

March 18, 2022

Mr. Michael Squire New York State Department of Environmental Conservation Division of Environmental Remediation, 11th Floor 625 Broadway Albany, New York 12233

Re: 8th Post-Remediation Groundwater Sampling Event, October/November 2021

RG&E Park Street Former MGP Site

4 and 6 Park Street

Village of Geneseo, Livingston County, New York

New York State Department of Environmental Conservation (NYSDEC) Site #V00731

Dear Mr. Squire:

The purpose of this report is to present the results of the eighth post-remediation groundwater sampling event completed at the Rochester Gas and Electric Corporation (RG&E) Park Street Former Manufactured Gas Plant (MGP) Site (NYSDEC Site No. V00731), located at 4 and 6 Park Street in the Village of Geneseo, Livingston County, New York (referred to herein as the "Site").

This groundwater sampling event was completed by NEU-VELLE, LLC (NEU-VELLE) personnel in accordance with the Site Management Plan (SMP), dated June 2018.

SCOPE OF WORK

Synoptic Water Levels

As summarized in **Table 1**, a Site-wide round of synoptic groundwater levels was gauged at the eight groundwater monitoring wells (MW-1 through MW-8) at the Site on November 3, 2021. The locations of the monitoring wells are depicted on the Monitoring Well Locations map provided as **Figure 1**. Each well was also gauged for the presence of non-aqueous phase liquid (NAPL) using an oil/water interface probe. Except for the presence of dense non-aqueous phase liquid (DNAPL) at the bottom of MW-5, no NAPL was detected in the wells. Per the SMP, NEU-VELLE completed a quarterly NAPL Gauging and Collection Event on November 3, 2021. The findings of this quarterly event have been previously provided to NYSDEC under separate cover (i.e., the *15th Post Remediation NAPL Gauging and Collection Event, November2021* letter report, prepared by NEU-VELLE and dated December 2, 2021). Additional well gauging observations and field measurements are provided in **Table 1** of this report.

Groundwater Sampling

From October 29, 2021 to November 1, 2021 groundwater samples were collected for laboratory analysis from seven (7) groundwater monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-6, MW-7, and MW-8). A groundwater sample was not collected from MW-5 due to the presence of DNAPL in

the well. Groundwater samples were collected using the low-stress (low-flow) purging techniques outlined in the USEPA Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers dated May 2002.

Prior to initiating purging, field personnel donned new nitrile gloves and care was taken to avoid introducing contaminants into the groundwater monitoring wells. Low-flow purging was conducted using an appropriately decontaminated stainless-steel bladder pump equipped with a polyethylene bladder and polyethylene tubing. A new, clean bladder and tubing was used at each groundwater monitoring well. During purging, time, water-level measurements, temperature, dissolved oxygen (DO), oxidation reduction potential (ORP), pH, turbidity, and specific conductance (purge parameters) were measured and recorded using calibrated field monitoring equipment.

The well information, sample information, monitoring parameters and field observations were recorded on a groundwater sampling log completed at each well. The groundwater sampling logs are provided as **Attachment A**.

Collection of Laboratory Samples

New nitrile gloves were donned by field personnel prior to the collection of each laboratory sample. The laboratory sample was collected in appropriate laboratory-supplied sample containers. Samples were placed in a plastic cooler, pre-chilled with ice, and submitted under appropriate chain of custody protocols to Paradigm Environmental Services, Inc. (Paradigm) located in Rochester, New York. Samples were analyzed for:

- volatile organic compounds (VOCs), BTEX only (benzene, toluene, ethylbenzene and xylene), in accordance with USEPA Method 8260C, and
- semi volatile organic compounds (SVOCs), PAHs (polycyclic aromatic hydrocarbons) only, in accordance with USEPA Method 8270D.

In accordance with the Quality Assurance Project Plan (QAPP), provided within the SMP, appropriate chain of custody protocols were followed. Copies of the laboratory analytical reports for this sampling event, which include copies of the chain of custody forms, are included in **Exhibit A**. Please note that, due to their large file sizes, the laboratory analytical reports included in **Exhibit A** are not Analytical Services Protocols (ASP) Category B deliverables. Copies of the ASP Category B reports are available upon request.

Quality Assurance/Quality Control (QA/QC) samples consisting of a blind field duplicate sample and an equipment blank sample were collected and submitted for analysis. The blind field duplicate was collected at MW-2. A trip blank was also provided by the laboratory, maintained with the sample containers, and analyzed for BTEX in accordance with USEPA Method 8260C.

Preparation of a Data Usability Summary Report

Consistent with the requirements of the SMP, a Data Usability Summary Report (DUSR) was prepared by Environmental Data Usability of Dansville, New York. The DUSR is provided in **Exhibit A**.

RESULTS

Analytical Results

The groundwater sample analytical results were compared to the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Class GA, standards, criteria, and guidance values (SCGs).

The analytical results are summarized in **Table 2** and **Figure 3** as follows:

- BTEX compounds were reported at concentrations above the corresponding TOGS 1.1.1 Class GA SCGs in two (2) of the seven (7) wells that were sampled (MW-6 and MW-8).
- Four (4) PAHs (acenaphthene, acenaphthylene, fluorene, and naphthalene) were found by the laboratory at concentrations above reporting limits in two (2) of the seven (7) wells that were sampled (MW-6 and MW-8).
 - Only naphthalene was reported at a concentration above the reporting limit in the groundwater sample collected from MW-8. Naphthalene was reported in this sample at a concentration of 0.22 micrograms per liter (μ g/L) or parts per billion (ppb), which is well below the TOGS 1.1.1 Class GA SCG (10 μ g/L) for this compound.
 - The following PAHs were reported above the reporting limits in the groundwater sample collected from MW-6:
 - acenaphthene was reported at a concentration of 1.7 μg/L, which is below the TOGS 1.1.1 Class GA SCG (20 μg/L) for this compound;
 - acenaphthylene was reported at a concentration of 18 μg/L, although there is no corresponding TOGS 1.1.1 Class GA SCG for acenaphthylene;
 - fluorene was reported at a concentration of 4.0 μg/L which is below the TOGS 1.1.1 Class GA SCG (50 μg/L) for this compound; and
 - naphthalene was reported at a concentration of 170 μ g/L, which is above the TOGS 1.1.1 Class GA SCG (10 μ g/L) for this compound.

The analytical results for QA/QC samples are summarized are as follows:

- no BTEX compounds were detected in the trip blank sample; and
- a low-level concentration (0.806 μ g/L) of benzene was reported in the equipment blank sample ("GEN-EB-110121"), which was collected between the samples from MW-6 and MW-8. No other detections of BTEX or PAHs were reported in the equipment blank sample.

DUSR

Based on the outcome of the data usability evaluation, as documented in the DUSR (**see Exhibit A**), although "some results were flagged with a "J" as estimated, all results (100%) are considered usable". Therefore, the laboratory analytical data generated during this groundwater sampling event were deemed usable for their intended purpose.

Groundwater Mapping

A groundwater contour map was prepared based upon the static water levels measured at the Site on November 3, 2021. The groundwater contour map is provided as **Figure 2** and depicts an interpreted groundwater flow generally to the west, which is consistent with historic groundwater flow directions previously mapped at the Site.

CONCLUSIONS

This report presents the results of the eighth post-remediation groundwater sampling event completed at the RG&E Park Street Former MGP Site (NYSDEC Site No. V00731).

The NYSDEC Decision Document, dated August 2017, for the Site identified BTEX and three (3) PAHs [benzo(a)anthracene, benzo(a)pyrene, and indeno[1,2,3-cd]pyrene] as contaminants of potential concern (COPCs).

BTEX compounds were reported at concentrations above the corresponding TOGS 1.1.1 Class GA SCGs in two (2) of the seven (7) wells that were sampled (MW-6, and MW-8) during this sampling event.

Although the full suite of PAHs was analyzed for this sampling event, none of the PAH COPCs were detected above laboratory reporting limits. Four (4) other PAHs (acenaphthene, acenaphthylene, fluorene, and naphthalene) were reported in the sample collected from MW-6, at concentrations consistent with levels previously detected.

Reported concentrations of COPCs appear consistent with prior sampling events. Time series plots of the COPC concentrations depicting trends over time will be included in the annual Periodic Review Report for the Site.

Consistent with previous sampling events, DNAPL was encountered in MW-5. NEU-VELLE completed a quarterly NAPL Gauging and Collection Event on November 3, 2021. The findings of this quarterly event have been previously provided to NYSDEC under separate cover (i.e., the 15th Post-Remediation NAPL Gauging and Collection Event, November 2021 letter report, prepared by NEU-VELLE and dated December 2, 2021).

The ongoing post-remediation groundwater monitoring described in the SMP will continue to assess whether the overall concentrations in groundwater are stable, decreasing, or increasing. Quarterly gauging and recovery of NAPL at MW-5 will continue as conditions warrant. The frequency of gauging will only be modified with approval of the NYSDEC.

Please feel free to contact me at (585) 478-1666 with any questions you may have regarding this letter report, or contact Mr. Jeremy Wolf, RG&E's Project Manager for the project at (585) 500-8392.

Sincerely

Kyle R. Miller, PG NEU-VELLE, LLC

cc: Jeremy Wolf - RG&E

Chuck Reyes -SUNY Geneseo

Attachments:

Table 1 – Monitoring Well Reference Data and Groundwater Measurements

Table 2 - Groundwater Sample Analytical Results

Figure 1 - Monitoring Well Locations

Figure 2 - November 2021 Groundwater Elevation Contours

Figure 3 - October/November 2021 Groundwater Analytical Detections

Attachment A – Groundwater Sampling Logs

Exhibit A – Groundwater Laboratory Reports, Chain of Custody Forms and DUSR

Tables

Table 1 - Monitoring Well Reference Data and Groundwater Measurements

			4/23	3/2018			9/24	1/2018			5/20	/2019			10/2	5/2019	
Well ID	TOC	Depth to Water ft (bgs)	Total Dep	th ft (bgs)	Groundwater Elevation (ft AMSL)	Depth to Water ft (bgs)	Total Dep	th ft (bgs)	Groundwater Elevation (ft AMSL)	Depth to Water ft (bgs)	Total Dep	th ft (bgs)	Groundwater Elevation (ft AMSL)	Depth to Water ft (bgs)	Total Dep	th ft (bgs)	Groundwater Elevation (ft AMSL)
	Elevation	.,,,,,,,,,,	Depth to	T. Well			Depth to	T. Well			Depth to	T. Well			Depth to	T. Well	
		4/23/2018	DNAPL	Depth	4/23/2018	9/24/2018	DNAPL	Depth	9/24/2018	5/20/2019	DNAPL	Depth	5/20/2019	10/25/2019	DNAPL	Depth	10/25/2019
MW-1	758.41	10.11	ND	35.85	748.30	10.48	ND	35.85	747.93	7.83	ND	35.85	750.58	9.42	ND	35.85	748.99
MW-2	760.25	8.84	ND	36.76	751.41	8.90	ND	36.76	751.35	8.05	ND	36.76	752.20	8.35	ND	36.76	751.90
MW-3	761.66	9.79	ND	32.59	751.87	10.33	ND	32.59	751.33	9.30	ND	32.59	752.36	10.05	ND	32.59	751.61
MW-4	756.18	15.55	ND	39.75	740.63	15.89	ND	39.75	740.29	15.25	ND	39.75	740.93	15.51	ND	39.75	740.67
MW-5	757.82	18.52	33.23	34.90	739.30	18.02	33.3*	34.90	739.80	16.82	34.7	34.90	741.00	18.94	34.70**	34.90	738.88
MW-6	757.73	12.24	ND	37.39	745.49	12.18	ND	37.39	745.55	12.56	ND	37.39	745.17	11.70	ND	37.39	746.03
MW-7	744.07	5.63	ND	29.30	738.44	6.42	ND	29.30	737.65	5.63	ND	29.30	738.44	6.28	ND	29.30	737.79
MW-8	753.11	12.90	ND	36.88	740.21	13.37	ND	36.88	739.74	12.80	ND	36.88	740.31	13.02	ND	36.88	740.09

			4/23	3/2020			10/2	7/2020			5/6	/2021			11/3	3/2021	
Well ID	TOC	Depth to Water ft (bgs)	Total Dep	th ft (bgs)	Groundwater Elevation (ft AMSL)	Depth to Water ft (bgs)	Total Dep	th ft (bgs)	Groundwater Elevation (ft AMSL)	Depth to Water ft (bgs)	Total Dep	th ft (bgs)	Groundwater Elevation (ft AMSL)	Depth to Water ft (bgs)	Total Dep	th ft (bgs)	Groundwater Elevation (ft AMSL)
	Elevation		Depth to	T. Well													
		4/23/2020	DNAPL	Depth	4/23/2020	10/27/2020	DNAPL	Depth	10/27/2020	5/6/2021	DNAPL	Depth	5/6/2021	11/3/2021	DNAPL	Depth	11/3/2021
MW-1	758.41	8.82	ND	35.85	749.59	9.72	ND	35.85	748.69	8.05	ND	35.85	750.36	7.73	ND	35.85	750.68
MW-2	760.25	8.58	ND	36.76	751.67	8.20	ND	36.76	752.05	8.36	ND	36.76	751.89	7.39	ND	36.76	752.86
MW-3	761.66	10.24	ND	32.59	751.42	10.29	ND	32.59	751.37	10.27	ND	32.59	751.39	9.10	ND	32.59	752.56
MW-4	756.18	15.65	ND	39.75	740.53	15.60	ND	39.75	740.58	15.87	ND	39.75	740.31	15.17	ND	39.75	741.01
MW-5	757.82	18.06	34.70	34.90	739.76	18.73	34.75***	34.90	739.09	18.02	34.75	34.90	739.80	19.28	34.7	34.90	738.54
MW-6	757.73	13.05	ND	37.39	744.68	12.75	ND	37.39	744.98	16.48	ND	37.39	741.25	14.38	ND	37.39	743.35
MW-7	744.07	6.10	ND	29.30	737.97	6.31	ND	29.30	737.76	6.16	ND	29.30	737.91	5.27	ND	29.30	738.80
MW-8	753.11	11.83	ND	36.88	741.28	13.13	ND	36.88	739.98	13.46	ND	36.88	739.65	12.65	ND	36.88	740.46

Notes:

- 1. ft AMSL = Feet above mean sea level, 1988 North American Vertical Datum (NAVD88).
- 2. bgs = below ground surface
- 3. ND = Not Detected
- * = Depth to DNAPL measurement recorded on 9/28/2018.
- ** = Depth to DNAPL measurement recorded on 11/11/2019.
- *** = Depth to DNAPL measurement recorded on 11/4/2020.

Table 2 - Groundwater Sample Analytical Results

VAV - 11 15	_	1	NAVA / 4	I MV	N/ 1	NAVA / 4	MV	V 4	NAVA/ 4	NAVA 4	NAVA / 4	NA)A/ 4	MANA/ O	MANA/ O	MANA/ O	MANA/ O	l Mv	V 2	NAVA (O	MANA/ O	I MV	W 2
Well II	الا	NYSDEC	MW-1		i i	MW-1			MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2			MW-2	MW-2		
Sample II	D	TOGS 1.1.1	GEN-MW1	GEN-MW1-	Duplicate-	GEN-MW1-	GEN-MW1	Duplicate	GEN-MW1-	GEN-MW1-	GEN-MW1-	GEN-MW1-	GEN-MW2	GEN-MW2-	GEN-MW2-	GEN-MW2	GEN-MW2-	GEN-DUP-	GEN-MW2-	GEN-MW2-	GEN-MW2-	GEN-DUP-
			404057.04	092718	092718	051519	102619	102619	04212020	10312020	042821	103021	404057.00	092918	051419	102619	04202020	04202020	10302020	042721	103021	103021
Lab Sample II		Class GA ¹	181657-04	184501-03	184501-05	192209-04	195363-02	195363-03	201703-05	205240-03	211799-03	214958-02	181657-03	184501-07	192209-02	195363-01	201703-03	201703-02	205240-02	211799-01	214958-03 10/30/	214958-04
Date Sample	d Units		4/23/2018	9/27/	2018	5/15/2019	10/26	/2019	4/21/2020	10/31/2020	4/28/2021	10/30/2021	4/23/2018	9/29/2018	5/14/2019	10/26/2019	4/20/	2020	10/30/2020	4/27/2021	10/30/	/2021
Volatiles																					,	
Benzene	μg/L	1	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Ethylbenzene	µg/L	5*	2 U	2 U	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2 U	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Toluene	µg/L	5*	2 U	2 U	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	211	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Xylene (total)	ua/L	5*	2 U	2 U	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	1.39 J	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	1.10 J	2.00 U
	Pg/ =						2.00 0	2.000	2.000	2.000	2.000	2.000				2.000	2.000	2.000	2.00 0	2.000		2.000
Semi-Volatiles																					1 '	
Acenaphthene	μg/L	20	10 U	10 U	10 U	10 U	5.00 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Acenaphthylene	μg/L	NS	10 U	10 U	10 U	10 U	5.00 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Anthracene	μg/L	50	10 U	10 U	10 U	10 U	5.00 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(a)anthracene	μg/L	0.002**	10 U	10 U	10 U	10 U	5.37 U	5.37 U	0.02 J	0.02 J	0.10 U	0.10 U	10 U	10 U	10 U	5.37 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.02 J
Benzo(a)pyrene	μg/L	ND	10 U	10 U	10 U	10 U	5.00 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(b)fluoranthene	μg/L	0.002	10 U	10 U	10 U	10 U	5.00 U	5.00 U	0.02 J	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.03 J
Benzo(g,h,i)perylene	μg/L	NS	10 U	10 U	10 U	10 U	5.00 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(k)fluoranthene	μg/L	0.002	10 U	10 U	10 U	10 U	5.70 U	5.70 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	5.70 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Dibenzo(a,h)anthracene	μg/L	NS	10 U	10 U	10 U	10 U	5.00 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Chrysene	μg/L	0.002	10 U	10 U	10 U	10 U	5.00 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Fluoranthene	μg/L	50	10 U	10 U	10 U	10 U	5.00 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Fluorene	μg/L	50	10 U	10 U	10 U	10 U	5.00 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.04 J	0.10 U	0.10 U
Indeno(1,2,3-cd) pyrene	μg/L	0.002**	10 U	10 U	10 U	10 U	5.10 U	5.10 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	5.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Naphthalene	μg/L	10	10 U	10 U	10 U	10 U	6.03 U	6.03 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	6.03 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Phenanthrene	μg/L	50	10 U	10 U	10 U	10 U	5.00 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.04 J	0.02 J	0.02 J
Pyrene	μg/L	50	10 U	10 U	10 U	10 U	5.00 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
																					1 '	

Notes:

μg/L = micrograms per liter

NT = Not Tested

NS = No StandardNL = Not Listed

MDL = Method Detection Limit

D - Indicates that the result is from a diluted run

J - Indicates an estimated value. Result is below the Reporting Limit (Quantitation Limit)

U - Indicates that the constituent was not detected at the reported detection limit.

Bolded value indicates that the compound was detected above laboratory minimum detection limit (includes estimated values below the reporting limit).

Bolded and highlighted value indicates that the compound was detected above its respective regulatory standard or guidance value.

¹Class GA Drinking Water Standard or Guidance Value

ND = Non-detectable concentration by the approved analytical methods referenced in 6 NYCRR 700.3

*Principal Organic Contaminant Standard

**Class GA Guidance Value

April 2018 Duplicate sample ("GEN-FIELD DUPE") collected at MW-6.

October 2018 Duplicate sample ("Duplicate-092718") collected at MW-1.

May 2019 Duplicate sample ("Duplicate-051519") collected at MW-4.

October 2019 Duplicate sample ("Duplicate of 102619") collected at MW-1.

April 2020 Duplicate sample ("GEN-DUP-04202020") collected at MW-2.

October 2020 Duplicate sample ("GEN-DUP-10282020") collected at MW-4.

April 2021 Duplicate sample ("GEN-DUP-042821") collected at MW-4.

October 2021 Duplicate sample ("GEN-DUP-103021") collected at MW-2.

MARCH 2022 1 of 4

Table 2 - Groundwater Sample Analytical Results

Well ID			MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MV	V-4	MW-4	MW-4	MV	V-4	MW	'-4	MW-4
Sample ID		NYSDEC	GEN-MW3	GEN-MW3-	GEN-MW3-	GEN-MW3	GEN-MW3-	GEN-MW3-	GEN-MW3-	GEN-MW3-	GEN-MW4	GEN-MW4-	GEN-MW4-	Duplicate-	GEN-MW4	GEN-MW4-	GEN-MW4-	GEN-DUP-	GEN-MW4-	GEN-DUP-	GEN-MW4-
		TOGS 1.1.1		092718	051419	102919	04202020	10272020	042721	103121		092818	051519	051519	102919	04222020	10282020	10282020	042821	042821	102921
Lab Sample ID		Class GA ¹	181657-01	184501-02	192209-01	195363-04	201703-01	205221-01	211799-02	214958-05	181657-05	184501-06	192209-03	192209-05	195363-05	201703-07	205221-03	205221-04	211799-05	211799-04	214958-01
Date Sampled	Units		4/23/2018	9/27/2018	5/14/2019	10/29/2019	4/20/2020	10/27/2020	4/27/2021	10/31/2021	4/23/2018	9/28/2018	5/15/	2019	10/29/2019	4/22/2020	10/28	/2020	4/28/2	2021	10/29/2021
Volatiles																					
Benzene	μg/L	1	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	0.857 J	1 U	0.547 J	1.04	0.841 J	0.828 J	0.852 J	0.949 J	2.56	2.51	1.00 U M
Ethylbenzene	μg/L	5*	2 U	211	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2 U	2 U	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U M
Toluene	μg/L	5*	2 U	211	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2 U	2 U	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U M
Xvlene (total)	µg/L	5*	2 U	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.97	1.97 J	2.02	2.60	5.86 J	3.18	5.72 J	6.46 J	19.09	19.57	2.44
(12.12.1)	pg/=					2.000	2.000	2.000	2.000	2.000				2.00	0.00	00	02	00			
Semi-Volatiles																					
Acenaphthene	μg/L	20	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Acenaphthylene	μg/L	NS	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Anthracene	μg/L	50	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(a)anthracene	μg/L	0.002**	10 U	10 U	10 U	5.37 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	10 U	5.37 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(a)pyrene	μg/L	ND	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(b)fluoranthene	μg/L	0.002	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(g,h,i)perylene	μg/L	NS	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(k)fluoranthene	μg/L	0.002	10 U	10 U	10 U	5.70 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	10 U	5.70 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Dibenzo(a,h)anthracene	μg/L	NS	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Chrysene	μg/L	0.002	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Fluoranthene	μg/L	50	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Fluorene	μg/L	50	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U	10 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.04 J	0.04 J	0.10 U
Indeno(1,2,3-cd) pyrene Naphthalene	μg/L	0.002** 10	10 U	10 U	10 U	5.10 U	0.10 U	0.10 UJ	0.10 U	0.10 U	10 U	10 U	10 U	10 U	5.10 U	0.10 U	0.10 UJ	0.10 UJ	0.10 U	0.10 U	0.10 U
Phenanthrene	μg/L	50	10 U 10 U	10 U	10 U	6.03 U	0.10 U 0.10 U	0.10 U	0.10 U	0.10 U 0.10 U	10 U	10 U	10 U	10 U 10 U	6.03 U	0.05 J	0.10 U	0.10 U	0.10 U	0.10 U 0.04 J	0.10 U
	μg/L	50 50	10 U 10 U	10 U	10 U 10 U	5.00 U 5.00 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	10 U 10 U	10 U 10 U	10 U	10 U 10 U	5.00 U 5.00 U	0.02 J 0.10 U	0.02 J 0.10 U	0.02 J 0.10 U	0.04 J 0.10 U	0.04 J 0.10 U	0.10 U 0.10 U
Pyrene	μg/L	50	10 0	10 U	100	5.00 0	0.10 0	0.100	0.10 0	0.10 0	10 0	10 0	10 U	10 0	5.00 0	0.10 0	0.10 0	0.10 0	0.10 0	0.10 0	0.10 0
1					1		ı									ı	1				

Notes:

μg/L = micrograms per liter

NT = Not Tested

NS = No Standard

NL = Not Listed MDL = Method Detection Limit

D - Indicates that the result is from a diluted run

J - Indicates an estimated value. Result is below the Reporting Limit (Quantitation Limit)

U - Indicates that the constituent was not detected at the reported detection limit.

M - Matrix spike recoveries outside QC limits. Matrix bias indicated.

Bolded value indicates that the compound was detected above laboratory minimum detection limit (includes estimated values below the reporting limit).

Bolded and highlighted value indicates that the compound was detected above its respective regulatory standard or guidance value.

¹Class GA Drinking Water Standard or Guidance Value

ND = Non-detectable concentration by the approved analytical methods referenced in 6 NYCRR 700.3 *Principal Organic Contaminant Standard

**Class GA Guidance Value

April 2018 Duplicate sample ("GEN-FIELD DUPE") collected at MW-6.
October 2018 Duplicate sample ("Duplicate-092718") collected at MW-1.

October 2019 Duplicate sample ("Duplicate-092718") collected at MW-1.

May 2019 Duplicate sample ("Duplicate-051519") collected at MW-4.

October 2019 Duplicate sample ("Duplicate 102619") collected at MW-1.

April 2020 Duplicate sample ("GEN-DUP-04202020") collected at MW-2.

October 2020 Duplicate sample ("GEN-DUP-10282020") collected at MW-4.

April 2021 Duplicate sample ("GEN-DUP-042821") collected at MW-4.

October 2021 Duplicate sample ("GEN-DUP-103021") collected at MW-2.

MARCH 2022 2 of 4

Table 2 - Groundwater Sample Analytical Results

Well ID			MV	V-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7
Sample ID		NYSDEC	GEN-MW6	GEN- FIELD	GEN-MW6-	GEN-MW6-	GEN-MW6-	GEN-MW6-	GEN-MW6-	GEN-MW6-	GEN-MW6-	GEN-MW7	GEN-MW7-	GEN-MW7-	GEN-MW7-	GEN-MW7-	GEN-MW7-	GEN-MW7-	GEN-MW7-
· ·		TOGS 1.1.1		DUPE	092918	051619	103019	04222020	10312020	050321	103121	_	092618	051719	103119	04222020	10302020	050321	110121
Lab Sample ID		Class GA ¹	181657-08	181657-09	184501-09	192209-06	195363-08	201703-08	205240-04	211855-02	214958-06	181657-07	184501-01	192209-09	195363-10	201703-09	205240-01	211855-03	214958-09
Date Sampled	Units		4/24/	2018	9/29/2018	5/16/2019	10/30/2019	4/22/2020	10/31/2020	5/3/2021	10/31/2021	4/24/2018	9/26/2018	5/17/2019	10/31/2019	4/22/2020	10/30/2020	5/3/2021	11/1/2021
Volatiles																			
Benzene	μg/L	1	147	150	170	148	198	161	249	97.4	178	1 U	0.606 J	1 U	0.951 J	1.00 U	0.729 J	1.00 U	1.00 U
Ethylbenzene	μg/L	5*	31.5	32.5	35.8	22.5	32.6	26.1	39.6	22.1	32.6	2 U	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Toluene	μg/L	5*	51.5	53.1	62.7	71.8	84.9	72.4	79.7	19.4	33.8	2 U	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Xylene (total)	μg/L	5*	107.3	108.9	116.2	125.6	114.7	144.0	126.6	57.6	86.8	2 U	1.65 J	2 U	2.0	2.00 U	1.00 J	2.00 U	2.00 U
Carri Valatilas																			1
Semi-Volatiles			00.11	00.11	00.11	00.11	0.50					40.11	40.11	40.11	= 00.11				0.40.11
Acenaphthene	μg/L	20	20 U	20 U	20 U	20 U	25.0 U	1.7 J	1.8 J	1.2	1.7	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Acenaphthylene	μg/L	NS	25.1	25.3	22.2	21.4	34.9	24	24	14	18	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Anthracene	μg/L	50	20 U	20 U	20 U	20 U	25.0 U	2.0 U	2.0 U	1.0 U	0.46 J	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(a)anthracene	μg/L	0.002**	10 U	20 U	20 U	20 U	26.8 U	2.0 U	2.0 U	1.0 U	1.0 U	10 U	10 U	10 U	5.37 U	0.10 U	0.10 U	0.10 U	0.02 J
Benzo(a)pyrene	μg/L	ND	10 U	20 U	20 U	20 U	25.0 U	2.0 U	2.0 U	1.0 U	1.0 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(b)fluoranthene	μg/L	0.002	20 U	20 U	20 U	20 U	25.0 U	2.0 U	2.0 U	1.0 U	1.0 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.02 J
Benzo(g,h,i)perylene	μg/L	NS	20 U	20 U	20 U	20 U	25.0 U	2.0 U	2.0 U	1.0 U	1.0 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(k)fluoranthene	μg/L	0.002	20 U	20 U	20 U	20 U	28.5 U	2.0 U	2.0 U	1.0 U	1.0 U	10 U	10 U	10 U	5.70 U	0.10 U	0.10 U	0.10 U	0.10 U
Dibenzo(a,h)anthracene	μg/L	NS	20 U	20 U	20 U	20 U	25.0 U	2.0 U	2.0 U	1.0 U	1.0 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Chrysene	μg/L	0.002	20 U	20 U	20 U	20 U	25.0 U	2.0 U	2.0 U	1.0 U	1.0 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Fluoranthene	μg/L	50	20 U	20 U	20 U	20 U	25.0 U	2.0 U	2.0 U	1.0 U	1.0 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Fluorene	μg/L	50	20 U	20 U	20 U	20 U	25.0 U	3.9	3.8	2.6	4.0	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Indeno(1,2,3-cd) pyrene	μg/L	0.002**	10 U	20 U	20 U	20 U	25.5 U	2.0 U	2.0 UJ	1.0 U	1.0 U	10 U	10 U	10 U	5.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Naphthalene	μg/L	10	279	299	273	283	486	260	250	110	170	10 U	10 U	10 U	6.03 U	0.10 U	0.07 J	0.10 U	0.10 U
Phenanthrene	μg/L	50	20 U	20 U	20 U	20 U	25.0 U	1.7 J	1.5 J	0.90 J	1.6 J	10 U	10 U	10 U	5.00 U	0.02 J	0.02 J	0.02 J	0.02 J
Pyrene	μg/L	50	20 U	20 U	20 U	20 U	25.0 U	2.0 U	2.0 U	1.0 U	1.0 U	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
										ĺ			ĺ			ĺ	ĺ	ĺ	1

Notes:

 μ g/L = micrograms per liter

NT = Not Tested

NS = No Standard NL = Not Listed

MDL = Method Detection Limit

D - Indicates that the result is from a diluted run

J - Indicates an estimated value. Result is below the Reporting Limit (Quantitation Limit)

U - Indicates that the constituent was not detected at the reported detection limit. **Bolded value** indicates that the compound was detected above laboratory minimum detection limit (includes estimated values below the reporting limit).

Bolded and highlighted value indicates that the compound was detected above its respective regulatory standard or guidance value.

¹Class GA Drinking Water Standard or Guidance Value

ND = Non-detectable concentration by the approved analytical methods referenced in 6 NYCRR 700.3

*Principal Organic Contaminant Standard

**Class GA Guidance Value

April 2018 Duplicate sample ("GEN-FIELD DUPE") collected at MW-6.

October 2018 Duplicate sample ("Duplicate-092718") collected at MW-1. May 2019 Duplicate sample ("Duplicate-051519") collected at MW-4.

October 2019 Duplicate sample ("Duplicate 102619") collected at MW-1.

April 2020 Duplicate sample ("GEN-DUP-04202020") collected at MW-2.

October 2020 Duplicate sample ("GEN-DUP-10282020") collected at MW-4. April 2021 Duplicate sample ("GEN-DUP-042821") collected at MW-4.

October 2021 Duplicate sample ("GEN-DUP-103021") collected at MW-2.

MARCH 2022 NEU-VELLE_{UC} 3 of 4

Table 2 - Groundwater Sample Analytical Results

Well ID			MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8
Sample ID		NYSDEC	GEN-MW8	GEN-MW8-	GEN-MW8-	GEN-MW8-	GEN-MW8-	GEN-MW8-	GEN-MW8-	GEN-MW8-
· ·		TOGS 1.1.1		092818	051619	102919	04212020	10282020	050321	110121
Lab Sample ID		Class GA ¹	181657-06	184501-04	192209-07	195363-07	201703-06	205221-02	211855-01	214958-08
Date Sampled	Units		4/23/2018	9/28/2018	5/16/2019	10/29/2019	4/21/2020	10/28/2020	5/3/2021	11/1/2021
<u>Volatiles</u>	,,		0.00	0.00	0.00	F F0				
Benzene	μg/L	1	8.93	8.08	6.00	5.50	2.28	3.59	2.54	3.37
Ethylbenzene	μg/L	5*	7.3	7.08	5.84	5.64	2.68	2.60	2.52	2.32
Toluene	μg/L	5*	2.76	5.78	4.99	5.21	2.24	3.76	1.49 J	1.44 J
Xylene (total)	μg/L	5*	3.85	11.77	8.26	9.45	6.28	8.19	5.88	6.58
Semi-Volatiles										
	/1	20	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Acenaphthene	μg/L	NS NS	10 U	10 U	10 U		0.10 U	0.10 U	0.10 U	0.10 U
Acenaphthylene	μg/L	50	10 U	10 U		5.00 U				0.10 U 0.10 U
Anthracene	μg/L				10 U	5.00 U	0.10 U	0.10 U	0.10 U	
Benzo(a)anthracene	μg/L	0.002**	10 U	10 U	10 U	5.37 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(a)pyrene	μg/L	ND	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(b)fluoranthene	μg/L	0.002	10 U	10 U	10 U	5.00 U	0.02 J	0.10 U	0.10 U	0.10 U
Benzo(g,h,i)perylene	μg/L	NS	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Benzo(k)fluoranthene	μg/L	0.002	10 U	10 U	10 U	5.70 U	0.10 U	0.10 U	0.10 U	0.10 U
Dibenzo(a,h)anthracene	μg/L	NS	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Chrysene	μg/L	0.002	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Fluoranthene	μg/L	50	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Fluorene	μg/L	50	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U
Indeno(1,2,3-cd) pyrene	μg/L	0.002**	10 U	10 U	10 U	5.10 U	0.10 U	0.10 UJ	0.10 U	0.10 U
Naphthalene	μg/L	10	10 U	10 U	10 U	6.03 U	0.10 U	0.10 U	0.09 J	0.22
Phenanthrene	μg/L	50	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.04 J
Pyrene	μg/L	50	10 U	10 U	10 U	5.00 U	0.10 U	0.10 U	0.10 U	0.10 U

Notes

 μ g/L = micrograms per liter

NT = Not Tested

NS = No Standard NL = Not Listed

MDL = Method Detection Limit

D - Indicates that the result is from a diluted run

J - Indicates an estimated value. Result is below the Reporting Limit (Quantitation Limit)

U - Indicates that the constituent was not detected at the reported detection limit. **Bolded value** indicates that the compound was detected above laboratory minimum detection limit (includes estimated values below the reporting limit).

Bolded and highlighted value indicates that the compound was detected above its respective regulatory standard or guidance value.

¹Class GA Drinking Water Standard or Guidance Value

ND = Non-detectable concentration by the approved analytical methods referenced in 6 NYCRR 700.3

*Principal Organic Contaminant Standard

**Class GA Guidance Value

April 2018 Duplicate sample ("GEN-FIELD DUPE") collected at MW-6.

October 2018 Duplicate sample ("Duplicate-092718") collected at MW-1. May 2019 Duplicate sample ("Duplicate-051519") collected at MW-4.

October 2019 Duplicate sample ("Duplicate 102619") collected at MW-1.

April 2020 Duplicate sample ("GEN-DUP-04202020") collected at MW-2.

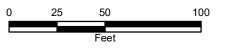
October 2020 Duplicate sample ("GEN-DUP-10282020") collected at MW-4. April 2021 Duplicate sample ("GEN-DUP-042821") collected at MW-4.

October 2021 Duplicate sample ("GEN-DUP-103021") collected at MW-2.

Rochester Gas and Electric Corporation Park Street Former MGP Site - Geneseo, New York NYSDEC Site # V00731 8th Post-Remediation Groundwater Sampling Report October/November 2021

MARCH 2022 NEU-VELLE_{UC} 4 of 4

Figures

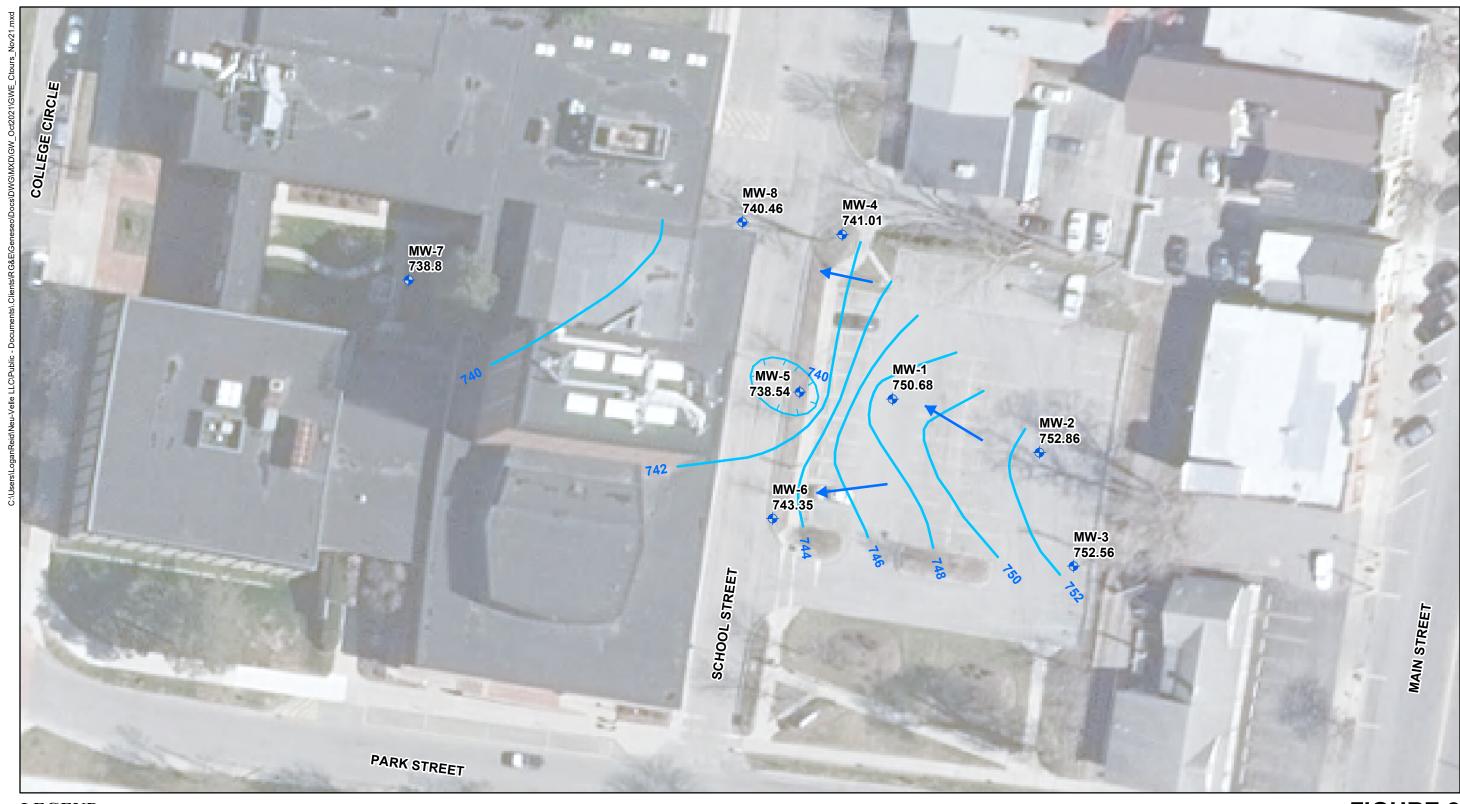

LEGEND

NOTES:

• GROUNDWATER MONITORING WELL

1. MONITORING WELL LOCATIONS ARE APPROXIMATE.

ROCHESTER GAS AND ELECTRIC CORPORATION PARK STREET FORMER MGP SITE GENESEO, NEW YORK



MONITORING WELL LOCATIONS

FIGURE 1

MARCH 2022

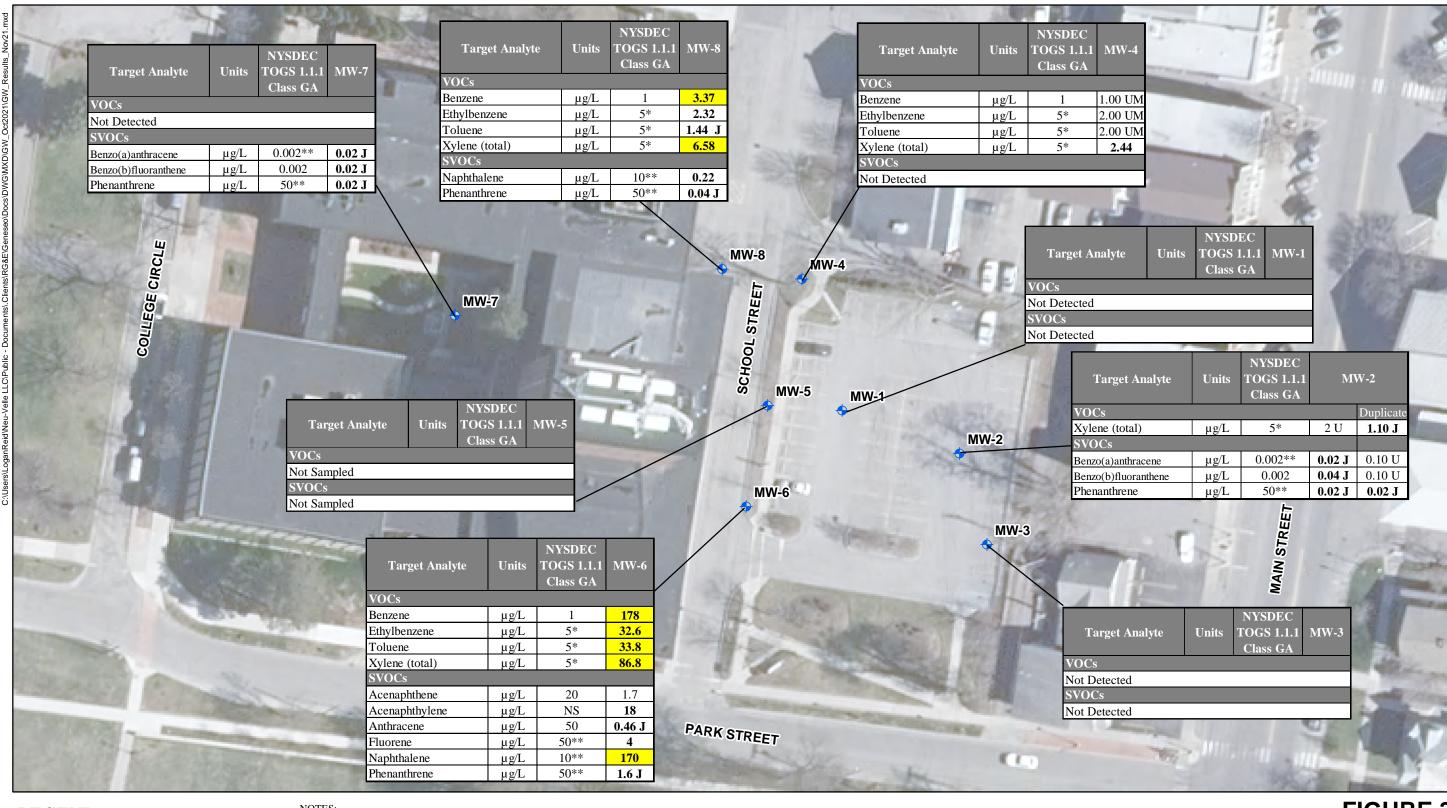
LEGEND

- GROUNDWATER MONITORING
- GROUNDWATER ELEVATION CONTOURS (FT)
- GROUNDWATER FLOW DIRECTION

NOTES:

- MONITORING WELL LOCATIONS ARE APPROXIMATE.
 GROUNDWATER ELEVATIONS MEASURED ON NOVEMBER 3, 2021.

ROCHESTER GAS AND **ELECTRIC CORPORATION** PARK STREET FORMER MGP SITE GENESEO, NEW YORK



NOVEMBER 2021 GROUNDWATER ELEVATION CONTOURS

FIGURE 2

MARCH 2022

LEGEND

♦ GROUNDWATER MONITORING WELL 3. VOCS = VOLATILE ORGANIC COMPOUNDS.

- 1. MONITORING WELL LOCATIONS ARE APPROXIMATE.
- 2. U = NOT DETECTED.
- 4. SVOCS = SEMI-VOLATILE ORGANIC COMPOUNDS. 5. *PRINCIPAL ORGANIC CONTAMINANT STANDARD
- 6. J = ESTIMATED VALUE.
- 7. μ g/L = MICROGRAMS PER LITER (OR PARTS PER BILLION). 8. BOLDED VALUE INDICATES THAT THE COMPOUND WAS DETECTED ABOVE LABORATORY REPORTING LIMIT.
- 9. BOLDED HIGHLIGHTED VALUES ARE DETECTED ABOVE REGULATORY STANDARD OR GUIDANCE VALUE.

ROCHESTER GAS AND ELECTRIC CORPORATION PARK STREET FORMER MGP SITE GENESEO, NEW YORK

OCTOBER/NOVEMBER 2021 GROUNDWATER ANALYTICAL RESULTS

FIGURE 3

MARCH 2022

Attachment A Groundwater Sampling Logs

NEU-VEL	IEIIC			Low E	low Group	d Motor Co	mpling	
					low Groun		_	
Date	10 12 /2021	Perso			/ A Rothfuss	•	oudy	± 55 °F
Site Name	RG&E - Geneseo	•	ation Method			- Well#	MW	4 Pains
Site Location	Geneseo, NY	_ Samp	ling Method	Bladder P	ump	Project #	2021067	
Well informat Depth of Well Depth to Wate Length of Wat	*	ft.	/3/21	* Measure	ments taken fron	Top of Well Cas Top of Protectiv (Other, Specify)		0 NAPL 11/3/21
Start Purge Tir	me: 15;	20						
	Depth				Oxidation	Dissolved		
Time	To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow
15.05	(ft. BTOC)	(C°)	pH	(μs/cm)	Potential (mV)	(mg/l)	(NTU)	Rate (ml/min)
15:25	14.75	14,5	7,00	3,23	-73,7	8,47	1900	2 ± 300
15,30	15.25	14.3	7.07	3,20	~74.4 75.6	9.07	28.	
15140	15,22	1405	7.14	3.18	- 77,8	8.71	67:	2
15:45	15.25	14.5	7.19	3,16	-79,4	8,31	8/04	7
15:50	15.24	14,4	7.28	3.14	-82,4	8.54	95.	
15 ,55	15,25	1403	7.45	3011	-81.4	9.03	86	3
16,00	15:29	14,5	7,50	3.10	-6203	9.30	65	e / /
16:05	15426	14.4	4.74	241(-44.6	8174	87,	6
4.5		-7-1						-
				4				
	XI [®] [®]				21 4			
					4		,	
								4
	-			AN THE	7			
			No.		2	10-603		
End Purge Tim Water sample Time collected	1/11/	05	, ę	Total volume of	purged water ren	noved:	3,5	ral
	Color Cle	a pet	so.		Physical appear	cance at sampling Color Odor Product	Cloud	geto,
	, P	"GE	-N -	MW4	-1029	[21"	+ MS	msd
Analytical Par	ameters:							
Container S	ize Contair	ner Type	# Collecte	ed Fiel	d Filtered	Preservati	ve I	Container pH
40 ml	G	ass	6		No	HCI		NM
1 L	Ambe	r Glass		3	No	None		NM

NELLVEI	LE, LLC			Low E	low Group	d Water Sa	mpling Log	
	_						mpling Log	/1 ~ \
Date	0 / 30 /2021	Perso			A Rothfuss	-	vercast,	17.1ain
Site Name	RG&E - Geneseo	-	ation Method			- Well#	MW	+50
Site Location	Geneseo, NY	Samp	ling Method	Bladder Pi	ımp	Project #	2021067	
Well informat	tion:	01				1		
Depth of Well	* 35	⊌ 97 ft.	1 1	* Measure	ments taken fron	<u> </u>	No	0.4
Depth to Wate	er* <u>7</u>	173 ft. 11	3/21		Х	Top of Well Cas	sing	IAPL
Length of Wat	er Column	ft.			24	Top of Protective		175
						(Other, Specify)	11/2	312
Start Purge Ti	me: 13	05						
	Depth				Oxidation	Dissolved		1
Time	To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow
	(ft. BTOC)	(C°)	рН	(μs/cm)	Potential (mV)	(mg/l)	(NTU)	Rate (ml/min)
13:10	0,01	15.2	6,69	7.29	-26,0	11,61	4,98	#325
13:15	8.89	15.2	6.69	7,26	-30.0	5.03	5,45	
13:20	9,30	15,2	6,67	7.25	-31,4	2.83	3.80	
13 30	9,69	15:	6,70	7,24	-32.0	2,46	4.34	
13:35	- 10.93	15.1	\$ 6000	-	-32,3	2,05	3,90	
13:40	10:41	15.3	bulolo	7.21	-34,3	1.67	72001	1/
13:45	10,65	15.4	6.71	7,22	-36,7	- 1,37	7.87	+250
13:50	1000	0 15,4	10,67	7,20	~ 37.9	(30	2,43	
13:55	10.85	1503	6.67	7.19	-40,8	le17	2.56	
							i	W
	,							
							7	
	ne: 131:							
End Purge Tin	ne: [] [27						
Water sample	14:00						± 3,5	- 0
Time collected	1: ((4 00			Total volume of	purged water ren	noved:	- >1 =	gal
							124	
	1							
Physical appe		1 and			Physical appear	ance at sampling	Meso	
1	Color Color	100 P				Color	Contraction	0.
Sheen/Free Pi	Odor 3 Wa	100			Sheen/Fre	Odor	Swan	199
Sileeli/Filee Fi	oduci	0			Sileen/Fie	e Product	NO	
		u C	FN	- MW	1-10-	2021		
Analytical Par	rameters:	0	1			200		
						1 1		
Container S		ner Type	# Collecte	ed Fiel	d Filtered	Preservati	ve C	ontainer pH
40 ml		ass r Glass	-	7	No No	HCI None		NM NM
1	Airibe	1 01033	- 6		140	None		INIVI

NEU-VEL	LLE, LLC			Low F	low Groun	nd Water Sa	mplin	a Loa		
Date \	0 130 12021	Perso	nnel		/ A Rothfuss		Taih		scast	F
Site Name	RG&E - Geneseo	-	uation Method			- Well#		nw z		-
	Geneseo, NY	_ _ Samp	oling Method	Bladder Pt		Project #	2021067			50 F
Well informat	tion:	0 .76 ft. - 39 ft. 11						\		,
Depth of Well	* 36	2 + 40 ft.	1 1	* Measure	ments taken fror	m		No	NA	01
Depth to Wate	er* 7	39 ft. 1/	1/3/21		Х	Top of Well Cas	ing	1	MA	PL
Length of Wate	er Column	ft.				Top of Protective	e Casing	11	13/	21
						(Other, Specify)		l	1	,
Start Purge Tir	me: <u> 455</u>									
	Depth				Oxidation	Dissolved				
Time	To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidi	ty	Flow	
	(ft. BTOC)	(C°)	pH	(μs/cm)	Potential (mV)	(mg/l)	(NTU))	Rate (m	
15:00	NM	15.4	6:00	3.00	-12641	2:32	7	-92	+2	00
15:05	Q 7,78		6.49	3,00	-123,3	1. 10	6	064	1	
12:10	8.28	15.2	6.96	2.99	122,9	1010	118	463		
6120	8 79	15.2	6,96	2,99	-127.4	0,97	4	55	-	
15125	8,90	15,2	6.95	7,97	-120,2	0 70	W	42		
15:30	8,92	15.2	6.96	2,97	-120,2	0:42	4	47		
15:35	0,95	1502	6.95	2095	-120,3		- 4	1.04		
1000	0 (()			- Carrier Control		46		- C	1	//
								1		A
				-						
						4 - 6	,			
						-				
End Purge Tim	15	: 35								
							+	0	0	
Water sample	1 / //					_	1	5	2	
Time collected	17 17		٠	Total volume of	purged water rer	noved:		- 9	far	
								U		
B) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					-114 a Ludu		A			
Physical appea	- 4 2	4			Physical appear	rance at sampling	1/2	10,	5	
	Color Color					Color	0	1	4.1	
	Odor 5h	Jamey			Ol/F	Odor	Su	lang	94	
Sheen/Free Pro	oduct	0		-	Sheen/Fre	ee Product	-	10	9	
10	00.1		2 - 2 1	Cl	1.10	0	-	11	•	
	CIEN - WI	N2 -10	3021	+ 1	2FN -1	DW1-1	030	121		
Analytical Para	ameters:									
Container S	See Contain	Timo	# Collects	Eigi	- F:16	T Description				
40 ml		ner Type lass	# Collecte	d rien	d Filtered No	Preservativ HCI	ve	Co	ontainer ph	1
1 L		er Glass	1		No	None			NM NM	
			-							

MELLYE	15110					11111 1 0				
	LE, LLC		***************************************		low Groun					
Date	1013(12021	_ Perso	nnel	K R Miller	/ A Bothfuss	_ Weather @	0000	ca 51	± ± 5	TOF
Site Name	RG&E - Geneseo	_ Evacı	ation Method	Bladder Pi	ımp	Well#	n	100	3	8
Site Location	Geneseo, NY	Samp	ling Method	Bladder Pt	ımp	Project #	2021067		-	
Well information Depth of Well Depth to Water Length of Water	* H &	32,59t. 1=10 ft. 1	1/3/21	* Measure	ments taken fron X	n Top of Well Car Top of Protectiv (Other, Specify		11/	NA13/21	PL
Start Purge Ti	me: // 3	45								
Time 1(150 11.55 12.00 12.05 12.10 12.15	Depth To Water (ft. BTOC) 8, 93 (. 0)e	Temperature (C°) 14	pH (µ 7.72 7.08 7.00 7.01 7.01 7.01	nductivity s/cm) 3,30 3,30 3,30 3,20 3,20 3,20 3,20	Oxidation Reduction Potential (mV) -94.0 -97.7 -99.0 -101.0 -101.1 -101.1	Dissolved Oxygen (mg/l) 5.03 6.72 6.44 7.07 6.09 5.94 5.94	Turbidity (NTU)	7.7 3.9 4.0 35,0 9.3 9.9 6.9	Flow Rate (ml/r	
							,			
End Purge Tin Water sample Time collected	: -7 - 20	:-25	Tota	al volume of	purged water rer	noved:	<u>tl</u> ,	75 0	Fal	-
Sheen/Free Pr	Color Clla Odor SWar roduct N	MPY (S) OFN	light(y)) √3 -	Physical appeal Sheen/Fre	rance at sampling Color Odor see Product	2 U. Sw	anfi Jo	1	,
Analytical Par	rameters:		3	7.0						
Container S	Size Contai	ner Type	# Collected	Field	d Filtered	Preservat	ive	Co	ntainer pH	
40 ml	G	lass	Z		No	HCI			NM	
1 L	Ambe	r Glass	1	-	No	None			NM	

NEU-VEI	LLE, LLC	·	***************************************	Low F	low Groun	d Water Sa	amplir	na Loa	
Date	10 / 31 /2021	Perso	nnel		LA Rothfuss		lond	77	±50'F
Site Name	RG&E - Geneseo	- Evac	uation Method	Bladder P	ump	- Well#	1	MWG	7
Site Location	Geneseo, NY	Samp	oling Method	Bladder P	ump	Project #	202106	7	
Well information	tion:								
Depth of Well	* 3	+.39 ft.	1 1	* Measure	ments taken from	m		N	10
Depth to Wate	-	1,39 ft.	11/3/21		Х	Top of Well Cas			00 i
Length of Wat		ft.	1171			Top of Protectiv (Other, Specify)		N7	13/21
Start Purge Ti	ime: 13	:30		a _y					
	Depth				Oxidation	Dissolved			
Time	To Water	Temperature	1 1	nductivity	Reduction	Oxygen	Turbidi		Flow
13:35	(ft. BTOC)	(c°)		2,91	Potential (mV)	(mg/l)	(NTU	u 6	Rate (ml/min)
13:40	13.05	4.7		2,92	-123,3		10		1
13:45	13,44	14.8	7,10	2.91	-127-1	0.34	17	7.1	
13,50	14,00	14.7	7.10	2.91	-1290	1 1 27	1 (3	1.4	V
14:00	14.33	15.1	7.09	2,91	-130:2		1	7.3	+100
14:05	14.41	15.1	7210	2:91	-131,8	1 0.16	1.	7.5	1=110
14:10	14,44	15:1		2:90	-13216		1	7.7	- \//
14:15	14.46	15:1	7-10	2,91	-133.6	0:13	1	7,6	
			-			 	 		
			2	/					
			2						interior
					-	<u> </u>	<u> </u>	,	
286							 		
0			 						
							<u> </u>		
End Purge Tin	ne: 14	1.15							
1		()					,		2
Water sample Time collected	1 4 9 -		Tota	d volume of	purged water rer	mayod:	t;	2 9	al
Time conected			1018	ai voiume oi	purged water rei	noved:		-0	
	- A	· · · · · · · · · · · · · · · · · ·							
Physical appea	0/0	0/11			Physical appea	rance at sampling	đ _o	111	
i .	Color Cle	00/14.	gray			Color C/	ear	110	grag
Sheen/Free Pr	Odor p2+	10, 0000	1		Choon/Er	Odor ee Product	pe	to.	. odor
Officering receive	- J	NO			Sileenirie	ee Product		-VV	0
)	" GEN	-MW	6-	10312	-1"			
Analytical Par	rameters:								
Container S	Size Contain	ner Type	# Collected	Field	d Filtered	Preservati	ive	Cr	ontainer pH
40 ml	G	ass	1		No	HCI			NM
1 L	Ambe	r Glass			No	None			NM
				 					

NEU-VE	LE, LLC			Low F	low Group	d Water Sa	mpling	00
Date	11/ 1 /2021	Perso	nnel	100	/ A Rothfuss	Weather ρ_{α}	11 .1	
Site Name	RG&E - Geneseo		uation Method			- Well#	I m	sudy + 50
Control Control Control	Geneseo, NY	-	ling Method	Bladder Pi		Project #	2021067	F
Well informa	tion:				A CONTRACTOR OF THE CONTRACTOR	•		
Depth of Well Depth to Wate Length of Wa	* ± 36	2,9 ft. 2,65 ft. //	1/3/21	* Measure	ments taken fron X	Top of Well Cas Top of Protective (Other, Specify)	ing e Casing	NO NAPL
Start Purge Ti	me: 141	20			/4 (m)			
Time 14:25 14:30 14:40 14:45 14:50	Depth To Water (ft. BTOC) 12.95 13.06 13.09 13.09	Temperature (C°) 15.3 15.2 15.2 15.2		Conductivity (µs/cm) 3 30 3 31 3 32 3 33	Oxidation Reduction Potential (mV) -136.9 -155.1 -152.1 -152.1 -153.1	Dissolved Oxygen (mg/l) 3.04 3.04 3.54	Turbidity (NTU) 5 18 5 10 9 4 10 4 10	Flow Rate (ml/min)
A pa								
End Purge Tin Water sample Time collected		0	, , , , , ,	Γotal volume of	ourged water ren	noved:	± Z	gal
	Color Odor	o o la	FV-	FB 11	Physical appear Sheen/Fre	ance at sampling Color Odor e Product	petro No	Jode
Analytical Par	ameters:	14 19	1010	11 05		0 10	-400	/
		sampl	2	OF	N-MW	18 -11	0121	
Container S 40 ml		ner Type ass	# Collected	d Field	Filtered No	Preservativ HCI	/e	Container pH
1 L		r Glass	2		No	None		NM NM
								in the state of

NEU-VELLE	IIC		Low F	low Group	d Water Sa	ampling Log	
Date II	/ \ /2021	Personnel		/A Rothfuss		-11	// +
	E - Geneseo	Evacuation Method	Bladder P	1 A 7	- Well#	100	1250
Site Location Gene		Sampling Method	-		_	2024067	1
		Sampling Method	Bladder P	ипр	Project #	2021067	
Well information: Depth of Well * Depth to Water * Length of Water Co Start Purge Time:		Eft. 11/3/21	* Measure	x X	Top of Well Cas Top of Protectiv (Other, Specify)	re Casing	APL (21
Time	Depth To Water Tempe	rature	Conductivity	Oxidation Reduction	Dissolved	Tumbiditu	Flour
			μs/cm)	Potential (mV)	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)
16105	4,95 1	5.4 7100	2,66	255,0	13,50	NM	+ 200
16-10	5.20	5.2 7.11	2,35	234,4	34.8	21.4	1
16:15	5 25 1	5,3 7,12	2.54	734,2	24.6	30,2	
16:25	95.20	5,2 7,12	2,45	71000	16.1	28,1	1
16-30	5.30	5.5 7.11	2,34	266.2	26.1	21,0	4
					- 1	- (
							V
							-
 						7	Y
						,	
End Purge Time:	16:30	0					
Water sample: Time collected:	<u>6:30</u>	Ţ	otal volume of	purged water ren	noved:	12	gal
Physical appearance Color Odor	- 1 0 - /	TA of		Physical appear	rance at sampling Color Odor	Clear Detro.	odor
Sheen/Free Product	1 1/8			Sheen/Fre		1 1/2	
	" GE	N-M	W7 -	-11017		190	
Analytical Paramete	ers:						
Container Size	Container Type	# Collected	l Field	Filtered	Preservati	ve Co	ontainer pH
40 ml 1 L	Glass Amber Glass	1		No No	HCI None		NM NM
		*		,,,,	None		INIVI

Exhibit A

Groundwater Laboratory Reports, Chain of Custody Forms and DUSR

Analytical Report For

Neu-Velle

For Lab Project ID

214958

Referencing

RGE Geneseo Fmr. MGP Site

Prepared

Tuesday, November 16, 2021

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below:

Portions of the enclosed report reflects analysis that has been subcontracted and are presented in their original form.

A complete ASP package will follow this report.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-MW4-102921

Lab Sample ID:214958-01Date Sampled:10/29/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>		Qualifier	Date Analy	vzed
Benzene	< 1.00	ug/L		M	11/3/2021	13:33
Ethylbenzene	< 2.00	ug/L		M	11/3/2021	13:33
m,p-Xylene	2.44	ug/L			11/3/2021	13:33
o-Xylene	< 2.00	ug/L			11/3/2021	13:33
Toluene	< 2.00	ug/L		M	11/3/2021	13:33
Surrogate	Percent	Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	1	.21	77.9 - 132		11/3/2021	13:33
4-Bromofluorobenzene	1	.18	62.6 - 133		11/3/2021	13:33
Pentafluorobenzene	1	.15	88.9 - 114	*	11/3/2021	13:33
Toluene-D8	1	.07	75.6 - 117		11/3/2021	13:33

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05208.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-MW1-103021

Lab Sample ID:214958-02Date Sampled:10/30/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	<u>vzed</u>
Benzene	< 1.00	ug/L			11/3/2021	14:31
Ethylbenzene	< 2.00	ug/L			11/3/2021	14:31
m,p-Xylene	< 2.00	ug/L			11/3/2021	14:31
o-Xylene	< 2.00	ug/L			11/3/2021	14:31
Toluene	< 2.00	ug/L			11/3/2021	14:31
<u>Surrogate</u>	Percei	<u>nt Recovery</u>	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4		117	77.9 - 132		11/3/2021	14:31
4-Bromofluorobenzene		108	62.6 - 133		11/3/2021	14:31
Pentafluorobenzene		117	88.9 - 114	*	11/3/2021	14:31
Toluene-D8		108	75.6 - 117		11/3/2021	14:31

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05211.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-MW2-103021

Lab Sample ID:214958-03Date Sampled:10/30/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	<u>yzed</u>
Benzene	< 1.00	ug/L			11/3/2021	14:50
Ethylbenzene	< 2.00	ug/L			11/3/2021	14:50
m,p-Xylene	1.10	ug/L		J	11/3/2021	14:50
o-Xylene	< 2.00	ug/L			11/3/2021	14:50
Toluene	< 2.00	ug/L			11/3/2021	14:50
Surrogate	Percei	nt Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4		118	77.9 - 132		11/3/2021	14:50
4-Bromofluorobenzene		107	62.6 - 133		11/3/2021	14:50
Pentafluorobenzene		113	88.9 - 114		11/3/2021	14:50
Toluene-D8		107	75.6 - 117		11/3/2021	14:50

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05212.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-DUP-103021

Lab Sample ID:214958-04Date Sampled:10/30/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	<u>vzed</u>
Benzene	< 1.00	ug/L			11/3/2021	15:09
Ethylbenzene	< 2.00	ug/L			11/3/2021	15:09
m,p-Xylene	< 2.00	ug/L			11/3/2021	15:09
o-Xylene	< 2.00	ug/L			11/3/2021	15:09
Toluene	< 2.00	ug/L			11/3/2021	15:09
Surrogate	Percer	nt Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4		123	77.9 - 132		11/3/2021	15:09
4-Bromofluorobenzene		106	62.6 - 133		11/3/2021	15:09
Pentafluorobenzene		114	88.9 - 114		11/3/2021	15:09
Toluene-D8		111	75.6 - 117		11/3/2021	15:09

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05213.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-MW3-103121

Lab Sample ID:214958-05Date Sampled:10/31/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	<u>yzed</u>
Benzene	< 1.00	ug/L			11/3/2021	15:29
Ethylbenzene	< 2.00	ug/L			11/3/2021	15:29
m,p-Xylene	< 2.00	ug/L			11/3/2021	15:29
o-Xylene	< 2.00	ug/L			11/3/2021	15:29
Toluene	< 2.00	ug/L			11/3/2021	15:29
<u>Surrogate</u>	<u>Percer</u>	nt Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4		120	77.9 - 132		11/3/2021	15:29
4-Bromofluorobenzene		118	62.6 - 133		11/3/2021	15:29
Pentafluorobenzene		110	88.9 - 114		11/3/2021	15:29
Toluene-D8		107	75.6 - 117		11/3/2021	15:29

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05214.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-MW6-103121

Lab Sample ID:214958-06Date Sampled:10/31/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

<u>Analyte</u>	<u>Resul</u>	<u>t Units</u>		Qualifier	Date Anal	<u>yzed</u>
Benzene	178	ug/L			11/8/2021	15:52
Ethylbenzene	32.6	ug/L			11/8/2021	15:52
m,p-Xylene	43.5	ug/L			11/8/2021	15:52
o-Xylene	43.3	ug/L			11/8/2021	15:52
Toluene	33.8	ug/L			11/8/2021	15:52
<u>Surrogate</u>	Pe	ercent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4		99.0	77.9 - 132		11/8/2021	15:52
4-Bromofluorobenzene		86.5	62.6 - 133		11/8/2021	15:52
Pentafluorobenzene		99.3	88.9 - 114		11/8/2021	15:52
Toluene-D8		88.7	75.6 - 117		11/8/2021	15:52

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05290.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-EB-110121

Lab Sample ID:214958-07Date Sampled:11/1/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	<u>vzed</u>
Benzene	0.806	ug/L		J	11/3/2021	16:07
Ethylbenzene	< 2.00	ug/L			11/3/2021	16:07
m,p-Xylene	< 2.00	ug/L			11/3/2021	16:07
o-Xylene	< 2.00	ug/L			11/3/2021	16:07
Toluene	< 2.00	ug/L			11/3/2021	16:07
<u>Surrogate</u>	Perce	nt Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4		117	77.9 - 132		11/3/2021	16:07
4-Bromofluorobenzene		117	62.6 - 133		11/3/2021	16:07
Pentafluorobenzene		116	88.9 - 114	*	11/3/2021	16:07
Toluene-D8		108	75.6 - 117		11/3/2021	16:07

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05216.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-MW8-110121

Lab Sample ID:214958-08Date Sampled:11/1/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	<u>vzed</u>
Benzene	3.37	ug/L			11/3/2021	16:27
Ethylbenzene	2.32	ug/L			11/3/2021	16:27
m,p-Xylene	3.52	ug/L			11/3/2021	16:27
o-Xylene	3.06	ug/L			11/3/2021	16:27
Toluene	1.44	ug/L		J	11/3/2021	16:27
Surrogate	Per	cent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4		118	77.9 - 132		11/3/2021	16:27
4-Bromofluorobenzene		112	62.6 - 133		11/3/2021	16:27
Pentafluorobenzene		115	88.9 - 114	*	11/3/2021	16:27
Toluene-D8		97.0	75.6 - 117		11/3/2021	16:27

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05217.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-MW7-110121

Lab Sample ID:214958-09Date Sampled:11/1/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	<u>vzed</u>
Benzene	< 1.00	ug/L			11/3/2021	16:46
Ethylbenzene	< 2.00	ug/L			11/3/2021	16:46
m,p-Xylene	< 2.00	ug/L			11/3/2021	16:46
o-Xylene	< 2.00	ug/L			11/3/2021	16:46
Toluene	< 2.00	ug/L			11/3/2021	16:46
<u>Surrogate</u>	Percer	nt Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4		115	77.9 - 132		11/3/2021	16:46
4-Bromofluorobenzene		101	62.6 - 133		11/3/2021	16:46
Pentafluorobenzene		114	88.9 - 114		11/3/2021	16:46
Toluene-D8		97.7	75.6 - 117		11/3/2021	16:46

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05218.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: Trip Blank T1075

 Lab Sample ID:
 214958-10
 Date Sampled:
 10/25/2021

 Matrix:
 Water
 Date Received:
 11/2/2021

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>		Qualifier	Date Anal	<u>yzed</u>
Benzene	< 1.00	ug/L			11/3/2021	17:05
Ethylbenzene	< 2.00	ug/L			11/3/2021	17:05
m,p-Xylene	< 2.00	ug/L			11/3/2021	17:05
o-Xylene	< 2.00	ug/L			11/3/2021	17:05
Toluene	< 2.00	ug/L			11/3/2021	17:05
Surrogate	Perce	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		127	77.9 - 132		11/3/2021	17:05
4-Bromofluorobenzene		111	62.6 - 133		11/3/2021	17:05
Pentafluorobenzene		117	88.9 - 114	*	11/3/2021	17:05
Toluene-D8		121	75.6 - 117	*	11/3/2021	17:05

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05219.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against

any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

4	2).				,																						
40F	12 12C				1 ren-	Lon	OL - Oil AR - Air		PARADIGM LAB	SAMPLE	10	m2	03	70	05	06	00	200	10					Г		٦		nditions.
7,10	M	LAB PROJECT ID	28			277	WP - Wipe CK - Caulk							d		1	Stanle	18	lank	, ,		Total Cost:]	se).	sample cor
			21495	Quotation #:	Email: M	105/2	SD - Solid PT - Paint			REMARKS	IMSD	1	1	11 KBJ		6			AND B	7 11),), , a	12:30 Tota	3	1	Ţ.	ĺ	tions (rever	ial page for
_											SMS		۵	Vu		<u>li</u>	7		4	7	17/1/11 et 17/12/01	21 12		1330	izyz	>	ns and Condi	$\frac{1}{3} \left(\frac{1}{3} \right) \left(\frac{1}{3} \right)$ See addition
x (585) 647-331		E TO:		re: ZIP:			SO - Soil SL - Sludge	ALYSIS												901	2/2/	Date/Firne	Date/Time	11/2/21)	Date/Time	radigm Tern	1akd. 6P
5) 647-2530 Fa	TODY		San	STATE			DW - Drinking Water WW - Wastewater	EQUESTED AN	WIS		1		V	X						~	Mile	M		en 1	1411	,	13:35 tagrees to Pa	Sijned, O
608 Office (58	CHAIN OF CUSTODY	CLIENT:	ADDRESS:	CITY:	PHONE:	11.01.00		REC	WIS HV XIII	0928	9 X>	3 X X	8 X	n X	7 X X	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	7 X	W X	X	للالماليا مي ما	4	yal		Farm	178		$ \phi /\phi $ s form, client	Custody Seals intact. Signed, dated. 69 11/2/21
ochester, NY 14	HAIN		1 2 2	615	le		WA - Water WG - Groundwater			- w — x	MG	1 MG			7	7	3 3	72	3	かっているとろ	Ch	Sampled By	Relinquished By	Smy Ly	Miles	Received @ Lab By	$\int_{\gamma} C \left\{ \langle c c \rangle / \langle b \rangle / \rangle \right\}$ By signing this form,	Fool J Seals
179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311	O	LITO	Te A	UY 14	99/1	Wes				E	12 6201	-10307	-103021	CV	-10312	7	71011	0=1-	ank	11075 PE	I			Z Z		œ :		
179		REPOR	7. La	5. K ST.	5) 446	2	AQ - Aqueous Liquid NQ - Non-Aqueous Liquid			SAMPLE IDENTIFIER	-MM4-	MW 1	MW2	- DMP	-MW3	NE P	2 2	32	16 3	ements	ses may apply.	None Required	Basic EDD	NYSDEC EDD			Other EDD Please indicate EDD needed :	
		CLIENT: K	- 1	Roche	PHONE: 65	Materia Codos	AQ - Aqu NQ - Nor	Tage I			GEN -1	GEN 1	GEN-		744	2 - 1	747	がいる。	4	Report Supplements	Availability contingent upon lab approval; additional fees may apply.				Z		П	
		O	I	0 1			1		O D	: < m	X	×	X	X	X	X	Ų×	X			lab appro	None Required	gc	ыу А	ory B		Other please indicate package needed:	
Á		Σ	1	-		SERENCE	SIT		0 O E L		10	2	7		a	9,0	0	. 0		_	ent upon	None F	Batch QC	Category A	Category B		Other please inc	
		PARADIGM				PROJECT REFERENCE	i e		Ē	COLLECTED	16:15	14,00	15:45	(14:30	16:00	16:30		d Time	lity conting	X					ję;	
4		PAF	1			ROTE (A)				DATE COLLECTED	10/29/21	10/30/21	12/08/01	10/36/21		10/31/121	14/1/21	11/1/11	16/25/01	Turnaround Time	Availabi	Standard 5 day	10 day	Rush 3 day	Rush 2 day	Rush 1 day	Date Needed please indicate date needed:	

Generic Quality Assurance Project Plan Rochester Gas & Electric Park Street Former MGP Site

Parameter	Quantita	tion Limit ¹
Volatile Organics	Water	Soil
Method 8260	(µg/L)	(µg/kg) ²
Chloromethane	5	5
Bromomethane	5	5
Vinyl Chloride	5	5
Chloroethane	5	5
Methylene Chloride	3	3
Acetone	5	5
Carbon Disulfide	5	5
1,1-Dichloroethylene	5	5
1,1-Dichloroethane	5	5
1,2-Dichloroethylene (total)	5	5
Chloroform	5	5
1,2-Dichloroethane	2	2
2-Butanone	5	5
1,1,1-Trichloroethane	5	5
Carbon Tetrachloride	2	2
Bromodichloromethane	1	1
1,2-Dichloropropane	1	1
cis-1,3-Dichloropropene	5	5
Trichloroethane	5	
	-	5
Dibromochloromethane	5	5
1,1,2-Trichloroethane	3	3
Benzene	1	11
trans-1,3-Dichloropropene	5	5
Bromoform	4	4
4-Methyl-2-pentanone	5	5
2-Hexanone	5	5
Tetrachloroethene	1	1
Toluene	5	5
1,1,2,2-Tetrachloroethane	1	11
Chlorobenzene	5	5
Ethylbenzene	4	4
Styrene	5	5
2-Chloroethyl Vinyl Ether	5	5
1,2-Dichlorobenzene	5	5
1,3-Dichlorobenzene	5	5
1,4-Dichlorobenzene	5	5
Vinyl Acetate	5	5
Total Xylenes	5	5
Semivolatile Organics	Water	Soil
Method 8270	(µg/L)	(µg/kg)
1,2,4-Trichlorobenzene	1	33
1,2-Dichlorobenzene	10	330
1,2-Diphenylhydrazine	10	330
1,3-Dichlorobenzene	10	330
1,4-Dichlorobenzene	10	330
1,4-Dioxane	10	330
2,4,5-Trichlorophenol	10	330
2,4,6-Trichlorophenol	10	330
2,4-Dichlorophenol	10	330

Page 266 11/2/21 COC - 142M

Generic Quality Assurance Project Plan Rochester Gas & Electric Park Street Former MGP Site

Parameter	Quantitation Limit ¹				
Semivolatile Organics	Water	Soil			
Method 8270 (Cont'd.)	(µg/L)	(µg/kg)			
2,4-Dimethylphenol	10	330			
2,4-Dinitrophenol	40	1300			
2,4-Dinitrotoluene	2	67			
2,6-Dinitrotoluene	2	67			
2-Chloronaphthalene	10	330			
2-Chlorophenol	10	330			
2-Methylnaphthalene	10	330			
2-Methylphenol	10	330			
2-Nitroaniline	20	670			
2-Nitrophenol	10	330			
3,3'-Dichlorobenzidene	20	670			
3-Nitroaniline	20	670			
4,6-Dinitro-2-methylphenol	40	1300			
4-Bromophenyl-phenylether	10	330			
4-Chloro-3-methylphenol	10	330			
4-Chloroaniline	10	330			
4-Chlorophenyl-phenylether	10	330			
4-Methylphenol	10	330			
4-Nitroaniline	20	670			
4-Nitrophenol	40	1300			
Acenaphthene	10	330			
Acenaphthylene	10	330			
Acetophenone	10	330			
Aniline	10	330			
Anthracene	10	330			
Atrazine	10	330			
Benzaldehyde	10	330			
Benzidine	40	1300			
Benzo(a)anthracene	1	33			
Benzo(a)pyrene	1	33			
Benzo(b)fluoranthene	1	33			
Benzo(g,h,i)perylene	10	330			
Benzo(k)fluoranthene	1	33			
Benzoic Acid	10	330			
Benzyl Alcohol	10	330			
bis(2-chloroethoxy)methane	10	330			
bis(2-chloroethyl)ether	1	33			
bis(2-chloroisopropyl)ether	10	330			
bis(2-ethylhexyl)phthalate	10	330			
Butylbenzylphthalate	10	330			
Caprolactam	10	330			
Carbazole	10	330			
Chrysene	10	330			
Dibenzo(a,h)anthracene	1	33			
Dibenzofuran	10	330			
Diethylphthalate	10	330			
Dimethylphthalate	10	330			
Di-n-butyl phthalate	10	330			
Di-n-octyl phthalate	10				
Difficulty philialate	10	330			

Page 3 of 3066 5 11/2/21 COC -KRM

Generic Quality Assurance Project Plan Rochester Gas & Electric Park Street Former MGP Site

Parameter	Quantita	ation Limit ¹
Semivolatiles	Water	Soil
Method 8270 (Cont'd.)	(µg/L)	(µg/kg)
Diphenyl	10	330
Fluoranthene	10	330
Fluorene	10	330
Hexachlorobenzene	1	33
Hexachlorobutadiene	2	67
Hexachlorocyclopentadiene	10	330
Hexachloroethane	1	33
Indeno(1,2,3-cd)pyrene	1	33
Isophorone	10	330
N,N-Dimethylaniline	1	33
Naphthalene	10	330
Nitrobenzene	1	33
N-Nitrosodimethylamine	10	330
N-Nitroso-di-n-propylamine	1	33
N-Nitrosodiphenylamine	10	330
Pentachlorophenol	40	1300
Phenanthrene	10	330
Phenol	10	330
Pyrene	10	330
Pyridine	10	330
TAL Metals (6010/7470)	Water	Soil
The second of th	(µg/L)	(µg/kg)
Aluminum		40
Antimony	ha .	2
Arsenic	-	1 1
Barium		40
Beryllium		0.4
Cadmium		1
Calcium		1000
Chromium		2
Cobalt		10
Copper	88	5
ron		30
Lead		1
Magnesium	 	1000
Vanganese		3
Mercury		0.033
Nickel		8
Potassium		1000
Selenium		
		1
Silver		2
Sodium		1000
Thallium		2
Vanadium		10
Zinc	10/-4	6
Supplemental Parameters	Water (µg/L)	Soil (mg/kg)
Total Organic Carbon (Lloyd Kahn)	NA	100
Chloride Method 325.3	1,000	

Page 4 of 5 486 11/2/21 COC -14M

Generic Quality Assurance Project Plan Rochester Gas & Electric Park Street Former MGP Site

Parameter	Quantita	tion Limit ¹
Supplemental Parameters (Cont'd.)	Water (µg/L)	Soil (mg/kg)
Nitrate Method 353.2	100	
Ammonia Method 350.1	100	
Iron Method 200.7	150	
Manganese Method 200.7	15	
Sulfate Method 375.4	5,000	
Sulfide Method 376.1	1,000	-
Orthophosphate Method 365.2	30	-
Alkalinity Method 310.1	5,000	
Methane Method 3810		
Reactive Sulfide		20
Reactive Cyanide		25
TCLP Benzene		1
Total Sulfur		50
Chemical Oxygen Demand		120

Page 5 0/5-596 11/2/21 COC -KRM

Notes:

μg/L = micrograms per liter

μg/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

¹ Specific quantitation limits are highly matrix dependent. The quantitation limits listed are for guidance and may not always be achievable due to matrix interference.

² Quantitation limits for source materials/soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for source materials/soil/sediment (calculated on a dry weight basis) will be higher.

Chain of Custody Supplement

Client:	Neu-Velle	Completed by:	MolyVail
Lab Project ID:	214958	Date:	1/12/2/
	Sample Cond Per NELAC/ELA	ition Requirements P 210/241/242/243/244	
Condition	NELAC compliance with the sam Yes	ple condition requirements upon No	receipt- N/A
Container Type			
Comments			- Nt
Transferred to method- compliant container			
Headspace (<1 mL) Comments	VOA		SVOA
Preservation Comments	JOA-		500
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
Temperature Comments	y°cial		
ompliant Sample Quantity/Ty	ре		
Comments			

ANALYTICAL REPORT

Lab Number: L2160069

Client: Paradigm Environmental Services

179 Lake Avenue Rochester, NY 14608

ATTN: Jane Daloia Phone: (585) 647-2530

Project Name: 214958
Project Number: 214958
Report Date: 11/09/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

 Project Name:
 214958
 Lab Number:
 L2160069

 Project Number:
 214958
 Report Date:
 11/09/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2160069-01	GEN-MW4-102921 214958-01	WATER	Not Specified	10/29/21 16:15	11/02/21
L2160069-02	GEN-MW1-103021 214958-02	WATER	Not Specified	10/30/21 14:00	11/02/21
L2160069-03	GEN-MW2-103021 214958-03	WATER	Not Specified	10/30/21 15:45	11/02/21
L2160069-04	GEN-DUP-103021 214958-04	WATER	Not Specified	10/30/21 00:00	11/02/21
L2160069-05	GEN-MW3-103121 214958-05	WATER	Not Specified	10/31/21 12:30	11/02/21
L2160069-06	GEN-MW6-103121 214958-06	WATER	Not Specified	10/31/21 14:30	11/02/21
L2160069-07	GEN-EB-110121 214958-07	WATER	Not Specified	11/01/21 12:00	11/02/21
L2160069-08	GEN-MW8-110121 214958-08	WATER	Not Specified	11/01/21 15:00	11/02/21
L2160069-09	GEN-MW7-110121 214958-09	WATER	Not Specified	11/01/21 16:30	11/02/21

 Project Name:
 214958
 Lab Number:
 L2160069

 Project Number:
 214958
 Report Date:
 11/09/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

 Project Name:
 214958
 Lab Number:
 L2160069

 Project Number:
 214958
 Report Date:
 11/09/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 11/09/21

ORGANICS

SEMIVOLATILES

Project Name: 214958 Lab Number: L2160069

Project Number: 214958 Report Date: 11/09/21

SAMPLE RESULTS

Lab ID: L2160069-01 Date Collected: 10/29/21 16:15

Client ID: GEN-MW4-102921 214958-01 Date Received: 11/02/21 Sample Location: Not Specified Field Prep: Not Specified

.....

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 11/03/21 15:38
Analytical Date: 11/04/21 20:06

Analyst: ALS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	ND		ug/l	0.10	0.04	1	
Fluoranthene	ND		ug/l	0.10	0.04	1	
Naphthalene	ND		ug/l	0.10	0.04	1	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.04	1	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.02	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	1	
Chrysene	ND		ug/l	0.10	0.04	1	
Acenaphthylene	ND		ug/l	0.10	0.04	1	
Anthracene	ND		ug/l	0.10	0.04	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	1	
Fluorene	ND		ug/l	0.10	0.04	1	
Phenanthrene	ND		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	1	
Pyrene	ND		ug/l	0.10	0.04	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	70	23-120	
2-Fluorobiphenyl	69	15-120	
4-Terphenyl-d14	67	41-149	

Project Name: 214958 Lab Number: L2160069

Project Number: 214958 Report Date: 11/09/21

SAMPLE RESULTS

Lab ID: L2160069-02 Date Collected: 10/30/21 14:00

Client ID: GEN-MW1-103021 214958-02 Date Received: 11/02/21 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 11/03/21 15:38
Analytical Date: 11/05/21 17:19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.04	1
Fluoranthene	ND		ug/l	0.10	0.04	1
Naphthalene	ND		ug/l	0.10	0.04	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.04	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	1
Chrysene	ND		ug/l	0.10	0.04	1
Acenaphthylene	ND		ug/l	0.10	0.04	1
Anthracene	ND		ug/l	0.10	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	1
Fluorene	ND		ug/l	0.10	0.04	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	1
Pyrene	ND		ug/l	0.10	0.04	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	72	23-120	
2-Fluorobiphenyl	75	15-120	
4-Terphenyl-d14	79	41-149	

Project Name: 214958 Lab Number: L2160069

Project Number: 214958 Report Date: 11/09/21

SAMPLE RESULTS

Lab ID: L2160069-03 Date Collected: 10/30/21 15:45

Client ID: GEN-MW2-103021 214958-03 Date Received: 11/02/21 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 11/03/21 15:38
Analytical Date: 11/05/21 17:35

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - We	stborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.04	1
Fluoranthene	ND		ug/l	0.10	0.04	1
Naphthalene	ND		ug/l	0.10	0.04	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.04	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	1
Chrysene	ND		ug/l	0.10	0.04	1
Acenaphthylene	ND		ug/l	0.10	0.04	1
Anthracene	ND		ug/l	0.10	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	1
Fluorene	ND		ug/l	0.10	0.04	1
Phenanthrene	0.02	J	ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	1
Pyrene	ND		ug/l	0.10	0.04	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	77	23-120	
2-Fluorobiphenyl	77	15-120	
4-Terphenyl-d14	79	41-149	

Project Name: 214958 Lab Number: L2160069

Project Number: 214958 Report Date: 11/09/21

SAMPLE RESULTS

Lab ID: L2160069-04 Date Collected: 10/30/21 00:00

Client ID: GEN-DUP-103021 214958-04 Date Received: 11/02/21 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 11/03/21 15:38
Analytical Date: 11/05/21 17:52

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ıb				
Acenaphthene	ND		/1	0.10	0.04	1
·			ug/l			
Fluoranthene	ND		ug/l	0.10	0.04	1
Naphthalene	ND		ug/l	0.10	0.04	1
Benzo(a)anthracene	0.02	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.04	1
Benzo(b)fluoranthene	0.03	J	ug/l	0.10	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	1
Chrysene	ND		ug/l	0.10	0.04	1
Acenaphthylene	ND		ug/l	0.10	0.04	1
Anthracene	ND		ug/l	0.10	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	1
Fluorene	ND		ug/l	0.10	0.04	1
Phenanthrene	0.02	J	ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	1
Pyrene	ND		ug/l	0.10	0.04	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	66	23-120	
2-Fluorobiphenyl	74	15-120	
4-Terphenyl-d14	82	41-149	

Project Name: 214958 Lab Number: L2160069

Project Number: 214958 Report Date: 11/09/21

SAMPLE RESULTS

Lab ID: L2160069-05 Date Collected: 10/31/21 12:30

Client ID: GEN-MW3-103121 214958-05 Date Received: 11/02/21 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 11/03/21 15:38
Analytical Date: 11/05/21 18:08

Result	Qualifier	Units	RL	MDL	Dilution Factor
tborough La	ab				
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.02	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.02	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.02	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
	ND N	ND N	ND ug/l ND ug/l	ND	ND

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	58	23-120	
2-Fluorobiphenyl	63	15-120	
4-Terphenyl-d14	77	41-149	

Project Name: Lab Number: 214958 L2160069

Project Number: Report Date: 214958 11/09/21

SAMPLE RESULTS

Lab ID: L2160069-06 D Date Collected: 10/31/21 14:30

Client ID: GEN-MW6-103121 214958-06 Date Received: 11/02/21 Sample Location: Field Prep: Not Specified

Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 11/03/21 15:38 Analytical Method: 1,8270D-SIM Analytical Date: 11/09/21 11:40

Analyst: RP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	- Westborough La	ab					
Acenaphthene	1.7		ug/l	1.0	0.35	10	
Fluoranthene	ND		ug/l	1.0	0.38	10	
Naphthalene	170		ug/l	1.0	0.43	10	
Benzo(a)anthracene	ND		ug/l	1.0	0.18	10	
Benzo(a)pyrene	ND		ug/l	1.0	0.39	10	
Benzo(b)fluoranthene	ND		ug/l	1.0	0.16	10	
Benzo(k)fluoranthene	ND		ug/l	1.0	0.42	10	
Chrysene	ND		ug/l	1.0	0.38	10	
Acenaphthylene	18		ug/l	1.0	0.35	10	
Anthracene	0.46	J	ug/l	1.0	0.35	10	
Benzo(ghi)perylene	ND		ug/l	1.0	0.42	10	
Fluorene	4.0		ug/l	1.0	0.37	10	
Phenanthrene	1.6		ug/l	1.0	0.15	10	
Dibenzo(a,h)anthracene	ND		ug/l	1.0	0.39	10	
Indeno(1,2,3-cd)pyrene	ND		ug/l	1.0	0.40	10	
Pyrene	ND		ug/l	1.0	0.40	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	75	23-120	
2-Fluorobiphenyl	86	15-120	
4-Terphenyl-d14	107	41-149	

Project Name: 214958 Lab Number: L2160069

Project Number: 214958 Report Date: 11/09/21

SAMPLE RESULTS

Lab ID: L2160069-07 Date Collected: 11/01/21 12:00

Client ID: GEN-EB-110121 214958-07 Date Received: 11/02/21 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 11/03/21 15:38
Analytical Date: 11/05/21 18:41

Result	Qualifier	Units	RL	MDL	Dilution Factor
tborough La	ab				
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.02	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.02	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.02	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
ND		ug/l	0.10	0.04	1
	ND N	ND N	ND ug/l ND ug/l	ND	ND

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	85	23-120	
2-Fluorobiphenyl	84	15-120	
4-Terphenyl-d14	83	41-149	

Project Name: 214958 Lab Number: L2160069

Project Number: 214958 Report Date: 11/09/21

SAMPLE RESULTS

Lab ID: L2160069-08 Date Collected: 11/01/21 15:00

Client ID: GEN-MW8-110121 214958-08 Date Received: 11/02/21 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 11/03/21 15:38
Analytical Date: 11/05/21 18:58

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM - V	Vestborough La	ab					
Acenaphthene	ND		ug/l	0.10	0.04	1	
Fluoranthene	ND		ug/l	0.10	0.04	1	
Naphthalene	0.22		ug/l	0.10	0.04	1	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.04	1	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.02	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	1	
Chrysene	ND		ug/l	0.10	0.04	1	
Acenaphthylene	ND		ug/l	0.10	0.04	1	
Anthracene	ND		ug/l	0.10	0.04	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	1	
Fluorene	ND		ug/l	0.10	0.04	1	
Phenanthrene	0.04	J	ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	1	
Pyrene	ND		ug/l	0.10	0.04	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	67	23-120	
2-Fluorobiphenyl	69	15-120	
4-Terphenyl-d14	77	41-149	

Project Name: 214958 Lab Number: L2160069

Project Number: 214958 Report Date: 11/09/21

SAMPLE RESULTS

Lab ID: L2160069-09 Date Collected: 11/01/21 16:30

Client ID: GEN-MW7-110121 214958-09 Date Received: 11/02/21 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 11/03/21 15:38
Analytical Date: 11/05/21 19:14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	b				
Acenaphthene	ND		ug/l	0.10	0.04	1
Fluoranthene	ND		ug/l	0.10	0.04	1
Naphthalene	ND		ug/l	0.10	0.04	1
Benzo(a)anthracene	0.02	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.04	1
Benzo(b)fluoranthene	0.02	J	ug/l	0.10	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	1
Chrysene	ND		ug/l	0.10	0.04	1
Acenaphthylene	ND		ug/l	0.10	0.04	1
Anthracene	ND		ug/l	0.10	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	1
Fluorene	ND		ug/l	0.10	0.04	1
Phenanthrene	0.02	J	ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	1
Pyrene	ND		ug/l	0.10	0.04	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	44	23-120	
2-Fluorobiphenyl	50	15-120	
4-Terphenyl-d14	63	41-149	

 Project Name:
 214958

 Lab Number:
 L2160069

Project Number: 214958 Report Date: 11/09/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 11/04/21 19:16 Extraction Date: 11/03/21 15:38

Analyst: ALS

arameter	Result	Qualifier Units	RL	MDL	
Semivolatile Organics by GC/N	//S-SIM - Westbo	rough Lab for sample(s): 01-09	Batch: WG156674	16-1
Acenaphthene	ND	ug/l	0.10	0.04	
Fluoranthene	ND	ug/l	0.10	0.04	
Naphthalene	ND	ug/l	0.10	0.04	
Benzo(a)anthracene	ND	ug/l	0.10	0.02	
Benzo(a)pyrene	ND	ug/l	0.10	0.04	
Benzo(b)fluoranthene	ND	ug/l	0.10	0.02	
Benzo(k)fluoranthene	ND	ug/l	0.10	0.04	
Chrysene	ND	ug/l	0.10	0.04	
Acenaphthylene	ND	ug/l	0.10	0.04	
Anthracene	ND	ug/l	0.10	0.04	
Benzo(ghi)perylene	ND	ug/l	0.10	0.04	
Fluorene	ND	ug/l	0.10	0.04	
Phenanthrene	ND	ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND	ug/l	0.10	0.04	
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10	0.04	
Pyrene	ND	ug/l	0.10	0.04	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	43	21-120
·	-	-
Phenol-d6	29	10-120
Nitrobenzene-d5	72	23-120
2-Fluorobiphenyl	71	15-120
2,4,6-Tribromophenol	70	10-120
4-Terphenyl-d14	67	41-149

Lab Control Sample Analysis Batch Quality Control

Project Name: 214958
Project Number: 214958

Lab Number: L2160069

Report Date: 11/09/21

	LCS	L	CSD		%Recove	ry		RPD	
rameter	%Recovery	Qual %Re	ecovery	Qua	I Limits	RPD	Qual	Limits	
emivolatile Organics by GC/MS-SIM - V	Westborough Lab A	ssociated sample(s):	01-09	Batch:	WG1566746-2	WG1566746-3			
Acenaphthene	72		69		40-140	4		40	
Fluoranthene	78		69		40-140	12		40	
Naphthalene	74		69		40-140	7		40	
Benzo(a)anthracene	80		70		40-140	13		40	
Benzo(a)pyrene	81		70		40-140	15		40	
Benzo(b)fluoranthene	78		70		40-140	11		40	
Benzo(k)fluoranthene	80		67		40-140	18		40	
Chrysene	78		69		40-140	12		40	
Acenaphthylene	84		79		40-140	6		40	
Anthracene	78		71		40-140	9		40	
Benzo(ghi)perylene	80		71		40-140	12		40	
Fluorene	73		70		40-140	4		40	
Phenanthrene	75		68		40-140	10		40	
Dibenzo(a,h)anthracene	82		74		40-140	10		40	
Indeno(1,2,3-cd)pyrene	80		70		40-140	13		40	
Pyrene	79		70		40-140	12		40	

L2160069

Lab Control Sample Analysis

Project Name: 214958

Batch Quality Control

_ _

Lab Number:

Project Number: 214958

Report Date: 11/09/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-09 Batch: WG1566746-2 WG1566746-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	48	46	21-120
Phenol-d6	33	32	10-120
Nitrobenzene-d5	80	75	23-120
2-Fluorobiphenyl	76	72	15-120
2,4,6-Tribromophenol	118	76	10-120
4-Terphenyl-d14	64	67	41-149

Matrix Spike Analysis Batch Quality Control

Project Name: 214958 **Project Number:** 214958 Lab Number:

L2160069

Report Date:

11/09/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	, RPD	RPD Qual Limits
Semivolatile Organics by Client ID: GEN-MW4-102		stborough Lab	Associate	ed sample(s): 01-0	9 QC Batch ID:	WG1566746-4	WG1566746-5	QC Sam _l	ole: L2160069-01
Acenaphthene	ND	10	6.8	68	6.9	69	40-140	1	40
Fluoranthene	ND	10	6.8	68	7.2	72	40-140	6	40
Naphthalene	ND	10	6.8	68	7.1	71	40-140	4	40
Benzo(a)anthracene	ND	10	7.1	71	7.4	74	40-140	4	40
Benzo(a)pyrene	ND	10	6.9	69	7.3	73	40-140	6	40
Benzo(b)fluoranthene	ND	10	7.0	70	7.2	72	40-140	3	40
Benzo(k)fluoranthene	ND	10	6.9	69	7.2	72	40-140	4	40
Chrysene	ND	10	6.7	67	6.9	69	40-140	3	40
Acenaphthylene	ND	10	7.8	78	7.9	79	40-140	1	40
Anthracene	ND	10	6.9	69	7.1	71	40-140	3	40
Benzo(ghi)perylene	ND	10	7.1	71	7.5	75	40-140	5	40
Fluorene	ND	10	6.9	69	7.0	70	40-140	1	40
Phenanthrene	ND	10	6.7	67	6.8	68	40-140	1	40
Dibenzo(a,h)anthracene	ND	10	7.4	74	7.8	78	40-140	5	40
ndeno(1,2,3-cd)pyrene	ND	10	7.1	71	7.4	74	40-140	4	40
Pyrene	ND	10	6.7	67	7.3	73	40-140	9	40

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
2,4,6-Tribromophenol	74	78	10-120
2-Fluorobiphenyl	72	75	15-120
2-Fluorophenol	46	53	21-120
4-Terphenyl-d14	65	74	41-149

Matrix Spike Analysis Batch Quality Control

Project Name: 214958 Project Number: 214958

Lab Number:

L2160069

Report Date:

11/09/21

	Native	MS	MS	MS		MSD	MSD	Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-09 QC Batch ID: WG1566746-4 WG1566746-5 QC Sample: L2160069-01 Client ID: GEN-MW4-102921 214958-01

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
Nitrobenzene-d5	75	79	23-120
Phenol-d6	33	38	10-120

Lab Number: L2160069

Report Date: 11/09/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Project Number: 214958

Cooler Custody Seal

214958

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	ooler pH		deg C	Pres	Seal	Date/Time	Analysis(*)
L2160069-01A	Amber 1000ml unpreserved	Α	8	8	2.7	Υ	Absent		NYTCL-8270-SIM(7)
L2160069-01A1	Amber 1000ml unpreserved	Α	9	9	2.7	Υ	Absent		NYTCL-8270-SIM(7)
L2160069-01A2	Amber 1000ml unpreserved	Α	9	9	2.7	Υ	Absent		NYTCL-8270-SIM(7)
L2160069-02B	Amber 1000ml unpreserved	Α	7	7	2.7	Υ	Absent		NYTCL-8270-SIM(7)
L2160069-03B	Amber 1000ml unpreserved	Α	8	8	2.7	Υ	Absent		NYTCL-8270-SIM(7)
L2160069-04B	Amber 1000ml unpreserved	Α	8	8	2.7	Υ	Absent		NYTCL-8270-SIM(7)
L2160069-05B	Amber 1000ml unpreserved	Α	8	8	2.7	Υ	Absent		NYTCL-8270-SIM(7)
L2160069-06B	Amber 1000ml unpreserved	Α	9	9	2.7	Υ	Absent		NYTCL-8270-SIM(7)
L2160069-07B	Amber 1000ml unpreserved	Α	9	9	2.7	Υ	Absent		NYTCL-8270-SIM(7)
L2160069-08B	Amber 1000ml unpreserved	Α	8	8	2.7	Υ	Absent		NYTCL-8270-SIM(7)
L2160069-09B	Amber 1000ml unpreserved	Α	9	9	2.7	Υ	Absent		NYTCL-8270-SIM(7)

Project Name: Lab Number: 214958 L2160069 **Project Number: Report Date:** 214958 11/09/21

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 214958
 Lab Number:
 L2160069

 Project Number:
 214958
 Report Date:
 11/09/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 214958
 Lab Number:
 L2160069

 Project Number:
 214958
 Report Date:
 11/09/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 214958
 Lab Number:
 L2160069

 Project Number:
 214958
 Report Date:
 11/09/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:11092114:04

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

Serial_No:11092114:04

CHAIN OF CUSTODY

11148

PA	RADIG	M	COMPAN	Y: Por	REPORT TO:	原型工程		COMPANY: Same LAB							LAB PROJECT #: CLIENT PROJECT #:					
1	STATE OF THE PARTY		ADDRES		idigm Environn Lake Avenue	nentai	_	ADDRES	- 55	same				-			3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1			
			CITY:	Rocheste	a contract the property of	NV ZIP	14608	September 1	MELL.		STATI	E:	ZIP:	TURNARO	UND TIME: (W	ORKING	DAYS)			
	COLUMN DESIGNATION OF THE PARTY		PHONE:	Nocheste	FAX:		14000	PHONE:			FAX:		V-00-0-11		KIND OF SHIP OF MICE.					
PROJECT NAME/SIT	TE NAME:		ATTN:	Ren	orting		-	ATTN:	Acc	ounts Pa	100F8160			 	–	ı r	TD		OTHER	
			COMME	comments: Please email results to reporting@pai							ayable			1 1	2	13	5	_		
TO COMPANY SALES		WITH THE PARTY OF	COMMEN	ris: rica	se email results									Date D	oue: 54	and	ord	1417		
							E CONTRACTOR OF THE PERSON OF	经数据生	REQI	JESTE	ANALY	SIS	ASP Ca	TIF	1950	n I	11/2	ALE PLANTS A	E Par	
DATE	TIME	C O M P O S I T E	G R A B	SAI	MPLE LOCATION/FIELD I	D	M A T R I	CONTAINER	8270 STM				5W84					LAB SAMPLE	NUMBER	
1 10/29/21	1615		X	GEN-m	W4-102921	,	GW	3	K				214958	5-01	ms/ms	n				
210/30/21	1400				IWI-103021		1	i		\top			13.7	62	111,311113	"				
3 10/30/21	1545			V	W2-10302/			1	$\dagger \dagger \dagger$	\top		\top		03		\neg				
4 10/30/21	-				18-103021			1					-	04		\neg		\vdash		
5 10/3/12/	1230		\top		W3-103121			1		+		1		05		\dashv	++-	\vdash		
الداردان	1430		\top		W6-103/2/			1	1	++	+++	+++		06		+	+		-	
7 11/1/21	1200			1.74	B-110121			1	+++	++	+++	+		07		\rightarrow	+		-	
الدارال 8	1500	-	H		168-11012			1				++		08	-	+	++	\vdash		
11/21	1630		J	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM	IW7-110121			1	T					09		- 20		1-10-	-	
10		- 172		o piv iii	1.0.07			1	*					01		_	\pm			
*LAB USE O				September 18		16 H223	MAN MAN	STEERN STATE	10 TO 10	MAN AN	- A - C - C - C - C - C - C - C - C - C		STATE STATE OF	Maria Na	THE RESIDENT	WC.	555年1939	LOS ESTABLISHED	E-10000	
Sample Condition	n: Per NELAC		41/242/24		ompliance															
	Container Typ			Y 🗀	N		Client													
Comments:				. 🗀		Sample					Date/	Time			Total Co	ost				
amments:	Preservation	11		Y 🗀	N 🔲	Relinqui	shed By	Nai	1 1	1/2/3) / Date/	160	00		09747457	1557		\$1)		
omments:	Holding Time	3:		Y 🗀	N 🗀	Receive	Cer.		izkan	y A			16.	100	P.I.F.	F	_			
omments;	Temperature	:)		Y 🗀	N	Kan		Dry	ari	~		121	01:3							
Page 27 of	27	-		=		Receive	d @ Lab	Ву			Date/	Time							ğ	

DATA USABILITY SUMMARY REPORT (DUSR)

RGE Geneseo Former MGP Site

SDGs: 214958

8 Water Samples, equipment blank and trip blank

Prepared for:

Neu Velle, LLC 1667 Lake Ave., Bldg. 59, Suite 101 Rochester, NY 14615 **Attention: Kyle Miller**

February 2022

Table of Contents

			Page No.
REVI	EWER'S NARRAT	IVE	
1.0	SUMMARY		1
2.0	INTRODUCTION		1
3.0	SAMPLE AND ANALYSIS SUMMARY		2
4.0	GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA		2
5.0	DATA VALIDATION QUALIFIERS		3
6.0	RESULTS OF THE DATA REVIEW		4
7.0	TOTAL USABLE DATA		4
APPENDIX A APPENDIX B APPENDIX C		Validated Analytical Results Laboratory QC Documentation Validator Qualifications	
Tab	les		
Table	A-1 Data Valide	ation Guidance Documents	

Table 4-1 Data Validation Guidance Documents

Quality Control Criteria for Validating Laboratory Analytical Data Table 4-2

Summaries of Validated Results

Table 6-1 8260-BTEX Table 6-2 8270-SIM-PAHs

REVIEWER'S NARRATIVE

Neu-Velle SDG 214958: RGE Geneseo Former MGP Site

The data associated with this Sample Delivery Group (SDG) 214958, analyzed by Paradigm Environmental Services, Inc. Rochester, NY have been reviewed in accordance with assessment criteria provided by the New York State Department of Environmental Conservation following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated "J", or as non-detects, "U", are considered usable for the purpose of evaluating water and/or soil quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data usability summary report (DUSR).

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on the final data tables because they cannot be relied upon, even as the last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

Reviewer's Signature:	Míchael K. Perry	Date:	2/16/2022	
<u> </u>	Michael K. Perry			
	Chemist			

1.0 SUMMARY

SITE: RGE Geneseo

Former MGP Site

SAMPLING DATE: October 29 – November 01, 2021

SAMPLE TYPE: 8 water samples, equipment and trip blank

LABORATORY: Paradigm Environmental Services, Inc.

Rochester, NY

SDG No.: 214958

2.0 INTRODUCTION

This data usability summary report (DUSR) was prepared in accordance with guidance provided by the New York State Department of Environmental Conservation (NYSDEC). The DUSR is based on a review and evaluation of the laboratory analytical data package. Specifically, the NYSDEC guidance recommends review and evaluation of the following elements of the data package:

- Completeness of the data package as defined under the requirements of the NYSDEC Analytical Services Protocols (ASP) Category B or the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) deliverables,
- Compliance with established analyte holding times,
- Adherence to quality control (QC) limits and specifications for blanks, instrument tuning and calibration, surrogate recoveries, spike recoveries, laboratory duplicate analyses, and other QC criteria,
- Adherence to established analytical protocols,
- Conformance of data summary sheets with raw analytical data, and
- Use of correct data qualifiers.

Neu-Velle Page 1

Data deficiencies, analytical protocol deviations, and quality control problems identified using the review criteria above and their effect on the analytical results are discussed in this report.

3.0 SAMPLE AND ANALYSIS SUMMARY

The data packages consists of analytical results for eight water samples, equipment blank, and a trip blank collected on October 29 – November 01, 2021. These samples were analyzed for volatile organic compounds (BTEX) and Semi-Volatile Organic Compounds (SVOCs).

All analyses were performed by Paradigm Environmental Services, Inc., Rochester, NY and analyzed as SDG: 214958. The SVOCs were subcontracted to Alpha Analytical in Westborough, MA and analyzed as SDG: L2160069 for PAHs by 8270-D-SIM. The analytical results were provided in NYSDEC ASP Category B format, which includes all raw analytical data and laboratory QC data.

4.0 GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA

The guidance documents appropriate for reviewing laboratory quality control (QC) data and assigning data qualifiers (flags) to analytical results were selected from those listed in Table 4-1. The QC limits established in the documents applicable to this data review were used to assess the quality of the analytical results. In some cases, however, QC limits established internally by the laboratory were taken into account to determine data quality.

The QC criteria considered for assessing the usability of the reported analytical results provided for each analyte type (i.e. VOCs, SVOCs, metals, etc.) are listed in Table 4-2. These criteria may vary with the analytical method utilized by the laboratory. These criteria comply with the guidance recommended in Section 2.0 above.

5.0 DATA VALIDATION QUALIFIERS

The letter qualifiers (flags) used to define data usability are described briefly below. These letters are assigned by the data validator to analytical results having questionable accuracy and/or precision as determined by reviewing the laboratory QC data associated with the analytical results.

Neu-Velle Page 2

TABLE 4-1

Guidance Used For Validating Laboratory Analytical Data

Analyte Group	Guidance	Date
Metals (ICP-AES)	USEPA SOP HW-3a, Rev. 1	September 2016
Metals (Hg & CN)	USEPA SOP HW-3c, Rev. 1	September 2016
Volatile Organic Compounds (by Methods 8260B & 8260C)	USEPA SOP HW-24, Rev. 4	September 2014
Semi-Volatile Organic Compounds (by Method 8270D)	USEPA SOP HW-22 Rev. 5	December 2010
Pesticides (by Method 8181B)	USEPA SOP HW-44, Rev. 1.1	December 2010
Chlorinated Herbicides (by Method 8151A)	USEPA SOP HW-17, Rev. 3.1	December 2010
Polychlorinated Biphenyls (PCBs)	USEPA SOP HW-37A, Rev. 0	June 2015
Volatile Organic Compounds (Air) (by Method TO-15)	USEPA SOP HW-31, Rev. 6	September 2016
Per- and PolyFluoroAlkyl Substances (PFAS)	* NYSDEC	January 2021
General Chemistry Parameters	per NYSDEC ASP	July 2005

^{*} Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs, Appendix I

TABLE 4-2

QUALITY CONTROL CRITERIA USED FOR VALIDATING LABORATORY ANALYTICAL DATA

VOCs	SVOCs	Pesticides/PCBs	Metals	Gen Chemistry	PFAS
Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg
Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation
Holding Time	Holding Time	Holding Time	Holding Time	Holding Times	Holding Time
System Monitoring	Surrogate Recoveries	Surrogate Recoveries	Initial/Continuing	Calibration	Instr Performance
Compounds	Lab Control Sample	Matrix Spikes	Calibration	Lab Control Samples	Check
Lab Control Sample	Matrix Spikes	Blanks	CRDL Standards	Blanks	Initial Calibration
Matrix Spikes	Blanks	Instrument Calibration	Blanks	Spike Recoveries	Continuing Calibration
Blanks	Instrument Tuning	& Verification	Interference Check	Lab Duplicates	Blanks
Instrument Tuning	Internal Standards	Comparison of	Sample		Surrogates
Internal Standards	Initial Calibration	duplicate	Spike Recoveries		Lab Fortified Blank
Initial Calibration	Continuing Calibration	GC column results	Lab Duplicate		Matrix Spikes
Continuing Calibration	Lab Qualifiers	Analyte ID	Lab Control Sample		Internal Standards
Lab Qualifiers	Field Duplicate	Lab Qualifiers	ICP Serial Dilutions		
Field Duplicate		Field Duplicate	Lab Qualifiers		
			Field Duplicate		

Method TO-15 (Air)

Completeness of Pkg
Sample Preservation
Holding Time
Canister Certification
Instrument Tuning
Initial Calibration and
Instrument Performance
Daily Calibration
Blanks
Lab Control Sample
Field Duplicate

The laboratory may also use various letters and symbols to flag analytical results generated when QC limits were exceeded. The meanings of these flags may differ from those used by the independent data validator. Those used by the laboratory are provided with the analytical results.

NOTE: The assignment of data qualifiers by the data reviewer (validator) to laboratory analytical results should not necessarily be interpreted by the data user as a measure of laboratory ability or proficiency. Rather, the qualifiers are intended to provide a measure of data accuracy and precision to the data user, which, for example, may provide a level of confidence in determining whether or not standards or cleanup objectives have been met.

- U The analyte was analyzed for but was not detected at or above the sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the *approximate* concentration of the analyte in the sample. (The magnitude of any \pm value associated with the result is not determined by data validation).
- **J**+ The result is an estimated quantity and may be biased high.
- **J-** The result is an estimated quantity and may be biased low.
- **UJ** The analyte was analyzed for but not detected. The reported quantitation limit is approximate and may inaccurate or imprecise.
- R The sample result is rejected (i.e., is unusable) due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

The validated analytical results are attached to this report. Validation qualifiers (flags) are indicated in red print. Data sheets having qualified data are signed and dated by the data reviewer.

Neu-Velle Page 3

6.0 RESULTS OF THE DATA REVIEW

The results of the data review are summarized in Tables 6-1 through 6-2. The tables list the samples where QC criteria were found to exceed acceptable limits and the actions taken to qualify the associated analytical results.

7.0 TOTAL USABLE DATA

For SDG 214958, eight samples, equipment blank and a trip blank were analyzed and results were reported for 204 analytes. Even though some results were flagged with a "J" as estimated, all results (100%) are considered usable.

Neu-Velle Page 4

SDG 214958

Table 6-1 8260 - BTEX

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
GEN-MW4 GEN-EB GEN-MW8 Trip Blank	All analytes	J detects	PFB > QC limit	Detected data are estimated
GEN-MW4	Benzene Ethyl benzene Toluene	J detects	MS/MSD > QC limit	Detected data are estimated
GEN-MW8	Benzene	J detect	Detected in equipment blank	Detected data are estimated

Table 6-2 8270-SIM-PAH

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
none		none		

ACRONYMS

BSP Blank Spike

CCAL Continuing Calibration

CCB Continuing Calibration Blank

CCV Continuing Calibration Verification

CRDL Contract Required Detection Limit

CRQL Contract Required Quantitation Limit

%D Percent Difference

ICAL Initial Calibration

ICB Initial Calibration Blank

IS Internal Standard

LCS Laboratory Control Sample

MS/MSD Matrix Spike/Matrix Spike Duplicate

QA Quality Assurance

QC Quality Control

%R Percent recovery

RPD Relative Percent Difference

RRF Relative Response Factor

% RSD Percent Relative Standard Deviation

TAL Target Analyte List (metals)

TCL Target Compound List (organics)

Appendix A

Validated Analytical Results

LAB PROJECT NARRATIVE: 214958 PROJECT NAME: RGE Geneseo Fmr. MGP Site

SDG: 4958-01 CLIENT: Neu-Velle

Seven groundwater samples were collected by the client between October 29 and November 1, 2021 and were received by the Paradigm laboratory on November 2, 2021. Samples were accompanied by a field duplicate, equipment blank, and trip blank. The samples were received under the conditions as noted on the chain-of-custody supplement. The samples were submitted with the Chains-of-Custody requesting the BTEX list for Volatiles and PAH by 8270SIM. All analyses, where applicable, were performed using EPA SW-846 Methods and the associated holding times.

The items noted in this case narrative address compliance with the referenced methods, NYSDOH ELAP rules, and any project specific data quality requirements. These may be different from the usability criteria referenced in any "Functional Guidelines" or other data review standards used by data validators.

GENERAL NOTES

ALL ANALYSES

The initial and continuing calibration reports are only evaluated for compounds that are on the sample summary report.

Regarding results on QC summary forms versus included raw data, due to calculations made at the instrument where many significant figures may be used, there may be slight discrepancies between the summary report result and that recorded on the raw data. This does not affect data usability.

VOLATILES

Regarding initial calibrations, it should be noted that the Quantitation Report concentrations supplied for the initial calibration reflect the calibration prior to updating. The response factors and areas are correct.

Regarding Quantitation Reports, it should be noted that the "#" symbol that appears on some of the Quantitation Reports is a software artifact and should be disregarded.

Compounds flagged with an "*" on the summary table have been calibrated using a non-average Response Factor calibration curve. The supporting curves are located after the initial calibration table.

Holding times were met for the samples.

Some of the surrogate recoveries for the samples and associated QC were not within acceptance limits (recoveries were high). Any outliers have been flagged with an "*" on the summary form and the sample reports.

Site specific QC was requested on GEN-MW4-102921 and there were outliers. These outliers have been flagged with an "*" on the summary form and an "M" on the sample reports. Matrix interference is suspected. The Laboratory Control Samples recovered within acceptance limits.

The Method Blanks were free from contamination within reportable ranges.

The instrument tunes passed all criteria and samples were within a 12-hour window.

The internal standards areas and retention times were within acceptance ranges for the samples and QC.

All data for the initial calibration was within acceptance limits for the reported analytes.

All continuing calibration data was within acceptance limits for the reported analytes.

Subcontracted Analyses

PAHs by EPA 8270D-SIM was sent to Alpha Analytical of Westborough, MA. Their reports are provided in their entirety as a separate entity after the Paradigm Environmental Services, Inc. report. Separate case narratives addressing the above parameters are included with their reports.

(signed) Steven DeVito Steven DeVito – Technical Director

BATCH LOG

Lab Name: Paradigm Environmental Services

214958 Neu-Velle Lab Project #: Client Name:

RGE Geneseo Fmr. MGP Site
N/A Client Project Name:

Client Project #: <u>4958-01</u> SDG No.:

Batch Due Date: 12/2/2021 Protocol: SW846 Report Due Date: 11/17/2021

LAB	MATRIX	CLIENT	REQUESTED ANALYSIS	DATE	DATE
SAMPLE NO.		SAMPLE ID		SAMPLED	REC'D
214958-01	Groundwater	GEN-MW4-102921	VOAs, SVOAs	10/29/2021	11/2/2021
214958-02	Groundwater	GEN-MW1-103021	VOAs, SVOAs	10/30/2021	11/2/2021
214958-03	Groundwater	GEN-MW2-103021	VOAs, SVOAs	10/30/2021	11/2/2021
214958-04	Groundwater	GEN-DUP-103021	VOAs, SVOAs	10/30/2021	11/2/2021
214958-05	Groundwater	GEN-MW3-103121	VOAs, SVOAs	10/31/2021	11/2/2021
214958-06	Groundwater	GEN-MW6-103121	VOAs, SVOAs	10/31/2021	11/2/2021
214958-07	Groundwater	GEN-EB-110121	VOAs, SVOAs	11/1/2021	11/2/2021
214958-08	Groundwater	GEN-MW8-110121	VOAs, SVOAs	11/1/2021	11/2/2021
214958-09	Groundwater	GEN-MW7-110121	VOAs, SVOAs	11/1/2021	11/2/2021
214958-10	Water	Trip Blank T1075	VOAs	10/25/2021	11/2/2021

CHAIN OF CUSTODY

Pass	10F5
-KR	M 1046

			_	_	_		_	_			_	_					100
PARADI	GM	CLIENT:		REPOR	TTO					INVOICE	TO:						
Tennester (197	THE THE	1	N	eu - VI	yue.	46	-	CLIENT:		Sar	ne	-		01110	LAB PROJE	CT ID	
No. of Concession, Name of Street, or other party of the last of t	1	ADDRES	166	07, La	Ke	Ave	-	ADDRESS:					r	2190	58		
A STATE OF THE PARTY OF	1	CITY	che	Ster ST.	ATF Y	1461	5-1	CITY:		STATE	*	ZIP:	1	Quotation	#:		
		PHONE:	150	0 440	2-16	66		HONE:						Email: //	1	() 1	eu-
A PROJECT PEE	EDENCE	ATTN:	V.	7170	1 1/1	-	-	ATTN:						Km/K	V 50	otto	47
RGF (-100	520	Matri	x Code	ice /v	line									(rei	X) V	en	com
- 440	111	Matri	AQ - Aq	ueous Liquid		WA - Wa	iter		DW - Drin	king Water	so	O - Soil		SD - Solid	WP - Wipe	OL -	Oil
RGE GLAL FMr. MGP	21/2	-	NQ - No	n-Aqueous Liquid	d	WG - Gro	oundwate	r	WW - Wa	stewater	SI	L - Sludge	e I	PT - Paint	CK - Caulk	AR -	Air
					1 1				REQUES	STED ANA	LYSIS						
DATE COLLECTED TIME COLLECT	C O M P O S I T E	G R A B		SAMPLE IDENTIF	FIER		M C T D R E S X	CONTAINERS NUMBER OF	Esto PAH SIM					REMARK	S	S	ADIGM LAB AMPLE UMBER
10/29/21/6:1	5	XGE	W-	MW4-	1029	21	WG	9 2	(X				MS	1M51		O	
10/30/21 14:0	0	X GF	- N -	MW1	-103		WG	3)								2	
0/20/21 514	5	X Gf	N-	M112.	-1030		WG	3 >	152		11	+				0.	
1/2/12/		V CI		DIAD	103	AND DESCRIPTION OF THE PERSON	WG	3	M		++	++	1)	11>4	10		
10/31/21 12:3	2 ,,	V /	-10	001/7	107			35	K K		++	++	Day	11 Ca		04	
1. 11		X 6	-/-	-IVIN 5	-103	1-1	WG		K		++	++-				0.9	
	30	XOF	-12	- MWG	2-103	121	WG	3)	X		++	++		10	-11	09	
11/1/21 12:0		X Gt	N.	EB	-110	121	WA	3 >		\perp	1	\perp	1-a	my.	1Slaw	< 0	7
	10	XIGE	N-	MW8	-110	121	WG	3 >					U	•	4. 5. C. M.	0	8
11/1/21 16:3	0	XGI	EN .	MW:	7-110	21211	WG	37						4		100	
10/25/21			To	10 13	ank		W	1>	4 1 1				4	109	Slank	10	
					T1075	persony	ele la	rel mis	لدادا			,	,	,	,		
Turnaround Time				lements			K.	2 0_	M	rles	- 10	1291	21 +	n 11/1	/21_		
Availability contin	gent upon la	b approval; a	dditional	fees may apply.			7	7	. 10(0		,	1 7			'		
Standard 5 day	None Re	quired		None Required		Sampled	By	260	MI	V	11/2	1/2	1 13	30	otal Cost:		
0 day	Batch Q0			Basic EDD		Relinqui	shed By				ate/Time	(_		
Rush 3 day	Category	A		NYSDEC EDD	X	Received	ly	fai	mer		22 Date/Time		330		NE E		
Rush 2 day	Category	В	X		**	M	flyl	ail	11	1/2/2	/		342		P.I.F.		
Rush 1 day						Received	_	7/ 1			ate/Time				_		
ate Needed	Other			Other EDD		11000				3 <i>5</i>							
ease indicate date needed:	please indic	ate package neede	d:	please indicate EDD n	needed :	By sign	ing thi	s form,	client agr	ees to Par	adigm T	erms a	nd Çondi	tions (rev	erse).		
_===						Custody	Seals	intac	t, sij	ned, do	akd.	See	addition	nal page f	or sample	condiț <u>i</u> o	ns 5 of 188

Table 1 Parameter, Methods, and Quantitation Limits

Generic Quality Assurance Project Plan Rochester Gas & Electric Park Street Former MGP Site

Parameter	Quantitation Limit ¹					
Volatile Organics	Water	Soil				
Method 8260	(µg/L)	(µg/kg) ²				
Chloromethane	5	5				
Bromomethane	5	5				
Vinyl Chloride	5	5				
Chloroethane	5	5				
Methylene Chloride	3	3				
Acetone	5	5				
Carbon Disulfide	5	5				
1,1-Dichloroethylene	5	5				
1,1-Dichloroethane	5	5				
1,2-Dichloroethylene (total)	5	5				
Chloroform	5	5				
1,2-Dichloroethane	2	2				
2-Butanone	5	5				
1,1,1-Trichloroethane	5	5				
Carbon Tetrachloride	2	2				
Bromodichloromethane	1	1				
1,2-Dichloropropane	1	1				
cis-1,3-Dichloropropene	5	5				
Trichloroethane	5	5				
Dibromochloromethane	5	5				
1,1,2-Trichloroethane	3	3				
Benzene	1	1				
trans-1,3-Dichloropropene	5	5				
Bromoform	4	4				
4-Methyl-2-pentanone	5	5				
2-Hexanone	5	5				
Tetrachloroethene	1	1				
Toluene	5	5				
1,1,2,2-Tetrachloroethane	1	1				
Chlorobenzene	5	5				
Ethylbenzene	4	4				
Styrene	5	5				
2-Chloroethyl Vinyl Ether	5	5				
1,2-Dichlorobenzene	5	5				
1,3-Dichlorobenzene	5	5				
1,4-Dichlorobenzene	5	5				
Vinyl Acetate	5	5				
Total Xylenes	5	5				
Semivolatile Organics	Water	Soil				
Method 8270	(µg/L)	(µg/kg)				
1,2,4-Trichlorobenzene	(Mg/L)	33				
1,2-Dichlorobenzene	10	330				
1,2-Diphenylhydrazine	10	330				
1,3-Dichlorobenzene	10	330				
1,4-Dichlorobenzene	10	330				
1,4-Diomorosenzene	10	330				
2,4,5-Trichlorophenol	10	330				
2,4,6-Trichlorophenol	10	330				
2,4-Dichlorophenol	10	330				

Page 266 11/2/21 COC - 142M

Table 1 Parameter, Methods, and Quantitation Limits

Generic Quality Assurance Project Plan Rochester Gas & Electric Park Street Former MGP Site

Parameter	Quantitation Limit ¹				
Semivolatile Organics	Water	Soil (µg/kg)			
Method 8270 (Cont'd.)	(µg/L)				
2,4-Dimethylphenol	10	330			
2,4-Dinitrophenol	40	1300			
2,4-Dinitrotoluene	2	67			
2,6-Dinitrotoluene	2	67			
2-Chloronaphthalene	10	330			
2-Chlorophenol	10	330			
2-Methylnaphthalene	10	330			
2-Methylphenol	10	330			
2-Nitroaniline	20	670			
2-Nitrophenol	10	330			
3,3'-Dichlorobenzidene	20	670			
3-Nitroaniline	20	670			
4,6-Dinitro-2-methylphenol	40	1300			
4-Bromophenyl-phenylether	10	330			
4-Chloro-3-methylphenol	10	330			
4-Chloroaniline	10	330			
4-Chlorophenyl-phenylether	10	330			
4-Methylphenol	10	330			
4-Nitroaniline	20	670			
4-Nitrophenol	40	1300			
Acenaphthene	10	330			
Acenaphthylene	10	330			
Acetophenone	10	330			
Aniline	10	330			
Anthracene	10	330			
Atrazine	10	330			
Benzaldehyde	10	330			
Benzidine	40	1300			
Benzo(a)anthracene	1	33			
Benzo(a)pyrene	1	33			
Benzo(b)fluoranthene	1	33			
Benzo(g,h,i)perylene	10	330			
Benzo(k)fluoranthene	1	33			
Benzoic Acid	10	330			
Benzyl Alcohol	10	330			
bis(2-chloroethoxy)methane	10	330			
bis(2-chloroethyl)ether	1	33			
bis(2-chloroisopropyl)ether	10	330			
bis(2-ethylhexyl)phthalate	10	330			
Butylbenzylphthalate	10	330			
Caprolactam	10	330			
Carbazole	10	330			
Chrysene	10	330			
Dibenzo(a,h)anthracene	1	33			
Dibenzofuran	10	330			
Diethylphthalate	10	330			
Dimethylphthalate	10	330			
Di-n-butyl phthalate	10	330			
Di-n-octyl phthalate	10	330			

Page 3 of 3066 5 11/2/21 COC -KRM

Table 1 Parameter, Methods, and Quantitation Limits

Generic Quality Assurance Project Plan Rochester Gas & Electric Park Street Former MGP Site

Parameter	Quantitation Limit ¹				
Semivolatiles	Water	Soil			
Method 8270 (Cont'd.)	(µg/L)	(µg/kg)			
Diphenyl	10	330			
Fluoranthene	10	330			
Fluorene	10	330			
Hexachlorobenzene	1	33			
Hexachlorobutadiene	2	67			
Hexachlorocyclopentadiene	10	330			
Hexachloroethane	1	33			
Indeno(1,2,3-cd)pyrene	1	33			
Isophorone	10	330			
N,N-Dimethylaniline	1	33			
Naphthalene	10	330			
Nitrobenzene	1	33			
N-Nitrosodimethylamine	10	330			
N-Nitroso-di-n-propylamine	1	33			
N-Nitrosodiphenylamine	10	330			
Pentachlorophenol	40	1300			
Phenanthrene	10	330			
Phenol	10	330			
Pyrene	10	330			
Pyridine	10	330			
TAL Metals (6010/7470)	Water				
TAL Metals (6010/7470)		Soil			
Aluminum	(µg/L)	(μg/kg) 40			
Antimony		2			
Arsenic		1			
Barium		40			
Beryllium		0.4			
Cadmium		1			
Calcium					
Chromium		1000			
		2			
Cobalt		10			
Copper		5			
Iron		30			
Lead		1			
Magnesium		1000			
Manganese		3			
Mercury		0.033			
Nickel		8			
Potassium		1000			
Selenium		1			
Silver	**	2			
Sodium		1000			
Thallium		2			
Vanadium		10			
Zinc		6			
Supplemental Parameters	Water (µg/L)	Soll (mg/kg)			
Total Organic Carbon (Lloyd Kahn)	NA	100			
Chloride Method 325.3	1,000	=			

Page 4
0F 5 486
11/2/21
COC
-141

Table 1 Parameter, Methods, and Quantitation Limits

Generic Quality Assurance Project Plan Rochester Gas & Electric Park Street Former MGP Site

Parameter	Quantitation Limit ¹			
Supplemental Parameters (Cont'd.)	Water (µg/L)	Soil (mg/kg)		
Nitrate Method 353.2	100			
Ammonia Method 350.1	100			
Iron Method 200.7	150			
Manganese Method 200.7	15			
Sulfate Method 375.4	5,000			
Sulfide Method 376.1	1,000			
Orthophosphate Method 365.2	30			
Alkalinity Method 310.1	5,000			
Methane Method 3810				
Reactive Sulfide		20		
Reactive Cyanide		25		
TCLP Benzene		1		
Total Sulfur	त्रव ा	50		
Chemical Oxygen Demand		120		

Page 5 8/5-596 11/2/21 COC -KRM

Notes

µg/L = micrograms per liter µg/kg = micrograms per kilogram mg/kg = milligrams per kilogram

¹ Specific quantitation limits are highly matrix dependent. The quantitation limits listed are for guidance and may not always be achievable due to matrix interference.

²Quantitation limits for source materials/soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for source materials/soil/sediment (calculated on a dry weight basis) will be higher.

VOLATILE ORGANICS SAMPLE DATA

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-MW4-102921

Lab Sample ID:214958-01Date Sampled:10/29/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

<u>Analyte</u>	Result <u>Units</u>		Qualifier	Date Analyzed
Benzene	< 1.00	ug/L	M	11/3/2021 13:33
Ethylbenzene	< 2.00	ug/L	M	11/3/2021 13:33
m,p-Xylene	2.44 J	ug/L		11/3/2021 13:33
o-Xylene	< 2.00	ug/L		11/3/2021 13:33
Toluene	< 2.00	ug/L	M	11/3/2021 13:33

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Analyzed	
1,2-Dichloroethane-d4	121	77.9 - 132		11/3/2021	13:33
4-Bromofluorobenzene	118	62.6 - 133		11/3/2021	13:33
Pentafluorobenzene	115	88.9 - 114	*	11/3/2021	13:33
Toluene-D8	107	75.6 - 117		11/3/2021	13:33

Method Reference(s): EPA 8260C

EPA 5030C **Data File:** z05208.D

MKP 2/16/2022

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-MW1-103021

Lab Sample ID:214958-02Date Sampled:10/30/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Benzene	< 1.00	ug/L		11/3/2021 14:31
Ethylbenzene	< 2.00	ug/L		11/3/2021 14:31
m,p-Xylene	< 2.00	ug/L		11/3/2021 14:31
o-Xylene	< 2.00	ug/L		11/3/2021 14:31
Toluene	< 2.00	ug/L		11/3/2021 14:31

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed		
1,2-Dichloroethane-d4	117	77.9 - 132		11/3/2021	14:31	
4-Bromofluorobenzene	108	62.6 - 133		11/3/2021	14:31	
Pentafluorobenzene	117	88.9 - 114	*	11/3/2021	14:31	
Toluene-D8	108	75.6 - 117		11/3/2021	14:31	

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05211.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-MW2-103021

Lab Sample ID:214958-03Date Sampled:10/30/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Benzene	< 1.00	ug/L		11/3/2021 14:50
Ethylbenzene	< 2.00	ug/L		11/3/2021 14:50
m,p-Xylene	1.10	ug/L	J	11/3/2021 14:50
o-Xylene	< 2.00	ug/L		11/3/2021 14:50
Toluene	< 2.00	ug/L		11/3/2021 14:50

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	<u>rs</u> <u>Date Analyz</u>		
1,2-Dichloroethane-d4	118	77.9 - 132		11/3/2021	14:50	
4-Bromofluorobenzene	107	62.6 - 133		11/3/2021	14:50	
Pentafluorobenzene	113	88.9 - 114		11/3/2021	14:50	
Toluene-D8	107	75.6 - 117		11/3/2021	14:50	

Method Reference(s): EPA 8260C EPA 5030C

Data File: z05212.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-DUP-103021

Lab Sample ID:214958-04Date Sampled:10/30/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Benzene	< 1.00	ug/L		11/3/2021 15:09
Ethylbenzene	< 2.00	ug/L		11/3/2021 15:09
m,p-Xylene	< 2.00	ug/L		11/3/2021 15:09
o-Xylene	< 2.00	ug/L		11/3/2021 15:09
Toluene	< 2.00	ug/L		11/3/2021 15:09

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>rs</u> <u>Date Analy</u>		
1,2-Dichloroethane-d4	123	77.9 - 132		11/3/2021	15:09	
4-Bromofluorobenzene	106	62.6 - 133		11/3/2021	15:09	
Pentafluorobenzene	114	88.9 - 114		11/3/2021	15:09	
Toluene-D8	111	75.6 - 117		11/3/2021	15:09	

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05213.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-MW3-103121

Lab Sample ID:214958-05Date Sampled:10/31/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Benzene	< 1.00	ug/L		11/3/2021 15:29
Ethylbenzene	< 2.00	ug/L		11/3/2021 15:29
m,p-Xylene	< 2.00	ug/L		11/3/2021 15:29
o-Xylene	< 2.00	ug/L		11/3/2021 15:29
Toluene	< 2.00	ug/L		11/3/2021 15:29

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
1,2-Dichloroethane-d4	120	77.9 - 132		11/3/2021	15:29
4-Bromofluorobenzene	118	62.6 - 133		11/3/2021	15:29
Pentafluorobenzene	110	88.9 - 114		11/3/2021	15:29
Toluene-D8	107	75.6 - 117		11/3/2021	15:29

Method Reference(s): EPA 8260C

EPA 5030C **Data File:** z05214.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-MW6-103121

Lab Sample ID:214958-06Date Sampled:10/31/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Benzene	178	ug/L		11/8/2021 15:52
Ethylbenzene	32.6	ug/L		11/8/2021 15:52
m,p-Xylene	43.5	ug/L		11/8/2021 15:52
o-Xylene	43.3	ug/L		11/8/2021 15:52
Toluene	33.8	ug/L		11/8/2021 15:52

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Analyzed		
1,2-Dichloroethane-d4	99.0	77.9 - 132		11/8/2021	15:52	
4-Bromofluorobenzene	86.5	62.6 - 133		11/8/2021	15:52	
Pentafluorobenzene	99.3	88.9 - 114		11/8/2021	15:52	
Toluene-D8	88.7	75.6 - 117		11/8/2021	15:52	

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05290.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-EB-110121

Lab Sample ID:214958-07Date Sampled:11/1/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Benzene	0.806 J	ug/L	J	11/3/2021 16:07
Ethylbenzene	< 2.00	ug/L		11/3/2021 16:07
m,p-Xylene	< 2.00	ug/L		11/3/2021 16:07
o-Xylene	< 2.00	ug/L		11/3/2021 16:07
Toluene	< 2.00	ug/L		11/3/2021 16:07

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	<u>Date An</u>	<u>alyzed</u>
1,2-Dichloroethane-d4	117	77.9 - 132		11/3/2021	16:07
4-Bromofluorobenzene	117	62.6 - 133		11/3/2021	16:07
Pentafluorobenzene	116	88.9 - 114	*	11/3/2021	16:07
Toluene-D8	108	75.6 - 117		11/3/2021	16:07

Method Reference(s): EPA 8260C EPA 5030C

Data File: z05216.D

MKP 2/16/2022

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-MW8-110121

Lab Sample ID:214958-08Date Sampled:11/1/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Benzene	3.37 J	ug/L		11/3/2021 16:27
Ethylbenzene	2.32 J	ug/L		11/3/2021 16:27
m,p-Xylene	3.52 J	ug/L		11/3/2021 16:27
o-Xylene	3.06 J	ug/L		11/3/2021 16:27
Toluene	1.44 J	ug/L	J	11/3/2021 16:27

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date An</u>	<u>alyzed</u>
1,2-Dichloroethane-d4	118	77.9 - 132		11/3/2021	16:27
4-Bromofluorobenzene	112	62.6 - 133		11/3/2021	16:27
Pentafluorobenzene	115	88.9 - 114	*	11/3/2021	16:27
Toluene-D8	97.0	75.6 - 117		11/3/2021	16:27

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05217.D

MKP 2/16/2022

Client: <u>Neu-Velle</u>

Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: GEN-MW7-110121

Lab Sample ID:214958-09Date Sampled:11/1/2021Matrix:GroundwaterDate Received:11/2/2021

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Benzene	< 1.00	ug/L		11/3/2021 16:46
Ethylbenzene	< 2.00	ug/L		11/3/2021 16:46
m,p-Xylene	< 2.00	ug/L		11/3/2021 16:46
o-Xylene	< 2.00	ug/L		11/3/2021 16:46
Toluene	< 2.00	ug/L		11/3/2021 16:46

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date An</u>	<u>alyzed</u>
1,2-Dichloroethane-d4	115	77.9 - 132		11/3/2021	16:46
4-Bromofluorobenzene	101	62.6 - 133		11/3/2021	16:46
Pentafluorobenzene	114	88.9 - 114		11/3/2021	16:46
Toluene-D8	97.7	75.6 - 117		11/3/2021	16:46

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05218.D

Client: <u>Neu-Velle</u>

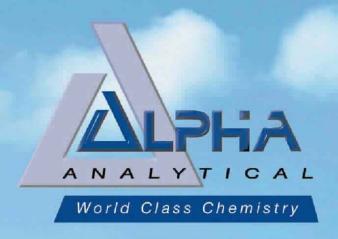
Project Reference: RGE Geneseo Fmr. MGP Site

Sample Identifier: Trip Blank T1075

 Lab Sample ID:
 214958-10
 Date Sampled:
 10/25/2021

 Matrix:
 Water
 Date Received:
 11/2/2021

Volatile Organics


<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Benzene	< 1.00	ug/L		11/3/2021 17:05
Ethylbenzene	< 2.00	ug/L		11/3/2021 17:05
m,p-Xylene	< 2.00	ug/L		11/3/2021 17:05
o-Xylene	< 2.00	ug/L		11/3/2021 17:05
Toluene	< 2.00	ug/L		11/3/2021 17:05

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date An</u>	alyzed
1,2-Dichloroethane-d4	127	77.9 - 132		11/3/2021	17:05
4-Bromofluorobenzene	111	62.6 - 133		11/3/2021	17:05
Pentafluorobenzene	117	88.9 - 114	*	11/3/2021	17:05
Toluene-D8	121	75.6 - 117	*	11/3/2021	17:05

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z05219.D

www.alphalab.com

Alpha Analytical

Laboratory Code: 11148

SDG Number: L2160069

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

 Project Name:
 214958
 Lab Number:
 L2160069

 Project Number:
 214958
 Report Date:
 11/09/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2160069-01	GEN-MW4-102921 214958-01	WATER	Not Specified	10/29/21 16:15	11/02/21
L2160069-02	GEN-MW1-103021 214958-02	WATER	Not Specified	10/30/21 14:00	11/02/21
L2160069-03	GEN-MW2-103021 214958-03	WATER	Not Specified	10/30/21 15:45	11/02/21
L2160069-04	GEN-DUP-103021 214958-04	WATER	Not Specified	10/30/21 00:00	11/02/21
L2160069-05	GEN-MW3-103121 214958-05	WATER	Not Specified	10/31/21 12:30	11/02/21
L2160069-06	GEN-MW6-103121 214958-06	WATER	Not Specified	10/31/21 14:30	11/02/21
L2160069-07	GEN-EB-110121 214958-07	WATER	Not Specified	11/01/21 12:00	11/02/21
L2160069-08	GEN-MW8-110121 214958-08	WATER	Not Specified	11/01/21 15:00	11/02/21
L2160069-09	GEN-MW7-110121 214958-09	WATER	Not Specified	11/01/21 16:30	11/02/21

 Project Name:
 214958
 Lab Number:
 L2160069

 Project Number:
 214958
 Report Date:
 11/09/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: Wallin Wallier Report Date: 11/09/21

Title: Technical Director/Representative

INVOICE TO:

Lallebole9

11148

CHAIN OF CUSTODY

REPORT TO:

1 700	TADIC	AH!	COMPAN	Paradigm Environ	mental		COMPAN	Sam	e		LAB PROJEC	T#: CLIE	NT PROJECT	Wi:
			ADDRES	s: 179 Lake Avenue			ADDRESS		50		1			
			CITY:	Rochester STATE:	NY ZIP: 1	4608	CITY:		STATE:	ZIP:	TURNAROUN	O TIME: (WORK!)	IG DAYS)	
mana ay - ay ay ay	Vision and Paris		PHONE:	FAX:	237 EE SA		PHONE:		FAX:		İ		STD	OTHER
PROJECT NAME/SIT	TE NAME:		ATTN:	Reporting			ATTN:	Account	s Payable		ПГ	2 3	5	
			COMMEN	тs: Please email result	s to reporting	д@р	aradign	nenv.com			Data Da	e: Stene	lord 7	turn
TANK SE SHE			ATRICE	ACESST ACESST ACESS	ALEX TRUE	W. S.		REQUES	TED ANALYSIS	Cenn	TIEL	е		THE STREET
DATE	TIME	0 0 M P O S = T E	G R A B	SAMPLE LOCATION/FIELD	o lio	M A T R	C O N N T A S E N E R	8270 SIM		ASP Ca		ega nape An		AB SAMPLE NUMBER
10/29/21	1615		X	GEN-MW4-10292	1 6	W	3	XIII		214958	(-01	mslinsn		
210/30/21	1400			LEN-MWI-10302		1	1				02			
10/30/21	1545			GEN-MW2-10302	272		- F				03			
10/30/21	-			GEN-04P-10302			J.				04			
10/3/12/	1230			6-EN-MW3-10312			1	1111			05		==+=	
10/3//21	1430			GEN-MW6-10312				1111			06			
11/1/21	1200			GEN-EB-110121		y -		+++	++++	\vdash	07			
إدارارا	1500	-		6-EN-MW8-11012			1		++++		08			
11/1/21	1630		1	6-EN-11012	7						09	E 102-03		
0											<u> </u>			
*LAB USE O ample Condition		ELAP 210/2		3/244 NELAC Compliance			W. San			新山路等機能	形法的			
omments.	Container Ty	/pe:		Y 🔲 N 🔲	Sampled E		054677	r v	Date/Time			Total Cost		7
omments:	Preservatio	in:		Y 🔲 N 🔲	Relinquish	lly led By	Vai	دار لا	2/2/ Date/Time	e00				Đ)
omments:	Holding Tim	ne:		Y 🗌 N 🗌	Received E	el.	nnu	izkem i	AAL 11/2/ Date/Time	21 /6.	ico	P.I.F.	1	
wmments;	Temperatur	e:		Y N	Kmol Received E		The	n	11/3 Ja Date/Time	01:3	0_	,11		
					Received @	2 Lab	Ву		Date/Time					8

Semivolatiles Data by Method 8270D-SIM

No data validation qualifiers were added

MKP 2/16/2022

Results Summary Form 1 Semivolatile Organics by GC/MS-SIM

Client : Paradigm Environmental Services

Project Name : 214958 Lab ID : L2160069-01

Client ID : GEN-MW4-102921 214958-01

Sample Location :

GPC Cleanup

Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 60069-01
Sample Amount : 1000 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL

: N

 Lab Number
 : L2160069

 Project Number
 : 214958

 Date Collected
 : 10/29/21 16:15

Date Received : 11/02/21
Date Analyzed : 11/04/21 20:06

Date Extracted : 11/03/21

Dilution Factor : 1
Analyst : ALS
Instrument ID : SV120
GC Column : RXI-5SiIM
%Solids : N/A

Injection Volume : 1 uL

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene	ND	0.10	0.04	U	
206-44-0	Fluoranthene	ND	0.10	0.04	U	
91-20-3	Naphthalene	ND	0.10	0.04	U	
56-55-3	Benzo(a)anthracene	ND	0.10	0.02	U	
50-32-8	Benzo(a)pyrene	ND	0.10	0.04	U	
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.02	U	
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.04	U	
218-01-9	Chrysene	ND	0.10	0.04	U	
208-96-8	Acenaphthylene	ND	0.10	0.04	U	
120-12-7	Anthracene	ND	0.10	0.04	U	
191-24-2	Benzo(ghi)perylene	ND	0.10	0.04	U	
86-73-7	Fluorene	ND	0.10	0.04	U	
85-01-8	Phenanthrene	ND	0.10	0.02	U	
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.04	U	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.04	U	
129-00-0	Pyrene	ND	0.10	0.04	U	

Results Summary Form 1 Semivolatile Organics by GC/MS-SIM

Client : Paradigm Environmental Services

Project Name : 214958 Lab ID : L2160069-02

Client ID : GEN-MW1-103021 214958-02

Sample Location :

Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 60069-02
Sample Amount : 1000 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL

GPC Cleanup : N

Lab Number : L2160069

Project Number : 214958

Date Collected : 10/30/21 14:00

Date Received : 11/02/21

Date Analyzed : 11/05/21 17:19 Date Extracted : 11/03/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV120
GC Column : RXI-5SilM

%Solids : N/A Injection Volume : 1 uL

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene	ND	0.10	0.04	U	
206-44-0	Fluoranthene	ND	0.10	0.04	U	
91-20-3	Naphthalene	ND	0.10	0.04	U	
56-55-3	Benzo(a)anthracene	ND	0.10	0.02	U	
50-32-8	Benzo(a)pyrene	ND	0.10	0.04	U	
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.02	U	
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.04	U	
218-01-9	Chrysene	ND	0.10	0.04	U	
208-96-8	Acenaphthylene	ND	0.10	0.04	U	
120-12-7	Anthracene	ND	0.10	0.04	U	
191-24-2	Benzo(ghi)perylene	ND	0.10	0.04	U	
86-73-7	Fluorene	ND	0.10	0.04	U	
85-01-8	Phenanthrene	ND	0.10	0.02	U	
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.04	U	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.04	U	
129-00-0	Pyrene	ND	0.10	0.04	U	

Client : Paradigm Environmental Services

Project Name : 214958 Lab ID : L2160069-03

Client ID : GEN-MW2-103021 214958-03

Sample Location :

Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 60069-03
Sample Amount : 1000 ml
Extraction Method : EPA 3510C

Extract Volume : 1000 uL GPC Cleanup : N

Lab Number : L2160069

Project Number : 214958

Date Collected : 10/30/21 15:45

Date Received : 11/02/21

Date Analyzed : 11/05/21 17:35

Date Extracted : 11/03/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV120
GC Column : RXI-5SiIM
%Solids : N/A

			ug/L					
CAS NO.	Parameter	Results	RL	MDL	Qualifier			
83-32-9	Acenaphthene	ND	0.10	0.04	U			
206-44-0	Fluoranthene	ND	0.10	0.04	U			
91-20-3	Naphthalene	ND	0.10	0.04	U			
56-55-3	Benzo(a)anthracene	ND	0.10	0.02	U			
50-32-8	Benzo(a)pyrene	ND	0.10	0.04	U			
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.02	U			
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.04	U			
218-01-9	Chrysene	ND	0.10	0.04	U			
208-96-8	Acenaphthylene	ND	0.10	0.04	U			
120-12-7	Anthracene	ND	0.10	0.04	U			
191-24-2	Benzo(ghi)perylene	ND	0.10	0.04	U			
86-73-7	Fluorene	ND	0.10	0.04	U			
85-01-8	Phenanthrene	0.02	0.10	0.02	J			
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.04	U			
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.04	U			
129-00-0	Pyrene	ND	0.10	0.04	U			

Client : Paradigm Environmental Services

Project Name : 214958 Lab ID : L2160069-04

Client ID : GEN-DUP-103021 214958-04

Sample Location :

Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 60069-04
Sample Amount : 1000 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL

GPC Cleanup : N

Lab Number : L2160069 Project Number : 214958

Date Collected : 10/30/21 00:00

Date Received : 11/02/21

Date Analyzed : 11/05/21 17:52

Date Extracted : 11/03/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV120
GC Column : RXI-5SiIM
%Solids : N/A

		ug/L					
Parameter	Results	RL	MDL	Qualifier			
Acenaphthene	ND	0.10	0.04	U			
Fluoranthene	ND	0.10	0.04	U			
Naphthalene	ND	0.10	0.04	U			
Benzo(a)anthracene	0.02	0.10	0.02	J			
Benzo(a)pyrene	ND	0.10	0.04	U			
Benzo(b)fluoranthene	0.03	0.10	0.02	J			
Benzo(k)fluoranthene	ND	0.10	0.04	U			
Chrysene	ND	0.10	0.04	U			
Acenaphthylene	ND	0.10	0.04	U			
Anthracene	ND	0.10	0.04	U			
Benzo(ghi)perylene	ND	0.10	0.04	U			
Fluorene	ND	0.10	0.04	U			
Phenanthrene	0.02	0.10	0.02	J			
Dibenzo(a,h)anthracene	ND	0.10	0.04	U			
Indeno(1,2,3-cd)pyrene	ND	0.10	0.04	U			
Pyrene	ND	0.10	0.04	U			
	Acenaphthene Fluoranthene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	Acenaphthene ND Fluoranthene ND Naphthalene ND Benzo(a)anthracene 0.02 Benzo(a)pyrene ND Benzo(b)fluoranthene 0.03 Benzo(k)fluoranthene ND Chrysene ND Acenaphthylene ND Anthracene ND Benzo(ghi)perylene ND Fluorene ND Phenanthrene 0.02 Dibenzo(a,h)anthracene ND Indeno(1,2,3-cd)pyrene ND	Parameter Results RL Acenaphthene ND 0.10 Fluoranthene ND 0.10 Naphthalene ND 0.10 Benzo(a)anthracene 0.02 0.10 Benzo(a)pyrene ND 0.10 Benzo(b)fluoranthene 0.03 0.10 Benzo(k)fluoranthene ND 0.10 Chrysene ND 0.10 Acenaphthylene ND 0.10 Anthracene ND 0.10 Benzo(ghi)perylene ND 0.10 Fluorene ND 0.10 Phenanthrene 0.02 0.10 Dibenzo(a,h)anthracene ND 0.10 Indeno(1,2,3-cd)pyrene ND 0.10	Parameter Results RL MDL Acenaphthene ND 0.10 0.04 Fluoranthene ND 0.10 0.04 Naphthalene ND 0.10 0.04 Benzo(a)anthracene 0.02 0.10 0.02 Benzo(a)pyrene ND 0.10 0.04 Benzo(b)filuoranthene 0.03 0.10 0.02 Benzo(k)fluoranthene ND 0.10 0.04 Chrysene ND 0.10 0.04 Acenaphthylene ND 0.10 0.04 Anthracene ND 0.10 0.04 Benzo(ghi)perylene ND 0.10 0.04 Fluorene ND 0.10 0.04 Phenanthrene 0.02 0.10 0.02 Dibenzo(a,h)anthracene ND 0.10 0.04 Indeno(1,2,3-cd)pyrene ND 0.10 0.04	Results RL MDL Qualifier		

Client : Paradigm Environmental Services

Project Name : 214958 Lab ID : L2160069-05

Client ID : GEN-MW3-103121 214958-05

Sample Location :

Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 60069-05
Sample Amount : 1000 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL

GPC Cleanup : N

Lab Number : L2160069 Project Number : 214958

Date Collected : 10/31/21 12:30

Date Received : 11/02/21

Date Analyzed : 11/05/21 18:08

Date Extracted : 11/03/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV120
GC Column : RXI-5SiIM
%Solids : N/A

			ug/L					
CAS NO.	Parameter	Results	RL	MDL	Qualifier			
83-32-9	Acenaphthene	ND	0.10	0.04	U			
206-44-0	Fluoranthene	ND	0.10	0.04	U			
91-20-3	Naphthalene	ND	0.10	0.04	U			
56-55-3	Benzo(a)anthracene	ND	0.10	0.02	U			
50-32-8	Benzo(a)pyrene	ND	0.10	0.04	U			
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.02	U			
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.04	U			
218-01-9	Chrysene	ND	0.10	0.04	U			
208-96-8	Acenaphthylene	ND	0.10	0.04	U			
120-12-7	Anthracene	ND	0.10	0.04	U			
191-24-2	Benzo(ghi)perylene	ND	0.10	0.04	U			
86-73-7	Fluorene	ND	0.10	0.04	U			
85-01-8	Phenanthrene	ND	0.10	0.02	U			
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.04	U			
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.04	U			
129-00-0	Pyrene	ND	0.10	0.04	U			

Client : Paradigm Environmental Services

Project Name : 214958

Lab ID : L2160069-06D

Client ID : GEN-MW6-103121 214958-06

Sample Location :

GPC Cleanup

Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 069-06D1
Sample Amount : 1000 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL

: N

Project Number : 214958

Date Collected : 10/31/21 14:30

Date Received : 11/02/21

Date Analyzed : 11/09/21 11:40

Date Extracted : 11/03/21

Dilution Factor : 10

Analyst : RP

: L2160069

: SV115

GC Column : RXI-5SilM %Solids : N/A Injection Volume : 1 uL

Lab Number

Instrument ID

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene	1.7	1.0	0.35		
206-44-0	Fluoranthene	ND	1.0	0.38	U	
91-20-3	Naphthalene	170	1.0	0.43		
56-55-3	Benzo(a)anthracene	ND	1.0	0.18	U	
50-32-8	Benzo(a)pyrene	ND	1.0	0.39	U	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.16	U	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.42	U	
218-01-9	Chrysene	ND	1.0	0.38	U	
208-96-8	Acenaphthylene	18	1.0	0.35		
120-12-7	Anthracene	0.46	1.0	0.35	J	
191-24-2	Benzo(ghi)perylene	ND	1.0	0.42	U	
86-73-7	Fluorene	4.0	1.0	0.37		
85-01-8	Phenanthrene	1.6	1.0	0.15		
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.39	U	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.40	U	
129-00-0	Pyrene	ND	1.0	0.40	U	

Client : Paradigm Environmental Services

Project Name : 214958 Lab ID : L2160069-07

Client ID : GEN-EB-110121 214958-07

Sample Location :

Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 60069-07
Sample Amount : 1000 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL

GPC Cleanup : N

Lab Number : L2160069 Project Number : 214958

Date Collected : 11/01/21 12:00

Date Received : 11/02/21

Date Analyzed : 11/05/21 18:41

Date Extracted : 11/03/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV120
GC Column : RXI-5SiIM
%Solids : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier
83-32-9	Acenaphthene	ND	0.10	0.04	U
206-44-0	Fluoranthene	ND	0.10	0.04	U
91-20-3	Naphthalene	ND	0.10	0.04	U
56-55-3	Benzo(a)anthracene	ND	0.10	0.02	U
50-32-8	Benzo(a)pyrene	ND	0.10	0.04	U
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.02	U
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.04	U
218-01-9	Chrysene	ND	0.10	0.04	U
208-96-8	Acenaphthylene	ND	0.10	0.04	U
120-12-7	Anthracene	ND	0.10	0.04	U
191-24-2	Benzo(ghi)perylene	ND	0.10	0.04	U
86-73-7	Fluorene	ND	0.10	0.04	U
85-01-8	Phenanthrene	ND	0.10	0.02	U
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.04	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.04	U
129-00-0	Pyrene	ND	0.10	0.04	U

Client : Paradigm Environmental Services

Project Name : 214958 Lab ID : L2160069-08

Client ID : GEN-MW8-110121 214958-08

Sample Location :

GPC Cleanup

Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 60069-08
Sample Amount : 1000 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL

: N

Date Received : 11/02/21

Date Analyzed : 11/05/21 18:58

Date Extracted : 11/03/21

: L2160069

: 11/01/21 15:00

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV120
GC Column : RXI-5SiIM
%Solids : N/A

Project Number : 214958

Injection Volume : 1 uL

Lab Number

Date Collected

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene	ND	0.10	0.04	U	
206-44-0	Fluoranthene	ND	0.10	0.04	U	
91-20-3	Naphthalene	0.22	0.10	0.04		
56-55-3	Benzo(a)anthracene	ND	0.10	0.02	U	
50-32-8	Benzo(a)pyrene	ND	0.10	0.04	U	
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.02	U	
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.04	U	
218-01-9	Chrysene	ND	0.10	0.04	U	
208-96-8	Acenaphthylene	ND	0.10	0.04	U	
120-12-7	Anthracene	ND	0.10	0.04	U	
191-24-2	Benzo(ghi)perylene	ND	0.10	0.04	U	
86-73-7	Fluorene	ND	0.10	0.04	U	
85-01-8	Phenanthrene	0.04	0.10	0.02	J	
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.04	U	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.04	U	
129-00-0	Pyrene	ND	0.10	0.04	U	

Client : Paradigm Environmental Services

Project Name : 214958 Lab ID : L2160069-09

Client ID : GEN-MW7-110121 214958-09

Sample Location :

Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 60069-09
Sample Amount : 1000 ml
Extraction Method : EPA 3510C

Extract Volume : 1000 uL GPC Cleanup : N

Lab Number : L2160069 Project Number : 214958

Date Collected : 11/01/21 16:30

Date Received : 11/02/21

Date Analyzed : 11/05/21 19:14

Date Extracted : 11/03/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV120
GC Column : RXI-5SiIM
%Solids : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene	ND	0.10	0.04	U	
206-44-0	Fluoranthene	ND	0.10	0.04	U	
91-20-3	Naphthalene	ND	0.10	0.04	U	
56-55-3	Benzo(a)anthracene	0.02	0.10	0.02	J	
50-32-8	Benzo(a)pyrene	ND	0.10	0.04	U	
205-99-2	Benzo(b)fluoranthene	0.02	0.10	0.02	J	
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.04	U	
218-01-9	Chrysene	ND	0.10	0.04	U	
208-96-8	Acenaphthylene	ND	0.10	0.04	U	
120-12-7	Anthracene	ND	0.10	0.04	U	
191-24-2	Benzo(ghi)perylene	ND	0.10	0.04	U	
86-73-7	Fluorene	ND	0.10	0.04	U	
85-01-8	Phenanthrene	0.02	0.10	0.02	J	
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.04	U	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.04	U	
129-00-0	Pyrene	ND	0.10	0.04	U	

Appendix B

Laboratory QC Documentation

2 VOLATILE SURROGATE RECOVERY

Lab Name: <u>Paradigm Environmental Services</u>

Lab Project #: 214958
Client Name: Neu-Velle

Client Project Name: RGE Geneseo Fmr. MGP Site

Client Project #: <u>N/A</u> SDG No.: <u>4958-01</u>

Matrix: <u>Groundwater</u>
QC Batch: <u>QC211103VOAW</u>

Instrument ID: <u>Instrument1</u>

GC Column 1: DB-624 ID (mm): 0.20 Detector: MSD

LAB SAMPLE NO.	CLIENT SAMPLE ID	PFB %REC	12DCEd4 %REC	TD8 %REC	4BFB %REC	Total Out
1 Blk 1	N/A	116 *	119	118 *	111	2
2 LCS 1	N/A	111	116	126 *	109	1
3 214958-01	GEN-MW4-102921	115 *	121	107	118	1
4 214958-01MS	GEN-MW4-102921	109	114	123 *	92.6	1
5 214958-01MSD	GEN-MW4-102921	110	113	116	89.9	0
6 214958-02	GEN-MW1-103021	117 *	117	108	108	1
7 214958-03	GEN-MW2-103021	113	118	107	107	0
8 214958-04	GEN-DUP-103021	114	123	111	106	0
9 214958-05	GEN-MW3-103121	110	120	107	118	0
10 214958-07	GEN-EB-110121	116 *	117	108	117	1
11 214958-08	GEN-MW8-110121	115 *	118	97.0	112	1
12 214958-09	GEN-MW7-110121	114	115	97.7	101	0
13 214958-10	Trip Blank T1075	117 *	127	121 *	111	2
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						

	QC LIMITS %
PFB = Pentafluorobenzene	(88.9 - 114)
12DCEd4 = 1,2-Dichloroethane-d4	(77.9 - 132)
TD8 = Toluene-d8	(75.6 - 117)
4BFB = 4-Bromofluorobenzene	(62.6 - 133)

^{*} Values outside of current required QC limits

D Surrogate diluted out

OC Report for Matrix Spike and Matrix Spike Duplicate

SDG #: 4958-01

Client: Neu-Velle **Lab Project ID:** 214958

RGE Geneseo Fmr. MGP Site **Project Reference:**

Lab Sample ID: 214958-01

Date Sampled: 10/29/2021 Sample Identifier: **Date Received:** 11/2/2021 GEN-MW4-102921 **Matrix:** Groundwater **Date Analyzed:** 11/3/2021

Volatile Organics

	<u>Sample</u>	Result	<u>MS</u>	<u>MS</u>	MS %	MSD	MSD	MSD %	<u>% Rec.</u>	<u>MS</u>	<u>MSD</u>	<u>Relative</u>	<u>RPD</u>	<u>RPD</u>
<u>Analyte</u>	Result	<u>Units</u>	Added	Result	Recovery	Added	Result	Recovery	<u>Limits</u>	<u>Outlier</u>	<u>Outlier</u>	% Diff.	Limit	<u>Outlier</u>
Benzene	< 1.00	ug/L	50.0	60.0	120	50.0	62.3	125	85.6 - 106	*	*	3.75	10.2	
Ethylbenzene	< 2.00	ug/L	50.0	53.3	107	50.0	54.8	110	80.5 - 106	*	*	2.85	15.3	
Toluene	< 2.00	ug/L	50.0	67.8	136	50.0	66.6	133	72.9 - 107	*	*	1.77	18.1	

Method Reference(s): EPA 8260C

EPA 5030C

Data File(s): z05209.D

z05210.D z05208.D

QC211103VOAW **QC Batch ID:**

Any estimated values are displayed, and derived values calculated, based on numeric result only. See primary analytical report for data flags.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Appendix C

Validator Qualifications

KENNETH R. APPLIN Geochemist/Data Validator

Ph.D., Geochemistry and Mineralogy, The Pennsylvania State University

M.S., Geochemistry and Mineralogy, The Pennsylvania State University

B.A., Geological Sciences, SUNY at Geneseo, NY

Dr. Applin has over 35 years of experience working with the geochemistry of natural waters. His prior experience includes working as an Assistant Professor of Geology at the University of Missouri-Columbia and as Chief Hydrogeologist and Geochemist with a leading engineering firm in Rochester, NY. In 1993, he established KR Applin and Associates, a small consulting business that focuses on the geochemistry of natural waters, especially as applied to problems involving the contamination of groundwater and surface water.

Dr. Applin is also an experienced analytical data validator and has provided data validation services since 1994 to a variety of clients performing brownfield cleanup projects, hazardous waste remediation, groundwater monitoring at solid waste facilities, and other projects requiring third-party data validation. Dr. Applin has several years of hands-on experience with the laboratory analysis of natural waters and has successfully completed the USEPA Region II certification courses for performing inorganic and organic analytical data validation.

MICHAEL K. PERRY Chemist/Data Validator

B.S. Chemistry, Georgia State University, Atlanta, GA

A.A.S., Chemical Technology, Alfred State College, Alfred, NY

Mr. Perry has over 30 years of experience in the analytical laboratory business. During his early career, he spent several years as a laboratory analyst performing the analysis of soil, water, and air samples for inorganic and organic chemical parameters. During his last 20 years in the environmental laboratory business, he managed and directed two major analytical laboratories in Rochester, NY. His management responsibilities included oversight of the daily operations of the lab, staff training and supervision, the selection, purchase, and maintenance of analytical instruments, the introduction of new laboratory methods, analytical quality assurance and quality control, data acquisition and management, and other business-related activities.

Mr. Perry has an extensive working knowledge of the methods and procedures used for sampling and analyzing both inorganic and organic analytes in soil, water, and air. He is an accomplished laboratory chemist and is familiar with the analytical methods and procedures established under the USEPA Contract Laboratory Protocols (CLP), the NYSDEC Analytical Services Protocols (ASP), and the NYSDOH Environmental Laboratory Approval Program (ELAP).