  | 210.00 | 315   | 296.00 | 6162  |
| 69.00  | 20352 | 148.00 | 2202  | 211.00 | 927   | 297.00 | 1269  |
| 73.00  | 198   | 149.00 | 555   | 216.00 | 673   | 303.00 | 981   |
| 74.00  | 3087  | 151.00 | 251   | 217.00 | 5640  | 304.00 | 369   |
| 75.00  | 4528  | 153.00 | 1050  | 218.00 | 798   | 314.00 | 522   |
| 76.00  | 1153  | 154.00 | 493   | 220.00 | 211   | 315.00 | 768   |
| 77.00  | 25776 | 155.00 | 1524  | 221.00 | 2491  | 316.00 | 395   |
| 78.00  | 1339  | 156.00 | 1492  | 222.00 | 687   | 321.00 | 259   |
| 79.00  | 1928  | 157.00 | 219   | 223.00 | 1117  | 322.00 | 186   |
| 80.00  | 1468  | 160.00 | 726   | 224.00 | 11378 | 323.00 | 1905  |
| 81.00  | 1811  | 161.00 | 918   | 225.00 | 2557  | 324.00 | 217   |
| 82.00  | 182   | 162.00 | 169   | 226.00 | 239   | 327.00 | 374   |
| 85.00  | 364   | 165.00 | 800   | 227.00 | 5783  | 334.00 | 960   |
| 86.00  | 555   | 166.00 | 217   | 228.00 | 982   | 346.00 | 664   |
| 87.00  | 172   | 167.00 | 4221  | 229.00 | 1396  | 352.00 | 671   |
| 91.00  | 0     | 168.00 | 1690  | 231.00 | 721   | 353.00 | 468   |
| 92.00  | 620   | 169.00 | 387   | 235.00 | 367   | 354.00 | 649   |
| 93.00  | 3303  | 171.00 | 246   | 237.00 | 485   | 365.00 | 3626  |
| 96.00  | 265   | 173.00 | 454   | 240.00 | 220   | 366.00 | 340   |
| 98.00  | 2895  | 174.00 | 1466  | 242.00 | 558   | 371.00 | 170   |
| 99.00  | 2153  | 175.00 | 1099  | 243.00 | 543   | 372.00 | 1404  |
| 101.00 | 1035  | 176.00 | 282   | 244.00 | 8125  | 373.00 | 201   |

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328216.D\U-8270.rslt\spectra.d

Injection Date: 16-Oct-2017 11:41:30

Spectrum: Tune Spec :Average 1925-1927(12.01-12.02) Bgrd 1921(11.99)

Base Peak: 198.00

Minimum % Base Peak: 0 Number of Points: 183

| m/z    | Υ     | m/z    | Υ    | m/z    | Υ     | m/z    | Υ     |
|--------|-------|--------|------|--------|-------|--------|-------|
| 103.00 | 209   | 177.00 | 510  | 245.00 | 1283  | 383.00 | 213   |
| 104.00 | 718   | 179.00 | 2840 | 246.00 | 1981  | 390.00 | 183   |
| 105.00 | 830   | 180.00 | 2162 | 247.00 | 346   | 403.00 | 323   |
| 107.00 | 10880 | 181.00 | 696  | 249.00 | 524   | 421.00 | 350   |
| 108.00 | 1591  | 185.00 | 1728 | 253.00 | 176   | 422.00 | 341   |
| 110.00 | 15842 | 186.00 | 9799 | 255.00 | 44816 | 423.00 | 2582  |
| 111.00 | 2951  | 187.00 | 2994 | 256.00 | 5745  | 424.00 | 823   |
| 116.00 | 268   | 188.00 | 338  | 257.00 | 195   | 438.00 | 260   |
| 117.00 | 9144  | 189.00 | 654  | 258.00 | 2747  | 441.00 | 9864  |
| 118.00 | 551   | 191.00 | 200  | 259.00 | 481   | 442.00 | 63368 |
| 122.00 | 284   | 192.00 | 899  | 265.00 | 1195  | 443.00 | 11999 |
| 123.00 | 898   | 193.00 | 920  | 271.00 | 208   | 444.00 | 750   |
| 124.00 | 212   | 196.00 | 2348 | 272.00 | 210   |        |       |

Breakdown Report

TestAmerica Buffalo

Data File: Instrument ID: HP5973U

Injection Date: 16-Oct-2017 11:41:30

Lims ID: Client ID:

**DFTPP** 

Operator ID:

DR ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0000 1.0 ul Dil. Factor:

Method: U-8270 Limit Group: MB - 8270D ICAL

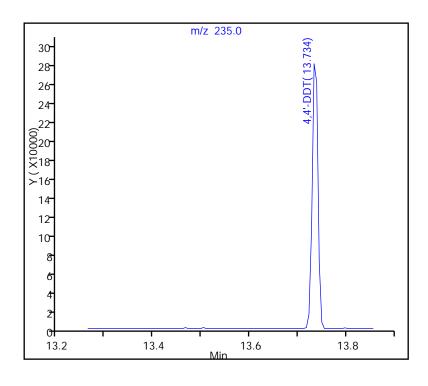
253 4,4'-DDT, Detector: MS SCAN

SW-846 Method

%Breakdown =

(Area Breakdown Cpnds/

Total Area Breakdown Cpnds) \* 100


253 4,4'-DDT, Area = 233068

252 4,4'-DDD, Area = 0

 $251 \, 4,4'-DDE, Area = 0$ 

%Breakdown: 0.00%, Max Limit: 20.00%

Passed



Chrom Revision: 2.2 16-Aug-2017 16:24:46 Peak Tailing Report Report Date: 16-Oct-2017 12:14:40

TestAmerica Buffalo

Data File:

16-Oct-2017 11:41:30 Injection Date: Instrument ID: HP5973U

Lims ID: **DFTPP** 

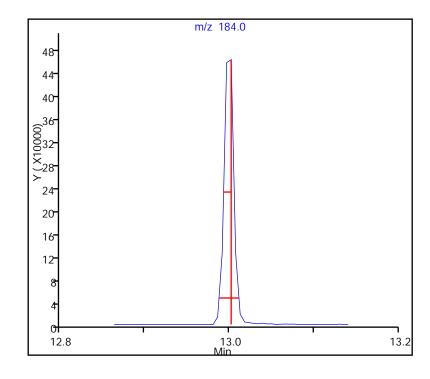
Client ID:

Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

250 Benzidine\_T, Detector: MS SCAN


Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.009 (min.) Front Width = 0.014 (min.)

Tailing Factor = 0.6, Max. Tailing < 2.00

Passed



Peak Tailing Report

TestAmerica Buffalo

Injection Date: 16-Oct-2017 11:41:30 Instrument ID: HP5973U

Lims ID: DFTPP

Client ID:

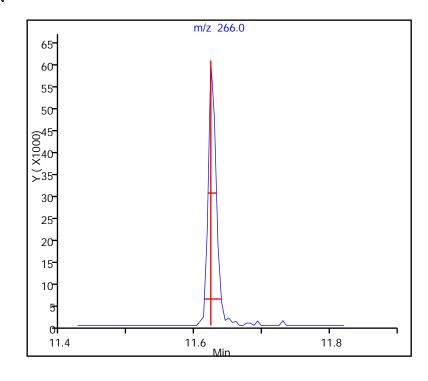
Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

248 Pentachlorophenol\_T, Detector: MS SCAN

Peak Tailing Factor =


BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.016 (min.) Front Width = 0.010 (min.)

Tailing Factor = 1.6, Max. Tailing < 2.00

Passed

-----



TestAmerica Buffalo

**Target Compound Quantitation Report** 

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328226.D

Lims ID: DFTPP

Client ID:

Sample Type: DFTPP

Inject. Date: 16-Oct-2017 18:01:30 ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 480-0066446-002

Operator ID: DR Instrument ID: HP5973U

Method: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U-8270.m

Limit Group: MB - 8270D ICAL

Last Update:17-Oct-2017 11:38:25Calib Date:16-Oct-2017 14:19:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: XAWRK024

First Level Reviewer: richardsd Date: 16-Oct-2017 18:29:55

| Compound                             | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q  | Response | Cal Amt<br>ng/uL | OnCol Amt<br>ng/uL | Flags |
|--------------------------------------|-----|--------------|------------------|------------------|----|----------|------------------|--------------------|-------|
| 248 Pentachlorophenol_T<br>249 DFTPP | 266 | 11.624       | 11.624           | 0.000            | 90 | 40464    | NR               | NR                 |       |
| 250 Benzidine_T                      | 184 | 12.997       | 12.997           | 0.000            | 99 | 385323   | NR               | NR                 |       |
| 251 4,4'-DDE                         | 246 |              | 13.425           |                  |    |          |                  | ND                 |       |
| 252 4,4'-DDD                         | 235 |              | 13.467           |                  |    |          |                  | ND                 |       |
| 253 4,4'-DDT                         | 235 | 13.734       | 13.734           | 0.000            | 98 | 252962   | NR               | NR                 |       |

### **QC Flag Legend**

Processing Flags

NR - Missing Quant Standard

Reagents:

MB\_DFTPP\_WRK\_00319 Amount Added: 1.00 Units: mL

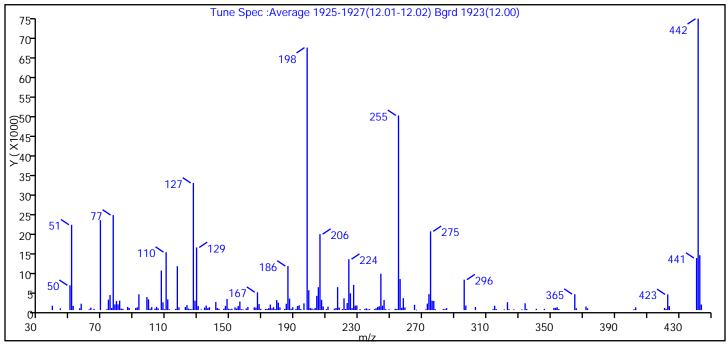
MS Tune Report

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328226.D Injection Date: 16-Oct-2017 18:01:30 Instrument ID: HP5973U

Lims ID: DFTPP

Client ID:


Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Tune Method: DFTPP Method 8270D, BP 198

#### 249 DFTPP



| m/z | Ion Abundance Criteria       | % Relative<br>Abundance |
|-----|------------------------------|-------------------------|
| 198 | base peak, or >90% of 442    | 100.0 (90.1)            |
| 51  | 10-80% of the base peak      | 32.5                    |
| 68  | <2% of mass 69               | 0.0 (0.0)               |
| 69  | Present                      | 34.3                    |
| 70  | <2% of mass 69               | 0.0 (0.0)               |
| 127 | 10-80% of the base peak      | 48.4                    |
| 197 | <2% of mass 198              | 0.0                     |
| 199 | 5-9% of mass 198             | 7.5                     |
| 275 | 10-60% of the base peak      | 30.0                    |
| 365 | >1% of mass 198              | 6.1                     |
| 441 | present but <24% of mass 442 | 19.8 (17.9)             |
| 442 | base peak, or >50% of 198    | 111.0                   |
| 443 | 15-24% of mass 442           | 20.9 (18.8)             |

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328226.D\U-8270.rslt\spectra.d

Injection Date: 16-Oct-2017 18:01:30

Spectrum: Tune Spec :Average 1925-1927(12.01-12.02) Bgrd 1923(12.00)

Base Peak: 442.00 Minimum % Base Peak: 0 Number of Points: 193

| m/z    | Υ     | m/z    | Υ     | m/z    | Υ     | m/z    | Υ     |
|--------|-------|--------|-------|--------|-------|--------|-------|
| 39.00  | 1125  | 128.00 | 2421  | 194.00 | 276   | 259.00 | 684   |
| 44.00  | 435   | 129.00 | 16106 | 196.00 | 1731  | 265.00 | 1348  |
| 50.00  | 6366  | 130.00 | 1036  | 198.00 | 67496 | 266.00 | 0     |
| 51.00  | 21936 | 132.00 | 180   | 199.00 | 5093  | 272.00 | 180   |
| 52.00  | 1063  | 134.00 | 639   | 200.00 | 509   | 273.00 | 1673  |
| 56.00  | 447   | 135.00 | 1169  | 201.00 | 395   | 274.00 | 4088  |
| 57.00  | 1640  | 136.00 | 487   | 202.00 | 171   | 275.00 | 20248 |
| 62.00  | 182   | 137.00 | 738   | 203.00 | 551   | 276.00 | 2411  |
| 63.00  | 619   | 141.00 | 2069  | 204.00 | 3653  | 277.00 | 2341  |
| 65.00  | 314   | 142.00 | 514   | 205.00 | 5886  | 278.00 | 218   |
| 69.00  | 23128 | 143.00 | 293   | 206.00 | 19528 | 283.00 | 243   |
| 73.00  | 223   | 146.00 | 334   | 207.00 | 2635  | 284.00 | 223   |
| 74.00  | 2671  | 147.00 | 1081  | 208.00 | 931   | 285.00 | 504   |
| 75.00  | 3896  | 148.00 | 2863  | 210.00 | 226   | 296.00 | 7813  |
| 76.00  | 534   | 149.00 | 345   | 211.00 | 860   | 297.00 | 1170  |
| 77.00  | 24440 | 150.00 | 199   | 215.00 | 360   | 303.00 | 778   |
| 78.00  | 1453  | 151.00 | 345   | 216.00 | 544   | 314.00 | 234   |
| 79.00  | 2318  | 153.00 | 703   | 217.00 | 5899  | 315.00 | 1111  |
| 80.00  | 1467  | 154.00 | 432   | 218.00 | 636   | 316.00 | 261   |
| 81.00  | 2413  | 155.00 | 1052  | 220.00 | 264   | 321.00 | 167   |
| 82.00  | 350   | 156.00 | 2200  | 221.00 | 3019  | 323.00 | 2022  |
| 83.00  | 327   | 157.00 | 203   | 222.00 | 280   | 324.00 | 218   |
| 86.00  | 807   | 158.00 | 182   | 223.00 | 1814  | 327.00 | 172   |
| 87.00  | 511   | 160.00 | 414   | 224.00 | 13087 | 332.00 | 189   |
| 91.00  | 525   | 161.00 | 833   | 225.00 | 4301  | 334.00 | 1752  |
| 92.00  | 707   | 165.00 | 714   | 226.00 | 519   | 335.00 | 287   |
| 93.00  | 4053  | 166.00 | 645   | 227.00 | 6473  | 341.00 | 342   |
| 98.00  | 3357  | 167.00 | 4583  | 228.00 | 1149  | 346.00 | 310   |
| 99.00  | 2756  | 168.00 | 1544  | 229.00 | 1179  | 352.00 | 565   |
| 100.00 | 355   | 169.00 | 319   | 231.00 | 250   | 353.00 | 570   |
| 101.00 | 762   | 172.00 | 281   | 234.00 | 297   | 354.00 | 718   |
| 103.00 | 374   | 173.00 | 277   | 235.00 | 446   | 355.00 | 266   |
| 104.00 | 839   | 174.00 | 488   | 236.00 | 190   | 365.00 | 4090  |

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328226.D\U-8270.rslt\spectra.d

Injection Date: 16-Oct-2017 18:01:30

Spectrum: Tune Spec :Average 1925-1927(12.01-12.02) Bgrd 1923(12.00)

Base Peak: 442.00

Minimum % Base Peak: 0 Number of Points: 193

| m/z    | Υ     | m/z    | Υ     | m/z    | Υ     | m/z    | Υ     |
|--------|-------|--------|-------|--------|-------|--------|-------|
| 105.00 | 437   | 175.00 | 1424  | 237.00 | 230   | 366.00 | 448   |
| 107.00 | 10164 | 176.00 | 430   | 240.00 | 251   | 372.00 | 909   |
| 108.00 | 1989  | 177.00 | 753   | 241.00 | 495   | 373.00 | 445   |
| 109.00 | 222   | 178.00 | 255   | 242.00 | 813   | 402.00 | 227   |
| 110.00 | 14901 | 179.00 | 2570  | 243.00 | 962   | 403.00 | 698   |
| 111.00 | 2754  | 180.00 | 1892  | 244.00 | 9345  | 421.00 | 539   |
| 112.00 | 178   | 181.00 | 704   | 245.00 | 1136  | 422.00 | 292   |
| 116.00 | 316   | 184.00 | 314   | 246.00 | 2593  | 423.00 | 4020  |
| 117.00 | 11283 | 185.00 | 1628  | 247.00 | 235   | 424.00 | 1008  |
| 118.00 | 715   | 186.00 | 11325 | 249.00 | 203   | 441.00 | 13380 |
| 122.00 | 801   | 187.00 | 2970  | 253.00 | 335   | 442.00 | 74928 |
| 123.00 | 1264  | 188.00 | 328   | 254.00 | 288   | 443.00 | 14120 |
| 124.00 | 385   | 189.00 | 733   | 255.00 | 50056 | 444.00 | 1418  |
| 125.00 | 251   | 191.00 | 294   | 256.00 | 7980  |        |       |
| 126.00 | 195   | 192.00 | 1039  | 257.00 | 586   |        |       |
| 127.00 | 32680 | 193.00 | 1242  | 258.00 | 3058  |        |       |

Breakdown Report

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328226.D

Injection Date: 16-Oct-2017 18:01:30 Instrument ID:

Lims ID: DFTPP

Client ID:

Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

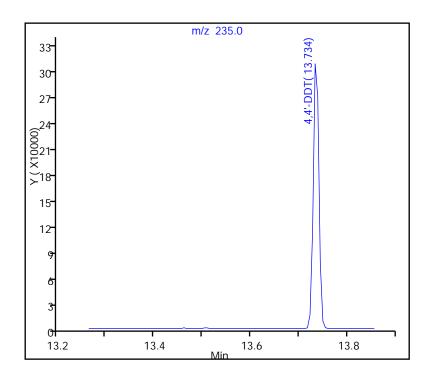
Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

253 4,4'-DDT, Detector: MS SCAN

SW-846 Method

%Breakdown =


(Area Breakdown Cpnds/

Total Area Breakdown Cpnds) \* 100

253 4,4'-DDT, Area = 252962 252 4,4'-DDD, Area = 0 251 4,4'-DDE, Area = 0

%Breakdown: 0.00%, Max Limit: 20.00%

Passed



HP5973U

Peak Tailing Report

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328226.D

Injection Date: 16-Oct-2017 18:01:30 Instrument ID: HP5973U

Lims ID: DFTPP

Client ID:

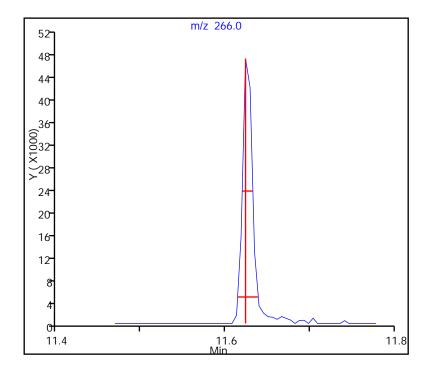
Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

248 Pentachlorophenol\_T, Detector: MS SCAN

Peak Tailing Factor =


BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.015 (min.) Front Width = 0.009 (min.)

Tailing Factor = 1.6, Max. Tailing < 2.00

Passed

-----



Chrom Revision: 2.2 16-Aug-2017 16:24:46 Peak Tailing Report Report Date: 17-Oct-2017 11:38:26

TestAmerica Buffalo

Data File:

Injection Date: 16-Oct-2017 18:01:30 Instrument ID: HP5973U

Lims ID: **DFTPP** 

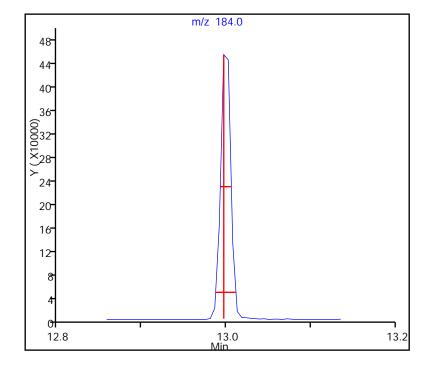
Client ID:

Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

250 Benzidine\_T, Detector: MS SCAN


Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.015 (min.) Front Width = 0.010 (min.)

Tailing Factor = 1.5, Max. Tailing < 2.00

Passed



TestAmerica Buffalo

**Target Compound Quantitation Report** 

Data File: \ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20236.D

Lims ID: DFTPP

Client ID:

Sample Type: DFTPP

Inject. Date: 29-Sep-2017 19:07:30 ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 480-0066023-002

Operator ID: DR Instrument ID: HP5973X

Method: \ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Oct-2017 12:28:41Calib Date:29-Sep-2017 21:44:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK031

First Level Reviewer: pagem Date: 03-Oct-2017 12:28:41

| Compound                             | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q   | Response | Cal Amt<br>ng/uL | OnCol Amt<br>ng/uL | Flags |
|--------------------------------------|-----|--------------|------------------|------------------|-----|----------|------------------|--------------------|-------|
| 230 Pentachlorophenol_T<br>231 DFTPP | 266 | 10.708       | 10.708           | 0.000            | 97  | 86780    | NR               | NR                 |       |
| 233 4,4'-DDE                         | 246 |              | 12.515           |                  |     |          |                  | ND                 |       |
| 234 4,4'-DDD                         | 235 |              | 12.653           |                  |     |          |                  | ND                 |       |
| 232 Benzidine_T                      | 184 | 12.161       | 12.161           | 0.000            | 100 | 612474   | NR               | NR                 |       |
| 235 4,4'-DDT                         | 235 | 12.882       | 12.882           | 0.000            | 97  | 317434   | NR               | NR                 |       |

#### QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Reagents:

MB\_DFTPP\_WRK\_00317 Amount Added: 1.00 Units: mL

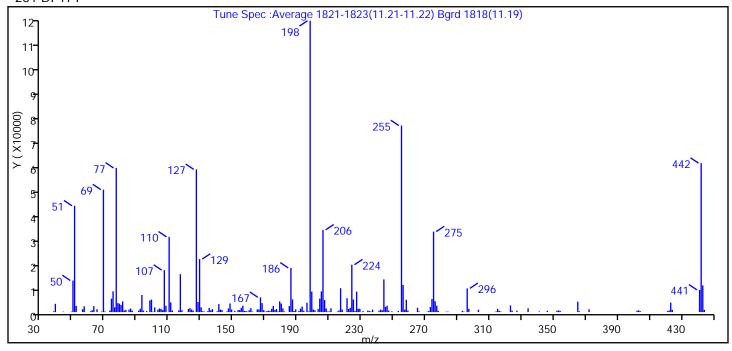
MS Tune Report

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20236.D Injection Date: 29-Sep-2017 19:07:30 Instrument ID: HP5973X

Lims ID: DFTPP

Client ID:


Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

Tune Method: DFTPP Method 8270D, BP 198

#### 231 DFTPP



| m/z | Ion Abundance Criteria       | % Relative<br>Abundance |
|-----|------------------------------|-------------------------|
| 198 | base peak, or >90% of 442    | 100.0 (195.6)           |
| 51  | 10-80% of the base peak      | 36.5                    |
| 68  | <2% of mass 69               | 0.2 (0.5)               |
| 69  | Present                      | 42.0                    |
| 70  | <2% of mass 69               | 0.2 (0.5)               |
| 127 | 10-80% of the base peak      | 49.0                    |
| 197 | <2% of mass 198              | 0.2                     |
| 199 | 5-9% of mass 198             | 7.0                     |
| 275 | 10-60% of the base peak      | 27.6                    |
| 365 | >1% of mass 198              | 3.6                     |
| 441 | present but <24% of mass 442 | 7.6 (14.9)              |
| 442 | base peak, or >50% of 198    | 51.1                    |
| 443 | 15-24% of mass 442           | 9.2 (17.9)              |

Data File: \ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20236.D\X-8270.rslt\spectra.d

Injection Date: 29-Sep-2017 19:07:30

Spectrum: Tune Spec :Average 1821-1823(11.21-11.22) Bgrd 1818(11.19)

Base Peak: 198.00 Minimum % Base Peak: 0 Number of Points: 202

| m/z   | Υ     | m/z    | Υ     | m/z    | Υ      | m/z    | Υ     |
|-------|-------|--------|-------|--------|--------|--------|-------|
| 38.00 | 268   | 122.00 | 1170  | 185.00 | 2293   | 255.00 | 70656 |
| 39.00 | 3122  | 123.00 | 1505  | 186.00 | 16720  | 256.00 | 10262 |
| 44.00 | 167   | 124.00 | 978   | 187.00 | 4799   | 257.00 | 918   |
| 49.00 | 167   | 125.00 | 601   | 188.00 | 421    | 258.00 | 4684  |
| 50.00 | 11947 | 127.00 | 54056 | 189.00 | 1010   | 259.00 | 566   |
| 51.00 | 40272 | 128.00 | 3815  | 191.00 | 448    | 265.00 | 1644  |
| 52.00 | 2322  | 129.00 | 20080 | 192.00 | 1295   | 266.00 | 283   |
| 56.00 | 1088  | 130.00 | 1777  | 193.00 | 2083   | 271.00 | 179   |
| 57.00 | 2177  | 131.00 | 337   | 194.00 | 521    | 272.00 | 341   |
| 61.00 | 314   | 132.00 | 193   | 196.00 | 3539   | 273.00 | 1928  |
| 62.00 | 725   | 134.00 | 282   | 197.00 | 225    | 274.00 | 4949  |
| 63.00 | 2255  | 135.00 | 1606  | 198.00 | 110376 | 275.00 | 30480 |
| 65.00 | 1080  | 136.00 | 636   | 199.00 | 7748   | 276.00 | 4093  |
| 68.00 | 216   | 137.00 | 1136  | 200.00 | 983    | 277.00 | 2425  |
| 69.00 | 46392 | 140.00 | 286   | 201.00 | 663    | 278.00 | 442   |
| 70.00 | 232   | 141.00 | 3020  | 203.00 | 1138   | 283.00 | 168   |
| 73.00 | 577   | 142.00 | 942   | 204.00 | 5091   | 284.00 | 173   |
| 74.00 | 5059  | 143.00 | 789   | 205.00 | 7842   | 293.00 | 467   |
| 75.00 | 7893  | 146.00 | 212   | 206.00 | 31152  | 294.00 | 174   |
| 76.00 | 1787  | 147.00 | 1376  | 207.00 | 4560   | 296.00 | 8979  |
| 77.00 | 54584 | 148.00 | 3255  | 208.00 | 1359   | 297.00 | 1222  |
| 78.00 | 3392  | 149.00 | 986   | 209.00 | 208    | 303.00 | 902   |
| 79.00 | 3189  | 151.00 | 470   | 210.00 | 268    | 314.00 | 246   |
| 80.00 | 2672  | 153.00 | 750   | 211.00 | 1445   | 315.00 | 1209  |
| 81.00 | 4019  | 154.00 | 728   | 215.00 | 200    | 316.00 | 464   |
| 82.00 | 596   | 155.00 | 1599  | 216.00 | 623    | 317.00 | 181   |
| 83.00 | 839   | 156.00 | 2429  | 217.00 | 9040   | 323.00 | 2515  |
| 85.00 | 950   | 157.00 | 468   | 218.00 | 950    | 324.00 | 550   |
| 86.00 | 1314  | 158.00 | 416   | 221.00 | 5253   | 327.00 | 534   |
| 87.00 | 506   | 159.00 | 175   | 222.00 | 1148   | 334.00 | 1427  |
| 91.00 | 554   | 160.00 | 705   | 223.00 | 1625   | 341.00 | 233   |
| 92.00 | 1270  | 161.00 | 1490  | 224.00 | 17944  | 346.00 | 489   |
| 93.00 | 6483  | 162.00 | 191   | 225.00 | 4766   | 352.00 | 495   |

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20236.D\X-8270.rslt\spectra.d

Injection Date: 29-Sep-2017 19:07:30

Spectrum: Tune Spec :Average 1821-1823(11.21-11.22) Bgrd 1818(11.19)

Base Peak: 198.00

Minimum % Base Peak: 0 Number of Points: 202

| m/z    | Υ     | m/z    | Υ    | m/z    | Υ     | m/z    | Υ     |
|--------|-------|--------|------|--------|-------|--------|-------|
| 94.00  | 571   | 165.00 | 1005 | 226.00 | 407   | 353.00 | 631   |
| 96.00  | 371   | 166.00 | 993  | 227.00 | 7747  | 354.00 | 449   |
| 98.00  | 4423  | 167.00 | 5603 | 228.00 | 1235  | 365.00 | 3957  |
| 99.00  | 4716  | 168.00 | 3398 | 229.00 | 1260  | 366.00 | 285   |
| 100.00 | 167   | 169.00 | 729  | 231.00 | 373   | 372.00 | 1073  |
| 101.00 | 1765  | 170.00 | 178  | 234.00 | 559   | 402.00 | 530   |
| 103.00 | 921   | 171.00 | 359  | 235.00 | 371   | 403.00 | 656   |
| 104.00 | 1349  | 172.00 | 558  | 236.00 | 175   | 404.00 | 317   |
| 105.00 | 1200  | 173.00 | 356  | 237.00 | 911   | 421.00 | 362   |
| 106.00 | 758   | 174.00 | 1220 | 241.00 | 534   | 422.00 | 595   |
| 107.00 | 15896 | 175.00 | 2336 | 242.00 | 969   | 423.00 | 3579  |
| 108.00 | 2395  | 176.00 | 778  | 243.00 | 648   | 424.00 | 828   |
| 110.00 | 28496 | 177.00 | 1161 | 244.00 | 12378 | 441.00 | 8412  |
| 111.00 | 3676  | 178.00 | 218  | 245.00 | 1975  | 442.00 | 56424 |
| 112.00 | 599   | 179.00 | 4082 | 246.00 | 2420  | 443.00 | 10110 |
| 116.00 | 603   | 180.00 | 3222 | 247.00 | 577   | 444.00 | 855   |
| 117.00 | 14361 | 181.00 | 1397 | 249.00 | 303   |        |       |
| 118.00 | 690   | 182.00 | 236  | 253.00 | 420   |        |       |

Breakdown Report

TestAmerica Buffalo

Data File: Instrument ID: HP5973X

Injection Date: 29-Sep-2017 19:07:30

**DFTPP** 

Lims ID:

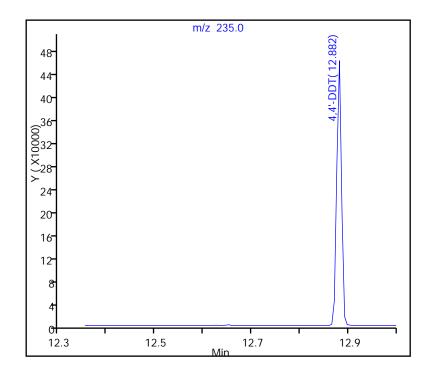
Client ID:

Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

1.0 ul Injection Vol: 1.0000 Dil. Factor:

Method: X-8270 Limit Group: MB - 8270D ICAL

235 4,4'-DDT, Detector: MS SCAN


SW-846 Method

%Breakdown = (Area Breakdown Cpnds/ Total Area Breakdown Cpnds) \* 100

235 4,4'-DDT, Area = 317434 234 4,4'-DDD, Area = 0 233 4,4'-DDE, Area = 0

%Breakdown: 0.00%, Max Limit: 20.00%

Passed



Chrom Revision: 2.2 16-Aug-2017 16:24:46 Report Date: 03-Oct-2017 12:28:42

Peak Tailing Report

TestAmerica Buffalo

Data File: Instrument ID: HP5973X

Injection Date: 29-Sep-2017 19:07:30

Lims ID: **DFTPP** 

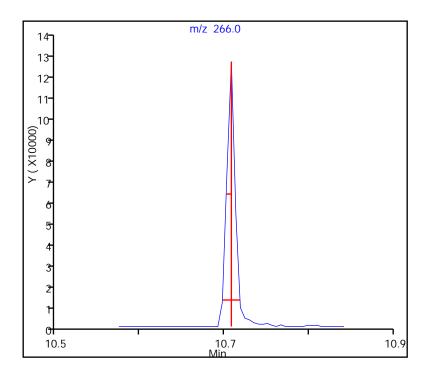
Client ID:

Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

1.0 ul Injection Vol: Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

230 Pentachlorophenol\_T, Detector: MS SCAN


Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.010 (min.) Front Width = 0.011 (min.)

Tailing Factor = 1.0, Max. Tailing < 2.00

Passed



Peak Tailing Report

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20236.D Injection Date: 29-Sep-2017 19:07:30 Instrument ID: HP5973X

Lims ID: DFTPP

Client ID:

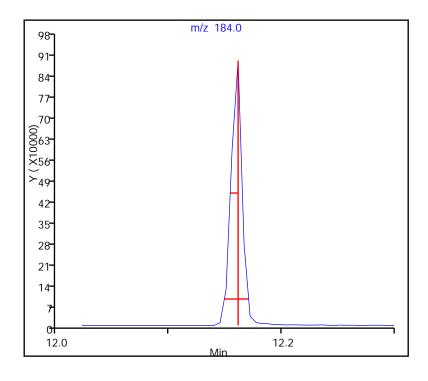
Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

232 Benzidine\_T, Detector: MS SCAN

Peak Tailing Factor =


BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.009 (min.) Front Width = 0.012 (min.)

Tailing Factor = 0.8, Max. Tailing < 2.00

Passed

-----



TestAmerica Buffalo

**Target Compound Quantitation Report** 

Data File: \ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20508.D

Lims ID: DFTPP

Client ID:

Sample Type: DFTPP

Inject. Date: 13-Oct-2017 00:06:30 ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 480-0066346-002

Operator ID: DR Instrument ID: HP5973X

Method: \ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X-8270.m

Limit Group: MB - 8270D ICAL

Last Update:13-Oct-2017 12:08:03Calib Date:29-Sep-2017 21:44:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973X\20170929-66023.b\X20242.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: XAWRK013

First Level Reviewer: richardsd Date: 13-Oct-2017 11:03:29

| Compound                             | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q   | Response | Cal Amt<br>ng/uL | OnCol Amt<br>ng/uL | Flags |
|--------------------------------------|-----|--------------|------------------|------------------|-----|----------|------------------|--------------------|-------|
| 230 Pentachlorophenol_T<br>231 DFTPP | 266 | 10.631       | 10.631           | 0.000            | 95  | 80554    | NR               | NR                 |       |
| 233 4,4'-DDE                         | 246 |              | 11.662           |                  |     |          |                  | ND                 |       |
| 232 Benzidine_T                      | 184 | 12.095       | 12.095           | 0.000            | 100 | 928172   | NR               | NR                 |       |
| 234 4,4'-DDD                         | 235 | 12.554       | 12.554           | 0.000            | 1   | 4550     |                  | NR                 |       |
| 235 4,4'-DDT                         | 235 | 12.816       | 12.816           | 0.000            | 96  | 513367   | NR               | NR                 |       |

#### QC Flag Legend

Processing Flags

NR - Missing Quant Standard 8 - Failed MS Tune Ratio Test

Reagents:

MB\_DFTPP\_WRK\_00319 Amount Added: 1.00 Units: mL

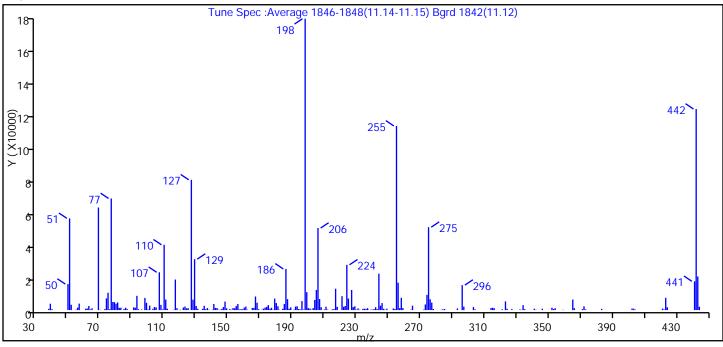
MS Tune Report

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20508.D Injection Date: 13-Oct-2017 00:06:30 Instrument ID: HP5973X

Lims ID: DFTPP

Client ID:


Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

Tune Method: DFTPP Method 8270D, BP 198

### 231 DFTPP



| m/z | Ion Abundance Criteria       | % Relative<br>Abundance |
|-----|------------------------------|-------------------------|
| 198 | base peak, or >90% of 442    | 100.0 (144.9)           |
| 51  | 10-80% of the base peak      | 31.5                    |
| 68  | <2% of mass 69               | 0.0 (0.0)               |
| 69  | Present                      | 35.2                    |
| 70  | <2% of mass 69               | 0.1 (0.3)               |
| 127 | 10-80% of the base peak      | 44.7                    |
| 197 | <2% of mass 198              | 0.2                     |
| 199 | 5-9% of mass 198             | 6.1                     |
| 275 | 10-60% of the base peak      | 28.5                    |
| 365 | >1% of mass 198              | 3.6                     |
| 441 | present but <24% of mass 442 | 9.9 (14.3)              |
| 442 | base peak, or >50% of 198    | 69.0                    |
| 443 | 15-24% of mass 442           | 11.5 (16.7)             |

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20508.D\X-8270.rslt\spectra.d

Injection Date: 13-Oct-2017 00:06:30

Spectrum: Tune Spec :Average 1846-1848(11.14-11.15) Bgrd 1842(11.12)

Base Peak: 198.00 Minimum % Base Peak: 0 Number of Points: 221

| m/z   | Υ     | m/z    | Υ     | m/z    | Υ      | m/z    | Υ     |
|-------|-------|--------|-------|--------|--------|--------|-------|
| 38.00 | 742   | 127.00 | 79048 | 192.00 | 2136   | 259.00 | 1238  |
| 39.00 | 3849  | 128.00 | 6310  | 193.00 | 2296   | 264.00 | 257   |
| 40.00 | 560   | 129.00 | 30904 | 194.00 | 655    | 265.00 | 2655  |
| 50.00 | 15767 | 130.00 | 2474  | 195.00 | 342    | 272.00 | 300   |
| 51.00 | 55648 | 131.00 | 795   | 196.00 | 5433   | 273.00 | 3395  |
| 52.00 | 3200  | 134.00 | 764   | 197.00 | 310    | 274.00 | 9234  |
| 55.00 | 251   | 135.00 | 2590  | 198.00 | 176768 | 275.00 | 50296 |
| 56.00 | 1498  | 136.00 | 525   | 199.00 | 10868  | 276.00 | 6539  |
| 57.00 | 3909  | 137.00 | 1207  | 200.00 | 1177   | 277.00 | 4522  |
| 61.00 | 794   | 138.00 | 198   | 201.00 | 867    | 278.00 | 660   |
| 62.00 | 944   | 140.00 | 227   | 202.00 | 239    | 283.00 | 190   |
| 63.00 | 2460  | 141.00 | 3681  | 203.00 | 1213   | 284.00 | 491   |
| 64.00 | 399   | 142.00 | 1297  | 204.00 | 6147   | 285.00 | 645   |
| 65.00 | 1097  | 143.00 | 1251  | 205.00 | 12222  | 293.00 | 984   |
| 69.00 | 62240 | 144.00 | 190   | 206.00 | 49768  | 296.00 | 15144 |
| 70.00 | 169   | 145.00 | 203   | 207.00 | 6690   | 297.00 | 2137  |
| 73.00 | 599   | 146.00 | 705   | 208.00 | 1709   | 303.00 | 1842  |
| 74.00 | 7115  | 147.00 | 1838  | 210.00 | 365    | 304.00 | 459   |
| 75.00 | 10539 | 148.00 | 5142  | 211.00 | 2044   | 314.00 | 1234  |
| 76.00 | 465   | 149.00 | 1055  | 212.00 | 286    | 315.00 | 1425  |
| 77.00 | 67704 | 151.00 | 593   | 215.00 | 477    | 316.00 | 1060  |
| 78.00 | 4907  | 152.00 | 188   | 216.00 | 617    | 321.00 | 482   |
| 79.00 | 4806  | 153.00 | 1191  | 217.00 | 12963  | 323.00 | 5264  |
| 80.00 | 3836  | 154.00 | 1097  | 218.00 | 1974   | 324.00 | 797   |
| 81.00 | 4607  | 155.00 | 2496  | 221.00 | 8423   | 327.00 | 623   |
| 82.00 | 1341  | 156.00 | 3708  | 222.00 | 1987   | 332.00 | 356   |
| 83.00 | 1430  | 157.00 | 383   | 223.00 | 2458   | 333.00 | 176   |
| 85.00 | 693   | 158.00 | 624   | 224.00 | 27472  | 334.00 | 2984  |
| 86.00 | 1428  | 159.00 | 459   | 225.00 | 7005   | 335.00 | 577   |
| 87.00 | 537   | 160.00 | 1539  | 227.00 | 12205  | 341.00 | 839   |
| 91.00 | 1636  | 161.00 | 2165  | 228.00 | 1803   | 342.00 | 171   |
| 92.00 | 1460  | 162.00 | 248   | 229.00 | 2296   | 346.00 | 850   |
| 93.00 | 8637  | 165.00 | 1244  | 230.00 | 233    | 352.00 | 1453  |

Data File: \\ChromNA\Buffalo\ChromData\HP5973X\20171012-66346.b\X20508.D\X-8270.rslt\spectra.d

Injection Date: 13-Oct-2017 00:06:30

Spectrum: Tune Spec :Average 1846-1848(11.14-11.15) Bgrd 1842(11.12)

Base Peak: 198.00

Minimum % Base Peak: 0 Number of Points: 221

| m/z    | Υ     | m/z    | Υ     | m/z    | Υ      | m/z    | Υ      |
|--------|-------|--------|-------|--------|--------|--------|--------|
| 94.00  | 529   | 166.00 | 1375  | 231.00 | 1011   | 353.00 | 654    |
| 96.00  | 359   | 167.00 | 8243  | 232.00 | 222    | 354.00 | 1098   |
| 98.00  | 7377  | 168.00 | 4470  | 234.00 | 735    | 359.00 | 190    |
| 99.00  | 4422  | 169.00 | 508   | 235.00 | 812    | 365.00 | 6361   |
| 100.00 | 383   | 171.00 | 229   | 236.00 | 724    | 366.00 | 1120   |
| 101.00 | 2681  | 172.00 | 859   | 237.00 | 1162   | 371.00 | 573    |
| 103.00 | 773   | 173.00 | 1521  | 239.00 | 290    | 372.00 | 2283   |
| 104.00 | 1847  | 174.00 | 1943  | 240.00 | 229    | 373.00 | 438    |
| 105.00 | 1592  | 175.00 | 3034  | 241.00 | 648    | 383.00 | 768    |
| 107.00 | 22928 | 176.00 | 804   | 242.00 | 1738   | 402.00 | 962    |
| 108.00 | 3166  | 177.00 | 1386  | 243.00 | 547    | 403.00 | 802    |
| 109.00 | 385   | 178.00 | 198   | 244.00 | 22080  | 404.00 | 279    |
| 110.00 | 39608 | 179.00 | 6967  | 245.00 | 2651   | 421.00 | 935    |
| 111.00 | 6390  | 180.00 | 4239  | 246.00 | 4268   | 422.00 | 345    |
| 112.00 | 826   | 181.00 | 2330  | 247.00 | 770    | 423.00 | 7452   |
| 116.00 | 185   | 182.00 | 209   | 248.00 | 167    | 424.00 | 1709   |
| 117.00 | 18520 | 184.00 | 779   | 249.00 | 829    | 441.00 | 17440  |
| 118.00 | 1165  | 185.00 | 3727  | 253.00 | 960    | 442.00 | 121992 |
| 120.00 | 272   | 186.00 | 24976 | 254.00 | 637    | 443.00 | 20352  |
| 122.00 | 1545  | 187.00 | 6639  | 255.00 | 111720 | 444.00 | 2007   |
| 123.00 | 2129  | 188.00 | 805   | 256.00 | 16608  |        |        |
| 124.00 | 1049  | 189.00 | 1675  | 257.00 | 1173   |        |        |
| 125.00 | 1064  | 191.00 | 291   | 258.00 | 7442   |        |        |

Breakdown Report

TestAmerica Buffalo

Data File: Instrument ID: HP5973X

Injection Date: 13-Oct-2017 00:06:30

Lims ID: Client ID: **DFTPP** 

Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

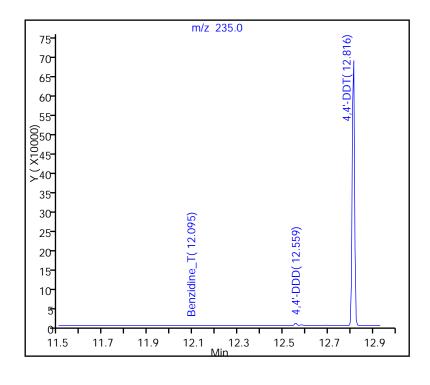
235 4,4'-DDT, Detector: MS SCAN

SW-846 Method

%Breakdown =

(Area Breakdown Cpnds/

Total Area Breakdown Cpnds) \* 100


235 4,4'-DDT, Area = 513367

234 4,4'-DDD, Area = 4550

233 4,4'-DDE, Area = 0

%Breakdown: 0.88%, Max Limit: 20.00%

Passed



Chrom Revision: 2.2 16-Aug-2017 16:24:46 Report Date: 13-Oct-2017 12:08:04

Peak Tailing Report

TestAmerica Buffalo

Data File: Instrument ID: HP5973X

13-Oct-2017 00:06:30 Injection Date:

Lims ID: **DFTPP** 

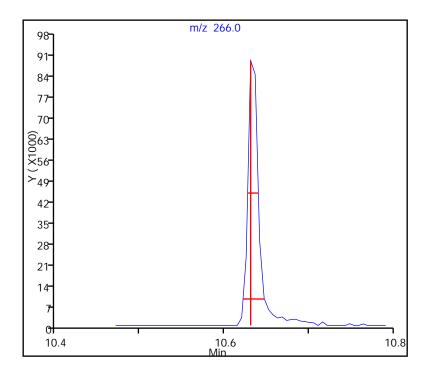
Client ID:

Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

230 Pentachlorophenol\_T, Detector: MS SCAN


Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.016 (min.) Front Width = 0.009 (min.)

Tailing Factor = 1.8, Max. Tailing < 2.00

Passed



Chrom Revision: 2.2 16-Aug-2017 16:24:46 Peak Tailing Report Report Date: 13-Oct-2017 12:08:04

TestAmerica Buffalo

Data File: 13-Oct-2017 00:06:30 Injection Date: Instrument ID: HP5973X

Lims ID: **DFTPP** 

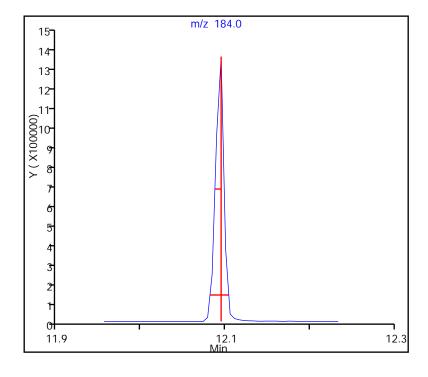
Client ID:

Operator ID: DR ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Method: X-8270 Limit Group: MB - 8270D ICAL

232 Benzidine\_T, Detector: MS SCAN


Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.009 (min.) Front Width = 0.013 (min.)

Tailing Factor = 0.7, Max. Tailing < 2.00

Passed



# FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1            |
|-------------------------------|----------------------------------|
| SDG No.:                      |                                  |
| Client Sample ID:             | Lab Sample ID: MB 480-381332/1-A |
| Matrix: Solid                 | Lab File ID: U328231.D           |
| Analysis Method: 8270D        | Date Collected:                  |
| Extract. Method: 3550C        | Date Extracted: 10/11/2017 14:06 |
| Sample wt/vol: 30.37(g)       | Date Analyzed: 10/16/2017 20:13  |
| Con. Extract Vol.: 1(mL)      | Dilution Factor: 1               |
| Injection Volume: 1(uL)       | Level: (low/med) Low             |
| % Moisture:                   | GPC Cleanup: (Y/N) N             |
| Analysis Batch No.: 382085    | Units: ug/Kg                     |

| CAS NO.   | COMPOUND NAME               | RESULT | Q | RL   | MDL |
|-----------|-----------------------------|--------|---|------|-----|
| 95-95-4   | 2,4,5-Trichlorophenol       | ND     |   | 170  | 45  |
| 88-06-2   | 2,4,6-Trichlorophenol       | ND     |   | 170  | 34  |
| 120-83-2  | 2,4-Dichlorophenol          | ND     |   | 170  | 18  |
| 105-67-9  | 2,4-Dimethylphenol          | ND     |   | 170  | 41  |
| 51-28-5   | 2,4-Dinitrophenol           | ND     |   | 1600 | 770 |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     |   | 170  | 35  |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     |   | 170  | 20  |
| 91-58-7   | 2-Chloronaphthalene         | ND     |   | 170  | 28  |
| 95-57-8   | 2-Chlorophenol              | ND     |   | 170  | 31  |
| 91-57-6   | 2-Methylnaphthalene         | ND     |   | 170  | 34  |
| 95-48-7   | 2-Methylphenol              | ND     |   | 170  | 20  |
| 88-74-4   | 2-Nitroaniline              | ND     |   | 330  | 25  |
| 88-75-5   | 2-Nitrophenol               | ND     |   | 170  | 47  |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     |   | 330  | 200 |
| 99-09-2   | 3-Nitroaniline              | ND     |   | 330  | 46  |
| 534-52-1  | 4,6-Dinitro-2-methylphenol  | ND     |   | 330  | 170 |
| 101-55-3  | 4-Bromophenyl phenyl ether  | ND     |   | 170  | 24  |
| 59-50-7   | 4-Chloro-3-methylphenol     | ND     |   | 170  | 41  |
| 106-47-8  | 4-Chloroaniline             | ND     |   | 170  | 41  |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     |   | 170  | 21  |
| 106-44-5  | 4-Methylphenol              | ND     |   | 330  | 20  |
| 100-01-6  | 4-Nitroaniline              | ND     |   | 330  | 88  |
| 100-02-7  | 4-Nitrophenol               | ND     |   | 330  | 120 |
| 83-32-9   | Acenaphthene                | ND     |   | 170  | 25  |
| 208-96-8  | Acenaphthylene              | ND     |   | 170  | 22  |
| 98-86-2   | Acetophenone                | ND     |   | 170  | 23  |
| 120-12-7  | Anthracene                  | ND     |   | 170  | 41  |
| 1912-24-9 | Atrazine                    | ND     |   | 170  | 58  |
| 100-52-7  | Benzaldehyde                | ND     |   | 170  | 130 |
| 56-55-3   | Benzo[a]anthracene          | ND     |   | 170  | 17  |
| 50-32-8   | Benzo[a]pyrene              | ND     |   | 170  | 25  |
| 205-99-2  | Benzo[b]fluoranthene        | ND     |   | 170  | 27  |
| 191-24-2  | Benzo[g,h,i]perylene        | ND     |   | 170  | 18  |
| 207-08-9  | Benzo[k]fluoranthene        | ND     |   | 170  | 22  |

### FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1            |
|-------------------------------|----------------------------------|
| SDG No.:                      |                                  |
| Client Sample ID:             | Lab Sample ID: MB 480-381332/1-A |
| Matrix: Solid                 | Lab File ID: U328231.D           |
| Analysis Method: 8270D        | Date Collected:                  |
| Extract. Method: 3550C        | Date Extracted: 10/11/2017 14:06 |
| Sample wt/vol: 30.37(g)       | Date Analyzed: 10/16/2017 20:13  |
| Con. Extract Vol.: 1(mL)      | Dilution Factor: 1               |
| Injection Volume: 1(uL)       | Level: (low/med) Low             |
| % Moisture:                   | GPC Cleanup: (Y/N) N             |
| Analysis Batch No.: 382085    | <br>Units: ug/Kg                 |

| CAS NO.  | COMPOUND NAME                 | RESULT | Q | RL  | MDL |
|----------|-------------------------------|--------|---|-----|-----|
| 92-52-4  | Biphenyl                      | ND     |   | 170 | 25  |
| 108-60-1 | bis (2-chloroisopropyl) ether | ND     |   | 170 | 34  |
| 111-91-1 | Bis(2-chloroethoxy)methane    | ND     |   | 170 | 36  |
| 111-44-4 | Bis(2-chloroethyl)ether       | ND     |   | 170 | 22  |
| 117-81-7 | Bis(2-ethylhexyl) phthalate   | ND     |   | 170 | 57  |
| 85-68-7  | Butyl benzyl phthalate        | ND     |   | 170 | 28  |
| 105-60-2 | Caprolactam                   | ND     |   | 170 | 50  |
| 86-74-8  | Carbazole                     | ND     |   | 170 | 20  |
| 218-01-9 | Chrysene                      | ND     |   | 170 | 38  |
| 53-70-3  | Dibenz(a,h)anthracene         | ND     |   | 170 | 30  |
| 132-64-9 | Dibenzofuran                  | ND     |   | 170 | 20  |
| 84-66-2  | Diethyl phthalate             | ND     |   | 170 | 22  |
| 131-11-3 | Dimethyl phthalate            | ND     |   | 170 | 20  |
| 84-74-2  | Di-n-butyl phthalate          | ND     |   | 170 | 29  |
| 117-84-0 | Di-n-octyl phthalate          | ND     |   | 170 | 20  |
| 206-44-0 | Fluoranthene                  | ND     |   | 170 | 18  |
| 86-73-7  | Fluorene                      | ND     |   | 170 | 20  |
| 118-74-1 | Hexachlorobenzene             | ND     |   | 170 | 23  |
| 87-68-3  | Hexachlorobutadiene           | ND     |   | 170 | 25  |
| 77-47-4  | Hexachlorocyclopentadiene     | ND     |   | 170 | 23  |
| 67-72-1  | Hexachloroethane              | ND     |   | 170 | 22  |
| 193-39-5 | Indeno[1,2,3-cd]pyrene        | ND     |   | 170 | 21  |
| 78-59-1  | Isophorone                    | ND     |   | 170 | 36  |
| 91-20-3  | Naphthalene                   | ND     |   | 170 | 22  |
| 98-95-3  | Nitrobenzene                  | ND     |   | 170 | 19  |
| 621-64-7 | N-Nitrosodi-n-propylamine     | ND     |   | 170 | 29  |
| 86-30-6  | N-Nitrosodiphenylamine        | ND     |   | 170 | 140 |
| 87-86-5  | Pentachlorophenol             | ND     |   | 330 | 170 |
| 85-01-8  | Phenanthrene                  | ND     |   | 170 | 25  |
| 108-95-2 | Phenol                        | ND     |   | 170 | 26  |
| 129-00-0 | Pyrene                        | ND     |   | 170 | 20  |

#### FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1 SDG No.: Client Sample ID: Lab Sample ID: MB 480-381332/1-A Matrix: Solid Lab File ID: U328231.D Analysis Method: 8270D Date Collected: Date Extracted: 10/11/2017 14:06 Extract. Method: 3550C Sample wt/vol: 30.37(g) Date Analyzed: 10/16/2017 20:13 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 382085 Units: ug/Kg

| CAS NO.   | SURROGATE            | %REC | Q | LIMITS |
|-----------|----------------------|------|---|--------|
| 118-79-6  | 2,4,6-Tribromophenol | 86   |   | 54-120 |
| 321-60-8  | 2-Fluorobiphenyl     | 84   |   | 60-120 |
| 367-12-4  | 2-Fluorophenol       | 77   |   | 52-120 |
| 4165-60-0 | Nitrobenzene-d5      | 73   |   | 53-120 |
| 4165-62-2 | Phenol-d5            | 80   |   | 54-120 |
| 1718-51-0 | p-Terphenyl-d14      | 101  |   | 65-121 |

Report Date: 17-Oct-2017 11:38:16 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

**Target Compound Quantitation Report** 

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328231.D

Lims ID: MB 480-381332/1-A

Client ID:

Sample Type: MB

Inject. Date: 16-Oct-2017 20:13:30 ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 480-0066446-007

Operator ID: DR Instrument ID: HP5973U

Method: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U-8270.m

Limit Group: MB - 8270D ICAL

Last Update:17-Oct-2017 11:35:50Calib Date:16-Oct-2017 14:19:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK024

First Level Reviewer: richardsd Date: 17-Oct-2017 11:10:50

| First Level Reviewer: richardsd      |     |        | D      | ate:   |    | 17-Oct-201 | / 11:10:50 |           |       |
|--------------------------------------|-----|--------|--------|--------|----|------------|------------|-----------|-------|
|                                      |     | RT     | Adj RT | Dlt RT |    |            | Cal Amt    | OnCol Amt |       |
| Compound                             | Sig | (min.) | (min.) | (min.) | Q  | Response   | ng/uL      | ng/uL     | Flags |
| •                                    |     |        |        |        |    |            |            |           |       |
| * 1 1,4-Dichlorobenzene-d4           | 152 | 6.709  | 6.709  | 0.000  | 95 | 154035     | 40.0       | 40.0      |       |
| <ul><li>* 2 Naphthalene-d8</li></ul> | 136 | 8.226  | 8.226  | 0.000  | 99 | 528736     | 40.0       | 40.0      |       |
| * 3 Acenaphthene-d10                 | 164 | 10.293 | 10.293 | 0.000  | 97 | 262930     | 40.0       | 40.0      |       |
| <ul><li>4 Phenanthrene-d10</li></ul> | 188 | 11.811 | 11.811 | 0.000  | 96 | 553477     | 40.0       | 40.0      |       |
| * 5 Chrysene-d12                     | 240 | 14.193 | 14.193 | 0.000  | 96 | 589648     | 40.0       | 40.0      |       |
| * 6 Perylene-d12                     | 264 | 15.689 | 15.689 | 0.000  | 98 | 371113     | 40.0       | 40.0      |       |
| \$ 7 2-Fluorophenol                  | 112 | 5.101  | 5.095  | 0.006  | 91 | 126848     | 40.0       | 30.6      |       |
| \$ 8 Phenol-d5                       | 99  | 6.233  | 6.228  | 0.005  | 96 | 150365     | 40.0       | 32.0      |       |
| \$ 9 Nitrobenzene-d5                 | 82  | 7.355  | 7.355  | 0.000  | 89 | 134779     | 40.0       | 29.4      |       |
| \$ 10 2-Fluorobiphenyl               | 172 | 9.492  | 9.492  | 0.000  | 99 | 372614     | 40.0       | 33.6      |       |
| \$ 11 2,4,6-Tribromophenol           | 330 | 11.121 | 11.121 | 0.000  | 89 | 86430      | 40.0       | 34.6      |       |
| \$ 12 p-Terphenyl-d14                | 244 | 13.221 | 13.221 | 0.000  | 99 | 486299     | 40.0       | 40.5      |       |
| 14 o-Anisidine                       | 1   |        | 0.700  |        |    |            |            | ND        |       |
| 18 2-Chloropyridine                  | 1   |        | 0.700  |        |    |            |            | ND        |       |
| 19 Chlorobenzotrifluoride N.O        | 1   |        | 0.700  |        |    |            |            | ND        |       |
| 22 Chlorotoluene N.O.S               | 1   |        | 0.700  |        |    |            |            | ND        |       |
| 15 5-Ethyl-5-phenyl barbituri        | 1   |        | 0.700  |        |    |            |            | ND        |       |
| 21 N-Methylaniline                   | 1   |        | 0.700  |        |    |            |            | ND        |       |
| 17 4-Chloropyridine                  | 1   |        | 0.700  |        |    |            |            | ND        |       |
| 16 Lidocaine                         | 1   |        | 0.700  |        |    |            |            | ND        |       |
| 13 3-Chloropyridine                  | 1   |        | 0.700  |        |    |            |            | ND        |       |
| 20 2-Chlorotoluene                   | 91  |        | 0.700  |        |    |            |            | ND        |       |
| 23 1,4-Dioxane                       | 88  |        | 2.600  |        |    |            |            | ND        |       |
| 24 N-Nitrosodimethylamine            | 42  |        | 3.081  |        |    |            |            | ND        |       |
| 25 Pyridine                          | 52  |        | 3.183  |        |    |            |            | ND        |       |
| 26 2-Picoline                        | 93  |        | 4.743  |        |    |            |            | ND        |       |
| 27 N-Nitrosomethylethylamine         | 88  |        | 4.839  |        |    |            |            | ND        |       |
| 28 Acrylamide                        | 71  |        | 5.144  |        |    |            |            | ND        |       |
| 29 Methyl methanesulfonate           | 80  |        | 5.218  |        |    |            |            | ND        |       |
| 30 N-Nitrosodiethylamine             | 102 |        | 5.731  |        |    |            |            | ND        |       |
| 31 Ethyl methanesulfonate            | 79  |        | 6.062  |        |    |            |            | ND        |       |
| 32 Benzaldehyde                      | 77  |        | 6.174  |        |    |            |            | ND        |       |
| -                                    |     |        |        |        |    |            |            |           |       |

Report Date: 17-Oct-2017 11:38:16

Data File:

| Data File. (ICIIOIIIVA)       | , analo (  | Adj RT | Dlt RT | 710-00 | J440.D\U32623 | Cal Amt | OnCol Amt |       |
|-------------------------------|------------|--------|--------|--------|---------------|---------|-----------|-------|
| Compound                      | Sig        | (min.) | (min.) | Q      | Response      | ng/uL   | ng/uL     | Flags |
| 33 Phenol                     | 94         | 6.244  |        |        |               |         | ND        |       |
| 34 Aniline                    | 93         | 6.297  |        |        |               |         | ND        |       |
| 35 Bis(2-chloroethyl)ether    | 93         | 6.356  |        |        |               |         | ND        |       |
| 37 2-Chlorophenol             | 128        | 6.458  |        |        |               |         | ND        |       |
| 38 n-Decane                   | 57         | 6.506  |        |        |               |         | ND        |       |
| 39 1,3-Dichlorobenzene        | 146        | 6.650  |        |        |               |         | ND        |       |
| 36 Pentachloroethane          | 167        | 6.709  |        |        |               |         | ND        |       |
| 40 1,4-Dichlorobenzene        | 146        | 6.730  |        |        |               |         | ND        |       |
| 41 Benzyl alcohol             | 108        | 6.848  |        |        |               |         | ND        |       |
| 42 1,2-Dichlorobenzene        | 146        | 6.917  |        |        |               |         | ND        |       |
| 43 2-Methylphenol             | 108        | 6.976  |        |        |               |         | ND        |       |
| 44 2,2'-oxybis[1-chloropropan | 45         | 7.013  |        |        |               |         | ND        |       |
| 45 Indene                     | 115        | 7.024  |        |        |               |         | ND        |       |
| 46 4-Methylphenol             | 108        | 7.152  |        |        |               |         | ND        |       |
| 47 N-Nitrosodi-n-propylamine  | 70         | 7.157  |        |        |               |         | ND        |       |
| 49 Acetophenone               | 105        | 7.168  |        |        |               |         | ND        |       |
| 51 4-Methylbenzenamine        | 106        | 7.216  |        |        |               |         | ND        |       |
| 53 Hexachloroethane           | 117        | 7.328  |        |        |               |         | ND        |       |
| 54 Nitrobenzene               | 77         | 7.376  |        |        |               |         | ND        |       |
| 48 N-Nitrosopyrrolidine       | 100        | 7.441  |        |        |               |         | ND        |       |
| 50 N-Nitrosomorpholine        | 56         | 7.478  |        |        |               |         | ND        |       |
| 52 2-Toluidine                | 106        | 7.532  |        |        |               |         | ND        |       |
| 56 Isophorone                 | 82         | 7.654  |        |        |               |         | ND        |       |
| 58 2-Chloroaniline            | 127        | 7.713  |        |        |               |         | ND        |       |
| 59 2-Nitrophenol              | 139        | 7.761  |        |        |               |         | ND        |       |
| 60 2,4-Dimethylphenol         | 107        | 7.788  |        |        |               |         | ND        |       |
| 55 N-Nitrosopiperidine        | 114        | 7.863  |        |        |               |         | ND        |       |
| 65 Tetraethyl lead            | 237        | 7.873  |        |        |               |         | ND        |       |
| 62 Bis(2-chloroethoxy)methane | 93         | 7.895  |        |        |               |         | ND        |       |
| 64 Benzoic acid               | 105        | 7.911  |        |        |               |         | ND        |       |
| 57 2,4-Dichlorotoluene        | 125        | 7.991  |        |        |               |         | ND        |       |
| 67 2,4-Dichlorophenol         | 162        | 8.044  |        |        |               |         | ND        |       |
| 61 1,3,5-Trichlorobenzene     | 180        | 8.103  |        |        |               |         | ND        |       |
| 68 1,2,4-Trichlorobenzene     | 180        | 8.156  |        |        |               |         | ND        |       |
| 63 o,o',o''-Triethylphosphoro | 198        | 8.157  |        |        |               |         | ND        |       |
| 71 Alpha-Terpineol            | 59         | 8.242  |        |        |               |         | ND        |       |
| 70 Naphthalene                | 128        | 8.253  |        |        |               |         | ND        |       |
| 72 4-Chloroaniline            | 127        | 8.290  |        |        |               |         | ND        |       |
| 73 2,6-Dichlorophenol         | 162        | 8.311  |        |        |               |         | ND        |       |
| 66 alpha,alpha-Dimethyl phene | 58         | 8.338  |        |        |               |         | ND        |       |
| 74 Hexachlorobutadiene        | 225        | 8.402  |        |        |               |         | ND        |       |
| 69 4-Chlorophenol             | 128        | 8.445  |        |        |               |         | ND        |       |
| 304 1,3-Dibromobenzene TIC    | 236        | 8.546  |        |        |               |         | ND        |       |
| 305 1,4-Dibromobenzene TIC    | 236        | 8.589  |        |        |               |         | ND        |       |
| 76 Caprolactam                | 230<br>113 | 8.680  |        |        |               |         | ND        |       |
|                               | 213        | 8.680  |        |        |               |         | ND        |       |
| 75 Hexachloropropene          |            |        |        |        |               |         |           |       |
| 80 4-Chloro-3-methylphenol    | 107        | 8.851  |        |        |               |         | ND<br>ND  |       |
| 77 Quinoline                  | 129        | 8.947  |        |        |               |         | ND<br>ND  |       |
| 78 N-Nitrosodi-n-butylamine   | 84         | 8.979  |        |        |               |         | ND        |       |
| 79 p-Phenylene diamine        | 108        | 9.006  |        |        |               |         | ND        |       |
| 83 2-Methylnaphthalene        | 142        | 9.070  |        |        |               |         | ND        |       |
| 84 Phthalic anhydride         | 104        | 9.107  |        |        |               |         | ND        |       |

Report Date: 17-Oct-2017 11:38:16

Data File:

| Data File: \\CnromNA\B         | unaio     | onromData\HP597  |                  | 10-00 | 0440.D\U32823 |                  | 1.                 |       |
|--------------------------------|-----------|------------------|------------------|-------|---------------|------------------|--------------------|-------|
| Compound                       | Sig       | RT Adj RT (min.) | Dlt RT<br>(min.) | Q     | Response      | Cal Amt<br>ng/uL | OnCol Amt<br>ng/uL | Flags |
| 85 1-Methylnaphthalene         | 142       | 9.193            |                  |       |               |                  | ND                 |       |
| • •                            | 162       |                  |                  |       |               |                  | ND                 |       |
| 81 Safrole, Total              |           | 9.252            |                  |       |               |                  |                    |       |
| 86 Hexachlorocyclopentadiene   | 237       | 9.273            |                  |       |               |                  | ND                 |       |
| 87 1,2,4,5-Tetrachlorobenzene  | 216       | 9.278            |                  |       |               |                  | ND                 |       |
| 82 2,4,5-Trichlorotoluene      | 159       | 9.337            |                  |       |               |                  | ND                 |       |
| 89 2,4,6-Trichlorophenol       | 196       | 9.396            |                  |       |               |                  | ND                 |       |
| 91 2,4,5-Trichlorophenol       | 196       | 9.444            |                  |       |               |                  | ND                 |       |
| 88 Isosafrole Peak 1           | 162       | 9.594            |                  |       |               |                  | ND                 |       |
| 94 1,1'-Biphenyl               | 154       | 9.615            |                  |       |               |                  | ND                 |       |
| 95 2-Chloronaphthalene         | 162       | 9.652            |                  |       |               |                  | ND                 |       |
| 90 2,3-Dichlorobenzenamine     | 161       | 9.706            |                  |       |               |                  | ND                 |       |
| 98 2-Nitroaniline              | 65        | 9.748            |                  |       |               |                  | ND                 |       |
| 93 Isosafrole Peak 2           | 162       | 9.861            |                  |       |               |                  | ND                 |       |
| 92 Isosafrole                  | 162       | 9.861            |                  |       |               |                  | ND                 |       |
| 100 Dicyclohexylamine          | 138       | 9.871            |                  |       |               |                  | ND                 |       |
| 96 1,2,3,4 -Tetrachlorobenzen  | 216       | 9.925            |                  |       |               |                  | ND                 |       |
| 102 Dimethyl phthalate         | 163       | 9.946            |                  |       |               |                  | ND                 |       |
| 103 1,3-Dinitrobenzene         | 168       | 9.983            |                  |       |               |                  | ND                 |       |
| 97 1-Chloronaphthalene         | 162       | 9.989            |                  |       |               |                  | ND                 |       |
| 104 2,6-Dinitrotoluene         | 165       | 10.016           |                  |       |               |                  | ND                 |       |
| 105 Acenaphthylene             | 152       | 10.133           |                  |       |               |                  | ND                 |       |
| 99 1,4-Naphthoquinone          | 158       | 10.139           |                  |       |               |                  | ND                 |       |
| 101 1,4-Dinitrobenzene         | 168       | 10.181           |                  |       |               |                  | ND                 |       |
| 106 3-Nitroaniline             | 138       | 10.213           |                  |       |               |                  | ND                 |       |
| 107 2,4-Dinitrophenol          | 184       | 10.331           |                  |       |               |                  | ND                 |       |
| 108 Acenaphthene               | 153       | 10.331           |                  |       |               |                  | ND                 |       |
| 109 4-Nitrophenol              | 109       | 10.379           |                  |       |               |                  | ND                 |       |
| 111 2,4-Dinitrotoluene         | 165       | 10.470           |                  |       |               |                  | ND                 |       |
| 112 Dibenzofuran               | 168       | 10.512           |                  |       |               |                  | ND                 |       |
| 116 2,3,4,6-Tetrachlorophenol  | 232       | 10.641           |                  |       |               |                  | ND                 |       |
| 110 n,n'-Dimethylaniline       | 120       | 10.665           |                  |       |               |                  | ND                 |       |
| 118 Diethyl phthalate          | 149       | 10.721           |                  |       |               |                  | ND                 |       |
| 119 Hexadecane                 | 57        | 10.737           |                  |       |               |                  | ND                 |       |
| 113 Pentachlorobenzene         | 250       | 10.769           |                  |       |               |                  | ND                 |       |
| 121 4-Chlorophenyl phenyl ethe | 204       | 10.860           |                  |       |               |                  | ND                 |       |
| 122 4-Nitroaniline             | 138       | 10.870           |                  |       |               |                  | ND                 |       |
| 114 1-Naphthylamine            | 143       | 10.870           |                  |       |               |                  | ND                 |       |
| 123 Fluorene                   | 166       | 10.876           |                  |       |               |                  | ND                 |       |
| 115 2,3,5,6-Tetrachlorophenol  | 232       | 10.876           |                  |       |               |                  | ND                 |       |
| 125 4,6-Dinitro-2-methylphenol | 198       | 10.908           |                  |       |               |                  | ND                 |       |
| 126 Tributyl phosphate         | 99        | 10.924           |                  |       |               |                  | ND                 |       |
| 117 2-Naphthylamine            | 143       | 10.951           |                  |       |               |                  | ND                 |       |
| 128 Diphenylamine              | 169       | 10.977           |                  |       |               |                  | ND                 |       |
| 127 N-Nitrosodiphenylamine     | 169       | 10.977           |                  |       |               |                  | ND                 |       |
| 130 Azobenzene                 | 77        | 11.025           |                  |       |               |                  | ND                 |       |
|                                | 77<br>77  |                  |                  |       |               |                  | ND<br>ND           |       |
| 129 1,2-Diphenylhydrazine      |           | 11.025           |                  |       |               |                  |                    |       |
| 120 Thionazin                  | 97<br>152 | 11.073           |                  |       |               |                  | ND                 |       |
| 124 N-Nitro-o-toluidine        | 152       | 11.143           |                  |       |               |                  | ND                 |       |
| 137 4-Bromophenyl phenyl ether | 248       | 11.356           |                  |       |               |                  | ND                 |       |
| 131 Sulfotepp                  | 322       | 11.378           |                  |       |               |                  | ND                 |       |
| 139 Hexachlorobenzene          | 284       | 11.447           |                  |       |               |                  | ND                 |       |
| 142 Simazine                   | 201       | 11.453           |                  |       |               |                  | ND                 |       |

| Data File: \\ChromNA\B         | uffalo\( | ChromDa      | ta\HP5973        | 3U\201710        | 016-66 | 6446.b\U32823 | 81.D             | _                  |       |
|--------------------------------|----------|--------------|------------------|------------------|--------|---------------|------------------|--------------------|-------|
| Compound                       | Sig      | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q      | Response      | Cal Amt<br>ng/uL | OnCol Amt<br>ng/uL | Flags |
| 122 1 2 F Tainitash            | 212      |              | 11 4/0           |                  |        |               |                  | ND                 |       |
| 132 1,3,5-Trinitrobenzene      | 213      |              | 11.469           |                  |        |               |                  | ND                 |       |
| 141 Atrazine                   | 200      |              | 11.485           |                  |        |               |                  | ND                 |       |
| 134 Diallate Peak 1            | 43       |              | 11.528           |                  |        |               |                  | ND                 |       |
| 135 Phenacetin                 | 108      |              | 11.528           |                  |        |               |                  | ND                 |       |
| 133 Diallate                   | 43<br>75 |              | 11.528           |                  |        |               |                  | ND                 |       |
| 136 Phorate                    | 75<br>42 |              | 11.538           |                  |        |               |                  | ND                 |       |
| 138 Diallate Peak 2            | 43       |              | 11.618           |                  |        |               |                  | ND                 |       |
| 143 Pentachlorophenol          | 266      |              | 11.629           |                  |        |               |                  | ND                 |       |
| 144 n-Octadecane               | 57<br>07 |              | 11.650           |                  |        |               |                  | ND                 |       |
| 140 Dimethoate                 | 87       |              | 11.698           |                  |        |               |                  | ND                 |       |
| 150 Phenanthrene               | 178      |              | 11.832           |                  |        |               |                  | ND                 |       |
| 145 4-Aminobiphenyl            | 169      |              | 11.875           |                  |        |               |                  | ND                 |       |
| 151 Anthracene                 | 178      |              | 11.880           |                  |        |               |                  | ND                 |       |
| 146 Pronamide                  | 173      |              | 11.907           |                  |        |               |                  | ND                 |       |
| 147 Pentachloronitrobenzene    | 237      |              | 11.918           |                  |        |               |                  | ND                 |       |
| 152 Carbazole                  | 167      |              | 12.014           |                  |        |               |                  | ND                 |       |
| 148 Disulfoton                 | 88       |              | 12.035           |                  |        |               |                  | ND                 |       |
| 149 Dinoseb                    | 211      |              | 12.046           |                  |        |               |                  | ND                 |       |
| 153 Alachlor                   | 160      |              | 12.126           |                  |        |               |                  | ND                 |       |
| 155 Di-n-butyl phthalate       | 149      |              | 12.291           |                  |        |               |                  | ND                 |       |
| 154 Methyl parathion           | 109      |              | 12.388           |                  |        |               |                  | ND                 |       |
| 159 Anthraquinone              | 180      |              | 12.559           |                  |        |               |                  | ND                 |       |
| 156 2-Methylanthracene         | 192      |              | 12.623           |                  |        |               |                  | ND                 |       |
| 157 Ethyl Parathion            | 97       |              | 12.730           |                  |        |               |                  | ND                 |       |
| 158 4-Nitroquinoline-1-oxide   | 190      |              | 12.799           |                  |        |               |                  | ND                 |       |
| 160 Methapyrilene              | 58       |              | 12.836           |                  |        |               |                  | ND                 |       |
| 162 Fluoranthene               | 202      |              | 12.922           |                  |        |               |                  | ND                 |       |
| 163 1-Hydroxyanthraquinone     | 224      |              | 12.943           |                  |        |               |                  | ND                 |       |
| 164 Benzidine                  | 184      |              | 13.002           |                  |        |               |                  | ND                 |       |
| 161 Isodrin                    | 193      |              | 13.071           |                  |        |               |                  | ND                 |       |
| 165 Pyrene                     | 202      |              | 13.130           |                  |        |               |                  | ND                 |       |
| 170 1,4-Dihydroxyanthraquinone |          |              | 13.355           |                  |        |               |                  | ND                 |       |
| 166 Aramite Peak 1             | 185      |              | 13.429           |                  |        |               |                  | ND                 |       |
| 167 Aramite, Total             | 185      |              | 13.499           |                  |        |               |                  | ND                 |       |
| 168 Aramite Peak 2             | 185      |              | 13.499           |                  |        |               |                  | ND                 |       |
| 173 Famphur                    | 218      |              | 13.584           |                  |        |               |                  | ND                 |       |
| 174 9-Octadecenamide           | 72       |              | 13.606           |                  |        |               |                  | ND                 |       |
| 172 Butyl benzyl phthalate     | 149      |              | 13.616           |                  |        |               |                  | ND                 |       |
| 169 p-Dimethylamino azobenzene | e120     |              | 13.616           |                  |        |               |                  | ND                 |       |
| 171 Chlorobenzilate            | 139      |              | 13.638           |                  |        |               |                  | ND                 |       |
| 176 Kepone                     | 272      |              | 13.739           |                  |        |               |                  | ND                 |       |
| 175 3,3'-Dimethylbenzidine     | 212      |              | 13.910           |                  |        |               |                  | ND                 |       |
| 178 Bis(2-ethylhexyl) phthalat | 149      |              | 14.097           |                  |        |               |                  | ND                 |       |
| 179 3,3'-Dichlorobenzidine     | 252      |              | 14.124           |                  |        |               |                  | ND                 |       |
| 177 2-Acetylaminofluorene      | 181      |              | 14.145           |                  |        |               |                  | ND                 |       |
| 181 Benzo[a]anthracene         | 228      |              | 14.182           |                  |        |               |                  | ND                 |       |
| 182 Chrysene                   | 228      |              | 14.220           |                  |        |               |                  | ND                 |       |
| 180 4,4'-Methylene bis(2-chlor | 231      |              | 14.407           |                  |        |               |                  | ND                 |       |
| 183 Di-n-octyl phthalate       | 149      |              | 14.669           |                  |        |               |                  | ND                 |       |
| 184 6-Methylchrysene           | 242      |              | 14.984           |                  |        |               |                  | ND                 |       |
| 185 Benzo[b]fluoranthene       | 252      |              | 15.240           |                  |        |               |                  | ND                 |       |
| 187 Benzo[k]fluoranthene       | 252      |              | 15.272           |                  |        |               |                  | ND                 |       |
| 107 Denzolkjildorantilelle     | 202      |              | 10.212           |                  |        |               |                  | 110                |       |

Report Date: 17-Oct-2017 11:38:16

Data File:

| Data File. //CII/OIII/A/B      |     |                     |     |               | J | 1770.0.0032023 |                  | OnCol Amt          |       |
|--------------------------------|-----|---------------------|-----|---------------|---|----------------|------------------|--------------------|-------|
| Compound                       | Sig | RT Adj<br>(min.) (m |     | t RT<br>nin.) | Q | Response       | Cal Amt<br>ng/uL | OnCol Amt<br>ng/uL | Flags |
| 190 Benzo[a]pyrene             | 252 | 15                  | 625 |               |   |                |                  | ND                 |       |
| 186 7,12-Dimethylbenz(a)anthra | 256 |                     | 630 |               |   |                |                  | ND                 |       |
| 188 Hexachlorophene            | 196 |                     | 740 |               |   |                |                  | ND                 |       |
| 189 Benzo[e]pyrene             | 252 |                     | 042 |               |   |                |                  | ND                 |       |
| 191 3-Methylcholanthrene       | 252 |                     | 549 |               |   |                |                  | ND                 |       |
| 193 Dibenz(a,h)anthracene      | 278 |                     | 179 |               |   |                |                  | ND                 |       |
| 194 Indeno[1,2,3-cd]pyrene     | 276 |                     | 179 |               |   |                |                  | ND                 |       |
| 192 Dibenz[a,h]acridine        | 279 |                     | 409 |               |   |                |                  | ND                 |       |
| 195 Benzo[g,h,i]perylene       | 276 |                     | 639 |               |   |                |                  | ND                 |       |
| 196 Dibenzo[a,e]pyrene         | 302 | 22.                 | 022 |               |   |                |                  | ND                 |       |
| 197 2-Aminopyridine TIC        | 1   | 0.0                 | 000 |               |   |                |                  | ND                 |       |
| 232 Benzeneacetonitrile        | 1   | 0.7                 | 700 |               |   |                |                  | ND                 |       |
| 198 n,n'-Dimethylacetamide     | 1   | 0.7                 | 700 |               |   |                |                  | ND                 |       |
| 221 Pendimethalin              | 1   | 0.7                 | 700 |               |   |                |                  | ND                 |       |
| 208 2,4-Toluene diamine        | 1   | 0.7                 | 700 |               |   |                |                  | ND                 |       |
| 199 CBF-400                    | 1   | 0.7                 | 700 |               |   |                |                  | ND                 |       |
| 202 Phenyl ether               | 1   | 0.7                 | 700 |               |   |                |                  | ND                 |       |
| 203 CN-500                     | 1   | 0.7                 | 700 |               |   |                |                  | ND                 |       |
| 204 1-Methylcyclopentanol      | 1   | 0.7                 | 700 |               |   |                |                  | ND                 |       |
| 205 Octachlorostyrene          | 1   | 0.7                 | 700 |               |   |                |                  | ND                 |       |
| 220 Dibenzo[a,h]pyrene         | 1   | 0.7                 | 700 |               |   |                |                  | ND                 |       |
| 201 3-Chlorotoluene            | 1   | 0.7                 | 700 |               |   |                |                  | ND                 |       |
| 236 o-Anisidine TIC            | 1   | 0.7                 | 700 |               |   |                |                  | ND                 |       |
| 207 3-Chlorobenzotrifluoride   | 1   | 0.7                 | 700 |               |   |                |                  | ND                 |       |
| 224 NVF-400                    | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 213 4-Chlorotoluene            | 91  | 0.7                 | 700 |               |   |                |                  | ND                 |       |
| 200 Photomirex TIC             | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 222 7H-Dibenzo[c,g]carbazole   | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 219 5-Methyl-o-Anisidine TIC   | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 217 2-Chlorobenzotrifluoride   | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 218 2,6-Dichlorotoluene        | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 223 p-Fluoroaniline            | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 206 Phenylmercaptan            | 110 |                     | 700 |               |   |                |                  | ND                 |       |
| 215 1-Bromopropane             | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 214 2,6-Dichlorotoluene TIC    | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 211 1,3-phenylenediamine TIC   | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 229 Benzophenone               | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 234 4,4'-Methylene bis(2-chlor | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 227 4-tert-Octylphenol         | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 230 1,4-Dioxane TIC            | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 233 Tetramethyl lead TIC       | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 210 Benzeneacetic acid (TIC)   | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 231 1,2,3-Trimethylbenzene     | 105 |                     | 700 |               |   |                |                  | ND                 |       |
| 228 2,6-Dichloropyridine       | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 235 5-Methyl-o-Anisidine       | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 225 alpha,alpha-Dimethyl phene | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 226 Dibenz(a,i)pyrene          | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 240 4-Chloro-3-nitro-alpha,alp | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 243 Phenylacetic Acid          | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 246 2,3-Dichlorophenol         | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 241 2,4-Dichlorotoluene TIC    | 1   |                     | 700 |               |   |                |                  | ND                 |       |
| 242 4-Chlorobenzotrifluoride   | 1   | 0.7                 | 700 |               |   |                |                  | ND                 |       |

| S 256 3-Methylphenol       1       0.700       ND         S 255 EPH Adjustment 1       1       0.700       ND         S 257 3 & 4 Methylphenol       108       0.700       ND         T 312 Fluorobenzene TIC       96       2.654       ND         T 317 1-Bromo-2-chloroethane TIC       63       3.493       ND         T 306 Ethylene Dibromide TIC       107       4.695       ND         T 307 4-Chlorobenzotrifluoride T       180       5.245       ND         T 314 1-Bromo-3-fluorobenzene TI       95       5.988       ND         T 310 4-Bromofluorobenzene TIC       174       6.116       ND         T 311 1,2-dichloro-4-(trifluorom       214       6.768       ND         T 313 2-Bromopyridine TIC       78       7.099       ND         T 308 3-Nitro-4-Chlorobenzotrifl       179       8.124       ND         T 315 1-Bromo-4-ethylbenzene TIC 169       8.146       ND         T 309 3'-Bromoacetophenone TIC       183       9.460       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Data File: \\Cnromina\B          | unalo\ | Chromba | (a\HP59/3 | 3U\2U1/10 | 110-66 | 0446.D\U32823 | J I.U     |     |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|---------|-----------|-----------|--------|---------------|-----------|-----|-------|
| 216 3-Chlorobenzotrifluoride T 1 0.700 ND 238 CU-600 1 0.700 ND 239 2-Chlorobenzotrifluoride T 1 0.700 ND 212 Dibenz[a,j]acridine 279 0.700 ND 247 Hexamethyldisiloxane TIC 1 0.700 ND 247 Hexamethyldisiloxane TIC 1 0.700 ND 237 CAG-800 1 0.700 ND 237 CAG-800 ND 244 2,4-Xylidine TIC 1 0.700 ND 245 Tris(2,3-dibromopropyl)pho 1 0.700 ND 25 254 Total Cresols 1 0.700 ND 25 255 3-Methylphenol 1 0.700 ND 25 256 3-Methylphenol 1 0.700 ND 25 255 2FH Adjustment 1 1 0.700 ND 27 312 Fluorobenzene TIC 96 2.654 ND 27 317 1-Bromo-2-chloroethane TIC 63 3.493 ND 27 306 Ethylene Dibromide TIC 107 4.695 ND 27 314 1-Bromo-3-fluorobenzene TI 95 5.988 ND 27 310 4-Bromofluorobenzene TIC 174 6.116 ND 27 313 2-Bromopyridine TIC 78 7.099 ND 27 313 3-Bromopyridine TIC 78 7.099 ND 27 315 1-Bromo-4-Chlorobenzotrifl 179 8.124 ND 27 309 3-Bromopyridine TIC 169 8.146 ND 27 315 1-Bromo-4-Chlorobenzotrifl 179 8.124 ND 27 309 3-Bromopyridine TIC 169 8.146 ND 27 309 3-Bromopyridine TIC 169 8.146 ND 27 309 3-Bromopyridine TIC 183 9.460 ND 27 63 2,3,7,8-TCDD 322 10.700 ND 28 259 TCDD ND 28 257 3,7,8-TCDD ND 28 257 3,7,8-TCDD ND 28 257 3,7,8-TCDD ND 28 257 3 257 ND 28 257 3 257 ND 28 257 3 257 ND 28 257 3 257 ND 28 257 3 257 ND 28 257 3 257 ND 28 257 3 257 ND 28 257 3 257 ND 28 257 3 257 ND 28 257 ND 28 257 3 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 ND 28 257 N | Compound                         | Sig    |         |           |           | О      | Response      |           |     | Flags |
| 238 CU-600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                | J      | , ,     | , ,       | , ,       |        |               | <u> </u>  | , 3 | J     |
| 239 2-Chlorobenzotrifluoride T 1 0.700 ND 212 Dibenz[a,j]acridine 279 0.700 ND 247 Hexamethyldisiloxane TIC 1 0.700 ND 247 Hexamethyldisiloxane TIC 1 0.700 ND 290 CBF-500 1 0.700 ND 237 CAG-800 1 0.700 ND 244 2,4-Xylidine TIC 1 0.700 ND 245 Tris(2,3-dibromopropyl)pho 1 0.700 ND 245 Tris(2,3-dibromopropyl)pho 1 0.700 ND S 256 3-Methylphenol 1 0.700 ND S 256 3-Methylphenol 1 0.700 ND S 255 EPH Adjustment 1 1 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND T 317 1-Bromo-2-chloroethane TIC 63 3.493 ND T 306 Ethylene Dibromide TIC 107 4.695 ND T 307 4-Chlorobenzotrifluoride T 180 5.245 ND T 310 4-Bromofluorobenzene TIC 174 6.116 ND T 311 1,2-dichloro-4-(trifluorom 214 6.768 ND T 313 2-Bromopyridine TIC 78 7.099 ND T 316 3-Amino-4-Chlorobenzotrifl 195 8.162 ND T 316 3-Amino-4-Chlorobenzotrifl 195 8.162 ND T 316 3-Amino-4-Chlorobenzotrifl 195 8.162 ND T 316 3-Amino-4-Chlorobenzotrifl 195 8.162 ND T 316 3-Amino-4-Chlorobenzotrifl 195 8.162 ND T 316 3-Amino-4-Chlorobenzotrifl 195 8.162 ND T 363 2,3,7,8-TCDD 322 10.700 ND Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 216 3-Chlorobenzotrifluoride T   | 1      |         | 0.700     |           |        |               |           | ND  |       |
| 212 Dibenz[a,j]acridine       279       0.700       ND         247 Hexamethyldisiloxane TIC       1       0.700       ND         290 CBF-500       1       0.700       ND         237 CAG-800       1       0.700       ND         244 2,4-Xylidine TIC       1       0.700       ND         245 Tris(2,3-dibromopropyl)pho       1       0.700       ND         254 Total Cresols       1       0.700       ND         S 255 3-Methylphenol       1       0.700       ND         S 255 EPH Adjustment 1       1       0.700       ND         S 255 EPH Adjustment 1       1       0.700       ND         S 255 EPH Adjustment 1       1       0.700       ND         S 255 T3 & 4 Methylphenol       108       0.700       ND         S 255 T3 & 4 Methylphenol       108       0.700       ND         T 312 Fluorobenzene TIC       96       2.654       ND         T 317 1-Bromo-2-chloroethane TIC       63       3.493       ND         T 306 Ethylene Dibromide TIC       107       4.695       ND         T 314 1-Bromo-3-fluorobenzotrifluride T       180       5.245       ND         T 314 1-Bromo-3-fluorobenzene TIC       174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 238 CU-600                       | 1      |         | 0.700     |           |        |               |           | ND  |       |
| 247 Hexamethyldisiloxane TIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 239 2-Chlorobenzotrifluoride T   | 1      |         | 0.700     |           |        |               |           | ND  |       |
| 209 CBF-500 1 0.700 ND 237 CAG-800 1 0.700 ND 244 2,4-Xylidine TIC 1 0.700 ND 245 Tris(2,3-dibromopropyl)pho 1 0.700 ND 245 Tris(2,3-dibromopropyl)pho 1 0.700 ND 25 254 Total Cresols 1 0.700 ND 25 254 Total Cresols 1 0.700 ND 25 255 EPH Adjustment 1 1 0.700 ND 25 255 EPH Adjustment 1 1 0.700 ND 25 257 3 & 4 Methylphenol 108 0.700 ND 26 257 3 & 4 Methylphenol 108 0.700 ND 27 312 Fluorobenzene TIC 96 2.654 ND 28 317 1-Bromo-2-chloroethane TIC 63 3.493 ND 28 306 Ethylene Dibromide TIC 107 4.695 ND 28 314 1-Bromo-3-fluorobenzene TI 95 5.988 ND 28 314 1-Bromo-3-fluorobenzene TI 95 5.988 ND 28 311 1,2-dichloro-4-(trifluorom 214 6.768 ND 28 311 1,2-dichloro-4-(trifluorom 214 6.768 ND 28 313 2-Bromopyridine TIC 78 7.099 ND 28 313 3-Bromo-4-ethylbenzene TIC 169 8.146 ND 28 316 3-Amino-4-Chlorobenzotrifl 195 8.162 ND 28 316 3-Amino-4-Chlorobenzotrifl 195 8.162 ND 28 320 3-Nitro-4-CDD 322 10.700 ND 28 320 3-Nitro-4-CDD 322 10.700 ND 28 320 3-Nitro-4-CDD 322 10.700 ND 28 320 3-Nitro-4-CDD 322 10.700 ND 38 3-Nitro-4-CDD 322 10.700 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 212 Dibenz[a,j]acridine          | 279    |         | 0.700     |           |        |               |           | ND  |       |
| 237 CAG-800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 247 Hexamethyldisiloxane TIC     | 1      |         | 0.700     |           |        |               |           | ND  |       |
| 244 2,4-Xylidine TIC       1       0.700       ND         245 Tris(2,3-dibromopropyl)pho       1       0.700       ND         S 254 Total Cresols       1       0.700       ND         S 255 3-Methylphenol       1       0.700       ND         S 255 EPH Adjustment 1       1       0.700       ND         S 257 3 & 4 Methylphenol       108       0.700       ND         T 312 Fluorobenzene TIC       96       2.654       ND         T 317 1-Bromo-2-chloroethane TIC 63       3.493       ND         T 306 Ethylene Dibromide TIC       107       4.695       ND         T 307 4-Chlorobenzotrifluoride T       180       5.245       ND         T 314 1-Bromo-3-fluorobenzene TI       95       5.988       ND         T 310 4-Bromofluorobenzene TIC       174       6.116       ND         T 311 1,2-dichloro-4-(trifluorom       214       6.768       ND         T 313 2-Bromopyridine TIC       78       7.099       ND         T 308 3-Nitro-4-Chlorobenzotrifl       179       8.124       ND         T 315 1-Bromo-4-ethylbenzene TIC 169       8.146       ND         T 309 3'-Bromoacetophenone TIC       183       9.460       ND         T 263 2,37,8-TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 209 CBF-500                      | 1      |         | 0.700     |           |        |               |           | ND  |       |
| 245 Tris(2,3-dibromopropyl)pho       1       0.700       ND         S 254 Total Cresols       1       0.700       ND         S 256 3-Methylphenol       1       0.700       ND         S 255 EPH Adjustment 1       1       0.700       ND         S 257 3 & 4 Methylphenol       108       0.700       ND         S 257 3 & 4 Methylphenol       108       0.700       ND         T 312 Fluorobenzene TIC       96       2.654       ND         T 317 1-Bromo-2-chloroethane TIC 63       3.493       ND         T 306 Ethylene Dibromide TIC       107       4.695       ND         T 307 4-Chlorobenzotrifluoride T       180       5.245       ND         T 314 1-Bromo-3-fluorobenzene TIC       195       5.988       ND         T 310 4-Bromofluorobenzene TIC       174       6.116       ND         T 311 1,2-dichloro-4-(trifluorom       214       6.768       ND         T 313 2-Bromopyridine TIC       78       7.099       ND         T 308 3-Nitro-4-Chlorobenzotrifl       179       8.124       ND         T 315 1-Bromo-4-ethylbenzene TIC 169       8.146       ND         T 309 3'-Bromoacetophenone TIC       183       9.460       ND         T 263 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 237 CAG-800                      | 1      |         | 0.700     |           |        |               |           | ND  |       |
| S 254 Total Cresols 1 0.700 ND S 256 3-Methylphenol 1 0.700 ND S 255 EPH Adjustment 1 1 0.700 ND S 255 EPH Adjustment 1 1 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND S 257 3 & 4 Methylphenol 107 S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND S 257 3 & 4 Methylphenol 107 ND ND S 257 3 & 4 Methylphenol 107 ND ND ND ND ND ND ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 244 2,4-Xylidine TIC             | 1      |         | 0.700     |           |        |               |           | ND  |       |
| S 256 3-Methylphenol 1 0.700 ND S 255 EPH Adjustment 1 1 0.700 ND S 255 EPH Adjustment 1 1 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND S 257 3 & 4 Methylphenol 108 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND S 2654 ND ND ND S 2654 ND ND S 2654 ND ND ND ND ND ND ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 245 Tris(2,3-dibromopropyl)pho   | 1      |         | 0.700     |           |        |               |           | ND  |       |
| S 255 EPH Adjustment 1 1 0.700 ND S 257 3 & 4 Methylphenol 108 0.700 ND T 312 Fluorobenzene TIC 96 2.654 ND T 317 1-Bromo-2-chloroethane TIC 63 3.493 ND T 306 Ethylene Dibromide TIC 107 4.695 ND T 307 4-Chlorobenzotrifluoride T 180 5.245 ND T 314 1-Bromo-3-fluorobenzene TIC 95 5.988 ND T 310 4-Bromofluorobenzene TIC 174 6.116 ND T 311 1,2-dichloro-4-(trifluorom 214 6.768 ND T 313 2-Bromopyridine TIC 78 7.099 ND T 308 3-Nitro-4-Chlorobenzotrifl 179 8.124 ND T 315 1-Bromo-4-ethylbenzene TIC 169 8.146 ND T 316 3-Amino-4-Chlorobenzotrifl 195 8.162 ND T 309 3'-Bromoacetophenone TIC 183 9.460 ND Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S 254 Total Cresols              | 1      |         | 0.700     |           |        |               |           | ND  |       |
| S 257 3 & 4 Methylphenol       108       0.700       ND         T 312 Fluorobenzene TIC       96       2.654       ND         T 317 1-Bromo-2-chloroethane TIC       63       3.493       ND         T 306 Ethylene Dibromide TIC       107       4.695       ND         T 307 4-Chlorobenzotrifluoride T       180       5.245       ND         T 314 1-Bromo-3-fluorobenzene TI       95       5.988       ND         T 310 4-Bromofluorobenzene TIC       174       6.116       ND         T 311 1,2-dichloro-4-(trifluorom       214       6.768       ND         T 313 2-Bromopyridine TIC       78       7.099       ND         T 308 3-Nitro-4-Chlorobenzotrifl       179       8.124       ND         T 315 1-Bromo-4-ethylbenzene TIC 169       8.146       ND         T 309 3'-Bromoacetophenone TIC       183       9.460       ND         T 263 2,3,7,8-TCDD       322       10.700       ND         Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S 256 3-Methylphenol             | 1      |         | 0.700     |           |        |               |           | ND  |       |
| T 312 Fluorobenzene TIC       96       2.654       ND         T 317 1-Bromo-2-chloroethane TIC 63       3.493       ND         T 306 Ethylene Dibromide TIC       107       4.695       ND         T 307 4-Chlorobenzotrifluoride T       180       5.245       ND         T 314 1-Bromo-3-fluorobenzene TI       95       5.988       ND         T 310 4-Bromofluorobenzene TIC       174       6.116       ND         T 311 1,2-dichloro-4-(trifluorom       214       6.768       ND         T 313 2-Bromopyridine TIC       78       7.099       ND         T 308 3-Nitro-4-Chlorobenzotrifl       179       8.124       ND         T 315 1-Bromo-4-ethylbenzene TIC 169       8.146       ND         T 316 3-Amino-4-Chlorobenzotrifl       195       8.162       ND         T 309 3'-Bromoacetophenone TIC       183       9.460       ND         T 263 2,3,7,8-TCDD       322       10.700       ND         Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S 255 EPH Adjustment 1           | 1      |         | 0.700     |           |        |               |           | ND  |       |
| T 317 1-Bromo-2-chloroethane TIC       63       3.493       ND         T 306 Ethylene Dibromide TIC       107       4.695       ND         T 307 4-Chlorobenzotrifluoride T       180       5.245       ND         T 314 1-Bromo-3-fluorobenzene TI       95       5.988       ND         T 310 4-Bromofluorobenzene TIC       174       6.116       ND         T 311 1,2-dichloro-4-(trifluorom       214       6.768       ND         T 313 2-Bromopyridine TIC       78       7.099       ND         T 308 3-Nitro-4-Chlorobenzotrifl       179       8.124       ND         T 315 1-Bromo-4-ethylbenzene TIC 169       8.146       ND         T 316 3-Amino-4-Chlorobenzotrifl       195       8.162       ND         T 309 3'-Bromoacetophenone TIC       183       9.460       ND         T 263 2,3,7,8-TCDD       322       10.700       ND         Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S 257 3 & 4 Methylphenol         | 108    |         | 0.700     |           |        |               |           | ND  |       |
| T 306 Ethylene Dibromide TIC       107       4.695       ND         T 307 4-Chlorobenzotrifluoride T       180       5.245       ND         T 314 1-Bromo-3-fluorobenzene TI       95       5.988       ND         T 310 4-Bromofluorobenzene TIC       174       6.116       ND         T 311 1,2-dichloro-4-(trifluorom       214       6.768       ND         T 313 2-Bromopyridine TIC       78       7.099       ND         T 308 3-Nitro-4-Chlorobenzotrifl       179       8.124       ND         T 315 1-Bromo-4-ethylbenzene TIC 169       8.146       ND         T 316 3-Amino-4-Chlorobenzotrifl       195       8.162       ND         T 309 3'-Bromoacetophenone TIC       183       9.460       ND         T 263 2,3,7,8-TCDD       322       10.700       ND         Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T 312 Fluorobenzene TIC          | 96     |         | 2.654     |           |        |               |           | ND  |       |
| T 307 4-Chlorobenzotrifluoride T       180       5.245       ND         T 314 1-Bromo-3-fluorobenzene TI       95       5.988       ND         T 310 4-Bromofluorobenzene TIC       174       6.116       ND         T 311 1,2-dichloro-4-(trifluorom       214       6.768       ND         T 313 2-Bromopyridine TIC       78       7.099       ND         T 308 3-Nitro-4-Chlorobenzotrifl       179       8.124       ND         T 315 1-Bromo-4-ethylbenzene TIC 169       8.146       ND         T 309 3'-Bromoacetophenone TIC       183       9.460       ND         T 263 2,3,7,8-TCDD       322       10.700       ND         Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T 317 1-Bromo-2-chloroethane TIC | 63     |         | 3.493     |           |        |               |           | ND  |       |
| T 314 1-Bromo-3-fluorobenzene TI       95       5.988       ND         T 310 4-Bromofluorobenzene TIC       174       6.116       ND         T 311 1,2-dichloro-4-(trifluorom       214       6.768       ND         T 313 2-Bromopyridine TIC       78       7.099       ND         T 308 3-Nitro-4-Chlorobenzotrifl       179       8.124       ND         T 315 1-Bromo-4-ethylbenzene TIC 169       8.146       ND         T 316 3-Amino-4-Chlorobenzotrifl       195       8.162       ND         T 309 3'-Bromoacetophenone TIC       183       9.460       ND         T 263 2,3,7,8-TCDD       322       10.700       ND         Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T 306 Ethylene Dibromide TIC     | 107    |         | 4.695     |           |        |               |           | ND  |       |
| T 310 4-Bromofluorobenzene TIC 174 6.116 ND T 311 1,2-dichloro-4-(trifluorom 214 6.768 ND T 313 2-Bromopyridine TIC 78 7.099 ND T 308 3-Nitro-4-Chlorobenzotrifl 179 8.124 ND T 315 1-Bromo-4-ethylbenzene TIC 169 8.146 ND T 316 3-Amino-4-Chlorobenzotrifl 195 8.162 ND T 309 3'-Bromoacetophenone TIC 183 9.460 ND T 263 2,3,7,8-TCDD 322 10.700 ND Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T 307 4-Chlorobenzotrifluoride T | 180    |         | 5.245     |           |        |               |           | ND  |       |
| T 311 1,2-dichloro-4-(trifluorom       214       6.768       ND         T 313 2-Bromopyridine TIC       78       7.099       ND         T 308 3-Nitro-4-Chlorobenzotrifl       179       8.124       ND         T 315 1-Bromo-4-ethylbenzene TIC 169       8.146       ND         T 316 3-Amino-4-Chlorobenzotrifl       195       8.162       ND         T 309 3'-Bromoacetophenone TIC       183       9.460       ND         T 263 2,3,7,8-TCDD       322       10.700       ND         Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T 314 1-Bromo-3-fluorobenzene TI | 95     |         | 5.988     |           |        |               |           | ND  |       |
| T 313 2-Bromopyridine TIC 78 7.099 ND T 308 3-Nitro-4-Chlorobenzotrifl 179 8.124 ND T 315 1-Bromo-4-ethylbenzene TIC 169 8.146 ND T 316 3-Amino-4-Chlorobenzotrifl 195 8.162 ND T 309 3'-Bromoacetophenone TIC 183 9.460 ND T 263 2,3,7,8-TCDD 322 10.700 ND Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T 310 4-Bromofluorobenzene TIC   | 174    |         | 6.116     |           |        |               |           | ND  |       |
| T 308 3-Nitro-4-Chlorobenzotrifl 179 8.124 ND T 315 1-Bromo-4-ethylbenzene TIC 169 8.146 ND T 316 3-Amino-4-Chlorobenzotrifl 195 8.162 ND T 309 3'-Bromoacetophenone TIC 183 9.460 ND T 263 2,3,7,8-TCDD 322 10.700 ND Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T 311 1,2-dichloro-4-(trifluorom | 214    |         | 6.768     |           |        |               |           | ND  |       |
| T 315 1-Bromo-4-ethylbenzene TIC 169       8.146       ND         T 316 3-Amino-4-Chlorobenzotrifl       195       8.162       ND         T 309 3'-Bromoacetophenone TIC       183       9.460       ND         T 263 2,3,7,8-TCDD       322       10.700       ND         Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T 313 2-Bromopyridine TIC        | 78     |         | 7.099     |           |        |               |           | ND  |       |
| T 316 3-Amino-4-Chlorobenzotrifl 195 8.162 ND T 309 3'-Bromoacetophenone TIC 183 9.460 ND T 263 2,3,7,8-TCDD 322 10.700 ND Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T 308 3-Nitro-4-Chlorobenzotrifl | 179    |         | 8.124     |           |        |               |           | ND  |       |
| T 309 3'-Bromoacetophenone TIC 183 9.460 ND T 263 2,3,7,8-TCDD 322 10.700 ND Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T 315 1-Bromo-4-ethylbenzene TIC | 2169   |         | 8.146     |           |        |               |           | ND  |       |
| T 263 2,3,7,8-TCDD 322 10.700 ND Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T 316 3-Amino-4-Chlorobenzotrifl | 195    |         | 8.162     |           |        |               |           | ND  |       |
| Reagents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T 309 3'-Bromoacetophenone TIC   | 183    |         | 9.460     |           |        |               |           | ND  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T 263 2,3,7,8-TCDD               | 322    |         | 10.700    |           |        |               |           | ND  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reagents:                        |        |         |           |           |        |               |           |     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |        | Amount  | Added: 2  | 0.00      | L      | Inits: uL     | Run Reage | nt  |       |

Report Date: 17-Oct-2017 11:38:16 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328231.D

Injection Date: 16-Oct-2017 20:13:30 Lims ID: MB 480-381332/1-A

Client ID:

Injection Vol: 1.0 ul Method:

U-8270

Instrument ID:

Dil. Factor:

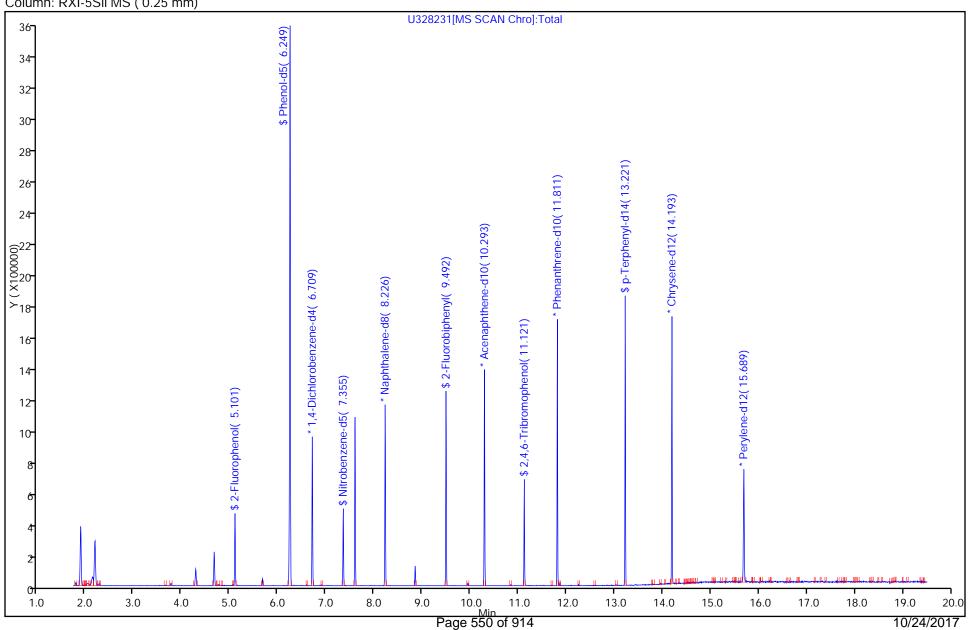
Limit Group:

HP5973U

1.0000

MB - 8270D ICAL

Operator ID:


Worklist Smp#:

ALS Bottle#: 7

DR

7

Column: RXI-5Sil MS (0.25 mm)



### FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1             |  |  |  |  |  |  |
|-------------------------------|-----------------------------------|--|--|--|--|--|--|
| SDG No.:                      |                                   |  |  |  |  |  |  |
| Client Sample ID:             | Lab Sample ID: LCS 480-381332/2-A |  |  |  |  |  |  |
| Matrix: Solid                 | Lab File ID: U328232.D            |  |  |  |  |  |  |
| Analysis Method: 8270D        | Date Collected:                   |  |  |  |  |  |  |
| Extract. Method: 3550C        | Date Extracted: 10/11/2017 14:06  |  |  |  |  |  |  |
| Sample wt/vol: 30.81(g)       | Date Analyzed: 10/16/2017 20:39   |  |  |  |  |  |  |
| Con. Extract Vol.: 1(mL)      | Dilution Factor: 1                |  |  |  |  |  |  |
| Injection Volume: 1(uL)       | Level: (low/med) Low              |  |  |  |  |  |  |
| % Moisture:                   | GPC Cleanup: (Y/N) N              |  |  |  |  |  |  |
| Analysis Batch No.: 382085    | Units: ug/Kg                      |  |  |  |  |  |  |

| CAS NO.   | COMPOUND NAME               | RESULT | Q | RL   | MDL |
|-----------|-----------------------------|--------|---|------|-----|
| 95-95-4   | 2,4,5-Trichlorophenol       | 1350   |   | 170  | 45  |
| 88-06-2   | 2,4,6-Trichlorophenol       | 1290   |   | 170  | 33  |
| 120-83-2  | 2,4-Dichlorophenol          | 1310   |   | 170  | 18  |
| 105-67-9  | 2,4-Dimethylphenol          | 1300   |   | 170  | 40  |
| 51-28-5   | 2,4-Dinitrophenol           | 1870   |   | 1600 | 760 |
| 121-14-2  | 2,4-Dinitrotoluene          | 1380   |   | 170  | 34  |
| 606-20-2  | 2,6-Dinitrotoluene          | 1350   |   | 170  | 19  |
| 91-58-7   | 2-Chloronaphthalene         | 1250   |   | 170  | 27  |
| 95-57-8   | 2-Chlorophenol              | 1180   |   | 170  | 30  |
| 91-57-6   | 2-Methylnaphthalene         | 1280   |   | 170  | 33  |
| 95-48-7   | 2-Methylphenol              | 1270   |   | 170  | 19  |
| 88-74-4   | 2-Nitroaniline              | 1260   |   | 320  | 24  |
| 88-75-5   | 2-Nitrophenol               | 1220   |   | 170  | 47  |
| 91-94-1   | 3,3'-Dichlorobenzidine      | 2940   |   | 320  | 190 |
| 99-09-2   | 3-Nitroaniline              | 1300   |   | 320  | 46  |
| 534-52-1  | 4,6-Dinitro-2-methylphenol  | 2620   |   | 320  | 170 |
| 101-55-3  | 4-Bromophenyl phenyl ether  | 1490   |   | 170  | 23  |
| 59-50-7   | 4-Chloro-3-methylphenol     | 1340   |   | 170  | 41  |
| 106-47-8  | 4-Chloroaniline             | 1180   |   | 170  | 41  |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | 1360   |   | 170  | 20  |
| 106-44-5  | 4-Methylphenol              | 1330   |   | 320  | 19  |
| 100-01-6  | 4-Nitroaniline              | 1310   |   | 320  | 87  |
| 100-02-7  | 4-Nitrophenol               | 2720   |   | 320  | 120 |
| 83-32-9   | Acenaphthene                | 1330   |   | 170  | 24  |
| 208-96-8  | Acenaphthylene              | 1310   |   | 170  | 21  |
| 98-86-2   | Acetophenone                | 1230   |   | 170  | 22  |
| 120-12-7  | Anthracene                  | 1480   |   | 170  | 41  |
| 1912-24-9 | Atrazine                    | 3030   |   | 170  | 57  |
| 100-52-7  | Benzaldehyde                | 2130   |   | 170  | 130 |
| 56-55-3   | Benzo[a]anthracene          | 1510   |   | 170  | 17  |
| 50-32-8   | Benzo[a]pyrene              | 1860   |   | 170  | 24  |
| 205-99-2  | Benzo[b]fluoranthene        | 1940   |   | 170  | 26  |
| 191-24-2  | Benzo[g,h,i]perylene        | 1970   |   | 170  | 18  |
| 207-08-9  | Benzo[k]fluoranthene        | 1770   |   | 170  | 21  |

### FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1             |
|-------------------------------|-----------------------------------|
| SDG No.:                      |                                   |
| Client Sample ID:             | Lab Sample ID: LCS 480-381332/2-A |
| Matrix: Solid                 | Lab File ID: U328232.D            |
| Analysis Method: 8270D        | Date Collected:                   |
| Extract. Method: 3550C        | Date Extracted: 10/11/2017 14:06  |
| Sample wt/vol: 30.81(g)       | Date Analyzed: 10/16/2017 20:39   |
| Con. Extract Vol.: 1(mL)      | Dilution Factor: 1                |
| Injection Volume: 1(uL)       | Level: (low/med) Low              |
| % Moisture:                   | GPC Cleanup: (Y/N) N              |
| Analysis Batch No.: 382085    | Units: ug/Kg                      |

| CAS NO.  | COMPOUND NAME                 | RESULT | Q | RL  | MDL |
|----------|-------------------------------|--------|---|-----|-----|
| 92-52-4  | Biphenyl                      | 1300   |   | 170 | 24  |
| 108-60-1 | bis (2-chloroisopropyl) ether | 1140   |   | 170 | 33  |
| 111-91-1 | Bis(2-chloroethoxy)methane    | 1180   |   | 170 | 35  |
| 111-44-4 | Bis(2-chloroethyl)ether       | 1150   |   | 170 | 21  |
| 117-81-7 | Bis(2-ethylhexyl) phthalate   | 1490   |   | 170 | 56  |
| 85-68-7  | Butyl benzyl phthalate        | 1480   |   | 170 | 27  |
| 105-60-2 | Caprolactam                   | 2790   |   | 170 | 50  |
| 86-74-8  | Carbazole                     | 1510   |   | 170 | 19  |
| 218-01-9 | Chrysene                      | 1490   |   | 170 | 37  |
| 53-70-3  | Dibenz(a,h)anthracene         | 1950   |   | 170 | 29  |
| 132-64-9 | Dibenzofuran                  | 1360   |   | 170 | 19  |
| 84-66-2  | Diethyl phthalate             | 1440   |   | 170 | 21  |
| 131-11-3 | Dimethyl phthalate            | 1420   |   | 170 | 19  |
| 84-74-2  | Di-n-butyl phthalate          | 1510   |   | 170 | 28  |
| 117-84-0 | Di-n-octyl phthalate          | 1540   |   | 170 | 19  |
| 206-44-0 | Fluoranthene                  | 1530   |   | 170 | 18  |
| 86-73-7  | Fluorene                      | 1350   |   | 170 | 19  |
| 118-74-1 | Hexachlorobenzene             | 1500   |   | 170 | 22  |
| 87-68-3  | Hexachlorobutadiene           | 1220   |   | 170 | 24  |
| 77-47-4  | Hexachlorocyclopentadiene     | 1160   |   | 170 | 22  |
| 67-72-1  | Hexachloroethane              | 1160   |   | 170 | 21  |
| 193-39-5 | Indeno[1,2,3-cd]pyrene        | 1940   |   | 170 | 20  |
| 78-59-1  | Isophorone                    | 1300   |   | 170 | 35  |
| 91-20-3  | Naphthalene                   | 1230   |   | 170 | 21  |
| 98-95-3  | Nitrobenzene                  | 1240   |   | 170 | 19  |
| 621-64-7 | N-Nitrosodi-n-propylamine     | 1220   |   | 170 | 28  |
| 86-30-6  | N-Nitrosodiphenylamine        | 1490   |   | 170 | 130 |
| 87-86-5  | Pentachlorophenol             | 2440   |   | 320 | 170 |
| 85-01-8  | Phenanthrene                  | 1480   |   | 170 | 24  |
| 108-95-2 | Phenol                        | 1290   |   | 170 | 25  |
| 129-00-0 | Pyrene                        | 1480   |   | 170 | 19  |

# FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1             |
|-------------------------------|-----------------------------------|
| SDG No.:                      |                                   |
| Client Sample ID:             | Lab Sample ID: LCS 480-381332/2-A |
| Matrix: Solid                 | Lab File ID: U328232.D            |
| Analysis Method: 8270D        | Date Collected:                   |
| Extract. Method: 3550C        | Date Extracted: 10/11/2017 14:06  |
| Sample wt/vol: $30.81(g)$     | Date Analyzed: 10/16/2017 20:39   |
| Con. Extract Vol.: 1(mL)      | Dilution Factor: 1                |
| Injection Volume: 1(uL)       | Level: (low/med) Low              |
| % Moisture:                   | GPC Cleanup:(Y/N) N               |
| Analysis Batch No.: 382085    | Units: ug/Kg                      |

| CAS NO.   | SURROGATE            | %REC | Q | LIMITS |
|-----------|----------------------|------|---|--------|
| 118-79-6  | 2,4,6-Tribromophenol | 95   |   | 54-120 |
| 321-60-8  | 2-Fluorobiphenyl     | 80   |   | 60-120 |
| 367-12-4  | 2-Fluorophenol       | 76   |   | 52-120 |
| 4165-60-0 | Nitrobenzene-d5      | 77   |   | 53-120 |
| 4165-62-2 | Phenol-d5            | 78   |   | 54-120 |
| 1718-51-0 | p-Terphenyl-d14      | 96   |   | 65-121 |

Report Date: 17-Oct-2017 11:38:14 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328232.D

Lims ID: LCS 480-381332/2-A

Client ID:

Sample Type: LCS

Inject. Date: 16-Oct-2017 20:39:30 ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 1.0 ul Dil. Factor: 1.0000

Sample Info: 480-0066446-008

Operator ID: DR Instrument ID: HP5973U

Method: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U-8270.m

Limit Group: MB - 8270D ICAL

Last Update:17-Oct-2017 11:35:50Calib Date:16-Oct-2017 14:19:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK024

First Level Reviewer: richardsd Date: 17-Oct-2017 11:16:18

| First Level Reviewer: richardsd |     |        | D      | Date: 17-Oct-201 |    | 7 11:16:18 |         |           |       |
|---------------------------------|-----|--------|--------|------------------|----|------------|---------|-----------|-------|
|                                 |     | RT     | Adj RT | Dlt RT           |    |            | Cal Amt | OnCol Amt |       |
| Compound                        | Sig | (min.) | (min.) | (min.)           | Q  | Response   | ng/uL   | ng/uL     | Flags |
|                                 |     | •      |        |                  |    |            |         |           |       |
| * 1 1,4-Dichlorobenzene-d4      | 152 | 6.709  | 6.709  | 0.000            | 95 | 92044      | 40.0    | 40.0      |       |
| * 2 Naphthalene-d8              | 136 | 8.226  | 8.226  | 0.000            | 99 | 310349     | 40.0    | 40.0      |       |
| * 3 Acenaphthene-d10            | 164 | 10.293 | 10.293 | 0.000            | 94 | 166394     | 40.0    | 40.0      |       |
| * 4 Phenanthrene-d10            | 188 | 11.811 | 11.811 | 0.000            | 96 | 351816     | 40.0    | 40.0      |       |
| * 5 Chrysene-d12                | 240 | 14.193 | 14.193 | 0.000            | 95 | 446511     | 40.0    | 40.0      |       |
| * 6 Perylene-d12                | 264 | 15.689 | 15.689 | 0.000            | 98 | 344753     | 40.0    | 40.0      |       |
| \$ 7 2-Fluorophenol             | 112 | 5.101  | 5.095  | 0.006            | 89 | 75468      | 40.0    | 30.5      |       |
| \$ 8 Phenol-d5                  | 99  | 6.233  | 6.228  | 0.005            | 96 | 87559      | 40.0    | 31.2      |       |
| \$ 9 Nitrobenzene-d5            | 82  | 7.355  | 7.355  | 0.000            | 89 | 82715      | 40.0    | 30.7      |       |
| \$ 10 2-Fluorobiphenyl          | 172 | 9.492  | 9.492  | 0.000            | 99 | 224213     | 40.0    | 31.9      |       |
| \$ 11 2,4,6-Tribromophenol      | 330 | 11.122 | 11.121 | 0.001            | 89 | 60440      | 40.0    | 37.9      |       |
| \$ 12 p-Terphenyl-d14           | 244 | 13.221 | 13.221 | 0.000            | 99 | 349582     | 40.0    | 38.5      |       |
| 23 1,4-Dioxane                  | 88  | 2.595  | 2.600  | -0.005           | 94 | 20616      | 50.0    | 19.9      |       |
| 24 N-Nitrosodimethylamine       | 42  | 3.076  | 3.081  | -0.005           | 84 | 52212      | 50.0    | 36.1      |       |
| 25 Pyridine                     | 52  | 3.183  | 3.183  | 0.000            | 83 | 112550     | 100.0   | 51.1      |       |
| 32 Benzaldehyde                 | 77  | 6.169  | 6.174  | -0.005           | 90 | 107912     | 100.0   | 65.7      |       |
| 33 Phenol                       | 94  | 6.249  | 6.244  | 0.005            | 93 | 108503     | 50.0    | 39.8      |       |
| 34 Aniline                      | 93  | 6.297  | 6.297  | 0.000            | 97 | 106841     | 50.0    | 30.8      |       |
| 35 Bis(2-chloroethyl)ether      | 93  | 6.356  | 6.356  | 0.000            | 98 | 73939      | 50.0    | 35.3      |       |
| 37 2-Chlorophenol               | 128 | 6.458  | 6.458  | 0.000            | 93 | 97129      | 50.0    | 36.3      |       |
| 38 n-Decane                     | 57  | 6.506  | 6.506  | 0.000            | 87 | 71179      | 50.0    | 28.0      |       |
| 39 1,3-Dichlorobenzene          | 146 | 6.650  | 6.650  | 0.000            | 96 | 111921     | 50.0    | 34.3      |       |
| 40 1,4-Dichlorobenzene          | 146 | 6.730  | 6.730  | 0.000            | 93 | 113715     | 50.0    | 34.1      |       |
| 41 Benzyl alcohol               | 108 | 6.848  | 6.848  | 0.000            | 91 | 63434      | 50.0    | 39.7      |       |
| 42 1,2-Dichlorobenzene          | 146 | 6.917  | 6.917  | 0.000            | 96 | 110935     | 50.0    | 35.7      |       |
| 43 2-Methylphenol               | 108 | 6.976  | 6.976  | 0.000            | 98 | 86070      | 50.0    | 39.1      |       |
| 44 2,2'-oxybis[1-chloropropan   | 45  | 7.013  | 7.013  | 0.000            | 91 | 103282     | 50.0    | 35.1      |       |
| 45 Indene                       | 115 | 7.024  | 7.024  | 0.000            | 89 | 660429     | 200.0   | 148.7     |       |
| 46 4-Methylphenol               | 108 | 7.152  | 7.152  | 0.000            | 92 | 94325      | 50.0    | 41.0      |       |
| 47 N-Nitrosodi-n-propylamine    | 70  | 7.158  | 7.157  | 0.001            | 90 | 58469      | 50.0    | 37.6      |       |
| 49 Acetophenone                 | 105 | 7.168  | 7.168  | 0.000            | 96 | 132593     | 50.0    | 37.8      |       |
| 53 Hexachloroethane             | 117 | 7.329  | 7.328  | 0.001            | 84 | 44097      | 50.0    | 35.8      |       |
|                                 |     |        |        |                  |    |            |         |           |       |

ct-2017 11:38:14 Chrom Revision: 2.2 16-Aug-2017 16:24:46 \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328232.D Report Date: 17-Oct-2017 11:38:14

Data File:

| Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328232.D |     |        |        |        |    |          |            |              |       |
|---------------------------------------------------------------------------|-----|--------|--------|--------|----|----------|------------|--------------|-------|
|                                                                           |     | RT     | Adj RT | Dlt RT |    | _        | Cal Amt    | OnCol Amt    | E     |
| Compound                                                                  | Sig | (min.) | (min.) | (min.) | Q  | Response | ng/uL      | ng/uL        | Flags |
| E A NULL                                                                  |     | 7.077  | 7.07/  | 0.004  | 00 | 0.4.40.4 | <b>500</b> | 00.4         |       |
| 54 Nitrobenzene                                                           | 77  | 7.377  | 7.376  | 0.001  | 89 | 94404    | 50.0       | 38.4         |       |
| 56 Isophorone                                                             | 82  | 7.654  | 7.654  | 0.000  | 97 | 165697   | 50.0       | 40.0         |       |
| 59 2-Nitrophenol                                                          | 139 | 7.761  | 7.761  | 0.000  | 95 | 57369    | 50.0       | 37.5         |       |
| 60 2,4-Dimethylphenol                                                     | 107 | 7.788  | 7.788  | 0.000  | 97 | 110724   | 50.0       | 39.9         |       |
| 62 Bis(2-chloroethoxy)methane                                             | 93  | 7.895  | 7.895  | 0.000  | 99 | 90772    | 50.0       | 36.3         |       |
| 64 Benzoic acid                                                           | 105 | 7.905  | 7.911  | -0.006 | 88 | 217989   | 200.0      | 123.7        |       |
| 67 2,4-Dichlorophenol                                                     | 162 | 8.044  | 8.044  | 0.000  | 91 | 102453   | 50.0       | 40.2         |       |
| 68 1,2,4-Trichlorobenzene                                                 | 180 | 8.157  | 8.156  | 0.001  | 94 | 113237   | 50.0       | 37.8         |       |
| 70 Naphthalene                                                            | 128 | 8.253  | 8.253  | 0.000  | 97 | 276356   | 50.0       | 37.9         |       |
| 72 4-Chloroaniline                                                        | 127 | 8.290  | 8.290  | 0.000  | 97 | 111897   | 50.0       | 36.3         |       |
| 73 2,6-Dichlorophenol                                                     | 162 | 8.312  | 8.311  | 0.001  | 97 | 99529    | 50.0       | 40.3         |       |
| 74 Hexachlorobutadiene                                                    | 225 | 8.402  | 8.402  | 0.000  | 94 | 91386    | 50.0       | 37.5         |       |
| 76 Caprolactam                                                            | 113 | 8.691  | 8.680  | 0.011  | 81 | 57857    | 100.0      | 85.8         |       |
| 80 4-Chloro-3-methylphenol                                                | 107 | 8.856  | 8.851  | 0.005  | 93 | 91610    | 50.0       | 41.3         |       |
| 83 2-Methylnaphthalene                                                    | 142 | 9.070  | 9.070  | 0.000  | 90 | 215408   | 50.0       | 39.5         |       |
| 85 1-Methylnaphthalene                                                    | 142 | 9.193  | 9.193  | 0.000  | 90 | 212146   | 50.0       | 41.1         |       |
| 86 Hexachlorocyclopentadiene                                              | 237 | 9.273  | 9.273  | 0.000  | 95 | 112416   | 50.0       | 35.7         |       |
| 87 1,2,4,5-Tetrachlorobenzene                                             | 216 | 9.278  | 9.278  | 0.000  | 96 | 134679   | 50.0       | 38.1         |       |
| 89 2,4,6-Trichlorophenol                                                  | 196 | 9.401  | 9.396  | 0.005  | 90 | 84413    | 50.0       | 39.9         |       |
| 91 2,4,5-Trichlorophenol                                                  | 196 | 9.444  | 9.444  | 0.000  | 94 | 93230    | 50.0       | 41.6         |       |
| 94 1,1'-Biphenyl                                                          | 154 | 9.615  | 9.615  | 0.000  | 94 | 285936   | 50.0       | 40.0         |       |
| 95 2-Chloronaphthalene                                                    | 162 | 9.652  | 9.652  | 0.000  | 96 | 215057   | 50.0       | 38.6         |       |
| 98 2-Nitroaniline                                                         | 65  | 9.749  | 9.748  | 0.001  | 86 | 54018    | 50.0       | 38.8         |       |
| 102 Dimethyl phthalate                                                    | 163 | 9.946  | 9.946  | 0.000  | 99 | 282477   | 50.0       | 43.8         |       |
| 103 1,3-Dinitrobenzene                                                    | 168 | 9.984  | 9.983  | 0.001  | 95 | 50405    | 50.0       | 45.5         |       |
| 104 2,6-Dinitrotoluene                                                    | 165 | 10.016 | 10.016 | 0.000  | 94 | 61271    | 50.0       | 41.5         |       |
| 105 Acenaphthylene                                                        | 152 | 10.133 | 10.133 | 0.000  | 97 | 328628   | 50.0       | 40.3         |       |
| 106 3-Nitroaniline                                                        | 138 | 10.213 | 10.213 | 0.000  | 93 | 60462    | 50.0       | 40.1         |       |
| 107 2,4-Dinitrophenol                                                     | 184 | 10.326 | 10.331 | -0.005 | 80 | 62871    | 100.0      | 57.7         |       |
| 108 Acenaphthene                                                          | 153 | 10.326 | 10.331 | -0.005 | 89 | 233481   | 50.0       | 41.1         |       |
| 109 4-Nitrophenol                                                         | 109 | 10.379 | 10.379 | 0.000  | 84 | 111620   | 100.0      | 83.8         |       |
| 111 2,4-Dinitrotoluene                                                    | 165 | 10.470 | 10.470 | 0.000  | 94 | 84841    | 50.0       | 42.7         |       |
| 112 Dibenzofuran                                                          | 168 | 10.513 | 10.512 | 0.000  | 95 | 347984   | 50.0       | 41.9         |       |
| 116 2,3,4,6-Tetrachlorophenol                                             | 232 | 10.641 | 10.641 | 0.000  | 69 | 91089    | 50.0       | 41.6         |       |
| 118 Diethyl phthalate                                                     | 149 | 10.721 | 10.721 | 0.000  | 98 | 308046   | 50.0       | 44.4         |       |
| 119 Hexadecane                                                            | 57  | 10.737 | 10.737 | 0.000  | 94 | 115066   | 50.0       | 37.9         |       |
| 121 4-Chlorophenyl phenyl ethe                                            | 204 | 10.860 | 10.860 | 0.000  | 88 | 160080   | 50.0       | 42.0         |       |
| 122 4-Nitroaniline                                                        | 138 | 10.870 | 10.870 | 0.000  | 82 | 65677    | 50.0       | 40.3         |       |
| 123 Fluorene                                                              | 166 | 10.876 | 10.876 | 0.000  | 96 | 278432   | 50.0       | 41.5         |       |
| 125 4,6-Dinitro-2-methylphenol                                            | 198 | 10.908 | 10.908 | 0.000  | 90 | 97686    | 100.0      | 80.6         |       |
| 128 Diphenylamine                                                         | 169 | 10.977 | 10.977 | 0.000  | 93 | 212587   | 42.8       | 39.3         |       |
| 127 N-Nitrosodiphenylamine                                                | 169 | 10.977 | 10.977 | 0.000  | 62 | 212587   | 50.0       | 45.9         |       |
| 130 Azobenzene                                                            | 77  | 11.020 | 11.025 | -0.005 | 96 | 210922   | 50.0       | 43.1         |       |
| 129 1,2-Diphenylhydrazine                                                 | 77  | 11.020 | 11.025 | -0.005 | 97 | 210922   | 50.0       | 43.1         |       |
| 137 4-Bromophenyl phenyl ether                                            | 248 | 11.357 | 11.356 | 0.001  | 58 | 113944   | 50.0       | 46.0         |       |
| 139 Hexachlorobenzene                                                     | 284 | 11.447 | 11.447 | 0.000  | 96 | 138569   | 50.0       | 46.2         |       |
| 141 Atrazine                                                              | 200 | 11.490 | 11.485 | 0.005  | 94 | 188839   | 100.0      | 93.2         |       |
| 143 Pentachlorophenol                                                     | 266 | 11.624 | 11.629 | -0.005 | 91 | 121470   | 100.0      | 75.2<br>75.2 |       |
| 144 n-Octadecane                                                          | 57  | 11.645 | 11.650 | -0.005 | 93 | 125068   | 50.0       | 42.0         |       |
| 150 Phenanthrene                                                          | 178 | 11.832 | 11.832 | 0.000  | 96 | 414853   | 50.0       | 45.5         |       |
| 151 Anthracene                                                            | 178 | 11.880 | 11.880 | 0.000  | 96 | 430676   | 50.0       | 45.7         |       |
|                                                                           |     |        |        |        |    |          |            |              |       |
| 152 Carbazole                                                             | 167 | 12.014 | 12.014 | 0.000  | 96 | 397925   | 50.0       | 46.5         |       |

Report Date: 17-Oct-2017 11:38:14 Chrom Revision: 2.2 16-Aug-2017 16:24:46

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328232.D

| Compound                       | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | O   | Response     | Cal Amt<br>ng/uL | OnCol Amt ng/uL | Flags  |
|--------------------------------|-----|--------------|------------------|------------------|-----|--------------|------------------|-----------------|--------|
| 30pcuu                         | 0.9 | ()           | ()               | ()               |     | . roop on oo | 9/               | 9/              | . lage |
| 155 Di-n-butyl phthalate       | 149 | 12.291       | 12.291           | 0.000            | 100 | 493208       | 50.0             | 46.6            |        |
| 162 Fluoranthene               | 202 | 12.922       | 12.922           | 0.000            | 95  | 537593       | 50.0             | 47.2            |        |
| 164 Benzidine                  | 184 | 12.997       | 13.002           | -0.005           | 98  | 311861       | 100.0            | 54.9            |        |
| 165 Pyrene                     | 202 | 13.125       | 13.130           | -0.005           | 98  | 540532       | 50.0             | 45.5            |        |
| 172 Butyl benzyl phthalate     | 149 | 13.616       | 13.616           | 0.000            | 94  | 231645       | 50.0             | 45.5            |        |
| 178 Bis(2-ethylhexyl) phthalat | 149 | 14.097       | 14.097           | 0.000            | 92  | 318179       | 50.0             | 46.0            |        |
| 179 3,3'-Dichlorobenzidine     | 252 | 14.124       | 14.124           | 0.000            | 72  | 438089       | 100.0            | 90.7            |        |
| 181 Benzo[a]anthracene         | 228 | 14.183       | 14.182           | 0.001            | 96  | 575911       | 50.0             | 46.5            |        |
| 182 Chrysene                   | 228 | 14.220       | 14.220           | 0.000            | 94  | 541997       | 50.0             | 45.9            |        |
| 183 Di-n-octyl phthalate       | 149 | 14.669       | 14.669           | 0.000            | 98  | 547488       | 50.0             | 47.4            |        |
| 185 Benzo[b]fluoranthene       | 252 | 15.240       | 15.240           | 0.000            | 94  | 625580       | 50.0             | 59.7            |        |
| 187 Benzo[k]fluoranthene       | 252 | 15.267       | 15.272           | -0.005           | 96  | 585073       | 50.0             | 54.7            |        |
| 190 Benzo[a]pyrene             | 252 | 15.625       | 15.625           | 0.000            | 73  | 560188       | 50.0             | 57.3            |        |
| 193 Dibenz(a,h)anthracene      | 278 | 17.174       | 17.179           | -0.005           | 88  | 604715       | 50.0             | 60.1            |        |
| 194 Indeno[1,2,3-cd]pyrene     | 276 | 17.180       | 17.179           | 0.001            | 94  | 708996       | 50.0             | 59.9            |        |
| 195 Benzo[g,h,i]perylene       | 276 | 17.634       | 17.639           | -0.005           | 95  | 600944       | 50.0             | 60.8            |        |
| S 256 3-Methylphenol           | 1   |              |                  |                  | 0   |              | 50.0             | 41.0            |        |
| Reagents:                      |     |              |                  |                  |     |              |                  |                 |        |

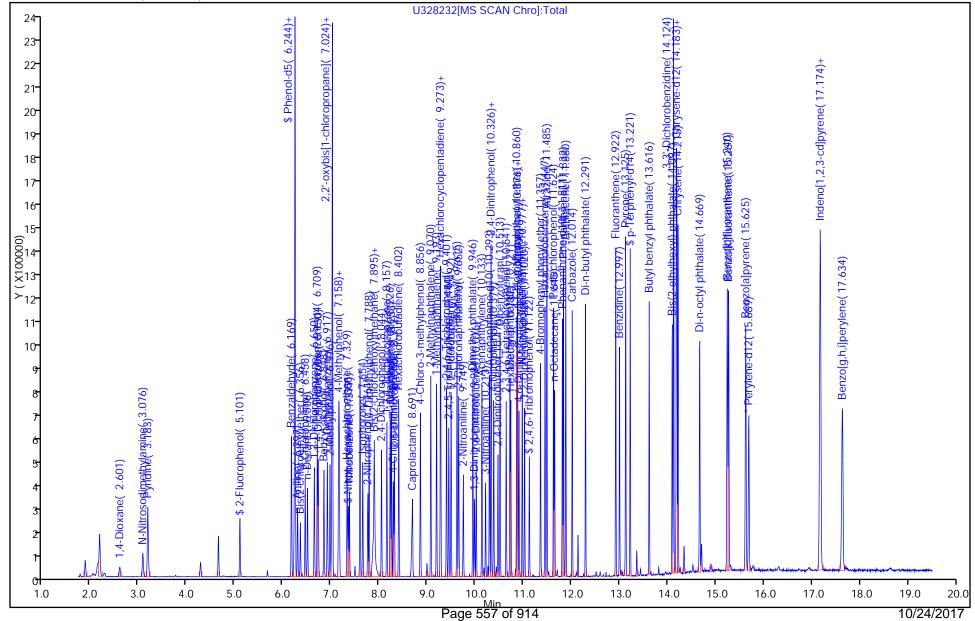
MB\_INTSTD\_STK\_00039 Amount Added: 20.00 Units: uL Run Reagent

Report Date: 17-Oct-2017 11:38:15 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328232.D Injection Date: 16-Oct-2017 20:39:30 Instrument ID: HP5973U

Lims ID: LCS 480-381332/2-A


Client ID:

Injection Vol: 1.0 ul

1.0 ul Dil. Factor: 1.0000

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



DR

8

8

Operator ID:

ALS Bottle#:

Worklist Smp#:

# FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (4-6) MS Lab Sample ID: 480-125579-1 MS

Matrix: Solid Lab File ID: U328233.D

Analysis Method: 8270D Date Collected: 10/08/2017 11:30

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.78(g) Date Analyzed: 10/16/2017 21:05

Con. Extract Vol.: 1(mL) Dilution Factor: 100

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 15.6 GPC Cleanup:(Y/N) N

| CAS NO.   | COMPOUND NAME               | RESULT | Q | RL     | MDL   |
|-----------|-----------------------------|--------|---|--------|-------|
| 95-95-4   | 2,4,5-Trichlorophenol       | ND     |   | 20000  | 5300  |
| 88-06-2   | 2,4,6-Trichlorophenol       | ND     |   | 20000  | 3900  |
| 120-83-2  | 2,4-Dichlorophenol          | ND     |   | 20000  | 2100  |
| 105-67-9  | 2,4-Dimethylphenol          | ND     |   | 20000  | 4700  |
| 51-28-5   | 2,4-Dinitrophenol           | ND     |   | 190000 | 91000 |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     |   | 20000  | 4000  |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     |   | 20000  | 2300  |
| 91-58-7   | 2-Chloronaphthalene         | ND     |   | 20000  | 3200  |
| 95-57-8   | 2-Chlorophenol              | ND     |   | 20000  | 3600  |
| 91-57-6   | 2-Methylnaphthalene         | 4060   | J | 20000  | 3900  |
| 95-48-7   | 2-Methylphenol              | ND     |   | 20000  | 2300  |
| 88-74-4   | 2-Nitroaniline              | ND     |   | 38000  | 2900  |
| 88-75-5   | 2-Nitrophenol               | ND     |   | 20000  | 5500  |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     |   | 38000  | 23000 |
| 99-09-2   | 3-Nitroaniline              | ND     |   | 38000  | 5400  |
| 534-52-1  | 4,6-Dinitro-2-methylphenol  | ND     |   | 38000  | 20000 |
| 101-55-3  | 4-Bromophenyl phenyl ether  | ND     |   | 20000  | 2800  |
| 59-50-7   | 4-Chloro-3-methylphenol     | ND     |   | 20000  | 4900  |
| 106-47-8  | 4-Chloroaniline             | ND     |   | 20000  | 4900  |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     |   | 20000  | 2400  |
| 106-44-5  | 4-Methylphenol              | ND     |   | 38000  | 2300  |
| 100-01-6  | 4-Nitroaniline              | ND     |   | 38000  | 10000 |
| 100-02-7  | 4-Nitrophenol               | ND     |   | 38000  | 14000 |
| 83-32-9   | Acenaphthene                | 5760   | J | 20000  | 2900  |
| 208-96-8  | Acenaphthylene              | 16700  | J | 20000  | 2500  |
| 98-86-2   | Acetophenone                | ND     |   | 20000  | 2700  |
| 120-12-7  | Anthracene                  | 39700  |   | 20000  | 4900  |
| 1912-24-9 | Atrazine                    | ND     |   | 20000  | 6800  |
| 100-52-7  | Benzaldehyde                | ND     |   | 20000  | 16000 |
| 56-55-3   | Benzo[a]anthracene          | 78500  |   | 20000  | 2000  |
| 50-32-8   | Benzo[a]pyrene              | 73300  |   | 20000  | 2900  |
| 205-99-2  | Benzo[b]fluoranthene        | 79300  |   | 20000  | 3100  |
| 191-24-2  | Benzo[g,h,i]perylene        | 41300  |   | 20000  | 2100  |
| 207-08-9  | Benzo[k]fluoranthene        | 47600  |   | 20000  | 2500  |

#### FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (4-6) MS Lab Sample ID: 480-125579-1 MS

Matrix: Solid Lab File ID: U328233.D

Analysis Method: 8270D Date Collected: 10/08/2017 11:30

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.78(g) Date Analyzed: 10/16/2017 21:05

Con. Extract Vol.: 1(mL) Dilution Factor: 100

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 15.6 GPC Cleanup:(Y/N) N

| CAS NO.  | COMPOUND NAME                 | RESULT | Q | RL    | MDL  |
|----------|-------------------------------|--------|---|-------|------|
| 92-52-4  | Biphenyl                      | ND     |   | 20000 | 2900 |
| 108-60-1 | bis (2-chloroisopropyl) ether | ND     |   | 20000 | 3900 |
| 111-91-1 | Bis(2-chloroethoxy)methane    | ND     |   | 20000 | 4200 |
| 111-44-4 | Bis(2-chloroethyl)ether       | ND     |   | 20000 | 2500 |
| 117-81-7 | Bis(2-ethylhexyl) phthalate   | ND     |   | 20000 | 6700 |
| 85-68-7  | Butyl benzyl phthalate        | ND     |   | 20000 | 3200 |
| 105-60-2 | Caprolactam                   | ND     |   | 20000 | 5900 |
| 86-74-8  | Carbazole                     | 3420   | J | 20000 | 2300 |
| 218-01-9 | Chrysene                      | 64700  |   | 20000 | 4400 |
| 53-70-3  | Dibenz(a,h)anthracene         | ND     |   | 20000 | 3500 |
| 132-64-9 | Dibenzofuran                  | 13100  | J | 20000 | 2300 |
| 84-66-2  | Diethyl phthalate             | ND     |   | 20000 | 2500 |
| 131-11-3 | Dimethyl phthalate            | ND     |   | 20000 | 230  |
| 84-74-2  | Di-n-butyl phthalate          | ND     |   | 20000 | 330  |
| 117-84-0 | Di-n-octyl phthalate          | ND     |   | 20000 | 2300 |
| 206-44-0 | Fluoranthene                  | 152000 |   | 20000 | 210  |
| 86-73-7  | Fluorene                      | 22000  |   | 20000 | 230  |
| 118-74-1 | Hexachlorobenzene             | ND     |   | 20000 | 270  |
| 87-68-3  | Hexachlorobutadiene           | ND     |   | 20000 | 2900 |
| 77-47-4  | Hexachlorocyclopentadiene     | ND     |   | 20000 | 2700 |
| 67-72-1  | Hexachloroethane              | ND     |   | 20000 | 250  |
| 193-39-5 | Indeno[1,2,3-cd]pyrene        | 40800  |   | 20000 | 240  |
| 78-59-1  | Isophorone                    | ND     |   | 20000 | 4200 |
| 91-20-3  | Naphthalene                   | 3040   | J | 20000 | 250  |
| 98-95-3  | Nitrobenzene                  | ND     |   | 20000 | 220  |
| 621-64-7 | N-Nitrosodi-n-propylamine     | ND     |   | 20000 | 330  |
| 86-30-6  | N-Nitrosodiphenylamine        | ND     |   | 20000 | 1600 |
| 87-86-5  | Pentachlorophenol             | ND     |   | 38000 | 2000 |
| 85-01-8  | Phenanthrene                  | 117000 |   | 20000 | 290  |
| 108-95-2 | Phenol                        | ND     |   | 20000 | 300  |
| 129-00-0 | Pyrene                        | 124000 |   | 20000 | 230  |

# FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (4-6) MS Lab Sample ID: 480-125579-1 MS

Matrix: Solid Lab File ID: U328233.D

Analysis Method: 8270D Date Collected: 10/08/2017 11:30

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.78(g) Date Analyzed: 10/16/2017 21:05

Con. Extract Vol.: 1(mL) Dilution Factor: 100

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 15.6 GPC Cleanup:(Y/N) N

| CAS NO.   | SURROGATE            | %REC | Q | LIMITS |
|-----------|----------------------|------|---|--------|
| 118-79-6  | 2,4,6-Tribromophenol | 0    | X | 54-120 |
| 321-60-8  | 2-Fluorobiphenyl     | 0    | X | 60-120 |
| 367-12-4  | 2-Fluorophenol       | 0    | X | 52-120 |
| 4165-60-0 | Nitrobenzene-d5      | 0    | Х | 53-120 |
| 4165-62-2 | Phenol-d5            | 0    | Х | 54-120 |
| 1718-51-0 | p-Terphenyl-d14      | 0    | Х | 65-121 |

Report Date: 17-Oct-2017 11:38:13 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo
Target Compound Quantitation Report

Data File: \ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328233.D

Lims ID: 480-125579-E-1-A MS

Client ID: MW-8 (4-6)

Sample Type: MS

Inject. Date: 16-Oct-2017 21:05:30 ALS Bottle#: 9 Worklist Smp#: 9

Injection Vol: 1.0 ul Dil. Factor: 100.0000

Sample Info: 480-0066446-009

Operator ID: DR Instrument ID: HP5973U

Method: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U-8270.m

Limit Group: MB - 8270D ICAL

Last Update:17-Oct-2017 11:35:50Calib Date:16-Oct-2017 14:19:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Buffalo\ChromData\HP5973U\20171016-66432.b\U328222.D

Column 1: RXI-5Sil MS ( 0.25 mm) Det: MS SCAN

Process Host: XAWRK024

First Level Reviewer: richardsd Date: 17-Oct-2017 11:18:48

| _ | First Level Reviewer: richardsd |     |        | D      | ate:   |    | 17-Oct-201 |         |           |          |
|---|---------------------------------|-----|--------|--------|--------|----|------------|---------|-----------|----------|
|   |                                 |     | RT     | Adj RT | Dlt RT |    |            | Cal Amt | OnCol Amt |          |
|   | Compound                        | Sig | (min.) | (min.) | (min.) | Q  | Response   | ng/uL   | ng/uL     | Flags    |
| • |                                 |     |        |        |        |    |            |         |           | <u> </u> |
|   | * 11,4-Dichlorobenzene-d4       | 152 | 6.709  | 6.709  | 0.000  | 95 | 121140     | 0.4000  | 40.0      |          |
|   | * 2 Naphthalene-d8              | 136 | 8.226  | 8.226  | 0.000  | 99 | 386209     | 0.4000  | 40.0      |          |
|   | * 3 Acenaphthene-d10            | 164 | 10.293 | 10.293 | 0.000  | 94 | 192391     | 0.4000  | 40.0      |          |
|   | * 4 Phenanthrene-d10            | 188 | 11.810 | 11.811 | -0.001 | 96 | 403161     | 0.4000  | 40.0      |          |
|   | * 5 Chrysene-d12                | 240 | 14.193 | 14.193 | 0.000  | 95 | 493583     | 0.4000  | 40.0      |          |
|   | * 6 Perylene-d12                | 264 | 15.689 | 15.689 | 0.000  | 98 | 403955     | 0.4000  | 40.0      |          |
|   | \$ 7 2-Fluorophenol             | 112 |        | 5.095  |        |    |            | ND      | ND        |          |
|   | \$ 8 Phenol-d5                  | 99  |        | 6.228  |        |    |            | ND      | ND        |          |
|   | \$ 9 Nitrobenzene-d5            | 82  |        | 7.355  |        |    |            | ND      | ND        |          |
|   | \$ 10 2-Fluorobiphenyl          | 172 |        | 9.492  |        |    |            | ND      | ND        |          |
|   | \$ 11 2,4,6-Tribromophenol      | 330 |        | 11.121 |        |    |            | ND      | ND        |          |
|   | \$ 12 p-Terphenyl-d14           | 244 |        | 13.221 |        |    |            | ND      | ND        |          |
|   | 23 1,4-Dioxane                  | 88  |        | 2.600  |        |    |            | ND      | ND        |          |
|   | 24 N-Nitrosodimethylamine       | 42  |        | 3.081  |        |    |            | ND      | ND        |          |
|   | 25 Pyridine                     | 52  |        | 3.183  |        |    |            | ND      | ND        |          |
|   | 32 Benzaldehyde                 | 77  |        | 6.174  |        |    |            | ND      | ND        |          |
|   | 33 Phenol                       | 94  |        | 6.244  |        |    |            | ND      | ND        |          |
|   | 34 Aniline                      | 93  |        | 6.297  |        |    |            | ND      | ND        |          |
|   | 35 Bis(2-chloroethyl)ether      | 93  |        | 6.356  |        |    |            | ND      | ND        |          |
|   | 37 2-Chlorophenol               | 128 |        | 6.458  |        |    |            | ND      | ND        |          |
|   | 38 n-Decane                     | 57  |        | 6.506  |        |    |            | ND      | ND        |          |
|   | 39 1,3-Dichlorobenzene          | 146 |        | 6.650  |        |    |            | ND      | ND        |          |
|   | 40 1,4-Dichlorobenzene          | 146 |        | 6.730  |        |    |            | ND      | ND        |          |
|   | 41 Benzyl alcohol               | 108 |        | 6.848  |        |    |            | ND      | ND        |          |
|   | 42 1,2-Dichlorobenzene          | 146 |        | 6.917  |        |    |            | ND      | ND        |          |
|   | 43 2-Methylphenol               | 108 |        | 6.976  |        |    |            | ND      | ND        |          |
|   | 44 2,2'-oxybis[1-chloropropan   | 45  |        | 7.013  |        |    |            | ND      | ND        |          |
|   | 45 Indene                       | 115 | 7.024  | 7.024  | 0.000  | 85 | 8173       | 2.00    | 1.40      |          |
|   | 46 4-Methylphenol               | 108 |        | 7.152  |        |    |            | ND      | ND        |          |
|   | 47 N-Nitrosodi-n-propylamine    | 70  |        | 7.157  |        |    |            | ND      | ND        |          |
|   | 49 Acetophenone                 | 105 |        | 7.168  |        |    |            | ND      | ND        |          |
|   | 53 Hexachloroethane             | 117 |        | 7.328  |        |    |            | ND      | ND        |          |
|   |                                 |     |        |        |        |    |            |         |           |          |

Report Date: 17-Oct-2017 11:38:13

Data File:

| Data File. \(\text{CHIOHINA\B} | I          |              |                  |                  | ) 10-00  | 0440.0\032623 |                  | 10-0-11            |       |
|--------------------------------|------------|--------------|------------------|------------------|----------|---------------|------------------|--------------------|-------|
| Compound                       | Sig        | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q        | Response      | Cal Amt<br>ng/uL | OnCol Amt<br>ng/uL | Flags |
| 54 Nitrobenzene                | 77         |              | 7.376            |                  |          |               | ND               | ND                 |       |
| 56 Isophorone                  | 82         |              | 7.654            |                  |          |               | ND               | ND                 |       |
| 59 2-Nitrophenol               | 139        |              | 7.761            |                  |          |               | ND               | ND                 |       |
| 60 2,4-Dimethylphenol          | 107        |              | 7.788            |                  |          |               | ND               | ND                 |       |
| 62 Bis(2-chloroethoxy)methane  | 93         |              | 7.895            |                  |          |               | ND               | ND                 |       |
| 64 Benzoic acid                | 105        |              | 7.911            |                  |          |               | ND               | ND                 |       |
| 67 2,4-Dichlorophenol          | 162        |              | 8.044            |                  |          |               | ND               | ND                 |       |
| 68 1,2,4-Trichlorobenzene      | 180        |              | 8.156            |                  |          |               | ND               | ND                 |       |
| 70 Naphthalene                 | 128        | 8.253        | 8.253            | 0.000            | 94       | 7169          | 0.5000           | 0.7901             |       |
| 72 4-Chloroaniline             | 127        |              | 8.290            |                  |          |               | ND               | ND                 |       |
| 73 2,6-Dichlorophenol          | 162        |              | 8.311            |                  |          |               | ND               | ND                 |       |
| 74 Hexachlorobutadiene         | 225        |              | 8.402            |                  |          |               | ND               | ND                 |       |
| 76 Caprolactam                 | 113        |              | 8.680            |                  |          |               | ND               | ND                 |       |
| 80 4-Chloro-3-methylphenol     | 107        |              | 8.851            |                  |          |               | ND               | ND                 |       |
| 83 2-Methylnaphthalene         | 142        | 9.070        | 9.070            | 0.000            | 94       | 7160          | 0.5000           | 1.05               |       |
| 85 1-Methylnaphthalene         | 142        | 9.187        | 9.193            | -0.006           | 92       | 9841          | 0.5000           | 1.53               |       |
| 86 Hexachlorocyclopentadiene   | 237        |              | 9.273            |                  |          |               | ND               | ND                 |       |
| 87 1,2,4,5-Tetrachlorobenzene  | 216        |              | 9.278            |                  |          |               | ND               | ND                 |       |
| 89 2,4,6-Trichlorophenol       | 196        |              | 9.396            |                  |          |               | ND               | ND                 |       |
| 91 2,4,5-Trichlorophenol       | 196        |              | 9.444            |                  |          |               | ND               | ND                 |       |
| 94 1,1'-Biphenyl               | 154        |              | 9.615            |                  |          |               | ND               | ND                 |       |
| 95 2-Chloronaphthalene         | 162        |              | 9.652            |                  |          |               | ND               | ND                 |       |
| 98 2-Nitroaniline              | 65         |              | 9.748            |                  |          |               | ND               | ND                 |       |
| 102 Dimethyl phthalate         | 163        |              | 9.946            |                  |          |               | ND               | ND                 |       |
| 103 1,3-Dinitrobenzene         | 168        |              | 9.983            |                  |          |               | ND               | ND                 |       |
| 104 2,6-Dinitrotoluene         | 165        |              | 10.016           |                  |          |               | ND               | ND                 |       |
| 105 Acenaphthylene             | 152        | 10.133       | 10.133           | 0.000            | 97       | 40931         | 0.5000           | 4.35               |       |
| 106 3-Nitroaniline             | 138        |              | 10.213           |                  |          |               | ND               | ND                 |       |
| 107 2,4-Dinitrophenol          | 184        |              | 10.331           |                  |          |               | ND               | ND                 |       |
| 108 Acenaphthene               | 153        | 10.325       | 10.331           | -0.006           | 92       | 9827          | 0.5000           | 1.49               |       |
| 109 4-Nitrophenol              | 109        |              | 10.379           |                  |          |               | ND               | ND                 |       |
| 111 2,4-Dinitrotoluene         | 165        |              | 10.470           |                  |          |               | ND               | ND                 |       |
| 112 Dibenzofuran               | 168        | 10.512       | 10.512           | 0.000            | 94       | 32718         | 0.5000           | 3.41               |       |
| 116 2,3,4,6-Tetrachlorophenol  | 232        |              | 10.641           |                  |          |               | ND               | ND                 |       |
| 118 Diethyl phthalate          | 149        |              | 10.721           |                  |          |               | ND               | ND                 |       |
| 119 Hexadecane                 | 57         |              | 10.737           |                  |          |               | ND               | ND                 |       |
| 121 4-Chlorophenyl phenyl ethe | 204        |              | 10.860           |                  |          |               | ND               | ND                 |       |
| 122 4-Nitroaniline             | 138        | 40.07/       | 10.870           |                  | ٠,       | 4.4050        | ND               | ND                 |       |
| 123 Fluorene                   | 166        | 10.876       | 10.876           | 0.000            | 96       | 44250         | 0.5000           | 5.71               |       |
| 125 4,6-Dinitro-2-methylphenol | 198        |              | 10.908           |                  |          |               | ND               | ND                 |       |
| 128 Diphenylamine              | 169        |              | 10.977           |                  |          |               | ND               | ND                 |       |
| 127 N-Nitrosodiphenylamine     | 169        |              | 10.977           |                  |          |               | ND               | ND                 |       |
| 130 Azobenzene                 | 77<br>77   |              | 11.025           |                  |          |               | ND               | ND                 |       |
| 129 1,2-Diphenylhydrazine      | 77         |              | 11.025           |                  |          |               | ND               | ND                 |       |
| 137 4-Bromophenyl phenyl ether | 248        |              | 11.356           |                  |          |               | ND               | ND                 |       |
| 139 Hexachlorobenzene          | 284        |              | 11.447           |                  |          |               | ND               | ND                 |       |
| 141 Atrazine                   | 200        |              | 11.485           |                  |          |               | ND               | ND                 |       |
| 144 Postada anna               | 266        |              | 11.629           |                  |          |               | ND               | ND                 |       |
| 144 n-Octadecane               | 57         | 11 000       | 11.650           | 0.000            | 07       | 217007        | ND<br>0.5000     | ND                 |       |
| 150 Phenanthrene               | 178<br>170 | 11.832       | 11.832           | 0.000            | 96<br>04 | 317807        | 0.5000           | 30.4               |       |
| 151 Anthracene                 | 178        | 11.880       | 11.880           | 0.000            | 96<br>04 | 111429        | 0.5000           | 10.3               |       |
| 152 Carbazole                  | 167        | 12.013       | 12.014           | -0.001           | 94       | 8722          | 0.5000           | 0.8890             |       |

Report Date: 17-Oct-2017 11:38:13 Chrom Revision: 2.2 16-Aug-2017 16:24:46

Data File:

| Compound                       | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q  | Response | Cal Amt<br>ng/uL | OnCol Amt<br>ng/uL | Flags |
|--------------------------------|-----|--------------|------------------|------------------|----|----------|------------------|--------------------|-------|
| 1EE Di n butul nhthalata       | 149 |              | 12.291           |                  |    |          | ND               | ND                 |       |
| 155 Di-n-butyl phthalate       |     | 12 022       |                  | 0.000            | OE | E1E040   |                  |                    |       |
| 162 Fluoranthene               | 202 | 12.922       | 12.922           | 0.000            | 95 | 515969   | 0.5000           | 39.5               |       |
| 164 Benzidine                  | 184 | 10.105       | 13.002           |                  |    | 400000   | ND               | ND                 |       |
| 165 Pyrene                     | 202 | 13.125       | 13.130           | -0.005           | 98 | 423288   | 0.5000           | 32.2               |       |
| 172 Butyl benzyl phthalate     | 149 |              | 13.616           |                  |    |          | ND               | ND                 |       |
| 178 Bis(2-ethylhexyl) phthalat | 149 |              | 14.097           |                  |    |          | ND               | ND                 |       |
| 179 3,3'-Dichlorobenzidine     | 252 |              | 14.124           |                  |    |          | ND               | ND                 |       |
| 181 Benzo[a]anthracene         | 228 | 14.182       | 14.182           | 0.000            | 96 | 279224   | 0.5000           | 20.4               |       |
| 182 Chrysene                   | 228 | 14.214       | 14.220           | -0.006           | 94 | 219473   | 0.5000           | 16.8               |       |
| 183 Di-n-octyl phthalate       | 149 |              | 14.669           |                  |    |          | ND               | ND                 |       |
| 185 Benzo[b]fluoranthene       | 252 | 15.240       | 15.240           | 0.000            | 93 | 253035   | 0.5000           | 20.6               |       |
| 187 Benzo[k]fluoranthene       | 252 | 15.262       | 15.272           | -0.010           | 96 | 154953   | 0.5000           | 12.4               | M     |
| 190 Benzo[a]pyrene             | 252 | 15.625       | 15.625           | 0.000            | 73 | 217921   | 0.5000           | 19.0               |       |
| 193 Dibenz(a,h)anthracene      | 278 |              | 17.179           |                  |    |          | ND               | ND                 |       |
| 194 Indeno[1,2,3-cd]pyrene     | 276 | 17.174       | 17.179           | -0.005           | 94 | 139898   | 0.5000           | 10.6               |       |
| 195 Benzo[g,h,i]perylene       | 276 | 17.634       | 17.639           | -0.005           | 95 | 116419   | 0.5000           | 10.7               |       |
| S 256 3-Methylphenol           | 1   |              | 0.700            |                  |    |          | 0.5000           | ND                 |       |

# QC Flag Legend Processing Flags

ND - Not Detected or Marked ND

Review Flags

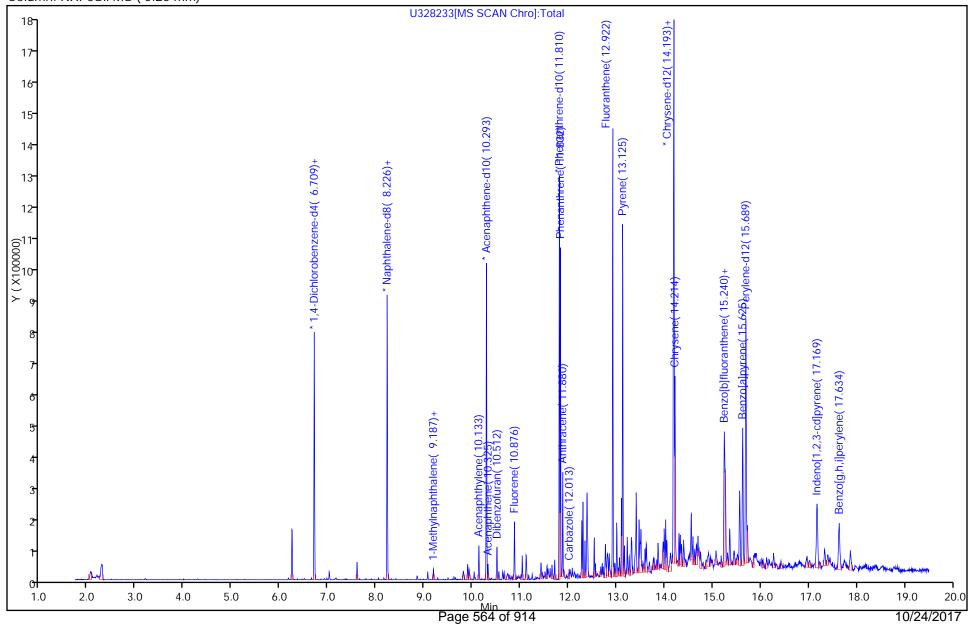
M - Manually Integrated

Reagents:

MB\_INTSTD\_STK\_00039 Amount Added: 20.00 Units: uL Run Reagent Report Date: 17-Oct-2017 11:38:13 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328233.D HP5973U


Injection Date: 16-Oct-2017 21:05:30 Instrument ID: Lims ID:

480-125579-E-1-A MS

Client ID: MW-8 (4-6)

Injection Vol: 1.0 ul Dil. Factor: 100.0000 ALS Bottle#: Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



DR

9

9

Operator ID:

Worklist Smp#:

Report Date: 17-Oct-2017 11:38:13 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328233.D

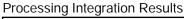
Injection Date: 16-Oct-2017 21:05:30 Instrument ID: HP5973U

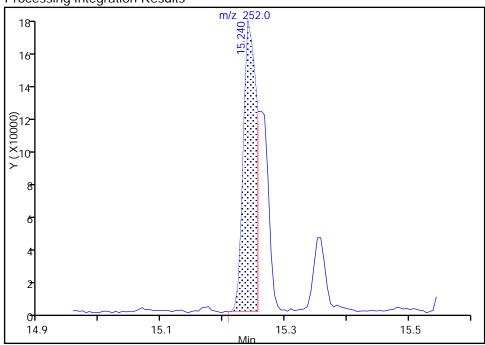
Lims ID: 480-125579-E-1-A MS

Client ID: MW-8 (4-6)

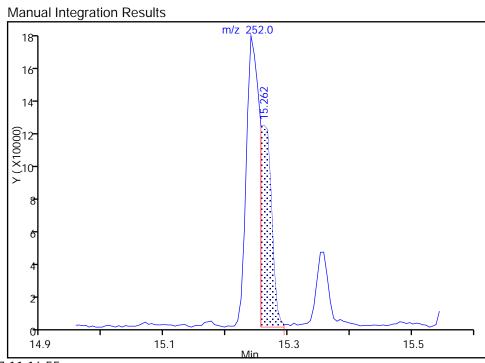
Operator ID: DR ALS Bottle#: 9 Worklist Smp#: 9

Injection Vol: 1.0 ul Dil. Factor: 100.0000


Method: U-8270 Limit Group: MB - 8270D ICAL


Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN

### 187 Benzo[k]fluoranthene, CAS: 207-08-9


Signal: 1

RT: 15.24
Area: 253035
Amount: 20.183573
Amount Units: ng/uL





RT: 15.26 Area: 154953 Amount: 12.359970 Amount Units: ng/uL



Reviewer: richardsd, 17-Oct-2017 11:16:55

Audit Action: Assigned Compound ID

Audit Reason: Assign Peak

Page 565 of 914

Report Date: 17-Oct-2017 11:38:13 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328233.D

Injection Date: 16-Oct-2017 21:05:30 Instrument ID: HP5973U

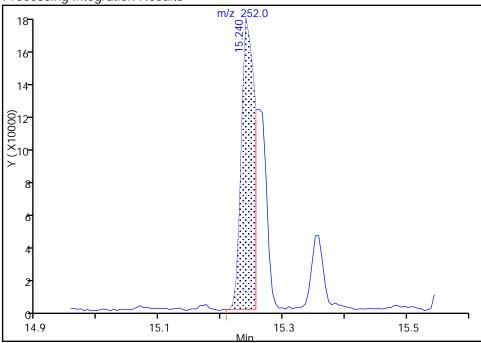
Lims ID: 480-125579-E-1-A MS

Client ID: MW-8 (4-6)

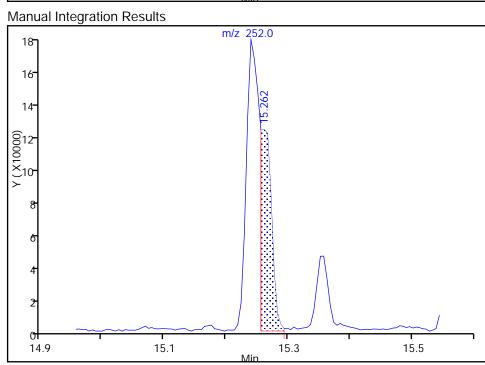
Operator ID: DR ALS Bottle#: 9 Worklist Smp#: 9

Injection Vol: 1.0 ul Dil. Factor: 100.0000

Method: U-8270 Limit Group: MB - 8270D ICAL


Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN

### 187 Benzo[k]fluoranthene, CAS: 207-08-9


Signal: 1

RT: 15.24
Area: 253035
Amount: 20.183573
Amount Units: ng/uL

**Processing Integration Results** 



RT: 15.26 Area: 154953 Amount: 12.359970 Amount Units: ng/uL



Reviewer: richardsd, 17-Oct-2017 11:17:05

Audit Action: Manually Integrated

Audit Reason: Assign Peak

Page 566 of 914 10/24/2017

## FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (4-6) MSD Lab Sample ID: 480-125579-1 MSD

Matrix: Solid Lab File ID: U328234.D

Analysis Method: 8270D Date Collected: 10/08/2017 11:30

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.62(g) Date Analyzed: 10/16/2017 21:32

Con. Extract Vol.: 1(mL) Dilution Factor: 100

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 15.6 GPC Cleanup:(Y/N) N

| CAS NO.   | COMPOUND NAME               | RESULT | Q | RL     | MDL   |
|-----------|-----------------------------|--------|---|--------|-------|
| 95-95-4   | 2,4,5-Trichlorophenol       | ND     |   | 20000  | 5300  |
| 88-06-2   | 2,4,6-Trichlorophenol       | ND     |   | 20000  | 3900  |
| 120-83-2  | 2,4-Dichlorophenol          | ND     |   | 20000  | 2100  |
| 105-67-9  | 2,4-Dimethylphenol          | ND     |   | 20000  | 4800  |
| 51-28-5   | 2,4-Dinitrophenol           | ND     |   | 190000 | 91000 |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     |   | 20000  | 4100  |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     |   | 20000  | 2300  |
| 91-58-7   | 2-Chloronaphthalene         | ND     |   | 20000  | 3300  |
| 95-57-8   | 2-Chlorophenol              | ND     |   | 20000  | 3600  |
| 91-57-6   | 2-Methylnaphthalene         | ND     |   | 20000  | 3900  |
| 95-48-7   | 2-Methylphenol              | ND     |   | 20000  | 2300  |
| 88-74-4   | 2-Nitroaniline              | ND     |   | 38000  | 2900  |
| 88-75-5   | 2-Nitrophenol               | ND     |   | 20000  | 5600  |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     |   | 38000  | 23000 |
| 99-09-2   | 3-Nitroaniline              | ND     |   | 38000  | 5500  |
| 534-52-1  | 4,6-Dinitro-2-methylphenol  | ND     |   | 38000  | 20000 |
| 101-55-3  | 4-Bromophenyl phenyl ether  | ND     |   | 20000  | 2800  |
| 59-50-7   | 4-Chloro-3-methylphenol     | ND     |   | 20000  | 4900  |
| 106-47-8  | 4-Chloroaniline             | ND     |   | 20000  | 4900  |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     |   | 20000  | 2400  |
| 106-44-5  | 4-Methylphenol              | ND     |   | 38000  | 2300  |
| 100-01-6  | 4-Nitroaniline              | ND     |   | 38000  | 10000 |
| 100-02-7  | 4-Nitrophenol               | ND     |   | 38000  | 14000 |
| 83-32-9   | Acenaphthene                | 7940   | J | 20000  | 2900  |
| 208-96-8  | Acenaphthylene              | 26500  |   | 20000  | 2600  |
| 98-86-2   | Acetophenone                | ND     |   | 20000  | 2700  |
| 120-12-7  | Anthracene                  | 60700  |   | 20000  | 4900  |
| 1912-24-9 | Atrazine                    | ND     |   | 20000  | 6900  |
| 100-52-7  | Benzaldehyde                | ND     |   | 20000  | 16000 |
| 56-55-3   | Benzo[a]anthracene          | 120000 |   | 20000  | 2000  |
| 50-32-8   | Benzo[a]pyrene              | 113000 |   | 20000  | 2900  |
| 205-99-2  | Benzo[b]fluoranthene        | 137000 |   | 20000  | 3100  |
| 191-24-2  | Benzo[g,h,i]perylene        | 62700  |   | 20000  | 2100  |
| 207-08-9  | Benzo[k]fluoranthene        | 55000  |   | 20000  | 2600  |

#### FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (4-6) MSD Lab Sample ID: 480-125579-1 MSD

Matrix: Solid Lab File ID: U328234.D

Analysis Method: 8270D Date Collected: 10/08/2017 11:30

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.62(g) Date Analyzed: 10/16/2017 21:32

Con. Extract Vol.: 1(mL) Dilution Factor: 100

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 15.6 GPC Cleanup:(Y/N) N

| CAS NO.  | COMPOUND NAME                 | RESULT | Q | RL    | MDL   |
|----------|-------------------------------|--------|---|-------|-------|
| 92-52-4  | Biphenyl                      | ND     |   | 20000 | 2900  |
| 108-60-1 | bis (2-chloroisopropyl) ether | ND     |   | 20000 | 3900  |
| 111-91-1 | Bis(2-chloroethoxy)methane    | ND     |   | 20000 | 4200  |
| 111-44-4 | Bis(2-chloroethyl)ether       | ND     |   | 20000 | 2600  |
| 117-81-7 | Bis(2-ethylhexyl) phthalate   | ND     |   | 20000 | 6700  |
| 85-68-7  | Butyl benzyl phthalate        | ND     |   | 20000 | 3300  |
| 105-60-2 | Caprolactam                   | ND     |   | 20000 | 5900  |
| 86-74-8  | Carbazole                     | 4700   | J | 20000 | 2300  |
| 218-01-9 | Chrysene                      | 98100  |   | 20000 | 4400  |
| 53-70-3  | Dibenz(a,h)anthracene         | ND     |   | 20000 | 3500  |
| 132-64-9 | Dibenzofuran                  | 15500  | J | 20000 | 2300  |
| 84-66-2  | Diethyl phthalate             | ND     |   | 20000 | 2600  |
| 131-11-3 | Dimethyl phthalate            | ND     |   | 20000 | 2300  |
| 84-74-2  | Di-n-butyl phthalate          | ND     |   | 20000 | 3400  |
| 117-84-0 | Di-n-octyl phthalate          | ND     |   | 20000 | 2300  |
| 206-44-0 | Fluoranthene                  | 233000 |   | 20000 | 2100  |
| 86-73-7  | Fluorene                      | 29500  |   | 20000 | 2300  |
| 118-74-1 | Hexachlorobenzene             | ND     |   | 20000 | 2700  |
| 87-68-3  | Hexachlorobutadiene           | ND     |   | 20000 | 2900  |
| 77-47-4  | Hexachlorocyclopentadiene     | ND     |   | 20000 | 2700  |
| 67-72-1  | Hexachloroethane              | ND     |   | 20000 | 2600  |
| 193-39-5 | Indeno[1,2,3-cd]pyrene        | 63400  |   | 20000 | 2400  |
| 78-59-1  | Isophorone                    | ND     |   | 20000 | 4200  |
| 91-20-3  | Naphthalene                   | 4050   | J | 20000 | 2600  |
| 98-95-3  | Nitrobenzene                  | ND     |   | 20000 | 2200  |
| 621-64-7 | N-Nitrosodi-n-propylamine     | ND     |   | 20000 | 3400  |
| 86-30-6  | N-Nitrosodiphenylamine        | ND     |   | 20000 | 16000 |
| 87-86-5  | Pentachlorophenol             | ND     |   | 38000 | 20000 |
| 85-01-8  | Phenanthrene                  | 165000 |   | 20000 | 2900  |
| 108-95-2 | Phenol                        | ND     |   | 20000 | 3000  |
| 129-00-0 | Pyrene                        | 189000 |   | 20000 | 2300  |

# FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Client Sample ID: MW-8 (4-6) MSD Lab Sample ID: 480-125579-1 MSD

Matrix: Solid Lab File ID: U328234.D

Analysis Method: 8270D Date Collected: 10/08/2017 11:30

Extract. Method: 3550C Date Extracted: 10/11/2017 14:06

Sample wt/vol: 30.62(g) Date Analyzed: 10/16/2017 21:32

Con. Extract Vol.: 1(mL) Dilution Factor: 100

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 15.6 GPC Cleanup: (Y/N) N

| CAS NO.   | SURROGATE            | %REC | Q | LIMITS |
|-----------|----------------------|------|---|--------|
| 118-79-6  | 2,4,6-Tribromophenol | 0    | X | 54-120 |
| 321-60-8  | 2-Fluorobiphenyl     | 75   |   | 60-120 |
| 367-12-4  | 2-Fluorophenol       | 47   | X | 52-120 |
| 4165-60-0 | Nitrobenzene-d5      | 63   |   | 53-120 |
| 4165-62-2 | Phenol-d5            | 0    | Х | 54-120 |
| 1718-51-0 | p-Terphenyl-d14      | 119  |   | 65-121 |

Report Date: 17-Oct-2017 11:38:11 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

**Target Compound Quantitation Report** 

Data File: 

Lims ID: 480-125579-F-1-D MSD

Client ID: MW-8 (4-6) Sample Type: **MSD** 

Inject. Date: 16-Oct-2017 21:32:30

ALS Bottle#: 10 Worklist Smp#:

Injection Vol: Dil. Factor: 1.0 ul 100.0000

Sample Info: 480-0066446-010

Operator ID: DR Instrument ID: HP5973U

Method: 

MB - 8270D ICAL Limit Group:

17-Oct-2017 11:35:50 Last Update: Calib Date: 16-Oct-2017 14:19:30 Integrator: **RTE** ID Type: **Deconvolution ID** Quant Method: Internal Standard Quant By: **Initial Calibration** Last ICal File:

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

**Process Host:** XAWRK024

First Level Reviewer: richardsd Date: 17-Oct-2017 11:20:46

| T II St Level Neviewel. Helialusu |     | Date.  |        |           | 17-001-2017 11.20.40 |          |         |           |        |
|-----------------------------------|-----|--------|--------|-----------|----------------------|----------|---------|-----------|--------|
|                                   |     | RT     | Adj RT | Dlt RT    |                      |          | Cal Amt | OnCol Amt |        |
| Compound                          | Sig | (min.) | (min.) | (min.)    | Q                    | Response | ng/uL   | ng/uL     | Flags  |
|                                   |     |        |        |           |                      |          |         |           |        |
| * 1 1,4-Dichlorobenzene-d4        | 152 | 6.709  | 6.709  | 0.000     | 94                   | 107519   | 0.4000  | 40.0      |        |
| * 2 Naphthalene-d8                | 136 | 8.226  | 8.226  | 0.000     | 99                   | 362961   | 0.4000  | 40.0      |        |
| * 3 Acenaphthene-d10              | 164 | 10.293 | 10.293 | 0.000     | 96                   | 187134   | 0.4000  | 40.0      |        |
| * 4 Phenanthrene-d10              | 188 | 11.811 | 11.811 | 0.000     | 96                   | 416284   | 0.4000  | 40.0      |        |
| * 5 Chrysene-d12                  | 240 | 14.193 | 14.193 | 0.000     | 95                   | 529808   | 0.4000  | 40.0      |        |
| * 6 Perylene-d12                  | 264 | 15.689 | 15.689 | 0.000     | 98                   | 424892   | 0.4000  | 40.0      |        |
| \$ 7 2-Fluorophenol               | 112 | 5.101  | 5.095  | 0.006     | 1                    | 541      | 0.4000  | 0.1873    |        |
| \$ 8 Phenol-d5                    | 99  |        | 6.228  |           |                      |          | ND      | ND        |        |
| \$ 9 Nitrobenzene-d5              | 82  | 7.355  | 7.355  | 0.000     | 1                    | 793      | 0.4000  | 0.2516    |        |
| \$ 10 2-Fluorobiphenyl            | 172 | 9.492  | 9.492  | 0.000     | 1                    | 2383     | 0.4000  | 0.3016    |        |
| \$ 11 2,4,6-Tribromophenol        | 330 |        | 11.121 |           |                      |          | ND      | ND        | M      |
| \$ 12 p-Terphenyl-d14             | 244 | 13.221 | 13.221 | 0.000     | 1                    | 5146     | 0.4000  | 0.4772    |        |
| 23 1,4-Dioxane                    | 88  |        | 2.600  |           |                      |          | ND      | ND        |        |
| 24 N-Nitrosodimethylamine         | 42  |        | 3.081  |           |                      |          | ND      | ND        |        |
| 25 Pyridine                       | 52  |        | 3.183  |           |                      |          | ND      | ND        |        |
| 32 Benzaldehyde                   | 77  |        | 6.174  |           |                      |          | ND      | ND        |        |
| 33 Phenol                         | 94  |        | 6.244  |           |                      |          | ND      | ND        |        |
| 34 Aniline                        | 93  |        | 6.297  |           |                      |          | ND      | ND        |        |
| 35 Bis(2-chloroethyl)ether        | 93  |        | 6.356  |           |                      |          | ND      | ND        |        |
| 37 2-Chlorophenol                 | 128 |        | 6.458  |           |                      |          | ND      | ND        |        |
| 38 n-Decane                       | 57  |        | 6.506  |           |                      |          | ND      | ND        |        |
| 39 1,3-Dichlorobenzene            | 146 |        | 6.650  |           |                      |          | ND      | ND        |        |
| 40 1,4-Dichlorobenzene            | 146 |        | 6.730  |           |                      |          | ND      | ND        |        |
| 41 Benzyl alcohol                 | 108 |        | 6.848  |           |                      |          | ND      | ND        |        |
| 42 1,2-Dichlorobenzene            | 146 |        | 6.917  |           |                      |          | ND      | ND        |        |
| 43 2-Methylphenol                 | 108 |        | 6.976  |           |                      |          | ND      | ND        |        |
| 44 2,2'-oxybis[1-chloropropan     | 45  |        | 7.013  |           |                      |          | ND      | ND        |        |
| 45 Indene                         | 115 | 7.024  | 7.024  | 0.000     | 82                   | 9139     | 2.00    | 1.76      |        |
| 46 4-Methylphenol                 | 108 |        | 7.152  |           |                      |          | ND      | ND        |        |
| 47 N-Nitrosodi-n-propylamine      | 70  |        | 7.157  |           |                      |          | ND      | ND        |        |
| 49 Acetophenone                   | 105 |        | 7.168  |           |                      |          | ND      | ND        |        |
| 53 Hexachloroethane               | 117 |        | 7.328  |           |                      |          | ND      | ND        |        |
|                                   | ,   |        |        | EZO ~£ 04 | 4                    |          |         |           | 1/0047 |

10

Report Date: 17-Oct-2017 11:38:11

Data File:

| Data File. \\CIIIOIIINA\B      | I      |              |                  |                  | 10-00    | J-70.D1032020    |                  | 0.00.00.00.00.00   |       |
|--------------------------------|--------|--------------|------------------|------------------|----------|------------------|------------------|--------------------|-------|
| Compound                       | Sig    | RT<br>(min.) | Adj RT<br>(min.) | DIt RT<br>(min.) | Q        | Response         | Cal Amt<br>ng/uL | OnCol Amt<br>ng/uL | Flags |
| 54 Nitrobenzene                | 77     |              | 7.376            |                  |          |                  | ND               | ND                 |       |
| 56 Isophorone                  | 82     |              | 7.654            |                  |          |                  | ND               | ND                 |       |
| 59 2-Nitrophenol               | 139    |              | 7.761            |                  |          |                  | ND               | ND                 |       |
| 60 2,4-Dimethylphenol          | 107    |              | 7.788            |                  |          |                  | ND               | ND                 |       |
| 62 Bis(2-chloroethoxy)methane  | 93     |              | 7.895            |                  |          |                  | ND               | ND                 |       |
| 64 Benzoic acid                | 105    |              | 7.911            |                  |          |                  | ND               | ND                 |       |
| 67 2,4-Dichlorophenol          | 162    |              | 8.044            |                  |          |                  | ND               | ND                 |       |
| 68 1,2,4-Trichlorobenzene      | 180    |              | 8.156            |                  |          |                  | ND               | ND                 |       |
| 70 Naphthalene                 | 128    | 8.253        | 8.253            | 0.000            | 93       | 8920             | 0.5000           | 1.05               |       |
| 72 4-Chloroaniline             | 127    |              | 8.290            |                  |          |                  | ND               | ND                 |       |
| 73 2,6-Dichlorophenol          | 162    |              | 8.311            |                  |          |                  | ND               | ND                 |       |
| 74 Hexachlorobutadiene         | 225    |              | 8.402            |                  |          |                  | ND               | ND                 |       |
| 76 Caprolactam                 | 113    |              | 8.680            |                  |          |                  | ND               | ND                 |       |
| 80 4-Chloro-3-methylphenol     | 107    |              | 8.851            |                  |          |                  | ND               | ND                 |       |
| 83 2-Methylnaphthalene         | 142    | 9.070        | 9.070            | 0.000            | 93       | 6391             | 0.5000           | 1.00               |       |
| 85 1-Methylnaphthalene         | 142    | 9.188        | 9.193            | -0.005           | 87       | 9990             | 0.5000           | 1.66               |       |
| 86 Hexachlorocyclopentadiene   | 237    |              | 9.273            |                  |          |                  | ND               | ND                 |       |
| 87 1,2,4,5-Tetrachlorobenzene  | 216    |              | 9.278            |                  |          |                  | ND               | ND                 |       |
| 89 2,4,6-Trichlorophenol       | 196    |              | 9.396            |                  |          |                  | ND               | ND                 |       |
| 91 2,4,5-Trichlorophenol       | 196    |              | 9.444            |                  |          |                  | ND               | ND                 |       |
| 94 1,1'-Biphenyl               | 154    | 9.615        | 9.615            | 0.000            | 86       | 3538             | 0.5000           | 0.4399             |       |
| 95 2-Chloronaphthalene         | 162    | 9.652        | 9.652            | 0.000            | 1        | 2649             | 0.5000           | 0.4231             |       |
| 98 2-Nitroaniline              | 65     |              | 9.748            |                  |          |                  | ND               | ND                 |       |
| 102 Dimethyl phthalate         | 163    |              | 9.946            |                  |          |                  | ND               | ND                 |       |
| 103 1,3-Dinitrobenzene         | 168    |              | 9.983            |                  |          |                  | ND               | ND                 |       |
| 104 2,6-Dinitrotoluene         | 165    |              | 10.016           |                  |          |                  | ND               | ND                 |       |
| 105 Acenaphthylene             | 152    | 10.133       | 10.133           | 0.000            | 97       | 62638            | 0.5000           | 6.84               |       |
| 106 3-Nitroaniline             | 138    |              | 10.213           |                  |          |                  | ND               | ND                 |       |
| 107 2,4-Dinitrophenol          | 184    |              | 10.331           |                  |          |                  | ND               | ND                 |       |
| 108 Acenaphthene               | 153    | 10.325       | 10.331           | -0.006           | 91       | 13121            | 0.5000           | 2.05               |       |
| 109 4-Nitrophenol              | 109    |              | 10.379           |                  |          |                  | ND               | ND                 |       |
| 111 2,4-Dinitrotoluene         | 165    | 10.510       | 10.470           |                  | 0.7      | 07404            | ND               | ND                 |       |
| 112 Dibenzofuran               | 168    | 10.512       | 10.512           | 0.000            | 97       | 37424            | 0.5000           | 4.01               |       |
| 116 2,3,4,6-Tetrachlorophenol  | 232    |              | 10.641           |                  |          |                  | ND               | ND                 |       |
| 118 Diethyl phthalate          | 149    | 40 707       | 10.721           |                  | 0.5      | 04.47            | ND               | ND                 |       |
| 119 Hexadecane                 | 57     | 10.737       | 10.737           | 0.000            | 25       | 2147             | 0.5000           | 0.6287             |       |
| 121 4-Chlorophenyl phenyl ethe | 204    |              | 10.860           |                  |          |                  | ND               | ND                 |       |
| 122 4-Nitroaniline             | 138    | 40.07/       | 10.870           | 0.000            | 0.4      | E7550            | ND               | ND                 |       |
| 123 Fluorene                   | 166    | 10.876       | 10.876           | 0.000            | 96       | 57553            | 0.5000           | 7.63               |       |
| 125 4,6-Dinitro-2-methylphenol | 198    |              | 10.908           |                  |          |                  | ND               | ND                 |       |
| 128 Diphenylamine              | 169    |              | 10.977           |                  |          |                  | ND               | ND                 |       |
| 127 N-Nitrosodiphenylamine     | 169    |              | 10.977           |                  |          |                  | ND               | ND                 |       |
| 130 Azobenzene                 | 77<br> |              | 11.025           |                  |          |                  | ND               | ND                 |       |
| 129 1,2-Diphenylhydrazine      | 77     | 11 257       | 11.025           | 0.001            | 1        | / 00             | ND<br>0.5000     | ND<br>0 4 4 1 4    |       |
| 137 4-Bromophenyl phenyl ether | 248    | 11.357       | 11.356           | 0.001            | 1        | 688<br>1154      | 0.5000           | 0.6416             |       |
| 139 Hexachlorobenzene          | 284    | 11.453       | 11.447           | 0.006            | 1        | 1156             | 0.5000           | 0.3254             |       |
| 141 Atrazine                   | 200    | 11.479       | 11.485           | -0.006           | 1        | 1937             | 1.00             | 0.8503             |       |
| 144 p Ostadosana               | 266    | 11 / 50      | 11.629           | 0.000            | 11       | 2221             | ND<br>0.5000     | ND<br>0.4207       |       |
| 144 n-Octadecane               | 57     | 11.650       | 11.650           | 0.000            | 41       | 2221             | 0.5000           | 0.6297             |       |
| 150 Phenanthrene               | 178    | 11.832       | 11.832           | 0.000            | 96<br>05 | 460602<br>174650 | 0.5000           | 42.7<br>15.7       |       |
| 151 Anthracene                 | 178    | 11.880       | 11.880           | 0.000            | 95<br>05 | 174650           | 0.5000           | 15.7               |       |
| 152 Carbazole                  | 167    | 12.014       | 12.014           | 0.000            | 95       | 12301            | 0.5000           | 1.21               |       |

Report Date: 17-Oct-2017 11:38:11 Chrom Revision: 2.2 16-Aug-2017 16:24:46

Data File: 

| Compound                       | Sig | RT<br>(min.) | Adj RT<br>(min.) | Dlt RT<br>(min.) | Q  | Response | Cal Amt<br>ng/uL | OnCol Amt<br>ng/uL | Flags |
|--------------------------------|-----|--------------|------------------|------------------|----|----------|------------------|--------------------|-------|
| 155 Di-n-butyl phthalate       | 149 |              | 12.291           |                  |    |          | ND               | ND                 |       |
| 162 Fluoranthene               | 202 | 12.922       | 12.231           | 0.000            | 95 | 811015   | 0.5000           | 60.2               |       |
| 164 Benzidine                  | 184 | 12.722       | 13.002           | 0.000            | 90 | 611013   | 0.5000<br>ND     | ND                 |       |
|                                |     | 12 120       |                  | 0.000            | 98 | 4001E0   |                  |                    |       |
| 165 Pyrene                     | 202 | 13.130       | 13.130           | 0.000            | 98 | 690150   | 0.5000           | 48.9               |       |
| 172 Butyl benzyl phthalate     | 149 |              | 13.616           |                  |    |          | ND               | ND                 |       |
| 178 Bis(2-ethylhexyl) phthalat | 149 |              | 14.097           |                  |    |          | ND               | ND                 |       |
| 179 3,3'-Dichlorobenzidine     | 252 |              | 14.124           |                  |    |          | ND               | ND                 |       |
| 181 Benzo[a]anthracene         | 228 | 14.183       | 14.182           | 0.001            | 96 | 454458   | 0.5000           | 30.9               |       |
| 182 Chrysene                   | 228 | 14.215       | 14.220           | -0.005           | 94 | 355348   | 0.5000           | 25.3               |       |
| 183 Di-n-octyl phthalate       | 149 |              | 14.669           |                  |    |          | ND               | ND                 |       |
| 185 Benzo[b]fluoranthene       | 252 | 15.246       | 15.240           | 0.006            | 93 | 456895   | 0.5000           | 35.4               | M     |
| 187 Benzo[k]fluoranthene       | 252 | 15.262       | 15.272           | -0.010           | 95 | 187224   | 0.5000           | 14.2               | M     |
| 190 Benzo[a]pyrene             | 252 | 15.625       | 15.625           | 0.000            | 73 | 350101   | 0.5000           | 29.1               |       |
| 193 Dibenz(a,h)anthracene      | 278 |              | 17.179           |                  |    |          | ND               | ND                 |       |
| 194 Indeno[1,2,3-cd]pyrene     | 276 | 17.174       | 17.179           | -0.005           | 95 | 232573   | 0.5000           | 16.4               |       |
| 195 Benzo[g,h,i]perylene       | 276 | 17.634       | 17.639           | -0.005           | 95 | 190022   | 0.5000           | 16.2               |       |
| S 256 3-Methylphenol           | 1   |              | 0.700            |                  |    |          | 0.5000           | ND                 |       |

# QC Flag Legend Processing Flags

ND - Not Detected or Marked ND

Review Flags

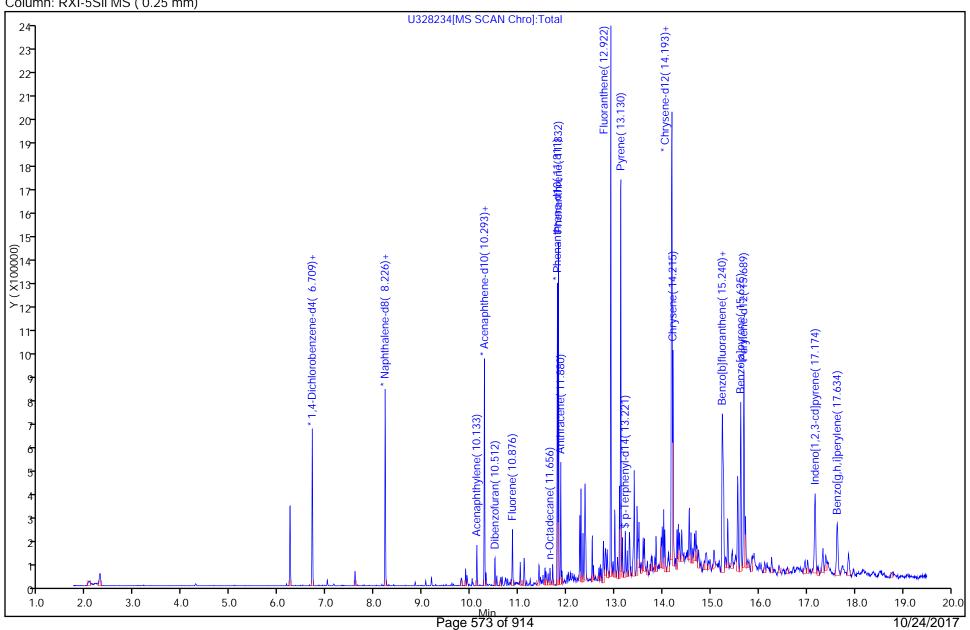
M - Manually Integrated

Reagents:

MB\_INTSTD\_STK\_00039 Amount Added: 20.00 Units: uL Run Reagent Report Date: 17-Oct-2017 11:38:11 Chrom Revision: 2.2 16-Aug-2017 16:24:46

TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328234.D Injection Date: 16-Oct-2017 21:32:30 Instrument ID: HP5973U


Lims ID: 480-125579-F-1-D MSD

Client ID: MW-8 (4-6)

Injection Vol: 1.0 ul Dil. Factor: 100.0000 ALS Bottle#: 10

Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)



DR

10

Operator ID:

Worklist Smp#:

Report Date: 17-Oct-2017 11:38:11 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328234.D

Injection Date: 16-Oct-2017 21:32:30 Instrument ID: HP5973U

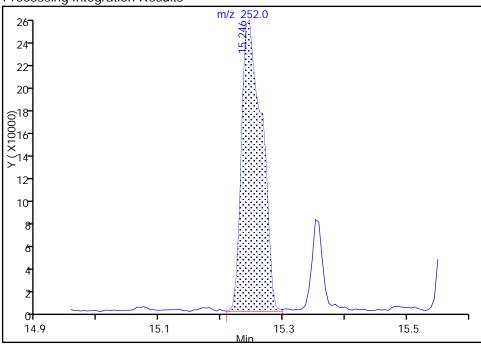
Lims ID: 480-125579-F-1-D MSD

Client ID: MW-8 (4-6)

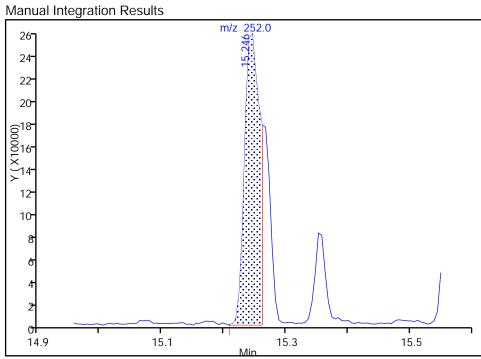
Operator ID: DR ALS Bottle#: 10 Worklist Smp#: 10

Injection Vol: 1.0 ul Dil. Factor: 100.0000

Method: U-8270 Limit Group: MB - 8270D ICAL


Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN

### 185 Benzo[b]fluoranthene, CAS: 205-99-2


Signal: 1

RT: 15.25 Area: 588585 Amount: 45.549801 Amount Units: ng/uL





RT: 15.25 Area: 456895 Amount: 35.358489 Amount Units: ng/uL



Reviewer: richardsd, 17-Oct-2017 11:20:33

Audit Action: Split an Integrated Peak

Audit Reason: Split Peak

Page 574 of 914

Report Date: 17-Oct-2017 11:38:11 Chrom Revision: 2.2 16-Aug-2017 16:24:46 Manual Integration/User Assign Peak Report

#### TestAmerica Buffalo

Data File: \\ChromNA\Buffalo\ChromData\HP5973U\20171016-66446.b\U328234.D

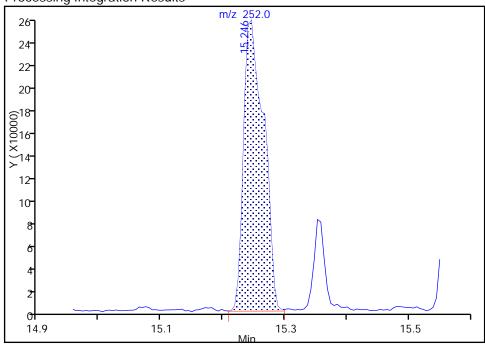
Injection Date: 16-Oct-2017 21:32:30 Instrument ID: HP5973U

Lims ID: 480-125579-F-1-D MSD

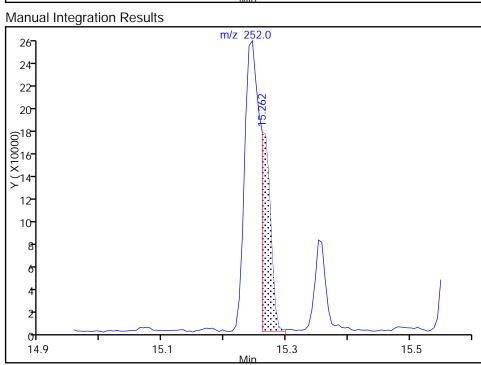
Client ID: MW-8 (4-6)

Operator ID: DR ALS Bottle#: 10 Worklist Smp#: 10

Injection Vol: 1.0 ul Dil. Factor: 100.0000


Method: U-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS ( 0.25 mm) Detector MS SCAN


### 187 Benzo[k]fluoranthene, CAS: 207-08-9

Signal: 1

RT: 15.25 Area: 585464 Amount: 44.398886 Amount Units: ng/uL **Processing Integration Results** 



RT: 15.26 Area: 187224 Amount: 14.198203 Amount Units: ng/uL



Reviewer: richardsd, 17-Oct-2017 11:20:37

Audit Action: Split an Integrated Peak

Audit Reason: Split Peak

Page 575 of 914

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1        |
|-------------------------------|------------------------------|
| SDG No.:                      |                              |
| Instrument ID: HP5973U        | Start Date: 10/16/2017 11:41 |
| Analysis Batch Number: 382005 | End Date: 10/16/2017 15:12   |

| LAB SAMPLE ID      | CLIENT SAMPLE ID | DATE ANALYZED    | DILUTION<br>FACTOR | LAB FILE ID | COLUMN ID                   |
|--------------------|------------------|------------------|--------------------|-------------|-----------------------------|
| DFTPP 480-382005/2 |                  | 10/16/2017 11:41 | 1                  | U328216.D   | RXI-5Sil MS(0.5<br>0.25(mm) |
| IC 480-382005/3    |                  | 10/16/2017 12:07 | 1                  | U328217.D   | RXI-5Sil MS(0.5<br>0.25(mm) |
| IC 480-382005/4    |                  | 10/16/2017 12:34 | 1                  | U328218.D   | RXI-5Sil MS(0.5<br>0.25(mm) |
| ICIS 480-382005/5  |                  | 10/16/2017 13:00 | 1                  | U328219.D   | RXI-5Sil MS(0.5<br>0.25(mm) |
| IC 480-382005/6    |                  | 10/16/2017 13:26 | 1                  | U328220.D   | RXI-5Sil MS(0.5<br>0.25(mm) |
| IC 480-382005/7    |                  | 10/16/2017 13:53 | 1                  | U328221.D   | RXI-5Sil MS(0.5<br>0.25(mm) |
| IC 480-382005/8    |                  | 10/16/2017 14:19 | 1                  | U328222.D   | RXI-5Sil MS(0.5<br>0.25(mm) |
| ICV 480-382005/9   |                  | 10/16/2017 14:45 | 1                  |             | RXI-5Sil MS(0.5<br>0.25(mm) |
| ICV 480-382005/10  |                  | 10/16/2017 15:12 | 1                  |             | RXI-5Sil MS(0.5<br>0.25(mm) |

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1        |
|-------------------------------|------------------------------|
| SDG No.:                      |                              |
| Instrument ID: HP5973U        | Start Date: 10/16/2017 18:01 |
| Analysis Batch Number: 382085 | End Date: 10/17/2017 01:56   |

| LAB SAMPLE ID      | CLIENT SAMPLE ID | DATE ANALYZED    | DILUTION<br>FACTOR | LAB FILE ID | COLUMN ID                   |
|--------------------|------------------|------------------|--------------------|-------------|-----------------------------|
| DFTPP 480-382085/2 |                  | 10/16/2017 18:01 | 1                  | U328226.D   | RXI-5Sil MS(0.5<br>0.25(mm) |
| CCVIS 480-382085/3 |                  | 10/16/2017 18:27 | 1                  | U328227.D   | RXI-5Sil MS(0.5<br>0.25(mm) |
| RL 480-382085/4    |                  | 10/16/2017 18:53 | 1                  |             | RXI-5Sil MS(0.5<br>0.25(mm) |
| CCV 480-382085/5   |                  | 10/16/2017 19:20 | 1                  |             | RXI-5Sil MS(0.5<br>0.25(mm) |
| MB 480-381332/1-A  |                  | 10/16/2017 20:13 | 1                  | U328231.D   | RXI-5Sil MS(0.5<br>0.25(mm) |
| LCS 480-381332/2-A |                  | 10/16/2017 20:39 | 1                  | U328232.D   | RXI-5Sil MS(0.5<br>0.25(mm) |
| 480-125579-1 MS    |                  | 10/16/2017 21:05 | 100                | U328233.D   | RXI-5Sil MS(0.5<br>0.25(mm) |
| 480-125579-1 MSD   |                  | 10/16/2017 21:32 | 100                | U328234.D   | RXI-5Sil MS(0.5<br>0.25(mm) |
| 480-125579-1       |                  | 10/16/2017 21:58 | 100                | U328235.D   | RXI-5Sil MS(0.5<br>0.25(mm) |
| ZZZZZ              |                  | 10/16/2017 22:25 | 50                 |             | RXI-5Sil MS(0.5<br>0.25(mm) |
| ZZZZZ              |                  | 10/16/2017 22:51 | 100                |             | RXI-5Sil MS(0.5<br>0.25(mm) |
| ZZZZZ              |                  | 10/16/2017 23:17 | 1                  |             | RXI-5Sil MS(0.5<br>0.25(mm) |
| ZZZZZ              |                  | 10/16/2017 23:44 | 1                  |             | RXI-5Sil MS(0.5<br>0.25(mm) |
| ZZZZZ              |                  | 10/17/2017 00:10 | 1                  |             | RXI-5Sil MS(0.5<br>0.25(mm) |
| ZZZZZ              |                  | 10/17/2017 00:37 | 1                  |             | RXI-5Sil MS(0.5<br>0.25(mm) |
| ZZZZZ              |                  | 10/17/2017 01:03 | 1                  |             | RXI-5Sil MS(0.5<br>0.25(mm) |
| ZZZZZ              |                  | 10/17/2017 01:30 | 1                  |             | RXI-5Sil MS(0.5<br>0.25(mm) |
| ZZZZZ              |                  | 10/17/2017 01:56 | 1                  |             | RXI-5Sil MS(0.5<br>0.25(mm) |

| Lab Name: TestAmerica Buffalo | JOD NO.: 48U-1255/9-1        |  |
|-------------------------------|------------------------------|--|
| SDG No.:                      |                              |  |
| Instrument ID: HP5973X        | Start Date: 09/29/2017 19:07 |  |
| Analysis Batch Number: 379526 | End Date: 09/29/2017 21:44   |  |

| LAB SAMPLE ID      | CLIENT SAMPLE ID | DATE ANALYZED    | DILUTION<br>FACTOR | LAB FILE ID | COLUMN ID            |
|--------------------|------------------|------------------|--------------------|-------------|----------------------|
|                    |                  |                  |                    |             |                      |
| DFTPP 480-379526/2 |                  | 09/29/2017 19:07 | 1                  | X20236.D    | RXI-5Sil MS 0.25(mm) |
| IC 480-379526/3    |                  | 09/29/2017 19:33 | 1                  | X20237.D    | RXI-5Sil MS 0.25(mm) |
| IC 480-379526/4    |                  | 09/29/2017 19:59 | 1                  | X20238.D    | RXI-5Sil MS 0.25(mm) |
| ICIS 480-379526/5  |                  | 09/29/2017 20:25 | 1                  | X20239.D    | RXI-5Sil MS 0.25(mm) |
| IC 480-379526/6    |                  | 09/29/2017 20:52 | 1                  | X20240.D    | RXI-5Sil MS 0.25(mm) |
| IC 480-379526/7    |                  | 09/29/2017 21:18 | 1                  | X20241.D    | RXI-5Sil MS 0.25(mm) |
| IC 480-379526/8    |                  | 09/29/2017 21:44 | 1                  | X20242.D    | RXI-5Sil MS 0.25(mm) |

| Lab Name: | TestAmerica Buffalo | Job No.: 480-125579-1        |
|-----------|---------------------|------------------------------|
| SDG No.:  |                     |                              |
| Instrumen | ID: HP5973X         | Start Date: 10/13/2017 00:06 |

Analysis Batch Number: 381534 End Date: 10/13/2017 11:05

| LAB SAMPLE ID      | CLIENT SAMPLE ID | DATE ANALYZED    | DILUTION<br>FACTOR | LAB FILE ID | COLUMN ID            |
|--------------------|------------------|------------------|--------------------|-------------|----------------------|
| DFTPP 480-381534/2 |                  | 10/13/2017 00:06 | 1                  | X20508.D    | RXI-5Sil MS 0.25(mm) |
| CCVIS 480-381534/3 |                  | 10/13/2017 00:32 | 1                  | X20509.D    | RXI-5Sil MS 0.25(mm) |
| RL 480-381534/4    |                  | 10/13/2017 00:59 | 1                  |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 01:26 | 1                  |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 01:52 | 1                  |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 02:18 | 20                 |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 02:45 | 20                 |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 03:11 | 20                 |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 03:38 | 5                  |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 04:05 | 5                  |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 04:31 | 20                 |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 04:57 | 1                  |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 05:24 | 1                  |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 05:50 | 20                 |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 06:17 | 1                  |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 06:43 | 10                 |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 07:09 | 1                  |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 07:36 | 10                 |             | RXI-5Sil MS 0.25(mm) |
| 480-125579-2       |                  | 10/13/2017 08:02 | 5                  | X20526.D    | RXI-5Sil MS 0.25(mm) |
| 480-125579-3       |                  | 10/13/2017 08:28 | 10                 | X20527.D    | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 08:54 | 20                 |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 09:21 | 20                 |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 09:47 | 10                 |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 10:13 | 1                  |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 10:39 | 1                  |             | RXI-5Sil MS 0.25(mm) |
| ZZZZZ              |                  | 10/13/2017 11:05 | 1                  |             | RXI-5Sil MS 0.25(mm) |

#### GC/MS SEMI VOA BATCH WORKSHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1 |
|-------------------------------|-----------------------|
|-------------------------------|-----------------------|

SDG No.:

Batch Number: 381332 Batch Start Date: 10/11/17 14:06 Batch Analyst: Kelly, Breannon E

Batch Method: 3550C Batch End Date:

| Lab Sample ID         | Client Sample ID | Method | Chain | Basis | CalcMsg             | InitialAmount | FinalAmount | O_8270/625LCS<br>00107 | 0_8270surr<br>00064 | AnalysisComment |
|-----------------------|------------------|--------|-------|-------|---------------------|---------------|-------------|------------------------|---------------------|-----------------|
| MB 480-381332/1       |                  | 3550C, | 8270D |       | CALC NOT SET TO RUN | 30.37 g       | 1 mL        |                        | 1 mL                |                 |
| LCS<br>480-381332/2   |                  | 3550C, | 8270D |       | CALC NOT SET TO RUN | 30.81 g       | 1 mL        | 1 mL                   | 1 mL                |                 |
| 480-125579-E-1<br>MS  | MW-8 (4-6)       | 3550C, | 8270D | Т     | CALC NOT SET TO RUN | 30.78 g       | 1 mL        | 1 mL                   | 1 mL                |                 |
| 480-125579-F-1<br>MSD | MW-8 (4-6)       | 3550C, | 8270D | Т     | CALC NOT SET TO RUN | 30.62 g       | 1 mL        | 1 mL                   | 1 mL                |                 |
| 480-125579-F-1        | MW-8 (4-6)       | 3550C, | 8270D | Т     | CALC NOT SET TO RUN | 30.12 g       | 1 mL        |                        | 1 mL                |                 |
| 480-125579-E-2        | MW-8 (13-14)     | 3550C, | 8270D | Т     | CALC NOT SET TO RUN | 30.65 g       | 1 mL        |                        | 1 mL                | clay            |
| 480-125579-E-3        | DUP-100817       | 3550C, | 8270D | Т     | CALC NOT SET TO RUN | 30.60 g       | 1 mL        |                        | 1 mL                |                 |

| Batch                             | Notes                      |
|-----------------------------------|----------------------------|
| Balance ID                        | Balance 5                  |
| Batch Comment                     | Filter paper lot # 9850063 |
| Blank Soil Lot Number             | 4246310                    |
| Analyst ID - Concentration        | BK, RT                     |
| Na2SO4 ID                         | 4246310                    |
| Nominal Amount Used               | 30 g                       |
| Prep Solvent ID                   | 4289045/4248310            |
| Prep Solvent Name                 | MeC12/Acetone              |
| Prep Solvent Volume Used          | 300 mL                     |
| Person's name who did the prep    | BK                         |
| Analyst ID - Reagent Drop Witness | BK                         |
| Analyst ID - Reagent Drop         | BK                         |
| Perform Calculation (0=No, 1=Yes) | 0                          |
| Vial Lot Number                   | 1634811094                 |

| Basis | Basis Description |
|-------|-------------------|
| Т     | Total/NA          |

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8270D Page 1 of 1

# **METALS**

### COVER PAGE METALS

| Lab Name: | : TestAmerica Buffalo | Job Number: 480-125579-1 |  |
|-----------|-----------------------|--------------------------|--|
| SDG No.:  |                       |                          |  |
| Project:  | RGE - Park St.        |                          |  |
|           | Client Sample ID      | Lab Sample ID            |  |
|           | MW-8 (4-6)            | 480-125579-1             |  |
|           | MW-8 (13-14)          | 480-125579-2             |  |
|           | DUP-100817            | 480-125579-3             |  |

Comments:

### 1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: MW-8 (4-6) Lab Sample ID: 480-125579-1

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG ID.:

Matrix: Solid Date Sampled: 10/08/2017 11:30

Reporting Basis: DRY Date Received: 10/10/2017 09:50

% Solids: 84.4

| CAS No.   | Analyte   | Result | RL    | MDL    | Units | С | Q     | DIL | Method |
|-----------|-----------|--------|-------|--------|-------|---|-------|-----|--------|
| 7429-90-5 | Aluminum  | 15400  | 11.7  | 5.2    | mg/Kg |   |       | 1   | 6010C  |
| 7440-36-0 | Antimony  | ND     | 17.6  | 0.47   | mg/Kg |   | F1    | 1   | 6010C  |
| 7440-38-2 | Arsenic   | 18.5   | 2.3   | 0.47   | mg/Kg |   |       | 1   | 6010C  |
| 7440-39-3 | Barium    | 184    | 0.59  | 0.13   | mg/Kg |   | F1    | 1   | 6010C  |
| 7440-41-7 | Beryllium | 0.96   | 0.23  | 0.033  | mg/Kg |   |       | 1   | 6010C  |
| 7440-43-9 | Cadmium   | 1.1    | 0.23  | 0.035  | mg/Kg |   |       | 1   | 6010C  |
| 7440-70-2 | Calcium   | 26100  | 58.6  | 3.9    | mg/Kg |   | F2 B  | 1   | 6010C  |
| 7440-47-3 | Chromium  | 31.3   | 0.59  | 0.23   | mg/Kg |   |       | 1   | 6010C  |
| 7440-48-4 | Cobalt    | 13.1   | 0.59  | 0.059  | mg/Kg |   |       | 1   | 6010C  |
| 7440-50-8 | Copper    | 60.5   | 1.2   | 0.25   | mg/Kg |   | F2 F1 | 1   | 6010C  |
| 7439-89-6 | Iron      | 25000  | 11.7  | 4.1    | mg/Kg |   | ^     | 1   | 6010C  |
| 7439-92-1 | Lead      | 679    | 1.2   | 0.28   | mg/Kg |   |       | 1   | 6010C  |
| 7439-95-4 | Magnesium | 5870   | 23.4  | 1.1    | mg/Kg |   | F1    | 1   | 6010C  |
| 7439-96-5 | Manganese | 308    | 0.23  | 0.037  | mg/Kg |   |       | 1   | 6010C  |
| 7440-02-0 | Nickel    | 39.1   | 5.9   | 0.27   | mg/Kg |   |       | 1   | 6010C  |
| 7440-09-7 | Potassium | 4310   | 35.1  | 23.4   | mg/Kg |   | F1    | 1   | 6010C  |
| 7782-49-2 | Selenium  | 4.0    | 4.7   | 0.47   | mg/Kg | J |       | 1   | 6010C  |
| 7440-22-4 | Silver    | 0.26   | 0.70  | 0.23   | mg/Kg | J |       | 1   | 6010C  |
| 7440-23-5 | Sodium    | 565    | 164   | 15.2   | mg/Kg |   |       | 1   | 6010C  |
| 7440-28-0 | Thallium  | ND     | 7.0   | 0.35   | mg/Kg |   |       | 1   | 6010C  |
| 7440-62-2 | Vanadium  | 29.1   | 0.59  | 0.13   | mg/Kg |   | F1    | 1   | 6010C  |
| 7440-66-6 | Zinc      | 482    | 2.3   | 0.75   | mg/Kg |   |       | 1   | 6010C  |
| 7439-97-6 | Mercury   | 0.35   | 0.024 | 0.0099 | mg/Kg |   |       | 1   | 7471B  |

### 1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: MW-8 (13-14) Lab Sample ID: 480-125579-2

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG ID.:

Matrix: Solid Date Sampled: 10/08/2017 12:00

Reporting Basis: DRY Date Received: 10/10/2017 09:50

% Solids: 81.6

| CAS No.   | Analyte   | Result | RL    | MDL    | Units | С | Q | DIL | Method |
|-----------|-----------|--------|-------|--------|-------|---|---|-----|--------|
| 7429-90-5 | Aluminum  | 15100  | 11.8  | 5.2    | mg/Kg |   |   | 1   | 6010C  |
| 7440-36-0 | Antimony  | ND     | 17.7  | 0.47   | mg/Kg |   |   | 1   | 6010C  |
| 7440-38-2 | Arsenic   | 2.3    | 2.4   | 0.47   | mg/Kg | J |   | 1   | 6010C  |
| 7440-39-3 | Barium    | 45.9   | 0.59  | 0.13   | mg/Kg |   |   | 1   | 6010C  |
| 7440-41-7 | Beryllium | 0.89   | 0.24  | 0.033  | mg/Kg |   |   | 1   | 6010C  |
| 7440-43-9 | Cadmium   | ND     | 0.24  | 0.035  | mg/Kg |   |   | 1   | 6010C  |
| 7440-70-2 | Calcium   | 16800  | 59.1  | 3.9    | mg/Kg |   | В | 1   | 6010C  |
| 7440-47-3 | Chromium  | 21.8   | 0.59  | 0.24   | mg/Kg |   |   | 1   | 6010C  |
| 7440-48-4 | Cobalt    | 8.9    | 0.59  | 0.059  | mg/Kg |   |   | 1   | 6010C  |
| 7440-50-8 | Copper    | 26.2   | 1.2   | 0.25   | mg/Kg |   |   | 1   | 6010C  |
| 7439-89-6 | Iron      | 17900  | 11.8  | 4.1    | mg/Kg |   | ^ | 1   | 6010C  |
| 7439-92-1 | Lead      | 8.8    | 1.2   | 0.28   | mg/Kg |   |   | 1   | 6010C  |
| 7439-95-4 | Magnesium | 5420   | 23.6  | 1.1    | mg/Kg |   |   | 1   | 6010C  |
| 7439-96-5 | Manganese | 173    | 0.24  | 0.038  | mg/Kg |   |   | 1   | 6010C  |
| 7440-02-0 | Nickel    | 33.3   | 5.9   | 0.27   | mg/Kg |   |   | 1   | 6010C  |
| 7440-09-7 | Potassium | 4350   | 35.5  | 23.6   | mg/Kg |   |   | 1   | 6010C  |
| 7782-49-2 | Selenium  | 0.47   | 4.7   | 0.47   | mg/Kg | J |   | 1   | 6010C  |
| 7440-22-4 | Silver    | ND     | 0.71  | 0.24   | mg/Kg |   |   | 1   | 6010C  |
| 7440-23-5 | Sodium    | 411    | 165   | 15.4   | mg/Kg |   |   | 1   | 6010C  |
| 7440-28-0 | Thallium  | ND     | 7.1   | 0.35   | mg/Kg |   |   | 1   | 6010C  |
| 7440-62-2 | Vanadium  | 22.5   | 0.59  | 0.13   | mg/Kg |   |   | 1   | 6010C  |
| 7440-66-6 | Zinc      | 35.9   | 2.4   | 0.76   | mg/Kg |   |   | 1   | 6010C  |
| 7439-97-6 | Mercury   | 0.013  | 0.024 | 0.0098 | mg/Kg | J | + | 1   | 7471B  |

### 1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: DUP-100817 Lab Sample ID: 480-125579-3

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG ID.:

Matrix: Solid Date Sampled: 10/08/2017 00:00

Reporting Basis: DRY Date Received: 10/10/2017 09:50

% Solids: 84.7

| CAS No.   | Analyte   | Result | RL    | MDL    | Units | С | Q | DIL | Method |
|-----------|-----------|--------|-------|--------|-------|---|---|-----|--------|
| 7429-90-5 | Aluminum  | 21300  | 11.9  | 5.2    | mg/Kg |   |   | 1   | 6010C  |
| 7440-36-0 | Antimony  | ND     | 17.9  | 0.48   | mg/Kg |   |   | 1   | 6010C  |
| 7440-38-2 | Arsenic   | 6.4    | 2.4   | 0.48   | mg/Kg |   |   | 1   | 6010C  |
| 7440-39-3 | Barium    | 65.2   | 0.60  | 0.13   | mg/Kg |   |   | 1   | 6010C  |
| 7440-41-7 | Beryllium | 1.2    | 0.24  | 0.033  | mg/Kg |   |   | 1   | 6010C  |
| 7440-43-9 | Cadmium   | ND     | 0.24  | 0.036  | mg/Kg |   |   | 1   | 6010C  |
| 7440-70-2 | Calcium   | 25300  | 59.7  | 3.9    | mg/Kg |   | В | 1   | 6010C  |
| 7440-47-3 | Chromium  | 31.8   | 0.60  | 0.24   | mg/Kg |   |   | 1   | 6010C  |
| 7440-48-4 | Cobalt    | 19.1   | 0.60  | 0.060  | mg/Kg |   |   | 1   | 6010C  |
| 7440-50-8 | Copper    | 45.3   | 1.2   | 0.25   | mg/Kg |   | ^ | 1   | 6010C  |
| 7439-89-6 | Iron      | 30800  | 11.9  | 4.2    | mg/Kg |   | ^ | 1   | 6010C  |
| 7439-92-1 | Lead      | 20.2   | 1.2   | 0.29   | mg/Kg |   |   | 1   | 6010C  |
| 7439-95-4 | Magnesium | 8480   | 23.9  | 1.1    | mg/Kg |   |   | 1   | 6010C  |
| 7439-96-5 | Manganese | 339    | 0.24  | 0.038  | mg/Kg |   | ^ | 1   | 6010C  |
| 7440-02-0 | Nickel    | 55.7   | 6.0   | 0.27   | mg/Kg |   |   | 1   | 6010C  |
| 7440-09-7 | Potassium | 5760   | 35.8  | 23.9   | mg/Kg |   |   | 1   | 6010C  |
| 7782-49-2 | Selenium  | ND     | 4.8   | 0.48   | mg/Kg |   |   | 1   | 6010C  |
| 7440-22-4 | Silver    | ND     | 0.72  | 0.24   | mg/Kg |   |   | 1   | 6010C  |
| 7440-23-5 | Sodium    | 471    | 167   | 15.5   | mg/Kg |   |   | 1   | 6010C  |
| 7440-28-0 | Thallium  | ND     | 7.2   | 0.36   | mg/Kg |   |   | 1   | 6010C  |
| 7440-62-2 | Vanadium  | 30.8   | 0.60  | 0.13   | mg/Kg |   |   | 1   | 6010C  |
| 7440-66-6 | Zinc      | 52.8   | 2.4   | 0.76   | mg/Kg |   | ^ | 1   | 6010C  |
| 7439-97-6 | Mercury   | 0.039  | 0.022 | 0.0089 | mg/Kg |   |   | 1   | 7471B  |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

ICV Source: MEI\_04\_ICV\_00348 Concentration Units: mg/L

CCV Source: MEI\_09\_CCV\_00262

|           |       |   | -382167/6<br>017 10:22 |     | CCV 4 |   | -382167/10<br>017 10:58 |     | CCV 480-382167/20<br>10/16/2017 11:46 |   |       |     |  |
|-----------|-------|---|------------------------|-----|-------|---|-------------------------|-----|---------------------------------------|---|-------|-----|--|
| Analyte   | Found | С | True                   | %R  | Found | С | True                    | %R  | Found                                 | С | True  | %R  |  |
| Aluminum  | 18.21 |   | 18.8                   | 97  | 25.01 |   | 25.0                    | 100 | 25.39                                 |   | 25.0  | 102 |  |
| Antimony  | 0.370 |   | 0.375                  | 99  | 0.513 |   | 0.500                   | 103 | 0.515                                 |   | 0.500 | 103 |  |
| Arsenic   | 0.374 |   | 0.375                  | 100 | 0.519 |   | 0.500                   | 104 | 0.522                                 |   | 0.500 | 104 |  |
| Barium    | 0.368 |   | 0.375                  | 98  | 0.498 |   | 0.500                   | 100 | 0.499                                 |   | 0.500 | 100 |  |
| Beryllium | 0.386 |   | 0.375                  | 103 | 0.529 |   | 0.500                   | 106 | 0.532                                 |   | 0.500 | 106 |  |
| Cadmium   | 0.373 |   | 0.375                  | 99  | 0.512 |   | 0.500                   | 102 | 0.512                                 |   | 0.500 | 102 |  |
| Calcium   | 19.20 |   | 18.8                   | 102 | 26.15 |   | 25.0                    | 105 | 26.53                                 |   | 25.0  | 106 |  |
| Chromium  | 0.385 |   | 0.375                  | 103 | 0.525 |   | 0.500                   | 105 | 0.520                                 |   | 0.500 | 104 |  |
| Cobalt    | 0.369 |   | 0.375                  | 98  | 0.512 |   | 0.500                   | 102 | 0.510                                 |   | 0.500 | 102 |  |
| Copper    | 0.370 |   | 0.375                  | 99  | 0.508 |   | 0.500                   | 102 | 0.505                                 |   | 0.500 | 101 |  |
| Iron      | 18.82 |   | 18.8                   | 100 | 25.67 |   | 25.0                    | 103 | 25.80                                 |   | 25.0  | 103 |  |
| Lead      | 0.375 |   | 0.375                  | 100 | 0.516 |   | 0.500                   | 103 | 0.516                                 |   | 0.500 | 103 |  |
| Magnesium | 18.88 |   | 18.8                   | 101 | 25.81 |   | 25.0                    | 103 | 25.63                                 |   | 25.0  | 103 |  |
| Manganese | 0.387 |   | 0.375                  | 103 | 0.532 |   | 0.500                   | 106 | 0.526                                 |   | 0.500 | 105 |  |
| Nickel    | 0.375 |   | 0.375                  | 100 | 0.518 |   | 0.500                   | 104 | 0.516                                 |   | 0.500 | 103 |  |
| Potassium | 18.49 |   | 18.8                   | 99  | 25.40 |   | 25.0                    | 102 | 25.11                                 |   | 25.0  | 100 |  |
| Selenium  | 0.378 |   | 0.375                  | 101 | 0.526 |   | 0.500                   | 105 | 0.530                                 |   | 0.500 | 106 |  |
| Silver    | 0.378 |   | 0.375                  | 101 | 0.519 |   | 0.500                   | 104 | 0.523                                 |   | 0.500 | 105 |  |
| Sodium    | 18.57 |   | 18.8                   | 99  | 25.49 |   | 25.0                    | 102 | 25.46                                 |   | 25.0  | 102 |  |
| Thallium  | 0.381 |   | 0.375                  | 102 | 0.524 |   | 0.500                   | 105 | 0.526                                 |   | 0.500 | 105 |  |
| Vanadium  | 0.384 |   | 0.375                  | 102 | 0.527 |   | 0.500                   | 105 | 0.534                                 |   | 0.500 | 107 |  |
| Zinc      | 0.389 |   | 0.375                  | 104 | 0.528 |   | 0.500                   | 106 | 0.544                                 |   | 0.500 | 109 |  |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

ICV Source: MEI\_04\_ICV\_00348 Concentration Units: mg/L

CCV Source: MEI\_09\_CCV\_00262

|           | CCV 10/1 |   | -382167/32<br>017 12:28 |     |       |   | -382167/44<br>017 13:12 |     |       |   |      |    |
|-----------|----------|---|-------------------------|-----|-------|---|-------------------------|-----|-------|---|------|----|
| Analyte   | Found    | С | True                    | %R  | Found | С | True                    | %R  | Found | C | True | %R |
| Aluminum  | 25.23    |   | 25.0                    | 101 | 25.31 |   | 25.0                    | 101 |       |   |      |    |
| Antimony  | 0.514    |   | 0.500                   | 103 | 0.512 |   | 0.500                   | 102 |       |   |      |    |
| Arsenic   | 0.522    |   | 0.500                   | 104 | 0.520 |   | 0.500                   | 104 |       |   |      |    |
| Barium    | 0.501    |   | 0.500                   | 100 | 0.499 |   | 0.500                   | 100 |       |   |      |    |
| Beryllium | 0.530    |   | 0.500                   | 106 | 0.532 |   | 0.500                   | 106 |       |   |      |    |
| Cadmium   | 0.512    |   | 0.500                   | 102 | 0.514 |   | 0.500                   | 103 |       |   |      |    |
| Calcium   | 26.39    |   | 25.0                    | 106 | 26.47 |   | 25.0                    | 106 |       |   |      |    |
| Chromium  | 0.520    |   | 0.500                   | 104 | 0.527 |   | 0.500                   | 105 |       |   |      |    |
| Cobalt    | 0.514    |   | 0.500                   | 103 | 0.515 |   | 0.500                   | 103 |       |   |      |    |
| Copper    | 0.504    |   | 0.500                   | 101 | 0.515 |   | 0.500                   | 103 |       |   |      |    |
| Iron      | 25.99    |   | 25.0                    | 104 | 25.96 |   | 25.0                    | 104 |       |   |      |    |
| Lead      | 0.518    |   | 0.500                   | 104 | 0.518 |   | 0.500                   | 104 |       |   |      |    |
| Magnesium | 25.75    |   | 25.0                    | 103 | 25.97 |   | 25.0                    | 104 |       |   |      |    |
| Manganese | 0.525    |   | 0.500                   | 105 | 0.536 |   | 0.500                   | 107 |       |   |      |    |
| Nickel    | 0.520    |   | 0.500                   | 104 | 0.521 |   | 0.500                   | 104 |       |   |      |    |
| Potassium | 25.41    |   | 25.0                    | 102 | 25.46 |   | 25.0                    | 102 |       |   |      |    |
| Selenium  | 0.529    |   | 0.500                   | 106 | 0.527 |   | 0.500                   | 105 |       |   |      |    |
| Silver    | 0.524    |   | 0.500                   | 105 | 0.525 |   | 0.500                   | 105 |       |   |      |    |
| Sodium    | 25.58    |   | 25.0                    | 102 | 25.58 |   | 25.0                    | 102 |       |   |      |    |
| Thallium  | 0.531    |   | 0.500                   | 106 | 0.528 |   | 0.500                   | 106 |       |   |      |    |
| Vanadium  | 0.531    |   | 0.500                   | 106 | 0.533 |   | 0.500                   | 107 |       |   |      |    |
| Zinc      | 0.525    |   | 0.500                   | 105 | 0.536 |   | 0.500                   | 107 |       |   |      |    |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

ICV Source: MEI\_10\_CCVL\_00158 Concentration Units: mg/L

CCV Source: MEI\_10\_CCVL\_00158

|           | ICVL<br>10/1 |      | 0-382167/8<br>017 10:29 |     | CCVL<br>10/1 |         | -382167/1<br>017 11:10                  |         | CCVL 480-382167/22<br>10/16/2017 11:53 |      |                                         |     |  |
|-----------|--------------|------|-------------------------|-----|--------------|---------|-----------------------------------------|---------|----------------------------------------|------|-----------------------------------------|-----|--|
|           | 10/1         | 0/20 | )1/ 10.2:               | 7   | 10/1         | ) / Z ( | , , , , , , , , , , , , , , , , , , , , | <i></i> | 10/1                                   | 0/20 | , , , , , , , , , , , , , , , , , , , , |     |  |
| Analyte   | Found        | С    | True                    | %R  | Found        | С       | True                                    | %R      | Found                                  | С    | True                                    | %R  |  |
| Aluminum  | 0.179        | J    | 0.200                   | 89  | 0.178        | J       | 0.200                                   | 89      | 0.198                                  | J    | 0.200                                   | 99  |  |
| Antimony  | 0.0194       | J    | 0.0200                  | 97  | 0.0204       |         | 0.0200                                  | 102     | 0.0208                                 |      | 0.0200                                  | 104 |  |
| Arsenic   | 0.0162       |      | 0.0150                  | 108 | 0.0163       |         | 0.0150                                  | 109     | 0.0124                                 | J    | 0.0150                                  | 83  |  |
| Barium    | 0.00206      |      | 0.00200                 | 103 | 0.00206      |         | 0.00200                                 | 103     | 0.00205                                |      | 0.00200                                 | 103 |  |
| Beryllium | 0.00211      |      | 0.00200                 | 106 | 0.00217      |         | 0.00200                                 | 109     | 0.00219                                |      | 0.00200                                 | 110 |  |
| Cadmium   | 0.00214      |      | 0.00200                 | 107 | 0.00215      |         | 0.00200                                 | 108     | 0.00211                                |      | 0.00200                                 | 106 |  |
| Calcium   | 0.517        |      | 0.500                   | 103 | 0.521        |         | 0.500                                   | 104     | 0.527                                  |      | 0.500                                   | 105 |  |
| Chromium  | 0.00363      | J    | 0.00400                 | 91  | 0.00389      | J       | 0.00400                                 | 97      | 0.00386                                | J    | 0.00400                                 | 97  |  |
| Cobalt    | 0.00391      | J    | 0.00400                 | 98  | 0.00379      | J       | 0.00400                                 | 95      | 0.00385                                | J    | 0.00400                                 | 96  |  |
| Copper    | 0.0105       |      | 0.0100                  | 105 | 0.0103       |         | 0.0100                                  | 103     | 0.00954                                | J    | 0.0100                                  | 95  |  |
| Iron      | 0.0527       |      | 0.0500                  | 105 | 0.0526       |         | 0.0500                                  | 105     | 0.0525                                 |      | 0.0500                                  | 105 |  |
| Lead      | 0.0111       |      | 0.0100                  | 111 | 0.0102       |         | 0.0100                                  | 102     | 0.0116                                 |      | 0.0100                                  | 116 |  |
| Magnesium | 0.205        |      | 0.200                   | 103 | 0.214        |         | 0.200                                   | 107     | 0.211                                  |      | 0.200                                   | 105 |  |
| Manganese | 0.00311      |      | 0.00300                 | 104 | 0.00306      |         | 0.00300                                 | 102     | 0.00312                                |      | 0.00300                                 | 104 |  |
| Nickel    | 0.00977      | J    | 0.0100                  | 98  | 0.00971      | J       | 0.0100                                  | 97      | 0.00988                                | J    | 0.0100                                  | 99  |  |
| Potassium | 0.532        |      | 0.500                   | 106 | 0.460        | J       | 0.500                                   | 92      | 0.509                                  |      | 0.500                                   | 102 |  |
| Selenium  | 0.0275       |      | 0.0250                  | 110 | 0.0253       |         | 0.0250                                  | 101     | 0.0255                                 |      | 0.0250                                  | 102 |  |
| Silver    | 0.00638      |      | 0.00600                 | 106 | 0.00668      |         | 0.00600                                 | 111     | 0.00607                                |      | 0.00600                                 | 101 |  |
| Sodium    | 0.998        | J    | 1.00                    | 100 | 1.01         |         | 1.00                                    | 101     | 0.999                                  | J    | 1.00                                    | 100 |  |
| Thallium  | 0.0198       | J    | 0.0200                  | 99  | 0.0207       |         | 0.0200                                  | 104     | 0.0213                                 |      | 0.0200                                  | 106 |  |
| Vanadium  | 0.00547      |      | 0.00500                 | 109 | 0.00533      |         | 0.00500                                 | 107     | 0.00551                                |      | 0.00500                                 | 110 |  |
| Zinc      | 0.0104       |      | 0.0100                  | 104 | 0.0133       |         | 0.0100                                  | 133     | 0.0108                                 |      | 0.0100                                  | 108 |  |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

ICV Source: MEI\_10\_CCVL\_00158 Concentration Units: mg/L

CCV Source: MEI\_10\_CCVL\_00158

|           |         |   | -382167/3<br>017 12:36 |     | CCVL<br>10/1 |   | -382167/4<br>017 13:19 |     |       |   |      |    |
|-----------|---------|---|------------------------|-----|--------------|---|------------------------|-----|-------|---|------|----|
| Analyte   | Found   | С | True                   | %R  | Found        | С | True                   | %R  | Found | С | True | %R |
| Aluminum  | 0.196   | J | 0.200                  | 98  | 0.216        |   | 0.200                  | 108 |       | İ |      |    |
| Antimony  | 0.0198  | J | 0.0200                 | 99  | 0.0209       |   | 0.0200                 | 105 |       |   |      |    |
| Arsenic   | 0.0166  |   | 0.0150                 | 111 | 0.0150       |   | 0.0150                 | 100 |       |   |      |    |
| Barium    | 0.00228 |   | 0.00200                | 114 | 0.00259      |   | 0.00200                | 130 |       |   |      |    |
| Beryllium | 0.00219 |   | 0.00200                | 110 | 0.00215      |   | 0.00200                | 108 |       |   |      |    |
| Cadmium   | 0.00220 |   | 0.00200                | 110 | 0.00220      |   | 0.00200                | 110 |       |   |      |    |
| Calcium   | 0.552   |   | 0.500                  | 110 | 0.613        |   | 0.500                  | 123 |       |   |      |    |
| Chromium  | 0.00397 | J | 0.00400                | 99  | 0.00437      |   | 0.00400                | 109 |       |   |      |    |
| Cobalt    | 0.00383 | J | 0.00400                | 96  | 0.00421      |   | 0.00400                | 105 |       |   |      |    |
| Copper    | 0.0105  |   | 0.0100                 | 105 | 0.0184       |   | 0.0100                 | 184 |       |   |      |    |
| Iron      | 0.0842  |   | 0.0500                 | 168 | 0.165        |   | 0.0500                 | 330 |       |   |      |    |
| Lead      | 0.0121  |   | 0.0100                 | 121 | 0.0104       |   | 0.0100                 | 104 |       |   |      |    |
| Magnesium | 0.223   |   | 0.200                  | 111 | 0.222        |   | 0.200                  | 111 |       |   |      |    |
| Manganese | 0.00343 |   | 0.00300                | 114 | 0.0121       |   | 0.00300                | 403 |       |   |      |    |
| Nickel    | 0.00986 | J | 0.0100                 | 99  | 0.0106       |   | 0.0100                 | 106 |       |   |      |    |
| Potassium | 0.547   |   | 0.500                  | 109 | 0.529        |   | 0.500                  | 106 |       |   |      |    |
| Selenium  | 0.0293  |   | 0.0250                 | 117 | 0.0256       |   | 0.0250                 | 102 |       |   |      |    |
| Silver    | 0.00648 |   | 0.00600                | 108 | 0.00623      |   | 0.00600                | 104 |       |   |      |    |
| Sodium    | 1.01    |   | 1.00                   | 101 | 1.02         |   | 1.00                   | 102 |       |   |      |    |
| Thallium  | 0.0217  |   | 0.0200                 | 109 | 0.0217       |   | 0.0200                 | 108 |       |   |      |    |
| Vanadium  | 0.00596 |   | 0.00500                | 119 | 0.00542      |   | 0.00500                | 108 |       |   |      |    |
| Zinc      | 0.0113  |   | 0.0100                 | 113 | 0.0148       |   | 0.0100                 | 148 |       |   |      |    |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

ICV Source: MEH\_HG1\_WKG\_01592 Concentration Units: mg/L

CCV Source: MEH\_HG1\_WKG\_01592

|         | _       |   | -381152/1<br>017 14:54 |    | ICVL 480-381152/3<br>10/10/2017 14:58 |   |         |    | CCV 480-381152/4<br>10/10/2017 14:59 |   |         |    |  |
|---------|---------|---|------------------------|----|---------------------------------------|---|---------|----|--------------------------------------|---|---------|----|--|
| Analyte | Found   | С | True                   | %R | Found                                 | С | True    | %R | Found                                | С | True    | %R |  |
| Mercury | 0.00287 |   | 0.00300                | 96 | 0.00015                               | J | 0.00020 | 78 | 0.00186                              |   | 0.00200 | 93 |  |

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

ICV Source: MEH\_HG1\_WKG\_01592 Concentration Units: mg/L

CCV Source: MEH\_HG1\_WKG\_01592

|         |         |   | -381152/16<br>017 15:18 |    | CCV 480-381152/19<br>10/10/2017 15:24 |   |         |    | CCVL 480-381152/21<br>10/10/2017 15:27 |   |         |    |  |
|---------|---------|---|-------------------------|----|---------------------------------------|---|---------|----|----------------------------------------|---|---------|----|--|
| Analyte | Found   | С | True                    | %R | Found                                 | С | True    | %R | Found                                  | С | True    | %R |  |
| Mercury | 0.00192 |   | 0.00200                 | 96 | 0.00192                               |   | 0.00200 | 96 | 0.00018                                | J | 0.00020 | 93 |  |

# 3-IN INSTRUMENT BLANKS METALS

| Lab Name: | TestAmerica Buffalo | Job No.: | 480-125579-1 |
|-----------|---------------------|----------|--------------|
| SDG No.:  |                     |          |              |

Concentration Units: mg/L

|                 | ICB 480-3 | 82167/7 | CCB 480-38216 | 7/17 | CCB 480-38216 | 7/21 | CCB 480-38216 | 7/33 |
|-----------------|-----------|---------|---------------|------|---------------|------|---------------|------|
|                 | 10/16/201 | 7 10:25 | 10/16/2017 1  | 1:01 | 10/16/2017 1  | 1:50 | 10/16/2017 1  | 2:32 |
|                 |           |         |               |      |               |      |               |      |
| Analyte RL      | Found     | C       | Found         | C    | Found         | С    | Found         | С    |
| Aluminum 0.     | 20        | ND      | ND            |      | ND            |      | ND            |      |
| Antimony 0.0    |           | ND      | ND            |      | ND            |      | ND            |      |
| Arsenic 0.0     | .5        | ND      | ND            |      | ND            |      | ND            |      |
| Barium 0.00     | 20        | ND      | ND            |      | ND            |      | ND            |      |
| Beryllium 0.00  | 20        | ND      | ND            |      | ND            |      | ND            |      |
| Cadmium 0.00    | 20        | ND      | ND            |      | ND            |      | ND            |      |
| Calcium 0.      | 50        | ND      | ND            |      | ND            |      | ND            |      |
| Chromium 0.00   | 10        | ND      | ND            |      | ND            |      | ND            |      |
| Cobalt 0.00     | 10        | ND      | ND            |      | ND            |      | ND            |      |
| Copper 0.0      | .0        | ND      | ND            |      | ND            |      | ND            |      |
| <b>Iron</b> 0.0 | 50        | ND      | ND            |      | ND            |      | 0.0359        | J    |
| <b>Lead</b> 0.0 | -         | ND      | ND            |      | ND            |      | ND            |      |
| Magnesium 0.    | 20        | ND      | ND            |      | ND            |      | ND            |      |
| Manganese 0.00  | 30        | ND      | 0.00231       | J    | ND            |      | ND            |      |
| Nickel 0.0      | .0        | ND      | ND            |      | ND            |      | ND            |      |
| Potassium 0.    |           | ND      | ND            |      | ND            |      | ND            |      |
| Selenium 0.0    | 25        | ND      | ND            |      | ND            |      | ND            |      |
| Silver 0.00     | · ·       | ND      | ND            |      | ND            |      | ND            |      |
|                 | . 0       | ND      | ND            |      | ND            |      | ND            | ·    |
| Thallium 0.0    | 20        | ND      | ND            |      | ND            |      | ND            |      |
| Vanadium 0.00   | 50        | ND      | ND            |      | ND            |      | ND            | ·    |
| Zinc 0.0        | .0        | ND      | ND            |      | ND            |      | ND            |      |

# 3-IN INSTRUMENT BLANKS METALS

| Lab Name: | TestAmerica Buffalo | Job No.: | 480-125579-1 |
|-----------|---------------------|----------|--------------|
| SDG No.:  |                     |          |              |

Concentration Units: mg/L

|           |        | CCB 480-382167/45<br>10/16/2017 13:16 |   |       |   |       |   |       |   |
|-----------|--------|---------------------------------------|---|-------|---|-------|---|-------|---|
| Analyte   | RL     | Found                                 | С | Found | С | Found | С | Found | С |
| Aluminum  | 0.20   | ND                                    |   |       |   |       |   |       |   |
| Antimony  | 0.020  | ND                                    |   |       |   |       |   |       |   |
| Arsenic   | 0.015  | ND                                    |   |       |   |       |   |       |   |
| Barium    | 0.0020 | ND                                    |   |       |   |       |   |       |   |
| Beryllium | 0.0020 | ND                                    |   |       |   |       |   |       |   |
| Cadmium   | 0.0020 | ND                                    |   |       |   |       |   |       |   |
| Calcium   | 0.50   | ND                                    |   |       |   |       |   |       |   |
| Chromium  | 0.0040 | ND                                    |   |       |   |       |   |       |   |
| Cobalt    | 0.0040 | ND                                    |   |       |   |       |   |       |   |
| Copper    | 0.010  | 0.00476                               | J |       |   |       |   |       |   |
| Iron      | 0.050  | 0.0684                                |   |       |   |       |   |       |   |
| Lead      | 0.010  | ND                                    |   |       |   |       |   |       |   |
| Magnesium | 0.20   | ND                                    |   |       |   |       |   |       |   |
| Manganese | 0.0030 | 0.00566                               |   |       |   |       |   |       |   |
| Nickel    | 0.010  | ND                                    |   |       |   |       |   |       |   |
| Potassium | 0.50   | ND                                    |   |       |   |       |   |       |   |
| Selenium  | 0.025  | ND                                    |   |       |   |       |   |       |   |
| Silver    | 0.0060 | ND                                    |   |       |   |       |   |       |   |
| Sodium    | 1.0    | ND                                    |   |       |   |       |   |       |   |
| Thallium  | 0.020  | ND                                    | · |       |   |       |   |       |   |
| Vanadium  | 0.0050 | ND                                    | · |       |   |       |   |       |   |
| Zinc      | 0.010  | 0.00270                               | J |       |   |       |   |       |   |

# 3-IN INSTRUMENT BLANKS METALS

| Lab  | Name: | TestAmerica | Buffalo | Job No.: | 480-125579-1 |
|------|-------|-------------|---------|----------|--------------|
| SDG  | No.:  |             |         |          |              |
| Conc |       | -ion Unitos | mar / T |          |              |

Concentration Units: mg/L

|         |            | ICB 480-381152/2<br>10/10/2017 14:56 |    | CCB 480-381152/5<br>10/10/2017 15:00 |    | CCB 480-38115 |    | CCB 480-381152/20<br>10/10/2017 15:25 |   |
|---------|------------|--------------------------------------|----|--------------------------------------|----|---------------|----|---------------------------------------|---|
| Analyte | RL         | Found                                | С  | Found                                | С  | Found         | С  | Found                                 | С |
| Mercury | 0.00020 ND |                                      | ND |                                      | ND |               | ND |                                       |   |

#### 3-IN METHOD BLANK METALS

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Concentration Units: mg/Kg Lab Sample ID: MB 480-381758/1-A

Instrument Code: ICAP2 Batch No.: 382167

| CAS No.   | Analyte   | Concentration | С | Q | Method |
|-----------|-----------|---------------|---|---|--------|
| 7429-90-5 | Aluminum  | ND            |   |   | 6010C  |
| 7440-36-0 | Antimony  | ND            |   |   | 6010C  |
| 7440-38-2 | Arsenic   | ND            |   |   | 6010C  |
| 7440-39-3 | Barium    | ND            |   |   | 6010C  |
| 7440-41-7 | Beryllium | ND            |   |   | 6010C  |
| 7440-43-9 | Cadmium   | ND            |   |   | 6010C  |
| 7440-70-2 | Calcium   | 6.53          | J |   | 6010C  |
| 7440-47-3 | Chromium  | ND            |   |   | 6010C  |
| 7440-48-4 | Cobalt    | ND            |   |   | 6010C  |
| 7440-50-8 | Copper    | ND            |   |   | 6010C  |
| 7439-89-6 | Iron      | ND            |   |   | 6010C  |
| 7439-92-1 | Lead      | ND            |   |   | 6010C  |
| 7439-95-4 | Magnesium | ND            |   |   | 6010C  |
| 7439-96-5 | Manganese | ND            |   |   | 6010C  |
| 7440-02-0 | Nickel    | ND            |   |   | 6010C  |
| 7440-09-7 | Potassium | ND            |   |   | 6010C  |
| 7782-49-2 | Selenium  | ND            |   |   | 6010C  |
| 7440-22-4 | Silver    | ND            |   |   | 6010C  |
| 7440-23-5 | Sodium    | ND            |   |   | 6010C  |
| 7440-28-0 | Thallium  | ND            |   |   | 6010C  |
| 7440-62-2 | Vanadium  | ND            |   |   | 6010C  |
| 7440-66-6 | Zinc      | ND            |   | ^ | 6010C  |
|           |           |               |   |   |        |

#### 3-IN METHOD BLANK METALS

| Lab Name: Tes                                               | tAmerica Buffalo | Job No.       | Job No.: 480-125579-1 |   |        |  |  |  |
|-------------------------------------------------------------|------------------|---------------|-----------------------|---|--------|--|--|--|
| SDG No.:                                                    |                  |               |                       |   |        |  |  |  |
| Concentration Units: mg/Kg Lab Sample ID: MB 480-381100/1-A |                  |               |                       |   |        |  |  |  |
| Instrument Code: LEEMAN2                                    |                  | Batch N       | Batch No.: 381152     |   |        |  |  |  |
|                                                             |                  |               |                       |   |        |  |  |  |
| CAS No.                                                     | Analyte          | Concentration | С                     | Q | Method |  |  |  |
| 7439-97-6                                                   | Mercury          | ND            |                       |   | 7471B  |  |  |  |

Mercury

# 4A-IN INTERFERENCE CHECK STANDARD METALS

| Lab | Name: TestAmerica Buffalo       | Job No.: 480-125579-1         |
|-----|---------------------------------|-------------------------------|
| SDG | No.:                            |                               |
| Lab | Sample ID: ICSA 480-382167/9    | Instrument ID: ICAP2          |
| Lab | File ID: <u>i2101617a-2.asc</u> | ICS Source: MEI_07_ICSA_00103 |

Concentration Units: mg/L

|            | True       | Found      |          |
|------------|------------|------------|----------|
|            |            |            | Percent  |
| Analyte    | Solution A | Solution A | Recovery |
| Aluminum   | 500        | 490        | 98       |
| Antimony   |            | -0.0108    |          |
| Arsenic    |            | 0.0015     |          |
| Barium     |            | 0.0007     |          |
| Beryllium  |            | -0.0001    |          |
| Cadmium    |            | -0.0003    |          |
| Calcium    | 500        | 488        | 98       |
| Chromium   |            | 0.0001     |          |
| Cobalt     |            | -0.0009    |          |
| Copper     |            | -0.0052    |          |
| Iron       | 200        | 190        | 95       |
| Lead       |            | 0.0001     |          |
| Magnesium  | 500        | 525        | 105      |
| Manganese  |            | -0.0006    |          |
| Nickel     |            | -0.0017    |          |
| Potassium  |            | 0.0103     |          |
| Selenium   |            | 0.0039     |          |
| Silver     |            | 0.0000     |          |
| Sodium     |            | 0.0067     |          |
| Thallium   |            | 0.0017     |          |
| Vanadium   |            | 0.0017     |          |
| Zinc       |            | 0.0043     |          |
| Boron      |            | -0.0021    |          |
| Lithium    |            | -0.0187    |          |
| Molybdenum |            | -0.0018    |          |
| Tin        |            | 0.0020     |          |
| Titanium   |            | -0.0036    |          |

Calculations are performed before rounding to avoid round-off errors in calculated results.

### 4A-IN INTERFERENCE CHECK STANDARD METALS

| Lab | Name: | TestAmerica Buffalo | Job No.: | 480-125579-1 |
|-----|-------|---------------------|----------|--------------|
| 252 | 3.7   |                     |          |              |

SDG No.:

Lab Sample ID: ICSAB 480-382167/10 Instrument ID: ICAP2

Lab File ID: i2101617a-2.asc ICS Source: MEI\_08\_ICSAB\_00117

Concentration Units: mg/L

|            | True        | Found       |          |
|------------|-------------|-------------|----------|
|            |             | 1           | Percent  |
| Analyte    | Solution AB | Solution AB | Recovery |
| Aluminum   | 500         | 524         | 105      |
| Antimony   | 0.600       | 0.608       | 101      |
| Arsenic    | 0.100       | 0.109       | 109      |
| Barium     | 0.500       | 0.491       | 98       |
| Beryllium  | 0.501       | 0.522       | 104      |
| Cadmium    | 1.00        | 1.03        | 103      |
| Calcium    | 500         | 493         | 98       |
| Chromium   | 0.500       | 0.491       | 98       |
| Cobalt     | 0.500       | 0.500       | 100      |
| Copper     | 0.501       | 0.524       | 105      |
| Iron       | 100         | 99.0        | 99       |
| Lead       | 0.0501      | 0.0498      | 99       |
| Magnesium  | 500         | 544         | 109      |
| Manganese  | 0.501       | 0.505       | 101      |
| Nickel     | 1.00        | 0.984       | 98       |
| Potassium  |             | -0.0079     |          |
| Selenium   | 0.0501      | 0.0571      | 114      |
| Silver     | 0.200       | 0.227       | 114      |
| Sodium     |             | 0.131       |          |
| Thallium   | 0.100       | 0.104       | 104      |
| Vanadium   | 0.501       | 0.523       | 104      |
| Zinc       | 1.00        | 0.963       | 96       |
| Boron      |             | 0.0010      |          |
| Lithium    | 0.501       | 0.503       | 100      |
| Molybdenum |             | -0.0008     |          |
| Strontium  | 0.500       | 0.497       | 99       |
| Tin        |             | 0.0023      |          |
| Titanium   |             | -0.0020     |          |

Calculations are performed before rounding to avoid round-off errors in calculated results.

#### 5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

Client ID: MW-8 (4-6) MS Lab ID: 480-125579-1 MS

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Matrix: Solid Concentration Units: mg/Kg

% Solids: 84.4

| Analyte   | SSR C | Sample Spike Result (SR) Added (SA) |   | %R    | Control<br>Limit<br>%R | Q      | Method |       |
|-----------|-------|-------------------------------------|---|-------|------------------------|--------|--------|-------|
| Aluminum  | 25540 | 15400                               |   | 2280  | 445                    | 75-125 | 4      | 6010C |
| Antimony  | 21.37 | ND                                  |   | 45.5  | 47                     | 75-125 | F1     | 6010C |
| Arsenic   | 58.09 | 18.5                                |   | 45.5  | 87                     | 75-125 |        | 6010C |
| Barium    | 276.7 | 184                                 |   | 45.5  | 204                    | 75-125 | 4      | 6010C |
| Beryllium | 41.70 | 0.96                                |   | 45.5  | 89                     | 75-125 |        | 6010C |
| Cadmium   | 43.03 | 1.1                                 |   | 45.5  | 92                     | 75-125 |        | 6010C |
| Calcium   | 35650 | 26100                               |   | 2280  | 419                    | 75-125 | 4      | 6010C |
| Chromium  | 76.35 | 31.3                                |   | 45.5  | 99                     | 75-125 |        | 6010C |
| Cobalt    | 57.92 | 13.1                                |   | 45.5  | 98                     | 75-125 |        | 6010C |
| Copper    | 125.5 | 60.5                                |   | 45.5  | 143                    | 75-125 | F1     | 6010C |
| Iron      | 22220 | 25000                               |   | 2280  | -123                   | 75-125 | ^ 4    | 6010C |
| Lead      | 463.7 | 679                                 |   | 45.5  | -473                   | 75-125 | 4      | 6010C |
| Magnesium | 10190 | 5870                                |   | 2280  | 190                    | 75-125 | F1     | 6010C |
| Manganese | 365.9 | 308                                 |   | 45.5  | 127                    | 75-125 | 4      | 6010C |
| Nickel    | 79.55 | 39.1                                |   | 45.5  | 89                     | 75-125 |        | 6010C |
| Potassium | 9390  | 4310                                |   | 2280  | 223                    | 75-125 | F1     | 6010C |
| Selenium  | 45.48 | 4.0                                 | J | 45.5  | 91                     | 75-125 |        | 6010C |
| Silver    | 11.15 | 0.26                                | J | 11.4  | 96                     | 75-125 |        | 6010C |
| Sodium    | 2699  | 565                                 |   | 2280  | 94                     | 75-125 |        | 6010C |
| Thallium  | 44.79 | ND                                  |   | 45.5  | 98                     | 75-125 |        | 6010C |
| Vanadium  | 86.26 | 29.1                                |   | 45.5  | 125                    | 75-125 |        | 6010C |
| Zinc      | 400.8 | 482                                 |   | 45.5  | -178                   | 75-125 | 4      | 6010C |
| Mercury   | 0.773 | 0.35                                |   | 0.398 | 107                    | 80-120 |        | 7471B |

SSR = Spiked Sample Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

### 5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

Client ID: MW-8 (4-6) MSD Lab ID: 480-125579-1 MSD

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Matrix: Solid Concentration Units: mg/Kg

% Solids: 84.4

| Analyte   | (SDR) | Spike<br>Added (SA) | %R   | Control<br>Limit<br>%R | RPD | RPD<br>Limit | Q    | Method |
|-----------|-------|---------------------|------|------------------------|-----|--------------|------|--------|
| Aluminum  | 27000 | 2300                | 503  | 75-125                 | 6   | 20           | 4    | 6010C  |
| Antimony  | 22.79 | 46.1                | 49   | 75-125                 | 6   | 20           | F1   | 6010C  |
| Arsenic   | 55.84 | 46.1                | 81   | 75-125                 | 4   | 20           |      | 6010C  |
| Barium    | 242.5 | 46.1                | 128  | 75-125                 | 13  | 20           | F1   | 6010C  |
| Beryllium | 42.09 | 46.1                | 89   | 75-125                 | 1   | 20           |      | 6010C  |
| Cadmium   | 42.91 | 46.1                | 91   | 75-125                 | 0   | 20           |      | 6010C  |
| Calcium   | 26210 | 2300                | 4    | 75-125                 | 31  | 20           | 4 F2 | 6010C  |
| Chromium  | 80.08 | 46.1                | 106  | 75-125                 | 5   | 20           |      | 6010C  |
| Cobalt    | 57.95 | 46.1                | 97   | 75-125                 | 0   | 20           |      | 6010C  |
| Copper    | 91.59 | 46.1                | 67   | 75-125                 | 31  | 20           | F2   | 6010C  |
|           |       |                     |      |                        |     |              | F1   |        |
| Iron      | 26580 | 2300                | 68   | 75-125                 | 18  | 20           | ^ 4  | 6010C  |
| Lead      | 530.8 | 46.1                | -322 | 75-125                 | 13  | 20           | 4    | 6010C  |
| Magnesium | 9143  | 2300                | 142  | 75-125                 | 11  | 20           | F1   | 6010C  |
| Manganese | 331.0 | 46.1                | 50   | 75-125                 | 10  | 20           | 4    | 6010C  |
| Nickel    | 80.48 | 46.1                | 90   | 75-125                 | 1   | 20           |      | 6010C  |
| Potassium | 9786  | 2300                | 238  | 75-125                 | 4   | 20           | F1   | 6010C  |
| Selenium  | 44.12 | 46.1                | 87   | 75-125                 | 3   | 20           |      | 6010C  |
| Silver    | 11.11 | 11.5                | 94   | 75-125                 | 0   | 20           |      | 6010C  |
| Sodium    | 2685  | 2310                | 92   | 75-125                 | 1   | 20           |      | 6010C  |
| Thallium  | 45.53 | 46.1                | 99   | 75-125                 | 2   | 20           |      | 6010C  |
| Vanadium  | 88.19 | 46.1                | 128  | 75-125                 | 2   | 20           | F1   | 6010C  |
| Zinc      | 331.6 | 46.1                | -326 | 75-125                 | 19  | 20           | 4    | 6010C  |
| Mercury   | 0.756 | 0.405               | 101  | 80-120                 | 2   | 20           |      | 7471B  |

SDR = Sample Duplicate Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

# POST DIGESTION SPIKE SAMPLE RECOVERY METALS

| Client ID: MW-8 (4-6) PDS     | Lab ID: 480-125579-1 PDS |
|-------------------------------|--------------------------|
| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1    |
| SDG No.:                      |                          |

Matrix: Solid Concentration Units: mg/Kg

| Analyte   | SSR C | Sample<br>Result (SR | R)<br>C | Spike<br>Added (SA) | %R  | Control<br>Limit<br>%R | Q | Method |
|-----------|-------|----------------------|---------|---------------------|-----|------------------------|---|--------|
| Aluminum  | 16420 | 15400                |         | 2340                | 43  | 80-120                 | M | 6010C  |
| Antimony  | 42.82 | ND                   |         | 46.8                | 91  | 80-120                 |   | 6010C  |
| Arsenic   | 62.96 | 18.5                 |         | 46.8                | 95  | 80-120                 |   | 6010C  |
| Barium    | 205.6 | 184                  |         | 46.8                | 47  | 80-120                 | W | 6010C  |
| Beryllium | 45.17 | 0.96                 |         | 46.8                | 94  | 80-120                 |   | 6010C  |
| Cadmium   | 45.56 | 1.1                  |         | 46.8                | 95  | 80-120                 |   | 6010C  |
| Calcium   | 27320 | 26100                |         | 2340                | NC  | 80-120                 |   | 6010C  |
| Chromium  | 72.91 | 31.3                 |         | 46.8                | 89  | 80-120                 |   | 6010C  |
| Cobalt    | 60.46 | 13.1                 |         | 46.8                | 101 | 80-120                 |   | 6010C  |
| Copper    | 103.0 | 60.5                 |         | 46.8                | 91  | 80-120                 |   | 6010C  |
| Iron      | 26310 | 25000                |         | 2340                | NC  | 80-120                 | ^ | 6010C  |
| Lead      | 705.7 | 679                  |         | 46.8                | NC  | 80-120                 |   | 6010C  |
| Magnesium | 7867  | 5870                 |         | 2340                | 85  | 80-120                 |   | 6010C  |
| Manganese | 340.2 | 308                  |         | 46.8                | 69  | 80-120                 | M | 6010C  |
| Nickel    | 86.31 | 39.1                 |         | 46.8                | 101 | 80-120                 |   | 6010C  |
| Potassium | 5596  | 4310                 |         | 2340                | 55  | 80-120                 | M | 6010C  |
| Selenium  | 48.87 | 4.0                  | J       | 46.8                | 96  | 80-120                 |   | 6010C  |
| Silver    | 11.48 | 0.26                 | J       | 11.7                | 96  | 80-120                 |   | 6010C  |
| Sodium    | 1959  | 565                  |         | 2350                | 59  | 80-120                 | M | 6010C  |
| Thallium  | 48.05 | ND                   |         | 46.8                | 103 | 80-120                 |   | 6010C  |
| Vanadium  | 73.88 | 29.1                 |         | 46.8                | 96  | 80-120                 |   | 6010C  |
| Zinc      | 503.3 | 482                  |         | 46.8                | NC  | 80-120                 |   | 6010C  |

SSR = Spiked Sample Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

#### 7A-IN LCS-CERTIFIED REFERENCE MATERIAL METALS

Lab ID: LCSSRM 480-381758/2-A

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

Sample Matrix: Solid LCS Source: MED\_SRM\_D087\_00012

|           |       | Solid(mg/Kg) |   |       |      |       |   |        |  |  |
|-----------|-------|--------------|---|-------|------|-------|---|--------|--|--|
| Analyte   | True  | Found        | С | %R    | Limi | its   | Q | Method |  |  |
| Aluminum  | 8090  | 9097         |   | 112.4 | 39.6 | 160.7 |   | 6010C  |  |  |
| Antimony  | 99.3  | 61.79        |   | 62.2  | 21.6 | 256.8 |   | 6010C  |  |  |
| Arsenic   | 100   | 87.66        |   | 87.7  | 69.6 | 131.0 |   | 6010C  |  |  |
| Barium    | 217   | 185.3        |   | 85.4  | 73.7 | 128.1 |   | 6010C  |  |  |
| Beryllium | 147   | 128.7        |   | 87.5  | 75.5 | 125.9 |   | 6010C  |  |  |
| Cadmium   | 83.7  | 69.57        |   | 83.1  | 73.2 | 131.4 |   | 6010C  |  |  |
| Calcium   | 6010  | 5274         |   | 87.8  | 73.7 | 126.3 |   | 6010C  |  |  |
| Chromium  | 107   | 92.96        |   | 86.9  | 69.4 | 134.6 |   | 6010C  |  |  |
| Cobalt    | 123   | 124.6        |   | 101.3 | 74.3 | 130.1 |   | 6010C  |  |  |
| Copper    | 166   | 137.8        |   | 83.0  | 75.3 | 128.3 |   | 6010C  |  |  |
| Iron      | 14600 | 15210        |   | 104.2 | 36.1 | 163.7 | ^ | 6010C  |  |  |
| Lead      | 88.4  | 91.16        |   | 103.1 | 69.9 | 130.1 |   | 6010C  |  |  |
| Magnesium | 2930  | 2668         |   | 91.0  | 65.9 | 134.5 |   | 6010C  |  |  |
| Manganese | 311   | 275.4        |   | 88.5  | 74.9 | 125.4 |   | 6010C  |  |  |
| Nickel    | 49.8  | 51.05        |   | 102.5 | 69.1 | 135.1 |   | 6010C  |  |  |
| Potassium | 2620  | 2594         |   | 99.0  | 61.1 | 138.9 |   | 6010C  |  |  |
| Selenium  | 87.7  | 78.35        |   | 89.3  | 64.1 | 135.7 |   | 6010C  |  |  |
| Silver    | 41.4  | 34.32        |   | 82.9  | 65.9 | 133.8 |   | 6010C  |  |  |
| Sodium    | 252   | 238.4        |   | 94.6  | 32.9 | 167.5 |   | 6010C  |  |  |
| Thallium  | 58.1  | 60.51        |   | 104.2 | 63.9 | 136.3 |   | 6010C  |  |  |
| Vanadium  | 140   | 130.3        |   | 93.1  | 69.9 | 129.3 |   | 6010C  |  |  |
| Zinc      | 145   | 127.1        |   | 87.7  | 67.7 | 132.4 |   | 6010C  |  |  |

Calculations are performed before rounding to avoid round-off errors in calculated results.

FORM VIIA - IN

#### 7D-IN LCSD - CERTIFIED REFERENCE MATERIAL METALS

Lab ID: LCDSRM 480-381758/3-A

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

Sample Matrix: Solid LCS Source: MED\_SRM\_D087\_00012

| Analyte   | (SDR) C | Spike<br>Added | %R    | Control<br>Limit<br>%R | RPD | RPD<br>Limit | Q | Method |
|-----------|---------|----------------|-------|------------------------|-----|--------------|---|--------|
| Aluminum  | 9312    | 8090           | 115.1 | 6-160.7                | 2   | 20           |   | 6010C  |
| Antimony  | 62.56   | 99.3           | 63.0  | 6-256.8                | 1   | 20           |   | 6010C  |
| Arsenic   | 89.24   | 100            | 89.2  | 6-131.0                | 2   | 20           |   | 6010C  |
| Barium    | 185.7   | 217            | 85.6  | 7-128.1                | 0   | 20           |   | 6010C  |
| Beryllium | 130.8   | 147            | 89.0  | 5-125.9                | 2   | 20           |   | 6010C  |
| Cadmium   | 71.20   | 83.7           | 85.1  | 2-131.4                | 2   | 20           |   | 6010C  |
| Calcium   | 5438    | 6010           | 90.5  | 7-126.3                | 3   | 20           |   | 6010C  |
| Chromium  | 94.17   | 107            | 88.0  | 4-134.6                | 1   | 20           |   | 6010C  |
| Cobalt    | 127.0   | 123            | 103.2 | 3-130.1                | 2   | 20           |   | 6010C  |
| Copper    | 141.7   | 166            | 85.4  | 3-128.3                | 3   | 20           |   | 6010C  |
| Iron      | 15770   | 14600          | 108.0 | 1-163.7                | 4   | 20           | ^ | 6010C  |
| Lead      | 92.44   | 88.4           | 104.6 | 9-130.1                | 1   | 20           |   | 6010C  |
| Magnesium | 2744    | 2930           | 93.6  | 9-134.5                | 3   | 20           |   | 6010C  |
| Manganese | 272.9   | 311            | 87.7  | 9-125.4                | 1   | 20           |   | 6010C  |
| Nickel    | 52.11   | 49.8           | 104.6 | 1-135.1                | 2   | 20           |   | 6010C  |
| Potassium | 2635    | 2620           | 100.6 | 1-138.9                | 2   | 20           |   | 6010C  |
| Selenium  | 80.75   | 87.7           | 92.1  | 1-135.7                | 3   | 20           |   | 6010C  |
| Silver    | 35.46   | 41.4           | 85.7  | 9-133.8                | 3   | 20           |   | 6010C  |
| Sodium    | 242.2   | 252            | 96.1  | 9-167.5                | 2   | 20           |   | 6010C  |
| Thallium  | 62.62   | 58.1           | 107.8 | 9-136.3                | 3   | 20           |   | 6010C  |
| Vanadium  | 132.4   | 140            | 94.6  | 9-129.3                | 2   | 20           |   | 6010C  |
| Zinc      | 129.6   | 145            | 89.4  | 7-132.4                | 2   | 20           |   | 6010C  |

SDR = Spike Duplicate Results

Calculations are performed before rounding to avoid round-off errors in calculated results.

#### 7A-IN LCS-CERTIFIED REFERENCE MATERIAL METALS

Lab ID: LCSSRM 480-381100/2-A ^10

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

Sample Matrix: Solid LCS Source: MED\_SRM\_D087\_00006

|         | Solid(mg/Kg) |       |   |      |      |       |   |        |
|---------|--------------|-------|---|------|------|-------|---|--------|
| Analyte | True         | Found | С | %R   | Lim  | its   | Q | Method |
| Mercury | 12.6         | 11.17 |   | 88.7 | 44.4 | 128.6 |   | 7471B  |

Calculations are performed before rounding to avoid round-off errors in calculated results.

FORM VIIA - IN

# $$8\mbox{-IN}$$ ICP-AES AND ICP-MS SERIAL DILUTIONS METALS

Lab ID: 480-125579-1

SDG No:

Lab Name: TestAmerica Buffalo Job No: 480-125579-1

Matrix: Solid Concentration Units: mg/Kg

| Analyte   | Initial Samp<br>Result (I) |   | Serial<br>Dilution<br>Result (S) | С | %<br>Difference | Q   | Method |
|-----------|----------------------------|---|----------------------------------|---|-----------------|-----|--------|
| Aluminum  | 15400                      |   | 16940                            |   | 9.9             |     | 6010C  |
| Antimony  | ND                         |   | ND                               |   | NC              |     | 6010C  |
| Arsenic   | 18.5                       |   | 19.16                            |   | 3.5             |     | 6010C  |
| Barium    | 184                        |   | 202.4                            |   | 10              |     | 6010C  |
| Beryllium | 0.96                       |   | 1.12                             | J | 17              | V   | 6010C  |
| Cadmium   | 1.1                        |   | 1.29                             |   | 17              | V   | 6010C  |
| Calcium   | 26100                      |   | 28780                            |   | 10              |     | 6010C  |
| Chromium  | 31.3                       |   | 35.82                            |   | 14              | V   | 6010C  |
| Cobalt    | 13.1                       |   | 12.86                            |   | 2.0             |     | 6010C  |
| Copper    | 60.5                       |   | 64.89                            |   | 7.2             |     | 6010C  |
| Iron      | 25000                      |   | 28030                            |   | 12              | ^ V | 6010C  |
| Lead      | 679                        |   | 674.1                            |   | 0.73            |     | 6010C  |
| Magnesium | 5870                       |   | 6537                             |   | 11              | V   | 6010C  |
| Manganese | 308                        |   | 343.3                            |   | 11              | V   | 6010C  |
| Nickel    | 39.1                       |   | 38.60                            |   | 1.4             |     | 6010C  |
| Potassium | 4310                       |   | 4742                             |   | 10              |     | 6010C  |
| Selenium  | 4.0                        | J | 5.28                             | J | NC              |     | 6010C  |
| Silver    | 0.26                       | J | ND                               |   | NC              |     | 6010C  |
| Sodium    | 565                        |   | 619.1                            | J | 9.6             |     | 6010C  |
| Thallium  | ND                         |   | ND                               |   | NC              |     | 6010C  |
| Vanadium  | 29.1                       |   | 32.13                            |   | 10              |     | 6010C  |
| Zinc      | 482                        |   | 547.6                            |   | 14              | V   | 6010C  |

Calculations are performed before rounding to avoid round-off errors in calculated results.

# $$8\mbox{-IN}$$ ICP-AES AND ICP-MS SERIAL DILUTIONS METALS

Lab ID: 480-125579-1

SDG No:

Lab Name: TestAmerica Buffalo Job No: 480-125579-1

Matrix: Solid Concentration Units: mg/Kg

| Analyte | Initial Sample<br>Result (I) C | Serial<br>Dilution<br>Result (S) C | %<br>Difference | Q | Method |
|---------|--------------------------------|------------------------------------|-----------------|---|--------|
| Mercury | 0.35                           | 0.334                              | 3.9             |   | 7471B  |

Calculations are performed before rounding to avoid round-off errors in calculated results.

# 9-IN DETECTION LIMITS METALS

Lab Name: TestAmerica Buffalo Job Number: 480-125579-1

SDG Number:

Matrix: Solid Instrument ID: ICAP2

Method: 6010C MDL Date: 06/04/2015 15:22

Prep Method: 3050B

| Analyte   | Wavelength/<br>Mass | RL<br>(mg/Kg) | MDL<br>(mg/Kg) |
|-----------|---------------------|---------------|----------------|
| Aluminum  | 308.215             | 10            | 4.4            |
| Antimony  | 206.833             | 15            | 0.4            |
| Arsenic   | 189.042             | 2             | 0.4            |
| Barium    | 455.403             | 0.5           | 0.11           |
| Beryllium | 313.042             | 0.2           | 0.028          |
| Cadmium   | 228.802             | 0.2           | 0.03           |
| Calcium   | 317.933             | 50            | 3.3            |
| Chromium  | 267.716             | 0.5           | 0.2            |
| Cobalt    | 228.616             | 0.5           | 0.05           |
| Copper    | 327.396             | 1             | 0.21           |
| Iron      | 259.940             | 10            | 3.5            |
| Lead      | 220.353             | 1             | 0.24           |
| Magnesium | 279.079             | 20            | 0.927          |
| Manganese | 257.610             | 0.2           | 0.032          |
| Nickel    | 231.604             | 5             | 0.23           |
| Potassium | 766.490             | 30            | 20             |
| Selenium  | 196.090             | 4             | 0.4            |
| Silver    | 328.068             | 0.6           | 0.2            |
| Sodium    | 589.592             | 140           | 13             |
| Thallium  | 190.856             | 6             | 0.3            |
| Vanadium  | 292.402             | 0.5           | 0.11           |
| Zinc      | 206.200             | 2             | 0.64           |

# 9-IN CALIBRATION BLANK DETECTION LIMITS METALS

| Analyte   | Wavelength/<br>Mass | XRL<br>(mg/L) | XMDL<br>(mg/L) |
|-----------|---------------------|---------------|----------------|
| Aluminum  | 308.215             | 0.2           | 0.06           |
| Antimony  | 206.833             | 0.02          | 0.00679        |
| Arsenic   | 189.042             | 0.015         | 0.00555        |
| Barium    | 455.403             | 0.002         | 0.0007         |
| Beryllium | 313.042             | 0.002         | 0.0003         |
| Cadmium   | 228.802             | 0.002         | 0.0005         |
| Calcium   | 317.933             | 0.5           | 0.1            |
| Chromium  | 267.716             | 0.004         | 0.001          |
| Cobalt    | 228.616             | 0.004         | 0.00063        |
| Copper    | 327.396             | 0.01          | 0.0016         |
| Iron      | 259.940             | 0.05          | 0.0193         |
| Lead      | 220.353             | 0.01          | 0.003          |
| Magnesium | 279.079             | 0.2           | 0.0434         |
| Manganese | 257.610             | 0.003         | 0.0004         |
| Nickel    | 231.604             | 0.01          | 0.00126        |
| Potassium | 766.490             | 0.5           | 0.1            |
| Selenium  | 196.090             | 0.025         | 0.0087         |
| Silver    | 328.068             | 0.006         | 0.0017         |
| Sodium    | 589.592             | 1             | 0.324          |
| Thallium  | 190.856             | 0.02          | 0.01024        |
| Vanadium  | 292.402             | 0.005         | 0.0015         |
| Zinc      | 206.200             | 0.01          | 0.0015         |

# 9-IN DETECTION LIMITS METALS

Lab Name: TestAmerica Buffalo Job Number: 480-125579-1

SDG Number:

Matrix: Solid Instrument ID: LEEMAN2

Method: 7471B MDL Date: 01/29/2010 00:00

Prep Method: 7471B

| Analyte | Wavelength/ | RL      | MDL     |  |
|---------|-------------|---------|---------|--|
|         | Mass        | (mg/Kg) | (mg/Kg) |  |
| Mercury | 253.7       | 0.02    | 0.0081  |  |

# 9-IN CALIBRATION BLANK DETECTION LIMITS METALS

Lab Name: TestAmerica Buffalo

SDG Number:

Matrix: Solid

Method: 7471B

Job Number: 480-125579-1

Instrument ID: LEEMAN2

XMDL Date: 01/29/2010 00:00

| Analyte | Wavelength/ | XRL    | XMDL    |
|---------|-------------|--------|---------|
|         | Mass        | (mg/L) | (mg/L)  |
| Mercury | 253.7       | 0.0002 | 0.00012 |

## 10-IN ICP-AES INTERELEMENT CORRECTION FACTORS METALS

| Lab Name: | TestAmerica | Buffalo | Job | Number: | 480-125579-1 |
|-----------|-------------|---------|-----|---------|--------------|
|           |             |         |     |         |              |

SDG No.:

ICP-AES Instrument ID: ICAP2 Date: 02/16/2017

|            | Wave    |           |          |    |           |    |          |           |          |           |    |           |           |    |    |
|------------|---------|-----------|----------|----|-----------|----|----------|-----------|----------|-----------|----|-----------|-----------|----|----|
| Analyte    | Length  | Al        | As       | Ве | Ca        | Cd | Со       | Cr        | Cu       | Fe        | Mg | Mn        | Мо        | Ni | Se |
| Aluminum   | 308.215 |           |          |    |           |    |          |           |          |           |    |           | 0.021502  |    |    |
| Antimony   | 206.833 |           |          |    |           |    |          | 0.015259  |          | -0.000068 |    |           |           |    |    |
| Arsenic    | 189.042 | -0.000017 |          |    |           |    |          | -0.016071 |          |           |    |           | -0.005260 |    |    |
| Barium     | 455.403 |           |          |    |           |    |          |           |          |           |    |           |           |    |    |
| Beryllium  | 313.042 |           |          |    |           |    |          |           |          |           |    |           |           |    |    |
| Boron      | 208.959 |           |          |    |           |    |          |           |          |           |    |           | 0.043278  |    |    |
| Cadmium    | 228.802 |           | 0.010934 |    |           |    |          |           |          | -0.000006 |    |           |           |    |    |
| Calcium    | 317.933 |           |          |    |           |    |          |           |          |           |    |           |           |    |    |
| Chromium   | 267.716 |           |          |    |           |    |          |           |          | -0.000010 |    | 0.000052  |           |    |    |
| Cobalt     | 228.616 |           |          |    |           |    |          |           |          | -0.000003 |    |           | -0.001257 |    |    |
| Copper     | 327.396 |           |          |    | 0.000030  |    |          |           |          | -0.000034 |    |           |           |    |    |
| Iron       | 259.940 |           |          |    |           |    |          |           |          |           |    |           |           |    |    |
| Lead       | 220.353 | -0.000020 |          |    |           |    |          |           | 0.000134 | 0.000031  |    |           | -0.002133 |    |    |
| Lithium    | 670.784 |           |          |    | 0.000078  |    |          |           |          |           |    |           |           |    |    |
| Magnesium  | 279.079 |           |          |    |           |    |          |           |          |           |    | -0.003617 |           |    |    |
| Manganese  | 257.610 | 0.000007  |          |    |           |    |          |           |          | 0.000008  |    |           |           |    |    |
| Molybdenum | 202.030 |           |          |    |           |    |          |           |          |           |    |           |           |    |    |
| Nickel     | 231.604 |           |          |    |           |    |          |           |          | 0.000018  |    |           |           |    |    |
| Potassium  | 766.490 |           |          |    |           |    |          |           |          |           |    |           |           |    |    |
| Selenium   | 196.090 | -0.000180 |          |    |           |    |          |           |          |           |    | 0.000419  |           |    |    |
| Silicon    | 288.158 |           |          |    |           |    |          | -0.000713 |          |           |    |           |           |    |    |
| Silver     | 328.068 |           |          |    |           |    |          |           |          |           |    | 0.000149  |           |    |    |
| Sodium     | 589.592 |           |          |    |           |    |          |           |          |           |    |           |           |    |    |
| Strontium  | 407.771 |           |          |    |           |    |          |           |          |           |    |           |           |    |    |
| Sulfur     | 182.034 | -0.000327 |          |    | -0.000197 |    |          |           |          |           |    |           |           |    |    |
| Thallium   | 190.856 |           |          |    |           |    | 0.001873 |           |          |           |    | 0.000754  |           |    |    |
| Tin        | 189.989 |           |          |    |           |    |          |           |          |           |    |           |           |    |    |
| Titanium   | 334.904 |           |          |    | 0.000010  |    |          | 0.000294  |          |           |    |           | 0.000785  |    |    |
| Vanadium   | 292.402 |           |          |    |           |    |          |           |          | 0.000020  |    | 0.000057  | -0.009464 |    |    |
| Zinc       | 206.200 |           |          |    |           |    |          | -0.000300 |          |           |    |           |           |    |    |

## 10-IN ICP-AES INTERELEMENT CORRECTION FACTORS METALS

| Lab | Name: | TestAmerica Buffalo | Job | Number: | 480-125579-1 |  |
|-----|-------|---------------------|-----|---------|--------------|--|
| SDG | No •  |                     |     |         |              |  |

ICP-AES Instrument ID: ICAP2 Date: 02/16/2017

|            | Wave    |    |    |            |    |           |  |  |  |  |  |
|------------|---------|----|----|------------|----|-----------|--|--|--|--|--|
| Analyte    | Length  | Si | Sn | Ti         | Tl | V         |  |  |  |  |  |
|            |         |    |    |            |    |           |  |  |  |  |  |
| Aluminum   | 308.215 |    |    |            |    |           |  |  |  |  |  |
| Antimony   | 206.833 |    |    |            |    |           |  |  |  |  |  |
| Arsenic    | 189.042 |    |    |            |    |           |  |  |  |  |  |
| Barium     | 455.403 |    |    |            |    |           |  |  |  |  |  |
| Beryllium  | 313.042 |    |    | -0.0006536 |    |           |  |  |  |  |  |
| Boron      | 208.959 |    |    | 7          |    |           |  |  |  |  |  |
| Cadmium    | 228.802 |    |    |            |    |           |  |  |  |  |  |
| Calcium    | 317.933 |    |    |            |    |           |  |  |  |  |  |
| Chromium   | 267.716 |    |    |            |    |           |  |  |  |  |  |
| Cobalt     | 228.616 |    |    | 0.002032   |    |           |  |  |  |  |  |
| Copper     | 327.396 |    |    | -0.0001866 |    |           |  |  |  |  |  |
|            |         |    |    | 1          |    |           |  |  |  |  |  |
| Iron       | 259.940 |    |    |            |    |           |  |  |  |  |  |
| Lead       | 220.353 |    |    | -0.0007061 |    |           |  |  |  |  |  |
| Lithium    | 670.784 |    |    | 2          |    |           |  |  |  |  |  |
| Magnesium  | 279.079 |    |    |            |    |           |  |  |  |  |  |
| Manganese  | 257.610 |    |    |            |    | 00080073  |  |  |  |  |  |
| Molybdenum | 202.030 |    |    |            |    | 00000010  |  |  |  |  |  |
| Nickel     | 231.604 |    |    |            |    |           |  |  |  |  |  |
| Potassium  | 766.490 |    |    |            |    |           |  |  |  |  |  |
| Selenium   | 196.090 |    |    |            |    |           |  |  |  |  |  |
| Silicon    | 288.158 |    |    |            |    |           |  |  |  |  |  |
| Silver     | 328.068 |    |    |            |    |           |  |  |  |  |  |
| Sodium     | 589.592 |    |    |            |    |           |  |  |  |  |  |
| Strontium  | 407.771 |    |    |            |    |           |  |  |  |  |  |
| Sulfur     | 182.034 |    |    |            |    |           |  |  |  |  |  |
| Thallium   | 190.856 |    |    |            |    | -0.006240 |  |  |  |  |  |
| Tin        | 189.989 |    |    | -0.0001225 |    |           |  |  |  |  |  |
|            |         |    |    | 6          |    |           |  |  |  |  |  |

# 10-IN ICP-AES INTERELEMENT CORRECTION FACTORS METALS

| Lab Name: TestAmerica Buffalo | Job Number: 480-125579-1 |
|-------------------------------|--------------------------|
| SDG No.:                      |                          |
| ICP-AES Instrument ID: ICAP2  | Date: 02/16/2017         |

| Analyte  | Wave<br>Length | Si | Sn | Ti       | Tl | V |  |  |  |  |  |
|----------|----------------|----|----|----------|----|---|--|--|--|--|--|
| Titanium | 334.904        |    |    |          |    |   |  |  |  |  |  |
| Vanadium | 292.402        |    |    | 0.000751 |    |   |  |  |  |  |  |
| Zinc     | 206.200        |    |    |          |    |   |  |  |  |  |  |

#### 11-IN LINEAR RANGES METALS

Lab Name: TestAmerica Buffalo Job No: 480-125579-1

SDG No.:

Instrument ID: ICAP2 Date: 02/16/2017 09:13

| Analyte   | Integ.<br>Time<br>(Sec.) | Concentration (mg/L) | Method |
|-----------|--------------------------|----------------------|--------|
| Aluminum  | 15                       | 600                  | 6010C  |
| Antimony  | 15                       | 10                   | 6010C  |
| Arsenic   | 15                       | 5                    | 6010C  |
| Barium    | 15                       | 10                   | 6010C  |
| Beryllium | 15                       | 25                   | 6010C  |
| Cadmium   | 15                       | 5                    | 6010C  |
| Calcium   | 15                       | 1000                 | 6010C  |
| Chromium  | 15                       | 10                   | 6010C  |
| Cobalt    | 15                       | 20                   | 6010C  |
| Copper    | 15                       | 25                   | 6010C  |
| Iron      | 15                       | 600                  | 6010C  |
| Lead      | 15                       | 120                  | 6010C  |
| Magnesium | 15                       | 500                  | 6010C  |
| Manganese | 15                       | 50                   | 6010C  |
| Nickel    | 15                       | 10                   | 6010C  |
| Potassium | 15                       | 600                  | 6010C  |
| Selenium  | 15                       | 60                   | 6010C  |
| Silver    | 15                       | 3                    | 6010C  |
| Sodium    | 15                       | 5000                 | 6010C  |
| Thallium  | 15                       | 20                   | 6010C  |
| Vanadium  | 15                       | 5                    | 6010C  |
| Zinc      | 15                       | 20                   | 6010C  |

#### 11-IN LINEAR RANGES METALS

Lab Name: TestAmerica Buffalo Job No: 480-125579-1

SDG No.:

Instrument ID: LEEMAN2 Date: 10/13/2015 15:08

| Analyte | Integ.<br>Time<br>(Sec.) | Concentration (ug/L) | Method |
|---------|--------------------------|----------------------|--------|
| Mercury | 10                       | 10                   | 7471B  |

## 12-IN PREPARATION LOG METALS

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Prep Method: 3050B

| Lab<br>Sample<br>ID   | Preparation<br>Date | Prep<br>Batch | Initial<br>Weight | Initial<br>Volume | Final<br>Volume |
|-----------------------|---------------------|---------------|-------------------|-------------------|-----------------|
| 10                    |                     |               | (g)               |                   | (mL)            |
| MB 480-381758/1-A     | 10/13/2017 16:34    | 381758        | +0.5283           |                   | 50              |
| LCSSRM 480-381758/2-A | 10/13/2017 16:34    | 381758        | +0.5026           |                   | 50              |
| LCDSRM 480-381758/3-A | 10/13/2017 16:34    | 381758        | +0.4988           |                   | 50              |
| 480-125579-1          | 10/13/2017 16:34    | 381758        | +0.5060           |                   | 50              |
| 480-125579-1 MS       | 10/13/2017 16:34    | 381758        | +0.5206           |                   | 50              |
| 480-125579-1 MSD      | 10/13/2017 16:34    | 381758        | +0.5145           |                   | 50              |
| 480-125579-2          | 10/13/2017 16:34    | 381758        | +0.5181           |                   | 50              |
| 480-125579-3          | 10/13/2017 16:34    | 381758        | +0.4950           |                   | 50              |

#### 12-IN PREPARATION LOG METALS

| Lab | Name: | TestAmerica | Buffalo | Job | No.: | 480-125579-1 |
|-----|-------|-------------|---------|-----|------|--------------|
| Lab | Name: | restamerica | Bullalo | aob | NO.: | 400-1233/9-1 |

SDG No.:

Prep Method: 7471B

| Lab<br>Sample             | Preparation<br>Date | Prep<br>Batch | Initial<br>Weight | Initial<br>Volume | Final<br>Volume |
|---------------------------|---------------------|---------------|-------------------|-------------------|-----------------|
| ID                        |                     |               | (g)               |                   | (mL)            |
| MB 480-381100/1-A         | 10/10/2017 13:30    | 381100        | +0.5849           |                   | 50              |
| LCSSRM 480-381100/2-A ^10 | 10/10/2017 13:30    | 381100        | +0.1598           |                   | 50              |
| 480-125579-1              | 10/10/2017 13:30    | 381100        | +0.5835           |                   | 50              |
| 480-125579-1 MS           | 10/10/2017 13:30    | 381100        | +0.5961           |                   | 50              |
| 480-125579-1 MSD          | 10/10/2017 13:30    | 381100        | +0.5859           |                   | 50              |
| 480-125579-2              | 10/10/2017 13:30    | 381100        | +0.6071           |                   | 50              |
| 480-125579-3              | 10/10/2017 13:30    | 381100        | +0.6417           |                   | 50              |

| Lab Name:  | Test | America Buffalo | _ Job No.: | 480-125579-1 |
|------------|------|-----------------|------------|--------------|
| SDG No.:   |      |                 |            |              |
| Instrument | ID:  | ICAP2           | Method:    | 6010C        |

Start Date: 10/16/2017 09:33 End Date: 10/16/2017 14:57

|                       |     |        |       | Analytes                                   |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
|-----------------------|-----|--------|-------|--------------------------------------------|--------|----|----|--------|----|--------|----|----|--------|--------|---|---|--------|--------|--------|--------|--------|--------|--------|
| Lab<br>Sample         | D / | T<br>Y |       | A                                          | A<br>1 | As | Ва | B<br>e | Ca | C<br>d | Co | Cr | C<br>u | F<br>e | K | g | M<br>n | N<br>a | N<br>i | P<br>b | S<br>b | S<br>e | T<br>1 |
| ID                    | F   | p<br>e | Time  |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ICIS 480-382167/1     | 1   |        | 09:33 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| IC 480-382167/2       |     |        | 09:37 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| IC 480-382167/3       |     |        | 09:41 | X   X   X   X   X   X   X   X   X   X      |        |    |    |        |    |        |    |    |        |        |   |   | Х      |        |        |        |        |        |        |
| IC 480-382167/4       |     |        | 09:44 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ                |     |        | 09:48 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ICV 480-382167/6      | 1   |        | 10:22 | x x x x x x x x x x x x x x x x x x x      |        |    |    |        |    |        |    |    |        |        |   |   | Х      |        |        |        |        |        |        |
| ICB 480-382167/7      | 1   |        | 10:25 | X X X X X X X X X X X X X X X X X X X      |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ICVL 480-382167/8     | 1   |        | 10:29 | X   X   X   X   X   X   X   X   X   X      |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ICSA 480-382167/9     | 1   |        | 10:32 | X X X X X X X X X X X X X X X X X X X      |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ICSAB 480-382167/10   | 1   |        | 10:36 | X X X X X X X X X X X X X X X X X X X      |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ                |     |        | 10:40 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ                |     |        | 10:43 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ                |     |        | 10:47 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ                |     |        | 10:51 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ                |     |        | 10:54 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| CCV 480-382167/16     | 1   |        | 10:58 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| CCB 480-382167/17     | 1   |        | 11:01 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| CCVL 480-382167/18    | 1   |        | 11:10 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| MB 480-381758/1-A     | 1   | Т      | 11:43 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| CCV 480-382167/20     | 1   |        | 11:46 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| CCB 480-382167/21     | 1   |        | 11:50 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| CCVL 480-382167/22    | 1   |        | 11:53 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| LCSSRM 480-381758/2-A | 1   | Т      | 11:57 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| LCDSRM 480-381758/3-A | 1   | Т      | 12:00 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| ZZZZZZ                |     |        | 12:04 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| 480-125579-1          | 1   | Т      | 12:07 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| 480-125579-1 SD       | 5   | Т      | 12:11 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| 480-125579-1 PDS      | 1   | Т      | 12:14 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| 480-125579-1 MS       | 1   | Т      | 12:18 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| 480-125579-1 MSD      | 1   | Т      | 12:21 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| 480-125579-2          | 1   | Т      | 12:25 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| CCV 480-382167/32     | 1   |        | 12:28 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| CCB 480-382167/33     | 1   |        | 12:32 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| CCVL 480-382167/34    | 1   |        | 12:36 | Х                                          | Х      | Х  | Х  | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| 480-125579-3          | 1   | Т      | 12:39 | 2:39 X X X X X X X X X X X X X X X X X X X |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ                |     |        | 12:43 | 12:43                                      |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ                |     |        | 12:46 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ                |     |        | 12:50 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ                |     |        | 12:53 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ                |     |        | 12:57 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ                |     |        | 13:00 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ                |     |        | 13:04 |                                            |        |    |    |        |    |        |    |    |        |        |   |   |        |        |        |        |        |        |        |

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1      |
|-------------------------------|----------------------------|
| SDG No.:                      |                            |
| Instrument ID: ICAP2          | Method: 6010C              |
| Start Date: 10/16/2017 09:33  | End Date: 10/16/2017 14:57 |

|                     |             | ı                | ı     | 1        |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
|---------------------|-------------|------------------|-------|----------|--------|--------|--------|--------|--------|--------|--------|---|--------|--------|---|---|--------|--------|--------|--------|--------|--------|--------|
|                     |             |                  |       | Analytes |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
|                     |             |                  |       | A<br>g   | A<br>1 | A<br>s | B<br>a | В<br>е | C<br>a | C<br>d | C<br>o | C | C<br>u | F<br>e | K | M | M<br>n | N<br>a | N<br>i | P<br>b | S<br>b | s<br>e | T<br>1 |
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>Y<br>P<br>e | Time  |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 13:08 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| CCV 480-382167/44   | 1           |                  | 13:12 | Х        | Х      | Х      | Х      | Х      | Х      | Х      | Х      | Х | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| CCB 480-382167/45   | 1           |                  | 13:16 | Х        | Х      | Х      | Х      | Х      | Х      | Х      | Х      | Х | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| CCVL 480-382167/46  | 1           |                  | 13:19 | Х        | Х      | Х      | Х      | Х      | Х      | Х      | Х      | Х | Х      | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      | Х      | Х      |
| ZZZZZZ              |             |                  | 13:23 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 13:27 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 13:42 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 13:46 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 13:49 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 13:53 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 13:57 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 14:00 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 14:04 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| CCV 480-382167/56   |             |                  | 14:07 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| CCB 480-382167/57   |             |                  | 14:11 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| CCVL 480-382167/58  |             |                  | 14:14 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 14:18 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 14:21 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 14:25 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 14:28 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 14:32 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 14:36 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 14:39 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 14:43 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| ZZZZZZ              |             |                  | 14:47 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| CCV 480-382167/68   |             |                  | 14:50 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| CCB 480-382167/69   |             |                  | 14:54 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |
| CCVL 480-382167/70  |             |                  | 14:57 |          |        |        |        |        |        |        |        |   |        |        |   |   |        |        |        |        |        |        |        |

| Lab Name:  | TestA | merica Buffalo | Job No.: | 480-125579-1 |
|------------|-------|----------------|----------|--------------|
| SDG No.:   |       |                |          |              |
| Instrument | ID:   | ICAP2          | Method:  | 6010C        |
|            |       |                |          |              |

Start Date: 10/16/2017 09:33 End Date: 10/16/2017 14:57

|                       |   |        |       | Analytes |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
|-----------------------|---|--------|-------|----------|---|-----------|--|--|--|--|---|--|--|-------|--|--|--|--|----------|
|                       |   |        |       | V        | Z |           |  |  |  |  |   |  |  | - 1 0 |  |  |  |  |          |
|                       |   |        |       | ľ        | n |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| Lab                   | D | Т      |       |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| Sample                | / | У      |       |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ID                    | F | p<br>e | Time  |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
|                       |   |        |       |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ICIS 480-382167/1     | 1 |        | 09:33 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| IC 480-382167/2       |   |        | 09:37 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| IC 480-382167/3       |   |        | 09:41 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| IC 480-382167/4       |   |        | 09:44 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ZZZZZZ                |   |        | 09:48 |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ICV 480-382167/6      | 1 |        | 10:22 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ICB 480-382167/7      | 1 |        | 10:25 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ICVL 480-382167/8     | 1 |        | 10:29 | Х        | Х |           |  |  |  |  | L |  |  |       |  |  |  |  |          |
| ICSA 480-382167/9     | 1 |        | 10:32 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ICSAB 480-382167/10   | 1 |        | 10:36 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ZZZZZZ                |   |        | 10:40 |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ZZZZZZ                |   |        | 10:43 |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ZZZZZZ                |   |        | 10:47 |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ZZZZZZ                |   |        | 10:51 |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ZZZZZZ                |   |        | 10:54 |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| CCV 480-382167/16     | 1 |        | 10:58 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| CCB 480-382167/17     | 1 |        | 11:01 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| CCVL 480-382167/18    | 1 |        | 11:10 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| MB 480-381758/1-A     | 1 | Т      | 11:43 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| CCV 480-382167/20     | 1 |        | 11:46 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| CCB 480-382167/21     | 1 |        | 11:50 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| CCVL 480-382167/22    | 1 |        | 11:53 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| LCSSRM 480-381758/2-A | 1 | Т      | 11:57 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| LCDSRM 480-381758/3-A | 1 | Т      | 12:00 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ZZZZZZ                |   |        | 12:04 |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| 480-125579-1          | 1 | Т      | 12:07 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| 480-125579-1 SD       | 5 | Т      | 12:11 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| 480-125579-1 PDS      | 1 | Т      | 12:14 | X        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| 480-125579-1 MS       | 1 | Т      | 12:18 | X        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| 480-125579-1 MSD      | 1 | Т      | 12:21 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| 480-125579-2          | 1 | Т      | 12:25 | X        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| CCV 480-382167/32     | 1 |        | 12:28 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| CCB 480-382167/33     | 1 |        | 12:32 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| CCVL 480-382167/34    | 1 |        | 12:36 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| 480-125579-3          | 1 | Т      | 12:39 | Х        | Х |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ZZZZZZ                |   |        | 12:43 |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ZZZZZZ                |   |        | 12:46 |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ZZZZZZ                |   |        | 12:50 |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ZZZZZZ                |   |        | 12:53 |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ZZZZZZ                |   |        | 12:57 |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ZZZZZZ                |   |        | 13:00 |          |   | $\dagger$ |  |  |  |  |   |  |  |       |  |  |  |  |          |
| ZZZZZZ                |   |        | 13:04 |          |   |           |  |  |  |  |   |  |  |       |  |  |  |  | $\vdash$ |

| Lab Name: TestAmerica Buffalo | Job No.: 480-125579-1      |
|-------------------------------|----------------------------|
| SDG No.:                      |                            |
| Instrument ID: ICAP2          | Method: 6010C              |
| Start Date: 10/16/2017 09:33  | End Date: 10/16/2017 14:57 |

|                     |             |                  |       |   |   |   |   |  |   |     |    |    |  |  |  | _ |
|---------------------|-------------|------------------|-------|---|---|---|---|--|---|-----|----|----|--|--|--|---|
|                     |             |                  |       |   |   |   |   |  | А | nal | yt | es |  |  |  |   |
|                     |             |                  |       | V | Z |   |   |  |   |     |    |    |  |  |  |   |
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>Y<br>p<br>e | Time  |   | n |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              | Ī           |                  | 13:08 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| CCV 480-382167/44   | 1           |                  | 13:12 | Х | Х |   |   |  |   |     |    |    |  |  |  |   |
| CCB 480-382167/45   | 1           |                  | 13:16 | Х | Х |   |   |  |   |     |    |    |  |  |  |   |
| CCVL 480-382167/46  | 1           |                  | 13:19 | Х | Х | 1 | 1 |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 13:23 |   |   | 1 | 1 |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 13:27 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 13:42 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 13:46 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 13:49 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 13:53 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 13:57 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 14:00 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 14:04 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| CCV 480-382167/56   |             |                  | 14:07 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| CCB 480-382167/57   |             |                  | 14:11 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| CCVL 480-382167/58  |             |                  | 14:14 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 14:18 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 14:21 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 14:25 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 14:28 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 14:32 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 14:36 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 14:39 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 14:43 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| ZZZZZZ              |             |                  | 14:47 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| CCV 480-382167/68   |             |                  | 14:50 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| CCB 480-382167/69   |             |                  | 14:54 |   |   |   |   |  |   |     |    |    |  |  |  |   |
| CCVL 480-382167/70  |             |                  | 14:57 |   |   |   |   |  |   |     |    |    |  |  |  |   |

Prep Types

T = Total/NA

| Lab Name:  | TestAmerica Buffalo | Job No.: 480-125579-1      |
|------------|---------------------|----------------------------|
| SDG No.:   |                     |                            |
| Instrument | ID: LEEMAN2         | Method: 7471B              |
| Start Date | : 10/10/2017 14:54  | End Date: 10/10/2017 15:27 |

|                           |             |             |       |   |  |  |  | A | nal | yte | es |  |  |  |          |
|---------------------------|-------------|-------------|-------|---|--|--|--|---|-----|-----|----|--|--|--|----------|
| Lab<br>Sample<br>ID       | D<br>/<br>F | T<br>Y<br>p | Time  | g |  |  |  |   |     |     |    |  |  |  |          |
| ICV 480-381152/1          | 1           |             | 14:54 | Х |  |  |  |   |     |     |    |  |  |  | $\equiv$ |
| ICB 480-381152/2          | 1           |             | 14:56 | Х |  |  |  |   |     |     |    |  |  |  |          |
| ICVL 480-381152/3         | 1           |             | 14:58 | Х |  |  |  |   |     |     |    |  |  |  |          |
| CCV 480-381152/4          | 1           |             | 14:59 | Х |  |  |  |   |     |     |    |  |  |  |          |
| CCB 480-381152/5          | 1           |             | 15:00 | Х |  |  |  |   |     |     |    |  |  |  |          |
| MB 480-381100/1-A         | 1           | Т           | 15:02 | Х |  |  |  |   |     |     |    |  |  |  |          |
| LCSSRM 480-381100/2-A ^10 | 10          | Т           | 15:04 | Х |  |  |  |   |     |     |    |  |  |  |          |
| ZZZZZZ                    |             |             | 15:05 |   |  |  |  |   |     |     |    |  |  |  |          |
| ZZZZZZ                    |             |             | 15:07 |   |  |  |  |   |     |     |    |  |  |  |          |
| ZZZZZZ                    |             |             | 15:09 |   |  |  |  |   |     |     |    |  |  |  |          |
| 480-125579-1              | 1           | Т           | 15:10 | Х |  |  |  |   |     |     |    |  |  |  |          |
| 480-125579-1 SD           | 5           | Т           | 15:12 | Х |  |  |  |   |     |     |    |  |  |  |          |
| 480-125579-1 MS           | 1           | Т           | 15:13 | Х |  |  |  |   |     |     |    |  |  |  |          |
| 480-125579-1 MSD          | 1           | Т           | 15:15 | Х |  |  |  |   |     |     |    |  |  |  |          |
| 480-125579-2              | 1           | Т           | 15:16 | Х |  |  |  |   |     |     |    |  |  |  |          |
| CCV 480-381152/16         | 1           |             | 15:18 | Х |  |  |  |   |     |     |    |  |  |  |          |
| CCB 480-381152/17         | 1           |             | 15:21 | Х |  |  |  |   |     |     |    |  |  |  |          |
| 480-125579-3              | 1           | Т           | 15:22 | Х |  |  |  |   |     |     |    |  |  |  |          |
| CCV 480-381152/19         | 1           |             | 15:24 | Х |  |  |  |   |     |     |    |  |  |  |          |
| CCB 480-381152/20         | 1           |             | 15:25 | Х |  |  |  |   |     |     |    |  |  |  |          |
| CCVL 480-381152/21        | 1           |             | 15:27 | Х |  |  |  |   |     |     |    |  |  |  |          |

Prep Types

T = Total/NA

Run File: i2101617a Instrument: ICAP2

Analyst: jrk JR 10/17/17 Data Review: 10/17/17

Spikes Ids: 4027863(W1), 4273102(W2), 4192545(Sn), 4224435(Ag), 4305701(Si), 3885452(TCLP)

4192552 (S) Pipette IDs: 06/16/17-(1-9, 11) Internal Standard: 4271254

| Sea# | Run File ID | Sample ID            | Date / Time Type           |
|------|-------------|----------------------|----------------------------|
| 1    | i2101617a   | ICIS-4278202         | 10/16/17 09:33 AM Standard |
| 2    | i2101617a   | IC-4278204           | 10/16/17 09:37 AM Standard |
| 3    | i2101617a   | IC-4278258           | 10/16/17 09:41 AM Standard |
| 4    | i2101617a   | IC-4278206           | 10/16/17 09:44 AM Standard |
| 5    | i2101617a   | xicv-4278260         | 10/16/17 09:48 AM QC       |
| 6    | i2101617a   | icv-4278260          | 10/16/17 10:22 AM QC       |
| 7    | i2101617a   | icb-4278202          | 10/16/17 10:25 AM QC       |
| 8    | i2101617a   | icvl-4278204         | 10/16/17 10:29 AM QC       |
| 9    | i2101617a   | icsa-4278263         | 10/16/17 10:32 AM QC       |
| 10   | i2101617a   | icsab-4278265        | 10/16/17 10:36 AM QC       |
| 11   | i2101617a   | ICEX1                | 10/16/17 10:40 AM Unknown  |
| 12   | i2101617a   | ICEX2                | 10/16/17 10:43 AM Unknown  |
| 13   | i2101617a   | ICEX3                | 10/16/17 10:47 AM Unknown  |
| 14   | i2101617a   | ICEX4                | 10/16/17 10:51 AM Unknown  |
| 15   | i2101617a   | ICEX5                | 10/16/17 10:54 AM Unknown  |
| 16   | i2101617a   | CCV-4278259          | 10/16/17 10:58 AM QC       |
| 17   | i2101617a   | CCB-4278202          | 10/16/17 11:01 AM QC       |
| 18   | i2101617a   | ccvl-4278204         | 10/16/17 11:10 AM QC       |
| 19   | i2101617a   | LB2 480-378831/1-B   | 10/16/17 11:14 AM Unknown  |
| 20   | i2101617a   | MB 480-378949/2-A    | 10/16/17 11:17 AM Unknown  |
| 21   | i2101617a   | LCS 480-378949/3-A   | 10/16/17 11:21 AM Unknown  |
| 22   | i2101617a   | 480-124556-A-3-D     | 10/16/17 11:25 AM Unknown  |
| 23   | i2101617a   | 480-124556-A-3-DSD@5 | 10/16/17 11:28 AM Unknown  |
| 24   | i2101617a   | 480-124556-A-3-DPDS  | 10/16/17 11:32 AM Unknown  |
| 25   | i2101617a   | 480-124556-A-3-E MS  | 10/16/17 11:35 AM Unknown  |
| 26   | i2101617a   | 480-124556-A-3-F MSD | 10/16/17 11:39 AM Unknown  |
| 27   | i2101617a   | MB 480-381758/1-A    | 10/16/17 11:43 AM Unknown  |
| 28   | i2101617a   | CCV-4278259          | 10/16/17 11:46 AM QC       |
| 29   | i2101617a   | CCB-4278202          | 10/16/17 11:50 AM QC       |
|      | i2101617a   | ccvl-4278204         | 10/16/17 11:53 AM QC       |
|      | i2101617a   | LCSSRM 480-381758/2- | 10/16/17 11:57 AM Unknown  |
|      | i2101617a   | LCDSRM 480-381758/3- | 10/16/17 12:00 PM Unknown  |
|      | i2101617a   | 480-125696-A-1-A     | 10/16/17 12:04 PM Unknown  |
|      | i2101617a   | 480-125579-E-1-B     | 10/16/17 12:07 PM Unknown  |
|      | i2101617a   | 480-125579-E-1-BSD@5 | 10/16/17 12:11 PM Unknown  |
| • •  | i2101617a   |                      | 10/16/17 12:14 PM Unknown  |
|      | i2101617a   | 480-125579-F-1-F MS  | 10/16/17 12:18 PM Unknown  |
|      | i2101617a   | 480-125579-E-1-C MSD | 10/16/17 12:21 PM Unknown  |
|      | i2101617a   | 480-125579-F-2-B     | 10/16/17 12:25 PM Unknown  |
|      | i2101617a   | CCV-4278259          | 10/16/17 12:28 PM QC       |
|      | i2101617a   | CCB-4278202          | 10/16/17 12:32 PM QC       |
| 42   | i2101617a   | ccvl-4278204         | 10/16/17 12:36 PM QC       |

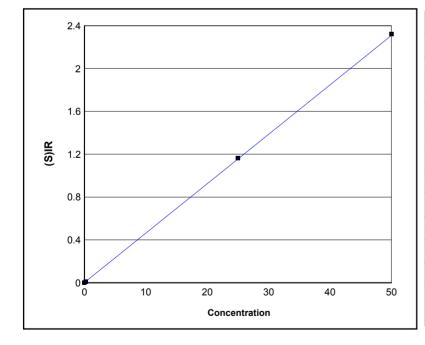
| 43 | i2101617a | 480-125579-F-3-B     | 10/16/17 12:39 PM Unknown |
|----|-----------|----------------------|---------------------------|
| 44 | i2101617a | 480-125631-B-1-A     | 10/16/17 12:43 PM Unknown |
| 45 | i2101617a | 480-125631-C-2-B     | 10/16/17 12:46 PM Unknown |
| 46 | i2101617a | 480-125631-B-3-B     | 10/16/17 12:50 PM Unknown |
| 47 | i2101617a | 480-125631-B-4-B     | 10/16/17 12:53 PM Unknown |
| 48 | i2101617a | 480-125631-B-6-B     | 10/16/17 12:57 PM Unknown |
| 49 | i2101617a | 480-125681-A-1-D     | 10/16/17 01:00 PM Unknown |
| 50 | i2101617a | 480-125681-A-2-D     | 10/16/17 01:04 PM Unknown |
| 51 | i2101617a | 480-125681-A-3-D     | 10/16/17 01:08 PM Unknown |
| 52 | i2101617a | CCV-4278259          | 10/16/17 01:12 PM QC      |
| 53 | i2101617a | CCB-4278202          | 10/16/17 01:16 PM QC      |
| 54 | i2101617a | ccvl-4278204         | 10/16/17 01:19 PM QC      |
| 55 | i2101617a | 480-125681-A-4-D     | 10/16/17 01:23 PM Unknown |
| 56 | i2101617a | 480-125681-A-5-I     | 10/16/17 01:27 PM Unknown |
| 57 | i2101617a | 480-125681-A-6-D@5   | 10/16/17 01:42 PM Unknown |
| 58 | i2101617a | 480-125681-A-7-D@5   | 10/16/17 01:46 PM Unknown |
| 59 | i2101617a | 480-125681-A-8-E@5   | 10/16/17 01:49 PM Unknown |
| 60 | i2101617a | 480-125681-A-9-D@5   | 10/16/17 01:53 PM Unknown |
| 61 | i2101617a | 480-125681-A-10-A@5  | 10/16/17 01:57 PM Unknown |
| 62 | i2101617a | 480-124142-A-1-K     | 10/16/17 02:00 PM Unknown |
| 63 | i2101617a | LCS 480-381758/26-A  | 10/16/17 02:04 PM Unknown |
| 64 | i2101617a | CCV-4278259          | 10/16/17 02:07 PM QC      |
| 65 | i2101617a | CCB-4278202          | 10/16/17 02:11 PM QC      |
| 66 | i2101617a | ccvl-4278204         | 10/16/17 02:14 PM QC      |
| 67 | i2101617a | LCSD 480-381758/27-A | 10/16/17 02:18 PM Unknown |
| 68 | i2101617a | 480-125681-A-1-D@5   | 10/16/17 02:21 PM Unknown |
| 69 | i2101617a | 480-125681-A-2-D@5   | 10/16/17 02:25 PM Unknown |
| 70 | i2101617a | 480-125681-A-2-D@10  | 10/16/17 02:28 PM Unknown |
| 71 | i2101617a | 480-125681-A-3-D@5   | 10/16/17 02:32 PM Unknown |
| 72 | i2101617a | 480-125681-A-4-D@5   | 10/16/17 02:36 PM Unknown |
| 73 | i2101617a | 480-125681-A-5-I@5   | 10/16/17 02:39 PM Unknown |
| 74 | i2101617a | 480-125681-A-10-A@10 | 10/16/17 02:43 PM Unknown |
| 75 | i2101617a | blank                | 10/16/17 02:47 PM Unknown |
| 76 | i2101617a | CCV-4278259          | 10/16/17 02:50 PM QC      |
| 77 | i2101617a | CCB-4278202          | 10/16/17 02:54 PM QC      |
| 78 | i2101617a | ccvl-4278204         | 10/16/17 02:57 PM QC      |
| 79 | i2101617a | 480-125681-A-6-D     | 10/16/17 03:01 PM Unknown |
| 80 | i2101617a | 480-125681-A-7-D     | 10/16/17 03:05 PM Unknown |
| 81 | i2101617a | 480-125681-A-8-E     | 10/16/17 03:09 PM Unknown |
| 82 | i2101617a | 480-125681-A-9-D     | 10/16/17 03:13 PM Unknown |
| 83 | i2101617a | 480-125681-A-10-A    | 10/16/17 03:17 PM Unknown |
| 84 | i2101617a | blank                | 10/16/17 03:21 PM Unknown |
| 85 | i2101617a | blank                | 10/16/17 03:24 PM Unknown |
| 86 | i2101617a | blank                | 10/16/17 03:40 PM Unknown |
| 87 | i2101617a | blank                | 10/16/17 03:44 PM Unknown |
|    |           |                      |                           |

### i2101617a

Author: jrk

Published: 10/17/2017 7:05:30AM

Instrument Name: iCAP2 Serial Number: 20094602

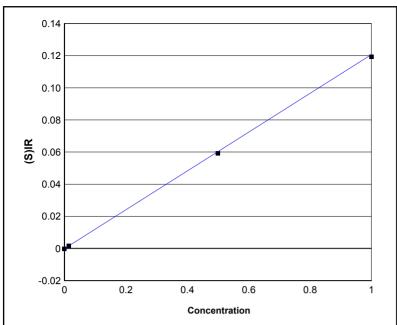

Method Name: ICAP2 June 2017 (154)



| Element Name:         | Ag                 |         |
|-----------------------|--------------------|---------|
| Element Wavelength:   | Ag 328.068 nm      |         |
| Concentration Units:  | ppm                |         |
| Date of Calibration:  | 10/16/2017 9:48:0  | 7AN     |
| Date of Fit:          | 10/16/2017 11:08:5 | 0AN     |
| Type of Fit:          | Linear             |         |
| Correlation:          | 0.99997            |         |
| A0 (Offset):          | -0.00033960        |         |
| A1 (Gain):            | 0.46589            |         |
| A2 (Curvature):       | 0.00000            |         |
| n (Exponent):         | 1.0000             |         |
| Reslope               | QC Normaliz        | :e      |
| <b>Slope:</b> 1.0000  | Slope factor:      | 1.0000  |
| <b>Y Int:</b> 0.00000 | Offset:            | 0.00000 |

| Standard Name | Stated    | Found       | Diff         |
|---------------|-----------|-------------|--------------|
| ICIS-4278202  | 0.00000   | .0000002634 | 0.0000002634 |
| IC-4278204    | 0.0060000 | 0.0057657   | -0.00023435  |
| IC-4278258    | 0.50000   | 0.49492     | -0.0050776   |
| IC-4278206    | 1.0000    | 1.0053      | 0.0053119    |

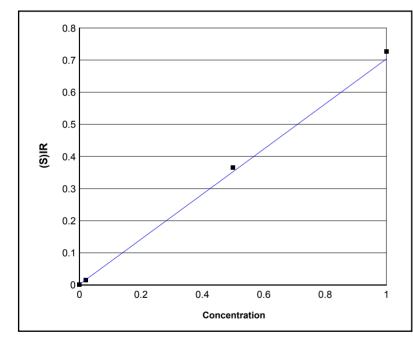
| Emphasis | Stddev       | (S)IR       | % Diff  |
|----------|--------------|-------------|---------|
| 1        | 0.00043164   | -0.00033948 | 0.00000 |
| 1        | 0.0000093454 | 0.0023467   | -3.9058 |
| 1        | 0.00060188   | 0.23026     | -1.0155 |
| 1        | 0.00044686   | 0.46808     | 0.53119 |




| Element Name:         | Al                |         |  |
|-----------------------|-------------------|---------|--|
| Element Wavelength:   | Al 308.215 nm     |         |  |
| Concentration Units:  | ppm               |         |  |
| Date of Calibration:  | 10/16/2017 9:48:0 | 07AN    |  |
| Date of Fit:          | 10/16/2017 11:08: | 50AN    |  |
| Type of Fit:          | Linear            |         |  |
| Correlation:          | 1.00000           |         |  |
| A0 (Offset):          | 0.0023141         |         |  |
| A1 (Gain):            | 0.046145          |         |  |
| A2 (Curvature):       | 0.00000           |         |  |
| n (Exponent):         | 1.0000            |         |  |
| Reslope               | QC Normali        | ze      |  |
| <b>Slope:</b> 1.0000  | Slope factor:     | 1.0000  |  |
| <b>Y Int:</b> 0.00000 | Offset:           | 0.00000 |  |

| Standard Name | Stated      | Found     | Diff          | % Diff    | (S)IR     | Stddev     | <b>Emphasis</b> |  |
|---------------|-------------|-----------|---------------|-----------|-----------|------------|-----------------|--|
| ICIS-4278202  | 0.00000 0.0 | 000030649 | -0.0000030649 | 0.00000   | 0.0023140 | 0.00072417 | 1               |  |
| IC-4278204    | 0.20000     | 0.20291   | 0.0029102     | 1.4551    | 0.011738  | 0.00026759 | 1               |  |
| IC-4278258    | 25.000      | 25.042    | 0.041605      | 0.16642   | 1.1639    | 0.0016352  | 1               |  |
| IC-4278206    | 50.000      | 49.955    | -0.044519     | -0.089037 | 2.3196    | 0.0080078  | 1               |  |

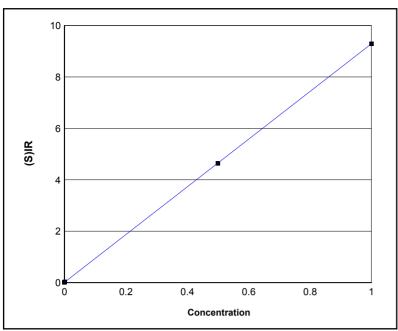
Page 625 of 914 10/24/2017


Published: 10/17/2017 7:05:30AM



| Element Name:       |         | As               |         |
|---------------------|---------|------------------|---------|
| Element Waveler     | ngth:   | As 189.042 nm    |         |
| Concentration U     | nits:   | ppm              |         |
| Date of Calibration | on:     | 10/16/2017 9:48  | :07AV   |
| Date of Fit:        |         | 10/16/2017 11:08 | :50AN   |
| Type of Fit:        |         | Linear           |         |
| Correlation:        |         | 0.99999          |         |
| A0 (Offset):        |         | -0.00010295      |         |
| A1 (Gain):          |         | 0.12085          |         |
| A2 (Curvature):     |         | 0.00000          |         |
| n (Exponent):       |         | 1.0000           |         |
| Reslope             |         | QC Normalize     |         |
| Slope:              | 1.0000  | Slope factor:    | 1.0000  |
| Y Int:              | 0.00000 | Offset:          | 0.00000 |

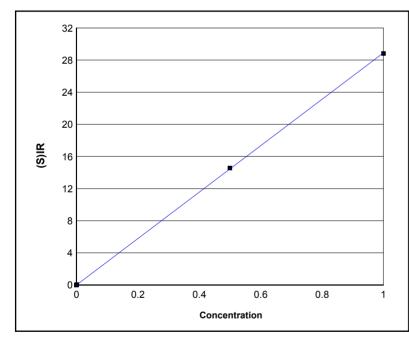
| Stated   | Found                          | Diff                                                                   |
|----------|--------------------------------|------------------------------------------------------------------------|
| 0.00000  | 0.0000003549                   | 0.0000003549                                                           |
| 0.015000 | 0.014669                       | -0.00033053                                                            |
| 0.50000  | 0.49804                        | -0.0019608                                                             |
| 1.0000   | 1.0023                         | 0.0022947                                                              |
|          | 0.00000<br>0.015000<br>0.50000 | 0.00000 0.0000003549         0.015000 0.014669         0.50000 0.49804 |


| % Diff   | (S)IR       | Stddev      | <b>Emphasis</b> |
|----------|-------------|-------------|-----------------|
| 0.00000  | -0.00010290 | 0.00022161  | 1               |
| -2.2035  | 0.0016632   | 0.00011127  | 1               |
| -0.39216 | 0.059247    | 0.000065850 | 1               |
| 0.22947  | 0.11935     | 0.00011531  | 1               |



| Element Name:        | В                |         |  |
|----------------------|------------------|---------|--|
| Element Wavelength:  | B 208.959 nm     |         |  |
| Concentration Units: | ppm              |         |  |
| Date of Calibration: | 10/16/2017 9:48  | 3:07AN  |  |
| Date of Fit:         | 10/16/2017 11:08 | 3:50AN  |  |
| Type of Fit:         | Linear           |         |  |
| Correlation:         | ation: 1.00000   |         |  |
| A0 (Offset):         | 0.0019420        |         |  |
| A1 (Gain):           | 0.70162          |         |  |
| A2 (Curvature):      | 0.00000          |         |  |
| n (Exponent):        | 1.0000           |         |  |
| Reslope              | QC Normalize     |         |  |
| <b>Slope:</b> 1.0000 | Slope factor:    | 1.0000  |  |
| Y Int: 0.00000       | Offset:          | 0.00000 |  |

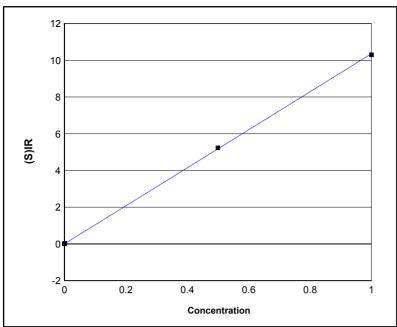
| Standard Name | Stated    | Found       | Diff        |
|---------------|-----------|-------------|-------------|
| ICIS-4278202  | 0.00000 0 | .0000001693 | 0.000001693 |
| IC-4278204    | 0.020000  | 0.019797    | -0.00020263 |
| IC-4278258    | 0.50000   | 0.50147     | 0.0014685   |
| IC-4278206    | 1.0000    | 0.99873     | -0.0012692  |


| % Diff   | (S)IR     | Stddev      | <b>Emphasis</b> |  |
|----------|-----------|-------------|-----------------|--|
| 0.00000  | 0.0019421 | 0.000055109 | 1               |  |
| -1.0132  | 0.016071  | 0.000020524 | 1               |  |
| 0.29369  | 0.36571   | 0.00030114  | 1               |  |
| -0.12692 | 0.72653   | 0.000072879 | 1               |  |



| Element Name:        | Ва                     |  |  |
|----------------------|------------------------|--|--|
| Element Wavelength:  | Ba 455.403 nm          |  |  |
| Concentration Units: | ppm                    |  |  |
| Date of Calibration: | 10/16/2017 9:48:07AN   |  |  |
| Date of Fit:         | 10/16/2017 11:08:50AN  |  |  |
| Type of Fit:         | Linear                 |  |  |
| Correlation:         | 1.00000                |  |  |
| A0 (Offset):         | 0.011754               |  |  |
| A1 (Gain):           | 9.2805                 |  |  |
| A2 (Curvature):      | 0.00000                |  |  |
| n (Exponent):        | 1.0000                 |  |  |
| Reslope              | QC Normalize           |  |  |
| <b>Slope:</b> 1.000  | O Slope factor: 1.0000 |  |  |
| <b>Y Int:</b> 0.0000 | 0 Offset: 0.00000      |  |  |

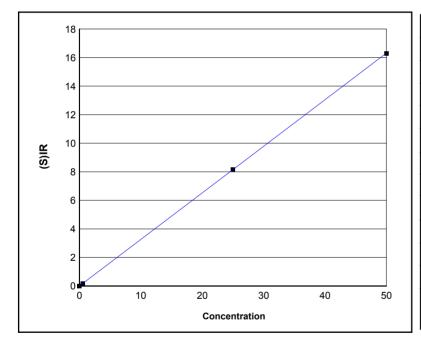
| Standard Name | Stated    | Found        | Diff          |
|---------------|-----------|--------------|---------------|
| ICIS-4278202  | 0.00000   | 0.0000000268 | -0.0000000268 |
| IC-4278204    | 0.0020000 | 0.0020284    | 0.000028397   |
| IC-4278258    | 0.50000   | 0.49925      | -0.00075343   |
| IC-4278206    | 1.0000    | 1.0007       | 0.00072503    |


| % Diff   | (S)IR    | Stddev     | <b>Emphasis</b> |
|----------|----------|------------|-----------------|
| 0.00000  | 0.011754 | 0.00068090 | 1               |
| 1.4198   | 0.030579 | 0.00035221 | 1               |
| -0.15069 | 4.6450   | 0.021911   | 1               |
| 0.072503 | 9.2990   | 0.020667   | 1               |



| Element Name:        | Ва                 |         |  |  |
|----------------------|--------------------|---------|--|--|
| Element Wavelength:  | Ba 455.403 nm      |         |  |  |
| Concentration Units: | ppm                |         |  |  |
| Date of Calibration: | 10/16/2017 9:48:0  | 7AN     |  |  |
| Date of Fit:         | 10/16/2017 11:08:5 | IA0     |  |  |
| Type of Fit:         | Linear             |         |  |  |
| Correlation:         | 0.99999            |         |  |  |
| A0 (Offset):         | 0.0062364          |         |  |  |
| A1 (Gain):           | 28.893             |         |  |  |
| A2 (Curvature):      | 0.00000            |         |  |  |
| n (Exponent):        | nt): 1.0000        |         |  |  |
| Reslope              | QC Normalize       |         |  |  |
| <b>Slope:</b> 1.0000 | Slope factor:      | 1.0000  |  |  |
| Y Int: 0.00000       | Offset:            | 0.00000 |  |  |

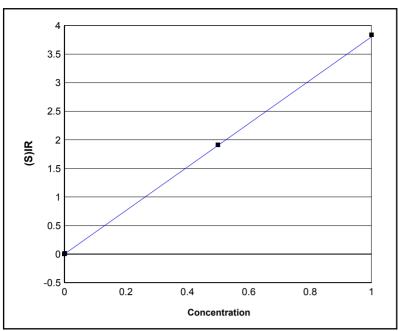
| Standard Name | Stated    | Found        | Diff          |
|---------------|-----------|--------------|---------------|
| ICIS-4278202  | 0.00000   | 0.0000001243 | -0.0000001243 |
| IC-4278204    | 0.0020000 | 0.0021182    | 0.00011817    |
| IC-4278258    | 0.50000   | 0.50318      | 0.0031849     |
| IC-4278206    | 1.0000    | 0.99670      | -0.0033031    |


| ) | ff |  |     |    | (   | S)I | R          |   |     |     | St  | dd | lev | , | En | npl | has | is |  |
|---|----|--|-----|----|-----|-----|------------|---|-----|-----|-----|----|-----|---|----|-----|-----|----|--|
| ( | 00 |  | 0.0 | 00 | 62  | 32  | 28         | ( | 0.0 | 000 | 01  | 81 | 99  |   |    |     |     | 1  |  |
| 8 | 36 |  | 0   | .0 | 67  | 43  | 37         | ( | 0.0 | 000 | 03  | 48 | 96  |   |    |     |     | 1  |  |
| ć | 8  |  |     | 1  | 4.  | 54  | <b>1</b> 5 | ( | 0.0 | 000 | 05  | 44 | 67  |   |    |     |     | 1  |  |
| 3 | 31 |  |     | 2  | 28. | .80 | )4         |   |     | 0   | ).1 | 68 | 22  |   |    |     |     | 1  |  |



| Element Name:       |        | Ве            |            |     |  |
|---------------------|--------|---------------|------------|-----|--|
| Element Waveleng    | th:    | Be 313.042    | nm         |     |  |
| Concentration Unit  | ts:    | ppm           |            |     |  |
| Date of Calibration | 1:     | 10/16/2017    | 9:48:07AN  |     |  |
| Date of Fit:        |        | 10/16/2017    | 11:08:50AN |     |  |
| Type of Fit:        |        | Linear        |            |     |  |
| Correlation:        |        | 0.9           | 9998       |     |  |
| A0 (Offset):        |        | -0.00006      | 3435       |     |  |
| A1 (Gain):          |        | 10            | 0.360      |     |  |
| A2 (Curvature):     |        | 0.00000       |            |     |  |
| n (Exponent):       |        | 1.0000        |            |     |  |
| Reslope             |        | QC Normalize  |            |     |  |
| Slope:              | 1.0000 | Slope factor: | 1.00       | 000 |  |
| <b>Y Int</b> : 0    | .00000 | Offset:       | 0.000      | 000 |  |

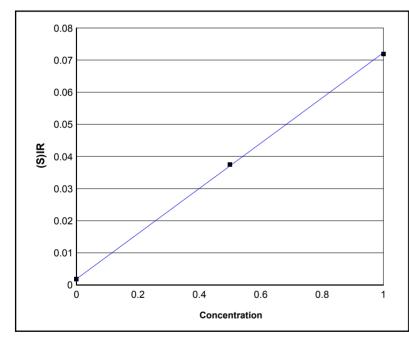
| Standard Name | Stated    | Found        | Diff          |
|---------------|-----------|--------------|---------------|
| ICIS-4278202  | 0.00000   | 0.0000000945 | -0.0000000945 |
| IC-4278204    | 0.0020000 | 0.0020860    | 0.000086048   |
| IC-4278258    | 0.50000   | 0.50431      | 0.0043080     |
| IC-4278206    | 1.0000    | 0.99561      | -0.0043939    |


| <b>Emphasis</b> | Stddev     | (S)IR        | % Diff   |
|-----------------|------------|--------------|----------|
| 1               | 0.00068439 | -0.000064414 | 0.00000  |
| 1               | 0.00071210 | 0.021513     | 4.3024   |
| 1               | 0.025642   | 5.2211       | 0.86159  |
| 1               | 0.030196   | 10.307       | -0.43939 |



| Element Name:        |           | Ca                |         |  |  |
|----------------------|-----------|-------------------|---------|--|--|
| Element Wavelength   | :         | Ca 317.933 nm     |         |  |  |
| Concentration Units: |           | ppm               |         |  |  |
| Date of Calibration: |           | 10/16/2017 9:48:0 | )7AN    |  |  |
| Date of Fit:         |           | 10/16/2017 11:08: | 50AN    |  |  |
| Type of Fit:         |           | Linear            |         |  |  |
| Correlation:         |           | 1.00000           |         |  |  |
| A0 (Offset):         | 0.0082332 |                   |         |  |  |
| A1 (Gain):           |           | 0.32600           |         |  |  |
| A2 (Curvature):      |           | 0.00000           |         |  |  |
| n (Exponent):        |           | 1.0000            |         |  |  |
| Reslope              |           | QC Normalize      |         |  |  |
| Slope: 1.            | 0000      | Slope factor:     | 1.0000  |  |  |
| <b>Y Int:</b> 0.0    | 0000      | Offset:           | 0.00000 |  |  |

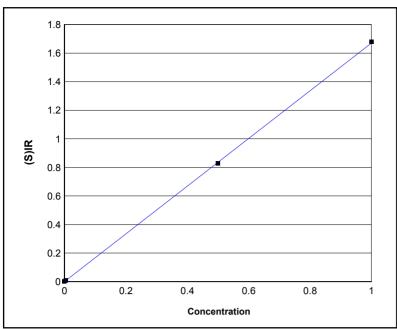
| Standard Name | Stated  | Found        | Diff         |
|---------------|---------|--------------|--------------|
| ICIS-4278202  | 0.00000 | -0.000016292 | -0.000016292 |
| IC-4278204    | 0.50000 | 0.51633      | 0.016328     |
| IC-4278258    | 25.000  | 25.013       | 0.012747     |
| IC-4278206    | 50.000  | 49.971       | -0.029075    |


| % Diff    | (S)IR     | Stddev     | <b>Emphasis</b> |
|-----------|-----------|------------|-----------------|
| 0.00000   | 0.0082278 | 0.00084374 | 1               |
| 3.2656    | 0.17656   | 0.0013963  | 1               |
| 0.050988  | 8.1624    | 0.056126   | 1               |
| -0.058149 | 16.299    | 0.051505   | 1               |



| Element Name:        |        | Cd            |         |         |  |
|----------------------|--------|---------------|---------|---------|--|
| Element Wavelengt    | :h:    | Cd 228.802    | nm      |         |  |
| Concentration Unit   | s:     | ppm           |         |         |  |
| Date of Calibration: |        | 10/16/2017    | 9:48:07 | 'AV     |  |
| Date of Fit:         |        | 10/16/2017    | 11:08:5 | NAC     |  |
| Type of Fit:         |        | Linear        |         |         |  |
| Correlation:         |        | 1.0           | 0000    |         |  |
| A0 (Offset):         |        | -0.000009     | 6047    |         |  |
| A1 (Gain):           |        | 3.            | 8027    |         |  |
| A2 (Curvature):      |        | 0.0           | 0000    |         |  |
| n (Exponent):        |        | 1.0000        |         |         |  |
| Reslope              |        | QC Normalize  |         |         |  |
| Slope:               | 1.0000 | Slope factor: |         | 1.0000  |  |
| <b>Y Int:</b> 0.     | .00000 | Offset:       |         | 0.00000 |  |

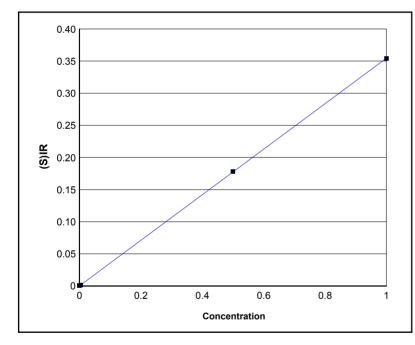
| Standard Name | Stated    | Found       | Diff          |
|---------------|-----------|-------------|---------------|
| ICIS-4278202  | 0.00000   | 0.000001206 | -0.0000001206 |
| IC-4278204    | 0.0020000 | 0.0021224   | 0.00012245    |
| IC-4278258    | 0.50000   | 0.49920     | -0.00080437   |
| IC-4278206    | 1.0000    | 1.0007      | 0.00067471    |


| % Diff   | (S)IR        | Stddev     | <b>Emphasis</b> |
|----------|--------------|------------|-----------------|
| 0.00000  | -0.000010063 | 0.00020518 | 1               |
| 6.1224   | 0.0085820    | 0.00027012 | 1               |
| -0.16087 | 1.9156       | 0.0016371  | 1               |
| 0.067471 | 3.8398       | 0.0040650  | 1               |



| Element Name:        | Се                    |  |
|----------------------|-----------------------|--|
| Element Wavelength:  | Ce 404.076 nm         |  |
| Concentration Units: | ppm                   |  |
| Date of Calibration: | 10/16/2017 9:48:07AN  |  |
| Date of Fit:         | 10/16/2017 11:08:50AN |  |
| Type of Fit:         | Linear                |  |
| Correlation:         | 1.0000                |  |
| A0 (Offset):         | 0.001866              |  |
| A1 (Gain):           | 0.07044               |  |
| A2 (Curvature):      | 0.0000                |  |
| n (Exponent):        | 1.000                 |  |
| Reslope              | QC Normalize          |  |
| <b>Slope:</b> 1.000  | Slope factor: 1.000   |  |
| <b>Y Int:</b> 0.0000 | <b>Offset:</b> 0.0000 |  |

| Standard Name | Stated | Found        | Diff         |
|---------------|--------|--------------|--------------|
| ICIS-4278202  | 0.0000 | -0.000002794 | -0.000002794 |
| IC-4278258    | 0.5000 | 0.5056       | 0.005587     |
| IC-4278206    | 1.000  | 0.9944       | -0.005587    |

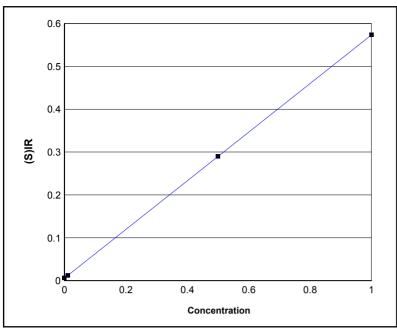

| % Diff  | (S)IR    | Stddev    | <b>Emphasis</b> |
|---------|----------|-----------|-----------------|
| 0.0000  | 0.001866 | 0.002207  | 1               |
| 1.117   | 0.03748  | 0.0002203 | 1               |
| -0.5587 | 0.07191  | 0.0006974 | 1               |



| Element Name:         | Co                |         |
|-----------------------|-------------------|---------|
| Element Wavelength:   | Co 228.616 nm     |         |
| Concentration Units:  | ppm               |         |
| Date of Calibration:  | 10/16/2017 9:48:  | 07AN    |
| Date of Fit:          | 10/16/2017 11:08: | 50AN    |
| Type of Fit:          | Linear            |         |
| Correlation:          | 0.99998           |         |
| A0 (Offset):          | 0.00013475        |         |
| A1 (Gain):            | 1.6700            |         |
| A2 (Curvature):       | 0.00000           |         |
| n (Exponent):         | 1.0000            |         |
| Reslope               | QC Normalize      |         |
| <b>Slope:</b> 1.0000  | Slope factor:     | 1.0000  |
| <b>Y Int:</b> 0.00000 | Offset:           | 0.00000 |

| Standard Name | Stated    | Found        | Diff         |
|---------------|-----------|--------------|--------------|
| ICIS-4278202  | 0.00000   | 0.0000001046 | 0.0000001046 |
| IC-4278204    | 0.0040000 | 0.0039119    | -0.000088061 |
| IC-4278258    | 0.50000   | 0.49579      | -0.0042123   |
| IC-4278206    | 1.0000    | 1.0043       | 0.0043003    |

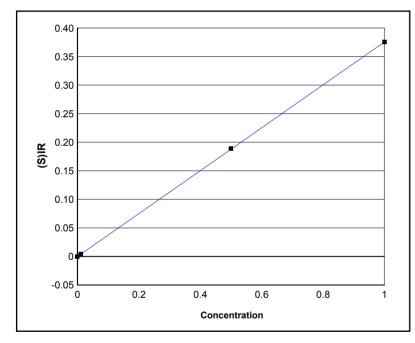
| <b>Emphasis</b> | Stddev      | (S)IR      | % Diff   |
|-----------------|-------------|------------|----------|
| 1               | 0.000067733 | 0.00013493 | 0.00000  |
| 1               | 0.00026558  | 0.0066714  | -2.2015  |
| 1               | 0.00016722  | 0.82912    | -0.84247 |
| 1               | 0.00082856  | 1.6794     | 0.43003  |




| Element Name:         | Cr                    |    |
|-----------------------|-----------------------|----|
| Element Wavelength:   | Cr 267.716 nm         |    |
| Concentration Units:  | ppm                   |    |
| Date of Calibration:  | 10/16/2017 9:48:07AN  |    |
| Date of Fit:          | 10/16/2017 11:08:50AN |    |
| Type of Fit:          | Linear                |    |
| Correlation: 0.99999  |                       |    |
| A0 (Offset):          | 0.00033268            |    |
| A1 (Gain):            | 0.35420               |    |
| A2 (Curvature):       | 0.00000               |    |
| n (Exponent):         | 1.0000                |    |
| Reslope               | QC Normalize          |    |
| <b>Slope:</b> 1.0000  | Slope factor: 1.000   | 00 |
| <b>Y Int:</b> 0.00000 | Offset: 0.0000        | 00 |

| Standard Name | Stated    | Found      | Diff         |
|---------------|-----------|------------|--------------|
| ICIS-4278202  | 0.00000 0 | 0000001801 | 0.0000001801 |
| IC-4278204    | 0.0040000 | 0.0038114  | -0.00018857  |
| IC-4278258    | 0.50000   | 0.50193    | 0.0019310    |
| IC-4278206    | 1.0000    | 0.99826    | -0.0017424   |

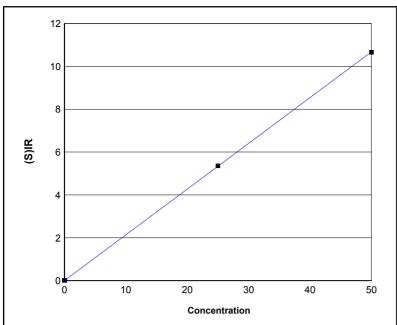
| % Diff   | (S)IR      | Stddev     | <b>Emphasis</b> |
|----------|------------|------------|-----------------|
| 0.00000  | 0.00033274 | 0.00013609 | 1               |
| -4.7142  | 0.0016828  | 0.00025267 | 1               |
| 0.38620  | 0.17811    | 0.0012377  | 1               |
| -0.17424 | 0.35390    | 0.00033828 | 1               |


Published: 10/17/2017 7:05:30AM 10/24/2017 Published: 10/17/2017 7:05:30AM Page 6 of 20



| Element Name:         | Cu                          |         |
|-----------------------|-----------------------------|---------|
| Element Wavelength:   | Cu 324.754 nm               |         |
| Concentration Units:  | ppm                         |         |
| Date of Calibration:  | 10/16/2017 9:48:            | 07AN    |
| Date of Fit:          | 10/16/2017 11:08:           | 50AN    |
| Type of Fit:          | Linear                      |         |
| Correlation:          | 0.99998                     |         |
| A0 (Offset):          | 0.0059413                   |         |
| A1 (Gain):            | 0.56774                     |         |
| A2 (Curvature):       | 0.00000                     |         |
| n (Exponent):         | <b>n (Exponent):</b> 1.0000 |         |
| Reslope               | QC Normalize                |         |
| <b>Slope:</b> 1.0000  | Slope factor:               | 1.0000  |
| <b>Y Int:</b> 0.00000 | Offset:                     | 0.00000 |

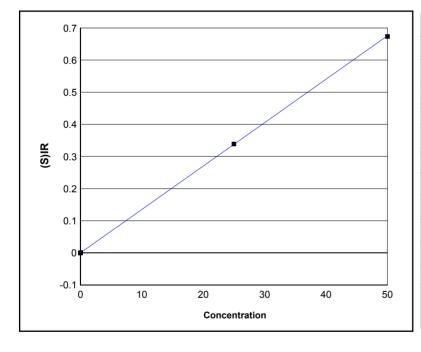
| Standard Name | Stated   | Found        | Diff          |
|---------------|----------|--------------|---------------|
| ICIS-4278202  | 0.00000  | 0.0000006672 | -0.0000006672 |
| IC-4278204    | 0.010000 | 0.010681     | 0.00068074    |
| IC-4278258    | 0.50000  | 0.49932      | -0.00067653   |
| IC-4278206    | 1.0000   | 1.00000      | -0.0000042085 |


| % Diff      | (S)IR     | Stddev     | <b>Emphasis</b> |
|-------------|-----------|------------|-----------------|
| 0.00000     | 0.0059409 | 0.00046608 | 1               |
| 6.8074      | 0.012005  | 0.00020026 | 1               |
| -0.13531    | 0.28943   | 0.0012293  | 1               |
| -0.00042085 | 0.57368   | 0.00065136 | 1               |



| Element Name:         | Cu               |         |
|-----------------------|------------------|---------|
| Element Wavelength:   | Cu 327.396 nm    |         |
| Concentration Units:  | ppm              |         |
| Date of Calibration:  | 10/16/2017 9:48: | 07AN    |
| Date of Fit:          | 10/16/2017 11:08 | :50AN   |
| Type of Fit:          | Linear           |         |
| Correlation:          | 1.00000          |         |
| A0 (Offset):          | -0.000053736     |         |
| A1 (Gain):            | 0.37544          |         |
| A2 (Curvature):       | 0.00000          |         |
| n (Exponent):         | 1.0000           |         |
| Reslope               | QC Normalize     |         |
| <b>Slope:</b> 1.0000  | Slope factor:    | 1.0000  |
| <b>Y Int:</b> 0.00000 | Offset:          | 0.00000 |

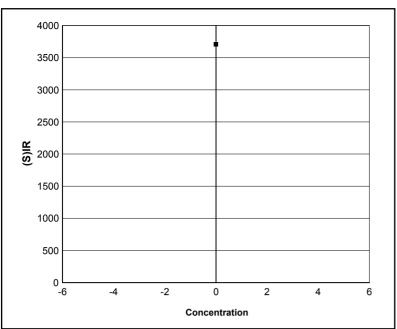
| Standard Name | Stated   | Found       | Diff         |
|---------------|----------|-------------|--------------|
| ICIS-4278202  | 0.00000  | 0.000000881 | 0.0000000881 |
| IC-4278204    | 0.010000 | 0.0098922   | -0.00010776  |
| IC-4278258    | 0.50000  | 0.50185     | 0.0018545    |
| IC-4278206    | 1.0000   | 0.99825     | -0.0017467   |


| % Diff   | (S)IR        | Stddev     | <b>Emphasis</b> |  |
|----------|--------------|------------|-----------------|--|
| 0.00000  | -0.000053702 | 0.00014371 | 1               |  |
| -1.0776  | 0.0036649    | 0.00026396 | 1               |  |
| 0.37089  | 0.18855      | 0.0010853  | 1               |  |
| -0.17467 | 0.37510      | 0.00053261 | 1               |  |



| Element Name:       |         | Fe               |         |
|---------------------|---------|------------------|---------|
| Element Waveler     | ngth:   | Fe 259.940 nm    |         |
| Concentration U     | nits:   | ppm              |         |
| Date of Calibration | on:     | 10/16/2017 9:48  | :07AV   |
| Date of Fit:        |         | 10/16/2017 11:08 | :50AN   |
| Type of Fit:        |         | Linear           |         |
| Correlation:        |         | 0.99993          |         |
| A0 (Offset):        |         | 0.00054660       |         |
| A1 (Gain):          |         | 0.21367          |         |
| A2 (Curvature):     |         | 0.00000          |         |
| n (Exponent):       |         | 1.0000           |         |
| Reslope             | )       | QC Norma         | lize    |
| Slope:              | 1.0000  | Slope factor:    | 1.0000  |
| Y Int:              | 0.00000 | Offset:          | 0.00000 |

| Standard Name | Stated   | Found        | Diff         |
|---------------|----------|--------------|--------------|
| ICIS-4278202  | 0.00000  | -0.000021247 | -0.000021247 |
| IC-4278204    | 0.050000 | 0.071145     | 0.021145     |
| IC-4278258    | 25.000   | 25.123       | 0.12312      |
| IC-4278206    | 50.000   | 49.856       | -0.14427     |


| % Diff   | (S)IR      | Stddev     | <b>Emphasis</b> |
|----------|------------|------------|-----------------|
| 0.00000  | 0.00054206 | 0.00054241 | 1               |
| 42.291   | 0.015748   | 0.00012426 | 1               |
| 0.49248  | 5.3685     | 0.033054   | 1               |
| -0.28853 | 10.653     | 0.0026046  | 1               |



| Element Name:         | Fe                     |  |
|-----------------------|------------------------|--|
| Element Wavelength:   | Fe 271.441 nm          |  |
| Concentration Units:  | ppm                    |  |
| Date of Calibration:  | 10/16/2017 9:48:07AN   |  |
| Date of Fit:          | 10/16/2017 11:08:50AN  |  |
| Type of Fit:          | Linear                 |  |
| Correlation:          | 0.99995                |  |
| A0 (Offset):          | -0.000012866           |  |
| A1 (Gain):            | 0.013508               |  |
| A2 (Curvature):       | 0.00000                |  |
| n (Exponent):         | 1.0000                 |  |
| Reslope               | QC Normalize           |  |
| <b>Slope:</b> 1.0000  | Slope factor: 1.0000   |  |
| <b>Y Int:</b> 0.00000 | <b>Offset:</b> 0.00000 |  |

| Standard Name | Stated   | Found        | Diff         |
|---------------|----------|--------------|--------------|
| ICIS-4278202  | 0.00000  | -0.000018105 | -0.000018105 |
| IC-4278204    | 0.050000 | 0.067994     | 0.017994     |
| IC-4278258    | 25.000   | 25.129       | 0.12886      |
| IC-4278206    | 50.000   | 49.853       | -0.14686     |

| % Diff   | (S)IR        | Stddev      | <b>Emphasis</b> |
|----------|--------------|-------------|-----------------|
| 0.00000  | -0.000013110 | 0.000018541 | 1               |
| 35.988   | 0.00090560   | 0.00035737  | 1               |
| 0.51545  | 0.33943      | 0.0030666   | 1               |
| -0.29372 | 0.67340      | 0.0029542   | 1               |

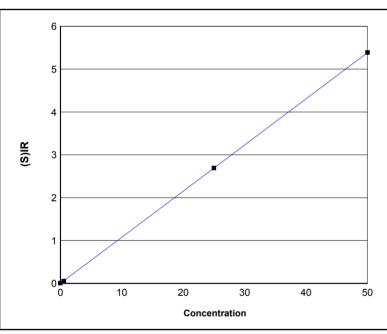


| Element Name:        | In                    |
|----------------------|-----------------------|
| Element Wavelength:  | In 230.606 nm         |
| Concentration Units: | ppm                   |
| Date of Calibration: | 10/16/2017 9:37:36AN  |
| Date of Fit:         | 10/16/2017 11:08:50AN |
| Type of Fit:         | Linear                |
| Correlation:         | 0.0000                |
| A0 (Offset):         | 0.0000                |
| A1 (Gain):           | 0.0000                |
| A2 (Curvature):      | 0.0000                |
| n (Exponent):        | 1.000                 |
| Reslope              | QC Normalize          |
| <b>Slope:</b> 1.000  | Slope factor: 1.000   |
| <b>Y Int:</b> 0.0000 | <b>Offset:</b> 0.0000 |

(S)IR

3,711

Stddev


1.664

**Emphasis** 

% Diff

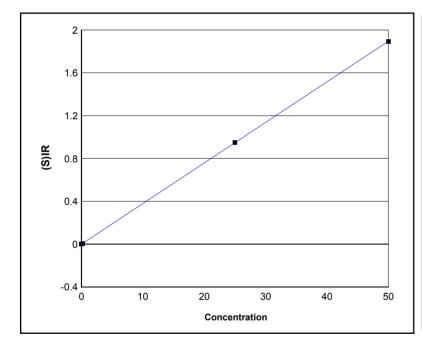
0.0000

| Standard Name | Stated | Found | Diff |
|---------------|--------|-------|------|
| ICIS-4278202  | 0.0000 |       |      |



| Element Name:         | K                |         |  |
|-----------------------|------------------|---------|--|
| Element Wavelength:   | K 766.490 nm     |         |  |
| Concentration Units:  | ppm              |         |  |
| Date of Calibration:  | 10/16/2017 9:48  | :07AV   |  |
| Date of Fit:          | 10/16/2017 11:08 | :50AN   |  |
| Type of Fit:          | Linear           |         |  |
| Correlation:          | 1.00000          |         |  |
| A0 (Offset):          | 0.00097797       |         |  |
| A1 (Gain):            | 0.10772          |         |  |
| A2 (Curvature):       | 0.00000          |         |  |
| n (Exponent):         | 1.0000           |         |  |
| Reslope               | QC Normalize     |         |  |
| <b>Slope:</b> 1.0000  | Slope factor:    | 1.0000  |  |
| <b>Y Int:</b> 0.00000 | Offset:          | 0.00000 |  |

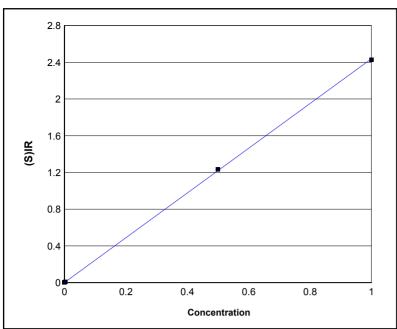
| Standard Name | Stated  | Found        | Diff         |
|---------------|---------|--------------|--------------|
| ICIS-4278202  | 0.00000 | 0.0000044204 | 0.0000044204 |
| IC-4278204    | 0.50000 | 0.49603      | -0.0039681   |
| IC-4278258    | 25.000  | 24.951       | -0.049204    |
| IC-4278206    | 50.000  | 50.053       | 0.053172     |


| % Diff   | (S)IR      | Stddev    | <b>Emphasis</b> |  |
|----------|------------|-----------|-----------------|--|
| 0.00000  | 0.00097845 | 0.0058166 | 1               |  |
| -0.79362 | 0.054411   | 0.0011086 | 1               |  |
| -0.19681 | 2.6887     | 0.012427  | 1               |  |
| 0.10634  | 5.3927     | 0.015587  | 1               |  |



| Element Name:    |         | Li               |         |  |
|------------------|---------|------------------|---------|--|
| Element Wavele   | ngth:   | Li 670.784 nm    |         |  |
| Concentration U  | Jnits:  | ppm              |         |  |
| Date of Calibrat | ion:    | 10/16/2017 9:48: | 07AN    |  |
| Date of Fit:     |         | 10/16/2017 11:08 | :50AN   |  |
| Type of Fit:     |         | Linear           |         |  |
| Correlation:     |         | 0.99998          |         |  |
| A0 (Offset):     |         | -0.0037318       |         |  |
| A1 (Gain):       |         | 2.5529           |         |  |
| A2 (Curvature):  |         | 0.00000          |         |  |
| n (Exponent):    |         | 1.0000           |         |  |
| Reslop           | e       | QC Normalize     |         |  |
| Slope:           | 1.0000  | Slope factor:    | 1.0000  |  |
| Y Int:           | 0.00000 | Offset:          | 0.00000 |  |

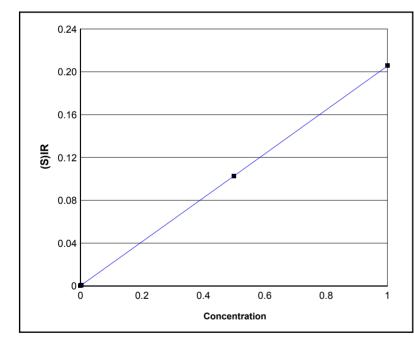
| Standard Name | Stated   | Found        | Diff          |
|---------------|----------|--------------|---------------|
| ICIS-4278202  | 0.00000  | 0.0000010930 | -0.0000010930 |
| IC-4278204    | 0.030000 | 0.031067     | 0.0010670     |
| IC-4278258    | 0.50000  | 0.50193      | 0.0019291     |
| IC-4278206    | 1.0000   | 0.99701      | -0.0029925    |


| <b>Emphasis</b> | Stddev    | (S)IR      | % Diff   |
|-----------------|-----------|------------|----------|
| 1               | 0.0011082 | -0.0037346 | 0.00000  |
| 1               | 0.0020272 | 0.075706   | 3.5566   |
| 1               | 0.0040089 | 1.2840     | 0.38581  |
| 1               | 0.0025824 | 2.5543     | -0.29925 |



| Element Name:         | Mg                    |    |  |
|-----------------------|-----------------------|----|--|
| Element Wavelength:   | Mg 279.079 nm         |    |  |
| Concentration Units:  | ppm                   |    |  |
| Date of Calibration:  | 10/16/2017 9:48:07AN  |    |  |
| Date of Fit:          | 10/16/2017 11:08:50AN |    |  |
| Type of Fit:          | Linear                |    |  |
| Correlation:          | 1.00000               |    |  |
| A0 (Offset):          | -0.00021008           |    |  |
| A1 (Gain):            | 0.037916              |    |  |
| A2 (Curvature):       | 0.00000               |    |  |
| n (Exponent):         | 1.0000                |    |  |
| Reslope               | QC Normalize          |    |  |
| <b>Slope:</b> 1.0000  | Slope factor: 1.00    | 00 |  |
| <b>Y Int:</b> 0.00000 | <b>Offset:</b> 0.000  | 00 |  |

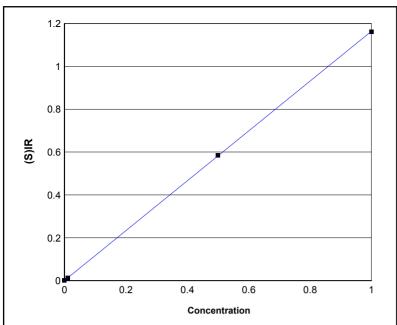
| Standard Name | Stated  | Found        | Diff          |
|---------------|---------|--------------|---------------|
| ICIS-4278202  | 0.00000 | 0.0000083560 | -0.0000083560 |
| IC-4278204    | 0.20000 | 0.20832      | 0.0083192     |
| IC-4278258    | 25.000  | 25.018       | 0.017506      |
| IC-4278206    | 50.000  | 49.974       | -0.025826     |


| % Diff    | (S)IR       | Stddev      | <b>Emphasis</b> |
|-----------|-------------|-------------|-----------------|
| 0.00000   | -0.00021040 | 0.000041333 | 1               |
| 4.1596    | 0.0076882   | 0.000070672 | 1               |
| 0.070025  | 0.94829     | 0.0016918   | 1               |
| -0.051651 | 1.8945      | 0.0038769   | 1               |



|                      |    |                   | 1       |  |
|----------------------|----|-------------------|---------|--|
| Element Name:        |    | Mn                |         |  |
| Element Wavelength:  |    | Mn 257.610 nm     |         |  |
| Concentration Units: |    | ppm               |         |  |
| Date of Calibration: |    | 10/16/2017 9:48:0 | D7AN    |  |
| Date of Fit:         |    | 10/16/2017 11:08: | 50AN    |  |
| Type of Fit:         |    | Linear            |         |  |
| Correlation:         |    | 0.9998            |         |  |
| A0 (Offset):         |    | 0.0020101         |         |  |
| A1 (Gain):           |    | 2.4357            |         |  |
| A2 (Curvature):      |    | 0.00000           |         |  |
| n (Exponent):        |    | 1.0000            |         |  |
| Reslope              |    | QC Normalize      |         |  |
| <b>Slope:</b> 1.00   | 00 | Slope factor:     | 1.0000  |  |
| <b>Y Int:</b> 0.000  | 00 | Offset:           | 0.00000 |  |

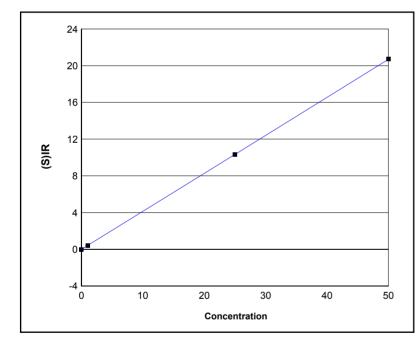
| Standard Name | Stated    | Found       | Diff         |
|---------------|-----------|-------------|--------------|
| ICIS-4278202  | 0.00000   | 0.000001683 | -0.000001683 |
| IC-4278204    | 0.0030000 | 0.0031567   | 0.00015671   |
| IC-4278258    | 0.50000   | 0.50403     | 0.0040332    |
| IC-4278206    | 1.0000    | 0.99581     | -0.0041898   |


| % Diff   | (S)IR     | Stddev      | <b>Emphasis</b> |
|----------|-----------|-------------|-----------------|
| 0.00000  | 0.0020097 | 0.000087718 | 1               |
| 5.2236   | 0.0097019 | 0.00041448  | 1               |
| 0.80664  | 1.2308    | 0.0017275   | 1               |
| -0.41898 | 2.4297    | 0.0049956   | 1               |



| Element Name:        | Mn              |         |
|----------------------|-----------------|---------|
| Element Wavelength:  | Mn 257.610 nm   |         |
| Concentration Units: | ppm             |         |
| Date of Calibration: | 10/16/2017 9:4  | 8:07AN  |
| Date of Fit:         | 10/16/2017 11:0 | 8:50AN  |
| Type of Fit:         | Linear          |         |
| Correlation:         | 0.99999         | )       |
| A0 (Offset):         | 0.00019165      | 5       |
| A1 (Gain):           | 0.20524         | 1       |
| A2 (Curvature):      | 0.00000         | )       |
| n (Exponent):        | 1.0000          | )       |
| Reslope              | QC Norm         | alize   |
| <b>Slope:</b> 1.0000 | Slope factor:   | 1.0000  |
| Y Int: 0.00000       | Offset:         | 0.00000 |

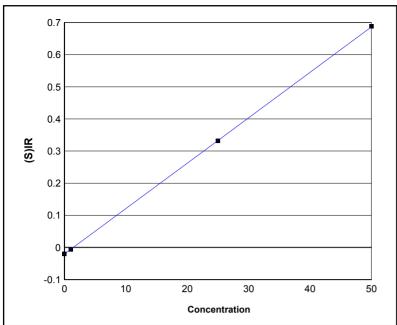
| Standard Name | Stated    | Found        | Diff          |
|---------------|-----------|--------------|---------------|
| ICIS-4278202  | 0.00000   | 0.0000002084 | -0.0000002084 |
| IC-4278204    | 0.0030000 | 0.0032128    | 0.00021278    |
| IC-4278258    | 0.50000   | 0.49877      | -0.0012323    |
| IC-4278206    | 1.0000    | 1.0010       | 0.0010197     |


| % Diff  | (S)IR      | Stddev      | <b>Emphasis</b> |
|---------|------------|-------------|-----------------|
| 0.00000 | 0.00019161 | 0.000013571 | 1               |
| 7.0925  | 0.00085130 | 0.000061297 | 1               |
| 0.24647 | 0.10265    | 0.00097525  | 1               |
| 0.10197 | 0.20583    | 0.00067101  | 1               |



| Element Name:     |         | Мо               |         |
|-------------------|---------|------------------|---------|
| Element Wavele    | ngth:   | Mo 202.030 nm    |         |
| Concentration U   | nits:   | ppm              |         |
| Date of Calibrati | on:     | 10/16/2017 9:48  | :07AV   |
| Date of Fit:      |         | 10/16/2017 11:08 | :50AN   |
| Type of Fit:      |         | Linear           |         |
| Correlation:      |         | 1.00000          |         |
| A0 (Offset):      |         | 0.00032889       |         |
| A1 (Gain):        |         | 1.1635           |         |
| A2 (Curvature):   |         | 0.00000          |         |
| n (Exponent):     |         | 1.0000           |         |
| Reslope           | €       | QC Norma         | lize    |
| Slope:            | 1.0000  | Slope factor:    | 1.0000  |
| Y Int:            | 0.00000 | Offset:          | 0.00000 |

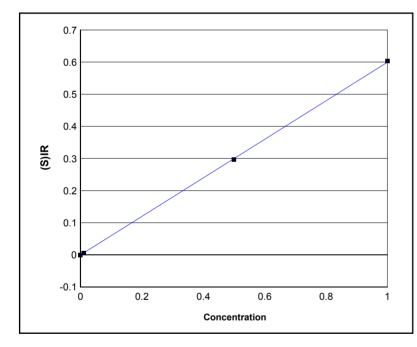
| Stated   | Found               | Diff                                                                   |
|----------|---------------------|------------------------------------------------------------------------|
| 0.00000  | 0.000001818         | -0.0000001818                                                          |
| 0.010000 | 0.010164            | 0.00016404                                                             |
| 0.50000  | 0.50194             | 0.0019366                                                              |
| 1.0000   | 0.99790             | -0.0021007                                                             |
|          | 0.010000<br>0.50000 | 0.00000 0.0000001818         0.010000 0.010164         0.50000 0.50194 |


| <b>Emphasis</b> | Stddev      | (S)IR      | % Diff   |
|-----------------|-------------|------------|----------|
| 1               | 0.000031792 | 0.00032868 | 0.00000  |
| 1               | 0.000057420 | 0.012155   | 1.6404   |
| 1               | 0.00049227  | 0.58435    | 0.38733  |
| 1               | 0.000074243 | 1.1614     | -0.21007 |



| Element Name:         | Na                 |         |
|-----------------------|--------------------|---------|
| Element Wavelength:   | Na 589.592 nm      |         |
| Concentration Units:  | ppm                |         |
| Date of Calibration:  | 10/16/2017 9:48:0  | 7AV     |
| Date of Fit:          | 10/16/2017 11:08:5 | 50AN    |
| Type of Fit:          | Linear             |         |
| Correlation:          | 0.99999            |         |
| A0 (Offset):          | -0.010175          |         |
| A1 (Gain):            | 0.41401            |         |
| A2 (Curvature):       | 0.00000            |         |
| n (Exponent):         | 1.0000             |         |
| Reslope               | QC Normaliz        | ze      |
| <b>Slope:</b> 1.0000  | Slope factor:      | 1.0000  |
| <b>Y Int:</b> 0.00000 | Offset:            | 0.00000 |

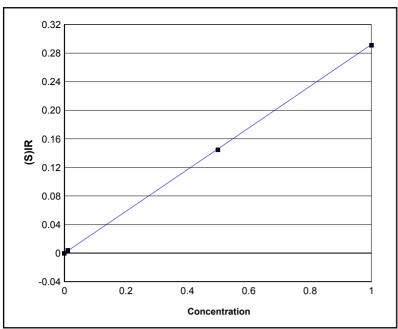
| Standard Name | Stated  | Found        | Diff         |
|---------------|---------|--------------|--------------|
| ICIS-4278202  | 0.00000 | -0.000018764 | -0.000018764 |
| IC-4278204    | 1.0000  | 1.0210       | 0.021032     |
| IC-4278258    | 25.000  | 24.908       | -0.092365    |
| IC-4278206    | 50.000  | 50.071       | 0.071333     |


| mphas | Stddev     | (S)IR     | % Diff   |
|-------|------------|-----------|----------|
|       | 0.00033336 | -0.010183 | 0.00000  |
|       | 0.00063069 | 0.41254   | 2.1032   |
|       | 0.035292   | 10.302    | -0.36946 |
|       | 0.058237   | 20.720    | 0.14267  |



| Element Name:       |         | Na               |         |
|---------------------|---------|------------------|---------|
| Element Waveler     | ngth:   | Na 818.326 nm    |         |
| Concentration U     | nits:   | ppm              |         |
| Date of Calibration | on:     | 10/16/2017 9:48  | :07AN   |
| Date of Fit:        |         | 10/16/2017 11:08 | 3:50AN  |
| Type of Fit:        |         | Linear           |         |
| Correlation:        |         | 0.99999          |         |
| A0 (Offset):        |         | -0.020574        |         |
| A1 (Gain):          |         | 0.014138         |         |
| A2 (Curvature):     |         | 0.00000          |         |
| n (Exponent):       |         | 1.0000           |         |
| Reslope             | )       | QC Norma         | lize    |
| Slope:              | 1.0000  | Slope factor:    | 1.0000  |
| Y Int:              | 0.00000 | Offset:          | 0.00000 |

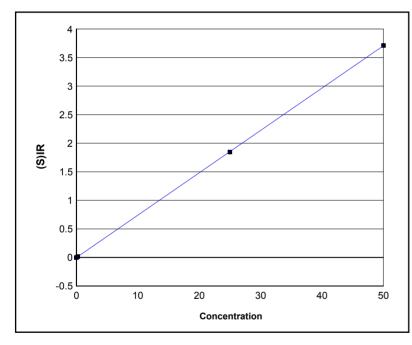
| Standard Name | Stated  | Found       | Diff        |
|---------------|---------|-------------|-------------|
| ICIS-4278202  | 0.00000 | 0.000011096 | 0.000011096 |
| IC-4278204    | 1.0000  | 0.99097     | -0.0090280  |
| IC-4278258    | 25.000  | 24.888      | -0.11241    |
| IC-4278206    | 50.000  | 50.121      | 0.12144     |


| <b>Emphasis</b> | Stddev      | (S)IR      | % Diff   |
|-----------------|-------------|------------|----------|
| 1               | 0.0036218   | -0.020574  | 0.00000  |
| 1               | 0.000085683 | -0.0065639 | -0.90280 |
| 1               | 0.0026892   | 0.33129    | -0.44965 |
| 1               | 0.0010397   | 0.68805    | 0.24288  |



| Element Name:        | Ni                   |         |
|----------------------|----------------------|---------|
| Element Wavelength:  | Ni 231.604 nm        |         |
| Concentration Units: | ppm                  |         |
| Date of Calibration: | 10/16/2017 9:48:08AN |         |
| Date of Fit:         | 10/16/2017 11:0      | 8:50AN  |
| Type of Fit:         | Linear               |         |
| Correlation:         | 0.99998              |         |
| A0 (Offset):         | -0.00043982          |         |
| A1 (Gain):           | 0.59992              | 2       |
| A2 (Curvature):      | 0.00000              | )       |
| n (Exponent):        | 1.0000               | )       |
| Reslope              | QC Normalize         |         |
| <b>Slope:</b> 1.0000 | Slope factor:        | 1.0000  |
| Y Int: 0.00000       | Offset:              | 0.00000 |

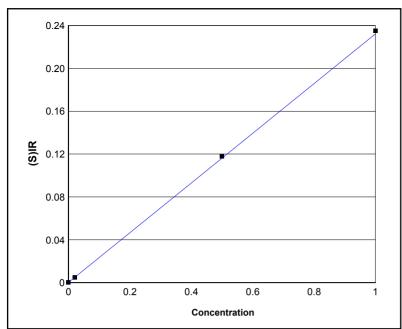
| Standard Name | Stated   | Found        | Diff         |
|---------------|----------|--------------|--------------|
| ICIS-4278202  | 0.00000  | 0.0000001148 | 0.0000001148 |
| IC-4278204    | 0.010000 | 0.0099279    | -0.000072053 |
| IC-4278258    | 0.50000  | 0.49566      | -0.0043439   |
| IC-4278206    | 1.0000   | 1.0044       | 0.0044159    |


| % Diff   | (S)IR       | Stddev      | <b>Emphasis</b> |
|----------|-------------|-------------|-----------------|
| 0.00000  | -0.00043975 | 0.000042399 | 1               |
| -0.72053 | 0.0055168   | 0.000064789 | 1               |
| -0.86879 | 0.29723     | 0.00012360  | 1               |
| 0.44159  | 0.60276     | 0.000067439 | 1               |



| Element Name:       |         | Pb                   |         |
|---------------------|---------|----------------------|---------|
| Element Waveler     | ngth:   | Pb 220.353 nm        |         |
| Concentration U     | nits:   | ppm                  |         |
| Date of Calibration | on:     | 10/16/2017 9:48:08AN |         |
| Date of Fit:        |         | 10/16/2017 11:08     | 3:50AN  |
| Type of Fit:        |         | Linear               |         |
| Correlation:        |         | 0.99986              |         |
| A0 (Offset):        |         | -0.00013238          |         |
| A1 (Gain):          |         | 0.29212              |         |
| A2 (Curvature):     |         | 0.00000              |         |
| n (Exponent):       |         | 1.0000               |         |
| Reslope             | •       | QC Norma             | lize    |
| Slope:              | 1.0000  | Slope factor:        | 1.0000  |
| Y Int:              | 0.00000 | Offset:              | 0.00000 |

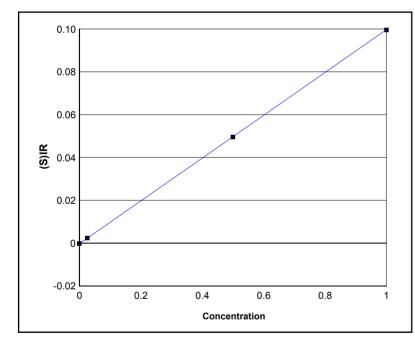
| Standard Name | Stated   | Found        | Diff          |
|---------------|----------|--------------|---------------|
| ICIS-4278202  | 0.00000  | 0.0000020050 | -0.0000020050 |
| IC-4278204    | 0.010000 | 0.012047     | 0.0020471     |
| IC-4278258    | 0.50000  | 0.49784      | -0.0021636    |
| IC-4278206    | 1.0000   | 1.0001       | 0.00011635    |


| % Diff   | (S)IR       | Stddev     | <b>Emphasis</b> |
|----------|-------------|------------|-----------------|
| 0.00000  | -0.00013296 | 0.00018651 | 1               |
| 20.471   | 0.0033804   | 0.00023597 | 1               |
| -0.43272 | 0.14496     | 0.00034005 | 1               |
| 0.011635 | 0.29136     | 0.0013067  | 1               |



| Element Name:         | S                    |         |
|-----------------------|----------------------|---------|
| Element Wavelength:   | S 182.034 nm         |         |
| Concentration Units:  | ppm                  |         |
| Date of Calibration:  | 10/16/2017 9:48:08AN |         |
| Date of Fit:          | 10/16/2017 11:08:50  | λN      |
| Type of Fit:          | Linear               |         |
| Correlation:          | 1.00000              |         |
| A0 (Offset):          | -0.000027740         |         |
| A1 (Gain):            | 0.074124             |         |
| A2 (Curvature):       | 0.00000              |         |
| n (Exponent):         | 1.0000               |         |
| Reslope               | QC Normalize         |         |
| <b>Slope:</b> 1.0000  | Slope factor:        | 1.0000  |
| <b>Y Int:</b> 0.00000 | Offset:              | 0.00000 |

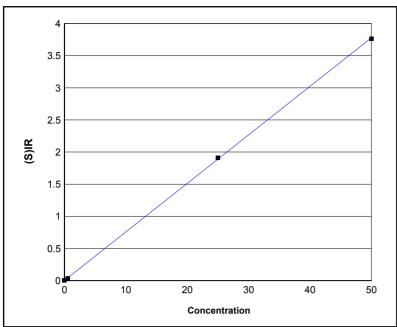
| Standard Name | Stated      | Found      | Diff         |
|---------------|-------------|------------|--------------|
| ICIS-4278202  | 0.00000 0.0 | 0000021242 | 0.0000021242 |
| IC-4278204    | 0.20000     | 0.19828    | -0.0017181   |
| IC-4278258    | 25.000      | 24.897     | -0.10325     |
| IC-4278206    | 50.000      | 50.105     | 0.10497      |


| % Diff   | (S)IR        | Stddev      | <b>Emphasis</b> |
|----------|--------------|-------------|-----------------|
| 0.00000  | -0.000027583 | 0.000044593 | 1               |
| -0.85904 | 0.014670     | 0.000085650 | 1               |
| -0.41302 | 1.8454       | 0.0026842   | 1               |
| 0.20994  | 3.7140       | 0.0023931   | 1               |



| Element Name:         | Sb                   |         |
|-----------------------|----------------------|---------|
| Element Wavelength:   | Sb 206.833 nm        |         |
| Concentration Units:  | ppm                  |         |
| Date of Calibration:  | 10/16/2017 9:48:08AN |         |
| Date of Fit:          | 10/16/2017 11:08:    | 50AN    |
| Type of Fit:          | Linear               |         |
| Correlation:          | 1.00000              |         |
| A0 (Offset):          | 0.00011866           |         |
| A1 (Gain):            | 0.23211              |         |
| A2 (Curvature):       | 0.00000              |         |
| n (Exponent):         | 1.0000               |         |
| Reslope               | QC Normal            | ize     |
| <b>Slope:</b> 1.0000  | Slope factor:        | 1.0000  |
| <b>Y Int:</b> 0.00000 | Offset:              | 0.00000 |

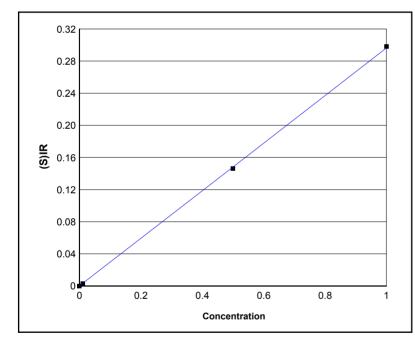
| Standard Name | Stated     | Found      | Diff         |
|---------------|------------|------------|--------------|
| ICIS-4278202  | 0.00000 0. | 0000002535 | 0.0000002535 |
| IC-4278204    | 0.020000   | 0.019720   | -0.00028014  |
| IC-4278258    | 0.50000    | 0.50105    | 0.0010529    |
| IC-4278206    | 1.0000     | 0.99922    | -0.00077570  |
|               |            |            |              |


| <b>Emphasis</b> | Stddev      | (S)IR      | % Diff    |
|-----------------|-------------|------------|-----------|
| 1               | 0.00013937  | 0.00011872 | 0.00000   |
| 1               | 0.000021586 | 0.0047086  | -1.4007   |
| 1               | 0.00058039  | 0.11796    | 0.21059   |
| 1               | 0.000091106 | 0.23513    | -0.077570 |



| Element Name:        | Se               |         |
|----------------------|------------------|---------|
| Element Wavelength:  | Se 196.090 nm    |         |
| Concentration Units: | ppm              |         |
| Date of Calibration: | 10/16/2017 9:48  | :08AV   |
| Date of Fit:         | 10/16/2017 11:08 | 3:50AN  |
| Type of Fit:         | Linear           |         |
| Correlation:         | 0.99998          |         |
| A0 (Offset):         | -0.00023188      |         |
| A1 (Gain):           | 0.099907         |         |
| A2 (Curvature):      | 0.00000          |         |
| n (Exponent):        | 1.0000           |         |
| Reslope              | QC Norma         | lize    |
| <b>Slope:</b> 1.0000 | Slope factor:    | 1.0000  |
| Y Int: 0.00000       | Offset:          | 0.00000 |

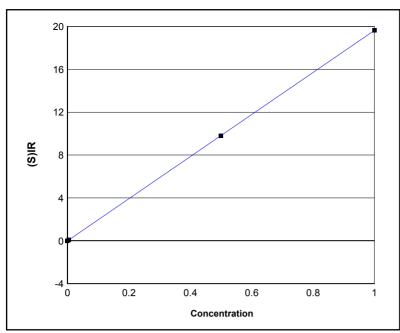
| Standard Name | Stated   | Found        | Diff          |
|---------------|----------|--------------|---------------|
| ICIS-4278202  | 0.00000  | 0.0000011918 | -0.0000011918 |
| IC-4278204    | 0.025000 | 0.026235     | 0.0012350     |
| IC-4278258    | 0.50000  | 0.49951      | -0.00049055   |
| IC-4278206    | 1.0000   | 0.99925      | -0.00074563   |


| % Diff    | (S)IR       | Stddev      | <b>Emphasis</b> |
|-----------|-------------|-------------|-----------------|
| 0.00000   | -0.00023200 | 0.00018548  | 1               |
| 4.9398    | 0.0023887   | 0.000054311 | 1               |
| -0.098110 | 0.049613    | 0.000090548 | 1               |
| -0.074563 | 0.099481    | 0.00042511  | 1               |



| Element Name:     |         | Si               |         |
|-------------------|---------|------------------|---------|
| Element Waveler   | ngth:   | Si 288.158 nm    |         |
| Concentration U   | nits:   | ppm              |         |
| Date of Calibrati | on:     | 10/16/2017 9:48  | :08AV   |
| Date of Fit:      |         | 10/16/2017 11:08 | 3:50AN  |
| Type of Fit:      |         | Linear           |         |
| Correlation:      |         | 0.99994          |         |
| A0 (Offset):      |         | 0.0027334        |         |
| A1 (Gain):        |         | 0.075524         |         |
| A2 (Curvature):   |         | 0.00000          |         |
| n (Exponent):     |         | 1.0000           |         |
| Reslope           | )       | QC Norma         | lize    |
| Slope:            | 1.0000  | Slope factor:    | 1.0000  |
| Y Int:            | 0.00000 | Offset:          | 0.00000 |

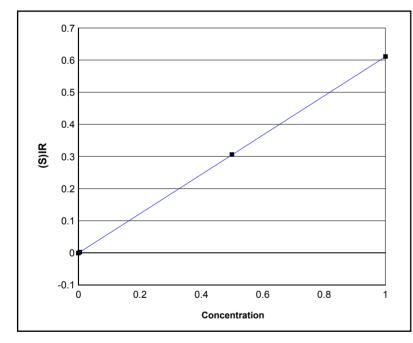
| Standard Name | Stated  | Found       | Diff        |
|---------------|---------|-------------|-------------|
| ICIS-4278202  | 0.00000 | 0.000051063 | 0.000051063 |
| IC-4278204    | 0.50000 | 0.44588     | -0.054124   |
| IC-4278258    | 25.000  | 25.252      | 0.25203     |
| IC-4278206    | 50.000  | 49.802      | -0.19790    |
|               |         |             |             |


| <b>Emphasis</b> | Stddev     | (S)IR     | % Diff   |
|-----------------|------------|-----------|----------|
| 1               | 0.00099587 | 0.0027372 | 0.00000  |
| 1               | 0.00022053 | 0.036408  | -10.825  |
| 1               | 0.011591   | 1.9099    | 1.0081   |
| 1               | 0.0049815  | 3.7640    | -0.39580 |



| Element Name:        | Sn            |          |
|----------------------|---------------|----------|
| Element Wavelength:  | Sn 189.989 nm | 1        |
| Concentration Units: | ppm           |          |
| Date of Calibration: | 10/16/2017 9: | 48:08AN  |
| Date of Fit:         | 10/16/2017 11 | :08:50AN |
| Type of Fit:         | Linear        |          |
| Correlation:         | 0.999         | 95       |
| A0 (Offset):         | 0.00012382    |          |
| A1 (Gain):           | 0.296         | 15       |
| A2 (Curvature):      | 0.000         | 00       |
| n (Exponent):        | 1.00          | 00       |
| Reslope              | QC Nori       | malize   |
| <b>Slope:</b> 1.0000 | Slope factor: | 1.0000   |
| Y Int: 0.00000       | Offset:       | 0.00000  |

| Standard Name | Stated   | Found        | Diff         |
|---------------|----------|--------------|--------------|
| ICIS-4278202  | 0.00000  | 0.0000001590 | -0.000001590 |
| IC-4278204    | 0.010000 | 0.010230     | 0.00023012   |
| IC-4278258    | 0.50000  | 0.49312      | -0.0068847   |
| IC-4278206    | 1.0000   | 1.0067       | 0.0066546    |


| % Diff  | (S)IR      | Stddev     | <b>Emphasis</b> |
|---------|------------|------------|-----------------|
| 0.00000 | 0.00012377 | 0.00011889 | 1               |
| 2.3012  | 0.0031535  | 0.00016111 | 1               |
| -1.3769 | 0.14616    | 0.00020104 | 1               |
| 0.66546 | 0.29824    | 0.00069435 | 1               |



| Element Name:         | Sr                    |    |
|-----------------------|-----------------------|----|
| Element Wavelength:   | Sr 407.771 nm         |    |
| Concentration Units:  | ppm                   |    |
| Date of Calibration:  | 10/16/2017 9:48:08AN  |    |
| Date of Fit:          | 10/16/2017 11:08:50AN |    |
| Type of Fit:          | Linear                |    |
| Correlation:          | 1.00000               |    |
| A0 (Offset):          | -0.0034292            |    |
| A1 (Gain):            | 19.645                |    |
| A2 (Curvature):       | 0.00000               |    |
| n (Exponent):         | 1.0000                |    |
| Reslope               | QC Normalize          |    |
| <b>Slope:</b> 1.0000  | Slope factor: 1.00    | 00 |
| <b>Y Int:</b> 0.00000 | <b>Offset:</b> 0.000  | 00 |

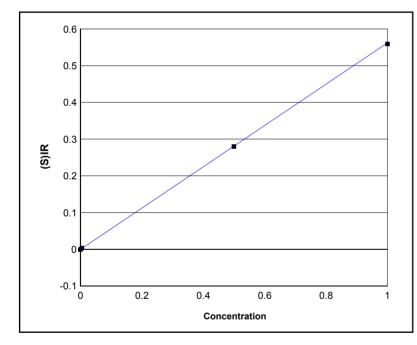
| Standard Name | Stated    | Found       | Diff         |
|---------------|-----------|-------------|--------------|
| ICIS-4278202  | 0.00000   | 0.000000378 | -0.000000378 |
| IC-4278204    | 0.0050000 | 0.0050418   | 0.000041806  |
| IC-4278258    | 0.50000   | 0.49924     | -0.00075620  |
| IC-4278206    | 1.0000    | 1.0007      | 0.00071439   |

| <b>Emphasis</b> | Stddev     | (S)IR      | % Diff   |
|-----------------|------------|------------|----------|
| 1               | 0.00023789 | -0.0034299 | 0.00000  |
| 1               | 0.0011327  | 0.095620   | 0.83613  |
| 1               | 0.033302   | 9.8045     | -0.15124 |
| 1               | 0.031613   | 19.656     | 0.071439 |



| Element Name:        | Ti               |         |  |
|----------------------|------------------|---------|--|
| Element Wavelength:  | Ti 334.904 nm    |         |  |
| Concentration Units: | ppm              |         |  |
| Date of Calibration: | 10/16/2017 9:48  | 08AV    |  |
| Date of Fit:         | 10/16/2017 11:08 | :50AN   |  |
| Type of Fit:         | Linear           |         |  |
| Correlation:         | 0.99997          |         |  |
| A0 (Offset):         | -0.00020714      |         |  |
| A1 (Gain):           | 0.61072          |         |  |
| A2 (Curvature):      | 0.00000          |         |  |
| n (Exponent):        | 1.0000           |         |  |
| Reslope              | QC Normalize     |         |  |
| <b>Slope:</b> 1.0000 | Slope factor:    | 1.0000  |  |
| Y Int: 0.00000       | Offset:          | 0.00000 |  |

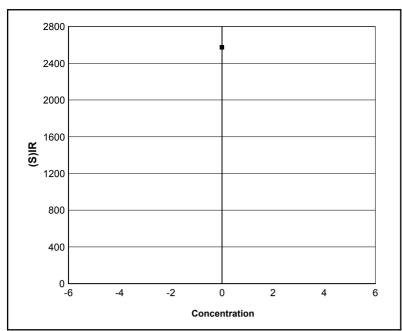
| Standard Name | Stated     | Found      | Diff         |
|---------------|------------|------------|--------------|
| ICIS-4278202  | 0.00000 0. | 0000006002 | 0.0000006002 |
| IC-4278204    | 0.0050000  | 0.0043916  | -0.00060845  |
| IC-4278258    | 0.50000    | 0.50105    | 0.0010490    |
| IC-4278206    | 1.0000     | 0.99956    | -0.00043987  |


| <b>Emphasis</b> | Stddev       | (S)IR       | % Diff    |
|-----------------|--------------|-------------|-----------|
| 1               | 0.00023088   | -0.00020677 | 0.00000   |
| 1               | 0.0000021449 | 0.0024825   | -12.169   |
| 1               | 0.00093880   | 0.30622     | 0.20980   |
| 1               | 0.000062212  | 0.61110     | -0.043987 |



| Element Name:     |         | TI                |         |  |
|-------------------|---------|-------------------|---------|--|
| Element Wavele    | ngth:   | TI 190.856 nm     |         |  |
| Concentration U   | nits:   | ts: ppm           |         |  |
| Date of Calibrati | on:     | 10/16/2017 9:48:  | 08AV    |  |
| Date of Fit:      |         | 10/16/2017 11:08: | :50AN   |  |
| Type of Fit:      |         | Linear            |         |  |
| Correlation:      |         | 1.00000           |         |  |
| A0 (Offset):      |         | -0.00026763       |         |  |
| A1 (Gain):        |         | 0.10852           |         |  |
| A2 (Curvature):   |         | 0.00000           |         |  |
| n (Exponent):     |         | 1.0000            |         |  |
| Reslope           | €       | QC Normalize      |         |  |
| Slope:            | 1.0000  | Slope factor:     | 1.0000  |  |
| Y Int:            | 0.00000 | Offset:           | 0.00000 |  |

| Standard Name | Stated   | Found        | Diff         |
|---------------|----------|--------------|--------------|
| ICIS-4278202  | 0.00000  | 0.0000000970 | 0.0000000970 |
| IC-4278204    | 0.020000 | 0.019909     | -0.000090812 |
| IC-4278258    | 0.50000  | 0.49960      | -0.00040161  |
| IC-4278206    | 1.0000   | 1.0005       | 0.00049224   |


| % Diff    | (S)IR       | Stddev      | <b>Emphasis</b> |
|-----------|-------------|-------------|-----------------|
| 0.00000   | -0.00026762 | 0.000063841 | 1               |
| -0.45406  | 0.0018935   | 0.00010219  | 1               |
| -0.080322 | 0.054075    | 0.000042000 | 1               |
| 0.049224  | 0.10856     | 0.000097610 | 1               |



| Element Name:        | V                   |         |  |
|----------------------|---------------------|---------|--|
| Element Wavelength:  | V 292.402 nm        |         |  |
| Concentration Units: | ppm                 |         |  |
| Date of Calibration: | 10/16/2017 9:48:08  | AV      |  |
| Date of Fit:         | 10/16/2017 11:08:50 | )AN     |  |
| Type of Fit:         | Linear              |         |  |
| Correlation:         | 0.9999              |         |  |
| A0 (Offset):         | -0.00035233         |         |  |
| A1 (Gain):           | 0.56271             |         |  |
| A2 (Curvature):      | 0.00000             |         |  |
| n (Exponent):        | 1.0000              |         |  |
| Reslope              | QC Normalize        |         |  |
| <b>Slope:</b> 1.0000 | Slope factor:       | 1.0000  |  |
| Y Int: 0.00000       | Offset:             | 0.00000 |  |

| Standard Name | Stated    | Found       | Diff          |
|---------------|-----------|-------------|---------------|
| ICIS-4278202  | 0.00000   | .0000003938 | -0.0000003938 |
| IC-4278204    | 0.0050000 | 0.0053939   | 0.00039391    |
| IC-4278258    | 0.50000   | 0.50036     | 0.00036278    |
| IC-4278206    | 1.0000    | 0.99925     | -0.00075423   |

| <b>Emphasis</b> | Stddev      | (S)IR       | % Diff    |
|-----------------|-------------|-------------|-----------|
| 1               | 0.00026278  | -0.00035256 | 0.00000   |
| 1               | 0.00020035  | 0.0026523   | 7.8783    |
| 1               | 0.00080997  | 0.27991     | 0.072557  |
| 1               | 0.000045124 | 0.55933     | -0.075423 |



| Element Name:       |        | Υ                  |        |  |
|---------------------|--------|--------------------|--------|--|
| Element Waveleng    | gth:   | Y 224.306 nm       |        |  |
| Concentration Un    | its:   | ppm                |        |  |
| Date of Calibration | n:     | 10/16/2017 9:37:30 | 6AN    |  |
| Date of Fit:        |        | 10/16/2017 11:08:5 | /AN    |  |
| Type of Fit:        |        | Linear             |        |  |
| Correlation:        |        | 0.0000             |        |  |
| A0 (Offset):        |        | 0.0000             |        |  |
| A1 (Gain):          |        | 0.0000             |        |  |
| A2 (Curvature):     |        | 0.0000             |        |  |
| n (Exponent):       |        | 1.000              |        |  |
| Reslope             |        | QC Normalize       |        |  |
| Slope:              | 1.000  | Slope factor:      | 1.000  |  |
| Y Int:              | 0.0000 | Offset:            | 0.0000 |  |

(S)IR

Stddev

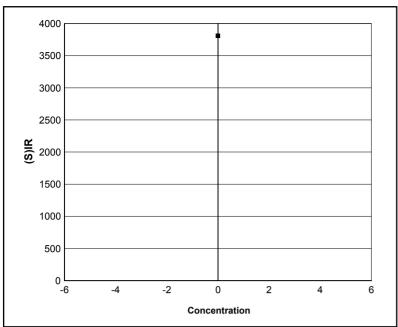
**Emphasis** 

| ICIS-4278202 |    | 0.000 | 00         |    |   |   |
|--------------|----|-------|------------|----|---|---|
| 24K          |    |       |            |    |   |   |
| 20K          |    |       |            |    |   |   |
| 16K          |    |       |            |    |   |   |
| <b>S</b> 12K |    |       |            |    |   |   |
| 8К           |    |       |            |    |   |   |
| 4K           |    |       |            |    |   |   |
| 0K<br>-6     | -4 | -2    | 0          | 2  | 4 | 6 |
|              |    | С     | oncentrati | on |   |   |

Stated

Found

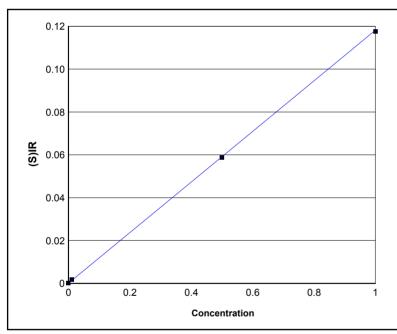
**Standard Name** 


| 0.0000                   | 2,577             | 0.1344             | 1      |
|--------------------------|-------------------|--------------------|--------|
| Element Name:            |                   | Υ                  |        |
| Element Wavelength       | :                 | Y 360.073 nm       |        |
| Concentration Units      |                   | ppm                |        |
| Date of Calibration:     |                   | 10/16/2017 9:37:3  | 6AN    |
| Date of Fit:             |                   | 10/16/2017 11:08:5 | 50AN   |
| Type of Fit:             |                   | Linear             |        |
| Correlation:             |                   | 0.0000             |        |
| A0 (Offset):             |                   | 0.0000             |        |
| <b>A1 (Gain):</b> 0.0000 |                   |                    |        |
| A2 (Curvature):          | urvature): 0.0000 |                    |        |
| n (Exponent):            |                   | 1.000              |        |
| Reslope                  |                   | QC Normaliz        | ze     |
| Slope:                   | 1.000             | Slope factor:      | 1.000  |
| <b>Y Int:</b> 0.         | 0000              | Offset:            | 0.0000 |

| Standard Name | Stated | Found | Diff | % Diff | (S)IR  | Stddev | <b>Emphasis</b> |
|---------------|--------|-------|------|--------|--------|--------|-----------------|
| ICIS-4278202  | 0.0000 |       |      | 0.0000 | 21,970 | 141.4  | 1               |

Diff

% Diff


10/24/2017 Published: 10/17/2017 7:05:30AM Page 19 of 20



| Element Name:                 |        | Υ                   |        |  |
|-------------------------------|--------|---------------------|--------|--|
| Element Wavelength:           |        | Y 377.433 nm        |        |  |
| Concentration Unit            | ts:    | ppm                 |        |  |
| Date of Calibration           | :      | 10/16/2017 9:37:36  | AV     |  |
| Date of Fit:                  |        | 10/16/2017 11:08:50 | )AN    |  |
| Type of Fit:                  |        | Linear              |        |  |
| Correlation:                  |        | 0.0000              |        |  |
| A0 (Offset): 0.0000           |        |                     |        |  |
| A1 (Gain): 0.0000             |        |                     |        |  |
| <b>A2 (Curvature):</b> 0.0000 |        |                     |        |  |
| n (Exponent):                 |        | 1.000               |        |  |
| Reslope                       |        | QC Normalize        |        |  |
| Slope:                        | 1.000  | Slope factor:       | 1.000  |  |
| Y Int:                        | 0.0000 | Offset:             | 0.0000 |  |

| Standard Name | Stated | Found | Diff |
|---------------|--------|-------|------|
| ICIS-4278202  | 0.0000 |       |      |





| Element Name:        | Zn                    |  |  |
|----------------------|-----------------------|--|--|
| Element Wavelength:  | Zn 206.200 nm         |  |  |
| Concentration Units: | ppm                   |  |  |
| Date of Calibration: | 10/16/2017 9:48:08AN  |  |  |
| Date of Fit:         | 10/16/2017 11:08:50AN |  |  |
| Type of Fit:         | Linear                |  |  |
| Correlation:         | 0.99953               |  |  |
| A0 (Offset):         | 0.000046110           |  |  |
| A1 (Gain):           | 0.11820               |  |  |
| A2 (Curvature):      | 0.00000               |  |  |
| n (Exponent):        | 1.0000                |  |  |
| Reslope              | QC Normalize          |  |  |
| <b>Slope:</b> 1.0000 | Slope factor: 1.0000  |  |  |
| Y Int: 0.00000       | Offset: 0.00000       |  |  |

| Standard Name | Stated   | Found        | Diff          |
|---------------|----------|--------------|---------------|
| ICIS-4278202  | 0.00000  | 0.0000037144 | -0.0000037144 |
| IC-4278204    | 0.010000 | 0.013764     | 0.0037644     |
| IC-4278258    | 0.50000  | 0.49877      | -0.0012284    |
| IC-4278206    | 1.0000   | 0.99746      | -0.0025401    |

| % Diff   | (S)IR       | Stddev       | <b>Emphasis</b> |
|----------|-------------|--------------|-----------------|
| 0.00000  | 0.000045671 | 0.0000035652 | 1               |
| 37.644   | 0.0016722   | 0.000055546  | 1               |
| -0.24567 | 0.058893    | 0.000036742  | 1               |
| -0.25401 | 0.11773     | 0.00034807   | 1               |

Sample Name: IC-4278204 Acquired: 10/16/2017 9:37:39 Type: Cal Method: ICAP2 June 2017(v154) Mode: IR Corr. Factor: 1.000000 User: AMH Custom ID1: Custom ID2: Custom ID3:

Comment:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Ag3280<br>328.068 {103}<br>Cts/S<br>.00235<br>.00001<br>.39823            | Al3082<br>308.215 {109}<br>Cts/S<br>. <b>01174</b><br>.00027<br>2.2797 | Cts/S<br>. <b>00166</b>                                                |                                                    |                                                                |
|------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|
| #1                                             | .00235                                                                    | .01193                                                                 | .00158                                                                 | .01606                                             | .03033                                                         |
| #2                                             | .00234                                                                    | .01155                                                                 | .00174                                                                 | .01609                                             | .03083                                                         |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Ba4554-2<br>455.403 { 74}2<br>Cts/S<br>. <b>06744</b><br>.00035<br>.51745 | Be3130<br>313.042 {108}<br>Cts/S<br>.02151<br>.00071<br>3.3101         | Čts/Š<br>. <b>17656</b>                                                | 228.802 {447}<br>Cts/S<br>. <b>00858</b><br>.00027 | Co2286<br>228.616 {447}<br>Cts/S<br>.00667<br>.00027<br>3.9808 |
| #1                                             | .06768                                                                    | .02101                                                                 | .17557                                                                 |                                                    | .00686                                                         |
| #2                                             | .06719                                                                    | .02202                                                                 | .17754                                                                 |                                                    | .00648                                                         |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Cr2677<br>267.716 {126}<br>Cts/S<br>. <b>00168</b><br>.00025<br>15.014    | Cu3273<br>327.396 {103}<br>Cts/S<br>. <b>00366</b><br>.00026<br>7.2024 | Fe2599<br>259.940 {130}<br>Cts/S<br>. <b>01575</b><br>.00012<br>.78906 | .00036                                             | _                                                              |
| #1                                             | .00150                                                                    | .00385                                                                 | .01566                                                                 | .00065                                             | .05519                                                         |
| #2                                             | .00186                                                                    | .00348                                                                 | .01584                                                                 | .00116                                             | .05363                                                         |
| Elem                                           | Li6707                                                                    | Mg2790                                                                 | Mn2576                                                                 | Mn2576-2                                           | Mo2020                                                         |
| Line                                           | 670.784 { 50} ;                                                           | 279.079 {121}2                                                         | 257.610 {131}                                                          | 257.610 {131}2                                     | 202.030 {467}                                                  |
| Units                                          | Cts/S                                                                     | Cts/S                                                                  | Cts/S                                                                  | Cts/S                                              | Cts/S                                                          |
| Avg                                            | . <b>07571</b>                                                            | . <b>00769</b>                                                         | .00970                                                                 | .00085                                             | .01216                                                         |
| Stddev                                         | .00203                                                                    | .00007                                                                 | .00041                                                                 | .00006                                             | .00006                                                         |
| %RSD                                           | 2.6777                                                                    | .91923                                                                 | 4.2722                                                                 | 7.2005                                             | .47239                                                         |
| #1                                             | .07714                                                                    | .00764                                                                 | .00941                                                                 | .00089                                             | .01211                                                         |
| #2                                             | .07427                                                                    | .00774                                                                 | .00999                                                                 | .00081                                             | .01220                                                         |

Sample Name: IC-4278204 Acquired: 10/16/2017 9:37:39 Type: Cal Method: ICAP2 June 2017(v154) Mode: IR Corr. Factor: 1.000000 User: AMH Custom ID1: Custom ID2: Custom ID3:

Comment:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD      | Na5895<br>589.592 { 57}<br>Cts/S<br>. <b>41254</b><br>.00063<br>.15288 | 818.326 { 41}<br>Cts/S<br>00656                    | 231.604 {446}<br>Cts/S<br>. <b>00552</b><br>.00006                  | 220.353 {453}<br>Cts/S<br>. <b>00338</b><br>.00024 | 182.034 {485}<br>Cts/S<br>. <b>01467</b>           |
|-----------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| #1<br>#2                                            | .41299<br>.41210                                                       | 00650<br>00662                                     | .00547<br>.00556                                                    | .00355<br>.00321                                   | .01473<br>.01461                                   |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD      | Sb2068<br>206.833 {463}<br>Cts/S<br>.00471<br>.00002<br>.45844         | 196.090 {472}<br>Cts/S<br>. <b>00239</b><br>.00005 | 288.158 {117}2<br>Cts/S<br>. <b>03641</b><br>.00022                 | 189.989 {477}<br>Cts/S<br>. <b>00315</b><br>.00016 | 407.771 { 83}<br>Cts/S<br>. <b>09562</b><br>.00113 |
| #1<br>#2                                            | .00472<br>.00469                                                       | .00235<br>.00243                                   |                                                                     | .00327<br>.00304                                   | .09482<br>.09642                                   |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD      | Ti3349<br>334.904 {101}<br>Cts/S<br>. <b>00248</b><br>.00000<br>.08640 | Čts/S<br>. <b>00189</b>                            | 292.402 {115}<br>Cts/S<br>. <b>00265</b>                            | 206.200 {163}<br>Cts/S<br>.00167                   |                                                    |
| #1<br>#2                                            | .00248<br>.00248                                                       | .00182<br>.00197                                   | .00279<br>.00251                                                    |                                                    |                                                    |
| Int. Std.<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | In2306<br>230.606 {446}<br>Cts/S<br><b>3698.5</b><br>2.9<br>.07854     |                                                    | Y_3600<br>360.073 { 94}<br>Cts/S<br><b>21926</b> .<br>27.<br>.12345 |                                                    |                                                    |
| #1<br>#2                                            | 3700.6<br>3696.5                                                       | 2565.2<br>2561.8                                   | 21946.<br>21907.                                                    | 3905.7<br>3885.0                                   |                                                    |

Sample Name: IC-4278258 Acquired: 10/16/2017 9:41:18 Type: Cal Method: ICAP2 June 2017(v154) Mode: IR Corr. Factor: 1.000000 Custom ID1: User: AMH Custom ID2: Custom ID3:

Comment:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Cts/S<br>. <b>23026</b>                                              | Cts/S<br>1.1639<br>.0016                         | 189.042 {478}<br>Cts/S<br>. <b>05925</b><br>.00007                      | 208.959 {461}<br>Cts/S<br>. <b>36571</b><br>.00030 | 455.403 { 74}<br>Cts/S<br><b>4.6450</b><br>.0219 |
|------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|
| #1<br>#2                                       | .22984<br>.23069                                                     | 1.1627<br>1.1651                                 |                                                                         |                                                    |                                                  |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | 455.403 { 74}2<br>Cts/S<br><b>14.545</b>                             | 313.042 {108}<br>Cts/S<br><b>5.2211</b><br>.0256 | Cts/S<br><b>8.1624</b><br>.0561                                         | 228.802 {447}<br>Cts/S<br>1.9156<br>.0016          | 404.076 { 83}<br>Cts/S<br>. <b>0375</b><br>.0002 |
| #1<br>#2                                       | 14.544<br>14.545                                                     |                                                  |                                                                         |                                                    |                                                  |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD |                                                                      | Čts/Š<br>. <b>17811</b><br>.00124                | 327.396 {103}<br>Cts/S<br>. <b>18855</b><br>.00109                      | 259.940 {130}<br>Cts/S<br><b>5.3685</b><br>.0331   | 271.441 {124}<br>Cts/S<br>.33943<br>.00307       |
| #1<br>#2                                       | .82924<br>.82900                                                     | .17723<br>.17898                                 |                                                                         |                                                    |                                                  |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | K_7664<br>766.490 { 44}<br>Cts/S<br><b>2.6887</b><br>.0124<br>.46220 |                                                  | Mg2790<br>279.079 {121}2<br>Cts/S<br>. <b>94829</b><br>.00169<br>.17840 |                                                    |                                                  |
| #1<br>#2                                       | 2.6799<br>2.6975                                                     | 1.2812<br>1.2868                                 | .94709<br>.94948                                                        | 1.2296<br>1.2320                                   | .10334<br>.10196                                 |

Sample Name: IC-4278258 Acquired: 10/16/2017 9:41:18 Type: Cal Method: ICAP2 June 2017(v154) Mode: IR Corr. Factor: 1.000000 User: AMH Custom ID1: Custom ID2: Custom ID3:

Comment:

#2

| Elem                                                | Mo2020                                                      | Na5895                                                      |                | Ni2316         | Pb2203         |
|-----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------|----------------|----------------|
| Line                                                | 202.030 {467}                                               | 589.592 { 57}                                               |                | 231.604 {446}  | 220.353 {453}  |
| Units                                               | Cts/S                                                       | Cts/S                                                       |                | Cts/S          | Cts/S          |
| Avg                                                 | . <b>58435</b>                                              | 10.302                                                      |                | .29723         | .14496         |
| Stddev                                              | .00049                                                      | .035                                                        |                | .00012         | .00034         |
| %RSD                                                | .08424                                                      | .34257                                                      |                | .04158         | .23458         |
| #1                                                  | .58469                                                      | 10.277                                                      | .32939         | .29732         | .14472         |
| #2                                                  | .58400                                                      | 10.327                                                      | .33319         | .29714         | .14520         |
| Elem                                                | S_1820                                                      | Sb2068                                                      | Se1960         | Si2881         |                |
| Line                                                | 182.034 {485}                                               | 206.833 {463}                                               | 196.090 {472}  | 288.158 {117}2 |                |
| Units                                               | Cts/S                                                       | Cts/S                                                       | Cts/S          | Cts/S          |                |
| Avg                                                 | <b>1.8454</b>                                               | .11796                                                      | . <b>04961</b> | 1.9099         |                |
| Stddev                                              | .0027                                                       | .00058                                                      | .00009         | .0116          |                |
| %RSD                                                | .14545                                                      | .49204                                                      | .18251         | .60691         |                |
| #1                                                  | 1.8435                                                      | .11755                                                      | .04955         | 1.9017         | .14602         |
| #2                                                  | 1.8473                                                      | .11837                                                      | .04968         | 1.9181         | .14630         |
| Elem                                                | Sr4077                                                      | Ti3349 334.904 {101} Cts/S .30622 .00094 .30658             | TI1908         | V_2924         | Zn2062         |
| Line                                                | 407.771 { 83}                                               |                                                             | 190.856 {477}  | 292.402 {115}  | 206.200 {163}  |
| Units                                               | Cts/S                                                       |                                                             | Cts/S          | Cts/S          | Cts/S          |
| Avg                                                 | <b>9.8045</b>                                               |                                                             | . <b>05408</b> | .27991         | . <b>05889</b> |
| Stddev                                              | .0333                                                       |                                                             | .00004         | .00081         | .00004         |
| %RSD                                                | .33966                                                      |                                                             | .07767         | .28937         | .06239         |
| #1                                                  | 9.7809                                                      | .30688                                                      | .05405         | .27933         | .05887         |
| #2                                                  | 9.8280                                                      | .30556                                                      | .05411         | .28048         | .05892         |
| Int. Std.<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | In2306<br>230.606 {446}<br>Cts/S<br>3373.0<br>1.3<br>.03841 | Y_2243<br>224.306 {450}<br>Cts/S<br>2491.5<br>2.8<br>.11080 | <del>-</del>   |                |                |
| #1<br>                                              | 3374.0                                                      | 2493.5                                                      | 21043.         | 3874.6         |                |

2489.6

3372.1

20935.

3800.8

Sample Name: IC-4278206 Acquired: 10/16/2017 9:44:46 Type: Cal Method: ICAP2 June 2017(v154) Mode: IR Corr. Factor: 1.000000 User: AMH Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Ag3280<br>328.068 {103}<br>Cts/S<br>.46808<br>.00045<br>.09547       | Al3082<br>308.215 {109}<br>Cts/S<br><b>2.3196</b><br>.0080<br>.34522 | 189.042 {478}<br>Cts/S<br>. <b>11935</b>                       | 208.959 {461}<br>Cts/S<br>. <b>72653</b><br>.00007 | 455.403 { 74}<br>Cts/S<br><b>9.2990</b>                           |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|
| #1<br>#2                                       | .46776<br>.46839                                                     | 2.3253<br>2.3139                                                     | .11927<br>.11943                                               | .72647<br>.72658                                   |                                                                   |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD |                                                                      | 313.042 {108}<br>Cts/S                                               | 317.933 {106}<br>Cts/S<br><b>16.299</b><br>.052                | 228.802 {447}<br>Cts/S<br><b>3.8398</b><br>.0041   | 404.076 { 83}<br>Cts/S<br>. <b>0719</b><br>.0007                  |
| #1<br>#2                                       | 28.923<br>28.685                                                     | 10.329<br>10.286                                                     | 16.335<br>16.262                                               |                                                    |                                                                   |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Co2286<br>228.616 {447}<br>Cts/S<br>1.6794<br>.0008<br>.04934        |                                                                      | 327.396 {103}<br>Cts/S<br>. <b>37510</b>                       | 259.940 {130}<br>Cts/S<br>10.653<br>.003           | 271.441 {124}<br>Cts/S<br>. <b>67340</b><br>.00295                |
| #1<br>#2                                       | 1.6788<br>1.6799                                                     | .35366<br>.35414                                                     | .37473<br>.37548                                               |                                                    |                                                                   |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | K_7664<br>766.490 { 44}<br>Cts/S<br><b>5.3927</b><br>.0156<br>.28904 |                                                                      | Mg2790<br>279.079 {121}2<br>Cts/S<br>1.8945<br>.0039<br>.20464 |                                                    | Mn2576-2<br>257.610 {131}2<br>Cts/S<br>.20583<br>.00067<br>.32601 |
| #1<br>#2                                       | 5.4037<br>5.3817                                                     | 2.5561<br>2.5524                                                     | 1.8917<br>1.8972                                               | 2.4262<br>2.4332                                   | .20535<br>.20630                                                  |

Sample Name: IC-4278206 Acquired: 10/16/2017 9:44:46 Type: Cal Method: ICAP2 June 2017(v154) Mode: IR Corr. Factor: 1.000000 User: AMH Custom ID1: Custom ID2: Custom ID3:

| Elem                                                | Mo2020                                                      | Na5895                                                      |                | Ni2316         | Pb2203         |
|-----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------|----------------|----------------|
| Line                                                | 202.030 {467}                                               | 589.592 { 57}                                               |                | 231.604 {446}  | 220.353 {453}  |
| Units                                               | Cts/S                                                       | Cts/S                                                       |                | Cts/S          | Cts/S          |
| Avg                                                 | 1.1614                                                      | <b>20.720</b>                                               |                | .60276         | .29136         |
| Stddev                                              | .0001                                                       | .058                                                        |                | .00007         | .00131         |
| %RSD                                                | .00639                                                      | .28106                                                      |                | .01119         | .44849         |
| #1                                                  | 1.1614                                                      | 20.761                                                      | .68732         | .60272         | .29044         |
| #2                                                  | 1.1615                                                      | 20.679                                                      | .68879         | .60281         | .29228         |
| Elem                                                | S_1820                                                      | Sb2068                                                      | Se1960         | Cts/S          | Sn1899         |
| Line                                                | 182.034 {485}                                               | 206.833 {463}                                               | 196.090 {472}  |                | 189.989 {477}  |
| Units                                               | Cts/S                                                       | Cts/S                                                       | Cts/S          |                | Cts/S          |
| Avg                                                 | 3.7140                                                      | .23513                                                      | . <b>09948</b> |                | . <b>29824</b> |
| Stddev                                              | .0024                                                       | .00009                                                      | .00043         |                | .00069         |
| %RSD                                                | .06444                                                      | .03875                                                      | .42733         |                | .23281         |
| #1                                                  | 3.7157                                                      | .23506                                                      | .09978         | 3.7675         | .29775         |
| #2                                                  | 3.7123                                                      | .23519                                                      | .09918         | 3.7605         | .29873         |
| Elem                                                | Sr4077                                                      | Ti3349                                                      | TI1908         | V_2924         | Zn2062         |
| Line                                                | 407.771 { 83}                                               | 334.904 {101}                                               | 190.856 {477}  | 292.402 {115}  | 206.200 {163}  |
| Units                                               | Cts/S                                                       | Cts/S                                                       | Cts/S          | Cts/S          | Cts/S          |
| Avg                                                 | <b>19.656</b>                                               | .61110                                                      | .10856         | . <b>55933</b> | .11773         |
| Stddev                                              | .032                                                        | .00006                                                      | .00010         | .00005         | .00035         |
| %RSD                                                | .16083                                                      | .01018                                                      | .08991         | .00807         | .29565         |
| #1                                                  | 19.678                                                      | .61114                                                      | .10863         | .55930         | .11748         |
| #2                                                  | 19.634                                                      | .61105                                                      | .10849         | .55936         | .11798         |
| Int. Std.<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | In2306<br>230.606 {446}<br>Cts/S<br>3194.1<br>1.6<br>.05087 | Y_2243<br>224.306 {450}<br>Cts/S<br>2433.1<br>2.8<br>.11464 |                |                |                |
| #1                                                  | 3195.2                                                      | 2435.0                                                      | 20493.         | 3747.2         |                |
| #2                                                  | 3192.9                                                      | 2431.1                                                      | 20472.         | 3774.0         |                |

Sample Name: icv-4278260 Acquired: 10/16/2017 9:48:11 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: AMH Custom ID1: Custom ID2: Custom ID3:

| Elem                                           | Ag3280                                                               | Al3082                                                       | As1890                                                     | B_2089         | Ba4554-2       |
|------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|----------------|----------------|
| Line                                           | 328.068 {103}                                                        | 308.215 {109}                                                | 189.042 {478}                                              | 208.959 {461}  | 455.403 { 74}2 |
| Units                                          | ppm                                                                  | ppm                                                          | ppm                                                        | ppm            | ppm            |
| Avg                                            | . <b>37852</b>                                                       | 18.273                                                       | . <b>37792</b>                                             | . <b>38271</b> | .37662         |
| Stddev                                         | .00033                                                               | .033                                                         | .00381                                                     | .00094         | .00011         |
| %RSD                                           | .08793                                                               | .18155                                                       | 1.0093                                                     | .24489         | .02918         |
| #1                                             | .37875                                                               | 18.249                                                       | .37522                                                     | .38205         | .37670         |
| #2                                             | .37828                                                               | 18.296                                                       | .38062                                                     | .38338         | .37654         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                     | Chk Pass                                                   | Chk Pass       | Chk Pass       |
| Elem                                           | Be3130                                                               | Ca3179                                                       | Cd2288                                                     | **Ce4040       | Co2286         |
| Line                                           | 313.042 {108}                                                        | 317.933 {106}                                                | 228.802 {447}                                              | 404.076 { 83}  | 228.616 {447}  |
| Units                                          | ppm                                                                  | ppm                                                          | ppm                                                        | ppm            | ppm            |
| Avg                                            | .38497                                                               | 18.957                                                       | .37945                                                     | 0009           | .37178         |
| Stddev                                         | .00016                                                               | .020                                                         | .00023                                                     | .0081          | .00009         |
| %RSD                                           | .04080                                                               | .10483                                                       | .06144                                                     | 870.4          | .02501         |
| #1                                             | .38485                                                               | 18.971                                                       | .37962                                                     | .0048          | .37171         |
| #2                                             | .38508                                                               | 18.943                                                       | .37929                                                     | 0067           | .37184         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                     | Chk Pass                                                   | None           | Chk Pass       |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Cr2677<br>267.716 {126}<br>ppm<br>. <b>38492</b><br>.00192<br>.49752 | Cu3273<br>327.396 {103}<br>ppm<br>.38009<br>.00121<br>.31746 | Fe2599<br>259.940 {130}<br>ppm<br>18.739<br>.017<br>.09006 | <del></del>    |                |
| #1                                             | .38357                                                               | .37924                                                       | 18.727                                                     | 18.855         | .37805         |
| #2                                             | .38627                                                               | .38094                                                       | 18.751                                                     | 18.849         | .37733         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                     | Chk Pass                                                   | Chk Pass       | Chk Pass       |

Sample Name: icv-4278260 Acquired: 10/16/2017 9:48:11 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: AMH Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br>18.863<br>.034<br>.18100          | Mn2576<br>257.610 {131}<br>ppm<br>.38818<br>.00040<br>.10363         | 202.030 {467}<br>ppm<br>. <b>38291</b>                               | Na5895<br>589.592 { 57}<br>ppm<br>18.840<br>.019<br>.10295 | 231.604 {446}<br>ppm<br>. <b>37729</b> |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|
| #1<br>#2                                       | 18.887<br>18.839                                                     | .38846<br>.38789                                                     | .38361<br>.38221                                                     | 18.826<br>18.854                                           | .37705<br>.37753                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                   | Chk Pass                               |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>. <b>37344</b><br>.00240<br>.64354 | S_1820<br>182.034 {485}<br>ppm<br>18.938<br>.003<br>.01761           | Sb2068<br>206.833 {463}<br>ppm<br>. <b>37938</b><br>.00220<br>.57977 | ppm<br>. <b>37807</b>                                      | ppm<br>F <b>16.614</b><br>.017         |
| #1<br>#2                                       | .37174<br>.37513                                                     | 18.940<br>18.936                                                     | .38094<br>.37783                                                     | .37942<br>.37673                                           | 16.626<br>16.602                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                   | Chk Fail<br>18.750<br>-10.000%         |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>ppm<br>.38396<br>.00112<br>.29142         | Sr4077<br>407.771 { 83}<br>ppm<br>. <b>37596</b><br>.00051<br>.13688 | Ti3349<br>334.904 {101}<br>ppm<br>.38139<br>.00136<br>.35779         |                                                            | ppm                                    |
| #1<br>#2                                       | .38475<br>.38317                                                     | .37560<br>.37633                                                     | .38236<br>.38043                                                     | .37999<br>.37757                                           | .38325<br>.38398                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                   | Chk Pass                               |

Sample Name: icv-4278260 Acquired: 10/16/2017 9:48:11 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: AMH Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .37817

 Stddev
 .00046

 %RSD
 .12285

#1 .37784 #2 .37850

Check? Chk Pass

Value Range

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Cts/S Cts/S Units Cts/S Cts/S Avg 3425.9 2499.7 21161. 3832.7 5.4 Stddev 5.1 18. .0 %RSD .14976 .21488 .08468 .00011

#1 3422.3 2495.9 21148. 3832.7 #2 3429.6 2503.5 21173. 3832.7 Sample Name: icv-4278260 Acquired: 10/16/2017 10:22:05 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Ag3280<br>328.068 {103}<br>ppm<br>. <b>37753</b><br>.00073<br>.19437 | Al3082<br>308.215 {109}<br>ppm<br>18.209<br>.103<br>.56593           | As1890<br>189.042 {478}<br>ppm<br>.37394<br>.00246<br>.65880      | _                                   |                                                              |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------|
| #1<br>#2                                       | .37805<br>.37701                                                     | 18.136<br>18.282                                                     | .37568<br>.37219                                                  | .37386<br>.37339                    | .36838<br>.36800                                             |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                          | Chk Pass                            | Chk Pass                                                     |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Be3130<br>313.042 {108}<br>ppm<br>.38630<br>.00332<br>.85877         | Ca3179<br>317.933 {106}<br>ppm<br>19.197<br>.194<br>1.0104           |                                                                   | 404.076 { 83}<br>ppm<br><b>0115</b> | Co2286<br>228.616 {447}<br>ppm<br>.36929<br>.00018<br>.04786 |
| #1<br>#2                                       | .38395<br>.38864                                                     | 19.059<br>19.334                                                     | .37294<br>.37254                                                  | 0311<br>.0080                       | .36917<br>.36942                                             |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                          | None                                | Chk Pass                                                     |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Cr2677<br>267.716 {126}<br>ppm<br>. <b>38472</b><br>.00231<br>.60024 | Cu3273<br>327.396 {103}<br>ppm<br>. <b>37025</b><br>.00176<br>.47481 | Fe2599<br>259.940 {130}<br>ppm<br><b>18.823</b><br>.126<br>.67013 | _                                   | 670.784 { 50}<br>ppm                                         |
| #1<br>#2                                       | .38635<br>.38309                                                     | .36901<br>.37149                                                     | 18.734<br>18.913                                                  | 18.376<br>18.608                    | .37131<br>.37751                                             |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                          | Chk Pass                            | Chk Pass                                                     |

Sample Name: icv-4278260 Acquired: 10/16/2017 10:22:05 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br>18.879<br>.003<br>.01730          | Mn2576<br>257.610 {131}<br>ppm<br>. <b>38655</b><br>.00032<br>.08214 |                                                              | Na5895<br>589.592 { 57}<br>ppm<br><b>18.566</b><br>.152<br>.81690    | 231.604 {446}<br>ppm<br>. <b>37545</b> |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|
| #1<br>#2                                       | 18.876<br>18.881                                                     | .38677<br>.38633                                                     | .37885<br>.37883                                             | 18.459<br>18.673                                                     |                                        |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                               |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>.37478<br>.00167<br>.44599         | S_1820<br>182.034 {485}<br>ppm<br>18.699<br>.024<br>.12996           | Sb2068<br>206.833 {463}<br>ppm<br>.37026<br>.00100<br>.26986 | Se1960<br>196.090 {472}<br>ppm<br>.37788<br>.00467<br>1.2368         | ppm<br>F 16.474<br>.153                |
| #1<br>#2                                       | .37360<br>.37596                                                     | 18.716<br>18.682                                                     | .37097<br>.36956                                             | .38118<br>.37457                                                     | 16.366<br>16.583                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                     | Chk Pass                                                             | Chk Fail<br>18.750<br>-10.000%         |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>ppm<br>. <b>38347</b><br>.00086<br>.22329 | Sr4077<br>407.771 { 83}<br>ppm<br>. <b>37104</b><br>.00136<br>.36628 | Ti3349<br>334.904 {101}<br>ppm<br>.38152<br>.00103<br>.26920 | TI1908<br>190.856 {477}<br>ppm<br>. <b>38146</b><br>.00374<br>.98073 | 292.402 {115}<br>ppm                   |
| #1<br>#2                                       | .38286<br>.38407                                                     | .37008<br>.37200                                                     | .38225<br>.38080                                             | .37881<br>.38410                                                     | .38417<br>.38328                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                               |

Sample Name: icv-4278260 Acquired: 10/16/2017 10:22:05 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .38911

 Stddev
 .00052

 %RSD
 .13308

#1 .38874 #2 .38948

Check? Chk Pass

Value Range

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Cts/S Units Cts/S Cts/S Cts/S Avg 3493.3 2570.1 21363. 3826.1 2.9 4.9 36.0 Stddev 69. %RSD .08243 .18905 .32388 .94126 3491.2 2566.6 21314. 3851.6 Sample Name: icb-4278202 Acquired: 10/16/2017 10:25:30 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                           | Ag3280                                                      | Al3082                                                       | As1890                                                               | B_2089                                                     | Ba4554-2       |
|------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|----------------|
| Line                                           | 328.068 {103}                                               | 308.215 {109}                                                | 189.042 {478}                                                        | 208.959 {461}                                              | 455.403 { 74}2 |
| Units                                          | ppm                                                         | ppm                                                          | ppm                                                                  | ppm                                                        | ppm            |
| Avg                                            | 00020                                                       | 00542                                                        | .00077                                                               | 00083                                                      | 00003          |
| Stddev                                         | .00032                                                      | .01003                                                       | .00309                                                               | .00014                                                     | .00001         |
| %RSD                                           | 162.97                                                      | 185.07                                                       | 399.69                                                               | 17.220                                                     | 45.949         |
| #1                                             | .00003                                                      | 01251                                                        | 00141                                                                | 00073                                                      | 00002          |
| #2                                             | 00042                                                       | .00167                                                       | .00296                                                               | 00093                                                      | 00003          |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                    | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                                                   | Chk Pass       |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Be3130<br>313.042 {108}<br>ppm<br>00003<br>.00004<br>122.47 | Ca3179<br>317.933 {106}<br>ppm<br>.00621<br>.00281<br>45.225 | Cd2288<br>228.802 {447}<br>ppm<br>. <b>00002</b><br>.00005<br>278.91 | **Ce4040<br>404.076 { 83}<br>ppm<br>0095<br>.0037<br>39.31 | ppm<br>00009   |
| #1                                             | 00006                                                       | .00819                                                       | 00002                                                                | 0121                                                       | 00004          |
| #2                                             | 00000                                                       | .00422                                                       | .00005                                                               | 0068                                                       | 00014          |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                    | Chk Pass                                                     | Chk Pass                                                             | None                                                       | Chk Pass       |
| Elem                                           | Cr2677                                                      | Cu3273                                                       | Fe2599                                                               | K_7664                                                     |                |
| Line                                           | 267.716 {126}                                               | 327.396 {103}                                                | 259.940 {130}                                                        | 766.490 { 44}                                              |                |
| Units                                          | ppm                                                         | ppm                                                          | ppm                                                                  | ppm                                                        |                |
| Avg                                            | 00058                                                       | . <b>00027</b>                                               | .00279                                                               | .00005                                                     |                |
| Stddev                                         | .00012                                                      | .00074                                                       | .00024                                                               | .04103                                                     |                |
| %RSD                                           | 20.108                                                      | 276.87                                                       | 8.6985                                                               | 88060.                                                     |                |
| #1                                             | 00050                                                       | 00026                                                        | .00262                                                               | .02906                                                     | .00021         |
| #2                                             | 00066                                                       | .00079                                                       | .00296                                                               | 02897                                                      | .00062         |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                    | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                                                   | Chk Pass       |

Sample Name: icb-4278202 Acquired: 10/16/2017 10:25:30 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br>.00277<br>.00100<br>36.058 | Mn2576<br>257.610 {131}<br>ppm<br>00006<br>.00002<br>34.728 | Mo2020<br>202.030 {467}<br>ppm<br>00004<br>.00009<br>220.77 | Na5895<br>589.592 { 57}<br>ppm<br>01297<br>.00126<br>9.7044 | ppm<br>.00018 |
|------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------|
| #1                                             | .00348                                                        | 00005                                                       | 00010                                                       | 01208                                                       | .00011        |
| #2                                             | .00207                                                        | 00008                                                       | .00002                                                      | 01386                                                       | .00025        |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                      | Chk Pass                                                    | Chk Pass                                                    | Chk Pass                                                    | Chk Pass      |
| Elem                                           | Pb2203                                                        | S_1820                                                      | Sb2068                                                      | Se1960                                                      | .00982        |
| Line                                           | 220.353 {453}                                                 | 182.034 {485}                                               | 206.833 {463}                                               | 196.090 {472}                                               |               |
| Units                                          | ppm                                                           | ppm                                                         | ppm                                                         | ppm                                                         |               |
| Avg                                            | .00112                                                        | 00731                                                       | .00034                                                      | .00079                                                      |               |
| Stddev                                         | .00065                                                        | .00115                                                      | .00001                                                      | .00038                                                      |               |
| %RSD                                           | 58.400                                                        | 15.788                                                      | 3.3334                                                      | 47.622                                                      |               |
| #1                                             | .00065                                                        | 00649                                                       | .00033                                                      | .00052                                                      | 01090         |
| #2                                             | .00158                                                        | 00813                                                       | .00034                                                      | .00106                                                      | .00299        |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                      | Chk Pass                                                    | Chk Pass                                                    | Chk Pass                                                    | Chk Pass      |
| Elem                                           | Sn1899                                                        | Sr4077                                                      | Ti3349                                                      | TI1908                                                      | V_2924        |
| Line                                           | 189.989 {477}                                                 | 407.771 { 83}                                               | 334.904 {101}                                               | 190.856 {477}                                               | 292.402 {115} |
| Units                                          | ppm                                                           | ppm                                                         | ppm                                                         | ppm                                                         | ppm           |
| Avg                                            | .00023                                                        | .00001                                                      | .00000                                                      | . <b>00117</b>                                              | 00008         |
| Stddev                                         | .00018                                                        | .00000                                                      | .00025                                                      | .00097                                                      | .00004        |
| %RSD                                           | 79.417                                                        | 14.628                                                      | 12450.                                                      | 83.399                                                      | 53.479        |
| #1                                             | .00010                                                        | .00002                                                      | 00017                                                       | .00185                                                      | 00011         |
| #2                                             | .00036                                                        | .00001                                                      | .00018                                                      | .00048                                                      | 00005         |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                      | Chk Pass                                                    | Chk Pass                                                    | Chk Pass                                                    | Chk Pass      |

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 -.00001

 Stddev
 .00038

 %RSD
 7463.9

#1 .00026 #2 -.00028

Check? Chk Pass

High Limit Low Limit

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Units Cts/S Cts/S Cts/S Avg 3754.5 2628.0 22104. 3861.5 1.3 12.2 Stddev 3.2 19. %RSD .08399 .05133 .08774 .31563 #1 3756.7 2629.0 22090. 3870.1

Sample Name: icvl-4278204 Acquired: 10/16/2017 10:29:09 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                      | Ag3280         | Al3082         | As1890         | B_2089         | Ba4554-2       |
|---------------------------|----------------|----------------|----------------|----------------|----------------|
| Line                      | 328.068 {103}  | 308.215 {109}  | 189.042 {478}  | 208.959 {461}  | 455.403 { 74}2 |
| Units                     | ppm            | ppm            | ppm            | ppm            | ppm            |
| Avg                       | . <b>00638</b> | . <b>17892</b> | . <b>01620</b> | . <b>01880</b> | .00206         |
| Stddev                    | .00031         | .01268         | .00111         | .00019         | .00002         |
| %RSD                      | 4.8053         | 7.0871         | 6.8526         | 1.0237         | .91585         |
| #1                        | .00659         | .18788         | .01698         | .01893         | .00205         |
| #2                        | .00616         | .16995         | .01541         | .01866         | .00207         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       |
| Elem                      | Be3130         | Ca3179         | Cd2288         | **Ce4040       | Co2286         |
| Line                      | 313.042 {108}  | 317.933 {106}  | 228.802 {447}  | 404.076 { 83}  | 228.616 {447}  |
| Units                     | ppm            | ppm            | ppm            | ppm            | ppm            |
| Avg                       | .00211         | . <b>51713</b> | . <b>00214</b> | .0098          | .00391         |
| Stddev                    | .00011         | .00095         | .00008         | .0363          | .00002         |
| %RSD                      | 5.3358         | .18318         | 3.7691         | 368.8          | .49663         |
| #1                        | .00203         | .51646         | .00209         | .0355          | .00392         |
| #2                        | .00219         | .51780         | .00220         | 0158           | .00389         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | None           | Chk Pass       |
| Elem                      | Cr2677         | Cu3273         | Fe2599         | K_7664         | Li6707         |
| Line                      | 267.716 {126}  | 327.396 {103}  | 259.940 {130}  | 766.490 { 44}  | 670.784 { 50}  |
| Units                     | ppm            | ppm            | ppm            | ppm            | ppm            |
| Avg                       | .00363         | .01050         | . <b>05271</b> | . <b>53227</b> | .03006         |
| Stddev                    | .00043         | .00002         | .00027         | .01420         | .00208         |
| %RSD                      | 11.797         | .15386         | .50482         | 2.6673         | 6.9026         |
| #1                        | .00332         | .01051         | .05289         | .54231         | .02860         |
| #2                        | .00393         | .01049         | .05252         | .52223         | .03153         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       |

Sample Name: icvl-4278204 Acquired: 10/16/2017 10:29:09 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                      | Mg2790         | Mn2576        | Mo2020         | Na5895         | Ni2316         |
|---------------------------|----------------|---------------|----------------|----------------|----------------|
| Line                      | 279.079 {121}2 | 257.610 {131} | 202.030 {467}  | 589.592 { 57}  | 231.604 {446}  |
| Units                     | ppm            | ppm           | ppm            | ppm            | ppm            |
| Avg                       | . <b>20549</b> | .00311        | .01008         | . <b>99779</b> | .00977         |
| Stddev                    | .00266         | .00008        | .00010         | .00114         | .00011         |
| %RSD                      | 1.2934         | 2.4424        | 1.0369         | .11438         | 1.1287         |
| #1                        | .20737         | .00305        | .01001         | .99698         | .00985         |
| #2                        | .20361         | .00316        | .01016         | .99860         | .00969         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass      | Chk Pass       | Chk Pass       | Chk Pass       |
| Elem                      | Pb2203         | S_1820        | Sb2068         | Se1960         | Si2881         |
| Line                      | 220.353 {453}  | 182.034 {485} | 206.833 {463}  | 196.090 {472}  | 288.158 {117}2 |
| Units                     | ppm            | ppm           | ppm            | ppm            | ppm            |
| Avg                       | .01108         | .18719        | . <b>01935</b> | . <b>02746</b> | . <b>45135</b> |
| Stddev                    | .00052         | .00162        | .00358         | .00094         | .00608         |
| %RSD                      | 4.6855         | .86541        | 18.519         | 3.4131         | 1.3476         |
| #1                        | .01072         | .18605        | .01681         | .02812         | .45565         |
| #2                        | .01145         | .18834        | .02188         | .02680         | .44705         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass      | Chk Pass       | Chk Pass       | Chk Pass       |
| Elem                      | Sn1899         | Sr4077        | Ti3349         | TI1908         | V_2924         |
| Line                      | 189.989 {477}  | 407.771 { 83} | 334.904 {101}  | 190.856 {477}  | 292.402 {115}  |
| Units                     | ppm            | ppm           | ppm            | ppm            | ppm            |
| Avg                       | .00995         | .00508        | . <b>00477</b> | . <b>01977</b> | .00547         |
| Stddev                    | .00060         | .00008        | .00034         | .00009         | .00005         |
| %RSD                      | 6.0363         | 1.6513        | 7.0579         | .46804         | .90098         |
| #1                        | .01037         | .00502        | .00501         | .01983         | .00550         |
| #2                        | .00953         | .00514        | .00453         | .01970         | .00543         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass      | Chk Pass       | Chk Pass       | Chk Pass       |

Sample Name: icvl-4278204 Acquired: 10/16/2017 10:29:09 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .01043

 Stddev
 .00016

 %RSD
 1.5406

#1 .01054 #2 .01032

Check? Chk Pass

Value Range

Range

| Int. Std. | In2306        | Y_2243        | Y_3600        | Y_3774        |
|-----------|---------------|---------------|---------------|---------------|
| Line      | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units     | Čts/Š         | Čts/S         | Cts/S         | Cts/S         |
| Avg       | 3742.9        | 2617.0        | 22177.        | 3873.0        |
| Stddev    | 2.3           | 4.2           | 8.            | 27.9          |
| %RSD      | .06018        | .16086        | .03667        | .72033        |
| #1        | 3741.3        | 2620.0        | 22183.        | 3892.8        |
| #2        | 3744.5        | 2614.0        | 22171.        | 3853.3        |

Sample Name: icsa-4278263 Acquired: 10/16/2017 10:32:47 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Ag3280<br>328.068 {103}<br>ppm<br>.00003<br>.00034<br>963.96 | Al3082<br>308.215 {109}<br>ppm<br><b>490.37</b><br>.41<br>.08384 | As1890<br>189.042 {478}<br>ppm<br>.00149<br>.00010<br>6.6205 | <b>—</b>             | ppm<br>. <b>00070</b> |
|------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|----------------------|-----------------------|
| #1<br>#2                                       | 00020<br>.00027                                              | 490.66<br>490.08                                                 | .00142<br>.00156                                             | 00175<br>00239       |                       |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                     | Chk Pass                                                         | Chk Pass                                                     | Chk Pass             | Chk Pass              |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Be3130<br>313.042 {108}<br>ppm<br>00011<br>.00002<br>19.949  | Ca3179<br>317.933 {106}<br>ppm<br>488.04<br>4.11<br>.84266       |                                                              |                      |                       |
| #1<br>#2                                       | 00012<br>00009                                               | 490.94<br>485.13                                                 | 00032<br>00021                                               | .0223<br>.0260       | 00094<br>00076        |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                     | Chk Pass                                                         | Chk Pass                                                     | None                 | Chk Pass              |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Cr2677<br>267.716 {126}<br>ppm<br>.00005<br>.00003<br>62.241 | Cu3273<br>327.396 {103}<br>ppm<br>00518<br>.00006<br>1.1864      | 271.441 {124}<br>ppm                                         | 766.490 { 44}<br>ppm |                       |
| #1<br>#2                                       | .00007<br>.00003                                             | 00514<br>00522                                                   | 189.66<br>189.72                                             | .02517<br>00454      | 01825<br>01908        |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                     | Chk Pass                                                         | Chk Pass                                                     | Chk Pass             | Chk Pass              |

Sample Name: icsa-4278263 Acquired: 10/16/2017 10:32:47 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br><b>524.55</b><br>1.29<br>.24609 | Mn2576<br>257.610 {131}<br>ppm<br>00062<br>.00000<br>.55599          | Mo2020<br>202.030 {467}<br>ppm<br>00182<br>.00012<br>6.3611 | Na5895<br>589.592 { 57}<br>ppm<br>.00666<br>.00454<br>68.063         | 231.604 {446}<br>ppm<br>00171<br>.00063           |
|------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|
| #1<br>#2                                       | 523.64<br>525.46                                                   | 00062<br>00062                                                       | 00190<br>00174                                              | .00346<br>.00987                                                     |                                                   |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                           | Chk Pass                                                             | Chk Pass                                                    | Chk Pass                                                             | Chk Pass                                          |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>.00011<br>.00068<br>615.56       | S_1820<br>182.034 {485}<br>ppm<br>.00070<br>.00113<br>160.58         | Sb2068<br>206.833 {463}<br>ppm<br>01080<br>.00077<br>7.1491 | Se1960<br>196.090 {472}<br>ppm<br>. <b>00385</b><br>.00293<br>76.009 | 288.158 {117}2<br>ppm<br>. <b>01847</b><br>.02875 |
| #1<br>#2                                       | .00059<br>00037                                                    | .00150<br>00010                                                      | 01026<br>01135                                              | .00592<br>.00178                                                     |                                                   |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                           | Chk Pass                                                             | Chk Pass                                                    | Chk Pass                                                             | None                                              |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>ppm<br>.00201<br>.00066<br>32.559       | Sr4077<br>407.771 { 83}<br>ppm<br>. <b>03167</b><br>.00006<br>.17934 | Ti3349 334.904 {101} ppm00359 .00014 3.9732                 |                                                                      | 292.402 {115}<br>ppm                              |
| #1<br>#2                                       | .00248<br>.00155                                                   | .03163<br>.03171                                                     | 00369<br>00349                                              | .00175<br>.00170                                                     |                                                   |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                           | None                                                                 | Chk Pass                                                    | Chk Pass                                                             | Chk Pass                                          |

Sample Name: icsa-4278263 Acquired: 10/16/2017 10:32:47 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .00430

 Stddev
 .00053

 %RSD
 12.274

#1 .00468 #2 .00393

Check? Chk Pass

High Limit Low Limit

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Units Cts/S Cts/S Cts/S Avg 2799.1 2325.9 19010. 3794.0 5.5 5.5 20. 29.3 Stddev %RSD .19583 .23600 .10548 .77141 #1 2795.2 2322.0 18996. 3773.3 3814.7 #2 2802.9 2329.8 19025.

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line                                   | Ag3280                                                               | Al3082                                                               | As1890<br>189.042 {478}                                           | B_2089         | Ba4554-2       |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|----------------|----------------|
| Units                                          | ppm                                                                  | ppm                                                                  | ppm                                                               | ppm            | ppm            |
| Avg                                            | . <b>22705</b>                                                       | <b>523.61</b>                                                        | . <b>10918</b>                                                    | . <b>00104</b> | . <b>49082</b> |
| Stddev                                         | .00122                                                               | 1.38                                                                 | .00323                                                            | .00018         | .00130         |
| %RSD                                           | .53563                                                               | .26336                                                               | 2.9600                                                            | 17.794         | .26585         |
| #1                                             | .22791                                                               | 524.59                                                               | .11147                                                            | .00091         | .49174         |
| #2                                             | .22619                                                               | 522.64                                                               | .10690                                                            | .00117         | .48989         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                          | None           | Chk Pass       |
| Elem                                           | Be3130                                                               | Ca3179                                                               | Cd2288                                                            | **Ce4040       | Co2286         |
| Line                                           | 313.042 {108}                                                        | 317.933 {106}                                                        | 228.802 {447}                                                     | 404.076 { 83}  | 228.616 {447}  |
| Units                                          | ppm                                                                  | ppm                                                                  | ppm                                                               | ppm            | ppm            |
| Avg                                            | . <b>52190</b>                                                       | <b>492.85</b>                                                        | 1.0284                                                            | . <b>0261</b>  | . <b>50043</b> |
| Stddev                                         | .00042                                                               | 1.03                                                                 | .0010                                                             | .0032          | .00061         |
| %RSD                                           | .08003                                                               | .20967                                                               | .10017                                                            | 12.07          | .12221         |
| #1                                             | .52219                                                               | 493.58                                                               | 1.0277                                                            | .0239          | .50000         |
| #2                                             | .52160                                                               | 492.12                                                               | 1.0291                                                            | .0284          | .50087         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                          | None           | Chk Pass       |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Cr2677<br>267.716 {126}<br>ppm<br>. <b>49064</b><br>.00069<br>.14073 | Cu3273<br>327.396 {103}<br>ppm<br>. <b>52369</b><br>.00045<br>.08627 | Fe2714<br>271.441 {124}<br>ppm<br><b>99.028</b><br>.119<br>.12027 | _              |                |
| #1                                             | .49015                                                               | .52337                                                               | 99.112                                                            | 00427          | .50279         |
| #2                                             | .49113                                                               | .52400                                                               | 98.944                                                            | 01161          | .50384         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                          | None           | None           |

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                      | Mg2790         | Mn2576         | Mo2020                                      | Na5895         | Ni2316         |
|---------------------------|----------------|----------------|---------------------------------------------|----------------|----------------|
| Line                      | 279.079 {121}2 | 257.610 {131}  | 202.030 {467}                               | 589.592 { 57}  | 231.604 {446}  |
| Units                     | ppm            | ppm            | ppm                                         | ppm            | ppm            |
| Avg                       | <b>543.58</b>  | . <b>50544</b> | 00079                                       | .13110         | .98446         |
| Stddev                    | 2.58           | .00038         | .00061                                      | .00229         | .00082         |
| %RSD                      | .47534         | .07610         | 77.128                                      | 1.7429         | .08342         |
| #1                        | 541.76         | .50571         | 00036                                       | .12949         | .98388         |
| #2                        | 545.41         | .50516         | 00121                                       | .13272         | .98505         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | None                                        | None           | Chk Pass       |
| Elem                      | Pb2203         | S_1820         | Sb2068                                      | Se1960         | ppm            |
| Line                      | 220.353 {453}  | 182.034 {485}  | 206.833 {463}                               | 196.090 {472}  |                |
| Units                     | ppm            | ppm            | ppm                                         | ppm            |                |
| Avg                       | . <b>04975</b> | 1.0210         | . <b>60793</b>                              | . <b>05712</b> |                |
| Stddev                    | .00067         | .0110          | .00067                                      | .00588         |                |
| %RSD                      | 1.3409         | 1.0756         | .10988                                      | 10.300         |                |
| #1                        | .05022         | 1.0132         | .60745                                      | .05296         | .92269         |
| #2                        | .04928         | 1.0287         | .60840                                      | .06128         | .90480         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass                                    | Chk Pass       | None           |
| Elem                      | Sn1899         | Sr4077         | Ti3349 334.904 {101} ppm00202 .00071 35.222 | TI1908         | V_2924         |
| Line                      | 189.989 {477}  | 407.771 { 83}  |                                             | 190.856 {477}  | 292.402 {115}  |
| Units                     | ppm            | ppm            |                                             | ppm            | ppm            |
| Avg                       | . <b>00234</b> | . <b>49681</b> |                                             | . <b>10423</b> | . <b>52257</b> |
| Stddev                    | .00045         | .00113         |                                             | .00194         | .00236         |
| %RSD                      | 19.250         | .22651         |                                             | 1.8602         | .45193         |
| #1                        | .00266         | .49601         | 00151                                       | .10286         | .52090         |
| #2                        | .00202         | .49761         | 00252                                       | .10560         | .52424         |
| Check ?<br>Value<br>Range | None           | None           | None                                        | Chk Pass       | Chk Pass       |

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .96326

 Stddev
 .00496

 %RSD
 .51444

#1 .95975 #2 .96676

Check? Chk Pass

Value Range

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Units Cts/S Cts/S Cts/S Avg 2798.2 2319.9 18943. 3791.4 1.7 19.6 Stddev 1.1 15. %RSD .06028 .04682 .07824 .51758

#1 2797.0 2319.2 18954. 3777.5 #2 2799.4 2320.7 18933. 3805.2 Sample Name: ICEX1 Acquired: 10/16/2017 10:40:14 Type: Unk

Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082         | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|----------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109}  | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)       | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm            | ppm           | ppm           | ppm            |
| Avg                                | .00106        | .15689         | <b>5.0254</b> | 00143         | .00000         |
| Stddev                             | .00111        | .02424         | .0111         | .00038        | .00002         |
| %RSD                               | 104.94        | 15.450         | .22018        | 26.793        | 438.02         |
| #1                                 | .00027        | .13975         | 5.0332        | 00116         | .00002         |
| #2                                 | .00184        | .17403         | 5.0175        | 00170         | 00001          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179         | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106}  | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)       | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm            | ppm           | ppm           | ppm            |
| Avg                                | .00034        | . <b>05264</b> | 00003         | 0199          | .00002         |
| Stddev                             | .00006        | .02017         | .00010        | .0236         | .00019         |
| %RSD                               | 16.870        | 38.326         | 300.13        | 118.4         | 781.29         |
| #1                                 | .00030        | .03837         | 00010         | 0032          | 00011          |
| #2                                 | .00038        | .06690         | .00004        | 0367          | .00016         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | None          | Chk Pass       |
| Elem                               | Cr2677        | Cu3273         | Fe2599        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103}  | 259.940 {130} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)       | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm            | ppm           | ppm           | ppm            |
| Avg                                | 00094         | <b>25.368</b>  | .01871        | .02593        | .00126         |
| Stddev                             | .00030        | .096           | .00546        | .00947        | .00133         |
| %RSD                               | 32.416        | .37825         | 29.204        | 36.542        | 105.73         |
| #1                                 | 00072         | 25.301         | .01485        | .01923        | .00219         |
| #2                                 | 00115         | 25.436         | .02257        | .03262        | .00032         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: ICEX1 Acquired: 10/16/2017 10:40:14 Type: Unk

Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020                                               | Na5895         | Ni2316        |
|------------------------------------|----------------|---------------|------------------------------------------------------|----------------|---------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467}                                        | 589.592 { 57}  | 231.604 {446} |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)                                             | (Y_3774)       | (In2306)      |
| Units                              | ppm            | ppm           | ppm                                                  | ppm            | ppm           |
| Avg                                | .02980         | 00047         | 00121                                                | 00618          | 00021         |
| Stddev                             | .00085         | .00001        | .00002                                               | .00011         | .00005        |
| %RSD                               | 2.8494         | 1.9728        | 1.3879                                               | 1.8255         | 24.076        |
| #1                                 | .02920         | 00047         | 00122                                                | 00626          | 00025         |
| #2                                 | .03040         | 00048         | 00120                                                | 00610          | 00018         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                             | Chk Pass       | Chk Pass      |
| Elem                               | Pb2203         | S_1820        | Sb2068                                               | Se1960         | ppm           |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463}                                        | 196.090 {472}  |               |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)                                             | (Y_2243)       |               |
| Units                              | ppm            | ppm           | ppm                                                  | ppm            |               |
| Avg                                | . <b>00303</b> | 00516         | .00159                                               | .00012         |               |
| Stddev                             | .00020         | .00117        | .00022                                               | .00023         |               |
| %RSD                               | 6.4661         | 22.726        | 13.647                                               | 182.29         |               |
| #1                                 | .00289         | 00433         | .00175                                               | .00028         | .02420        |
| #2                                 | .00317         | 00599         | .00144                                               | 00004          | .02371        |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                             | Chk Pass       | Chk Pass      |
| Elem                               | Sn1899         | Sr4077        | Ti3349 334.904 {101} (Y_3600) ppm00195 .00003 1.4960 | TI1908         | V_2924        |
| Line                               | 189.989 {477}  | 407.771 { 83} |                                                      | 190.856 {477}  | 292.402 {115} |
| IS Ref                             | (In2306)       | (Y_3774)      |                                                      | (In2306)       | (Y_3600)      |
| Units                              | ppm            | ppm           |                                                      | ppm            | ppm           |
| Avg                                | .00057         | .00005        |                                                      | . <b>00745</b> | <b>5.2182</b> |
| Stddev                             | .00045         | .00006        |                                                      | .00073         | .0041         |
| %RSD                               | 80.226         | 119.47        |                                                      | 9.7911         | .07912        |
| #1                                 | .00089         | .00009        | 00197                                                | .00797         | 5.2153        |
| #2                                 | .00025         | .00001        | 00193                                                | .00693         | 5.2211        |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                             | Chk Pass       | Chk Pass      |

Sample Name: ICEX1 Acquired: 10/16/2017 10:40:14 Type: Unk Corr. Factor: 1.000000 Method: ICAP2 June 2017(v155) Mode: CONC User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm .00102 Avg .00015 Stddev %RSD 14.232 #1 .00112 #2 .00092 Check? **Chk Pass** High Limit Low Limit Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 3751.7 2626.5 22291. 3890.3 Avg Stddev 2.4 24. 19.8 .2 %RSD .06448 .00706 .10874 .50893 Sample Name: ICEX2 Acquired: 10/16/2017 10:43:55 Type: Unk

Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00278         | .05972        | .00353        | .00948        | 00003          |
| Stddev                             | .00002        | .01914        | .00056        | .00012        | .00002         |
| %RSD                               | .62891        | 32.047        | 15.880        | 1.2705        | 63.167         |
| #1                                 | 00277         | .07326        | .00313        | .00940        | 00001          |
| #2                                 | 00279         | .04619        | .00393        | .00957        | 00004          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00088         | .01045        | .00042        | 0025          | .00029         |
| Stddev                             | .00000        | .00212        | .00016        | .0248         | .00002         |
| %RSD                               | .40593        | 20.337        | 37.898        | 977.4         | 6.8412         |
| #1                                 | 00088         | .01195        | .00053        | .0150         | .00031         |
| #2                                 | 00088         | .00894        | .00030        | 0201          | .00028         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | None          | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00056        | .00213        | .00203        | .01450        | .00006         |
| Stddev                             | .00076        | .00124        | .00415        | .03858        | .00097         |
| %RSD                               | 134.44        | 57.957        | 204.81        | 266.13        | 1628.2         |
| #1                                 | .00110        | .00126        | .00496        | .04178        | .00075         |
| #2                                 | .00003        | .00301        | 00091         | 01278         | 00063          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: ICEX2 Acquired: 10/16/2017 10:43:55 Type: Unk

Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br>.01153<br>.00237<br>20.517 | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br>00042<br>.00006<br>15.010  | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>00020<br>.00017<br>82.496  | Na5895<br>589.592 { 57}<br>(Y_3774)<br>ppm<br>.00207<br>.00881<br>425.02 | (In2306)<br>ppm                                                          |
|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| #1<br>#2                                                 | .00986<br>.01320                                                          | 00047<br>00038                                                           | 00008<br>00032                                                           | .00830<br>00415                                                          | .00486<br>.00459                                                         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                  | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                 |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br>.00418<br>.00005<br>1.2950  | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br>00838<br>.00050<br>5.9794  | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>.00654<br>.00018<br>2.8130 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>00118<br>.00186<br>157.11  | ppm<br>. <b>38473</b>                                                    |
| #1<br>#2                                                 | .00422<br>.00414                                                          | 00803<br>00874                                                           | .00641<br>.00667                                                         | 00250<br>.00013                                                          | .36590<br>.40356                                                         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                  | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                 |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.00045<br>.00062<br>138.05  | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>.00005<br>.00003<br>70.981 | Ti3349 334.904 {101} (Y_3600) ppm 20.131 .035 .17319                     | TI1908<br>190.856 {477}<br>(In2306)<br>ppm<br>20.322<br>.023<br>.11516   | V_2924<br>292.402 {115}<br>(Y_3600)<br>ppm<br>.00272<br>.00016<br>6.0595 |
| #1<br>#2                                                 | .00089<br>.00001                                                          | .00002<br>.00007                                                         | 20.106<br>20.156                                                         | 20.338<br>20.305                                                         | .00260<br>.00283                                                         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                  | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                 |

Acquired: 10/16/2017 10:43:55 Sample Name: ICEX2 Type: Unk Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm -.00020 Avg .00026 Stddev %RSD 130.01 #1 -.00002 -.00038 #2 Check? **Chk Pass** High Limit Low Limit Int. Std In2306 Y 2243 Y 3600 Y 3774

| 1112300       | 1_2243                                                                            | 1_3000        | 1_3//4                                                                                                                                                                                          |
|---------------|-----------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 230.606 {446} | 224.306 {450}                                                                     | 360.073 { 94} | 377.433 { 89}                                                                                                                                                                                   |
| Cts/S         | Čts/S                                                                             | Cts/S         | Cts/S                                                                                                                                                                                           |
| 3777.1        | 2652.6                                                                            | 22484.        | 3995.0                                                                                                                                                                                          |
| 2.7           | 5.8                                                                               | 51.           | 13.0                                                                                                                                                                                            |
| .07050        | .21700                                                                            | .22688        | .32451                                                                                                                                                                                          |
| 3779.0        | 2656.7                                                                            | 22520.        | 4004.1                                                                                                                                                                                          |
| 3775.2        | 2648.6                                                                            | 22448.        | 3985.8                                                                                                                                                                                          |
| Chk Pass      | Chk Pass                                                                          | Chk Pass      | Chk Pass                                                                                                                                                                                        |
| 101.78%       | 102.93%                                                                           | 102.35%       | 104.86%                                                                                                                                                                                         |
|               | 230.606 {446}<br>Cts/S<br>3777.1<br>2.7<br>.07050<br>3779.0<br>3775.2<br>Chk Pass | 230.606 {446} | 230.606 {446} 224.306 {450} 360.073 { 94} Cts/S Cts/S Cts/S Cts/S 3777.1 2652.6 22484. 2.7 5.8 51. 0.07050 .21700 .22688  3779.0 2656.7 22520. 3775.2 2648.6 22448.  Chk Pass Chk Pass Chk Pass |

Sample Name: ICEX3 Acquired: 10/16/2017 10:47:31 Type: Unk

Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00334         | .01629        | .00145        | 00184         | .00008         |
| Stddev                             | .00031        | .00740        | .00026        | .00002        | .00002         |
| %RSD                               | 9.2018        | 45.398        | 17.622        | .87996        | 18.217         |
| #1                                 | 00312         | .02152        | .00127        | 00182         | .00007         |
| #2                                 | 00355         | .01106        | .00163        | 00185         | .00010         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00008        | .15391        | .00046        | 1862          | .00011         |
| Stddev                             | .00000        | .00200        | .00004        | .0036         | .00005         |
| %RSD                               | 3.1959        | 1.3025        | 9.0453        | 1.914         | 43.678         |
| #1                                 | .00008        | .15533        | .00043        | 1837          | .00008         |
| #2                                 | .00008        | .15249        | .00049        | 1887          | .00015         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | None          | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00000        | .00172        | .00648        | .01040        | .00146         |
| Stddev                             | .00006        | .00031        | .00220        | .00400        | .00021         |
| %RSD                               | 1707.7        | 17.792        | 33.977        | 38.485        | 14.212         |
| #1                                 | 00004         | .00194        | .00493        | .00757        | .00161         |
| #2                                 | .00005        | .00151        | .00804        | .01323        | .00131         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: ICEX3 Acquired: 10/16/2017 10:47:31 Type: Unk

Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576-2       | Mo2020                                                 | Na5895         | Ni2316         |
|------------------------------------|----------------|----------------|--------------------------------------------------------|----------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131}2 | 202.030 {467}                                          | 589.592 { 57}  | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)       | (Y_2243)                                               | (Y_3774)       | (In2306)       |
| Units                              | ppm            | ppm            | ppm                                                    | ppm            | ppm            |
| Avg                                | 03004          | <b>53.250</b>  | 00267                                                  | . <b>01017</b> | .00098         |
| Stddev                             | .00033         | .014           | .00007                                                 | .00149         | .00009         |
| %RSD                               | 1.1037         | .02710         | 2.5919                                                 | 14.671         | 9.5308         |
| #1                                 | 03027          | 53.240         | 00262                                                  | .00912         | .00092         |
| #2                                 | 02980          | 53.260         | 00272                                                  | .01123         | .00105         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass       | Chk Pass                                               | Chk Pass       | Chk Pass       |
| Elem                               | Pb2203         | S_1820         | Sb2068                                                 | Se1960         | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485}  | 206.833 {463}                                          | 196.090 {472}  | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)       | (Y_2243)                                               | (Y_2243)       | (Y_3774)       |
| Units                              | ppm            | ppm            | ppm                                                    | ppm            | ppm            |
| Avg                                | .00588         | <b>98.531</b>  | 00358                                                  | .00649         | . <b>00564</b> |
| Stddev                             | .00132         | .038           | .00132                                                 | .00033         | .01115         |
| %RSD                               | 22.517         | .03848         | 36.807                                                 | 5.1371         | 197.67         |
| #1                                 | .00681         | 98.505         | 00451                                                  | .00673         | 00224          |
| #2                                 | .00494         | 98.558         | 00265                                                  | .00626         | .01353         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass       | Chk Pass                                               | Chk Pass       | Chk Pass       |
| Elem                               | Sn1899         | Sr4077         | Ti3349 334.904 {101} (Y_3600) ppm .00235 .00029 12.231 | TI1908         | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83}  |                                                        | 190.856 {477}  | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)       |                                                        | (In2306)       | (Y_3600)       |
| Units                              | ppm            | ppm            |                                                        | ppm            | ppm            |
| Avg                                | 00006          | .00015         |                                                        | . <b>00486</b> | .00006         |
| Stddev                             | .00018         | .00002         |                                                        | .00007         | .00053         |
| %RSD                               | 297.36         | 13.909         |                                                        | 1.5145         | 904.64         |
| #1                                 | .00007         | .00016         | .00215                                                 | .00491         | .00043         |
| #2                                 | 00019          | .00013         | .00255                                                 | .00481         | 00032          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass       | Chk Pass                                               | Chk Pass       | Chk Pass       |

Sample Name: ICEX3 Acquired: 10/16/2017 10:47:31 Type: Unk Corr. Factor: 1.000000 Method: ICAP2 June 2017(v155) Mode: CONC User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm .00137 Avg .00013 Stddev %RSD 9.4013 #1 .00127 #2 .00146 Check? **Chk Pass** High Limit Low Limit Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} Line Units Cts/S Cts/S Cts/S 3746.9 2637.7 22067. Avg Stddev 2.0 1.7 57. %RSD .05296 .06499 .25624

377.433 { 89} Cts/S 3893.9 10.4 .26804 #1 3748.3 2638.9 22107. 3901.2 #2 3745.5 2636.5 22027. 3886.5 Check? **Chk Pass Chk Pass** Chk Pass **Chk Pass** Value 100.97% 102.35% 100.45% 102.20% Range

Sample Name: ICEX4 Acquired: 10/16/2017 10:51:12 Type: Unk

Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00071        | 02198         | 00466         | 00317         | .00004         |
| Stddev                             | .00121        | .00716        | .00178        | .00034        | .00000         |
| %RSD                               | 170.09        | 32.562        | 38.216        | 10.798        | 11.792         |
| #1                                 | .00157        | 01692         | 00340         | 00293         | .00004         |
| #2                                 | 00014         | 02704         | 00591         | 00341         | .00004         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00004         | .01971        | .00032        | 0033          | 19.239         |
| Stddev                             | .00002        | .00261        | .00000        | .0168         | .010           |
| %RSD                               | 59.823        | 13.235        | 1.0571        | 510.5         | .04957         |
| #1                                 | 00002         | .01786        | .00032        | .0086         | 19.246         |
| #2                                 | 00005         | .02155        | .00032        | 0152          | 19.232         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | None          | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 10.565        | .00753        | .00382        | .02261        | .00032         |
| Stddev                             | .065          | .00020        | .00172        | .00551        | .00150         |
| %RSD                               | .61599        | 2.6240        | 45.007        | 24.374        | 468.58         |
| #1                                 | 10.611        | .00767        | .00503        | .01872        | .00138         |
| #2                                 | 10.519        | .00739        | .00260        | .02651        | 00074          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: ICEX4 Acquired: 10/16/2017 10:51:12 Type: Unk

Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576                      | Mo2020                                               | Na5895         | Ni2316         |
|------------------------------------|----------------|-----------------------------|------------------------------------------------------|----------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131}               | 202.030 {467}                                        | 589.592 { 57}  | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)                    | (Y_2243)                                             | (Y_3774)       | (In2306)       |
| Units                              | ppm            | ppm                         | ppm                                                  | ppm            | ppm            |
| Avg                                | 00467          | F .00473                    | .00023                                               | .00484         | <b>9.7983</b>  |
| Stddev                             | .00104         | .00011                      | .00009                                               | .00110         | .0057          |
| %RSD                               | 22.231         | 2.2780                      | 39.611                                               | 22.789         | .05788         |
| #1                                 | 00394          | .00481                      | .00017                                               | .00562         | 9.8023         |
| #2                                 | 00541          | .00465                      | .00030                                               | .00406         | 9.7943         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Fail<br>.00300<br>00300 | Chk Pass                                             | Chk Pass       | Chk Pass       |
| Elem                               | Pb2203         | S_1820                      | Sb2068                                               | Se1960         | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485}               | 206.833 {463}                                        | 196.090 {472}  | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)                    | (Y_2243)                                             | (Y_2243)       | (Y_3774)       |
| Units                              | ppm            | ppm                         | ppm                                                  | ppm            | ppm            |
| Avg                                | 00180          | .01099                      | 00568                                                | 00139          | 03261          |
| Stddev                             | .00118         | .00100                      | .00196                                               | .00049         | .00274         |
| %RSD                               | 65.530         | 9.0942                      | 34.405                                               | 35.003         | 8.4036         |
| #1                                 | 00097          | .01169                      | 00707                                                | 00105          |                |
| #2                                 | 00264          | .01028                      | 00430                                                | 00174          |                |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass                    | Chk Pass                                             | Chk Pass       | Chk Pass       |
| Elem                               | Sn1899         | Sr4077                      | Ti3349 334.904 {101} (Y_3600) ppm00085 .00028 32.956 | TI1908         | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83}               |                                                      | 190.856 {477}  | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)                    |                                                      | (In2306)       | (Y_3600)       |
| Units                              | ppm            | ppm                         |                                                      | ppm            | ppm            |
| Avg                                | .00030         | .00004                      |                                                      | . <b>00612</b> | .00017         |
| Stddev                             | .00000         | .00002                      |                                                      | .00089         | .00005         |
| %RSD                               | 1.4022         | 53.389                      |                                                      | 14.559         | 30.375         |
| #1                                 | .00030         | .00006                      | 00104                                                | .00675         | .00014         |
| #2                                 | .00029         | .00003                      | 00065                                                | .00549         | .00021         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass                    | Chk Pass                                             | Chk Pass       | Chk Pass       |

Sample Name: ICEX4 Acquired: 10/16/2017 10:51:12 Type: Unk Corr. Factor: 1.000000 Method: ICAP2 June 2017(v155) Mode: CONC User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm .00172 Avg .00023 Stddev %RSD 13.588 #1 .00156 #2 .00189 Check? **Chk Pass** High Limit Low Limit Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} Line Units Cts/S Cts/S Cts/S 3754.4 2614.2 22365. Avg Stddev 2.1 1.0 74. %RSD .05497 .03760 .33271

377.433 { 89} Cts/S 3970.5 15.6 .39281 #1 3752.9 2614.9 22418. 3959.4 #2 3755.9 2613.5 22312. 3981.5 Check? **Chk Pass Chk Pass** Chk Pass **Chk Pass** Value 101.17% 101.44% 101.80% 104.22% Range

Sample Name: ICEX5 Acquired: 10/16/2017 10:54:48 Type: Unk

Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00025        | .06583        | .00698        | 00535         | 00005          |
| Stddev                             | .00025        | .02668        | .00108        | .00037        | .00000         |
| %RSD                               | 101.87        | 40.534        | 15.460        | 6.8737        | 8.0630         |
| #1                                 | .00043        | .08469        | .00775        | 00509         | 00006          |
| #2                                 | .00007        | .04696        | .00622        | 00561         | 00005          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00015         | .01815        | .00009        | 0128          | 00104          |
| Stddev                             | .00003        | .00241        | .00004        | .0031         | .00025         |
| %RSD                               | 16.656        | 13.287        | 39.107        | 23.88         | 23.838         |
| #1                                 | 00013         | .01985        | .00011        | 0107          | 00121          |
| #2                                 | 00017         | .01644        | .00006        | 0150          | 00086          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | None          | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00044         | 00159         | .00116        | .01240        | .00091         |
| Stddev                             | .00041        | .00072        | .00129        | .02629        | .00194         |
| %RSD                               | 92.704        | 45.304        | 111.98        | 212.03        | 212.57         |
| #1                                 | 00015         | 00108         | .00207        | 00619         | 00046          |
| #2                                 | 00072         | 00209         | .00024        | .03098        | .00228         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: ICEX5 Acquired: 10/16/2017 10:54:48 Type: Unk

Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020                                                 | Na5895         | Ni2316        |
|------------------------------------|----------------|---------------|--------------------------------------------------------|----------------|---------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467}                                          | 589.592 { 57}  | 231.604 {446} |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)                                               | (Y_3774)       | (In2306)      |
| Units                              | ppm            | ppm           | ppm                                                    | ppm            | ppm           |
| Avg                                | 07188          | .00201        | <b>5.1438</b>                                          | . <b>00420</b> | .00025        |
| Stddev                             | .00105         | .00091        | .0066                                                  | .00604         | .00002        |
| %RSD                               | 1.4598         | 45.420        | .12884                                                 | 143.72         | 6.3682        |
| #1                                 | 07262          | .00265        | 5.1485                                                 | 00007          | .00026        |
| #2                                 | 07113          | .00136        | 5.1392                                                 | .00847         | .00024        |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass      |
| Elem                               | Pb2203         | S_1820        | Sb2068                                                 | Se1960         |               |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463}                                          | 196.090 {472}  |               |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)                                               | (Y_2243)       |               |
| Units                              | ppm            | ppm           | ppm                                                    | ppm            |               |
| Avg                                | .00020         | 01787         | .00199                                                 | 00060          |               |
| Stddev                             | .00084         | .00067        | .00038                                                 | .00037         |               |
| %RSD                               | 412.86         | 3.7359        | 19.128                                                 | 61.395         |               |
| #1                                 | 00039          | 01834         | .00172                                                 | 00034          | 03072         |
| #2                                 | .00079         | 01740         | .00226                                                 | 00085          | 01712         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass      |
| Elem                               | Sn1899         | Sr4077        | Ti3349 334.904 {101} (Y_3600) ppm .00173 .00051 29.433 | TI1908         | V_2924        |
| Line                               | 189.989 {477}  | 407.771 { 83} |                                                        | 190.856 {477}  | 292.402 {115} |
| IS Ref                             | (In2306)       | (Y_3774)      |                                                        | (In2306)       | (Y_3600)      |
| Units                              | ppm            | ppm           |                                                        | ppm            | ppm           |
| Avg                                | .00063         | 00001         |                                                        | .00005         | 00145         |
| Stddev                             | .00008         | .00002        |                                                        | .00047         | .00037        |
| %RSD                               | 12.509         | 277.83        |                                                        | 919.10         | 25.485        |
| #1                                 | .00068         | .00001        | .00209                                                 | 00028          | 00171         |
| #2                                 | .00057         | 00002         | .00137                                                 | .00039         | 00119         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass      |

Sample Name: ICEX5 Acquired: 10/16/2017 10:54:48 Type: Unk Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm .00067 Avg .00042 Stddev %RSD 62.557 #1 .00037 #2 .00096 Check? **Chk Pass** High Limit Low Limit Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Cts/S Units Cts/S Cts/S Cts/S 3689.0 2598.9 21982. 3836.1 Avg Stddev 10.4 4.2 96. 7.4 %RSD .28190 .16040 .43879 .19288

Sample Name: CCV-4278259 Acquired: 10/16/2017 10:58:26 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                      | Ag3280         | Al3082         | As1890         | B_2089         | Ba4554-2       |
|---------------------------|----------------|----------------|----------------|----------------|----------------|
| Line                      | 328.068 {103}  | 308.215 {109}  | 189.042 {478}  | 208.959 {461}  | 455.403 { 74}2 |
| Units                     | ppm            | ppm            | ppm            | ppm            | ppm            |
| Avg                       | . <b>51854</b> | <b>25.006</b>  | . <b>51948</b> | . <b>51638</b> | . <b>49788</b> |
| Stddev                    | .00046         | .007           | .00237         | .00028         | .00071         |
| %RSD                      | .08778         | .02725         | .45623         | .05355         | .14193         |
| #1                        | .51886         | 25.002         | .51780         | .51618         | .49838         |
| #2                        | .51822         | 25.011         | .52115         | .51657         | .49738         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       |
| Elem                      | Be3130         | Ca3179         | Cd2288         | **Ce4040       | Co2286         |
| Line                      | 313.042 {108}  | 317.933 {106}  | 228.802 {447}  | 404.076 { 83}  | 228.616 {447}  |
| Units                     | ppm            | ppm            | ppm            | ppm            | ppm            |
| Avg                       | . <b>52861</b> | 26.146         | . <b>51244</b> | 0153           | .51199         |
| Stddev                    | .00104         | .036           | .00033         | .0055          | .00064         |
| %RSD                      | .19688         | .13707         | .06384         | 35.95          | .12538         |
| #1                        | .52788         | 26.121         | .51221         | 0192           | .51153         |
| #2                        | .52935         | 26.171         | .51267         | 0114           | .51244         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | None           | Chk Pass       |
| Elem                      | Cr2677         | Cu3273         | Fe2599         | K_7664         |                |
| Line                      | 267.716 {126}  | 327.396 {103}  | 259.940 {130}  | 766.490 { 44}  |                |
| Units                     | ppm            | ppm            | ppm            | ppm            |                |
| Avg                       | . <b>52547</b> | . <b>50806</b> | <b>25.665</b>  | <b>25.404</b>  |                |
| Stddev                    | .00182         | .00148         | .030           | .085           |                |
| %RSD                      | .34632         | .29164         | .11864         | .33470         |                |
| #1                        | .52419         | .50701         | 25.644         | 25.344         | .51415         |
| #2                        | .52676         | .50911         | 25.687         | 25.464         | .51636         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       |

Sample Name: CCV-4278259 Acquired: 10/16/2017 10:58:26 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br><b>25.814</b><br>.055<br>.21164   | Mn2576<br>257.610 {131}<br>ppm<br>. <b>53186</b><br>.00242<br>.45552 | Mo2020<br>202.030 {467}<br>ppm<br>. <b>52117</b><br>.00068<br>.13141 | Na5895<br>589.592 { 57}<br>ppm<br><b>25.488</b><br>.044<br>.17124    | 231.604 {446}<br>ppm<br>. <b>51824</b><br>.00036 |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|
| #1<br>#2                                       | 25.853<br>25.775                                                     | .53014<br>.53357                                                     | .52166<br>.52069                                                     | 25.458<br>25.519                                                     |                                                  |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                         |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>. <b>51615</b><br>.00023<br>.04393 | S_1820<br>182.034 {485}<br>ppm<br><b>25.928</b><br>.006<br>.02347    | Sb2068<br>206.833 {463}<br>ppm<br>. <b>51256</b><br>.00245<br>.47877 | Se1960<br>196.090 {472}<br>ppm<br>. <b>52613</b><br>.00203<br>.38509 | 288.158 {117}2<br>ppm<br>F 22.326<br>.061        |
| #1<br>#2                                       | .51631<br>.51599                                                     | 25.932<br>25.924                                                     | .51430<br>.51083                                                     | .52470<br>.52756                                                     |                                                  |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Fail<br>25.000<br>-10.000%                   |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>ppm<br>. <b>52886</b><br>.00004<br>.00712 | Sr4077<br>407.771 { 83}<br>ppm<br>. <b>51000</b><br>.00118<br>.23064 | Ti3349<br>334.904 {101}<br>ppm<br>. <b>52602</b><br>.00173<br>.32880 | TI1908<br>190.856 {477}<br>ppm<br>. <b>52383</b><br>.00074<br>.14056 | 292.402 {115}<br>ppm                             |
| #1<br>#2                                       | .52889<br>.52884                                                     | .50917<br>.51083                                                     | .52480<br>.52724                                                     | .52330<br>.52435                                                     | .52650<br>.52847                                 |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                         |

Sample Name: CCV-4278259 Acquired: 10/16/2017 10:58:26 Type: QC Method: ICAP2 June 2017(v155) Corr. Factor: 1.000000 Mode: CONC

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Zn2062 Elem 206.200 {163} Line Units ppm .52777 Avg .00147 Stddev %RSD .27780

#1 .52881 #2 .52673

Check? **Chk Pass** 

Value

Range

| Int. Std. | In2306        | Y_2243        | Y_3600        | Y_3774        |
|-----------|---------------|---------------|---------------|---------------|
| Line      | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units     | Cts/S         | Cts/S         | Cts/S         | Cts/S         |
| Avg       | 3442.6        | 2558.7        | 21445.        | 3897.5        |
| Stddev    | .5            | 1.9           | 15.           | 2.9           |
| %RSD      | .01389        | .07441        | .07146        | .07566        |
| #1        | 3442.3        | 2560.1        | 21435.        | 3895.4        |
| #2        | 3442.9        | 2557.4        | 21456.        | 3899.6        |

Sample Name: CCB-4278202 Acquired: 10/16/2017 11:01:54 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089         | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|----------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461}  | 455.403 { 74}2 |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00035        | 02588         | .00013        | 00073          | 00001          |
| Stddev                             | .00015        | .00192        | .00129        | .00020         | .00000         |
| %RSD                               | 44.123        | 7.4032        | 964.66        | 27.636         | 1.8284         |
| #1                                 | .00046        | 02723         | .00105        | 00059          | 00001          |
| #2                                 | .00024        | 02452         | 00078         | 00088          | 00001          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040       | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83}  | 228.616 {447}  |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00007        | .00806        | .00000        | . <b>0126</b>  | .00035         |
| Stddev                             | .00009        | .00163        | .00012        | .0170          | .00007         |
| %RSD                               | 119.08        | 20.158        | 12184.        | 135.6          | 19.809         |
| #1                                 | .00014        | .00921        | .00009        | .0005          | .00030         |
| #2                                 | .00001        | .00691        | 00008         | .0246          | .00040         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | None           | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599        | K_7664         |                |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130} | 766.490 { 44}  |                |
| Units                              | ppm           | ppm           | ppm           | ppm            |                |
| Avg                                | .00035        | .00078        | .00166        | . <b>01044</b> |                |
| Stddev                             | .00044        | .00005        | .00075        | .00917         |                |
| %RSD                               | 127.62        | 7.0269        | 44.994        | 87.838         |                |
| #1                                 | .00003        | .00082        | .00113        | .00396         | 00018          |
| #2                                 | .00066        | .00074        | .00219        | .01693         | .00151         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |

Sample Name: CCB-4278202 Acquired: 10/16/2017 11:01:54 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020                                            | Na5895        | Ni2316         |
|------------------------------------|----------------|---------------|---------------------------------------------------|---------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467}                                     | 589.592 { 57} | 231.604 {446}  |
| Units                              | ppm            | ppm           | ppm                                               | ppm           | ppm            |
| Avg                                | . <b>00624</b> | .00231        | .00012                                            | 00162         | .00023         |
| Stddev                             | .00198         | .00005        | .00004                                            | .00197        | .00000         |
| %RSD                               | 31.715         | 2.0044        | 32.684                                            | 121.85        | .44564         |
| #1                                 | .00484         | .00234        | .00010                                            | 00301         | .00023         |
| #2                                 | .00764         | .00228        | .00015                                            | 00022         | .00023         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                          | Chk Pass      | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068                                            | Se1960        | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463}                                     | 196.090 {472} | 288.158 {117}2 |
| Units                              | ppm            | ppm           | ppm                                               | ppm           | ppm            |
| Avg                                | .00028         | 00586         | 00032                                             | .00280        | . <b>00681</b> |
| Stddev                             | .00004         | .00135        | .00101                                            | .00029        | .01375         |
| %RSD                               | 15.660         | 22.965        | 320.23                                            | 10.422        | 202.01         |
| #1                                 | .00031         | 00491         | 00103                                             | .00259        | 00292          |
| #2                                 | .00024         | 00681         | .00040                                            | .00301        | .01653         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                          | Chk Pass      | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349 334.904 {101}     ppm .00077 .00061 78.543 | TI1908        | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} |                                                   | 190.856 {477} | 292.402 {115}  |
| Units                              | ppm            | ppm           |                                                   | ppm           | ppm            |
| Avg                                | .00032         | .00002        |                                                   | .00148        | .00012         |
| Stddev                             | .00006         | .00002        |                                                   | .00006        | .00007         |
| %RSD                               | 17.585         | 67.372        |                                                   | 3.8421        | 57.621         |
| #1                                 | .00028         | .00003        | .00120                                            | .00152        | .00007         |
| #2                                 | .00036         | .00001        | .00034                                            | .00144        | .00017         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                          | Chk Pass      | Chk Pass       |

Sample Name: CCB-4278202 Acquired: 10/16/2017 11:01:54 Type: QC Method: ICAP2 June 2017(v155) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 -.00005

 Stddev
 .00011

 %RSD
 233.05

#1 .00003 #2 -.00012

Check? Chk Pass

High Limit Low Limit

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Units Cts/S Cts/S Cts/S Avg 3749.8 2628.4 22273. 3893.4 5.6 12.5 Stddev 9.9 89. %RSD .26360 .21407 .40113 .32068 #1 3756.8 2632.4 22210. 3884.6 3742.8 #2 2624.5 22336. 3902.2 Sample Name: ccvl-4278204 Acquired: 10/16/2017 11:10:42 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                           | Ag3280                                                       | Al3082                                                       | As1890                                                               | B_2089         | Ba4554-2       |
|------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------|----------------|
| Line                                           | 328.068 {103}                                                | 308.215 {109}                                                | 189.042 {478}                                                        | 208.959 {461}  | 455.403 { 74}2 |
| Units                                          | ppm                                                          | ppm                                                          | ppm                                                                  | ppm            | ppm            |
| Avg                                            | .00668                                                       | .17801                                                       | .01634                                                               | . <b>01916</b> | .00206         |
| Stddev                                         | .00053                                                       | .00971                                                       | .00125                                                               | .00024         | .00001         |
| %RSD                                           | 7.9140                                                       | 5.4528                                                       | 7.6688                                                               | 1.2362         | .42473         |
| #1                                             | .00706                                                       | .18487                                                       | .01722                                                               | .01933         | .00206         |
| #2                                             | .00631                                                       | .17115                                                       | .01545                                                               | .01899         | .00205         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                     | Chk Pass                                                     | Chk Pass                                                             | Chk Pass       | Chk Pass       |
| Elem                                           | Be3130                                                       | Ca3179                                                       | Cd2288                                                               | **Ce4040       | Co2286         |
| Line                                           | 313.042 {108}                                                | 317.933 {106}                                                | 228.802 {447}                                                        | 404.076 { 83}  | 228.616 {447}  |
| Units                                          | ppm                                                          | ppm                                                          | ppm                                                                  | ppm            | ppm            |
| Avg                                            | .00217                                                       | . <b>52131</b>                                               | . <b>00215</b>                                                       | 0019           | .00379         |
| Stddev                                         | .00007                                                       | .00097                                                       | .00011                                                               | .0274          | .00019         |
| %RSD                                           | 3.1173                                                       | .18642                                                       | 4.9109                                                               | 1422.          | 5.0476         |
| #1                                             | .00222                                                       | .52063                                                       | .00207                                                               | .0174          | .00393         |
| #2                                             | .00212                                                       | .52200                                                       | .00222                                                               | 0213           | .00366         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                     | Chk Pass                                                     | Chk Pass                                                             | None           | Chk Pass       |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Cr2677<br>267.716 {126}<br>ppm<br>.00389<br>.00094<br>24.237 | Cu3273<br>327.396 {103}<br>ppm<br>.01030<br>.00030<br>2.8754 | Fe2599<br>259.940 {130}<br>ppm<br>. <b>05255</b><br>.00045<br>.85931 | _              |                |
| #1                                             | .00322                                                       | .01009                                                       | .05223                                                               | .47798         | .02864         |
| #2                                             | .00456                                                       | .01051                                                       | .05287                                                               | .44293         | .02890         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                     | Chk Pass                                                     | Chk Pass                                                             | Chk Pass       | Chk Pass       |

Sample Name: ccvl-4278204 Acquired: 10/16/2017 11:10:42 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br>. <b>21353</b><br>.00615<br>2.8779 | Mn2576<br>257.610 {131}<br>ppm<br>.00306<br>.00005<br>1.5019         | Mo2020<br>202.030 {467}<br>ppm<br>.01016<br>.00009<br>.90380         | Na5895<br>589.592 { 57}<br>ppm<br><b>1.0054</b><br>.0029<br>.28557   | ppm<br>. <b>00971</b>                                                |
|------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| #1<br>#2                                       | .20919<br>.21788                                                      | .00303<br>.00310                                                     | .01022<br>.01009                                                     | 1.0074<br>1.0034                                                     | .00980<br>.00962                                                     |
| Check ?<br>Value<br>Range                      | Chk Pass                                                              | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>.01016<br>.00066<br>6.4987          | S_1820<br>182.034 {485}<br>ppm<br>. <b>18577</b><br>.00165<br>.88643 | Sb2068<br>206.833 {463}<br>ppm<br>. <b>02044</b><br>.00180<br>8.8221 | Se1960<br>196.090 {472}<br>ppm<br>. <b>02526</b><br>.00002<br>.06508 | ppm<br>. <b>45324</b>                                                |
| #1<br>#2                                       | .00969<br>.01062                                                      | .18694<br>.18461                                                     | .01916<br>.02171                                                     | .02528<br>.02525                                                     | .44966<br>.45682                                                     |
| Check ?<br>Value<br>Range                      | Chk Pass                                                              | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>ppm<br>. <b>01010</b><br>.00031<br>3.0538  | Sr4077<br>407.771 { 83}<br>ppm<br>. <b>00502</b><br>.00009<br>1.7345 | Ti3349<br>334.904 {101}<br>ppm<br>. <b>00483</b><br>.00006<br>1.1625 | TI1908<br>190.856 {477}<br>ppm<br>. <b>02073</b><br>.00046<br>2.2327 | V_2924<br>292.402 {115}<br>ppm<br>. <b>00533</b><br>.00026<br>4.9007 |
| #1<br>#2                                       | .00988<br>.01032                                                      | .00495<br>.00508                                                     | .00479<br>.00487                                                     | .02106<br>.02040                                                     | .00552<br>.00515                                                     |
| Check ?<br>Value<br>Range                      | Chk Pass                                                              | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             |

Sample Name: ccvl-4278204 Acquired: 10/16/2017 11:10:42 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 W .01330

 Stddev
 .00003

 %RSD
 .24756

#1 .01327 #2 .01332

Check? Chk Warn
Value .01000
Range 30.000%

In2306 Y\_2243 Y\_3600 Y\_3774 Int. Std. 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Units Cts/S Cts/S Cts/S Avg 3751.6 2634.3 22211. 3931.3 2.2 Stddev 3.3 56. 6.8 %RSD .08790 .08165 .25338 .17353

#1 3753.9 2632.8 22250. 3926.4 #2 3749.2 2635.8 22171. 3936.1 Sample Name: LB2 480-378831/1-B Acquired: 10/16/2017 11:14:20 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082         | As1890        | B_2089         | Ba4554-2       |
|------------------------------------|---------------|----------------|---------------|----------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109}  | 189.042 {478} | 208.959 {461}  | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)       | (Y_2243)      | (Y_2243)       | (Y_3600)       |
| Units                              | ppm           | ppm            | ppm           | ppm            | ppm            |
| Avg                                | .00089        | . <b>05362</b> | .00300        | .06794         | .00400         |
| Stddev                             | .00055        | .00553         | .00054        | .00021         | .00004         |
| %RSD                               | 61.371        | 10.313         | 18.040        | .31005         | .97898         |
| #1                                 | .00128        | .05753         | .00262        | .06780         | .00397         |
| #2                                 | .00051        | .04971         | .00338        | .06809         | .00403         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Be3130        | Ca3179         | Cd2288        | **Ce4040       | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106}  | 228.802 {447} | 404.076 { 83}  | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)       | (Y_2243)      | (Y_3774)       | (In2306)       |
| Units                              | ppm           | ppm            | ppm           | ppm            | ppm            |
| Avg                                | .00003        | . <b>70778</b> | .00010        | .0002          | 00006          |
| Stddev                             | .00004        | .00124         | .00006        | .0050          | .00002         |
| %RSD                               | 145.48        | .17454         | 63.006        | 2042.          | 34.285         |
| #1                                 | .00005        | .70690         | .00015        | 0033           | 00004          |
| #2                                 | 00000         | .70865         | .00006        | .0038          | 00007          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | None           | Chk Pass       |
| Elem                               | Cr2677        | Cu3273         | Fe2599        | K_7664         | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103}  | 259.940 {130} | 766.490 { 44}  | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)       | (Y_3774)      | (Y_3774)       | (Y_3774)       |
| Units                              | ppm           | ppm            | ppm           | ppm            | ppm            |
| Avg                                | 00051         | .00036         | .00920        | . <b>12760</b> | .00024         |
| Stddev                             | .00037        | .00013         | .00126        | .01035         | .00068         |
| %RSD                               | 71.975        | 35.791         | 13.708        | 8.1076         | 282.61         |
| #1                                 | 00025         | .00027         | .00830        | .13491         | .00073         |
| #2                                 | 00077         | .00046         | .01009        | .12028         | 00024          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       | Chk Pass       |

Sample Name: LB2 480-378831/1-B Acquired: 10/16/2017 11:14:20 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br>.08008<br>.00360<br>4.5006 | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br>.00011<br>.00008<br>69.520 | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>00023<br>.00003<br>12.084  | Na5895<br>589.592 { 57}<br>(Y_3774)<br>ppm<br>F 18.995<br>.006<br>.03333 | (In2306)<br>ppm                                                           |
|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|
| #1<br>#2                                                 | .07753<br>.08263                                                          | .00016<br>.00006                                                         | 00021<br>00025                                                           | 18.999<br>18.991                                                         | .00011<br>00012                                                           |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                  | Chk Pass                                                                 | Chk Pass                                                                 | Chk Fail<br>1.0000<br>-1.0000                                            | Chk Pass                                                                  |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br>.00112<br>.00023<br>20.801  | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br>.00236<br>.00094<br>39.638 | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>.00150<br>.00016<br>10.718 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>.00718<br>.00303<br>42.169 | Si2881<br>288.158 {117}2<br>(Y_3774)<br>ppm<br>.08381<br>.00848<br>10.118 |
| #1<br>#2                                                 | .00128<br>.00095                                                          | .00170<br>.00303                                                         | .00139<br>.00162                                                         | .00504<br>.00932                                                         | .07781<br>.08980                                                          |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                  | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                  |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.00112<br>.00020<br>17.815  | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>.00083<br>.00004<br>4.5917 | Ti3349 334.904 {101} (Y_3600) ppm .00020 .00014 71.470                   |                                                                          |                                                                           |
| #1<br>#2                                                 | .00098<br>.00126                                                          | .00085<br>.00080                                                         | .00030<br>.00010                                                         | .00008<br>00157                                                          | .00081<br>.00040                                                          |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                  | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                  |

Sample Name: LB2 480-378831/1-B Acquired: 10/16/2017 11:14:20 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062
Line 206.200 {163}
IS Ref (Y\_3600)
Units ppm
Avg .00279
Stddev .00043
%RSD 15.413

#1 .00310 #2 .00249

Check? Chk Pass

High Limit Low Limit

Range

Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 3703.7 2601.2 22097. 3982.2 Avg 10.8 8.3 15.7 Stddev 63. %RSD .29249 .31734 .28616 .39447 #1 3711.3 2607.1 22052. 3971.0 #2 3696.0 2595.4 22141. 3993.3 Check? **Chk Pass Chk Pass Chk Pass** Chk Pass Value 99.801% 100.93% 100.58% 104.52% Sample Name: MB 480-378949/2-A Acquired: 10/16/2017 11:17:57 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089         | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|----------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461}  | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)       | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00022        | .01668        | .00153        | 00031          | .00005         |
| Stddev                             | .00017        | .01026        | .00033        | .00008         | .00001         |
| %RSD                               | 75.424        | 61.532        | 21.728        | 26.579         | 25.066         |
| #1                                 | .00010        | .00942        | .00177        | 00037          | .00006         |
| #2                                 | .00034        | .02393        | .00130        | 00025          | .00004         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040       | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83}  | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)       | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00007        | .01907        | .00003        | 0052           | .00006         |
| Stddev                             | .00000        | .00041        | .00012        | .0036          | .00003         |
| %RSD                               | 3.1057        | 2.1672        | 378.38        | 69.18          | 58.642         |
| #1                                 | .00006        | .01878        | 00005         | 0077           | .00008         |
| #2                                 | .00007        | .01936        | .00012        | 0027           | .00003         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | None           | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599        | K_7664         | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130} | 766.490 { 44}  | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)       | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | 00062         | .00014        | .00387        | . <b>00409</b> | 00060          |
| Stddev                             | .00014        | .00073        | .00065        | .00045         | .00027         |
| %RSD                               | 23.047        | 527.20        | 16.784        | 10.948         | 45.525         |
| #1                                 | 00052         | .00065        | .00342        | .00441         | 00040          |
| #2                                 | 00072         | 00038         | .00433        | .00377         | 00079          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |

Sample Name: MB 480-378949/2-A Acquired: 10/16/2017 11:17:57 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020                                                 | Na5895        | Ni2316         |
|------------------------------------|----------------|---------------|--------------------------------------------------------|---------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467}                                          | 589.592 { 57} | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)                                               | (Y_3774)      | (In2306)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm           | ppm            |
| Avg                                | .00865         | .00004        | 00020                                                  | .00197        | 00002          |
| Stddev                             | .00015         | .00014        | .00007                                                 | .00338        | .00000         |
| %RSD                               | 1.6890         | 319.91        | 34.524                                                 | 171.12        | 18.489         |
| #1                                 | .00875         | .00014        | 00015                                                  | 00041         | 00001          |
| #2                                 | .00855         | 00005         | 00026                                                  | .00436        | 00002          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068                                                 | Se1960        | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463}                                          | 196.090 {472} | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)                                               | (Y_2243)      | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm           | ppm            |
| Avg                                | .00072         | 00550         | 00003                                                  | .00138        | 00652          |
| Stddev                             | .00066         | .00012        | .00061                                                 | .00184        | .00510         |
| %RSD                               | 91.468         | 2.2573        | 1952.1                                                 | 133.39        | 78.334         |
| #1                                 | .00118         | 00541         | .00040                                                 | .00269        | 01013          |
| #2                                 | .00025         | 00558         | 00046                                                  | .00008        | 00291          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349 334.904 {101} (Y_3600) ppm .00046 .00056 121.25 | TI1908        | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} |                                                        | 190.856 {477} | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)      |                                                        | (In2306)      | (Y_3600)       |
| Units                              | ppm            | ppm           |                                                        | ppm           | ppm            |
| Avg                                | .00066         | .00009        |                                                        | .00084        | .00022         |
| Stddev                             | .00026         | .00002        |                                                        | .00110        | .00014         |
| %RSD                               | 38.662         | 25.151        |                                                        | 130.39        | 64.148         |
| #1                                 | .00084         | .00007        | .00085                                                 | .00007        | .00032         |
| #2                                 | .00048         | .00010        | .00007                                                 | .00162        | .00012         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass       |

Sample Name: MB 480-378949/2-A Acquired: 10/16/2017 11:17:57 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm .00044 Avg .00012 Stddev %RSD 28.077

#1 .00053 #2 .00036

Check? Chk Pass

High Limit Low Limit

Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 224.306 {450} 360.073 { 94} 377.433 { 89} 230.606 {446} Line Units Cts/S Cts/S Cts/S Cts/S 3746.3 2627.7 22350. 3901.2 Avg 10.4 6.9 83. 17.1 Stddev %RSD .27668 .26111 .36998 .43916 #1 3753.7 2632.5 22408. 3889.1 #2 3739.0 2622.8 22291. 3913.4 Check? **Chk Pass Chk Pass Chk Pass** Chk Pass Value 100.95% 101.96% 101.74% 102.40% Range

Sample Name: LCS 480-378949/3-A Acquired: 10/16/2017 11:21:35 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089         | Ba4554         |
|------------------------------------|---------------|---------------|---------------|----------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461}  | 455.403 { 74}  |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)       | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | 1.0015        | .03103        | 1.0446        | . <b>06201</b> | 1.0225         |
| Stddev                             | .0017         | .00169        | .0012         | .00000         | .0018          |
| %RSD                               | .17145        | 5.4329        | .11278        | .00722         | .17790         |
| #1                                 | 1.0003        | .03223        | 1.0454        | .06202         | 1.0238         |
| #2                                 | 1.0027        | .02984        | 1.0437        | .06201         | 1.0212         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | None          | Chk Pass      | None           | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040       | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83}  | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)       | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | 1.0516        | .66369        | 1.0299        | .0276          | . <b>96942</b> |
| Stddev                             | .0048         | .00493        | .0013         | .0022          | .00066         |
| %RSD                               | .45723        | .74354        | .12108        | 7.964          | .06857         |
| #1                                 | 1.0550        | .66718        | 1.0290        | .0291          | .96989         |
| #2                                 | 1.0482        | .66020        | 1.0308        | .0260          | .96895         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | None          | Chk Pass      | None           | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599        | K_7664         | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130} | 766.490 { 44}  | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)       | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | 1.0272        | 1.0198        | .00705        | .08514         | .00048         |
| Stddev                             | .0038         | .0013         | .00029        | .01014         | .00018         |
| %RSD                               | .36943        | .12332        | 4.1571        | 11.913         | 37.454         |
| #1                                 | 1.0299        | 1.0207        | .00726        | .07797         | .00035         |
| #2                                 | 1.0245        | 1.0189        | .00685        | .09231         | .00060         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | None          | None           | None           |

Sample Name: LCS 480-378949/3-A Acquired: 10/16/2017 11:21:35 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br>. <b>06167</b><br>.00266<br>4.3142 | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br>1.0210<br>.0024<br>.23052  | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>1.0446<br>.0014<br>.13211 | Na5895<br>589.592 { 57}<br>(Y_3774)<br>ppm<br>18.071<br>.074<br>.40925  | (In2306)<br>ppm<br>. <b>98477</b>                                                 |
|----------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| #1<br>#2                                                 | .05979<br>.06356                                                                  | 1.0227<br>1.0193                                                         | 1.0437<br>1.0456                                                        | 18.123<br>18.019                                                        | .98540<br>.98414                                                                  |
| Check ?<br>High Limit<br>Low Limit                       | None                                                                              | Chk Pass                                                                 | Chk Pass                                                                | None                                                                    | Chk Pass                                                                          |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br>1.0121<br>.0032<br>.31161           | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br>.00169<br>.00097<br>57.517 | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>1.0152<br>.0005<br>.04929 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>1.0922<br>.0019<br>.17048 | Si2881<br>288.158 {117}2<br>(Y_3774)<br>ppm<br>. <b>09153</b><br>.00415<br>4.5361 |
| #1<br>#2                                                 | 1.0143<br>1.0098                                                                  | .00100<br>.00238                                                         | 1.0149<br>1.0156                                                        | 1.0908<br>1.0935                                                        | .08860<br>.09447                                                                  |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                          | None                                                                     | Chk Pass                                                                | Chk Pass                                                                | None                                                                              |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.00134<br>.00023<br>17.525          | (Y_3774)<br>ppm<br>1.0385<br>.0016<br>.15642                             | Ti3349 334.904 {101} (Y_3600) ppm00031 .00021 67.475                    | (In2306)<br>ppm<br>1.0333<br>.0014<br>.13552                            | (Y_3600)<br>ppm<br>1.0718<br>.0017<br>.15468                                      |
| #1<br>#2                                                 | .00150<br>.00117                                                                  | 1.0397<br>1.0374                                                         | 00016<br>00046                                                          | 1.0323<br>1.0343                                                        | 1.0729<br>1.0706                                                                  |
| Check ?<br>High Limit<br>Low Limit                       | None                                                                              | None                                                                     | None                                                                    | Chk Pass                                                                | Chk Pass                                                                          |

Sample Name: LCS 480-378949/3-A Acquired: 10/16/2017 11:21:35 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 IS Ref
 (Y\_3600)

 Units
 ppm

 Avg
 1.0517

 Stddev
 .0042

 %RSD
 .39917

#1 1.0547 #2 1.0488

Check? Chk Pass

High Limit Low Limit

| Int. Std.      | In2306        | Y_2243        | Y_3600        | Y_3774        |
|----------------|---------------|---------------|---------------|---------------|
| Line           | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units          | Cts/S         | Cts/S         | Cts/S         | Cts/S         |
| Avg            | 3695.0        | 2596.0        | 22187.        | 4013.2        |
| Stddev         | .6            | 4.1           | 102.          | 16.3          |
| %RSD           | .01669        | .15849        | .46102        | .40574        |
| #1             | 3694.5        | 2598.9        | 22114.        | 4001.7        |
| #2             | 3695.4        | 2593.0        | 22259.        | 4024.7        |
| Check?         | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |
| Value<br>Range | 99.567%       | 100.73%       | 100.99%       | 105.34%       |

Sample Name: 480-124556-A-3-D Acquired: 10/16/2017 11:25:06 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082                                                 | As1890        | B_2089        | Ba4554                      |
|------------------------------------|---------------|--------------------------------------------------------|---------------|---------------|-----------------------------|
| Line                               | 328.068 {103} | 308.215 {109}                                          | 189.042 {478} | 208.959 {461} | 455.403 { 74}               |
| IS Ref                             | (Y_3600)      | (Y_3774)                                               | (Y_2243)      | (Y_2243)      | (Y_3774)                    |
| Units                              | ppm           | ppm                                                    | ppm           | ppm           | ppm                         |
| Avg                                | 00023         | <b>3.2077</b>                                          | .00705        | .20773        | 1.8970                      |
| Stddev                             | .00005        | .0310                                                  | .00406        | .00106        | .0039                       |
| %RSD                               | 21.508        | .96659                                                 | 57.531        | .51028        | .20734                      |
| #1                                 | 00020         | 3.2297                                                 | .00992        | .20698        | 1.8942                      |
| #2                                 | 00027         | 3.1858                                                 | .00418        | .20848        | 1.8998                      |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass      | Chk Pass                    |
| Elem                               | Be3130        | Ca3179 317.933 {106} (Y_3774) ppm F 1592.7 44.1 2.7703 | Cd2288        | **Ce4040      | Co2286                      |
| Line                               | 313.042 {108} |                                                        | 228.802 {447} | 404.076 { 83} | 228.616 {447}               |
| IS Ref                             | (Y_3774)      |                                                        | (Y_2243)      | (Y_3774)      | (In2306)                    |
| Units                              | ppm           |                                                        | ppm           | ppm           | ppm                         |
| Avg                                | .00007        |                                                        | .20068        | .0578         | . <b>04491</b>              |
| Stddev                             | .00012        |                                                        | .00063        | .0038         | .00014                      |
| %RSD                               | 172.38        |                                                        | .31379        | 6.634         | .30151                      |
| #1                                 | 00002         | 1623.9                                                 | .20023        | .0551         | .04501                      |
| #2                                 | .00016        | 1561.5                                                 | .20112        | .0605         | .04481                      |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Fail<br>900.00<br>50000                            | Chk Pass      | Chk Pass      | Chk Pass                    |
| Elem                               | Cr2677        | Cu3273                                                 | Fe2599        | K_7664        | Li6707                      |
| Line                               | 267.716 {126} | 327.396 {103}                                          | 259.940 {130} | 766.490 { 44} | 670.784 { 50}               |
| IS Ref                             | (Y_3600)      | (Y_3600)                                               | (Y_3774)      | (Y_3774)      | (Y_3774)                    |
| Units                              | ppm           | ppm                                                    | ppm           | ppm           | ppm                         |
| Avg                                | .01358        | <b>9.7652</b>                                          | .23100        | 2.1678        | F04502                      |
| Stddev                             | .00022        | .0027                                                  | .00184        | .0121         | .00573                      |
| %RSD                               | 1.6329        | .02758                                                 | .79467        | .55625        | 12.718                      |
| #1                                 | .01374        | 9.7671                                                 | .23230        | 2.1763        | 04907                       |
| #2                                 | .01342        | 9.7633                                                 | .22970        | 2.1592        | 04097                       |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass      | Chk Fail<br>45.000<br>03000 |

Sample Name: 480-124556-A-3-D Acquired: 10/16/2017 11:25:06 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020                                                 | Na5895        | Ni2316         |
|------------------------------------|----------------|---------------|--------------------------------------------------------|---------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467}                                          | 589.592 { 57} | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)                                               | (Y_3774)      | (In2306)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm           | ppm            |
| Avg                                | 19.943         | <b>5.5019</b> | .00008                                                 | <b>24.055</b> | .15216         |
| Stddev                             | .025           | .0089         | .00026                                                 | .035          | .00038         |
| %RSD                               | .12502         | .16121        | 307.86                                                 | .14724        | .25237         |
| #1                                 | 19.961         | 5.5082        | .00027                                                 | 24.030        | .15189         |
| #2                                 | 19.926         | 5.4956        | 00010                                                  | 24.080        | .15243         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068                                                 | Se1960        | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463}                                          | 196.090 {472} | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)                                               | (Y_2243)      | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm           | ppm            |
| Avg                                | <b>5.8489</b>  | 3.9838        | .00625                                                 | .00117        | <b>4.8233</b>  |
| Stddev                             | .0030          | .0122         | .00240                                                 | .00025        | .0241          |
| %RSD                               | .05149         | .30648        | 38.485                                                 | 21.050        | .49952         |
| #1                                 | 5.8467         | 3.9752        | .00795                                                 | .00135        | 4.8404         |
| #2                                 | 5.8510         | 3.9924        | .00455                                                 | .00100        | 4.8063         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349 334.904 {101} (Y_3600) ppm F01272 .00036 2.7959 | TI1908        | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} |                                                        | 190.856 {477} | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)      |                                                        | (In2306)      | (Y_3600)       |
| Units                              | ppm            | ppm           |                                                        | ppm           | ppm            |
| Avg                                | .00229         | <b>2.6139</b> |                                                        | 00233         | 00034          |
| Stddev                             | .00069         | .0055         |                                                        | .00098        | .00001         |
| %RSD                               | 30.033         | .21180        |                                                        | 42.228        | 3.8989         |
| #1                                 | .00277         | 2.6100        | 01297                                                  | 00302         | 00033          |
| #2                                 | .00180         | 2.6178        | 01246                                                  | 00163         | 00035          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Fail<br>18.000<br>00500                            | Chk Pass      | Chk Pass       |

Sample Name: 480-124556-A-3-D Acquired: 10/16/2017 11:25:06 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 IS Ref
 (Y\_3600)

 Units
 ppm

 Avg
 F 30.736

 Stddev
 .011

 %RSD
 .03570

#1 30.728 #2 30.744

Check? Chk Fail
High Limit 18.000
Low Limit -.01000

Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 2774.8 2257.8 19208. 3810.1 Avg 7.7 10.3 100.6 Stddev 8. %RSD .27848 .45670 .03960 2.6396 #1 2780.2 2265.1 19203. 3739.0 #2 2769.3 2250.5 19214. 3881.2

Check?Chk PassChk PassChk PassChk PassValue74.771%87.607%87.435%100.01%

Range

Sample Name: 480-124556-A-3-DSD@5 Acquired: 10/16/2017 11:28:46 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: Ag3280 Al3082 As1890 B 2089 Elem Ba4554-2 328.068 {103} 308.215 {109} 189.042 {478} 208.959 {461} 455.403 { 74}2 Line IS Ref (Y 3600)  $(Y_3774)$ (Y 2243) (Y 2243) (Y\_3600) Units ppm ppm ppm ppm ppm .00057 .91668 .00120 .07998 .39314 Avq .00050 Stddev .00067 .00009 .00256 .00026 %RSD 117.81 .00986 213.57 .32525 .12593 #1 .00105 .91662 .00301 .07979 .39279 .00010 .91675 -.00061 .08016 .39349 #2 **Chk Pass Chk Pass** Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit \*\*Ce4040 Elem Be3130 Ca3179 Cd2288 Co2286 313.042 {108} 317.933 {106} 228.802 {447} 404.076 { 83} 228.616 {447} Line IS Ref (Y 3774) (Y 3774) (Y 2243) (Y 3774) (ln2306) Units ppm ppm ppm ppm ppm .00003 353.48 .04102 .0372 .00908 Avg Stddev .00000 3.59 .00061 .0127 .00024 2.6804 1.2198 1.0168 1.4774 34.05 %RSD #1 .00003 356.02 .04059 .0462 .00891 350.94 .04145 #2 .00003 .0282 .00925 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Cr2677 Cu3273 Fe2599 K 7664 Li6707 259.940 {130} 766.490 { 44} 267.716 {126} 327.396 {103} 670.784 { 50} Line IS Ref (Y 3600) (Y 3600) (Y 3774) (Y 3774) (Y 3774) Units ppm ppm ppm ppm ppm .00284 1.9677 .05732 .44650 -.01243 Avg Stddev .00043 .0013 .00144 .04528 .00019 %RSD 15.275 .06483 2.5039 10.140 1.5357 .00253 1.9668 .05834 .41448 -.01256 #2 .00315 1.9686 .05631 .47851 -.01229 **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** Check? High Limit

Low Limit

Sample Name: 480-124556-A-3-DSD@5 Acquired: 10/16/2017 11:28:46 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Elem 279.079 {121}2 257.610 {131} 202.030 {467} 589.592 { 57} 231.604 {446} Line  $(Y_3774)$ IS Ref (Y\_3600) (Y\_3600) (Y 2243) (ln2306) Units ppm ppm ppm ppm ppm 4.4261 1.1865 -.00001 4.8520 .03116 Avq Stddev .0004 .0007 .00002 .0153 .00060 %RSD .00799 .05942 155.81 .31479 1.9098 #1 4.4259 1.1860 -.000034.8412 .03074 4.4264 1.1870 .00000 4.8628 .03158 #2 **Chk Pass Chk Pass** Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Pb2203 S 1820 Sb2068 Se1960 Si2881 220.353 {453} 182.034 {485} 206.833 {463} 196.090 {472} 288.158 {117}2 Line IS Ref (ln2306) (Y 2243) (Y 2243) (Y 2243) (Y 3774) Units ppm ppm ppm ppm ppm 1.2193 .78541 -.00001 .00017 .99790 Avg Stddev .0118 .00064 .00173 .00043 .00534 .96894 .08204 16064. 248.94 .53548 %RSD #1 1.2110 .78496 -.00123.00048 1.0017 1.2277 .78587 -.00013 .99412 #2 .00121 Check? **Chk Pass Chk Pass Chk Pass Chk Pass** Chk Pass High Limit Low Limit V 2924 Elem Sn1899 Sr4077 Ti3349 TI1908 334.904 {101} 190.856 {477} 189.989 {477} 407.771 { 83} 292.402 {115} Line IS Ref (ln2306) (Y 3774) (Y 3600) (In2306) (Y 3600) Units ppm ppm ppm ppm ppm .00063 .00091 .54475 -.00241 -.00010 Avg .00333 Stddev .00006 .00013 .00219 .00034 %RSD 6.3873 .61090 5.4486 2283.1 54.612 .00095 .54240 -.00232.00145 .00039 #2 .00087 .54711 -.00251-.00164 .00087 **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** Check?

High Limit Low Limit Sample Name: 480-124556-A-3-DSD@5 Acquired: 10/16/2017 11:28:46 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID3: Custom ID2: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm 7.0074 Avg Stddev .0145 %RSD .20641 #1 7.0176 6.9972 #2 Check? **Chk Pass** High Limit Low Limit

| Int. Std.      | In2306        | Y_2243        | Y_3600        | Y_3774        |
|----------------|---------------|---------------|---------------|---------------|
| Line           | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units          | Cts/S         | Cts/S         | Cts/S         | Cts/S         |
| Avg            | 3246.4        | 2431.3        | 20589.        | 3874.8        |
| Stddev         | 6.7           | 3.6           | 57.           | 37.0          |
| %RSD           | .20716        | .14970        | .27823        | .95559        |
| #1             | 3251.1        | 2433.8        | 20548.        | 3848.6        |
| #2             | 3241.6        | 2428.7        | 20629.        | 3901.0        |
| Check?         | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |
| Value<br>Range | 87.479%       | 94.337%       | 93.720%       | 101.70%       |

Sample Name: 480-124556-A-3-DPDS Acquired: 10/16/2017 11:32:24 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280         | Al3082                                                | As1890        | B_2089         | Ba4554                      |
|------------------------------------|----------------|-------------------------------------------------------|---------------|----------------|-----------------------------|
| Line                               | 328.068 {103}  | 308.215 {109}                                         | 189.042 {478} | 208.959 {461}  | 455.403 { 74}               |
| IS Ref                             | (Y_3600)       | (Y_3774)                                              | (Y_2243)      | (Y_2243)       | (Y_3774)                    |
| Units                              | ppm            | ppm                                                   | ppm           | ppm            | ppm                         |
| Avg                                | 1.0666         | <b>3.2576</b>                                         | 1.0834        | . <b>20407</b> | <b>2.8866</b>               |
| Stddev                             | .0036          | .0473                                                 | .0040         | .00052         | .0149                       |
| %RSD                               | .34130         | 1.4515                                                | .37132        | .25688         | .51446                      |
| #1                                 | 1.0691         | 3.2241                                                | 1.0806        | .20369         | 2.8761                      |
| #2                                 | 1.0640         | 3.2910                                                | 1.0863        | .20444         | 2.8971                      |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass                                              | Chk Pass      | Chk Pass       | Chk Pass                    |
| Elem                               | Be3130         | Ca3179 317.933 {106} (Y_3774) ppm F 1595.2 3.3 .20534 | Cd2288        | **Ce4040       | Co2286                      |
| Line                               | 313.042 {108}  |                                                       | 228.802 {447} | 404.076 { 83}  | 228.616 {447}               |
| IS Ref                             | (Y_3774)       |                                                       | (Y_2243)      | (Y_3774)       | (In2306)                    |
| Units                              | ppm            |                                                       | ppm           | ppm            | ppm                         |
| Avg                                | . <b>96514</b> |                                                       | 1.2499        | .0782          | 1.0278                      |
| Stddev                             | .00474         |                                                       | .0020         | .0075          | .0004                       |
| %RSD                               | .49090         |                                                       | .15748        | 9.623          | .03806                      |
| #1                                 | .96179         | 1597.5                                                | 1.2485        | .0835          | 1.0281                      |
| #2                                 | .96849         | 1592.9                                                | 1.2513        | .0729          | 1.0276                      |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Fail<br>900.00<br>50000                           | Chk Pass      | Chk Pass       | Chk Pass                    |
| Elem                               | Cr2677         | Cu3273                                                | Fe2599        | K_7664         | Li6707                      |
| Line                               | 267.716 {126}  | 327.396 {103}                                         | 259.940 {130} | 766.490 { 44}  | 670.784 { 50}               |
| IS Ref                             | (Y_3600)       | (Y_3600)                                              | (Y_3774)      | (Y_3774)       | (Y_3774)                    |
| Units                              | ppm            | ppm                                                   | ppm           | ppm            | ppm                         |
| Avg                                | . <b>94246</b> | 10.597                                                | .23315        | 2.1698         | F04834                      |
| Stddev                             | .00037         | .021                                                  | .00154        | .0187          | .00236                      |
| %RSD                               | .03976         | .20118                                                | .66022        | .85934         | 4.8857                      |
| #1                                 | .94220         | 10.582                                                | .23423        | 2.1566         | 05001                       |
| #2                                 | .94273         | 10.612                                                | .23206        | 2.1830         | 04667                       |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass                                              | Chk Pass      | Chk Pass       | Chk Fail<br>45.000<br>03000 |

Sample Name: 480-124556-A-3-DPDS Acquired: 10/16/2017 11:32:24 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Elem 279.079 {121}2 257.610 {131} 202.030 {467} 589.592 { 57} 231.604 {446} Line  $(Y_3774)$ IS Ref (Y\_3600) (Y\_3600) (Y 2243) (ln2306) Units ppm ppm ppm ppm ppm 19.903 6.3799 .96973 23.988 1.1384 Avq Stddev .002 .0121 .00033 .156 .0011 %RSD .01030 .18967 .03363 .64867 .09595 #1 19.905 6.3714 .96950 23.878 1.1376 19.902 6.3885 .96996 24.098 1.1392 #2 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Pb2203 S 1820 Sb2068 Se1960

Si2881 220.353 {453} 182.034 {485} 206.833 {463} 196.090 {472} 288.158 {117}2 Line IS Ref (ln2306) (Y 2243) (Y 2243) (Y 2243) (Y 3774) Units ppm ppm ppm ppm ppm 3.9546 6.8408 1.0432 1.1188 4.8205 Avg Stddev .0184 .0180 .0009 .0043 .0391 .26955 .45521 .08817 .38442 .81165 %RSD #1 6.8539 3.9419 1.0426 1.1157 4.7928 6.8278 3.9674 1.1218 4.8482 #2 1.0439 Check? **Chk Pass Chk Pass Chk Pass Chk Pass** Chk Pass High Limit Low Limit

V 2924 Elem Sn1899 Sr4077 Ti3349 TI1908 334.904 {101} 190.856 {477} 292.402 {115} 189.989 {477} 407.771 { 83} Line IS Ref (ln2306) (Y 3774) (Y 3600) (In2306)  $(Y_3600)$ Units ppm ppm ppm ppm ppm .00137 2.6086 F -.01351 .98322 1.0186 Avg Stddev .00031 .0121 .00003 .00228 .0004 %RSD 22.643 .46493 .24672 .23177 .04207 .00159 2.6000 -.01348.98483 1.0183 #2 .00115 2.6172 -.01353 .98161 1.0189 **Chk Pass Chk Pass Chk Pass Chk Pass** Check? Chk Fail

High Limit

Low Limit

18.000

-.00500

Sample Name: 480-124556-A-3-DPDS Acquired: 10/16/2017 11:32:24 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062
Line 206.200 {163}
IS Ref (Y\_3600)
Units ppm
Avg F 31.816
Stddev .039
%RSD .12202

#1 31.788 #2 31.843

Check? Chk Fail
High Limit 18.000
Low Limit -.01000

Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 2762.1 2248.0 18975. 3790.5 Avg 10.1 4.3 42. 13.4 Stddev %RSD .36416 .19212 .22396 .35259

#1 2755.0 2244.9 19005. 3800.0 #2 2769.2 2251.0 18945. 3781.1

 Check ?
 Chk Pass
 Chk Pass
 Chk Pass
 Chk Pass
 Chk Pass
 Chk Pass
 Chk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass
 Ohk Pass

Range

Sample Name: 480-124556-A-3-E MS Acquired: 10/16/2017 11:35:58 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280         | Al3082                      | As1890        | B_2089        | Ba4554                      |
|------------------------------------|----------------|-----------------------------|---------------|---------------|-----------------------------|
| Line                               | 328.068 {103}  | 308.215 {109}               | 189.042 {478} | 208.959 {461} | 455.403 { 74}               |
| IS Ref                             | (Y_3600)       | (Y_3774)                    | (Y_2243)      | (Y_2243)      | (Y_3774)                    |
| Units                              | ppm            | ppm                         | ppm           | ppm           | ppm                         |
| Avg                                | 1.0913         | <b>3.1782</b>               | 1.1145        | .20023        | <b>2.8742</b>               |
| Stddev                             | .0005          | .0049                       | .0041         | .00059        | .0132                       |
| %RSD                               | .04703         | .15315                      | .36853        | .29278        | .46036                      |
| #1                                 | 1.0917         | 3.1816                      | 1.1174        | .19982        | 2.8648                      |
| #2                                 | 1.0910         | 3.1747                      | 1.1116        | .20065        | 2.8836                      |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass                    | Chk Pass      | Chk Pass      | Chk Pass                    |
| Elem                               | Be3130         | Ca3179                      | Cd2288        | **Ce4040      | Co2286                      |
| Line                               | 313.042 {108}  | 317.933 {106}               | 228.802 {447} | 404.076 { 83} | 228.616 {447}               |
| IS Ref                             | (Y_3774)       | (Y_3774)                    | (Y_2243)      | (Y_3774)      | (In2306)                    |
| Units                              | ppm            | ppm                         | ppm           | ppm           | ppm                         |
| Avg                                | . <b>99374</b> | F 1570.2                    | 1.2743        | . <b>0442</b> | 1.0533                      |
| Stddev                             | .00064         | 6.4                         | .0008         | .0139         | .0014                       |
| %RSD                               | .06421         | .41057                      | .06549        | 31.51         | .13068                      |
| #1                                 | .99328         | 1574.8                      | 1.2737        | .0344         | 1.0543                      |
| #2                                 | .99419         | 1565.6                      | 1.2749        | .0541         | 1.0523                      |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Fail<br>900.00<br>50000 | Chk Pass      | Chk Pass      | Chk Pass                    |
| Elem                               | Cr2677         | Cu3273                      | Fe2599        | K_7664        | Li6707                      |
| Line                               | 267.716 {126}  | 327.396 {103}               | 259.940 {130} | 766.490 { 44} | 670.784 { 50}               |
| IS Ref                             | (Y_3600)       | (Y_3600)                    | (Y_3774)      | (Y_3774)      | (Y_3774)                    |
| Units                              | ppm            | ppm                         | ppm           | ppm           | ppm                         |
| Avg                                | . <b>96555</b> | 10.432                      | .22561        | 2.0854        | F04528                      |
| Stddev                             | .00057         | .010                        | .00075        | .0571         | .00026                      |
| %RSD                               | .05935         | .09326                      | .33414        | 2.7364        | .58511                      |
| #1                                 | .96515         | 10.426                      | .22507        | 2.0450        | 04509                       |
| #2                                 | .96596         | 10.439                      | .22614        | 2.1257        | 04547                       |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass                    | Chk Pass      | Chk Pass      | Chk Fail<br>45.000<br>03000 |

Sample Name: 480-124556-A-3-E MS Acquired: 10/16/2017 11:35:58 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020                                                 | Na5895        | Ni2316         |
|------------------------------------|----------------|---------------|--------------------------------------------------------|---------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467}                                          | 589.592 { 57} | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)                                               | (Y_3774)      | (In2306)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm           | ppm            |
| Avg                                | 19.374         | <b>6.2689</b> | 1.0002                                                 | <b>23.474</b> | 1.1629         |
| Stddev                             | .007           | .0029         | .0002                                                  | .085          | .0004          |
| %RSD                               | .03637         | .04616        | .01987                                                 | .36321        | .03181         |
| #1                                 | 19.379         | 6.2669        | 1.0004                                                 | 23.413        | 1.1627         |
| #2                                 | 19.369         | 6.2709        | 1.0001                                                 | 23.534        | 1.1632         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068                                                 | Se1960        | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463}                                          | 196.090 {472} | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)                                               | (Y_2243)      | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm           | ppm            |
| Avg                                | <b>6.7449</b>  | 3.8797        | 1.0705                                                 | 1.1616        | <b>4.7620</b>  |
| Stddev                             | .0050          | .0023         | .0001                                                  | .0049         | .0364          |
| %RSD                               | .07378         | .06013        | .01076                                                 | .42022        | .76379         |
| #1                                 | 6.7414         | 3.8780        | 1.0706                                                 | 1.1650        | 4.7363         |
| #2                                 | 6.7484         | 3.8813        | 1.0705                                                 | 1.1581        | 4.7877         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349 334.904 {101} (Y_3600) ppm F01303 .00035 2.6863 | TI1908        | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} |                                                        | 190.856 {477} | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)      |                                                        | (In2306)      | (Y_3600)       |
| Units                              | ppm            | ppm           |                                                        | ppm           | ppm            |
| Avg                                | .00161         | 3.5771        |                                                        | 1.0049        | 1.0419         |
| Stddev                             | .00055         | .0145         |                                                        | .0046         | .0006          |
| %RSD                               | 34.097         | .40610        |                                                        | .45376        | .06219         |
| #1                                 | .00122         | 3.5668        | 01328                                                  | 1.0081        | 1.0423         |
| #2                                 | .00200         | 3.5874        | 01279                                                  | 1.0016        | 1.0414         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Fail<br>18.000<br>00500                            | Chk Pass      | Chk Pass       |

Sample Name: 480-124556-A-3-E MS Acquired: 10/16/2017 11:35:58 Type: Unk

Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Range

Elem Zn2062 206.200 {163} Line (Y\_3600) IS Ref Units ppm F 30.933 Avg .026 Stddev %RSD .08371 #1 30.951 30.915 #2

Method: ICAP2 June 2017(v154)

Check? Chk Fail
High Limit 18.000
Low Limit -.01000

| Int. Std. | In2306        | Y_2243        | Y_3600        | Y_3774           |
|-----------|---------------|---------------|---------------|------------------|
| Line      | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89}    |
| Units     | Cts/S         | Cts/S         | Cts/S         | Cts/S            |
| Avg       | <b>2764.4</b> | 2243.8        | 19115.        | 3803.7           |
| Stddev    | 1.8           | .2            | 11.           | 26.7             |
| %RSD      | .06497        | .00876        | .05780        | .70242           |
| #1        | 2763.2        | 2243.7        | 19123.        | 3784.9           |
| #2        | 2765.7        | 2244.0        | 19107.        | 3822.6           |
| Check ?   | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass 99.840% |
| Value     | 74.492%       | 87.064%       | 87.011%       |                  |

Sample Name: 480-124556-A-3-F MSD Acquired: 10/16/2017 11:39:31 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082                                                 | As1890        | B_2089        | Ba4554                      |
|------------------------------------|---------------|--------------------------------------------------------|---------------|---------------|-----------------------------|
| Line                               | 328.068 {103} | 308.215 {109}                                          | 189.042 {478} | 208.959 {461} | 455.403 { 74}               |
| IS Ref                             | (Y_3600)      | (Y_3774)                                               | (Y_2243)      | (Y_2243)      | (Y_3774)                    |
| Units                              | ppm           | ppm                                                    | ppm           | ppm           | ppm                         |
| Avg                                | 1.0910        | <b>3.2380</b>                                          | 1.1204        | .20339        | <b>2.8778</b>               |
| Stddev                             | .0045         | .0194                                                  | .0037         | .00079        | .0095                       |
| %RSD                               | .41497        | .59891                                                 | .33439        | .38609        | .33134                      |
| #1                                 | 1.0942        | 3.2243                                                 | 1.1231        | .20395        | 2.8710                      |
| #2                                 | 1.0878        | 3.2518                                                 | 1.1178        | .20284        | 2.8845                      |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass      | Chk Pass                    |
| Elem                               | Be3130        | Ca3179 317.933 {106} (Y_3774) ppm F 1565.0 12.4 .79452 | Cd2288        | **Ce4040      | Co2286                      |
| Line                               | 313.042 {108} |                                                        | 228.802 {447} | 404.076 { 83} | 228.616 {447}               |
| IS Ref                             | (Y_3774)      |                                                        | (Y_2243)      | (Y_3774)      | (In2306)                    |
| Units                              | ppm           |                                                        | ppm           | ppm           | ppm                         |
| Avg                                | .99754        |                                                        | 1.2791        | .0691         | 1.0531                      |
| Stddev                             | .00164        |                                                        | .0010         | .0223         | .0010                       |
| %RSD                               | .16464        |                                                        | .07414        | 32.33         | .09134                      |
| #1                                 | .99638        | 1556.2                                                 | 1.2785        | .0533         | 1.0524                      |
| #2                                 | .99870        | 1573.8                                                 | 1.2798        | .0849         | 1.0538                      |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Fail<br>900.00<br>50000                            | Chk Pass      | Chk Pass      | Chk Pass                    |
| Elem                               | Cr2677        | Cu3273                                                 | Fe2599        | K_7664        | Li6707                      |
| Line                               | 267.716 {126} | 327.396 {103}                                          | 259.940 {130} | 766.490 { 44} | 670.784 { 50}               |
| IS Ref                             | (Y_3600)      | (Y_3600)                                               | (Y_3774)      | (Y_3774)      | (Y_3774)                    |
| Units                              | ppm           | ppm                                                    | ppm           | ppm           | ppm                         |
| Avg                                | .96901        | 10.517                                                 | .22740        | 2.1138        | F04455                      |
| Stddev                             | .00370        | .047                                                   | .00212        | .0261         | .00164                      |
| %RSD                               | .38148        | .45062                                                 | .93032        | 1.2329        | 3.6910                      |
| #1                                 | .97162        | 10.550                                                 | .22890        | 2.0953        | 04339                       |
| #2                                 | .96639        | 10.483                                                 | .22591        | 2.1322        | 04572                       |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass      | Chk Fail<br>45.000<br>03000 |

Sample Name: 480-124556-A-3-F MSD Acquired: 10/16/2017 11:39:31 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Flem Ma2790 Mn2576 Mo2020 Na5895 Ni2316

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br>19.314<br>.093<br>.47899        | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br><b>6.2711</b><br>.0179<br>.28604 | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>1.0028<br>.0008<br>.08117 | Na5895<br>589.592 { 57}<br>(Y_3774)<br>ppm<br><b>23.491</b><br>.086<br>.36523 | Ni2316<br>231.604 {446}<br>(In2306)<br>ppm<br>1.1616<br>.0003<br>.02474 |
|----------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| #1<br>#2                                                 | 19.379<br>19.248                                                               | 6.2838<br>6.2585                                                               | 1.0033<br>1.0022                                                        | 23.430<br>23.552                                                              | 1.1618<br>1.1614                                                        |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                       | Chk Pass                                                                | Chk Pass                                                                      | Chk Pass                                                                |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br><b>6.7420</b><br>.0167<br>.24807 | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br>3.8967<br>.0029<br>.07462        | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>1.0803<br>.0003<br>.02691 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>1.1740<br>.0018<br>.15596       | ppm<br>4. <b>7541</b>                                                   |
| #1<br>#2                                                 | 6.7302<br>6.7539                                                               | 3.8987<br>3.8946                                                               | 1.0801<br>1.0805                                                        | 1.1727<br>1.1753                                                              | 4.7400<br>4.7682                                                        |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                       | Chk Pass                                                                | Chk Pass                                                                      | Chk Pass                                                                |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.00179<br>.00002<br>.84028       |                                                                                | Ti3349 334.904 {101} (Y_3600) ppm F01265 .00061 4.8308                  |                                                                               | V_2924<br>292.402 {115}<br>(Y_3600)<br>ppm<br>1.0469<br>.0018<br>.17096 |
| #1<br>#2                                                 | .00180<br>.00178                                                               | 3.5760<br>3.5894                                                               | 01222<br>01309                                                          | 1.0040<br>1.0072                                                              | 1.0482<br>1.0456                                                        |
| Check?                                                   | Chk Pass                                                                       | Chk Pass                                                                       | Chk Fail                                                                | Chk Pass                                                                      | Chk Pass                                                                |

High Limit

Low Limit

Page 715 of 914

18.000

-.00500

Sample Name: 480-124556-A-3-F MSD Acquired: 10/16/2017 11:39:31 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Range

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Zn2062<br>206.200 {163}<br>(Y_3600)<br>ppm<br>F 30.762<br>.122<br>.39775 |        |
|----------------------------------------------------------|--------------------------------------------------------------------------|--------|
| #1<br>#2                                                 | 30.849<br>30.676                                                         |        |
| Check ?<br>High Limit<br>Low Limit                       | Chk Fail<br>18.000<br>01000                                              |        |
| les Ctel                                                 | I=0200                                                                   | V 2242 |

| Int. Std. | In2306        | Y_2243        | Y_3600        | Y_3774           |
|-----------|---------------|---------------|---------------|------------------|
| Line      | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89}    |
| Units     | Cts/S         | Cts/S         | Cts/S         | Cts/S            |
| Avg       | 2773.0        | 2246.2        | 19172.        | <b>3759.7</b>    |
| Stddev    | 2.8           | 1.3           | 54.           | 1.9              |
| %RSD      | .10019        | .05730        | .28312        | .05095           |
| #1        | 2774.9        | 2247.1        | 19133.        | 3761.1           |
| #2        | 2771.0        | 2245.3        | 19210.        | 3758.4           |
| Check ?   | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass 98.685% |
| Value     | 74.722%       | 87.157%       | 87.270%       |                  |

Sample Name: MB 480-381758/1-A Acquired: 10/16/2017 11:43:06 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089         | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|----------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461}  | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)       | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00051        | .01531        | 00033         | .00063         | .00022         |
| Stddev                             | .00039        | .00094        | .00034        | .00015         | .00002         |
| %RSD                               | 76.033        | 6.1268        | 101.14        | 22.932         | 10.528         |
| #1                                 | .00079        | .01598        | 00009         | .00053         | .00024         |
| #2                                 | .00024        | .01465        | 00057         | .00074         | .00021         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040       | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83}  | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)       | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00004        | .06896        | .00022        | .0065          | 00009          |
| Stddev                             | .00000        | .01114        | .00006        | .0037          | .00002         |
| %RSD                               | 4.4995        | 16.153        | 26.091        | 57.35          | 20.041         |
| #1                                 | .00005        | .07684        | .00018        | .0092          | 00008          |
| #2                                 | .00004        | .06108        | .00026        | .0039          | 00011          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | None           | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599        | K_7664         | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130} | 766.490 { 44}  | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)       | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00051        | .00054        | .02181        | . <b>01747</b> | 00036          |
| Stddev                             | .00018        | .00040        | .00011        | .02099         | .00205         |
| %RSD                               | 35.000        | 74.553        | .50338        | 120.16         | 572.40         |
| #1                                 | .00064        | .00083        | .02173        | .03232         | 00181          |
| #2                                 | .00039        | .00026        | .02189        | .00263         | .00109         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |

Sample Name: MB 480-381758/1-A Acquired: 10/16/2017 11:43:06 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                                     | Mg2790                                                                   | Mn2576                                                                   | Mo2020                                                 | Na5895                                                   | Ni2316                                                                   |
|----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|
| Line                                                     | 279.079 {121}2                                                           | 257.610 {131}                                                            | 202.030 {467}                                          | 589.592 { 57}                                            | 231.604 {446}                                                            |
| IS Ref                                                   | (Y_3600)                                                                 | (Y_3600)                                                                 | (Y_2243)                                               | (Y_3774)                                                 | (In2306)                                                                 |
| Units                                                    | ppm                                                                      | ppm                                                                      | ppm                                                    | ppm                                                      | ppm                                                                      |
| Avg                                                      | .00551                                                                   | .00028                                                                   | 00003                                                  | . <b>02657</b>                                           | .00022                                                                   |
| Stddev                                                   | .00139                                                                   | .00005                                                                   | .00002                                                 | .00743                                                   | .00030                                                                   |
| %RSD                                                     | 25.207                                                                   | 19.205                                                                   | 64.663                                                 | 27.967                                                   | 136.49                                                                   |
| #1                                                       | .00650                                                                   | .00031                                                                   | 00002                                                  | .03182                                                   | .00001                                                                   |
| #2                                                       | .00453                                                                   | .00024                                                                   | 00004                                                  | .02132                                                   | .00043                                                                   |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                               | Chk Pass                                                 | Chk Pass                                                                 |
| Elem                                                     | Pb2203                                                                   | S_1820                                                                   | Sb2068                                                 | Se1960                                                   | Si2881                                                                   |
| Line                                                     | 220.353 {453}                                                            | 182.034 {485}                                                            | 206.833 {463}                                          | 196.090 {472}                                            | 288.158 {117}2                                                           |
| IS Ref                                                   | (In2306)                                                                 | (Y_2243)                                                                 | (Y_2243)                                               | (Y_2243)                                                 | (Y_3774)                                                                 |
| Units                                                    | ppm                                                                      | ppm                                                                      | ppm                                                    | ppm                                                      | ppm                                                                      |
| Avg                                                      | .00126                                                                   | 00420                                                                    | .00240                                                 | .00172                                                   | . <b>20970</b>                                                           |
| Stddev                                                   | .00169                                                                   | .00357                                                                   | .00224                                                 | .00074                                                   | .01107                                                                   |
| %RSD                                                     | 133.88                                                                   | 84.925                                                                   | 93.462                                                 | 42.675                                                   | 5.2799                                                                   |
| #1                                                       | .00246                                                                   | 00168                                                                    | .00399                                                 | .00224                                                   | .20187                                                                   |
| #2                                                       | .00007                                                                   | 00673                                                                    | .00081                                                 | .00120                                                   | .21753                                                                   |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                               | Chk Pass                                                 | Chk Pass                                                                 |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.00117<br>.00003<br>2.3384 | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>.00016<br>.00005<br>28.643 | Ti3349 334.904 {101} (Y_3600) ppm .00079 .00033 42.076 | TI1908 190.856 {477} (In2306)     ppm00000 .00040 30573. | V_2924<br>292.402 {115}<br>(Y_3600)<br>ppm<br>.00018<br>.00019<br>107.75 |
| #1                                                       | .00119                                                                   | .00019                                                                   | .00056                                                 | 00028                                                    | .00032                                                                   |
| #2                                                       | .00115                                                                   | .00013                                                                   | .00103                                                 | .00028                                                   | .00004                                                                   |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                               | Chk Pass                                                 | Chk Pass                                                                 |

Sample Name: MB 480-381758/1-A Acquired: 10/16/2017 11:43:06 Type: Unk Method: ICAP2 June 2017(v154) Corr. Factor: 1.000000 Mode: CONC User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line IS Ref  $(Y_3600)$ Units ppm .00210 Avg Stddev .00052 %RSD 24.573 #1 .00247 .00174 #2 Check? **Chk Pass** High Limit Low Limit Ir

| Int. Std.<br>Line<br>Units<br>Avg<br>Stddev | In2306<br>230.606 {446}<br>Cts/S<br>3775.8<br>8.8 | Y_2243<br>224.306 {450}<br>Cts/S<br>2612.5<br>3.4 | Y_3600<br>360.073 { 94}<br>Cts/S<br>22455.<br>69. | Y_3774<br>377.433 { 89}<br>Cts/S<br>4003.7<br>3.2 |
|---------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| %RSD                                        | .23181                                            | .12955                                            | .30684                                            | .08048                                            |
| #1<br>#2                                    | 3769.6<br>3781.9                                  | 2610.1<br>2614.9                                  | 22504.<br>22406.                                  | 4006.0<br>4001.4                                  |
| Check ?<br>Value<br>Range                   | Chk Pass<br>101.74%                               | Chk Pass<br>101.37%                               | Chk Pass<br>102.21%                               | Chk Pass<br>105.09%                               |

Sample Name: CCV-4278259 Acquired: 10/16/2017 11:46:45 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                           | Ag3280                                                               | Al3082                                                               | As1890                                                            | B_2089         | Ba4554-2       |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|----------------|----------------|
| Line                                           | 328.068 {103}                                                        | 308.215 {109}                                                        | 189.042 {478}                                                     | 208.959 {461}  | 455.403 { 74}2 |
| Units                                          | ppm                                                                  | ppm                                                                  | ppm                                                               | ppm            | ppm            |
| Avg                                            | . <b>52276</b>                                                       | <b>25.393</b>                                                        | . <b>52230</b>                                                    | . <b>51673</b> | . <b>49904</b> |
| Stddev                                         | .00139                                                               | .090                                                                 | .00498                                                            | .00106         | .00732         |
| %RSD                                           | .26506                                                               | .35252                                                               | .95264                                                            | .20494         | 1.4671         |
| #1                                             | .52374                                                               | 25.329                                                               | .52582                                                            | .51598         | .50422         |
| #2                                             | .52178                                                               | 25.456                                                               | .51878                                                            | .51747         | .49386         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                          | Chk Pass       | Chk Pass       |
| Elem                                           | Be3130                                                               | Ca3179                                                               | Cd2288                                                            | **Ce4040       |                |
| Line                                           | 313.042 {108}                                                        | 317.933 {106}                                                        | 228.802 {447}                                                     | 404.076 { 83}  |                |
| Units                                          | ppm                                                                  | ppm                                                                  | ppm                                                               | ppm            |                |
| Avg                                            | .53185                                                               | <b>26.532</b>                                                        | . <b>51192</b>                                                    | 0263           |                |
| Stddev                                         | .00100                                                               | .015                                                                 | .00084                                                            | .0156          |                |
| %RSD                                           | .18843                                                               | .05684                                                               | .16393                                                            | 59.54          |                |
| #1                                             | .53115                                                               | 26.522                                                               | .51133                                                            | 0152           | .51016         |
| #2                                             | .53256                                                               | 26.543                                                               | .51251                                                            | 0373           | .51021         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                          | None           | Chk Pass       |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Cr2677<br>267.716 {126}<br>ppm<br>. <b>51970</b><br>.00066<br>.12762 | Cu3273<br>327.396 {103}<br>ppm<br>. <b>50457</b><br>.00261<br>.51769 | Fe2599<br>259.940 {130}<br>ppm<br><b>25.796</b><br>.025<br>.09618 | <b>—</b>       | 670.784 { 50}  |
| #1                                             | .51923                                                               | .50273                                                               | 25.814                                                            | 25.117         | .51500         |
| #2                                             | .52017                                                               | .50642                                                               | 25.778                                                            | 25.103         | .51448         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                          | Chk Pass       | Chk Pass       |

Sample Name: CCV-4278259 Acquired: 10/16/2017 11:46:45 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br><b>25.625</b><br>.005<br>.02026   | Mn2576<br>257.610 {131}<br>ppm<br>. <b>52577</b><br>.00013<br>.02523 |                                                                      | Na5895<br>589.592 { 57}<br>ppm<br><b>25.462</b><br>.016<br>.06218    | 231.604 {446}<br>ppm<br>. <b>51550</b> |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|
| #1<br>#2                                       | 25.629<br>25.622                                                     | .52568<br>.52586                                                     | .52603<br>.52589                                                     | 25.450<br>25.473                                                     | .51512<br>.51588                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>. <b>51597</b><br>.00059<br>.11411 | ppm<br>25.905                                                        | Sb2068<br>206.833 {463}<br>ppm<br>. <b>51486</b><br>.00081<br>.15768 | Se1960<br>196.090 {472}<br>ppm<br>. <b>53007</b><br>.00025<br>.04716 | ppm<br>22.688                          |
| #1<br>#2                                       | .51555<br>.51638                                                     | 25.874<br>25.937                                                     | .51429<br>.51543                                                     | .53024<br>.52989                                                     | 22.728<br>22.647                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>ppm<br>. <b>52761</b><br>.00024<br>.04505 | Sr4077<br>407.771 { 83}<br>ppm<br>. <b>50801</b><br>.00066<br>.13038 | Ti3349<br>334.904 {101}<br>ppm<br>. <b>52786</b><br>.00089<br>.16826 | TI1908<br>190.856 {477}<br>ppm<br>. <b>52638</b><br>.00262<br>.49748 | 292.402 (115)                          |
| #1<br>#2                                       | .52778<br>.52745                                                     | .50754<br>.50848                                                     | .52723<br>.52849                                                     | .52823<br>.52452                                                     | .53489<br>.53240                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |

Sample Name: CCV-4278259 Acquired: 10/16/2017 11:46:45 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Zn2062 Elem 206.200 {163} Line Units ppm .54357 Avg Stddev .00444 %RSD .81639

#1 .54670 #2 .54043

Check? **Chk Pass** 

Value

Range

| Int. Std. | In2306        | Y_2243        | Y_3600        | Y_3774        |
|-----------|---------------|---------------|---------------|---------------|
| Line      | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units     | Čts/Š         | Čts/Š         | Cts/S         | Cts/S         |
| Avg       | 3415.5        | 2535.0        | 21187.        | 3833.5        |
| Stddev    | 4.5           | 1.3           | 84.           | 5.9           |
| %RSD      | .13035        | .05075        | .39537        | .15344        |
| #1        | 3412.3        | 2534.1        | 21128.        | 3829.3        |
| #2        | 3418.6        | 2535.9        | 21246.        | 3837.6        |

Sample Name: CCB-4278202 Acquired: 10/16/2017 11:50:13 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                           | Ag3280                                                       | Al3082                                                       | As1890                                                       | B_2089        | Ba4554-2       |
|------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------|----------------|
| Line                                           | 328.068 {103}                                                | 308.215 {109}                                                | 189.042 {478}                                                | 208.959 {461} | 455.403 { 74}2 |
| Units                                          | ppm                                                          | ppm                                                          | ppm                                                          | ppm           | ppm            |
| Avg                                            | 00002                                                        | 02681                                                        | .00063                                                       | 00082         | 00003          |
| Stddev                                         | .00036                                                       | .00773                                                       | .00200                                                       | .00003        | .00002         |
| %RSD                                           | 1541.9                                                       | 28.822                                                       | 316.40                                                       | 3.9833        | 65.170         |
| #1                                             | 00028                                                        | 03228                                                        | 00078                                                        | 00084         | 00004          |
| #2                                             | .00023                                                       | 02135                                                        | .00205                                                       | 00080         | 00002          |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                     | Chk Pass                                                     | Chk Pass                                                     | Chk Pass      | Chk Pass       |
| Elem                                           | Be3130                                                       | Ca3179                                                       | Cd2288                                                       | **Ce4040      | Co2286         |
| Line                                           | 313.042 {108}                                                | 317.933 {106}                                                | 228.802 {447}                                                | 404.076 { 83} | 228.616 {447}  |
| Units                                          | ppm                                                          | ppm                                                          | ppm                                                          | ppm           | ppm            |
| Avg                                            | 00000                                                        | .00787                                                       | .00008                                                       | 0036          | .00007         |
| Stddev                                         | .00000                                                       | .00278                                                       | .00003                                                       | .0402         | .00025         |
| %RSD                                           | 688.15                                                       | 35.330                                                       | 38.622                                                       | 1131.         | 359.88         |
| #1                                             | .00000                                                       | .00984                                                       | .00006                                                       | .0249         | 00011          |
| #2                                             | 00000                                                        | .00591                                                       | .00010                                                       | 0320          | .00025         |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                     | Chk Pass                                                     | Chk Pass                                                     | None          | Chk Pass       |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Cr2677<br>267.716 {126}<br>ppm<br>.00008<br>.00054<br>645.14 | Cu3273<br>327.396 {103}<br>ppm<br>.00084<br>.00013<br>15.551 | Fe2599<br>259.940 {130}<br>ppm<br>.00197<br>.00097<br>49.577 | <del></del>   |                |
| #1                                             | 00030                                                        | .00074                                                       | .00265                                                       | .02751        | .00214         |
| #2                                             | .00046                                                       | .00093                                                       | .00128                                                       | .01075        | .00144         |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                     | Chk Pass                                                     | Chk Pass                                                     | Chk Pass      | Chk Pass       |

Sample Name: CCB-4278202 Acquired: 10/16/2017 11:50:13 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br>.00448<br>.00036<br>8.0232 | Mn2576<br>257.610 {131}<br>ppm<br>00004<br>.00000<br>10.280 | Mo2020<br>202.030 {467}<br>ppm<br>00001<br>.00007<br>513.71  | Na5895<br>589.592 { 57}<br>ppm<br>00186<br>.00476<br>255.75          | 231.604 {446}<br>ppm<br>. <b>00019</b><br>.00021             |
|------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|
| #1<br>#2                                       | .00422<br>.00473                                              | 00004<br>00005                                              | .00004<br>00006                                              | 00522<br>.00150                                                      | .00005<br>.00034                                             |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                      | Chk Pass                                                    | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                                                     |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>.00061<br>.00031<br>51.053  | S_1820<br>182.034 {485}<br>ppm<br>00891<br>.00097<br>10.922 | Sb2068<br>206.833 {463}<br>ppm<br>.00000<br>.00049<br>92981. | Se1960<br>196.090 {472}<br>ppm<br>. <b>00324</b><br>.00245<br>75.523 | ppm<br><b>00042</b><br>.02016                                |
| #1<br>#2                                       | .00083<br>.00039                                              | 00823<br>00960                                              | 00034<br>.00034                                              | .00497<br>.00151                                                     | 01468<br>.01383                                              |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                      | Chk Pass                                                    | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                                                     |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>ppm<br>.00020<br>.00027<br>131.36  | Sr4077<br>407.771 { 83}<br>ppm<br>00003<br>.00004<br>145.42 |                                                              | TI1908<br>190.856 {477}<br>ppm<br>. <b>00122</b><br>.00095<br>78.209 | V_2924<br>292.402 {115}<br>ppm<br>.00017<br>.00009<br>54.945 |
| #1<br>#2                                       | .00039<br>.00001                                              | 00006<br>.00000                                             | .00029<br>00073                                              | .00189<br>.00054                                                     | .00010<br>.00023                                             |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                      | Chk Pass                                                    | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                                                     |

Sample Name: CCB-4278202 Acquired: 10/16/2017 11:50:13 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .00012

 Stddev
 .00025

 %RSD
 206.41

#1 .00030 #2 -.00006

Check? Chk Pass

High Limit Low Limit

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Cts/S Units Cts/S Cts/S Avg 3758.1 2622.5 22384. 3950.7 .5 22.8 Stddev 5.3 66. %RSD .01445 .20358 .29378 .57827 #1 3758.4 2626.3 22338. 3934.6 3757.7 22431. #2 2618.8 3966.9 Sample Name: ccvl-4278204 Acquired: 10/16/2017 11:53:52 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                      | Ag3280         | Al3082         | As1890          | B_2089         | Ba4554-2       |
|---------------------------|----------------|----------------|-----------------|----------------|----------------|
| Line                      | 328.068 {103}  | 308.215 {109}  | 189.042 {478}   | 208.959 {461}  | 455.403 { 74}2 |
| Units                     | ppm            | ppm            | ppm             | ppm            | ppm            |
| Avg                       | .00607         | .19844         | .01238          | . <b>01941</b> | .00205         |
| Stddev                    | .00039         | .00114         | .00048          | .00023         | .00003         |
| %RSD                      | 6.3549         | .57503         | 3.9002          | 1.1692         | 1.2437         |
| #1                        | .00579         | .19763         | .01204          | .01925         | .00207         |
| #2                        | .00634         | .19925         | .01272          | .01957         | .00203         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass        | Chk Pass       | Chk Pass       |
| Elem                      | Be3130         | Ca3179         | Cd2288          | **Ce4040       | Co2286         |
| Line                      | 313.042 {108}  | 317.933 {106}  | 228.802 {447}   | 404.076 { 83}  | 228.616 {447}  |
| Units                     | ppm            | ppm            | ppm             | ppm            | ppm            |
| Avg                       | .00219         | . <b>52685</b> | . <b>0021</b> 1 | .0003          | .00385         |
| Stddev                    | .00003         | .00189         | .00007          | .0098          | .00003         |
| %RSD                      | 1.5902         | .35839         | 3.3015          | 2986.          | .89024         |
| #1                        | .00216         | .52819         | .00215          | 0066           | .00383         |
| #2                        | .00221         | .52552         | .00206          | .0072          | .00388         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass        | None           | Chk Pass       |
| Elem                      | Cr2677         | Cu3273         | Fe2599          | K_7664         |                |
| Line                      | 267.716 {126}  | 327.396 {103}  | 259.940 {130}   | 766.490 { 44}  |                |
| Units                     | ppm            | ppm            | ppm             | ppm            |                |
| Avg                       | . <b>00386</b> | . <b>00954</b> | . <b>05251</b>  | . <b>50925</b> |                |
| Stddev                    | .00008         | .00014         | .00094          | .02796         |                |
| %RSD                      | 1.9577         | 1.4398         | 1.7974          | 5.4896         |                |
| #1                        | .00380         | .00964         | .05318          | .52902         | .03218         |
| #2                        | .00391         | .00944         | .05184          | .48949         | .03064         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass        | Chk Pass       | Chk Pass       |

Sample Name: ccvl-4278204 Acquired: 10/16/2017 11:53:52 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br>. <b>21066</b><br>.00073<br>.34560 | Mn2576<br>257.610 {131}<br>ppm<br>.00312<br>.00002<br>.68665         | Mo2020<br>202.030 {467}<br>ppm<br>.01031<br>.00009<br>.86861         | Na5895<br>589.592 { 57}<br>ppm<br>. <b>99889</b><br>.00012<br>.01222 | 231.604 {446}<br>ppm<br>. <b>00988</b> |
|------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|
| #1<br>#2                                       | .21118<br>.21015                                                      | .00314<br>.00311                                                     | .01037<br>.01024                                                     | .99880<br>.99897                                                     | .00994<br>.00982                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                              | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>.01162<br>.00088<br>7.5808          | S_1820<br>182.034 {485}<br>ppm<br>. <b>18613</b><br>.00107<br>.57292 | Sb2068<br>206.833 {463}<br>ppm<br>. <b>02077</b><br>.00014<br>.65968 | Se1960<br>196.090 {472}<br>ppm<br>. <b>02549</b><br>.00002<br>.06741 | ppm<br>. <b>45157</b>                  |
| #1<br>#2                                       | .01099<br>.01224                                                      | .18538<br>.18688                                                     | .02067<br>.02087                                                     | .02548<br>.02551                                                     | .44805<br>.45509                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                              | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>ppm<br>. <b>01028</b><br>.00031<br>3.0388  | Sr4077<br>407.771 { 83}<br>ppm<br>. <b>00502</b><br>.00005<br>1.0633 | Ti3349<br>334.904 {101}<br>ppm<br>.00528<br>.00028<br>5.2510         | TI1908<br>190.856 {477}<br>ppm<br>. <b>02127</b><br>.00014<br>.64115 | 292.402 (115)                          |
| #1<br>#2                                       | .01006<br>.01050                                                      | .00506<br>.00498                                                     | .00547<br>.00508                                                     | .02137<br>.02118                                                     | .00543<br>.00559                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                              | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |

Sample Name: ccvl-4278204 Acquired: 10/16/2017 11:53:52 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .01078

 Stddev
 .00044

 %RSD
 4.1124

#1 .01109 #2 .01047

Check? Chk Pass

Value

Range

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Units Cts/S Cts/S Cts/S Avg 3744.1 2619.1 22226. 3939.0 10.6 Stddev 9.3 3.8 98. %RSD .24794 .14500 .44235 .26943 #1 3737.5 2616.4 22157. 3946.5 3750.6 22296. #2 2621.8 3931.5 Sample Name: LCSSRM 480-381758/2-Acquired: 10/16/2017 11:57:30 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: Ag3280 Al3082 As1890 B 2089 Ba4554 Elem 328.068 {103} 308.215 {109} 189.042 {478} 208.959 {461} 455.403 { 74} Line (Y\_2243) IS Ref  $(Y_3600)$  $(Y_3774)$ (Y 2243)  $(Y_3774)$ Units ppm ppm ppm ppm ppm .34501 91.444 .88112 .71211 1.8631 Avq Stddev .00015 .267 .00127 .00129 .0029 %RSD .04413 .29185 .14385 .18174 .15525 #1 .34512 91.633 .88202 .71303 1.8611 .34490 91.256 .88022 .71120 1.8652 #2 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit \*\*Ce4040 Elem Be3130 Ca3179 Cd2288 Co2286 313.042 {108} 317.933 {106} 228.802 {447} 404.076 { 83} 228.616 {447} Line IS Ref (Y 3774) (Y 3774) (Y 2243) (Y 3774) (ln2306) Units ppm ppm ppm ppm ppm 1.2932 53.015 .69936 1.618 1.2523 Avg Stddev .0015 .057 .00057 .003 .0021 .11377 .10817 .08107 .1739 .16520 %RSD #1 1.2942 53.055 .69976 1.620 1.2508 1.2921 52.974 .69896 1.616 1.2537 #2 Check? **Chk Pass Chk Pass Chk Pass** None Chk Pass High Limit Low Limit Elem Cr2677 Cu3273 Fe2714 K 7664 Li6707 766.490 { 44} 267.716 {126} 327.396 {103} 271.441 {124} 670.784 { 50} Line IS Ref (Y 3600) (Y 3600) (Y 3774) (Y 3774)  $(Y_3774)$ Units ppm ppm ppm ppm ppm .93446 1.3856 152.88 26.070 .07208 Avg .00067 Stddev .0004 .026 .00085 .06 %RSD .07190 .03051 .04151 .10165 1.1763 #1 .93398 1.3853 152.83 26.051 .07268 #2 .93493 1.3859 152.92 26.088 .07148

**Chk Pass** 

**Chk Pass** 

**Chk Pass** 

**Chk Pass** 

Check?

High Limit Low Limit None

Sample Name: LCSSRM 480-381758/2-Acquired: 10/16/2017 11:57:30 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Elem 279.079 {121}2 257.610 {131} 202.030 {467} 589.592 { 57} 231.604 {446} Line  $(Y_3600)$  $(Y_3774)$ IS Ref  $(Y_3600)$ (Y 2243) (ln2306) Units ppm ppm ppm ppm ppm 26.814 2.7681 .47841 2.3965 .51314 Avq Stddev .117 .0042 .00056 .0129 .00237 %RSD .43531 .15078 .11704 .53845 .46138 #1 26.897 2.7711 .47801 2.4057 .51146 26.732 2.7652 .47881 2.3874 .51481 #2 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Pb2203 S 1820 Sb2068 Se1960 Si2881 220.353 {453} 182.034 {485} 206.833 {463} 196.090 {472} 288.158 {117}2 Line IS Ref (ln2306) (Y 2243) (Y 2243) (Y 2243) (Y 3774) Units ppm ppm ppm ppm ppm .78758 .91631 1.0398 .62112 4.9822 Avg Stddev .00311 .0024 .00363 .00031 .0706 .33964 .23042 .58411 .03947 1.4178 %RSD #1 .91411 1.0381 .62369 .78780 5.0322 1.0415 .61856 .78736 4.9323 #2 .91851 Check? **Chk Pass** None **Chk Pass Chk Pass** None High Limit Low Limit V 2924 Elem Sn1899 Sr4077 Ti3349 TI1908 334.904 {101} 190.856 {477} 189.989 {477} 407.771 { 83} 292.402 {115} Line IS Ref (ln2306) (Y 3774) (Y 3600) (In2306)  $(Y_3600)$ Units ppm ppm ppm ppm ppm 1.5685 .53608 4.6798 .60829 1.3097 Avg

.00098

.18298

.53539

.53678

**Chk Pass** 

Stddev

%RSD

Check ? High Limit Low Limit

#2

.0061

.38606

1.5642

1.5727

**Chk Pass** 

.0052

.11042

4.6835

4.6762

**Chk Pass** 

.00079

.13017

.60773

.60885

**Chk Pass** 

.0012

.09297

1.3088

1.3105

**Chk Pass** 

Sample Name: LCSSRM 480-381758/2- Acquired: 10/16/2017 11:57:30 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062
Line 206.200 {163}
IS Ref (Y\_3600)
Units ppm
Avg 1.2776
Stddev .0007
%RSD .05831

#1 1.2781 #2 1.2770

Check? Chk Pass

High Limit Low Limit

Range

Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 3298.5 2993.8 25207. 4710.4 Avg 7.8 68. 14.5 Stddev .9 %RSD .23501 .03076 .27159 .30838 #1 3304.0 2994.4 25159. 4700.2 #2 3293.0 2993.1 25255. 4720.7 Check? **Chk Pass Chk Pass** Chk Pass Chk Pass 114.74% Value 88.883% 116.16% 123.64% Sample Name: LCDSRM 480-381758/3-Acquired: 10/16/2017 12:00:57 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: Ag3280 Al3082 As1890 B 2089 Ba4554 Elem 328.068 {103} 308.215 {109} 189.042 {478} 208.959 {461} 455.403 { 74} Line (Y\_2243) IS Ref  $(Y_3600)$  $(Y_3774)$ (Y 2243)  $(Y_3774)$ Units ppm ppm ppm ppm ppm .35375 92.900 .89024 .71381 1.8529 Avq .284 .00064 Stddev .00141 .00071 .0025 %RSD .39866 .30620 .08031 .08908 .13433 #1 .35275 93.102 .89074 .71336 1.8547 .35474 92.699 .88973 .71426 1.8512 #2 **Chk Pass Chk Pass** Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit \*\*Ce4040 Elem Be3130 Ca3179 Cd2288 Co2286 313.042 {108} 317.933 {106} 228.802 {447} 404.076 { 83} 228.616 {447} Line IS Ref (Y 3774) (Y 3774) (Y 2243) (Y 3774) (In2306) Units ppm ppm ppm ppm ppm 54.251 1.3045 .71028 1.506 1.2667 Avg Stddev .0018 .199 .00141 .009 .0004 .14072 .36679 .19790 .5794 .02901 %RSD #1 1.3058 54.392 .70928 1.500 1.2670 1.2665 54.111 .71127 1.512 #2 1.3032 Check? **Chk Pass Chk Pass Chk Pass** None Chk Pass High Limit Low Limit Elem Cr2677 Cu3273 Fe2714 K 7664 Li6707 766.490 { 44} 267.716 {126} 327.396 {103} 271.441 {124} 670.784 { 50} Line IS Ref (Y 3600) (Y 3600) (Y 3774)  $(Y_3774)$  $(Y_3774)$ Units ppm ppm ppm ppm ppm .93944 1.4136 157.34 26.283 .07248 Avg .004 Stddev .00155 .0034 1.00 .00022 %RSD .16465 .24195 .63700 .01473 .30884 #1 .93835 1.4160 158.04 26.286 .07232 #2 .94054 1.4112 156.63 26.281 .07264 **Chk Pass Chk Pass Chk Pass Chk Pass** Check? None High Limit

Low Limit

Sample Name: LCDSRM 480-381758/3-Acquired: 10/16/2017 12:00:57 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Elem 279.079 {121}2 257.610 {131} 202.030 {467} 589.592 { 57} 231.604 {446} Line  $(Y_3774)$ IS Ref (Y\_3600) (Y\_3600) (Y 2243) (ln2306) Units ppm ppm ppm ppm ppm 27.370 2.7224 .48461 2.4165 .51984 Avq .00098 Stddev .006 .0020 .00022 .0120 %RSD .02349 .07353 .04546 .49759 .18762 #1 27.365 2.7210 .48476 2.4250 .52053 27.374 2.7238 .48445 2.4080 .51915 #2 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Pb2203 S 1820 Sb2068 Se1960 Si2881 220.353 {453} 182.034 {485} 206.833 {463} 196.090 {472} 288.158 {117}2 Line IS Ref (ln2306) (Y 2243) (Y 2243) (Y 2243) (Y 3774) Units ppm ppm ppm ppm ppm 1.0397 .92215 .62408 .80557 5.3171 Avg Stddev .00014 .0010 .00015 .00450 .1575 .01536 .09101 .02478 .55849 %RSD 2.9614 #1 .92205 1.0390 .62397 .80239 5.4285 .92225 1.0403 .62419 5.2058 #2 .80875 Check? **Chk Pass** None **Chk Pass Chk Pass** None High Limit Low Limit V 2924 Elem Sn1899 Sr4077 Ti3349 TI1908 334.904 {101} 190.856 {477} 189.989 {477} 407.771 { 83} 292.402 {115} Line IS Ref (ln2306) (Y 3774) (Y 3600) (In2306)  $(Y_3600)$ Units ppm ppm ppm ppm ppm 1.5796 .53721 4.6289 .62472 1.3206 Avg Stddev .0015 .00052 .0097 .00313 .0032 %RSD .09588 .09714 .20844 .50051 .24451

4.6358

4.6221

**Chk Pass** 

.62693

.62251

**Chk Pass** 

.53758

.53684

**Chk Pass** 

1.5807

1.5786

**Chk Pass** 

#2

Check ? High Limit Low Limit 1.3183

1.3229

**Chk Pass** 

Sample Name: LCDSRM 480-381758/3- Acquired: 10/16/2017 12:00:57 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062
Line 206.200 {163}
IS Ref (Y\_3600)
Units ppm
Avg 1.2925
Stddev .0039
%RSD .30334

#1 1.2898 #2 1.2953

Check? Chk Pass

| Int. Std.      | In2306        | Y_2243        | Y_3600        | Y_3774        |
|----------------|---------------|---------------|---------------|---------------|
| Line           | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units          | Cts/S         | Cts/S         | Cts/S         | Cts/S         |
| Avg            | 3308.2        | 2997.7        | 25159.        | 4686.1        |
| Stddev         | 5.1           | 2.1           | 52.           | 40.8          |
| %RSD           | .15301        | .06934        | .20663        | .86994        |
| #1             | 3304.6        | 2996.2        | 25195.        | 4657.3        |
| #2             | 3311.8        | 2999.1        | 25122.        | 4715.0        |
| Check?         | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |
| Value<br>Range | 89.145%       | 116.31%       | 114.52%       | 123.00%       |

Sample Name: 480-125696-A-1-A Acquired: 10/16/2017 12:04:24 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00095         | 111.49        | .04389        | .00843        | .64640         |
| Stddev                             | .00041        | .13           | .00027        | .00054        | .00388         |
| %RSD                               | 42.783        | .11815        | .61351        | 6.3601        | .60077         |
| #1                                 | 00066         | 111.58        | .04408        | .00881        | .64915         |
| #2                                 | 00124         | 111.39        | .04370        | .00805        | .64366         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00318        | 11.202        | .00670        | . <b>4011</b> | .09363         |
| Stddev                             | .00006        | .002          | .00002        | .0375         | .00014         |
| %RSD                               | 2.0160        | .01470        | .24575        | 9.362         | .15251         |
| #1                                 | .00322        | 11.203        | .00668        | .4276         | .09373         |
| #2                                 | .00313        | 11.201        | .00671        | .3745         | .09353         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .12718        | 13.974        | 230.98        | 10.077        | . <b>24575</b> |
| Stddev                             | .00079        | .011          | .08           | .020          | .00054         |
| %RSD                               | .62272        | .07848        | .03270        | .19805        | .21877         |
| #1                                 | .12774        | 13.982        | 231.03        | 10.091        | .24613         |
| #2                                 | .12662        | 13.966        | 230.92        | 10.063        | .24537         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-125696-A-1-A Acquired: 10/16/2017 12:04:24 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                                     | Mg2790                                                                   | Mn2576                                                                 | Mo2020                                                                  | Na5895                                                                   | Ni2316        |
|----------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------|
| Line                                                     | 279.079 {121}2                                                           | 257.610 {131}                                                          | 202.030 {467}                                                           | 589.592 { 57}                                                            | 231.604 {446} |
| IS Ref                                                   | (Y_3600)                                                                 | (Y_3600)                                                               | (Y_2243)                                                                | (Y_3774)                                                                 | (In2306)      |
| Units                                                    | ppm                                                                      | ppm                                                                    | ppm                                                                     | ppm                                                                      | ppm           |
| Avg                                                      | <b>42.792</b>                                                            | <b>4.3822</b>                                                          | .00086                                                                  | . <b>79660</b>                                                           | .22274        |
| Stddev                                                   | .055                                                                     | .0037                                                                  | .00017                                                                  | .01025                                                                   | .00034        |
| %RSD                                                     | .12949                                                                   | .08366                                                                 | 20.268                                                                  | 1.2873                                                                   | .15164        |
| #1                                                       | 42.831                                                                   | 4.3848                                                                 | .00074                                                                  | .80385                                                                   | .22298        |
| #2                                                       | 42.753                                                                   | 4.3796                                                                 | .00098                                                                  | .78935                                                                   | .22250        |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                               | Chk Pass                                                                | Chk Pass                                                                 | Chk Pass      |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br>.11026<br>.00165<br>1.5009 | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br>16.140<br>.019<br>.12058 | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>01493<br>.00416<br>27.897 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>.00506<br>.00007<br>1.4284 | ppm<br>5.9644 |
| #1                                                       | .11143                                                                   | 16.126                                                                 | 01787                                                                   | .00511                                                                   | 6.0743        |
| #2                                                       | .10909                                                                   | 16.154                                                                 | 01198                                                                   | .00501                                                                   | 5.8544        |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                               | Chk Pass                                                                | Chk Pass                                                                 | Chk Pass      |
| Elem                                                     | Sn1899                                                                   | Sr4077                                                                 | Ti3349 334.904 {101} (Y_3600) ppm 1.5477 .0009 .06036                   | TI1908                                                                   | V_2924        |
| Line                                                     | 189.989 {477}                                                            | 407.771 { 83}                                                          |                                                                         | 190.856 {477}                                                            | 292.402 {115} |
| IS Ref                                                   | (In2306)                                                                 | (Y_3774)                                                               |                                                                         | (In2306)                                                                 | (Y_3600)      |
| Units                                                    | ppm                                                                      | ppm                                                                    |                                                                         | ppm                                                                      | ppm           |
| Avg                                                      | .00668                                                                   | . <b>06165</b>                                                         |                                                                         | 00140                                                                    | .12233        |
| Stddev                                                   | .00088                                                                   | .00011                                                                 |                                                                         | .00093                                                                   | .00018        |
| %RSD                                                     | 13.135                                                                   | .17467                                                                 |                                                                         | 66.767                                                                   | .14436        |
| #1                                                       | .00730                                                                   | .06158                                                                 | 1.5471                                                                  | 00074                                                                    | .12220        |
| #2                                                       | .00606                                                                   | .06173                                                                 | 1.5484                                                                  | 00206                                                                    | .12245        |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                               | Chk Pass                                                                | Chk Pass                                                                 | Chk Pass      |

Sample Name: 480-125696-A-1-A Acquired: 10/16/2017 12:04:24 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm .98274 Avg .00142 Stddev %RSD .14464 #1 .98174 .98375 #2 Check? **Chk Pass** High Limit Low Limit

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | <b>3428.9</b>       | 2786.2              | 23092.              | <b>4267.8</b>       |
| Stddev                    | 6.3                 | 6.8                 | 66.                 | 18.4                |
| %RSD                      | .18493              | .24250              | .28492              | .43219              |
| #1                        | 3433.4              | 2791.0              | 23138.              | 4280.8              |
| #2                        | 3424.4              | 2781.4              | 23045.              | 4254.7              |
| Check ?<br>Value<br>Range | Chk Pass<br>92.398% | Chk Pass<br>108.11% | Chk Pass<br>105.11% | Chk Pass<br>112.02% |

Sample Name: 480-125579-E-1-B Acquired: 10/16/2017 12:07:57 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082         | As1890        | B_2089        | Ba4554         |
|------------------------------------|---------------|----------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109}  | 189.042 {478} | 208.959 {461} | 455.403 { 74}  |
| IS Ref                             | (Y_3600)      | (Y_3774)       | (Y_2243)      | (Y_2243)      | (Y_3774)       |
| Units                              | ppm           | ppm            | ppm           | ppm           | ppm            |
| Avg                                | .00218        | 131.65         | .15802        | .20659        | 1.5686         |
| Stddev                             | .00011        | .26            | .00200        | .00016        | .0031          |
| %RSD                               | 4.9955        | .19564         | 1.2673        | .07567        | .19669         |
| #1                                 | .00211        | 131.84         | .15661        | .20648        | 1.5708         |
| #2                                 | .00226        | 131.47         | .15944        | .20670        | 1.5664         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179         | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106}  | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)       | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm            | ppm           | ppm           | ppm            |
| Avg                                | .00817        | 222.94         | .00948        | .4002         | .11212         |
| Stddev                             | .00004        | .22            | .00009        | .0034         | .00036         |
| %RSD                               | .45110        | .09747         | .95918        | .8402         | .32036         |
| #1                                 | .00815        | 223.10         | .00941        | .4026         | .11186         |
| #2                                 | .00820        | 222.79         | .00954        | .3978         | .11237         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273         | Fe2714        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103}  | 271.441 {124} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)       | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm            | ppm           | ppm           | ppm            |
| Avg                                | .26729        | . <b>51693</b> | 213.58        | <b>36.784</b> | . <b>26806</b> |
| Stddev                             | .00029        | .00499         | .00           | .103          | .00159         |
| %RSD                               | .10839        | .96465         | .00142        | .27966        | .59265         |
| #1                                 | .26749        | .51341         | 213.59        | 36.857        | .26918         |
| #2                                 | .26708        | .52046         | 213.58        | 36.711        | .26693         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-125579-E-1-B Acquired: 10/16/2017 12:07:57 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020                                                 | Na5895         | Ni2316         |
|------------------------------------|----------------|---------------|--------------------------------------------------------|----------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467}                                          | 589.592 { 57}  | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)                                               | (Y_3774)       | (In2306)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm            | ppm            |
| Avg                                | <b>50.095</b>  | <b>2.6302</b> | .00828                                                 | <b>4.8258</b>  | .33420         |
| Stddev                             | .196           | .0119         | .00012                                                 | .0160          | .00003         |
| %RSD                               | .39078         | .45385        | 1.5014                                                 | .33183         | .00813         |
| #1                                 | 49.957         | 2.6218        | .00819                                                 | 4.8371         | .33422         |
| #2                                 | 50.233         | 2.6387        | .00836                                                 | 4.8145         | .33418         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068                                                 | Se1960         | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463}                                          | 196.090 {472}  | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)                                               | (Y_2243)       | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm            | ppm            |
| Avg                                | <b>5.7986</b>  | 11.439        | 00453                                                  | .03385         | <b>12.223</b>  |
| Stddev                             | .0024          | .011          | .00008                                                 | .00375         | .460           |
| %RSD                               | .04185         | .09785        | 1.7462                                                 | 11.077         | 3.7670         |
| #1                                 | 5.8004         | 11.447        | 00448                                                  | .03650         | 12.549         |
| #2                                 | 5.7969         | 11.432        | 00459                                                  | .03120         | 11.898         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349 334.904 {101} (Y_3600) ppm .94970 .00795 .83710 | TI1908         | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} |                                                        | 190.856 {477}  | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)      |                                                        | (In2306)       | (Y_3600)       |
| Units                              | ppm            | ppm           |                                                        | ppm            | ppm            |
| Avg                                | .74438         | .61715        |                                                        | . <b>00160</b> | .24886         |
| Stddev                             | .00101         | .00121        |                                                        | .00105         | .00002         |
| %RSD                               | .13578         | .19680        |                                                        | 65.944         | .01000         |
| #1                                 | .74509         | .61801        | .95533                                                 | .00234         | .24884         |
| #2                                 | .74366         | .61629        | .94408                                                 | .00085         | .24888         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass       |

Sample Name: 480-125579-E-1-B Acquired: 10/16/2017 12:07:57 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm 4.1128 Avg .0042 Stddev %RSD .10275 #1 4.1098 4.1158 #2 Check? **Chk Pass** High Limit Low Limit lr

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | 3106.2              | 2711.5              | 22569.              | <b>4325.6</b>       |
| Stddev                    | 1.5                 | 1.4                 | 57.                 | 14.3                |
| %RSD                      | .04863              | .05005              | .25426              | .33113              |
| #1                        | 3107.3              | 2712.4              | 22610.              | 4315.4              |
| #2                        | 3105.1              | 2710.5              | 22529.              | 4335.7              |
| Check ?<br>Value<br>Range | Chk Pass<br>83.701% | Chk Pass<br>105.21% | Chk Pass<br>102.73% | Chk Pass<br>113.54% |

Sample Name: 480-125579-E-1-BSD@5 Acquired: 10/16/2017 12:11:27 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: Ag3280 Al3082 As1890 B 2089 Elem Ba4554-2 328.068 {103} 308.215 {109} 189.042 {478} 208.959 {461} 455.403 { 74}2 Line IS Ref (Y 3600)  $(Y_3774)$ (Y 2243) (Y 2243) (Y\_3600) Units ppm ppm ppm ppm ppm .00127 28.935 .03272 .04877 .34573 Avq Stddev .00055 .194 .00035 .00027 .00021 %RSD 43.385 .67153 1.0547 .55255 .06105 #1 .00166 28.798 .03296 .04896 .34588 .00088 29.073 .03248 .04858 .34558 #2 **Chk Pass Chk Pass** Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit \*\*Ce4040 Elem Be3130 Ca3179 Cd2288 Co2286 313.042 {108} 317.933 {106} 228.802 {447} 404.076 { 83} 228.616 {447} Line IS Ref (Y 3774) (Y 3774) (Y 2243) (Y 3774) (In2306) Units ppm ppm ppm ppm ppm .00191 49.160 .00221 .0829 .02197 Avg Stddev .00005 .210 .00008 .0066 .00007 2.4511 3.6763 7.912 .32852 %RSD .42685 #1 .00194 49.012 .00227 .0783 .02192 .00187 .0875 .02202 #2 49.309 .00216 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Cr2677 Cu3273 Fe2714 K 7664 Li6707 766.490 { 44} 267.716 {126} 327.396 {103} 271.441 {124} 670.784 { 50} Line IS Ref (Y 3600) (Y 3600) (Y 3774) (Y 3774)  $(Y_3774)$ Units ppm ppm ppm ppm ppm .06117 .11083 47.870 8.0982 .05822 Avg Stddev .00125 .00016 .009 .0188 .00069 %RSD 2.0441 .14735 .01831 .23187 1.1866 .06205 .11095 47.864 8.0849 .05773 #2 .06028 .11072 47.877 8.1115 .05871 **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** Check?

Sample Name: 480-125579-E-1-BSD@5 Acquired: 10/16/2017 12:11:27 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Elem 279.079 {121}2 257.610 {131} 202.030 {467} 589.592 { 57} 231.604 {446} Line  $(Y_3600)$  $(Y_3774)$ IS Ref  $(Y_3600)$ (Y 2243) (ln2306) Units ppm ppm ppm ppm ppm 11.164 .58634 .00155 1.0574 .06593 Avq Stddev .017 .00095 .00002 .0037 .00019 %RSD .14977 .16241 1.2464 .34867 .28074 #1 11.175 .58702 .00154 1.0548 .06580 11.152 .58567 .00156 1.0600 .06606 #2 **Chk Pass Chk Pass** Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Pb2203 S 1820 Sb2068 Se1960 Si2881 220.353 {453} 182.034 {485} 206.833 {463} 196.090 {472} 288.158 {117}2 Line IS Ref (ln2306) (Y 2243) (Y 2243) (Y 2243) (Y 3774) Units ppm ppm ppm ppm ppm 2.4251 1.1513 -.00139 .00902 3.6107 Avg Stddev .0011 .0017 .00020 .00207 .1057 .09329 .07131 14.071 22.886 %RSD 2.9269 #1 1.1506 2.4238 -.00125.01048 3.5359 2.4263 -.001533.6854 #2 1.1521 .00756 Check? **Chk Pass Chk Pass Chk Pass Chk Pass** Chk Pass High Limit Low Limit Sr4077 V 2924 Elem Sn1899 Ti3349 TI1908 334.904 {101} 190.856 {477} 189.989 {477} 407.771 { 83} 292.402 {115} Line IS Ref (ln2306) (Y 3774) (Y 3600) (In2306)  $(Y_3600)$ Units ppm ppm ppm ppm ppm .24063 .14525 .13601 .00114 .05487 Avg Stddev .00065 .00022 .00547 .00070 .00042 %RSD .44856 .16407 2.2717 61.707 .76478 .14479 .13585 .23676 .00163 .05457 #2 .14571 .13616 .24450 .00064 .05517 **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** Check?

Sample Name: 480-125579-E-1-BSD@5 Acquired: 10/16/2017 12:11:27 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 IS Ref
 (Y\_3600)

 Units
 ppm

 Avg
 .93526

 Stddev
 .00065

 %RSD
 .06968

#1 .93572 #2 .93480

Check? Chk Pass

| Int. Std.      | In2306        | Y_2243        | Y_3600        | Y_3774        |
|----------------|---------------|---------------|---------------|---------------|
| Line           | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units          | Cts/S         | Cts/S         | Cts/S         | Cts/S         |
| Avg            | 3494.7        | 2623.0        | 21915.        | 4008.7        |
| Stddev         | 1.6           | .4            | 32.           | 10.5          |
| %RSD           | .04614        | .01662        | .14599        | .26276        |
| #1             | 3495.8        | 2622.7        | 21893.        | 4016.1        |
| #2             | 3493.5        | 2623.4        | 21938.        | 4001.2        |
| Check?         | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |
| Value<br>Range | 94.169%       | 101.78%       | 99.758%       | 105.22%       |

Sample Name: 480-125579-E-1-BPDS Acquired: 10/16/2017 12:14:58 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890         | B_2089        | Ba4554         |
|------------------------------------|---------------|---------------|----------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478}  | 208.959 {461} | 455.403 { 74}  |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)       | (Y_2243)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm            | ppm           | ppm            |
| Avg                                | .09799        | 140.22        | . <b>53764</b> | .43549        | 1.7554         |
| Stddev                             | .00110        | .15           | .00063         | .00005        | .0015          |
| %RSD                               | 1.1231        | .10627        | .11793         | .01225        | .08703         |
| #1                                 | .09721        | 140.12        | .53809         | .43553        | 1.7565         |
| #2                                 | .09876        | 140.33        | .53719         | .43545        | 1.7544         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288         |               | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447}  |               | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)       |               | (In2306)       |
| Units                              | ppm           | ppm           | ppm            |               | ppm            |
| Avg                                | .38576        | 233.32        | .38904         |               | . <b>51632</b> |
| Stddev                             | .00111        | .31           | .00077         |               | .00049         |
| %RSD                               | .28792        | .13488        | .19753         |               | .09548         |
| #1                                 | .38498        | 233.10        | .38850         | .3913         | .51597         |
| #2                                 | .38655        | 233.55        | .38959         | .3832         | .51666         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714         | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124}  | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)       | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm            | ppm           | ppm            |
| Avg                                | .62263        | .87992        | 224.64         | <b>47.790</b> | . <b>50742</b> |
| Stddev                             | .00009        | .00269        | .23            | .063          | .00075         |
| %RSD                               | .01409        | .30612        | .10112         | .13194        | .14749         |
| #1                                 | .62257        | .88182        | 224.48         | 47.834        | .50795         |
| #2                                 | .62269        | .87801        | 224.80         | 47.745        | .50689         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       |

Sample Name: 480-125579-E-1-BPDS Acquired: 10/16/2017 12:14:58 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br><b>67.178</b><br>.071<br>.10632 | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br><b>2.9053</b><br>.0001<br>.00426   | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.38203<br>.00027<br>.06982 | Na5895<br>589.592 { 57}<br>(Y_3774)<br>ppm<br><b>16.726</b><br>.004<br>.02175    | 231.604 {446}<br>(In2306)<br>ppm<br>. <b>73703</b><br>.00193 |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|
| #1<br>#2                                                 | 67.127<br>67.228                                                               | 2.9054<br>2.9052                                                                 | .38222<br>.38184                                                         | 16.729<br>16.724                                                                 |                                                              |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                         | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                                     |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br><b>6.0266</b><br>.0094<br>.15639 | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br>11.130<br>.023<br>.21012           | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>.36568<br>.00204<br>.55897 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>.41728<br>.00013<br>.03105         | ppm<br><b>12.737</b><br>.334                                 |
| #1<br>#2                                                 | 6.0199<br>6.0332                                                               | 11.113<br>11.146                                                                 | .36423<br>.36712                                                         | .41718<br>.41737                                                                 |                                                              |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                         | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                                     |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>1.1378<br>.0014<br>.12686        | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>. <b>83465</b><br>.00172<br>.20643 | Ti3349 334.904 {101} (Y_3600) ppm 1.3456 .0039 .28720                    | TI1908<br>190.856 {477}<br>(In2306)<br>ppm<br>. <b>41032</b><br>.00311<br>.75861 | 292.402 {115}<br>(Y_3600)<br>ppm                             |
| #1<br>#2                                                 | 1.1368<br>1.1388                                                               | .83587<br>.83344                                                                 | 1.3484<br>1.3429                                                         | .41252<br>.40812                                                                 |                                                              |
| Check?<br>High Limit                                     | Chk Pass                                                                       | Chk Pass                                                                         | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                                     |

Low Limit

Sample Name: 480-125579-E-1-BPDS Acquired: 10/16/2017 12:14:58 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062
Line 206.200 {163}
IS Ref (Y\_3600)
Units ppm
Avg 4.2978
Stddev .0063
%RSD .14540

#1 4.3023 #2 4.2934

Check? Chk Pass

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | <b>3070.6</b>       | 2688.2              | 22440.              | <b>4321.8</b>       |
| Stddev                    | 2.7                 | .8                  | 64.                 | 14.8                |
| %RSD                      | .08833              | .02830              | .28564              | .34228              |
| #1                        | 3072.5              | 2687.6              | 22395.              | 4332.2              |
| #2                        | 3068.7              | 2688.7              | 22486.              | 4311.3              |
| Check ?<br>Value<br>Range | Chk Pass<br>82.743% | Chk Pass<br>104.31% | Chk Pass<br>102.15% | Chk Pass<br>113.44% |

Sample Name: 480-125579-F-1-F MS Acquired: 10/16/2017 12:18:25 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089         | Ba4554         |
|------------------------------------|---------------|---------------|---------------|----------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461}  | 455.403 { 74}  |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)       | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .09797        | <b>224.41</b> | .51039        | . <b>78206</b> | <b>2.4307</b>  |
| Stddev                             | .00000        | .48           | .00080        | .00211         | .0080          |
| %RSD                               | .00396        | .21399        | .15724        | .27012         | .33003         |
| #1                                 | .09797        | 224.07        | .50982        | .78355         | 2.4251         |
| #2                                 | .09796        | 224.75        | .51096        | .78057         | 2.4364         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040       | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83}  | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)       | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .36632        | <b>313.23</b> | .37804        | .4373          | . <b>50889</b> |
| Stddev                             | .00034        | 3.78          | .00091        | .0163          | .00066         |
| %RSD                               | .09255        | 1.2053        | .24055        | 3.731          | .12997         |
| #1                                 | .36608        | 310.56        | .37868        | .4257          | .50936         |
| #2                                 | .36656        | 315.90        | .37739        | .4488          | .50842         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664         | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44}  | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)       | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .67076        | 1.1027        | 195.24        | <b>82.498</b>  | . <b>62485</b> |
| Stddev                             | .00040        | .0001         | .71           | .136           | .00059         |
| %RSD                               | .06008        | .01311        | .36332        | .16459         | .09448         |
| #1                                 | .67104        | 1.1028        | 194.74        | 82.402         | .62527         |
| #2                                 | .67047        | 1.1026        | 195.74        | 82.594         | .62443         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |

Sample Name: 480-125579-F-1-F MS Acquired: 10/16/2017 12:18:25 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br><b>89.537</b><br>.260<br>.29073   | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br><b>3.2147</b><br>.0058<br>.18119 | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.35163<br>.00097<br>.27573 | Na5895<br>589.592 { 57}<br>(Y_3774)<br>ppm<br><b>23.716</b><br>.068<br>.28545    | 231.604 {446}<br>(In2306)<br>ppm<br>.69887<br>.00059        |
|----------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|
| #1<br>#2                                                 | 89.721<br>89.353                                                                 | 3.2188<br>3.2106                                                               | .35232<br>.35095                                                         | 23.668<br>23.764                                                                 |                                                             |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                                    |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br><b>4.0742</b><br>.0065<br>.15883   | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br><b>27.352</b><br>.075<br>.27310  | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>.18778<br>.00238<br>1.2676 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>.39953<br>.00170<br>.42558         | 288.158 {117}2<br>(Y_3774)<br>ppm<br><b>7.3372</b><br>.0464 |
| #1<br>#2                                                 | 4.0788<br>4.0696                                                                 | 27.404<br>27.299                                                               | .18947<br>.18610                                                         | .39833<br>.40073                                                                 |                                                             |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                                    |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>. <b>73482</b><br>.00041<br>.05580 | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>1.1708<br>.0042<br>.35801        | Ti3349<br>334.904 {101}<br>(Y_3600)<br>ppm<br>2.2483<br>.0046<br>.20436  | TI1908<br>190.856 {477}<br>(In2306)<br>ppm<br>. <b>39352</b><br>.00025<br>.06345 | 292.402 {115}<br>(Y_3600)<br>ppm<br>. <b>75787</b>          |
| #1<br>#2                                                 | .73511<br>.73453                                                                 | 1.1679<br>1.1738                                                               | 2.2450<br>2.2515                                                         | .39370<br>.39334                                                                 | .75693<br>.75880                                            |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                                    |

Sample Name: 480-125579-F-1-F MS Acquired: 10/16/2017 12:18:25 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062
Line 206.200 {163}
IS Ref (Y\_3600)
Units ppm
Avg 3.5211
Stddev .0087
%RSD .24721

#1 3.5272 #2 3.5149

Check? Chk Pass

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | <b>2955.1</b>       | <b>2675.5</b>       | 22036.              | 4370.5              |
| Stddev                    | .5                  | 1.7                 | 19.                 | 21.4                |
| %RSD                      | .01767              | .06396              | .08676              | .49075              |
| #1                        | 2955.5              | 2674.3              | 22050.              | 4385.7              |
| #2                        | 2954.7              | 2676.7              | 22023.              | 4355.4              |
| Check ?<br>Value<br>Range | Chk Pass<br>79.630% | Chk Pass<br>103.82% | Chk Pass<br>100.31% | Chk Pass<br>114.72% |

Sample Name: 480-125579-E-1-C MSD Acquired: 10/16/2017 12:21:58 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: Ag3280 Al3082 As1890 B 2089 Ba4554 Elem 328.068 {103} 308.215 {109} 189.042 {478} 208.959 {461} 455.403 { 74} Line IS Ref (Y 3600)  $(Y_3774)$ (Y 2243) (Y\_2243)  $(Y_3774)$ Units ppm ppm ppm ppm ppm .09647 234.47 .48482 .82138 2.1052 Avq Stddev .00037 .31 .00383 .00098 .0011 %RSD .37855 .13158 .79090 .11954 .05299 #1 .09621 234.69 .48753 .82069 2.1060 .09673 234.25 .48211 .82208 2.1044 #2 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit \*\*Ce4040 Elem Be3130 Ca3179 Cd2288 Co2286 313.042 {108} 317.933 {106} 228.802 {447} 404.076 { 83} 228.616 {447} Line IS Ref (Y 3774) (Y 3774) (Y 2243) (Y 3774) (In2306) Units ppm ppm ppm ppm ppm .36542 227.57 .37254 .4563 .50317 Avg Stddev .00035 .09 .00021 .0243 .00015 .09643 .04129 .05544 5.317 .02887 %RSD #1 .36517 227.64 .37269 .4734 .50328 .37239 227.51 .4391 .50307 #2 .36566 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Cr2677 Cu3273 Fe2714 K 7664 Li6707 766.490 { 44} 267.716 {126} 327.396 {103} 271.441 {124} 670.784 { 50} Line IS Ref (Y 3600) (Y 3600) (Y 3774)  $(Y_3774)$  $(Y_3774)$ Units ppm ppm ppm ppm ppm .69535 .79526 230.79 84.970 .65458 Avg

.00304

.38269

.79741

.79311

**Chk Pass** 

Stddev

%RSD

Check ? High Limit Low Limit

#2

.00087

.12450

.69597

.69474

**Chk Pass** 

Page 750 of 914

.34

.14939

231.03

230.54

**Chk Pass** 

.081

.09488

84.913

85.027

**Chk Pass** 

.00045

.06839

.65489

.65426

**Chk Pass** 

Sample Name: 480-125579-E-1-C MSD Acquired: 10/16/2017 12:21:58 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: Ma2790 Mn2576 Mo2020 Ni2316 Elem Na5895 279.079 {121}2 257.610 {131} 202.030 {467} 589.592 { 57} 231.604 {446} Line  $(Y_3774)$ IS Ref (Y\_3600) (Y\_3600) (Y 2243) (ln2306) Units ppm ppm ppm ppm ppm 79.382 2.8736 .35324 23.311 .69876 Avq Stddev .078 .0006 .00063 .014 .00103 %RSD .09801 .02254 .17767 .05928 .14678 #1 79.327 2.8741 .35279 23.320 .69803 79.437 2.8732 .35368 23.301 .69948 #2 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Pb2203 S 1820 Sb2068 Se1960 Si2881 220.353 {453} 182.034 {485} 206.833 {463} 196.090 {472} 288.158 {117}2 Line IS Ref (ln2306) (Y 2243) (Y 2243) (Y 2243) (Y 3774) Units ppm ppm ppm ppm ppm 4.6087 26.805 .19784 .38311 6.8536 Avg Stddev .0001 .002 .00298 .00076 .0859 .00174 .00930 1.5065 .19712 1.2537 %RSD #1 4.6087 26.803 .19995 .38364 6.7928 4.6086 26.807 .19574 .38258 6.9143 #2 Check? **Chk Pass Chk Pass Chk Pass Chk Pass** Chk Pass High Limit Low Limit V 2924 Elem Sn1899 Sr4077 Ti3349 TI1908 334.904 {101} 190.856 {477} 189.989 {477} 407.771 { 83} 292.402 {115} Line IS Ref (ln2306) (Y 3774) (Y 3600) (In2306)  $(Y_3600)$ Units ppm ppm ppm ppm ppm .76574

.62979 .93868 2.4280 .39531 Avg Stddev .00063 .00095 .0150 .00312 .00423 %RSD .10048 .10113 .61980 .78805 .55209 .62934 .93935 2.4174 .39751 .76275 #2 .63023 .93801 2.4386 .39311 .76873 **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** Check? High Limit Low Limit

Sample Name: 480-125579-E-1-C MSD Acquired: 10/16/2017 12:21:58 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 IS Ref
 (Y\_3600)

 Units
 ppm

 Avg
 2.8795

 Stddev
 .0083

 %RSD
 .28860

#1 2.8737 #2 2.8854

Check? Chk Pass

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | <b>2981.5</b>       | 2708.9              | 22216.              | 4321.0              |
| Stddev                    | .7                  | 4.8                 | 19.                 | 5.5                 |
| %RSD                      | .02249              | .17643              | .08406              | .12685              |
| #1                        | 2981.0              | 2705.6              | 22203.              | 4317.1              |
| #2                        | 2981.9              | 2712.3              | 22229.              | 4324.9              |
| Check ?<br>Value<br>Range | Chk Pass<br>80.341% | Chk Pass<br>105.11% | Chk Pass<br>101.13% | Chk Pass<br>113.42% |

Sample Name: 480-125579-F-2-B Acquired: 10/16/2017 12:25:25 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00127         | 127.83        | .01913        | .25636        | .38820         |
| Stddev                             | .00084        | .41           | .00149        | .00003        | .00001         |
| %RSD                               | 66.730        | .32391        | 7.7647        | .01256        | .00136         |
| #1                                 | 00067         | 127.54        | .02018        | .25634        | .38821         |
| #2                                 | 00186         | 128.13        | .01808        | .25638        | .38820         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00751        | 141.81        | 00014         | .2491         | .07515         |
| Stddev                             | .00001        | .40           | .00016        | .0141         | .00008         |
| %RSD                               | .15519        | .28368        | 114.29        | 5.673         | .10286         |
| #1                                 | .00750        | 141.53        | 00025         | .2391         | .07520         |
| #2                                 | .00751        | 142.10        | 00003         | .2591         | .07509         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .18482        | .22192        | 151.59        | <b>36.771</b> | .29868         |
| Stddev                             | .00038        | .00125        | .49           | .026          | .00031         |
| %RSD                               | .20749        | .56225        | .32609        | .06987        | .10439         |
| #1                                 | .18509        | .22280        | 151.24        | 36.789        | .29846         |
| #2                                 | .18455        | .22104        | 151.94        | 36.753        | .29890         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-125579-F-2-B Acquired: 10/16/2017 12:25:25 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020                                                 | Na5895        | Ni2316         |
|------------------------------------|----------------|---------------|--------------------------------------------------------|---------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467}                                          | 589.592 { 57} | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)                                               | (Y_3774)      | (In2306)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm           | ppm            |
| Avg                                | <b>45.896</b>  | 1.4678        | .00178                                                 | <b>3.4811</b> | .28192         |
| Stddev                             | .094           | .0010         | .00031                                                 | .0108         | .00016         |
| %RSD                               | .20503         | .06580        | 17.260                                                 | .31077        | .05627         |
| #1                                 | 45.830         | 1.4671        | .00157                                                 | 3.4735        | .28203         |
| #2                                 | 45.963         | 1.4685        | .00200                                                 | 3.4888        | .28181         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068                                                 | Se1960        | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463}                                          | 196.090 {472} | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)                                               | (Y_2243)      | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm           | ppm            |
| Avg                                | . <b>07472</b> | 1.2396        | 00938                                                  | .00396        | <b>17.236</b>  |
| Stddev                             | .00018         | .0020         | .00386                                                 | .00515        | .064           |
| %RSD                               | .23483         | .16149        | 41.150                                                 | 129.80        | .37374         |
| #1                                 | .07459         | 1.2382        | 01211                                                  | .00760        | 17.281         |
| #2                                 | .07484         | 1.2410        | 00665                                                  | .00033        | 17.190         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349 334.904 {101} (Y_3600) ppm .56847 .02487 4.3746 | TI1908        | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} |                                                        | 190.856 {477} | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)      |                                                        | (In2306)      | (Y_3600)       |
| Units                              | ppm            | ppm           |                                                        | ppm           | ppm            |
| Avg                                | .08324         | .33754        |                                                        | 00116         | .19031         |
| Stddev                             | .00119         | .00039        |                                                        | .00188        | .00012         |
| %RSD                               | 1.4330         | .11693        |                                                        | 161.56        | .06328         |
| #1                                 | .08240         | .33782        | .55089                                                 | .00017        | .19039         |
| #2                                 | .08408         | .33726        | .58606                                                 | 00249         | .19022         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass       |

Sample Name: 480-125579-F-2-B Acquired: 10/16/2017 12:25:25 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment:

Elem

206.200 {163} Line IS Ref  $(Y_3600)$ Units ppm .30371 Avg .00074 Stddev %RSD .24469 #1 .30423 .30318 #2

Zn2062

Check? **Chk Pass** 

High Limit Low Limit

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | 3215.2              | <b>2660.5</b>       | 21869.              | 4095.2              |
| Stddev                    | 2.2                 | .5                  | 12.                 | 10.0                |
| %RSD                      | .06963              | .01796              | .05691              | .24457              |
| #1                        | 3216.8              | 2660.9              | 21877.              | 4088.1              |
| #2                        | 3213.6              | 2660.2              | 21860.              | 4102.2              |
| Check ?<br>Value<br>Range | Chk Pass<br>86.638% | Chk Pass<br>103.23% | Chk Pass<br>99.546% | Chk Pass<br>107.49% |

Sample Name: CCV-4278259 Acquired: 10/16/2017 12:28:55 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                      | Ag3280         | Al3082         | As1890         | B_2089         | Ba4554-2       |
|---------------------------|----------------|----------------|----------------|----------------|----------------|
| Line                      | 328.068 {103}  | 308.215 {109}  | 189.042 {478}  | 208.959 {461}  | 455.403 { 74}2 |
| Units                     | ppm            | ppm            | ppm            | ppm            | ppm            |
| Avg                       | . <b>52409</b> | <b>25.229</b>  | . <b>52207</b> | . <b>51845</b> | .50052         |
| Stddev                    | .00127         | .064           | .00337         | .00097         | .00241         |
| %RSD                      | .24196         | .25190         | .64496         | .18739         | .48221         |
| #1                        | .52320         | 25.184         | .52445         | .51776         | .50222         |
| #2                        | .52499         | 25.274         | .51968         | .51914         | .49881         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       |
| Elem                      | Be3130         | Ca3179         | Cd2288         | **Ce4040       | Co2286         |
| Line                      | 313.042 {108}  | 317.933 {106}  | 228.802 {447}  | 404.076 { 83}  | 228.616 {447}  |
| Units                     | ppm            | ppm            | ppm            | ppm            | ppm            |
| Avg                       | .53033         | 26.390         | . <b>51228</b> | .0079          | . <b>51392</b> |
| Stddev                    | .00015         | .061           | .00073         | .0103          | .00043         |
| %RSD                      | .02914         | .22958         | .14249         | 130.2          | .08354         |
| #1                        | .53022         | 26.433         | .51176         | .0006          | .51422         |
| #2                        | .53044         | 26.347         | .51279         | .0152          | .51362         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | None           | Chk Pass       |
| Elem                      | Cr2677         | Cu3273         | Fe2599         | K_7664         |                |
| Line                      | 267.716 {126}  | 327.396 {103}  | 259.940 {130}  | 766.490 { 44}  |                |
| Units                     | ppm            | ppm            | ppm            | ppm            |                |
| Avg                       | . <b>52003</b> | . <b>50408</b> | <b>25.987</b>  | <b>25.411</b>  |                |
| Stddev                    | .00199         | .00104         | .060           | .079           |                |
| %RSD                      | .38293         | .20571         | .23119         | .30950         |                |
| #1                        | .51862         | .50335         | 26.030         | 25.355         | .51840         |
| #2                        | .52144         | .50481         | 25.945         | 25.466         | .51946         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       |

Sample Name: CCV-4278259 Acquired: 10/16/2017 12:28:55 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br><b>25.753</b><br>.015<br>.05911   | Mn2576<br>257.610 {131}<br>ppm<br>. <b>52493</b><br>.00079<br>.14994 | Mo2020<br>202.030 {467}<br>ppm<br>. <b>52612</b><br>.00004<br>.00666 | Na5895<br>589.592 { 57}<br>ppm<br><b>25.575</b><br>.045<br>.17581    | 231.604 {446}<br>ppm<br>. <b>51978</b> |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|
| #1<br>#2                                       | 25.742<br>25.764                                                     | .52438<br>.52549                                                     | .52609<br>.52614                                                     | 25.544<br>25.607                                                     |                                        |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>. <b>51833</b><br>.00278<br>.53606 | S_1820<br>182.034 {485}<br>ppm<br><b>25.936</b><br>.009<br>.03616    | Sb2068<br>206.833 {463}<br>ppm<br>. <b>51427</b><br>.00141<br>.27338 | Se1960<br>196.090 {472}<br>ppm<br>. <b>52863</b><br>.00312<br>.58992 | ppm<br><b>22.540</b><br>.028           |
| #1<br>#2                                       | .51636<br>.52029                                                     | 25.929<br>25.942                                                     | .51328<br>.51527                                                     | .52642<br>.53083                                                     | 22.560<br>22.520                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>ppm<br>. <b>53101</b><br>.00055<br>.10328 | Sr4077<br>407.771 { 83}<br>ppm<br>. <b>51194</b><br>.00082<br>.15991 |                                                                      | TI1908<br>190.856 {477}<br>ppm<br>. <b>53125</b><br>.00104<br>.19533 | 292.402 (115)                          |
| #1<br>#2                                       | .53062<br>.53140                                                     | .51136<br>.51252                                                     | .52933<br>.53035                                                     | .53199<br>.53052                                                     | .53177<br>.53006                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |

Sample Name: CCV-4278259 Acquired: 10/16/2017 12:28:55 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .52459

 Stddev
 .00044

 %RSD
 .08460

#1 .52428 #2 .52491

Check? Chk Pass

Value Range

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Cts/S Units Cts/S Cts/S Cts/S Avg 3455.8 2578.5 21600. 3912.1 4.3 3.3 59. 13.5 Stddev %RSD .12561 .12797 .27239 .34405

#1 3452.8 2576.2 21642. 3902.6 #2 3458.9 2580.9 21559. 3921.6 Sample Name: CCB-4278202 Acquired: 10/16/2017 12:32:22 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev | Ag3280<br>328.068 {103}<br>ppm<br>.00025<br>.00056 | ppm<br>. <b>03062</b><br>.00167 | ppm<br>. <b>00153</b><br>.00023 | ppm<br>. <b>00057</b><br>.00006 | Ba4554-2<br>455.403 { 74}2<br>ppm<br>.00024<br>.00003 |
|----------------------------------------|----------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------|
| %RSD                                   | 222.84                                             | 5.4542                          | 15.105                          | 9.8791                          | 13.702                                                |
| #1                                     | 00015                                              | .02944                          | .00169                          | .00061                          | .00026                                                |
| #2                                     | .00065                                             | .03180                          | .00136                          | .00053                          | .00022                                                |
| Check ?<br>High Limit<br>Low Limit     | Chk Pass                                           | Chk Pass                        | Chk Pass                        | Chk Pass                        | Chk Pass                                              |
| Elem                                   | Be3130                                             | Ca3179                          | Cd2288                          | **Ce4040                        | Co2286                                                |
| Line                                   | 313.042 {108}                                      | 317.933 {106}                   | 228.802 {447}                   | 404.076 { 83}                   | 228.616 {447}                                         |
| Units                                  | ppm                                                | ppm                             | ppm                             | ppm                             | ppm                                                   |
| Avg                                    | .00014                                             | . <b>04200</b>                  | . <b>00017</b>                  | .0011                           | .00002                                                |
| Stddev                                 | .00003                                             | .00031                          | .00007                          | .0003                           | .00004                                                |
| %RSD                                   | 19.314                                             | .73579                          | 41.197                          | 28.31                           | 191.25                                                |
| #1                                     | .00016                                             | .04178                          | .00012                          | .0009                           | 00001                                                 |
| #2                                     | .00012                                             | .04222                          | .00022                          | .0013                           | .00005                                                |
| Check ?<br>High Limit<br>Low Limit     | Chk Pass                                           | Chk Pass                        | Chk Pass                        | None                            | Chk Pass                                              |
| Elem                                   | Cr2677                                             | Cu3273                          | Fe2599                          | K_7664                          | Li6707                                                |
| Line                                   | 267.716 {126}                                      | 327.396 {103}                   | 259.940 {130}                   | 766.490 { 44}                   | 670.784 { 50}                                         |
| Units                                  | ppm                                                | ppm                             | ppm                             | ppm                             | ppm                                                   |
| Avg                                    | .00014                                             | 00042                           | .03592                          | . <b>03558</b>                  | .00008                                                |
| Stddev                                 | .00033                                             | .00101                          | .00156                          | .01694                          | .00001                                                |
| %RSD                                   | 236.03                                             | 241.45                          | 4.3549                          | 47.620                          | 8.6089                                                |
| #1                                     | 00009                                              | .00030                          | .03481                          | .04756                          | .00008                                                |
| #2                                     | .00037                                             | 00113                           | .03703                          | .02360                          | .00009                                                |
| Check ?<br>High Limit<br>Low Limit     | Chk Pass                                           | Chk Pass                        | Chk Pass                        | Chk Pass                        | Chk Pass                                              |

Sample Name: CCB-4278202 Acquired: 10/16/2017 12:32:22 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020        | Na5895        | Ni2316         |
|------------------------------------|----------------|---------------|---------------|---------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467} | 589.592 { 57} | 231.604 {446}  |
| Units                              | ppm            | ppm           | ppm           | ppm           | ppm            |
| Avg                                | . <b>01878</b> | .00039        | 00010         | 00015         | .00019         |
| Stddev                             | .00184         | .00003        | .00027        | .01043        | .00033         |
| %RSD                               | 9.7759         | 7.6576        | 263.04        | 6857.1        | 168.38         |
| #1                                 | .02008         | .00037        | 00029         | 00753         | .00043         |
| #2                                 | .01749         | .00041        | .00009        | .00723        | 00004          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068        | Se1960        | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463} | 196.090 {472} | 288.158 {117}2 |
| Units                              | ppm            | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00042         | 00463         | 00026         | 00076         | .00309         |
| Stddev                             | .00010         | .00214        | .00029        | .00186        | .00001         |
| %RSD                               | 23.677         | 46.233        | 114.96        | 244.71        | .22381         |
| #1                                 | .00035         | 00312         | 00005         | 00207         | .00310         |
| #2                                 | .00050         | 00614         | 00046         | .00055        | .00309         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349        | TI1908        | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} | 334.904 {101} | 190.856 {477} | 292.402 {115}  |
| Units                              | ppm            | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00068         | .00014        | .00011        | .00063        | .00034         |
| Stddev                             | .00022         | .00012        | .00057        | .00019        | .00001         |
| %RSD                               | 32.807         | 83.543        | 544.10        | 30.429        | 2.9391         |
| #1                                 | .00052         | .00006        | .00051        | .00077        | .00033         |
| #2                                 | .00084         | .00022        | 00030         | .00050        | .00034         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: CCB-4278202 Acquired: 10/16/2017 12:32:22 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .00057

 Stddev
 .00003

 %RSD
 5.1859

#1 .00055 #2 .00059

Check? Chk Pass

High Limit Low Limit

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Units Cts/S Cts/S Cts/S Avg 3782.2 2650.2 22480. 3948.9 2.4 38. 3.8 Stddev 8. %RSD .06404 .02932 .16691 .09556 #1 3784.0 2650.8 22506. 3951.5 2649.7 22453. #2 3780.5 3946.2

Sample Name: ccvl-4278204 Acquired: 10/16/2017 12:36:02 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                           | Ag3280                                                       | Al3082                                                               | As1890                                                               | B_2089                                                      | Ba4554-2              |
|------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------|
| Line                                           | 328.068 {103}                                                | 308.215 {109}                                                        | 189.042 {478}                                                        | 208.959 {461}                                               | 455.403 { 74}2        |
| Units                                          | ppm                                                          | ppm                                                                  | ppm                                                                  | ppm                                                         | ppm                   |
| Avg                                            | .00648                                                       | .19619                                                               | . <b>01659</b>                                                       | . <b>01981</b>                                              | .00228                |
| Stddev                                         | .00046                                                       | .02684                                                               | .00206                                                               | .00022                                                      | .00002                |
| %RSD                                           | 7.1000                                                       | 13.678                                                               | 12.438                                                               | 1.0934                                                      | .84833                |
| #1                                             | .00680                                                       | .21517                                                               | .01513                                                               | .01966                                                      | .00230                |
| #2                                             | .00615                                                       | .17722                                                               | .01805                                                               | .01997                                                      | .00227                |
| Check ?<br>Value<br>Range                      | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                    | Chk Pass              |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Be3130<br>313.042 {108}<br>ppm<br>.00219<br>.00000<br>.14119 | Ca3179<br>317.933 {106}<br>ppm<br>. <b>55167</b><br>.00048<br>.08777 | Cd2288<br>228.802 {447}<br>ppm<br>. <b>00220</b><br>.00015<br>6.9539 | **Ce4040<br>404.076 { 83}<br>ppm<br>.0066<br>.0276<br>416.5 | ppm<br>. <b>00383</b> |
| #1                                             | .00219                                                       | .55133                                                               | .00231                                                               | .0261                                                       | .00377                |
| #2                                             | .00220                                                       | .55201                                                               | .00210                                                               | 0129                                                        | .00390                |
| Check ?<br>Value<br>Range                      | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                                                             | None                                                        | Chk Pass              |
| Elem                                           | Cr2677                                                       | Cu3273                                                               | Fe2599                                                               | K_7664                                                      | 670.784 { 50}         |
| Line                                           | 267.716 {126}                                                | 327.396 {103}                                                        | 259.940 {130}                                                        | 766.490 { 44}                                               |                       |
| Units                                          | ppm                                                          | ppm                                                                  | ppm                                                                  | ppm                                                         |                       |
| Avg                                            | .00397                                                       | .01051                                                               | F .08419                                                             | . <b>54727</b>                                              |                       |
| Stddev                                         | .00005                                                       | .00084                                                               | .00040                                                               | .01142                                                      |                       |
| %RSD                                           | 1.2673                                                       | 7.9566                                                               | .47958                                                               | 2.0872                                                      |                       |
| #1                                             | .00400                                                       | .01110                                                               | .08448                                                               | .53920                                                      | .03181                |
| #2                                             | .00393                                                       | .00992                                                               | .08391                                                               | .55535                                                      | .03042                |
| Check ?<br>Value<br>Range                      | Chk Pass                                                     | Chk Pass                                                             | Chk Fail<br>.05000<br>50.000%                                        | Chk Pass                                                    | Chk Pass              |

Sample Name: ccvl-4278204 Acquired: 10/16/2017 12:36:02 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                           | Mg2790                                                               | Mn2576                                                               | Mo2020                                                               | Na5895                | Ni2316                                                                |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------|
| Line                                           | 279.079 {121}2                                                       | 257.610 {131}                                                        | 202.030 {467}                                                        | 589.592 { 57}         | 231.604 {446}                                                         |
| Units                                          | ppm                                                                  | ppm                                                                  | ppm                                                                  | ppm                   | ppm                                                                   |
| Avg                                            | . <b>22275</b>                                                       | .00343                                                               | . <b>01015</b>                                                       | 1.0064                | .00986                                                                |
| Stddev                                         | .00923                                                               | .00000                                                               | .00019                                                               | .0039                 | .00018                                                                |
| %RSD                                           | 4.1425                                                               | .00880                                                               | 1.8791                                                               | .38541                | 1.8078                                                                |
| #1                                             | .22927                                                               | .00343                                                               | .01001                                                               | 1.0092                | .00998                                                                |
| #2                                             | .21622                                                               | .00343                                                               | .01028                                                               | 1.0037                | .00973                                                                |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass              | Chk Pass                                                              |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>. <b>01205</b><br>.00030<br>2.4903 | S_1820<br>182.034 {485}<br>ppm<br>. <b>18553</b><br>.00030<br>.15941 | Sb2068<br>206.833 {463}<br>ppm<br>. <b>01982</b><br>.00084<br>4.2154 | ppm<br>. <b>02928</b> | Si2881<br>288.158 {117}2<br>ppm<br>. <b>46595</b><br>.00594<br>1.2753 |
| #1                                             | .01226                                                               | .18574                                                               | .01923                                                               | .02926                | .47016                                                                |
| #2                                             | .01184                                                               | .18532                                                               | .02041                                                               | .02930                | .46175                                                                |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass              | Chk Pass                                                              |
| Elem                                           | Sn1899                                                               | Sr4077                                                               | Ti3349                                                               | TI1908                | V_2924                                                                |
| Line                                           | 189.989 {477}                                                        | 407.771 { 83}                                                        | 334.904 {101}                                                        | 190.856 {477}         | 292.402 {115}                                                         |
| Units                                          | ppm                                                                  | ppm                                                                  | ppm                                                                  | ppm                   | ppm                                                                   |
| Avg                                            | . <b>01053</b>                                                       | .00511                                                               | .00543                                                               | . <b>02174</b>        | . <b>00596</b>                                                        |
| Stddev                                         | .00064                                                               | .00007                                                               | .00043                                                               | .00048                | .00017                                                                |
| %RSD                                           | 6.0960                                                               | 1.3308                                                               | 7.8469                                                               | 2.2279                | 2.9288                                                                |
| #1                                             | .01099                                                               | .00506                                                               | .00574                                                               | .02140                | .00608                                                                |
| #2                                             | .01008                                                               | .00516                                                               | .00513                                                               | .02209                | .00584                                                                |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass              | Chk Pass                                                              |

Sample Name: ccvl-4278204 Acquired: 10/16/2017 12:36:02 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .01131

 Stddev
 .00014

 %RSD
 1.2041

#1 .01140 #2 .01121

Check? Chk Pass

Value

Range

| Int. Std. | In2306        | Y_2243        | Y_3600        | Y_3774        |
|-----------|---------------|---------------|---------------|---------------|
| Line      | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units     | Čts/Š         | Čts/Š         | Cts/S         | Cts/S         |
| Avg       | 3773.1        | 2648.4        | 22406.        | 3914.8        |
| Stddev    | 11.4          | 1.8           | 3.            | 13.3          |
| %RSD      | .30325        | .06781        | .01317        | .34072        |
| #1        | 3765.0        | 2647.1        | 22408.        | 3924.3        |
| #2        | 3781.1        | 2649.7        | 22404.        | 3905.4        |

Sample Name: 480-125579-F-3-B Acquired: 10/16/2017 12:39:40 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                                     | Ag3280                                                                   | Al3082        | As1890                                                                 | B_2089        | Ba4554-2       |
|----------------------------------------------------------|--------------------------------------------------------------------------|---------------|------------------------------------------------------------------------|---------------|----------------|
| Line                                                     | 328.068 {103}                                                            | 308.215 {109} | 189.042 {478}                                                          | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                                                   | (Y_3600)                                                                 | (Y_3774)      | (Y_2243)                                                               | (Y_2243)      | (Y_3600)       |
| Units                                                    | ppm                                                                      | ppm           | ppm                                                                    | ppm           | ppm            |
| Avg                                                      | 00036                                                                    | 178.33        | . <b>05324</b>                                                         | .32189        | . <b>54631</b> |
| Stddev                                                   | .00036                                                                   | .41           | .00101                                                                 | .00028        | .00407         |
| %RSD                                                     | 99.805                                                                   | .23044        | 1.8981                                                                 | .08638        | .74439         |
| #1                                                       | 00010                                                                    | 178.62        | .05395                                                                 | .32169        | .54919         |
| #2                                                       | 00061                                                                    | 178.04        | .05252                                                                 | .32208        | .54343         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass      | Chk Pass                                                               | Chk Pass      | Chk Pass       |
| Elem                                                     | Be3130                                                                   | Ca3179        | Cd2288                                                                 | **Ce4040      | Co2286         |
| Line                                                     | 313.042 {108}                                                            | 317.933 {106} | 228.802 {447}                                                          | 404.076 { 83} | 228.616 {447}  |
| IS Ref                                                   | (Y_3774)                                                                 | (Y_3774)      | (Y_2243)                                                               | (Y_3774)      | (In2306)       |
| Units                                                    | ppm                                                                      | ppm           | ppm                                                                    | ppm           | ppm            |
| Avg                                                      | .01042                                                                   | 212.18        | 00054                                                                  | .3780         | .16009         |
| Stddev                                                   | .00003                                                                   | .51           | .00008                                                                 | .0092         | .00026         |
| %RSD                                                     | .33589                                                                   | .23928        | 15.441                                                                 | 2.421         | .15977         |
| #1                                                       | .01044                                                                   | 212.54        | 00048                                                                  | .3715         | .16027         |
| #2                                                       | .01039                                                                   | 211.82        | 00060                                                                  | .3845         | .15991         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass      | Chk Pass                                                               | Chk Pass      | Chk Pass       |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Cr2677<br>267.716 {126}<br>(Y_3600)<br>ppm<br>.26651<br>.00180<br>.67556 |               | Fe2714<br>271.441 {124}<br>(Y_3774)<br>ppm<br>258.33<br>1.05<br>.40831 |               | 670.784 { 50}  |
| #1                                                       | .26524                                                                   | .37962        | 259.07                                                                 | 48.325        | .37212         |
| #2                                                       | .26778                                                                   | .37987        | 257.58                                                                 | 48.264        | .37104         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass      | Chk Pass                                                               | Chk Pass      | Chk Pass       |

Sample Name: 480-125579-F-3-B Acquired: 10/16/2017 12:39:40 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                                     | Mg2790                                                                   | Mn2576                                                                   | Mo2020                                                 | Na5895                                               | Ni2316                                                                           |
|----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------|
| Line                                                     | 279.079 {121}2                                                           | 257.610 {131}                                                            | 202.030 {467}                                          | 589.592 { 57}                                        | 231.604 {446}                                                                    |
| IS Ref                                                   | (Y_3600)                                                                 | (Y_3600)                                                                 | (Y_2243)                                               | (Y_3774)                                             | (In2306)                                                                         |
| Units                                                    | ppm                                                                      | ppm                                                                      | ppm                                                    | ppm                                                  | ppm                                                                              |
| Avg                                                      | <b>71.106</b>                                                            | <b>2.8442</b>                                                            | .00428                                                 | 3.9509                                               | .46647                                                                           |
| Stddev                                                   | .066                                                                     | .0006                                                                    | .00008                                                 | .0080                                                | .00033                                                                           |
| %RSD                                                     | .09283                                                                   | .02068                                                                   | 1.7922                                                 | .20127                                               | .07017                                                                           |
| #1                                                       | 71.060                                                                   | 2.8446                                                                   | .00433                                                 | 3.9565                                               | .46624                                                                           |
| #2                                                       | 71.153                                                                   | 2.8438                                                                   | .00422                                                 | 3.9453                                               | .46670                                                                           |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                               | Chk Pass                                             | Chk Pass                                                                         |
| Elem                                                     | Pb2203                                                                   | S_1820                                                                   | Sb2068                                                 | Se1960                                               | Si2881                                                                           |
| Line                                                     | 220.353 {453}                                                            | 182.034 {485}                                                            | 206.833 {463}                                          | 196.090 {472}                                        | 288.158 {117}2                                                                   |
| IS Ref                                                   | (In2306)                                                                 | (Y_2243)                                                                 | (Y_2243)                                               | (Y_2243)                                             | (Y_3774)                                                                         |
| Units                                                    | ppm                                                                      | ppm                                                                      | ppm                                                    | ppm                                                  | ppm                                                                              |
| Avg                                                      | .16949                                                                   | 1.6563                                                                   | 01650                                                  | .00270                                               | <b>13.170</b>                                                                    |
| Stddev                                                   | .00081                                                                   | .0049                                                                    | .00198                                                 | .00121                                               | .351                                                                             |
| %RSD                                                     | .48059                                                                   | .29584                                                                   | 11.975                                                 | 44.709                                               | 2.6674                                                                           |
| #1                                                       | .16891                                                                   | 1.6528                                                                   | 01510                                                  | .00356                                               | 13.419                                                                           |
| #2                                                       | .17007                                                                   | 1.6597                                                                   | 01789                                                  | .00185                                               | 12.922                                                                           |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                               | Chk Pass                                             | Chk Pass                                                                         |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.01555<br>.00017<br>1.0721 | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>.49851<br>.00001<br>.00116 | Ti3349 334.904 {101} (Y_3600) ppm .43710 .01951 4.4631 | TI1908 190.856 {477} (In2306) ppm00096 .00054 56.122 | V_2924<br>292.402 {115}<br>(Y_3600)<br>ppm<br>. <b>25806</b><br>.00124<br>.48103 |
| #1                                                       | .01567                                                                   | .49850                                                                   | .45089                                                 | 00058                                                | .25719                                                                           |
| #2                                                       | .01543                                                                   | .49851                                                                   | .42330                                                 | 00134                                                | .25894                                                                           |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                               | Chk Pass                                             | Chk Pass                                                                         |

Sample Name: 480-125579-F-3-B Acquired: 10/16/2017 12:39:40 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 IS Ref
 (Y\_3600)

 Units
 ppm

 Avg
 .44232

 Stddev
 .00072

 %RSD
 .16247

#1 .44181 #2 .44282

Check? Chk Pass

High Limit Low Limit

Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 3093.8 2729.8 22646. 4361.8 Avg 1.8 4.7 22. 10.2 Stddev %RSD .05894 .17109 .09922 .23472 #1 3095.1 2733.1 22631. 4354.6 #2 3092.5 2726.5 22662. 4369.0 Check? **Chk Pass Chk Pass Chk Pass** Chk Pass Value 83.367% 105.92% 103.09% 114.49% Range

Sample Name: 480-125631-B-1-A Acquired: 10/16/2017 12:43:12 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00257         | <b>75.274</b> | .55866        | .01717        | .42119         |
| Stddev                             | .00033        | .056          | .00184        | .00017        | .00171         |
| %RSD                               | 12.917        | .07504        | .32920        | .97864        | .40624         |
| #1                                 | 00233         | 75.234        | .55996        | .01705        | .42240         |
| #2                                 | 00280         | 75.314        | .55736        | .01729        | .41998         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00989        | <b>24.626</b> | .00104        | .6093         | . <b>04006</b> |
| Stddev                             | .00005        | .030          | .00007        | .0028         | .00010         |
| %RSD                               | .53402        | .12280        | 6.3961        | .4583         | .25787         |
| #1                                 | .00993        | 24.647        | .00109        | .6113         | .03999         |
| #2                                 | .00986        | 24.605        | .00100        | .6073         | .04013         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .10588        | .06747        | 120.58        | 11.827        | . <b>05697</b> |
| Stddev                             | .00078        | .00014        | .24           | .055          | .00045         |
| %RSD                               | .73715        | .20223        | .19834        | .46800        | .79804         |
| #1                                 | .10533        | .06756        | 120.41        | 11.866        | .05664         |
| #2                                 | .10643        | .06737        | 120.75        | 11.787        | .05729         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-125631-B-1-A Acquired: 10/16/2017 12:43:12 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                                     | Mg2790                                                                   | Mn2576                                                                   | Mo2020                                                | Na5895                                                   | Ni2316                                                                   |
|----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|
| Line                                                     | 279.079 {121}2                                                           | 257.610 {131}                                                            | 202.030 {467}                                         | 589.592 { 57}                                            | 231.604 {446}                                                            |
| IS Ref                                                   | (Y_3600)                                                                 | (Y_3600)                                                                 | (Y_2243)                                              | (Y_3774)                                                 | (In2306)                                                                 |
| Units                                                    | ppm                                                                      | ppm                                                                      | ppm                                                   | ppm                                                      | ppm                                                                      |
| Avg                                                      | <b>20.117</b>                                                            | 1.5677                                                                   | .00528                                                | <b>2.0476</b>                                            | .07267                                                                   |
| Stddev                                                   | .035                                                                     | .0011                                                                    | .00008                                                | .0013                                                    | .00043                                                                   |
| %RSD                                                     | .17639                                                                   | .07076                                                                   | 1.4565                                                | .06271                                                   | .59731                                                                   |
| #1                                                       | 20.142                                                                   | 1.5685                                                                   | .00523                                                | 2.0467                                                   | .07298                                                                   |
| #2                                                       | 20.092                                                                   | 1.5669                                                                   | .00534                                                | 2.0485                                                   | .07237                                                                   |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                              | Chk Pass                                                 | Chk Pass                                                                 |
| Elem                                                     | Pb2203                                                                   | S_1820                                                                   | Sb2068                                                | Se1960                                                   | Si2881                                                                   |
| Line                                                     | 220.353 {453}                                                            | 182.034 {485}                                                            | 206.833 {463}                                         | 196.090 {472}                                            | 288.158 {117}2                                                           |
| IS Ref                                                   | (In2306)                                                                 | (Y_2243)                                                                 | (Y_2243)                                              | (Y_2243)                                                 | (Y_3774)                                                                 |
| Units                                                    | ppm                                                                      | ppm                                                                      | ppm                                                   | ppm                                                      | ppm                                                                      |
| Avg                                                      | .14473                                                                   | 1.0557                                                                   | 00671                                                 | .00383                                                   | <b>8.1585</b>                                                            |
| Stddev                                                   | .00036                                                                   | .0008                                                                    | .00129                                                | .00152                                                   | .1687                                                                    |
| %RSD                                                     | .25185                                                                   | .07592                                                                   | 19.249                                                | 39.708                                                   | 2.0683                                                                   |
| #1                                                       | .14447                                                                   | 1.0552                                                                   | 00580                                                 | .00276                                                   | 8.0392                                                                   |
| #2                                                       | .14499                                                                   | 1.0563                                                                   | 00763                                                 | .00491                                                   | 8.2778                                                                   |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                              | Chk Pass                                                 | Chk Pass                                                                 |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.01598<br>.00042<br>2.6594 | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>.22437<br>.00055<br>.24596 | Ti3349 334.904 {101} (Y_3600) ppm 6.4079 .0034 .05357 | TI1908 190.856 {477} (In2306)     ppm00606 .00028 4.5737 | V_2924<br>292.402 {115}<br>(Y_3600)<br>ppm<br>.20516<br>.00146<br>.71329 |
| #1                                                       | .01628                                                                   | .22476                                                                   | 6.4103                                                | 00626                                                    | .20619                                                                   |
| #2                                                       | .01568                                                                   | .22398                                                                   | 6.4054                                                | 00587                                                    | .20412                                                                   |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                              | Chk Pass                                                 | Chk Pass                                                                 |

Sample Name: 480-125631-B-1-A Acquired: 10/16/2017 12:43:12 Type: Unk Method: ICAP2 June 2017(v154) Corr. Factor: 1.000000 Mode: CONC User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line IS Ref  $(Y_3600)$ Units ppm .48880 Avg .00164 Stddev %RSD .33477 #1 .48995 .48764 #2 Check? **Chk Pass** High Limit Low Limit Ir

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | <b>3462.3</b>       | 2868.9              | <b>24005</b> .      | 4424.9              |
| Stddev                    | 1.3                 | 2.6                 | 60.                 | 10.5                |
| %RSD                      | .03627              | .08900              | .24813              | .23659              |
| #1                        | 3463.2              | 2870.7              | 23963.              | 4417.5              |
| #2                        | 3461.4              | 2867.1              | 24047.              | 4432.4              |
| Check ?<br>Value<br>Range | Chk Pass<br>93.298% | Chk Pass<br>111.32% | Chk Pass<br>109.27% | Chk Pass<br>116.14% |

Sample Name: 480-125631-C-2-B Acquired: 10/16/2017 12:46:48 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00260         | <b>69.821</b> | .26024        | .01715        | .39039         |
| Stddev                             | .00033        | .237          | .00073        | .00006        | .00009         |
| %RSD                               | 12.614        | .33882        | .27979        | .37133        | .02225         |
| #1                                 | 00283         | 69.988        | .25973        | .01720        | .39045         |
| #2                                 | 00237         | 69.653        | .26076        | .01711        | .39032         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00399        | <b>24.160</b> | .00105        | .4376         | . <b>04583</b> |
| Stddev                             | .00005        | .060          | .00006        | .0180         | .00034         |
| %RSD                               | 1.3681        | .24956        | 5.7797        | 4.107         | .74405         |
| #1                                 | .00403        | 24.203        | .00109        | .4249         | .04607         |
| #2                                 | .00395        | 24.118        | .00100        | .4503         | .04559         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .15919        | .08617        | 113.94        | 14.453        | . <b>06356</b> |
| Stddev                             | .00064        | .00068        | .49           | .030          | .00071         |
| %RSD                               | .40059        | .79168        | .43378        | .20806        | 1.1113         |
| #1                                 | .15964        | .08569        | 114.29        | 14.474        | .06306         |
| #2                                 | .15874        | .08665        | 113.59        | 14.432        | .06405         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-125631-C-2-B Acquired: 10/16/2017 12:46:48 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br><b>22.955</b><br>.094<br>.40987 | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br>2.0744<br>.0063<br>.30602  | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.00373<br>.00022<br>5.9959 | Na5895<br>589.592 { 57}<br>(Y_3774)<br>ppm<br><b>2.3470</b><br>.0291<br>1.2383 | Ni2316<br>231.604 {446}<br>(In2306)<br>ppm<br>.11674<br>.00096<br>.81847 |
|----------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| #1<br>#2                                                 | 23.021<br>22.888                                                               | 2.0789<br>2.0700                                                         | .00358<br>.00389                                                         | 2.3675<br>2.3264                                                               | .11607<br>.11742                                                         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                       | Chk Pass                                                                 |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br>.11071<br>.00050<br>.44962       | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br>.61766<br>.00434<br>.70266 | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>00164<br>.00128<br>78.023  | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>.00134<br>.00024<br>18.137       | ppm<br><b>6.6205</b><br>.3191                                            |
| #1<br>#2                                                 | .11035<br>.11106                                                               | .61459<br>.62073                                                         | 00074<br>00255                                                           | .00116<br>.00151                                                               | 6.8462<br>6.3949                                                         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                       | Chk Pass                                                                 |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.01270<br>.00021<br>1.6347       | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>.18270<br>.00086<br>.47221 | Ti3349 334.904 {101} (Y_3600) ppm 5.5218 .0119 .21577                    |                                                                                |                                                                          |
| #1<br>#2                                                 | .01256<br>.01285                                                               | .18331<br>.18209                                                         | 5.5302<br>5.5133                                                         | 00423<br>00242                                                                 | .18690<br>.18645                                                         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                       | Chk Pass                                                                 |

Sample Name: 480-125631-C-2-B Acquired: 10/16/2017 12:46:48 Type: Unk Method: ICAP2 June 2017(v154) Corr. Factor: 1.000000 Mode: CONC User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line IS Ref  $(Y_3600)$ Units ppm .42058 Avg .00481 Stddev %RSD 1.1433 #1 .42398 .41718 #2 Check? **Chk Pass** High Limit Low Limit Ir

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | 3517.8              | 2882.8              | 24095.              | 4372.9              |
| Stddev                    | 4.5                 | 8.5                 | 112.                | 13.5                |
| %RSD                      | .12755              | .29485              | .46673              | .30895              |
| #1                        | 3520.9              | 2888.8              | 24015.              | 4363.4              |
| #2                        | 3514.6              | 2876.8              | 24174.              | 4382.5              |
| Check ?<br>Value<br>Range | Chk Pass<br>94.792% | Chk Pass<br>111.86% | Chk Pass<br>109.68% | Chk Pass<br>114.78% |

Sample Name: 480-125631-B-3-B Acquired: 10/16/2017 12:50:24 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00270         | <b>28.176</b> | .01780        | .00123        | .12796         |
| Stddev                             | .00027        | .057          | .00138        | .00006        | .00010         |
| %RSD                               | 10.006        | .20245        | 7.7820        | 4.6335        | .07960         |
| #1                                 | 00289         | 28.216        | .01878        | .00119        | .12789         |
| #2                                 | 00250         | 28.135        | .01682        | .00127        | .12803         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00279        | 13.473        | .00021        | .6880         | .02376         |
| Stddev                             | .00005        | .031          | .00007        | .0081         | .00011         |
| %RSD                               | 1.7099        | .23231        | 32.318        | 1.170         | .44266         |
| #1                                 | .00276        | 13.495        | .00026        | .6937         | .02384         |
| #2                                 | .00283        | 13.451        | .00016        | .6823         | .02369         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .04572        | .02733        | <b>63.459</b> | <b>4.3762</b> | .02853         |
| Stddev                             | .00028        | .00002        | .217          | .0189         | .00002         |
| %RSD                               | .62209        | .07088        | .34150        | .43245        | .08160         |
| #1                                 | .04593        | .02734        | 63.612        | 4.3896        | .02855         |
| #2                                 | .04552        | .02731        | 63.306        | 4.3628        | .02851         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-125631-B-3-B Acquired: 10/16/2017 12:50:24 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br>10.462<br>.043<br>.41329 | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br>1.0606<br>.0006<br>.05798 | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.00127<br>.00009<br>7.3389 | Na5895<br>589.592 { 57}<br>(Y_3774)<br>ppm<br>. <b>50727</b><br>.00070<br>.13790 | (In2306)<br>ppm |
|----------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------|
| #1                                                       | 10.492                                                                  | 1.0610                                                                  | .00120                                                                   | .50677                                                                           | .03467          |
| #2                                                       | 10.431                                                                  | 1.0602                                                                  | .00133                                                                   | .50776                                                                           | .03462          |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                | Chk Pass                                                                | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass        |
| Elem                                                     | Pb2203                                                                  | S_1820                                                                  | Sb2068                                                                   | Se1960                                                                           | Si2881          |
| Line                                                     | 220.353 {453}                                                           | 182.034 {485}                                                           | 206.833 {463}                                                            | 196.090 {472}                                                                    | 288.158 {117}2  |
| IS Ref                                                   | (In2306)                                                                | (Y_2243)                                                                | (Y_2243)                                                                 | (Y_2243)                                                                         | (Y_3774)        |
| Units                                                    | ppm                                                                     | ppm                                                                     | ppm                                                                      | ppm                                                                              | ppm             |
| Avg                                                      | .08658                                                                  | .03594                                                                  | 00319                                                                    | .00045                                                                           | <b>1.9335</b>   |
| Stddev                                                   | .00025                                                                  | .00031                                                                  | .00151                                                                   | .00052                                                                           | .0136           |
| %RSD                                                     | .28408                                                                  | .85756                                                                  | 47.171                                                                   | 115.55                                                                           | .70536          |
| #1                                                       | .08675                                                                  | .03616                                                                  | 00426                                                                    | .00008                                                                           | 1.9239          |
| #2                                                       | .08641                                                                  | .03572                                                                  | 00213                                                                    | .00082                                                                           | 1.9432          |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                | Chk Pass                                                                | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass        |
| Elem                                                     | Sn1899                                                                  | Sr4077                                                                  | Ti3349 334.904 {101} (Y_3600) ppm 4.9749 .0024 .04821                    | TI1908                                                                           | V_2924          |
| Line                                                     | 189.989 {477}                                                           | 407.771 { 83}                                                           |                                                                          | 190.856 {477}                                                                    | 292.402 {115}   |
| IS Ref                                                   | (In2306)                                                                | (Y_3774)                                                                |                                                                          | (In2306)                                                                         | (Y_3600)        |
| Units                                                    | ppm                                                                     | ppm                                                                     |                                                                          | ppm                                                                              | ppm             |
| Avg                                                      | .00435                                                                  | .11945                                                                  |                                                                          | 00575                                                                            | .10760          |
| Stddev                                                   | .00069                                                                  | .00023                                                                  |                                                                          | .00004                                                                           | .00027          |
| %RSD                                                     | 15.880                                                                  | .19436                                                                  |                                                                          | .74737                                                                           | .24677          |
| #1                                                       | .00484                                                                  | .11961                                                                  | 4.9766                                                                   | 00579                                                                            | .10741          |
| #2                                                       | .00386                                                                  | .11929                                                                  | 4.9732                                                                   | 00572                                                                            | .10779          |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                | Chk Pass                                                                | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass        |

Sample Name: 480-125631-B-3-B Acquired: 10/16/2017 12:50:24 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm .14884 Avg .00062 Stddev %RSD .41753 #1 .14927 .14840 #2 Check? **Chk Pass** High Limit Low Limit

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | <b>3587.7</b>       | 2893.6              | 24462.              | 4389.1              |
| Stddev                    | 7.7                 | 1.7                 | 31.                 | 6.5                 |
| %RSD                      | .21466              | .05802              | .12839              | .14923              |
| #1                        | 3582.2              | 2892.4              | 24440.              | 4384.4              |
| #2                        | 3593.1              | 2894.8              | 24484.              | 4393.7              |
| Check ?<br>Value<br>Range | Chk Pass<br>96.676% | Chk Pass<br>112.28% | Chk Pass<br>111.35% | Chk Pass<br>115.20% |

Sample Name: 480-125631-B-4-B Acquired: 10/16/2017 12:53:57 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890         | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|----------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478}  | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)       | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm            | ppm           | ppm            |
| Avg                                | 00202         | <b>44.207</b> | . <b>05212</b> | .00059        | .17926         |
| Stddev                             | .00115        | .008          | .00026         | .00012        | .00018         |
| %RSD                               | 57.138        | .01762        | .50395         | 19.984        | .10270         |
| #1                                 | 00120         | 44.202        | .05231         | .00051        | .17939         |
| #2                                 | 00283         | 44.213        | .05194         | .00067        | .17913         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288         | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447}  | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)       | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm            | ppm           | ppm            |
| Avg                                | .00456        | 18.547        | .00006         | .3600         | .03275         |
| Stddev                             | .00005        | .056          | .00031         | .0140         | .00029         |
| %RSD                               | 1.1196        | .30330        | 525.15         | 3.884         | .87928         |
| #1                                 | .00460        | 18.507        | .00028         | .3699         | .03296         |
| #2                                 | .00452        | 18.587        | 00016          | .3501         | .03255         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714         | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124}  | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)       | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm            | ppm           | ppm            |
| Avg                                | .08710        | .06239        | <b>95.603</b>  | <b>5.6648</b> | . <b>05201</b> |
| Stddev                             | .00014        | .00033        | .278           | .0177         | .00014         |
| %RSD                               | .16266        | .53651        | .29062         | .31249        | .26354         |
| #1                                 | .08700        | .06216        | 95.406         | 5.6523        | .05191         |
| #2                                 | .08720        | .06263        | 95.799         | 5.6773        | .05210         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       |

Sample Name: 480-125631-B-4-B Acquired: 10/16/2017 12:53:57 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                                     | Mg2790                                                                   | Mn2576                                                                   | Mo2020                                                | Na5895                                               | Ni2316                                                                           |
|----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------|
| Line                                                     | 279.079 {121}2                                                           | 257.610 {131}                                                            | 202.030 {467}                                         | 589.592 { 57}                                        | 231.604 {446}                                                                    |
| IS Ref                                                   | (Y_3600)                                                                 | (Y_3600)                                                                 | (Y_2243)                                              | (Y_3774)                                             | (In2306)                                                                         |
| Units                                                    | ppm                                                                      | ppm                                                                      | ppm                                                   | ppm                                                  | ppm                                                                              |
| Avg                                                      | <b>20.018</b>                                                            | .98370                                                                   | .00238                                                | . <b>91635</b>                                       | .06074                                                                           |
| Stddev                                                   | .155                                                                     | .00508                                                                   | .00017                                                | .00570                                               | .00001                                                                           |
| %RSD                                                     | .77238                                                                   | .51604                                                                   | 7.2819                                                | .62252                                               | .01053                                                                           |
| #1                                                       | 19.908                                                                   | .98011                                                                   | .00226                                                | .91232                                               | .06074                                                                           |
| #2                                                       | 20.127                                                                   | .98729                                                                   | .00251                                                | .92039                                               | .06075                                                                           |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                              | Chk Pass                                             | Chk Pass                                                                         |
| Elem                                                     | Pb2203                                                                   | S_1820                                                                   | Sb2068                                                | Se1960                                               | Si2881                                                                           |
| Line                                                     | 220.353 {453}                                                            | 182.034 {485}                                                            | 206.833 {463}                                         | 196.090 {472}                                        | 288.158 {117}2                                                                   |
| IS Ref                                                   | (In2306)                                                                 | (Y_2243)                                                                 | (Y_2243)                                              | (Y_2243)                                             | (Y_3774)                                                                         |
| Units                                                    | ppm                                                                      | ppm                                                                      | ppm                                                   | ppm                                                  | ppm                                                                              |
| Avg                                                      | . <b>04427</b>                                                           | .16105                                                                   | 00512                                                 | 00139                                                | <b>4.8682</b>                                                                    |
| Stddev                                                   | .00056                                                                   | .00319                                                                   | .00112                                                | .00068                                               | .0990                                                                            |
| %RSD                                                     | 1.2582                                                                   | 1.9785                                                                   | 21.901                                                | 48.934                                               | 2.0334                                                                           |
| #1                                                       | .04388                                                                   | .16330                                                                   | 00592                                                 | 00091                                                | 4.7982                                                                           |
| #2                                                       | .04466                                                                   | .15880                                                                   | 00433                                                 | 00187                                                | 4.9382                                                                           |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                              | Chk Pass                                             | Chk Pass                                                                         |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.00616<br>.00009<br>1.5035 | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>.14056<br>.00049<br>.35203 | Ti3349 334.904 {101} (Y_3600) ppm 5.9829 .0121 .20189 | TI1908 190.856 {477} (In2306) ppm00466 .00002 .52654 | V_2924<br>292.402 {115}<br>(Y_3600)<br>ppm<br>.1 <b>5649</b><br>.00042<br>.26991 |
| #1                                                       | .00623                                                                   | .14021                                                                   | 5.9743                                                | 00468                                                | .15679                                                                           |
| #2                                                       | .00610                                                                   | .14090                                                                   | 5.9914                                                | 00465                                                | .15619                                                                           |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                              | Chk Pass                                             | Chk Pass                                                                         |

Sample Name: 480-125631-B-4-B Acquired: 10/16/2017 12:53:57 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line IS Ref  $(Y_3600)$ Units ppm .27381 Avg .00337 Stddev %RSD 1.2316 #1 .27143 .27620 #2 Chk Pass Check? High Limit Low Limit

| Int. Std.                 | In2306              | Y 2243              | Y 3600              | Y 3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | 3509.1              | 2779.9              | 23429.              | <b>4266.2</b>       |
| Stddev                    | 1.1                 | 1.5                 | 118.                | 13.9                |
| %RSD                      | .03081              | .05515              | .50167              | .32693              |
| #1                        | 3509.9              | 2778.8              | 23512.              | 4276.1              |
| #2                        | 3508.4              | 2781.0              | 23346.              | 4256.3              |
| Check ?<br>Value<br>Range | Chk Pass<br>94.560% | Chk Pass<br>107.86% | Chk Pass<br>106.65% | Chk Pass<br>111.98% |

Sample Name: 480-125631-B-6-B Acquired: 10/16/2017 12:57:28 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089         | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|----------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461}  | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)       | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | 00239         | <b>70.558</b> | .81219        | . <b>01423</b> | .36423         |
| Stddev                             | .00072        | .268          | .00393        | .00007         | .00016         |
| %RSD                               | 29.972        | .37986        | .48366        | .46163         | .04257         |
| #1                                 | 00290         | 70.748        | .81496        | .01428         | .36433         |
| #2                                 | 00188         | 70.368        | .80941        | .01419         | .36412         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040       | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83}  | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)       | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00447        | <b>25.011</b> | .00078        | .4812          | . <b>05134</b> |
| Stddev                             | .00008        | .091          | .00017        | .0170          | .00001         |
| %RSD                               | 1.6885        | .36334        | 21.391        | 3.532          | .02010         |
| #1                                 | .00441        | 25.075        | .00066        | .4933          | .05133         |
| #2                                 | .00452        | 24.947        | .00089        | .4692          | .05135         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664         | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44}  | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)       | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .13847        | .11542        | 139.16        | 10.966         | .06309         |
| Stddev                             | .00004        | .00159        | .05           | .029           | .00135         |
| %RSD                               | .03027        | 1.3813        | .03365        | .26504         | 2.1421         |
| #1                                 | .13850        | .11654        | 139.13        | 10.945         | .06404         |
| #2                                 | .13844        | .11429        | 139.19        | 10.986         | .06213         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |

Sample Name: 480-125631-B-6-B Acquired: 10/16/2017 12:57:28 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                                     | Mg2790                                                                   | Mn2576                                                                           | Mo2020                                                | Na5895        | Ni2316         |
|----------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|---------------|----------------|
| Line                                                     | 279.079 {121}2                                                           | 257.610 {131}                                                                    | 202.030 {467}                                         | 589.592 { 57} | 231.604 {446}  |
| IS Ref                                                   | (Y_3600)                                                                 | (Y_3600)                                                                         | (Y_2243)                                              | (Y_3774)      | (In2306)       |
| Units                                                    | ppm                                                                      | ppm                                                                              | ppm                                                   | ppm           | ppm            |
| Avg                                                      | <b>24.049</b>                                                            | <b>2.1325</b>                                                                    | .01060                                                | 1.9024        | .08204         |
| Stddev                                                   | .089                                                                     | .0049                                                                            | .00016                                                | .0034         | .00034         |
| %RSD                                                     | .37151                                                                   | .22790                                                                           | 1.5388                                                | .17853        | .41935         |
| #1                                                       | 23.986                                                                   | 2.1290                                                                           | .01071                                                | 1.9000        | .08180         |
| #2                                                       | 24.112                                                                   | 2.1359                                                                           | .01048                                                | 1.9048        | .08228         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                              | Chk Pass      | Chk Pass       |
| Elem                                                     | Pb2203                                                                   | S_1820                                                                           | Sb2068                                                | Se1960        | Si2881         |
| Line                                                     | 220.353 {453}                                                            | 182.034 {485}                                                                    | 206.833 {463}                                         | 196.090 {472} | 288.158 {117}2 |
| IS Ref                                                   | (In2306)                                                                 | (Y_2243)                                                                         | (Y_2243)                                              | (Y_2243)      | (Y_3774)       |
| Units                                                    | ppm                                                                      | ppm                                                                              | ppm                                                   | ppm           | ppm            |
| Avg                                                      | .14380                                                                   | .66262                                                                           | 00796                                                 | .00221        | <b>8.2223</b>  |
| Stddev                                                   | .00011                                                                   | .00167                                                                           | .00035                                                | .00143        | .0047          |
| %RSD                                                     | .07610                                                                   | .25230                                                                           | 4.4027                                                | 64.362        | .05684         |
| #1                                                       | .14373                                                                   | .66381                                                                           | 00772                                                 | .00322        | 8.2256         |
| #2                                                       | .14388                                                                   | .66144                                                                           | 00821                                                 | .00121        | 8.2190         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                              | Chk Pass      | Chk Pass       |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.01705<br>.00030<br>1.7425 | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>. <b>21428</b><br>.00030<br>.14009 | Ti3349 334.904 {101} (Y_3600) ppm 6.3449 .0013 .02008 |               |                |
| #1                                                       | .01684                                                                   | .21407                                                                           | 6.3440                                                | 00631         | .22128         |
| #2                                                       | .01726                                                                   | .21449                                                                           | 6.3458                                                | 00491         | .21971         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                              | Chk Pass      | Chk Pass       |

Sample Name: 480-125631-B-6-B Acquired: 10/16/2017 12:57:28 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 IS Ref
 (Y\_3600)

 Units
 ppm

 Avg
 .49633

 Stddev
 .00301

 %RSD
 .60572

#1 .49421 #2 .49846

Check? Chk Pass

High Limit Low Limit

| Int. Std.      | In2306        | Y_2243        | Y_3600        | Y_3774        |
|----------------|---------------|---------------|---------------|---------------|
| Line           | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units          | Cts/S         | Cts/S         | Cts/S         | Cts/S         |
| Avg            | 3444.2        | 2817.9        | 23545.        | 4296.8        |
| Stddev         | 3.3           | 1.2           | 2.            | 42.9          |
| %RSD           | .09512        | .04165        | .00774        | .99865        |
| #1             | 3446.6        | 2818.8        | 23544.        | 4266.4        |
| #2             | 3441.9        | 2817.1        | 23546.        | 4327.1        |
| Check?         | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |
| Value<br>Range | 92.811%       | 109.34%       | 107.18%       | 112.78%       |

Sample Name: 480-125681-A-1-D Acquired: 10/16/2017 13:00:56 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089         | Ba4554         |
|------------------------------------|---------------|---------------|---------------|----------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461}  | 455.403 { 74}  |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)       | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00566        | 191.09        | .09371        | . <b>90862</b> | 3.0387         |
| Stddev                             | .00028        | 1.15          | .00245        | .00048         | .0067          |
| %RSD                               | 5.0021        | .60269        | 2.6148        | .05299         | .22225         |
| #1                                 | .00546        | 190.27        | .09544        | .90828         | 3.0339         |
| #2                                 | .00586        | 191.90        | .09198        | .90896         | 3.0434         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040       | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83}  | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)       | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00264        | <b>603.06</b> | .03329        | .1819          | 1.6780         |
| Stddev                             | .00006        | .99           | .00018        | .0092          | .0021          |
| %RSD                               | 2.1340        | .16439        | .55424        | 5.077          | .12340         |
| #1                                 | .00268        | 602.36        | .03316        | .1885          | 1.6766         |
| #2                                 | .00260        | 603.76        | .03342        | .1754          | 1.6795         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664         | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44}  | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)       | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .58000        | <b>9.6968</b> | 448.62        | 22.439         | . <b>12202</b> |
| Stddev                             | .00233        | .0335         | 1.35          | .061           | .00112         |
| %RSD                               | .40102        | .34573        | .30096        | .27115         | .91772         |
| #1                                 | .57835        | 9.6731        | 447.67        | 22.396         | .12123         |
| #2                                 | .58164        | 9.7205        | 449.58        | 22.482         | .12281         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |

Sample Name: 480-125681-A-1-D Acquired: 10/16/2017 13:00:56 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br><b>78.389</b><br>.054<br>.06933 | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br><b>4.5683</b><br>.0013<br>.02890 | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.27853<br>.00029<br>.10289 | Na8183<br>818.326 { 41}<br>(Y_3774)<br>ppm<br><b>64.140</b><br>.197<br>.30779 | 231.604 {446}<br>(In2306)<br>ppm<br>. <b>32267</b>                       |
|----------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| #1<br>#2                                                 | 78.350<br>78.427                                                               | 4.5673<br>4.5692                                                               | .27873<br>.27832                                                         | 64.001<br>64.280                                                              | .32228<br>.32307                                                         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                      | Chk Pass                                                                 |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br><b>2.0093</b><br>.0038<br>.19111 | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br><b>33.642</b><br>.035<br>.10500  | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>.10094<br>.00248<br>2.4618 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>.00276<br>.00066<br>23.857      | (Y_3774)<br>ppm<br>. <b>88327</b><br>.00759                              |
| #1<br>#2                                                 | 2.0066<br>2.0120                                                               | 33.667<br>33.617                                                               | .09918<br>.10269                                                         | .00229<br>.00322                                                              | .88863<br>.87790                                                         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                      | Chk Pass                                                                 |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>3.0247<br>.0006<br>.02074        | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>1.5525<br>.0045<br>.28882        | Ti3349 334.904 {101} (Y_3600) ppm F 24.055 .187 .77773                   | TI1908 190.856 {477} (In2306)     ppm01660     .00210 12.650                  | V_2924<br>292.402 {115}<br>(Y_3600)<br>ppm<br>.15481<br>.00057<br>.36603 |
| #1<br>#2                                                 | 3.0252<br>3.0243                                                               | 1.5493<br>1.5557                                                               | 24.187<br>23.923                                                         | 01512<br>01809                                                                | .15521<br>.15441                                                         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                       | Chk Fail<br>18.000<br>00500                                              | Chk Pass                                                                      | Chk Pass                                                                 |

Sample Name: 480-125681-A-1-D Acquired: 10/16/2017 13:00:56 Type: Unk Method: ICAP2 June 2017(v154) Corr. Factor: 1.000000 Mode: CONC User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line IS Ref  $(Y_3600)$ Units ppm Avg 10.008 Stddev .012 %RSD .12185 #1 10.017 9.9996 #2 Check? **Chk Pass** High Limit Low Limit Ir

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | <b>2810.3</b>       | 2528.4              | 21150.              | 4136.1              |
| Stddev                    | 5.9                 | 2.4                 | 26.                 | 23.7                |
| %RSD                      | .20895              | .09635              | .12066              | .57317              |
| #1                        | 2814.5              | 2530.2              | 21132.              | 4152.9              |
| #2                        | 2806.2              | 2526.7              | 21168.              | 4119.4              |
| Check ?<br>Value<br>Range | Chk Pass<br>75.729% | Chk Pass<br>98.108% | Chk Pass<br>96.274% | Chk Pass<br>108.56% |

Sample Name: 480-125681-A-2-D Acquired: 10/16/2017 13:04:43 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280         | Al3082                      | As1890                      | B_2089         | Ba4554         |
|------------------------------------|----------------|-----------------------------|-----------------------------|----------------|----------------|
| Line                               | 328.068 {103}  | 308.215 {109}               | 189.042 {478}               | 208.959 {461}  | 455.403 { 74}  |
| IS Ref                             | (Y_3600)       | (Y_3774)                    | (Y_2243)                    | (Y_2243)       | (Y_3774)       |
| Units                              | ppm            | ppm                         | ppm                         | ppm            | ppm            |
| Avg                                | .69164         | 178.06                      | .10827                      | . <b>57437</b> | <b>3.3114</b>  |
| Stddev                             | .00185         | .68                         | .00302                      | .00063         | .0055          |
| %RSD                               | .26789         | .37966                      | 2.7911                      | .11000         | .16536         |
| #1                                 | .69295         | 177.58                      | .11040                      | .57482         | 3.3076         |
| #2                                 | .69033         | 178.54                      | .10613                      | .57393         | 3.3153         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass                    | Chk Pass                    | Chk Pass       | Chk Pass       |
| Elem                               | Be3130         | Ca3179                      | Cd2288                      | **Ce4040       | Co2286         |
| Line                               | 313.042 {108}  | 317.933 {106}               | 228.802 {447}               | 404.076 { 83}  | 228.616 {447}  |
| IS Ref                             | (Y_3774)       | (Y_3774)                    | (Y_2243)                    | (Y_3774)       | (In2306)       |
| Units                              | ppm            | ppm                         | ppm                         | ppm            | ppm            |
| Avg                                | .00171         | <b>559.84</b>               | . <b>04275</b>              | .1313          | .18748         |
| Stddev                             | .00010         | 7.43                        | .00006                      | .0105          | .00018         |
| %RSD                               | 5.6335         | 1.3264                      | .13354                      | 8.004          | .09572         |
| #1                                 | .00178         | 554.59                      | .04279                      | .1387          | .18736         |
| #2                                 | .00164         | 565.09                      | .04271                      | .1239          | .18761         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass                    | Chk Pass                    | Chk Pass       | Chk Pass       |
| Elem                               | Cr2677         | Cu3273                      | Fe2714                      | K_7664         | Li6707         |
| Line                               | 267.716 {126}  | 327.396 {103}               | 271.441 {124}               | 766.490 { 44}  | 670.784 { 50}  |
| IS Ref                             | (Y_3600)       | (Y_3600)                    | (Y_3774)                    | (Y_3774)       | (Y_3774)       |
| Units                              | ppm            | ppm                         | ppm                         | ppm            | ppm            |
| Avg                                | . <b>76809</b> | F 179.12                    | F 556.86                    | 23.594         | . <b>06418</b> |
| Stddev                             | .00808         | 1.22                        | 4.74                        | .003           | .00130         |
| %RSD                               | 1.0514         | .68364                      | .85165                      | .01089         | 2.0315         |
| #1                                 | .76238         | 178.25                      | 553.51                      | 23.592         | .06510         |
| #2                                 | .77380         | 179.98                      | 560.21                      | 23.596         | .06326         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Fail<br>23.000<br>01000 | Chk Fail<br>540.00<br>05000 | Chk Pass       | Chk Pass       |

Sample Name: 480-125681-A-2-D Acquired: 10/16/2017 13:04:43 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020                                               | Na8183        | Ni2316         |
|------------------------------------|----------------|---------------|------------------------------------------------------|---------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467}                                        | 818.326 { 41} | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)                                             | (Y_3774)      | (In2306)       |
| Units                              | ppm            | ppm           | ppm                                                  | ppm           | ppm            |
| Avg                                | <b>84.552</b>  | 3.9625        | . <b>05488</b>                                       | <b>64.561</b> | .43797         |
| Stddev                             | .212           | .0131         | .00052                                               | .055          | .00070         |
| %RSD                               | .25075         | .33079        | .94301                                               | .08472        | .16073         |
| #1                                 | 84.402         | 3.9533        | .05451                                               | 64.599        | .43847         |
| #2                                 | 84.701         | 3.9718        | .05524                                               | 64.522        | .43747         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                             | Chk Pass      | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068                                               | Se1960        | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463}                                        | 196.090 {472} | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)                                             | (Y_2243)      | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm                                                  | ppm           | ppm            |
| Avg                                | <b>2.4895</b>  | <b>46.523</b> | .10256                                               | 00153         | . <b>81834</b> |
| Stddev                             | .0059          | .077          | .00243                                               | .00931        | .00586         |
| %RSD                               | .23716         | .16617        | 2.3731                                               | 607.13        | .71605         |
| #1                                 | 2.4937         | 46.578        | .10428                                               | .00505        | .81419         |
| #2                                 | 2.4854         | 46.468        | .10084                                               | 00811         | .82248         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                             | Chk Pass      | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349 334.904 {101} (Y_3600) ppm 17.474 .012 .06968 | TI1908        | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} |                                                      | 190.856 {477} | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)      |                                                      | (In2306)      | (Y_3600)       |
| Units                              | ppm            | ppm           |                                                      | ppm           | ppm            |
| Avg                                | 2.0441         | 1.2688        |                                                      | 00994         | .12367         |
| Stddev                             | .0131          | .0036         |                                                      | .00125        | .00060         |
| %RSD                               | .64056         | .28460        |                                                      | 12.556        | .48480         |
| #1                                 | 2.0534         | 1.2663        | 17.483                                               | 00906         | .12409         |
| #2                                 | 2.0348         | 1.2714        | 17.466                                               | 01082         | .12324         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                             | Chk Pass      | Chk Pass       |

Sample Name: 480-125681-A-2-D Acquired: 10/16/2017 13:04:43 Type: Unk Method: ICAP2 June 2017(v154) Corr. Factor: 1.000000 Mode: CONC User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm 10.631 Avg Stddev .068 %RSD .64090 #1 10.583 10.679 #2 Check? **Chk Pass** High Limit Low Limit lr

| LOW LITTIL                |                     |                     |                     |                     |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | <b>2817.5</b>       | 2370.0              | <b>20647</b> .      | <b>4048.8</b>       |
| Stddev                    | 6.9                 | 7.2                 | 62.                 | 51.8                |
| %RSD                      | .24357              | .30381              | .30140              | 1.2802              |
| #1                        | 2822.3              | 2375.1              | 20691.              | 4085.4              |
| #2                        | 2812.6              | 2364.9              | 20603.              | 4012.1              |
| Check ?<br>Value<br>Range | Chk Pass<br>75.921% | Chk Pass<br>91.960% | Chk Pass<br>93.984% | Chk Pass<br>106.27% |

Sample Name: 480-125681-A-3-D Acquired: 10/16/2017 13:08:35 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280                      | Al3082        | As1890                      | B_2089        | Ba4554         |
|------------------------------------|-----------------------------|---------------|-----------------------------|---------------|----------------|
| Line                               | 328.068 {103}               | 308.215 {109} | 189.042 {478}               | 208.959 {461} | 455.403 { 74}  |
| IS Ref                             | (Y_3600)                    | (Y_3774)      | (Y_2243)                    | (Y_2243)      | (Y_3774)       |
| Units                              | ppm                         | ppm           | ppm                         | ppm           | ppm            |
| Avg                                | k .01971                    | k 133.61      | k .39344                    | <b>2.3410</b> | <b>5.2996</b>  |
| Stddev                             | .00029                      | .04           | .00190                      | .0030         | .0121          |
| %RSD                               | 1.4848                      | .03339        | .48334                      | .12719        | .22758         |
| #1                                 | k .01991                    | k 133.64      | k .39210                    | 2.3389        | 5.2910         |
| #2                                 | k .01950                    | k 133.58      | k .39478                    | 2.3431        | 5.3081         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass                    | Chk Pass      | Chk Pass                    | Chk Pass      | Chk Pass       |
| Elem                               | Be3130                      | Ca3179        | Cd2288                      | **Ce4040      | Co2286         |
| Line                               | 313.042 {108}               | 317.933 {106} | 228.802 {447}               | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)                    | (Y_3774)      | (Y_2243)                    | (Y_3774)      | (In2306)       |
| Units                              | ppm                         | ppm           | ppm                         | ppm           | ppm            |
| Avg                                | kF01343                     | <b>624.51</b> | k .02319                    | 3476          | k .41363       |
| Stddev                             | .00007                      | 1.64          | .00006                      | .0416         | .00171         |
| %RSD                               | .50136                      | .26216        | .27996                      | 11.96         | .41377         |
| #1                                 | k01348                      | 623.35        | k .02324                    | 3182          | k .41484       |
| #2                                 | k01339                      | 625.67        | k .02315                    | 3770          | k .41242       |
| Check ?<br>High Limit<br>Low Limit | Chk Fail<br>23.000<br>00200 | Chk Pass      | Chk Pass                    | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677                      | Cu3273        | Fe2714                      | K_7664        | Li6707         |
| Line                               | 267.716 {126}               | 327.396 {103} | 271.441 {124}               | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)                    | (Y_3600)      | (Y_3774)                    | (Y_3774)      | (Y_3774)       |
| Units                              | ppm                         | ppm           | ppm                         | ppm           | ppm            |
| Avg                                | k 3.2912                    | k 16.195      | F 1424.3                    | <b>29.690</b> | . <b>08873</b> |
| Stddev                             | .0006                       | .012          | .5                          | .003          | .00050         |
| %RSD                               | .01712                      | .07352        | .03206                      | .00889        | .56799         |
| #1                                 | k 3.2908                    | k 16.187      | 1424.0                      | 29.688        | .08838         |
| #2                                 | k 3.2916                    | k 16.204      | 1424.7                      | 29.691        | .08909         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass                    | Chk Pass      | Chk Fail<br>540.00<br>05000 | Chk Pass      | Chk Pass       |

Sample Name: 480-125681-A-3-D Acquired: 10/16/2017 13:08:35 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790          | Mn2576                      | Mo2020                                                  | Na8183        | Ni2316        |
|------------------------------------|-----------------|-----------------------------|---------------------------------------------------------|---------------|---------------|
| Line                               | 279.079 {121}2  | 257.610 {131}               | 202.030 {467}                                           | 818.326 { 41} | 231.604 {446} |
| IS Ref                             | (Y_3600)        | (Y_3600)                    | (Y_2243)                                                | (Y_3774)      | (In2306)      |
| Units                              | ppm             | ppm                         | ppm                                                     | ppm           | ppm           |
| Avg                                | k <b>81.830</b> | kF <b>89.632</b>            | .05390                                                  | <b>126.63</b> | <b>4.4722</b> |
| Stddev                             | .050            | .310                        | .00001                                                  | .01           | .0170         |
| %RSD                               | .06052          | .34623                      | .01089                                                  | .00793        | .38032        |
| #1                                 | k 81.865        | k 89.851                    | .05390                                                  | 126.64        | 4.4842        |
| #2                                 | k 81.795        | k 89.413                    | .05390                                                  | 126.62        | 4.4602        |
| Check ?<br>High Limit<br>Low Limit | Chk Pass        | Chk Fail<br>45.000<br>00300 | Chk Pass                                                | Chk Pass      | Chk Pass      |
| Elem                               | Pb2203          | S_1820                      | Sb2068                                                  | Se1960        |               |
| Line                               | 220.353 {453}   | 182.034 {485}               | 206.833 {463}                                           | 196.090 {472} |               |
| IS Ref                             | (In2306)        | (Y_2243)                    | (Y_2243)                                                | (Y_2243)      |               |
| Units                              | ppm             | ppm                         | ppm                                                     | ppm           |               |
| Avg                                | k 1.6354        | <b>32.139</b>               | k .20053                                                | k .06503      |               |
| Stddev                             | .0023           | .011                        | .00293                                                  | .00319        |               |
| %RSD                               | .13924          | .03389                      | 1.4595                                                  | 4.9106        |               |
| #1                                 | k 1.6370        | 32.132                      | k .20260                                                | k .06277      | .90282        |
| #2                                 | k 1.6337        | 32.147                      | k .19846                                                | k .06729      | .91366        |
| Check ?<br>High Limit<br>Low Limit | Chk Pass        | Chk Pass                    | Chk Pass                                                | Chk Pass      | Chk Pass      |
| Elem                               | Sn1899          | Sr4077                      | Ti3349 334.904 {101} (Y_3600) ppm kF 22.168 .024 .10782 | TI1908        | V_2924        |
| Line                               | 189.989 {477}   | 407.771 { 83}               |                                                         | 190.856 {477} | 292.402 {115} |
| IS Ref                             | (In2306)        | (Y_3774)                    |                                                         | (In2306)      | (Y_3600)      |
| Units                              | ppm             | ppm                         |                                                         | ppm           | ppm           |
| Avg                                | . <b>76550</b>  | <b>4.4994</b>               |                                                         | k .09160      | k .19698      |
| Stddev                             | .00337          | .1001                       |                                                         | .00084        | .00050        |
| %RSD                               | .43989          | 2.2250                      |                                                         | .91660        | .25405        |
| #1                                 | .76788          | 4.5702                      | k 22.185                                                | k .09100      | k .19733      |
| #2                                 | .76312          | 4.4286                      | k 22.152                                                | k .09219      | k .19662      |
| Check ?<br>High Limit<br>Low Limit | Chk Pass        | Chk Pass                    | Chk Fail<br>18.000<br>00500                             | Chk Pass      | Chk Pass      |

Sample Name: 480-125681-A-3-D Acquired: 10/16/2017 13:08:35 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062
Line 206.200 {163}
IS Ref (Y\_3600)
Units ppm
Avg kF 51.151
Stddev .161
%RSD .31513

#1 k 51.265 #2 k 51.037

Check? Chk Fail
High Limit 18.000
Low Limit -.01000

| Int. Std. | In2306        | Y_2243        | Y_3600        | Y_3774        |
|-----------|---------------|---------------|---------------|---------------|
| Line      | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units     | Cts/S         | Cts/S         | Cts/S         | Cts/S         |
| Avg       | <b>2439.9</b> | 2382.9        | 19982.        | 3978.0        |
| Stddev    | 2.1           | 2.2           | 65.           | 17.4          |
| %RSD      | .08747        | .09141        | .32702        | .43788        |
| #1        | 2438.4        | 2384.4        | 19936.        | 3965.7        |
| #2        | 2441.5        | 2381.3        | 20028.        | 3990.3        |
| Check?    | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |

 Check ?
 Chk Pass
 Chk Pass
 Chk Pass
 Chk Pass

 Value
 65.749%
 92.459%
 90.958%
 104.41%

Range

Sample Name: CCV-4278259 Acquired: 10/16/2017 13:12:33 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                      | Ag3280         | Al3082         | As1890         | B_2089         | Ba4554-2       |
|---------------------------|----------------|----------------|----------------|----------------|----------------|
| Line                      | 328.068 {103}  | 308.215 {109}  | 189.042 {478}  | 208.959 {461}  | 455.403 { 74}2 |
| Units                     | ppm            | ppm            | ppm            | ppm            | ppm            |
| Avg                       | . <b>52474</b> | <b>25.311</b>  | . <b>52025</b> | . <b>52093</b> | . <b>49865</b> |
| Stddev                    | .00223         | .054           | .00138         | .00000         | .00544         |
| %RSD                      | .42455         | .21170         | .26491         | .00057         | 1.0909         |
| #1                        | .52317         | 25.273         | .52123         | .52093         | .49481         |
| #2                        | .52632         | 25.348         | .51928         | .52093         | .50250         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       |
| Elem                      | Be3130         | Ca3179         | Cd2288         | **Ce4040       |                |
| Line                      | 313.042 {108}  | 317.933 {106}  | 228.802 {447}  | 404.076 { 83}  |                |
| Units                     | ppm            | ppm            | ppm            | ppm            |                |
| Avg                       | .53151         | <b>26.471</b>  | . <b>51370</b> | 0056           |                |
| Stddev                    | .00132         | .136           | .00055         | .0168          |                |
| %RSD                      | .24783         | .51466         | .10768         | 298.3          |                |
| #1                        | .53058         | 26.375         | .51331         | .0062          | .51470         |
| #2                        | .53245         | 26.568         | .51409         | 0175           | .51473         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | None           | Chk Pass       |
| Elem                      | Cr2677         | Cu3273         | Fe2599         | K_7664         |                |
| Line                      | 267.716 {126}  | 327.396 {103}  | 259.940 {130}  | 766.490 { 44}  |                |
| Units                     | ppm            | ppm            | ppm            | ppm            |                |
| Avg                       | . <b>52711</b> | . <b>51495</b> | <b>25.960</b>  | <b>25.461</b>  |                |
| Stddev                    | .00100         | .00053         | .103           | .036           |                |
| %RSD                      | .18971         | .10285         | .39733         | .13971         |                |
| #1                        | .52640         | .51457         | 25.887         | 25.436         | .51867         |
| #2                        | .52782         | .51532         | 26.033         | 25.486         | .51988         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       |

Sample Name: CCV-4278259 Acquired: 10/16/2017 13:12:33 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br><b>25.971</b><br>.210<br>.81020   | Mn2576<br>257.610 {131}<br>ppm<br>. <b>53563</b><br>.00142<br>.26519 | Mo2020<br>202.030 {467}<br>ppm<br>. <b>52326</b><br>.00060<br>.11561 | Na5895<br>589.592 { 57}<br>ppm<br><b>25.581</b><br>.085<br>.33303    | 231.604 {446}<br>ppm<br>. <b>52121</b> |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|
| #1<br>#2                                       | 25.822<br>26.120                                                     | .53462<br>.53663                                                     | .52283<br>.52369                                                     | 25.521<br>25.642                                                     | .52150<br>.52092                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>. <b>51783</b><br>.00173<br>.33332 | S_1820<br>182.034 {485}<br>ppm<br><b>25.934</b><br>.032<br>.12291    | Sb2068<br>206.833 {463}<br>ppm<br>. <b>51223</b><br>.00039<br>.07690 | Se1960<br>196.090 {472}<br>ppm<br>. <b>52652</b><br>.00506<br>.96130 | ppm<br><b>22.667</b>                   |
| #1<br>#2                                       | .51661<br>.51905                                                     | 25.912<br>25.957                                                     | .51195<br>.51250                                                     | .52294<br>.53010                                                     | 22.558<br>22.776                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>ppm<br>. <b>53331</b><br>.00014<br>.02680 | Sr4077<br>407.771 { 83}<br>ppm<br>. <b>50901</b><br>.00171<br>.33663 | Ti3349<br>334.904 {101}<br>ppm<br>. <b>53621</b><br>.00223<br>.41661 | TI1908<br>190.856 {477}<br>ppm<br>. <b>52832</b><br>.00061<br>.11602 | 292.402 {115}<br>ppm                   |
| #1<br>#2                                       | .53341<br>.53320                                                     | .50780<br>.51022                                                     | .53463<br>.53779                                                     | .52875<br>.52789                                                     | .53278<br>.53330                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |

Sample Name: CCV-4278259 Acquired: 10/16/2017 13:12:33 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .53563

 Stddev
 .00385

 %RSD
 .71839

#1 .53291 #2 .53835

Check? Chk Pass

Value Range

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Units Cts/S Cts/S Cts/S Avg 3464.0 2583.0 21523. 3850.3 154. 33.0 Stddev 1.0 .1 %RSD .00339 .04010 .71523 .85775

#1 3464.0 2582.3 21632. 3873.7 #2 3463.9 2583.8 21415. 3827.0 Sample Name: CCB-4278202 Acquired: 10/16/2017 13:16:00 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082         | As1890                      | B_2089        | Ba4554-2       |
|------------------------------------|---------------|----------------|-----------------------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109}  | 189.042 {478}               | 208.959 {461} | 455.403 { 74}2 |
| Units                              | ppm           | ppm            | ppm                         | ppm           | ppm            |
| Avg                                | .00085        | . <b>00725</b> | 00078                       | .00123        | .00027         |
| Stddev                             | .00043        | .02078         | .00044                      | .00036        | .00001         |
| %RSD                               | 50.577        | 286.77         | 56.596                      | 29.256        | 3.0318         |
| #1                                 | .00116        | .02194         | 00047                       | .00149        | .00027         |
| #2                                 | .00055        | 00745          | 00109                       | .00098        | .00026         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass                    | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179         | Cd2288                      | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106}  | 228.802 {447}               | 404.076 { 83} | 228.616 {447}  |
| Units                              | ppm           | ppm            | ppm                         | ppm           | ppm            |
| Avg                                | 00001         | . <b>04737</b> | .00003                      | . <b>0046</b> | 00009          |
| Stddev                             | .00006        | .00200         | .00004                      | .0109         | .00016         |
| %RSD                               | 495.74        | 4.2121         | 150.96                      | 236.0         | 176.57         |
| #1                                 | .00003        | .04596         | 00000                       | 0031          | .00002         |
| #2                                 | 00005         | .04878         | .00006                      | .0123         | 00021          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass                    | None          | Chk Pass       |
| Elem                               | Cr2677        | Cu3273         | Fe2599                      | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103}  | 259.940 {130}               | 766.490 { 44} | 670.784 { 50}  |
| Units                              | ppm           | ppm            | ppm                         | ppm           | ppm            |
| Avg                                | 00018         | .00476         | F .06843                    | .03499        | . <b>00044</b> |
| Stddev                             | .00042        | .00046         | .00169                      | .01750        | .00063         |
| %RSD                               | 230.01        | 9.7272         | 2.4666                      | 50.010        | 143.61         |
| #1                                 | 00048         | .00443         | .06724                      | .02262        | 00001          |
| #2                                 | .00012        | .00509         | .06963                      | .04736        | .00089         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Fail<br>.05000<br>05000 | Chk Pass      | Chk Pass       |

Sample Name: CCB-4278202 Acquired: 10/16/2017 13:16:00 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576                      | Mo2020                                            | Na5895         | Ni2316         |
|------------------------------------|----------------|-----------------------------|---------------------------------------------------|----------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131}               | 202.030 {467}                                     | 589.592 { 57}  | 231.604 {446}  |
| Units                              | ppm            | ppm                         | ppm                                               | ppm            | ppm            |
| Avg                                | .00877         | F .00566                    | 00017                                             | . <b>00718</b> | .00020         |
| Stddev                             | .00109         | .00013                      | .00003                                            | .00190         | .00017         |
| %RSD                               | 12.425         | 2.3145                      | 17.747                                            | 26.433         | 85.583         |
| #1                                 | .00954         | .00557                      | 00019                                             | .00583         | .00032         |
| #2                                 | .00800         | .00575                      | 00015                                             | .00852         | .00008         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Fail<br>.00300<br>00300 | Chk Pass                                          | Chk Pass       | Chk Pass       |
| Elem                               | Pb2203         | S_1820                      | Sb2068                                            | Se1960         | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485}               | 206.833 {463}                                     | 196.090 {472}  | 288.158 {117}2 |
| Units                              | ppm            | ppm                         | ppm                                               | ppm            | ppm            |
| Avg                                | .00031         | <b>00299</b>                | 00109                                             | 00120          | . <b>01299</b> |
| Stddev                             | .00013         | .00229                      | .00043                                            | .00191         | .00357         |
| %RSD                               | 40.766         | 76.453                      | 38.953                                            | 159.23         | 27.484         |
| #1                                 | .00022         | 00461                       | 00139                                             | .00015         | .01046         |
| #2                                 | .00040         | 00138                       | 00079                                             | 00255          | .01551         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass                    | Chk Pass                                          | Chk Pass       | Chk Pass       |
| Elem                               | Sn1899         | Sr4077                      | Ti3349 334.904 {101}     ppm .00181 .00043 23.869 | TI1908         | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83}               |                                                   | 190.856 {477}  | 292.402 {115}  |
| Units                              | ppm            | ppm                         |                                                   | ppm            | ppm            |
| Avg                                | .00080         | .00019                      |                                                   | 00016          | .00029         |
| Stddev                             | .00040         | .00005                      |                                                   | .00008         | .00036         |
| %RSD                               | 49.407         | 24.293                      |                                                   | 49.992         | 127.07         |
| #1                                 | .00052         | .00022                      | .00151                                            | 00021          | .00054         |
| #2                                 | .00108         | .00016                      | .00212                                            | 00010          | .00003         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass                    | Chk Pass                                          | Chk Pass       | Chk Pass       |

Sample Name: CCB-4278202 Acquired: 10/16/2017 13:16:00 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .00270

 Stddev
 .00026

 %RSD
 9.6728

#1 .00289 #2 .00252

Check? Chk Pass

High Limit Low Limit

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Units Cts/S Cts/S Cts/S Avg 3796.6 2657.3 22467. 3933.6 4.5 .5 14.3 Stddev 65. %RSD .11904 .01753 .29093 .36414 #1 3793.4 2657.6 22421. 3923.5 3799.8 2656.9 #2 22514. 3943.7 Sample Name: ccvl-4278204 Acquired: 10/16/2017 13:19:40 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                      | Ag3280        | Al3082                        | As1890                        | B_2089         | Ba4554-2       |
|---------------------------|---------------|-------------------------------|-------------------------------|----------------|----------------|
| Line                      | 328.068 {103} | 308.215 {109}                 | 189.042 {478}                 | 208.959 {461}  | 455.403 { 74}2 |
| Units                     | ppm           | ppm                           | ppm                           | ppm            | ppm            |
| Avg                       | .00623        | .21634                        | .01502                        | . <b>02069</b> | .00259         |
| Stddev                    | .00031        | .01107                        | .00101                        | .00011         | .00001         |
| %RSD                      | 5.0429        | 5.1169                        | 6.6952                        | .50891         | .20298         |
| #1                        | .00646        | .20851                        | .01573                        | .02077         | .00259         |
| #2                        | .00601        | .22417                        | .01431                        | .02062         | .00259         |
| Check ?<br>Value<br>Range | Chk Pass      | Chk Pass                      | Chk Pass                      | Chk Pass       | Chk Pass       |
| Elem                      | Be3130        | Ca3179                        | Cd2288                        | **Ce4040       | Co2286         |
| Line                      | 313.042 {108} | 317.933 {106}                 | 228.802 {447}                 | 404.076 { 83}  | 228.616 {447}  |
| Units                     | ppm           | ppm                           | ppm                           | ppm            | ppm            |
| Avg                       | .00215        | . <b>61294</b>                | . <b>00220</b>                | .0111          | . <b>00421</b> |
| Stddev                    | .00006        | .01321                        | .00017                        | .0067          | .00002         |
| %RSD                      | 3.0178        | 2.1554                        | 7.8640                        | 60.96          | .56202         |
| #1                        | .00220        | .60360                        | .00232                        | .0063          | .00423         |
| #2                        | .00211        | .62228                        | .00208                        | .0158          | .00419         |
| Check ?<br>Value<br>Range | Chk Pass      | Chk Pass                      | Chk Pass                      | None           | Chk Pass       |
| Elem                      | Cr2677        | Cu3273                        | Fe2599                        | K_7664         |                |
| Line                      | 267.716 {126} | 327.396 {103}                 | 259.940 {130}                 | 766.490 { 44}  |                |
| Units                     | ppm           | ppm                           | ppm                           | ppm            |                |
| Avg                       | .00437        | F .01836                      | F .16510                      | . <b>52863</b> |                |
| Stddev                    | .00008        | .00089                        | .01006                        | .00032         |                |
| %RSD                      | 1.8366        | 4.8393                        | 6.0938                        | .06118         |                |
| #1                        | .00432        | .01899                        | .15799                        | .52886         | .03158         |
| #2                        | .00443        | .01773                        | .17222                        | .52840         | .03075         |
| Check ?<br>Value<br>Range | Chk Pass      | Chk Fail<br>.01000<br>50.000% | Chk Fail<br>.05000<br>50.000% | Chk Pass       | Chk Pass       |

Sample Name: ccvl-4278204 Acquired: 10/16/2017 13:19:40 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br>. <b>22241</b><br>.00544<br>2.4471 | Mn2576<br>257.610 {131}<br>ppm<br>F .01210<br>.00006<br>.50130 |                                                     | Na5895<br>589.592 { 57}<br>ppm<br>1.0247<br>.0019<br>.18533 |                |
|------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|----------------|
| #1                                             | .22626                                                                | .01214                                                         | .00993                                              | 1.0261                                                      | .01089         |
| #2                                             | .21856                                                                | .01206                                                         | .01016                                              | 1.0234                                                      | .01039         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                              | Chk Fail<br>.00300<br>50.000%                                  | Chk Pass                                            | Chk Pass                                                    | Chk Pass       |
| Elem                                           | Pb2203                                                                | S_1820                                                         | Sb2068                                              | Se1960                                                      | Si2881         |
| Line                                           | 220.353 {453}                                                         | 182.034 {485}                                                  | 206.833 {463}                                       | 196.090 {472}                                               | 288.158 {117}2 |
| Units                                          | ppm                                                                   | ppm                                                            | ppm                                                 | ppm                                                         | ppm            |
| Avg                                            | .01039                                                                | . <b>19410</b>                                                 | . <b>02091</b>                                      | . <b>02555</b>                                              | . <b>45994</b> |
| Stddev                                         | .00075                                                                | .00169                                                         | .00046                                              | .00027                                                      | .00369         |
| %RSD                                           | 7.1758                                                                | .87021                                                         | 2.2165                                              | 1.0495                                                      | .80311         |
| #1                                             | .01092                                                                | .19530                                                         | .02058                                              | .02574                                                      | .45733         |
| #2                                             | .00986                                                                | .19291                                                         | .02124                                              | .02536                                                      | .46255         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                              | Chk Pass                                                       | Chk Pass                                            | Chk Pass                                                    | Chk Pass       |
| Elem                                           | Sn1899                                                                | Sr4077                                                         | Ti3349 334.904 {101}     ppm F .00805 .00001 .08808 | TI1908                                                      | V_2924         |
| Line                                           | 189.989 {477}                                                         | 407.771 { 83}                                                  |                                                     | 190.856 {477}                                               | 292.402 {115}  |
| Units                                          | ppm                                                                   | ppm                                                            |                                                     | ppm                                                         | ppm            |
| Avg                                            | . <b>01074</b>                                                        | . <b>00542</b>                                                 |                                                     | . <b>02166</b>                                              | . <b>00542</b> |
| Stddev                                         | .00009                                                                | .00010                                                         |                                                     | .00029                                                      | .00012         |
| %RSD                                           | .80569                                                                | 1.8445                                                         |                                                     | 1.3283                                                      | 2.2723         |
| #1                                             | .01080                                                                | .00535                                                         | .00806                                              | .02186                                                      | .00533         |
| #2                                             | .01068                                                                | .00549                                                         | .00805                                              | .02145                                                      | .00551         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                              | Chk Pass                                                       | Chk Fail<br>.00500<br>50.000%                       | Chk Pass                                                    | Chk Pass       |

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 W .01478

 Stddev
 .00033

 %RSD
 2.2599

#1 .01502 #2 .01455

Check? Chk Warn
Value .01000
Range 30.000%

In2306 Y\_2243 Y\_3600 Y\_3774 Int. Std. 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Units Cts/S Cts/S Cts/S Avg 3784.0 2656.3 22240. 3846.8 2.2 15.4 Stddev 2.7 38. %RSD .07211 .08395 .16893 .39913

#1 3782.1 2654.8 22213. 3836.0 #2 3786.0 2657.9 22266. 3857.7 Sample Name: 480-125681-A-4-D Acquired: 10/16/2017 13:23:17 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089                    | Ba4554         |
|------------------------------------|---------------|---------------|---------------|---------------------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461}             | 455.403 { 74}  |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)                  | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm                       | ppm            |
| Avg                                | .00896        | <b>202.47</b> | .08754        | 1.3894                    | <b>5.3512</b>  |
| Stddev                             | .00133        | 1.37          | .00105        | .0006                     | .0013          |
| %RSD                               | 14.843        | .67417        | 1.1958        | .04658                    | .02440         |
| #1                                 | .00802        | 203.44        | .08828        | 1.3898                    | 5.3502         |
| #2                                 | .00991        | 201.51        | .08680        | 1.3889                    | 5.3521         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass                  | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040                  | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83}             | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)                  | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm                       | ppm            |
| Avg                                | .00201        | <b>774.20</b> | .06490        | F 5.939                   | .18221         |
| Stddev                             | .00012        | 15.20         | .00047        | .011                      | .00147         |
| %RSD                               | 6.1314        | 1.9628        | .72004        | .1801                     | .80573         |
| #1                                 | .00192        | 784.94        | .06523        | 5.932                     | .18325         |
| #2                                 | .00209        | 763.45        | .06457        | 5.947                     | .18118         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Fail<br>3.000<br>5000 | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664                    | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44}             | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)                  | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm                       | ppm            |
| Avg                                | 1.0884        | 10.281        | 458.93        | <b>32.880</b>             | . <b>09227</b> |
| Stddev                             | .0047         | .004          | 2.01          | .060                      | .00075         |
| %RSD                               | .43593        | .03796        | .43713        | .18376                    | .81083         |
| #1                                 | 1.0851        | 10.278        | 460.35        | 32.923                    | .09174         |
| #2                                 | 1.0918        | 10.284        | 457.52        | 32.837                    | .09280         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass                  | Chk Pass       |

Sample Name: 480-125681-A-4-D Acquired: 10/16/2017 13:23:17 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br><b>72.383</b><br>.079<br>.10946   | ppm<br>F <b>69.087</b><br>.624             | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.07198<br>.00018<br>.25052 | Na8183<br>818.326 { 41}<br>(Y_3774)<br>ppm<br><b>129.68</b><br>.00<br>.00214 | Ni2316<br>231.604 {446}<br>(In2306)<br>ppm<br>1.0012<br>.0037<br>.36694         |
|----------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| #1<br>#2                                                 | 72.327<br>72.439                                                                 | 68.646<br>69.528                           | .07185<br>.07211                                                         | 129.68<br>129.68                                                             | 1.0038<br>.99860                                                                |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Fail<br>45.000<br>00300                | Chk Pass                                                                 | Chk Pass                                                                     | Chk Pass                                                                        |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br><b>5.2280</b><br>.0166<br>.31768   | 182.034 {485}<br>(Y_2243)<br>ppm<br>44.279 | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>.13405<br>.00039<br>.29406 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>01209<br>.00302<br>24.950      | Si2881<br>288.158 {117}2<br>(Y_3774)<br>ppm<br><b>2.5623</b><br>.0428<br>1.6716 |
| #1<br>#2                                                 | 5.2398<br>5.2163                                                                 |                                            | .13433<br>.13377                                                         | 01422<br>00996                                                               | 2.5320<br>2.5926                                                                |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                   | Chk Pass                                                                 | Chk Pass                                                                     | Chk Pass                                                                        |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>. <b>92582</b><br>.00417<br>.45037 | (Y_3774)<br>ppm<br>1.9526<br>.0009         | Ti3349 334.904 {101} (Y_3600) ppm F 26.205 .073 .27916                   | TI1908 190.856 {477} (In2306) ppm01305 .00050 3.8065                         | V_2924<br>292.402 {115}<br>(Y_3600)<br>ppm<br>.15251<br>.00107<br>.70104        |
| #1<br>#2                                                 | .92877<br>.92287                                                                 | 1.9532<br>1.9520                           | 26.153<br>26.257                                                         | 01269<br>01340                                                               | .15175<br>.15326                                                                |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                   | Chk Fail<br>18.000<br>00500                                              | Chk Pass                                                                     | Chk Pass                                                                        |

Sample Name: 480-125681-A-4-D Acquired: 10/16/2017 13:23:17 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062
Line 206.200 {163}
IS Ref (Y\_3600)
Units ppm
Avg F 42.943
Stddev .214
%RSD .49729

#1 42.792 #2 43.094

Check? Chk Fail
High Limit 18.000
Low Limit -.01000

Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 2688.9 2459.7 20591. 4031.3 Avg 9.2 3.9 42.9 Stddev 84. %RSD .34235 .15716 .40599 1.0649 #1 2682.4 2456.9 20651. 4001.0 #2 2695.4 2462.4 20532. 4061.7 Check? **Chk Pass Chk Pass** Chk Pass Chk Pass

Check? Chk Pass Chk Pass Chk Pass Chk Pass

Value 72.457% 95.439% 93.732% 105.81%

Range

Sample Name: 480-125681-A-5-I Acquired: 10/16/2017 13:27:14 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280         | Al3082        | As1890        | B_2089        | Ba4554                      |
|------------------------------------|----------------|---------------|---------------|---------------|-----------------------------|
| Line                               | 328.068 {103}  | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}               |
| IS Ref                             | (Y_3600)       | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3774)                    |
| Units                              | ppm            | ppm           | ppm           | ppm           | ppm                         |
| Avg                                | .02889         | <b>327.30</b> | .06813        | 1.9647        | F 10.772                    |
| Stddev                             | .00012         | .95           | .00052        | .0020         | .115                        |
| %RSD                               | .41619         | .29016        | .75791        | .10101        | 1.0648                      |
| #1                                 | .02897         | 327.97        | .06849        | 1.9633        | 10.691                      |
| #2                                 | .02880         | 326.62        | .06776        | 1.9661        | 10.853                      |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass      | Chk Fail<br>9.0000<br>00200 |
| Elem                               | Be3130         | Ca3179        | Cd2288        | **Ce4040      | Co2286                      |
| Line                               | 313.042 {108}  | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}               |
| IS Ref                             | (Y_3774)       | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)                    |
| Units                              | ppm            | ppm           | ppm           | ppm           | ppm                         |
| Avg                                | .00342         | <b>773.39</b> | .05093        | .3466         | .11471                      |
| Stddev                             | .00018         | 8.54          | .00001        | .0233         | .00037                      |
| %RSD                               | 5.1430         | 1.1040        | .02444        | 6.708         | .32574                      |
| #1                                 | .00329         | 767.35        | .05092        | .3631         | .11445                      |
| #2                                 | .00354         | 779.43        | .05093        | .3302         | .11497                      |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass                    |
| Elem                               | Cr2677         | Cu3273        | Fe2714        | K_7664        | Li6707                      |
| Line                               | 267.716 {126}  | 327.396 {103} | 271.441 {124} | 766.490 { 44} | 670.784 { 50}               |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)                    |
| Units                              | ppm            | ppm           | ppm           | ppm           | ppm                         |
| Avg                                | . <b>52040</b> | 5.3620        | 234.49        | <b>29.120</b> | .11553                      |
| Stddev                             | .00028         | .0115         | 1.73          | .011          | .00093                      |
| %RSD                               | .05422         | .21499        | .73717        | .03711        | .80073                      |
| #1                                 | .52060         | 5.3702        | 233.27        | 29.113        | .11619                      |
| #2                                 | .52020         | 5.3539        | 235.72        | 29.128        | .11488                      |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass                    |

Sample Name: 480-125681-A-5-I Acquired: 10/16/2017 13:27:14 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br><b>86.365</b><br>.303<br>.35058   | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br><b>4.3333</b><br>.0075<br>.17228 | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.14091<br>.00021<br>.15116 | Na8183<br>818.326 { 41}<br>(Y_3774)<br>ppm<br><b>88.003</b><br>.007      | Ni2316<br>231.604 {446}<br>(In2306)<br>ppm<br>. <b>34720</b><br>.00025<br>.07143 |
|----------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| #1<br>#2                                                 | 86.151<br>86.579                                                                 | 4.3281<br>4.3386                                                               | .14076<br>.14107                                                         | 88.008<br>87.999                                                         | .34737<br>.34702                                                                 |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                         |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br><b>2.6190</b><br>.0048<br>.18479   | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br><b>37.610</b><br>.022<br>.05965  | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>.14364<br>.00506<br>3.5223 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>.00517<br>.00159<br>30.782 | Si2881<br>288.158 {117}2<br>(Y_3774)<br>ppm<br><b>1.1794</b><br>.0047<br>.39822  |
| #1<br>#2                                                 | 2.6225<br>2.6156                                                                 | 37.626<br>37.594                                                               | .14006<br>.14722                                                         | .00405<br>.00630                                                         | 1.1760<br>1.1827                                                                 |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                         |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>. <b>57149</b><br>.00118<br>.20672 | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>1.8037<br>.0008<br>.04193        | Ti3349 334.904 {101} (Y_3600) ppm F 22.970 .148 .64268                   | TI1908 190.856 {477} (In2306)     ppm01273 .00243 19.051                 | V_2924<br>292.402 {115}<br>(Y_3600)<br>ppm<br>.19770<br>.00052<br>.26517         |
| #1<br>#2                                                 | .57065<br>.57232                                                                 | 1.8032<br>1.8042                                                               | 22.865<br>23.074                                                         | 01445<br>01102                                                           | .19808<br>.19733                                                                 |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                       | Chk Fail<br>18.000<br>00500                                              | Chk Pass                                                                 | Chk Pass                                                                         |

Sample Name: 480-125681-A-5-I Acquired: 10/16/2017 13:27:14 Type: Unk Method: ICAP2 June 2017(v154) Corr. Factor: 1.000000 Mode: CONC Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line IS Ref  $(Y_3600)$ Units ppm 14.828 Avg .062 Stddev %RSD .41835 #1 14.784 14.871 #2 Check? **Chk Pass** High Limit Low Limit lr

| LOW LITTIE                |                     |                  |                  |                     |
|---------------------------|---------------------|------------------|------------------|---------------------|
| Int. Std.                 | In2306              | Y_2243           | Y_3600           | Y_3774              |
| Line                      | 230.606 {446}       | 224.306 {450}    | 360.073 { 94}    | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S            | Cts/S            | Cts/S               |
| Avg                       | <b>2761.2</b>       | <b>2559.8</b>    | 21090.           | <b>4218.7</b>       |
| Stddev                    | .7                  | 1.4              | 79.              | 35.2                |
| %RSD                      | .02507              | .05469           | .37303           | .83337              |
| #1                        | 2761.7              | 2560.8           | 21145.           | 4243.6              |
| #2                        | 2760.7              | 2558.8           | 21034.           | 4193.8              |
| Check ?<br>Value<br>Range | Chk Pass<br>74.405% | Chk Pass 99.324% | Chk Pass 96.001% | Chk Pass<br>110.73% |

Sample Name: 480-125681-A-6-D@5 Acquired: 10/16/2017 13:42:48 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554         |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}  |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00236        | <b>136.26</b> | .01169        | .14857        | 1.1093         |
| Stddev                             | .00125        | .89           | .00134        | .00036        | .0021          |
| %RSD                               | 53.139        | .65455        | 11.429        | .24497        | .18694         |
| #1                                 | .00147        | 136.89        | .01263        | .14832        | 1.1108         |
| #2                                 | .00324        | 135.63        | .01075        | .14883        | 1.1079         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00044        | 147.25        | .01079        | .0325         | . <b>02176</b> |
| Stddev                             | .00002        | .99           | .00016        | .0290         | .00026         |
| %RSD                               | 3.5189        | .67456        | 1.4548        | 89.08         | 1.1898         |
| #1                                 | .00045        | 147.96        | .01068        | .0120         | .02157         |
| #2                                 | .00043        | 146.55        | .01090        | .0530         | .02194         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .13755        | 1.9937        | <b>70.920</b> | <b>5.1407</b> | .01658         |
| Stddev                             | .00097        | .0101         | .470          | .0573         | .00070         |
| %RSD                               | .70335        | .50765        | .66341        | 1.1150        | 4.2403         |
| #1                                 | .13686        | 1.9865        | 71.252        | 5.1812        | .01608         |
| #2                                 | .13823        | 2.0008        | 70.587        | 5.1001        | .01708         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-125681-A-6-D@5 Acquired: 10/16/2017 13:42:48 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020        | Na5895        | Ni2316         |
|------------------------------------|----------------|---------------|---------------|---------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467} | 589.592 { 57} | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm            | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 13.974         | 3.0843        | .00868        | <b>22.776</b> | .05247         |
| Stddev                             | .002           | .0085         | .00006        | .097          | .00017         |
| %RSD                               | .01727         | .27419        | .70450        | .42496        | .32744         |
| #1                                 | 13.976         | 3.0783        | .00864        | 22.844        | .05260         |
| #2                                 | 13.973         | 3.0903        | .00873        | 22.707        | .05235         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068        | Se1960        | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463} | 196.090 {472} | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)      | (Y_2243)      | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm           | ppm           | ppm            |
| Avg                                | . <b>57059</b> | <b>7.9947</b> | .03119        | 00033         | . <b>27709</b> |
| Stddev                             | .00112         | .0130         | .00054        | .00205        | .00106         |
| %RSD                               | .19651         | .16204        | 1.7416        | 631.51        | .38239         |
| #1                                 | .56979         | 7.9855        | .03158        | .00113        | .27783         |
| #2                                 | .57138         | 8.0039        | .03081        | 00178         | .27634         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349        | TI1908        | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} | 334.904 {101} | 190.856 {477} | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)      | (Y_3600)      | (In2306)      | (Y_3600)       |
| Units                              | ppm            | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .11329         | .39132        | 5.1778        | 00187         | .04322         |
| Stddev                             | .00001         | .00015        | .0034         | .00073        | .00016         |
| %RSD                               | .01128         | .03759        | .06630        | 39.204        | .38036         |
| #1                                 | .11330         | .39143        | 5.1753        | 00135         | .04310         |
| #2                                 | .11328         | .39122        | 5.1802        | 00239         | .04334         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-125681-A-6-D@5 Acquired: 10/16/2017 13:42:48 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062
Line 206.200 {163}
IS Ref (Y\_3600)
Units ppm
Avg 4.9391
Stddev .0049
%RSD .09941

#1 4.9356 #2 4.9425

Check? Chk Pass

High Limit Low Limit

| Int. Std.      | In2306        | Y_2243        | Y_3600        | Y_3774        |
|----------------|---------------|---------------|---------------|---------------|
| Line           | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units          | Cts/S         | Cts/S         | Cts/S         | Cts/S         |
| Avg            | 3304.9        | 2579.2        | 21208.        | 3953.1        |
| Stddev         | 2.5           | 2.3           | 28.           | 43.7          |
| %RSD           | .07559        | .09104        | .13193        | 1.1063        |
| #1             | 3303.2        | 2577.6        | 21228.        | 3922.2        |
| #2             | 3306.7        | 2580.9        | 21188.        | 3984.1        |
| Check?         | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |
| Value<br>Range | 89.057%       | 100.08%       | 96.538%       | 103.76%       |

Sample Name: 480-125681-A-7-D@5 Acquired: 10/16/2017 13:46:22 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554        |
|------------------------------------|---------------|---------------|---------------|---------------|---------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74} |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3774)      |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm           |
| Avg                                | .00214        | <b>65.074</b> | .01058        | .18816        | .87994        |
| Stddev                             | .00020        | .212          | .00235        | .00103        | .00260        |
| %RSD                               | 9.3678        | .32570        | 22.244        | .54490        | .29566        |
| #1                                 | .00200        | 65.224        | .01225        | .18888        | .87810        |
| #2                                 | .00228        | 64.925        | .00892        | .18743        | .88178        |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286        |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447} |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)      |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm           |
| Avg                                | .00042        | 130.87        | .00833        | . <b>0453</b> | .02013        |
| Stddev                             | .00012        | .19           | .00009        | .0015         | .00020        |
| %RSD                               | 28.918        | .14434        | 1.0416        | 3.228         | 1.0054        |
| #1                                 | .00033        | 130.74        | .00827        | .0442         | .01999        |
| #2                                 | .00051        | 131.00        | .00840        | .0463         | .02028        |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664        | Li6707        |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44} | 670.784 { 50} |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)      |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm           |
| Avg                                | .18558        | <b>3.7068</b> | 120.47        | <b>4.9682</b> | .02152        |
| Stddev                             | .00038        | .0053         | .30           | .0124         | .00001        |
| %RSD                               | .20449        | .14434        | .24749        | .25057        | .06493        |
| #1                                 | .18531        | 3.7031        | 120.68        | 4.9770        | .02153        |
| #2                                 | .18585        | 3.7106        | 120.26        | 4.9594        | .02151        |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |

Sample Name: 480-125681-A-7-D@5 Acquired: 10/16/2017 13:46:22 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br><b>17.748</b><br>.046<br>.25877 | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br>1.4787<br>.0001<br>.00414        | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.01224<br>.00011<br>.92731 | Na5895<br>589.592 { 57}<br>(Y_3774)<br>ppm<br>14.849<br>.037<br>.24824   | (In2306)<br>ppm<br>. <b>07820</b> |
|----------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------|
| #1<br>#2                                                 | 17.715<br>17.780                                                               | 1.4788<br>1.4787                                                               | .01216<br>.01232                                                         | 14.822<br>14.875                                                         | .07836<br>.07804                  |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                          |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br>.40000<br>.00179<br>.44732       | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br><b>7.3552</b><br>.0171<br>.23216 | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>.02411<br>.00302<br>12.549 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>.00053<br>.00223<br>417.69 | (Y_3774)<br>ppm<br>. <b>19428</b> |
| #1<br>#2                                                 | .39873<br>.40126                                                               | 7.3673<br>7.3431                                                               | .02197<br>.02624                                                         | 00104<br>.00211                                                          | .18800<br>.20056                  |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                          |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.08804<br>.00007<br>.07893       | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>.29555<br>.00063<br>.21297       | Ti3349 334.904 {101} (Y_3600) ppm 4.8896 .0057 .11633                    | TI1908<br>190.856 {477}<br>(In2306)<br>ppm<br>00314<br>.00095<br>30.134  | <del></del> -                     |
| #1<br>#2                                                 | .08809<br>.08799                                                               | .29511<br>.29600                                                               | 4.8856<br>4.8936                                                         | 00381<br>00247                                                           | .04162<br>.04205                  |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                          |

Sample Name: 480-125681-A-7-D@5 Acquired: 10/16/2017 13:46:22 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 IS Ref
 (Y\_3600)

 Units
 ppm

 Avg
 6.4774

 Stddev
 .0067

 %RSD
 .10360

#1 6.4727 #2 6.4822

Check? Chk Pass

High Limit Low Limit

Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 3342.8 2567.3 21388. 3952.3 Avg 3.2 28. .2 Stddev .1 %RSD .09640 .00291 .13066 .00380 #1 3345.1 2567.4 21407. 3952.2 #2 3340.5 2567.3 21368. 3952.4 Check? **Chk Pass Chk Pass Chk Pass** Chk Pass Value 90.077% 99.616% 97.356% 103.74% Range

Sample Name: 480-125681-A-8-E@5 Acquired: 10/16/2017 13:49:57 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554         |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}  |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00438        | <b>37.732</b> | .01726        | .22967        | 1.5433         |
| Stddev                             | .00101        | .164          | .00420        | .00071        | .0065          |
| %RSD                               | 22.968        | .43503        | 24.324        | .30705        | .42191         |
| #1                                 | .00510        | 37.848        | .02022        | .23017        | 1.5479         |
| #2                                 | .00367        | 37.616        | .01429        | .22917        | 1.5387         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00054        | 152.56        | .01623        | .0586         | .03963         |
| Stddev                             | .00000        | .10           | .00008        | .0306         | .00002         |
| %RSD                               | .50206        | .06678        | .48461        | 52.23         | .05084         |
| #1                                 | .00053        | 152.63        | .01628        | .0370         | .03962         |
| #2                                 | .00054        | 152.49        | .01617        | .0803         | .03965         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 1.0275        | 10.805        | 124.44        | 6.1204        | . <b>01682</b> |
| Stddev                             | .0096         | .069          | .26           | .0443         | .00183         |
| %RSD                               | .93402        | .63544        | .20598        | .72312        | 10.865         |
| #1                                 | 1.0207        | 10.756        | 124.26        | 6.1517        | .01811         |
| #2                                 | 1.0343        | 10.853        | 124.62        | 6.0891        | .01553         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-125681-A-8-E@5 Acquired: 10/16/2017 13:49:57 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                                     | Mg2790                                                                   | Mn2576                                                                   | Mo2020                                                | Na5895                                                   |                                                                          |
|----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|
| Line                                                     | 279.079 {121}2                                                           | 257.610 {131}                                                            | 202.030 {467}                                         | 589.592 { 57}                                            |                                                                          |
| IS Ref                                                   | (Y_3600)                                                                 | (Y_3600)                                                                 | (Y_2243)                                              | (Y_3774)                                                 |                                                                          |
| Units                                                    | ppm                                                                      | ppm                                                                      | ppm                                                   | ppm                                                      |                                                                          |
| Avg                                                      | 12.559                                                                   | <b>2.0586</b>                                                            | .01459                                                | <b>15.529</b>                                            |                                                                          |
| Stddev                                                   | .059                                                                     | .0016                                                                    | .00019                                                | .073                                                     |                                                                          |
| %RSD                                                     | .47057                                                                   | .07595                                                                   | 1.3248                                                | .47202                                                   |                                                                          |
| #1                                                       | 12.517                                                                   | 2.0597                                                                   | .01445                                                | 15.581                                                   | .11674                                                                   |
| #2                                                       | 12.601                                                                   | 2.0575                                                                   | .01472                                                | 15.477                                                   | .11686                                                                   |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                              | Chk Pass                                                 | Chk Pass                                                                 |
| Elem                                                     | Pb2203                                                                   | S_1820                                                                   | Sb2068                                                | Se1960                                                   | Si2881                                                                   |
| Line                                                     | 220.353 {453}                                                            | 182.034 {485}                                                            | 206.833 {463}                                         | 196.090 {472}                                            | 288.158 {117}2                                                           |
| IS Ref                                                   | (In2306)                                                                 | (Y_2243)                                                                 | (Y_2243)                                              | (Y_2243)                                                 | (Y_3774)                                                                 |
| Units                                                    | ppm                                                                      | ppm                                                                      | ppm                                                   | ppm                                                      | ppm                                                                      |
| Avg                                                      | . <b>52590</b>                                                           | 13.079                                                                   | . <b>04247</b>                                        | .00066                                                   | . <b>19044</b>                                                           |
| Stddev                                                   | .00075                                                                   | .007                                                                     | .00229                                                | .00253                                                   | .00144                                                                   |
| %RSD                                                     | .14331                                                                   | .05012                                                                   | 5.3843                                                | 383.73                                                   | .75833                                                                   |
| #1                                                       | .52644                                                                   | 13.084                                                                   | .04409                                                | .00245                                                   | .18941                                                                   |
| #2                                                       | .52537                                                                   | 13.074                                                                   | .04086                                                | 00113                                                    | .19146                                                                   |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                              | Chk Pass                                                 | Chk Pass                                                                 |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.15732<br>.00031<br>.19433 | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>.37609<br>.00129<br>.34187 | Ti3349 334.904 {101} (Y_3600) ppm 4.3405 .0016 .03697 | TI1908 190.856 {477} (In2306)     ppm00020 .00077 382.89 | V_2924<br>292.402 {115}<br>(Y_3600)<br>ppm<br>.03664<br>.00006<br>.16822 |
| #1                                                       | .15711                                                                   | .37700                                                                   | 4.3416                                                | .00034                                                   | .03659                                                                   |
| #2                                                       | .15754                                                                   | .37518                                                                   | 4.3393                                                | 00074                                                    | .03668                                                                   |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                              | Chk Pass                                                 | Chk Pass                                                                 |

Sample Name: 480-125681-A-8-E@5 Acquired: 10/16/2017 13:49:57 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062
Line 206.200 {163}
IS Ref (Y\_3600)
Units ppm
Avg 3.6396
Stddev .0122
%RSD .33622

#1 3.6310 #2 3.6483

Check? Chk Pass

High Limit Low Limit

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | 3341.3              | 2554.2              | 21389.              | 3892.5              |
| Stddev                    | 2.8                 | 3.6                 | 16.                 | 10.6                |
| %RSD                      | .08505              | .14142              | .07439              | .27289              |
| #1                        | 3339.3              | 2551.7              | 21400.              | 3900.0              |
| #2                        | 3343.3              | 2556.8              | 21378.              | 3885.0              |
| Check ?<br>Value<br>Range | Chk Pass<br>90.037% | Chk Pass<br>99.108% | Chk Pass<br>97.362% | Chk Pass<br>102.17% |

Sample Name: 480-125681-A-9-D@5 Acquired: 10/16/2017 13:53:29 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554        |
|------------------------------------|---------------|---------------|---------------|---------------|---------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74} |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3774)      |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm           |
| Avg                                | .00177        | <b>42.952</b> | .01931        | .25886        | 1.5523        |
| Stddev                             | .00010        | .176          | .00113        | .00085        | .0021         |
| %RSD                               | 5.4527        | .40893        | 5.8608        | .32948        | .13538        |
| #1                                 | .00183        | 42.828        | .01851        | .25946        | 1.5508        |
| #2                                 | .00170        | 43.076        | .02011        | .25826        | 1.5537        |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286        |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447} |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)      |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm           |
| Avg                                | .00050        | 164.46        | .00969        | .0872         | .03728        |
| Stddev                             | .00001        | .57           | .00000        | .0172         | .00023        |
| %RSD                               | 1.4282        | .34830        | .02306        | 19.77         | .62921        |
| #1                                 | .00050        | 164.05        | .00969        | .0993         | .03712        |
| #2                                 | .00049        | 164.86        | .00969        | .0750         | .03745        |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664        | Li6707        |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44} | 670.784 { 50} |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)      |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm           |
| Avg                                | 2.1920        | 1.7179        | 136.24        | <b>5.5473</b> | .01084        |
| Stddev                             | .0151         | .0008         | .23           | .0402         | .00000        |
| %RSD                               | .68828        | .04961        | .16800        | .72537        | .02821        |
| #1                                 | 2.1814        | 1.7173        | 136.08        | 5.5189        | .01084        |
| #2                                 | 2.2027        | 1.7185        | 136.41        | 5.5758        | .01085        |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |

Sample Name: 480-125681-A-9-D@5 Acquired: 10/16/2017 13:53:29 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020                                                | Na5895        | Ni2316         |
|------------------------------------|----------------|---------------|-------------------------------------------------------|---------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467}                                         | 589.592 { 57} | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)                                              | (Y_3774)      | (In2306)       |
| Units                              | ppm            | ppm           | ppm                                                   | ppm           | ppm            |
| Avg                                | <b>14.478</b>  | 1.2300        | .01849                                                | <b>21.297</b> | .17915         |
| Stddev                             | .039           | .0035         | .00018                                                | .035          | .00025         |
| %RSD                               | .27214         | .28207        | .97265                                                | .16510        | .13953         |
| #1                                 | 14.450         | 1.2275        | .01862                                                | 21.273        | .17897         |
| #2                                 | 14.506         | 1.2324        | .01837                                                | 21.322        | .17932         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                              | Chk Pass      | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068                                                | Se1960        | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463}                                         | 196.090 {472} | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)                                              | (Y_2243)      | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm                                                   | ppm           | ppm            |
| Avg                                | . <b>63987</b> | <b>9.7308</b> | .06695                                                | .00209        | . <b>20843</b> |
| Stddev                             | .00130         | .0001         | .00011                                                | .00181        | .00090         |
| %RSD                               | .20365         | .00098        | .16779                                                | 86.395        | .42985         |
| #1                                 | .63895         | 9.7308        | .06703                                                | .00081        | .20906         |
| #2                                 | .64079         | 9.7309        | .06687                                                | .00337        | .20780         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                              | Chk Pass      | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349 334.904 {101} (Y_3600) ppm 5.9541 .0130 .21797 | TI1908        | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} |                                                       | 190.856 {477} | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)      |                                                       | (In2306)      | (Y_3600)       |
| Units                              | ppm            | ppm           |                                                       | ppm           | ppm            |
| Avg                                | .12419         | 2.3239        |                                                       | 00352         | . <b>05316</b> |
| Stddev                             | .00015         | .0050         |                                                       | .00040        | .00058         |
| %RSD                               | .12046         | .21358        |                                                       | 11.411        | 1.0817         |
| #1                                 | .12429         | 2.3204        | 5.9449                                                | 00380         | .05276         |
| #2                                 | .12408         | 2.3274        | 5.9633                                                | 00324         | .05357         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                              | Chk Pass      | Chk Pass       |

Sample Name: 480-125681-A-9-D@5 Acquired: 10/16/2017 13:53:29 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 IS Ref
 (Y\_3600)

 Units
 ppm

 Avg
 1.8702

 Stddev
 .0120

 %RSD
 .63956

#1 1.8617 #2 1.8786

Check? Chk Pass

High Limit Low Limit

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | <b>3289.9</b>       | 2562.9              | 21374.              | 3887.7              |
| Stddev                    | 3.0                 | 4.7                 | 126.                | 7.0                 |
| %RSD                      | .09026              | .18308              | .59142              | .18099              |
| #1                        | 3287.8              | 2559.6              | 21464.              | 3892.7              |
| #2                        | 3292.0              | 2566.2              | 21285.              | 3882.8              |
| Check ?<br>Value<br>Range | Chk Pass<br>88.653% | Chk Pass<br>99.444% | Chk Pass<br>97.295% | Chk Pass<br>102.04% |

Sample Name: 480-125681-A-10-A@5 Acquired: 10/16/2017 13:57:02 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Ag3280 Al3082 As1890 B\_2089 Ba4554

Line 328.068 {103} 308.215 {109} 189.042 {478} 208.959 {461} 455.403 {74}

IS Ref (Y 3600) (Y 3774) (Y 2243) (Y 2243) (Y 3774)

| Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD         | 328.068 {103}<br>(Y_3600)<br>ppm<br>.00251<br>.00015<br>5.8335           | 308.215 {109}<br>(Y_3774)<br>ppm<br><b>43.486</b><br>.161<br>.37049     | 189.042 {478}<br>(Y_2243)<br>ppm<br>.01638<br>.00121<br>7.3651           | 208.959 {461}<br>(Y_2243)<br>ppm<br>.23331<br>.00015<br>.06315          | 455.403 { 74}<br>(Y_3774)<br>ppm<br>. <b>82463</b><br>.00137<br>.16636   |
|----------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|
| #1<br>#2                                                 | .00241<br>.00262                                                         | 43.600<br>43.372                                                        | .01552<br>.01723                                                         | .23321<br>.23342                                                        | .82560<br>.82366                                                         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                | Chk Pass                                                                 | Chk Pass                                                                | Chk Pass                                                                 |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Be3130<br>313.042 {108}<br>(Y_3774)<br>ppm<br>.00038<br>.00001<br>3.7644 | Ca3179<br>317.933 {106}<br>(Y_3774)<br>ppm<br>132.59<br>.24<br>.17974   | Cd2288<br>228.802 {447}<br>(Y_2243)<br>ppm<br>.01755<br>.00004<br>.20990 | **Ce4040<br>404.076 { 83}<br>(Y_3774)<br>ppm<br>.0395<br>.0291<br>73.55 | Co2286<br>228.616 {447}<br>(In2306)<br>ppm<br>F 25.565<br>.021<br>.08375 |
| #1<br>#2                                                 | .00037<br>.00039                                                         | 132.42<br>132.75                                                        | .01758<br>.01752                                                         | .0190<br>.0601                                                          | 25.550<br>25.580                                                         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                | Chk Pass                                                                 | Chk Pass                                                                | Chk Fail<br>18.000<br>00400                                              |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Cr2677 267.716 {126} (Y_3600) ppm .12232 .00065 .53295                   | Cu3273<br>327.396 {103}<br>(Y_3600)<br>ppm<br>8.1171<br>.0444<br>.54725 | Fe2714<br>271.441 {124}<br>(Y_3774)<br>ppm<br>188.33<br>.20<br>.10478    | 766.490 { 44}<br>(Y_3774)                                               | Li6707<br>670.784 { 50}<br>(Y_3774)<br>ppm<br>.98409<br>.00095<br>.09684 |
| #2                                                       | .12278                                                                   | 8.0857                                                                  | 188.47                                                                   | 4.6100                                                                  | .98342                                                                   |
| Check?                                                   | Chk Pass                                                                 | Chk Pass                                                                | Chk Pass                                                                 | Chk Pass                                                                | Chk Pass                                                                 |

High Limit Low Limit Sample Name: 480-125681-A-10-A@5 Acquired: 10/16/2017 13:57:02 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Ma2790 Mn2576 Mo2020 Ni2316 Elem Na5895 279.079 {121}2 257.610 {131} 202.030 {467} 589.592 { 57} 231.604 {446} Line  $(Y_3774)$ IS Ref (Y\_3600) (Y\_3600) (Y 2243) (ln2306) Units ppm ppm ppm ppm ppm 15.465 1.3126 .01384 13.364 .07940 Avq Stddev .028 .0023 .00007 .021 .00007 %RSD .18352 .17367 .50628 .15933 .08691 #1 15.445 1.3110 .01379 13.379 .07935 15.485 1.3142 .01389 13.349 .07945 #2 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Pb2203 S 1820 Sb2068 Se1960 Si2881 220.353 {453} 182.034 {485} 206.833 {463} 196.090 {472} 288.158 {117}2 Line IS Ref (ln2306) (Y 2243) (Y 2243) (Y 2243) (Y 3774) Units ppm ppm ppm ppm ppm 1.0767 10.729 .02178 -.00418 .20681 Avg Stddev .0012 .004 .00084 .00242 .00056 .11422 .04028 3.8619 57.923 .27081 %RSD #1 1.0758 10.732 .02118 -.00247 .20720 1.0775 .02237 -.00589#2 10.726 .20641 Check? **Chk Pass Chk Pass Chk Pass Chk Pass** Chk Pass High Limit Low Limit V 2924 Elem Sn1899 Sr4077 Ti3349 TI1908 334.904 {101} 190.856 {477} 189.989 {477} 407.771 { 83} 292.402 {115} Line IS Ref (ln2306) (Y 3774) (Y 3600) (In2306) (Y 3600) Units ppm ppm ppm ppm ppm .25307 .29033 4.7804 -.00131 .06697 Avg

.00075

.25924

.29086

.28979

**Chk Pass** 

Stddev

%RSD

Check ? High Limit Low Limit

#2

.00053

.21054

.25345

.25270

**Chk Pass** 

.0021

.04444

4.7819

4.7789

**Chk Pass** 

.00079

60.371

-.00075

-.00187

**Chk Pass** 

.00003

.03736

.06699

.06695

**Chk Pass** 

Sample Name: 480-125681-A-10-A@5 Acquired: 10/16/2017 13:57:02 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm 3.7794 Avg .0233 Stddev %RSD .61627 #1 3.7630

#1 3.7650 #2 3.7959

Check? Chk Pass

High Limit Low Limit

Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 3330.6 2535.5 21235. 3893.2 Avg 1.5 2.4 77. 16.9 Stddev %RSD .04411 .09662 .36383 .43496 #1 3329.6 2533.7 21290. 3905.2 #2 3331.7 2537.2 21181. 3881.2 Check? **Chk Pass** Chk Pass Chk Pass Chk Pass Value 89.749% 98.381% 96.662% 102.19% Range

Sample Name: 480-124142-A-1-K Acquired: 10/16/2017 14:00:34 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00014        | .02593        | .00107        | .02389        | .01852         |
| Stddev                             | .00048        | .03026        | .00089        | .00007        | .00008         |
| %RSD                               | 334.03        | 116.73        | 82.622        | .28800        | .44990         |
| #1                                 | 00019         | .00453        | .00045        | .02394        | .01858         |
| #2                                 | .00048        | .04733        | .00170        | .02384        | .01846         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00001         | <b>3.4130</b> | .00059        | 0094          | .00326         |
| Stddev                             | .00006        | .0097         | .00007        | .0030         | .00012         |
| %RSD                               | 1252.7        | .28437        | 11.494        | 32.17         | 3.6064         |
| #1                                 | .00004        | 3.4061        | .00064        | 0073          | .00317         |
| #2                                 | 00005         | 3.4199        | .00054        | 0116          | .00334         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .01549        | .02360        | .26520        | 22.076        | .00050         |
| Stddev                             | .00020        | .00006        | .00027        | .014          | .00161         |
| %RSD                               | 1.2832        | .27280        | .10290        | .06229        | 324.24         |
| #1                                 | .01563        | .02364        | .26539        | 22.066        | 00064          |
| #2                                 | .01535        | .02355        | .26501        | 22.085        | .00163         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-124142-A-1-K Acquired: 10/16/2017 14:00:34 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020                                                 | Na5895         | Ni2316         |
|------------------------------------|----------------|---------------|--------------------------------------------------------|----------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467}                                          | 589.592 { 57}  | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)                                               | (Y_3774)       | (In2306)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm            | ppm            |
| Avg                                | <b>2.5458</b>  | .44102        | .00130                                                 | . <b>05177</b> | .00320         |
| Stddev                             | .0014          | .00045        | .00012                                                 | .00227         | .00003         |
| %RSD                               | .05668         | .10272        | 9.1427                                                 | 4.3868         | .89289         |
| #1                                 | 2.5468         | .44134        | .00139                                                 | .05017         | .00322         |
| #2                                 | 2.5448         | .44070        | .00122                                                 | .05338         | .00318         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068                                                 | Se1960         | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463}                                          | 196.090 {472}  | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)                                               | (Y_2243)       | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm            | ppm            |
| Avg                                | .00200         | <b>2.3827</b> | .00097                                                 | .00161         | .05019         |
| Stddev                             | .00032         | .0026         | .00049                                                 | .00030         | .01083         |
| %RSD                               | 16.076         | .10724        | 50.919                                                 | 18.874         | 21.583         |
| #1                                 | .00178         | 2.3808        | .00132                                                 | .00139         | .04253         |
| #2                                 | .00223         | 2.3845        | .00062                                                 | .00182         | .05785         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349 334.904 {101} (Y_3600) ppm .00546 .00011 1.9254 | TI1908         | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} |                                                        | 190.856 {477}  | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)      |                                                        | (In2306)       | (Y_3600)       |
| Units                              | ppm            | ppm           |                                                        | ppm            | ppm            |
| Avg                                | .00130         | .01072        |                                                        | .00028         | .00027         |
| Stddev                             | .00033         | .00001        |                                                        | .00022         | .00023         |
| %RSD                               | 25.832         | .13748        |                                                        | 80.398         | 83.840         |
| #1                                 | .00153         | .01073        | .00554                                                 | .00012         | .00011         |
| #2                                 | .00106         | .01071        | .00539                                                 | .00044         | .00043         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass       |

Sample Name: 480-124142-A-1-K Acquired: 10/16/2017 14:00:34 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line IS Ref  $(Y_3600)$ Units ppm .03331 Avg .00044 Stddev %RSD 1.3266 #1 .03362 .03299 #2 Check? **Chk Pass** High Limit Low Limit

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | <b>3706.9</b>       | 2616.3              | 22121.              | <b>3936.9</b>       |
| Stddev                    | 6.2                 | .6                  | 10.                 | 9.8                 |
| %RSD                      | .16654              | .02205              | .04341              | .24930              |
| #1                        | 3711.3              | 2616.7              | 22114.              | 3943.8              |
| #2                        | 3702.6              | 2615.9              | 22128.              | 3929.9              |
| Check ?<br>Value<br>Range | Chk Pass<br>99.889% | Chk Pass<br>101.52% | Chk Pass<br>100.69% | Chk Pass<br>103.33% |

Sample Name: LCS 480-381758/26-A Acquired: 10/16/2017 14:04:09 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .10104        | <b>20.372</b> | .40358        | .38611        | .39015         |
| Stddev                             | .00043        | .039          | .00052        | .00076        | .00056         |
| %RSD                               | .42491        | .19101        | .12973        | .19669        | .14231         |
| #1                                 | .10073        | 20.345        | .40321        | .38665        | .39055         |
| #2                                 | .10134        | 20.400        | .40395        | .38558        | .38976         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .41005        | <b>20.687</b> | .40570        | 0121          | .38937         |
| Stddev                             | .00065        | .002          | .00030        | .0001         | .00051         |
| %RSD                               | .15814        | .01155        | .07283        | 1.159         | .12995         |
| #1                                 | .41051        | 20.685        | .40591        | 0122          | .38901         |
| #2                                 | .40959        | 20.689        | .40549        | 0120          | .38973         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .41299        | .39363        | 20.561        | 19.585        | . <b>40590</b> |
| Stddev                             | .00159        | .00009        | .028          | .013          | .00098         |
| %RSD                               | .38406        | .02301        | .13639        | .06631        | .24083         |
| #1                                 | .41187        | .39369        | 20.581        | 19.576        | .40659         |
| #2                                 | .41411        | .39356        | 20.541        | 19.594        | .40521         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: LCS 480-381758/26-A Acquired: 10/16/2017 14:04:09 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br><b>20.183</b><br>.011<br>.05358   | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br>.41711<br>.00086<br>.20720 | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.41073<br>.00091<br>.22240 | Na5895<br>589.592 { 57}<br>(Y_3774)<br>ppm<br>19.762<br>.048<br>.24433           | 231.604 {446}<br>(In2306)<br>ppm<br>.39295<br>.00029        |
|----------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|
| #1<br>#2                                                 | 20.175<br>20.191                                                                 | .41650<br>.41772                                                         | .41138<br>.41008                                                         | 19.796<br>19.728                                                                 |                                                             |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                                    |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br>.40555<br>.00103<br>.25387         | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br>19.701<br>.048<br>.24605   | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>.39641<br>.00128<br>.32298 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>.40840<br>.00309<br>.75737         | 288.158 {117}2<br>(Y_3774)<br>ppm<br><b>8.1713</b><br>.0076 |
| #1<br>#2                                                 | .40482<br>.40627                                                                 | 19.736<br>19.667                                                         | .39732<br>.39551                                                         | .41059<br>.40622                                                                 |                                                             |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                                    |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>. <b>40064</b><br>.00097<br>.24296 | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>.39235<br>.00096<br>.24406 | Ti3349 334.904 {101} (Y_3600) ppm .41630 .00039 .09466                   | TI1908<br>190.856 {477}<br>(In2306)<br>ppm<br>. <b>40091</b><br>.00015<br>.03824 | 292.402 {115}<br>(Y_3600)<br>ppm<br>.41855<br>.00147        |
| #1<br>#2                                                 | .39995<br>.40133                                                                 | .39303<br>.39167                                                         | .41603<br>.41658                                                         | .40102<br>.40080                                                                 |                                                             |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                                    |

Sample Name: LCS 480-381758/26-A Acquired: 10/16/2017 14:04:09 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 IS Ref
 (Y\_3600)

 Units
 ppm

 Avg
 .41439

 Stddev
 .00019

 %RSD
 .04624

#1 .41452 #2 .41425

Check? Chk Pass

High Limit Low Limit

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | <b>3507.6</b>       | 2570.0              | 21491.              | 3893.0              |
| Stddev                    | 1.3                 | 3.6                 | 26.                 | 19.1                |
| %RSD                      | .03701              | .14201              | .12025              | .49108              |
| #1                        | 3508.5              | 2567.5              | 21473.              | 3906.6              |
| #2                        | 3506.7              | 2572.6              | 21509.              | 3879.5              |
| Check ?<br>Value<br>Range | Chk Pass<br>94.518% | Chk Pass<br>99.722% | Chk Pass<br>97.827% | Chk Pass<br>102.18% |

Sample Name: CCV-4278259 Acquired: 10/16/2017 14:07:34 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                           | Ag3280                                                       | Al3082                                                            | As1890                                                               | B_2089         | Ba4554-2       |
|------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|----------------|----------------|
| Line                                           | 328.068 {103}                                                | 308.215 {109}                                                     | 189.042 {478}                                                        | 208.959 {461}  | 455.403 { 74}2 |
| Units                                          | ppm                                                          | ppm                                                               | ppm                                                                  | ppm            | ppm            |
| Avg                                            | . <b>52426</b>                                               | <b>25.320</b>                                                     | . <b>52258</b>                                                       | . <b>51830</b> | .49919         |
| Stddev                                         | .00179                                                       | .013                                                              | .00027                                                               | .00011         | .00105         |
| %RSD                                           | .34054                                                       | .05257                                                            | .05115                                                               | .02153         | .21089         |
| #1                                             | .52553                                                       | 25.310                                                            | .52239                                                               | .51838         | .49845         |
| #2                                             | .52300                                                       | 25.329                                                            | .52277                                                               | .51822         | .49994         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                     | Chk Pass                                                          | Chk Pass                                                             | Chk Pass       | Chk Pass       |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Be3130<br>313.042 {108}<br>ppm<br>.53309<br>.00018<br>.03399 | Ca3179<br>317.933 {106}<br>ppm<br><b>26.557</b><br>.022<br>.08161 | Cd2288<br>228.802 {447}<br>ppm<br>. <b>51438</b><br>.00012<br>.02326 | ppm            |                |
| #1                                             | .53322                                                       | 26.572                                                            | .51447                                                               | 0052           | .51694         |
| #2                                             | .53296                                                       | 26.542                                                            | .51430                                                               | 0204           | .51587         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                     | Chk Pass                                                          | Chk Pass                                                             | None           | Chk Pass       |
| Elem                                           | Cr2677                                                       | Cu3273                                                            | Fe2599                                                               | K_7664         |                |
| Line                                           | 267.716 {126}                                                | 327.396 {103}                                                     | 259.940 {130}                                                        | 766.490 { 44}  |                |
| Units                                          | ppm                                                          | ppm                                                               | ppm                                                                  | ppm            |                |
| Avg                                            | . <b>52760</b>                                               | . <b>50956</b>                                                    | <b>26.069</b>                                                        | <b>25.558</b>  |                |
| Stddev                                         | .00002                                                       | .00005                                                            | .065                                                                 | .030           |                |
| %RSD                                           | .00394                                                       | .01023                                                            | .24980                                                               | .11645         |                |
| #1                                             | .52761                                                       | .50952                                                            | 26.023                                                               | 25.537         | .52176         |
| #2                                             | .52758                                                       | .50960                                                            | 26.115                                                               | 25.579         | .52212         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                     | Chk Pass                                                          | Chk Pass                                                             | Chk Pass       | Chk Pass       |

Sample Name: CCV-4278259 Acquired: 10/16/2017 14:07:34 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br><b>26.052</b><br>.017<br>.06623   | Mn2576<br>257.610 {131}<br>ppm<br>. <b>53114</b><br>.00009<br>.01731 | Mo2020<br>202.030 {467}<br>ppm<br>. <b>52711</b><br>.00028<br>.05385 | Na5895<br>589.592 { 57}<br>ppm<br><b>25.718</b><br>.025<br>.09866    | 231.604 {446}<br>ppm<br>. <b>52195</b> |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|
| #1<br>#2                                       | 26.064<br>26.040                                                     | .53107<br>.53120                                                     | .52731<br>.52691                                                     | 25.736<br>25.700                                                     |                                        |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>. <b>52214</b><br>.00200<br>.38291 | S_1820<br>182.034 {485}<br>ppm<br><b>26.077</b><br>.040<br>.15154    | Sb2068<br>206.833 {463}<br>ppm<br>. <b>51441</b><br>.00070<br>.13573 | Se1960<br>196.090 {472}<br>ppm<br>. <b>53264</b><br>.00247<br>.46336 | ppm<br>22.734                          |
| #1<br>#2                                       | .52356<br>.52073                                                     | 26.105<br>26.049                                                     | .51490<br>.51392                                                     | .53438<br>.53089                                                     | 22.744<br>22.725                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>ppm<br>. <b>53396</b><br>.00056<br>.10536 | Sr4077<br>407.771 { 83}<br>ppm<br>. <b>51373</b><br>.00032<br>.06140 |                                                                      | TI1908<br>190.856 {477}<br>ppm<br>. <b>53118</b><br>.00019<br>.03543 | 292.402 (115)                          |
| #1<br>#2                                       | .53436<br>.53356                                                     | .51350<br>.51395                                                     | .53399<br>.53346                                                     | .53104<br>.53131                                                     | .53617<br>.53668                       |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                               |

Sample Name: CCV-4278259 Acquired: 10/16/2017 14:07:34 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Zn2062 Elem 206.200 {163} Line Units ppm .53960 Avg Stddev .00041 %RSD .07570

#1 .53989 #2 .53931

**Chk Pass** Check?

Value

Range

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Cts/S Units Cts/S Cts/S Avg 3459.4 2582.3 21456. 3853.0 50. 3.0 Stddev .6 .4 %RSD .01799 .01543 .23155 .07883 #1 3458.9 2582.0 21421. 3855.1 3459.8 21491. 3850.8 #2 2582.6

Sample Name: CCB-4278202 Acquired: 10/16/2017 14:11:02 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082         | As1890                      | B_2089        | Ba4554-2       |
|------------------------------------|---------------|----------------|-----------------------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109}  | 189.042 {478}               | 208.959 {461} | 455.403 { 74}2 |
| Units                              | ppm           | ppm            | ppm                         | ppm           | ppm            |
| Avg                                | .00069        | . <b>15483</b> | .00113                      | .00001        | .00065         |
| Stddev                             | .00026        | .22780         | .00114                      | .00004        | .00010         |
| %RSD                               | 36.977        | 147.13         | 100.62                      | 291.93        | 15.482         |
| #1                                 | .00087        | .31591         | .00194                      | 00001         | .00073         |
| #2                                 | .00051        | 00624          | .00033                      | .00004        | .00058         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass                    | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179         | Cd2288                      | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106}  | 228.802 {447}               | 404.076 { 83} | 228.616 {447}  |
| Units                              | ppm           | ppm            | ppm                         | ppm           | ppm            |
| Avg                                | .00132        | .41070         | .00008                      | .0110         | .00115         |
| Stddev                             | .00151        | .48632         | .00005                      | .0179         | .00021         |
| %RSD                               | 114.36        | 118.41         | 67.259                      | 163.8         | 18.043         |
| #1                                 | .00239        | .75458         | .00004                      | 0017          | .00129         |
| #2                                 | .00025        | .06682         | .00012                      | .0236         | .00100         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass                    | None          | Chk Pass       |
| Elem                               | Cr2677        | Cu3273         | Fe2599                      | _             | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103}  | 259.940 {130}               |               | 670.784 { 50}  |
| Units                              | ppm           | ppm            | ppm                         |               | ppm            |
| Avg                                | .00026        | .00284         | F .39694                    |               | . <b>00320</b> |
| Stddev                             | .00010        | .00014         | .47374                      |               | .00245         |
| %RSD                               | 39.363        | 5.0343         | 119.35                      |               | 76.643         |
| #1                                 | .00034        | .00274         | .73193                      | .19229        | .00493         |
| #2                                 | .00019        | .00294         | .06196                      | .05220        | .00146         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Fail<br>.05000<br>05000 | Chk Pass      | Chk Pass       |

Sample Name: CCB-4278202 Acquired: 10/16/2017 14:11:02 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576         | Mo2020        | Na5895        | Ni2316         |
|------------------------------------|----------------|----------------|---------------|---------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131}  | 202.030 {467} | 589.592 { 57} | 231.604 {446}  |
| Units                              | ppm            | ppm            | ppm           | ppm           | ppm            |
| Avg                                | . <b>01569</b> | . <b>00135</b> | .00001        | .09640        | 00012          |
| Stddev                             | .00002         | .00024         | .00011        | .11144        | .00003         |
| %RSD                               | .10097         | 17.742         | 807.48        | 115.60        | 29.411         |
| #1                                 | .01568         | .00152         | 00006         | .17521        | 00009          |
| #2                                 | .01570         | .00118         | .00009        | .01760        | 00014          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Pb2203         | S_1820         | Sb2068        | Se1960        | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485}  | 206.833 {463} | 196.090 {472} | 288.158 {117}2 |
| Units                              | ppm            | ppm            | ppm           | ppm           | ppm            |
| Avg                                | .00206         | 00529          | 00082         | .00061        | . <b>04334</b> |
| Stddev                             | .00030         | .00121         | .00045        | .00106        | .04982         |
| %RSD                               | 14.683         | 22.868         | 54.921        | 173.24        | 114.95         |
| #1                                 | .00185         | 00443          | 00050         | 00014         | .07857         |
| #2                                 | .00228         | 00614          | 00113         | .00136        | .00811         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Sn1899         | Sr4077         | Ti3349        | TI1908        | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83}  | 334.904 {101} | 190.856 {477} | 292.402 {115}  |
| Units                              | ppm            | ppm            | ppm           | ppm           | ppm            |
| Avg                                | .00060         | .00319         | .00230        | .00082        | .00017         |
| Stddev                             | .00017         | .00374         | .00038        | .00033        | .00033         |
| %RSD                               | 29.129         | 117.32         | 16.562        | 40.271        | 193.96         |
| #1                                 | .00048         | .00584         | .00257        | .00059        | 00006          |
| #2                                 | .00072         | .00054         | .00203        | .00105        | .00040         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: CCB-4278202 Acquired: 10/16/2017 14:11:02 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .00174

 Stddev
 .00032

 %RSD
 18.621

#1 .00197 #2 .00151

Check? Chk Pass

High Limit Low Limit

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 360.073 { 94} 377.433 { 89} 230.606 {446} 224.306 {450} Line Cts/S Units Cts/S Cts/S Cts/S Avg 3812.5 2675.0 22499. 3947.4 2.5 47. 19.2 Stddev 1.2 %RSD .03081 .09169 .20736 .48589 #1 3811.7 2676.7 22466. 3961.0 #2 3813.3 2673.2 22532. 3933.9 Sample Name: ccvl-4278204 Acquired: 10/16/2017 14:14:41 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                      | Ag3280         | Al3082         | As1890                        | B_2089         | Ba4554-2       |
|---------------------------|----------------|----------------|-------------------------------|----------------|----------------|
| Line                      | 328.068 {103}  | 308.215 {109}  | 189.042 {478}                 | 208.959 {461}  | 455.403 { 74}2 |
| Units                     | ppm            | ppm            | ppm                           | ppm            | ppm            |
| Avg                       | . <b>00662</b> | .18783         | . <b>01676</b>                | . <b>02014</b> | .00226         |
| Stddev                    | .00070         | .00169         | .00227                        | .00043         | .00006         |
| %RSD                      | 10.557         | .90123         | 13.542                        | 2.1286         | 2.6248         |
| #1                        | .00711         | .18663         | .01836                        | .02045         | .00230         |
| #2                        | .00612         | .18903         | .01515                        | .01984         | .00222         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass                      | Chk Pass       | Chk Pass       |
| Elem                      | Be3130         | Ca3179         | Cd2288                        | **Ce4040       | Co2286         |
| Line                      | 313.042 {108}  | 317.933 {106}  | 228.802 {447}                 | 404.076 { 83}  | 228.616 {447}  |
| Units                     | ppm            | ppm            | ppm                           | ppm            | ppm            |
| Avg                       | .00220         | . <b>54554</b> | . <b>00216</b>                | 0074           | . <b>00436</b> |
| Stddev                    | .00004         | .00159         | .00002                        | .0284          | .00010         |
| %RSD                      | 1.9303         | .29076         | 1.0543                        | 384.6          | 2.2131         |
| #1                        | .00223         | .54666         | .00215                        | .0127          | .00429         |
| #2                        | .00217         | .54442         | .00218                        | 0274           | .00443         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass                      | None           | Chk Pass       |
| Elem                      | Cr2677         | Cu3273         | Fe2599                        | K_7664         |                |
| Line                      | 267.716 {126}  | 327.396 {103}  | 259.940 {130}                 | 766.490 { 44}  |                |
| Units                     | ppm            | ppm            | ppm                           | ppm            |                |
| Avg                       | .00439         | .01107         | W .06812                      | . <b>51937</b> |                |
| Stddev                    | .00016         | .00035         | .00494                        | .00405         |                |
| %RSD                      | 3.5737         | 3.1332         | 7.2530                        | .77883         |                |
| #1                        | .00428         | .01132         | .07161                        | .52223         | .03290         |
| #2                        | .00450         | .01083         | .06463                        | .51651         | .03039         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Warn<br>.05000<br>30.000% | Chk Pass       | Chk Pass       |

Sample Name: ccvl-4278204 Acquired: 10/16/2017 14:14:41 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br>. <b>21327</b><br>.00527<br>2.4703 | Mn2576<br>257.610 {131}<br>ppm<br>.00345<br>.00009<br>2.4847 | Mo2020<br>202.030 {467}<br>ppm<br>. <b>01021</b><br>.00011<br>1.1081 | Na5895<br>589.592 { 57}<br>ppm<br>1.0148<br>.0056<br>.55206          | ppm<br>.01003                                                        |
|------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| #1<br>#2                                       | .21700<br>.20955                                                      | .00352<br>.00339                                             | .01029<br>.01013                                                     | 1.0109<br>1.0188                                                     | .00996<br>.01009                                                     |
| Check ?<br>Value<br>Range                      | Chk Pass                                                              | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>.01099<br>.00004<br>.33737          | S_1820<br>182.034 {485}<br>ppm<br>.18936<br>.00182<br>.96078 | Sb2068<br>206.833 {463}<br>ppm<br>. <b>02006</b><br>.00138<br>6.8785 | Se1960<br>196.090 {472}<br>ppm<br>. <b>02544</b><br>.00143<br>5.6252 | ppm<br>.46378                                                        |
| #1<br>#2                                       | .01101<br>.01096                                                      | .19065<br>.18807                                             | .02104<br>.01909                                                     | .02443<br>.02645                                                     | .46231<br>.46524                                                     |
| Check ?<br>Value<br>Range                      | Chk Pass                                                              | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>ppm<br>. <b>01029</b><br>.00008<br>.77037  | Sr4077<br>407.771 { 83}<br>ppm<br>.00510<br>.00004<br>.86465 | Ti3349 334.904 {101}     ppm .00555 .00019 3.4476                    | TI1908<br>190.856 {477}<br>ppm<br>. <b>02189</b><br>.00102<br>4.6499 | V_2924<br>292.402 {115}<br>ppm<br>. <b>00505</b><br>.00010<br>1.9391 |
| #1<br>#2                                       | .01024<br>.01035                                                      | .00506<br>.00513                                             | .00568<br>.00541                                                     | .02117<br>.02261                                                     | .00498<br>.00512                                                     |
| Check ?<br>Value<br>Range                      | Chk Pass                                                              | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                             |

Sample Name: ccvl-4278204 Acquired: 10/16/2017 14:14:41 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .01160

 Stddev
 .00130

 %RSD
 11.183

#1 .01252 #2 .01068

Check? Chk Pass

Value Range

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Cts/S Units Cts/S Cts/S Avg 3780.2 2651.9 22303. 3872.6 4.7 Stddev .7 .7 62. %RSD .01975 .02538 .27909 .12101

#1 3779.7 2651.4 22259. 3875.9 #2 3780.8 2652.4 22347. 3869.3 Sample Name: LCSD 480-381758/27-A Acquired: 10/16/2017 14:18:19 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment:

| Elem                               | Ag3280        | Al3082        | As1890         | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|----------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478}  | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)       | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm            | ppm           | ppm            |
| Avg                                | .10104        | <b>20.214</b> | .40479         | .38534        | .39335         |
| Stddev                             | .00172        | .005          | .00041         | .00077        | .00027         |
| %RSD                               | 1.7019        | .02411        | .10246         | .19861        | .06868         |
| #1                                 | .09982        | 20.211        | .40449         | .38480        | .39354         |
| #2                                 | .10226        | 20.218        | .40508         | .38588        | .39316         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288         | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447}  | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)       | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm            | ppm           | ppm            |
| Avg                                | .40909        | 20.698        | . <b>40474</b> | 0026          | .38963         |
| Stddev                             | .00065        | .004          | .00001         | .0113         | .00014         |
| %RSD                               | .15830        | .01831        | .00268         | 442.6         | .03551         |
| #1                                 | .40864        | 20.695        | .40475         | .0055         | .38973         |
| #2                                 | .40955        | 20.700        | .40474         | 0106          | .38954         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599         | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130}  | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)       | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm            | ppm           | ppm            |
| Avg                                | .41531        | .39762        | 20.720         | 19.864        | .40569         |
| Stddev                             | .00176        | .00230        | .016           | .031          | .00001         |
| %RSD                               | .42361        | .57889        | .07836         | .15745        | .00216         |
| #1                                 | .41407        | .39599        | 20.709         | 19.886        | .40569         |
| #2                                 | .41656        | .39924        | 20.732         | 19.842        | .40570         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       |

Sample Name: LCSD 480-381758/27-A Acquired: 10/16/2017 14:18:19 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Elem 279.079 {121}2 257.610 {131} 202.030 {467} 589.592 { 57} 231.604 {446} Line  $(Y_3600)$ IS Ref (Y\_3600) (Y 2243)  $(Y_3774)$ (ln2306) Units ppm ppm ppm ppm ppm 20.328 .41832 .40957 19.852 .39569 Avq .00004 Stddev .053 .00067 .00077 .008 %RSD .26076 .16083 .18888 .04082 .01089 #1 20.291 .41784 .41012 19.847 .39572 20.366 .41879 .40903 19.858 .39566 #2 **Chk Pass Chk Pass** Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Pb2203 S 1820 Sb2068 Se1960 Si2881 220.353 {453} 182.034 {485} 206.833 {463} 196.090 {472} 288.158 {117}2 Line IS Ref (ln2306) (Y 2243) (Y 2243) (Y 2243) (Y 3774) Units ppm ppm ppm ppm ppm .40773 19.639 .39464 .40838 7.1258 Avg Stddev .00129 .019 .00133 .00171 .0220 .31647 .09913 .33716 .41975 .30889 %RSD #1 .40682 19.653 .39558 .40960 7.1102 .39370 7.1414 #2 .40864 19.625 .40717 Check? **Chk Pass Chk Pass Chk Pass Chk Pass** Chk Pass High Limit Low Limit V 2924 Elem Sn1899 Sr4077 Ti3349 TI1908 334.904 {101} 190.856 {477} 189.989 {477} 407.771 { 83} 292.402 {115} Line (Y 3600) IS Ref (ln2306) (Y 3774) (In2306) (Y 3600) Units ppm ppm ppm ppm ppm .40465 .39725 .41515 .40181 .41627 Avg

.00117 Stddev .00139 .00067 .00236 .00074 %RSD .34381 .16872 .56817 .18518 .28103 .40563 .39772 .41348 .40129 .41544 #2 .40366 .39678 .41682 .40234 .41710 **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** Check? High Limit Low Limit

Sample Name: LCSD 480-381758/27-A Acquired: 10/16/2017 14:18:19 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 IS Ref
 (Y\_3600)

 Units
 ppm

 Avg
 .41719

 Stddev
 .00166

 %RSD
 .39728

#1 .41602 #2 .41836

Check? Chk Pass

High Limit Low Limit

| Int. Std.                 | In2306           | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}    | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S            | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | <b>3511.9</b>    | 2585.2              | 21592.              | 3893.4              |
| Stddev                    | 2.4              | .4                  | 69.                 | 18.3                |
| %RSD                      | .06712           | .01701              | .32145              | .46881              |
| #1                        | 3513.6           | 2584.9              | 21641.              | 3880.5              |
| #2                        | 3510.3           | 2585.5              | 21543.              | 3906.3              |
| Check ?<br>Value<br>Range | Chk Pass 94.635% | Chk Pass<br>100.31% | Chk Pass<br>98.287% | Chk Pass<br>102.19% |

Sample Name: 480-125681-A-1-D@5 Acquired: 10/16/2017 14:21:42 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00095        | <b>40.518</b> | .01947        | .19903        | .64225         |
| Stddev                             | .00052        | .174          | .00137        | .00006        | .00308         |
| %RSD                               | 54.965        | .42980        | 7.0241        | .03082        | .48009         |
| #1                                 | .00058        | 40.395        | .01850        | .19907        | .64443         |
| #2                                 | .00131        | 40.642        | .02043        | .19898        | .64007         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00065        | 136.78        | .00690        | . <b>0423</b> | .32489         |
| Stddev                             | .00013        | .45           | .00015        | .0304         | .00004         |
| %RSD                               | 19.101        | .32867        | 2.2213        | 71.87         | .01115         |
| #1                                 | .00074        | 136.47        | .00701        | .0208         | .32486         |
| #2                                 | .00057        | 137.10        | .00679        | .0638         | .32491         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .12836        | 1.9896        | 100.82        | <b>4.7077</b> | . <b>02718</b> |
| Stddev                             | .00004        | .0004         | .35           | .0678         | .00149         |
| %RSD                               | .03409        | .02062        | .35023        | 1.4411        | 5.4826         |
| #1                                 | .12839        | 1.9899        | 100.57        | 4.6597        | .02613         |
| #2                                 | .12833        | 1.9893        | 101.07        | 4.7556        | .02823         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-125681-A-1-D@5 Acquired: 10/16/2017 14:21:42 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br>17.168<br>.039<br>.22609          | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br>1.0099<br>.0009<br>.09157        | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.06127<br>.00015<br>.24586 | Na5895<br>589.592 { 57}<br>(Y_3774)<br>ppm<br><b>13.634</b><br>.053<br>.39212 | Ni2316<br>231.604 {446}<br>(In2306)<br>ppm<br>.06253<br>.00019<br>.29951 |
|----------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| #1<br>#2                                                 | 17.196<br>17.141                                                                 | 1.0105<br>1.0092                                                               | .06138<br>.06116                                                         | 13.596<br>13.672                                                              | .06240<br>.06267                                                         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                      | Chk Pass                                                                 |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br>. <b>39417</b><br>.00055<br>.14043 | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br><b>6.9700</b><br>.0116<br>.16613 | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>.02008<br>.00000<br>.01578 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>.00224<br>.00288<br>128.54      | ppm<br>. <b>19222</b>                                                    |
| #1<br>#2                                                 | .39457<br>.39378                                                                 | 6.9618<br>6.9782                                                               | .02007<br>.02008                                                         | .00427<br>.00020                                                              | .19163<br>.19281                                                         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                      | Chk Pass                                                                 |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>. <b>58643</b><br>.00085<br>.14516 | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>.33388<br>.00100<br>.29923       | Ti3349 334.904 {101} (Y_3600) ppm 5.2595 .0247 .46950                    | TI1908<br>190.856 {477}<br>(In2306)<br>ppm<br>00114<br>.00115<br>101.05       | <del></del> -                                                            |
| #1<br>#2                                                 | .58703<br>.58582                                                                 | .33317<br>.33459                                                               | 5.2770<br>5.2420                                                         | 00196<br>00033                                                                | .03380<br>.03383                                                         |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                      | Chk Pass                                                                 |

Sample Name: 480-125681-A-1-D@5 Acquired: 10/16/2017 14:21:42 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062
Line 206.200 {163}
IS Ref (Y\_3600)
Units ppm
Avg 2.3067
Stddev .0084
%RSD .36485

#1 2.3126 #2 2.3007

Check? Chk Pass

High Limit Low Limit

Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 3354.7 2572.1 21539. 3931.8 Avg 74. 7.0 Stddev .9 .6 %RSD .02810 .02444 .34314 .17801 #1 3355.4 2571.6 21487. 3936.8 #2 3354.0 2572.5 21591. 3926.9 Check? **Chk Pass Chk Pass Chk Pass** Chk Pass Value 90.398% 99.801% 98.045% 103.20% Range

Sample Name: 480-125681-A-2-D@5 Acquired: 10/16/2017 14:25:15 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082                      | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|-----------------------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109}               | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)                    | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm                         | ppm           | ppm           | ppm            |
| Avg                                | .13800        | <b>36.861</b>               | .01984        | .11790        | .68099         |
| Stddev                             | .00070        | .079                        | .00566        | .00018        | .00176         |
| %RSD                               | .50806        | .21456                      | 28.505        | .14854        | .25912         |
| #1                                 | .13751        | 36.917                      | .01584        | .11802        | .68223         |
| #2                                 | .13850        | 36.805                      | .02384        | .11777        | .67974         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass                    | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179                      | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106}               | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)                    | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm                         | ppm           | ppm           | ppm            |
| Avg                                | .00033        | 123.34                      | .00846        | .0398         | .03580         |
| Stddev                             | .00000        | .14                         | .00012        | .0027         | .00021         |
| %RSD                               | .37537        | .11506                      | 1.3902        | 6.768         | .58924         |
| #1                                 | .00033        | 123.44                      | .00854        | .0417         | .03595         |
| #2                                 | .00033        | 123.24                      | .00838        | .0379         | .03565         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass                    | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273                      | Fe2714        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103}               | 271.441 {124} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)                    | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm                         | ppm           | ppm           | ppm            |
| Avg                                | .16430        | F 38.584                    | 121.79        | <b>4.8140</b> | . <b>01299</b> |
| Stddev                             | .00062        | .484                        | .37           | .0158         | .00077         |
| %RSD                               | .37752        | 1.2554                      | .30311        | .32754        | 5.9469         |
| #1                                 | .16474        | 38.927                      | 121.53        | 4.8251        | .01244         |
| #2                                 | .16386        | 38.242                      | 122.06        | 4.8028        | .01353         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Fail<br>23.000<br>01000 | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-125681-A-2-D@5 Acquired: 10/16/2017 14:25:15 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                                     | Mg2790                                                                   | Mn2576                                                                   | Mo2020                                                | Na5895                                                   | Ni2316                                                                   |
|----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|
| Line                                                     | 279.079 {121}2                                                           | 257.610 {131}                                                            | 202.030 {467}                                         | 589.592 { 57}                                            | 231.604 {446}                                                            |
| IS Ref                                                   | (Y_3600)                                                                 | (Y_3600)                                                                 | (Y_2243)                                              | (Y_3774)                                                 | (In2306)                                                                 |
| Units                                                    | ppm                                                                      | ppm                                                                      | ppm                                                   | ppm                                                      | ppm                                                                      |
| Avg                                                      | 18.116                                                                   | . <b>85092</b>                                                           | .01111                                                | 13.364                                                   | .08440                                                                   |
| Stddev                                                   | .018                                                                     | .00033                                                                   | .00009                                                | .045                                                     | .00028                                                                   |
| %RSD                                                     | .09862                                                                   | .03837                                                                   | .79086                                                | .33632                                                   | .33375                                                                   |
| #1                                                       | 18.129                                                                   | .85069                                                                   | .01117                                                | 13.396                                                   | .08460                                                                   |
| #2                                                       | 18.104                                                                   | .85116                                                                   | .01105                                                | 13.333                                                   | .08420                                                                   |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                              | Chk Pass                                                 | Chk Pass                                                                 |
| Elem                                                     | Pb2203                                                                   | S_1820                                                                   | Sb2068                                                | Se1960                                                   | Si2881                                                                   |
| Line                                                     | 220.353 {453}                                                            | 182.034 {485}                                                            | 206.833 {463}                                         | 196.090 {472}                                            | 288.158 {117}2                                                           |
| IS Ref                                                   | (In2306)                                                                 | (Y_2243)                                                                 | (Y_2243)                                              | (Y_2243)                                                 | (Y_3774)                                                                 |
| Units                                                    | ppm                                                                      | ppm                                                                      | ppm                                                   | ppm                                                      | ppm                                                                      |
| Avg                                                      | . <b>47029</b>                                                           | <b>9.1307</b>                                                            | .01853                                                | .00217                                                   | . <b>16260</b>                                                           |
| Stddev                                                   | .00174                                                                   | .0100                                                                    | .00090                                                | .00138                                                   | .00458                                                                   |
| %RSD                                                     | .37005                                                                   | .10959                                                                   | 4.8601                                                | 63.789                                                   | 2.8149                                                                   |
| #1                                                       | .46906                                                                   | 9.1237                                                                   | .01917                                                | .00314                                                   | .15937                                                                   |
| #2                                                       | .47152                                                                   | 9.1378                                                                   | .01789                                                | .00119                                                   | .16584                                                                   |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                              | Chk Pass                                                 | Chk Pass                                                                 |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.39143<br>.00325<br>.82987 | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>.26476<br>.00084<br>.31739 | Ti3349 334.904 {101} (Y_3600) ppm 3.6675 .0072 .19652 | TI1908 190.856 {477} (In2306)     ppm00210 .00215 102.23 | V_2924<br>292.402 {115}<br>(Y_3600)<br>ppm<br>.02578<br>.00049<br>1.9029 |
| #1                                                       | .39373                                                                   | .26536                                                                   | 3.6726                                                | 00058                                                    | .02613                                                                   |
| #2                                                       | .38913                                                                   | .26417                                                                   | 3.6624                                                | 00362                                                    | .02543                                                                   |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                              | Chk Pass                                                 | Chk Pass                                                                 |

Sample Name: 480-125681-A-2-D@5 Acquired: 10/16/2017 14:25:15 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062
Line 206.200 {163}
IS Ref (Y\_3600)
Units ppm
Avg 2.3893
Stddev .0107
%RSD .44823

#1 2.3969 #2 2.3818

Check? Chk Pass

High Limit Low Limit

Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 3373.2 2546.2 21483. 3947.7 Avg 2.4 23.5 Stddev .1 3. %RSD .00422 .09596 .01176 .59612 #1 3373.3 2547.9 21485. 3931.0 #2 3373.1 2544.5 21481. 3964.3 Check? **Chk Pass Chk Pass Chk Pass** Chk Pass 98.796% 97.791% Value 90.896% 103.62% Range

Sample Name: 480-125681-A-2-D@10 Acquired: 10/16/2017 14:28:59 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Ag3280 Al3082 As1890 B 2089 Ba4554-2 Elem 328.068 {103} 308.215 {109} 189.042 {478} 208.959 {461} 455.403 { 74}2 Line IS Ref  $(Y_3600)$  $(Y_3774)$ (Y\_2243) (Y\_2243)  $(Y_3600)$ Units ppm ppm ppm ppm ppm .06799 18.652 .00900 .05902 .35140 Avg .00013 .00007 Stddev .131 .00008 .00038 %RSD .18995 .70048 .89788 .63836 .02054 #1 .06790 18.560 .00906 .05929 .35145 .06808 18.745 .00894 .05876 .35135 #2 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Cd2288 \*\*Ce4040 Co2286 Be3130 Ca3179

| Line                               | 313.042 {108}                       | 317.933 {106}                       | 228.802 {447}                       | 404.076 { 83}                       | 228.616 {447}                       |
|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| IS Ref                             | (Y 3774)                            | (Y 3774)                            | (Y 2243)                            | (Y 3774)                            | (In2306)                            |
| Units                              | ppm                                 | ppm                                 | ppm                                 | ppm                                 | ppm                                 |
| Avg                                | . <b>00023</b>                      | <b>62.577</b>                       | . <b>00427</b>                      | 0039                                | . <b>01786</b>                      |
| Stddev                             | .00001                              | .155                                | .00015                              | .0295                               | .00001                              |
| %RSD                               | 2.8091                              | .24762                              | 3.5225                              | 751.0                               | .07187                              |
| #1                                 | .00023                              | 62.468                              | .00438                              | .0169                               | .01786                              |
| #2                                 | .00024                              | 62.687                              | .00417                              | 0248                                | .01785                              |
| Check ?<br>High Limit<br>Low Limit | Chk Pass                            | Chk Pass                            | Chk Pass                            | Chk Pass                            | Chk Pass                            |
| Elem<br>Line<br>IS Ref<br>Units    | Cr2677<br>267.716 {126}<br>(Y_3600) | Cu3273<br>327.396 {103}<br>(Y_3600) | Fe2714<br>271.441 {124}<br>(Y_3774) | K_7664<br>766.490 { 44}<br>(Y_3774) | Li6707<br>670.784 { 50}<br>(Y_3774) |

ppm ppm ppm ppm ppm .08463 19.634 62.352 2.4201 .00671 Avg .00019 .00113 Stddev .006 .203 .0243 %RSD .22630 .03246 .32595 1.0043 16.886 .08476 2.4373 19.639 62.496 .00751 62.208 #2 .08449 19.630 2.4029 .00591 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** 

High Limit Low Limit Sample Name: 480-125681-A-2-D@10 Acquired: 10/16/2017 14:28:59 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Elem 279.079 {121}2 257.610 {131} 202.030 {467} 589.592 { 57} 231.604 {446} Line  $(Y_3774)$ IS Ref (Y\_3600)  $(Y_3600)$ (Y 2243) (ln2306) Units ppm ppm ppm ppm ppm 6.7478 9.2523 .43786 .00532 .04210 Avq .0348 Stddev .0015 .00016 .00015 .00005 %RSD .01665 .03701 2.8885 .51620 .10707 #1 9.2512 .43797 .00543 6.7232 .04207 9.2534 .43774 .00521 6.7724 .04213 #2 **Chk Pass Chk Pass** Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Pb2203 S 1820 Sb2068 Se1960 Si2881 220.353 {453} 182.034 {485} 206.833 {463} 196.090 {472} 288.158 {117}2 Line IS Ref (ln2306) (Y 2243) (Y 2243) (Y 2243) (Y 3774) Units ppm ppm ppm ppm ppm .23558 4.5453 .01027 -.00092 .08446 Avg Stddev .00148 .0157 .00015 .00099 .01203 .62765 .34465 1.4661 107.54 14.243 %RSD #1 .23454 4.5564 .01038 -.00022 .07595 4.5342 -.00163 .09297 #2 .23663 .01016 Check? **Chk Pass Chk Pass Chk Pass Chk Pass** Chk Pass High Limit Low Limit V 2924 Elem Sn1899 Sr4077 Ti3349 TI1908 334.904 {101} 190.856 {477} 292.402 {115} 189.989 {477} 407.771 { 83} Line IS Ref (ln2306) (Y 3774) (Y 3600) (In2306) (Y 3600) Units ppm ppm ppm ppm ppm

High Limit Low Limit

.13515

.00030

.22014

.13536

.13494

**Chk Pass** 

.19628

.00193

.98172

.19492

.19765

**Chk Pass** 

Avg Stddev

#2

%RSD

Check?

1.8718

.02747

1.8714

1.8722

**Chk Pass** 

.0005

-.00025

.00029

114.57

-.00005

-.00046

**Chk Pass** 

.01360

.00015

1.1237

.01370

.01349

**Chk Pass** 

Sample Name: 480-125681-A-2-D@10 Acquired: 10/16/2017 14:28:59 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062
Line 206.200 {163}
IS Ref (Y\_3600)
Units ppm
Avg 1.2290
Stddev .0006
%RSD .04561

#1 1.2286 #2 1.2294

Check? Chk Pass

High Limit Low Limit

Range

| Int. Std. | In2306        | Y_2243        | Y_3600           | Y_3774        |
|-----------|---------------|---------------|------------------|---------------|
| Line      | 230.606 {446} | 224.306 {450} | 360.073 { 94}    | 377.433 { 89} |
| Units     | Cts/S         | Cts/S         | Cts/S            | Cts/S         |
| Avg       | <b>3514.8</b> | 2586.5        | 21821.           | <b>3951.5</b> |
| Stddev    | 5.2           | 2.1           | 7.               | 9.5           |
| %RSD      | .14754        | .08088        | .03174           | .24080        |
| #1        | 3518.5        | 2588.0        | 21826.           | 3958.2        |
| #2        | 3511.1        | 2585.1        | 21816.           | 3944.8        |
| Check ?   | Chk Pass      | Chk Pass      | Chk Pass 99.331% | Chk Pass      |
| Value     | 94.713%       | 100.36%       |                  | 103.72%       |

Sample Name: 480-125681-A-3-D@5 Acquired: 10/16/2017 14:32:35 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280         | Al3082        | As1890        | B_2089         | Ba4554         |
|------------------------------------|----------------|---------------|---------------|----------------|----------------|
| Line                               | 328.068 {103}  | 308.215 {109} | 189.042 {478} | 208.959 {461}  | 455.403 { 74}  |
| IS Ref                             | (Y_3600)       | (Y_3774)      | (Y_2243)      | (Y_2243)       | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00066         | <b>27.934</b> | .09166        | . <b>51359</b> | 1.1165         |
| Stddev                             | .00008         | .061          | .00190        | .00083         | .0004          |
| %RSD                               | 12.425         | .21809        | 2.0780        | .16118         | .03156         |
| #1                                 | .00061         | 27.891        | .09301        | .51301         | 1.1167         |
| #2                                 | .00072         | 27.977        | .09032        | .51418         | 1.1162         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Be3130         | Ca3179        | Cd2288        | **Ce4040       | Co2286         |
| Line                               | 313.042 {108}  | 317.933 {106} | 228.802 {447} | 404.076 { 83}  | 228.616 {447}  |
| IS Ref                             | (Y_3774)       | (Y_3774)      | (Y_2243)      | (Y_3774)       | (In2306)       |
| Units                              | ppm            | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00041         | 143.03        | .00428        | 0625           | .06795         |
| Stddev                             | .00002         | .01           | .00012        | .0091          | .00066         |
| %RSD                               | 4.3398         | .00736        | 2.8993        | 14.63          | .97328         |
| #1                                 | .00039         | 143.04        | .00437        | 0689           | .06842         |
| #2                                 | .00042         | 143.02        | .00419        | 0560           | .06749         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Cr2677         | Cu3273        | Fe2714        | K_7664         | Li6707         |
| Line                               | 267.716 {126}  | 327.396 {103} | 271.441 {124} | 766.490 { 44}  | 670.784 { 50}  |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_3774)      | (Y_3774)       | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm           | ppm            | ppm            |
| Avg                                | . <b>72310</b> | 3.2205        | 319.52        | 6.1748         | . <b>01738</b> |
| Stddev                             | .00139         | .0088         | .51           | .0138          | .00114         |
| %RSD                               | .19208         | .27428        | .15933        | .22293         | 6.5535         |
| #1                                 | .72408         | 3.2268        | 319.88        | 6.1845         | .01818         |
| #2                                 | .72212         | 3.2143        | 319.16        | 6.1651         | .01657         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |

Sample Name: 480-125681-A-3-D@5 Acquired: 10/16/2017 14:32:35 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                                     | Mg2790                                                                   | Mn2576-2                                                                         | Mo2020                                                                         | Na5895        | Ni2316        |
|----------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------|---------------|
| Line                                                     | 279.079 {121}2                                                           | 257.610 {131}2                                                                   | 202.030 {467}                                                                  | 589.592 { 57} | 231.604 {446} |
| IS Ref                                                   | (Y_3600)                                                                 | (Y_3600)                                                                         | (Y_2243)                                                                       | (Y_3774)      | (In2306)      |
| Units                                                    | ppm                                                                      | ppm                                                                              | ppm                                                                            | ppm           | ppm           |
| Avg                                                      | <b>18.433</b>                                                            | <b>40.452</b>                                                                    | .01150                                                                         | <b>26.684</b> | .83048        |
| Stddev                                                   | .001                                                                     | .044                                                                             | .00031                                                                         | .064          | .00119        |
| %RSD                                                     | .00637                                                                   | .10910                                                                           | 2.7228                                                                         | .23956        | .14384        |
| #1                                                       | 18.434                                                                   | 40.484                                                                           | .01172                                                                         | 26.639        | .83133        |
| #2                                                       | 18.432                                                                   | 40.421                                                                           | .01128                                                                         | 26.729        | .82964        |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                                                       | Chk Pass      | Chk Pass      |
| Elem                                                     | Pb2203                                                                   | S_1820                                                                           | Sb2068                                                                         | Se1960        | ppm           |
| Line                                                     | 220.353 {453}                                                            | 182.034 {485}                                                                    | 206.833 {463}                                                                  | 196.090 {472} |               |
| IS Ref                                                   | (In2306)                                                                 | (Y_2243)                                                                         | (Y_2243)                                                                       | (Y_2243)      |               |
| Units                                                    | ppm                                                                      | ppm                                                                              | ppm                                                                            | ppm           |               |
| Avg                                                      | . <b>30735</b>                                                           | <b>6.7219</b>                                                                    | .02739                                                                         | .00408        |               |
| Stddev                                                   | .00091                                                                   | .0049                                                                            | .00085                                                                         | .00264        |               |
| %RSD                                                     | .29704                                                                   | .07273                                                                           | 3.1006                                                                         | 64.729        |               |
| #1                                                       | .30799                                                                   | 6.7253                                                                           | .02679                                                                         | .00221        | .18377        |
| #2                                                       | .30670                                                                   | 6.7184                                                                           | .02799                                                                         | .00594        | .19420        |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                                                       | Chk Pass      | Chk Pass      |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.14161<br>.00087<br>.61339 | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>. <b>97092</b><br>.00040<br>.04099 | Ti3349<br>334.904 {101}<br>(Y_3600)<br>ppm<br><b>4.8033</b><br>.0013<br>.02657 |               |               |
| #1                                                       | .14223                                                                   | .97120                                                                           | 4.8042                                                                         | 00211         | .03604        |
| #2                                                       | .14100                                                                   | .97064                                                                           | 4.8024                                                                         | 00124         | .03676        |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                                                                       | Chk Pass      | Chk Pass      |

Sample Name: 480-125681-A-3-D@5 Acquired: 10/16/2017 14:32:35 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Zn2062
Line 206.200 {163}
IS Ref (Y\_3600)
Units ppm
Avg 12.951
Stddev .007
%RSD .05683

#1 12.956 #2 12.946

Check? Chk Pass

High Limit Low Limit

Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 3225.8 2531.6 21003. 3873.0 Avg 13.2 6.6 36. 1.3 Stddev %RSD .41072 .26079 .17061 .03349 #1 3216.5 2526.9 20977. 3872.1 #2 3235.2 2536.2 21028. 3873.9 Check? **Chk Pass Chk Pass Chk Pass** Chk Pass Value 86.926% 98.229% 95.604% 101.66% Range

Sample Name: 480-125681-A-4-D@5 Acquired: 10/16/2017 14:36:13 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554         |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}  |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00282        | <b>43.235</b> | .01854        | .31089        | 1.1543         |
| Stddev                             | .00034        | .002          | .00088        | .00108        | .0002          |
| %RSD                               | 11.872        | .00527        | 4.7373        | .34824        | .01827         |
| #1                                 | .00306        | 43.237        | .01792        | .31012        | 1.1542         |
| #2                                 | .00259        | 43.233        | .01916        | .31165        | 1.1545         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00057        | 178.71        | .01381        | 1.261         | .03561         |
| Stddev                             | .00002        | .19           | .00005        | .014          | .00012         |
| %RSD                               | 3.4082        | .10641        | .35507        | 1.121         | .34970         |
| #1                                 | .00059        | 178.85        | .01384        | 1.271         | .03552         |
| #2                                 | .00056        | 178.58        | .01377        | 1.251         | .03570         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .24716        | 2.1230        | 104.69        | 6.9582        | . <b>01804</b> |
| Stddev                             | .00107        | .0002         | .23           | .0311         | .00103         |
| %RSD                               | .43320        | .00955        | .21622        | .44711        | 5.7223         |
| #1                                 | .24641        | 2.1229        | 104.85        | 6.9802        | .01877         |
| #2                                 | .24792        | 2.1232        | 104.53        | 6.9362        | .01731         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-125681-A-4-D@5 Acquired: 10/16/2017 14:36:13 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        |                | Mo2020                                                | Na5895        |
|------------------------------------|----------------|---------------|----------------|-------------------------------------------------------|---------------|
| Line                               | 279.079 {121}2 | 257.610 {131} |                | 202.030 {467}                                         | 589.592 { 57} |
| IS Ref                             | (Y_3600)       | (Y_3600)      |                | (Y_2243)                                              | (Y_3774)      |
| Units                              | ppm            | ppm           |                | ppm                                                   | ppm           |
| Avg                                | 16.601         | 14.101        |                | .01599                                                | <b>28.153</b> |
| Stddev                             | .059           | .046          |                | .00030                                                | .009          |
| %RSD                               | .35423         | .32555        |                | 1.8658                                                | .03173        |
| #1                                 | 16.559         | 14.134        | 15.018         | .01620                                                | 28.160        |
| #2                                 | 16.643         | 14.069        | 15.076         | .01578                                                | 28.147        |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass       | Chk Pass                                              | Chk Pass      |
| Elem                               | Ni2316         | Pb2203        | S_1820         | Sb2068                                                | Se1960        |
| Line                               | 231.604 {446}  | 220.353 {453} | 182.034 {485}  | 206.833 {463}                                         | 196.090 {472} |
| IS Ref                             | (In2306)       | (In2306)      | (Y_2243)       | (Y_2243)                                              | (Y_2243)      |
| Units                              | ppm            | ppm           | ppm            | ppm                                                   | ppm           |
| Avg                                | .20168         | 1.0663        | <b>9.4821</b>  | . <b>02726</b>                                        | 00163         |
| Stddev                             | .00030         | .0022         | .0483          | .00012                                                | .00122        |
| %RSD                               | .15007         | .20822        | .50936         | .43766                                                | 74.661        |
| #1                                 | .20146         | 1.0647        | 9.4479         | .02735                                                | 00249         |
| #2                                 | .20189         | 1.0678        | 9.5162         | .02718                                                | 00077         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass       | Chk Pass                                              | Chk Pass      |
| Elem                               | Si2881         | Sn1899        | Sr4077         | Ti3349 334.904 {101} (Y_3600) ppm 5.8649 .0041 .07052 | TI1908        |
| Line                               | 288.158 {117}2 | 189.989 {477} | 407.771 { 83}  |                                                       | 190.856 {477} |
| IS Ref                             | (Y_3774)       | (In2306)      | (Y_3774)       |                                                       | (In2306)      |
| Units                              | ppm            | ppm           | ppm            |                                                       | ppm           |
| Avg                                | . <b>53226</b> | .18613        | . <b>42273</b> |                                                       | 00223         |
| Stddev                             | .00105         | .00071        | .00019         |                                                       | .00141        |
| %RSD                               | .19671         | .38332        | .04446         |                                                       | 63.214        |
| #1                                 | .53300         | .18563        | .42259         | 5.8620                                                | 00323         |
| #2                                 | .53152         | .18664        | .42286         | 5.8679                                                | 00124         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass       | Chk Pass                                              | Chk Pass      |

Sample Name: 480-125681-A-4-D@5 Acquired: 10/16/2017 14:36:13 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: V\_2924 Zn2062 Elem 292.402 {115} 206.200 {163} Line IS Ref (Y\_3600) (Y\_3600) Units ppm ppm .03411 10.887 Avg .00005 .049 Stddev %RSD .13479 .44978 #1 10.853 .03414 #2 .03408 10.922 Check? **Chk Pass Chk Pass** High Limit Low Limit Int Std 122206

| Int. Std.      | In2306        | Y_2243        | Y_3600        | Y_3//4        |
|----------------|---------------|---------------|---------------|---------------|
| Line           | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units          | Čts/Š         | Čts/Š         | Cts/S         | Cts/S         |
| Avg            | 3257.9        | 2533.7        | 21052.        | 3899.6        |
| Stddev         | .5            | 3.0           | 6.            | 13.8          |
| %RSD           | .01590        | .11998        | .02932        | .35457        |
| #1             | 3257.6        | 2535.9        | 21048.        | 3889.8        |
| #2             | 3258.3        | 2531.6        | 21057.        | 3909.3        |
| Check?         | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |
| Value<br>Range | 87.790%       | 98.313%       | 95.830%       | 102.35%       |

Sample Name: 480-125681-A-5-I@5 Acquired: 10/16/2017 14:39:51 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554         |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}  |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00630        | <b>69.894</b> | .01807        | .43503        | <b>2.4152</b>  |
| Stddev                             | .00051        | .076          | .00108        | .00245        | .0013          |
| %RSD                               | 8.0609        | .10934        | 5.9494        | .56252        | .05397         |
| #1                                 | .00666        | 69.948        | .01883        | .43330        | 2.4161         |
| #2                                 | .00594        | 69.840        | .01731        | .43676        | 2.4142         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00070        | 181.23        | .01085        | .0677         | .02183         |
| Stddev                             | .00011        | .13           | .00009        | .0022         | .00014         |
| %RSD                               | 15.165        | .06972        | .78989        | 3.214         | .62899         |
| #1                                 | .00063        | 181.32        | .01079        | .0692         | .02174         |
| #2                                 | .00078        | 181.14        | .01091        | .0661         | .02193         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2714        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 271.441 {124} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .11671        | 1.0994        | <b>54.179</b> | <b>6.2413</b> | . <b>02357</b> |
| Stddev                             | .00014        | .0046         | .433          | .0325         | .00100         |
| %RSD                               | .12270        | .42048        | .79921        | .51995        | 4.2394         |
| #1                                 | .11661        | 1.1026        | 54.485        | 6.2642        | .02427         |
| #2                                 | .11681        | 1.0961        | 53.872        | 6.2184        | .02286         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-125681-A-5-I@5 Acquired: 10/16/2017 14:39:51 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br><b>19.357</b><br>.077<br>.39961   | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br>. <b>97281</b><br>.00346<br>.35562 | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.03140<br>.00003<br>.10253 | Na5895<br>589.592 { 57}<br>(Y_3774)<br>ppm<br><b>19.266</b><br>.010<br>.05440 | (In2306)<br>ppm<br>. <b>06835</b>           |
|----------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------|
| #1<br>#2                                                 | 19.302<br>19.411                                                                 | .97036<br>.97526                                                                 | .03142<br>.03137                                                         | 19.274<br>19.259                                                              | .06847<br>.06822                            |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                         | Chk Pass                                                                 | Chk Pass                                                                      | Chk Pass                                    |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br>. <b>52081</b><br>.00281<br>.53995 | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br><b>7.9093</b><br>.0204<br>.25806   | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>.02971<br>.00290<br>9.7439 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>00019<br>.00060<br>308.47       | (Y_3774)<br>ppm<br>. <b>25962</b><br>.00594 |
| #1<br>#2                                                 | .52280<br>.51882                                                                 | 7.8949<br>7.9237                                                                 | .02766<br>.03176                                                         | .00023<br>00062                                                               | .25542<br>.26382                            |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                         | Chk Pass                                                                 | Chk Pass                                                                      | Chk Pass                                    |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.11207<br>.00045<br>.40380         | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>.39495<br>.00059<br>.14980         | Ti3349 334.904 {101} (Y_3600) ppm 5.0700 .0125 .24664                    | TI1908<br>190.856 {477}<br>(In2306)<br>ppm<br>00276<br>.00114<br>41.433       | <del></del> -                               |
| #1<br>#2                                                 | .11239<br>.11175                                                                 | .39537<br>.39453                                                                 | 5.0611<br>5.0788                                                         | 00357<br>00195                                                                | .04321<br>.04345                            |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                         | Chk Pass                                                                 | Chk Pass                                                                      | Chk Pass                                    |

Sample Name: 480-125681-A-5-I@5 Acquired: 10/16/2017 14:39:51 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

| Elem         | Zn2062        |
|--------------|---------------|
| Line         | 206.200 {163} |
| IS Ref       | (Y_3600)      |
| Units        | ppm           |
| Avg          | 3.5445        |
| Stddev       | .0541         |
| %RSD         | 1.5272        |
| #1           | 3.5063        |
| / <b>/</b> ' | 0.0000        |

#2 3.5828

Check? Chk Pass

High Limit Low Limit

| Int. Std.      | In2306                 | Y_2243                 | Y_3600                 | Y_3774                 |
|----------------|------------------------|------------------------|------------------------|------------------------|
| Line<br>Units  | 230.606 {446}<br>Cts/S | 224.306 {450}<br>Cts/S | 360.073 { 94}<br>Cts/S | 377.433 { 89}<br>Cts/S |
| Avg            | 3289.7                 | 2566.4                 | 21440.                 | 3936.4                 |
| Stddev         | 8.2                    | 1.3                    | 34.                    | 35.8                   |
| %RSD           | .24875                 | .04918                 | .15814                 | .90962                 |
| #1             | 3283.9                 | 2565.5                 | 21416.                 | 3911.1                 |
| #2             | 3295.4                 | 2567.3                 | 21463.                 | 3961.7                 |
| Check?         | Chk Pass               | Chk Pass               | Chk Pass               | Chk Pass               |
| Value<br>Range | 88.646%                | 99.580%                | 97.592%                | 103.32%                |

Sample Name: 480-125681-A-10-A@10 Acquired: 10/16/2017 14:43:26 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: Ag3280 Al3082 As1890 B 2089 Elem Ba4554-2 328.068 {103} 308.215 {109} 189.042 {478} 208.959 {461} 455.403 { 74}2 Line IS Ref (Y 3600)  $(Y_3774)$ (Y 2243) (Y 2243) (Y\_3600) Units ppm ppm ppm ppm ppm .00192 21.959 .00711 .11855 .41791 Avq .00200 Stddev .00006 .093 .00206 .00036 %RSD 3.0026 .42498 28.922 .30757 .47884 #1 .00197 22.025 .00856 .11881 .41649 .00188 21.894 .00565 .11829 .41932 #2 **Chk Pass Chk Pass** Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit \*\*Ce4040 Elem Be3130 Ca3179 Cd2288 Co2286 313.042 {108} 317.933 {106} 228.802 {447} 404.076 { 83} 228.616 {447} Line IS Ref (Y 3774) (Y 3774) (Y 2243) (Y 3774) (ln2306) Units ppm ppm ppm ppm ppm .00019 67.059 .00902 .0026 12.863 Avg Stddev .00001 .051 .00010 .0159 .018 2.9948 .07637 1.0944 601.2 .14327 %RSD #1 .00019 67.023 .00909 .0139 12.876 .00020 67.096 .00895 12.850 #2 -.0086 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Cr2677 Cu3273 Fe2714 K 7664 Li6707 766.490 { 44} 267.716 {126} 327.396 {103} 271.441 {124} 670.784 { 50} Line (Y 3774) IS Ref (Y 3600) (Y 3600) (Y 3774)  $(Y_3774)$ Units ppm ppm ppm ppm ppm .06190 4.1036 96.553 2.3261 .49913 Avg Stddev .00021 .0136 .275 .0014 .00198 .33136 %RSD .33247 .28524 .05974 .39741

96.359

96.748

**Chk Pass** 

2.3271

2.3251

**Chk Pass** 

.06205

.06176

**Chk Pass** 

#2

Check ? High Limit Low Limit 4.0940

4.1133

**Chk Pass** 

.49773

.50053

**Chk Pass** 

Sample Name: 480-125681-A-10-A@10 Acquired: 10/16/2017 14:43:26 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: jrk Custom ID2: Custom ID3: Comment: Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Elem 279.079 {121}2 257.610 {131} 202.030 {467} 589.592 { 57} 231.604 {446} Line  $(Y_3600)$  $(Y_3774)$ IS Ref (Y 3600) (Y 2243) (ln2306) Units ppm ppm ppm ppm ppm 7.9767 .67271 .00696 6.7687 .03940 Avq .00079 Stddev .0018 .00020 .0323 .00062 %RSD .02262 .11673 2.8102 .47768 1.5696 #1 7.9780 .67216 .00683 6.7459 .03984 7.9754 .67327 .00710 6.7916 .03896 #2 **Chk Pass Chk Pass** Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Pb2203 S 1820 Sb2068 Se1960 Si2881 220.353 {453} 182.034 {485} 206.833 {463} 196.090 {472} 288.158 {117}2 Line IS Ref (ln2306) (Y 2243) (Y 2243) (Y 2243) (Y 3774) Units ppm ppm ppm ppm ppm .53958 5.3626 .01185 -.00176 .10606 Avg Stddev .00093 .0115 .00041 .00486 .00228 2.1452 .17163 .21429 3.4507 276.14 %RSD #1 .54023 5.3707 .01214 -.00520 .10767 5.3545 .10446 #2 .53892 .01157 .00168 Check? **Chk Pass Chk Pass Chk Pass Chk Pass** Chk Pass High Limit Low Limit V 2924 Elem Sn1899 Sr4077 Ti3349 TI1908 334.904 {101} 190.856 {477} 189.989 {477} 407.771 { 83} 292.402 {115} Line IS Ref (ln2306) (Y 3774) (Y 3600) (In2306)  $(Y_3600)$ Units ppm ppm ppm ppm ppm

.12652 .14896 2.4281 -.00226 .03410 Avg Stddev .00010 .00094 .0012 .00144 .00053 %RSD .07754 .63172 .05058 63.553 1.5550 .12659 .14829 2.4272 -.00125.03372 #2 .12645 .14962 2.4289 -.00328 .03447 **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** Check? High Limit Low Limit

Sample Name: 480-125681-A-10-A@10 Acquired: 10/16/2017 14:43:26 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 IS Ref
 (Y\_3600)

 Units
 ppm

 Avg
 1.9329

 Stddev
 .0040

 %RSD
 .20918

#1 1.9357 #2 1.9300

Check? Chk Pass

High Limit Low Limit

| Int. Std.      | In2306        | Y_2243        | Y_3600        | Y_3774        |
|----------------|---------------|---------------|---------------|---------------|
| Line           | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units          | Cts/S         | Cts/S         | Cts/S         | Cts/S         |
| Avg            | 3491.9        | 2584.1        | 21684.        | 3947.9        |
| Stddev         | 1.1           | .3            | 32.           | .5            |
| %RSD           | .03191        | .01161        | .14980        | .01215        |
| #1             | 3491.1        | 2584.3        | 21661.        | 3947.5        |
| #2             | 3492.7        | 2583.9        | 21707.        | 3948.2        |
| Check?         | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |
| Value<br>Range | 94.096%       | 100.27%       | 98.706%       | 103.62%       |

Sample Name: blank Acquired: 10/16/2017 14:47:00 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089         | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|----------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461}  | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)       | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00001        | .01581        | 00037         | .00174         | .00103         |
| Stddev                             | .00074        | .02284        | .00002        | .00005         | .00011         |
| %RSD                               | 13396.        | 144.49        | 6.2249        | 2.9695         | 11.125         |
| #1                                 | .00053        | 00034         | 00038         | .00177         | .00111         |
| #2                                 | 00052         | .03196        | 00035         | .00170         | .00095         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040       | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83}  | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)       | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | 00001         | .08910        | .00073        | 0116           | .00059         |
| Stddev                             | .00000        | .04737        | .00004        | .0222          | .00053         |
| %RSD                               | 23.758        | 53.170        | 5.1027        | 191.4          | 88.783         |
| #1                                 | 00001         | .05560        | .00070        | .0041          | .00096         |
| #2                                 | 00002         | .12260        | .00075        | 0272           | .00022         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599        | K_7664         | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130} | 766.490 { 44}  | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)       | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00265        | .00577        | .07431        | . <b>01579</b> | 00059          |
| Stddev                             | .00011        | .00175        | .04246        | .02726         | .00094         |
| %RSD                               | 4.1250        | 30.250        | 57.146        | 172.64         | 160.32         |
| #1                                 | .00273        | .00700        | .04428        | .03507         | 00125          |
| #2                                 | .00258        | .00453        | .10434        | 00349          | .00008         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |

Sample Name: blank Acquired: 10/16/2017 14:47:00 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br>.01478<br>.00197<br>13.337 | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br>.00659<br>.00075<br>11.361 | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.00023<br>.00019<br>82.999 | Na5895<br>589.592 { 57}<br>(Y_3774)<br>ppm<br>. <b>02661</b><br>.00174<br>6.5577 | (In2306)<br>ppm<br>00053<br>.00024 |
|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|
| #1                                                       | .01617                                                                    | .00712                                                                   | .00010                                                                   | .02537                                                                           | 00069                              |
| #2                                                       | .01339                                                                    | .00606                                                                   | .00037                                                                   | .02784                                                                           | 00036                              |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                  | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                           |
| Elem                                                     | Pb2203                                                                    | S_1820                                                                   | Sb2068                                                                   | Se1960                                                                           | Si2881                             |
| Line                                                     | 220.353 {453}                                                             | 182.034 {485}                                                            | 206.833 {463}                                                            | 196.090 {472}                                                                    | 288.158 {117}2                     |
| IS Ref                                                   | (In2306)                                                                  | (Y_2243)                                                                 | (Y_2243)                                                                 | (Y_2243)                                                                         | (Y_3774)                           |
| Units                                                    | ppm                                                                       | ppm                                                                      | ppm                                                                      | ppm                                                                              | ppm                                |
| Avg                                                      | .00132                                                                    | 01147                                                                    | .00391                                                                   | .00065                                                                           | . <b>21176</b>                     |
| Stddev                                                   | .00017                                                                    | .00122                                                                   | .00093                                                                   | .00013                                                                           | .03352                             |
| %RSD                                                     | 12.975                                                                    | 10.634                                                                   | 23.734                                                                   | 19.689                                                                           | 15.827                             |
| #1                                                       | .00120                                                                    | 01061                                                                    | .00457                                                                   | .00056                                                                           | .23546                             |
| #2                                                       | .00145                                                                    | 01234                                                                    | .00326                                                                   | .00074                                                                           | .18806                             |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                  | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                           |
| Elem                                                     | Sn1899                                                                    | Sr4077                                                                   | Ti3349                                                                   | TI1908                                                                           | V_2924                             |
| Line                                                     | 189.989 {477}                                                             | 407.771 { 83}                                                            | 334.904 {101}                                                            | 190.856 {477}                                                                    | 292.402 {115}                      |
| IS Ref                                                   | (In2306)                                                                  | (Y_3774)                                                                 | (Y_3600)                                                                 | (In2306)                                                                         | (Y_3600)                           |
| Units                                                    | ppm                                                                       | ppm                                                                      | ppm                                                                      | ppm                                                                              | ppm                                |
| Avg                                                      | .00141                                                                    | .00023                                                                   | .00486                                                                   | 00385                                                                            | .00034                             |
| Stddev                                                   | .00045                                                                    | .00014                                                                   | .00074                                                                   | .00107                                                                           | .00062                             |
| %RSD                                                     | 32.029                                                                    | 59.778                                                                   | 15.304                                                                   | 27.772                                                                           | 185.32                             |
| #1                                                       | .00173                                                                    | .00013                                                                   | .00538                                                                   | 00309                                                                            | 00010                              |
| #2                                                       | .00109                                                                    | .00032                                                                   | .00433                                                                   | 00461                                                                            | .00078                             |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                  | Chk Pass                                                                 | Chk Pass                                                                 | Chk Pass                                                                         | Chk Pass                           |

Sample Name: blank Acquired: 10/16/2017 14:47:00 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm .00413 Avg .00065 Stddev %RSD 15.779 #1 .00459 #2 .00367 Check? **Chk Pass** High Limit Low Limit Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} Line Units Cts/S Cts/S Cts/S 3509.6 2327.5 20671. Avg Stddev 7.8 7.5 58. %RSD .22176 .32306 .28291

377.433 { 89} Cts/S 3655.7 5.1 .14067 #1 3504.1 2322.2 20713. 3652.0 #2 3515.1 2332.8 20630. 3659.3 Check? **Chk Pass Chk Pass Chk Pass** Chk Pass 90.311% Value 94.572% 94.096% 95.953% Range

Sample Name: CCV-4278259 Acquired: 10/16/2017 14:50:39 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                           | Ag3280                                                               | Al3082                                                               | As1890                                                            | B_2089         | Ba4554-2       |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|----------------|----------------|
| Line                                           | 328.068 {103}                                                        | 308.215 {109}                                                        | 189.042 {478}                                                     | 208.959 {461}  | 455.403 { 74}2 |
| Units                                          | ppm                                                                  | ppm                                                                  | ppm                                                               | ppm            | ppm            |
| Avg                                            | . <b>52619</b>                                                       | <b>25.413</b>                                                        | . <b>52555</b>                                                    | . <b>52002</b> | .49863         |
| Stddev                                         | .00071                                                               | .072                                                                 | .00019                                                            | .00033         | .00325         |
| %RSD                                           | .13508                                                               | .28442                                                               | .03701                                                            | .06425         | .65089         |
| #1                                             | .52569                                                               | 25.362                                                               | .52569                                                            | .52026         | .49633         |
| #2                                             | .52669                                                               | 25.464                                                               | .52542                                                            | .51979         | .50092         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                          | Chk Pass       | Chk Pass       |
| Elem                                           | Be3130                                                               | Ca3179                                                               | Cd2288                                                            | **Ce4040       | Co2286         |
| Line                                           | 313.042 {108}                                                        | 317.933 {106}                                                        | 228.802 {447}                                                     | 404.076 { 83}  | 228.616 {447}  |
| Units                                          | ppm                                                                  | ppm                                                                  | ppm                                                               | ppm            | ppm            |
| Avg                                            | . <b>53636</b>                                                       | 26.822                                                               | . <b>51654</b>                                                    | 0060           | . <b>51966</b> |
| Stddev                                         | .00152                                                               | .073                                                                 | .00035                                                            | .0006          | .00068         |
| %RSD                                           | .28258                                                               | .27372                                                               | .06825                                                            | 10.73          | .13128         |
| #1                                             | .53529                                                               | 26.874                                                               | .51629                                                            | 0065           | .51917         |
| #2                                             | .53743                                                               | 26.770                                                               | .51679                                                            | 0056           | .52014         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                          | None           | Chk Pass       |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Cr2677<br>267.716 {126}<br>ppm<br>. <b>53173</b><br>.00078<br>.14581 | Cu3273<br>327.396 {103}<br>ppm<br>. <b>50546</b><br>.00219<br>.43333 | Fe2599<br>259.940 {130}<br>ppm<br><b>26.191</b><br>.031<br>.11792 | <del></del>    |                |
| #1                                             | .53118                                                               | .50701                                                               | 26.169                                                            | 25.673         | .52032         |
| #2                                             | .53228                                                               | .50391                                                               | 26.213                                                            | 25.618         | .52514         |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                          | Chk Pass       | Chk Pass       |

Sample Name: CCV-4278259 Acquired: 10/16/2017 14:50:39 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                      | Mg2790         | Mn2576         | Mo2020         | Na5895         | Ni2316         |
|---------------------------|----------------|----------------|----------------|----------------|----------------|
| Line                      | 279.079 {121}2 | 257.610 {131}  | 202.030 {467}  | 589.592 { 57}  | 231.604 {446}  |
| Units                     | ppm            | ppm            | ppm            | ppm            | ppm            |
| Avg                       | <b>26.152</b>  | . <b>53378</b> | . <b>52943</b> | <b>25.928</b>  | . <b>52450</b> |
| Stddev                    | .031           | .00027         | .00054         | .046           | .00143         |
| %RSD                      | .11925         | .04971         | .10130         | .17671         | .27170         |
| #1                        | 26.130         | .53397         | .52981         | 25.896         | .52349         |
| #2                        | 26.174         | .53359         | .52905         | 25.961         | .52551         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       |
| Elem                      | Pb2203         | S_1820         | Sb2068         | Se1960         | Si2881         |
| Line                      | 220.353 {453}  | 182.034 {485}  | 206.833 {463}  | 196.090 {472}  | 288.158 {117}2 |
| Units                     | ppm            | ppm            | ppm            | ppm            | ppm            |
| Avg                       | . <b>52436</b> | <b>26.197</b>  | . <b>51565</b> | . <b>53300</b> | <b>22.900</b>  |
| Stddev                    | .00041         | .050           | .00194         | .00704         | .023           |
| %RSD                      | .07810         | .19035         | .37553         | 1.3215         | .09876         |
| #1                        | .52465         | 26.161         | .51428         | .52802         | 22.884         |
| #2                        | .52407         | 26.232         | .51702         | .53798         | 22.916         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       |
| Elem                      | Sn1899         | Sr4077         | Ti3349         | TI1908         | V_2924         |
| Line                      | 189.989 {477}  | 407.771 { 83}  | 334.904 {101}  | 190.856 {477}  | 292.402 {115}  |
| Units                     | ppm            | ppm            | ppm            | ppm            | ppm            |
| Avg                       | . <b>53768</b> | . <b>51402</b> | . <b>53556</b> | . <b>53496</b> | . <b>53899</b> |
| Stddev                    | .00057         | .00105         | .00119         | .00139         | .00164         |
| %RSD                      | .10646         | .20396         | .22182         | .25945         | .30359         |
| #1                        | .53809         | .51328         | .53472         | .53398         | .53783         |
| #2                        | .53728         | .51476         | .53640         | .53594         | .54014         |
| Check ?<br>Value<br>Range | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       | Chk Pass       |

Sample Name: CCV-4278259 Acquired: 10/16/2017 14:50:39 Type: QC Method: ICAP2 June 2017(v154) Corr. Factor: 1.000000 Mode: CONC

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Zn2062 Elem 206.200 {163} Line Units ppm .54476 Avg .00223 Stddev %RSD .41024

#1 .54318 #2 .54634

Check? Chk Pass

Value

Range

| Int. Std. | In2306        | Y_2243        | Y_3600        | Y_3774        |
|-----------|---------------|---------------|---------------|---------------|
| Line      | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units     | Cts/S         | Cts/S         | Cts/S         | Cts/S         |
| Avg       | 3501.3        | 2615.9        | 21810.        | 3877.2        |
| Stddev    | 9.2           | 6.5           | 98.           | 17.9          |
| %RSD      | .26321        | .24815        | .44809        | .46264        |
| #1        | 3507.8        | 2620.5        | 21879.        | 3864.5        |
| #2        | 3494.8        | 2611.3        | 21740.        | 3889.9        |

Sample Name: CCB-4278202 Acquired: 10/16/2017 14:54:07 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082         | As1890        | B_2089         | Ba4554-2       |
|------------------------------------|---------------|----------------|---------------|----------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109}  | 189.042 {478} | 208.959 {461}  | 455.403 { 74}2 |
| Units                              | ppm           | ppm            | ppm           | ppm            | ppm            |
| Avg                                | .00020        | 00609          | .00071        | 00013          | .00012         |
| Stddev                             | .00024        | .01777         | .00157        | .00013         | .00000         |
| %RSD                               | 118.79        | 291.89         | 220.48        | 100.95         | 3.7556         |
| #1                                 | .00037        | .00648         | 00040         | 00004          | .00012         |
| #2                                 | .00003        | 01865          | .00182        | 00023          | .00013         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Be3130        | Ca3179         | Cd2288        | **Ce4040       | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106}  | 228.802 {447} | 404.076 { 83}  | 228.616 {447}  |
| Units                              | ppm           | ppm            | ppm           | ppm            | ppm            |
| Avg                                | .00002        | . <b>02526</b> | .00015        | 0131           | .00026         |
| Stddev                             | .00001        | .00642         | .00002        | .0314          | .00006         |
| %RSD                               | 45.748        | 25.408         | 12.486        | 240.3          | 24.325         |
| #1                                 | .00002        | .02979         | .00014        | 0352           | .00022         |
| #2                                 | .00003        | .02072         | .00016        | .0091          | .00031         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | None           | Chk Pass       |
| Elem                               | Cr2677        | Cu3273         | Fe2599        | K_7664         |                |
| Line                               | 267.716 {126} | 327.396 {103}  | 259.940 {130} | 766.490 { 44}  |                |
| Units                              | ppm           | ppm            | ppm           | ppm            |                |
| Avg                                | 00031         | .00008         | .01677        | . <b>06643</b> |                |
| Stddev                             | .00002        | .00003         | .00203        | .02537         |                |
| %RSD                               | 6.2887        | 39.502         | 12.120        | 38.199         |                |
| #1                                 | 00030         | .00006         | .01821        | .08437         | 00084          |
| #2                                 | 00033         | .00011         | .01533        | .04848         | .00038         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       | Chk Pass       |

Sample Name: CCB-4278202 Acquired: 10/16/2017 14:54:07 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                           | Mg2790                                                       | Mn2576                                                      | Mo2020                                                       | Na5895                                                       |                                 |
|------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------------------------|
| Line                                           | 279.079 {121}2                                               | 257.610 {131}                                               | 202.030 {467}                                                | 589.592 { 57}                                                |                                 |
| Units                                          | ppm                                                          | ppm                                                         | ppm                                                          | ppm                                                          |                                 |
| Avg                                            | .01010                                                       | .00072                                                      | .00019                                                       | .00843                                                       |                                 |
| Stddev                                         | .00321                                                       | .00004                                                      | .00022                                                       | .00833                                                       |                                 |
| %RSD                                           | 31.776                                                       | 5.9818                                                      | 118.20                                                       | 98.854                                                       |                                 |
| #1                                             | .00783                                                       | .00069                                                      | .00034                                                       | .01432                                                       | 00009                           |
| #2                                             | .01236                                                       | .00075                                                      | .00003                                                       | .00254                                                       | .00012                          |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                     | Chk Pass                                                    | Chk Pass                                                     | Chk Pass                                                     | Chk Pass                        |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>.00060<br>.00031<br>52.073 | S_1820<br>182.034 {485}<br>ppm<br>00668<br>.00144<br>21.490 | Sb2068<br>206.833 {463}<br>ppm<br>.00070<br>.00062<br>88.211 | Se1960<br>196.090 {472}<br>ppm<br>.00090<br>.00220<br>243.27 | ppm<br>. <b>00684</b><br>.00281 |
| #1                                             | .00082                                                       | 00567                                                       | .00114                                                       | .00246                                                       | .00485                          |
| #2                                             | .00038                                                       | 00770                                                       | .00026                                                       | 00065                                                        | .00882                          |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                     | Chk Pass                                                    | Chk Pass                                                     | Chk Pass                                                     | Chk Pass                        |
| Elem                                           | Sn1899                                                       | Sr4077                                                      | Ti3349 334.904 {101}     ppm .00045 .00030 67.329            | TI1908                                                       | V_2924                          |
| Line                                           | 189.989 {477}                                                | 407.771 { 83}                                               |                                                              | 190.856 {477}                                                | 292.402 {115}                   |
| Units                                          | ppm                                                          | ppm                                                         |                                                              | ppm                                                          | ppm                             |
| Avg                                            | .00036                                                       | .00008                                                      |                                                              | 00043                                                        | .00021                          |
| Stddev                                         | .00009                                                       | .00006                                                      |                                                              | .00043                                                       | .00004                          |
| %RSD                                           | 24.229                                                       | 80.135                                                      |                                                              | 99.665                                                       | 18.634                          |
| #1                                             | .00042                                                       | .00012                                                      | .00023                                                       | 00013                                                        | .00018                          |
| #2                                             | .00030                                                       | .00003                                                      | .00066                                                       | 00074                                                        | .00024                          |
| Check ?<br>High Limit<br>Low Limit             | Chk Pass                                                     | Chk Pass                                                    | Chk Pass                                                     | Chk Pass                                                     | Chk Pass                        |

Sample Name: CCB-4278202 Acquired: 10/16/2017 14:54:07 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .00089

 Stddev
 .00057

 %RSD
 64.123

#1 .00130 #2 .00049

Check? Chk Pass

High Limit Low Limit

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Units Cts/S Cts/S Cts/S Avg 3827.5 2677.7 22661. 3969.7 77. Stddev 1.8 3.7 1.9 %RSD .04792 .13770 .33871 .04777 #1 3828.8 2675.1 22606. 3968.3 #2 3826.2 2680.3 22715. 3971.0 Sample Name: ccvl-4278204 Acquired: 10/16/2017 14:57:47 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                                           | Ag3280                                                       | Al3082                                                               | As1890                                                               | B_2089                                                              | Ba4554-2              |
|------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------|
| Line                                           | 328.068 {103}                                                | 308.215 {109}                                                        | 189.042 {478}                                                        | 208.959 {461}                                                       | 455.403 { 74}2        |
| Units                                          | ppm                                                          | ppm                                                                  | ppm                                                                  | ppm                                                                 | ppm                   |
| Avg                                            | . <b>00639</b>                                               | .18340                                                               | . <b>01508</b>                                                       | . <b>01968</b>                                                      | .00215                |
| Stddev                                         | .00027                                                       | .00262                                                               | .00164                                                               | .00001                                                              | .00002                |
| %RSD                                           | 4.2315                                                       | 1.4280                                                               | 10.882                                                               | .05095                                                              | .87128                |
| #1                                             | .00658                                                       | .18155                                                               | .01624                                                               | .01969                                                              | .00213                |
| #2                                             | .00620                                                       | .18525                                                               | .01392                                                               | .01967                                                              | .00216                |
| Check ?<br>Value<br>Range                      | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                            | Chk Pass              |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Be3130<br>313.042 {108}<br>ppm<br>.00227<br>.00004<br>1.7956 | Ca3179<br>317.933 {106}<br>ppm<br>. <b>54291</b><br>.00158<br>.29028 | Cd2288<br>228.802 {447}<br>ppm<br>. <b>00218</b><br>.00015<br>6.7965 | **Ce4040<br>404.076 { 83}<br>ppm<br>. <b>0067</b><br>.0017<br>25.10 | ppm<br>. <b>00413</b> |
| #1                                             | .00224                                                       | .54180                                                               | .00228                                                               | .0055                                                               | .00416                |
| #2                                             | .00230                                                       | .54403                                                               | .00207                                                               | .0079                                                               | .00410                |
| Check ?<br>Value<br>Range                      | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                                                             | None                                                                | Chk Pass              |
| Elem                                           | Cr2677                                                       | Cu3273                                                               | Fe2599                                                               | K_7664                                                              | Li6707                |
| Line                                           | 267.716 {126}                                                | 327.396 {103}                                                        | 259.940 {130}                                                        | 766.490 { 44}                                                       | 670.784 { 50}         |
| Units                                          | ppm                                                          | ppm                                                                  | ppm                                                                  | ppm                                                                 | ppm                   |
| Avg                                            | .00410                                                       | .01086                                                               | . <b>06421</b>                                                       | . <b>53199</b>                                                      | .03071                |
| Stddev                                         | .00053                                                       | .00027                                                               | .00003                                                               | .00160                                                              | .00086                |
| %RSD                                           | 12.933                                                       | 2.4856                                                               | .04056                                                               | .29993                                                              | 2.8158                |
| #1                                             | .00448                                                       | .01105                                                               | .06419                                                               | .53312                                                              | .03010                |
| #2                                             | .00373                                                       | .01066                                                               | .06423                                                               | .53086                                                              | .03133                |
| Check ?<br>Value<br>Range                      | Chk Pass                                                     | Chk Pass                                                             | Chk Pass                                                             | Chk Pass                                                            | Chk Pass              |

Sample Name: ccvl-4278204 Acquired: 10/16/2017 14:57:47 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>ppm<br>.21660<br>.00241<br>1.1133        | Mn2576<br>257.610 {131}<br>ppm<br>.00350<br>.00003<br>.76133         |                                                                      | ppm                                                                  |                                                                      |
|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| #1<br>#2                                       | .21489<br>.21830                                                     | .00348<br>.00352                                                     | .01039<br>.01001                                                     | 1.0244<br>1.0226                                                     | .00991<br>.00998                                                     |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>ppm<br>. <b>01167</b><br>.00014<br>1.1810 | S_1820<br>182.034 {485}<br>ppm<br>. <b>18559</b><br>.00209<br>1.1246 | Sb2068<br>206.833 {463}<br>ppm<br>. <b>02161</b><br>.00064<br>2.9664 | Se1960<br>196.090 {472}<br>ppm<br>. <b>02724</b><br>.00190<br>6.9696 | ppm<br>. <b>48005</b>                                                |
| #1<br>#2                                       | .01177<br>.01157                                                     | .18411<br>.18706                                                     | .02116<br>.02206                                                     | .02590<br>.02858                                                     | .47805<br>.48205                                                     |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             |
| Elem<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>ppm<br>.01021<br>.00032<br>3.1318         | Sr4077<br>407.771 { 83}<br>ppm<br>.00511<br>.00014<br>2.7371         | Ti3349 334.904 {101}     ppm .00515 .00013 2.4753                    |                                                                      | V_2924<br>292.402 {115}<br>ppm<br>. <b>00533</b><br>.00026<br>4.9632 |
| #1<br>#2                                       | .00999<br>.01044                                                     | .00501<br>.00521                                                     | .00525<br>.00506                                                     | .02261<br>.02177                                                     | .00551<br>.00514                                                     |
| Check ?<br>Value<br>Range                      | Chk Pass                                                             |

Sample Name: ccvl-4278204 Acquired: 10/16/2017 14:57:47 Type: QC Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

 Elem
 Zn2062

 Line
 206.200 {163}

 Units
 ppm

 Avg
 .01152

 Stddev
 .00013

 %RSD
 1.1691

#1 .01143 #2 .01162

Check? Chk Pass

Value Range

Range

Int. Std. In2306 Y\_2243 Y\_3600 Y\_3774 230.606 {446} 360.073 { 94} 377.433 { 89} 224.306 {450} Line Cts/S Units Cts/S Cts/S Cts/S Avg 3792.1 2664.9 22445. 3885.9 105. 13.9 Stddev .9 .2 %RSD .02258 .00676 .46668 .35790 #1 3792.7 2665.0 22371. 3895.7

#1 3792.7 2003.0 22371. 3893.7 #2 3791.5 2664.7 22519. 3876.0 Sample Name: 480-125681-A-6-D Acquired: 10/16/2017 15:01:24 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082                      | As1890        | B_2089        | Ba4554         |
|------------------------------------|---------------|-----------------------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109}               | 189.042 {478} | 208.959 {461} | 455.403 { 74}  |
| IS Ref                             | (Y_3600)      | (Y_3774)                    | (Y_2243)      | (Y_2243)      | (Y_3774)       |
| Units                              | ppm           | ppm                         | ppm           | ppm           | ppm            |
| Avg                                | .01081        | F 614.94                    | .05552        | .64107        | <b>4.9569</b>  |
| Stddev                             | .00090        | 1.10                        | .00411        | .00341        | .0089          |
| %RSD                               | 8.2933        | .17915                      | 7.4031        | .53162        | .17884         |
| #1                                 | .01018        | 615.72                      | .05261        | .63866        | 4.9507         |
| #2                                 | .01145        | 614.16                      | .05842        | .64348        | 4.9632         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Fail<br>540.00<br>20000 | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179                      | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106}               | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)                    | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm                         | ppm           | ppm           | ppm            |
| Avg                                | .00200        | 620.87                      | .04861        | .2061         | .10858         |
| Stddev                             | .00012        | 1.21                        | .00007        | .0124         | .00072         |
| %RSD                               | 5.7670        | .19547                      | .13483        | 6.012         | .66401         |
| #1                                 | .00192        | 621.72                      | .04865        | .2149         | .10909         |
| #2                                 | .00209        | 620.01                      | .04856        | .1973         | .10807         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass                    | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273                      | Fe2714        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103}               | 271.441 {124} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)                    | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm                         | ppm           | ppm           | ppm            |
| Avg                                | .59712        | <b>9.3978</b>               | 298.94        | 23.200        | . <b>07763</b> |
| Stddev                             | .00139        | .0025                       | .03           | .009          | .00021         |
| %RSD                               | .23221        | .02643                      | .01090        | .04021        | .26430         |
| #1                                 | .59810        | 9.3961                      | 298.92        | 23.193        | .07778         |
| #2                                 | .59614        | 9.3996                      | 298.96        | 23.206        | .07749         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass                    | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: 480-125681-A-6-D Acquired: 10/16/2017 15:01:24 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br><b>60.535</b><br>.014<br>.02258 | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br>12.889<br>.051<br>.39202 | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.03833<br>.00002<br>.03982 | Na8183<br>818.326 { 41}<br>(Y_3774)<br>ppm<br>100.69<br>.03 | (In2306)<br>ppm<br>. <b>25261</b> |
|----------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------|
| #1                                                       | 60.526                                                                         | 12.854                                                                 | .03832                                                                   | 100.67                                                      | .25281                            |
| #2                                                       | 60.545                                                                         | 12.925                                                                 | .03834                                                                   | 100.71                                                      | .25241                            |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                               | Chk Pass                                                                 | Chk Pass                                                    | Chk Pass                          |
| Elem                                                     | Pb2203                                                                         | S_1820                                                                 | Sb2068                                                                   | Se1960                                                      |                                   |
| Line                                                     | 220.353 {453}                                                                  | 182.034 {485}                                                          | 206.833 {463}                                                            | 196.090 {472}                                               |                                   |
| IS Ref                                                   | (In2306)                                                                       | (Y_2243)                                                               | (Y_2243)                                                                 | (Y_2243)                                                    |                                   |
| Units                                                    | ppm                                                                            | ppm                                                                    | ppm                                                                      | ppm                                                         |                                   |
| Avg                                                      | <b>2.7084</b>                                                                  | <b>36.223</b>                                                          | .14675                                                                   | .00267                                                      |                                   |
| Stddev                                                   | .0075                                                                          | .098                                                                   | .00206                                                                   | .00167                                                      |                                   |
| %RSD                                                     | .27671                                                                         | .27103                                                                 | 1.4045                                                                   | 62.415                                                      |                                   |
| #1                                                       | 2.7137                                                                         | 36.154                                                                 | .14529                                                                   | .00149                                                      | 1.2185                            |
| #2                                                       | 2.7031                                                                         | 36.292                                                                 | .14821                                                                   | .00385                                                      | 1.2120                            |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                               | Chk Pass                                                                 | Chk Pass                                                    | Chk Pass                          |
| Elem                                                     | Sn1899                                                                         | Sr4077                                                                 | Ti3349 334.904 {101} (Y_3600) ppm F 22.984 .168 .73083                   | TI1908                                                      | V_2924                            |
| Line                                                     | 189.989 {477}                                                                  | 407.771 { 83}                                                          |                                                                          | 190.856 {477}                                               | 292.402 {115}                     |
| IS Ref                                                   | (In2306)                                                                       | (Y_3774)                                                               |                                                                          | (In2306)                                                    | (Y_3600)                          |
| Units                                                    | ppm                                                                            | ppm                                                                    |                                                                          | ppm                                                         | ppm                               |
| Avg                                                      | . <b>55128</b>                                                                 | 1. <b>7411</b>                                                         |                                                                          | 01194                                                       | .19369                            |
| Stddev                                                   | .00077                                                                         | .0045                                                                  |                                                                          | .00464                                                      | .00070                            |
| %RSD                                                     | .13975                                                                         | .25720                                                                 |                                                                          | 38.890                                                      | .36284                            |
| #1                                                       | .55183                                                                         | 1.7379                                                                 | 22.865                                                                   | 00866                                                       | .19319                            |
| #2                                                       | .55074                                                                         | 1.7442                                                                 | 23.103                                                                   | 01523                                                       | .19419                            |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                               | Chk Fail<br>18.000<br>00500                                              | Chk Pass                                                    | Chk Pass                          |

Sample Name: 480-125681-A-6-D Acquired: 10/16/2017 15:01:24 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

Comment:

Value Range

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Zn2062<br>206.200 {163}<br>(Y_3600)<br>ppm<br>F 20.565<br>.039<br>.19151 |                                                             |                     |                        |
|----------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|---------------------|------------------------|
| #1<br>#2                                                 | 20.537<br>20.593                                                         |                                                             |                     |                        |
| Check ?<br>High Limit<br>Low Limit                       | Chk Fail<br>18.000<br>01000                                              |                                                             |                     |                        |
| Int. Std.<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD      | In2306<br>230.606 {446}<br>Cts/S<br>2772.7<br>2.6<br>.09276              | Y_2243<br>224.306 {450}<br>Cts/S<br>2522.5<br>1.6<br>.06203 | <del></del>         | 377.433 { 89}<br>Cts/S |
| #1<br>#2                                                 | 2770.9<br>2774.5                                                         | 2523.6<br>2521.4                                            | 20400.<br>20346.    | 4168.7<br>4161.8       |
| Check ?<br>Value                                         | Chk Pass<br>74.715%                                                      | Chk Pass<br>97.877%                                         | Chk Pass<br>92.735% | Chk Pass<br>109.33%    |

Sample Name: 480-125681-A-7-D Acquired: 10/16/2017 15:05:09 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280         | Al3082        | As1890                      | B_2089         | Ba4554         |
|------------------------------------|----------------|---------------|-----------------------------|----------------|----------------|
| Line                               | 328.068 {103}  | 308.215 {109} | 189.042 {478}               | 208.959 {461}  | 455.403 { 74}  |
| IS Ref                             | (Y_3600)       | (Y_3774)      | (Y_2243)                    | (Y_2243)       | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm                         | ppm            | ppm            |
| Avg                                | .00861         | <b>318.66</b> | .07096                      | . <b>89761</b> | <b>4.2859</b>  |
| Stddev                             | .00035         | .53           | .00132                      | .00062         | .0289          |
| %RSD                               | 4.0388         | .16613        | 1.8592                      | .06938         | .67512         |
| #1                                 | .00836         | 318.29        | .07003                      | .89717         | 4.2654         |
| #2                                 | .00885         | 319.04        | .07189                      | .89805         | 4.3063         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                    | Chk Pass       | Chk Pass       |
| Elem                               | Be3130         | Ca3179        | Cd2288                      | **Ce4040       | Co2286         |
| Line                               | 313.042 {108}  | 317.933 {106} | 228.802 {447}               | 404.076 { 83}  | 228.616 {447}  |
| IS Ref                             | (Y_3774)       | (Y_3774)      | (Y_2243)                    | (Y_3774)       | (In2306)       |
| Units                              | ppm            | ppm           | ppm                         | ppm            | ppm            |
| Avg                                | .00179         | <b>593.58</b> | .04138                      | .1514          | .11262         |
| Stddev                             | .00016         | 4.45          | .00009                      | .0091          | .00077         |
| %RSD                               | 8.6826         | .74962        | .21580                      | 6.037          | .68476         |
| #1                                 | .00168         | 596.73        | .04132                      | .1449          | .11316         |
| #2                                 | .00190         | 590.44        | .04145                      | .1579          | .11207         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                    | Chk Pass       | Chk Pass       |
| Elem                               | Cr2677         | Cu3273        | Fe2714                      | <b>—</b>       | Li6707         |
| Line                               | 267.716 {126}  | 327.396 {103} | 271.441 {124}               |                | 670.784 { 50}  |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_3774)                    |                | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm                         |                | ppm            |
| Avg                                | . <b>85983</b> | 18.855        | F 555.04                    |                | . <b>10221</b> |
| Stddev                             | .00098         | .046          | 2.33                        |                | .00095         |
| %RSD                               | .11413         | .24504        | .42041                      |                | .92674         |
| #1                                 | .86052         | 18.822        | 553.39                      | 24.239         | .10154         |
| #2                                 | .85913         | 18.887        | 556.69                      | 24.473         | .10288         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Fail<br>540.00<br>05000 | Chk Pass       | Chk Pass       |

Sample Name: 480-125681-A-7-D Acquired: 10/16/2017 15:05:09 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br><b>84.291</b><br>.140<br>.16606   | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br><b>6.8272</b><br>.0101<br>.14838 | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.05893<br>.00017<br>.28207 | Na8183<br>818.326 { 41}<br>(Y_3774)<br>ppm<br><b>72.006</b><br>.457<br>.63464 | 231.604 {446}<br>(In2306)<br>ppm<br>. <b>41796</b> |
|----------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|
| #1<br>#2                                                 | 84.192<br>84.390                                                                 | 6.8343<br>6.8200                                                               | .05904<br>.05881                                                         | 71.683<br>72.329                                                              |                                                    |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                      | Chk Pass                                           |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br><b>2.1184</b><br>.0050<br>.23833   | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br><b>36.945</b><br>.024<br>.06544  | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>.13036<br>.00084<br>.64594 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>.00097<br>.00150<br>154.32      | ppm<br>. <b>94652</b><br>.00636                    |
| #1<br>#2                                                 | 2.1220<br>2.1148                                                                 | 36.928<br>36.962                                                               | .13096<br>.12977                                                         | .00203<br>00009                                                               |                                                    |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                       | Chk Pass                                                                 | Chk Pass                                                                      | Chk Pass                                           |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>. <b>47285</b><br>.00380<br>.80422 | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>1.4280<br>.0090<br>.63283        | Ti3349 334.904 {101} (Y_3600) ppm F 23.363 .234 1.0016                   | TI1908<br>190.856 {477}<br>(In2306)<br>ppm<br>01913<br>.00002<br>.10517       | _                                                  |
| #1<br>#2                                                 | .47554<br>.47016                                                                 | 1.4217<br>1.4344                                                               | 23.197<br>23.528                                                         | 01915<br>01912                                                                | .20017<br>.20026                                   |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                         | Chk Pass                                                                       | Chk Fail<br>18.000<br>00500                                              | Chk Pass                                                                      | Chk Pass                                           |

Sample Name: 480-125681-A-7-D Acquired: 10/16/2017 15:05:09 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Zn2062<br>206.200 {163}<br>(Y_3600)<br>ppm<br>F 28.365<br>.005<br>.01634 |                                                                   |                     |                     |
|----------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------|---------------------|
| #1<br>#2                                                 | 28.362<br>28.368                                                         |                                                                   |                     |                     |
| Check ?<br>High Limit<br>Low Limit                       | Chk Fail<br>18.000<br>01000                                              |                                                                   |                     |                     |
| Int. Std.<br>Line<br>Units<br>Avg<br>Stddev<br>%RSD      | In2306<br>230.606 {446}<br>Cts/S<br><b>2776.0</b><br>5.8<br>.21058       | Y_2243<br>224.306 {450}<br>Cts/S<br><b>2520.9</b><br>.1<br>.00510 |                     | Cts/S               |
| #1<br>#2                                                 | 2771.9<br>2780.2                                                         | 2520.8<br>2521.0                                                  | 20963.<br>20896.    | 4141.2<br>4144.0    |
| Check ?<br>Value<br>Range                                | Chk Pass<br>74.805%                                                      | Chk Pass<br>97.814%                                               | Chk Pass<br>95.272% | Chk Pass<br>108.73% |

Sample Name: 480-125681-A-8-E Acquired: 10/16/2017 15:09:07 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082                      | As1890                      | B_2089        | Ba4554         |
|------------------------------------|---------------|-----------------------------|-----------------------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109}               | 189.042 {478}               | 208.959 {461} | 455.403 { 74}  |
| IS Ref                             | (Y_3600)      | (Y_3774)                    | (Y_2243)                    | (Y_2243)      | (Y_3774)       |
| Units                              | ppm           | ppm                         | ppm                         | ppm           | ppm            |
| Avg                                | .02069        | 176.94                      | .09110                      | 1.0721        | <b>7.3000</b>  |
| Stddev                             | .00031        | .11                         | .00129                      | .0024         | .0366          |
| %RSD                               | 1.5111        | .06491                      | 1.4150                      | .22129        | .50130         |
| #1                                 | .02091        | 177.02                      | .09019                      | 1.0737        | 7.3259         |
| #2                                 | .02046        | 176.85                      | .09202                      | 1.0704        | 7.2742         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass                    | Chk Pass                    | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179                      | Cd2288                      | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106}               | 228.802 {447}               | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)                    | (Y_2243)                    | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm                         | ppm                         | ppm           | ppm            |
| Avg                                | .00237        | <b>670.99</b>               | .07898                      | .2061         | .20925         |
| Stddev                             | .00008        | 2.58                        | .00058                      | .0150         | .00075         |
| %RSD                               | 3.3643        | .38507                      | .72914                      | 7.303         | .35970         |
| #1                                 | .00243        | 672.81                      | .07939                      | .2167         | .20978         |
| #2                                 | .00231        | 669.16                      | .07857                      | .1954         | .20871         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass                    | Chk Pass                    | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273                      | Fe2714                      | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103}               | 271.441 {124}               | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)                    | (Y_3774)                    | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm                         | ppm                         | ppm           | ppm            |
| Avg                                | <b>4.6543</b> | F 52.777                    | F 554.80                    | <b>29.477</b> | . <b>08412</b> |
| Stddev                             | .0097         | .508                        | .31                         | .059          | .00059         |
| %RSD                               | .20848        | .96256                      | .05644                      | .20144        | .69552         |
| #1                                 | 4.6611        | 52.418                      | 554.57                      | 29.519        | .08371         |
| #2                                 | 4.6474        | 53.137                      | 555.02                      | 29.435        | .08453         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Fail<br>23.000<br>01000 | Chk Fail<br>540.00<br>05000 | Chk Pass      | Chk Pass       |

Sample Name: 480-125681-A-8-E Acquired: 10/16/2017 15:09:07 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Mg2790<br>279.079 {121}2<br>(Y_3600)<br>ppm<br><b>56.710</b><br>.156<br>.27444 | Mn2576<br>257.610 {131}<br>(Y_3600)<br>ppm<br><b>9.0578</b><br>.0029<br>.03225 | Mo2020<br>202.030 {467}<br>(Y_2243)<br>ppm<br>.06853<br>.00064<br>.93820         | Na8183<br>818.326 { 41}<br>(Y_3774)<br>ppm<br><b>73.382</b><br>.055<br>.07469 | 231.604 {446}<br>(In2306)<br>ppm<br>.60513<br>.00150 |
|----------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|
| #1<br>#2                                                 | 56.820<br>56.600                                                               | 9.0557<br>9.0599                                                               | .06899<br>.06808                                                                 | 73.343<br>73.420                                                              |                                                      |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                       | Chk Pass                                                                         | Chk Pass                                                                      | Chk Pass                                             |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Pb2203<br>220.353 {453}<br>(In2306)<br>ppm<br><b>2.6947</b><br>.0078<br>.29073 | S_1820<br>182.034 {485}<br>(Y_2243)<br>ppm<br><b>63.986</b><br>.135<br>.21043  | Sb2068<br>206.833 {463}<br>(Y_2243)<br>ppm<br>. <b>21256</b><br>.00237<br>1.1146 | Se1960<br>196.090 {472}<br>(Y_2243)<br>ppm<br>.00690<br>.00247<br>35.761      | ppm<br>. <b>88769</b>                                |
| #1<br>#2                                                 | 2.7002<br>2.6891                                                               | 64.081<br>63.891                                                               | .21089<br>.21424                                                                 | .00516<br>.00865                                                              |                                                      |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                       | Chk Pass                                                                         | Chk Pass                                                                      | Chk Pass                                             |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Sn1899<br>189.989 {477}<br>(In2306)<br>ppm<br>.81566<br>.00310<br>.38063       | Sr4077<br>407.771 { 83}<br>(Y_3774)<br>ppm<br>1.7854<br>.0020<br>.11418        | Ti3349 334.904 {101} (Y_3600) ppm F 20.183 .075 .37221                           | TI1908<br>190.856 {477}<br>(In2306)<br>ppm<br>01140<br>.00013<br>1.1829       | 292.402 {115}<br>(Y_3600)<br>ppm<br>.17070<br>.00002 |
| #1<br>#2                                                 | .81785<br>.81346                                                               | 1.7869<br>1.7840                                                               | 20.236<br>20.130                                                                 | 01131<br>01150                                                                | .17069<br>.17072                                     |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                       | Chk Pass                                                                       | Chk Fail<br>18.000<br>00500                                                      | Chk Pass                                                                      | Chk Pass                                             |

Sample Name: 480-125681-A-8-E Acquired: 10/16/2017 15:09:07 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm 15.562 Avg Stddev .111 %RSD .71205 #1 15.640 #2 15.484 Check? **Chk Pass** High Limit Low Limit Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 2784.7 2485.0 21038. 4197.7 Avg 2.2 2.8 49. 12.6 Stddev %RSD .07732 .11464 .23075 .30118

Sample Name: 480-125681-A-9-D Acquired: 10/16/2017 15:13:09 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280                      | Al3082        | As1890                      | B_2089        | Ba4554         |
|------------------------------------|-----------------------------|---------------|-----------------------------|---------------|----------------|
| Line                               | 328.068 {103}               | 308.215 {109} | 189.042 {478}               | 208.959 {461} | 455.403 { 74}  |
| IS Ref                             | (Y_3600)                    | (Y_3774)      | (Y_2243)                    | (Y_2243)      | (Y_3774)       |
| Units                              | ppm                         | ppm           | ppm                         | ppm           | ppm            |
| Avg                                | .00730                      | 193.95        | .11190                      | 1.1523        | <b>7.0159</b>  |
| Stddev                             | .00098                      | .72           | .00032                      | .0010         | .0707          |
| %RSD                               | 13.354                      | .36957        | .28710                      | .08761        | 1.0083         |
| #1                                 | .00799                      | 193.45        | .11213                      | 1.1530        | 6.9659         |
| #2                                 | .00661                      | 194.46        | .11168                      | 1.1516        | 7.0659         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass                    | Chk Pass      | Chk Pass                    | Chk Pass      | Chk Pass       |
| Elem                               | Be3130                      | Ca3179        | Cd2288                      | **Ce4040      | Co2286         |
| Line                               | 313.042 {108}               | 317.933 {106} | 228.802 {447}               | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)                    | (Y_3774)      | (Y_2243)                    | (Y_3774)      | (In2306)       |
| Units                              | ppm                         | ppm           | ppm                         | ppm           | ppm            |
| Avg                                | .00206                      | <b>691.18</b> | . <b>04443</b>              | .2901         | . <b>20157</b> |
| Stddev                             | .00012                      | 1.41          | .00018                      | .0222         | .00026         |
| %RSD                               | 5.9464                      | .20419        | .39891                      | 7.654         | .13132         |
| #1                                 | .00215                      | 690.19        | .04456                      | .2744         | .20175         |
| #2                                 | .00198                      | 692.18        | .04431                      | .3058         | .20138         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass                    | Chk Pass      | Chk Pass                    | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677                      | Cu3273        | Fe2714                      | K_7664        | Li6707         |
| Line                               | 267.716 {126}               | 327.396 {103} | 271.441 {124}               | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)                    | (Y_3600)      | (Y_3774)                    | (Y_3774)      | (Y_3774)       |
| Units                              | ppm                         | ppm           | ppm                         | ppm           | ppm            |
| Avg                                | F 9.4693                    | <b>8.1660</b> | F 578.06                    | <b>25.626</b> | . <b>05569</b> |
| Stddev                             | .0149                       | .0177         | 1.22                        | .003          | .00135         |
| %RSD                               | .15758                      | .21707        | .21021                      | .01022        | 2.4295         |
| #1                                 | 9.4587                      | 8.1534        | 577.20                      | 25.628        | .05665         |
| #2                                 | 9.4798                      | 8.1785        | 578.92                      | 25.624        | .05473         |
| Check ?<br>High Limit<br>Low Limit | Chk Fail<br>9.0000<br>00400 | Chk Pass      | Chk Fail<br>540.00<br>05000 | Chk Pass      | Chk Pass       |

Sample Name: 480-125681-A-9-D Acquired: 10/16/2017 15:13:09 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576                      | Mo2020                                                 | Na8183        | Ni2316         |
|------------------------------------|----------------|-----------------------------|--------------------------------------------------------|---------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131}               | 202.030 {467}                                          | 818.326 { 41} | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)                    | (Y_2243)                                               | (Y_3774)      | (In2306)       |
| Units                              | ppm            | ppm                         | ppm                                                    | ppm           | ppm            |
| Avg                                | <b>62.577</b>  | <b>5.3210</b>               | .08232                                                 | <b>96.238</b> | .91887         |
| Stddev                             | .003           | .0016                       | .00014                                                 | .059          | .00220         |
| %RSD                               | .00522         | .03047                      | .16806                                                 | .06088        | .23933         |
| #1                                 | 62.579         | 5.3222                      | .08242                                                 | 96.196        | .92043         |
| #2                                 | 62.575         | 5.3199                      | .08222                                                 | 96.279        | .91732         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass                    | Chk Pass                                               | Chk Pass      | Chk Pass       |
| Elem                               | Pb2203         | S_1820                      | Sb2068                                                 | Se1960        | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485}               | 206.833 {463}                                          | 196.090 {472} | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)                    | (Y_2243)                                               | (Y_2243)      | (Y_3774)       |
| Units                              | ppm            | ppm                         | ppm                                                    | ppm           | ppm            |
| Avg                                | <b>3.2404</b>  | <b>45.694</b>               | .32718                                                 | .00106        | . <b>94626</b> |
| Stddev                             | .0010          | .051                        | .00434                                                 | .00179        | .00475         |
| %RSD                               | .03203         | .11086                      | 1.3280                                                 | 168.29        | .50188         |
| #1                                 | 3.2397         | 45.729                      | .33025                                                 | .00233        | .94290         |
| #2                                 | 3.2412         | 45.658                      | .32410                                                 | 00020         | .94962         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass                    | Chk Pass                                               | Chk Pass      | Chk Pass       |
| Elem                               | Sn1899         | Sr4077                      | Ti3349 334.904 {101} (Y_3600) ppm F 26.293 .064 .24290 | TI1908        | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83}               |                                                        | 190.856 {477} | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)                    |                                                        | (In2306)      | (Y_3600)       |
| Units                              | ppm            | ppm                         |                                                        | ppm           | ppm            |
| Avg                                | . <b>63715</b> | F 10.320                    |                                                        | 01692         | .23531         |
| Stddev                             | .00372         | .138                        |                                                        | .00131        | .00007         |
| %RSD                               | .58415         | 1.3395                      |                                                        | 7.7299        | .02921         |
| #1                                 | .63978         | 10.417                      | 26.247                                                 | 01784         | .23536         |
| #2                                 | .63451         | 10.222                      | 26.338                                                 | 01599         | .23526         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Fail<br>9.0000<br>00500 | Chk Fail<br>18.000<br>00500                            | Chk Pass      | Chk Pass       |

Sample Name: 480-125681-A-9-D Acquired: 10/16/2017 15:13:09 Type: Unk Method: ICAP2 June 2017(v154) Corr. Factor: 1.000000 Mode: CONC User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line IS Ref  $(Y_3600)$ Units ppm 7.6832 Avg Stddev .0021 %RSD .02756 #1 7.6847 7.6817 #2 Check? **Chk Pass** High Limit Low Limit lr

| Int. Std.                 | In2306        | Y_2243        | Y_3600        | Y_3774        |
|---------------------------|---------------|---------------|---------------|---------------|
| Line                      | 230.606 {446} | 224.306 {450} | 360.073 { 94} | 377.433 { 89} |
| Units                     | Cts/S         | Cts/S         | Cts/S         | Cts/S         |
| Avg                       | <b>2706.0</b> | <b>2545.8</b> | 21570.        | <b>4260.2</b> |
| Stddev                    | 2.6           | 1.4           | 43.           | 1.7           |
| %RSD                      | .09706        | .05588        | .20133        | .04051        |
| #1                        | 2707.8        | 2546.8        | 21601.        | 4261.4        |
| #2                        | 2704.1        | 2544.8        | 21540.        | 4258.9        |
| Chook 2                   | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      |
| Check ?<br>Value<br>Range | 72.917%       | 98.782%       | 98.188%       | 111.82%       |

Sample Name: 480-125681-A-10-A Acquired: 10/16/2017 15:17:06 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment:

| Elem                                                     | Ag3280                                                                   | Al3082                                                                       | As1890                                                                   | B_2089                                                                  | Ba4554                      |
|----------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|
| Line                                                     | 328.068 {103}                                                            | 308.215 {109}                                                                | 189.042 {478}                                                            | 208.959 {461}                                                           | 455.403 { 74}               |
| IS Ref                                                   | (Y_3600)                                                                 | (Y_3774)                                                                     | (Y_2243)                                                                 | (Y_2243)                                                                | (Y_3774)                    |
| Units                                                    | ppm                                                                      | ppm                                                                          | ppm                                                                      | ppm                                                                     | ppm                         |
| Avg                                                      | .01219                                                                   | <b>202.72</b>                                                                | .07224                                                                   | 1.0749                                                                  | <b>3.8828</b>               |
| Stddev                                                   | .00057                                                                   | .11                                                                          | .00611                                                                   | .0059                                                                   | .0056                       |
| %RSD                                                     | 4.6648                                                                   | .05517                                                                       | 8.4526                                                                   | .54585                                                                  | .14487                      |
| #1                                                       | .01179                                                                   | 202.80                                                                       | .07656                                                                   | 1.0790                                                                  | 3.8788                      |
| #2                                                       | .01259                                                                   | 202.64                                                                       | .06793                                                                   | 1.0707                                                                  | 3.8868                      |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                     | Chk Pass                                                                 | Chk Pass                                                                | Chk Pass                    |
| Elem<br>Line<br>IS Ref<br>Units<br>Avg<br>Stddev<br>%RSD | Be3130<br>313.042 {108}<br>(Y_3774)<br>ppm<br>.00159<br>.00006<br>3.8470 | Ca3179<br>317.933 {106}<br>(Y_3774)<br>ppm<br><b>574.36</b><br>.68<br>.11863 | Cd2288<br>228.802 {447}<br>(Y_2243)<br>ppm<br>.08674<br>.00037<br>.43107 | **Ce4040<br>404.076 { 83}<br>(Y_3774)<br>ppm<br>.1981<br>.0090<br>4.527 | (In2306)<br>ppm             |
| #1                                                       | .00155                                                                   | 573.88                                                                       | .08700                                                                   | .2044                                                                   | 123.04                      |
| #2                                                       | .00164                                                                   | 574.84                                                                       | .08647                                                                   | .1917                                                                   | 124.37                      |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Pass                                                                     | Chk Pass                                                                 | Chk Pass                                                                | Chk Fail<br>18.000<br>00400 |
| Elem                                                     | Cr2677                                                                   | Cu3273                                                                       | Fe2714                                                                   | K_7664                                                                  | Li6707                      |
| Line                                                     | 267.716 {126}                                                            | 327.396 {103}                                                                | 271.441 {124}                                                            | 766.490 { 44}                                                           | 670.784 { 50}               |
| IS Ref                                                   | (Y_3600)                                                                 | (Y_3600)                                                                     | (Y_3774)                                                                 | (Y_3774)                                                                | (Y_3774)                    |
| Units                                                    | ppm                                                                      | ppm                                                                          | ppm                                                                      | ppm                                                                     | ppm                         |
| Avg                                                      | .54393                                                                   | F 39.857                                                                     | F 829.77                                                                 | <b>21.686</b>                                                           | <b>4.7024</b>               |
| Stddev                                                   | .00100                                                                   | .097                                                                         | .60                                                                      | .022                                                                    | .0018                       |
| %RSD                                                     | .18438                                                                   | .24384                                                                       | .07206                                                                   | .10376                                                                  | .03855                      |
| #1                                                       | .54322                                                                   | 39.788                                                                       | 829.35                                                                   | 21.670                                                                  | 4.7011                      |
| #2                                                       | .54463                                                                   | 39.926                                                                       | 830.19                                                                   | 21.702                                                                  | 4.7037                      |
| Check ?<br>High Limit<br>Low Limit                       | Chk Pass                                                                 | Chk Fail<br>23.000<br>01000                                                  | Chk Fail<br>540.00<br>05000                                              | Chk Pass                                                                | Chk Pass                    |

Sample Name: 480-125681-A-10-A Acquired: 10/16/2017 15:17:06 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: User: jrk Custom ID3: Comment: Ma2790 Mn2576 Mo2020 Ni2316 Elem Na8183 279.079 {121}2 257.610 {131} 202.030 {467} 818.326 { 41} 231.604 {446} Line  $(Y_3774)$ IS Ref (Y\_3600)  $(Y_3600)$ (Y 2243) (ln2306) Units ppm ppm ppm ppm ppm 69.521 5.8788 .06540 62.344 .39989 Avq Stddev .061 .0080 .00081 .315 .00122 %RSD .08787 .13613 1.2382 .50479 .30615 #1 69.478 5.8731 .06598 62.122 .40076 69.564 5.8844 .06483 62.567 .39903 #2 **Chk Pass Chk Pass** Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Pb2203 S 1820 Sb2068 Se1960 Si2881 220.353 {453} 182.034 {485} 206.833 {463} 196.090 {472} 288.158 {117}2 Line IS Ref (ln2306) (Y 2243) (Y 2243) (Y 2243) (Y 3774) Units ppm ppm ppm ppm ppm 5.3377 51.793 .11606 .00271 .97349 Avg .00379 Stddev .0178 .227 .00008 .01834 .33372 .43842 .06692 139.74 1.8834 %RSD #1 5.3503 51.954 .11611 .00540 .98646 5.3251 51.633 .00003 #2 .11600 .96053 Check? **Chk Pass Chk Pass Chk Pass Chk Pass** Chk Pass High Limit Low Limit Sr4077 V 2924 Elem Sn1899 Ti3349 TI1908 334.904 {101} 190.856 {477} 292.402 {115} 189.989 {477} 407.771 { 83} Line IS Ref (ln2306) (Y 3774) (Y 3600) (In2306)  $(Y_3600)$ Units ppm ppm ppm ppm ppm 1.2733 1.3535 F 22.067 .02425 .30928 Avg Stddev .0083 .0037 .033 .00643 .00026

.27671

1.3508

1.3561

**Chk Pass** 

%RSD

Check ? High Limit

Low Limit

#2

.64943

1.2791

1.2674

**Chk Pass** 

.14807

22.044

22.090

Chk Fail

18.000

-.00500

26.535

.02880

.01970

**Chk Pass** 

.08280

.30946

.30910

**Chk Pass** 

Sample Name: 480-125681-A-10-A Acquired: 10/16/2017 15:17:06 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm Avg 15.863 Stddev .014 %RSD .09079 #1 15.853 15.873 #2 Check? **Chk Pass** High Limit Low Limit

| Int. Std.                 | In2306              | Y_2243              | Y_3600              | Y_3774              |
|---------------------------|---------------------|---------------------|---------------------|---------------------|
| Line                      | 230.606 {446}       | 224.306 {450}       | 360.073 { 94}       | 377.433 { 89}       |
| Units                     | Cts/S               | Cts/S               | Cts/S               | Cts/S               |
| Avg                       | <b>2816.6</b>       | 2440.3              | <b>20950</b> .      | 4194.7              |
| Stddev                    | .9                  | 2.4                 | 33.                 | 1.9                 |
| %RSD                      | .03326              | .09922              | .15726              | .04514              |
| #1                        | 2816.0              | 2438.6              | 20974.              | 4196.1              |
| #2                        | 2817.3              | 2442.1              | 20927.              | 4193.4              |
| Check ?<br>Value<br>Range | Chk Pass<br>75.899% | Chk Pass<br>94.690% | Chk Pass<br>95.366% | Chk Pass<br>110.10% |

Sample Name: blank Acquired: 10/16/2017 15:21:08 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082         | As1890        | B_2089         | Ba4554-2       |
|------------------------------------|---------------|----------------|---------------|----------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109}  | 189.042 {478} | 208.959 {461}  | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)       | (Y_2243)      | (Y_2243)       | (Y_3600)       |
| Units                              | ppm           | ppm            | ppm           | ppm            | ppm            |
| Avg                                | .00015        | . <b>04306</b> | 00158         | .00195         | .00091         |
| Stddev                             | .00046        | .02241         | .00076        | .00031         | .00001         |
| %RSD                               | 304.52        | 52.047         | 48.015        | 15.717         | .63883         |
| #1                                 | 00017         | .05891         | 00104         | .00174         | .00091         |
| #2                                 | .00047        | .02722         | 00211         | .00217         | .00090         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Be3130        | Ca3179         | Cd2288        | **Ce4040       | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106}  | 228.802 {447} | 404.076 { 83}  | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)       | (Y_2243)      | (Y_3774)       | (In2306)       |
| Units                              | ppm           | ppm            | ppm           | ppm            | ppm            |
| Avg                                | 00004         | .14461         | .00005        | .0325          | .01159         |
| Stddev                             | .00003        | .00162         | .00005        | .0018          | .00128         |
| %RSD                               | 76.255        | 1.1203         | 106.96        | 5.526          | 11.052         |
| #1                                 | 00002         | .14347         | .00001        | .0312          | .01250         |
| #2                                 | 00006         | .14576         | .00008        | .0338          | .01069         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Cr2677        | Cu3273         | Fe2599        | K_7664         | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103}  | 259.940 {130} | 766.490 { 44}  | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)       | (Y_3774)      | (Y_3774)       | (Y_3774)       |
| Units                              | ppm           | ppm            | ppm           | ppm            | ppm            |
| Avg                                | .00058        | . <b>00467</b> | .15005        | . <b>06405</b> | . <b>00241</b> |
| Stddev                             | .00016        | .00072         | .00882        | .04736         | .00161         |
| %RSD                               | 26.995        | 15.378         | 5.8768        | 73.933         | 67.076         |
| #1                                 | .00047        | .00518         | .14382        | .03057         | .00355         |
| #2                                 | .00069        | .00416         | .15629        | .09754         | .00127         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass       | Chk Pass      | Chk Pass       | Chk Pass       |

Sample Name: blank Acquired: 10/16/2017 15:21:08 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020                                                 | Na5895         | Ni2316         |
|------------------------------------|----------------|---------------|--------------------------------------------------------|----------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467}                                          | 589.592 { 57}  | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)                                               | (Y_3774)       | (In2306)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm            | ppm            |
| Avg                                | .01463         | .00110        | 00003                                                  | . <b>02571</b> | .00002         |
| Stddev                             | .00177         | .00000        | .00008                                                 | .00647         | .00001         |
| %RSD                               | 12.090         | .42396        | 278.70                                                 | 25.158         | 71.335         |
| #1                                 | .01338         | .00110        | 00008                                                  | .03029         | .00003         |
| #2                                 | .01588         | .00109        | .00003                                                 | .02114         | .00001         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068                                                 | Se1960         | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463}                                          | 196.090 {472}  | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)                                               | (Y_2243)       | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm            | ppm            |
| Avg                                | .00153         | .00883        | .00147                                                 | .00123         | 00232          |
| Stddev                             | .00012         | .00052        | .00076                                                 | .00086         | .00393         |
| %RSD                               | 7.7115         | 5.8931        | 51.602                                                 | 69.907         | 169.14         |
| #1                                 | .00144         | .00920        | .00094                                                 | .00184         | .00046         |
| #2                                 | .00161         | .00846        | .00201                                                 | .00062         | 00510          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349 334.904 {101} (Y_3600) ppm .00633 .00024 3.7191 | TI1908         | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} |                                                        | 190.856 {477}  | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)      |                                                        | (In2306)       | (Y_3600)       |
| Units                              | ppm            | ppm           |                                                        | ppm            | ppm            |
| Avg                                | .00499         | .00084        |                                                        | 00002          | .00037         |
| Stddev                             | .00023         | .00006        |                                                        | .00031         | .00013         |
| %RSD                               | 4.6867         | 7.0857        |                                                        | 1291.3         | 34.442         |
| #1                                 | .00482         | .00079        | .00616                                                 | 00024          | .00046         |
| #2                                 | .00515         | .00088        | .00649                                                 | .00020         | .00028         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass       |

Sample Name: blank Acquired: 10/16/2017 15:21:08 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm .00366 Avg .00082 Stddev %RSD 22.325 #1 .00308 #2 .00424 Check? **Chk Pass** High Limit Low Limit Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 3787.7 2659.7 22438. 3911.3 Avg Stddev 6.4 2.6 128. 6.1 %RSD .17016 .09590 .57039 .15601

2657.9

2661.5

**Chk Pass** 

103.20%

22528.

22347.

**Chk Pass** 

102.14%

3915.7

3907.0

**Chk Pass** 

102.66%

3783.2

3792.3

**Chk Pass** 

102.07%

#1

#2

Check?

Value

Range

Sample Name: blank Acquired: 10/16/2017 15:24:46 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00076        | .01703        | .00024        | .00079        | .00079         |
| Stddev                             | .00043        | .01721        | .00167        | .00015        | .00008         |
| %RSD                               | 57.254        | 101.02        | 691.92        | 19.132        | 10.247         |
| #1                                 | .00106        | .02920        | .00142        | .00068        | .00085         |
| #2                                 | .00045        | .00487        | 00094         | .00089        | .00073         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00001         | .12108        | .00006        | 0047          | .00615         |
| Stddev                             | .00000        | .00207        | .00004        | .0233         | .00000         |
| %RSD                               | 17.396        | 1.7066        | 73.185        | 496.1         | .04300         |
| #1                                 | 00000         | .12255        | .00009        | 0211          | .00615         |
| #2                                 | 00001         | .11962        | .00003        | .0118         | .00615         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00033        | .00408        | .12261        | .03208        | .00105         |
| Stddev                             | .00047        | .00020        | .00205        | .02263        | .00082         |
| %RSD                               | 142.89        | 4.8986        | 1.6698        | 70.548        | 77.845         |
| #1                                 | 00000         | .00422        | .12406        | .04809        | .00047         |
| #2                                 | .00066        | .00394        | .12116        | .01608        | .00163         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: blank Acquired: 10/16/2017 15:24:46 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020                                                 | Na5895        | Ni2316         |
|------------------------------------|----------------|---------------|--------------------------------------------------------|---------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467}                                          | 589.592 { 57} | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)                                               | (Y_3774)      | (In2306)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm           | ppm            |
| Avg                                | .01444         | .00115        | 00003                                                  | .01417        | .00038         |
| Stddev                             | .00402         | .00001        | .00005                                                 | .00377        | .00011         |
| %RSD                               | 27.807         | 1.1643        | 191.24                                                 | 26.624        | 28.344         |
| #1                                 | .01728         | .00116        | .00001                                                 | .01684        | .00045         |
| #2                                 | .01160         | .00114        | 00006                                                  | .01151        | .00030         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068                                                 | Se1960        | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463}                                          | 196.090 {472} | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)                                               | (Y_2243)      | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm           | ppm            |
| Avg                                | .00117         | 00226         | .00012                                                 | .00234        | 00422          |
| Stddev                             | .00046         | .00053        | .00113                                                 | .00012        | .01541         |
| %RSD                               | 39.605         | 23.542        | 901.75                                                 | 5.0196        | 364.99         |
| #1                                 | .00084         | 00263         | 00067                                                  | .00243        | 01512          |
| #2                                 | .00150         | 00188         | .00092                                                 | .00226        | .00668         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349 334.904 {101} (Y_3600) ppm .00402 .00052 12.881 | TI1908        | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} |                                                        | 190.856 {477} | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)      |                                                        | (In2306)      | (Y_3600)       |
| Units                              | ppm            | ppm           |                                                        | ppm           | ppm            |
| Avg                                | .00059         | .00068        |                                                        | .00006        | 00013          |
| Stddev                             | .00011         | .00008        |                                                        | .00026        | .00028         |
| %RSD                               | 19.345         | 12.345        |                                                        | 415.86        | 206.72         |
| #1                                 | .00068         | .00074        | .00438                                                 | 00012         | 00033          |
| #2                                 | .00051         | .00062        | .00365                                                 | .00025        | .00006         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass      | Chk Pass       |

Sample Name: blank Acquired: 10/16/2017 15:24:46 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm .00256 Avg .00003 Stddev %RSD 1.3395 #1 .00254 #2 .00259 Check? **Chk Pass** High Limit Low Limit Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 3781.1 2656.7 22378. 3865.6 Avg Stddev 3.6 1.9 63. 12.6 %RSD .09504 .07199 .28133 .32681

Sample Name: blank Acquired: 10/16/2017 15:40:29 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089         | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|----------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461}  | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)       | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00005        | 02491         | .00041        | 00052          | .00030         |
| Stddev                             | .00040        | .03107        | .00038        | .00011         | .00002         |
| %RSD                               | 769.34        | 124.74        | 92.363        | 21.862         | 7.3854         |
| #1                                 | 00023         | 00294         | .00014        | 00060          | .00029         |
| #2                                 | .00033        | 04688         | .00068        | 00044          | .00032         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040       | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83}  | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)       | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm            | ppm            |
| Avg                                | .00008        | .04720        | 00001         | 0122           | .00167         |
| Stddev                             | .00002        | .00050        | .00008        | .0113          | .00009         |
| %RSD                               | 21.837        | 1.0537        | 755.80        | 92.14          | 5.3200         |
| #1                                 | .00007        | .04685        | .00004        | 0043           | .00161         |
| #2                                 | .00009        | .04756        | 00006         | 0202           | .00174         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599        | K_7664         |                |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130} | 766.490 { 44}  |                |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)       |                |
| Units                              | ppm           | ppm           | ppm           | ppm            |                |
| Avg                                | .00006        | .00105        | .04222        | . <b>04412</b> |                |
| Stddev                             | .00058        | .00064        | .00329        | .02215         |                |
| %RSD                               | 1019.1        | 60.516        | 7.7969        | 50.213         |                |
| #1                                 | 00036         | .00150        | .03989        | .02845         | .00091         |
| #2                                 | .00047        | .00060        | .04455        | .05978         | .00166         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       | Chk Pass       |

Sample Name: blank Acquired: 10/16/2017 15:40:29 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020        | Na5895        | Ni2316         |
|------------------------------------|----------------|---------------|---------------|---------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467} | 589.592 { 57} | 231.604 {446}  |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm            | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00837         | .00054        | 00006         | .00591        | .00007         |
| Stddev                             | .00383         | .00002        | .00004        | .00149        | .00014         |
| %RSD                               | 45.765         | 3.5088        | 63.318        | 25.295        | 184.80         |
| #1                                 | .00566         | .00056        | 00003         | .00485        | .00017         |
| #2                                 | .01108         | .00053        | 00009         | .00697        | 00002          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068        | Se1960        | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463} | 196.090 {472} | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)      | (Y_2243)      | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00113         | 00909         | 00031         | 00091         | 00952          |
| Stddev                             | .00026         | .00025        | .00045        | .00233        | .00071         |
| %RSD                               | 23.029         | 2.7017        | 147.31        | 257.16        | 7.4455         |
| #1                                 | .00095         | 00926         | 00063         | 00256         | 01003          |
| #2                                 | .00132         | 00892         | .00001        | .00074        | 00902          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349        | TI1908        | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} | 334.904 {101} | 190.856 {477} | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)      | (Y_3600)      | (In2306)      | (Y_3600)       |
| Units                              | ppm            | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00067         | .00023        | .00188        | 00021         | .00031         |
| Stddev                             | .00012         | .00009        | .00022        | .00048        | .00041         |
| %RSD                               | 17.473         | 40.336        | 11.538        | 229.93        | 131.74         |
| #1                                 | .00059         | .00029        | .00172        | .00013        | .00002         |
| #2                                 | .00076         | .00016        | .00203        | 00055         | .00060         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |

Sample Name: blank Acquired: 10/16/2017 15:40:29 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm .00083 Avg .00003 Stddev %RSD 3.9902 #1 .00081 #2 .00086 Check? **Chk Pass** High Limit Low Limit Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 3783.8 2665.6 22564. 3913.3 Avg Stddev 1.7 1.7 61. 11.9 %RSD .04466 .06220 .26857 .30398

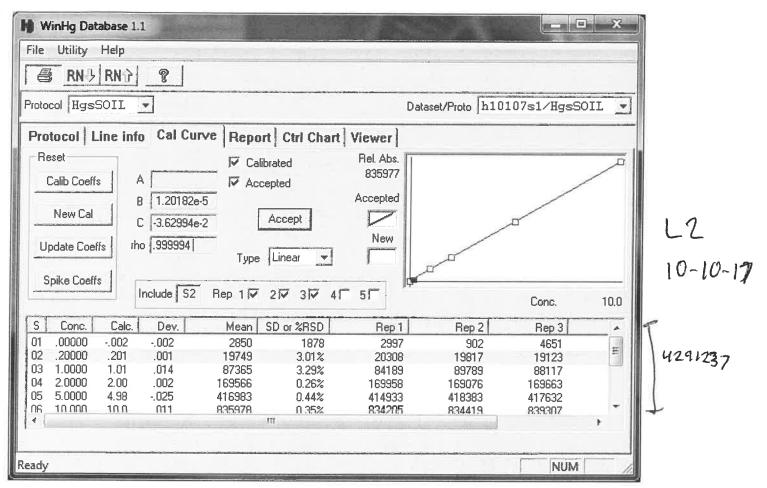
#1 3785.0 2666.7 22521. 3921.7 #2 3782.6 2664.4 22607. 3904.8 Check? **Chk Pass Chk Pass** Chk Pass **Chk Pass** 103.43% 102.71% 102.71% Value 101.96% Range

Sample Name: blank Acquired: 10/16/2017 15:44:07 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Ag3280        | Al3082        | As1890        | B_2089        | Ba4554-2       |
|------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Line                               | 328.068 {103} | 308.215 {109} | 189.042 {478} | 208.959 {461} | 455.403 { 74}2 |
| IS Ref                             | (Y_3600)      | (Y_3774)      | (Y_2243)      | (Y_2243)      | (Y_3600)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | .00077        | 00702         | 00040         | 00088         | .00011         |
| Stddev                             | .00026        | .00544        | .00018        | .00030        | .00001         |
| %RSD                               | 33.871        | 77.435        | 45.344        | 34.294        | 10.717         |
| #1                                 | .00059        | 01086         | 00053         | 00066         | .00010         |
| #2                                 | .00095        | 00318         | 00027         | 00109         | .00012         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Be3130        | Ca3179        | Cd2288        | **Ce4040      | Co2286         |
| Line                               | 313.042 {108} | 317.933 {106} | 228.802 {447} | 404.076 { 83} | 228.616 {447}  |
| IS Ref                             | (Y_3774)      | (Y_3774)      | (Y_2243)      | (Y_3774)      | (In2306)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00001         | .02255        | .00002        | 0014          | .00084         |
| Stddev                             | .00010        | .00185        | .00011        | .0020         | .00010         |
| %RSD                               | 1559.4        | 8.2139        | 705.69        | 142.0         | 12.210         |
| #1                                 | .00007        | .02386        | .00009        | 0028          | .00091         |
| #2                                 | 00008         | .02124        | 00006         | .0000         | .00077         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |
| Elem                               | Cr2677        | Cu3273        | Fe2599        | K_7664        | Li6707         |
| Line                               | 267.716 {126} | 327.396 {103} | 259.940 {130} | 766.490 { 44} | 670.784 { 50}  |
| IS Ref                             | (Y_3600)      | (Y_3600)      | (Y_3774)      | (Y_3774)      | (Y_3774)       |
| Units                              | ppm           | ppm           | ppm           | ppm           | ppm            |
| Avg                                | 00038         | .00093        | .01619        | .01001        | .00135         |
| Stddev                             | .00005        | .00026        | .00118        | .01579        | .00053         |
| %RSD                               | 14.197        | 28.309        | 7.3099        | 157.76        | 39.243         |
| #1                                 | 00034         | .00074        | .01535        | 00116         | .00173         |
| #2                                 | 00042         | .00112        | .01702        | .02118        | .00098         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass      | Chk Pass       |


Sample Name: blank Acquired: 10/16/2017 15:44:07 Type: Unk

Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000

User: jrk Custom ID1: Custom ID2: Custom ID3:

| Elem                               | Mg2790         | Mn2576        | Mo2020                                                 | Na5895         |                |
|------------------------------------|----------------|---------------|--------------------------------------------------------|----------------|----------------|
| Line                               | 279.079 {121}2 | 257.610 {131} | 202.030 {467}                                          | 589.592 { 57}  |                |
| IS Ref                             | (Y_3600)       | (Y_3600)      | (Y_2243)                                               | (Y_3774)       |                |
| Units                              | ppm            | ppm           | ppm                                                    | ppm            |                |
| Avg                                | .00185         | .00021        | 00013                                                  | 00245          |                |
| Stddev                             | .00132         | .00003        | .00006                                                 | .00675         |                |
| %RSD                               | 71.346         | 14.737        | 48.062                                                 | 275.99         |                |
| #1                                 | .00092         | .00024        | 00008                                                  | .00233         | 00001          |
| #2                                 | .00278         | .00019        | 00017                                                  | 00722          | 00014          |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass       |
| Elem                               | Pb2203         | S_1820        | Sb2068                                                 | Se1960         | Si2881         |
| Line                               | 220.353 {453}  | 182.034 {485} | 206.833 {463}                                          | 196.090 {472}  | 288.158 {117}2 |
| IS Ref                             | (In2306)       | (Y_2243)      | (Y_2243)                                               | (Y_2243)       | (Y_3774)       |
| Units                              | ppm            | ppm           | ppm                                                    | ppm            | ppm            |
| Avg                                | . <b>00142</b> | 00959         | 00029                                                  | 00071          | . <b>00783</b> |
| Stddev                             | .00035         | .00201        | .00016                                                 | .00053         | .00400         |
| %RSD                               | 24.778         | 20.935        | 55.956                                                 | 74.614         | 51.093         |
| #1                                 | .00167         | 01101         | 00018                                                  | 00034          | .00500         |
| #2                                 | .00117         | 00817         | 00041                                                  | 00109          | .01066         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass       |
| Elem                               | Sn1899         | Sr4077        | Ti3349 334.904 {101} (Y_3600) ppm .00081 .00007 9.0934 | TI1908         | V_2924         |
| Line                               | 189.989 {477}  | 407.771 { 83} |                                                        | 190.856 {477}  | 292.402 {115}  |
| IS Ref                             | (In2306)       | (Y_3774)      |                                                        | (In2306)       | (Y_3600)       |
| Units                              | ppm            | ppm           |                                                        | ppm            | ppm            |
| Avg                                | .00023         | .00004        |                                                        | . <b>00151</b> | .00030         |
| Stddev                             | .00044         | .00000        |                                                        | .00136         | .00010         |
| %RSD                               | 189.31         | 8.4870        |                                                        | 90.170         | 33.751         |
| #1                                 | 00008          | .00005        | .00075                                                 | .00248         | .00023         |
| #2                                 | .00055         | .00004        | .00086                                                 | .00055         | .00037         |
| Check ?<br>High Limit<br>Low Limit | Chk Pass       | Chk Pass      | Chk Pass                                               | Chk Pass       | Chk Pass       |

Sample Name: blank Acquired: 10/16/2017 15:44:07 Type: Unk Method: ICAP2 June 2017(v154) Mode: CONC Corr. Factor: 1.000000 User: jrk Custom ID1: Custom ID2: Custom ID3: Comment: Elem Zn2062 206.200 {163} Line  $(Y_3600)$ IS Ref Units ppm .00046 Avg .00030 Stddev %RSD 66.257 #1 .00067 #2 .00024 Check? **Chk Pass** High Limit Low Limit Y\_3600 In2306 Y 2243 Y\_3774 Int. Std. 230.606 {446} 224.306 {450} 360.073 { 94} 377.433 { 89} Line Units Cts/S Cts/S Cts/S Cts/S 3793.1 2666.6 22387. 3893.2 Avg Stddev 1.9 54. 14.2 .4 %RSD .05114 .01551 .23952 .36586



call H10107cs

Run: 41010751

Batch: 381100

Folder: h10107s1 Protocol: HgsSOIL

Leeman 2 Folder: h10107s1
Protocol: HgsSOIL
\*\*\*POST-RUN REPORT\*\*\*
Line Conc. Units SD/RSD 1 2 3 4 5

4291236

| Hg 95.5                                           | 2 Ck2ICV Seq: 1 14:54:22 10 Oct 17 Found True Units SD/RSD 2.87 3.00 ppb .000       |    |
|---------------------------------------------------|-------------------------------------------------------------------------------------|----|
| Line Flag Found Ra                                | 1 Ck1(CB Seq: 2 14:56:33 10 Oct 17 ange(+/-) Units SD/RSD .200 ppb .000             |    |
| *** Check Standard:<br>Line Flag %Rcv.<br>Hg 77.6 | ## A Ck4 CVL Seq: 3 14:58:04 10 Oct 17  Found True Units SD/RSD  .155 .200 ppb .000 | HG |
| *** Check Standard:<br>Line Flag %Rcv.<br>Hg 93.0 | 3 Ck3CCV Seq: 4 14:59:36 10 Oct 17 Found True Units SD/RSD .000                     | HG |
| Line Flag Found Ra                                | 1 Ck1CCB Seq: 5 15:00:56 10 Oct 17 ange(+/-) Units SD/RSD .000                      | HG |
| *** Sample ID:  Hg004 ppb                         | Seq: 6 15:02:31 10 Oct 17<br>MB 480-381100/1-A<br>.000004                           | HG |
| *** Sample ID: Hg 3.57 ppb                        | Seq: 7<br>LCSSRM 480-381100/2- at 10<br>.000 3.57 BB10-10-17                        | HG |
| *** Sample ID: Hg .138 ppb                        | Seq: 8 15:05:34 10 Oct 17<br>480-125458-B-3-C<br>.000 .138                          | HG |
| *** Sample ID: Hg .132 ppb                        | 480-125543-A-1-A                                                                    | HG |
| *** Sample ID: Hg .630 ppb                        | Seq: 10 15:09:15 10 Oct 17<br>480-125542-A-1-A<br>.000 .630                         | HG |
| *** Sample ID: Hg 3.42 ppb                        | Seq: 11 15:10:36 10 Oct 17<br>480-125579-F-1-A<br>.000 3.42                         | HG |
| *** Sample ID: Hg .657 ppb                        | Seq: 12 15:12:08 10 Oct 17<br>480-125579-F-1-Asd@5<br>.000 .657                     | HG |
| *** Sample ID: Hg 7.78 ppb                        | Seq: 13 15:13:38 10 Oct 17<br>480-125579-F-1-B MS<br>.000 7.78                      | HG |
| *** Sample ID: Hg 7.48 ppb                        | 480-125579-F-1-C MSD                                                                | НG |
| *** Sample ID:  Hg .130 ppb                       | Seq: 15 15:16:42 10 Oct 17<br>480-125579-F-2-A<br>.000 .130                         | HG |

Leeman 2 Folder: h10107s1 Page 2

|            |          |             |                              |              | tocol:                           |          | OIL<br>ORT*** |       |      |         |    | -  |
|------------|----------|-------------|------------------------------|--------------|----------------------------------|----------|---------------|-------|------|---------|----|----|
| Line       | Conc.    | Units       | SD/R                         |              |                                  |          |               |       | 4    |         | 5  |    |
| Line       | Flag     | %Rcv.       | 3 Ck3CC<br>Found<br>1.92     | True         | Units                            |          | SD/RSD        | 18:25 | 10   | <br>Oct | 17 | НG |
| Line<br>Hg | Flag -   | Found Ra033 | 1 Ck1CC<br>ange(+/-)<br>.200 | Units<br>ppb | S                                | .000     |               | 21:18 | 10 ( | Oct     | 17 | HG |
| *** S      | Sample I | D:<br>ppb   | 4                            | 80-125       | Seq:<br>579 <b>-F-</b> 3<br>.422 | 18<br>-A | 15:2          | 22:50 | 10 ( | Oct     | 17 | HG |
| Line       | Flag     | %Rcv.       | 3 Ck3CC<br>Found<br>1.92     | True         | Units                            |          | SD/RSD        | 24:11 | 10 ( | Oct     | 17 | HG |
| Line       | Flag     | Found Ra    | 1 Ck1CC<br>ange(+/-)<br>.200 | Units        | S                                | D/RSI    |               | 25:32 | 10 ( | Oct     | 17 | HG |
| Line       | Flag     | %Rcv.       | 4 Ck4CC<br>Found<br>.185     | True         | Units                            |          | SD/RSD        | 27:07 | 10 ( | Oct     | 17 | HG |

#### METALS BATCH WORKSHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

Lab Sample ID | Client Sample ID | Method Chain | Basis |

SDG No.:

Batch Number: 381758 Batch Start Date: 10/13/17 16:34 Batch Analyst: Weiland, Mackenzie J

InitialAmount

FinalAmount

Batch Method: 3050B Batch End Date:

CalcMsg

| MB 480-381758/1                                                                                             |                                          | 3050B,                     | 6010C                                     |             | CALC NOT SET TO RUN | +0.5283 g        | 50 mL            |                       |        |        |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------|-------------------------------------------|-------------|---------------------|------------------|------------------|-----------------------|--------|--------|
| LCSSRM<br>480-381758/2                                                                                      |                                          | 3050B,                     | 6010C                                     |             | CALC NOT SET TO     | +0.5026 g        | 50 mL            |                       |        |        |
| LCDSRM<br>480-381758/3                                                                                      |                                          | 3050B,                     | 6010C                                     |             | CALC NOT SET TO     | +0.4988 g        | 50 mL            |                       |        |        |
| 480-125579-E-1                                                                                              | MW-8 (4-6)                               | 3050B,                     | 6010C                                     | Т           | CALC NOT SET TO     | +0.5060 g        | 50 mL            |                       |        |        |
| 180-125579-F-1<br>4S                                                                                        | MW-8 (4-6)                               | 3050B,                     | 6010C                                     | Т           | CALC NOT SET TO     | +0.5206 g        | 50 mL            | 0.5 mL                | 0.5 mL | 0.5 mL |
| 480-125579-E-1<br>4SD                                                                                       | MW-8 (4-6)                               | 3050B,                     | 6010C                                     | Т           | CALC NOT SET TO     | +0.5145 g        | 50 mL            | 0.5 mL                | 0.5 mL | 0.5 mL |
| 480-125579-F-2                                                                                              | MW-8 (13-14)                             | 3050B,                     | 6010C                                     | Т           | CALC NOT SET TO     | +0.5181 g        | 50 mL            |                       |        |        |
| 480-125579-F-3                                                                                              | DUP-100817                               | 3050B,                     | 6010C                                     | Т           | CALC NOT SET TO     | +0.4950 g        | 50 mL            |                       |        |        |
| LCS<br>480-381758/26                                                                                        |                                          | 3050B,                     | 6010C                                     |             | CALC NOT SET TO     | +0.4991 g        | 50 mL            | 0.5 mL                | 0.5 mL | 0.5 mL |
| LCSD<br>480-381758/27                                                                                       |                                          | 3050B,                     | 6010C                                     |             | CALC NOT SET TO     | +0.5066 g        | 50 mL            | 0.5 mL                | 0.5 mL | 0.5 mL |
|                                                                                                             |                                          |                            |                                           |             |                     |                  | '                |                       |        | -      |
| Lab Sample ID                                                                                               | Client Sample ID                         | Method                     | Chain                                     | Basis       | MED_03_Ag 00117     | MED_04_Sn 00104  | MED_05_S 00062   | MED_SRM_D087<br>00012 |        |        |
| MB 480-381758/1                                                                                             |                                          | 3050B,                     | 6010C                                     |             |                     |                  |                  |                       |        |        |
| LCSSRM<br>480-381758/2                                                                                      |                                          | 3050B,                     | 6010C                                     |             |                     |                  |                  | +0.5026 g             |        |        |
|                                                                                                             |                                          |                            |                                           | 1 i         |                     |                  |                  | -                     |        |        |
| LCDSRM                                                                                                      |                                          | 3050B,                     | 6010C                                     |             |                     |                  |                  | +0.4988 g             |        |        |
| LCDSRM<br>480-381758/3                                                                                      | MW-8 (4-6)                               | 3050B,                     |                                           | Т           |                     |                  |                  | +0.4988 g             |        |        |
| LCDSRM<br>480-381758/3<br>480-125579-E-1<br>480-125579-F-1                                                  | MW-8 (4-6)<br>MW-8 (4-6)                 |                            | 6010C                                     |             | 0.5 mL              | 0.5 mL           | 0.5 mL           | +0.4988 g             |        |        |
| LCDSRM<br>480-381758/3<br>480-125579-E-1<br>480-125579-F-1<br>MS<br>480-125579-E-1<br>MSD                   | ` '                                      | 3050B,                     | 6010C<br>6010C                            | Т           | 0.5 mL<br>0.5 mL    | 0.5 mL<br>0.5 mL | 0.5 mL<br>0.5 mL | +0.4988 g             |        |        |
| LCDSRM<br>480-381758/3<br>480-125579-E-1<br>480-125579-F-1<br>MS<br>480-125579-E-1<br>MSD                   | MW-8 (4-6)                               | 3050B,                     | 6010C<br>6010C                            | T           |                     |                  |                  | +0.4988 g             |        |        |
| LCDSRM<br>480-381758/3<br>480-125579-E-1<br>480-125579-F-1<br>MS<br>480-125579-E-1<br>MSD<br>480-125579-F-2 | MW-8 (4-6)                               | 3050B,<br>3050B,           | 6010C<br>6010C<br>6010C                   | T<br>T      |                     |                  |                  | +0.4988 g             |        |        |
| LCDSRM<br>480-381758/3<br>480-125579-E-1<br>480-125579-F-1<br>MS<br>480-125579-E-1                          | MW-8 (4-6)<br>MW-8 (4-6)<br>MW-8 (13-14) | 3050B,<br>3050B,<br>3050B, | 6010C<br>6010C<br>6010C<br>6010C<br>6010C | T<br>T<br>T |                     |                  |                  | +0.4988 g             |        |        |

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

6010C Page 1 of 2

MED 01 Si 00103 | MED 01 W1 00046 | MED 02 W2 00042

#### METALS BATCH WORKSHEET

| Lab Name: | TestAmerica Buffalo | Job No.: | 480-125579-1 | _ |  |
|-----------|---------------------|----------|--------------|---|--|
| SDG No.:  |                     |          |              |   |  |

Batch Number: 381758 Batch Start Date: 10/13/17 16:34 Batch Analyst: Weiland, Mackenzie J

Batch Method: 3050B \_\_\_\_\_ Batch End Date: \_\_\_\_

| Batch Notes                       |                         |  |  |  |  |
|-----------------------------------|-------------------------|--|--|--|--|
| Balance ID                        | 25850472                |  |  |  |  |
| Batch Comment                     | 70613759 (Push Filters) |  |  |  |  |
| Blank Soil Lot Number             | 3978952                 |  |  |  |  |
| First End time                    | 2341                    |  |  |  |  |
| Lot # of hydrochloric acid        | 4265790                 |  |  |  |  |
| Lot # of Nitric Acid              | 4276984                 |  |  |  |  |
| Hot Block ID                      | F                       |  |  |  |  |
| Oven, Bath or Block Temperature 2 | Auto Degrees C          |  |  |  |  |
| First Start time                  | 1634                    |  |  |  |  |
| Thermometer ID                    | 151913830               |  |  |  |  |
| Digestion Tube/Cup ID             | 1705110                 |  |  |  |  |
| Uncorrected Temperature           | 92.493.3 Celsius        |  |  |  |  |
| Uncorrected Temperature 2         | Auto Degrees C          |  |  |  |  |

| Basis | Basis Description |
|-------|-------------------|
| Т     | Total/NA          |

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

6010C Page 2 of 2

#### METALS BATCH WORKSHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Batch Number: 381100 Batch Start Date: 10/10/17 13:30 Batch Analyst: Booth, Bryan M

Batch Method: 7471B Batch End Date: 10/10/17 14:00

| Lab Sample ID          | Client Sample ID | Method | Chain | Basis | InitialAmount | FinalAmount | MED_SRM_D087<br>00006 | MEH_HG1_WKG<br>01592 |  |
|------------------------|------------------|--------|-------|-------|---------------|-------------|-----------------------|----------------------|--|
| MB 480-381100/1        |                  | 7471B, | 7471B |       | +0.5849 g     | 50 mL       |                       |                      |  |
| LCSSRM<br>480-381100/2 |                  | 7471B, | 7471B |       | +0.1598 g     | 50 mL       | +0.1598 g             |                      |  |
| 480-125579-F-1         | MW-8 (4-6)       | 7471B, | 7471B | Т     | +0.5835 g     | 50 mL       |                       |                      |  |
| 480-125579-F-1<br>MS   | MW-8 (4-6)       | 7471B, | 7471B | T     | +0.5961 g     | 50 mL       |                       | 2 mL                 |  |
| 480-125579-F-1<br>MSD  | MW-8 (4-6)       | 7471B, | 7471B | T     | +0.5859 g     | 50 mL       |                       | 2 mL                 |  |
| 480-125579-F-2         | MW-8 (13-14)     | 7471B, | 7471B | Т     | +0.6071 g     | 50 mL       |                       |                      |  |
| 480-125579-F-3         | DUP-100817       | 7471B, | 7471B | Т     | +0.6417 g     | 50 mL       |                       |                      |  |

| Bat                               | ch Notes         |
|-----------------------------------|------------------|
| Hydroxylamine Hydrochloride ID    | 4164262          |
| Batch Comment                     | 1 & 2 Prep 1050  |
| Digestion End Time                | 1400             |
| Digestion Start Time              | 1330             |
| Lot # of hydrochloric acid        | 4086368          |
| Lot # of Nitric Acid              | 4185732          |
| Hot Block ID                      | HG-C             |
| Potassium Persulfate ID           | 4140298          |
| Potassium Permanganate ID         | 4187796          |
| Oven, Bath or Block Temperature 1 | 94.7             |
| Pipette ID                        | AN-6 for Std 1+2 |
| Stannous Chloride ID              | 4176187          |
| Thermometer ID                    | 160510054        |
| Digestion Tube/Cup ID             | 1605323          |
| Uncorrected Temperature           | 95.5 Celsius     |

| Basis | Basis Description |
|-------|-------------------|
| Т     | Total/NA          |

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

7471B Page 1 of 1

# GENERAL CHEMISTRY

# COVER PAGE GENERAL CHEMISTRY

| Lab Name | : TestAmerica Buffalo | Job Number: 480-125579-1 |  |
|----------|-----------------------|--------------------------|--|
| SDG No.: |                       |                          |  |
| Project: | RGE - Park St.        |                          |  |
|          | Client Sample ID      | Lab Sample ID            |  |
|          | MW-8 (4-6)            | 480-125579-1             |  |
|          | MW-8 (13-14)          | 480-125579-2             |  |
|          | DUP-100817            | 480-125579-3             |  |
|          |                       |                          |  |

Comments:

# 9-IN DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: TestAmerica Buffalo

SDG Number: 480-125579-1

Matrix: Solid

Instrument ID: NOEQUIP

Method: Moisture

RL Date: 08/17/2009 12:10

| Analyte          | Wavelength/<br>Mass | RL<br>(%) |  |
|------------------|---------------------|-----------|--|
| Percent Moisture |                     | 0.1       |  |
| Percent Solids   |                     | 0.1       |  |

# 9-IN CALIBRATION BLANK DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: TestAmerica Buffalo

SDG Number:

Matrix: Solid

Method: Moisture

Job Number: 480-125579-1

Instrument ID: NOEQUIP

XRL Date: 08/17/2009 12:10

| Analyte          | Wavelength/<br>Mass | XRL<br>(%) |  |
|------------------|---------------------|------------|--|
| Percent Moisture |                     | 0.1        |  |
| Percent Solids   |                     | 0.1        |  |

# 13-IN ANALYSIS RUN LOG GENERAL CHEMISTRY

| Lab Name: T  | estAmerica Buffalo | Job No.: 480-125579-1      |
|--------------|--------------------|----------------------------|
| SDG No.:     |                    |                            |
| Instrument I | D: NOEQUIP         | Method: Moisture           |
| Start Date:  | 10/11/2017 04:49   | End Date: 10/11/2017 04:49 |

|                     |             |                  |       |                  |                       | _ |   |        |   |  |  |  |  |  |  |  |  |  | _ |
|---------------------|-------------|------------------|-------|------------------|-----------------------|---|---|--------|---|--|--|--|--|--|--|--|--|--|---|
|                     |             |                  |       |                  | Analytes              |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>Y<br>p<br>e | Time  | %<br>S<br>0<br>1 | M<br>o<br>i<br>s<br>t |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              | i           |                  | 04:49 |                  |                       |   | Ť |        | T |  |  |  |  |  |  |  |  |  | Т |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| 480-125579-1        | 1           | Т                | 04:49 | Х                | Х                     |   |   | $\neg$ |   |  |  |  |  |  |  |  |  |  |   |
| 480-125579-1 MS     | 1           | Т                | 04:49 | Х                | Х                     |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| 480-125579-1 MSD    | 1           | Т                | 04:49 | Х                | Х                     |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| 480-125579-2        | 1           | Т                | 04:49 | Х                | Х                     |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| 480-125579-3        | 1           | Т                | 04:49 | Х                | Х                     |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |
| ZZZZZZ              |             |                  | 04:49 |                  |                       |   |   |        |   |  |  |  |  |  |  |  |  |  |   |

# Prep Types

T = Total/NA

#### GENERAL CHEMISTRY BATCH WORKSHEET

Lab Name: TestAmerica Buffalo Job No.: 480-125579-1

SDG No.:

Batch Number: 381195 Batch Start Date: 10/11/17 04:49 Batch Analyst: Williams, Christopher S

Batch Method: Moisture \_\_\_\_\_ Batch End Date: \_\_\_\_\_

| Lab Sample ID         | Client Sample ID | Method Chain | Basis | DISH# | DishWeight | SampleMassWet | SampleMassDry |  |
|-----------------------|------------------|--------------|-------|-------|------------|---------------|---------------|--|
| 480-125579-A-1        | MW-8 (4-6)       | Moisture     | Т     | 4     | 4.40 g     | 10.29 g       | 9.37 g        |  |
| 480-125579-A-1<br>MS  | MW-8 (4-6)       | Moisture     | Т     | 4     | 4.40 g     | 10.29 g       | 9.37 g        |  |
| 480-125579-A-1<br>MSD | MW-8 (4-6)       | Moisture     | Т     | 4     | 4.40 g     | 10.29 g       | 9.37 g        |  |
| 480-125579-A-2        | MW-8 (13-14)     | Moisture     | Т     | 5     | 4.40 g     | 12.30 g       | 10.85 g       |  |
| 480-125579-A-3        | DUP-100817       | Moisture     | Т     | 6     | 4.40 g     | 7.79 g        | 7.27 g        |  |

| Batch Notes                          |           |  |  |  |  |  |
|--------------------------------------|-----------|--|--|--|--|--|
| Date samples were placed in the oven | 110CT2017 |  |  |  |  |  |
| Time samples were place in the oven  | 0500      |  |  |  |  |  |

| Basis | Basis Description |
|-------|-------------------|
| Т     | Total/NA          |

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Moisture Page 1 of 1

# Shipping and Receiving Documents

# Chain of Custody Record

187970

TestAmerica

IESTHINETICA EUTHALO

10 Hazelwood Drive

| 346 504 3004 | 1267.120.01/ |
|--------------|--------------|
| -            | - 487        |
| t, MY 14228  | 1            |
| Bharrat      | THORE.       |

| Company Name: REE Arealls  Address: 2495 Cool Cliff Orivi  City/State/Zip. Faince Project Name: REE Park St.  Project Name: REE Park St.  Project Name: REE Park St.  Project Name: REE Park St.  Project Name: REE Park St.  Project Name: REE Park St.  Project Name: REE Park St.    Nweeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks   1 weeks |                                           | Site Contact: Kans Jan Date: 10/8/1                                                  | COC NO:                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|------------------------------|
| State/Zip: And Augh Calen  State/Zip: Fairy - I My Augh  State/Zip: Fairy - I My Augh  State/Zip: Fairy - I My Augh  State/Zip: Fairy - I My Augh  State/Zip: Fairy - I My - & (4-le)  My - & (4-le)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & (13-ly)  My - & ( |                                           | Melssa Dero Carrier:                                                                 | of COCs                      |
| 85ate/Zip: 元がないよ ハリ (ゼリシャ) est Name: RGE Park St  AM - & (५-(७)  AM - & (१-(७)  APP (5-14)  APP (5-14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analysis Turnaround Time                  |                                                                                      | Sampler:                     |
| ne: 585.385 - 6298  oct Name: RGE Pork 5+  NM - 8 (4-6)  NM - 8 (13-14)  DAP- 6608 (7-6)  RRP BLANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S WORKING DAYS                            |                                                                                      | For Lab Use Only:            |
| Sample Sample Identification  NW - & (4-(e))  NW - & (13-(4))  APP BOS (7-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ant from Below Starton                    | (N /                                                                                 | Walk-in Client:              |
| Sample Identification $AM - S (4 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S (13 - P)$ $AM - S ($                                                                                                            | 2 weeks                                   |                                                                                      | 2.483                        |
| Sample Date  (o/8/17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 days                                    |                                                                                      | Job / S                      |
| Sample Date (5/8/17) (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 day                                     |                                                                                      |                              |
| (h) (h) (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample Type (C=Comp, G=Grab) Matrix Cont. | Filtered Sa<br>M monbag<br>N O U S<br>S O O U S                                      | 480-125579 COC               |
| (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | \x \x \x                                                                             |                              |
| 7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 78                                     | <u> </u>                                                                             |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                         |                                                                                      |                              |
| ge 913 of 914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                         | 200                                                                                  |                              |
| 3 of 914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                                                                                      |                              |
| 914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                                                                      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                      |                              |
| Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er                                        |                                                                                      |                              |
| Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes Comments Section if the lab is to dispose of the sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aste Codes for the sample in the          | Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month) | etained longer than 1 month) |
| Non-Hazard   Flammable   Skin Irritant   Poison B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unknown                                   | Return to Client Disposal by Lab Archive for                                         | ve for Months                |
| Special Instructions/96 Requirements & Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | 12                                                                                   | 121                          |
| Custody Seals Mact: 7 ves No Custody Seal No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | Cooler Temp. (°C): Obs'd:                                                            | Therm ID No.:                |
| Relinquished by Bolo Kindley Rype Company.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date/Time:                                |                                                                                      | Date/Time: 1/0 0157          |
| (Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date/Time:                                | Received by:                                                                         | Date/Time:                   |
| Rollinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date/Time:                                | Received in Laboratory by:                                                           | Date/Time:                   |

# **Login Sample Receipt Checklist**

Client: ARCADIS U.S. Inc Job Number: 480-125579-1

Login Number: 125579 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

| Question                                                                         | Answer | Comment             |
|----------------------------------------------------------------------------------|--------|---------------------|
| Radioactivity either was not measured or, if measured, is at or below background | True   |                     |
| The cooler's custody seal, if present, is intact.                                | True   |                     |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |                     |
| Samples were received on ice.                                                    | True   |                     |
| Cooler Temperature is acceptable.                                                | True   |                     |
| Cooler Temperature is recorded.                                                  | True   |                     |
| COC is present.                                                                  | True   |                     |
| COC is filled out in ink and legible.                                            | True   |                     |
| COC is filled out with all pertinent information.                                | True   |                     |
| Is the Field Sampler's name present on COC?                                      | True   |                     |
| There are no discrepancies between the sample IDs on the containers and the COC. | False  |                     |
| Samples are received within Holding Time (Excluding tests with immediate HTs)    | True   | FROZE 10/10/17 1030 |
| Sample containers have legible labels.                                           | True   |                     |
| Containers are not broken or leaking.                                            | True   |                     |
| Sample collection date/times are provided.                                       | True   |                     |
| Appropriate sample containers are used.                                          | True   |                     |
| Sample bottles are completely filled.                                            | True   |                     |
| Sample Preservation Verified                                                     | True   |                     |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |                     |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |                     |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True   |                     |
| Multiphasic samples are not present.                                             | True   |                     |
| Samples do not require splitting or compositing.                                 | True   |                     |
| Sampling Company provided.                                                       | True   | arcadis             |
| Samples received within 48 hours of sampling.                                    | True   |                     |
| Samples requiring field filtration have been filtered in the field.              | N/A    |                     |
| Chlorine Residual checked.                                                       | N/A    |                     |

# Appendix I

**Deed Restriction** 





# Mary F. Strickland, County Clerk

Livingston County Government Center 6 Court Street, Room 201 Geneseo, New York 14454 (585) 243-7010 ~ Fax (585) 243-7928

# **Livingston County Clerk Recording Page**

Received From:

BARCLAY DAMON LLP

Return To:

No Envelope

Document Type: **DECLARATION OF COVENANTS AND RESTRICTIONS** 

Grantor

NEW YORK STATE UNIVERSITY OF

Receipt Number: 00609279

Grantee

NEW YORK STATE UNIVERSITY OF

Recorded Information:

Recording Fee \$45.00
Pages Fee \$40.00
Mortage Tax Affidavit \$0.00
Total Fees: \$85.00

Property Located in Town of **Geneseo**Village of **Geneseo** 

State of New York County of Livingston

Recorded on the 29th date of June, 2018 at 01: 23:47 PM in Liber **1286** of **Deeds** at beginning page **1752**, ending at page **1760** and examined.

Livingston County Clerk

This sheet constitutes the Clerk's endorsement required by section 319 of the Real Property Law of the State of New York

### **DECLARATION of COVENANTS and RESTRICTIONS**

THIS COVENANT, is made the **29** day of June, 2018, by the State University of New York, an agency of the State of New York with offices at University Plaza Albany, New York, by and on behalf of SUNY College at Geneseo, 1 College Circle, Geneseo, New York 14454.

WHEREAS, RG&E Geneseo-Park St Former MGP Site ("Site"), Site No.: V00731, is the subject of a Voluntary Cleanup Agreement executed by Rochester Gas and Electric Corporation ("RG&E") and the New York State Department of Environmental Conservation ("Department"), namely those parcels of real property formerly known as 4 and 6 Park Street in the Village of Geneseo, County of Livingston, State of New York, being the same as (or part of) that property conveyed to The People of the State of New York, acting by and through the Board of Trustees of the State University of New York by Gary L. Least by two deeds dated September 27, 2001 and recorded on October 31, 2001 in the Livingston County Clerk's office in Liber 1053 Page 241and Liber 1053 Page 246, and being more particularly described in Schedule "A", attached to this declaration and made a part hereof, and hereinafter referred to as "the Restricted Property"; and

WHEREAS, the Site may at one time have been the location of a former Manufactured Gas Plant ("MGP") operated by the historic predecessor entities which, by merger and/or consolidation, led to the corporate existence of RG&E, and the Department approved a remedy to eliminate or mitigate all significant threats to the environment presented by the Existing Contamination (as defined hereafter) disposed at the Restricted Property and such remedy requires that the Restricted Property be subject to restrictive covenants; and

WHEREAS, said "Existing Contamination," as defined in the Voluntary Cleanup Agreement Section I. B., is: "any substance which is identified and characterized to the Department's satisfaction; provided that such substance either:

- 1) is included on the list of hazardous substances promulgated pursuant to ECL  $\S$  37-0103, and is a component of the manufactured gas plant wastes associated with the MGP operations believed to have been operated in the past at the Site, or otherwise resulted from the operations of RG&E or its predecessor entities; or
- 2) is included on the list of hazardous substances promulgated pursuant to ECL § 37-0103, and is commingled or intermingled with wastes which are a component of manufactured gas plant wastes associated with the MGP operations believed to have been operated in the past at the Site, or which otherwise resulted from the operations of RG&E or its predecessor entities, in a circumstance whereby the level of contamination set forth in Subparagraph 1 supra, if present alone, would independently require the implementation of remedial action."

**NOW, THEREFORE,** The People of the State of New York, acting by and through the Board of Trustees of the State University of New York, for itself and its successors and/or assigns, covenants that:

First, the Restricted Property subject to this Declaration of Covenants and Restrictions, is as shown on a map attached to this declaration as Schedule "B" and made a part hereof.

Second, unless prior written approval by the Department or, if the Department shall no longer exist, any New York State agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency," is first obtained, where Existing Contamination remains at the Restricted Property subject to the provisions of the Site Management Plan ("SMP"), there shall be no construction, use or occupancy of the Restricted Property that results in the disturbance or excavation of the Restricted Property which threatens the integrity of the engineering controls or which results in unacceptable human exposure to contaminated soils. The SMP may be obtained from the New York State Department of Environmental Conservation, Division of Environmental Remediation, Site Control Section, 625 Broadway, Albany, NY 12233.

**Third,** the owner of the Restricted Property shall not disturb, remove, or otherwise interfere with the installation, use, operation, and maintenance of engineering controls required for the Remedy, which are described in the SMP, unless in each instance the owner first obtains a written waiver of such prohibition from the Department or Relevant Agency.

Fourth, the owner of the Restricted Property shall prohibit the Restricted Property from ever being used for purposes other than non-residential uses, such as a parking lot, and Commercial uses as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial uses as described in 6 NYCRR 375-1.8(g)(2)(iv), without the express written waiver of such prohibition by the Department or Relevant Agency.

**Fifth,** the use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Livingston County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department or Relevant Agency.

**Sixth**, the owner of the Restricted Property shall provide a periodic certification, prepared and submitted by a professional engineer or environmental professional acceptable to the Department or Relevant Agency, which will certify that the institutional and engineering controls put in place are unchanged from the previous certification, comply with the SMP, and have not been impaired.

**Seventh,** the owner of the Restricted Property shall continue in full force and effect any institutional and engineering controls required for the Remedy and maintain such controls, unless the owner first obtains permission to discontinue such controls from the Department or Relevant Agency, in compliance with the approved SMP, which is incorporated and made enforceable hereto, subject to modifications as approved by the Department or Relevant Agency.

**Eighth,** this Declaration is and shall be deemed a covenant that shall run with the land and shall be binding upon all future owners of the Restricted Property, and shall provide that the owner and its successors and assigns consent to enforcement by the Department or Relevant Agency of the prohibitions and restrictions that the Voluntary Cleanup Agreement requires to be recorded, and hereby covenant not to contest the authority of the Department or Relevant Agency to seek enforcement.

Ninth, any deed of conveyance of the Restricted Property, or any portion thereof, shall recite, unless the Department or Relevant Agency has consented to the termination of such covenants and restrictions, that said conveyance is subject to this Declaration of Covenants and Restrictions.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day written below.

State University of New York

Print Name: <u>Denise Battle</u> S

Grantor's Acknowledgment

STATE OF NEW YORK

) ss:

COUNTY OF LIVINGSTON

On the 29 day of June, in the year 2018, before me, the undersigned, personally appeared Denise Battles, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public State of New York

Shuri J. Bush

Sherri L. Bush, Notary Public State of New York, Wyoming County Reg No. 01BU6020854

Commission Expires Mar 22, 20 19

#### **SCHEDULE "A"**

to

Declaration of Covenants and Restrictions
For RG&E Geneseo-Park St Former MGP Site
Site No. V00731

# METES AND BOUNDS DESCRIPTION OF RESTRICTED PROPERTY AS FILED IN LIVINGSTON COUNTY CLERK'S OFFICE AT LIBER 1053 PAGE 241 & LIBER 1053 PAGE 246

Property Address: 4 Park Street Tax Map No. 80.16-1-34

ALL THAT TRACT OR PARCEL OF LAND, situate in the Village of Geneseo, Livingston County, New York, bounded and described as follows:

Beginning in the north line of Park Street, at the southeast corner of lands formerly of Frank K. Cook;

Running thence northerly, on the east line of said Cook, and a continuation thereof, 3 chains and 18 links, more or less, to land, now or formerly of Caroline Foote;

Running thence easterly, on the south line of said Foote's land, 1 chain and 18 links to the west line of Village Lots fronting on the west side of Main Street;

Running thence southerly, on the west line of said Village Lots, and parallel with the first mentioned line, 3 chains and 18 links, more or less, to the north line of Park Street; and

Running thence westerly, on the last mentioned line, 1 chain and 18 links to the place of beginning.

Containing 0.36 of an acre of land, more or less.

Being and intending to convey Parcel 2 as set out in a Bargain and Sale Deed from Paul J. Least to Gary L. Least dated September 15, 1977 and recorded in the Livingston County Clerks' Office on the same date in Liber 513 of Deeds at Page 205.

Property Address: 6 Park Street Tax Map No. 80.16-1-33

ALL THAT TRACT OR PARCEL OF LAND, situated on the north side of Park Street in the Village of Geneseo, County of Livingston and the State of New York, bounded and described as follows:

Commencing at a point in the north line of Park Street, said point being located 178.6 feet, more or less, westerly from the west edge of the sidewalk on the west side of Main Street,

said point also being the southwesterly corner of lands of C. Leslie Brion as described in a Deed recorded in the Office of the Livingston County Clerk in Liber 316 of Deeds, Page 180;

Thence (1) North 77° 30' 00" West and along the north line of Park Street for a distance of 81.18 feet to an iron pipe, said point being the intersection of the northerly line of Park Street with and easterly line of lands of the State of New York (State University College at Geneseo);

Thence (2) North 14° 33′ 00" East and along an easterly line of lands of the State of New York for a distance of 214.52 feet to an iron pipe;

Thence (3) South 79° 35' 40" East and along a southerly line of lands of the State of New York for a distance of 28.94 feet to an iron pipe, said point being the southwest corner of lands of Dorothy Wright as described in Liber 373 of Deeds, Page 883;

Thence (4) South 76° 01' 37" East and along the southerly line of said Wright for a distance of 52.27 feet to an iron pipe at the northwest corner of the aforementioned Brion lands;

Thence (5) South  $14^{\circ}$  33' 00" West and along the westerly line of said Brion lands for a distance of 214.23 feet to the point of beginning.

Containing 0.40034 acres.

Together with all of the right, title and interest of the Grantor in and to rights of way to and from the said premises as they may exist.

The said premises are more particularly described on a map of a survey made by Denluck, Thomas, McGrail & Associates dated October 5, 1970 which is recorded in the Livingston County Clerk's Office in Liber 407, Page 949.

Being and intending to convey Parcel 3 as set forth in a Bargain and Sale Deed from Paul J. Least to Gary L. Least dated September 15, 1977 and recorded in the Livingston County Clerk's Office on the same date in Liber 513 of Deeds at Page 205.

# METES AND BOUNDS DESCRIPTION OF RESTRICTED PROPERTY (AS MEASURED)

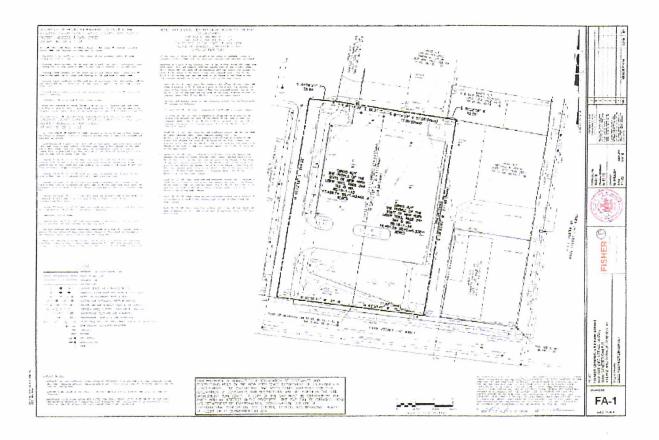
# IN THE INSTRUMENT SURVEY COMPLETED AND SIGNED JUNE 21, 2018 BEING AND INTENDING TO DESCRIBE THE SAME PROPERTY AS THE ABOVE LEGAL DESCRIPTION

TAX ID NO. 80.16 – 1 – 34 AND TAX ID NO. 80.16 – 1 – 33 Area: 0.778 Acres

All that piece or parcel of land situate in the Village of Geneseo, County of Livingston, State of New York and being part bounded and described as follows:

Beginning at a point in the northerly right of way of Park Street (66' wide), said point being 175.8 feet westerly from the westerly right of way of Main Street (N.Y.S. Route 39) (99' wide) at its intersection with the division line between the lands of The People of the State of New York (reputed owner) (Tax ID. No. 80.16 - 1 - 34) on the east and the lands of The People of the State of New York (reputed owner) (Tax ID. No. 80.16 - 1 - 33) on the west; thence

- 1. North 82°50' 41" West, along the northerly right of way of Park Street (66' wide) a distance of 81.18 feet to a point on the division line between the lands of The People of the State of New York (reputed owner) (Tax ID. No. 80.16 1 33) on the east and the lands of The State University of New York (reputed owner) (Tax ID. No. 80.15 1 1.1) on the west; thence
- 2. Northerly and Easterly along the last mentioned division line the following two (2) courses and distances:
  - 1) North 09°12' 19" East, a distance of 214.52 feet to a point; thence
  - 2) South 84°56' 21" East, a distance of 28.94 feet to a point on the division line between the lands of The People of the State of New York (reputed owner) (Tax ID. No. 80.16 1 33) on the south and the lands of Geneseo Foundation, Inc. (reputed owner) (Tax ID. No. 80.16 1 32.2) on the north; thence
- 3. South 81°14' 29" East, along the last mentioned division line and the lands of Caplan Ventures, Barry Caplan (reputed owner) (Tax ID. No. 80.16 1 32.1) on the north a distance of 52.27 feet to a point on the division line between the lands of The People of the State of New York (reputed owner) (Tax ID. No. 80.16 1 33) on the west and the lands of The People of the State of New York (reputed owner) (Tax ID. No. 80.16 1 34) on the east; thence
- 4. South  $81^{\circ}14'$  29" East, a distance of 67.56 feet, along the division line between the lands of Caplan Ventures, Barry Caplan (reputed owner) (Tax ID. No. 80.16 1 32.1) on the north and the lands of the People of the State of New York (reputed owner) (Tax ID. No.


- 80.16 1 34) on the south to a point on the division line between the lands of the People of the State of New York (reputed owner) (Tax ID. No. 80.16 1 34) on the south and the lands of 118 Main Street Geneseo, LLC (reputed owner) (Tax ID. No. 80.16 1 31) on the north; thence
- 5. South 80°22' 58" East, along the last mentioned division line a distance of 10.28 feet to a point on the division line between the lands of the People of the State of New York (reputed owner) (Tax ID. No. 80.16 1 34) on the west and the lands of Michael A. Bishop (reputed owner) (Tax ID. No. 80.16 1 35) on the east; thence
- 6. South 09°30' 09" West, along the last mentioned division line a distance of 211.82 feet to a point in the northerly right of way of Park Street (66' wide); thence
- 7. North 82°50' 41" West, along the northerly right of way of Park Street (66' wide) a distance of 76.77 feet to the point of beginning, being 0.778 acres more or less.

## SCHEDULE "B"

to

# Declaration of Covenants and Restrictions For RG&E Geneseo-Park St Former MGP Site Site No. V00731

#### MAP OF PROPERTY

