May 2016 (Revised July 2016) (Revised August 30, 2016)

Final Remedial Investigation/Feasibility Study Work Plan

Saint-Gobain Performance Plastics Site 14 McCaffrey Street Village of Hoosick Falls Rensselaer County, New York

Mr. Edward J. Canning Director of Health, Safety & Environment SAINT-GOBAIN PERFORMANCE PLASTICS, CORP. 14 McCaffrey Street Hoosick Falls, New York 12090

I, Kirk Moline, certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Draft Final Remedial Investigation/Feasibility Work Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Prepared by:

C.T. MALE ASSOCIATES 50 Century Hill Drive Latham, New York 12110 (518) 786-7400 FAX (518) 786-7299

C.T. Male Project No: 14.4756

Unauthorized alteration or addition to this document is a violation of the New York State © Copyright 2016 Education Law. C.T. MALE ASSOCIATES, ENGINEERING, SURVEYING, ARCHITECTURE & LANDSCAPE ARCHITECTURE, D.P.C.

REMEDIAL INVESTIGATION/FEASIBILITY STUDY WORK PLAN SAINT-GOBAIN PERFORMANCE PLASTICS SITE 14 MCCAFFREY STREET, VILLAGE OF HOOSICK FALLS RENSSELAER COUNTY, NEW YORK

TABLE OF CONTENTS

1.0	INTR	ODUCTION & PURPOSE	1	
2.0	SITE	DESCRIPTION & HISTORY	3	
	2.1	Site Description3		
	2.2	Adjacent Land Use		
	2.3	Site History		
	2.4	Site Utilities		
	2.5	Site Drainage Features		
	2.6	Topographic Description and Nearby Surface Water Bodies		
	2.7			
	2.7	Site Geology 2.7.1 Regional Geologic Setting		
		2.7.1 Regional Geologic Setting 2.7.2 Site Geologic Conditions		
		2.7.3 Site Hydrogeologic Setting		
	2.8	Environmental Site History		
	2.0	2.8.1 Previous Property Use		
		2.8.2 Historical Chemical Use		
		2.8.3 Environmental Orders, Decrees and Violations		
		Associated with the Site	7	
	2.9	Previous Environmental Investigations	8	
3.0	OBJECTIVES, SCOPE & RATIONALE			
	3.1	Objectives	.12	
	3.2	RI Scope & Rationale	.12	
		3.2.1 Surface Soil Sampling		
		3.2.2 Shallow Soil Sampling - Roof Drain/Drip Line		
		3.2.3 Subsurface Soil Sampling		
		3.2.4 Sediment Sampling	.17	
		3.2.5 Surface Water Sampling	.18	
		3.2.5.1 Surface Water Field Parameters	.18	
		3.2.6 Groundwater Sampling		
		3.2.6.1 Groundwater Field Parameters		
		3.2.7 Soil Gas and Indoor Air Quality Sampling		
		3.2.8 Sampling Quality Control		
		3.2.9 Laboratory Reporting and Data Validation	.21	

C.T. MALE ASSOCIATES

		3.2.11 3.2.12	Geophysical Survey Surveying Methods Fish and Wildlife Resources Impact Analysis Qualitative Human Health Exposure Assessment	21 21		
	3.3		ility Study Scope & Rationale Assessment of Potential Creation of Alternate Source Water Supply	23		
	3.3.1.1		Scope of Work	23		
	3.3.1.2		Anticipated Alternatives for AWS Assessment	24		
	3.3.1.3	•	Evaluation Factors for AWS Assessment	25		
4.0	SUPPI	LEMEN	JTAL PLANS	26		
	4.1	Field S	Sampling Plan	26		
	4.2		y Assurance/ Quality Control Plan			
	4.3		n and Safety Plan			
	4.4	Citize	n Participation (CP) Plan	27		
5.0	REPO	RTING	GAND SCHEDULE	28		
	5.1		ting			
	5.2	-	ule			
6.0	SUBM	IITTAL	S	29		
FIGU	RES					
Figure			Site Location Map			
Figure 2:			Proposed Sampling Locations Plan			
TABL	ES					
Table 1:			Proposed Sampling Schedule			
APPENDICES						
Appendix A:			Field Sampling Plan			
Appendix B:			Quality Assurance Project Plan			
Appendix C:			Health & Safety Plan			
Appendix D:			Project Schedule			

EXHIBITS

Exhibit 1:	1996 Parsons Phase I and Phase II ESA Reports, & 2016 Ramboll
	Site Sampling Results Report
Exhibit 2:	NYSDEC Comment Letter, June 10, 2016
	NYSDEC Comment Letter, August 19, 2016

ACRONYMS AND ABBREVIATIONS

ASP	Analytical Services Protocol		
AWS	Alternate Water Supply		
BGS	Below Ground Surface		
°C	Degrees Celsius		
CAMP	Community Air Monitoring Plan		
CN	Cyanide		
CP Plan	Citizen Participation Plan		
DER	Division of Environmental Remediation		
DO	Dissolved Oxygen		
DQO	Data Quality Objective		
DUSR	Data Usability Summary Report		
EDD	Electronic Data Deliverable		
EDR	Environmental Data Resources, Inc.		
EDS	Electronic Data Summary		
ESA	Environmental Site Assessment		
FS	Feasibility Study		
FSP	Field Sampling Plan		
FWRIA	Fish & Wildlife Resources Impact Analysis		
GPS	Global Positioning Equipment		
HASP	Health and Safety Plan		
HDPE	High Density Polyethylene		
IDW	Investigation-Derived Waste		
IRM	Interim Remedial Measure		
MS	Matrix Spike		
MSD	Matrix Spike Duplicate		
MWS	Municipal Water System		
ng/g	Nanograms per gram (parts per billion)		
ng/L	Nanograms per liter (parts per trillion)		
NYSDEC	New York State Department of Environmental Conservation		
NYSDOH	New York State Department of Health		
NYSGS	New York State Geological Survey		
ORP	Oxidation-Reduction Potential		
OSHA	Occupational Safety and Health Administration		
PARCC	Precision, Accuracy, Reproducibility, Completeness, and Comparability		
PARSONS	Parsons Engineering Science, Inc.		
PCBs	Polychlorinated biphenyls		
PFCs	Perfluorinated Compounds		
PFOA	Perfluorooctanoic Acid		
PFOS	Perfluorooctanesulfonic Acid		
PID	Photoionization Detector		
PPE	Personal Protective Equipment		
	1 1		

C.T. MALE ASSOCIATES

		Durante Constitues A discrimentary			
PSAT		Pressure Sensitive Adhesive Tape			
	PTFE	Polytetrafluoroethylene			
	QA/QC	Quality Assurance/Quality Control			
	QAPP	Quality Assurance Project Plan			
	RI	Remedial Investigation			
	Saint-Gobain	Saint-Gobain Performance Plastics Corporation			
	SC	Site Characterization			
	SCG	Standards, Criteria & Guidance			
	SCO	Soil Cleanup Objectives			
	SVOCs	Semi-Volatile Organic Compounds			
	TAL	Target Analyte List			
	TCL	Target Compound List			
	TOC	Total Organic Carbon			
	TOGS	Technical Operations Guidance Series			
	TPH	Total Petroleum Hydrocarbons			
	µg/kg	Micrograms per kilogram (parts per billion)			
	µg/L	Micrograms per liter (parts per billion)			
	USEPA	United States Environmental Protection Agency			
	USGS	United State Geologic Survey			
	VOCs	Volatile Organic Compounds			
	WP	Work Plan			

1.0 INTRODUCTION & PURPOSE

This document constitutes the Remedial Investigation/Feasibility Study (RI/FS) Work Plan RI/FS Work Plan for the Saint-Gobain Performance Plastics Corporation (Saint-Gobain) site (the "Site") located at 14 McCaffrey Street in the Village of Hoosick Falls, Rensselaer County, New York (see Figure 1: Site Location Map).

The NYS Department of Environmental Conservation (NYSDEC) has classified the Site as a Class 2 Inactive Hazardous Waste Disposal Site (Site No. 442046).

This RI/FS Work Plan has been revised to address comments to the plan in letters dated June 10, 2016 and August 19, 2016 from the NYSDEC Division of Environmental Remediation. These letters are presented in Exhibit 2. Based on discussions with NYSDEC staff during the June 28, 2016 project meeting regarding Comment #6, it was explained that the use of PFC containing products on the vertical tower coaters in the fabric department at the McCaffrey Street facility occurred until 2003. At that time, these coaters and the associated stacks were removed from the McCaffrey Street facility. As such, it was agreed that stack testing was not required.

The RI/FS Work Plan also incorporates verbal comments received from NYSDEC Project Manager, Rick Mustico, in a telephone conversation with Edward Canning of Saint-Gobain on July 6, 2016 regarding stack testing, roof top wipe sampling, and alternative on-site and off-site shallow surface soil sampling at rooftop down spouts and drip lines.

The purpose of this RI/FS Work Plan is to provide specific guidelines and to establish procedures for the RI/FS. The proposed investigation incorporates the findings of previous Site investigations. This RI/FS Work Plan is intended to augment the existing data, define the nature and extent of potential contaminant sources, and evaluate the fate and transport mechanisms applied to any identified contaminants so that the Site's conceptual model can be refined and an appropriate remedy can be developed for the Site. The FS will be conducted to develop and evaluate alternatives for contaminated media identified by the remedial investigation.

This RI/FS Work Plan outlines a systematic investigative approach specific to the Site considering its history, geology and hydrogeology, known or suspected contaminants, and surrounding land use. The goal of this RI/FS Work Plan is to support the

development of potential remedial alternatives, as necessary, which will allow Saint-Gobain to develop an Interim Remedial Measures (IRM) Work Plan and/or a Remedial Action Work Plan for NYSDEC review, comment and approval.

This work plan was developed in accordance with NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (May 2010) (DER-10) and NYSDEC 6 NYCRR 375 Environmental Remediation Programs (December 14, 2006).

2.0 SITE DESCRIPTION & HISTORY

2.1 Site Description

The Site is located at 14 McCaffrey Street in the Village of Hoosick Falls, Rensselaer County, New York. The Site is approximately 6.47 acres and is identified on the Rensselaer County Tax Map as parcel number 37.06-3-1. The majority of the Site is improved with an approximate 60,000 square foot manufacturing building with associated entranceways, accessways, parking lots and loading areas. The northwestern portion of the Site consists of unimproved wood land.

The Site building was reportedly built in 1961. Additions to the original building were completed in 1966 and 1975. The 1961 Building is a slab-on-grade, single-story, wood-frame constructed rectangular building that makes up the northwestern portion of the overall building footprint. The 1966 Building is a slab-on-grade, four-story, steel reinforced concrete constructed building that makes up the central portions of the overall building footprint. The 1975 Building includes two (2) interconnected slab-on-grade, single-story, corrugated metal warehouse structures that make up the southern portion of the overall building footprint. Two (2) aboveground propane tanks are located on southern portions of the Site.

The Site slopes from the northwest towards the southeast with a steep drop in elevation of approximately 20 feet in central portions of the Site. The 1961 Building sits atop the highest portion of the Site. The 1966 and 1975 Buildings lie at an elevation that is approxiantely 20 feet lower than the 1961 Building. Lands surrounding the Site slope to the east, southeast, south and southwest (see Figure 2: Proposed Sampling Locations Plan).

The Site is accessed from McCaffrey Street. A paved parking lot for employees and visitors is located to the northeast and northwest of the manufacturing building. Access ways for company, shipping and delivery vehicles are located along the southern and western portions of the manufacturing building.

2.2 Adjacent Land Use

Land use adjacent to the Site consists of residential dwellings and the Village of Hoosick Falls sewer pump station to the north, and residential dwellings and undeveloped land to the east. Land use to the south and west of the site includes: the Hoosic River Greenway (former railroad track); wooded, undeveloped land; the Village of Hoosick Falls water supply well field, water treatment plant and highway garage; and the Hoosic River.

2.3 Site History

The Site is currently occupied and operated by Saint-Gobain, who acquired the Site in 1999. Saint-Gobain currently uses the Site for the manufacture of pressure sensitive adhesive tape (PSAT) products.

Prior to 1961, the site reportedly consisted of undeveloped land. The Site building was reportedly first developed in 1961 for Dodge Fibers Corporation to produce extruded tapes and later circuit board laminates. The Site was acquired by Oak Materials Group (Oak Electronetics) in 1967 and then by AlliedSignal Fluorglas in 1987 to manufacture polytetrafluoroethylene (PTFE) coated fiberglass. The Site was then acquired by Furon in 1996 and Saint-Gobain in 1999.

2.4 Site Utilities

Electricity is supplied to the Site by National Grid. Municipal water and sanitary sewer service are provided by the Village of Hoosick Falls. There are no known water supply wells within the Site. Liquid propane is used for heating and manufacturing purposes.

2.5 Site Drainage Features

There are no storm sewer catch basins on the Site. The Site's storm water sheet flows over impervious surfaces into surrounding vegetated areas. Precipitation that accumulates on the building rooftops is channeled into a roof drain that reportedly discharges to a public sanitary sewer overflow manhole/piping located to the east of the Site. The overflow piping discharges along the bank of the Hoosic River, south of the Site. Domestic sewage and floor drains within the 1961 Building are gravity fed into a public sanitary sewer manhole located on the north-central portion of the Site. Sewage and floor drain discharges from the 1966 Building enter a sewage ejector pit within the lowest section of the building from which it is pumped into a second public sewer manhole located on the northeastern portion of the Site. The sewer manholes discharge to the Village of Hoosick Falls sewer pump station located along the northern side of Carey Avenue, approximately 50 feet northeast of the Site's northeastern property line.

According to the FEMA website mapping, the southeastern portions of the 1966 and 1975 Buildings are located in areas designated as "Other Flood Areas" which are defined as areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than one (1) foot or with drainage areas less than one (1) square mile; and areas protected by levees from 1% annual chance flood. Remaining southern and southeastern portions of the Site are located within a 100 year flood plain.

2.6 Topographic Description and Nearby Surface Water Bodies

According to the United States Geological Survey (USGS) Topographic Map in Figure 1, the subject Site lies approximately 430 to 460 feet above Mean Sea Level. The Site slopes from the northwest towards the southeast with a steep drop in elevation of approximately 20 feet in central portions of the Site. Lands surrounding the Site slope to the east, southeast, south and southwest.

The Hoosic River is located approximately 180 feet southwest of the Site's southern property boundary. The Hoosic River flows in a general westerly and northerly direction in the Site's vicinity. Low-lying wet areas are located in vegetated areas to the south and southeast of the Site.

2.7 Site Geology

2.7.1 Regional Geologic Setting

Hoosick Falls lies in the New England Upland (Taconic Range) physiographic province. The bedding planes of the bedrock are often inclined, and other distortions from the horizontal are evident. These are the result of thrust and folding pressures exerted from the east as a landmass moved gradually westward during the middle Ordovician Taconic mountain-building episode. This westward movement stacked and displaced large deposits of clay, sand, gravel and carbonates, which had accumulated on the floor of a deep ancient sea, moving then along faults as slices of rock that became intermixed and stratigraphically disordered. Bedrock underlying the Site is mapped as the Walloomsac Formation which consists of slate, phyllite, schist and meta-graywacke.

Glacial sediment deposits overlay the bedrock surface, resulting in deposits of sands, gravel, silt, clay and glacial till. Compact glacial till underlies the higher elevation northern portions of the Site. The remaining portions of the Site are underlain by glacial fluvial outwash consisting of various percentages of sand, gravel, silt and clay.

2.7.2 Site Geologic Conditions

Test borings were advanced during a Site investigation conducted by others in 1996 (see Section 2.9). The borings were advanced to total depths ranging from 8.5 to 17.5 feet below ground surface (bgs). The borings depicted fill material underlain by glacial till and bedrock. The fill material was encountered to a maximum depth of 2.7 feet bgs and generally consisted of sand and silt with minor percentages of silt and clay. The till consisted of varying percentages of silt, gravel and sand with minor clay. Bedrock underlying the till was identified as greywacke.

Test borings were advanced during a preliminary Site investigation conducted by C.T. Male Associates in 2015 (see Section 2.9). The borings were advanced to total depths ranging from 19 to 45 feet bgs. Bedrock, identified as slate, was encountered in all of the borings at depths ranging from 19 to 43 feet bgs. Glacial till was encountered in the borings completed in northern portions of the Site and was not encountered in borings completed in low-lying southern areas of the Site. The subsurface lithology for borings completed in northern portions of the Site consisted of alternating layers and occurrences of sand and gravel; sand and silt; sand, silt and gravel; and sand, silt, gravel and clay. Glacial till consisting of sand, silt and gravel with minor amounts of clay, was encountered at depths ranging from 12 to 15 feet bgs. The till was 8 to 12 feet in thickness. The subsurface lithology of borings completed in low-lying southern areas of the Site consisted of alternating and silt; sand and gravel; and sand, gravel, cobbles and silt.

2.7.3 Site Hydrogeologic Setting

Two (2) hydro-stratigraphic units were identified on the Site during the past investigations. A shallow unconfined hydro-stratigraphic unit was encountered throughout the Site. A deeper hydro-stratigraphic unit was present in the northern portion of the Site underlain by glacial till. Groundwater movement in the shallow hydro-stratigraphic unit is generally from northwest to southeast. Groundwater movement in the deep hydro-stratigraphic unit was not able to be determined as only two (2) monitoring wells were installed within the deeper unit.

2.8 Environmental Site History

2.8.1 Previous Property Use

Since the early 1960's, the Site has historically been used for manufacturing purposes, which included, but was not limited to, the manufacture of extruded tapes, circuit board laminates and PTFE coated fiberglass. Saint-Gobain has utilized the Site for the manufacture of pressure sensitive adhesive tape (PSAT).

2.8.2 Historical Chemical Use

Historical chemical use affiliated with past Site usage may have included petroleum fuels, lubricants, degreasing agents, solvents, paints, Teflon, Triton and perfluorinated compounds (PFCs).

2.8.3 Environmental Orders, Decrees and Violations Associated with the Site

The Site was identified in the NYSDEC Spills Incidents and Bulk Storage databases. The following table summarizes the spills incidents and the bulk storage for the Site.

SPILLS INCIDENTS DATABASE			
Spill No.	Spill Date/Closure	Site Occupant	Summary
0302139	05.30.2003/07.23.2003	Saint-Gobain	A commercial vehicle leaked 15 gallons of hydraulic oil into the site's soils.

BULK STORAGE DATABASE				
Tank Type	Tank Capacity	Product Stored	Date Tank Closed	
Underground	10,000 Gallons	#2 Fuel Oil	08.01.1995 by Removal	

2.9 Previous Environmental Investigations

The following environmental investigations have been completed for the Site, as listed below and presented in Exhibit 1.

- Phase I Environmental Site Assessment (ESA) AlliedSignal Fluorglas prepared by Parsons Engineering Science, Inc., dated March 1996 (1996 Parsons Phase I ESA).
- Phase II Environmental Site Assessment (ESA) Furon Company prepared by Parsons Engineering Science, Inc., dated May 1996 (1996 Parsons Phase II ESA).
- Site Sampling Results Saint Gobain Performance Plastics McCaffrey Street Facility prepared by Ramboll Enviro, dated February 4, 2016 (2016 Ramboll Site Sampling Results Report).

1996 Parsons Phase II ESA

The 1996 Parsons Phase II ESA was conducted to address recognized environmental conditions (RECs) and other conditions of concern identified during a Phase I ESA conducted on the Site by Parsons in 1995 (see 1996 Parsons Phase I ESA report in Exhibit 1), and to establish a baseline of Site environmental conditions. The scope of the Phase II ESA included the following:

 Installation of five (5) soil borings/monitoring wells to determine baseline soil and groundwater quality. Collection of six (6) groundwater samples for laboratory analysis for Target Compound List (TCL) volatile organic compounds (VOCs) and Total Petroleum Hydrocarbons (TPH). Two (2) of the groundwater samples were also analyzed for TCL semi-volatile organic compounds (SVOCs) and Target Analyte List (TAL) metals.

- Laboratory analysis of surface soil samples collected from the vicinity of an old pad mounted transformer (3 samples) and a gravel driveway (2 samples) that was believed to have historically had oil applied to it for dust suppression. The samples were analyzed for PCBs and TPH.
- Laboratory analysis of six (6) subsurface soil samples from the soil borings for laboratory analysis for TCL VOCs and TPH. Two (2) of the samples were also analyzed for TCL SVOCs and TAL metals.

Parsons compared the soil sampling analytical results to the recommended soil cleanup objectives (SCOs) presented in NYSDEC TAGM 4046, Determination of Soil Cleanup Objectives and Cleanup Levels.

Elevated TPH concentrations (3,760 mg/kg and 831 mg/kg) were present in the surface soil samples collected of the gravel drive where oil was historically applied for dust suppression. The Parsons report indicated that the samples were collected from oily stained zones. TPH was also detected at a concentration of 50.7 mg/kg in one (1) surface soil sample collected in the vicinity of the old transformer. There are no SCOs for TPH. PCBs were not-detected in any of the surface soil samples.

Five (5) metals (beryllium, chromium, nickel, selenium and zinc) were detected above TAGM SCOs in subsurface soils from downgradient soil borings. As a cursory evaluation, the 1996 analytical results for metals were compared to current SCOs promulgated at 6 NYCRR Part 375. The metal detections are all below SCOs for Unrestricted Use Sites promulgated at 6 NYCRR 375.

The groundwater analytical results were compared to the NYS Groundwater Class GA standards, Primary Drinking Water Quality Standards, and the Federal Safe Drinking Water Act Maximum Contaminant Levels (MCLs). One (1) VOC (trichloroethene) and one (1) metal (antimony) were detected above NYS Groundwater Class GA standards. Trichloroethene (detections of 13 ug/l and 6 ug/l) was detected above its standard of 5 ug/l in groundwater from two (2) downgradient monitoring wells. Antimony (16 ug/l) was detected above its standard of 3 ug/l in groundwater from one (1) downgradient monitoring well. Monitoring wells installed during the Parsons investigation were abandoned in January 2013.

2016 Ramboll Site Sampling Results Report

The Ramboll report provides analytical results for soil, groundwater, and wastewater sampling investigations completed by C.T. Male and Ramboll in 2015. The following sections summarize the results of the sampling.

2015 C.T. Male Preliminary Investigation

The 2015 C.T. Male Preliminary Investigation included the advancement of seven (7) test borings to aid in the collection of soil samples and for installation of monitoring wells. Two (2) of the test borings (shallow well couplets at MW-1 and MW-2) were advanced solely for the installation of monitoring wells; as such, soil samples were not collected from these borings. Four (4) test borings were completed on northern portions of the Site situated at a higher elevation than remaining portions of the Site. These test borings were converted to shallow/deep monitoring well couplets designated as MW-1/MW-1S and MW-2/MW-2S (the "S" references a shallow well). Three (3) test borings were completed in lower lying southern and southeastern portions of the Site. These test borings were converted to monitoring wells designated as MW-3 to MW-5.

Soil samples were collected from the 0-2' and 2'-4' depth intervals at five (5) test borings and analyzed for PFCs. Analytical results identified the following: perfluorooctanoic acid (PFOA) in soils at concentrations that ranged from 1.0 ug/kg (MW-1) to 4.1 ug/kg (MW-4) in soil samples collected from the 0-2' depth intervals and 0.41 ug/kg (MW-2) to 2.4 ug/kg (MW-1) in soil samples collected from the 2'-4' depth interval; perfluoroheptanoic acid (PFHpA) in soils at concentrations that ranged from 0.011 ug/kg (MW-3) to 0.17 ug/kg (MW-4) in soil samples collected from the 0-2' depth intervals and 0.038 ug/kg (MW-5) to 0.080 (MW-4) in soil samples collected from the 2'-4' depth interval; perfluorohexane sulfonate (PFHxS) in soils at a concentration of 0.15 ug/kg in a soil sample collected from the 0-2' depth interval at MW-4 only; perfluorononanoic acid (PFNA) in soils at concentrations that ranged from 0.01 ug/kg (MW-2) to 0.14 ug/kg (MW-4) in soil samples collected from the 0-2' depth intervals and 0.03 ug/kg (MW-3) to 0.07 ug/kg (MW-4) in soil samples collected from the 2'-4' depth interval; perfluorooctane sulfonate (PFOS) in soils at concentrations that ranged from 0.028 ug/kg (MW-2) to 0.63 ug/kg (MW-4) in soil samples collected from the 0-2' depth intervals and 0.018 ug/kg (MW-5) to 0.28 ug/kg (MW-4) in soil samples collected from the 2'-4' depth interval.

Two (2) rounds of groundwater sampling were conducted in early and late September 2015. The groundwater samples were analyzed for PFCs.

Analytical results for Round 1 groundwater sampling conducted on September 2 and 3, 2015 identified PFOA in groundwater at concentrations ranging from 580 ng/l at MW-5 to 18,000 ng/l at MW-2 and perfluoroheptanoic acid (PFHpA) at concentrations ranging from 10 ng/l at MW-5 to 340 ng/l at MW-2.

Analytical results for Round 2 groundwater sampling conducted on September 30 and October 1, 2015 identified PFOA in groundwater at concentrations that ranged from 570 ng/1 at MW-5 to 17,000 ng/1 at MW-2 and PFHpA at concentrations ranging from 10 ng/1 at MW-5 to 390 ng/1 at MW-2.

2015 Ramboll Sampling Investigation

In October 2015, Ramboll collected wastewater samples for PFCs analysis from Manhole #1 and the Sewage Ejector Pit within the site building. Analytical results for Manhole #1 identified PFOA at a concentration of 1,000 ng/l and PFHpA at a concentration of 20 ng/l. Analytical results for the Sewage Ejector Pit identified PFOA at a concentration of 850 ng/l and PFHpA at a concentration of 10 ng/l.

3.0 OBJECTIVES, SCOPE & RATIONALE

3.1 Objectives

The objective of this RI/FS Work Plan is to complete an appropriate level of investigation to support the preparation of a RI/FS Report that presents the nature and extent of contamination at the Site. The project intent is to obtain sufficient information to develop a suitable remedy, if necessary, through completion of a FS. Potential remedial actions based upon the investigation will be developed, presented and evaluated in the RI/FS Report.

3.2 RI Scope & Rationale

The RI/FS Work Plan scope of work was developed based on the conceptual model of Site conditions to date. The potential chemical parameters of concern were selected based on current Site conditions, the Site's history and as a requirement of DER-10.

The primary chemical of concern at the Site is PFOA. PFOA has been detected in the Site's soils and groundwater, the Village of Hoosick Falls public water system and in private residential wells in and around the Village and Town of Hoosick Falls.

PFOA is a member of the class of substances called perfluorinated chemicals (PFCs). The chemical formula of PFOA is $CF_3(CF_2)_6COOH$. PFOA and other PFCs have been produced and used in commercial products and industrial processes for over 60 years. Known commercial uses of PFOA include: water-, soil-, and stain-resistant coatings for clothing, leather, upholstery, and carpets; oil-resistant coatings for food contact paper; aviation hydraulic fluids; fire-fighting foams; paints, adhesives, waxes, polishes, and other products. Known industrial uses of PFOA include: surfactants, emulsifiers, wetting agents, additives, and coatings. Additionally, PFOA is used as a processing aid (emulsifier) in the production of PTFE and other fluoropolymers and fluoroelastomers which are used as non-stick coatings on cookware, membranes for waterproof/ breathable clothing, electrical wire casing, fire and chemical resistant tubing, and plumbing thread seal tape.

PFOA is an anthropogenic contaminant that is resistant to environmental degradation processes, and thus is highly persistent. However, unlike other persistent and

bioaccumulative organic pollutants, PFOA is highly water-soluble, and may have limited sorption to soil, sediments and organic matter.

Other parameters that will be analyzed to evaluate the Site's overall environmental quality per DER-10 include the Target Compound List (TCL) of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides and PCBs; the Target Analyte List (TAL) of metals (including mercury); cyanide (CN); major cations (Ca, Mg, Na and K) and anions (Cl, SO₄, CO₃ and HCO₃); and TO-15 list of VOCs in indoor air and soil gas.

The sample type, laboratory analysis, sampling method and sampling rationale for the samples to be collected during the RI investigation are summarized in Table 1: Proposed Sampling Schedule, which is presented in the Tables section of this work plan.

The proposed RI scope of work is summarized below and described in more detail in the following subsections.

- Collection of surface soil samples for subjective and laboratory analysis.
- Collection of on-site and off-site shallow soil samples for subjective and laboratory analysis.
- Advancement of test borings to aid in the collection of soil samples and for installation of monitoring wells.
- Collection of soil samples from the test boring locations for subjective and laboratory analysis.
- Monitoring well development, and purging and collection of groundwater samples for laboratory analysis.
- Collection of sediment samples for subjective and laboratory analysis.
- Collection of surface water samples for laboratory analysis.
- Collection of sub-slab soil gas and indoor air quality samples for laboratory analysis.
- Collection and laboratory analysis of quality control source and field samples.
- Completion of geophysical surveys to map the Site's underlying glacial till and bedrock and the location of the municipal sewer overflow pipe purportedly located along the eastern and southern sides of the Site.
- Conduct a boundary and topographic survey.

- Evaluate ecological resources by conducting a Fish & Wildlife Resources Impact Analysis.
- Conduct a Qualitative Human Health Exposure Assessment.

3.2.1 Surface Soil Sampling

Surface soil samples will be collected from locations depicted on Figure 2 as SS-1 to SS-11, MW-6 to MW-16, MW-20, MW-21, SB-1 and SB-2. Surface soil sampling locations SS-1 to SS-11 were derived by establishment of a 200' by 200' grid over the Site. Surface soil sampling locations identified as MW-6 to MW-16, MW-20, MW-21, SB-1 and SB-2 will be collected at test boring locations.

Surface soil samples SS-1 to SS-11 will be collected to evaluate the environmental quality of surface soils representative of site-wide conditions; from low-lying vegetated areas of the site; from vegetated areas in the vicinity of the site's property line, access roads and site buildings; in the vicinity of an aboveground propane tank and former transformer; and from beneath gravel parking and loading areas.

Surface soil samples will be collected at the test boring locations (MW-6 to MW-16, MW-20, MW-21, SB-1 and SB-2) to further evaluate the environmental quality of soils in: presumed hydraulically upgradient areas of the site; at an off-site location in the vicinity of the Hoosick Falls Sewer Pump Station; in the vicinity of on-site sewer manholes; at off-site locations in the vicinity of sewer overflow pipe manholes; between the Saint-Gobain plant building and the Hoosic River; areas of the site where no previous investigations have been conducted; hydraulically downgradient of the Saint-Gobain building; near the Hoosic River riverbank; in an open grassy area downgradient of the site building; and in a flat area to the southeast of the site.

Two (2) discrete soil samples will be collected at each surface soil sampling location. The first discrete surface soil sample will be collected from the ground surface (or below any sub-base material, if present) to a depth of 2" and will include any underlying vegetation (roots) or organic debris. This sample will be analyzed in the laboratory for PFCs, TOC, moisture content and grain size analysis. The second discrete surface soil sample will be collected alongside the first sample and will be collected from beneath the vegetative root zone (or below any sub-base material, if present) to a depth of 2". As a requirement of DER-10, this sample will be analyzed in the laboratory for the TCL/TAL parameters and CN.

3.2.2 Shallow Soil Sampling - Roof Drain/Drip Line

Shallow soil samples may be collected for laboratory analysis from both on-site and offsite locations.

On-site shallow soil sampling locations will be determined by evaluating the presence, if any, of downspouts, roof drains and drip lines affiliated with the site building's roofing system. Shallow soil samples will be collected from vegetated areas in proximity to the roof drainage appurtenances. The proposed sampling locations will be approved by the Department prior to initiation of the sampling program.

Off-site shallow soil samples will be collected from three residential properties located downwind of the subject site. Downwind properties where the samples will be collected from will be determined through review of air models for the Saint-Gobain facility. Four shallow soil samples will be collected at each property. Two samples will be collected from vegetated areas in proximity to roof drains and/or roof drip lines. Two samples will be collected for background purposes in vegetated areas of the property that do not receive drainage from the roof systems.

Shallow soil samples will be collected from the ground surface to a depth of 2" (including the vegetative root zone, if present) and from the 2" to 12" depth interval. The samples will be analyzed in the laboratory for PFCs, TOC and moisture content.

If subjective indications, (elevated PID readings, oily liquid, strongly odiferous soils, staining, etc.) are noted in the shallow soil samples, the sample will also be analyzed for the TCL/TAL parameters including CN.

3.2.3 Subsurface Soil Sampling

Subsurface soil samples will be collected at discrete sampling intervals from surface soil sampling locations SS-1 to SS-11 and test borings MW-6 to MW-16, MW-20, MW-21, SB-1 and SB-2 (see Figure 2). Soil samples will not be collected from the MW-17 to MW-19 test boring locations as these borings will be for the installation of bedrock monitoring wells only.

The subsurface soil samples will be collected to evaluate overall subsurface conditions and the environmental quality of soils in: low-lying vegetated areas of the site; from vegetated areas in the vicinity of the site's property line, access roads and site buildings; in the vicinity of an aboveground propane tank and former transformer; from beneath gravel parking and loading areas; presumed upgradient areas of the site (MW-6); at an off-site location in the vicinity of the Hoosick Falls Sewer Pump Station (MW-7); in the vicinity of on-site sewer manholes (MW-8, MW-9, MW-11); at off-site locations in the vicinity of overflow pipe sewer manholes (MW-10, MW-12); between the Saint-Gobain plant building and the Hoosic River (MW-13); areas of the site where no previous investigations have been conducted (MW-14); downgradient of the Saint-Gobain building's roof drainage piping (MW-15); in the vicinity of a Sewage Ejector Pit in the Saint-Gobain building (MW-16); near the Hoosic River riverbank (MW-20 and MW-21); in an open grassy area downgradient of the site building (SB-1); and in a flat area to the southeast of the site (SB-2).

At each surface soil and test boring location, soil samples will be collected from 2"-12" below the ground surface (or below any sub-base material, if present), and analyzed for PFCs, TOC, moisture content and grain size analysis, and TCL/TAL parameters including CN.

Additional subsurface soil samples will be collected from the test boring locations (MW-6 to MW-16, MW-20, MW-21, SB-1 and SB-2) at the following depth intervals: immediately above the water table; at soil mottling zones; at the fill/native soil interface; and at major stratigraphic changes. In the event that major stratigraphic changes are not encountered at the depths explored, soil samples will be collected from the 5'-7' and 10'-12' depth intervals. The samples will be analyzed for PFCs, TOC, moisture content and grain size analysis, and TCL/TAL parameters including CN. Soil sampling depths may be adjusted in the field with input from Department fieldoversight staff.

If subjective impacts (elevated PID readings, oily liquid, strongly odiferous soils/fill, staining, etc.) are noted in soils above the water table, a sample of the soil will be collected for laboratory analysis for PFCs, TOC, moisture content and grain size analysis, and TCL/TAL parameters including CN.

3.2.4 Sediment Sampling

Fourteen (14) sediment samples indentified as SED-1 to SED-14 on Figure 2 will be collected. Samples SED-1 to SED-3 will be collected from on-site locations to evaluate the environmental quality of accumulated sediments (solids), if present, within the

sewer manholes. Sediment samples will be collected from off-site locations (SED-4 to SED-14) to evaluate the environmental quality of sediments (solids) within the off-site sewer manholes along the 12" diameter municipal pump station overflow discharge pipe (SED-4, SED-5); sediments from the off-site pump station overflow outfall pipe (SED-6); sediments from along the eastern bank of the Hoosick River, topographically downgradient of the site (SED-7 to SED-9); sediments from the river bottom upriver, midriver and downriver of the Site (SED-10 to SED-12); and sediments from low-lying wet areas to the southeast of the Site (SED-13, SED-14). Water samples, if present, will also be collected from within the off-site sewer manholes/catch basins in addition to the sediment samples.

The on-site sediment (solids) samples will be analyzed for TCL/TAL parameters, CN, PFCs and TOC. The off-site sediment samples (and water samples, if present) will be analyzed for PFCs and TOC.

3.2.5 Surface Water Sampling

Three (3) surface water samples depicted as SW-1 to SW-3 on Figure 2 will be collected at off-site locations to evaluate the environmental quality of surface water from the Hoosic River upriver and downriver of the Site (SW-1, SW-2), and from low-lying wet areas to the southeast of the Site (SW-3).

The surface water samples will be analyzed in the laboratory for TCL/TAL parameters, CN, PFCs, and major cations (Ca, Mg, Na and K) and anions (Cl, SO₄, CO₃ and HCO₃).

3.2.5.1 Surface Water Field Parameters

Surface water geochemical field parameters including temperature, conductivity, pH, oxidation-reduction potential (ORP), and dissolved oxygen (DO) will be monitored and recorded to provide geochemical data. The geochemical field parameters will be collected with a calibrated electronic field parameter meter. The field parameter meter will be calibrated at the start of each day and will have documented calibration checks at the middle and end of each day. All calibration records and checks will be documented on field notes or on sampling records by recording the value of the calibration solution, what the instrument was reading prior to calibration, and a checkmark if re-calibration was needed. Fresh calibration solution will be used each day that samples are collected, but may be re-used throughout the day.

3.2.6 Groundwater Sampling

Overburden test borings MW-6 to MW-16, MW-20 and MW-21 (Figure 2) will be converted to 2-inch diameter monitoring wells with protective enclosures to aid in the collection of groundwater samples for laboratory analysis. SB-1 and SB-2 will not be converted to monitoring wells, per direction from the Department. Groundwater samples will also be collected from the newly installed bedrock monitoring wells (MW-17 to MW-19 on Figure 2) and the existing monitoring wells (MW-17, MW-19, MW-25, MW-3 to MW-5) installed during the previous site investigation. The new wells will be developed and purged. The existing wells will only be purged as they were developed during the previous investigation. The groundwater samples will be analyzed in the laboratory for the TCL/TAL parameters, CN, PFCs and major cations (Ca, Mg, Na and K) and anions (Cl, SO₄, CO₃ and HCO₃).

3.2.6.1 Groundwater Field Parameters

Groundwater geochemical field parameters including temperature, conductivity, pH, oxidation-reduction potential (ORP), and dissolved oxygen (DO) will be monitored and recorded to provide general geochemical data and evaluate groundwater stabilization criteria prior to sample collection. The geochemical field parameters will be collected with a calibrated electronic field parameter meter. The field parameter meter will be calibrated at the start of each day and will have documented calibration checks at the middle and end of each day. All calibration records and checks will be documented on field notes or on sampling records by recording the value of the calibration solution, what the instrument was reading prior to calibration, and a checkmark if re-calibration was needed. Fresh calibration solution will be used each day that samples are collected, but may be re-used throughout the day.

3.2.7 Soil Gas and Indoor Air Quality Sampling

A total of five (5) samples each depicted as VI-1 to VI-5 on Figure 2 will be collected of sub-slab soil gas beneath the building and indoor air within the building. One (1) sub-slab soil gas and one (1) indoor air quality sample will be collected per distinct building (five (5) buildings total) to evaluate if VOCs are present in vapor beneath the building slabs and in the air within the buildings. One (1) ambient outdoor air sample will also be collected to document the quality of ambient air in an upwind location to the site building. The samples will be analyzed for VOCs.

3.2.8 Sampling Quality Control

Source Materials Quality Control

As discussed in Section 3.2, PFCs (including PFOA) are found in several everyday items. As a check for cross-contamination, quality control samples will be collected from source materials and equipment that are anticipated to be used for the investigation. These include water used by the drilling contractor for drilling and equipment decontamination; casing, rods, core samplers, water totes and tanks; filter sand used as monitoring well sand pack; monitoring well construction materials (PVC riser and screen); bottled water used as final decontamination rinse water, and various sampling equipment, apparatus and expendable supplies. The samples will be collected and analyzed for PFCs. Analytical results will be reviewed prior to Site mobilization. Mobilization to the Site will only be permitted if analytical results identify PFCs below detection limits or at concentrations that are not expected to crosscontaminate environmental samples. The types of source materials quality control samples to be collected, and the sampling method and rationale are detailed in Table 1 in the Tables section of this work plan. Source equipment including driller casing, rods, core samplers, totes and tanks will be segregated and will not be used for any other purpose by the drilling contractor from the time that the quality control samples are collected to the time that the equipment is mobilized to the Site for the investigation.

Field Quality Control

Field Quality Control samples include Equipment Blanks, Duplicates, and Matrix Spike/Matrix Spike Duplicates (MS/MSD). Quality Control samples will be prepared for each media type at a ratio of one (1) set of Quality Control samples per each 20

media samples. Laboratory prepared Trip Blanks will be submitted with aqueous samples requiring analysis for TCL VOCs and PFCs. Field Trip Blanks will be submitted with aqueous samples requiring analysis for PFCs. The types of field quality control samples to be collected and the sampling method and rationale are detailed in Table 1 of the Tables section of this work plan.

3.2.9 Laboratory Reporting and Data Validation

The laboratory will generate NYSDEC ASP Category B data deliverable packages of the investigative analytical data. A Data Usability Summary Report (DUSR) of the analytical data will be prepared to confirm that the data meets the project specific criteria for data quality and data use. The DUSR will be completed by an independent data validator and will be conducted in accordance with Appendix 2B of DER-10 entitled *Guidance for Data Deliverables and the Development of Data Usability Summary Reports.*

3.2.10 Geophysical Survey

Geophysical survey techniques will be utilized to map subsurface glacial till and bedrock contacts, and to identify the location of the municipal sewer pump station overflow pipe along the eastern and southern side of the Site. The survey will be completed prior to the initiation of the subsurface investigations.

3.2.11 Surveying Methods

A Boundary and Topographic Survey will be conducted of the Site and portions of the adjacent properties, and to establish investigation sampling points. The horizontal location of the boreholes will be surveyed utilizing GPS based on the New York State Plane Coordinate System, Eastern Zone, NAD 1983/2011 EPOCH 2010.0, and the vertical elevation of the boreholes at grade will be surveyed utilizing GPS based on NAVD 1988. The GPS coordinates will be converted to decimal degrees based on the WGS84 datum for inputting into the NYSDEC electronic data deliverable (EDD) system.

3.2.12 Fish and Wildlife Resources Impact Analysis

As part of the ecological exposure evaluation, Part I of a Fish and Wildlife Resources Impact Analysis (FWRIA) will be completed to the extent required based on the October 1994 NYSDEC Fish and Wildlife Impact Analysis (FWIA) for Inactive Hazardous Waste Sites. Resource characterization under the FWRIA will be completed as a function of the RI to identify actual or potential impacts to fish and wildlife resources from site contaminants of ecological concern. This scope includes five (5) steps, as follows.

- 1. Identification of all fish and wildlife resources based upon knowledge of the site and a search of DEC records and/or other resources.
- 2. Description of the resources on the site and within one-quarter mile of the site.
- 3. Identification of contaminant migration pathways and any fish and wildlife exposure pathways.
- 4. Identification of contaminants of ecological concern.
- 5. Conclusions regarding the actual or potential adverse impacts to fish and wildlife resources.

3.2.13 Qualitative Human Health Exposure Assessment

A qualitative human health exposure assessment of the Site will be completed in general accordance with Appendix 3B of DER-10. At a minimum, the exposure assessment will evaluate the five (5) elements associated with exposure pathways. The elements include the following.

- 1. A description of the contaminant source(s) including the location of the contaminant release to the environment or if the original source is unknown, the contaminated environmental medium at the point of exposure.
- 2. An explanation of the contaminant release and transport mechanisms to the exposed population.
- 3. Identification of all potential exposure point(s) where actual or potential human contact with a contaminated medium may occur. Potential off-site exposure routes include surface soil, groundwater, public drinking water, and surface water and sediment in the Hoosic River.
- 4. Description(s) of the route(s) of exposure (i.e., ingestion, inhalation, dermal absorption).

5. A characterization of the receptor populations who may be exposed to contaminants at a point of exposure.

3.3 Feasibility Study Scope & Rationale

Existing Site data and data obtained from the Remedial Investigation will be utilized to evaluate potential remedies for the Site through a Feasibility Study. Remedies currently under consideration by the Department, as identified in the June 3, 2016 Order on Consent and Administrative Settlement, provided in the following subsections.

A study and assessment of alternatives to eliminate or reduce PFOA in the Municipal Water System (MWS) in the Village of Hoosick Falls will also be conducted (see Section 3.3.1).

Additional remedies may be considered based on the results of the remedial investigation. Each remedial alternative will be evaluated in accordance with NYCRR Parts 375-1.8 and 2.8.

3.3.1 Assessment of Potential Creation of Alternate Source Water Supply

As indicated in Section II.A.2 of the Order, a study and assessment regarding the potential creation of an alternate source water supply for the Village of Hoosick Falls will be completed as part of the RI/FS.

The NYSDEC and its standby contractor started the work on the Alternate Water Supply (AWS) assessment and have completed several of the initial tasks. Data and information developed by NYSDEC and its standby contractor during the initial tasks will be assembled, summarized and provided by NYSDEC to the Respondents to facilitate completion of the AWS assessment by the Respondents.

3.3.1.1 Scope of Work

The AWS assessment includes the following scope of work:

1. Review data and information to be provided by NYSDEC, Village of Hoosick Falls and Rensselaer County DOH relative to the work already completed in regard to potential AWS sources; water well construction information; purported and documented locations of PFC source areas; analytical results for PFCs samples collected by NYSDEC/NYSDOH in surface waters, sediments, surface and subsurface soils, springs, residential and non-potable (irrigation/livestock) water wells; and monitoring wells within the study area.

- 2. Review additional data available from the Village of Hoosick Falls, Town of Hoosick, and/or Rensselaer County Health Department regarding:
 - a. zoning & land use;
 - b. geologic logs or well completion records;
 - c. City of Troy water distribution system;
 - d. Hoosick Falls production well construction, flow capacity and water quality data;
 - e. Hoosick Falls water treatment system; and
 - f. Hoosick Falls water distribution system.
- 3. Attend a meeting with NYSDEC to discuss project goals and review the data and information already developed by NYSDEC. Other parties (i.e., NYSDOH, Rensselaer County, etc.) may participate as appropriate and based on their availability in the initial and subsequent meetings.
- 4. Secure an area-wide EDR Environmental Database Search Report to identify known regulatory-listed sites within the evaluation area. The Database Search Report is provided by Environmental Data Resources, Inc. and is procured online for a fee. The report identifies regulatory-listed sites within a geographic area defined by the user of the report.
- 5. Conduct a desktop study of area topography, surface water drainage characteristics, surficial and bedrock geology, current and historic land uses, flood plains, zoning, and other information indicated in Items 1 & 2 above.

3.3.1.2 Anticipated Alternatives for AWS Assessment

The following alternatives (or a combination of one or more thereof) are anticipated for consideration and evaluation, per the Order:

- 1. New Groundwater Source;
- 2. New Surface Water Source;
- 3. Interconnection with Existing Water Supply Sources;
- 4. Remediating and or treating the sources of PFOA to the groundwater and the MWS;

- 5. Modification of the Municipal Water System (MWS) Full Capacity System for possible expanded distribution; and
- 6. No Further Action, which would include the continuation of the existing IRMs, including a full capacity GAC treatment system to address PFOA in the MWS for the permitted maximum daily flow ("Full Capacity System")

3.3.1.3 Evaluation Factors for AWS Assessment

The alternatives for the AWS assessment will be evaluated on criteria set forth in 6 NYCRR 375-1.8(f), in conjunction with additional guidance provided for each criterion in subdivisions (b) through (j) of Section 4.2 of DER-10. The criteria are as follows:

- 1. Overall protectiveness of the public health and the environment;
- 2. Compliance with applicable standards, criteria, and guidance (SCGs);
- 3. Long-term effectiveness and permanence;
- 4. Reduction of toxicity, mobility or volume of contamination through treatment;
- 5. Short-term impacts and effectiveness;
- 6. Implementability;
- 7. Cost-effectiveness (capital and O&M costs); and
- 8. Land use.

4.0 SUPPLEMENTAL PLANS

4.1 Field Sampling Plan

The field activities for this project will include collection and laboratory analysis of surface, shallow and subsurface soil/fill, sediment, surface water, groundwater, soil gas and indoor air samples. The procedures relative to implementation of these field activities are presented in the Field Sampling Plan (FSP) in Appendix A, which also conforms to the Quality Assurance Project Plan (QAPP) presented in Appendix B. The FSP describes in detail the various methods and techniques to be followed during the completion of the sampling activities, instrument operation and calibration, and chain of custody procedures.

4.2 Quality Assurance/ Quality Control Plan

The QAPP describes the quality assurance and quality control procedures to be followed from the time media samples are collected to the time they are analyzed by the environmental analytical laboratory and evaluated by a third party according to the NYSDEC Data Usability Summary Report (DUSR) guidelines. The QAPP is presented in Appendix B.

The QAPP will be followed by field personnel during the Site investigation activities and media sampling events. It will also be used by the project management team and Quality Assurance Officer to assure the data collected and generated is representative and accurate. The laboratory results will be reported in NYSDEC ASP Category B data deliverable packages, which will be subjected to data validation in accordance with NYSDEC's DUSR guidelines to determine if the data is valid and usable.

4.3 Health and Safety Plan

A Site-specific Health and Safety Plan (HASP) has been prepared for this project to address Site worker health and safety issues. The HASP is presented in Appendix C. The HASP will be used by field personnel. Although the plan addresses all of the planned Site activities, subcontractors will be required to develop their own HASP for work they will perform, as well, in compliance with 29 CFR Part 1019.120. C.T. Male's

on-site employees and the subcontractor's on-site employees will have completed the OSHA 40-hour HAZWOPER training with all ensuing refresher courses.

4.4 Citizen Participation (CP) Plan

A project-specific Citizen Participation Plan (CP Plan) will be developed for this project in general accordance with DER 10 and will be submitted to the NYSDEC. The objective of the plan is to disseminate information to the public regarding the RI and other activities at the Site and to involve the public in the decision making process. This is accomplished by keeping the public informed of the investigation through direct mailings, email, public notice in local newspapers and other publications, and by having project documents available for review at public accessible repository locations and via the NYSDEC website.

5.0 **REPORTING AND SCHEDULE**

5.1 Reporting

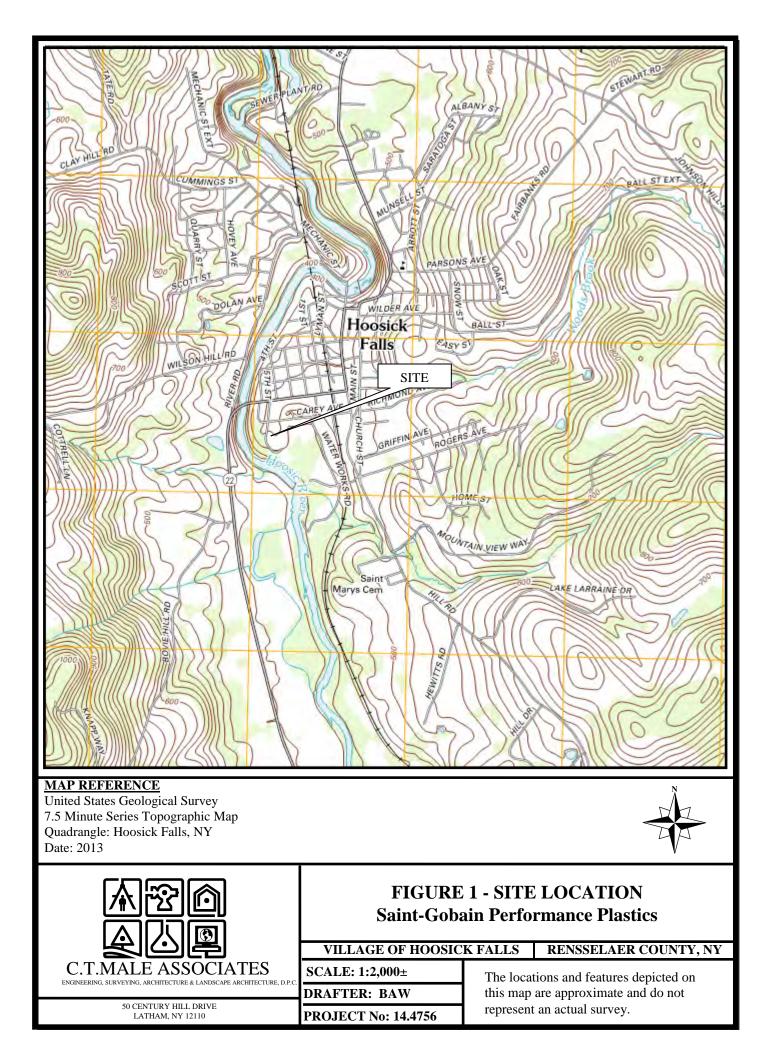
Upon completion of field activities and receipt and independent validation of the analytical laboratory data, a Draft RI/FS Report will be prepared. The RI portion of the report will summarize and discuss the investigations completed as well as any non-conformance to the approved work plan. The report will present the investigations at the Site, analytical results of samples collected and analyzed, and interpretations of the data. The FS portion of the report will evaluate alternatives for contaminated media identified by the remedial investigation.

5.2 Schedule

It is currently planned to initiate field work within 2 to 3 weeks following NYSDEC approval of the Work Plan. A detailed project schedule is presented in Appendix D.

6.0 SUBMITTALS

Communications will be transmitted by email, United States Postal Service, private courier, or hand delivered to the following individuals. Final documents, as they become available, will also be submitted to the following individuals:


- NYSDEC Project Manager
 William L. Daigle
 NYSDEC Central Office
 Division of Environmental Remediation
 625 Broadway, 11th Floor
 Albany, NY 12233-7013
 Phone: 518.402.9676
 Email: William.Daigle@dec.ny.gov
- DOH Project Manager

 Albert DeMarco
 New York State Department of Health
 Corning Tower
 Empire State Plaza
 Albany, New York 12237
 Phone: 518.402.7860
 Email: albert.demarco@health.ny.gov
- Mr. Edward Canning

 Director of Health, Safety & Environment
 Saint-Gobain Performance Plastics Corporation
 One Sealants Park
 Granville, New York 12832
 Phone: 518.686.7301
 Email: Edward.J.Canning@saint-gobain.com

FIGURES

FIGURE 1 SITE LOCATION MAP

FIGURE 2

PROPOSED SAMPLING LOCATIONS PLAN

Approximate Location of 12" Sanitary Sewer

0	Proposed Surface Soil Sampling Location (Typical)
•	Proposed Sediment Sampling Location (Typical)
⊕~	Proposed Soil Boring Location (Typical)
•	Proposed Surface Water Sampling Location (Typical)
•	Proposed Vapor Intrusion Sampling Location (Typical)
●	W-6 Proposed Boring / Monitoring Well Locations (Typical)
•	W-1 Existing Monitoring Well Locations (Typical)
•	Manholes
•	Sewage Ejector Pit
	Village Sewer Pump Station
0	Sewer Lines County Parcels (2014)

Figure 2: Proposed Sampling Locations Plan Saint - Gobain - McCaffrey Street Facility

Village of Hoosick Falls

Rensselaer County, NY

DRAFT

C. T. MALE ASSOCIATES ENGINEERING, SURVEYING, ARCHITECTURE & LANDSCAPE ARCHITECTURE, D.R.C SO CENTURY HILL DRIVE, LATHAM, NEW YORK 12110 (518) 786-7400 ^ FAX (518) 786-7299 * WWW.CTMALE.COM

TABLES

TABLE 1: PROPOSED SAMPLING SCHEDULE

Sample Type	Sampling Location	Sample Depth	Analytical Parameter	Grab/Comp.	Sampling Method	
SURFACE SOIL SAMPLING (SS-1 to SS-11, MW-6 to MW-16, MW-20, MW-21, SB-1, SB-2)	SS-1 to SS-11, MW-6 to MW-16, MW-20, MW-21, SB-1, SB-2	0-2" Beneath Vegetative Root Zone or Sub-Base Material	TCL/TAL, CN	Grab	Decomtaminated hand spade and/or hand auger wearing new, nitrile gloves at each sampling location. Place soils for VOC analysis directly into soil containers first. The remaining soils will be placed in a stainless steel bowl and homogenized. An aliquot will then be collected and transferred into laboratory provided sampling containers. The remaining soils, if there is sufficient volume, will be retained for grain size analysis.	As a requirement o environmental qua SS-11 locations are samples from SS-1 from low-lying veg areas in the vicinity site buildings; in th (SS-6) and former t parking and loadin MW-6 to MW-16, M locations will be co site (MW-6); at an Hoosick Falls Sewe on-site sewer manh locations in the vici between the Saint-((MW-13); areas of t have been conducto Gobain building's r of a Sewage Ejector 16(3)); near the Hoo open grassy area do in a flat area to the
	SS-1 to SS-11, MW-6 to MW-16, MW-20, MW-21, SB-1, SB-2	0-2" Beneath Surface Grade or Sub-Base Material. To Include Vegetative Root Zone, if Present.	PFCs, TOC, Moisture Content, Grain Size Analysis	Grab		
	FIELD QC (REPLICATE)	NA	TCL/TAL, CN or PFCs	1 Per 20 Media Samples	For VOCs analysis, collect by splitting the sample and putting equal portions into parent and replicate sample jars. For non-VOCs analysis, collect by honogenizing the sample and putting equal portions into parent and replicate sample jars.	To evaluate field sa homogeneity/hete laboratory precisio:
	FIELD QC (MS/MSD)	NA	TCL/TAL, CN or PFCs	1 Per 20 Media Samples	For VOCs analysis, collect by splitting the sample and putting equal portions into parent and replicate sample jars. For non-VOCs analysis, collect by honogenizing the sample and putting equal portions into parent and replicate sample jars.	To evaluate if there evaluate laboratory
	FIELD QC (EQUIPMENT BLANK)	NA	TCL/TAL, CN or PFCs	1 Per 20 Media Samples	Collect by pouring distilled water over decontaminated sampling equipment and capturing in lab provided sample containers.	To evaluate the dec equipment cleanlir

Rationale

t of DER-10, to evaluate the overall uality of surface soils across the site. SS-1 to re based on a 200'X200' grid. Surface soil -1 to SS-11 sampling locations will be collected regetated areas of the site; from vegetated ity of the site's property line, access roads and the vicinity of an aboveground propane tank r transformer (SS-7); and from beneath gravel ling areas. Surface soil samples collected from , MW-20, MW-21, SB-1 and SB-2 sampling collected in: presumed upgradient areas of the an off-site location in the vicinity of the wer Pump Station (MW-7); in the vicinity of nholes (MW-8, MW-9, MW-11); at off-site ricinity of sewer manholes (MW-10, MW-12); t-Gobain plant building and the Hoosic River f the site where no previous investigations cted (MW-14); downgradient of the Saints roof drainage piping (MW-15); in the vicinity tor Pit in the Saint-Gobain building (MW-Ioosic River shoreline (MW-20, MW-21); in an downgradient of the site building (SB-1); and he southeast of the site (SB-2).

d sampling technique, the eterogeneity of Site soils, and to check for ision.

nere is sample matrix interference and to tory accuracy (MS) and precision (MSD).

decontamination effort and sampling nliness between sampling locations.

Sample Type	Sampling Location	Sample Depth	Analytical Parameter	Grab/Comp.	Sampling Method	
SHALLOW SOIL ROOF DRAIN DRIP LINE (To Be Determined)	Potential On-Site & Off- Site Locations	0-2", 2"-12"	PFCs, TOC, Moisture Content.	Grab	Collect using decomtaminated hand spade and/or hand auger. New, nitrile gloves will be worn at each sampling location and sampling depth interval. Soils will be placed in a stainless steel bowl and homogenized. An aliquot will then be collected and transferred into laboratory provided sampling containers.	To evaluate the en proximity to on-sit environmental qua drainage systems a off-site properties facility.
	FIELD QC (REPLICATE)	NA	PFCs	1 Per 20 Media Samples	Collect by honogenizing the sample and putting equal portions into parent and replicate sample jars.	To evaluate field s homogeneity/hete laboratory precisio
	FIELD QC (MS/MSD)	NA	PFCs	1 Per 20 Media Samples	Collect by honogenizing the sample and putting equal portions into parent and replicate sample jars.	To evaluate if ther evaluate laborator
	FIELD QC (EQUIPMENT BLANK)	NA	PFCs	1 Per 20 Media Samples	Collect by pouring distilled water over decontaminated sampling equipment and capturing in lab provided sample containers.	To evaluate the de equipment cleanli
SUBSURFACE SOIL SAMPLING SS-1 to SS-11 & TEST BORINGS ⁽¹⁾ MW-6 to MW-16, MW-20, MW-21, SB-1, SB-2 ⁽²⁾	SS-1 to SS-11 & Test Borings MW-6 to MW- 16, MW-20, MW-21, SB-1 & SB-2	2"-12" Below the Ground Surface or Sub-Base"	TCL/TAL, CN, PFCs, TOC, Moisture Content, Grain Size Analysis.	Grab	Collect using decomtaminated hand spade and/or hand auger. New, nitrile gloves will be worn at each sampling location and sampling depth interval. Soils collected for VOCs analysis will be directly transferred from the sampling equipment into laboratory provided sampling containers. Soils collected for non-VOCs analysis will be placed in a stainless steel bowl and homogenized. An aliquot will then be collected and transferred into laboratory provided sampling containers. The remaining soils, if there is sufficient volume, will be retained for grain size analysis	To evaluate overal environmental qua- the site; from vege property line, acce an aboveground p (SS-7); from benea presumed upgrad location in the vici Station (MW-7); i (MW-8, MW-9, M sewer manholes (N plant building and where no previous 14); downgradient piping (MW-15); i Saint-Gobain build shoreline (MW-20, downgradient of t the southeast of th
	Test Borings MW-6 to MW-16, MW-20, MW-21, SB-1 & SB-2	Immediately Above the Water Table, at Soil Mottling Zones, at the Fill/Native Soil Interface, Subjectively Impacted Soils, and Major Stratigraphic Changes. If No Stratigraphic Changes, then at the 5'-7' and 10'-12' Depth Intervals.	TCL/TAL, CN, PFCs, TOC, Moisture Content, Grain Size Analysis.	Grab		

Rationale

environmental quality of shallow soils in -site roof drainage systems. To evaluate the quality of shallow soils in proximity to roof ns and in areas not affected by roof drainage at es considered downwind of the Saint-Gobain

d sampling technique, the eterogeneity of Site soils, and to check for ision.

here is sample matrix interference and to tory accuracy (MS) and precision (MSD).

decontamination effort and sampling nliness between sampling locations.

rall subsurface conditions and the quality of soils in: low-lying vegetated areas of egetated areas in the vicinity of the site's ccess roads and site buildings; in the vicinity of l propane tank (SS-6) and former transformer eath gravel parking and loading areas; in adient areas of the site (MW-6); at an off-site vicinity of the Hoosick Falls Sewer Pump in the vicinity of on-site sewer manholes MW-11); at off-site locations in the vicinity of s (MW-10, MW-12); between the Saint-Gobain nd the Hoosic River (MW-13); areas of the site ous investigations have been conducted (MWent of the Saint-Gobain building's roof drainage ; in the vicinity of a Sewage Ejector Pit in the uilding (MW-16⁽³⁾); near the Hoosic River 20, MW-21); in an open grassy area f the site building (SB-1); and in a flat area to the site (SB-2).

Sample Type	Sampling Location	Sample Depth	Analytical Parameter	Grab/Comp.	Sampling Method	
SUBSURFACE SOIL SAMPLING SS-1 to SS-11 & TEST BORINGS ⁽¹⁾ MW-6 to MW-16, MW-20, MW-21, SB-1, SB-2 ⁽²⁾	MW-17 to MW-19	NA	NA	NA	NA	MW-17, MW-18 a of bedrock wells of these borings. Th feet into bedrock casing and boreho borehole will the approximately 20 depth.
	FIELD QC (REPLICATE)	NA	TCL/TAL, CN, PFCs	1 Per 20 Media Samples	For VOCs analysis, collect by splitting the sample and putting equal portions into parent and replicate sample jars. For non-VOCs analysis, collect by honogenizing the sample and putting equal portions into parent and replicate sample jars.	To evaluate field homogeneity/het laboratory precisi
	FIELD QC (MS/MSD)	NA	TCL/TAL, CN, PFCs	1 Per 20 Media Samples	For VOCs analysis, collect by splitting the sample and putting equal portions into parent and replicate sample jars. For non-VOCs analysis, collect by honogenizing the sample and putting equal portions into parent and replicate sample jars.	To evaluate if the evaluate laborato
	FIELD QC (EQUIPMENT BLANK)	NA	TCL/TAL, CN, PFCs	1 Per 20 Media Samples	Collect by pouring distilled water over decontaminated sampling equipment and capturing in lab provided sample containers.	To evaluate the d equipment cleanl
SEDIMENT SAMPLING (SED-1 to SED-14)	SED-1 to SED-3	NA	PFCs, TOC, TCL/TAL, CN	Grab	Decontaminated hand spade and/or scoop, and new nitrile gloves at each sampling location. Soils collected for VOCs analysis will be directly transferred from the sampling equipment into laboratory provided sampling containers. Soils collected for non-VOCs analysis will be placed in a stainless steel bowl and homogenized. An aliquot will then be collected and transferred into laboratory provided sampling containers.	To evaluate the ended and the sediment, if prese
	SED-4, SED-5 (if present, collect water sample)	NA	PFCs, TOC	Grab	Decontaminated hand spade and/or scoop, and new nitrile gloves at each sampling location. Soils will be placed in a stainless steel bowl and homogenized. An aliquot will then be collected and transferred into laboratory provided sampling containers. If a sufficient volume of water is present for sample collection, employ new, factory sealed disposable bailer and/or collect directly in sample containers wearing new nitrile gloves at each sampling location.	To evaluate the e sediment (and wa manholes along t overflow discharg
	SED-6	0-6"	PFCs, TOC	Grab	Decontaminated hand auger and/or macro-core sampler, and new nitrile gloves at each sampling location. Soils will be placed in a stainless steel bowl and homogenized. An aliquot will then be collected and transferred into laboratory provided sampling c	To evaluate the e site pump station
	SED-7 to SED-9	0-6"	PFCs, TOC	Grab	Decontaminated hand spade and/or scoop, and new nitrile gloves at each sampling location. Soils will be placed in a stainless steel bowl and homogenized. An aliquot will then be collected and transferred into laboratory provided sampling containers.	To evaluate the e eastern bank of tl downgradient of
	SED-10 to SED-12	0-6"	PFCs, TOC	Grab	Decontaminated hand auger and/or macro-core sampler, and new nitrile gloves at each sampling location. Soils will be placed in a stainless steel bowl and homogenized. An aliquot will then be collected and transferred into laboratory provided sampling containers.	To evaluate the e sediment upriver

Rationale

8 and MW-19 will be advanced for installation ls only. Soil samples will not be collected from The wells will be cased approximately five (5) ck and the annulus between the outside of the ehole wall grouted to the ground surface. The hen be advanced into the bedrock to a depth of 20 to 25 feet below the bottom of the casing

ld sampling technique, the heterogeneity of Site soils, and to check for cision.

here is sample matrix interference and to tory accuracy (MS) and precision (MSD).

decontamination effort and sampling nliness between sampling locations.

environmental quality of accumulated esent, within the on-site sewer manholes.

environmental quality of accumulated water), if present, within the off-site sewer 3 the 12" diameter municipal pump station arge pipe.

e environmental quality of sediment at the offon overflow outfall pipe.

e environmental quality of sediment along the f the Hoosick River, topographically of the site.

environmental quality of river bottom er, midriver and downriver of the site.

Sample Type	Sampling Location	Sample Depth	Analytical Parameter	Grab/Comp.	Sampling Method	
SEDIMENT SAMPLING (SED-1 to SED-14)	SED-13, SED-14	0-6"	PFCs, TOC	Grab	Decontaminated hand auger and/or macro-core sampler, and new nitrile gloves at each sampling location. Soils will be placed in a stainless steel bowl and homogenized. An aliquot will then be collected and transferred into laboratory provided sampling containers.	To evaluate the en wet areas to the so
	FIELD QC (REPLICATE)	NA	PFCs, TCL/TAL, CN ⁽⁴⁾	1 Per 20 Media Samples	For VOCs analysis, collect by splitting the sample and putting equal portions into parent and replicate sample jars. For non-VOCs analysis, collect by honogenizing the sample and putting equal portions into parent and replicate sample jars.	To evaluate field s homogeneity/hete laboratory precisio
	FIELD QC (MS/MSD)	NA	PFCs, TCL/TAL, CN ⁽⁴⁾	1 Per 20 Media Samples	For VOCs analysis, collect by splitting the sample and putting equal portions into parent and replicate sample jars. For non-VOCs analysis, collect by honogenizing the sample and putting equal portions into parent and replicate sample jars.	To evaluate if ther evaluate laborator
	FIELD QC (EQUIPMENT BLANK)	NA	PFCs, TCL/TAL, CN ⁽⁴⁾	1 Per 20 Media Samples	Collect by pouring distilled water over decontaminated sampling equipment and capturing in lab provided sample containers.	To evaluate the de equipment cleanli
SURFACE WATER SAMPLING (SW-1 to SW-3)	SW-1, SW-2	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab	New, factory sealed disposable bailer and/or collect directly in sample containers wearing new nitrile gloves at each sampling location.	To evaluate the er the Hoosic River u
	SW-3	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab	New, factory sealed disposable bailer and/or collect directly in sample containers wearing new nitrile gloves at each sampling location.	To evaluate the er lying wet areas to
	FIELD QC (REPLICATE)	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	1 Per 20 Media Samples	Collect by putting equal portions into parent and replicate sample containers, filling VOC containers first.	To evaluate field s
	FIELD QC (MS/MSD)	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	1 Per 20 Media Samples	Collect by putting equal portions into parent, MS and MSD sample containers, filling VOC containers first.	To evaluate if the evaluate laborator
	FIELD QC (EQUIPMENT BLANK)	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	1 Per 20 Media Samples	Collect by pouring distilled water over decontaminated/new sampling equipment and capturing in lab provided sample containers.	To evaluate the de equipment cleanli
	FIELD QC (LABORATORY TRIP BLANK)	NA	PFCs, VOCS	1 Per Cooler	Trip Blank to always remain in cooler that contains aqueous samples.	Used to evaluate p and sample contai from the laborator staging in the field
	FIELD QC (FIELD TRIP BLANK)	NA	PFCs	1 Per Cooler	Prepared in the field during sampling by transfering a lab provided container of reagent water into a new empty lab provided sample container.	To evaluate if ther site.

Rationale

environmental quality of sediment in low-lying southeast of the site.

d sampling technique, the eterogeneity of Site soils, and to check for ision.

nere is sample matrix interference and to to tory accuracy (MS) and precision (MSD).

decontamination effort and sampling nliness between sampling locations.

environmental quality of surface water from r upriver and downriver of the site.

environmental quality of surface water in lowto the southeast of the site.

d sampling technique and laboratory precision.

nere is sample matrix interference and to to tory accuracy (MS) and precision (MSD).

decontamination effort and sampling nliness between sampling locations.

e potential impacts during the entire collection tainer handling process from shipment to and tory, temporary storage and transport, and eld.

nere is PFC cross-contamination at the sampling

Sample Type	Sampling Location	Sample Depth	Analytical Parameter	Grab/Comp.	Sampling Method	
GROUNDWATER SAMPLING (Newly Installed MW-6 to MW-21 & Existing MW-1, MW-1S, MW-2, MW-2S, MW-3 to MW-5)	MW-6	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab	Low-flow sampling techniques with peristaltic pump and new clean tubing and nitrile gloves at each sampling location.	This is considered both the upper ar assist in defining determining if an hydraulic conduc
	MW-7	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab	Low-flow sampling techniques with peristaltic pump and new clean tubing and nitrile gloves at each sampling location.	To evaluate if gro potential source o will also be comp
	MW-8, MW-9	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab	Low-flow sampling techniques with peristaltic pump and new clean tubing and nitrile gloves at each sampling location.	To evaluate if PF manholes. A hyc completed.
	MW-10 to MW-12	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab	Low-flow sampling techniques with peristaltic pump and new clean tubing and nitrile gloves at each sampling location.	To evaluate the e vicinity of on-site pipe manholes. A be completed.
	MW-13	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab	Low-flow sampling techniques with peristaltic pump and new clean tubing and nitrile gloves at each sampling location.	To evaluate the e between the site determine if there directly toward th will also be comp
	MW-14	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab	Low-flow sampling techniques with peristaltic pump and new clean tubing and nitrile gloves at each sampling location.	To evaluate the end central portions of investigations. A completed.
	MW-15	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab	Low-flow sampling techniques with peristaltic pump and new clean tubing and nitrile gloves at each sampling location.	To evaluate the e immediately dow discharge pipe. <i>A</i> be completed.
	MW-16 ⁽³⁾	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab	Low-flow sampling techniques with peristaltic pump and new clean tubing and nitrile gloves at each sampling location.	To evaluate the e area of the site bu
	MW-17	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab	Low-flow sampling techniques with peristaltic pump and new clean tubing and nitrile gloves at each sampling location.	Bedrock monitor evaluate the envi at an assumed hy the development

Rationale

red an upgradient well location in relation to and lower hydro-statigraphic units and will ng groundwater movement in both units, and in an upgradient off-site source of PFOA exists. A uctivity (slug) test will also be completed.

roundwater at the sewer pump station is a e of PFOA. A hydraulic conductivity (slug) test ppleted.

FOA is present at the location of on-site sewer ydraulic conductivity (slug) test will also be

environmental quality of groundwater in the ite and off-site sewer pump station overflow A hydraulic conductivity (slug) test will also

e environmental quality of groundwater the building and the Hoosic River and to ere is a component of groundwater movement I the river. A hydraulic conductivity (slug) test npleted.

environmental quality of groundwater within s of the site where there have been no previous A hydraulic conductivity (slug) test will also be

environmental quality of groundwater wngradient of the site building's roof drainage A hydraulic conductivity (slug) test will also

environmental quality of groundwater in the building's sewage ejector pit.

oring well set 20 to 25 feet within bedrock. To vironmental quality of groundwater in bedrock hydraulically upgradient location, and to aid in nt of a bedrock groundwater contour map.

Sample Type	Sampling Location	Sample Depth	Analytical Parameter	Grab/Comp.	Sampling Method	
GROUNDWATER SAMPLING (Newly Installed MW-6 to MW-21 & Existing MW-1, MW-1S, MW-2, MW-2S, MW-3 to MW-5)	MW-18	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab	Low-flow sampling techniques with peristaltic pump and new clean tubing and nitrile gloves at each sampling location.	Bedrock monitorii evaluate the envir in the approximat development of a
	MW-19	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab		Bedrock monitori evaluate the envir and to aid in the c contour map.
	MW-20 & MW-21	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab	Low-flow sampling techniques with peristaltic pump and new clean tubing and nitrile gloves at each sampling location.	To evaluate the er vicinity of the Ho
	MW-1, MW-1S, MW-2, MW-2S, MW-3 to MW-5	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	Grab	Low-flow sampling techniques with peristaltic pump and new clean tubing and nitrile gloves at each sampling location.	To evaluate the er conjunction with from the newly in detailed groundw stratigraphic unit
	FIELD QC (REPLICATE)	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	1 Per 20 Media Samples	Collect by putting equal portions into parent and replicate sample containers, filling VOC containers first.	To evaluate field
	FIELD QC (MS/MSD)	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	1 Per 20 Media Samples	Collect by putting equal portions into parent, MS and MSD sample containers, filling VOC containers first.	To evaluate if the evaluate laborato:
	FIELD QC (EQUIPMENT BLANK)	NA	TCL/TAL, CN, PFCs, Major Cations/Anions	1 Per 20 Media Samples	Collect by pouring distilled water over decontaminated/new sampling equipment and capturing in lab provided sample containers.	To evaluate the do equipment cleanli
	FIELD QC (LABORATORY TRIP BLANK)	NA	PFCs, VOCS	1 Per Cooler	Trip Blank to always remain in cooler that contains aqueous samples.	Used to evaluate collection and con and from the labor staging in the field
	FIELD QC (FIELD TRIP BLANK)	NA	PFCs	1 Per Cooler	Prepared in the field during sampling by transfering a lab provided container of reagent water into a new empty lab provided sample container.	To evaluate if the site.

Rationale

bring well set 20 to 25 feet within bedrock. To vironmental quality of groundwater in bedrock nate central area of the site and to aid in the a bedrock groundwater contour map.

ring well set 20 to 25 feet within bedrock. To vironmental quality of groundwater in bedrock e development of a bedrock groundwater

environmental quality of groundwater in the Ioosic River shoreline.

environmental quality of groundwater in h the environmental quality of groundwater installed wells. Aid in generating more dwater contour maps of the different hydronits.

d sampling technique and laboratory precision.

here is sample matrix interference and to tory accuracy (MS) and precision (MSD).

decontamination effort and sampling nliness between sampling locations.

e potential impacts during the entire sample container handling process from shipment to boratory, temporary storage and transport, and eld.

nere is PFC cross-contamination at the sampling

Sample Type	Sampling Location	Sample Depth	Analytical Parameter	Grab/Comp.	Sampling Method	
VAPOR INTRUSION SAMPLING (VI-1 to VI-5)	VI-1 to VI-5	Sub-Slab and Indoor Air	VOCs	Air Flow per Period of Time	Lab provided Suma canisters with air flow regulators.	Per DER-10, one (quality sample w buildings total) to beneath the build
	FIELD QC (REPLICATE)	NA	VOCs	1 Per 20 Media Samples	Place a second Suma canister in tandem with one (1) of the parent Suma canister.	To evaluate field
	FIELD QC (AMBIENT)	NA	VOCs	1 Per 20 Media Samples	Utilize Suma canister to obtain an outdoor air sample.	To evaluate back ambient air.
SITE SURVEY	NA	NA	NA	NA	NA	Boundary and To establish investig (horizontal) and I
GEOPHYSICAL SURVEY	SITE WIDE	NA	NA	NA	NA	Geophysical surv refraction/reflect subsurface glacia Penetrating Rada
QC - IMPORTED SOURCE MATERIALS	Source Sample - Imported Water for Drilling	NA	PFCs	Grab	Obtain one (1) grab sample of water to be used by driller from the drilling contractor's place of business.	To evaluate that the subcontractor do at a municipal wa Village and Towr the sample must media sampling.
	Source Sample - Imported Water for Decontamination	NA	PFCs	Grab	Obtain one (1) grab sample of water to be used for decontamination.	To evaluate that decontamination obtained at a mu of the Village and analysis of the sa to Site media sam
	Equipment Rinse Blank - Totes/Tanks used by Driller	NA	PFCs	Grab	Pour distilled water through driller tanks/totes and capture in laboratory provided containers.	To evaluate that the drilling contractor the sample must mobilization ⁽⁵⁾ .
	Source Sample - Filter Sand Used as Monitoring Well Sand Pack	NA	PFCs	Grab	Collect one (1) grab sample of well construction filter sand per source/grain size/supplier.	To evaluate that f contractor for mo PFCs. Laborator non-detect prior
	Equipment Rinse Blank - PVC Well Riser from Driller	NA	PFCs	Grab	Pour distilled water over/through PVC Well Riser and capture in laboratory provided containers.	To evaluate that drilling contracto contain PFCs. La PFCs as non-dete

Rationale

he (1) sub-slab vapor and one (1) indoor airwill be collected per distinct building (five (5))ho evaluate if VOCs are present in vaporilding slabs and in the air within the buildings.

ld sampling technique and laboratory precision.

ckground concentrations of VOCs in outdoor

Topographic Survey of the Site and local, and to tigation sampling points using NAD 83 d NAVD 88 (vertical) coordinate system.

rvey potentially utilizing seismic ection/electromagnetic techniques to map cial till and bedrock lithologies and Ground dar (GPR) for utility locating.

at water brought onto the Site by the drilling does not contain PFCs. Water will be obtained water source outside of the boundaries of the wn of Hoosick Falls, NY. Laboratory analysis of st indicate PFCs as non-detect prior to Site g.

at water brought onto the Site for on does not contain PFCs. Water will be nunicipal water source outside of the boundaries and Town of Hoosick Falls, NY. Laboratory sample must indicate PFCs as non-detect prior ampling.

at totes/tanks brought onto the Site by the ctor do not contain PFCs. Laboratory analysis of st indicate PFCs as non-detect prior to Site

at filter sand brought onto the Site by the drilling monitoring well construction does not contain ory analysis of the sample must indicate PFCs as or to Site mobilization.

at PVC Well Riser brought onto the Site by the ctor for monitoring well construction does not Laboratory analysis of the sample must indicate etect prior to Site mobilization.

Sample Type	Sampling Location	Sample Depth	Analytical Parameter	Grab/Comp.	Sampling Method	
QC - IMPORTED SOURCE MATERIALS	Equipment Rinse Blank - PVC Well Screen from Driller	NA	PFCs	Grab	Pour distilled water over/through PVC Well Screen and capture in laboratory provided containers.	To evaluate that I drilling contracto contain PFCs. La PFCs as non-dete
	Equipment Rinse Blank - Steel Bedrock Well Casing from Driller	NA	PFCs	Grab	Pour distilled water over/through Steel Casing and capture in laboratory provided containers.	To evaluate that 5 drilling contracto contain PFCs. La PFCs as non-dete
	Equipment Rinse Blank - Override Casing from Driller	NA	PFCs	Grab	Pour distilled water over/through driller override casing and capture in laboratory provided containers.	To evaluate that of by the drilling con not contain PFCs. indicate PFCs as n
	Equipment Rinse Blank - Drill Rods from Driller	NA	PFCs	Grab	Pour distilled water over/through driller drill rods and capture in laboratory provided containers.	To evaluate that of drilling contracto contain PFCs. La PFCs as non-dete
	Equipment Rinse Blank - Core Barells from Driller	NA	PFCs	Grab	Pour distilled water over/through driller core barrel and capture in laboratory provided containers.	To evaluate that o drilling contracto contain PFCs. La PFCs as non-dete
	Source Sample - Distilled Water for Field Tool Decontamination	NA	PFCs	Grab	Obtain one (1) sample of distilled water for field tool decontamination.	To evaluate that of contain PFCs. La PFCs as non-dete the Site.
	Source Sample - Distilled Water for Rinse Samples	NA	PFCs	Grab	Obtain one (1) sample of distilled water for rinse samples.	To evaluate that of contain PFCs. La PFCs as non-dete the Site.

Notes:

(1) Test borings/monitoring wells MW-6 to MW-15, MW-20 & MW-21 may be constructed as shallow and deep couplets in the shallow and deep hydro-stratigraphic units. The deep boring will be advanced first, followed by the shallow boring. Subsurface soil samples will be collected from the deep test borings only. Test boring MW-16 will consist of a single boring that will be converted to a shallow monitoring well. The cooncrete floor will first be cored a diameter of approximately 10"-12" prior to advancement of MW-16. Test borings MW-17 to MW-19 will be advanced for installation of bedrock wells only. Soil samples will not be collected from these borings.

(2) Several soil samples will be collected at each test boring location. Prior to drilling, soil samples requiring collection with hand tools will be collected first. These samples will be collected adjacent to the proposed boring location. (3) This test boring will be advanced through concrete flooring. Sample intervals will be initiated beneath the concrete slab material.

(4) Laboratory analysis for QC samples affiliated with media samples collected on-site will be TCL/TAL, CN and PFCs and PFC for samples collected off-site.

(5) Driller totes, tanks, over casing, drill rods and core samplers will be segregated and will not be used for any other purpose from the time that rinsate samples are collected to the time that they are brought onto the Site. TCL = Target Compound List of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), Pesticides and PCBs

TAL = Target Analyte List of Metals, including Mercury

CN = Cyanide

PFC = Perfluorinated Compounds

TOC = Total Organic Carbon

QC = Quality Control

MS = Matrix Spike

MSD = Matrix Spike Duplicate

MW = Monitoring Well

NA = Not Applicable

Rationale

t PVC Well Screen brought onto the Site by the tor for monitoring well construction does not aboratory analysis of the sample must indicate tect prior to Site mobilization.

t Steel Casing brought onto the Site by the tor for the bedrock monitoring wells does not aboratory analysis of the sample must indicate tect prior to Site mobilization.

t drilling override casing brought onto the Site contractor for advancement of test borings does Cs. Laboratory analysis of the sample must as non-detect prior to Site mobilization⁽⁵⁾.

t drilling rods brought onto the Site by the tor for advancement of test borings does not aboratory analysis of the sample must indicate tect prior to Site mobilization⁽⁵⁾.

t core barrels brought onto the Site by the tor for collection of soil samples does not aboratory analysis of the sample must indicate tect prior to Site mobilization⁽⁵⁾.

t distilled water brought onto the Site does not aboratory analysis of the sample must indicate tect prior to distilled water being imported onto

t distilled water brought onto the Site does not aboratory analysis of the sample must indicate tect prior to distilled water being imported onto

APPENDIX A

FIELD SAMPLING PLAN SAINT-GOBAIN PERFORMANCE PLASTICS SITE 14 McCAFFREY STREET VILLAGE OF HOOSICK FALLS RENSSELAER COUNTY, NEW YORK

FIELD SAMPLING PLAN SAINT-GOBAIN PERFORMANCE PLASTICS SITE 14 McCAFFREY STREET VILLAGE OF HOOSICK FALLS RENSSELAER COUNTY, NEW YORK

TABLE OF CONTENTS

1.0 2.03.0 3.1 Source Materials and Equipment Rinse Blanks......4 3.1.1 Surface Soil Sampling......5 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 Soil Gas and Indoor Air Quality Sampling9 3.1.8 3.2 Observation of Drilling Operations, Monitoring Well Installations and Geophysical Survey......9 3.3 Drilling and Sampling of Overburden for Installation of Monitoring Wells9 Vapor Intrusion Sampling11 3.4 3.5 Surface, Shallow and Subsurface (2"-12" bgs) Soil 3.5.1 Sampling......13 3.5.2 Sediment Sampling......16 3.5.3 Surface Water Sampling......17 3.5.4 3.5.5 3.5.6 3.6 3.7 Decontamination of Drilling and Sampling/Gauging 3.8 Equipment......23

Page

4.0	GRO	UNDWATER SAMPLING PROCEDURES	25			
	4.1	General				
	4.2	Preparation for Sampling				
	4.3	Measuring the Water Level				
	4.4	Well Purging Procedures				
	4.5	Sample Collection				
	4.6	Field Analyses				
5.0		, SEDIMENT AND VAPOR INTRUSION SAMPLING				
	PRO	CEDURES				
	5.1	Soil and Sediment Sampling Procedures				
		5.1.1 Headspace Analysis				
	F 0	5.1.2 Analytical Soil and Sediment Sampling				
	5.2	Vapor Intrusion Sampling	34			
6.0	FIEL	D QUALITY CONTROL	35			
	6.1	Source Materials	35			
	6.2	Field Sampling	37			
7.0	FIEL	D INSTRUMENTATION OPERATING PROCEDURES	40			
	7.1	General	40			
	7.2	Photoionization Detector Meter	40			
	7.3	Temperature, PH, ORP, DO and Specific Conductivity Meter	40			
		7.3.1 General				
		7.3.2 pH				
		7.3.3 Specific Conductivity				
		7.3.4 ORP				
	7.4	Turbidity Meter	42			
8.0	SAMPLE HANDLING AND CHAIN OF CUSTODY PROCEDURES					
9.0	WATER LEVEL MEASUREMENT PROCEDURES					
10.0	INVE	ESTIGATION DERIVED WASTE MANAGEMENT	45			
TABI	LES:					
Table	1:	Analytical Requirements for Containers and Preservatives for	Water			
		Samples and Equipment Blank Samples				
Table	2:	Analytical Requirements for Containers and Preservatives for S	oil and			

Sediment Samples

- Table 3:Analytical Requirements for Containers and Preservatives for Soil Gas
and Air Samples
- Table 4:Source Materials Sampling Protocols

ATTACHMENTS:

Attachment A: QA/QC Forms and Field Report Forms

1.0 INTRODUCTION

This document is the Field Sampling Plan (FSP) for the Remedial Investigation (RI) to be conducted at the Saint-Gobain Performance Plastics (Saint-Gobain) Site ('the Site") located at 14 McCaffrey Street in the Village of Hoosick Falls, Rensselaer County, New York. It has been developed in accordance with the RI Work Plan (RIWP) as prepared by C.T. Male Associates. A description of the property, background information, objectives, and the proposed scope of work, are presented in the referenced RIWP.

This FSP is a supplement to the RIWP in that it presents the standard field sampling and data gathering procedures to be followed during implementation of the field activity portion of the scope of work. This plan addresses sampling locations and frequencies, drilling methods including advancement of soil borings and installation of monitoring wells, vapor intrusion assessment including sub-slab soil gas and indoor air sampling, decontamination procedures, sampling procedures, field screening and testing procedures, field instrumentation operating procedures, field measurements, sample handling and chain of custody procedures, water level measurement procedures and investigative derived waste management. The applicable portions of the RIWP that coincide with the FSP will be provided to, and followed by the field team. This FSP is intended to be applicable to field sampling activities conducted by C.T. Male Associates and its subcontractors.

The FSP forms an integral part of the Quality Assurance Project Plan (QAPP). The field sampling and data gathering procedures presented in the FSP are incorporated into the QAPP by reference. The FSP and the QAPP document the laboratory quality assurance/quality control procedures to be followed during analysis of samples collected in the field so that valid data of a known quality is generated.

The FSP has been prepared, in part, in general accordance with the following NYSDEC and EPA guidance documents:

- DER-10, Technical Guidance for Site Investigation and Remediation, NYSDEC, May 2010.
- 6 NYCRR Part 375 Environmental Remediation Programs Subparts 375-1 to 375-4 and 375-6, Effective December 14, 2006.

• A Compendium of Superfund Field Operations Methods, EPA/540/P-87/001, USEPA, December 1987.

2.0 MEDIA SAMPLING LOCATIONS AND FREQUENCY

Sampling will be performed for volatile organic vapor screening, subjective media assessment, laboratory analyses, and for geologic and hydrogeologic characterization of the project Site. The environmental media to be sampled includes:

- Soil,
- Groundwater,
- Surface Water,
- Sediment,
- Soil Gas, and
- Indoor Air.

Detail for the proposed media sampling strategy is presented in Section 3.0 of this report.

In general, approximately 52 surface soil, 62 shallow soil and 45 subsurface soil samples will be collected from 11 surface soil, 16 shallow soil and 15 test boring locations throughout the Site and from off-site locations. At least 22 groundwater samples will be collected from seven (7) existing monitoring wells and from newly installed overburden and bedrock monitoring wells. Three (3) surface water samples will be collected from off-site low-lying wet areas and from the Hoosic River. Fourteen (14) sediment samples will be collected from on-site and off-site locations. Five (5) soil gas and five (5) indoor air samples will be collected as part of a vapor intrusion assessment of the Site building.

3.0 SITE INVESTIGATION OVERVIEW

3.1 General

The proposed Site investigations include: collection and laboratory analysis of quality control samples of source materials and rinse blanks of equipment that will be imported to the Site to conduct the investigations; collection and laboratory analysis of surface soil; collection of shallow soil samples in the vicinity of roof drainage systems at yet to be determined on-site and off-site locations; advancement of test borings to aid in the collection of surface, shallow and subsurface soil samples for field screening and laboratory analysis, for installation of monitoring wells and characterization of the Site's subsurface; collection and laboratory analysis of groundwater samples from the installed monitoring wells; collection and laboratory analysis of surface water and sediment samples; collection and laboratory analysis of soil gas and indoor air samples as part of a vapor intrusion survey; and completion of a geophysical survey to map the glacial till and bedrock contact depths and to identify the location of the municipal sewer pump station overflow piping.

3.1.1 Source Materials and Equipment Rinse Blanks

Quality control samples will be collected of source materials and equipment that is anticipated to be imported to the Site for the investigations. Source materials to be sampled include potable water used by the drilling contractor for drilling and decontamination, bottled water used as final decontamination rinse water, and filter sand used for the monitoring well sand pack. Equipment rinsate blank samples will be collected by pouring bottled deionized water over and through driller water totes and tanks, drill casings, drill rod, monitoring well PVC riser and monitoring well PVC screen. The aforementioned samples will be analyzed for PFCs and the analytical results will be reviewed prior to Site mobilization. Mobilization of equipment and material will only be permitted if analytical results indicate PFCs as non-detect. The drill tooling and material will be designated for Site use only and will not be used for other drilling projects prior to being mobilized to the Site.

3.1.2 Surface Soil Sampling

Surface soil samples will be collected within the Site by establishment of a 200' by 200' grid over the Site (11 sampling locations, SS-1 to SS-11) and at test boring locations MW-6 to MW-16, MW-20, MW-21, SB-1 and SB-2 (15 sampling locations). Surface soil samples will not be collected from MW-17 to MW-19 as these borings will be converted to bedrock monitoring wells.

Surface soil samples collected from the 200' by 200' grid system will be collected to evaluate the environmental quality of surface soils representative of site-wide conditions; from low-lying vegetated areas of the site; from vegetated areas in the vicinity of the site's property line, access roads and site buildings; in the vicinity of an aboveground propane tank and former transformer; and from beneath gravel parking and loading areas.

Surface soil samples will be collected at the test boring locations to further evaluate the environmental quality of soils in: presumed upgradient areas of the site; at an off-site location in the vicinity of the Hoosick Falls Sewer Pump Station; in the vicinity of onsite sewer manholes; at off-site locations in the vicinity of sewer manholes; between the Saint-Gobain plant building and the Hoosic River; areas of the site where no previous investigations have been conducted; downgradient of the Saint-Gobain building's roof drainage piping; in the vicinity of a Sewage Ejector Pit in the Saint-Gobain building; near the Hoosic River riverbank; in an open grassy area downgradient of the site building; and in a flat area to the southeast of the site.

Two (2) discrete soil samples will be collected at each surface soil sampling location. The first discrete surface soil sample will be collected from the ground surface (or below any sub-base material, if present) to a depth of 2" and will include any underlying vegetative and/or organic matter. This sample will be analyzed in the laboratory for PFCs (Modified), TOC, moisture content and grain size analysis. The second discrete surface soil sample will be collected from beneath the vegetative root zone (or below any pavement or sub-base material, if present) to a depth of 2". As a requirement of DER-10, this sample will be analyzed in the laboratory for the TCL/TAL parameters and cyanide (CN).

3.1.3 Shallow Soil Sampling

Shallow soil samples may be collected for laboratory analysis from both on-site and offsite locations.

On-site shallow soil sampling locations will be determined by evaluating the presence, if any, of downspouts, roof drains and drip lines affiliated with the site building's roofing system. Shallow soil samples will be collected from vegetated areas in proximity to the roof drainage appurtenances. The proposed sampling locations will be approved by the Department prior to initiation of the sampling program.

Off-site shallow soil samples will be collected from three residential properties located downwind of the subject site. Downwind properties where the samples will be collected from will be determined through review of air models for the Saint-Gobain facility. Four shallow soil samples will be collected at each property. Two samples will be collected from vegetated areas in proximity to roof drains and/or roof drip lines. Two samples will be collected for background purposes in vegetated areas of the property that do not receive drainage from the roof systems.

Shallow soil samples will be collected from the ground surface to a depth of 2" (including the vegetative root zone, if present) and from the 2" to 12" depth interval. The samples will be analyzed in the laboratory for PFCs (Modified), total organic carbon (TOC) and moisture content.

If subjective indications, (elevated PID readings, oily liquid, strongly odiferous soils, staining, etc.) are noted in the shallow soil samples, the sample will also be analyzed for the TCL/TAL parameters including CN.

3.1.4 Subsurface Soil Sampling

Subsurface soil samples will be collected at discrete sampling intervals from surface soil sampling locations SS-1 to SS-11 and test borings MW-6 to MW-16, MW-20, MW-21, SB-1 and SB-2 (see Figure 2). Soil samples will not be collected from the MW-17 to MW-19 test boring locations as these borings will be for the installation of bedrock monitoring wells only.

The subsurface soil samples will be collected to evaluate overall subsurface conditions

and the environmental quality of soils in: low-lying vegetated areas of the site; from vegetated areas in the vicinity of the site's property line, access roads and site buildings; in the vicinity of an aboveground propane tank and former transformer; from beneath gravel parking and loading areas; presumed upgradient areas of the site (MW-6); at an off-site location in the vicinity of the Hoosick Falls Sewer Pump Station (MW-7); in the vicinity of on-site sewer manholes (MW-8, MW-9, MW-11); at off-site locations in the vicinity of overflow pipe sewer manholes (MW-10, MW-12); between the Saint-Gobain plant building and the Hoosic River (MW-13); areas of the site where no previous investigations have been conducted (MW-14); downgradient of the Saint-Gobain building's roof drainage piping (MW-15); in the vicinity of a Sewage Ejector Pit in the Saint-Gobain building (MW-16); near the Hoosic River riverbank (MW-20 and MW-21); in an open grassy area downgradient of the site building (SB-1); and in a flat area to the southeast of the site (SB-2).

At each surface soil and test boring location, soil samples will be collected from 2"-12" below the ground surface (or below any sub-base material, if present), and analyzed for PFCs, TOC, moisture content and grain size analysis, and TCL/TAL parameters including CN.

Additional subsurface soil samples will be collected from the test boring locations (MW-6 to MW-16, MW-20, MW-21, SB-1 and SB-2) at the following depth intervals: immediately above the water table; at soil mottling zones; at the fill/native soil interface; and at major stratigraphic changes. In the event that major stratigraphic changes are not encountered at the depths explored, then soil samples will be collected from the 5'-7' and 10'-12' depth intervals. The samples will be analyzed for PFCs, TOC, moisture content and grain size analysis, and TCL/TAL parameters including CN. Soil sampling depths may be adjusted in the field with input from Department fieldoversight staff.

If subjective impacts (elevated PID readings, oily liquid, strongly odiferous soils/fill, staining, etc.) are noted in soils above the water table, a sample of the soil will be collected for laboratory analysis for PFCs, TOC, moisture content and grain size analysis, and TCL/TAL parameters including CN.

3.1.5 Sediment Sampling

Sediment samples will be collected from on-site locations to evaluate the environmental quality of accumulated sediments, if present, within the sewer manholes. Off-site locations will be sampled to evaluate the environmental quality of sediments within the off-site sewer manholes along the 12" diameter municipal sewer pump station overflow discharge pipe; at the off-site sewer pump station overflow outfall pipe; along the eastern bank of the Hoosick River, topographically downgradient of the site; from the river bottom sediment upriver, mid-river and downriver of the site; and in low-lying wet areas to the southeast of the site. Water samples, if present, will also be collected from within the off-site sewer manholes/catch basins (SED-4 & SED-5) in addition to the sediment samples.

The on-site sediment samples will be analyzed in the laboratory for TCL/TAL, CN, PFCs (Modified) and TOC. The off-site sediment samples (and water samples, if present) will be analyzed in the laboratory for PFCs (Modified) and TOC.

3.1.6 Surface Water Sampling

Surface water samples will be collected at off-site locations to evaluate the environmental quality of surface water from the Hoosic River upriver and downriver of the Site, and from low-lying wet areas to the southeast of the Site

The surface water samples will be analyzed in the laboratory for TCL/TAL parameters, CN, PFCs and major cations (Ca, Mg, Na and K) and anions (Cl, SO₄, CO₃ and HCO₃).

3.1.7 Groundwater Sampling

Each of the overburden test borings will be converted to two-inch diameter monitoring wells with protective enclosures to allow the periodic collection of groundwater samples for laboratory analysis. Groundwater samples will also be collected from the newly installed bedrock monitoring wells and existing monitoring wells installed during the previous site investigation. The new wells will be developed and purged prior to sampling. The existing wells will only be purged as they were developed during the previous investigation. The groundwater samples will be analyzed for the TCL/TAL parameters, CN, PFCs and major cations (Ca, Mg, Na and K) and anions (Cl, SO₄, CO₃ and HCO₃).

3.1.8 Soil Gas and Indoor Air Quality Sampling

As part of the NYS Department of Health (NYSDOH) vapor intrusion assessment, five (5) samples will be collected from the sub-slab soil gas beneath the five (5) discrete building sections along with corresponding indoor air samples. The samples will be analyzed for the TO-15 list of VOCs.

3.2 Observation of Drilling Operations, Monitoring Well Installations and Geophysical Survey

All drilling, monitoring well installation, geophysical survey and other associated field work involved in the RI to be performed by C.T. Male Associates subcontractors will be observed by full-time, on-site, C.T. Male Associates' representatives. The representatives will be responsible for the collection of soil samples, soil classification, field screening of soil samples, recording of drilling and sampling data, recording of groundwater data, deciding on the final drilling depths and monitoring well screened intervals (with input from the project manager), recording the monitoring well construction procedures, monitoring the decontamination procedures, and overall supervision of the geophysical survey subcontractor. The C.T. Male Associates representatives will also develop and purge the monitoring wells and conduct groundwater sampling.

Field system audits will be conducted and field reports will be prepared that document the daily activities and their conformance to the work plan (described further in the QAPP). A copy of the forms to be utilized by the applicable field team personnel as part of the field quality assurance/quality control (QA/QC) procedures are presented in Attachment A of this FSP.

The project manager will be kept informed of the progress of work and any problems encountered during the RI so appropriate corrective action can be implemented, and Saint-Gobain and NYSDEC can be notified.

3.3 Drilling and Sampling of Overburden for Installation of Monitoring Wells

The test boreholes will be advanced through the overburden and bedrock employing sonic drilling techniques with the exception of the test borehole that will be advanced

within the Site building. Direct-push (Geoprobe) drilling techniques will be employed at this location.

Sonic Drilling

A 5' long by 4"-6" diameter core sampler will be continuously advanced to the terminus depth of each overburden test boring. At each five (5) foot interval, the core sampler will be extracted from the overburden and the soils within the core sampler will be examined for soil classification, screening and sampling. Prior to retrieving the core sampler, steel overcasing having a diameter of 6"-8" will be advanced around the core sampler to maintain the integrity of the borehole. The overcasing will be advanced to the terminus depths of the overburden test borings and will be removed upon installation of the monitoring wells. In the event that an upper and lower hydrostratigraphic unit is encountered requiring installation of shallow and deep monitoring well couplets, overcasing will remain in the ground at a strategic depth interval to preclude the mixing of the upper and lower hydro-stratigraphic units. 2" PVC monitoring wells will be installed at each of the overburden test boring locations.

For the bedrock borings, 6"casing will be advanced from the ground surface to approximately 5' into bedrock and set in place. Grout will be placed between the exterior of the casing and the borehole wall. Thereafter, the bedrock will be core drilled an additional depth of approximately 20'-25'. The open core hole within the bedrock will serve as the bedrock monitoring well.

Direct-Push Drilling

Direct-push drilling techniques will be employed for the overburden test borehole within the site building due to space constraints. Prior to drilling, a 10"-12" diameter core drill will be used to penetrate and remove the building's concrete flooring. A 5' long by 2" diameter macro-core sampler with new acetate liner will be continuously advanced to the terminus depth of the test boring. At each five (5) foot depth interval, the core sampler will be extracted from the overburden and the soils within the acetate liner will be examined for soil classification, screening and soil sampling.

All soils will be visually classified in the field using the Unified Soil Classification System in general accordance with ASTM D-2488, Standard Practice for Description and Identification of Soils. The soil description may include matrix and clast descriptions, moisture content, color, appearance, odor, behavior of the material and other pertinent observations. This information will be recorded on a subsurface exploration log form along with the boring identification and elevation, date started and completed, sampling intervals, standard penetration values, length of recovered sample and depth of first groundwater encountered. During the drilling, a photoionization detector (PID) meter will be used to monitor the volatile organic vapors exiting the borehole and soil cuttings, and of all recovered subsurface samples. These visual observations and field measurements will be recorded on the Subsurface Exploration Log. A blank copy of a Subsurface Exploration Log form is enclosed in Attachment A.

In the event a borehole is not converted into a monitoring well, it will be abandoned by tremie grouting it from the bottom depth of the boring to grade with a cement/bentonite grout mixture (approximately 20 to 1 ratio). Soil cuttings will be transferred to labeled DOT 17H approved 55-gallon open top steel drums and staged on site. The contents of the drums will be subsequently characterized and profiled for off-site disposal.

3.4 Vapor Intrusion Sampling

Vapor intrusion sampling will include the collection of sub-slab soil gas samples and indoor air quality samples.

Installation of the sub-slab soil vapor probes will consist of utilizing mechanical

methods (i.e., hammer drill) to penetrate through the concrete flooring. The vapor probes will not be installed in the vicinity of any breaches (cracks, seams, expansion joints, etc.) in the concrete flooring. Once the concrete floor has been penetrated, a stainless steel sampling point and attached inert tubing will be installed to a depth of approximately two (2) inches beneath the bottom of the slab. The slab penetration will then be sealed with hydrated bentonite.

Prior to VI air monitoring, an assessment of the physical features of the interior of the building will be performed. An inventory will be made of sumps; chemical products; HVAC systems; floor, wall and ceiling staining; pipe and utility penetrations; storage tanks, etc. that could be a vapor source or migration pathway. Relevant features will be identified in a field sketch and the NYSDOH provided Indoor Air Quality Questionnaire and Building Inventory template will be completed. A subjective vapor assessment will also be conducted of the building employing a photoionization detector (PID) having the capability of measuring organic vapors in the parts per billion (ppb) range. If organic vapors are measured above background, an attempt will be made to identify the source of the elevated organic vapors and remove it from the premises during the testing period.

Prior to sampling, one to three air volumes will be purged from each sampling point and tubing. The sub-slab vapor samples will be collected in a laboratory-certified clean 6-liter Summa canister with pre-set air flow regulator. The requisite volume of soil gas will be collected and the sample forwarded to the laboratory of record for analysis for VOCs by EPA Method TO-15. As a check to ensure that ambient air has not entered the sampling stream, a tracer gas (i.e., helium) will be applied into a ground surface mounted structure overlying the exit point of the sample tubing. The tracer gas will be applied prior to sample collection and at the completion of sampling. The tracer gas will be measured employing a portable field measuring instrument. The soil vapor sampling stream will be considered acceptable if the tracer gas concentration is measured at less than 10 percent. If the tracer gas is measured at concentrations exceeding 10 percent, additional measures will be undertaken to seal the soil vapor sampling apparatus until tracer gas concentrations are less than 10 percent. Upon completion of sampling, the vapor probe will be removed and the floor restored with hydraulic cement.

The indoor air quality sampling canisters will be placed at strategic locations where

employees congregate, approximately three feet above the floor surface. The building does not contain a basement. The indoor air quality samples will be collected in laboratory-certified clean 6-liter Summa canisters with pre-set air flow regulators. The requisite volume of soil gas will be collected and the samples forwarded to the laboratory for analysis for VOCs by EPA Method TO-15.

The outdoor (ambient) air quality sampling location will be determined in the field at the time of sampling and will be selected upwind in an area not subject to wind obstructions and away from features and activities that may emit vapors. A field sketch will be developed depicting the sub-slab vapor, indoor air quality and outdoor air quality sampling locations along with site features having the potential to emit vapors.

3.5 Media Sampling and Soil Field Screening Procedures

Media samples anticipated to be collected during the RI include surface soil samples (0-2" bgs), shallow soil samples (6"-12" and 12"-18" bgs), subsurface soil samples (5'-7' and 10'-12' bgs), sediment samples, surface water samples, groundwater samples, rooftop wipe samples, soil gas samples, and indoor air samples.

3.5.1 Surface, Shallow and Subsurface (2"-12" bgs) Soil Sampling

The soil sampling procedures that will be followed for surface and shallow soil samples include the following:

- 1. Place and secure a new 5' by 5' sheet of plastic sheeting over the sampling location and remove a 6" by 6" opening in the center of the sheeting.
- 2. Remove vegetation and/or humus, where present, down to ground surface. If the sampling location is within asphalt pavement, the pavement will be removed using a pre-cleaned thin wall core barrel and electric vertical drill stand. In this instance, the collection of the soil samples will be initiated at the ground surface at the bottom depth of the asphalt and granular sub-base, if present. If the sampling location is within gravel sub-base, the gravel will be removed and the collection of the soil samples will be initiated at the ground surface at the bottom depth of the asphalt.
- 3. A cleaned (per Section 3.7) 3-inch diameter stainless steel hand auger and/or

hand spade will be used by the on-site sampling personnel for collection of the soil samples. New disposable nitrile gloves will be worn when handling the sampling equipment.

- 4. For VOCs analysis, immediately upon exposing the recovered sample, a portion of the soil sample for VOC analysis will be collected with a new Terra Core sampler and put directly into laboratory provided glass 40-ml vials and the vials sealed. The samples for VOC analysis are required to be frozen within 48 hours, which will be identified on the chain of custody record to be performed by the laboratory receiving the samples. For non-VOCs analysis, the soil sample will be transferred to a pre-cleaned stainless steel bowl and homogenized with a precleaned stainless steel spoon wearing new nitrile gloves. An aliquot of the sample will then be transferred to laboratory provided sample containers. The PFC sample will be collected first, followed by the samples for SVOCs, PCBs, Pesticides, TOC, moisture content, metals and CN. The remaining portion of the sample will be placed in a new plastic zip lock bag, not more than one-half full, and sealed. This bag sample will be for head space analysis screening in the field for volatile organic compounds (VOCs) using a PID meter, and subsequent grain size analysis.
- 5. For samples to be collected for laboratory analysis, the sample container label will be completed with the soil sample location, sample interval, sampler's initials, date, and time. The client, project name, Site location, matrix, sample type (grab/composite) and laboratory analyses to be performed will also be recorded on the sample label.
- 6. Backfill each sampling location in vegetated areas with topsoil purchased at a national home improvement store and compact. Backfill each sampling location in paved areas with crusher run and compact, and restore the surface with sub base and asphalt having the same thickness and placement as surrounding sub base and asphalt. Backfill each sampling location in gravel sub-base locations with gravel sub-base.
- 7. The soil sample will be classified per Section 3.3 and a Subsurface Exploration Log will be completed.

8. The sampling equipment will be decontaminated between each sampling location and sampling depth interval per Section 3.7.

3.5.2 Subsurface Soil Samples

The subsurface soil sampling procedures that will be followed during advancement of test borings to be converted to monitoring wells includes the following:

- 1. A pre-cleaned (per Section 3.7) core sampler barrel will be used for each sampling interval. New disposable nitrile gloves will be worn when handling the core sampler.
- 2. A soil sample will be collected by advancing the core sampler employing sonic and/or direct push drilling techniques the desired 5-foot sampling interval.
- 3. For samples to be collected for laboratory analysis, the sample container label will be completed with the sample location (boring nomenclature), sample interval, sampler's initials, date, and time. The client, project name, Site location, matrix, sample type (grab/composite) and laboratory analyses to be performed will also be recorded on the sample label.
- 4. The recovered soil sample from the sonic drilling core sampler will be transferred from the core sampler into a clean plastic bag. The plastic bag will be placed on clean poly and the plastic bag will be opened to expose the sample. The recovered soil sample from the direct push drilling core sampler will be contained in a new acetate liner. The acetate will be placed on clean poly and the acetate liner opened to expose the sample.
- 5. For VOCs analysis, immediately upon exposing the recovered sample, a portion of the soil sample for VOC analysis will be collected with a new Terra Core sampler and put directly into laboratory provided glass 40-ml vials and the vials sealed. The samples for VOC analysis are required to be frozen within 48 hours, which will be identified on the chain of custody record to be performed by the laboratory receiving the samples. For non-VOCs analysis, the soil sample will be transferred to a pre-cleaned stainless steel bowl and homogenized with a pre-cleaned stainless steel spoon wearing new nitrile gloves. An aliquot of the sample will then be transferred to laboratory provided sample containers. The PFC sample will be

collected first, followed by the samples for SVOCs, PCBs, pesticides, TOC, moisture content, metals and CN. The remaining portion of the sample will be placed in a new plastic zip lock bag, not more than one-half full, and sealed. This bag sample will be for head space analysis screening in the field for volatile organic compounds (VOCs) using a PID meter, and subsequent grain size analysis.

- 6. The soil samples will be classified and the Subsurface Exploration Log completed as described in Section 3.3
- 7. The sampling equipment will be decontaminated per Section 3.7.

All of the soil samples, where sufficient sample is recovered to generate a headspace sample, will be screened in the field with a PID meter on a daily basis. The sample will be allowed to equilibrate to ambient temperature; the plastic bag will be shaken and the bag will be pierced with the tip of the PID meter; and the reading taken. The readings will be recorded on an Organic Vapor Headspace Analysis Log form. A blank copy is included in Attachment A. The PID meter calibration procedures are discussed in Section 7.0.

3.5.3 Sediment Sampling

The specific sediment sampling procedures that will be followed include the following:

- 1. A pre-cleaned hand spade and/or a scoop will be used to collect the sample.
- 2. For samples to be collected for laboratory analysis, the sample container label will be completed with the sample location, sample interval, sampler's initials, date, and time. The client, project name, Site location, matrix, sample type (grab/composite) and laboratory analyses to be performed will also be recorded on the sample label.
- 3. The recovered sediment sample will be placed on clean polyethylene sheeting.
- 4. For VOCs analysis, immediately upon exposing the recovered sample, a portion of the sediment sample for VOC analysis will be collected with a new Terra Core sampler and put directly into laboratory provided glass 40-ml vials and the vials sealed. The samples for VOC analysis are required to be frozen within 48 hours, which will be identified on the chain of custody record to be performed by the laboratory receiving the samples. For non-VOCs analysis, the sediment sample will

be transferred to a pre-cleaned stainless steel bowl and homogenized with a precleaned stainless steel spoon wearing new nitrile gloves. An aliquot of the sample will then be transferred to laboratory provided sample containers. The PFC sample will be collected first, followed by the samples for SVOCs, PCBs, pesticides, TOC, moisture content, metals and CN. The remaining portion of the sample will be placed in a new plastic zip lock bag, not more than one-half full, and sealed. This bag sample will be for head space analysis screening in the field for volatile organic compounds (VOCs) using a PID meter, and subsequent grain size analysis. The sediment samples will be visually classified per Section 3.3 and recorded on a Subsurface Exploration Log.

5. The sampling equipment will be decontaminated per Section 3.7.

All of the sediment samples, where sufficient sample is recovered to generate a headspace sample, will be screened in the field with a PID meter on a daily basis. The sample will be allowed to equilibrate to ambient temperature; the plastic bag will be shaken and the bag will be pierced with the tip of the PID meter; and the reading taken. The readings will be recorded on an Organic Vapor Headspace Analysis Log form. A blank copy is included in Attachment A. The PID meter calibration procedures are discussed in Section 7.0.

3.5.4 Surface Water Sampling

The specific sampling procedures that will be followed for collection of surface water samples include the following. This procedure also applies to any water samples collected in tandem with sediment samples from the off-site sewer manholes/catch basins identified as SED-4 & SED-5 (see Section 3.1.5).

- 1. Each surface water sample will be collected using a new disposable bailer or the samples collected directly in the laboratory provided containers. A new pair of disposable nitrile gloves will be used to handle the sampling equipment and containers at each sampling location.
- 2. The disposable bailer will be lowered slowly into the water column to minimize the aeration of the samples. If samples are collected directly into the sample containers, care will be employed to prevent fixative from being spilled and/or rinsed from the container.

3. In order to insure the integrity of samples, sample containers must be filled properly. The following sections contain general procedures for sampling and specific procedures for sampling for VOCs and PFCs. Care shall be taken in sampling to assure that analytical results represent the actual sample composition.

General Sampling

- 1. Don't remove caps until the actual sampling time and only long enough to fill the container.
- 2. Identify every container by filling out the label with all the required data.
- 3. Fill all containers as recommended by the laboratory.
- 4. Some bottles may contain a fixative which should <u>not</u> be rinsed out of the bottle. Read the sample label treatment and fixative section to determine if a preservative/fixative has been added. Be careful not to contact fixatives with skin or clothing. If this should occur, rinse liberally with water.
- 5. Complete the Surface Water Sampling Log and Chain of Custody Record forms.

Collection of Field Parameters

Surface water geochemical field parameters including temperature, conductivity, pH, oxidation-reduction potential (ORP), and dissolved oxygen (DO) will be monitored and recorded to provide geochemical data. The geochemical field parameters will be collected with a calibrated electronic field parameter meter. The field parameter meter will be calibrated at the start of each day and will have documented calibration checks at the middle and end of each day. All calibration records and checks will be documented on field notes or on sampling records by recording the value of the calibration solution, what the instrument was reading prior to calibration, and a checkmark if re-calibration was needed. Fresh calibration solution will be used each day that samples are collected, but may be re-used throughout the day.

Sampling for Volatile Organic Compounds

1. Samples are to be collected in glass containers having a total volume in excess of 40 ml with open-top screw caps with Teflon-faced silicone septa. Sample containers will have hydrochloric acid (HCL) added to them as a preservative. This preservative must not be rinsed out.

- 2. A trip blank should be prepared from reagent grade water and carried through the sampling and handling procedure. It will serve as a check for transport and container contamination.
- 3. Fill sample container slowly to minimize aeration of the sample, until a curved meniscus is observed over the bottle rim.
- 4. Float the septa, Teflon[™] side down on the liquid meniscus. The Teflon[™] side is the thin layer observed when viewing the septum from the side horizontally.
- 5. Carefully set on septum, expelling excess sample and being careful to exclude air. Then screw open-top cap down.
- 6. Check for a good seal by inverting bottle and tapping and checking for visible air bubbles.
- 7. If air bubbles are visible or there is a bad seal, remove cap and add additional sample and repeat steps 4 to 6.
- 8. Groundwater samples for volatile analysis will be taken in triplicate.

Sampling for PFCs

- 1. To prevent cross-contamination or sample interference, possible PFOA containing items will be avoided during the sampling. These items include (but are not limited to) Teflon-containing materials, Tyvek clothing, clothes treated with stain or rain-resistant coatings, Teflon sample containers, aluminum foil, blue ice, packaged foods, and post-its.
- 2. Samples are to be collected in laboratory provided 250 ml HDPE plastic bottles with screw-on HDPE plastic caps. **Do not collect samples in glass containers.** Sample containers will have TRIZMA Preset Crystals (pH 7.0) added to them as a preservative. This preservative must <u>not</u> be rinsed out.
- 3. New, powder-free nitrile gloves must be donned prior to sample collection.

- 4. Fill laboratory provided containers slowly to avoid matrix agitation. Fill containers to the bottom of the sample container bottle neck. Immediately close sample container with screw-on cap.
- 5. Lightly agitate the sample to dissolve the preservative crystals.
- 6. Place sample containers on ice in cooler to maintain sample temperature of $\leq 6^{\circ}$ C.

3.5.5 Soil Gas Sampling

Soil gas samples will be collected from beneath the building's concrete flooring/slab. The specific sampling procedures that will be followed for collection of soil gas samples include the following:

- 1. Mechanical methods (i.e., hammer drill) will be used to penetrate through the concrete flooring.
- 2. Once the concrete floor has been penetrated, install a new stainless steel sampling point and attached new, inert tubing at each sampling location. New nitrile gloves will be worn at each sampling location when handling the sampling points and tubing
- 3. Seal the floor penetration around the tubing with hydrated bentonite to create an airtight seal.
- 4. Attach the inert tubing to the Summa canister wearing new nitrile gloves.
- 5. Open sampling port to allow inflow of air into the canister. New nitrile gloves will be worn when opening the sampling port.
- 6. When sampling is complete, close sampling port wearing new nitrile gloves.

3.5.6 Indoor Air and Outdoor Ambient Air Sampling

Indoor air samples will be collected from areas within the building where employees congregate. The outdoor ambient air sample will be collected at an upwind location. The specific sampling procedures that will be followed for collection of air samples include the following:

- 1. Set Summa canisters at strategic locations approximately three (3) feet above the floor and/or ground surface.
- 2. Open sampling port to allow inflow of air into the canister. New nitrile gloves will be worn when opening the sampling port.
- 3. When sampling is complete, close sampling port wearing new nitrile gloves.

3.6 Monitoring Well Installation

Monitoring well materials will be installed in the overburden test boreholes completed using rotosonic drilling methods and the one (1) test borehole completed within the building using Geoprobe direct push methods. Monitoring well materials will not be installed in the boreholes completed in bedrock. Rather, groundwater samples will be collected from the bedrock boreholes of groundwater derived from surrounding bedrock fractures and/or joints.

For boreholes completed using rotosonic drilling techniques, the monitoring wells will be installed within the overcasing. Once the overcasing is advanced to the desired depth, 2-inch diameter monitoring wells with slotted screens will be installed in accordance with standard practices. For boreholes completed using direct push drilling techniques, the monitoring wells will be installed within the open borehole. Once the borehole is advanced to the desired depth, 1-inch diameter monitoring wells with slotted screens will be installed in accordance with standard practices. Typical monitoring well construction details are shown in Attachment A. All wells will be constructed of flush-threaded joint, Schedule 40 PVC riser pipe, machine slotted screen, bottom plug, and cap. The screens will be 0.010-inch slotted and generally ten feet in length.

Each well will be assembled as it is lowered into the borehole. The annulus around the well screen will be packed with clean #0 silica sand to a maximum of two feet above the screen. Additionally, a one-half foot choke of fine-grained #00 sand will be placed on top of the sand pack to preclude the migration of the seal material into the sand pack. A minimum two-foot bentonite seal will be installed in the annulus. The seal will consist of bentonite pellets/chips or slurry. The remainder of the annulus will be filled with cement/bentonite grout (ratio of 20 to 1). A steel monitoring well guard pipe or curb box will be set over each well head and cemented in place. A positive grade will be constructed of cement around the well to divert surface water away from the well. A permanent mark will be made at the top of the PVC riser to serve as a datum for all subsequent static water level measurements. Upon completion, a locking gripper well cap will be installed and locked. Monitoring well depths, and screen lengths and depths will be calculated by the environmental scientist/geologist by maintaining accurate measurements of screen and casing placed in the borehole. Monitoring Well

Construction Log forms (Attachment A) for the monitoring wells will be completed that documents the well materials and depths.

3.7 Monitoring Well Development

Once installed, each monitoring well will be developed by over pumping in order to remove any accumulated fine sediment within the well and to establish a hydraulic connection with the surrounding aquifer. Monitoring wells will be developed by surging and purging until water is clear, when field measured turbidity values are below 5 NTU's and/or the turbidity values have stabilized, or when ten well volumes are removed. During well development, pH, temperature, dissolved oxygen (DO) and specific conductance will be measured and recorded. Purge water will be containerized in DOT approved 55-gallon drums, labeled and stored in a secure location at the Site until laboratory analyses results of the soil and groundwater samples indicates the proper method of treatment or disposal.

Well development will be completed using new, clean tubing and nitrile gloves will be changed between wells, to prevent cross-contamination. Sampling equipment, such as the water level probe, will be decontaminated between wells.

3.8 Decontamination of Drilling and Sampling/Gauging Equipment

Drilling equipment including casing, rods, plugs, samplers, tools, drill unit and any piece of equipment that can come in contact with the formation will be cleaned with a high temperature/high pressure steam cleaner prior to the start of work and between each boring to prevent cross-contamination between borings. The equipment will also be cleaned using the same procedure at completion of the work (before leaving the Site) to prevent contamination from leaving the Site.

The sampling equipment (core samplers, stainless steel scoops, hand spades, hand augers, water level meter, etc.) will be cleaned prior to use, in between each sampling location, in between each sampling interval, and at completion of the work using the following procedure:

- 1. Remove any excess soil/sediment remaining on the sampling/gauging equipment.
- 2. Rinse sampling/gauging equipment with imported water.

- 3. Vigorously scrub the sampling/gauging equipment with a brush and laboratorygrade standard detergent (e.g., Alconox[®] or Liquinox[®]) and imported water.
- 4. Rinse the sampling/gauging equipment with bottled deionized water.
- 5. New disposable nitrile gloves will be worn when cleaning and handling the equipment to avoid contamination.
- 6. The water in the wash and rinse buckets will be changed between sampling locations to avoid cross contamination.

The decontamination rinse water will be collected and placed in DOT approved 55gallon drums, labeled and stored at the project Site until laboratory analyses results of the soil, sediment and groundwater samples indicates the proper method of treatment or disposal. Disposable protective clothing will be placed in a garbage bag and disposed of as a solid waste. The personnel decontamination procedures are detailed in the Site Specific Health and Safety Plan.

4.0 GROUNDWATER SAMPLING PROCEDURES

4.1 General

During groundwater sampling, it is important to follow strict acceptable protocol during the collection and transportation of groundwater samples. This minimizes the potential for sample variation from well to well due to sampling and transportation techniques. Quality control measures will be instituted as discussed in this document and the QAPP as a check on the procedures being utilized so that the quality of the data can be assessed. The groundwater samples will be analyzed in the laboratory by standard methods following the QA/QC procedures outlined in the QAPP.

Prior to sampling, the water level in the well will be measured, and the well will be purged and allowed to recover to near static conditions. Groundwater samples will be taken employing low flow sampling techniques for field and laboratory analyses. The field parameters to be determined are pH, temperature, turbidity, specific conductance, dissolved oxygen (DO) and oxidation-reduction potential (ORP). All pertinent groundwater sampling information will be recorded on a Groundwater Services Field Log. A separate log will be completed for each monitoring well sampled. Logs will be dated and signed by the person making the entries and will be submitted to the project manager for inclusion in the project files. The following information will be included on the log forms:

- 1. Project name and location.
- 2. Date and times.
- 3. Monitoring well identification number.
- 4. Sampling method (i.e. low-flow sampling with peristaltic pump).
- 5. Well development data.
- 6. Physical characteristics of samples.
- 7. Field analyses results.
- 8. Name of sampler(s).
- 9. Recovery times of wells.

10. Other observations/information.

An Environmental Services Field Log will also be completed for the groundwater sampling event. Blank copies of the referenced forms are included in Attachment A.

4.2 **Preparation for Sampling**

Prior to groundwater sampling, the equipment and containers needed for sampling will be collected and prepared. A peristaltic pump with new disposable tubing will be utilized to facilitate the groundwater sampling. New disposable nitrile gloves will be worn during equipment cleaning and decontamination and handling of the media being sampled. Only new pre-cleaned laboratory provided sample containers and caps will be used for sample collection/analyses. All sample containers required to be fixed with a preservative, will be prepared by the laboratory before each sampling event. The container type, cap type and preservative requirements for the analytical parameters (water) to be analyzed are summarized in Table 1.

 TABLE 1

 Analytical Requirements for Containers and Preservatives for Water Samples and

 Equipment Blank Samples

PARAMETER	CONTAINER	ТОР	PRESERVATION	COMMENTS
PFCs per EPA 537 (Water)	3-250 ml HDPE Plastic	HDPE Plastic	TRIZMA Preset Crystals (pH 7.0) Cool, ≤6° C	After the sample container is filled and sealed, gently agitate to dissolve the preservative.
TCL VOCs per EPA 8260C (Water)	3-40 ml vials (preserved)	Septum	HCl to pH<2 Cool, 4°C	NA
TCL SVOCs per EPA 8270D, TCL PCBs per EPA 8082A and TCL Pesticides per EPA 8081B (Water)	3-1L amber Glass	Teflon	0.008% Na ₂ S ₂ O ₃ Cool, 4°C	Store in dark.
TAL Metals (Including Major Cations and Mercury) per EPA 6010C and 7470A (Water)	500 ml Plastic	Poly	HNO₃ to pH <2 Cool, 4°C	NA

PARAMETER	CONTAINER	ТОР	PRESERVATION	COMMENTS
Cyanide per EPA 9010B (Water)	250 ml Plastic	Poly	NaOH to pH≥12 Cool, 4°C	NA
Anions (Chloride, Sulfate) per EPA 9056	120 ml Plastic	Poly	Cool, 2°C- 4°C	NA
Anions (Carbonate, bicarbonate) per EPA 2320B	120 ml Plastic	Poly	Cool, 4°C	No Headspace

Sample labels will be prepared prior to sampling and affixed to the sample containers. The client, project name, Site location, matrix, sample type (grab/composite), preservative and laboratory analyses to be performed will be recorded on the sample labels by the laboratory. The sample location (i.e., monitoring well ID), date, sampler's initials and time will be filled out on the sample label at the time of sampling.

Upon arrival at the sampling location, the well will be observed for any damage, the cover of the guard pipe or curb box will be cleared of any debris and unlocked or unbolted. Clean polyethylene sheeting will be placed adjacent to the well to protect purging and sampling equipment from contamination. The cap and top of the well casing will be wiped with a clean cloth and then the cap removed. A PID meter reading will be collected when the well cap is removed. The water level in the well will then be measured.

4.3 Measuring the Water Level

Prior to purging and sampling, static water heights will be measured using a water level indicator to determine the standing water column height. A full set of water levels will be collected from the existing wells, and the new wells prior to initiating the purging/water sampling. The water column height and depth of the well are used to calculate the well water volume. Non-vented well caps will be removed for a period of ten minutes to allow the water column to reach static conditions prior to taking the water level measurements.

4.4 Well Purging Procedures

Prior to sampling of the groundwater, it is necessary to purge the wells. Purging of the wells allows for a representative sample to be taken from the screened interval of the well by removing stagnant water from the well.

Three to five well volumes of the standing water will be removed from the well. The volume of standing water in the well is calculated by subtracting the water level height from the well depth measurement, and multiplying this value by a conversion factor. The conversion factor is based on the well casing diameter and converts linear feet of water into gallons. In cases where the water recharges at a slow rate, the well will be purged dry when possible.

Low flow peristaltic pump with new, factory sealed tubing will be used to purge each well. Physical observations of the purge water will be noted and recorded on the Groundwater Services Field Log form. The actual quantity of purge water removed from the well will be measured by using a bucket graduated in gallons, and the volume will be recorded. Once purging is complete, the peristaltic pump tubing will be removed from the well and placed on the clean polyethylene sheeting adjacent to the well, until completion of the groundwater sampling.

All of the purge water from the monitoring wells will be placed in DOT approved 55gallon drums, labeled and stored at the project Site until laboratory analyses results of the soil, sediment and groundwater samples indicates the proper method of treatment or disposal.

4.5 Sample Collection

Prior to sample collection, the wells will be allowed to recover to at least 80% of their initial static water level. Slow recharging wells will be allowed to recover for a period of four hours before sampling. Recovery times and water depths will be recorded on the Groundwater Services Field Log form.

The sample will be collected using a peristaltic pump with new tubing at each monitoring well location. A new pair of disposable nitrile gloves will be used to handle the sampling equipment and containers at each sampling location. Only non-powdered nitrile sampling gloves will be used during sampling.

The disposable tubing will be lowered slowly into the well to minimize the aeration of the samples. Volatile samples will be collected first, followed by field parameters and then in decreasing order of the volatility of the parameters being analyzed for; PFCs, SVOCs, PCBs, Pesticides, metals (including cations), anions and cyanide.

In order to insure the integrity of samples, sample containers must be filled properly. The following sections contain general procedures for sampling and specific procedures for sampling volatile organic compounds and PFCs. Care shall be taken in sampling to assure that analytical results represent the actual sample composition.

General Sampling

- 1. Don't remove caps until the actual sampling time and only long enough to fill the container.
- 2. Identify every container by filling out the label with all the required data.
- 3. Fill all containers completely.
- 4. Some bottles may contain a fixative which should <u>not</u> be rinsed out of the bottle. Read the sample label treatment and fixative section to determine if a preservative/fixative has been added. Be careful not to contact fixatives with skin or clothing. If this should occur, rinse liberally with water.
- 5. After the sample is taken, wipe the container with a paper towel and place the container in a cooler with bagged wet ice, to maintain the cooler at 4°C.
- 6. Complete the Groundwater Services Field Log and Chain of Custody Record forms.
- 7. Deliver or ship samples to the laboratory within 24 hours.

Collection of Field Parameters

Groundwater geochemical field parameters including temperature, conductivity, pH, oxidation-reduction potential (ORP), and dissolved oxygen (DO) will be monitored and recorded to provide general geochemical data and evaluate groundwater stabilization criteria prior to sample collection. The geochemical field parameters will be collected with a calibrated electronic field parameter meter. The field parameter meter will be calibrated at the start of each day and will have documented calibration checks at the middle and end of each day. All calibration records and checks will be documented on field notes or on sampling records by recording the value of the calibration solution,

what the instrument was reading prior to calibration, and a checkmark if re-calibration was needed. Fresh calibration solution will be used each day that samples are collected, but may be re-used throughout the day.

Sampling for Volatile Organic Compounds

- 1. Samples are to be collected in glass containers having a total volume in excess of 40 ml with open-top screw caps with Teflon-faced silicone septa. Sample containers will have hydrochloric acid (HCL) added to them as a preservative. This preservative must <u>not</u> be rinsed out.
- 2. A trip blank should be prepared from reagent grade water and carried through the sampling and handling procedure. It will serve as a check for transport and container contamination.
- 3. Fill sample container slowly to minimize aeration of the sample, until a curved meniscus is observed over the bottle rim.
- 4. Float the septa, Teflon[™] side down on the liquid meniscus. The Teflon[™] side is the thin layer observed when viewing the septum from the side horizontally.
- 5. Carefully set on septum, expelling excess sample and being careful to exclude air. Then screw open-top cap down.
- 6. Check for a good seal by inverting bottle and tapping and checking for visible air bubbles.
- 7. If air bubbles are visible or there is a bad seal, remove cap and add additional sample and repeat steps 4 to 6.
- 8. Groundwater samples for volatile analysis will be taken in triplicate.

Sampling for PFCs

 To prevent cross-contamination or sample interference, possible PFOA containing items will be avoided during the sampling. These items include (but are not limited to) Teflon-containing materials, Tyvek clothing, clothes treated with stain or rainresistant coatings, Teflon sample containers, aluminum foil, blue ice, packaged foods, and post-its.

- 2. Samples are to be collected in laboratory provided 250 ml HDPE plastic bottles with screw-on HDPE plastic caps. **Do not collect samples in glass containers.** Sample containers will have TRIZMA Preset Crystals (pH 7.0) added to them as a preservative. This preservative must <u>not</u> be rinsed out.
- 3. New, powder-free nitrile gloves must be donned prior to sample collection.
- 4. Fill laboratory provided containers slowly to avoid matrix agitation. Fill containers to the bottom of the sampling container bottle neck. Immediately close sampling container with screw-on cap.
- 5. Lightly agitate the sample to dissolve the preservative crystals.
- 6. Place sampling container in cooler with bagged wet ice to maintain sample temperature of ≤6°C.

At completion of the sampling the well cap will be replaced; and the cover to the protective guard pipe or curb box will be secured in place. The tubing, gloves, and sheeting will be properly disposed of as solid waste.

4.6 Field Analyses

The field analyses of surface water and groundwater include pH, temperature, specific conductivity, turbidity, DO and ORP. The field analyses will be measured in the field since these constituents change during storage. A minimum 40 ml sample will be collected and placed in clean unpreserved polyethylene or glass containers for analysis. The containers will be covered if the measurements are not recorded immediately.

The pH, temperature, ORP, DO and conductivity of a sample are measured with a portable unit capable of measuring all five (5) parameters concurrently. The portable unit automatically adjusts to compensate for the temperature of the sample. The turbidity of a sample is measured with a separate portable unit. The pH, temperature, conductivity, turbidity, DO and ORP will be recorded on the Groundwater Services Field Log. The field parameter meters will be calibrated at the start of each day and will

have documented calibration checks at the middle and end of each day. All calibration records and checks will be documented on field notes or on sampling records by recording the value of the calibration solution, what the instrument was reading prior to calibration, and a checkmark if re-calibration was needed. Fresh calibration solution will be used each day that samples are collected, but may be re-used throughout the day.

5.0 SOIL, SEDIMENT AND VAPOR INTRUSION SAMPLING PROCEDURES

5.1 Soil and Sediment Sampling Procedures

5.1.1 Headspace Analysis

The soil and sediment samples will be screened for the presence of petroleum/chemical related hydrocarbons by headspace analysis utilizing a PID meter to subjectively assess the recovered samples for evidence of petroleum/chemical contamination. The sample is transferred into a zip lock bag, sealed, shaken and then allowed to sit for several minutes. Once the sample has had a chance to sit or "volatilize," the vapor space inside the bag will be analyzed by inserting the tip of the PID meter through the bag, as described in Section 3.4.

5.1.2 Analytical Soil and Sediment Sampling

The soil and sediment samples will be subjected to laboratory analysis to assist in characterizing the Site's environmental quality. The samples will be extracted from the sampling equipment in a timely fashion such that the sample has limited exposure to the outside air reducing the chance for volatilization. Only new pre-cleaned laboratory provided sample containers and caps will be used for sample collection/analyses. All sample containers required to be fixed with a preservative, will be prepared by the laboratory before each sampling event. The container type, cap type and preservative requirements for the analytical parameters (soil and sediment) to be analyzed are summarized in Table 2.

PARAMETER	CONTAINER	ТОР	PRESERVATION	COMMENTS
PFCs	250 ml HDPE Plastic	HDPE Plastic	Cool, ≤6ºC	NA
TCL VOCs	Terra Core Kit with Three (3), 40 mL Glass Vials	Septum	Two (2) Vials with Water – HCl to pH<2, One (1) Vial with Methanol, Cool 4°C, Freeze Within 48 Hours.	NA
TCL SVOCs, PCBs and Pesticides	8 oz Glass	Teflon	Cool 4°C	NA

 TABLE 2

 Analytical Requirements for Containers and Preservatives for Soil and Sediment Samples

PARAMETER	CONTAINER	ТОР	PRESERVATION	COMMENTS
TAL Metals	8 oz Glass	Teflon	Cool 4°C	NA
Cyanide	4 oz Glass	Teflon	Cool 4°C	NA
Total Organic Carbon (TOC)	4 oz Glass	Teflon	Cool 4°C	NA

5.2 Vapor Intrusion Sampling

The soil gas, indoor air and outdoor ambient air samples will be subjected to laboratory analysis to assist in characterizing the Site's environmental quality in relation to vapor intrusion of contaminants. Only pre-cleaned and certified laboratory provided Summa canisters will be used for sample collection/analyses. The Summa canister type, regulator type and preservative requirements for the analytical parameters (soil gas and air) to be analyzed are summarized in Table 2.

 TABLE 3

 Analytical Requirements for Containers and Preservatives for Soil Gas and Air Samples

PARAMETER	CONTAINER	ТОР	PRESERVATION	COMMENTS
VOCs	Summa Canister	Air Flow Regulator	Store in Dark Place	NA

6.0 FIELD QUALITY CONTROL

6.1 Source Materials

Because PFCs (including PFOA) are found in several everyday items, samples will be collected of source materials prior to them being imported onto the Site for the investigation and sampling of the Site. These include water used by the drilling contractor for advancement of test borings, construction of monitoring wells and decontamination of drilling and sampling equipment; water used by the sampling technician to decontaminate sampling equipment; totes and tanks used by the drilling contractor for temporary storage of drilling water; drill rig casing and rods used by the drilling contractor for advancement of test borings; monitoring well construction materials (PVC riser and screen) used by the drilling contractor for construction of the monitoring wells; filter sand used by the drilling contractor for the monitoring well sand pack; and rinse (deionized) water used as a final rinse for decontaminating nondisposable sampling equipment. As a note, all water imported onto the Site for investigation/sampling purposes must be from a municipal potable water source located outside the limits of the Town and Village of Hoosick Falls, and the source of water must be identified. Table 5 summarizes the quality control sampling protocols that will be employed for the source materials.

	TABLE 4: S	OURCE MATERIALS SAMPLING PROTOCOLS
Sample Type	Sample Frequency	Sampling Procedure
Imported Drilling Water	One Time	Obtain one (1) grab sample of driller water at the drilling contractor's place of business prior to Site mobilization and analyze for PFCs. Analytical results must indicate PFCs as Non Detect prior to mobilization of the drilling contractor to the Site.
Imported Sampling Equipment Decontamination Water	One Time	Obtain one (1) grab sample of each sampling equipment decontamination water (bottled water) source(s) to be used during the project prior to Site mobilization and analyze for PFCs. Analytical results must indicate PFCs as Non Detect prior to conducting media sampling at the Site.

	TABLE 4: S	OURCE MATERIALS SAMPLING PROTOCOLS
Sample Type	Sample Frequency	Sampling Procedure
Driller Totes and Tanks	One Time	Obtain one (1) grab rinsate blank sample from each water storage tote to be used at the drilling contractor's place of business prior to Site mobilization and analyze for PFCs. Sampling method to include pouring bottled water through each representative totes/tanks and capturing the water in laboratory provided containers. Analytical results must indicate PFCs as Non Detect prior to mobilization of the drilling contractor to the Site.
Drill Rig Casing, Drill Rods, Core Samplers, Plugs	One Time	Obtain one (1) grab rinsate blank sample from each of the drilling tools to be in contact with the subsurface soils. Samples will be collected at the drilling contractor's place of business prior to Site mobilization and analyzed for PFCs. Sampling method to include pouring bottled water over/through representative tools and capturing the water in laboratory provided containers. Analytical results must indicate PFCs as Non Detect prior to mobilization of the drilling contractor to the Site.
Monitoring Well Construction Materials	One Time	Obtain one (1) grab rinsate blank sample of monitoring well construction materials at the drilling contractor's place of business prior to Site mobilization and analyze for PFCs. Sampling method to include pouring bottled water through and over representative riser/screen and capturing the water in laboratory provided containers. Analytical results must indicate PFCs as Non Detect prior to mobilization of the drilling contractor to the Site.
Filter Sand	One Time	Obtain one (1) grab sample of each filter sand to be used from the drilling contractor's place of business prior to Site mobilization and analyze for PFCs. Analytical results must indicate PFCs as Non Detect prior to mobilization of the drilling contractor to the Site.
Rinse (Bottled) Water	One Time	Obtain one (1) grab sample of bottled water and analyze for PFCs. Analytical results must indicate PFCs as Non Detect prior to importation of bottled water onto the Site.

6.2 Field Sampling

Quality control samples will be taken during the field sampling to evaluate sampling technique, sampling equipment cleanliness, sample variability, sample handling and laboratory performance (analytical reproducibility). The quality control samples will include replicate samples, equipment/field blanks, matrix spike/matrix spike duplicate (MS/MSD) samples and trip blanks.

Replicate Samples

Replicate samples are samples taken from the same location with the same sampling device. Replicate samples are used to check on laboratory reproducibility, sampling technique and sample variability. The replicate samples will be coded so that the laboratory is not biased in performing the analyses. The code that is used will be identified in the field notes and on the sampling logs, but not on laboratory correspondence.

One (1) replicate soil and sediment sample each; one (1) replicate groundwater and surface water sample each, and one (1) air sample will be taken for every twenty (20) samples submitted to the laboratory for analysis. Replicate samples are collected simultaneously using identical procedures, but placing the samples in separate containers. The replicate soil and sediment samples that will undergo VOC analysis with the TerraCore sampling kit will be collected by filling the parent sample containers first followed by the replicate sample containers. For non-VOCs analysis the replicate soil and sediment samples will be collected by homogenizing the sample and transferring equal amounts into the various sample containers.

The replicate groundwater and surface water samples, except for VOC analysis, will be taken by splitting the sample by alternating the discharge of the sampling equipment between both sets of containers (sample and replicate containers) until the containers are filled. The replicate groundwater and surface water samples for VOCs analysis will be taken by filling one container completely and then filling the replicate container completely. Water samples for VOCs analysis are typically taken in triplicate, so this procedure will be repeated three times.

The replicate soil gas/air sample collected as part of the VI assessment will be collected by placing a second Summa canister in tandem with the parent Summa canister.

The replicate samples will be analyzed for the same parameters as the original sample, yet the sample designation is "blind" so that the laboratory can't determine which sample it is a duplicate of. No time or a different time will be used for the replicate samples on the chain of custody record so they are a blind sample to the laboratory.

Equipment/Field Blanks

Equipment/field blanks are samples taken to monitor sampling equipment cleanliness and decontamination procedures during field sampling. One equipment/field blank will be taken during soil, sediment, groundwater and surface water sampling for every twenty (20) samples submitted to the laboratory for analysis of all of the parameters of concern. Equipment/field blanks will not be collected of the clean, certified Summa canisters for soil gas/air sampling. The equipment/field blanks will be taken as follows per the environmental media being sampled:

Soil and Sediment Sampling - After the sampling scoop, hand auger, hand spade and/or core sampler has been decontaminated and are ready for sampling, pour bottled water through and/or over the sampling equipment and capture in laboratory provided sample container(s).

Groundwater and Surface Water - After the new disposable bailer and/or peristaltic pump tubing is removed from its packaging and ready for sampling, pour bottled water through and/or over the bailer/tubing and capture in laboratory provided sample container(s).

The equipment/field blanks will be identified as such and by the location to be sampled (i.e., equipment blank before SS-7; or before MW-9) in the Environmental Services Field Log.

Matrix Spike/Matrix Spike Duplicate

MS/MSD samples are used to check on sample matrix effect and laboratory accuracy and precision.

One MS/MSD soil and sediment sample each and one MS/MSD groundwater and surface water sample each will be taken for every twenty (20) samples submitted to the laboratory for analysis. MS/MSD samples will not be collected of the clean, certified Summa canisters for soil gas/air sampling. The MS/MSD samples for VOC analysis will be collected by equally splitting the sample into the various analytical containers. MS/MSD samples that will not undergo VOC analysis will be homogenized and transferred into the various sample containers.

Laboratory Trip Blanks

Laboratory Trip Blanks are prepared when VOC and PFC analysis is to be performed on aqueous samples, and they are prepared in the laboratory when the sample containers are prepared.

For VOCs, trip blanks will be prepared in triplicate by filling 40 ml glass containers (with Teflon[™] lined septum) with reagent grade water. For PFC analysis, trip blanks will be prepared by filling one (1) 250 ml plastic container with reagent grade water.

Field Trip Blanks

Field Trip Blanks are prepared by the laboratory for analysis of PFCs only. During sampling, a 250-ml laboratory provided plastic container of reagent grade water will be poured into an empty 250-ml laboratory provided sampling container. The Field Trip Blank is collected and analyzed to evaluate if PFCs are being introduced into the sampled matrix during field collection of samples.

The Laboratory and Field Trip Blanks are taken to monitor whether the samples have been contaminated during transport, as a result of handling in the field, during shipment or during storage in the laboratory. One trip blank will accompany each set of aqueous samples that are shipped/delivered to the laboratory for VOC and PFC analysis.

The field replicate samples will be identified as FD01, FD02, etc. The equipment/field blanks will be identified as EB01, EB02, etc. The sampling interval and location where the field replicates are collected will be identified in the Environmental Services Field Log. The MS/MSD samples will be labeled as required for the sample location except that in the comment section of the chain of custody record it shall read "use this sample for the MS/MSD" or equal.

7.0 FIELD INSTRUMENTATION OPERATING PROCEDURES

7.1 General

The field instruments that will be utilized during implementation of the Site investigations are: a PID meter for air monitoring of the total VOCs during drilling, and for headspace analysis of soil and sediment samples for total VOCs; a temperature/pH/ORP/DO/conductivity meter; a turbidity meter for field analysis of groundwater and surface water samples for these parameters; and dust monitors to measure particulate matter during ground intrusive work. The field instruments used will be calibrated and operated in accordance with the manufacturer's instructions and the procedures identified in the following sections.

7.2 Photoionization Detector Meter

A MiniRae PID meter and data logger with a 10.6 eV lamp will be utilized to measure total VOCs. The instrument is calibrated at the factory upon purchase and annually thereafter using certified service shops who utilize standards of benzene and isobutylene. Prior to use in the field, the instrument will be calibrated in accordance with the manufacturer's instructions using a disposable cylinder containing isobutylene obtained from a reputable supplier. The calibration value varies by the manufacturer, however, 100 parts per million is commonly utilized by C.T. Male Associates. During use the PID meter will be calibrated at least once every 8 hours. The calibration procedure is contained in the MiniRea PID meter User's Manual.

Care will be taken when handling and using the PID meter to prevent any debris from entering the sample line which will affect the instrument's operation. If this occurs, the field personnel will clean the unit or replace it with a functional PID meter.

7.3 Temperature, PH, ORP, DO and Specific Conductivity Meter

7.3.1 General

The YSI Pro Plus or equal unit will be used to measure temperature, pH, ORP, DO and specific conductivity. This instrument is equipped with an automatic temperature

control for accurate adjustment to the temperatures of the samples and calibration standards.

7.3.2 pH

Prior to collecting the pH readings, the instrument will be calibrated with standard buffer solutions of pH 4.0, 7.0 and 10.0 with the unit automatically correcting the temperature. The instrument will be calibrated prior to use each day to ensure accurate measurements. Calibration procedures are presented in the manufacturer's operating instructions.

The pH measurement will be taken by setting the meter function to pH mode, immersing the electrode in the sample (after rinsing the probe with deionized water), gently stirring the water with the electrode probe until equilibrium is reached, and recording the pH when the instrument displays "ready." The pH electrode will be rinsed with deionized water after taking a measurement. The manufacturer recommends that the electrode be stored in an electrode storage solution when not in use.

7.3.3 Specific Conductivity

Prior to collecting specific conductance readings, the instrument will be calibrated prior to use each day to ensure accurate measurements. Calibration will be performed using standards of 147.0, 717.8 and 1,413 umhos/centimeter, being sure the instrument is showing automatic temperature correction. Calibration procedures are presented in the manufacturer's operating instructions.

The conductivity cell will be rinsed with deionized water before and after use. The measurement will be taken after rinsing the conductivity probe twice with the sample, immersing the probe in the sample, and recording the measured value when the instrument reads "ready."

7.3.4 ORP

Prior to collecting ORP readings, the instrument will be calibrated prior to use each day to ensure accurate measurements. Calibration will be performed using known

standards, being sure the instrument is showing automatic temperature correction. Calibration procedures are presented in the manufacturer's operating instructions.

The ORP electrode will be rinsed with deionized water before and after use. The measurement will be taken after rinsing the ORP probe twice with the sample, immersing the probe in the sample, and recording the measured value when the instrument reads "ready.

7.4 Turbidity Meter

A LaMotte Turbidimeter (Model 2008), or equal unit, will be used to measure turbidity. The Model 2008 is a true nephelometer, measuring the amount of light scattered at right angles from a beam of light passing through the test sample. The instrument range is 0 to 19.99 NTU (20 scale) and 0-199.9 (full scale). The accuracy of this instrument is $\pm 2\%$ of the reading or 0.05 NTU, whichever is greater. The turbidity is pre-calibrated from the manufacturer, but will be calibrated daily to known standards of typically 4 and 40 NTU.

The turbidity measurement is collected by pouring a sample into a dedicated VOA vial or cuvette. The cuvette is wiped clean and them inserted into the instrument's chamber and covered. The reading is noted once stabilized.

8.0 SAMPLE HANDLING AND CHAIN OF CUSTODY PROCEDURES

Prior to sampling and filling the sample containers, the label on the container will be completed with the required information. After filling the sample containers they will be wiped with a paper towel. The container(s) will immediately be placed in a cooler with double bagged wet ice, to maintain a temperature of $\leq 6^{\circ}$ C for the samples to be analyzed for PFCs and 4°C for the samples to be analyzed for the TCL/TAL parameters, CN and the major cations/anions. The containers will be delivered to the laboratory within 24 hours of sample collection.

A Chain of Custody Record will be completed by the sampler in the field after securing analytical samples. The sampler will be responsible for retaining possession of the samples until they are delivered to the laboratory or until they are delivered to a courier or common carrier for shipment to the laboratory. When the samples are released from the custody of the sampling personnel, the Chain of Custody Record will be signed by both relinquishing and receiving parties with the date and time indicated. A copy of the form will be retained by the sampler for inclusion in the project files and the original form will accompany the shipment. The Chain of Custody Record will then be signed by the relinquishing party and receiving laboratory personnel when the samples are ultimately received at the laboratory.

If samples are shipped, a bill of lading or an air bill will be used and retained in the project files as documentation of sample transportation. Prior to shipment, the cooler will be affixed with a custody seal as a check for tampering and the cooler will be securely wrapped with clear tape. A separate additional Chain of Custody Record will be completed for each cooler of samples. This form will be placed in a plastic bag. This form will be used by the laboratory personnel as a check to verify that the containers listed on the form are present in the cooler when they are received at the laboratory. A copy of the signed Chain of Custody Record will accompany the laboratory analysis reports.

9.0 WATER LEVEL MEASUREMENT PROCEDURES

Water levels will be measured in the monitoring wells using a water level indicator probe. The water levels will be measured from the surveyed reference point to the nearest 0.01 foot. Water levels will be measured progressively from upgradient monitoring wells to downgradient monitoring wells, attempting to measure water levels from the cleanest well to the dirtiest well.

To avoid possible cross contamination of the wells, the water level indicator will be decontaminated prior to and following the water measurement of individual wells. The water level indicator will be decontaminated by rinsing it with imported water, vigorously scrubbing with a brush and laboratory-grade standard detergent (e.g., Alconox[®] or Liquinox[®]) and imported water, then rinsing it with copious amounts of deionized water and drying with a paper towel.

The water depth levels and reference elevations determined from the monitoring well survey will be recorded on a Water Level Record form and the water table elevations calculated. A blank copy of this form is presented in Attachment A.

10.0 INVESTIGATION DERIVED WASTE MANAGEMENT

Wastes that are anticipated to be generated during the RI include: excess soils from test boring core samplers not placed into sampling containers; drill soil cuttings; groundwater from monitoring well development and purging; water used to decontaminate driller and sampling equipment; and disposables such as nitrile gloves and peristaltic pump tubing.

Soils will be placed in labeled DOT 17H approved 55-gallon open top steel drums and staged on-site at a secure location. The drum contents will be characterized and profiled for off-site disposal at a permitted facility.

Liquids will be placed in labeled DOT 17H approved 55-gallon open top steel drums and staged on-site at a secure location. The drum contents will be characterized and profiled for off-site disposal at a permitted facility.

Disposables will be placed in plastic trash bags and disposed of off-site as solid waste.

ATTACHMENT A

QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) FORMS AND FIELD REPORT FORMS

MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

	Project Number
	Project Name
Protective Enclosure Curb Box Guard Pipe ft. elev. ft. elev.	Well No. Town/City
	County State
inch diameter drilled hole	Installation Date(s)
Well casing,	Drilling Contractor
Backfill	Drilling Method
Grout	Water Depth From Top of Riser ft C.T. Male Observer
Bentonite	
ft*	Notes:
Well Screeninch diameter,slot	
Gravel Pack Gravel Pack Sand Pack Formation Collapse	
ft*	
ft*	
* Depth below land surface.	

C.T. MALE ASSOCIATES, P.C.

WATER LEVEL RECORD

Project Name	
Location	
Method or Reading	

Project Number
Measurement Taken By
Datum

		Date		_ Date		_ Date	
Well No.	Ref. Elev.	Depth	Elev.	Depth	Elev.	Depth	Elev.
		+					

Measuring Point(s)

Groundwater Services Field Log

PROJECT LOCATION:
NOTES TAKEN BY:
BAILER ID:
BAILER: LAB CLEANED / FIELD CLEANED
BAILER: STAINLESS STEEL
OTHER
CONVERSION FACTORS LINEAR FEET TO GALLONS 1" = 0.041 GALLONS 3" = 0.38 GALLONS 1.25" = 0.064 GALLONS 4" = 0.66 GALLONS 2" = 0.16 GALLONS 6" = 1.47 GALLONS PURGE METHOD: ; TIME FINISHED: ; ODOR ; TURBIDITY
; RECOVERY TIME IN MINUTES:
, TEMPERATURE
UMHO/CM, OTHER
_

Sheet 1 of ___

C.T. MALE ASSOCIATES, P.C.						ATE	S, F	P.C.	SUBSURFACE EXPLO BORING NO.: ELEV.:	RATION LOG DATUM: INISH DATE:
PRO	JECT	:							CTM PROJECT NO	:
LOC	ATIO	N:								k:
	SAN	IPLE	BL	.ows	ON S	AMPL	ER			
DEPTH (FT.)	ТҮРЕ	NO.	0/6	6/12	12/18	18/24	Z	RECOVERY	SAMPLE CLASSIFICATION	NOTES
$\frac{5}{10}$ $\frac{10}{20}$ $\frac{25}{25}$ 30										
N = NO. OF BLOWS TO DRIVE 2" SAMPLER 12" WITH A 140 LB. WT. FALLING 30" PER BLOW DRILLING CONTRACTOR:DRILL RIG TYPE:										
THE S PURF TO TH NOT	METHOD OF INVESTIGATION:									

ORGANIC VAPOR HEADSPACE ANALYSIS LOG

PROJECT:				PROJECT #:		PAGE 1 OF	
CLIENT:				TROJECT #.		DATE	
LOCATION: INSTRUMENT USED: LAMP eV						COLLECTED:	
			LAMP		eV	DATE	
DATE INSTRUMENT				BY:		ANALYZED:	
TEMPERATURE OF S	ioil:				ANALYST:		
				SAMPLE	BACKGROUND		
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	READING		
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS	

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer. **PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

		Page <u>1</u> of
E	nvironmental Se	rvices Field Log
Date:	Time On-Site:	Time Off-Site:
		Project No.: Field Report No:
- upooe		
Weather Conditions:		
Present at Site:		
Observations:		
Items to Verify:		
<u> </u>		
List of Attachments:		
	: 	
Copies to:		
-		

EnvFieldLog.doc

APPENDIX B

QUALITY ASSURANCE PROJECT PLAN SAINT-GOBAIN PERFORMANCE PLASTICS SITE 14 MCCAFFREY STREET VILLAGE OF HOOSICK FALLS RENSSELAER COUNTY, NEW YORK

QUALITY ASSURANCE PROJECT PLAN SAINT GOBAIN PERFORMANCE PLASTICS SITE 14 MCCAFFREY STREET VILLAGE OF HOOSICK FALLS RENSSELAER COUNTY, NEW YORK

KEY PERSONNEL AND SIGNATURES

Rell deen ? Approved: 4

Date: 9/1/16

Date: 9/1/16

Project Principal Daniel Reilly, P.E. Environmental Services Manager C.T. Male Associates

Approved:

Project Manager & Health and Safety Coordinator Kirk Moline Managing Geologist C.T. Male Associates

Approved:

Date:

Quality Ássurance Officer Elizabeth Rovers, P.E. Managing Engineer C.T. Male Associates

QUALITY ASSURANCE PROJECT PLAN SAINT GOBAIN PERFORMANCE PLASTICS SITE 14 MCCAFFREY STREET VILLAGE OF HOOSICK FALLS RENSSELAER COUNTY, NEW YORK

TABLE OF CONTENTS

		<u>Page</u>
1.0	PROJECT DESCRIPTION	1
	1.1 Introduction	1
	1.2 Objectives and Scope of Work	2
2.0	PROJECT ORGANIZATION AND RESPONSIBILITIES	3
3.0	QUALITY ASSURANCE OBJECTIVES FOR DATA MEASUREMENT.	6
	3.1 General	6
	3.2 Data Uses and Types	6
	3.3 Data Quality Needs	6
	3.4 Quality Control Checks and Acceptance Criteria	8
4.0	SAMPLING PROCEDURES	11
5.0	SAMPLE CUSTODY	12
6.0	CALIBRATION PROCEDURES	13
7.0	SAMPLE PREPARATION AND ANALYTICAL PROCEDURES	14
8.0	DATA REDUCTION, VALIDATION AND REPORTING	17
9.0	FIELD & INTERNAL QUALITY CONTROL	19
10.0	PERFORMANCE AND SYSTEMS AUDITS	20
	10.1 Field Audits	20
	10.2 Laboratory Audits	20
11.0	PREVENTATIVE MAINTENANCE	21
12.0	DATA ASSESSMENT PROCEDURES	22
13.0	CORRECTIVE ACTIONS	23
14.0	QUALITY ASSURANCE REPORTS TO MANAGEMENT	24

FIGURES

Figure 1:	Project Organizational	Chart
0		

TABLES

Table 1:	Summary of Work Tasks and Corresponding Analytical Levels
Table 2:	Analytical Methods and Requirements

QUALITY ASSURANCE PROJECT PLAN SAINT GOBAIN PERFORMANCE PLASTICS SITE 14 MCCAFFREY STREET VILLAGE OF HOOSICK FALLS RENSSELAER COUNTY, NEW YORK

TABLE OF CONTENTS

ATTACHMENTS

Attachment A: Attachment B: Attachment C: Laboratory Certifications Data Validator Qualifications and Experience Guidance for the Development of DUSR

1.0 **PROJECT DESCRIPTION**

1.1 Introduction

This Quality Assurance Project Plan (QAPP) has been prepared for the implementation of a Remedial Investigation (RI) at the Saint-Gobain Performance Plastics Corporation (Saint-Gobain) Site ("the Site") located at 14 McCaffrey Street in the Village of Hoosick Falls, Rensselaer County, New York. It has been developed in conjunction with the RI/FS Work Plan as prepared by C.T. Male Associates. A description of the Site, background information, objectives and the Site investigation scope of work are presented in detail in the referenced RI/FS Work Plan.

This QAPP presents the organizational structure and data quality objectives (DQOs) for the site characterization, and the quality assurance (management system) and quality control methods of checks and audits to be implemented to ensure that the quantity and quality of the data required for its intended use is obtained and documented (i.e., that DQOs are met). The measurement parameters used to determine the quality of the data are precision, accuracy, completeness, representativeness and comparability, and are discussed further in this QAPP.

A Field Sampling Plan (FSP) has been prepared by C.T. Male Associates as a separate exhibit and forms an integral part of this QAPP. The field sampling and data gathering procedures are presented in the FSP and incorporated into the QAPP by reference. The QAPP and FSP document the laboratory quality assurance/quality control (QA/QC) procedures and field sampling and data gathering procedures that will be followed during implementation of the RI scope of work so that valid data of a known quality is generated.

The project specific field QA/QC procedures and the project specific laboratory QA/QC procedures are presented in the text of this QAPP. The general internal laboratory QA/QC procedures are presented in the subcontractor laboratory's Quality Manual which is retained at the laboratory's place of business. The NYS Department of Health (NYSDOH) ELAP Certified subcontract laboratories for this project are Eurofins Eaton Analytical, Inc. of South Bend, Indiana for aqueous analyses (NYSDOH ELAP #11398), and Eurofins Lancaster Laboratories, LLC of

Lancaster, Pennsylvania for solids analyses (NYSDOH ELAP #10670). The laboratory certifications are included in Attachment A.

The QAPP has been prepared in a manner consistent with the following guidance documents:

- DER-10 Technical Guidance For Site Investigation and Remediation, NYSDEC, May 2010.
- 6 NYCRR Part 375, Environmental Remediation Programs, Subparts 375-1 to 375-4 and 375-6, Effective December 14, 2006.
- Data Quality Objectives for Remedial Response Activities: Development Process, EPA/540/G-87/003, USEPA, March 1987.

1.2 Objectives and Scope of Work

It is the objective of the RI and this QAPP to obtain and present representative data of a known quality and sufficient quantity. The primary goal is to perform soil, groundwater, surface water, sediment, soil gas and indoor air sampling, and geophysical surveys, through a variety of investigative tasks. The data will be used to evaluate overall protection requirements for human health and the environment.

To achieve these objectives, the scope of work will include the following items as presented in the RI/FS Work Plan, in this QAPP and in the FSP. The investigative tasks will include the advancement of soil test borings, collection and analysis of soil samples, installation of monitoring wells, collection and analysis of groundwater samples, collection and analysis of surface water and sediment samples, collection and analysis of sub-slab soil gas samples, and collection and analysis of indoor air samples. Additionally, geophysical surveys will be conducted to map glacial till and bedrock contacts and to identify the location of the municipal sewer pump station overflow pipe along the eastern and southern portions of the Site.

2.0 PROJECT ORGANIZATION AND RESPONSIBILITIES

C.T. Male Associates is responsible for providing professional services associated with the quality control/quality assurance of the RI. These will include project management, coordination, and scheduling of activities in-house and with qualified subcontractors. The work tasks that will be performed by a subcontractor to C.T. Male Associates include: rotosonic and direct-push drilling of borings/monitoring wells, geophysical survey, analytical laboratory testing and third party validation of analytical data for preparation of a Data Usability Summary Report (DUSR).

A project organizational chart listing key individuals of the project and their associated title is presented as Figure 1 at the end of this document. Personnel from C.T. Male Associates and the drilling, geophysical, laboratory and data validation subcontractors can be reached at the following addresses:

- C.T. Male Associates

 Contact: Kirk Moline
 50 Century Hill Drive
 Latham, New York 12110
 Phone: (518) 786-7400
 Fax No.: (518) 786-7299
 Email: k.moline@ctmale.com
- Drilling Contractor: Cascade Drilling, L.P. 430 Hudson River Road Waterford, New York 12188 Phone: (518) 326-1441
- Geophysical Contractor: TBD
- Laboratory: Eurofins Eaton Analytical, Inc. 110 S. Hill Street South Bend, Indiana 46617 Phone: (800) 332-4345
- Laboratory: Eurofins Lancaster Laboratories, LLC. 2425 New Holland Pike Lancaster, Pennsylvania 17605 Phone: (717) 656-2300

• Data Validation: To Be Determined

A description of the responsibilities by title of the key individuals is presented as follows:

<u>Project Principal</u> is responsible for the review of the RI activities and reports for their technical adequacy and conformance to the scope of work.

<u>Quality Assurance Officer</u> is responsible for the independent review of the RI documents and reports to check that the appropriate project documentation, of the quality control activities performed, exist and are maintained; and for conducting field and sampling audits.

<u>Project Manager</u> is responsible for the overall coordination and implementation of the project, the management of staff and resources, the implementation of schedules, the conformance by the technical staff and subcontractors to the scope of work, assessing the adequacy of the work being performed, implementing corrective action as necessary, interaction with the client and regulatory agencies, maintaining complete project documentation, and report preparation.

<u>Health and Safety Coordinator</u> is responsible for implementation of the project specific Health and Safety Plan, and resolution of safety issues which arise during the completion of the work. The Health and Safety Coordinator or designee will be present during the completion of the field work.

Laboratory Quality Assurance Officer is responsible for review of the laboratory data quality control procedures and documentation to determine if the QA objectives are being met; and to report non-conforming events to the laboratory technical staff and Project Manager and implement corrective action as necessary.

<u>Laboratory Director</u> is responsible for all activities within the laboratory, and for the performance of the laboratory work tasks in accordance with the project work plans, interactions with the Project Manager, and the adherence to project schedule.

<u>Project Geologist/Engineer/Scientist</u> is responsible for coordinating and conducting the field hydrogeologic activities and subcontractors, the adherence of activities to

the QAPP and the FSP, evaluation of the collected data, soil classifications, report preparation and interaction with the Project Manager and Project Team.

<u>Project Team</u> is responsible for adequately performing the work tasks in accordance with the project work plans so that the objectives of the investigations and the project are achieved, notifying the Project Manager of any non-conformance to the work plan so that corrective actions can be taken as necessary, and notifying the Project Manager of unforeseen conditions so that modifications to the work plan, if necessary, can be approved and implemented.

<u>Data Validator</u> is responsible for review of all analytical data generated for this project. The data validator will review analytical data in accordance with New York State Department of Environmental Conservation (NYSDEC) Guidance for the Development of Data Usability Summary Reports, and prepare a report documenting if the analytical data is valid and usable. The report will also present data rejection and qualification, where necessary, based on laboratory performance.

3.0 QUALITY ASSURANCE OBJECTIVES FOR DATA MEASUREMENT

3.1 General

The Quality Assurance (QA) objective for this project is to produce data which is technically valid and of a known quality that meets the needs of its intended use. In this section the data quality objectives (DQOs) are defined by describing the intended use of the data; defining the type of data needed (i.e., physical or analytical); specifying the analytical levels, as established by EPA, appropriate to the data uses; specifying the quality control checks on field and laboratory procedures and frequency of checks; and presenting the quality control acceptance criteria.

Laboratory quality assurance objectives for data measurement are established for each measurement parameter in terms of precision, accuracy, completeness, representativeness and comparability. These terms form an integral part of the laboratory's quality assurance programs in that DQOs are set for each parameter.

3.2 Data Uses and Types

The data to be generated during the proposed work will be completion of RI and health and safety during implementation of the field activities. Both physical data including air monitoring and analytical data from soil, groundwater, surface water, sediment, soil gas and indoor air will be needed to provide the necessary information to complete the steps in the RI. The specific physical and analytical data proposed and its purposes are presented in the RI/FS Work Plan.

3.3 Data Quality Needs

To support data collection activities in obtaining quality data, EPA has established a series of analytical levels that are appropriate to Site investigation/remediation data uses. The analytical levels are defined as follows:

- Level IField screening or analysis using portable instruments.
Qualitative data.Level IIField analyses using more sophisticated portable analytical
instruments. Qualitative and quantitative data can be obtained.Level IIILevel using standard EPA and NVSDOH
- Level III Laboratory analyses using standard EPA and NYSDOH approved procedures/methods.

Level IV	Laboratory analyses with NYSDEC ASP (Analytical Services
	Protocol) - Category B Data Deliverable Packages with QA/QC
	protocols and documentation.
Level V	Analyses by non-standard methods.

The data collection activities, the environmental media, the intended use of the data and the corresponding analytical levels that will be used to produce the project data are summarized in Table 1.

Data Collection Activities	Sample Media & Description	Data Use ^(a)	Analytical Level
PID Meter	Soil Vapors	1	Ι
Monitoring			
Air Monitoring	Air/Ambient Air	2	II
Dust Monitoring	Dust/Particulates	2	II
Test Borings and	Soil, Groundwater, Surface	1,3&4	I (Field
Monitoring Wells,	Water, Sediment, Rooftop		Instrumentation)
and Soil,	Wipe, Soil Gas and Indoor Air		and IV
Groundwater,	for Laboratory Analyses and		(Laboratory
Surface Water,	Field Instrumentation		Analyses)
Sediment, Soil Gas			
and Indoor Air			
Sampling			
Quality Control	Driller Water, Totes and Tanks;	1 & 4	IV (Laboratory
Imported Source	Filter Sand Used as Monitoring		Analyses)
Materials and	Well Sand Pack; PVC Well		
Equipment	Riser and Screen; Steel Well		
	Casing; Drill Casing, Rods and		
	Core Samplers; Bottled Water		
	for Field Tool		
	Decontamination; Deionized		
	Water for Final		
	Tool/Equipment Rinse.		

Table 1Summary of Work Tasks and Corresponding Analytical Levels

Note:

(a) Data Uses Key:

1 - Site Characterization.

- 2- Health and Safety and Community Air Monitoring During Implementation of Ground Intrusive Field Activities, if required.
- 3 Risk Assessment.
- 4 Evaluation of Environmental Quality.

Another consideration besides defining the Data Quality Needs is what level of cleanup will be required for the Site, if needed. The applicable or relevant and appropriate requirements (ARARs) are related to defining satisfactory cleanup efforts. In order to be able to evaluate the data generated with respect to potential ARARs, the samples will need to be analyzed by analytical methods that can achieve detection limits below or at existing ARAR values. The analytical methods selected for this project are designed to achieve ARAR values.

NYSDEC has not promulgated ARAR values for PFCs. The Environmental Protection Agency (EPA) March 2014 Fact Sheet entitled "Emerging Contaminants – Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA)" indicates that in January 2009, the EPA's Office of Water established a provisional health advisory (PHA) of 0.2 micrograms per liter (ug/l) for PFOS and 0.4 ug/l for PFOA to assess the potential risk from short-term exposure of these chemicals through drinking water (EPA 2009d, 2013a). Also, EPA Region 4 calculated a residential soil screening level of 6 milligrams per kilogram (mg/kg) for PFOS and 16 mg/kg for PFOA (EPA Region 4 2009).

3.4 Quality Control Checks and Acceptance Criteria

To monitor and document the integrity of such factors as the environmental quality of source materials, sample variability, sampling equipment cleanliness, sampling technique, analytical reproducibility and sample handling which can affect data quality, several field quality control checks will be implemented. These will include collecting samples of source materials (i.e., driller water, decontamination water, drilling tools, monitoring well construction material, etc.) prior to importation of these materials to the Site; collecting equipment/field blanks after sampling equipment has been decontaminated to check for cross contamination and equipment cleanliness; taking replicate samples to monitor analytical precision/reproducibility and sampling technique; taking matrix spike/matrix spike duplicate (MS/MSD) samples to monitor sample matrix effect and laboratory accuracy/precision; and preparing laboratory and trip blanks and field trip blanks

to be shipped with the sample containers for volatile and PFC analyses to monitor sample handling.

For this project, quality control samples will be collected of the following source materials that will be imported onto the Site to conduct the investigations.

- Water from the drilling contractor for drilling and decontamination.
- Totes and tanks used by the drilling contractor to store water. A rinsate blank will be collected of the totes/tanks by pouring deionized water through the totes/tanks and collecting in laboratory provided containers.
- Filter sand used for the monitoring well sand pack.
- PVC well riser and screen used by the drilling contractor for construction of monitoring wells. A rinsate blank will be collected of the PVC riser and screen by pouring deionized water through and over the riser and screen and collecting in laboratory provided containers.
- Steel well casing used by the drilling contractor for construction of the bedrock monitoring wells. A rinsate blank will be collected of the steel casing by pouring deionized water through and over the casing and collecting in laboratory provided containers.
- Drill casing, rods and core samplers used by the drilling contractor. A rinsate blank will be collected of the casing, rods and core samplers by pouring deionized water through and over the casing, rods and core samplers and collecting in laboratory provided containers.
- Bottled deionized water for decontamination and rinse samples.

The field Quality Control (QC) checks will consist of one (1) equipment/field blank, one (1) replicate sample and one (1) MS/MSD sample during sampling activities for every twenty (20) analytical samples per media type (i.e., soil, groundwater, surface water, sediment and soil gas/indoor air samples), and one (1) sample for each imported source material. Equipment/field blank and MS/MSD samples will not be collected of the soil gas/indoor air samples. A Laboratory Trip Blank will be prepared for each groundwater and surface water sample set to be submitted for volatile organic and PFC analyses. A Field Trip Blank will be prepared in the field for each aqueous sample set to be submitted for PFC analyses.

Internal laboratory quality control checks will be those specified in EPA Methods or in the most recent NYSDEC ASP for the analytical method performed and could consist of some of the following:

- Blanks (method, preparation),
- initial and continuing calibrations,
- surrogate spikes,
- matrix spike/matrix spike duplicates,
- ambient samples,
- duplicate samples, and
- control samples/matrix spike blanks.

The laboratory will be responsible for performing what is necessary for complying with appropriate standards and certifications of the selected EPA method and ASP requirements. The laboratory quality control acceptance criterion is method specific and will be the laboratory's responsibility to meet the most recent ASP criteria.

4.0 SAMPLING PROCEDURES

Procedures for sampling are presented in the Field Sampling Plan (FSP) and include the following:

- Selection of sampling sites and media to be sampled;
- Procedures for the collection of investigation equipment and material rinse blank samples;
- Specific sampling procedures for each environmental media to be sampled, and for QC samples to be taken;
- Field soil screening procedures;
- A description of the containers, procedures and equipment used for sample collection, preservation, transport and storage;
- Procedures for preparing the sample containers and sampling equipment prior to sampling and decontamination of sampling equipment during sampling;
- Chain of custody procedures and forms; and
- Description of the procedures, forms and notebooks to be used to document sampling activities, sample conditions and field conditions.

5.0 SAMPLE CUSTODY

Proper chain of custody will be established and maintained through a series of steps, beginning in the field and ending with final disposition of the analyzed sample(s). At the time of the field sampling, an external chain of custody form will be utilized to track sample collection until delivery to the analytical laboratory. An internal or "intra-laboratory" chain of custody will be used by laboratory personnel to track the sample(s) from the point it is received/logged and passed through the laboratory process. Chain of custody procedures are discussed in detail in the FSP.

6.0 CALIBRATION PROCEDURES

Calibration procedures for field equipment including the photo ionization detector (PID) meter, pH/conductivity/temperature/oxidation-reduction potential (ORP)/dissolved oxygen (DO) meter, and turbidity meter are presented in the FSP. Calibration procedures for laboratory equipment/instrumentation consist of the and certifiable production of current standards and the use measurement/adjustment of the instrument response. The laboratory is responsible for maintaining records documenting use of current standards and acceptable instrument responses. The laboratory is required to flag analytical data that has had potential contamination or poor instrument calibration that may have occurred during the analytical process.

7.0 SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

The analytical parameters, sample preparation and analysis methods, acceptable holding times and required method detection limits are presented in Table 2. The analytical methods specified reflect the requirements of the most recent NYSDEC ASP with the exception of PFCs, which reflect the requirements of EPA (see footnote 3 at the bottom of table).

Analytical Parameters	EPA Method	Holding Times ⁽¹⁾	Contract Required Quantitative Limits (as noted) ⁽²⁾
TCL Volatile Organic Compounds (VOCs)	EPA Analytical Method SW- 846 8260C for Water and Soil and EPA Preparation Methods 5030C (Water) and 5035A (Soil). EPA Preparation and Analytical Method TO-15 for Air.	Water: 7 Days Unpreserved to Analysis, 12 Days Preserved (HCl to pH<2) to Analysis. Soil: 48 hours to freeze, 14 days to analysis once unfrozen. Air: 30 days (keep out of sunlight)	0.5-5 ug/l (Water) 5 to 20 ug/kg (Soil) 1 to 5 ppbv (Air)
TCL Semi- Volatile Organic Compounds (SVOCs)	EPA Analytical Method SW- 846 8270D for Water and Soil and EPA Preparation Methods 3510C (Water) and 3546 (Soil)	5 Days to Extraction, 40 Days to Analyze	0.5-30 ug/l (Water) 17-1,000 ug/kg (Soil)
TCL Pesticides	EPA Analytical Method SW- 846 8081B for Soil and Water and EPA Preparation Methods 3510C (Water) and 3546 (Soil)	5 Days to Extraction, 40 Days to Analyze	0.01-1 ug/l (Water) 0.83-33 ug/kg (Soil)
TCL PCBs	EPA Analytical Method SW- 846 8082A for Water and Soil and EPA Preparation Methods 3510C (Water) and 3546 (Soil)	5 Days to Extraction, 40 Days to Analyze	0.1-0.2 ug/l (Water) 17 ug/kg (Soil)
TAL Metals (Except Mercury)	EPA Analytical Method SW- 846 6010C and 6020A for Water and Soil and EPA Preparation Methods 3005A	180 Days	0.001-2 mg/l (Water) 0.2-200 mg/kg (Soil)

Table 2Analytical Methods and Requirements

C.T. MALE ASSOCIATES

Analytical Parameters	EPA Method	Holding Times ⁽¹⁾	Contract Required Quantitative Limits (as noted) ⁽²⁾
	and 3020A (Water) and 3050B (Soil)		
Mercury	EPA Analytical and Preparation Methods SW- 846 7470A (Water) and SW- 846 7471B (Soil)	26 days	0.0002 mg/l (Water) 0.02 mg/kg (Soil)
Cyanide	EPA Analytical and Preparation Method SW-846 9012A for Water and Soil	14 Days	0.01 mg/l (Water) 0.5 mg/kg (Soil)
PFCs ⁽³⁾ (PFBS, PFHpA, PFHxS, PFNA, PFOS, PFOA, PFDA, PFDoA, PFHxA, PFPTA, PFPTA, PFTRDA, PFDOA)	EPA Analytical & Preparation ⁽³⁾ Method 537 for Water and EPA Method 537 (Modified) for Soil and Sediment.	14 Days to Extraction 28 Days to Analyze	2 to 10 ng/l (Water) 0.40 to 1.6 ng/g (Soil) 3 to 8 ng (Wipe)
Cations (Ca, Mg, Na, K)	EPA Analytical Methods SW-846 6010C and 6020A and EPA Preparation Methods 3005A and 3020A	180 Days	0.004-2 mg/l
Anions (Chloride, Sulfate)	EPA Analytical and Preparation Method SW-846 300.0	28 Days	2-5 mg/l
Anions (Carbonate, Bicarbonate)	EPA Analytical and Preparation Method SW-846 SM2320 B-1997	14 Days	2 mg/l as CaCO ₃

Note:

- 1) Holding times are relative to the verifiable receipt at the laboratory.
- 2) The listed method detection limits are practical quantitation limits (PQLs) derived by the laboratory and updated on an annual basis. The method detection limit (MDL) is the best possible detection. Laboratories report PQLs which are typically 4 times the MDL for liquids and varies for solids depending on the quantity of contamination present. Efforts will be made to obtain the lowest possible detection limit. When the guidance value or standard value is below the detection limit, achieving the detection limit will be considered acceptable for meeting that guidance or standard value.
- 3) Method 537. Determination Of Selected Perfluorinated Alkyl Acids In Drinking Water By Solid Phase Extraction And Liquid Chromatography/Tandem Mass Spectrometry (Lc/Ms/Ms). EPA Document #: EPA/600/R-08/092, Version 1.1, September 2009. The most recent NYSDEC ASP does not have a method for PFCs. The laboratory uses a modified version of EPA Method 537 for

analysis of PFCs in solids. The laboratory utilizes a proprietary sample preparation method as EPA has not developed a sample preparation method.

Where matrix interference is noted, analytical clean-ups will be required to be performed by the laboratory following the procedures specified in SW-846, the most current NYSDEC ASP, or EPA Method 537, as applicable. In general, samples shall not be diluted more than 1 to 5.

8.0 DATA REDUCTION, VALIDATION AND REPORTING

The field measurement data and the laboratory analyses results of detected parameters will be compiled and tabulated to facilitate comparison and evaluation, and will be included in the Final RI/FS Report. The tabulated data will include at a minimum:

- soil analysis results,
- surface water and groundwater analysis results,
- sediment analysis results,
- soil gas analysis results,
- indoor air analysis results, and
- quality control results [imported source materials (i.e., drilling water and filter sand, material rinse blanks, etc.) results, equipment/field blanks, replicates/duplicates, matrix spike/matrix spike duplicates and trip blanks].

Field logs will also be compiled and included, in part, in the text and appendices of the Final RI Report, and will consist of:

- subsurface exploration logs,
- organic vapor headspace analysis logs,
- monitoring well construction logs,
- groundwater services field logs,
- water level records,
- stream water sampling logs,
- vapor point construction logs, and
- environmental services field logs.

Any observations or problems encountered during field activities which could affect the quality of the data or its validity will be noted on the appropriate field log.

The laboratory will generate ASP Category B Data Deliverable Package(s) that may be submitted as a separate volume to the RI/FS Report or on a CD within the RI/FS Report. It will include analytical results and quality control data deliverables as required by the most recent NYSDEC ASP. Internal data validation will be performed by the laboratory QA officer to ensure that the data package is complete and meets the criteria of the work plan and this QAPP. Any problems encountered in performing the analyses by the laboratory such as out of limits surrogate recoveries, and comments on the quality and limitations of specific data and the validity of the data will be described in the case narrative of the laboratory report.

External data validation will be performed by an independent data validator who will utilize the USEPA National and Regional Validation Guidelines/Procedures and the NYSDEC Guidance in the Development of Data Usability Summary Reports to determine the applicable qualifications of the data. The validator will then prepare a NYSDEC Data Usability Summary Report (DUSR) in accordance with NYSDEC guidelines. The data validator will not be involved in any other portions of the project. The data validation company for this project is not yet determined. The validator's qualifications and work experience will be presented in Attachment B. The NYSDEC DUSR guidance from DER-10, Technical Guidance For Site Investigation and Remediation, is presented in Attachment C for reference.

9.0 FIELD & INTERNAL QUALITY CONTROL

Field QC will consist of collecting/generating source material samples, equipment/field blanks, replicate samples, preparing matrix spike/matrix spike duplicate samples and having trip blanks with aqueous volatile organic compounds and PFC sample sets. Field instrumentation will also be calibrated prior to use and the calibration maintained as discussed in the FSP.

Internal laboratory QC will generally consist of:

- Method (instrument) blanks,
- initial and continuing calibrations,
- surrogate spikes,
- matrix spike/matrix spike duplicates,
- duplicate samples, and
- laboratory control samples/matrix spike blanks.

The QC samples will be run in accordance with the protocols and frequencies specified in the NYSDEC ASP, SW-846 and EPA Methods as applicable for the analyses being performed, with the exception of the source material and equipment samples. One (1) sample will be collected of each source material and equipment identified in Section 3.4 for analysis for PFCs to ensure that materials and equipment imported to the Site for the investigation are not cross-contaminated with PFCs. The source equipment will be segregated and will be used for no other purpose from the time that the samples are collected to the time that the equipment is mobilized to the Site for the investigation.

10.0 PERFORMANCE AND SYSTEMS AUDITS

10.1 Field Audits

Field performance audits will consist of taking replicate samples, source material samples (i.e., drilling water and monitoring well construction materials, etc.) and equipment/field blanks and analyzing for the same parameters as other samples, as detailed in the FSP.

Field system audits will be conducted during field operation to ensure that the field activities are being conducted correctly and in accordance with the RIWP. The project field supervisor will check that the field instrumentation is calibrated prior to use, that field measurements are taken correctly, that equipment is properly decontaminated, and that the field activities are properly documented. Any deficiencies will be reported to the project manager and discussed with the field staff with corrective action taken. The person conducting the field audits will document the field system audits by use of a field report and submit the report to the project manager for review on a bi-weekly (twice per week) basis at a minimum. The project quality assurance officer, scientist/geologist/engineer or project manager will conduct system audits as appropriate or warranted.

The project manager will review the field system audit reports and the field documentation for completeness and correctness, and check that the work is proceeding on schedule and in accordance with the work plans.

10.2 Laboratory Audits

Laboratory system audits are not required if the laboratory maintains New York State Department of Health (NYSDOH) ELAP certification. Part of the ELAP certification process typically includes periodic performance evaluations and on-site systems audits. A copy of the laboratory NYSDOH ELAP certification documentation is presented in Attachment A.

11.0 PREVENTATIVE MAINTENANCE

C.T. Male Associates keeps an inventory of its field equipment and it is kept locked in a designated area. The field equipment is signed out when in use and its condition checked upon its return. The equipment is kept in good working order and frequently checked and calibrated by qualified employees. Additionally, select equipment (i.e., PID meter) is routinely serviced for cleaning and calibration by an independent repair facility.

The project geologist/engineer/scientist and field sampler are responsible for ensuring that the field equipment is tested, cleaned, charged and calibrated in accordance with the manufacturer's instructions prior to taking the equipment out into the field.

12.0 DATA ASSESSMENT PROCEDURES

The field and laboratory generated data will be assessed for precision, accuracy, representativeness, completeness, and comparability (PARCC parameters). Both quantitative and qualitative procedures will be used for these assessments.

The criteria for assessment of field measurements will be that the measurements were taken in accordance with the procedures specified in the FSP using calibrated instruments. Assessment of the sampling data with respect to field performance will be based on the criteria that the samples were properly collected and handled. Field replicate and equipment/field blank sample results will be used in assessing the sampling technique and representativeness of the samples collected.

The laboratory will calculate and report the precision, accuracy, and completeness of the analytical data. Precision will be expressed as the relative percent difference (RPD) between values of duplicate samples. Accuracy will be expressed as percent difference (PD) for surrogate standards and matrix spike compounds. Completeness is a measure of the amount of valid data derived from a set of samples based on the total amount expected to be derived under normal conditions. The precision and accuracy results will be compared to the QC acceptance criteria specified for each test method in the most recent NYSDEC ASP and EPA Methods.

The representativeness of the analysis is dictated primarily by the field sampling technique and sample location, as opposed to laboratory operations. The laboratory will take steps to ensure that the analysis is representative of the sample being submitted. The criteria for ensuring representativeness of the analysis are careful aliquot selection and proper compositing techniques. Laboratory performance will be based on the criteria that the samples were properly handled prior to submission to the laboratory, that the laboratory aliquots taken for analysis are representative (i.e., oversized particles discarded, sample thoroughly mixed except when dealing with volatile organics), that the samples were analyzed within holding times, and that no cross-contamination has occurred based on the method blank results. Data comparability will be assessed based on analyses being performed within required holding times, on consistent units of measure, and that analyses were performed in strict adherence with NYSDEC and EPA analytical methods/protocols.

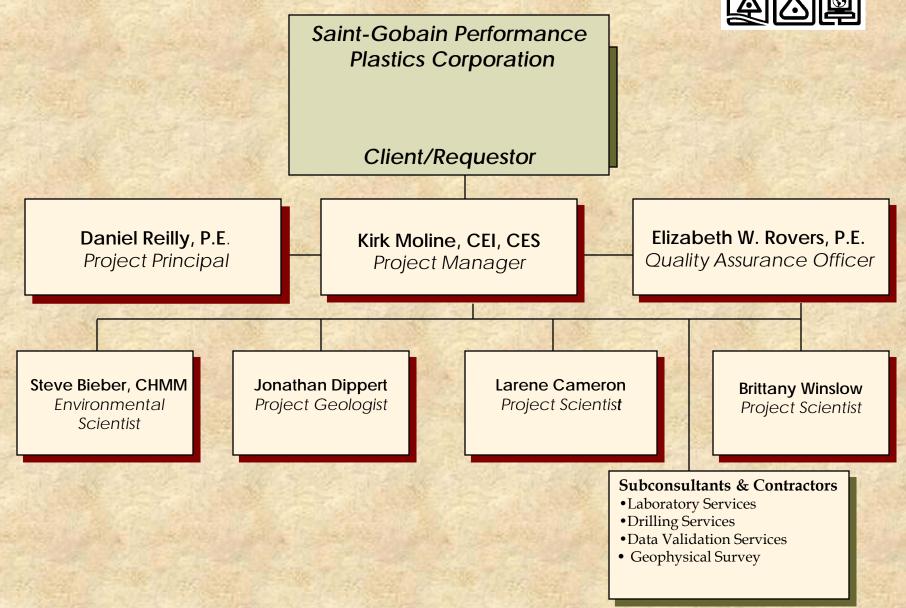
13.0 CORRECTIVE ACTIONS

The investigation will be performed in accordance with the approved RI/FS Work Plan, the contents of the approved FSP and the approved QAPP. Any persons identifying unacceptable conditions or deficiencies in the work being performed such as deviation from or omission of health and safety procedures, sampling procedures or other field procedures, will immediately notify the project field supervisor, where applicable, and the project manager. The unacceptable conditions or deficiencies will be documented and submitted to the project manager. The project manager, with assistance from the technical quality review staff, if necessary, will be responsible for developing and initiating appropriate corrective action, documenting the corrective action and verifying that the corrective action has been effective.

Depending on the significance and potential impact of the problem or deficiency requiring corrective action, the NYSDEC and Saint-Gobain will be notified, as warranted, as soon as practical after becoming aware of the situation.

14.0 QUALITY ASSURANCE REPORTS TO MANAGEMENT

Field system audit/field reports from the project team, where applicable, will be submitted to the project manager on a bi-weekly basis at a minimum. The field report will include the project name, location, time, date, weather, temperature range, work in progress, conformance with schedule, persons present at the Site (arrival and departure times), observations, work start-up and stoppage, items to verify, information or action required, any attachments identified, and the reporting persons signature. The field report notifies the management as to the progress, conformance with the work plan, and any problems that may affect quality control. Field personnel will also keep field notebooks that will discuss day to day procedures followed, any problems encountered, etc. A copy of the field notes will be given to the project manager at least bi-weekly to keep the project manager informed of the project status and as a quality control check. The project manager will review the reports and field notes to assess the quality of the investigate data gathering efforts to make sure the objectives of the work are being met, to make sure the work is progressing on schedule, that the work is being conducted in accordance with the work plan, and that any problems encountered are addressed. These reports will be utilized in assessing the data quality with respect to field activities and the findings will be discussed in the RI Report where applicable.


Documentation of each phase of the project and all work tasks performed are kept in the file on the project. The documentation is available at all times for review by the Quality Assurance Officer, who will randomly check files for their completeness.

If any occurrences or conditions are encountered during the course of work that may require a change in the scope of work or departure from the approved work plan, the NYSDEC and Saint-Gobain will be notified and the situation reported as soon as possible.

FIGURE 1 Project Organizational Chart

C.T. Male Project Organizational Chart

<u>ATTACHMENT A</u> Laboratory Certifications

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

DR. YONGTAO LI EUROFINS EATON ANALYTICAL, INC 110 SOUTH HILL STREET SOUTH BEND, IN 46617 NY Lab Id No: 11398

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER All approved analytes are listed below:

Fuel Additives

Bacteriology

Coliform, Total / E. coli (Qualitative)	Colisure	Methyl tert-butyl ether	EPA 524.2
E. coli (Enumeration)	SM 18-22 9223B (-97) (Colilert)	Naphthalene	EPA 524.2
Heterotrophic Plate Count	SimPlate	Metals I	
Chlorinated Acids		Arsenic, Total	EPA 200.8 Rev. 5.4
2,4,5-TP (Silvex)	EPA 515.3	Barium, Total ment	EPA 200.8 Rev. 5.4
2,4-D	EPA 515.3	Cadmium, Total	EPA 200.8 Rev. 5.4
Acifluorofen	EPA 515.3	Chromium, Total	EPA 200.8 Rev. 5.4
Dalapon	EPA 515.3	Copper, Total	EPA 200.8 Rev. 5.4
Dicamba	EPA 515.3	Iron, Total	EPA 200.7 Rev. 4.4
Dinoseb	EPA 515.3	Lead, Total	EPA 200.8 Rev. 5.4
Pentachlorophenol	EPA 515.3	Manganese, Total	EPA 200.8 Rev. 5.4
Picloram	EPA 515.3	Mercury, Total	EPA 245.1 Rev. 3.0
Disinfection By-products		Selenium, Total	EPA 200.8 Rev. 5.4
Bromate	EPA 317.0 Rev. 2.0	Silver, Total	EPA 200.8 Rev. 5.4
Bromide	EPA 300.0 Rev. 2.1	Zinc, Total	EPA 200.8 Rev. 5.4
Bromochloroacetic acid	EPA 552.2	Metals II	
Chlorate	EPA 300.0 Rev. 2.1	Aluminum, Total	EPA 200.8 Rev. 5.4
Chlorite	EPA 300.0 Rev. 2.1	Antimony, Total	EPA 200.8 Rev. 5.4
Dibromoacetic acid	EPA 552.2	Beryllium, Total	EPA 200.8 Rev. 5,4
Dichloroacetic acid	EPA 552.2	Molybdenum, Total	EPA 200.8 Rev. 5.4
Monobromoacetic acid	EPA 552.2	Nickel, Total	EPA 200.8 Rev. 5.4
Monochloroacetic acid	EPA 552.2	Thallium, Total	EPA 200.8 Rev. 5.4
Trichloroacetic acid	EPA 552.2	Vanadium, Total	EPA 200.8 Rev. 5.4
		7."《皇》吴孟子李言学《言言字法言》	

Serial No.: 54247

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

DR. YONGTAO LI EUROFINS EATON ANALYTICAL, INC 110 SOUTH HILL STREET SOUTH BEND, IN 46617

NY Lab Id No: 11398

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER All approved analytes are listed below:

Miscellaneous

Metals III

Calcium, Total	EPA 200.7 Rev. 4.4	Hexachlorobenzene	EPA 525.2
Magnesium, Total	EPA 200.7 Rev. 4.4	Hexachlorocyclopentadiene	EPA 525.2
Potassium, Total	EPA 200.7 Rev. 4.4	Organic Carbon, Dissolved	SM 21-22 5310C (-00)
Sodium, Total	EPA 200.7 Rev. 4.4	Organic Carbon, Total	SM 21-22 5310C (-00)
Uranium (Mass)	EPA 200.8 Rev. 5.4	Perchlorate	EPA 331.0
Methylcarbamate Pesticides	YORK	Turbidity	EPA 180.1 Rev. 2.0
3-Hydroxy Carbofuran	EPA 531.2 STATE	UV 254	SM 19-22 5910B (-00)
Aldicarb	EPA 531.2	Non-Metals	
Aldicarb Sulfone	EPA 531.2	Alkalinity	SM 18-22 2320B (-97)
Aldicarb Sulfoxide	EPA 531.2	Calcium Hardness	SM 18-22 2340B (-97)
Carbaryl	EPA 531.2	Chloride	EPA 300.0 Rev. 2.1
Carbofuran	EPA 531.2	Color	SM 18-22 2120B (-01)
Methomyl	EPA 531.2	Corrosivity	SM 18-22 2330
Oxamyl	EPA 531.2	Cyanide	EPA 335.4 Rev. 1.0
Microextractibles		Fluoride, Total	SM 18-22 4500-F C (-97)
1,2-Dibromo-3-chloropropane	EPA 504.1	Nitrate (as N)	EPA 353.2 Rev. 2.0
1,2-Dibromoethane	EPA 504.1	Nitrite (as N)	EPA 353.2 Rev. 2.0
1,2-Dibromoethane		Orthophosphate (as P)	SM 18-22 4500-P E (-99)
Miscellaneous		Silica, Dissolved	EPA 200.7 Rev. 4.4
Benzo(a)pyrene	EPA 525.2	Solids, Total Dissolved	SM 18-22 2540C (-97)
Bis(2-ethylhexyl) phthalate	EPA 525.2	Specific Conductance	SM 18-22 2510B (-97)
Di (2-ethylhexyl) adipate	EPA 525.2	Sulfate (as SO4)	EPA 300.0 Rev. 2.1
Diquat	EPA 549.2	Organohalide Pesticides	
Endothall	EPA 548.1	Alachlor	EPA 525.2
Glyphosate	EPA 547	Alachior	
· <u>김</u> 로 (소문문) (지문) (소문문			EPA 525.2

Serial No.: 54247

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

DR. YONGTAO LI EUROFINS EATON ANALYTICAL, INC 110 SOUTH HILL STREET SOUTH BEND, IN 46617 NY Lab Id No: 11398

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER All approved analytes are listed below:

Trihalomethanes

Organohalide Pesticides

Atrazine	EPA 525.2	Bromodichloromethane	EPA 524.2
Butachlor	EPA 525.2	Bromoform	EPA 524.2
Chlordane Total	EPA 505	Chloroform	EPA 524.2
Dieldrin	EPA 525.2	Dibromochloromethane	EPA 524.2
Endrin	EPA 525.2	Total Trihalomethanes	EPA 524.2
Heptachlor	EPA 525.2	Volatile Aromatics	
Heptachlor epoxide	EPA 525.2	1,2,3-Trichlorobenzene	EPA 524.2
Lindane	EPA 525.2	1,2,4-Trichlorobenzene	EPA 524.2
Methoxychlor	EPA 525.2	1,2,4-Trimethylbenzene	EPA 524.2
Metolachlor	EPA 525.2	1,2-Dichlorobenzene	EPA 524.2
Metribuzin	EPA 525.2	1,3,5-Trimethylbenzene	EPA 524.2
Propachlor	EPA 525.2	1,3-Dichlorobenzene	EPA 524.2
Simazine	EPA 525.2	1,4-Dichlorobenzene	EPA 524.2
Toxaphene	EPA 505	2-Chlorotoluene	EPA 524.2
Trifluralin	EPA 525.2	4-Chlorotoluene	EPA 524.2
Polychlorinated Biphenyls		Benzene	EPA 524.2
PCB Screen	EPA 505	Bromobenzene	EPA 524.2
Radiological Analytes		Chlorobenzene	EPA 524.2
Gross Alpha	SM 17-22 7110B (-00)	Ethyl benzene	EPA 524.2
	SM 18-22 7110C (-00)	Hexachlorobutadiene	EPA 524.2
Gross Beta	SM 17-22 7110B (-00)	Isopropylbenzene	EPA 524.2
Radium-226	SM 17-22 7500-Ra B (-01)	n-Butylbenzene	EPA 524.2
Radium-228	SM 17-22 7500-Ra D (-01)	n-Propylbenzene	EPA 524.2
Radon	SM 20-22 7500 Rn (-06)	p-Isopropyltoluene (P-Cymene)	EPA 524.2
Tritium	EPA 906.0	sec-Butylbenzene	EPA 524.2

Serial No.: 54247

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

DR. YONGTAO LI EUROFINS EATON ANALYTICAL, INC 110 SOUTH HILL STREET SOUTH BEND, IN 46617

NY Lab Id No: 11398

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER All approved analytes are listed below:

Volatile Aromatics

Styrene	EPA 524.2
tert-Butylbenzene	EPA 524.2
Toluene	EPA 524.2
Total Xylenes	EPA 524.2
Volatile Halocarbons	
1,1,1,2-Tetrachloroethane	EPA 524.2
1,1,1-Trichloroethane	EPA 524.2
1,1,2,2-Tetrachloroethane	EPA 524.2
1,1,2-Trichloroethane	EPA 524.2
1,1-Dichloroethane	EPA 524.2
1,1-Dichloroethene	EPA 524.2
1,1-Dichloropropene	EPA 524.2
1,2,3-Trichloropropane	EPA 524.2
1,2-Dichloroethane	EPA 524.2
1,2-Dichloropropane	EPA 524.2
1,3-Dichloropropane	EPA 524.2
2,2-Dichloropropane	EPA 524.2
Bromochloromethane	EPA 524.2
Bromomethane	EPA 524.2
Carbon tetrachloride	EPA 524.2
Chloroethane	EPA 524.2
Chloromethane	EPA 524.2
cis-1,2-Dichloroethene	EPA 524.2
cis-1,3-Dichloropropene	EPA 524.2
Dibromomethane	EPA 524.2

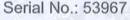
Volatile Halocarbons

Dichlorodifluoromethane	EPA 524.2
Methylene chloride	EPA 524.2
Tetrachloroethene	EPA 524.2
trans-1,2-Dichloroethene	EPA 524.2
trans-1,3-Dichloropropene	EPA 524.2
Trichloroethene	EPA 524.2
Trichlorofluoromethane	EPA 524.2
Vinyl chloride	EPA 524.2

Serial No.: 54247

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State


MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER All approved analytes are listed below:

Metals I

Bacteriology

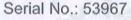
Coliform, Total / E. coli (Qualitative)	SM 18-22 9223B (-97) (Colilert)	Barium, Total	EPA 200.8 Rev. 5.4
Heterotrophic Plate Count	SM 18-22 9215B (-00)	Cadmium, Total	EPA 200.7 Rev. 4.4
Chlorinated Acids			EPA 200.8 Rev. 5.4
2,4,5-TP (Silvex)	EPA 515.1	Chromium, Total	EPA 200.7 Rev. 4.4
2,4-D	EPA 515.1		EPA 200.8 Rev. 5.4
Dalapon	EPA 515.1	Copper, Total	EPA 200.7 Rev. 4.4
Dicamba	EPA 515.1		EPA 200.8 Rev. 5.4
Dinoseb	EPA 515.1	Iron, Total	EPA 200.7 Rev. 4.4
Pentachlorophenol	EPA 515.1	Lead, Total	EPA 200.8 Rev. 5.4
Picloram	EPA 515.1	Manganese, Total	EPA 200.7 Rev. 4.4
	LINOISI		EPA 200.8 Rev. 5.4
Disinfection By-products		Mercury, Total	EPA 245.1 Rev. 3.0
Bromide	EPA 300.0 Rev. 2.1	Selenium, Total	EPA 200.8 Rev. 5.4
Dissolved Gases		Silver, Total	EPA 200.7 Rev. 4.4
Acetylene	RSK-175	Zinc, Total	EPA 200.7 Rev. 4.4
Ethane	RSK-175		EPA 200.8 Rev. 5.4
Ethene (Ethylene)	RSK-175	Metals II	
Methane	RSK-175	Aluminum, Total	EPA 200.7 Rev. 4.4
Fuel Additives		Antimony, Total	EPA 200.8 Rev. 5.4
Methyl tert-butyl ether	EPA 524.2	Beryllium, Total	EPA 200.7 Rev. 4.4
Naphthalene	EPA 524.2		EPA 200.8 Rev. 5.4
		Nickel, Total	EPA 200.7 Rev. 4.4
Metals I			EPA 200.8 Rev. 5.4
Arsenic, Total	EPA 200.8 Rev. 5.4	Thallium, Total	EPA 200.8 Rev. 5.4
Barium, Total	EPA 200.7 Rev. 4.4	Vanadium, Total	EPA 200.7 Rev. 4.4

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

RECO


TATIO

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER All approved analytes are listed below:

Miscellaneous

Metals III

Calcium, Total	EPA 200.7 Rev. 4.4	Organic Carbon, Total	SM 21-22 5310C (-00)
Magnesium, Total	EPA 200.7 Rev. 4.4	Surfactant (MBAS)	SM 18-22 5540C (-00)
Potassium, Total	EPA 200.7 Rev. 4.4	Turbidity	SM 18-22 2130 B (-01)
Sodium, Total	EPA 200.7 Rev. 4.4		EPA 180.1 Rev. 2.0
Methylcarbamate Pesticides		Non-Metals	
3-Hydroxy Carbofuran	EPA 531.1	Alkalinity	SM 18-22 2320B (-97)
Aldicarb	EPA 531.1	Calcium Hardness	SM 18-22 2340C (-97)
Aldicarb Sulfone	EPA 531.1		SM 18-22 2340B (-97)
Aldicarb Sulfoxide	EPA 531.1	Chloride	EPA 300.0 Rev. 2.1
Carbaryl	EPA 531.1	Color	SM 18-22 2120B (-01)
Carbofuran	EPA 531.1	Cyanide	EPA 335.4 Rev. 1.0
Methomyl	EPA 531.1	Fluoride, Total	EPA 300.0 Rev. 2.1
Oxamyl	EPA 531.1		SM 18-22 4500-F C (-97)
Microextractibles		Nitrate (as N)	EPA 353.2 Rev. 2.0
1,2-Dibromo-3-chloropropane	EPA 504.1		EPA 300.0 Rev. 2.1
1,2-Dibromoethane	EPA 504.1	Nitrite (as N)	EPA 353.2 Rev. 2.0
			EPA 300.0 Rev. 2.1
Miscellaneous		Orthophosphate (as P)	SM 18-22 4500-P E (-99)
2,3,7,8-Tetrachlorodibenzo-p-dioxin	EPA 1613B	Silica, Dissolved	SM 20-22 4500-SiO2 C (-97)
Benzo(a)pyrene	EPA 525.2	Solids, Total Dissolved	SM 18-22 2540C (-97)
Bis(2-ethylhexyl) phthalate	EPA 525.2	Specific Conductance	SM 18-22 2510B (-97)
Di (2-ethylhexyl) adipate	EPA 525.2	Sulfate (as SO4)	EPA 300.0 Rev. 2.1
Hexachlorobenzene	EPA 525.2	Organohalide Pesticides	
Hexachlorocyclopentadiene	EPA 525.2		
Methyl iodide	EPA 524.2	Alachlor	EPA 507
			EPA 525.2

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER All approved analytes are listed below:

Volatile Aromatics

Organohalide Pesticides

Atrazine	EPA 507	1,3,5-Trimethylbenzene	EPA 524.2
	EPA 525.2	1,3-Dichlorobenzene	EPA 524.2
Butachlor	EPA 525.2	1,4-Dichlorobenzene	EPA 524.2
Dieldrin	EPA 525.2	2-Chlorotoluene	EPA 524.2
Endrin	EPA 525.2	4-Chlorotoluene	EPA 524.2
Heptachlor	EPA 525.2	Benzene	EPA 524.2
Heptachlor epoxide	EPA 525.2	Bromobenzene	EPA 524.2
Lindane	EPA 525.2	Chlorobenzene	EPA 524.2
Methoxychlor	EPA 525.2	Ethyl benzene	EPA 524.2
Metolachlor	EPA 525.2	Hexachlorobutadiene	EPA 524.2
Metribuzin	EPA 525.2	Isopropylbenzene	EPA 524.2
Propachlor	EPA 525.2	n-Butylbenzene	EPA 524.2
Simazine	EPA 507	n-Propylbenzene	EPA 524.2
	EPA 525.2	p-Isopropyltoluene (P-Cymene)	EPA 524.2
Trihalomethanes		sec-Butylbenzene	EPA 524.2
Bromodichloromethane	EPA 524.2	Styrene	EPA 524.2
Bromoform	EPA 524.2	tert-Butylbenzene	EPA 524.2
Chloroform	EPA 524.2	Toluene	EPA 524.2
Dibromochloromethane	EPA 524.2	Total Xylenes	EPA 524.2
Total Trihalomethanes	EPA 524.2	Volatile Halocarbons	
Volatile Aromatics		1,1,1,2-Tetrachloroethane	EPA 524.2
1,2,3-Trichlorobenzene	EPA 524.2	1,1,1-Trichloroethane	EPA 524.2
1,2,4-Trichlorobenzene	EPA 524.2	1,1,2,2-Tetrachloroethane	EPA 524.2
1,2,4-Trimethylbenzene	EPA 524.2	1,1,2-Trichloroethane	EPA 524.2
1,2-Dichlorobenzene	EPA 524.2	1,1-Dichloroethane	EPA 524.2
12 2.010100012010	LITINGTIC		

Serial No.: 53967

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

NY Lab Id No: 10670

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER All approved analytes are listed below:

Volatile Halocarbons

1,1-Dichloroethene	EPA 524.2
1,1-Dichloropropene	EPA 524.2
1,2,3-Trichloropropane	EPA 524.2
1,2-Dichloroethane	EPA 524.2
1,2-Dichloropropane	EPA 524.2
1,3-Dichloropropane	EPA 524.2
2,2-Dichloropropane	EPA 524.2
Bromochloromethane	EPA 524.2
Bromomethane	EPA 524.2
Carbon tetrachloride	EPA 524.2
Chloroethane	EPA 524.2
Chloromethane	EPA 524.2
cis-1,2-Dichloroethene	EPA 524.2
cis-1,3-Dichloropropene	EPA 524.2
Dibromomethane	EPA 524.2
Dichlorodifluoromethane	EPA 524.2
Methylene chloride	EPA 524.2
Tetrachloroethene	EPA 524.2
trans-1,2-Dichloroethene	EPA 524.2
trans-1,3-Dichloropropene	EPA 524.2
Trichloroethene	EPA 524.2
Trichlorofluoromethane	EPA 524.2
Vinyl chloride	EPA 524.2

Serial No.: 53967

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

NY Lab Id No: 10670

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

> > Amines

1.00	111.0	1.1.4.	
Ac	nd	24	De.
MG	1 71	CI L	63

riorfiatos		74111105	
Acrolein (Propenal)	EPA 8260C	Methapyrilene	EPA 8270D
	EPA 624	Pronamide	EPA 8270D
Acrylonitrile	EPA 8260C	Propionitrile	EPA 8260C
	EPA 624	Pyridine	EPA 625
Ethyl methacrylate	EPA 8260C		EPA 8270D
Methyl acrylonitrile	EPA 8260C	Bacteriology	
Methyl methacrylate	EPA 8260C	Coliform, Fecal	SM 9222D-97
Amines		Benzidines	
1,2-Diphenylhydrazine	EPA 8270D	3,3'-Dichlorobenzidine	EPA 625
1,4-Phenylenediamine	EPA 8270D	3,3 -Dichlorobenzidine	EPA 8270D
1-Naphthylamine	EPA 8270D	3,3'-Dimethylbenzidine	EPA 8270D
2,3-Dichloroaniline	EPA 625	Benzidine	EPA 625
2-Naphthylamine	EPA 8270D	Benzidine	EPA 8270D
2-Nitroaniline	EPA 8270D		EFA 0270D
3-Nitroaniline	EPA 8270D	Chlorinated Hydrocarbon Pesticide	5
4,4'-Methylenebis(2-chloroaniline)	EPA 8270D	4,4'-DDD	EPA 8081B
4-Chloroaniline	EPA 8270D		EPA 608
4-Nitroaniline	EPA 8270D	4,4'-DDE	EPA 8081B
5-Nitro-o-toluidine	EPA 8270D		EPA 608
a,a-Dimethylphenethylamine	EPA 8270D	4,4'-DDT	EPA 8081B
Aniline	EPA 625		EPA 608
	EPA 8270D	Aldrin	EPA 8081B
Carbazole	EPA 625		EPA 608
	EPA 8270D	alpha-BHC	EPA 8081B
Diphenylamine	EPA 8270D		EPA 608

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Chlorinated Hydrocarbon Pesticides

Chlorinated Hydrocarbon Pesticides

alaba Chlavdana	EPA 8081B	Inadija	EPA 8270D
alpha-Chlordane		Isodrin	
beta-BHC	EPA 8081B	Kepone	EPA 8081B
	EPA 608		EPA 8270D
Chlordane Total	EPA 8081B	Lindane	EPA 8081B
	EPA 608		EPA 608
delta-BHC	EPA 8081B	Methoxychlor	EPA 8081B
	EPA 608		EPA 608
Diallate	EPA 8270D	Mirex	EPA 8081B
Dieldrin	EPA 8081B	PCNB	EPA 8270D
	EPA 608	Toxaphene	EPA 8081B
Endosulfan I	EPA 8081B		EPA 608
	EPA 608	Chlorinated Hydrocarbons	
Endosulfan II	EPA 8081B	1,2,3-Trichlorobenzene	EPA 8260C
	EPA 608	1,2,4,5-Tetrachlorobenzene	EPA 8270D
Endosulfan sulfate	EPA 8081B		
	EPA 608	1,2,4-Trichlorobenzene	EPA 625
Endrin	EPA 8081B		EPA 8270D
	EPA 608	1-Chloronaphthalene	EPA 8270D
Endrin aldehyde	EPA 8081B	2-Chloronaphthalene	EPA 625
	EPA 608		EPA 8270D
Endrin Ketone	EPA 8081B	Hexachlorobenzene	EPA 625
			EPA 8270D
gamma-Chlordane	EPA 8081B	Hexachlorobutadiene	EPA 625
Heptachlor	EPA 8081B		EPA 8270D
	EPA 608	Hexachlorocyclopentadiene	EPA 625
Heptachlor epoxide	EPA 8081B		EPA 8270D
	EPA 608		

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

NY Lab Id No: 10670

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

> > **Dioxins and Furans**

Chlorinated Hydrocarbons

Hexachloroethane	EPA 625	1,2,3,4,6,7,8-Heptachlorodibenzofuran	EPA 1613B
	EPA 8270D	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxi	EPA 8290A
Hexachloropropene	EPA 8270D		EPA 1613B
Pentachlorobenzene	EPA 8270D	1,2,3,4,7,8,9-Heptachlorodibenzofuran	EPA 8290A
Chlorophenoxy Acid Pesticides			EPA 1613B
2,4,5-T	EPA 8151A	1,2,3,4,7,8-Hexachlorodibenzofuran	EPA 8290A
2,4,5-TP (Silvex)	EPA 8151A		EPA 1613B
2,4-D	EPA 8151A	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	EPA 8290A
2,4-DB	EPA 8151A		EPA 1613B
Dalapon	EPA 8151A	1,2,3,6,7,8-Hexachlorodibenzofuran	EPA 8290A
Dicamba	EPA 8151A		EPA 1613B
Dichloroprop	EPA 8151A	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	EPA 8290A
Dinoseb	EPA 8151A	A 8151A	
	EPA 8270D	1,2,3,7,8,9-Hexachlorodibenzofuran	EPA 8290A
Demand			EPA 1613B
	CN 50100 04 44	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	EPA 8290A
Biochemical Oxygen Demand	SM 5210B-01,-11		EPA 1613B
Carbonaceous BOD	SM 5210B-01,-11	1,2,3,7,8-Pentachlorodibenzofuran	EPA 8290A
Chemical Oxygen Demand	EPA 410.4 Rev. 2.0		EPA 1613B
Dioxins and Furans		1,2,3,7,8-Pentachlorodibenzo-p-dioxin	EPA 8290A
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	EPA 8290A		EPA 1613B
	EPA 1613B	2,3,4,6,7,8-Hexachlorodibenzofuran	EPA 8290A
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-diox	EPA 8290A		EPA 1613B
	EPA 1613B	2,3,4,7,8-Pentachlorodibenzofuran	EPA 8290A
1,2,3,4,6,7,8-Heptachlorodibenzofuran	EPA 8290A		EPA 1613B
		2,3,7,8-Tetrachlorodibenzofuran	EPA 8290A

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Dioxins and Furans		Haloethers	
2,3,7,8-Tetrachlorodibenzofuran	EPA 1613B	4-Chlorophenylphenyl ether	EPA 625
2,3,7,8-Tetrachlorodibenzo-p-dioxin	EPA 8290A		EPA 8270D
	EPA 1613B	Bis(2-chloroethoxy)methane	EPA 625
Dissolved Gases			EPA 8270D
Ethane	RSK-175	Bis(2-chloroethyl)ether	EPA 625
Ethene (Ethylene)	RSK-175		EPA 8270D
Methane	RSK-175	Low Level Halocarbons	
Propane	RSK-175	1,2-Dibromo-3-chloropropane, Low Level	EPA 8011
Fuel Oxygenates		1,2-Dibromoethane, Low Level	EPA 8011
Di-isopropyl ether	EPA 8260C	Low Level Polynuclear Aromatics	
Ethanol	EPA 8260C	Acenaphthene Low Level	EPA 8270D SIM
	EPA 8015D	Acenaphthylene Low Level	EPA 8270D SIM
	EPA 8015C	Anthracene Low Level	EPA 8270D SIM
Methyl tert-butyl ether	EPA 8260C	Benzo(a)anthracene Low Level	EPA 8270D SIM
	EPA 8021B	Benzo(a)pyrene Low Level	EPA 8270D SIM
tert-amyl alcohol	EPA 8260C	Benzo(b)fluoranthene Low Level	EPA 8270D SIM
tert-amyl methyl ether (TAME)	EPA 8260C	Benzo(g,h,i)perylene Low Level	EPA 8270D SIM
tert-butyl alcohol	EPA 8260C	Benzo(k)fluoranthene Low Level	EPA 8270D SIM
tert-butyl ethyl ether (ETBE)	EPA 8260C	Chrysene Low Level	EPA 8270D SIM
Haloethers		Dibenzo(a,h)anthracene Low Level	EPA 8270D SIM
2,2'-Oxybis(1-chloropropane)	EPA 625	Fluoranthene Low Level	EPA 8270D SIM
2,2-0,4,013(1-011010(0)00)0000109	EPA 8270D	Fluorene Low Level	EPA 8270D SIM
4-Bromophenylphenyl ether	EPA 625	Indeno(1,2,3-cd)pyrene Low Level	EPA 8270D SIM
- Diomophenyiphenyi ether	EPA 8270D	Naphthalene Low Level	EPA 8270D SIM
	LIAOLIOD	Phenanthrene Low Level	EPA 8270D SIM

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Low Level Polynuclear Aroma	tics	Metals I	
Pyrene Low Level	EPA 8270D SIM	Iron, Total	EPA 6020A
Metals I			EPA 200.8 Rev. 5.4
Barium, Total	EPA 200.7 Rev. 4.4	Lead, Total	EPA 200.7 Rev. 4.4
Daridin, Total	EPA 6010C		EPA 6010C
	EPA 6020A		EPA 6020A
	EPA 200.8 Rev. 5.4		EPA 200.8 Rev. 5.4
Cadmium, Total	EPA 200.7 Rev. 4.4	Magnesium, Total	EPA 200.7 Rev. 4.4
Gaumum, rotai	EPA 6010C		EPA 6010C
	EPA 6020A		EPA 6020A
	EPA 200.8 Rev. 5.4		EPA 200.8 Rev. 5.4
Colsium Total	EPA 200.8 Rev. 5.4 EPA 200.7 Rev. 4.4	Manganese, Total	EPA 200.7 Rev. 4.4
Calcium, Total			EPA 6010C
	EPA 6010C		EPA 6020A
	EPA 6020A		EPA 200.8 Rev. 5.4
	EPA 200.8 Rev. 5.4	Nickel, Total	EPA 200.7 Rev. 4.4
Chromium, Total	EPA 200.7 Rev. 4.4		EPA 6010C
	EPA 6010C		EPA 6020A
	EPA 6020A		EPA 200.8 Rev. 5.4
	EPA 200.8 Rev. 5.4	Potassium, Total	EPA 200.7 Rev. 4.4
Copper, Total	EPA 200.7 Rev. 4.4		EPA 6010C
	EPA 6010C		EPA 6020A
	EPA 6020A		EPA 200.8 Rev. 5.4
	EPA 200.8 Rev. 5.4	Silver, Total	EPA 200.7 Rev. 4.4
Iron, Total	SM 3500-Fe B-97,-11	Giver, Iotal	EPA 6010C
	EPA 200.7 Rev. 4.4		EPA 6020A
	EPA 6010C		
			EPA 200.8 Rev. 5.4

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

NY Lab Id No: 10670

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

> > Metals II

Metals I

EPA 200.7 Rev. 4.4 EPA 218.6 Rev. 3.3 Sodium, Total Chromium VI EPA 7196A EPA 6010C EPA 6020A EPA 7199 SM 3500-Cr B-09,-11 EPA 200.8 Rev. 5.4 EPA 200.7 Rev. 4.4 EPA 1631E Strontium, Total Mercury, Low Level EPA 6010C Mercury, Total EPA 245.1 Rev. 3.0 EPA 6020A EPA 7470A EPA 200.7 Rev. 4.4 EPA 200.8 Rev. 5.4 Selenium, Total EPA 6010C Metals II EPA 6020A Aluminum, Total EPA 200.7 Rev. 4.4 EPA 200.8 Rev. 5.4 EPA 6010C Vanadium, Total EPA 200.7 Rev. 4.4 EPA 6020A EPA 6010C EPA 200.8 Rev. 5.4 EPA 6020A Antimony, Total EPA 200.7 Rev. 4.4 EPA 200.8 Rev. 5.4 EPA 6010C EPA 200.7 Rev. 4.4 Zinc, Total EPA 6020A EPA 6010C EPA 200.8 Rev. 5.4 EPA 6020A Arsenic, Total EPA 200.7 Rev. 4.4 EPA 200.8 Rev. 5.4 EPA 6010C Metals III EPA 6020A EPA 200.8 Rev. 5.4 Cobalt, Total EPA 200.7 Rev. 4.4 Beryllium, Total EPA 200.7 Rev. 4.4 EPA 6010C EPA 6010C EPA 6020A EPA 200.8 Rev. 5.4 EPA 6020A EPA 200.8 Rev. 5.4 Molybdenum, Total EPA 200.7 Rev. 4.4

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Metals III

Molybdenum, Total EPA 6010C Fluoride, Total EPA 9056A EPA 6020A Hardness, Total SM 2340C-97,-11 EPA 200.8 Rev. 5.4 SM 2340B-97,-11 EPA 200.7 Rev. 4.4 Thallium, Total Sulfate (as SO4) EPA 300.0 Rev. 2.1 EPA 6010C EPA 9056A EPA 6020A Miscellaneous EPA 200.8 Rev. 5.4 Boron, Total EPA 200.7 Rev. 4.4 EPA 200.7 Rev. 4.4 Tin, Total EPA 6010C EPA 6010C EPA 6020A EPA 6020A EPA 200.8 Rev. 5.4 EPA 200.8 Rev. 5.4 Bromide EPA 300.0 Rev. 2.1 Titanium, Total EPA 200.7 Rev. 4.4 EPA 9056A EPA 6010C Color SM 2120B-01,-11 EPA 6020A Cyanide, Available OIA-1677 EPA 200.8 Rev. 5.4 Cyanide, Free OIA-1677 EPA 6020A Uranium (Mass) Cyanide, Total EPA 335.4 Rev. 1.0 EPA 200.8 Rev. 5.4 EPA 9012B Mineral ASTM D7511-09 Acidity SM 2310B-97,-11 Formaldehyde EPA 8315A Alkalinity SM 2320B-97,-11 Oil and Grease Total Recoverable (HEM) EPA 1664A EPA 300.0 Rev. 2.1 Chloride EPA 1664B SM 4500-CI- C-97,-11 Organic Carbon, Total SM 5310C-00,-11 EPA 9056A EPA 9060A Fluoride, Total EPA 300.0 Rev. 2.1

SM 4500-F C-97,-11

Mineral

Perchlorate Phenols

EPA 6850 EPA 420.4 Rev. 1.0

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Nitroaromatics and Isophorone

Miscellaneous

Phenols	EPA 9066	3-Nitrotoluene	EPA 8330A
Silica, Dissolved	SM 4500-SiO2 C-97,-11	4-Amino-2,6-dinitrotoluene	EPA 8330A
Specific Conductance	SM 2510B-97,-11	4-Nitrotoluene	EPA 8330A
	EPA 9050A	Hexahydro-1,3,5-trinitro-1,3,5-triazine	EPA 8330A
Sulfide (as S)	SM 4500-S2- F-00,-11	Isophorone	EPA 625
	SM 4500-S2- D-00,-11		EPA 8270D
Surfactant (MBAS)	SM 5540C-00,-11	Methyl-2,4,6-trinitrophenylnitramine	EPA 8330A
Turbidity	EPA 180.1 Rev. 2.0	Nitrobenzene	EPA 625
Nitroaromatics and Isophorone			EPA 8270D
1,3,5-Trinitrobenzene	EPA 8270D		EPA 8330A
1,3,3-1111100012010	EPA 8330A	Nitroglycerine	EPA 8330B
1,3-Dinitrobenzene	EPA 8270D Nitroquinoline-1-oxide		EPA 8270D
	EPA 8330A	Octahydro-tetranitro-tetrazocine	EPA 8330A
1,4-Naphthoguinone	EPA 8270D	Pentaerythritol tetranitrate	EPA 8330B
2,4,6-Trinitrotoluene	EPA 8330A	Nitrosoamines	
2,4-Dinitrotoluene	EPA 625	N-Nitrosodiethylamine	EPA 8270D
	EPA 8270D	N-Nitrosodimethylamine	EPA 625
	EPA 8330A		EPA 8270D
2,6-Dinitrotoluene	EPA 625	N-Nitrosodi-n-butylamine	EPA 8270D
	EPA 8270D	N-Nitrosodi-n-propylamine	EPA 625
	EPA 8330A		EPA 8270D
2-Amino-4,6-dinitrotoluene	EPA 8330A	N-Nitrosodiphenylamine	EPA 625
	EPA 8330B		EPA 8270D
2-Nitrotoluene	EPA 8330A	N-nitrosomethylethylamine	EPA 8270D
3,5-Dinitroaniline	EPA 8330B	N-nitrosomorpholine	EPA 8270D

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

EPA 8270D

EPA 8270D

SM 4500-NH3 C-97,-11 EPA 350.1 Rev. 2.0

EPA 351.2 Rev. 2.0

EPA 353.2 Rev. 2.0 EPA 300.0 Rev. 2.1 EPA 9056A

EPA 353.2 Rev. 2.0

EPA 353.2 Rev. 2.0 EPA 300.0 Rev. 2.1

EPA 365.3 Rev. 1978 SM 4500-P E-99,-11

EPA 365.1 Rev. 2.0 SM 4500-P F-99,-11

EPA 9056A

EPA 8141B

EPA 8270D

EPA 8141B

EPA 8141B

EPA 8141B

EPA 8141B

SM 4500-NH3 D or E-97,-11

NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Nitrosoamines

N-nitrosopiperidine N-Nitrosopyrrolidine

Nutrient

Ammonia (as N)

Kjeldahl Nitrogen, Total Nitrate (as N)

Nitrate-Nitrite (as N) Nitrite (as N)

Orthophosphate (as P)

Phosphorus, Total

Organophosphate Pesticides Atrazine

Azinphos methyl Chlorpyriphos Demeton-O Demeton-S

Serial No.: 53968

Property of the New York State Department of Health. Certificates are valid only at the address shown, must be conspicuously posted, and are printed on secure paper. Continued accreditation depends on successful ongoing participation in the Program. Consumers are urged to call (518) 485-5570 to verify the laboratory's accreditation status.

Diazinon	EPA 8141B
Dimethoate	EPA 8270D
Disulfoton	EPA 8141B
	EPA 8270D
Famphur	EPA 8141B
	EPA 8270D
Malathion	EPA 8141B
Parathion ethyl	EPA 8141B
	EPA 8270D
Parathion methyl	EPA 8141B
	EPA 8270D
Phorate	EPA 8141B
	EPA 8270D
Simazine	EPA 8141B
Sulfotepp	EPA 8270D
Thionazin	EPA 8270D
Petroleum Hydrocarbons	
Diesel Range Organics	EPA 8015D
	EPA 8015C
Gasoline Range Organics	EPA 8015D
	EPA 8015C
Phthalate Esters	
Benzyl butyl phthalate	EPA 625
Addres Giggins	EPA 8270D
Bis(2-ethylhexyl) phthalate	EPA 625

Organophosphate Pesticides

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

NY Lab Id No: 10670

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Phthalate Esters		Polychlorinated Biphenyl	s
Bis(2-ethylhexyl) phthalate	EPA 8270D	PCB 112	EPA 1668 A
Diethyl phthalate	EPA 625	PCB 113	EPA 1668 A
	EPA 8270D	PCB 114	EPA 1668 A
Dimethyl phthalate	EPA 625	PCB 115	EPA 1668 A
	EPA 8270D	PCB 116	EPA 1668 A
Di-n-butyl phthalate	EPA 625	PCB 117	EPA 1668 A
	EPA 8270D	PCB 118	EPA 1668 A
Di-n-octyl phthalate	EPA 625	PCB 119	EPA 1668 A
	EPA 8270D	PCB 12	EPA 1668 A
Polychlorinated Biphenyls		PCB 120	EPA 1668 A
PCB 1	EPA 1668 A	PCB 121	EPA 1668 A
PCB 10	EPA 1668 A	PCB 122	EPA 1668 A
PCB 100	EPA 1668 A	PCB 123	EPA 1668 A
PCB 101	EPA 1668 A	PCB 124	EPA 1668 A
PCB 101	EPA 1668 A	PCB 125	EPA 1668 A
PCB 102	EPA 1668 A	PCB 126	EPA 1668 A
PCB 104	EPA 1668 A	PCB 127	EPA 1668 A
PCB 105	EPA 1668 A	PCB 128	EPA 1668 A
PCB 106	EPA 1668 A	PCB 129	EPA 1668 A
PCB 107	EPA 1668 A	PCB 13	EPA 1668 A
PCB 108	EPA 1668 A	PCB 130	EPA 1668 A
PCB 109	EPA 1668 A	PCB 131	EPA 1668 A
PCB 103	EPA 1668 A	PCB 132	EPA 1668 A
PCB 110	EPA 1668 A	PCB 133	EPA 1668 A
PCB 110	EPA 1668 A	PCB 134	EPA 1668 A
FOD TH	EFA 1000 A	PCB 135	EPA 1668 A

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

NY Lab Id No: 10670

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

> > **Polychlorinated Biphenyls**

Polychlorinated Biphenyls

PCB 136	EPA 1668 A	PCB 16	EPA 1668 A
PCB 137	EPA 1668 A	PCB 160	EPA 1668 A
PCB 138	EPA 1668 A	PCB 161	EPA 1668 A
PCB 139	EPA 1668 A	PCB 162	EPA 1668 A
PCB 14	EPA 1668 A	PCB 163	EPA 1668 A
PCB 140	EPA 1668 A	PCB 164	EPA 1668 A
PCB 141	EPA 1668 A	PCB 165	EPA 1668 A
PCB 142	EPA 1668 A	PCB 166	EPA 1668 A
PCB 143	EPA 1668 A	PCB 167	EPA 1668 A
PCB 144	EPA 1668 A	PCB 168	EPA 1668 A
PCB 145	EPA 1668 A	PCB 169	EPA 1668 A
PCB 146	EPA 1668 A	PCB 17	EPA 1668 A
PCB 147	EPA 1668 A	PCB 170	EPA 1668 A
PCB 148	EPA 1668 A	PCB 171	EPA 1668 A
PCB 149	EPA 1668 A	PCB 172	EPA 1668 A
PCB 15	EPA 1668 A	PCB 173	EPA 1668 A
PCB 150	EPA 1668 A	PCB 174	EPA 1668 A
PCB 151	EPA 1668 A	PCB 175	EPA 1668 A
PCB 152	EPA 1668 A	PCB 176	EPA 1668 A
PCB 153	EPA 1668 A	PCB 177	EPA 1668 A
PCB 154	EPA 1668 A	PCB 178	EPA 1668 A
PCB 155	EPA 1668 A	PCB 179	EPA 1668 A
PCB 156	EPA 1668 A	PCB 18	EPA 1668 A
PCB 157	EPA 1668 A	PCB 180	EPA 1668 A
PCB 158	EPA 1668 A	PCB 181	EPA 1668 A
PCB 159	EPA 1668 A	PCB 182	EPA 1668 A

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

NY Lab Id No: 10670

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

> > **Polychlorinated Biphenyls**

Polychlorinated Biphenyls

		r orjonnermatea Dipiterija	
PCB 183	EPA 1668 A	PCB 206	EPA 1668 A
PCB 184	EPA 1668 A	PCB 207	EPA 1668 A
PCB 185	EPA 1668 A	PCB 208	EPA 1668 A
PCB 186	EPA 1668 A	PCB 209	EPA 1668 A
PCB 187	EPA 1668 A	PCB 21	EPA 1668 A
PCB 188	EPA 1668 A	PCB 22	EPA 1668 A
PCB 189	EPA 1668 A	PCB 23	EPA 1668 A
PCB 19	EPA 1668 A	PCB 24	EPA 1668 A
PCB 190	EPA 1668 A	PCB 25	EPA 1668 A
PCB 191	EPA 1668 A	PCB 26	EPA 1668 A
PCB 192	EPA 1668 A	PCB 27	EPA 1668 A
PCB 193	EPA 1668 A	PCB 28	EPA 1668 A
PCB 194	EPA 1668 A	PCB 29	EPA 1668 A
PCB 195	EPA 1668 A	PCB 3	EPA 1668 A
PCB 196	EPA 1668 A	PCB 30	EPA 1668 A
PCB 197	EPA 1668 A	PCB 31	EPA 1668 A
PCB 198	EPA 1668 A	PCB 32	EPA 1668 A
PCB 199	EPA 1668 A	PCB 33	EPA 1668 A
PCB 2	EPA 1668 A	PCB 34	EPA 1668 A
PCB 20	EPA 1668 A	PCB 35	EPA 1668 A
PCB 200	EPA 1668 A	PCB 36	EPA 1668 A
PCB 201	EPA 1668 A	PCB 37	EPA 1668 A
PCB 202	EPA 1668 A	PCB 38	EPA 1668 A
PCB 203	EPA 1668 A	PCB 39	EPA 1668 A
PCB 204	EPA 1668 A	PCB 4	EPA 1668 A
PCB 205	EPA 1668 A	PCB 40	EPA 1668 A

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

NY Lab Id No: 10670

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Polychlorinated Biphenyls		Polychlorinated Biphenyls	
PCB 41	EPA 1668 A	PCB 65	EPA 1668 A
PCB 42	EPA 1668 A	PCB 66	EPA 1668 A
PCB 43	EPA 1668 A	PCB 67	EPA 1668 A
PCB 44	EPA 1668 A	PCB 68	EPA 1668 A
PCB 45	EPA 1668 A	PCB 69	EPA 1668 A
PCB 46	EPA 1668 A	PCB 7	EPA 1668 A
PCB 47	EPA 1668 A	PCB 70	EPA 1668 A
PCB 48	EPA 1668 A	PCB 71	EPA 1668 A
PCB 49	EPA 1668 A	PCB 72	EPA 1668 A
PCB 5	EPA 1668 A	PCB 73	EPA 1668 A
PCB 50	EPA 1668 A	PCB 74	EPA 1668 A
PCB 51	EPA 1668 A	PCB 75	EPA 1668 A
PCB 52	EPA 1668 A	PCB 76	EPA 1668 A
PCB 53	EPA 1668 A	PCB 77	EPA 1668 A
PCB 54	EPA 1668 A	PCB 78	EPA 1668 A
PCB 55	EPA 1668 A	PCB 79	EPA 1668 A
PCB 56	EPA 1668 A	PCB 8	EPA 1668 A
PCB 57	EPA 1668 A	PCB 80	EPA 1668 A
PCB 58	EPA 1668 A	PCB 81	EPA 1668 A
PCB 59	EPA 1668 A	PCB 82	EPA 1668 A
PCB 6	EPA 1668 A	PCB 83	EPA 1668 A
PCB 60	EPA 1668 A	PCB 84	EPA 1668 A
PCB 61	EPA 1668 A	PCB 85	EPA 1668 A
PCB 62	EPA 1668 A	PCB 86	EPA 1668 A
PCB 63	EPA 1668 A	PCB 87	EPA 1668 A
PCB 64	EPA 1668 A	PCB 88	EPA 1668 A

Serial No.: 53968

Property of the New York State Department of Health. Certificates are valid only at the address shown, must be conspicuously posted, and are printed on secure paper. Continued accreditation depends on successful ongoing participation in the Program. Consumers are urged to call (518) 485-5570 to verify the laboratory's accreditation status.

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Polychlorinated Biphenyls

Polychlorinated Biphenyls

i olychiormatea pipiteriyis		r oryentermated Expirenyis	
PCB 89	EPA 1668 A	PCB-1262	EPA 8082A
PCB 9	EPA 1668 A	PCB-1268	EPA 8082A
PCB 90	EPA 1668 A	Polynuclear Aromatics	
PCB 91	EPA 1668 A	2-Acetylaminofluorene	EPA 8270D
PCB 92	EPA 1668 A	3-Methylcholanthrene	EPA 8270D
PCB 93	EPA 1668 A	7,12-Dimethylbenzyl (a) anthracene	EPA 8270D
PCB 94	EPA 1668 A		EPA 6270D
PCB 95	EPA 1668 A	Acenaphthene	EPA 8270D
PCB 96	EPA 1668 A	Accessibility does	EPA 6270D
PCB 97	EPA 1668 A	Acenaphthylene	
PCB 98	EPA 1668 A	EPA 8270D	
PCB 99	EPA 1668 A	Anthracene	EPA 625
PCB-1016	EPA 8082A	Benzo(a)anthracene	EPA 8270D
	EPA 608		EPA 625
PCB-1221	EPA 8082A	Benzo(a)pyrene	EPA 8270D
	EPA 608		EPA 625
PCB-1232	EPA 8082A	Benzo(b)fluoranthene	EPA 8270D
	EPA 608		EPA 625
PCB-1242	EPA 8082A	Benzo(ghi)perylene	EPA 8270D
	EPA 608		EPA 625
PCB-1248	EPA 8082A		EPA 8270D
	EPA 608	Benzo(k)fluoranthene	EPA 625
PCB-1254	EPA 8082A		EPA 8270D
	EPA 608	Chrysene	EPA 625
PCB-1260	EPA 8082A		EPA 8270D
FOD-1200	EPA 608	Dibenzo(a,h)anthracene	EPA 625
	LINOUU		

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Priority Pollutant Phenols

Polynuclear Aromatics

Dibenzo(a,h)anthracene	EPA 8270D	2,6-Dichlorophenol	EPA 8270D
Fluoranthene	EPA 625	2-Chlorophenol	EPA 625
	EPA 8270D		EPA 8270D
Fluorene	EPA 625	2-Methyl-4,6-dinitrophenol	EPA 625
	EPA 8270D		EPA 8270D
Indeno(1,2,3-cd)pyrene	EPA 625	2-Methylphenol	EPA 625
	EPA 8270D		EPA 8270D
Naphthalene	EPA 625	2-Nitrophenol	EPA 625
	EPA 8270D		EPA 8270D
Phenanthrene	EPA 625	3-Methylphenol	EPA 8270D
	EPA 8270D	4-Chloro-3-methylphenol	EPA 625
Pyrene	EPA 625		EPA 8270D
	EPA 8270D	4-Methylphenol	EPA 8270D
Priority Pollutant Phenols		4-Nitrophenol	EPA 625
2,3,4,6 Tetrachlorophenol	EPA 8270D		EPA 8270D
2,4,5-Trichlorophenol	EPA 625	Pentachlorophenol	EPA 8151A
2,4,5-116110100118101	EPA 8270D		EPA 625
2,4,6-Trichlorophenol	EPA 625		EPA 8270D
2,4,0-11010100100	EPA 8270D	Phenol	EPA 625
2,4-Dichlorophenol	EPA 625		EPA 8270D
2,4-Dichlorophenol	EPA 8270D	Residue	
2,4-Dimethylphenol	EPA 625	Settleable Solids	SM 2540 F-97,-11
2,4 Dimetry prenor	EPA 8270D	Solids, Total	SM 2540 B-97,-11
2,4-Dinitrophenol	EPA 625	Solids, Total Dissolved	SM 2540 C-97,-11
2,4-011000010101	EPA 8270D	Solids, Total Suspended	SM 2540 D-97,-11
	LI A OZIOD	ounds, Total Suspended	OW 2040 D-01,-11

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatile Aromatics

Semi-Volatile Organics

Sound Fordanie organies			
1,1'-Biphenyl	EPA 8270D	1,2,4-Trichlorobenzene, Volatile	EPA 8260C
1,2-Dichlorobenzene, Semi-volatile	EPA 8270D	1,2,4-Trimethylbenzene	EPA 8260C
1,3-Dichlorobenzene, Semi-volatile	EPA 8270D	1,2-Dichlorobenzene	EPA 8260C
1,4-Dichlorobenzene, Semi-volatile	EPA 8270D		EPA 624
2-Methylnaphthalene	EPA 8270D	1,3,5-Trimethylbenzene	EPA 8260C
2-Picoline	EPA 8270D	1,3-Dichlorobenzene	EPA 8260C
4-Amino biphenyl	EPA 8270D		EPA 624
Acetophenone	EPA 625	1,4-Dichlorobenzene	EPA 8260C
	EPA 8270D		EPA 624
alpha-Terpineol	EPA 625	2-Chlorotoluene	EPA 8260C
Aramite	EPA 8270D	4-Chlorotoluene	EPA 8260C
Benzaldehyde	EPA 8270D	Benzene	EPA 8260C
	EPA 8315A		EPA 8021B
Benzoic Acid	EPA 8270D		EPA 624
Benzyl alcohol	EPA 8270D		EPA 602
Caprolactam	EPA 8270D	Bromobenzene	EPA 8260C
Dibenzofuran	EPA 8270D	Chlorobenzene	EPA 8260C
Ethyl methanesulfonate	EPA 8270D		EPA 624
Isosafrole	EPA 8270D	Ethyl benzene	EPA 8260C
Methyl methanesulfonate	EPA 8270D		EPA 8021B
n-Decane	EPA 625		EPA 624
n-Octadecane	EPA 625		EPA 602
O,O,O-Triethyl phosphorothioate	EPA 8270D	Isopropylbenzene	EPA 8260C
p-Dimethylaminoazobenzene	EPA 8270D		EPA 8021B
Phenacetin	EPA 8270D	m/p-Xylenes	EPA 8260C
Safrole	EPA 8270D		EPA 624

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatile Halocarbons

Volatile Aromatics

m/p-Xylenes	EPA 602	1,1,1-Trichloroethane	EPA 8260C
Naphthalene, Volatile	EPA 8260C		EPA 624
n-Butylbenzene	EPA 8260C	1,1,2,2-Tetrachloroethane	EPA 8260C
n-Propylbenzene	EPA 8260C		EPA 624
o-Xylene	EPA 8260C	1,1,2-Trichloro-1,2,2-Trifluoroethane	EPA 8260C
	EPA 624	1,1,2-Trichloroethane	EPA 8260C
	EPA 602		EPA 624
p-Isopropyltoluene (P-Cymene)	EPA 8260C	1,1-Dichloroethane	EPA 8260C
sec-Butylbenzene	EPA 8260C		EPA 624
Styrene	EPA 8260C	1,1-Dichloroethene	EPA 8260C
	EPA 624		EPA 624
tert-Butylbenzene	EPA 8260C	1,1-Dichloropropene	EPA 8260C
Toluene	EPA 8260C	1,2,3-Trichloropropane	EPA 8260C
	EPA 8021B	1,2-Dibromo-3-chloropropane	EPA 8260C
	EPA 624	1,2-Dibromoethane	EPA 8260C
	EPA 602	1,2-Dichloro-1,1,2-Trifluoroethane	EPA 8260C
Total Xylenes	EPA 8260C	1,2-Dichloroethane	EPA 8260C
	EPA 8021B		EPA 624
	EPA 624	1,2-Dichloropropane	EPA 8260C
	EPA 602		EPA 624
Volatile Chlorinated Organics		1,3-Dichloropropane	EPA 8260C
Benzyl chloride	EPA 8260C	2,2-Dichloropropane	EPA 8260C
Epichlorohydrin	EPA 8260C	2-Chloro-1,3-butadiene (Chloroprene)	EPA 8260C
	EFA 02000	2-Chloroethylvinyl ether	EPA 8260C
Volatile Halocarbons			EPA 624
1,1,1,2-Tetrachloroethane	EPA 8260C	3-Chloropropene (Allyl chloride)	EPA 8260C

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatile Halocarbons

Volatile Halocarbons

Bromochloromethane	EPA 8260C	Methylene chloride	EPA 8260C
Bromodichloromethane	EPA 8260C		EPA 624
	EPA 624	Tetrachloroethene	EPA 8260C
Bromoform	EPA 8260C		EPA 624
	EPA 624	trans-1,2-Dichloroethene	EPA 8260C
Bromomethane	EPA 8260C		EPA 624
	EPA 624	trans-1,3-Dichloropropene	EPA 8260C
Carbon tetrachloride	EPA 8260C		EPA 624
	EPA 624	trans-1,4-Dichloro-2-butene	EPA 8260C
Chloroethane	EPA 8260C	Trichloroethene	EPA 8260C
	EPA 624		EPA 624
Chloroform	EPA 8260C	Trichlorofluoromethane	EPA 8260C
	EPA 624		EPA 624
Chloromethane	EPA 8260C	Vinyl chloride	EPA 8260C
	EPA 624		EPA 624
cis-1,2-Dichloroethene	EPA 8260C	Volatiles Organics	
	EPA 624	1,4-Dioxane	EPA 8260C
cis-1,3-Dichloropropene	EPA 8260C	2-Butanone (Methylethyl ketone)	EPA 8260C
	EPA 624	2-Hexanone	EPA 8260C
Dibromochloromethane	EPA 8260C	2-Nitropropane	EPA 8260C
	EPA 624	4-Methyl-2-Pentanone	EPA 8260C
Dibromomethane	EPA 8260C	Acetone	EPA 8260C
Dichlorodifluoromethane	EPA 8260C	Acetonitrile	EPA 8260C
	EPA 624	Carbon Disulfide	EPA 8260C
Hexachlorobutadiene, Volatile	EPA 8260C	Cyclohexane	EPA 8260C
Methyl iodide	EPA 8260C	Cyclonexane	EFA 02000

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatiles Organics

Di-ethyl ether	EPA 8260C
Ethyl Acetate	EPA 1666
	EPA 8260C
Ethylene Glycol	EPA 8015C
Isobutyl alcohol	EPA 8260C
	EPA 8015D
	EPA 8015C
Isobutyraldehyde	EPA 1666
Isopropanol	EPA 8260C
Isopropyl Acetate	EPA 1666
Methanol	EPA 8015D
	EPA 8015C
Methyl acetate	EPA 8260C
Methyl cyclohexane	EPA 8260C
Methyl formate	EPA 1666
n-Amyl Acetate	EPA 1666
n-Amyl alcohol	EPA 1666
n-Butanol	EPA 8260C
n-Butyl Acetate	EPA 1666
o-Toluidine	EPA 8270D
Tetrahydrofuran	EPA 1666
Vinyl acetate	EPA 8260C
	EPA 624

Sample Preparation Methods

EPA 5030C EPA 200.2 EPA 3010A EPA 3005A EPA 3510C EPA 3520C EPA 3020A SM 4500-NH3 B-97,-11 SM 4500-CN G-99,-11

Sample Preparation Methods

SM 4500-P B(5)-99,-11

Serial No.: 53968

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved subcategories and/or analytes are listed below:

Dissolved Gases

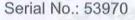
Acetylene

RSK-175

Serial No.: 53969

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State


MR. DUANE LÜCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Benzidines

Acrylates

And the second			
Acrolein (Propenal)	EPA 8260C	Benzidine	EPA 8270D
Acrylonitrile	EPA 8260C	Carbamate Pesticides	
Ethyl methacrylate	EPA 8260C	Aldicarb	EPA 8318A
Methyl acrylonitrile	EPA 8260C	Aldicarb Sulfone	EPA 8318A
Methyl methacrylate	EPA 8260C	Carbofuran	EPA 8318A
Amines			LIAGUA
1,2-Diphenylhydrazine	EPA 8270D	Characteristic Testing	
1,4-Phenylenediamine	EPA 8270D	Corrosivity	EPA 9045D
1-Naphthylamine	EPA 8270D	Free Liquids	EPA 9095B
		Ignitability	EPA 1010A
2-Naphthylamine	EPA 8270D	Synthetic Precipitation Leaching Proc.	EPA 1312
2-Nitroaniline	EPA 8270D	TCLP	EPA 1311
3-Nitroaniline	EPA 8270D	Objects and Understanding Destinides	
4,4'-Methylenebis(2-chloroaniline)	EPA 8270D	Chlorinated Hydrocarbon Pesticides	
4-Chloroaniline	EPA 8270D	2,4'-DDD (Mitotane)	EPA 8081B
4-Nitroaniline	EPA 8270D	4,4'-DDD	EPA 8081B
5-Nitro-o-toluidine	EPA 8270D	4,4'-DDE	EPA 8081B
a,a-Dimethylphenethylamine	EPA 8270D	4,4'-DDT	EPA 8081B
Aniline	EPA 8270D	Aldrin	EPA 8081B
Carbazole	EPA 8270D	alpha-BHC	EPA 8081B
Diphenylamine	EPA 8270D	alpha-Chlordane	EPA 8081B
Methapyrilene	EPA 8270D	Atrazine	EPA 8270D
Pronamide	EPA 8270D	beta-BHC	EPA 8081B
Benzidines		Chlordane Total	EPA 8081B
		Chlorobenzilate	EPA 8270D
3,3'-Dichlorobenzidine	EPA 8270D	delta-BHC	EPA 8081B
3,3'-Dimethylbenzidine	EPA 8270D		

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Chlorinated Hydrocarbons

Chlorinated Hydrocarbon Pesticides

onioniatoa nyarooanoon roonorat			
Diallate	EPA 8270D	2-Chloronaphthalene	EPA 8270D
Dieldrin	EPA 8081B	Hexachlorobenzene	EPA 8270D
Endosulfan I	EPA 8081B	Hexachlorobutadiene	EPA 8270D
Endosulfan II	EPA 8081B	Hexachlorocyclopentadiene	EPA 8270D
Endosulfan sulfate	EPA 8081B	Hexachloroethane	EPA 8270D
Endrin	EPA 8081B	Hexachloropropene	EPA 8270D
Endrin aldehyde	EPA 8081B	Pentachlorobenzene	EPA 8270D
Endrin Ketone	EPA 8081B	Chlorophenoxy Acid Pesticides	
gamma-Chlordane	EPA 8081B	2,4,5-T	EPA 8151A
Heptachlor	EPA 8081B	2,4,5-TP (Silvex)	EPA 8151A
Heptachlor epoxide	EPA 8081B	2,4-D	EPA 8151A
Isodrin	EPA 8270D	2,4-DB	EPA 8151A
Kepone	EPA 8081B	Dalapon	EPA 8151A
	EPA 8270D	Dicamba	EPA 8151A
Lindane	EPA 8081B	Dichloroprop	EPA 8151A
Methoxychlor	EPA 8081B	Dinoseb	EPA 8151A
Mirex	EPA 8081B	MCPA	EPA 8151A
Pentachloronitrobenzene	EPA 8270D	MCPP	EPA 8151A
Simazine	EPA 8141B	Pentachlorophenol	EPA 8151A
Toxaphene	EPA 8081B		CIAODIA
Chlorinated Hydrocarbons		Dioxins and Furans	
1,2,3-Trichlorobenzene	EPA 8260C	1,2,3,4,6,7,8,9-Octachlorodibenzofuran	EPA 8290A
1,2,4,5-Tetrachlorobenzene	EPA 8270D	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-diox	EPA 8290A
1,2,4-Trichlorobenzene	EPA 8270D	1,2,3,4,6,7,8-Heptachlorodibenzofuran	EPA 8290A
1-Chloronaphthalene	EPA 8270D	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxi	EPA 8290A
1-Onioronaphtnaiene	EFA 02/00	1,2,3,4,7,8,9-Heptachlorodibenzofuran	EPA 8290A

Serial No.: 53970

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

Low Level Polynuclear Aromatic Hydrocarbons

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Dioxins and Furans

1,2,3,4,7,8-Hexachlorodibenzofuran	EPA 8290A	Benzo(g,h,i)perylene Low Level	EPA 8270D SIM
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	EPA 8290A	Benzo(k)fluoranthene Low Level	EPA 8270D SIM
1,2,3,6,7,8-Hexachlorodibenzofuran	EPA 8290A	Chrysene Low Level	EPA 8270D SIM
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	EPA 8290A	Dibenzo(a,h)anthracene Low Level	EPA 8270D SIM
1,2,3,7,8,9-Hexachlorodibenzofuran	EPA 8290A	Fluoranthene Low Level	EPA 8270D SIM
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	EPA 8290A	Fluorene Low Level	EPA 8270D SIM
1,2,3,7,8-Pentachlorodibenzofuran	EPA 8290A	Indeno(1,2,3-cd)pyrene Low Level	EPA 8270D SIM
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	EPA 8290A	Naphthalene Low Level	EPA 8270D SIM
2,3,4,6,7,8-Hexachlorodibenzofuran	EPA 8290A	Phenanthrene Low Level	EPA 8270D SIM
2,3,4,7,8-Pentachlorodibenzofuran	EPA 8290A	Pyrene Low Level	EPA 8270D SIM
2,3,7,8-Tetrachlorodibenzofuran	EPA 8290A	Metals I	
2,3,7,8-Tetrachlorodibenzo-p-dioxin	EPA 8290A	Barium, Total	EPA 6010C
Haloethers			EPA 6020A
2,2'-Oxybis(1-chloropropane)	EPA 8270D	Cadmium, Total	EPA 6010C
4-Bromophenylphenyl ether	EPA 8270D		EPA 6020A
4-Chlorophenylphenyl ether	EPA 8270D	Calcium, Total	EPA 6010C
Bis(2-chloroethoxy)methane	EPA 8270D		EPA 6020A
Bis(2-chloroethyl)ether	EPA 8270D	Chromium, Total	EPA 6010C
Low Level Polynuclear Aromatic Hydrod	arbons		EPA 6020A
Acenaphthene Low Level	EPA 8270D SIM	Copper, Total	EPA 6010C
Acenaphthylene Low Level	EPA 8270D SIM		EPA 6020A
Anthracene Low Level	EPA 8270D SIM	Iron, Total	EPA 6010C
Benzo(a)anthracene Low Level	EPA 8270D SIM		EPA 6020A
Benzo(a)pyrene Low Level	EPA 8270D SIM	Lead, Total	EPA 6010C
Doning (a) provid Low Lover	but i t whit whe setter		EDA 0000A

Serial No.: 53970

Benzo(b)fluoranthene Low Level

Property of the New York State Department of Health. Certificates are valid only at the address shown, must be conspicuously posted, and are printed on secure paper. Continued accreditation depends on successful ongoing participation in the Program. Consumers are urged to call (518) 485-5570 to verify the laboratory's accreditation status.

EPA 8270D SIM

EPA 6020A

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Metals II

Metals I

Magnesium, Total	EPA 6010C	Lithium, Total	EPA 6010C
	EPA 6020A	Mercury, Total	EPA 7471B
Manganese, Total	EPA 6010C	Selenium, Total	EPA 6010C
	EPA 6020A		EPA 6020A
Nickel, Total	EPA 6010C	Vanadium, Total	EPA 6010C
	EPA 6020A		EPA 6020A
Potassium, Total	EPA 6010C	Zinc, Total	EPA 6010C
	EPA 6020A		EPA 6020A
Silver, Total	EPA 6010C	Metals III	
	EPA 6020A	Cobalt, Total	EPA 6010C
Sodium, Total	EPA 6010C	Cobait, Iotai	EPA 6020A
	EPA 6020A	Molybdenum, Total	EPA 6010C
Strontium, Total	EPA 6010C	Molybdendin, rotar	EPA 6020A
	EPA 6020A	Silica, Dissolved	EPA 6010C
Metals II		Thallium, Total	EPA 6010C
Aluminum, Total	EPA 6010C	manum, total	EPA 6020A
Aluminum, rotai	EPA 6020A	Tin, Total	EPA 6020A
Antimony Total	EPA 6010C	Tin, Iotai	EPA 6020A
Antimony, Total	EPA 6020A	Titanium, Total	EPA 6020A
America Total	EPA 6010C	Intanium, Iotai	EPA 6020A
Arsenic, Total	EPA 6020A		EFA 0020A
Dandlium Tatal	EPA 6020A	Miscellaneous	
Beryllium, Total		Boron, Total	EPA 6010C
Characture MI	EPA 6020A		EPA 6020A
Chromium VI	EPA 7196A	Cyanide, Total	EPA 9012B
	EPA 7199	Formaldehyde	EPA 8315A

Serial No.: 53970

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Nitroaromatics and Isophorone

Miscellaneous

Organic Carbon, Total	Lloyd Kahn Method	4-Amino-2,6-dinitrotoluene	EPA 8330A
	EPA 9060A	4-Dimethylaminoazobenzene	EPA 8270D
Perchlorate	EPA 6850	4-Nitrotoluene	EPA 8330A
Phenols	EPA 9066	Hexahydro-1,3,5-trinitro-1,3,5-triazine	EPA 8330A
Specific Conductance	EPA 9050A	Isophorone	EPA 8270D
Nitroaromatics and Isophorone		Methyl-2,4,6-trinitrophenylnitramine	EPA 8330A
1,2-Dinitrobenzene	EPA 8270D	Nitrobenzene	EPA 8270D
1,3,5-Trinitrobenzene	EPA 8270D		EPA 8330A
	EPA 8330A	Nitroglycerine	EPA 8330B
1,3-Dinitrobenzene	EPA 8270D	Nitroquinoline-1-oxide	EPA 8270D
	EPA 8330A	Octahydro-tetranitro-tetrazocine	EPA 8330A
1,4-Dinitrobenzene	EPA 8270D	Pentaerythritol tetranitrate	EPA 8330B
1,4-Naphthoguinone	EPA 8270D	Pyridine	EPA 8270D
2,4,6-Trinitrotoluene	EPA 8330A	Nitrosoamines	
	EPA 8330B	N-Nitrosodiethylamine	EPA 8270D
2,4-Dinitrotoluene	EPA 8270D	N-Nitrosodimethylamine	EPA 8270D
	EPA 8330A	N-Nitrosodi-n-butylamine	EPA 8270D
	EPA 8330B	N-Nitrosodi-n-propylamine	EPA 8270D
2,6-Dinitrotoluene	EPA 8270D	N-Nitrosodiphenylamine	EPA 8270D
	EPA 8330A	N-nitrosomethylethylamine	EPA 8270D
	EPA 8330B	N-nitrosomorpholine	EPA 8270D
2-Amino-4,6-dinitrotoluene	EPA 8330A	N-nitrosopiperidine	EPA 8270D
2-Nitrotoluene	EPA 8330A	N-Nitrosopyrrolidine	EPA 8270D
3,5-Dinitroaniline	EPA 8330B	Organophosphate Pesticides	
3-Nitrotoluene	EPA 8330A	Azinphos methyl	EPA 8141B
		Azinphos methyl	EPA 0141B

Serial No.: 53970

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Organophosphate Pesticides

Organophosphate Pesticides

9			
Bolstar	EPA 8141B	Phorate	EPA 8270D
Carbophenothion	EPA 8141B	Ronnel	EPA 8141B
Chlorpyriphos	EPA 8141B	Sulfotepp	EPA 8270D
Coumaphos	EPA 8141B	Thionazin	EPA 8270D
Demeton-O	EPA 8141B	Tokuthion	EPA 8141B
Demeton-S	EPA 8141B	Trichloronate	EPA 8141B
Diazinon	EPA 8141B	Petroleum Hydrocarbons	
Dichlorvos	EPA 8141B	and the second	EPA 8015D
Dimethoate	EPA 8270D	Diesel Range Organics	EPA 8015D
Disulfoton	EPA 8141B	Gasoline Range Organics	EPA 8015C
	EPA 8270D	Gasoline Range Organics	EPA 8015D
EPN	EPA 8141B	Oil and Crosses Total Resourceble (UEM)	
Ethion	EPA 8141B	Oil and Grease Total Recoverable (HEM)	EPA 9071B (Solvent:Hexane)
Ethoprop	EPA 8141B	Phthalate Esters	
Famphur	EPA 8141B	Benzyl butyl phthalate	EPA 8270D
	EPA 8270D	Bis(2-ethylhexyl) phthalate	EPA 8270D
Fensulfothion	EPA 8141B	Diethyl phthalate	EPA 8270D
Fenthion	EPA 8141B	Dimethyl phthalate	EPA 8270D
Malathion	EPA 8141B	Di-n-butyl phthalate	EPA 8270D
Mevinphos	EPA 8141B	Di-n-octyl phthalate	EPA 8270D
NALED	EPA 8141B	Polychlorinated Biphenyls	
Parathion ethyl	EPA 8141B	PCB 1	EPA 1668 A
	EPA 8270D	PCB 10	EPA 1668 A
Parathion methyl	EPA 8141B	PCB 100	EPA 1668 A
	EPA 8270D	PCB 101	EPA 1668 A
Phorate	EPA 8141B		

Serial No.: 53970

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

NY Lab Id No: 10670

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Polychlorinated Biphenyls		Polychlorinated Biphenyls	
PCB 102	EPA 1668 A	PCB 126	EPA 1668 A
PCB 103	EPA 1668 A	PCB 127	EPA 1668 A
PCB 104	EPA 1668 A	PCB 128	EPA 1668 A
PCB 105	EPA 1668 A	PCB 129	EPA 1668 A
PCB 106	EPA 1668 A	PCB 13	EPA 1668 A
PCB 107	EPA 1668 A	PCB 130	EPA 1668 A
PCB 108	EPA 1668 A	PCB 131	EPA 1668 A
PCB 109	EPA 1668 A	PCB 132	EPA 1668 A
PCB 11	EPA 1668 A	PCB 133	EPA 1668 A
PCB 110	EPA 1668 A	PCB 134	EPA 1668 A
PCB 111	EPA 1668 A	PCB 135	EPA 1668 A
PCB 112	EPA 1668 A	PCB 136	EPA 1668 A
PCB 113	EPA 1668 A	PCB 138	EPA 1668 A
PCB 114	EPA 1668 A	PCB 139	EPA 1668 A
PCB 115	EPA 1668 A	PCB 14	EPA 1668 A
PCB 116	EPA 1668 A	PCB 140	EPA 1668 A
PCB 117	EPA 1668 A	PCB 141	EPA 1668 A
PCB 118	EPA 1668 A	PCB 142	EPA 1668 A
PCB 119	EPA 1668 A	PCB 143	EPA 1668 A
PCB 12	EPA 1668 A	PCB 144	EPA 1668 A
PCB 120	EPA 1668 A	PCB 145	EPA 1668 A
PCB 121	EPA 1668 A	PCB 146	EPA 1668 A
PCB 122	EPA 1668 A	PCB 147	EPA 1668 A
PCB 123	EPA 1668 A	PCB 148	EPA 1668 A
PCB 124	EPA 1668 A	PCB 149	EPA 1668 A
PCB 125	EPA 1668 A	PCB 15	EPA 1668 A

Serial No.: 53970

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

NY Lab Id No: 10670

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

> > **Polychlorinated Biphenyls**

Polychlorinated Biphenyls

The substance of the state of the			
PCB 150	EPA 1668 A	PCB 174	EPA 1668 A
PCB 151	EPA 1668 A	PCB 175	EPA 1668 A
PCB 152	EPA 1668 A	PCB 176	EPA 1668 A
PCB 153	EPA 1668 A	PCB 177	EPA 1668 A
PCB 154	EPA 1668 A	PCB 178	EPA 1668 A
PCB 155	EPA 1668 A	PCB 179	EPA 1668 A
PCB 156	EPA 1668 A	PCB 18	EPA 1668 A
PCB 157	EPA 1668 A	PCB 180	EPA 1668 A
PCB 158	EPA 1668 A	PCB 181	EPA 1668 A
PCB 159	EPA 1668 A	PCB 182	EPA 1668 A
PCB 16	EPA 1668 A	PCB 183	EPA 1668 A
PCB 160	EPA 1668 A	PCB 184	EPA 1668 A
PCB 161	EPA 1668 A	PCB 185	EPA 1668 A
PCB 162	EPA 1668 A	PCB 186	EPA 1668 A
PCB 163	EPA 1668 A	PCB 187	EPA 1668 A
PCB 164	EPA 1668 A	PCB 188	EPA 1668 A
PCB 165	EPA 1668 A	PCB 189	EPA 1668 A
PCB 166	EPA 1668 A	PCB 19	EPA 1668 A
PCB 167	EPA 1668 A	PCB 190	EPA 1668 A
PCB 168	EPA 1668 A	PCB 191	EPA 1668 A
PCB 169	EPA 1668 A	PCB 192	EPA 1668 A
PCB 17	EPA 1668 A	PCB 193	EPA 1668 A
PCB 170	EPA 1668 A	PCB 194	EPA 1668 A
PCB 171	EPA 1668 A	PCB 195	EPA 1668 A
PCB 172	EPA 1668 A	PCB 196	EPA 1668 A
PCB 173	EPA 1668 A	PCB 197	EPA 1668 A

Serial No.: 53970

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Polychlorinated Biphenyls		Polychlorinated Biphenyl	s
PCB 198	EPA 1668 A	PCB 32	EPA 1668 A
PCB 199	EPA 1668 A	PCB 33	EPA 1668 A
PCB 2	EPA 1668 A	PCB 34	EPA 1668 A
PCB 20	EPA 1668 A	PCB 35	EPA 1668 A
PCB 200	EPA 1668 A	PCB 36	EPA 1668 A
PCB 201	EPA 1668 A	PCB 37	EPA 1668 A
PCB 202	EPA 1668 A	PCB 38	EPA 1668 A
PCB 203	EPA 1668 A	PCB 39	EPA 1668 A
PCB 204	EPA 1668 A	PCB 4	EPA 1668 A
PCB 205	EPA 1668 A	PCB 40	EPA 1668 A
PCB 206	EPA 1668 A	PCB 41	EPA 1668 A
PCB 207	EPA 1668 A	PCB 42	EPA 1668 A
PCB 208	EPA 1668 A	PCB 43	EPA 1668 A
PCB 209	EPA 1668 A	PCB 44	EPA 1668 A
PCB 21	EPA 1668 A	PCB 45	EPA 1668 A
PCB 22	EPA 1668 A	PCB 46	EPA 1668 A
PCB 23	EPA 1668 A	PCB 47	EPA 1668 A
PCB 24	EPA 1668 A	PCB 48	EPA 1668 A
PCB 25	EPA 1668 A	PCB 49	EPA 1668 A
PCB 26	EPA 1668 A	PCB 5	EPA 1668 A
PCB 27	EPA 1668 A	PCB 50	EPA 1668 A
PCB 28	EPA 1668 A	PCB 51	EPA 1668 A
PCB 29	EPA 1668 A	PCB 52	EPA 1668 A
PCB 3	EPA 1668 A	PCB 53	EPA 1668 A
PCB 30	EPA 1668 A	PCB 54	EPA 1668 A
PCB 31	EPA 1668 A	PCB 55	EPA 1668 A

Serial No.: 53970

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Polychlorinated Biphenyls		Polychlorinated Biphenyls	
PCB 56	EPA 1668 A	PCB 8	EPA 1668 A
PCB 57	EPA 1668 A	PCB 80	EPA 1668 A
PCB 58	EPA 1668 A	PCB 81	EPA 1668 A
PCB 59	EPA 1668 A	PCB 82	EPA 1668 A
PCB 6	EPA 1668 A	PCB 83	EPA 1668 A
PCB 60	EPA 1668 A	PCB 84	EPA 1668 A
PCB 61	EPA 1668 A	PCB 85	EPA 1668 A
PCB 62	EPA 1668 A	PCB 86	EPA 1668 A
PCB 63	EPA 1668 A	PCB 87	EPA 1668 A
PCB 64	EPA 1668 A	PCB 88	EPA 1668 A
PCB 65	EPA 1668 A	PCB 89	EPA 1668 A
PCB 66	EPA 1668 A	PCB 9	EPA 1668 A
PCB 67	EPA 1668 A	PCB 90	EPA 1668 A
PCB 68	EPA 1668 A	PCB 91	EPA 1668 A
PCB 69	EPA 1668 A	PCB 92	EPA 1668 A
PCB 7	EPA 1668 A	PCB 93	EPA 1668 A
PCB 70	EPA 1668 A	PCB 94	EPA 1668 A
PCB 71	EPA 1668 A	PCB 95	EPA 1668 A
PCB 72	EPA 1668 A	PCB 96	EPA 1668 A
PCB 73	EPA 1668 A	PCB 97	EPA 1668 A
PCB 74	EPA 1668 A	PCB 98	EPA 1668 A
PCB 75	EPA 1668 A	PCB 99	EPA 1668 A
PCB 76	EPA 1668 A	PCB-1016	EPA 8082A
PCB 77	EPA 1668 A	PCB-1221	EPA 8082A
PCB 78	EPA 1668 A	PCB-1232	EPA 8082A
PCB 79	EPA 1668 A	PCB-1242	EPA 8082A

Serial No.: 53970

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Polynuclear Aromatic Hydrocarbons

Polychlorinated Biphenyls

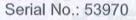
r orgeniormated Dipitenyia		r orynacical Paonalie Hydrocalbona	
PCB-1248	EPA 8082A	Pyrene	EPA 8270D
PCB-1254	EPA 8082A	Priority Pollutant Phenols	
PCB-1260	EPA 8082A	2,3,4,6 Tetrachlorophenol	EPA 8270D
PCB-1262	EPA 8082A	2,4,5-Trichlorophenol	EPA 8270D
PCB-1268	EPA 8082A	2,4,6-Trichlorophenol	EPA 8270D
Polynuclear Aromatic Hydrocarbons		2,4,0 menorophenol	EPA 8270D
2-Acetylaminofluorene	EPA 8270D	2,4-Dimethylphenol	EPA 8270D
3-Methylcholanthrene	EPA 8270D	2,4-Dinitrophenol	EPA 8270D
7,12-Dimethylbenzyl (a) anthracene	EPA 8270D	2,6-Dichlorophenol	EPA 8270D
Acenaphthene	EPA 8270D	2-Chlorophenol	EPA 8270D
Acenaphthylene	EPA 8270D	2-Methyl-4,6-dinitrophenol	EPA 8270D
Anthracene	EPA 8270D	2-Methylphenol	EPA 8270D
Benzo(a)anthracene	EPA 8270D	2-Nitrophenol	EPA 8270D
Benzo(a)pyrene	EPA 8270D	3-Methylphenol	EPA 8270D
Benzo(b)fluoranthene	EPA 8270D	4-Chloro-3-methylphenol	EPA 8270D
Benzo(ghi)perylene	EPA 8270D	4-Methylphenol	EPA 8270D
Benzo(k)fluoranthene	EPA 8270D	4-Nitrophenol	EPA 8270D
Chrysene	EPA 8270D	Pentachlorophenol	EPA 8270D
Dibenzo(a,h)anthracene	EPA 8270D	Phenol	EPA 8270D
Dibenzo(a,j)acridine	EPA 8270D	Semi-Volatile Organics	
Fluoranthene	EPA 8270D	1,1'-Biphenyl	EPA 8270D
Fluorene	EPA 8270D	1,2-Dichlorobenzene, Semi-volatile	EPA 8270D
Indeno(1,2,3-cd)pyrene	EPA 8270D	1,3-Dichlorobenzene, Semi-volatile	EPA 8270D
Naphthalene	EPA 8270D	1,4-Dichlorobenzene, Semi-volatile	EPA 8270D
Phenanthrene	EPA 8270D	2-Methylnaphthalene	EPA 8270D
		z-weurymaphulaiene	EFA 0270D

Serial No.: 53970

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

NY Lab Id No: 10670


MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

> > **Volatile Aromatics**

Semi-Volatile Organics

a state of galling		ronune / nemanee	
2-Picoline	EPA 8270D	Benzene	EPA 8260C
4-Amino biphenyl	EPA 8270D		EPA 8021B
Acetophenone	EPA 8270D	Bromobenzene	EPA 8260C
Aramite	EPA 8270D	Chlorobenzene	EPA 8260C
Benzaldehyde	EPA 8270D	Ethyl benzene	EPA 8260C
	EPA 8315A		EPA 8021B
Benzoic Acid	EPA 8270D	Isopropylbenzene	EPA 8260C
Benzyl alcohol	EPA 8270D		EPA 8021B
Caprolactam	EPA 8270D	m/p-Xylenes	EPA 8260C
Dibenzofuran	EPA 8270D	Naphthalene, Volatile	EPA 8260C
Ethyl methanesulfonate	EPA 8270D		EPA 8021B
Isosafrole	EPA 8270D	n-Butylbenzene	EPA 8260C
Methyl methanesulfonate	EPA 8270D	n-Propylbenzene	EPA 8260C
O,O,O-Triethyl phosphorothioate	EPA 8270D	o-Xylene	EPA 8260C
Phenacetin	EPA 8270D		EPA 8021B
Safrole	EPA 8270D	p-Isopropyltoluene (P-Cymene)	EPA 8260C
Volatile Aromatics		sec-Butylbenzene	EPA 8260C
1,2,4-Trichlorobenzene, Volatile	EPA 8260C	Styrene	EPA 8260C
1,2,4-Trimethylbenzene	EPA 8260C	tert-Butylbenzene	EPA 8260C
1,2-Dichlorobenzene	EPA 8260C	Toluene	EPA 8260C
1,3,5-Trimethylbenzene	EPA 8260C		EPA 8021B
1,3-Dichlorobenzene	EPA 8260C	Total Xylenes	EPA 8260C
1,4-Dichlorobenzene	EPA 8260C		EPA 8021B
2-Chlorotoluene	EPA 8260C	Volatile Chlorinated Organics	
4-Chlorotoluene	EPA 8260C	Benzyl chloride	EPA 8260C
- Chiolotototo	LINOLUUG	Denzyr chionde	LIAOZOUC

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE

LANCASTER, PA 17601-5994

NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Volatile Chlorinated Organics

Epichlorohydrin	EPA 8260C	Chloroethane	EPA 8260C
Volatile Halocarbons		Chloroform	EPA 8260C
1,1,1.2-Tetrachloroethane	EPA 8260C	Chloromethane	EPA 8260C
1,1,1-Trichloroethane	EPA 8260C	cis-1,2-Dichloroethene	EPA 8260C
1,1,2,2-Tetrachloroethane	EPA 8260C	cis-1,3-Dichloropropene	EPA 8260C
1,1,2-Trichloro-1,2,2-Trifluoroethane	EPA 8260C	Dibromochloromethane	EPA 8260C
1,1,2-Trichloroethane	EPA 8260C	Dibromomethane	EPA 8260C
1,1-Dichloroethane	EPA 8260C	Dichlorodifluoromethane	EPA 8260C
1,1-Dichloroethene	EPA 8260C	Hexachlorobutadiene, Volatile	EPA 8260C
1,1-Dichloropropene	EPA 8260C	Methyl iodide	EPA 8260C
1,2,3-Trichloropropane	EPA 8260C	Methylene chloride	EPA 8260C
1,2-Dibromo-3-chloropropane	EPA 8260C	Tetrachloroethene	EPA 8260C
1,2-Dibromoethane	EPA 8260C	trans-1,2-Dichloroethene	EPA 8260C
1,2-Dichloroethane	EPA 8260C	trans-1,3-Dichloropropene	EPA 8260C
1,2-Dichloropropane	EPA 8260C	trans-1,4-Dichloro-2-butene	EPA 8260C
1,3-Dichloropropane	EPA 8260C	Trichloroethene	EPA 8260C
2,2-Dichloropropane	EPA 8260C	Trichlorofluoromethane	EPA 8260C
2-Chloro-1,3-butadiene (Chloroprene)	EPA 8260C	Vinyl chloride	EPA 8260C
2-Chloroethylvinyl ether	EPA 8260C	Volatile Organics	
3-Chloropropene (Allyl chloride)	EPA 8260C	1,4-Dioxane	EPA 8260C
Bromochloromethane	EPA 8260C	2-Butanone (Methylethyl ketone)	EPA 8260C
Bromodichloromethane	EPA 8260C	2-Hexanone	EPA 8260C
Bromoform	EPA 8260C	2-Nitropropane	EPA 8260C
Bromomethane	EPA 8260C	4-Methyl-2-Pentanone	EPA 8260C
Carbon tetrachloride	EPA 8260C	Acetone	EPA 8260C

Volatile Halocarbons

Serial No.: 53970

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

NY Lab Id No: 10670

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Volatile Organics

Acetonitrile	EPA 8260C	
Carbon Disulfide	EPA 8260C	
Cyclohexane	EPA 8260C	
Ethyl Acetate	EPA 8260C	
Ethylene Glycol	EPA 8015C	
Isobutyl alcohol	EPA 8260C	
Isopropanol	EPA 8260C	
Methyl acetate	EPA 8260C	
Methyl cyclohexane	EPA 8260C	
Methyl tert-butyl ether	EPA 8260C	
	EPA 8021B	
n-Butanol	EPA 8260C	
o-Toluidine	EPA 8270D	
Propionitrile	EPA 8260C	
tert-butyl alcohol	EPA 8260C	
Vinyl acetate	EPA 8260C	
Sample Preparation Methods		
	EPA 5035A-L	
	EPA 5035A-H	
	EPA 3010A	

Sample Preparation Methods

EPA 3546 EPA 5035 EPA 3060A

Serial No.: 53970

Property of the New York State Department of Health. Certificates are valid only at the address shown, must be conspicuously posted, and are printed on secure paper. Continued accreditation depends on successful ongoing participation in the Program. Consumers are urged to call (518) 485-5570 to verify the laboratory's accreditation status.

EPA 3005A EPA 3050B EPA 3550C EPA 3540C EPA 3020A

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES AIR AND EMISSIONS All approved analytes are listed below:

Acrylates		Purgeable Aromatics	
Acetonitrile	EPA TO-15	Benzene	EPA TO-14A
Acrylonitrile	EPA TO-15		EPA TO-15
Ethyl acrylate	EPA TO-15	Chlorobenzene	EPA TO-14A
Methyl methacrylate	EPA TO-15		EPA TO-15
Chlorinated Hydrocarbons		Ethyl benzene	EPA TO-14A
1,2,4-Trichlorobenzene	EPA TO-14A		EPA TO-15
	EPA TO-15	Isopropylbenzene	EPA TO-15
Hexachlorobutadiene	EPA TO-14A	m/p-Xylenes	EPA TO-15
	EPA TO-15	o-Xylene	EPA TO-15
Hexachloroethane	EPA TO-15	Styrene	EPA TO-14A
			EPA TO-15
Polynuclear Aromatics		Toluene	EPA TO-14A
Naphthalene	EPA TO-15		EPA TO-15
Purgeable Aromatics		Total Xylenes	EPA TO-14A
1,2,4-Trimethylbenzene	EPA TO-14A		EPA TO-15
	EPA TO-15	Purgeable Halocarbons	
1,2-Dichlorobenzene	EPA TO-14A	1,1,1-Trichloroethane	EPA TO-14A
	EPA TO-15		EPA TO-15
1,3,5-Trimethylbenzene	EPA TO-14A	1,1,2,2-Tetrachloroethane	EPA TO-14A
	EPA TO-15		EPA TO-15
1,3-Dichlorobenzene	EPA TO-14A	1,1,2-Trichloro-1,2,2-Trifluoroethane	EPA TO-14A
	EPA TO-15	1	EPA TO-15
1,4-Dichlorobenzene	EPA TO-14A	1,1,2-Trichloroethane	EPA TO-14A
	EPA TO-15		EPA TO-15
2-Chlorotoluene	EPA TO-15	1,1-Dichloroethane	EPA TO-14A

Serial No.: 53971

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994 NY Lab Id No: 10670

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES AIR AND EMISSIONS All approved analytes are listed below:

Purgeable Halocarbons

Purgeable Halocarbons

r urgeable Halocarbolis		r urgeable nalocarbons	
1,1-Dichloroethane	EPA TO-15	cis-1,3-Dichloropropene	EPA TO-14A
1,1-Dichloroethene	EPA TO-14A		EPA TO-15
	EPA TO-15	Dibromochloromethane	EPA TO-15
1,2-Dibromo-3-chloropropane	EPA TO-15	Dichlorodifluoromethane	EPA TO-14A
1,2-Dibromoethane	EPA TO-14A		EPA TO-15
	EPA TO-15	Methylene chloride	EPA TO-14A
1,2-Dichloroethane	EPA TO-14A		EPA TO-15
	EPA TO-15	Tetrachloroethene	EPA TO-14A
1,2-Dichloropropane	EPA TO-14A		EPA TO-15
	EPA TO-15	trans-1,2-Dichloroethene	EPA TO-14A
3-Chloropropene (Allyl chloride)	EPA TO-15		EPA TO-15
Bromodichloromethane	EPA TO-14A	trans-1,3-Dichloropropene	EPA TO-14A
	EPA TO-15		EPA TO-15
Bromoform	EPA TO-15	Trichloroethene	EPA TO-14A
Bromomethane	EPA TO-14A		EPA TO-15
	EPA TO-15	Trichlorofluoromethane	EPA TO-14A
Carbon tetrachloride	EPA TO-14A		EPA TO-15
	EPA TO-15	Vinyl bromide	EPA TO-15
Chloroethane	EPA TO-14A	Vinyl chloride	EPA TO-14A
	EPA TO-15		EPA TO-15
Chloroform	EPA TO-14A	Volatile Chlorinated Organics	
	EPA TO-15	Benzyl chloride	EPA TO-14A
Chloromethane	EPA TO-14A	Durizyr union dd	EPA TO-15
	EPA TO-15		LIA 10-10
cis-1,2-Dichloroethene	EPA TO-14A	Volatile Organics	
	EPA TO-15	1,2-Dichlorotetrafluoroethane	EPA TO-14A

Serial No.: 53971

NEW YORK STATE DEPARTMENT OF HEALTH WADSWORTH CENTER

Expires 12:01 AM April 01, 2017 Issued April 01, 2016

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

NY Lab Id No: 10670

MR. DUANE LUCKENBILL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL LLC 2425 NEW HOLLAND PIKE LANCASTER, PA 17601-5994

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES AIR AND EMISSIONS All approved analytes are listed below:

Volatile Organics

1,2-Dichlorotetrafluoroethane	EPA TO-15
1,3-Butadiene	EPA TO-15
1,4-Dioxane	EPA TO-15
2,2,4-Trimethylpentane	EPA TO-15
2-Butanone (Methylethyl ketone)	EPA TO-15
4-Methyl-2-Pentanone	EPA TO-15
Acetone	EPA TO-15
Acrolein (Propenal)	EPA TO-15
Carbon Disulfide	EPA TO-15
Cyclohexane	EPA TO-15
Hexane	EPA TO-15
Methyl iodide	EPA TO-15
Methyl tert-butyl ether	EPA TO-15
n-Heptane	EPA TO-15
tert-butyl alcohol	EPA TO-15
Vinyl acetate	EPA TO-15

Serial No.: 53971

Property of the New York State Department of Health. Certificates are valid only at the address shown, must be conspicuously posted, and are printed on secure paper. Continued accreditation depends on successful ongoing participation in the Program. Consumers are urged to call (518) 485-5570 to verify the laboratory's accreditation status.

<u>ATTACHMENT B</u> Data Validator Qualifications and Experience

(Pending)

ATTACHMENT C

Guidance for the Development of Data Usability Summary Reports

Appendix 2B Guidance for Data Deliverables and the Development of Data Usability Summary Reports

1.0 Data Deliverables

(a) DEC Analytical Services Protocol Category A Data Deliverables:

1. A Category A Data Deliverable as described in the most current DEC Analytical Services Protocol (ASP) includes:

- i. a Sample Delivery Group Narrative;
- ii. contract Lab Sample Information sheets;
- iii. DEC Data Package Summary Forms;
- iv. chain-of-custody forms; and,

v. test analyses results (including tentatively identified compounds for analysis of volatile and semi-volatile organic compounds)

2. For a DEC Category A Data Deliverable, a data applicability report may be requested, in which case it will be prepared, to the extent possible, in accordance with the DUSR guidance detailed below.

(b) DEC Analytical Services Protocol Category B Data Deliverables

1. A Category B Data Deliverable is includes the information provided for the Category A Data Deliverable, identified in subdivision (a) above, plus related QA/QC information and documentation consisting of:

- i. calibration standards;
- ii. surrogate recoveries;
- iii. blank results;
- iv. spike recoveries;
- v. duplicate results;
- vi. confirmation (lab check/QC) samples;
- vii. internal standard area and retention time summary;
- viii. chromatograms;

ix. raw data files; and

x. other specific information as described in the most current DEC ASP.

2. A DEC Category B Data Deliverable is required for the development of a Data Usability Summary Report (DUSR).

2.0 Data Usability Summary Reports (DUSRs)

(a) Background. The Data Usability Summary Report (DUSR) provides a thorough evaluation of analytical data with the primary objective to determine whether or not the data, as presented, meets the site/project specific criteria for data quality and data use.

1. The development of the DUSR must be carried out by an experienced environmental scientist, such as the project Quality Assurance Officer, who is fully capable of conducting a full data validation. The DUSR is developed from:

i. a DEC ASP Category B Data Deliverable; or

ii. the USEPA Contract Laboratory Program National Functional Data Validation Standard Operating Procedures for Data Evaluation and Validation.

2. The DUSR and the data deliverables package will be reviewed by DER staff. If full third party data validation is found to be necessary (e.g. pending litigation) this can be carried out at a later date on the same data package used for the development of the DUSR.

(b) Personnel Requirements. The person preparing the DUSR must be pre-approved by DER. The person must submit their qualifications to DER documenting experience in analysis and data validation. Data validator qualifications are available on DEC's website identified in the table of contents.

(c) Preparation of a DUSR. The DUSR is developed by reviewing and evaluating the analytical data package. In order for the DUSR to be acceptable, during the course of this review the following questions applicable to the analysis being reviewed must be answered in the affirmative.

1. Is the data package complete as defined under the requirements for the most current DEC ASP Category B or USEPA CLP data deliverables?

2. Have all holding times been met?

3. Do all the QC data; blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications?

4. Have all of the data been generated using established and agreed upon analytical protocols?

5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms?

6. Have the correct data qualifiers been used and are they consistent with the most current DEC ASP?

7. Have any quality control (QC) exceedances been specifically noted in the DUSR and have the corresponding QC summary sheets from the data package been attached to the DUSR?

(d) Documenting the validation process in the DUSR. Once the data package has been reviewed and the above questions asked and answered the DUSR proceeds to describe the samples and the analytical parameters, including data deficiencies, analytical protocol deviations and quality control problems are identified and their effect on the data is discussed.

APPENDIX C

HEALTH & SAFETY PLAN

July 2016

SITE SPECIFIC HEALTH & SAFETY PLAN

Saint-Gobain Performance Plastics Site 14 McCaffrey Street Village of Hoosick Falls Rensselaer County New York

Prepared by:

C.T. MALE ASSOCIATES 50 Century Hill Drive Latham, New York 12110 (518) 786-7400 FAX (518) 786-7299

C.T. Male Associates Project No: 14.4756

Unauthorized alteration or addition to this document is a violation of the New York State Education Law.

 oblation of the New York
 © Copyright 2016

 Law.
 C.T. MALE ASSOCIATES ENGINEERING, SURVEYING, ARCHITECTURE & LANDSCAPE ARCHITECTURE, D.P.C.

SITE SPECIFIC HEALTH & SAFETY PLAN SAINT-GOBAIN PERFORMANCE PLASTICS CORP. 14 MCCAFFERY STREET VILLAGE OF HOOSICK FALLS RENSSELAER COUNTY, NEW YORK

TABLE OF CONTENTS

Page

1.0	GE	NERAL	1
	1.1	Overview	1
	1.2	Contact Names & Numbers	2
2.0	HE	ATLH AND SAFETY PERSONNEL	4
3.0	SIT	E LOCATION AND DESCRIPTION	5
4.0	PO	TENTIAL SITE CONTAMINANTS	6
5.0	HA	ZARD ASSESSMENT	7
	5.1	General	7
	5.2	Media Sampling	7
		5.2.1 Soil, Sediment, Rooftop, Surface Water and	Groundwater
		Sampling	7
		5.2.2 Soil Gas and Indoor Air Sampling	
	5.3	Subsurface Work	
	5.4	Air Monitoring	
	5.5	Community Air Monitoring Plan	9
	5.6	Hazard Identification and Control	
6.0	TRA	AINING	
7.0	SIT	E ACCESS	
8.0	PEF	RSONAL PROTECTION	
	8.1	Level of Protection	
	8.2	Safety Equipment	
9.0	СО	MMUNICATIONS	
10.0		CONTAMINATION PROCEDURES	
10.0		CONTAMINATION PROCEDURES	
	10.1		
	10.2		
11.0		ERGENCY RESPONSE PROCEDURES	
•	11.1		
		- J- J	

SAINT-GOBAIN PERFORMANCE PLASTICS CORP. 14 MCCAFFERY STREET VIALLAGE OF HOOSICK FALLS RENSSELAER COUNTY, NEW YORK <u>TABLE OF CONTENTS (cont.)</u>

Page

	11.2	Personal Exposure	22
		Potential or Actual Fire or Explosion	
	11.4	Equipment Failure	23
	11.5	Spill Response	23
12.0	ADD	ITIONAL WORK PRACTICES	25
13.0	AUTI	HORIZATIONS	26
14.0	MED	ICAL DATA SHEET	27
15.0	FIELI	D TEAM REVIEW	28

FIGURES

Figure 1:	Map Showing Route to Hospital
0	

APPENDICES

Appendix A:	Training Certificates
Appendix B:	Medical Data Sheets
Appendix C:	Community Air Monitoring Plan
EXHIBITS	
Exhibit 1:	Material Safety Data Sheets

1.0 GENERAL

1.1 Overview

This Health and Safety Plan (HASP) has been prepared for use during implementation of a Remedial Investigation (RI) at the Saint-Gobain Performance Plastics, Corp. (Saint-Gobain) Site ("the Site") located at 14 McCaffery Street in the Village of Hoosick Falls, Rensselaer County, New York.

Site specific training will be required by SGPP in addition to the procedures presented within this plan including health and safety, emergency communications and procedures, and monitoring.

A designated Health and Safety Officer (HSO) will be responsible for implementing this HASP during the completion of the field work. All persons or parties who enter the work area (support zone, decontamination zone or exclusion zone) must review, sign and comply with this HASP. A partial list of individuals authorized to enter the exclusion zone at the site is presented in Section 13.0 of this HASP. Others may be added to the list as needed. A copy of this HASP will be maintained at the Site throughout the duration of the project. A complete description of the Remedial Investigation work is presented in the RI Work Plan. A brief description of the proposed scope of work is outlined below:

Remedial Investigation:

- Collection of surface soil, shallow soil and sediment samples for classification and submission for laboratory analyses;
- > Collection of surface water samples for submission for laboratory analyses;
- Collection of rooftop wipe samples for laboratory analyses;
- Collection of sub-slab soil gas and indoor air quality samples for laboratory analyses;
- Oversee the drilling of soil and bedrock borings and installation of groundwater monitoring wells;
- Collection of subsurface soil samples from the soil borings for classification and submission for laboratory analyses;

- > Installation and development of overburden and bedrock monitoring wells;
- Groundwater purging and sampling for laboratory analyses;
- Collection of quality control samples of source, aqueous and solid materials for laboratory analysis;
- Oversee the geophysical survey to map the Site's underlying glacial till and bedrock and the location of the municipal sewer overflow pipe;
- Sampling locations and monitoring well location and elevation survey;
- Other unforeseen environmental conditions which may be encountered during investigative work

1.2 Contact Names & Numbers

For this project, the following project contacts have been assigned.

SAINT-GOBAIN CONTACTS:

EHS MANAGER:	Alicia M. Dorsey, M.S.E. Saint-Gobain	
	16 McCaffery Street	
	Hoosick Falls, NY 12090	518.686.6278 (O)
		518.203.9127 (C)
SR PROJECT MANAG	GER: PJ Beaumont	
	Saint-Gobain	
	16 McCaffery Street	
	Hoosick Falls, NY 12090	518.686.6179 (O)
		518.788.6296 (C)
CONSULTANT CON	TACTS:	
CONSULTING ENGINEER:	C.T. Male Associates 50 Century Hill Drive Latham, NY 12110	518.786.7400
	Dan Reilly, Project Principal	518.786.7625 (O)
		518. 928.9792 (C)

Kirk Moline, Project Manager

518.786.7502 (O) 518.265.1708 (C)

Kirk Moline, Health & Safety Officer	518.786.7502 (O)
	518.265.1708 (C)
Jon Dippert, HSO Designee	518.786.7563 (O)
	518.469.1183 (C)

EMERGENCY PHONE NUMBERS:

PERSONAL INJURY OR EMERGENCY:	Southern Vermont Medical Center 100 Hospital Drive Bennington, VT 05210 (approx. 20 minutes)	800.543.1624
FIRE DEPARTMENT:	Emergency Village of Hoosick Falls Fire Department Main Street Hoosick Falls, NY 12090	911 518.686.7427
POLICE:	Emergency Village of Hoosick Falls Police Department 24 Main Street Hoosick Falls, NY 12090	911 518.686.7900
NYS Police	Emergency NYS Troopers Barracks Town Hall, Route 66 Sand Lake, NY	911 518.674.4440
UPSTATE NEW YORK REGIONAL POISON CONTROL CENTER:	University Hospital Upstate Medical University SUNY Health Science Center 750 East Adams Street Syracuse, NY 13201	(800) 222-1222
NATIONAL RESPONSE CENTER:	c/o United States Coast Guard (G-OPF) 2100 2nd Street, Southwest - Room 2611 Washington, DC 20593-0001	(800) 424-8802
NYSDEC SPILL HOTLINE:		(800) 457-7362

2.0 HEATLH AND SAFETY PERSONNEL

The Health and Safety Officer (HSO) will be responsible for implementation of the HASP and the delegation of health and safety duties. The HSO will coordinate the resolution of safety issues that arise during site work. When field operations require only Level D protection, it will not be necessary for the HSO to be present on-site at all times. When the HSO is not present on-site, a designee will be authorized to perform the duties of the HSO, and the designee will be responsible for implementation of the HASP.

The HSO or designee has authority to stop work upon their determination of an imminent safety hazard, emergency situation or other potentially dangerous situations (e.g. weather conditions). Authorization to resume work will be issued by the HSO.

3.0 SITE LOCATION AND DESCRIPTION

The project site is owned and operated by Saint-Gobain. Various high performance polymer based products used for major industries worldwide are manufactured at the facility.

The site is accessed from McCaffery Street which is the only point of vehicular access and regress. Visitor parking is located on the northern side of the site building. Employee parking and loading docks are generally located along the southern side of the building complex.

The site is serviced with municipal water and sewer. Electric service is provided overhead, with the main lines entering the site from McCaffery Street. A buried telecommunication line also enters the site from McCaffery Street and generally follows the wood line on the western side of the access road into the site. The building heating fuel is propane, which is stored above ground at various locations throughout the site.

Overall, the site topography slopes gently to moderately from the northwest to the southeast.

4.0 POTENTIAL SITE CONTAMINANTS

Contaminants that may be encountered during the RI include PFCs in soil and groundwater and low level solvents (trichloroethene) and metals (antimony) in groundwater. These contaminants may also be present in other media that is planned to be investigated (i.e., sediment, surface water, soil gas, indoor air, and building rooftop residue). Material Safety Data Sheets for the known site contaminants are presented in Exhibit 1.

5.0 HAZARD ASSESSMENT

5.1 General

The hazard assessment, use of specific protective equipment, and monitoring associated with each field work task of the investigation to be conducted at the subject site are presented in following subsections.

For this project, C.T. Male will be subcontracting portions of the Remedial Investigation activities. Each subcontractor will be responsible for developing and implementing a site specific health and safety plan for their activities, for protection of their employees, and use of personal protective equipment. The subcontractor will also be responsible for developing and following their own Respiratory Protection Program, as applicable.

5.2 Media Sampling

5.2.1 Soil, Sediment, Rooftop, Surface Water and Groundwater Sampling

Soil, sediment, rooftop, surface water and groundwater sampling are planned for the site. The potential hazards to personnel during this work are dermal contact. Level D protection should be sufficient to protect against dermal contact during handling of soils, rooftop residues and water. If organic vapors are present at the action levels described in Section 5.4, on the basis of organic vapor monitoring of the area during the work, it may be necessary to upgrade to Level C respiratory protection.

5.2.2 Soil Gas and Indoor Air Sampling

Soil gas and indoor air quality sampling are planned for the Site as part of a vapor intrusion assessment. The potential hazards to personnel during this work are inhalation hazards and to a lesser degree dermal contact. Level D protection should be sufficient to protect against dermal contact during installation and removal of the soil gas and indoor air sampling points. If organic vapors are present at the action levels described in Section 5.4, on the basis of organic vapor monitoring of the area during the work, it may be necessary to upgrade to Level C respiratory protection.

5.3 Subsurface Work

Exploratory test borings (including the installation of monitoring wells) into soils and bedrock are planned for the site. The potential hazards to personnel during this work are dermal contact. Level D protection should be sufficient to protect against dermal contact during drilling of and/or handling of the subsurface soils, bedrock and groundwater. If organic vapors are present at the action levels described in Section 5.4, on the basis of organic vapor monitoring of the area during the work, it may be necessary to upgrade to Level C respiratory protection.

5.4 Air Monitoring

During ground intrusive activities, including the completion of test borings and installation of soil gas sampling points, the ambient air in the work area will be monitored with a photoionization detection meter (total volatile compound -MiniRAE 2000 or 3000) prior to the start of work and periodically as conditions warrant. If a concentration of 10 ppm (sustained for 5 minutes) of total volatile compounds is detected within the work area on the instrument, relative to an isobutylene standard (used to calibrate the instrument), work will cease immediately and the workers shall shut down equipment and leave the area immediately. The level of personal protective equipment (PPE) protection will be evaluated prior to continuing work. If a PPE upgrade to Level C is required, it will include: a half face air purifying respirator equipped with combination organic vapor and particulate cartridges for 10-15 ppm exposure levels; and a full-face air purifying respirator for greater than 15 ppm to less than 50 ppm exposure levels, prior to continuing work. If a concentration greater than 50 ppm is encountered, work will cease immediately and the situation will be evaluated prior to continuation of work. Table 1 summarizes the action levels relative to the required respiratory protection.

Table 1 C.T. Male Action Levels & Required Respiratory Protection		
Action Level of PPE Type of Respiratory Protection		
0-10 parts per million	Level D	No respiratory protection
10-15 parts per million	Level C	Negative pressure half-face respirator
15-50 parts per million	Level C	Positive pressure full-face respirator

Greater than 50 Cease Work Evaluate work procedures

-Facial hair is not permitted while wearing most respirators.

-Workers required to wear a respirator must have a minimum of OSHA 40 Hour training with current medical monitoring and fit test documentation.

5.5 Community Air Monitoring Plan

A site specific Community Air Monitoring Plan (CAMP) will be followed for the project on the basis of the New York State Department of Health Generic Community Air Monitoring Plan dated May 2010. The CAMP is presented in Appendix C. Air monitoring for organic vapors and particulates will be conducted during portions of the remedial investigation where the site's soils may be disturbed. Investigative tasks having the potential to disturb the site's soils include collection of surface, shallow and subsurface soil samples, collection of sediment samples, advancement of test borings, and installation of sub-slab soil gas probes.

5.6 Hazard Identification and Control

The following table presents generalized hazards potentially involved with the tasks to be completed on this project. Table 2 identifies general procedures to follow to prevent or reduce accident, injury or illness. Any worker on-site who identifies a potential hazard must report the condition to the HSO or designee, and initiate control of the hazardous condition.

Table 2			
	Potential Hazards and Control		
Potential Hazard		Control	
Vehicular Traffic	1.	Wear safety vest when vehicular hazards exist.	
	2.	Use cones, flags, barricades, and caution tape to define work area.	
	3.	Use vehicle to block work area.	
	4.	Contact police for high traffic situations.	
Slip, Trip, and Fall	1.	Assess work area to determine if there is a potential for falling.	
Protection	2.	Make sure work area is neat and tools are staged in one general area.	
	3.	Wear steel-toe boots with adequate tread and always watch where the	
		individual is walking. Carry flashlight when walking in poorly lighted	
		areas.	

Table 2		
Potential Hazards and Control		
Potential Hazard	Control	
Inclement Weather	1. Stop outdoor work during electrical storms and other extreme weather	er
	conditions such as extreme heat or cold temperatures.	
	2. Take cover indoors or in vehicle.	
	3. Listen to local forecasts for warnings about specific weather hazard	ls
	such as tornadoes, hurricanes, and flash floods.	
Utility Lines Contact	1. Contact UFPO to have utility lines marked prior to any undergroun	ıd
	excavation, trenching or drilling. UFPO must be contacted at least 7	72
	hours prior to work.	
	2. Refer to site drawings for utility locations.	
	3. Manually dig 3 to 5 feet below grade and 5 feet on each side of utilit	ty
	marked to avoid breaking utility lines.	
Noise	1. Wear hearing protection when equipment such as a drill rig, excavato	r,
	jackhammer, or other heavy equipment is operating on-site.	
	2. Wear hearing protection whenever you need to raise your voice above	7e
	normal conversational speech due to a loud noise source; as this muc	:h
	noise indicates the need for protection.	
	3. Hearing protection is required when measured sound exceeds 8	35
	decibels (dB) where employees stand or conduct work.	
Electrical Shock	1. Maintain appropriate distance between heavy equipment and overhea	ıd
	1. Maintain appropriate distance between neavy equipment and over utilities; 20 foot minimum clearance from power lines; and 10	
	minimum clearance from shielded power lines.	
	2. Contact local underground utility locating service prior to penetrating	ıg
	the ground surface.	
Physical Injury	1. Wear hard hats and safety glasses at all times when on-site.	
	2. Maintain visual contact with equipment operators and wear orang	ge
	safety vest when heavy equipment is operating on-site.	
	3. Avoid loose clothing when working around rotary equipment.	
	4. Keep hands and feet away from drilling augers/casing/samplers an	ıd
	excavation equipment tracks/tires.	
	5. Test emergency shut-off switches on drill rigs and excavation equipment	nt
	regularly.	

Table 2				
Potential Hazards and Control				
Potential Hazard	Control			
Back Injury	1. Use a mechanical lifting device or a lifting aid where appropriate.			
	2. Ensure the route is free of obstructions.			
	3. Bend at the knees and use leg muscles when lifting.			
	4. Use the buddy system if lifting heavy or awkward objects.			
	5. Do not twist or jerk your body when lifting.			
Heat Stress	1. Increase water intake while working.			
	2. Avoid excessive alcohol intake the night before working in heat stress			
	situations.			
	3. Increase number of rest breaks as necessary, and rest in a shaded area.			
	4. Watch for signs and symptoms of heat exhaustion and fatigue.			
	5. Rest in cool, dry areas.			
	6. In the event of heat stress or heat stroke, bring the victim to a cool			
	environment and call 911.			
Cold Stress	1. Wear cotton, wool or synthetics (polypropylene) undergarments to			
	absorb perspiration from the body.			
	2. Wear additional layers of light clothing as needed for warmth. The			
	layering effect holds in air, trapping body heat, and some layers could			
	be removed as the temperature rises during the day.			
	3. Pay close attention to body signals and feelings (hypothermia			
	symptoms), especially to the extremities. Correct any problem			
	indications by breaking from the work activity and moving to a rest area			
	to warm up and add additional clothing.			
	4. Increase water intake while working.			
	5. Avoid excessive alcohol intake the night before working in cold			
	conditions.			
	6. Increase the number of rest breaks as necessary, and rest in a warm area.			
	7. In the event of hypothermia or frost bite, bring the victim to a warm			
	environment and call 911.			
Fire Control	1. Smoking is not allowed on-site.			
	2. Keep flammable liquids in closed containers.			
	3. Isolate flammable and combustible materials from ignition sources.			

C.T. MALE ASSOCIATES

Table 2					
Potential Hazards and Control					
Potential Hazard	Control				
	Keep fire extinguisher nearby and use o	only if deemed safe.			
Media Sampling	Wear appropriate PPE to avoid skin,	eye, and inhalation contact with			
(water, soil, sediment,	contaminated media.				
soil gas, etc.)	Stand upwind to minimize possible	inhalation exposure, especially			
	when opening monitoring wells or close	sed containers/vessels and when			
	penetrating flooring material.				
	Conduct air monitoring, whenever n	necessary to determine level of			
	respiratory protection.				
	If necessary, employ engineering co	ontrols to assist in controlling			
	chemical vapors.				
	When collecting samples on or near wa	ater bodies, wear a life jacket and			
	employ the buddy system.				
	When collecting samples from water bo	odies, assess water conditions and			
	the water current and ensure that the sa	mpling vessel is stabilized.			
	When collecting rooftop samples, main	tain a safe distance from the roof			
	ledge.				
Cleaning Equipment	Wear appropriate PPE to avoid skin a	and eye contact with Alconox or			
	other cleaning materials.				
	Stand upwind to minimize possible inh	alation exposure.			
	Properly dispose of spent chemical	cleaning solutions and rinse			
	accordingly.				
Poor Structural	Assess building and rooftop condition p	prior to accessing and note where			
Building Condition	exit points are at all times.				
	Be cautious when walking inside the bu	uilding. Always look for holes in			
	the floors or hanging debris which could	d cause injury.			
	Carry a high power flashlight and use a	s necessary in low light areas.			
	If working in the building, ensure work	c area is neat and tools are staged			
	in one general area.				
	If working of the rooftop, maintain a s	safe distance from the roof ledge			
	and do not access sloped roof surfaces v	without proper safety controls.			
	Wear steel-toe boots with adequate trea	d.			

Table 2				
Potential Hazards and Control				
Potential Hazard	Control			
	7. Attempt to employ the buddy system so someone knows what part of			
	the building individuals are in.			
Deer Ticks	1. Wear pants and long sleeve shirts			
	2. Use tick repellent			
	2. Perform personal body checks for the presence of ticks			
	3. Notify the Health and Safety Officer immediately if you have been bitten			
	by a tick and contact your physician.			
Note: A first aid kit and fire extinguisher will be located in the C.T. Male company vehicle.				

Response actions to personal exposure from on-site contaminants include skin contact, eye contact, inhalation, ingestion, and puncture or laceration. The recommended response actions are presented in Section 11.2.

6.0 TRAINING

Site specific training of workers and personnel will be conducted and provided by the HSO or designee prior to any on-site activity. The training will specifically address the activities, procedures, monitoring and equipment for the site operations. It will include area and facility layout, hazards, emergency services (police, hospital, fire, etc.), and review of this HASP. Questions by workers, field personnel, etc. will be addressed at this time.

Workers and personnel conducting and/or supervising the project must have attended and successfully completed a 40 Hour Health and Safety Training Course for Hazardous Waste Operations and an annual 8 hour Refresher Course. Workers must take part in an employer medical surveillance program in accordance with OSHA 1910.120 requirements, including that the workers have had a medical physical within one (1) year prior to the date the work begins and that they are physically able to wear a respirator.

Documentation of training and medical surveillance will be submitted to the HSO or designee prior to the start of any on-site work. A copy of the training certificates shall be inserted into the pocket of this HASP in Appendix A.

7.0 SITE ACCESS

The RI will be conducted within the Site and at off-site locations. Due to the site location, it is possible that the public or curious bystanders will be present at the time of the work. As such, the work area and exclusion zone will be considered as the following, dependent on the investigative tasks performed.

- Chain-link fencing will be used to delineate an approximate 30 foot square around each outside test boring location. All work and equipment will remain within the designated work area/exclusion zone until completion of the test boring and installation of the monitoring well.
- Caution tape will be used to delineate an approximate 10 foot square around the inside test boring location. All work and equipment will remain within the designated work area/exclusion zone until completion of the test boring and installation of the monitoring well.
- Caution tape will be used to delineate an approximate 10 foot square around each sediment sampling location not located in the Hoosic River and each soil sampling location not originating from a test boring. All work and equipment will remain within the designated work area/exclusion zone until completion of the sediment and soil sampling.
- Caution tape will be used to delineate an approximate 10 foot square around each soil gas and indoor air quality sampling station. All work and equipment will remain within the designated work area/exclusion zone until completion of the sediment and soil sampling.
- Caution tape will be affixed at each rooftop access point during collection of the rooftop wipe samples. The caution tape will be removed after completion of the sampling activities.
- The boat will be considered as the designated work area/exclusion zone for sediment and surface water samples to be collected from open waters of the Hoosic River.

Only OSHA trained individuals which are qualified to do the work and have read and signed this Site specific HASP will be allowed within the work/exclusion zone. The HSO or designee will be responsible for limiting access to unauthorized individuals.

The Contamination Reduction Zone (decontamination area), and Support Zone (clean area, everywhere else) will be established outside the Exclusion Zone, as necessary. The exclusion, contamination reduction, and support zone during investigation/remediation work have been identified and designated as follows:

<u>Work/Exclusion Zone</u> - The location of the work/exclusion zone will be determined in the field prior to the start of work and will vary depending on the work activities conducted. For the most part, the work/exclusion zone is anticipated to be defined with chain link fencing and/or caution tape (see above). Only authorized persons with proper training and protective gear will be allowed to enter the work/exclusion zone.

<u>Contamination Reduction Zone</u> – If applicable, this zone will generally be a $30' \pm x$ $30' \pm$ area, marked off with stakes, colored flagging, or equal method, containing the decontamination pad. The location will be determined in the field prior to the start of work and will vary depending on the area(s) the work is being conducted. This zone is where decontamination of personnel and equipment will take place, as necessary, on the basis of the work being performed.

<u>Support Zone</u> - Area outside of contamination reduction zone and not including the work/exclusion zone. Unauthorized or untrained individuals must remain in this zone.

8.0 PERSONAL PROTECTION

8.1 Level of Protection

Based on evaluation of the potential hazards, the minimum level of protection to be worn by workers during implementation of the RI activities is defined as Level D protection, and will be controlled by the HSO or designee.

The minimum level D protective equipment will consist of field clothes, rubber gloves (NITRILE and/or PVC ONLY), hard hats, safety glasses, and safety boots (steel-toe preferred). As appropriate, this level of protection may be modified to include protective suits (NOT TYVEK), coveralls, leg chaps, or face shield for additional protection. Both full-face and half-face air purifying respirators should be readily available. Appropriate combination organic vapor and particulate cartridge filters will be available at the site to use, if necessary, with the air purifying respirators.

If required, level C protective equipment will consist of the items listed for Level D protection with the added protection of full-face, air purifying (organic vapor and particulate) respirator, chemical resistant clothing **(NOT TYVEK)**, inner and outer chemically resistant gloves (i.e. nitrile and/or PVC), and chemical resistant safety overboots.

Level B is not anticipated, but if required, level B protective equipment will consist of the items listed for Level D protection except a self-contained breathing apparatus (SCBA) will be worn dependent on the level of contaminants present in the work zone, and protective suits **(NOT TYVEK)** will be required. When site conditions warrant the need for level B protective equipment, work will cease and the project will be re-evaluated to determine the necessity for employing engineering controls to reduce or eliminate the potential contaminants of concern.

8.2 Safety Equipment

Basic emergency and first aid equipment will be available at an area within the Support Zone clearly marked and available or within C.T. Male's company vehicle. This shall include a first aid kit, fire extinguisher, supply of potable water, soap and towels. The HSO or designee shall be equipped with a cellular phone in case of emergencies. If the cellular phone is not available, or is inoperable, a phone in the Saint-Gobain facility will be used.

9.0 COMMUNICATIONS

Land line phone service is available within the site building. Regardless, the HSO or designee shall be equipped with a cellular phone in case of emergencies. If the cellular phone is not available, or is inoperable, the facility phone will be used. The HSO or designee shall notify the C.T. Male Project Manager as soon as safely possible in the event of an accident, injury or emergency action.

Hand signals for certain work tasks will be employed, as necessary, and the buddy system will be employed during drilling, and during test boring, open surface water, open water sediment and rooftop sampling activities.

10.0 DECONTAMINATION PROCEDURES

10.1 Personnel Decontamination Procedures

Decontamination procedures will be carried out by all personnel leaving the Work/Exclusion Zone (except under emergency evacuation). The amount of decontamination performed will be dependent on the level of personal protection currently being worn within the exclusion zone.

- 1. Do not remove respiratory protection until all steps have been completed.
- 2. Clean outer protective gloves and outer boots, if worn, with water (preferably with a pressurized washer) over designated wash tubs in the exclusion zone to remove the gross amount of contamination.
- 3. Deposit equipment used (tools, sampling devices, and containers) at designated drop stations on plastic drop sheets or in plastic lined containers.
- 4. Rinse outer boots if worn and gloves with clean water in designated rinse tubs. Remove outer boots if worn and gloves and deposit in designated area to be determined in the field for use the next day or when necessary. If disposable outer boots are worn, remove and discard in designated container.
- 5. Remove hard hat & safety glasses, rinse with clean water as necessary and deposit in designated area for use the next day or when necessary.
- 6. Remove protective suit, if worn, and discard in designated container. Remove respirator at this time, if used; wash and rinse with clean water. Organic vapor cartridges, when used, will be replaced daily. Used cartridges will be discarded in the designated waste container. Remove inner gloves and discard in designated container.

10.2 Equipment and Sample Containers Decontamination

All decontamination will be completed by personnel in protective gear appropriate for the level of protection determined by the site HSO or designee. Manual sampling equipment including scoops, hand augers, and shovels which come into contact with the site's soils and sediment, will be cleaned with a tap water/detergent wash and a bottled water rinse. The sampling equipment will be decontaminated after each sample is collected at the Contaminant Reduction Zone (Decontamination Station). The sampling equipment wash and rinse water will be captured in plastic pails or tubs and ultimately transferred to labeled DOT 17H approved 55-gallon open top steel drums and staged on-site at a secure location.

Drill rig equipment (i.e., casing, drill rods, bits, core samplers) which comes into contact with the site's soils will be decontaminated with a high pressure/hot water wash and/or other methods within the Contaminant Reduction Area. The cleaning will be performed at the completion of each boring location. Equipment decontamination wastes will be transferred to labeled DOT 17H approved 55-gallon open top steel drums and staged on-site at a secure location.

Larger equipment (i.e., drill rig) which comes into contact with the site's soils will be decontaminated with a high pressure/hot water wash and/or other methods within a decontamination pad. The decontamination procedure will focus on portions of the equipment that has come into contact with the site's soils such as the tires and tracks. The cleaning will be performed prior to the equipment leaving the site. Equipment decontamination wastes will be transferred to labeled DOT 17H approved 55-gallon open top steel drums and staged on-site at a secure location.

If a boat is utilized for collection of surface water/sediment samples, portions of the boat that comes into contact with water will be decontaminated at the shoreline by scrubbing with a tap water/detergent wash and a distilled water rinse. The wash/rinse water will be allowed to discharge to the shoreline.

Exterior surfaces of sample containers will be wiped clean with disposable paper towels in the decontamination zone and transferred to a clean cooler for transportation or shipment to the analytical laboratory. Sample identities will be noted and checked off against the chain-of-custody record. The disposable paper towels will be placed in the designated disposal container and disposed of as solid waste.

11.0 EMERGENCY RESPONSE PROCEDURES

THE PROJECT EMERGENCY COORDINATOR IS:

Site Health and Safety Officer (HSO)

Kirk Moline

The following standard emergency procedures will be used by on-site personnel. The Project Manager and HSO shall be notified of any on-site emergencies and be responsible for assuring that the appropriate procedures are followed.

11.1 Personal Injury

Emergency first aid shall be administered on-site as deemed necessary and only by a trained individual, if available at the site. If a trained individual is not available onsite, decontaminate, if feasible, and transport individual to nearest medical facility (Southern Vermont Medical Center). The HSO will supply medical data sheets to appropriate medical personnel and be responsible for completing the incident report. If the HSO is injured or controlling the emergency situation, the medical data sheets are available in Appendix B of this Health and Safety Plan.

11.2 Personal Exposure

The recommended response to worker exposure from contaminants on-site includes the following:

- SKIN CONTACT: Use generous amounts of soap and water. Wash/rinse affected area thoroughly, then provide appropriate medical attention, as necessary.
- EYE CONTACT: Wash eyes thoroughly with potable water supply provided on site. Eyes should be rinsed for at least 15 minutes subsequent to chemical contamination. Provide medical attention, as necessary.
- INHALATION: Move worker to fresh air and outside of the work zone and/or, if necessary, decontaminate and transport to hospital (Southern Vermont Medical Center). If respirator use is implemented at

the time of inhalation, worker must not remove respirator until completely away from the work zone.

INGESTION: Decontaminate, if feasible, and transport to hospital (Southern Vermont Medical Center).

PUNCTURE WOUND OR

LACERATION: Provide first aid at the site and if wound needs medical attention, decontaminate, if feasible, and transport to hospital (Southern Vermont Medical Center).

If the affected worker is exposed to contaminants on-site and the injury or accident prevents decontamination of the individual, the emergency responders must be notified of this condition and the exposure must be kept to a minimum.

11.3 Potential or Actual Fire or Explosion

Immediately evacuate area in the event of potential or actual fire or explosion. Notify the local Fire and Police Departments, and other appropriate emergency response groups, as listed in Section 1.2. Perform off-site decontamination and contain wastes for proper disposal. If a fire or explosion occurs, all on-site personnel must meet in the designated area of the site (established by the HSO or designee) for an accurate head count.

11.4 Equipment Failure

Should there be any equipment failure, breakdown, etc. the Project Manager and HSO shall be contacted immediately. The Project Manager or the HSO will make every effort to replace or repair the equipment in a timely manner.

11.5 Spill Response

The site HSO or designee shall initiate a corrective action program with the subcontractors in the event of an accidental release of a hazardous material, suspected hazardous material or petroleum. The HSO or designee will act as the Emergency Coordinator with the subcontractors for the purposes of: spill prevention; identifying releases; implementing clean up measures; and notification of appropriate personnel.

The corrective action program will be implemented by the HSO and subcontractor to effectively control and minimize any impact accidental releases may have to the environment.

Effective control measures will include:

- Preliminary assessment of the release.
- Control of the release source.
- Containment of the released material.
- Effective clean-up of the released material.

Potential sources of accidental releases include: hydraulic oil spills or petroleum leaks from heavy equipment; cooling oils (potentially PCB containing) for electrical equipment handling and cleaning; and spills from drums, vats, vessels, and tanks. The HSO/Emergency Coordinator in conjunction with the subcontractor shall respond to an accidental release in the following manner:

- Identify the character, source, amount and area affected by the release.
- Have subcontractor take all reasonable steps to control the release.
- Notify facility personnel.
- Notify the NYSDEC Spill Hotline at 1-800-457-7362 if required.
- Contain the release with sorbent material which should include speedi-dry, spill socks and sorbent pads.
- Prevent the release from entering sensitive receptors (i.e., catch basins and surface water) using the specified sorbent material or sandbags.
- Coordinate cleanup of the released material.
- Oversee proper handling and storage of contaminated material for disposal.

At no time should personal health or safety be compromised or jeopardized in an attempt to control a release. All health and safety measures as outlined in this HASP should be adhered to.

12.0 ADDITIONAL WORK PRACTICES

Workers will be expected to adhere to the established safety practices. Work on the project will be conducted according to established protocol and guidelines for the safety and health of all involved. The following will be adhered to:

- Employ the buddy system when possible, and for those work tasks which require it. Establish and maintain communications.
- Minimize contact with potentially contaminated soil, sediment, rooftop residue and water.
- Employ disposable items when possible to minimize risks during decontamination and possible cross-contamination during sample handling.
- Smoking, eating, or drinking after entering the work zone and before decontamination will not be allowed.
- Avoid heat and other work stress related to wearing personal protective equipment. Take breaks as necessary and drink plenty of fluids to prevent dehydration.
- Withdrawal from a suspected or actual hazardous situation to reassess procedures is the preferred course of action.
- The removal of facial hair (except mustaches) prior to working on-site will be required to allow for a proper respiratory face piece fit.
- The Project Manager, the HSO, and sampling personnel shall maintain records recording daily activities, meetings, facts, incidents, data, etc. relating to the project. These records will remain at the project site during the full duration of the project so that replacement personnel may add information while maintaining continuity. These daily records will become part of the permanent project file.

13.0 AUTHORIZATIONS

Personnel authorized to enter the exclusion zone at the Saint-Gobain Performance Plastics, Corp. site at 14 McCaffrey Street in the Village of Hoosick Falls, Rensselaer County, New York while operations are being conducted must be certified by the HSO. Authorization will involve completion of appropriate training courses and review and sign off of this HASP.

Personnel authorized to perform work on-site are as follows:

1. <u>Kirk Moline</u>	C.T. Male
3. Jeffrey Marx	C.T. Male
4. <u>Dan Achtyl</u>	C.T. Male
5. <u>Steve Bieber</u>	
6. Jon Dippert	C.T. Male
7. Brittany Winslow	C.T. Male
8. Larene Cameron	C.T. Male
9. <u>Chris Ormsby</u>	C.T. Male
10	
11	
12	
13	
14	
15	
16	
17	

14.0 MEDICAL DATA SHEET

This medical data sheet will be completed by all on-site personnel and will be kept on-site during the duration of the project. This data sheet will accompany any personnel when medical assistance is needed or if transport to hospital facilities is required.

PROJECT: <u>Remedial Investigation to be conducted at the Saint-Gobain</u> <u>Performance Plastics, Corp. Site at 14 McCaffrey Street in the Village of</u> <u>Hoosick Falls, New York.</u>

Name	Home Telephone
Address	
Emergency Contact	
Drug or Other Allergies	
Particular Sensitivities	
Do You Wear Contact Lenses	
	Illness or Exposure to Hazardous Chemicals
	ly Using
Do You Have Any Physical or Medi	ical Restrictions
	tor (Provide Fit Test Results)
Name, Address, and Telephone Nu	mber of Personal Physician:

15.0 FIELD TEAM REVIEW

Each field team member shall sign this section after site specific training is completed and before being permitted to work on-site.

I have read and understood this Site Specific Health and Safety Plan, and I will comply with the provisions contained therein.

PROJECT: Site Investigation Saint-Gobain Performance Plastics Corp. Site 14 McCaffrey Street Village to Hoosick Falls Rensselaer County, New York

Name: Printed	<u>Signature</u>	Date

FIGURE 1

MAP SHOWING ROUTE TO SOUTHERN VERMONT MEDICAL CENTER

APPENDIX A

TRAINING CERTIFICATES

APPENDIX B

MEDICAL DATA SHEETS

14.0 MEDICAL DATA SHEET

This medical data sheet will be completed by all on-site personnel and will be kept on-site during the duration of the project. This data sheet will accompany any personnel when medical assistance is needed or if transport to hospital facilities is required.

PROJECT: <u>Remedial Investigation to be conducted at the Saint-Gobain</u> <u>Performance Plastics, Corp. Site at 14 McCaffrey Street in the Village of</u> <u>Hoosick Falls, New York.</u>

Name	Home Telephone
Address	
Emergency Contact	
Drug or Other Allergies	
Particular Sensitivities	
Do You Wear Contact Lenses	
	Illness or Exposure to Hazardous Chemicals
	ly Using
Do You Have Any Physical or Medi	ical Restrictions
	tor (Provide Fit Test Results)
Name, Address, and Telephone Nu	mber of Personal Physician:

APPENDIX C

COMMUNITY AIR MONITORING PROGRAM

Appendix 1A New York State Department of Health Generic Community Air Monitoring Plan

Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical- specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

Continuous monitoring will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. APeriodic@monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or

overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.

2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.

3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.

4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m^3) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.

2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m^3 above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m^3 of the upwind level and in preventing visible dust migration.

3. All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

December 2009

EXHIBIT 1

MATERIAL SAFETY DATA SHEETS

About Us

Printer-friendly version

Perfluorooctanoic acid (Pentadecafluorooctanoic acid)

MATERIAL SAFETY DATA SHEET

SECTION 1 - CHEMICAL IDENTIFICATION

Exfluor Product ID: C8AC Name: Perfluorooctanoic acid Synonyms: Pentadecafluorooctanoic acid Chemical Formula: CF3(CF2)6COOH Issue Date: 12/15/1997 Revised: 07/21/2008

SECTION 2 - COMPOSITION/INFORMATION ON INGREDIENTS CAS#: 335-67-1 EINECS#: 206-397-9

SECTION 3 - HAZARDS IDENTIFICATION

Precautionary Statements: Corrosive, irritant, irritating to eyes, respiratory system and skin, causes burns, harmful by inhalation and if swallowed **Target Organs:** None known

SECTION 4 - FIRST-AID MEASURES

Eyes: In case of contact, immediately flush eyes with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Assure adequate flushing of the eyes by separating the eyelids with fingers. **Skin:** Flush skin with plenty of soap and water for at least 15 minutes while removing contaminated clothing and shoes.

Inhalation: Remove to fresh air. If not breathing give artificial respiration. If breathing is difficult, give oxygen. **Ingestion:** Do not induce vomiting. Allow victim to rinse his mouth with water provided person is conscious. Drink 2-4 cupfulls of water, and seek medical advice.

SECTION 5 - FIRE FIGHTING MEASURES

General Information: As in any fire, wear a self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent), and protective gear.

Extinguishing Media: In case of fire, use water spray, carbon dioxide, dry chemical, or polymer foam.

Flash Point: None

Fire Hazard: Slight fire hazard. Dust/air mixtures may ignite or explode.

Combustion: Carbon monoxide, Carbon dioxide, Hydrogen fluoride

SECTION 6 - ACCIDENTAL RELEASE MEASURES

General Information: Use proper personal protective equipment as in section 8.

Spills/Leaks: Do not touch spilled material. Stop leak if possible without personal risk. Small spills: Avoid raising dust. Collect spilled material in appropriate container for disposal. Absorbent may be used. Move containers away from spill to a safe area. Large spills: dike for later disposal. Keep unnecessary people away, isolate hazard area and deny entry. Ventilate area and wash spill site after material pickup is complete.

SECTION 7 - HANDLING AND STORAGE

General Information: Use proper personal protective equipment as in section 8.

Precautions: Store and handle in accordance with all current regulations and standards.

Handling:

Storage: Store in a cool dry place. Store in a tightly closed container. Keep seperated from incompatible substances.

SECTION 8 - EXPOSURE CONTROLS/PERSONAL PROTECTION

Exposure Limits: 0.1 Mg/M3 recommended TWA (3m) (skin)

Ventilation: Provide local exhaust or process enclosure ventilitation system. Ventilation equipment should be explosion-resistant if explosive concentrations of material are present.

Respiratory Protection: Wear a NIOSH/MSHA approved (or equivalent) respirator.

Eye Protection: Wear splash resistant safety goggles with a faceshield. Provide an emergency eye wash fountain and quick drench shower in the immediate work area.

Gloves: Wear appropriate chemical resistant glove.

SECTION 9 - PHYSICAL PROPERTIES

Molecular Formula: C8HF15O2 Physical State: White solid Boiling Point: 189 C / 736 mmHg Melting Point: 55-56 C Freezing Point: Liquid Density: Specific Gravity: 1.7 Approximate Vapor Pressure: 10.0 mm Hg @ 25C Approximate Refractive Index: Molecular Weight: 414 Solubility: Odor:

SECTION 10 - STABILITY AND REACTIVITY

Stability: Stable at normal temperatures and pressure.
Conditions to Avoid: Heat and generating dust.
Incompatibilities: Strong oxidizing agents, strong bases, reducing agents
Hazardous Polymerization: Has not been reported
Hazardous Combustion: Carbon monoxide, Carbon dioxide, Hydrogen fluoride
RTECS#: RH0781000

SECTION 11 - TOXICOLOGICAL INFORMATION

Acute Effects: May cause irritation of the respiratory tract, eyes, and skin.

Chronic Effects: May cause severe irritation of the respiratory tract with coughing, choking, pain and possibly burns of the mucous membranes. In some cases, pulmonary edema may develop, either immediately or more often within a period of 5-72 hours. The symptoms may include tigtness in the chest, dyspnea, frothy sputum, cyanosis, and dizziness. Physical findings may include moist rales, low blood pressure and high pulse pressure. Severe cases may be fatal direct contact may cause severe irritation, pain and possibly burns. There may be discoloration of the tissue. Swallowing and speech may be difficult at first and then almost impossible. The effects on the esophagus and gastrointestinal tract may range from irritation to severe corrosion. Edema of the epiglottis and shock may occur. **Toxicological Data:** Eye Contact - Caused extreme irritation in animal studies, with a score of 108/110. Ingestion - Caused erosian of gastric mucosa in animal studies. The LD50 was estimated to lie between 500 and 1000 Mg/Kg. IPR-RAT LD50:189 Mg/Kg. TXAPA9 70,362,83. Toxicological properties have not been fully investigated.

SECTION 12 - ECOLOGICAL INFORMATION

Data not yet available.

SECTION 13 - DISPOSAL INFORMATION

Place in a chemical secured landfill or incinerate at 1200 (C) with a 2 second dwell time or at 1600 (C) with a 1.5 second dwell time.

SECTION 14 - TRANSPORTATION INFORMATION

Shipping Name: Corrosive solid, n.o.s. (Perfluorooctanoic acid) UN/ID#: UN 1759 Hazard Class: 8 Packing Group: II Labels: 8

SECTION 15 - REGULATORY INFORMATION

TSCA Inventory - Yes. Sara 311/312 (40CFR370.21): Acute yes

CLASSIFICATION AND LABELING ACCORDING TO EU DIRECTIVES Indication of Danger: C - Corrosive R-Phrases: 22-34-52/53 Harmful if swallowed. Causes burns. Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

S-Phrases: 26-36/37/39-45

In case of contact with eyes, rinse immeditately with plenty of water and seek medical advice. Wear suitable protective clothing, gloves, and eye/face protection. In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).

SECTION 16 - OTHER INFORMATION

THE ABOVE INFORMATION IS BELIEVED TO BE CORRECT, BUT DOES NOT PURPORT TO BE ALL INCLUSIVE AND SHALL BE USED ONLY AS A GUIDE. EXFLUOR RESEARCH CORPORATION SHALL NOT BE HELD LIABLE FOR ANY DAMAGE RESULTING FROM HANDLING OR FROM CONTACT WITH THE ABOVE PRODUCT.

Material Safety Data Sheet

					PROTECTIVE CLOTHING						
	Harmful comp	eyes and skin on bound, minimize keep containe	exposure.								
Section I. Che	emical Produ	ict and Cor	mpany Ide	entifica	tion						
Chemical Name	Pentade	cafluoro	octanoi	c Acio	d Hydra	te					
Catalog Number	P0764		Supplier	TCI America 9211 N. Harborgate St.							
Synonym	Perfluorooctanoi	c Acid			Portland OR 1-800-423-8616						
Chemical Formula	$C_8HF_{15}O_2\bullet H_2O$				In case of						
CAS Number	335-67-1				In case of Emergency Call	Chemtrec® (800) 424-9300 (U.S.) (703) 527-3887 (International)					
Section II. Co	mposition a	nd Informa	tion on In	aradiar							
Chemical Nam	-	CAS Number	Percent (%)		TLV/PEL	Toxicology Data					
Pentadecafluorooctanoic A	Acid Hydrate	335-67-1	Min. 98.0 (T)	ble.	Rat LD ₅₀ (intraperitoneal) 189 mg/kg						
Section III. Ha	zards Identi	fication									
Acute Health Effects Chronic Health Effects	membranes of the damage or blindne coughing, choking, Harmful if ingested Follow safe industri CARCINOGENIC EF MUTAGENIC EFFE TERATOGENIC EF DEVELOPMENTAL Mouse TDLo Oral 3 TOXIC Effects: Effects on Fertility - Effects on Fertility - Effects on Embryo 0 Mouse TDLo Oral 8 TOXIC Effects - Effects on Newborn Effects on Newborn Mouse TDLo Oral 9 TOXIC Effects: Effects on Newborn Mouse TDLo Oral 9 TOXIC Effects: Effects on Embryo 0 Specific Developme Effects on Newborn Repeated exposure skin destruction, o damage.	eyes, mouth and r eyes, mouth and r ss. Inhalation of or shortness of bre or inhaled. Minimiz al hygiene practices FFECTS : Not availab FECTS : No	espiratory tract. the spray mist ath. Corrosive m ze exposure to th s and always weat ailable. ole. lable. ductive effects. 1-17 days of pregn mortality ity -19 days of pregn -19 days of pregn sity - Hepatobiliary s metabolic w level of dust c	Skin contac may produc naterials mat- is material. ar proper pro- nancy ancy ancy ystem an produce	eye irritation. Re	e tissue damage, particularly in mucous urns. Eye contact can result in corneal n of respiratory tract, characterized by jury if ingested. sure can result in injury or death. t when handling this compound.					
Section IV. First Eye Contact	St Aid Measu		anses In case o	f contact in	nmediately fluch	eves with plenty of water for at least 15					
Bye Contact	Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at l minutes. Get medical attention.										
Skin Contact	In case of contact, before reuse. Thore					ated clothing and shoes. Wash clothing					
Inhalation						nt clothing such as a collar, tie, belt or attention if respiration problems do not					
Ingestion		nouth resuscitation.	Examine the lip	s and mouth	n to ascertain whe	vaistband. If the victim is not breathing, ther the tissues are damaged, a possible s not conclusive.					

P0764	Pentadeca	fluorooctanoic Acid	Hydrate	Page 2									
Section V. F	Fire and Explosion Data												
Flammability	May be combustible at high temperature.	Auto-Ignition	Not available.										
Flash Points	Not available.	Flammable Limits	Not available.										
Combustion Products		These products are toxic carbon oxides (CO, CO ₂), halogenated compounds. WARNING: Highly toxic HF gas is produced during combustion.											
Fire Hazards	Not available.												
Explosion Hazards	Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.												
Fire Fighting Media and Instructions	SMALL FIRE: Use DRY chemical powder LARGE FIRE: Use water spray, fog or foa Consult with local fire authorities before at	m. DO NOT use water jet.	erations.										
Section VI. A	Accidental Release Measure	es											
Spill Cleanup Instructions	Corrosive material. Harmful material. Hygr Stop leak if without risk. DO NOT get w vapors. Prevent entry into sewers, basem the residue with a dilute solution of so disposal.	ater inside container. DO NOT tou ents or confined areas; dike if need	ed. Eliminate all sources of	of ignition. Neutralize									
Section VII. H	landling and Storage												
Handling and Storage Information	CORROSIVE. HARMFUL. HYGROSCO When not in use, tightly seal the containe dust. Never add water to this product. W the label when possible. Treat symptomat Always store away from incompatible com	er and store in a dry, cool place. A ear suitable protective clothing. If y ically and supportively.	Avoid excessive heat and l ou feel unwell, seek medic	light. Do not breathe al attention and show									
Section VIII. E	Exposure Controls/Persona	I Protection											
Engineering Controls	Use process enclosures, local exhaust ve exposure limits. If user operations gener below the exposure limit.												
Personal Protection	Face shield. Lab coat. Dust respirator inhalation of the product. Suggested pr product.	. Boots. Gloves. A MSHA/NIOS otective clothing might not be suffice											
Exposure Limits	Not available.												
Section IX. F	Physical and Chemical Prop	oerties											
Physical state @ 20°C	Solid. (White Crystal ~ Powder.)	Solubility	Soluble in methanol.										
Specific Gravity	0.9 (water=1)	_	Slightly soluble in water.										
Molecular Weight	414.07 (Anh)	Partition Coefficient	Log P _{ow} 6.3										
Boiling Point	189°C (372.2°F)	Vapor Pressure	20 Pa @ 25 °C										
Melting Point	57℃ (134.6°F)	Not available.											
Refractive Index	Not available.		Not available.										
Critical Temperature	Not available.	Pungent.	ent.										
Viscosity	Not available.	Not available. Taste											
Section X. S	Stability and Reactivity Data	1											
Stability	This material is stable if stored under prop	er conditions. (See Section VII for i	instructions)										
Stability Conditions of Instability	This material is stable if stored under prop Avoid excessive heat and light. Hygrosco		nstructions)										

Pentadecafluorooctanoic Acid Hydrate

P0764	Pentadecafluorooctanoic Acid Hydrate Page
Section XI.	Toxicological Information
RTECS Number	RH0781000
Routes of Exposure	Eye Contact. Ingestion. Inhalation. Skin contact.
Toxicity Data	Rat LD ₅₀ (intraperitoneal) 189 mg/kg
Chronic Toxic Effects	CARCINOGENIC EFFECTS : Not available. MUTAGENIC EFFECTS : Not available. TERATOGENIC EFFECTS : Not available. DEVELOPMENTAL TOXICITY: Reproductive effects. Mouse TDLo Oral 340 mg/kg, female 1-17 days of pregnancy TOXIC Effects: Effects on Fertility - Post-implantation mortality Effects on Embryo or Fetus - Fetotoxicity Effects on Embryo or Fetus - Fetotoxicity Effects on Embryo or Fetus - Fetal death Mouse TDLo Oral 85 mg/kg, female 1-17 days of pregnancy TOXIC Effects: Maternal Effects - Breasts, lactation Effects on Newborn - Growth statistic Effects on Newborn - Physical Mouse TDLo Oral 90 mg/kg, female 2-19 days of pregnancy TOXIC Effects: Effects on Newborn - Physical Mouse TDLo Oral 90 mg/kg, female 2-19 days of pregnancy TOXIC Effects: Effects on Newborn - Fetus - Fetotoxicity Specific Developmental Abnormalities - Hepatobiliary system Effects on Newborn - Biochemical and metabolic Repeated exposure of the eyes to a low level of dust can produce eye irritation. Repeated skin exposure can produce loca skin destruction, or dermatitis. Repeated inhalation of dust can produce varying degree of respiratory irritation or lung damage.
Acute Toxic Effects	Corrosive to skin, eyes, and respiratory system. Liquid or spray mist may produce tissue damage, particularly in mucous membranes of the eyes, mouth and respiratory tract. Skin contact may produce burns. Eye contact can result in cornea damage or blindness. Inhalation of the spray mist may produce severe irritation of respiratory tract, characterized by coughing, choking, or shortness of breath. Corrosive materials may cause serious injury if ingested. Harmful if ingested or inhaled. Minimize exposure to this material. Severe overexposure can result in injury or death. Follow safe industrial hygiene practices and always wear proper protective equipment when handling this compound.
Section XII.	Ecological Information
Ecotoxicity	Not available.
Environmental Fate	The production of fluorinated surfactants such as perfluorooctanoic acid, and their use in fire-fighting applications, cosmetics. greases and lubricants, paints, polishes and adhesives may result in their release to the environment through various waste streams. If released to air, an estimated vapor pressure of 0.15 mm Hg at 25 deg C indicates perfluorooctanoic acid will exist solely as a vapor in the ambient atmosphere. Vapor-phase perfluorooctanoic acid will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 31 days. If released to soil, perfluorooctanoic acid is expected to have no mobility based upon an estimated Koc of 27,000. The pKa of perfluorooctanoic acid is 2.80, indicating that this compound will primarily exist in the dissociated form in the environment and anions generally do not adsorb to organic carbon and clay as strongly as their neutral counterparts. If released into water, perfluorooctanoic acid is expected to adsorb to suspended solids and sediment based upon the estimated Koc. A pKa of 2.80 indicates perfluorooctanoic acid will exist almost entirely in the ionized form at pH values of 5 to 9 and therefore volatilization from water surfaces is not expected to be an important fate process. An estimated BCF of 56 was reported for ammonium perfluorooctanoate and suggests the potential for bioconcentration in aquatic organisms is moderate. Organic fluorochemical compounds, such as perfluorooctanoic acid, are expected to be resistant to hydrolysis, photolysis and biodegradation. Occupational exposure to perfluorooctanoic acid may occur through inhalation and dermal contact with this compound at workplaces where perfluorooctanoic acid is produced or used.
Section XIII.	Disposal Considerations
Waste Disposal	Recycle to process, if possible. Consult your local regional authorities. You may be able to dissolve or mix material with combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber system. Observe a federal, state and local regulations when disposing of the substance.
Section XIV.	Transport Information
DOT Classification	DOT Class 8: Corrosive material
PIN Number	UN3261
Proper Shipping Name	Corrosive solid, acidic, organic, n.o.s.
Packing Group (PG)	
DOT Pictograms	CONNECTION AND AND AND AND AND AND AND AND AND AN

P0764 Pentadecafluorooctanoic Acid Hydrate

Page 4

Section XV. Of	ther Regulatory Information and Pictograms
TSCA Chemical Inventory (EPA)	This compound is ON the EPA Toxic Substances Control Act (TSCA) inventory list.
WHMIS Classification (Canada)	CLASS E: Corrosive solid. On NDSL
EINECS Number (EEC)	206-397-9
EEC Risk Statements	R20/21/22- Harmful by inhalation, in contact with skin and if swallowed. R34- Causes burns.
Japanese Regulatory Data	ENCS No. 2-1182; 2-2659

Section XVI. Other Information

Version 1.0 Validated on 10/14/2010. Printed 10/14/2010.

Notice to Reader

TCI laboratory chemicals are for research purposes only and are NOT intended for use as drugs, food additives, households, or pesticides. The information herein is believed to be correct, but does not claim to be all inclusive and should be used only as a guide. Neither the above named supplier nor any of its subsidiaries assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All chemical reagents must be handled with the recognition that their chemical, physiological, toxicological, and hazardous properties have not been fully investigated or determined. All chemical reagents should be handled only by individuals who are familiar with their potential hazards and or determined. All chemical reagents should be handled only by individuals who are familiar with their potential hazards and who have been fully trained in proper safety, laboratory, and chemical handling procedures. Although certain hazards are described herein, we can not guarantee that these are the only hazards which exist. Our MSDS sheets are based only on data available at the time of shipping and are subject to change without notice as new information is obtained. Avoid long storage periods since the product is subject to degradation with age and may become more dangerous or hazardous. It is the responsibility of the user to request updated MSDS sheets for products that are stored for extended periods. Disposal of unused product must be undertaken by qualified personnel who are knowledgeable in all applicable regulations and follow all pertinent safety precautions including the use of appropriate protective equipment (e.g. protective goggles, protective clothing, breathing equipment, facial mask, fume hood). For proper handling and disposal, always comply with federal, state, and local regulations.

Printed 10/14/2010.

Page 1 of 8

MATERIAL SAFETY DATA SHEET

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

MATHESON TRI-GAS, INC. 150 Allen Road Suite 302 Basking Ridge, New Jersey 07920 Information: 1-800-416-2505 Emergency Contact: CHEMTREC 1-800-424-9300 Calls Originating Outside the US: 703-527-3887 (Collect Calls Accepted)

SUBSTANCE: TRICHLOROETHYLENE

TRADE NAMES/SYNONYMS:

MTG MSDS 199; ACETYLENE TRICHLORIDE; ETHYLENE TRICHLORIDE; 1-CHLORO-2,2-DICHLOROETHYLENE; 1,1-DICHLORO-2-CHLOROETHYLENE; TCE; ETHINYL TRICHLORIDE; TRICHLOROETHENE; 1,1,2-TRICHLOROETHYLENE; 1,1,2-TRICHLOROETHENE; UN 1710; RCRA U228; C2HCl3; MAT23850; RTECS KX4550000

CHEMICAL FAMILY: halogenated, alkenes

CREATION DATE: Jan 24 1989 **REVISION DATE:** Dec 11 2008

2. COMPOSITION, INFORMATION ON INGREDIENTS

COMPONENT: TRICHLOROETHYLENE CAS NUMBER: 79-01-6 PERCENTAGE: >99

COMPONENT: INHIBITORS **CAS NUMBER:** Not assigned. **PERCENTAGE:** <0.1

COMPONENT: AMINES CAS NUMBER: Not assigned. PERCENTAGE: <0.1

3. HAZARDS IDENTIFICATION

NFPA RATINGS (SCALE 0-4): HEALTH=2 FIRE=1 REACTIVITY=0

EMERGENCY OVERVIEW:

COLOR: colorless PHYSICAL FORM: liquid ODOR: sweet odor

MAJOR HEALTH HAZARDS: respiratory tract irritation, skin irritation, eye irritation, central nervous system depression, allergic reactions, cancer hazard (in humans)

PHYSICAL HAZARDS: May polymerize. Containers may rupture or explode. May decompose on contact with air, light, moisture, heat or storage and use above room temperature. Releases toxic, corrosive, flammable or explosive gases.

POTENTIAL HEALTH EFFECTS:

INHALATION:

SHORT TERM EXPOSURE: irritation, changes in blood pressure, nausea, vomiting, stomach pain, difficulty breathing, irregular heartbeat, headache, drowsiness, dizziness, disorientation, mood swings, tremors, loss of coordination, visual disturbances, bluish skin color, lung congestion, kidney damage, liver damage, unconsciousness, coma

LONG TERM EXPOSURE: same as effects reported in short term exposure, loss of appetite, weight loss, blood disorders, brain damage, cancer

SKIN CONTACT:

SHORT TERM EXPOSURE: irritation, allergic reactions

LONG TERM EXPOSURE: irritation, allergic reactions, nausea, loss of appetite, weight loss, difficulty breathing, headache, drowsiness, dizziness, joint pain, loss of coordination, visual disturbances, paralysis **EYE CONTACT:**

SHORT TERM EXPOSURE: irritation (possibly severe), blurred vision

LONG TERM EXPOSURE: irritation (possibly severe), eye damage

INGESTION:

SHORT TERM EXPOSURE: same as effects reported in short term inhalation

LONG TERM EXPOSURE: same as effects reported in long term inhalation

4. FIRST AID MEASURES

INHALATION: If adverse effects occur, remove to uncontaminated area. Give artificial respiration if not breathing. Get immediate medical attention.

SKIN CONTACT: Wash skin with soap and water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention, if needed. Thoroughly clean and dry contaminated clothing and shoes before reuse.

EYE CONTACT: Flush eyes with plenty of water for at least 15 minutes. Then get immediate medical attention.

INGESTION: If vomiting occurs, keep head lower than hips to help prevent aspiration. If person is unconscious, turn head to side. Get medical attention immediately.

NOTE TO PHYSICIAN: For ingestion, consider gastric lavage. Consider oxygen.

Page 3 of 8

5. FIRE FIGHTING MEASURES

FIRE AND EXPLOSION HAZARDS: Slight fire hazard.

EXTINGUISHING MEDIA: carbon dioxide, regular dry chemical

Large fires: Use regular foam or flood with fine water spray.

FIRE FIGHTING: Cool containers with water spray until well after the fire is out. Stay away from the ends of tanks. For tank, rail car or tank truck, evacuation radius: 800 meters (1/2 mile).

FLASH POINT: No data available. **LOWER FLAMMABLE LIMIT:** 7.8% @ 100 C **UPPER FLAMMABLE LIMIT:** 52% @ 100 C **AUTOIGNITION:** 770 F (410 C)

6. ACCIDENTAL RELEASE MEASURES

AIR RELEASE:

Reduce vapors with water spray. Collect runoff for disposal as potential hazardous waste.

SOIL RELEASE:

Dig holding area such as lagoon, pond or pit for containment. Dike for later disposal. Absorb with sand or other non-combustible material.

WATER RELEASE:

Absorb with activated carbon. Remove trapped material with suction hoses. Collect spilled material using mechanical equipment. Subject to California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65). Keep out of water supplies and sewers.

OCCUPATIONAL RELEASE:

Avoid heat, flames, sparks and other sources of ignition. Stop leak if possible without personal risk. Small liquid spills: Absorb with sand or other non-combustible material. Large spills: Dike for later disposal. Remove sources of ignition. Keep unnecessary people away, isolate hazard area and deny entry. Notify Local Emergency Planning Committee and State Emergency Response Commission for release greater than or equal to RQ (U.S. SARA Section 304). If release occurs in the U.S. and is reportable under CERCLA Section 103, notify the National Response Center at (800)424-8802 (USA) or (202)426-2675 (USA).

7. HANDLING AND STORAGE

STORAGE: Store and handle in accordance with all current regulations and standards. Store in a cool, dry place. Store in a well-ventilated area. Avoid heat, flames, sparks and other sources of ignition. Keep separated from incompatible substances.

8. EXPOSURE CONTROLS, PERSONAL PROTECTION

EXPOSURE LIMITS: TRICHLOROETHYLENE:

100 ppm OSHA TWA
200 ppm OSHA ceiling
300 ppm OSHA peak (5 minutes in any 2 hours)
50 ppm (269 mg/m3) OSHA TWA (vacated by 58 FR 35338, June 30, 1993)
200 ppm (1070 mg/m3) OSHA STEL (vacated by 58 FR 35338, June 30, 1993)
10 ppm ACGIH TWA
25 ppm ACGIH STEL
25 ppm NIOSH TWA 10 hour(s)
2 ppm NIOSH ceiling 60 minute(s) (used as halogenated anesthetic gas)

VENTILATION: Provide local exhaust ventilation system. Ensure compliance with applicable exposure limits.

EYE PROTECTION: Wear splash resistant safety goggles. Provide an emergency eye wash fountain and quick drench shower in the immediate work area.

CLOTHING: Wear appropriate chemical resistant clothing.

GLOVES: Wear appropriate chemical resistant gloves.

RESPIRATOR: The following respirators and maximum use concentrations are drawn from NIOSH and/or OSHA.

At any detectable concentration -

Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode.

Any supplied-air respirator with a full facepiece that is operated in a pressure-demand or other positivepressure mode in combination with an auxiliary self-contained breathing apparatus operated in pressuredemand or other positive-pressure mode.

Escape -

Any air-purifying full-facepiece respirator (gas mask) with a chin-style, front-mounted or back-mounted organic vapor canister.

Any appropriate escape-type, self-contained breathing apparatus.

For Unknown Concentrations or Immediately Dangerous to Life or Health -

Any supplied-air respirator with a full facepiece that is operated in a pressure-demand or other positivepressure mode in combination with an auxiliary self-contained breathing apparatus operated in pressuredemand or other positive-pressure mode.

Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode.

Page 5 of 8

9. PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE: liquid **COLOR:** colorless **ODOR:** sweet odor MOLECULAR WEIGHT: 131.39 MOLECULAR FORMULA: C1-C-H-C-C12 **BOILING POINT:** 189 F (87 C) **FREEZING POINT:** -99 F (-73 C) VAPOR PRESSURE: 58 mmHg @ 20 C VAPOR DENSITY (air=1): 4.53 SPECIFIC GRAVITY (water=1): 1.4642 WATER SOLUBILITY: 0.1% **PH:** Not available **VOLATILITY:** Not available **ODOR THRESHOLD:** 21 ppm **EVAPORATION RATE:** 0.69 (carbon tetrachloride=1) **COEFFICIENT OF WATER/OIL DISTRIBUTION:** Not available SOLVENT SOLUBILITY: Soluble: alcohol, ether, acetone, chloroform, benzene, vegetable oils

10. STABILITY AND REACTIVITY

REACTIVITY: May decompose on contact with air, light, moisture, heat or storage and use above room temperature. Releases toxic, corrosive, flammable or explosive gases.

CONDITIONS TO AVOID: Avoid heat, flames, sparks and other sources of ignition. Containers may rupture or explode if exposed to heat.

INCOMPATIBILITIES: bases, metals, combustible materials, oxidizing materials

HAZARDOUS DECOMPOSITION:

Thermal decomposition products: phosgene, halogenated compounds, oxides of carbon

POLYMERIZATION: May polymerize. Avoid contact with heat or light and monitor inhibitor content.

11. TOXICOLOGICAL INFORMATION

TRICHLOROETHYLENE:

IRRITATION DATA: 2 mg/24 hour(s) skin-rabbit severe; 20 mg/24 hour(s) eyes-rabbit moderate **TOXICITY DATA:** 140700 mg/m3/1 hour(s) inhalation-rat LC50; >20 gm/kg skin-rabbit LD50; 4920 mg/kg oral-rat LD50

CARCINOGEN STATUS: NTP: Anticipated Human Carcinogen; IARC: Human Limited Evidence,

Page 6 of 8

Animal Sufficient Evidence, Group 2A; ACGIH: A2 -Suspected Human Carcinogen LOCAL EFFECTS: Irritant: inhalation, skin, eve

ACUTE TOXICITY LEVEL: Moderately Toxic: ingestion Slightly Toxic: inhalation Relatively Non-toxic: dermal absorption TARGET ORGANS: immune system (sensitizer), central nervous system MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: heart problems TUMORIGENIC DATA: Available. MUTAGENIC DATA: Available. REPRODUCTIVE EFFECTS DATA: Available. ADDITIONAL DATA: May cross the placenta. Stimulants such as epinephrine may induce ventricular fibrillation.

12. ECOLOGICAL INFORMATION

ECOTOXICITY DATA: FISH TOXICITY: 3100 ug/L 96 hour(s) LC50 (Mortality) Flagfish (Jordanella floridae)

INVERTEBRATE TOXICITY: 1700 ug/L 7 hour(s) EC50 (Regeneration) Flatworm (Dugesia japonica)

OTHER TOXICITY: 45000 ug/L 48 week(s) LC50 (Mortality) Clawed toad (Xenopus laevis)

FATE AND TRANSPORT:

BIOCONCENTRATION: 17 ug/L 1-14 hour(s) BCF (Residue) Bluegill (Lepomis macrochirus) 8.23 ug/L

13. DISPOSAL CONSIDERATIONS

Subject to disposal regulations: U.S. EPA 40 CFR 262. Hazardous Waste Number(s): U228. Hazardous Waste Number(s): D040. Dispose of in accordance with U.S. EPA 40 CFR 262 for concentrations at or above the Regulatory level. Regulatory level- 0.5 mg/L. Dispose in accordance with all applicable regulations.

14. TRANSPORT INFORMATION

U.S. DOT 49 CFR 172.101: PROPER SHIPPING NAME: Trichloroethylene ID NUMBER: UN1710 HAZARD CLASS OR DIVISION: 6.1 PACKING GROUP: III LABELING REQUIREMENTS: 6.1

15. REGULATORY INFORMATION

<u>U.S. REGULATIONS:</u> CERCLA SECTIONS 102a/103 HAZARDOUS SUBSTANCES (40 CFR 302.4): TRICHLOROETHYLENE: 100 LBS RQ

SARA TITLE III SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES (40 CFR 355 Subpart B): Not regulated.

SARA TITLE III SECTION 304 EXTREMELY HAZARDOUS SUBSTANCES (40 CFR 355 Subpart C): Not regulated.

SARA TITLE III SARA SECTIONS 311/312 HAZARDOUS CATEGORIES (40 CFR 370 Subparts B and C): ACUTE: Yes CHRONIC: Yes FIRE: No REACTIVE: No SUDDEN RELEASE: No

SARA TITLE III SECTION 313 (40 CFR 372.65): TRICHLOROETHYLENE

OSHA PROCESS SAFETY (29 CFR 1910.119): Not regulated.

STATE REGULATIONS: California Proposition 65: Known to the state of California to cause the following: TRICHLOROETHYLENE Cancer (Apr 01, 1988)

CANADIAN REGULATIONS: WHMIS CLASSIFICATION: D2

<u>NATIONAL INVENTORY STATUS:</u> U.S. INVENTORY (TSCA): Listed on inventory.

TSCA 12(b) EXPORT NOTIFICATION: Not listed.

CANADA INVENTORY (DSL/NDSL): Not determined.

16. OTHER INFORMATION

"RTECS®" is a United States trademark owned and licensed under authority of the U.S. Government, by and through Symyx Software, Inc. Portions ©Copyright 2001, U.S. Government. All rights reserved.

©Copyright 1984-2009 ChemADVISOR, Inc. All rights reserved.

MATHESON TRI-GAS, INC. MAKES NO EXPRESS OR IMPLIED WARRANTIES, GUARANTEES OR REPRESENTATIONS REGARDING THE PRODUCT OR THE INFORMATION HEREIN, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR USE. MATHESON TRI-GAS, INC. SHALL NOT BE LIABLE FOR ANY PERSONAL INJURY, PROPERTY OR OTHER DAMAGES OF ANY NATURE, WHETHER COMPENSATORY, CONSEQUENTIAL, EXEMPLARY, OR OTHERWISE, RESULTING FROM ANY PUBLICATION, USE OR RELIANCE UPON THE INFORMATION HEREIN.

Health	2
Fire	1
Reactivity	0
Personal Protection	E

Material Safety Data Sheet Antimony MSDS

Section 1: Chemical Product and Company Identification

Product Name: Antimony Catalog Codes: SLA1453, SLA4462 CAS#: 7440-36-0 RTECS: CC4025000

TSCA: TSCA 8(b) inventory: Antimony

Cl#: Not available.

Synonym: Stibium

Chemical Name: Not available.

Chemical Formula: Sb

Contact Information:

Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77396

US Sales: 1-800-901-7247 International Sales: 1-281-441-4400

Order Online: ScienceLab.com

CHEMTREC (24HR Emergency Telephone), call: 1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients

Composition:

Name	CAS #	% by Weight
Antimony	7440-36-0	100

Toxicological Data on Ingredients: Antimony: ORAL (LD50): Acute: 7000 mg/kg [Rat].

Section 3: Hazards Identification

Potential Acute Health Effects:

Very hazardous in case of ingestion. Hazardous in case of skin contact (irritant), of eye contact (irritant), of inhalation. Slightly hazardous in case of skin contact (permeator).

Potential Chronic Health Effects:

CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance is toxic to blood, kidneys, lungs, the nervous system, liver, mucous membranes. Repeated or prolonged exposure to the substance can produce target organs damage.

Section 4: First Aid Measures

Eye Contact:

Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Get medical attention.

Skin Contact:

In case of contact, immediately flush skin with plenty of water. Cover the irritated skin with an emollient. Remove contaminated clothing and shoes. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get medical attention.

Serious Skin Contact:

Wash with a disinfectant soap and cover the contaminated skin with an anti-bacterial cream. Seek medical attention.

Inhalation:

If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

Serious Inhalation:

Evacuate the victim to a safe area as soon as possible. Loosen tight clothing such as a collar, tie, belt or waistband. If breathing is difficult, administer oxygen. If the victim is not breathing, perform mouth-to-mouth resuscitation. Seek medical attention.

Ingestion:

Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Loosen tight clothing such as a collar, tie, belt or waistband. Get medical attention if symptoms appear.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: May be combustible at high temperature.

Auto-Ignition Temperature: Not available.

Flash Points: Not available.

Flammable Limits: Not available.

Products of Combustion: Some metallic oxides.

Fire Hazards in Presence of Various Substances: Not available.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.

Fire Fighting Media and Instructions:

SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use water spray, fog or foam. Do not use water jet.

Special Remarks on Fire Hazards: Not available.

Special Remarks on Explosion Hazards: Not available.

Section 6: Accidental Release Measures

Small Spill: Use appropriate tools to put the spilled solid in a convenient waste disposal container.

Large Spill:

Use a shovel to put the material into a convenient waste disposal container. Be careful that the product is not present at a concentration level above TLV. Check TLV on the MSDS and with local authorities.

Section 7: Handling and Storage

Precautions:

Keep away from heat. Keep away from sources of ignition. Empty containers pose a fire risk, evaporate the residue under a fume hood. Ground all equipment containing material. Do not ingest. Do not breathe dust. Wear suitable protective clothing. In

case of insufficient ventilation, wear suitable respiratory equipment. If ingested, seek medical advice immediately and show the container or the label. Avoid contact with skin and eyes.

Storage: Keep container tightly closed. Keep container in a cool, well-ventilated area.

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Use process enclosures, local exhaust ventilation, or other engineering controls to keep airborne levels below recommended exposure limits. If user operations generate dust, fume or mist, use ventilation to keep exposure to airborne contaminants below the exposure limit.

Personal Protection:

Splash goggles. Lab coat. Dust respirator. Be sure to use an approved/certified respirator or equivalent. Gloves.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Dust respirator. Boots. Gloves. A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits:

TWA: 0.5 Consult local authorities for acceptable exposure limits.

Section 9: Physical and Chemical Properties

Physical state and appearance: Solid.

Odor: Not available.

Taste: Not available.

Molecular Weight: 121.75 g/mole

Color: Not available.

pH (1% soln/water): Not applicable.

Boiling Point: 1635°C (2975°F)

Melting Point: 630°C (1166°F)

Critical Temperature: Not available.

Specific Gravity: 6.691 (Water = 1)

Vapor Pressure: Not applicable.

Vapor Density: Not available.

Volatility: Not available.

Odor Threshold: Not available.

Water/Oil Dist. Coeff.: Not available.

lonicity (in Water): Not available.

Dispersion Properties: Not available.

Solubility: Insoluble in cold water.

Section 10: Stability and Reactivity Data

Instability Temperature: Not available.

Conditions of Instability: Not available.

Incompatibility with various substances: Not available.

Corrosivity: Non-corrosive in presence of glass.

Special Remarks on Reactivity: Not available.

Special Remarks on Corrosivity: Not available.

Polymerization: Will not occur.

Section 11: Toxicological Information

Routes of Entry: Eye contact. Inhalation. Ingestion.

Toxicity to Animals: Acute oral toxicity (LD50): 7000 mg/kg [Rat].

Chronic Effects on Humans: Causes damage to the following organs: blood, kidneys, lungs, the nervous system, liver, mucous membranes.

Other Toxic Effects on Humans:

Very hazardous in case of ingestion. Hazardous in case of skin contact (irritant), of inhalation. Slightly hazardous in case of skin contact (permeator).

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans: Human: passes through the placenta, excreted in maternal milk.

Special Remarks on other Toxic Effects on Humans: Not available.

Section 12: Ecological Information

Ecotoxicity: Not available.

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The products of degradation are more toxic.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Section 14: Transport Information

DOT Classification: CLASS 6.1: Poisonous material.

Identification: : Antimony powder UNNA: UN2871 PG: III

Special Provisions for Transport: Not available.

Section 15: Other Regulatory Information

Federal and State Regulations:

Pennsylvania RTK: Antimony Massachusetts RTK: Antimony TSCA 8(b) inventory: Antimony

Other Regulations: OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200).

Other Classifications:

WHMIS (Canada):

CLASS D-1B: Material causing immediate and serious toxic effects (TOXIC). CLASS D-2A: Material causing other toxic effects (VERY TOXIC).

DSCL (EEC): R36/38- Irritating to eyes and skin.

HMIS (U.S.A.):

Health Hazard: 2

Fire Hazard: 1

Reactivity: 0

Personal Protection: E

National Fire Protection Association (U.S.A.):

Health: 2

Flammability: 1

Reactivity: 0

Specific hazard:

Protective Equipment:

Gloves. Lab coat. Dust respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator when ventilation is inadequate. Splash goggles.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/11/2005 11:19 AM

Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

APPENDIX D PROJECT SCHEDULE

McCaffrey Street Site

Village of Hoosick Falls, Rensselaer County

NYSDEC Site No. 442046 August September October November December January February March August September October November D July April May June July 2017 2017 2016 2016 2016 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017 2016 2017 DEC Approval of the RIFS WP & Public Comment RI/FS Source Materials Quality Control Sampling/Analysis/Validation Alternate Water Supply Assessment Submit Draft Alternate Water Supply Assessment Report to NYSDEC⁽¹⁾ Geophysical Survey Surface Soil Sampling/Analysis/Validation Shallow Soil Sampling/Analysis/Validation (Roof Drainage Assessment) Surface Water Sampling/Analysis/Validation Sediment Sampling/Analysis/Validation Vapor Intrusion Assessment Sampling/Analysis/Validation Test Borings Soil Sampling/Analysis/Validation Installation of Monitoring Wells Site Survey Groundwater Sampling/Analysis/Validation (Quarterly) Prepare Remedial Investigation Report Submit Remedial Investigation Report to NYSDEC (May 1, 2017) Evaluate Interim Redmedial Measures (IRMs) Feasibility Study/Evaluate Remedial Alternatives Prepare Feasibility Study Report Submit Draft Feasibility Study Report to NYSDEC (Oct. 1, 2017) **RI/FS Revisions per NYSDEC Comments** Submit Final Draft RI/FS Report NYSDEC Preparation/Release of Proposed Remedial Action Plan Public Comment Period NYSDEC Review/Approval of RI/FS NYSDEC Preparation/Release of Record of Decision (ROD) Prepare/Submit Remedial Design/Action Work Plan (TBD) Review/Approval of Remedial Design/Action Work Plan (TBD) Complete Remedial Action (TBD) Engineering Report and Certifications (TBD) NYSDEC Review/Approval of Engineering Report (TBD) DEC Issuance of the Certificate of Completion (TBD) Anticipate Dec. 2018

This preliminary schedule is subject to revision, as approved by NYSDEC, based upon: the potential need for supplemental field sampling bwork and/or engineering evaluations beyond that currently approved; the actual duration of field work; and further direction from NYSDEC, as appropriate. TBD: denotes To Be Determined

(1) Noted submission date is subject to the date on which the results for ongoing AWS field work being conducted by NYSDEC is received.

Decei		er				January 2018																																ry			rch	1			oril			M				Ju				Ju					us	t
201	17		-	20	18	_	-	20	18		-	20	18		-	20	18	-	-	20	18		-	20	18	_		20	18	2018																																
																																		_																												
							-																							-			-																													
		_					-													_					_	-				-			-																													
																								_										_																												
		_				_	_													_				_	_	-				_		_	-																													
																								_									-	_																												
	-						_			_							_	_	_		_	_	_	_	_	_	_			_		_	-																													
																																	-																													
	_						_			_								_	_			_	_	_	_	_	_					_	_																													
																																	_																													
										_									_			_	_										_	_																												
							_																																																							
																																	_																													
				L		L				-									-			-	-										_																													

NOTES:

EXHIBIT 1

1996 PARSONS PHASE I & PHASE II ESA REPORTS & 2016 RAMBOLL SITE SAMPLING RESULTS REPORT

FINAL PHASE I

ENVIRONMENTAL SITE ASSESSMENT

ALLIEDSIGNAL FLUORGLAS

MC CAFFREY STREET MANUFACTURING FACILITY BOOSICK FALLS, NEW YORK 12090

PREPARED FOR

MARCH 1996

PREPARED BY **PARSONS ENGINEERING SCIENCE, INC.** PRUDENTIAL CENTER BOSTON, MASSACHUSETTS 02199

Page

TABLE OF CONTENTS

List of Figures List of Appendices List of Acronyms

S	e	cl	i	OI	1
5	0	u	1	UI	1

1.0	Sum	mary	1-1
2.0	Intro	duction	2-1
	2.1	Purpose	2-1
	2.2	Special Terms and Conditions	2-1
	2.3	Limitations and Exceptions of Assessment	2-2
	2.4	Limiting Conditions and Methodology Used	2-2
3.0	Site Description		3-1
	3.1	Location and Description of Property	3-1
	3.2	Site and Vicinity Characteristics	3-1
	3.3	Descriptions of Structures, Roads,	
		Other On-Site Improvements	3-3
	3.4	Information Reported by User Regarding Environmental	
		Liens or Specialized Knowledge or Experience	3-5
		3.4.1 Environmental Liens	3-5
		3.4.2 Specialized Knowledge or Experience	3-5
	3.5	Current Uses of Property	3-5
	3.6	Past Uses of Property	3-6
	3.7	Current and Past Uses of the Adjoining Properties	3-7
4.0	Reco	rds Review	4-1
	4.1	Standard Environmental Record Sources, Federal and State	4-1
		4.1.1 USEPA - National Priorities List	4-1

K:\Furon\McCafrey.St\Report.TOC Page i

TABLE OF CONTENTS (CONT.)

Section

Page

	4.1.2	USEPA - Comprehensive Environmental Response,	
		Compensation and Liability Information System	
		(CERCLIS)	4-2
	4.1.3	USEPA - Resource Conservation and Recovery Act	
		Information System RCRIS/Treatment, Storage and/or	
		Disposal (TDS) Facilities	4-2
	4.1.4	USEPA-RCRIS/Large Quantity Generators	4-2
	4.1.5	USEPA-RCRIS/Small Quantity Generators	4-3
	4.1.6	USEPA-Emergency Response Notification System (ERNS)	4-3
	4.1.7	USEPA-RCRA Administrative Action Tracking System	
		(RAATS)	4-4
	4.1.8	USEPA-Facility Index Data System (FINDS)	4-4
	4.1.9	USEPA-Toxic Release Inventory System (TRIS)	4-4
	4.1.10	USEPA-PCB Activity Database (PADS)	4-5
	4.1.11	Department of Transportation - Hazardous Materials	
		Incident Report Systems (HMIRS)	4-5
	4.1.12	New York Registered Underground Storage Tanks (USTs)	4-5
	4.1.13	New York State Underground Storage Tank Program -	
		Leaking Underground Storage Tanks (LUST)	4-6
	4.1.14	State Solid Waste Facilities/Landfill Sites (SWF/LS)	4-6
	4.1.15	State Hazardous Waste Sites (SHWS)	4-6
	4.1.16	NPL Lien Sites	4-7
	4.1.17	Toxic Substances Control Acts Sites (TSCA)	4-7
	4.1.18	Material Licensing Tracking System (MLTS)	4-7
	4.1.19	Record of Decision Sites (ROD)	4-7
	4.1.20	Superfund (CERCLA) Consent Degrees	4-8
	4.1.21	Manufactured Coal Gas Sites	4-8
4.2	Physica	al Setting Sources	4-8
	4.2.1	U.S.G.S. 7.5 Minute Topographic Map	4-8

TABLE OF CONTENTS (CONT.)

Section

		4.2.2 Geologic and Hydrologic Review	4-8
	4.3	Historical Use Information	4-9
		4.3.1 Aerial Photographs	4-9
		4.3.2 Fire Insurance Maps	4-9
		4.3.3 Property Tax Files	4-10
		4.3.4 Recorded Land Title Records	4-10
		4.3.5 Building Department Records	4-10
		4.3.6 Zoning/Land Use Records	4-10
	4.4	Site History Chronology	4-10
5.0	Infor	mation from Site Reconnaissance and Interviews	5-1
	5.1	Hazardous Substances in Connection with Identified Uses	5-1
	5.2	Hazardous Substance Containers and Unidentified Substance	
		Containers	5-1
	5.3	Storage Tanks	5-2
	5.4	Indications of PCBs	5-3
	5.5	Indications of Asbestos	5-3
	5.6	Indications of Solid Waste Disposal	5-3
	5.7	Physical Setting Analysis, if Migrating Substances are an Issue	5-3
	5.8	Other Conditions of Concern	5-4
6.0	Findi	ngs and Conclusions	6-1
	6.1	Findings Summary	6-1
	6.2	General Conclusions	6-1
7.0	Refer	ences, Project Personnel, and Information Sources	7-1
	7.1	References	7-1
	7.2	Parsons Engineering Science Project Personnel	7-1
	7.3	AlliedSignal Fluorglas Personnel	7-2
	7.4	Other Information Sources	7-2

LIST OF APPENDICES

Appendix A EDR Report

- Appendix B Hazardous Materials Inventory
- Appendix C Property Ownership Documents
- Appendix D Facility Records
- Appendix E Site Photographs
- Appendix F Aerial Photographs

March, 1996

K:\Furon\McCafrey.St\Report.TOC Page iv

LIST OF FIGURES

Figure 3-1 Site Location Map

Figure 3-2 Map of Lands of AlliedSignal Fluorglas Products, McCaffery Street Facility

K:\Furon\McCafrey.St\Report.TOC Page v

LIST OF ACRONYMS

AOC	Area of Concern		
ASTM	American Society for Testing Materials		
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act		
CERCLIS	Comprehensive Environmental Response, Compensation and Liability		
	Information System		
ERNS	Emergency Response Notification System		
FINDS	Facility Index Data System		
HAZMAT	Harzardous Material		
HMIRS	Hazardous Materials Incident Report System		
	Information System		
kg	Kilograms		
lbs	pounds		
LUST	Leaking Underground Storage Tank		
NPL	National Priorities List		
NYSDEC	New York State Department of Environmental Conservation		
PADS	PCB Activity Database		
PCBs	Polychlorinated Biphenyls		
RAATS	RCRA Administrative Action Tracking System		
RCRA	Resource Conservation and Recovery Act		
RCRIS	Resource Conservation and Information System		
SWMU	Solid Waste Management Unit		
TRIS	Toxic release Inventory System		
TSCA	Toxic Substances Control Act		
TSD	Treatment, Storage and Disposal		
TSDF	Treatment, Storage and Disposal Facility		
USEPA	United States Enviornmental Protection Agency		
USGS	United States Geological Survey		
UST	Underground Storage Tank		

March, 1996

K:\Furon\McCafrey.St\Report.TOC Page vi

1.0 SUMMARY

A Phase I Environmental Site Assessment (ESA) was conducted in accordance with ASTM Standard E 1527-94 at the AlliedSignal Fluorglas McCaffrey Street facility (McCaffrey Street) in Hoosick Falls, NY between July 24-27, 1995 by Parsons Engineering Science, Inc. (Parsons ES). The site visit and reconnaissance was conducted by Ken Brownell and P. J. Beaumont of AlliedSignal, Inc. Fluorglas and Robert M. Kane and Fernando O'Loughlin of Parsons ES.

In accordance with the scope of work dated July 17, 1995, Parsons ES performed the following tasks:

1. Site records review:

Parsons ES reviewed current and historical documents made available from the McCaffrey Street facility (environmental files for all Fluorglas operations are retained at this location).

Records were reviewed for information related to environmental activities conducted in or near the McCaffrey Street facility. Records reviewed included chemical usage or inventories, waste management records, air emissions and wastewater discharge activities and permits, Resource Conservation and Recovery Act (RCRA) or Comprehensive Environmental Response Compensation and Liability Act (CERCLA) activities and health and safety operations.

2. Site reconnaissance:

Parsons ES performed a site reconnaissance of the McCaffrey Street facility to visually and physically observe and document conditions on the property. This task included inspections of the interior and exterior of the facility structures.

3. Occupant and owner interviews:

Parsons ES interviewed AlliedSignal Inc. Fluorglas personnel concerning the history and current use of McCaffrey Street and surrounding areas.

4. File search and records review:

Parsons ES retained Environmental Data Resources (EDR) to perform a search of federal and state regulatory agency electronic databases. This database search identified locations that are regulated under various environmental laws. It also identifies locations where releases of hazardous substances or petroleum products has occurred or is suspected.

5. Historical aerial photographs review:

Where available, Parsons ES reviewed historical photographs available from Rensselaer County and local historical collections particularly for time periods prior to recorded development of the property up to the present. Parsons ES identified location of activities that may pose an environmental concern to the ownership and future use of the McCaffrey Street facility as well as present potential liabilities from, or to, neighboring properties. (At the time of this writing, aerial photographs ordered from the archive service had not been received).

6. Evaluation of data and report preparation:

Parsons ES summarized significant findings and made recommendations for additional site assessment activities, if needed.

Parsons ES evaluated all information collected concerning McCaffrey Street and its surroundings to identify "Recognized Environmental Conditions" (as defined by ASTM Standard E1527-94 and defined).

The following Recognized Environmental Conditions were identified for the McCaffrey Street facility:

- 1. The presence of one #2 fuel oil UST whose age and general condition are unknown presents a material threat of a release.
- 2. Floor drains and a sump in the vicinity of the mixing and coating operations on the first level of the facility present a material threat of a release.

Other conditions of concern identified specifically in relation to the McCaffrey Street facility include:

1. General housekeeping practices in the mixing and coating areas and in the extruder room.

~

2

2.0 <u>INTRODUCTION</u>

2.1 PURPOSE

A Phase I Environmental Site Assessment (ESA) was conducted by Parsons Engineering Science Inc., (Parsons ES) of the AlliedSignal Fluorglas McCaffrey Street facility in Hoosick Falls, New York for the purpose of identifying "Recognized Environmental Conditions". The term Recognized Environmental Conditions, is defined in ASTM Standard Practice E 1527-94, as: "the presence or likely presence of any hazardous substances or petroleum products on a property under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the property or into the ground, groundwater, or surface water of the property." The term includes hazardous substances or petroleum products even under conditions in compliance with laws. The term is not intended to include *de minimus* conditions that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. The purpose of this study is the provision of preacquisition due diligence to the prospective purchasers.

This ESA was conducted by Parsons under contract to Furon Company. The law firm of O'Melveny & Myers of Newport Beach, California is acting on behalf of Furon during preacquisition proceedings of AlliedSignal, Inc. Fluorglas products.

This report documents our investigations and presents our findings following the format of the American Society Testing Materials (ASTM) Standards on Environmental Site Assessments for Commercial Real Estate, E-1527-94. Section and subsection headings of this report reflect, with only minor variation, the headings of sections within the ASTM standard to facilitate cross-referencing.

2.2 SPECIAL TERMS AND CONDITIONS

The information and conclusions presented in this report are valid only for the circumstances of the site investigated as described in this report, as they existed during the July 1995 time period of the investigation.

This report does not constitute a warranty, guaranty, or representation of the absolute absence of hazardous or otherwise harmful substances or conditions found or, if such substances and conditions are on the site, that the investigation accurately defined the degree and extent of possible contamination of the site.

Parsons ES evaluated the reasonableness and completeness of available relevant information, but does not assume responsibility for the truth or accuracy of any information provided to Parsons ES by others or for the lack of information that is intentionally, unintentionally, or negligently withheld from Parsons ES by others.

After acceptance of this report, if Parsons ES obtains information that it believes warrants further exploration and development, Parsons ES will endeavor to provide that information to Furon Company, but Parsons ES will not be liable for not doing so.

This report is not a legal opinion. Only legal counsel retained by Furon is competent to determine the legal implications of information or conclusions contained in this report.

Parsons ES is not responsible for the occurrence or non-occurrence of any transaction involving the property based upon the information stated in this report, except as expressly provided for in the engineering services agreement between Parsons ES and Furon Company.

2.3 LIMITATIONS AND EXCEPTIONS OF ASSESSMENT

To achieve the study objectives, Parsons ES based its conclusions on the best information available during the period of the investigation. No investigative method con completely eliminate the possibility of obtaining partial, imprecise or incomplete information. Professional judgement was exercised in gathering and evaluating the information obtained, and Parsons ES is committed to the standard of care and competence of the engineering profession.

2.4 LIMITING CONDITIONS AND METHODOLOGY USED

The ESA was limited to a records review (federal/state environmental databases, aerial photographs, and records available on-site), site reconnaissance, and property occupant and

personnel interviews. The site Phase 1 investigation did not include electrical transformer inspections, a radon gas survey, an asbestos survey, a test for lead-based paint, analysis of potable water, a wetlands study, or soil and groundwater sampling and analysis.

March, 1996

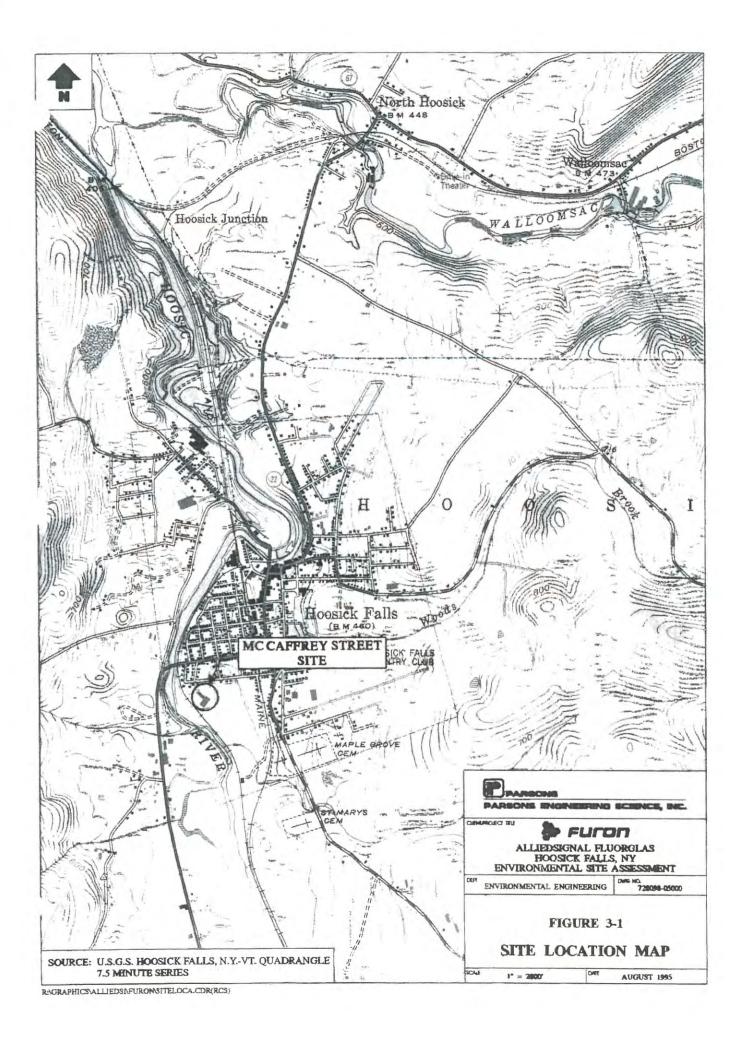
K:\Furon\McCafrey.St\Section.2 Page 2-3

Phase I Environmental Assessment AlliedSignal, Inc. Fluorglas Products McCaffrey Street Site

3.0 SITE DESCRIPTION

3.1 LOCATION AND DESCRIPTION OF SITE

The AlliedSignal Fluorglas McCaffrey Street site is located in the County of Rensselaer in Hoosick Falls, New York. Figure 3-1 shows the Site Location Map for the McCaffrey Street facility. The site is a light industrial manufacturing facility occupying a parcel of land encompassing 6.471 acres (source: Map of Lands Of McCaffrey Street Plant, surveyed by David F. Barrass, April 1995).


The facility building contains all manufacturing operations as well as general administrative offices and a small research and development department. The original building was ' constructed in 1961. According to P.J. Beaumont, additions were added in 1966 and 1975. The facility as it exists has a total area of approximately 60,000 square feet. The coating and mixing operations are located on the first floor of the building. The floor is slab-on-grade with floor drains present in several areas.

The second floor consists mainly of administrative offices and small laboratories. The extruding and molding operations are located on the third floor. The fourth level is used for research and development and general storage.

Utilities provided to the facility are electric, water, and sewer. Electricity to the facility is provided by Niagara Mowhawk. Water and sewer are provided by the Village of Hoosick Falls. The pad-mounted transformer is owned by Niagara Mohawk.

3.2 SITE AND VICINITY CHARACTERISTICS

The McCaffrey Street site is located in the southeast corner of the Village of Hoosick Falls. The area directly north of the facility is residential. The areas directly to the east, south and west are largely undeveloped. The facility is located on flat terrain in the floodplain of the Hoosic River. A former railine (Boston & Maine) is located on the western boundary of the property. The Hoosic River, west of the railine, is approximately 250 feet from the property boundary at its nearest point. The AlliedSignal, Inc. Fluorglas John

Street, Liberty Street and River Road facilities are located within a one-mile radius of the McCaffrey Street facility.

3.3 DESCRIPTIONS OF STRUCTURES, ROADS, OTHER ON-SITE IMPROVEMENTS

Aboveground structures present on the property other than the main facility building are an 18,000 gallon propane storage tank, a pad-mounted transformer and a metal storage shed. A smaller propane storage tank is present adjacent to the metal storage shed and is scheduled for removal by the facility. The remainder of the property is paved and gravel parking areas and gently sloped grassy areas. Underground structures present are a 10,000 underground storage fuel oil tank with a visible vent fill pipe, two separate septic lines shown on facility drawings running from the facility to the town sewer at Carey Avenue, and the propane distribution line running from the propane vaporizer to warehouse 2. Figure 3-2 shows the locations of these structures and the surveyed property lines.

The main facility building as it exists today was constructed in three phases. The original facility building was built in 1961 on one level using a wooden frame construction. This area is currently occupied by the extrusion and molding process areas and is now considered the third level.

The second phase of construction was the addition of four levels attached to the original wood frame structure in 1966. This addition was a concrete block steel reinforced with a slab-on-grade foundation which contains the coating operations and administrative offices. The third phase of construction was the addition of warehouses #1 and #2 which are constructed of corrugated metal with a slab-on-grade foundation. One septic line serves the original facility building and is gravity feed. A new septic line was added around 1966 to serve the building additions added during the second phase of construction. Septic and floor drain discharges are fed by a pump to the newer septic line from the first level of the facility.

lands non or form Steven C. & Pomela i lon: 1 1 1 1 1 1 1 120 BOSTON 4

NOTES

- I. UNAUTHORIZED ALTERATION OR ADDITION TO A SURVEY MAP BEARING A LICENSED LAND SURVEYOR'S SEAL IS A WOLATION OF SECTION 7209, SUBDIVISION 2, OF THE NEW YORK STATE EDUCATION LAW
- 2. ONLY COPIES FROM THE GRIGINAL OF THIS SURVEY MARKED WITH AN ORIGINAL OF THE LAND SURVEYOR'S EMBOSSED SEAL SMALL BE CONSIDERED TO BE VALID TRUE COPIES.
- J THIS SURVEY WAS PREPARED WITHOUT THE BENEFIT OF AN ABSTRACT OF TITLE OR TITLE REPORT AND IS, THEREFORE, SUBJECT TO ANY EASEMENTS, COVENANTS, OR RESTRICTIONS OF RECORD OR ANY STATEMENT OF FACTS SUCH DOCUMENTS WOULD DISCLOSE.
- 4. BOUNDARY LINES SHOWN ON THIS MAP ARE BASED ON RECOVERED CORNER MONUMENTATION AS SHOWN ON MAP REFERENCE #1.
- S. THE SECOND PIECE OF PROPERTY CONVEYED BY DEED REFERENCE #1 PARCEL # IS DESCRIBED AS A 15' STRIP OF PROPERTY AND AN ADDITIONAL 27' STRIP OF PROPERTY BOTH OFF THE WESTERLY END OF THE LANDS OF HAYES AND BORDERING ON THE EASTERLY LINE OF BRENENSTUHL. THIS LINE IS SHOWN BY THE HEAVY SOLID LINE. THE REPUTED LOCATION OF THE BRENENSTUHL DEED LINE IS SHOWN BY THE HEAVY DOITED LINE. THERE IS AN APPARENT OVERLAP OF THE CONVEYANCE FROM HAYES AND THE LANDS OF THE BUBJECT TO RIGHTS OF THE ADJOINERS AND THE RIGHTS OF THE PUBLIC ESTABLISHED THROUGH USACE OF THE STREET PRESENTLY BEING MAINTAINED BY THE VILLAGE OF HODSICK FALLS. A BOUNDARY LINE AGREEMENT BETWEEN ALL INVOLVED PARTIES IS RECOMMENDED TO ESTABLISH THIS LINE

6. NO UNDERGROUND UTILITIES ARE SHOWN ON THIS MAP.

DEED REFERENCE

1. DAX MATERIALS GROUP, .NC. SUCCESSOR IN INTEREST TO O/E/N ACQUISITIONS INC. TO CAX MATERIALS GROUP, INC. DATED APRIL 2, 1886 AND RECORDED IN THE RENSSELAR COUNT CLERK'S OFFICE ON APRIL 10, 1986 IN LIBER 1404 OF DEEDS AT PAGE '81.

MAP REFERENCE

1. SURVEY OF A PORTION OF LANDS OF OAK MATERIALS GROUP INC. PREPARED BY CHARLES E. HARTNETT & HAROLD A. BEHRENS, DATED JULY 31, 1980.

TAX MAP REFERENCE

MULAGE OF HOOSICK FALLS 37.6 - 3 - 1

	PARSONS PARSONS ENGINEERING SCIENCE, INC.
	ALLIEDSIGNAL FLUORGLAS HOOSICK FALLS, NY ENVIRONMENTAL SITE ASSESSMENT
CRAPHIC SCALE	ENVIRONMENTAL ENGINEERING 728098-02000 FIGURE 3-2
SOURCE OF SURVEY MAP: SURVEYED BY DAVID F. BARRASS LAN 9 MAPLE STREET, CORINTH, NEW YOR	MAP OF LANDS OF ALLIEDSIGNAL FLUORGLAS PRODUCTS MC CAFFREY STREET FACILITY
R: GRAPHICS VALLIEDS NFURONMAPLANDS COR(RCS)	SCAE DAE AUGUST 1995

3.4 INFORMATION REPORTED BY USER REGARDINGENVIRONMENTAL LIENS OR SPECIALIZED KNOWLEDGE OR EXPERIENCE

3.4.1 Environmental Liens

There were no environmental liens on the property either reported or identified through the property title search and interviews.

3.4.2 Specialized Knowledge or Experience

A disclosure document (AlliedSignal, Inc. Fluorglas Products, 1995) contained a summary of health, safety and environmental issues for the McCaffrey Street site. The disclosure document indicated that the facility is a large quantity generator of hazardous waste. Hazardous wastes generated by the facility include chromium bearing wastes from the coating operations and "off-spec" wastes from the R&D laboratory. The facility reportedly (Ken Brownell) ships all hazardous wastes off-site for disposal. The facility has one transformer which is owned by Niagara Mowhawk and has been confirmed through testing by Niagara Mowhawk to contain PCBs. The disclosure document did not indicate any known environmental violations or permitting issues. The facility has several permitted air emission sources associated with the coating towers which emit Triton X which is used as a dispersant in the coating process.

3.5 CURRENT USES OF THE PROPERTY

The McCaffrey Street site manufactures Polytetrafluoroethylene (PTFE) coated fiberglass and molded and extruded PTFE intermediates (SIC codes 2295, 3089). According to the disclosure document, the facility operates 365 days, 8,760 hours per year. The facility is also used as administrative offices and for research and development and employs approximately 95 people.

Coated fiberglass is produced by coating woven fiberglass with a dispersion of premixed liquid Teflon and an organic liquid surfactant (Triton). The mixture is then fed from a drum into a coating dip pan. The coating is then cured in an oven and collected on a web. Teflon

March, 1996

K:\Furon\McCafrey.St\Section.3 Page 3-5 molding is produced by adding virgin or reprocessed teflon to a molding press under pressure where the mold is formed. The mold is then transferred to the curing oven for sintering. Teflon is extruded by adding granular teflon in metered doses to a continuous heated extruder. Coating operations are located on the first floor and extrusion and molding operations are located on the third floor of the building.

Hazardous wastes generated from the manufacturing operations consist primarily of various coating formulations used in the mixing and coating areas and from research and development conducted on the fourth level. An area on the first level of the building is marked as the hazardous waste accumulation area and is equipped with a spill containment system. Wastes are accumulated in marked drums and disposed of within 90 days. The facility is designated as a large quantity generator (EPA I.D. No. NYD 004986741). Wastes generated from R&D are accumulated in lab packs prior to disposal. Non-hazardous solid wastes are accumulated in the trash compactor adjacent to the loading dock.

There are several floor drains present in the manufacturing area on the first floor. According to P.J. Beaumont, the drains are connected to the sanitary sewer system for the facility. The facility has two sanitary sewer discharge points from the facility to the town sewer system. One discharge point is associated with the older part of the manufacturing building and is a gravity flow system. The second discharge point is associated with the newer addition and is pumped to the city sewer line from the "sump pit" located on the first level adjacent to the tower room. No drawings or other evidence to support this were made available to Parsons ES. The local POTW does not require McCaffrey Street to permit these discharges.

3.6 PAST USES OF THE PROPERTY

According to P.J. Beaumont and Bob Grobuski, the facility was originally built in 1961 for Dodge Fibers Corp. and was used first for producing extruded tapes and then circuit board laminates. Oak Materials Group (Oak Electronetics) purchased the property from Dodge Fibers between 1969 and 1971. Oak Electronetics (Oak Industries) operated the facility until 1987 when it was sold to AlliedSignal Fluorglas. Prior to 1961 the property was vacant land.

3.7 CURRENT AND PAST USES OF THE ADJOINING PROPERTIES

The adjoining properties to the McCaffrey Street property are mixed residential and undeveloped land. There were no indications of any processes or practices currently in use at the adjoining properties to indicate that they are, or may potentially contribute to "recognized environmental conditions" at the McCaffrey Street site. There is a history of residential and small commercial properties north of the McCaffrey Street property.

March, 1996

K:\Furon\McCafrey.St\Section.3 Page 3-7

4.0 <u>RECORDS REVIEW</u>

This section presents information concerning the McCaffrey Street site and its surroundings from various recorded sources. Electronic databases representing standard environmental record sources, physical setting sources, and available historical records were reviewed. Information pertinent to McCaffrey Street property is summarized in this section.

4.1 STANDARD ENVIRONMENTAL RECORD SOURCES, FEDERAL AND STATE

Parsons ES retained the services of Environmental Data Resources Inc. (EDR), an environmental database company, to search applicable regulatory agency lists and standard environmental record sources to identify locations of potential environmental concern within the ASTM Standard E1527-94 minimum search distances. The following is a summary of the database search results from the EDR Report, dated July 31, 1995. The complete EDR report is presented in Appendix A.

4.1.1 <u>United States Environmental Protection Agency (USEPA) - National</u> <u>Priorities List (NPL)</u>

The National Priorities List, also known as the Superfund list, is an EPA listing of uncontrolled or abandoned hazardous waste sites. The list is primarily based on a score that a site receives from the EPA hazardous ranking system. These sites are targeted for possible long-term remedial action under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).

There are no NPL sites located within ASTM E 1527-94 specification's one-mile minimum search distance from the property. This one-mile search distance is measured from the nearest property boundary.

March, 1996

K:\Furon\McCafrey.St\Section.4 Page 4-1

4.1.2 <u>USEPA-Comprehensive Environmental Response</u>, Compensation and Liability Information System (CERCLIS)

The CERCLIS is a compilation of known or suspected uncontrolled or abandoned hazardous waste sites. These sites have either been investigated, or are currently under investigation by the EPA for the release, or threatened release of hazardous substances. Once a site is placed on CERCLIS, it may be subjected to several levels of review and evaluation and ultimately placed on the National Priorities List.

There are no CERCLIS sites located within the standard's one-half mile minimum search distance from the property.

4.1.3 <u>USEPA - Resource Conservation and Recovery Act Information System</u> (RCRIS)/ Treatment, Storage, and/or Disposal (TDS) Facilities

The RCRIS TSD list identifies those facilities or locations that have notified the EPA and/or NYSDEC of their activities relative to their on-site treatment, storage and/or disposal of hazardous wastes. A listed site does not necessarily indicate environmental problems at the site, but rather that the site is (or was) engaged in hazardous waste activities and, therefore, may have the potential to cause environmental degradation if hazardous wastes have been mishandled or otherwise released in an uncontrolled manner.

The are no TSDF facilities located within the standard's one-mile minimum search distance from the subject property.

4.1.4 <u>USEPA-RCRIS/Large Quantity Generators</u>

The RCRIS/Large Quantity Generators list identifies those facilities or locations that have notified the EPA and/or the NYSDEC that they generate (or have generated) at least 1,000 kilograms (kgs) or 2,200 pounds (lbs) of non-acutely hazardous wastes and/or 1 kg or 2.2 pounds of acutely hazardous waste, monthly. A listed site does not necessarily indicate environmental problems on the site, but rather that the site is (or was) engaged in hazardous waste activities and, therefore, may have the potential to cause environmental degradation if hazardous wastes have been mishandled or otherwise released in an uncontrolled manner.

There is one listed large quantity generator of hazardous waste within the standard's oneeighth mile minimum search distance from the subject property. This property is identified as a Fluorglas facility owned by Oak Industries Inc. located at the junction of River Street and Rt. 22, approximately 1/8 to 1/4 miles from the McCaffrey Street facility. There are several other LQGs identified on the "orphaned sites" list including an AlliedSignal Laminates facility. These sites were not mapped due to insufficient information and may or may not be located within a one-mile radius of the McCaffrey Street site.

4.1.5 USEPA - RCRIS/Small Quantity Generators

The RCRIS/Small Quantity Generators list identifies those facilities or locations that have notified the EPA and/or NYSDEC that they generate (or have generated) more than 100 kg (220 lbs) and less than 1,000 (2,200 lbs) of non-acutely hazardous wastes and/or 1 kg (2.2) lbs of acutely hazardous waste, monthly. A listed site does not necessarily indicate environmental problems on the site, but rather that the site is (or was) engaged in hazardous waste activities and, therefore, may have the potential to cause environmental degradation if hazardous wastes have been mishandled or otherwise released in an uncontrolled manner.

There are no listed small quantity generators of hazardous waste within the ASTM standard's one-eighth mile minimum search distance from the property.

4.1.6 USEPA - Emergency Response Notification System (ERNS)

ERNS is a national computer database system that is used to store information on the sudden and/or accidental release of hazardous substances, including petroleum, into the environment. The ERNS reporting system contains preliminary information on specific releases, including the spill location, the substance released, and the responsible party. The ERNS report only includes releases from 1988 to the last quarterly update.

The standard's ERNS minimum search distance is limited to the property itself. The McCaffrey Street facility, is not listed in the ERNS database.

4.1.7 USEPA - RCRA Administrative Action Tracking System (RAATS)

The RAATS list identifies those facilities that are currently, or at one time were, subject to EPA enforcement for activities relative to their handling of hazardous wastes. A listed site does not necessarily indicate environmental degradation on the site, but rather that the facility was cited by the EPA for violation of laws regarding the potential to cause environmental degradation if hazardous wastes have been mishandled or otherwise released in an uncontrolled manner.

ASTM E 1527-94 specification's RAATS minimum search distance is limited to the property itself. The McCaffrey Street facility is not listed in the RAATS database.

4.1.8 USEPA - Facility Index Data System (FINDS)

The FINDS list identifies facilities and/or locations that are subject to regulation under certain EPA programs, due to operations conducted at these sites. A listed site does not necessarily indicate environmental problems on the site, but rather that the site conducts operations that may have the potential to cause environmental degradation if hazardous compounds are released in an uncontrolled manner.

The standard's FINDS minimum search distance is limited to the property itself. The McCaffrey Street facility is not listed in the FINDS database.

4.1.9 USEPA - Toxic Release Inventory System (TRIS)

The TRIS list identifies those facilities that are required to submit annual reports relative to the estimated release of toxic chemicals to the environment, as stipulated under Section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA, or Title III of the Superfund Amendments and Reauthorization Act of 1986). This reporting is required to provide the public with information on the release of listed toxic chemicals in their communities and to provide the EPA with release information to assist the Agency in determining the need for future regulations. Facilities subject to these provisions must report the quantities of both routine and accidental releases of listed toxic chemicals.

The standard's TRIS minimum search distance is limited to the property itself. The McCaffrey Street facility is not listed in the TRIS database. AlliedSignal Fluorglas, however, submitted Form R reports to the EPA in 1987 and 1988.

4.1.10 USEPA - PCB Activity Database (PADS)

This database identifies generators, transporters, commercial stores and/or brokers and disposers of PCBs who are required to notify the USEPA of such activities.

The standard's PADS minimum search distance is limited to the property itself. The McCaffrey Street site is not listed in the PADS database.

4.1.11 Department of Transportation (DOT) - Hazardous Materials Incident Report System (HMIRS)

This list contains hazardous materials spill incidents reported to the Department of Transportation.

The ASTM standard's HMIRS minimum search distance is limited to the property itself. The McCaffrey Street site is not listed in the HMIRS database.

4.1.12 New York State Registered Underground Storage Tanks (USTs)

The New York State Department of Environmental Conservation maintains a database for all registered underground storage tanks in the state. Under RCRA, USTs must be registered with the NYSDEC Petroleum Bulk Storage Facility database.

The McCaffrey Street site is listed under this database as containing one, 8,000 gallon, singlewalled steel UST storing #1,2 or 4 fuel oil. Several "orphaned sites" which were not mapped due to insufficient information and were therefore not considered in the analysis, are listed as containing USTs. These sites may or may not be located within a one-mile radius of the McCaffrey Street site. The AlliedSignal Fluorglas River Road #3 and Laminates facilities are listed on this database as containing USTs.

4.1.13 <u>New York State Underground Storage Tank Program - Leaking Underground</u> Storage Tanks (LUST)

The New York State Department of Environmental Conservation maintains a database for reported leaking underground storage tank (LUST) incidents.

There is one listed LUST within the ASTM standard's one-half mile minimum search distance from the property. This site is the Lovejoy Chaplet Corp. located on 12 River Street approximately 1/4-1/2 mile east-northeast of the McCaffrey Street facility. The database lists this site as reporting a spill of fuel oil in March 1989. This incident is listed as resolved with the state indicating that the spill was contained and cleaned-up to the states' satisfaction. Several "orphaned sites" which were not mapped due to insufficient information and therefore were not considered in the analysis, are listed as containing LUSTs. A Norplex Oak facility on River Road was listed on the orphaned sites list as containing a LUST.

4.1.14 State Solid Waste Facilities/Landfill Sites (SWF/LS)

This database contains an inventory of solid waste disposal facilities or landfills which may be active or inactive facilities or open dumps that failed to meet RCRA criteria for solid waste landfills or disposal sites.

There were no sites listed within the 0.5 mile standard radius search from the subject property.

4.1.15 State Hazardous Waste Sites (SHWS)

NYSDEC maintains a database of priority sites planned for cleanup using state funds and sites in which the cleanup will be funded by PRP groups. These sites may or may not be listed on the CERCLIS list.

There were no sites listed within the 1.0 mile standard radius search from the subject property.

4.1.16 NPL Liens Sites

The USEPA maintains a listing of filed notices of Superfund Liens against properties for recovery of expenditures for remedial actions or when the property owner receives notification of potential liability.

The search distance is limited to the property itself. The McCaffrey Street facility is not listed in the NPL Liens database.

4.1.17 <u>Toxic Substances Control Act Sites (TSCA)</u>

The USEPA maintains a list of importers of chemical substances included on the TSCA chemical inventory list.

The search distance is limited to the property itself. The McCaffrey Street facility is not listed in the TSCA database.

4.1.18 <u>Material Licensing Tracking System (MLTS)</u>

The Nuclear Regulatory Commission maintains a list of sites which process or use radioactive materials and which are subject to NRC licensing requirements.

The search distance is limited to the property itself. The McCaffrey Street facility is not listed in the MLTS database.

4.1.19 Record of Decision Sites (ROD)

The National Technical Information Service (NTIS) contains a list for which ROD documents mandate a permanent remedy at NPL (Superfund) sites.

The search distance is limited to the property itself. The McCaffrey Street facility is not listed in the ROD database.

4.1.20 Superfund (CERCLA) Consent Decrees

The EPA maintains a list of consent decrees issued by the United States District Courts which establish responsibility and standards for cleanup at NPL (Superfund) sites.

The search distance is limited to the property itself. The McCaffrey Street facility is not listed in the Consent Decrees database.

4.1.21 Manufactured Coal Gas Sites

Real Property Scan, Inc. provides a list of existing coal gas sites. Prior to the widespread use of natural gas, manufactured gas was produced at thousands of plant sites throughout the U.S. Along with the production of gas, these plants produced large quantities of by-products including complex mixtures of coal tars, sludges, oils and other chemicals. Coal tar was the principle by-product from the gasification process.

There is one site listed within the 1.0 mile standard radius search from the subject property. The site is listed as Fidelity Gas Light Co. which is mapped approximately 1/2 mile to the north of the McCaffrey Street property. This site is not expected to have an environmental impact on the McCaffrey Street site due to the distance from the site as well as the nature of the by-products produced from coal gasification (i.e. not mobile in soils and groundwater).

4.2 PHYSICAL SETTING SOURCE(S)

4.2.1 U.S.G.S. 7.5 Minute Topographic Map

Figure 3-1 presents the McCaffrey Street Facility on a U.S.G.S.7.5 minute series topographic map.

4.2.2 <u>Geologic and Hydrologic Review</u>

Based upon information supplied in the EDR-Radius Map Report, the subsurface stratigraphy is characterized by sand and gravel formations within a 0.5-1.0 mile radius to the north and south and till within 1.0-2.0 miles east. The report also identifies the general

topographic gradient as east-northeast. Even though the hydrogeological gradient information is not given due to insufficient data, groundwater flow generally conforms to the surface topography; meaning that the likely regional groundwater flow would also be east-northeast. Localized influences such as the Hoosic River may affect groundwater flow in the immediate vicinity of the McCaffrey Street site. Based upon the topographic relief at the McCaffrey Street property, groundwater flow is expected to be generally to the west towards the Hoosic River. Depth to groundwater was listed as 28 feet in a well located in a sand and gravel aquifer approximately 1/2-1.0 mile to the north.

4.3 HISTORICAL USE INFORMATION

4.3.1 Aerial Photographs

National Aerial Resources of Troy, NY was contracted by Parsons ES to locate and supply copies of aerial photographs of the subject property. Two photographs, one taken on May 8, 1960 and the other on April 29, 1992 were located and reviewed. The 1960 aerial photo reveals the property was undeveloped. No buildings are evident. The 1992 aerial photograph reveals conditions little changed from those observed in the 1995 site reconnaisance reported herein.

4.3.2 Fire Insurance maps

Parson ES used EDR to conduct a search of available fire insurance maps for the McCaffrey Street site. The EDR-Fire Insurance Map Abstract includes a review of fire insurance maps available through the Library of Congress, University Publications of America, and various public local sources. The full EDR-Fire Insurance Map Abstract report is included in Appendix A.

The EDR-Fire Insurance Map Abstract identified fire insurance maps for 1910 and 1945 for the McCaffrey Street site and surrounding properties. This information was used to develop the site history chronology shown below.

4.3.3 Property Tax Files

(see following section)

4.3.4 Recorded Land Title Records

Parsons ES obtained Land Title Records from AlliedSignal Fluorglas for the McCaffrey Street facility. The records consist of a mortgage search, deed search, title search, tax search, and description of easements by Lawyers Title Insurance Corporation dated April 17, 1995. A copy of the records are shown in Appendix C.

4.3.5 Building Department Records

The community offices of the Village of Hoosick Falls were contacted for building information and records relative to the McCaffrey Street property. No records or files were located.

4.3.6 Zoning/Land Use Records

Parsons ES obtained a copy of a zoning map from the Village of Hoosick Falls Town Clerk's Office indicating general zoning in the Village of Hoosick Falls. According to this map, the McCaffrey Street facility is located in an area zoned as industrial.

4.4 SITE HISTORY CHRONOLOGY

Based upon the information obtained from the above sources, a historical chronology for the site was developed:

Date	Source/Interpretation
1860	Map of Hoosick Falls indicates the McCaffrey Street property is undeveloped south of River Street. Area north of River Street is residential.
1874	Map of Hoosick Falls shows the McCaffrey Street property as undeveloped.

1908	E.M. Parker & E.B.& L. Bentley sell lot to A.E. Jones. No reference to development of property or existing buildings.
1910	Sanborn Fire Insurance Map indicates residential development on properties adjoining Carey Street and north of property.
1927	Neighboring property of the late M. Fitzgerald "known as the Brewery Property". Potential for dump on neighboring property (primarily glass). No indication that a large brewery operated here.
1927	G. A. Parker & E.M. Parker sell lands between B&M rail line and river to Hoosick Iron Works.
1945	Sanborn Fire Insurance maps indicate residential and one small, light industrial (unidentified) building within approximately three blocks north of property.
1955	Cleeve Dodge founds manufacturing company.
1960	Aerial photograph: McCaffrey Street property is undeveloped.
1961	Cleeve Dodge occupies McCaffrey Street operating a fabric coating process similar to the process in operation today (actual knowledge P.J. Beaumont).
1967	Oak Industries acquires facility.
1986	AlliedSignal acquires facility.

INFORMATION FROM SITE RECONNAISSANCE AND INTERVIEWS

A site reconnaissance of the McCaffrey Street site was conducted by Parsons ES personnel during the week of July 24-28, 1995. Representatives of AlliedSignal, Inc. Fluorglas Products were interviewed during this period for information related to current and past uses of hazardous materials, site history, waste disposal practices, manufacturing processes, and property development. Photographs taken during the site reconnaissance were retained by representatives of AlliedSignal. The following sections summarize the pertinent information gained from the site reconnaissance and interviews.

5.1 HAZARDOUS SUBSTANCES IN CONNECTION WITH IDENTIFIED USES

Various hazardous materials are used for the manufacturing and research and development activities conducted.at the McCaffrey Street facility. The facility is registered as a large quantity generator due to the generation of chromium bearing wastes from the coating and mixing operations located on the first level of the facility. The facility also uses small quantities of solvents in the research and development lab which are stored in marked storage cabinets and disposed of in various sized lab packs for off-site disposal. Appendix B contains a listing of hazardous materials and quantities used at the McCaffrey Street facility under Form 209-U for the Office of Fire Prevention and Control. These include ammonia hydroxide (110 gal.), various lab packs (1 and 50 gal.), PTFE resins and dispersants (1000 gals.) ea.), acids (60 gal.), green dispersion (60 gal.), various aerosols (5 gal.).

5.2 HAZARDOUS SUBSTANCE CONTAINERS AND UNIDENTIFIED SUBSTANCE CONTAINERS

The facility stores reprocessed and virgin PTFE resins used in the molding and extruding processes in 100 lb containers on the third level of the facility. A 55 gallon drum of hydraulic oil was observed adjacent to the extruder room on the third level. The drum was intact however, leakage of hydraulic oil from overhead process machinery onto the concrete floor was observed in this area during the site visit. The leakage appeared to be contained to a small area. There were no floor drains observed in this area. Green dispersant (OC605) is also stored in the molding room. All storage containers appearance intact and there were no

5.0

signs of visible leakage. A floor drain trough was present in this area of the facility and appeared to be dry during the site visit. General housekeeping in this area appeared to be good.

The mixing and coating area on the first level stores and uses various teflon dispersants and chromium containing dyes which are recycled in satellite stations prior to disposal. General housekeeping in this area was poor with staining on walls and floors around the various satellite stations noted. Floor drains are present in several locations in this area of the facility. A "sump pit" is also present in the teflon storage room on this level. According to P.J. Beaumont, this sump pit acts as a common collection point for all septic and floor drain discharges from this part of the building (1966 additions) prior to being pumped to the local POTW. The hazardous waste storage area is also located on this level adjacent to the mixing and coating rooms. This area is clearly marked as the hazardous waste storage area and is situated on concrete flooring equipped with spill containment trenches. There were no drums present in this area during the site visit. Wastes are accumulated and disposed off-site every 90 days. The facility uses Ross Incineration Services for waste disposal services.

Hazardous wastes generated from "off-spec" materials in the R&D laboratory are stored in one and 50 gallon lab packs for off-site disposal by either Ross Incineration Services or Clean Harbors.

5.3 STORAGE TANKS

The McCaffrey Street facility has one 18,000 gallon aboveground storage tank for propane and one 8,000 gallon underground storage tank (UST) for #2 fuel oil. The UST is registered with NYSDEC (Registration # 4-120685) and was last leak tested in 1992. Appendix D contains leak test results for the UST. The UST is a single-walled, steel, non-cathodically protected tank whose age is unknown, but most likely dates back to 1961 when the facility was originally constructed. The only other bulk storage tanks that were noted during the site visit were a temporary storage tank for propane and a 1000 gallon oil storage tank lying on grade. Both of these tanks are believed to be empty and are scheduled to be removed by the facility. There were no other bulk storage tanks or piping observed during the site visit. There was no visual evidence of staining, spillage or other releases associated with these tanks and aboveground piping. The facility has plans to remove the existing 8,000 gallon UST as

soon as August 1995 as part of AlliedSignal's program to remove all existing USTs at the Fluorglas Hoosick Falls facilities.

5.4 INDICATIONS OF PCBs

There is one exterior pad-mounted transformer located on the facility property. The transformer is owned and operated by Niagara Mohawk. They have informed AlliedSignal that the transformer fluid has been tested and 237 ppm of PCBs found. No spill containment was observed for this transformer. Mr. Ken Brownell indicated that AlliedSignal was attempting to obtain an agreement with Niagara Mohawk to replace the transformer with one owned and operated by AlliedSignal.

There was no other visual or physical evidence of PCB containing equipment observed during the site visit or from interviews and records.

5.5 INDICATIONS OF ASBESTOS

According to Ken Brownell, no asbestos material has been identified in the McCaffrey Street facility. There was no visual or physical evidence of asbestos materials noted during the site reconnaissance.

5.6 INDICATIONS OF SOLID WASTE DISPOSAL

Non-hazardous solid waste is collected in a dumpster located adjacent to the loading dock area. AlliedSignal, Inc. Fluorglas Products uses Browning Ferris Industries (BFI) as their solid waste haulers. There was no visual or physical evidence suggesting other solid waste disposal at the facility including filling and grading, mounds or depressions, pits, or debris on exterior portions of the property.

5.7 PHYSICAL SETTING ANALYSIS, IF MIGRATING HAZARDOUS SUBSTANCES ARE AN ISSUE

A potential source of migrating hazardous or petroleum substances is the #2 fuel oil UST. The UST is located at the top of a gradual slope approximately 300 feet from the expected

downgradient property boundary with respect to groundwater flow. The tank is adjacent to the original facility building foundation and is buried under uncovered soils.

There was no evidence of groundwater wells on the property or within the property bounds during the site reconnaissance. The EDR-Radius Map Report supplied information on number and locations of wells in the vicinity of the McCaffrey Street facility from federal, state and public water supply sources. The closest well identified is located to the south of the facility within a 1/8 mile radius in a sand and gravel aquifer. The next closest well identified is located east of the facility within a 1/2 mile radius. The closest public water supply well identified is located to the south approximately 1/4-1/2 mile from the facility. No past or present violations were noted for this public water supply well.

5.8 OTHER CONDITIONS OF CONCERN

Housekeeping

Although general housekeeping was noted to be good, staining and spillage of pigments and dyes were noted in areas of the mixing room. Improvement of storage, handling and disposal of these materials would minimize the potential for discharges to existing floor drains. The facility should also consider sealing floor drains which are in the vicinity of the mixing and coating operations to eliminate potential releases to the site drainage system.

Sump Pit

According to P.J. Beaumont and Ken Brownell, the floor drains and septic discharges associated with the newer building additions in 1966 discharge to a common sump pit in the first level of the facility, adjacent to the coating tower room. These discharges are then pumped to the local sewer system. No drawings were made available to Parson ES to confirm the as-built design of this system or any studies which traced discharges from this location or to document the integrity of the sump pit.

6.0 FINDINGS AND CONCLUSIONS

6.1 SUMMARY

There were two "Recognized Environmental Conditions" identified with the McCaffrey Street property:

- 1. The presence of one #2 fuel oil UST whose age and general condition are unknown presents a material threat of a release.
- 2. Floor drains and a sump in the vicinity of the mixing and coating operations on the first level of the facility present a material threat of a release.

6.2 GENERAL CONCLUSIONS

- 1. Hazardous substances and petroleum products are used in the manufacturing processes at the McCaffrey Street facility. The majority of the hazardous waste generated is chromium containing dyes from the mixing and coating operations. Petroleum products are associated with the existing UST which is used to fire the one facility boiler (rated @ 300,000 Btu/hr). The facility is planning to remove the one UST. The facilities hazardous and solid waste handling and disposal practices appear to be satisfactory.
- 2. The existing UST used to store #2 fuel oil represents a potential environmental liability due to its age (undocumented, but likely installed when the facility was originally built in 1961) and construction (non-cathodic, single walled, carbon steel, no leak detection or protection). Phase II investigations are recommended if AlliedSignal does not proceed with removal and closure in accordance with existing NYSDEC guidelines.
- General housekeeping practices were poor in the mixing and coating areas which represents a potential liability due to the presence of floor drains in this area of the facility.

- 4. Further investigations of the sump pit and associated floor drains may be warranted. Site drawings (as-built), tracer studies, sampling or other investigations of these structures should be obtained from either Fluorglas or Laminates systems if available. Additional interviews of facility personnel familiar with the construction of these structures is advisable.
- 5. There were no pits, ponds, lagoons, drums, stained soil or pavement, stressed vegetation, wells, solid wastes or septic systems observed in the exterior of the facility during the site reconnaissance.
- 6. Stormwater runoff does not appear to contact any industrial processes or storage facilities and tje facility is exempt from permitting requirements due to its SIC codes (see letter to NYSDEC in Appendix D).
- Historical records do not indicate that the McCaffrey property or surrounding properties may have resulted in "recognized environmental conditions" at the facility from past usage.
- 8. The McCaffrey Street facility has not conducted any environmental studies of the groundwater or soils in or around the property.
- 9. Testing for the potential presence of asbestos, radon and mercury/PCB lighting ballasts has not been conducted at the facility.

Based upon the Recognized Environmental Conditions and concerns, Phase II activities are recommended. These Phase II activities would involve the testing of soil and/or groundwater in the vicinity of the #2 fuel oil UST if the facility does not proceed with its planned removal.

7.0 <u>REFERENCES</u>, <u>PROJECT PERSONNEL</u>, <u>AND INFORMATION</u> SOURCES

7.1 REFERENCES

- AlliedSignal Inc. Fluorglas Products, 1995. Health, Safety and Environmental Disclosure Schedule, April 1995.
- American Standard Testing Materials, 1993. ASTM Standards on Environmental Site Assessments for Commercial Real Estate, E1527-93 and E1528-93, Philadelphia, PA. PCN: 03-550093-65.

7.2 PARSONS ENGINEERING SCIENCE PROJECT PERSONNEL

Name	Degree	Years of Experience	Project Responsibilities	
Jeffrey W. Adams	B.S. Chemical Engineering	21	Program Manager Report Review	
Robert M. Kane	M.S. Environmental Engineering	11	Site Reconnaissance, Interviews and Report Preparation	
Sam Nejame	B.S. Chemical Engineering	10	Site Reconnaissance, Interview and Report Preparation	
Fernando O'Loughlin	B.S. Geology	7	Site Reconnaissance, Interviews and Report	
Thomas B. Ford	M.A. Anthropology	18	Site Reconnaissance, Interviews and Report preparation	

March, 1996

K:\Furon\McCafrey.St\Section.7 Page 7-1

7.3 ALLIEDSIGNAL FLUORGLAS PROJECT PERSONNEL

Name	Work Location	Assignment
William E. Noonan	McCaffrey Street	Vice President/General Manager
Ken Brownell	McCaffrey Street	Manager Safety/Environmental Assurance
Bob Grobuski	McCaffrey Street	Facility Personnel
P.J. Beaumont	John Street/River Road #2	Manufacturing Manager
Mark Merrell	Liberty Street/River Road	Manufacturing Manager
7.4 OTHI	ER INFORMATION SOURCE	ES
Name	Affiliation	
Edith Beaumont	Hoosick Township Historical Louis Miller Museum 166 Main Street Hoosick Falls, N.Y. 12090 (518) 686-4682	Society
Barbara Miller	U.S. Soil Conservation Servic 7th and State Troy, N.Y. (518) 271-1740	ces
Susan Smith	New York State Department (NYSDEC) (518) 457-0532	of Environmental Conservation
	Bennington Museum Library Route 7 Bennington, VT.	
N/A	Village of Hoosick Falls Wate (518) 686-7071	er Co.
N/A	Niagara Mowhawk Corp. (518) 773-4212	

Phase I Environmental Assessment AlliedSignal, Inc. Fluorglas Products McCaffrey Street Site

Furon Company Attorney Work Product

Theresa Reinfurt	Village of Hoosick Falls Clerks Office (518) 686-7072
Victor Santo	New York Historic Preservation Agency (518) 237-8643

FINAL PHASE II

ENVIRONMENTAL SITE ASSESSMENT

FURON COMPANY

MCCAFFREY STREET MANUFACTURING FACILITY HOOSICK FALLS, NEW YORK 12090

MAY 1996

PREPARED BY **PARSONS ENGINEERING SCIENCE, INC.** PRUDENTIAL CENTER BOSTON, MASSACHUSETTS 02199

.

TABLE OF CONTENTS

Sectio	<u>no</u>		Page
Table	of Cor	itents	i
List o	of Table	S	iii
List o	of Figur	es	iv
List o	of Appen	ndices	v
List o	of Acron	nyms	vi
1.0	Intro	duction	1-1
	1.1	Findings of the Phase I ESA	1-1
	1.2	Scope of Work	1-3
	1.3	Summary of the Phase II ESA Findings	1-4
2.0	Site	Description	2-1
	2.1	Location and Description of Site	2-1
	2.2	Site and Vicinity Characteristics	2-4
	2.3	Physical Setting	2-4
		2.3.1 Regional Geologic Setting	2-4
		2.3.2 Site Geologic Setting	2-5
		2.3.3 Site Hydrogeologic Setting	2-6
3.0	Site	History	3-1
	3.1	Past Site Use	3-1
	3.2	Current Site Use	3-1
4.0	Field	Investigation Methodology	4-1
	4.1	Soil Borings	4-1
		4.1.1 Sampling Methods	4-1
	4.2	Surface Soils	4-3
		4.2.1 Sampling Methods	4-4

TABLE OF CONTENTS (CONT.)

Section	on		Page
	4.3	Monitoring Well Installation	4-4
	4.4	Monitoring Well Development	4-6
	4.5	Groundwater Sampling	4-7
		4.5.1 Monitoring Well Purging	4-7
		4.5.2 Monitoring Well Sampling	4-7
5.0	Resu	lts	5-1
	5.1	Analytical Methods	5-1
	5.2	Soil Sampling Results	5-1
	5.3	Groundwater Sampling Results	5-5
6.0	Findi	ings, Conclusions and Recommendations	6-1
	6.1	Findings	6-1
	6.2	Conclusions	6-2
	6.3	Recommendations	6-3
7.0	Refer	rences	7-1

May, 1996

Page

LIST OF TABLES

Table 2-1	Monitoring Well Water Level Summary at the	
	Liberty Street Facility	2-7
Table 5-1	Recommended Soil Cleanup Objective Concentrations	5-2

LIST OF FIGURES

Page

Figure 2-1	Site Location Map	2-2
Figure 2-2	Map of Lands, McCaffrey Street facility	2-3
Figure 2-3	Groundwater Elevation and Groundwater Flow Direction Map	2-8
Figure 4-1	Sample Location Map	4-2
Figure 5-1	Concentrations of TPHs and Metals of Concern in Soils	5-4
Figure 5-2	Concentrations of Compounds Exceeding New York State	
	Groundwater Quality Standards and Federal MCLs	5-6

LIST OF APPENDICES

Appendix A Overburden Boring Reports

Appendix B Site Photographs

Appendix C Monitoring Well Completion Diagrams

Appendix D Chemical Analysis Results for Soils

Appendix E Chemical Analysis Results for Groundwater

List of Acronyms

ASTM	- ÷	American Society for Testing and Materials
BTEX	-	Benzene, toluene, ethylbenzene, xylene (total)
CEC		Condition of Concern
CLP	-	Contact Laboratory Protocol
ESA	-	Environmental Site Assessment
I.D.	-	Inside Diameter
MCL	-	Maximum Contaminant Level
Mg/Kg	-	Milligrams per Kilogram
Mg/L	-	Milligrams per Liter
NTU	-	Nephelometric Turbidity Unit
NYSDEC	-	New York State Department of Environmental Conservation
OVM	-	Organic Vapor Meter
PCB	-	Polychlorinated Biphenyls
POTW	-	Publicly Owned Treatment Works
PSAT	-	Pressure Sensitive Adhesive Tape
PTFE		Polytetrafluoroethylene
QA/QC	-	Quality Assurance/Quality Control
REC	-	Recognized Environmental Condition
SVOC		Semivolatile Organic Compound
TAGM	-	Technical and Administration Guidance Memorandum
TAL	-	Target Analyte List
TCE	-	Trichloroethene
TCL	-	Target Compound List
TPH	- 6	Total Petroleum Hydrocarbons
ug/kg	-	Micrograms per Kilogram
ug/L		Micrograms per Liter
USCS	-	Unified Soil Classification System
USEPA		United States Environmental Protection Agency
UST	-	Underground Storage Tank
VOC	-	Volatile Organic Compound

1.0 INTRODUCTION

A limited Phase II Environmental Site Assessment (ESA) was conducted by Parsons Engineering Science, Inc. (Parsons ES) at the request of Furon Company and O'Melveny and Myers who are outside counsel for Furon Company. The Phase II investigation plan was developed to focus specifically on the findings and conclusions of a prior Phase I ESA, completed for the site in July and August 1995. As such, the Phase II ESA was designed to develop data relevant to:

- Areas of "recognized environmental conditions,"
- Other conditions of environmental concern, and
- "Baseline environmental conditions" at the site.

The objective of the Phase II investigation was to identify, to the extent feasible through limited sampling and analysis, whether any evidence of contamination existed due to historic site operations. The investigation process would also yield a limited data set that could be used by Furon Company to define "baseline environmental conditions" at the time of their initial occupancy and ownership of the property.

The Phase II ESA was conducted by Parsons ES in accordance with Title 6 of the New York State Compilation of Rules and Regulations, 6 NYCRR Part 360, April 1995, except as otherwise specified. The Phase II ESA was begun on Februay 20, 1996, and reported on May 2, 1996.

1.1 FINDINGS OF THE PHASE I ESA

Parsons ES performed a Phase I ESA at the McCaffrey Street facility between July 24 and July 27, 1995, for Furon Company. The results of the Phase I ESA were presented to Furon Company in a Final Phase I Environmental Site Assessment Report on April 9, 1996. The Phase I ESA identified two "recognized environmental conditions," (RECs) as defined in American Society of Testing and Materials (ASTMs) Standard Practice E 1527:

- 1. A former 8000-10000 gallon #2 fuel oil underground storage tank (UST), which was removed in August 1995, presented a material threat of a release.
- 2. Floor drains and a sump in the vicinity of the mixing and coating operations on the first level of the facility presented a material threat of a release. The integrity of the sump pit sidewalls and bottom could not be verified through a visual inspection.

The UST (Henceforth, REC #1) was removed in August of 1995, subsequent to the performance of the Phase I ESA for the site. AlliedSignal Fluorglas contracted Clean Harbors Environmental Services to close and remove the UST in accordance with New York State Department of Environmental Conservation (NYSDEC) guidance. The excavated hole at the UST location reportedly evidenced no visual staining of the soil. Screening of the excavation by photoionization detector failed to detect volatile organic compounds. Confirmatory soil samples were collected from the side walls and the bottom of the excavation and analyzed by EPA Method 8260 for volatile organics and EPA Method 8270 for semi-volatile organics. No contamination was detected in these samples. The excavation was backfilled. The source of the backfill material was not identified.

Based on the Clean Harbors letter report and analytical data package, the UST appears to have been closed in accordance with state regulations and no evidence of fuel oil release from the tank or fill pipes was noted.

According to P.J. Beaumont, the sump in the vicinity of the mixing and coating operations (Henceforth, REC #2) continue in active use, receiving sanitary wastewater, process wastewater and drainage from the floor drains in the manufacturing area on the first floor. The wastewater captured is pumped to the city sanitary sewer lines. No drawings or other evidence to support this were made available to Parsons ES. The local Publically Owned Treatment Works (POTW) does not require the McCaffrey Street facility to permit these discharges. During the Phase I ESA, the integrity of the sump pit sidewalls and bottom could not be verified through a visual inspection.

The Phase I ESA also identified two other conditions of environmental concern (CEC). One was the "old" transformer mounted on a concrete pad in the rear of the property which was

known to contain Polychlorinated Biphenyls (PCBs) (Henceforth, CEC #1). During the Phase I ESA, the transformer appeared to be at least as old as the original facility building, which was built around 1961, and was not contained within any bermed area. The transformer was removed in December 1995. No visible signs of spillage or stressed vegetation around the transformer or transformer pad were noted during the Phase I and Phase II ESAs. However, spillage may have occurred during filling or replacement of transformer oils in the past. PCBs are relatively immobile in soils and do not degrade readily.

The second condition of environmental concern reported is the past practice of spreading oils in the former gravel driveways for dust suppression. This practice no longer occurs, and the former gravel driveways are now paved (Henceforth, CEC #2).

1.2 SCOPE OF WORK

The scope of the Phase II ESA was designed to address the recognized environmental conditions associated with the sump pit and the former UST, to evaluate two other conditions of environmental concern identified in the Phase I ESA and to establish the "baseline environmental conditions" for the property.

The scope of the Phase II investigations was as follows:

- Install five soil borings/monitoring wells to determine the "baseline groundwater quality" at the McCaffrey Street property.
- Develop five monitoring wells, and collect and analyze groundwater samples from all five monitoring wells for volatile organics, semi-volatile organics, and metals. Analyze two of the five monitoring well samples for total petroleum hydrocarbons (TPH).
- Collect three surface soil samples from around the "old" transformer and analyze for TPH and PCBs (CEC #1).

Page 1-3 K:\Furon\PhaseII\McCaffre\ESA\Section1.wp5

May, 1996

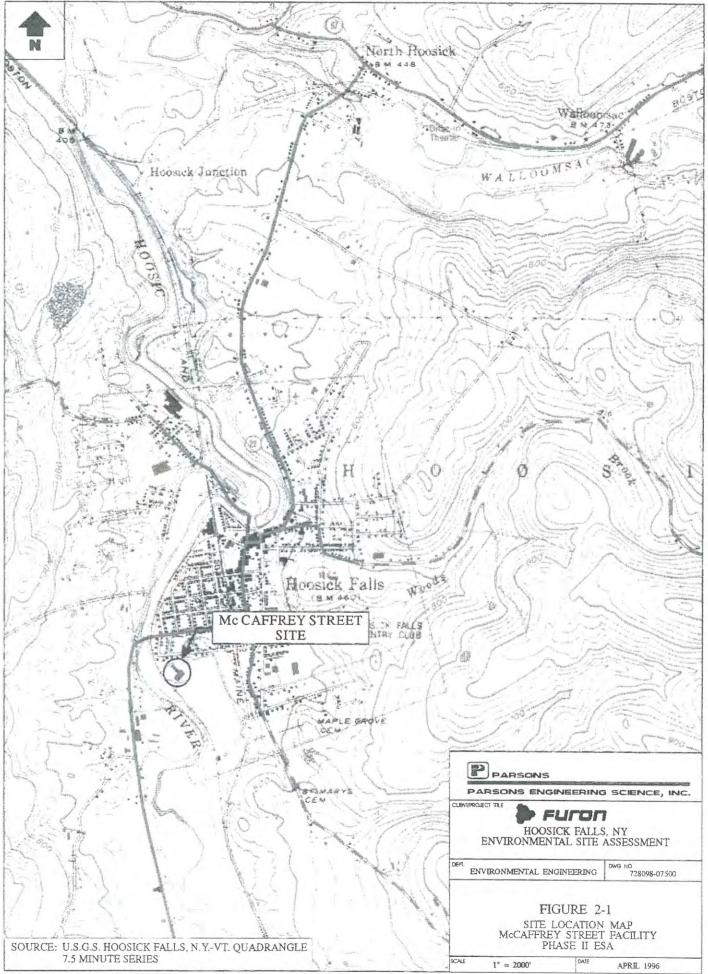
 Collect two surface soil samples from the former gravel driveway for PCB and TPH analysis to determine potential impacts from the spreading of oils for dust suppression practiced in the past (CEC #2).

1.3 SUMMARY OF THE PHASE II ESA FINDINGS

The soil sample results from the Phase II ESA indicate that five metal compounds (beryllium, chromium, nickel, selenium and zinc) were detected at concentrations above their respective NYSDEC soil cleanup levels. Total petroleum hydrocarbons were also detected at elevated concentrations in the soil samples collected from the paved driveway (formerly a gravel driveway). The groundwater sample results detected trichloroethene, antimony, iron and manganese at concentrations above the Federal Maximum Contaminant Level (MCL) and New York State Groundwater Quality Standards.

The Federal MCL is the maximum permissible level of a contaminant in water which is delivered to any user of a public water system. The New York State Groundwater Quality Standards are the maximum permissible levels of a contaminant in fresh groundwater.

2.0 SITE DESCRIPTION


2.1 LOCATION AND DESCRIPTION OF SITE

The Furon Company McCaffrey Street site is located in the County of Rensselaer in the Village of Hoosick Falls, New York. Figure 2-1 shows the Site Location Map for the McCaffrey Street facility. The site is a light industrial manufacturing facility occupying a parcel of land encompassing 6.471 acres. Figure 2-2 presents the Map of Lands of the McCaffrey Street facility.

Aboveground structures present on the property are the main facility building, an 18,000 gallon propane storage tank, a metal storage shed and a newly installed transformer. The cement pad where the "old" transformer was located remains onsite. A smaller propane storage tank is present adjacent to the metal storage shed and is scheduled for removal by the facility. The remainder of the property consists of paved and gravel parking areas and roads, and gently sloped grassy areas. Underground utilities include two separate septic lines, shown on facility drawings as running from the facility to the town sewer at Carey Avenue, and the propane distribution line that runs from the propane vaporizer to warehouse 2. Figure 2-2 shows the locations of these structures and the surveyed property lines. Underground utilities are not presented on Figure 2-2.

The facility building contains manufacturing operations as well as general administrative offices and a small research and development department. The original building was constructed in 1961. According to P.J. Beaumont, the McCaffrey Street facility manufacturing manager, additions were added in 1966 and 1975. The facility, as it exists, has a total area of approximately 60,000 square feet. The floor is a slab-on-grade with floor drains present in several areas.

The coating and mixing operations are located on the first floor of the building. The second floor consists mainly of administrative offices and small laboratories. The extruding and molding operations are located on the third floor. The fourth level is used for research and development and general storage.

R-\GR-APHICS\ALLIEDSNFURON\SITELOCA.CDR(MCB)

lands now or forme Steven C. & Pomelo Iond: M Ion arrive Ion arriv

NOTES

- 1. UNAUTHORIZED ALTERATION OR ADDITION TO A SURVEY MAP BEARING A LICENSED LAND SURVEYOR'S SEAL IS A WOLATION OF SECTION 7209, SUBDIVISION 2, OF THE NEW YORK STATE EDUCATION LAW
- 2. ONLY COPIES FROM THE ORIGINAL OF THIS SURVEY WARKED WITH AN ORIGINAL OF THE LAND SURVEYOR'S EMBOSSED SEAL SHALL BE CONSIDERED TO BE VALID TRUE COPIES.
- 3. THIS SURVEY WAS PREPARED WITHOUT THE BENEFIT OF AN ABSTRACT OF THLE OR THLE REPORT AND IS, THEREFORE, SUBJECT TO ANY EASEMENTS, COVENANTS, OR RESTRICTIONS OF RECORD OR ANY STATEMENT OF FACTS SUCH DOCUMENTS WOULD DISCLOSE.
- S. THE SECOND PIECE OF PROPERTY CONVEYED BY DEED REFERENCE #1 PARCEL #15 DESCRIBED AS A 15' STRIP OF PROPERTY AND AN ADDITIONAL 27' STRIP OF PROPERTY BOTH OFF THE WESTERLY END OF THE LANDS OF HAYES AND BORDERING ON THE EASTERLY LINE OF BRENENSTUHL. THIS LINE IS SHOWN BY THE HEAVY SOLID UNE. THE REPUTED LOCATION OF THE BRENENSTUHL DEED LINE IS SHOWN BY THE HEAVY DOITED UNE. THERE IS AN APPARENT OVERLAP OF THE CONVEYANCE FROM HAYES AND THE LANDS OF THE PUBLIC ORIGHTS OF THE ADJOINERS AND THE LINDS OF THE PUBLIC ESTABLISHED THRE UNDIGNERS AND THE SIGHTS OF THE PUBLIC ESTABLISHED THE VILLAGE OF THE STREET PRESENTLY BEING MAINTAINED BY THE VILLAGE OF THE STREET PRESENTLY BEING UNE AGREEMENT BETWEEN ALL INVOLVED PARTIES IS RECOMMENDED TO ESTABLISH THIS LINE.

5. NO UNDERGROUND UTILITIES ARE SHOWN ON THIS MAP.

DEED REFERENCE

1. DAX MATERIALS GROUP, INC., SUCCESSOR IN INTEREST TO O/F/N ACQUISITIONS INC. TO DAK MATERIALS GROUP, INC. DATED APRIL 2, 1986 AND RECORDED IN THE RENSELAR COUNTY OLERK'S OFFICE ON APRIL TO, 1986 IN LIBER 1404 OF DEEDS AT PAGE 181

MAP REFERENCE

1. SURVEY OF A PORTION OF LANDS OF OAK MATERIALS GROUP INC. PREPARED BY CHARLES E. HARTNETT & HAROLD A. BEHRENS, DATED JULY 31, 1980.

TAX MAP REFERENCE

WILLAGE OF HOOSICK FALLS 37.6 - 3 - 1

	CLENARCLECT WIE	a. II m othe	S. NY
CRAPHIC SCALE	CEPI ENMRONIMENTAL	ENGINEERING	DWG NG 728098-07500
*0' 20' 0 40' 80' 120'	FIGURE 2-2 MAP OF LANDS MCCAFFREY STREET FACILITY PHASE II ESA		
9 MAPLE STREET, CORINTH, NEW YORK	XCALE	DAK	APRIL 1996

Utilities provided to the facility are electric, water, and sewer. Electricity to the facility is provided by Niagara Mohawk. Water and sewer are provided by the Village of Hoosick Falls. The "old" pad-mounted transformer was owned by Niagara Mohawk and was removed in December 1995. A new transformer was installed in December 1995 and it is owned by Furon Company.

2.2 SITE AND VICINITY CHARACTERISTICS

The McCaffrey Street site is located in the southwest corner of the Village of Hoosick Falls. The ground surface topography of the facility slopes away to the east, south and west, towards the floodplain of the Hoosic River. The area to the north side of the site is residential. The areas directly to the east, south, and west are largely undeveloped. A former rail line (Boston & Maine) is located near the western boundary of the property. The Hoosic River, which is located to the west of the rail line, is approximately 250 feet from the property boundary at its nearest point.

Surface water drainage at the facility is controlled by the local topography, which slopes moderately to the south-southeast. There are no sustained surface water bodies at the facility.

2.3 PHYSICAL SETTING

2.3.1 Regional Geologic Setting

Hoosick Falls lies in the New England Upland (Taconic Range) physiographic province. Bedrock outcrops are found at the surface throughout the New England Upland area. The bedding planes of the bedrock are often inclined, and other distortions from the horizontal are evident. These are the result of thrust and folding pressures exerted from the east as a landmass (actually an arc of volcanic islands) moved gradually westward during the Middle Ordovician Taconic mountain-building episode. This westward movement stacked and displaced large deposits of clay, sand, gravel and carbonates, which had accumulated on the floor of a deep ancient sea, moving them westward along faults as slices of rock, that became intermixed and stratigraphically disordered. As a result, the older rock graywacke, that forms the cap of the Rensselaer Plateau became perched on top of younger rock. Localized exposures of limestone and dolomite, found in association with thrust faults here and there in the area, were dragged westward as blocks of carbonate-rich rock. Shales in the area were altered (metamorphosis) into phyllites and slates during this period of mountain building.

Glacial sediment deposits overlay the bedrock, resulting in deposits of sands, gravels, clays, and glacial till.

Most of Hoosick Falls lies along the Hoosic River flood plain. The area is relatively flat with some hills, except along the eastern town boundary where the topography slopes moderately to the west, towards the Hoosic River. The average elevation of Hoosick Falls is approximately 500 feet above sea level.

2.3.2 Site Geologic Setting

Six soil borings (one of the five soil borings was re-drilled) were advanced during the Phase II ESA at the McCaffrey Street facility to total depths ranging from 8.5 feet to 17.5 feet below ground surface. During the advancement of these borings, three geologic materials were encountered: artificial fill, glacial till, and bedrock. The Overburden Boring Reports are presented in Appendix A.

The fill material was encountered at all soil borings and was observed to be up to 2.7 feet thick at location MW-5M. The fill material generally consists of brown silt and sand, with little fine gravel and trace amounts of clay.

The glacial till was encountered beneath the fill. The till generally consists of grey-brown silt, with some sand and fine gravel, and trace amounts of clay, and its consistency is loose to medium dense. In addition, a very dense till unit was encountered at MW-4M and MW-4MA from 8 feet to 15 feet below ground surface.

Bedrock was encountered below the till at three of the six soil borings: MW-1M at 8.5 feet, MW-2M at 17.0 feet, and MW-5M at 6.5 feet below ground surface. Bedrock fragments from the soil boring advanced at MW-2M shows the bedrock to be a light grey graywacke.

2.3.3 Site Hydrogeologic Setting

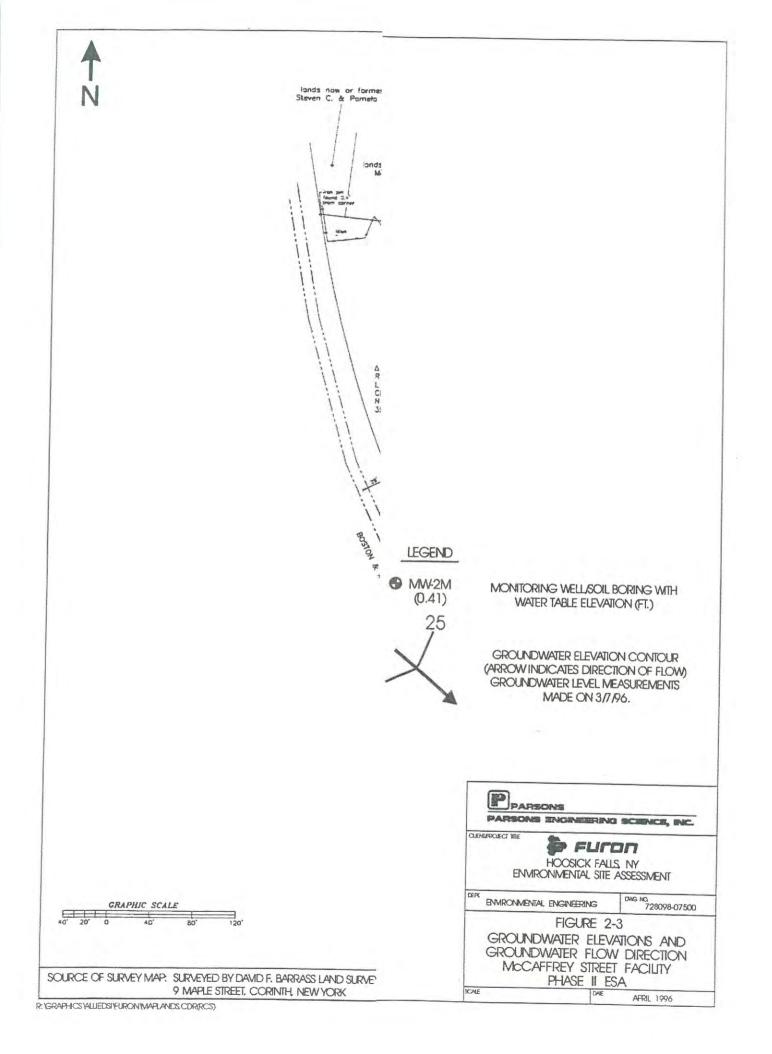
During the advancement of the soil borings, groundwater was encountered at the following depths below ground surface:

Location	Depth (feet below grade)
MW-1M	1.0
MW-2M	11.2
MW-3M	6.6
MW-4M	5.0
MW-5M	2.0

Table 2-1 presents the monitoring well water level summary at the McCaffrey Street facility. Figure 2-3 shows the relative groundwater elevations and groundwater flow direction at the McCaffrey Street facility. Elevations of the monitoring wells were obtained with a level and a graduated surveying rod, after establishing an arbitrary datum. The arbitrary datum control point was located adjacent to the northeastern corner of the facility. The arbitrary elevation assigned to it was 10 feet. The groundwater flow direction in the overburden was determined to be radially towards the southeast, south and southwest, based on the ground water elevations measured in the five monitoring wells on February 26-27, 1996, and March 7, 1996. The groundwater flow direction also concurs with the general site topography which slopes to the south-southeast.

Recharge to the monitoring wells during well development and sampling was poor (recharge rate of less than 0.2 gallons per hour) at monitoring wells MW-1M and MW-4M, fair (recharge rate of 0.4 gallons per hour) at well MW-5M, and good (recharge rate of 0.3 gallons per hour) at wells MW-2M and MW-3M. The shallow groundwater encountered at MW-1M is believed to be perched water.

TABLE 2-1


FURON COMPANY - PHASE II ESA McCAFFREY STREET MONITORING WELL WATER LEVEL SUMMARY

Location	Top of PVC Casing Elevation (feet) ¹	Date of Water Level Measurement	Depth to Groundwater (feet) ²	Groundwater Elevation (feet) ⁱ
MW-1M	34.49	2/26/96 2/27/96 3/07/96	9.40 9.70 6.75	25.05 24.79 27.74
MW-2M	10.45	2/26/96 2/27/96 3/07/96	9.72 9.67 10.04	0.73 0.78 0.41
MW-3M	10.48	2/26/96 2/27/96 3/07/96	8.81 8.70 9.33	1.67 1.78 1.15
MW-4M	20.97	2/26/96 2/27/96 3/07/96	11.35 14.80 15.10	9.62 6.17 5.87
MW-5M	8.53	2/26/96 2/27/96 3/07/96	4.44 4.95 4.96	4.09 3.58 3.57

Notes:

- 1) All elevations are based upon an assumed elevation of 10 feet set for the arbitrary reference point located adjacent to the northeastern corner of the facility.
- 2) Distance to groundwater referenced to top of well casing.

k:\Furon\PhaseII\McCaffre\ESA\Table2-1.wp5

- - -

3.0 SITE HISTORY

3.1 PAST SITE USE

According to P.J. Beaumont and Bob Grobuski, the shipping coordinator at the McCaffrey Street facility, prior to 1961 the property was vacant land. The facility was originally built in 1961 for Dodge Fibers Corp. and was used first for producing extruded tapes, and then, circuit board laminates. Oak Materials Group (Oak Electronetics) purchased the property from Dodge Fibers between 1969 and 1971. Oak Electronetics (Oak Industries) operated the facility until 1987 when it was sold to AlliedSignal Fluorglas. The property was sold to Furon Company in February 1996.

3.2 CURRENT SITE USE

The McCaffrey Street site manufactures Polytetrafluoroethylene (PTFE) coated fiberglass and molded and extruded PTFE intermediates (Standard Industrial Classification codes 2295, 3089). According to the AlliedSignal Health and Safety Environmental Disclosure Document, the facility operates 365 days, 8,760 hours per year. The facility is also used for administrative offices and for research and development. The facility employs approximately 95 people.

Coated fiberglass is produced by coating woven fiberglass with a dispersion of premixed liquid Teflon[®] and an organic liquid surfactant (Triton[®]). The mixture is fed from a drum into a coating dip pan. The coating is then cured in an oven and collected on a web. Teflon[®] molding is produced by adding virgin or reprocessed Teflon[®] to a molding press under pressure where the mold is formed. The mold is then transferred to the curing oven for sintering. Teflon[®] is extruded by adding granular Teflon[®] in metered doses to a continuous heated extruder. Coating operations are located on the first floor and extrusion and molding operations are located on the building.

Hazardous wastes generated from the manufacturing operations consist primarily of various coating formulations used in the mixing and coating areas and from research and development conducted on the fourth level. An area on the first level of the building is marked as the hazardous waste accumulation area and is equipped with a spill containment system. Wastes are accumulated in marked drums and disposed of within 90 days. The facility is designated

as a large quantity generator (EPA I.D. No. NYD 004986741). Wastes generated from research and development are accumulated in lab packs prior to disposal. Non-hazardous solid wastes are accumulated in the trash compactor adjacent to the loading dock.

4.0 FIELD INVESTIGATION METHODOLOGY

4.1 SOIL BORINGS

The objective of the soil boring program was to identify, through limited sampling and analysis, the possible presence of contamination in subsurface soils.

The soil borings were completed in accordance with the workplan. The only deviation in the soil boring program from that described in the work plan was the relocation of monitoring well MW-4M.

The location of monitoring well MW-4M was proposed in a wooded area where access to set up and drill would have been difficult. Therefore, MW-4M was relocated closer to the site, approximately 100 feet east of its proposed location. In addition, two soil borings (MW-4M and MW-4MA) were advanced at soil boring location MW-4M. During the first attempt to advance MW-4MA, a very dense till was encountered. The soil boring was drilled and left open overnite. The next morning no water was observed in the boring, therefore, the boring was abandoned. The second boring, MW-4M, was then advanced approximately 2.5 feet south of MW-4MA. Water was encountered at MW-4M and a monitoring well was installed. Figure 4-1 presents the locations of the soil borings. Photographs were taken of all soil borings Reports are included in Appendix A. Maxim Technologies Inc. of Ballston Spa, New York performed the drilling under the direction of Parsons ES personnel.

4.1.1 Sampling Methods

The soil borings were advanced using an Acker Soil Max drilling rig, equipped with 4.25inch inside diameter (I.D.) hollow stem augers. During drilling, soil samples were collected at the surface (0-2 feet below grade) and at 5 foot intervals or at each stratigraphic change to the total depth of the boring. The soil samples were collected using a decontaminated 2inch by 2-foot long carbon steel split spoon sampler. The split spoon was driven into undisturbed soil with a rig-mounted 140 lb hammer. Once the sample was collected, the augers were advanced to the top of the next sample interval. Samples were collected until split spoon refusal on bedrock or until a sufficient depth was drilled to install a 10 foot

^	
N Iands now or formerly Steven C. & Pamela M	
zbncl	
rion pin forma 2.4 forma 2.4	
R CH N 35!	
1 tot	
BOSTON & NOT	
	LEGEND
	MONITORING WELLSOIL BORING LOCATION
	SURFACE SOIL SAMPLE LOCATION
	PARSONS PARSONS ENGINEERING SCIENCE, INC.
	CLENVARIQUECT THE HOOSICK FALLS, NY ENVIRONIMENTAL SITE ASSESSMENT
GRAPHIC SCALE	DEPR BN/IRONIMENTAL ENGINEERING DWG NG 728098-07500
«d" 20" 0 40" 80" 120"	FIGURE 4-1 SAMPLE LOCATION MAP
*0° 20° 0 40° 80° 120°	FIGURE 4-1 SAMPLE LOCATION MAP McCAFFREY STREET FACILITY PHASE II ESA

screen, in order to monitor the upper groundwater aquifer. Soil samples were classified according to the Unified Soil Classification System (USCS).

Once the split spoon was driven and removed from the soil boring, the split spoon was opened and immediately screened for volatile organics compounds (VOCs) using an Organic Vapor Meter (OVM) Model 580B. No elevated OVM readings were observed during the drilling program.

In addition to screening the split spoon, a soil sample was also collected and placed into a 16 ounce mason jar for headspace screening. Sufficient sample was placed in the mason jar to fill it half full. The mason jar was then sealed with aluminum foil and placed in a vehicle for approximately 20 minutes, allowing the temperature of the sample to equilibrate. Afterwards, a small hole (1/4-inch) was made in the aluminum foil and a headspace reading was taken with the OVM. No elevated OVM readings were observed during the headspace screenings. Since no elevated OVM readings were observed during the screening process. five of the six soil boring samples collected for chemical analysis were collected at the groundwater table as per the workplan. The remaining sample was collected because of a change in lithology, encountered in MW-4M at a depth of 6.1 feet, where the lithology changed from fine sand and some silt to coarse sand and gravel. Samples to be analyzed for volatile organic compounds were collected first. The remaining soil from the split spoon was then homogenized in a decontaminated stainless steel bowl with a decontaminated stainless steel utensil, and placed in the appropriate sample containers. The six soil samples collected during the soil boring program were analyzed for Target Compound List (TCL) volatiles and Total Petroleum Hydrocarbons (TPH). Two of the six samples (i.e., MW-1M-0 and MW-3M-05) were also analyzed for TCL semivolatiles and Target Analyte List (TAL) metals.

The soil cuttings generated from the soil borings were placed into 55-gallon drums and labeled as non-hazardous. A total of six soil drums were generated and staged in a central location. After the soil boring was completed, a monitoring well was installed at each location. Section 4.3 discusses the monitoring well installation procedures.

4.2 SURFACE SOILS

The objective for the collection of surface soil samples was to identify, through limited sampling and analysis to the extent feasible, the possible presence of contamination in surface soils around the old transformer pad and the gravel driveway.

Phase II Environmental Site Assessment Furon Company McCaffrey Street Site

4.2.1 Sampling Methods

Three (3) surface soil samples, TF-1M-13, TF-21 document soil conditions around the old transform.

had no spill prevention or controls present. The old transformer pad contained 1.5 feet of gravel, which was removed before sample collection. All three samples were collected beneath the gravel, 1.5 feet to 3.5 feet below ground surface. No visible signs of leaks or stains were observed in the gravel or soil. Figure 4-1 presents the locations of the surface soil samples. Photographs were taken of all surface soil sampling locations and are presented in Appendix B.

Two (2) surface soil samples, GD-1M-1 and GD-1M-2, were collected beneath the asphalt driveway (formerly a gravel driveway) to determine potential impacts from the past spreading of oils for dust suppression. The first soil sample, GD-1M-1, was collected from 0.25 to 1.0 feet below ground surface. The asphalt at this location was approximately 0.25 feet thick. The surface soils had an oily stained zone from 0.25 to 2 feet below ground surface. The second soil sample, GD-1M-2, was collected from 1.25 to 2 feet below ground surface. At this location an oily stained zone was encountered at a depth of 1.25 to 1.5 feet below ground surface.

The five (5) surface soil samples collected at the McCaffrey Street facility were collected by driving a decontaminated 3-inch by 2-foot long carbon steel split spoon sampler. The split spoon was driven into undisturbed soil with a rig mounted 140 lb hammer. Upon retrieval, the split spoon was opened and immediately screened for VOCs. Afterwards, the soil sample was mixed in decontaminated stainless steel bowl with a decontaminated stainless steel utensil, and placed in the appropriate sample containers. Although oily stains were observed in the two asphalt driveway samples, no elevated OVM readings were recorded from the five surface soil samples collected at the McCaffrey Street facility. The five surface soil samples, TF-1M-12, TF-2M-13, TF-3M-13, GM-1M-1 and GD-1M-2, were analyzed for PCBs and TPH.

4.3 MONITORING WELL INSTALLATION

Five monitoring wells (MW-1M, MW-2M, MW-3M, MW-4M, and MW-5M) were installed at the McCaffrey Street facility to identify and characterize potential releases of hazardous materials or chemicals from areas of environmental concern, and to establish baseline groundwater quality at the site. The monitoring wells were installed in accordance with NYSDEC guidelines.

The monitoring wells MW-2M, MW-3M, and MW-4M contained 10-foot well screens with the top of the screens extending 2 feet to 4 feet above the water table. MW-1M was installed on top of the bedrock, which was encountered at approximately 8.5 feet below ground surface. MW-1M was installed with a 5-foot well screen. MW-5M was installed approximately 2 feet into the bedrock in order to install a 5 foot screen. Bedrock at MW-5M was encountered at 6.5 feet below ground surface.

All five monitoring wells were constructed of new 2-inch schedule 40 Polyvinyl Chloride (PVC) with a screen slot size of 0.010 inch, threaded flush joints and an expandable cap. A coarse grained sand pack (morie #0 sand) was poured in the annular space between the well screen and the hollow stem augers, at least to the top of the screen and not more than 6 inches below the bottom of the screen. The augers were removed as the annular space was filled with sand. At all wells except MW-1M and MW-2M, 0.3 feet to 0.6 feet of a finer grained sand (morie #00) was placed on top of the coarser grained sand. At MW-1M and MW-2M the fine grain sand was not installed due to the limited depth of these wells. The total length of sand placed above the top of the screen did not exceed 2.3 feet. Bentonite pellets were then placed on top of the sand to approximately 1 to 2 feet below ground surface, and then hydrated. Afterward, a protective steel casing, 4 inches in diameter by 5 feet long, was placed over the monitoring well pipe. The protective steel casing extended at least 1.5 feet below the ground surface, but not in contact with the sandpack. The protective steel casing was then held in place, by pouring bentonite pellets or chips around the steel casing, up to the ground surface. A padlock was placed on the protective steel casing. The monitoring well completion diagrams are presented in Appendix C.

After well installation was completed, the downhole drilling tools (i.e., hollow stem augers, drilling rods, split spoons, etc.) were decontaminated in accordance with the workplan. All liquids generated from the decontamination process were placed in 55-gallon drums and staged in a central location. A total of six drums of decontamination water were generated.

4.4 MONITORING WELL DEVELOPMENT

The five monitoring wells installed at the McCaffrey Street facility were developed a minimum of two days after well installation. The following is the procedure used for the development of these wells:

- Measure depth to groundwater and well depth with an electronic water level meter.
- Calculate volume of water within the well and the sand pack.
- Using a PVC bailer, surge the well for up to five minutes to remove any silt and clay "skin" that may have formed on the borehole wall while drilling.
- Measure the conductivity, pH, temperature, and turbidity of the surge water.
- Purge up to five well volumes or to dryness. If the well recharges, take conductivity, pH, temperature, and turbidity readings after each volume of water that is evacuated.

Only two of the five monitoring wells (MW-2M and MW-3M) had sufficient recharge to support removal of five well volumes during development. One monitoring well (MW-5M) had fair to poor recharge and after purging one volume with a hand bailer, the well bailed dry. The water level at MW-5M recovered to its static water level after approximately 3 hours. The two remaining monitoring wells (MW-1M and MW-4M) had poor recharge. After purging one volume these wells were also dry. These two wells recovered to their static water levels within approximately 8 hours.

At the monitoring wells with good recharge, i.e., MW-2M and MW-3M, the pH, conductivity, and temperature measurements stabilized after five well volumes were evacuated. The final turbidity values measured in all wells after development were all greater than 100 NTUs. The groundwater generated during monitoring well development was placed in 55-gallon drums. A total of two drums were generated and labeled as non-hazardous waste. These drums were staged in a central location.

4.5 GROUNDWATER SAMPLING

4.5.1 Monitoring Well Purging

The five monitoring wells at the McCaffrey Street facility were sampled on March 7-8, 1996. All monitoring wells were purged on March 7 prior to sampling. Before sampling the wells, the following well purging procedure was followed:

- Measure depth to groundwater and well depth with a decontaminated electronic water level meter.
- Calculate the standing water volume in the well.
- Using a dedicated disposable teflon bailer, purge three to five well volumes or to dryness, until the indicator parameters (conductivity, pH, temperature, and turbidity stabilize. Take Conductivity, pH, temperature, and turbidity measurements were taken at the start of purging and every volume thereafter. MW-3M was purged using a peristaltic pump and teflon tubing.
- After purging the well, leave the teflon bailer in the monitoring well to be used for sampling.

Due to their slow recharge rate and limited quantities of water in the wells, monitoring wells MW-1M and MW-4M were allowed to recharge approximately 6 hours before they were sampled. The turbidity values recorded after purging the wells were as follows:

- MW-1M >1000 NTUs
- MW-2M >1000 NTUs
- MW-3M 8 NTUs
- MW-4M >1000 NTUs
- MW-5M >1000 NTUs

4.5.2 Monitoring Well Sampling

The monitoring wells at the McCaffrey Street facility were sampled using dedicated disposable teflon bailers. Groundwater samples collected for volatile analyses were collected first, before any of the other parameters, in a manner that would minimize the loss of volatile compounds. At MW-3M, the VOCs were collected with a teflon bailer. The

remaining parameters were collected using a peristaltic pump. Sampling for the remaining parameters was carried out in the following sequence: metals, semivolatiles, and TPH. Only two of the five wells (MW-1M and MW-3M) were analyzed for TPH. The turbidity values recorded during sampling, after the samples for metals were collected, were as follows:

- MW-1M 34 NTUs
- MW-2M 20 NTUs
- MW-3M 17 NTUs
- MW-4M 79 NTUs
- MW-5M 59 NTUs

Groundwater samples were collected with the required quality assurance/quality control (QA/QC) samples, and transported to the laboratory for chemical analysis following NYSDEC-CLP methodology.

·

5.0 <u>RESULTS</u>

5.1 ANALYTICAL METHODS

The six soil boring samples, five surface soil samples, and five groundwater samples collected during the Phase II ESA were package and transported to the laboratory, IEA, Inc., located in Monroe, Connecticut. IEA, Inc., is a Contract Laboratory Protocol (CLP) certified laboratory by the New York State Department of Health. The samples were analyzed for one or more of the following parameter suites: TCL volatile organics per NYSDEC-CLP, TCL semivolatiles per NYSDEC-CLP, PCBs and TAL metals per NYSDEC-CLP, and TPH by USEPA Method 418.1 (SW-846).

5.2 Soil Sampling Results

NYSDEC Technical and Administrative Guidance Memorandum (TAGM) HWR-94-4046 (revised January 24, 1994) values were used as a basis of comparison for the soil sample results. For metals, the soil cleanup objective concentration which was used for comparison, was the NYSDEC TAGM value or the background concentration determined from the sample, whichever was higher. These concentrations are presented in **Table 5-1**. Soil sample MW-1M-0 was collected at the topographic high elevation at the facility, and was designated as the background soil location. Soil sample MW-3M-05 which was located at a topographic low elevation at the facility was designated as the downgradient soil sample location.

The full chemical analysis results for the soils are presented in Appendix D.

Four VOCs were detected in the six soil samples. None of the four compounds exceeded their respective TAGM value. One of the four compounds, acetone, which is a common laboratory contaminant, was detected in all samples including the field blank sample. Another compound, methylene chloride, which is also a common laboratory contaminant, was detected at estimated concentrations in four of the six samples. The third compound detected, 2-butanone, which is a common laboratory contaminant, and a contaminant in acetone, was detected in only one of the soil samples (MW-2M-10). Trichloroethene was also detected at an estimated concentration of 4.0 ug/kg at MW-1M-0.

TABLE 5-1

FURON COMPANY PHASE II ESA McCAFFREY STREET FACILITY RECOMMENDED SOIL CLEANUP OBJECTIVE CONCENTRATIONS

Metal Compound	NYSDEC TAGM Value (mg/kg) (*Source)	Site Background Concentration (mg/kg)	Recommended Soil Cleamp Objective Concentration (mg/kg) (*Source)
Aluminum	SB	1590	1590
Antimony	SB	ND	ND
Arsenic	7.5 or SB	0.78	7.5
Barium	300 or SB	46.9	300
Beryllium	0.16 or SB	0.32	0.32
Cadmium	1 or SB	0.19	1
Calcium	SB	3340	3340
Chromium	10 or SB	1.7	10
Cobalt	30 or SB	1.6	30
Copper	25 or SB	3.2	25
Iron	2000 or SB	2180	2180
Lead	4-61	0.48	**61
Magnesium	SB	712	712
Manganese	SB	37.4	37.4
Мегсигу	0.1	ND	0.1
Nickel	13 or SB	4	13
Potassium	SB	67	67
Selenium	2 or SB	ND	2
Silver	SB	ND	ND
Sodium	SB	424	424
Thallium	SB	ND	ND
Vanadium	150 or SB	2.1	150
Zinc	20 or SB	7.6	20

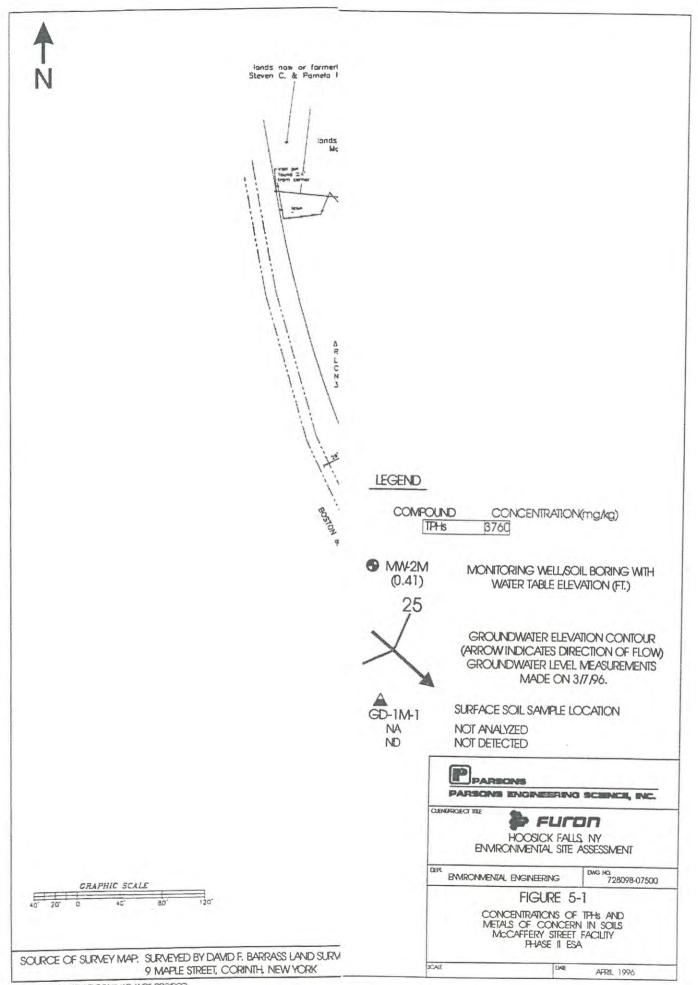
Notes:

SB - Site Background

ND - Not Detected

* Source: Division Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels.

** Special Condition (see text)


Four semivolatile compounds were detected in the two soil samples, MW-1M-0 and MW-3M-05, analyzed for semivolatiles at concentrations below their respective TAGM value. The compounds detected were di-n-butylphthalate, bis(2-Ethylhexyl)phthalate, benzo(a)pyrene, and benzo(g,h,i)perylene. The compounds di-n-butylphthalate and bis(2-Ethylhexyl)phalate were also reported at estimated concentrations in the field blank sample. Benzo(a)pyrene and benzo(g,h,i)perylene were also detected as estimated values at MW-1M-0.

TPHs were detected in four of the eleven soil samples analyzed for TPHs. The highest TPH levels were detected in the paved driveway samples (CEC #2) GD-1M-1 and GD-1M-2 at concentrations of 3760 mg/kg and 831 mg/kg, respectively. The other two soil samples MW-1M-0 and TF-1M-13 (CEC #1) reported low concentrations of 136 mg/kg and 50.7 mg/kg, respectively. Figure 5-1 presents the concentrations of TPHs in soils and the metals of concern detected above the TAGM values.

Two PCB compounds, Aroclor-1254 and Aroclor-1260, were detected at estimated concentrations well below their respective TAGM values. The two compounds were detected in the following three soil samples: TF-1M-13, GD-1M-1, and GD-1M-2.

Nineteen metals were detected in the two soil samples MW-1M-0 and MW-3M-05 analyzed for metals. Eleven of the 19 compounds exceeded their respective recommended soil cleanup objective concentration. These compounds were aluminum, beryllium, calcium, chromium, iron, magnesium, manganese, nickel, potassium, selenium, and zinc. While all of the metals can occur naturally in soil, several of them are more common constituents of soil (i.e., aluminum, calcium, iron, magnesium, manganese, and potassium) and are generally considered to be less toxic than the others listed. The other metals listed, which are more of a concern, are discussed below. **Figure 5-1** presents the concentrations of the metals of concern in soils.

Beryllium was detected in both soil samples. The recommended soil cleanup objective concentration for beryllium, is 0.32 mg/kg which was detected in the background soil sample, MW-1M-0. The compound was detected in MW-3M-05 at a concentration of 0.53 mg/kg.

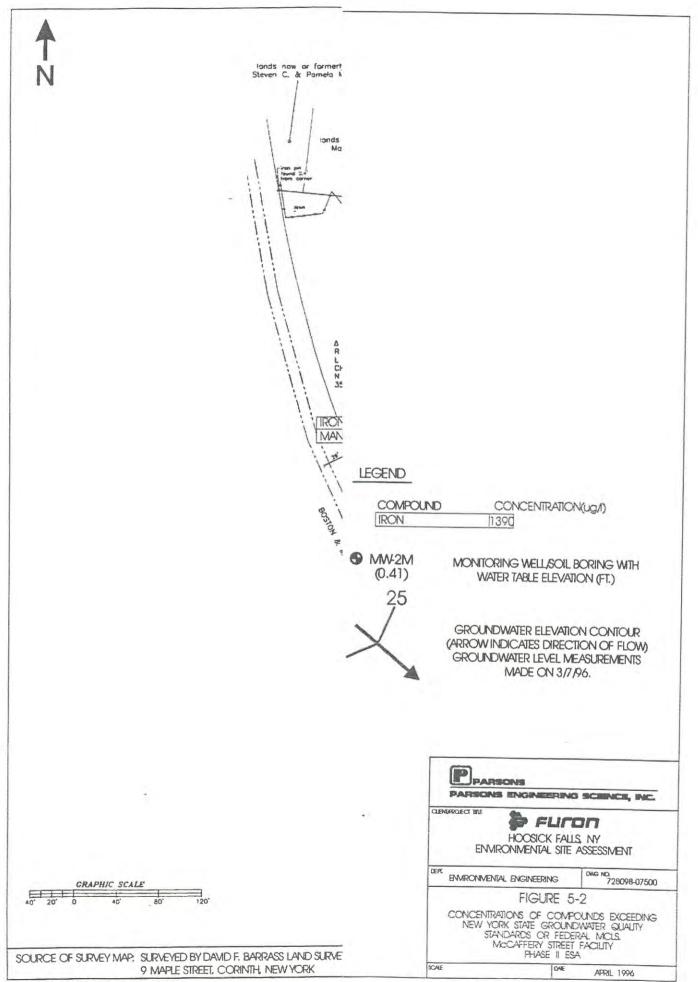
R. GRAPHOS WILLEDSI FURON MAPLANES CORROS

Chromium was detected in MW-1M-0 at a concentration of 1.7 mg/kg and in MW-3M-05 at a concentration of 11.6 mg/kg. The recommended soil cleanup objective concentration for chromium is 10 mg/kg.

Nickel was detected in both soil samples at concentrations of 4.0 mg/kg in MW-1M-0, and 19.3 mg/kg in MW-3M-05. The recommended soil cleanup objective concentration for nickel is 13.0 mg/kg.

Selenium was only detected in the soil sample MW-3M-05, at a concentration equal to the recommended soil cleanup objective concentration of 2.0 mg/kg.

The TAGM value for zinc is 20.0 mg/kg. It was exceeded in soil sample MW-3M-05, which had a concentration of 60.5 mg/kg.


The lead results were viewed as a special condition. The background TAGM value for lead in soils varies widely. The average levels in undeveloped, rural areas may range from 4-61 mg/kg, and in metropolitan or suburban areas or near highways the average levels may range from 200-500 mg/kg. Lead was detected in soil sample MW-1M-0 at 0.48 mg/kg and in soil sample MW-3M-05 at 12 mg/kg. Therefore the recommended soil cleanup objective concentration for lead at the McCaffrey Street facility is considered to be 61 mg/kg.

5.3 GROUNDWATER SAMPLING RESULTS

Groundwater sampling results were compared to the New York State Groundwater Class GA standards, the New York State Primary Drinking Water Quality standards, and the Federal Safe Drinking Water Act (MCLs).

The chemical analysis results for the groundwater samples are presented in Appendix E. Figure 5-2 presents the Concentrations of Compounds Exceeding Groundwater Quality Standards or MCLs.

Two VOCs, trichloroethene and 1,2-dichloroethene(total), were detected in the groundwater samples collected from the five monitoring wells. Trichloroethene was detected in two wells MW-2M and MW-5M at concentrations above the Federal and New York State standards which is 5 ug/l. The highest concentration of 13 ug/l was detected in MW-2M.

R: YGRAPHICS YALLIEDSI FURON MAPLANDS. CORRCS)

Trichloroethene was also detected in MW-5M at an estimated concentration of 6.0 ug/l. In the duplicate sample of monitoring well MW-5M, which is identified as MW-15M, trichloroethene was detected at an estimated concentration of 7.0 ug/l. The compound 1,2-dichloroethene(total), which is a breakdown product of trichloroethene, was detected in MW-5M and the duplicate (MW-15M) at estimated concentrations of 2.0 ug/l each.

Chloroform was detected in the trip blank and field blank samples at estimated concentrations of 3.0 ug/l and 2.0 ug/l, respectively. These values are also below the Federal MCLs and the New York State Groundwater Quality Standards.

Three semivolatiles, diethylphthatlate, di-n-butylphthatlate, and bis(2-Ethylhexyl)phthalate were detected. The three compounds were estimated at low concentrations ranging from 0.3 ug/l to 6.0 ug/l. All three compounds were also detected in the field blank sample, and are common laboratory contaminants.

No TPHs were detected in any of the groundwater samples collected from the five monitoring wells.

Metals were detected in the five monitoring wells. Five metals which were not detected include arsenic, beryllium, copper, mercury and thallium. Three of the 18 compounds detected exceeded their respective Federal MCLs or New York State Class GA Standards. Antimony, which has a Federal MCL is 6.0 ug/l, was detected at a maximum concentration of 16.0 ug/l in monitoring well MW-2M. Iron was detected at a maximum concentration of 3060 ug/l in monitoring well MW-4M, and exceeded the New York State Standard of 300 ug/l in 4 of the 5 wells sampled. Manganese, with a maximum concentration of 343 ug/l in MW-4M, exceeded the New York State standard of 300 ug/l in two of the five wells. Other compounds detected included aluminum, calcium, cobalt, magnesium, potassium, sodium and vanadium and zinc. Some of these metals (aluminum, calcium, magnesium, potassium and sodium) along with iron, manganese and zinc are commonly found in the groundwater. These compounds are generally considered to be less toxic. Metals that are generally considered to be more toxic (chromium, lead, and nickel) were also detected, but at concentrations below the Federal and State groundwater standards. In addition, the maximum concentrations of iron and manganese were found in MW-4M. The groundwater sample collected at MW-4M reported an elevated turbidity of 79 NTUs.

6.0 FINDINGS, CONCLUSIONS and RECOMMENDATIONS

6.1 FINDINGS

The soil analysis results of the Phase II ESA conducted at the McCaffrey Street facility, indicate that metals were detected above the recommended soil cleanup objective concentration in the topographically downgradient soil boring sample MW-3M-05. Non-inclusive of those compounds which are common constituents in soil (i.e., aluminum, calcium, iron, manganese, magnesium, and potassium), the metal compounds of concern and their concentrations are as follows: beryllium - 0.53 mg/kg, chromium - 11.6 mg/kg, nickel - 19.3 mg/kg, selenium - 2 mg/kg and zinc 60.5 mg/kg. These compounds, except for zinc, were detected at concentrations at or just above their respective recommended soil cleanup objective concentration. Zinc was detected at a concentration which is three times above its recommended soil cleanup objective concentration of 20.0 mg/kg.

The soil analysis results also revealed elevated concentrations of TPH in the soil samples collected in the paved driveway (formerly a gravel driveway) (CEC #2). The sample collected near the surface GD-1M-1 (beneath the asphalt) had an oily stained zone and had a TPH concentration of 3760 mg/kg. The soil sample GD-1M-2, collected beneath GD-1M-1 also contained an oily stained zone and had a concentration of 831 mg/kg. There is no TAGM value for TPH in soils. No volatile organic compounds, semivolatiles, or PCBs were detected at concentrations above their respective soil cleanup concentration.

The groundwater analysis results indicate that TCE was detected in the groundwater. The TCE concentration detected in MW-2M was 13 ug/l. The TCE concentrations detected in well MW-5M and its duplicate MW-15M were estimated at 6 ug/l and 7 ug/l, respectively. The Federal Safe Drinking Water Act MCL and the New York State Groundwater Quality Standards for TCE is 5 ug/l. In addition, trace concentrations (2J ug/l) of 1,2-dichloroethene were reported in monitoring well MW-5M and the duplicate. Three metal compounds antimony, iron, and manganese, were also detected above the Federal MCLs or New York State Groundwater Standards. Antimony was detected at a concentration of 16 ug/l in MW-2M; its Federal MCL is 6 ug/l. Iron was detected in all monitoring wells except MW-2M. Iron was detected at a maximum concentration of 3060 ug/l in MW-4M; its New York State Groundwater standard is 300 ug/l. Manganese, which has a New York State

standard of 300 ug/l, was detected in MW-4M at a concentration of 343 ug/l. Other metal compounds such as aluminum, calcium, cobalt, magnesium, potassium, sodium and vanadium were also detected, but have no Federal MCLs or New York State Groundwater Quality Standards. No semivolatile organic compounds were detected at concentrations above their respective Federal MCL or the New York State Groundwater Quality Standard.

6.2 CONCLUSIONS

The Phase II ESA was conducted to address two recognized environmental conditions, and two conditions of environmental concern to establish "baseline environmental conditions" of the property. The two recognized environmental conditions were the former UST which presented a material threat of a past release (REC #1), and the floor drains and sump in the vicinity of the mixing and coating operations on the first level of the facility (REC #2). Other conditions of environmental concern included the "old" transformer which was known to contain PCBs (CEC #1), and the historic practice of spreading oils in the former gravel driveways for dust suppression (CEC #2). Through limited sampling and analysis, the Phase II ESA identified the presence of five metals in site soils at concentrations above their respective TAGM value. Two soil boring samples were analyzed for metals. One sample was collected at the topographically high elevation of the site, the other sample was collected at a topographically low elevation of the site. The former was considered as the background soil sample location, and the latter was considered as the downgradient soil sample location. One of the five metals, chromium, is presently used in the facility's manufacturing process.

The two surface soil samples collected in the paved driveway (formerly a gravel driveway) to investigate the historic practice of spreading oils on the gravel driveways for dust suppression (CEC #2), detected elevated concentrations of TPHs. Both soil samples also evidenced oily stained zones.

Three surface soil samples were collected adjacent to the "old" transformer pad and analyzed for TPHs and PCBs (CEC #1). TPHs were detected in only one of the three soil samples at a concentration of 50.7 mg/kg. No PCBs were detected in the three samples. Although several metal compounds and TPHs were detected in site soils at the McCaffrey Street facility, the detected concentration of the compounds are considered minor.

The results of the groundwater analysis indicate that two monitoring wells topographically downgradient of the facility have been impacted by trichloroethene (TCE), as detected in monitoring wells MW-2M and MW-5M. The metal compounds, antimony, iron, and manganese, were also detected at concentrations above their respective Federal MCL and/or the New York State Groundwater Standards.

The facility uses small quantities of solvents in the research and development lab, located on the fourth level of the facility, which are presently stored in marked storage cabinets and disposed of in various sized lab packs (1 and 50 gallons) for off-site disposal. The facility also maintains floor drains and a sump in the vicinity of the mixing and coating operations on the first level of the facility. The integrity of the sump pit sidewalls and bottom have not been verified (REC #2).

The source for TCE may be related to the sump pit. According to P.J. Beaumont, TCE is not currently stored or generated at the facility.

No TPHs or Aromatic Volatile Organic Compounds (i.e., BTEXs) were detected in the groundwater samples. Therefore, it does not appear that the former UST presented a material threat of a release at the facility (REC #1).

6.3 RECOMMENDATIONS

Due to the TCE concentrations detected in the two topographically downgradient monitoring wells MW-2M and MW-5M, it is recommended that a second round of groundwater sampling be conducted at the five newly installed monitoring wells at the McCaffrey Street facility to verify the VOC groundwater analysis results reported during the Phase II ESA.

Additionally, filtered and unfiltered groundwater samples should be collected from the wells to verify the presence of metals and to define if it is associated with soil fines present in the well.

Attomey/Client Privileged

In addition to collecting and characterizing a second set of groundwater data from all wells, Parsons ES recommends that Furon Company begin record searches to determine if past evidence of TCE usage at the facility can be found. Information available to Parsons ES does not provide any evidence that TCE was used at this facility in the past.

7.0 <u>REFERENCES</u>

40 Code of Federal Regulations (CFR), Parts 141 and 142, May 1995.

- Goldsmith R. Ratcliffe, N.M., Robinson P., and Stanley, R.S. 1983.
 Bedrock Geologic Map of Massachusetts, Department of Public Works, and Joseph A. Sinnot.
- Miller, Norton G. 1987. Natural History of Rensselaer County, pp 6 and 8j. Landmarks of Rensselaer County New York.
- New York State Department of Environmental Conservation. Revised January 24, 1994. Technical and Administrative Guidance Memorandum (TAGM) HWR-94-4046.
- Official Compilation of Codes, Rules, and Regulations of the State of New York, Title 6, Part 360, April 1995 and Parts 701-705, June 1995. Class GA Groundwater.
- Parsons Engineering Science 1995. Draft Phase I Environmental Site Assessment, McCaffrey Street Facility.

Saint Gobain Performance Plastics McCaffrey Street Facility Hoosick Falls, NY

Site Sampling Results

Prepared for

Saint Gobain Performance Plastics Hoosick Falls, NY

Prepared by

Ramboll Environ Princeton, NJ

February 4, 2016

CONTENTS

I. Data Summary Tables

Table 1: Summary of Soil Sampling Results
Table 2: Summary of Groundwater Sampling Results
Table 3: Summary of Wastewater Sampling Results
Table 4: Summary of QAQC Sampling Results
Table 5: Groundwater Elevation Data

II. Figures

Figure 1: Site Location Map Figure 2: Site Plan

III. Data Validation Reports

- IV. Laboratory Data Reports
- V. Boring Logs and Well Construction Logs

I. Data Summary Tables

Table 1: Summary of Soil Sampling ResultsTable 2: Summary of Groundwater Sampling ResultsTable 3: Summary of Wastewater Sampling ResultsTable 4: Summary of QAQC Sampling ResultsTable 5: Groundwater Elevation Data

Location	USEPA Region 4	MM	/-1		MW-2	
Field Sample ID		SG1-MW01D-00.0	SG1-MW01D-02.0	SG1-MW02D-00.0	SG1-DS01-150805	SG1-MW02D-02.0
Collection Depth (ft bgs)	Screening	0 - 2	2 - 4	0 - 2	0 - 2	2 - 4
Sampling Date		8/10/2015	8/10/2015	8/5/2015	8/5/2015	8/5/2015
Comments	[2]				Field Duplicate	
PFCS						
Perfluorobutane Sulfonate (PFBS)		U (0.014)	U (0.014)	U (0.014)	U (0.014)	U (0.014)
Perfluoroheptanoic Acid (PFHpA)		U (0.015)	U (0.015)	U (0.015)	U (0.015)	U (0.015)
Perfluorohexane Sulfonate (PFHxS)		U (0.015)	U (0.015)	U (0.015)	U (0.015)	U (0.015)
Perfluoro-n-Octanoic Acid (PFOA)	16000	1.0	2.4	1.3	1.5	0.35
Perfluorononanoic Acid (PFNA)		U (0.01)	U (0.01)	0.01	0.02	U (0.01)
Perfluorooctane Sulfonate (PFOS)	6000	U (0.015)	U (0.015)	0.028	0.035	U (0.015)

Notes:

1 All units in ug/kg (ppb).

² USEPA Region 4. 2009. "Soil Screening Levels for Perfluorooctanoic Acid (PFOA) and Perluorooctyl Sulfonate (PFOS)."

Abbreviations:

U -- Not Detected

TABLE 1 Summary of Soil Sampling Results SGPP Hoosick Falls

Location	USEPA Region 4	MM	/-3	MW	/-4	MW-5		
Field Sample ID	Residential	SG1-MW03S-00.0	SG1-MW03S-02.0	SG1-MW04S-00.0	SG1-MW04S-02.0	SG1-MW05S-00.0	SG1-MW05S-02.0	
Collection Depth (ft bgs)		0 - 2	2 - 4	0 - 2	2 - 4	0 - 2	2 - 4	
Sampling Date		8/13/2015	8/13/2015	8/5/2015	8/5/2015	8/11/2015	8/11/2015	
Comments	[2]							
PFCS								
Perfluorobutane Sulfonate (PFBS)		U (0.014)	U (0.014)	0.039	U (0.014)	U (0.14)	U (0.014)	
Perfluoroheptanoic Acid (PFHpA)		0.11	U (0.015)	0.17	0.080	U (0.15)	0.038	
Perfluorohexane Sulfonate (PFHxS)		U (0.015)	U (0.015)	0.15	U (0.015)	U (0.15)	U (0.015)	
Perfluoro-n-Octanoic Acid (PFOA)	16000	2.5	0.67	4.1	1.8	1.4	1.2	
Perfluorononanoic Acid (PFNA)		0.11	0.03	0.14	0.07	U (0.1)	0.06	
Perfluorooctane Sulfonate (PFOS)	6000	0.19	0.018	0.63	0.28	0.25	0.099	

Notes:

1 All units in ug/kg (ppb).

² USEPA Region 4. 2009. "Soil Screening Levels for Perfluorooctanoic Acid (PFOA) and Perluorooctyl Sulfonate (PFOS)."

Abbreviations:

U -- Not Detected

TABLE 2 Summary of Groundwater Sampling Results SGPP Hoosick Falls

	Provisional Health Advisory	Unspecified Organic	MV SG1-MW01-150903 9/3/2015	SG1-MW01-151001	SG1-MW01S-150903	
Comments	Levels (5)	oriteria (4)				
Perfluorobutane Sulfonate (PFBS)		50000	U (8.5)	U (8.5)	U (8.5)	U (8.5)
Perfluoroheptanoic Acid (PFHpA)		50000	U (2.2)	U (2.2)	20 (2.2)	60 (2.2)
Perfluorohexane Sulfonate (PFHxS)		50000	U (2.9)	U (2.9)	U (2.9)	U (2.9)
Perfluoro-n-Octanoic Acid (PFOA)	400	50000	U (1.6)	U (1.6)	U (1.6)	60 (1.6)
Perfluorononanoic Acid (PFNA)		50000	U (2.3)	U (2.3)	U (2.3)	U (2.3)
Perfluorooctane Sulfonate (PFOS)	200	50000	U (2.1)	U (2.1)	U (2.1)	U (2.1)

Notes:

- 1 All concentrations are presented in ng/L.
- 2 Detected concentrations exceeding a comparison criterion are shown in **bold text**.
- 3 USEPA. Provisional Health Advisories for perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS). 2009.
- 4 NYSDOH, 2011. Table 3 Organic Chemicals, Maximum Contaminant Level Determination. Part 5, Subpart 5-1 Public Water Systems. November.

https://www.health.ny.gov/regulations/nycrr/title_10/part_5/subpart_5-1_tables.htm

5 A split sample from MW-02 was submitted for laboratory analysis to Maxxam Analytics of Mississauga, Ontario, Canada. All other samples were submitted for laboratory analysis to Eurofins/Eaton Analytical of South Bend, IN.

- U -- Not Detected.
- J -- Estimated Concentration.
- () -- Method Detection Limit.

TABLE 2 Summary of Groundwater Sampling Results SGPP Hoosick Falls

Location Field Sample ID Sample Date Comments	Provisional Health Advisory	NYSDOH Unspecified Organic Contaminant Criteria (4)	SG1-MW02-150902 9/2/2015	MW-2 SG1-MW02-150930 9/30/2015 Split (5)		SG1-MW02S-150902 9/2/2015	/-2S SG1-MW02S-151001 10/1/2015
PFCS							
Perfluorobutane Sulfonate (PFBS)		50000	U (8.5)	U (8.5)	U (4.7)	U (8.5)	U (8.5)
Perfluoroheptanoic Acid (PFHpA)		50000	340 (2.2)	310 (2.2)	390 J (5.4)	20 (2.2)	30 (2.2)
Perfluorohexane Sulfonate (PFHxS)		50000	U (2.9)	U (2.9)	U (5.4)	U (2.9)	U (2.9)
Perfluoro-n-Octanoic Acid (PFOA)	400	50000	18000 (1.6)	17000 (1.6)	16000 J (180)	1100 (1.6)	750 (1.6)
Perfluorononanoic Acid (PFNA)		50000	U (2.3)	U (2.3)	U (6.3)	U (2.3)	U (2.3)
Perfluorooctane Sulfonate (PFOS)	200	50000	U (2.1)	U (2.1)	U (3.7)	U (2.1)	U (2.1)

Notes:

1 All concentrations are presented in ng/L.

2 Detected concentrations exceeding a comparison criterion are shown in **bold text**.

- 3 USEPA. Provisional Health Advisories for perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS). 2009.
- 4 NYSDOH, 2011. Table 3 Organic Chemicals, Maximum Contaminant Level Determination. Part 5, Subpart 5-1 Public Water Systems. November.

https://www.health.ny.gov/regulations/nycrr/title_10/part_5/subpart_5-1_tables.htm

5 A split sample from MW-02 was submitted for laboratory analysis to Maxxam Analytics of Mississauga, Ontario, Canada. All other samples were submitted for laboratory analysis to Eurofins/Eaton Analytical of South Bend, IN.

- U -- Not Detected.
- J -- Estimated Concentration.
- () -- Method Detection Limit.

TABLE 2 Summary of Groundwater Sampling Results SGPP Hoosick Falls

Location Field Sample ID	water	NYSDOH Unspecified Organic	SG1-MW03-150903	MW-3	SG1 MW02 151001	SG1-MW04-150903	MW-4	SG1-DS01-151001
	Health Advisory	Contaminant	9/3/2015	9/3/2015				
Comments	Levels (3)	Criteria (4)		Field Duplicate				Field Duplicate
PFCS								
Perfluorobutane Sulfonate (PFBS)		50000	U (8.5)	U (8.5)	U (8.5)	U (8.5)	U (8.5)	U (8.5)
Perfluoroheptanoic Acid (PFHpA)		50000	130 (2.2)	130 (2.2)	120 (2.2)	40 (2.2)	40 (2.2)	40 (2.2)
Perfluorohexane Sulfonate (PFHxS)		50000	U (2.9)	U (2.9)	U (2.9)	U (2.9)	U (2.9)	U (2.9)
Perfluoro-n-Octanoic Acid (PFOA)	400	50000	5300 (1.6)	4200 (1.6)	4300 (1.6)	1700 (1.6)	1400 (1.6)	1400 (1.6)
Perfluorononanoic Acid (PFNA)		50000	U (2.3)	U (2.3)	U (2.3)	U (2.3)	U (2.3)	U (2.3)
Perfluorooctane Sulfonate (PFOS)	200	50000	U (2.1)	U (2.1)	U (2.1)	U (2.1)	U (2.1)	U (2.1)

Notes:

1 All concentrations are presented in ng/L.

2 Detected concentrations exceeding a comparison criterion are shown in **bold text**.

- 3 USEPA. Provisional Health Advisories for perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS). 2009.
- 4 NYSDOH, 2011. Table 3 Organic Chemicals, Maximum Contaminant Level Determination. Part 5, Subpart 5-1 Public Water Systems. November.

https://www.health.ny.gov/regulations/nycrr/title_10/part_5/subpart_5-1_tables.htm

5 A split sample from MW-02 was submitted for laboratory analysis to Maxxam Analytics of Mississauga, Ontario, Canada. All other samples were submitted for laboratory analysis to Eurofins/Eaton Analytical of South Bend, IN.

- U -- Not Detected.
- J -- Estimated Concentration.
- () -- Method Detection Limit.

Location Field Sample ID Sample Date	water	Unspecified Organic	MV SG1-MW05-150903 9/3/2015	V-5 SG1-MW05-151001 10/1/2015
Comments		Criteria (4)		10/ 1/ 2010
PFCS				
Perfluorobutane Sulfonate (PFBS)		50000	U (8.5)	U (8.5)
Perfluoroheptanoic Acid (PFHpA)		50000	10 (2.2)	10 (2.2)
Perfluorohexane Sulfonate (PFHxS)		50000	U (2.9)	U (2.9)
Perfluoro-n-Octanoic Acid (PFOA)	400	50000	580 (1.6)	570 (1.6)
Perfluorononanoic Acid (PFNA)		50000	U (2.3)	U (2.3)
Perfluorooctane Sulfonate (PFOS)	200	50000	U (2.1)	U (2.1)

Notes:

- 1 All concentrations are presented in ng/L.
- 2 Detected concentrations exceeding a comparison criterion are shown in **bold text**.
- 3 USEPA. Provisional Health Advisories for perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS). 2009.
- 4 NYSDOH, 2011. Table 3 Organic Chemicals, Maximum Contaminant Level Determination. Part 5, Subpart 5-1 Public Water Systems. November.

https://www.health.ny.gov/regulations/nycrr/title_10/part_5/subpart_5-1_tables.htm

5 A split sample from MW-02 was submitted for laboratory analysis to Maxxam Analytics of Mississauga, Ontario, Canada. All other samples were submitted for laboratory analysis to Eurofins/Eaton Analytical of South Bend, IN.

- U -- Not Detected.
- J -- Estimated Concentration.
- () -- Method Detection Limit.

TABLE 3 Summary of Wastewater Sampling Results SGPP Hoosick Falls

Location	USEPA Drinking Water	NYSDOH	Manhole #1 SG1-NORTH	Sewage E SG1-SUMP PIT-	jector Pit
Field Sample ID	Provisional	Unspecified Organic	MANHOLE-151027	151027	SG1-DS01-151027
Sample Date	Health	Contaminant Criteria (4)	10/27/2015	10/27/2015	10/27/2015
Comments	Levels (3)	.,			Field Duplicate
PFCS					
Perfluorobutane Sulfonate (PFBS)		50000	U (8.5)	U (8.5)	U (8.5)
Perfluoroheptanoic Acid (PFHpA)		50000	20 J (2.2)	10 (2.2)	10 (2.2)
Perfluorohexane Sulfonate (PFHxS)		50000	U (2.9)	U (2.9)	U (2.9)
Perfluoro-n-Octanoic Acid (PFOA)	400	50000	1000 (1.6)	850 (1.6)	470 (1.6)
Perfluorononanoic Acid (PFNA)		50000	U (2.3)	U (2.3)	U (2.3)
Perfluorooctane Sulfonate (PFOS)	200	50000	U (2.1)	U (2.1)	U (2.1)

Notes:

1 All concentrations are presented in ng/L.

2 Detected concentrations exceeding a comparison criterion are shown in **bold text**.

3 USEPA. Provisional Health Advisories for perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS). 2009.

4 NYSDOH, 2011. Table 3 – Organic Chemicals, Maximum Contaminant Level Determination. Part 5, Subpart 5-1 Public Water Systems. November. https://www.health.ny.gov/regulations/nycrr/title_10/part_5/subpart_5-1_tables.htm

Abbreviations:

U -- Not Detected.

J -- Estimated Concentration.

TABLE 4 Summary of QAQC Sampling Results SGPP Hoosick Falls

Location	QAQC	QAQC	QAQC	QAQC	QAQC
Field Sample ID	SG1-FB01-150729	SG1-RB01-150729	SG1-RB02-150729	SG1-RB03-150729	SG1-RB04-150729
Sample Date	7/29/2015	7/29/2015	7/29/2015	7/29/2015	7/29/2015
Comments	Field Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank
PFCS					
Perfluorobutane Sulfonate (PFBS)	U (8.5)				
Perfluoroheptanoic Acid (PFHpA)	U (2.2)	U (2.2)	340 (2.2)	U (2.2)	U (2.2)
Perfluorohexane Sulfonate (PFHxS)	U (2.9)				
Perfluoro-n-Octanoic Acid (PFOA)	U (1.6)				
Perfluorononanoic Acid (PFNA)	U (2.3)				
Perfluorooctane Sulfonate (PFOS)	U (2.1)				

Notes:

1 All concentrations are presented

in ng/L.

Abbreviations:

U -- Not Detected.

TABLE 4 Summary of QAQC Sampling Results SGPP Hoosick Falls

Location	QAQC	QAQC	QAQC	QAQC	QAQC
Field Sample ID	SG1-RB05-150729	SG1-RB06-150729	SG1-TB01-150729	SG1-FB01-150731	SG1-FB02-150731
Sample Date	7/29/2015	7/29/2015	7/29/2015	7/31/2015	7/31/2015
Comments	Rinsate Blank	Rinsate Blank	Trip Blank	Field Blank	Field Blank
PFCS					
Perfluorobutane Sulfonate (PFBS)	U (8.5)				
Perfluoroheptanoic Acid (PFHpA)	U (2.2)				
Perfluorohexane Sulfonate (PFHxS)	U (2.9)				
Perfluoro-n-Octanoic Acid (PFOA)	U (1.6)				
Perfluorononanoic Acid (PFNA)	U (2.3)				
Perfluorooctane Sulfonate (PFOS)	U (2.1)				

Notes:

1 All concentrations are presented

in ng/L.

Abbreviations:

U -- Not Detected.

TABLE 4 Summary of QAQC Sampling Results SGPP Hoosick Falls

Location	QAQC	QAQC	QAQC	QAQC	QAQC
Field Sample ID	SG1-TB01-150731	SG1-RB01-150807	SG1-TB01-150807	SG1-FB01-150810	SG1-RB01-150810
Sample Date	7/31/2015	8/7/2015	8/7/2015	8/10/2015	8/10/2015
Comments	Trip Blank	Rinsate Blank	Trip Blank	Field Blank	Rinsate Blank
PFCS					
Perfluorobutane Sulfonate (PFBS)	U (8.5)				
Perfluoroheptanoic Acid (PFHpA)	U (2.2)				
Perfluorohexane Sulfonate (PFHxS)	U (2.9)				
Perfluoro-n-Octanoic Acid (PFOA)	U (1.6)				
Perfluorononanoic Acid (PFNA)	U (2.3)				
Perfluorooctane Sulfonate (PFOS)	U (2.1)				

Notes:

1 All concentrations are presented

in ng/L.

Abbreviations:

U -- Not Detected.

Location	QAQC	QAQC	QAQC	QAQC	QAQC
Field Sample ID	SG1-RB02-150810	SG1-RB03-150810	SG1-RB01-150811	SG1-RB02-150811	SG1-RB03-150811
Sample Date	8/10/2015	8/10/2015	8/11/2015	8/11/2015	8/11/2015
Comments	Rinsate Blank				
PFCS					
Perfluorobutane Sulfonate (PFBS)	U (8.5)				
Perfluoroheptanoic Acid (PFHpA)	U (2.2)				
Perfluorohexane Sulfonate (PFHxS)	U (2.9)				
Perfluoro-n-Octanoic Acid (PFOA)	U (1.6)				
Perfluorononanoic Acid (PFNA)	U (2.3)				
Perfluorooctane Sulfonate (PFOS)	U (2.1)				

Notes:

1 All concentrations are presented

in ng/L.

Abbreviations:

U -- Not Detected.

Location	QAQC	QAQC	QAQC	QAQC	QAQC
Field Sample ID	SG1-RB01-150812	SG1-RB01-150813	SG1-RB02-150813	SG1-RB03-150813	SG1-FB01-150902
Sample Date	8/12/2015	8/13/2015	8/13/2015	8/13/2015	9/2/2015
Comments	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Field Blank
PFCS					
Perfluorobutane Sulfonate (PFBS)	U (8.5)				
Perfluoroheptanoic Acid (PFHpA)	U (2.2)				
Perfluorohexane Sulfonate (PFHxS)	U (2.9)				
Perfluoro-n-Octanoic Acid (PFOA)	U (1.6)				
Perfluorononanoic Acid (PFNA)	U (2.3)				
Perfluorooctane Sulfonate (PFOS)	U (2.1)				

Notes:

1 All concentrations are presented

in ng/L.

Abbreviations:

U -- Not Detected.

Location	QAQC	QAQC	QAQC	QAQC	QAQC
Field Sample ID	SG1-RB01-150902	SG1-RB02-150902	SG1-RB03-150902	SG1-RB04-150902	SG1-RB05-150902
Sample Date	9/2/2015	9/2/2015	9/2/2015	9/2/2015	9/2/2015
Comments	Rinsate Blank				
PFCS					
Perfluorobutane Sulfonate (PFBS)	U (8.5)				
Perfluoroheptanoic Acid (PFHpA)	U (2.2)				
Perfluorohexane Sulfonate (PFHxS)	U (2.9)				
Perfluoro-n-Octanoic Acid (PFOA)	U (1.6)				
Perfluorononanoic Acid (PFNA)	U (2.3)				
Perfluorooctane Sulfonate (PFOS)	U (2.1)				

Notes:

1 All concentrations are presented

in ng/L.

Abbreviations:

U -- Not Detected.

Location	QAQC	QAQC	QAQC	QAQC	QAQC
Field Sample ID	SG1-RB06-150902	SG1-TB01-150902	SG1-TB02-150903	SG1-RB01-150930	SG1-TB01-150930
Sample Date	9/2/2015	9/2/2015	9/3/2015	9/30/2015	9/30/2015
Comments	Rinsate Blank	Trip Blank	Trip Blank	Rinsate Blank	Trip Blank
PFCS					
Perfluorobutane Sulfonate (PFBS)	U (8.5)	U (8.5)	U (8.5)	U (8.5)	U (4.7)
Perfluoroheptanoic Acid (PFHpA)	U (2.2)	U (2.2)	U (2.2)	U (2.2)	U (5.4)
Perfluorohexane Sulfonate (PFHxS)	U (2.9)	U (2.9)	U (2.9)	U (2.9)	U (5.4)
Perfluoro-n-Octanoic Acid (PFOA)	U (1.6)	U (1.6)	U (1.6)	U (1.6)	U (4.4)
Perfluorononanoic Acid (PFNA)	U (2.3)	U (2.3)	U (2.3)	U (2.3)	U (6.3)
Perfluorooctane Sulfonate (PFOS)	U (2.1)	U (2.1)	U (2.1)	U (2.1)	U (3.7)

Notes:

1 All concentrations are presented

in ng/L.

Abbreviations:

U -- Not Detected.

Location	QAQC	QAQC	QAQC	QAQC	QAQC
Field Sample ID	SG1-TB02-150930	SG1-FB01-151001	SG1-RB01-151001	SG1-TB03-151001	SG1-FB01-151027
Sample Date	9/30/2015	10/1/2015	10/1/2015	10/1/2015	10/27/2015
Comments	Trip Blank	Field Blank	Rinsate Blank	Trip Blank	Field Blank
PFCS					
Perfluorobutane Sulfonate (PFBS)	U (8.5)				
Perfluoroheptanoic Acid (PFHpA)	U (2.2)				
Perfluorohexane Sulfonate (PFHxS)	U (2.9)				
Perfluoro-n-Octanoic Acid (PFOA)	U (1.6)				
Perfluorononanoic Acid (PFNA)	U (2.3)				
Perfluorooctane Sulfonate (PFOS)	U (2.1)				

Notes:

1 All concentrations are presented

in ng/L.

Abbreviations:

U -- Not Detected.

Location	QAQC	QAQC	QAQC
Field Sample ID	SG1-RB01-151027	SG1-RB02-151027	SG1-TP01-151027
Sample Date	10/27/2015	10/27/2015	10/27/2015
Comments	Rinsate Blank	Rinsate Blank	Trip Blank
PFCS			
Perfluorobutane Sulfonate (PFBS)	U (8.5)	U (8.5)	U (8.5)
Perfluoroheptanoic Acid (PFHpA)	U (2.2)	U (2.2)	U (2.2)
Perfluorohexane Sulfonate (PFHxS)	U (2.9)	U (2.9)	U (2.9)
Perfluoro-n-Octanoic Acid (PFOA)	U (1.6)	U (1.6)	U (1.6)
Perfluorononanoic Acid (PFNA)	U (2.3)	U (2.3)	U (2.3)
Perfluorooctane Sulfonate (PFOS)	U (2.1)	U (2.1)	U (2.1)

Notes:

1 All concentrations are presented

in ng/L.

Abbreviations:

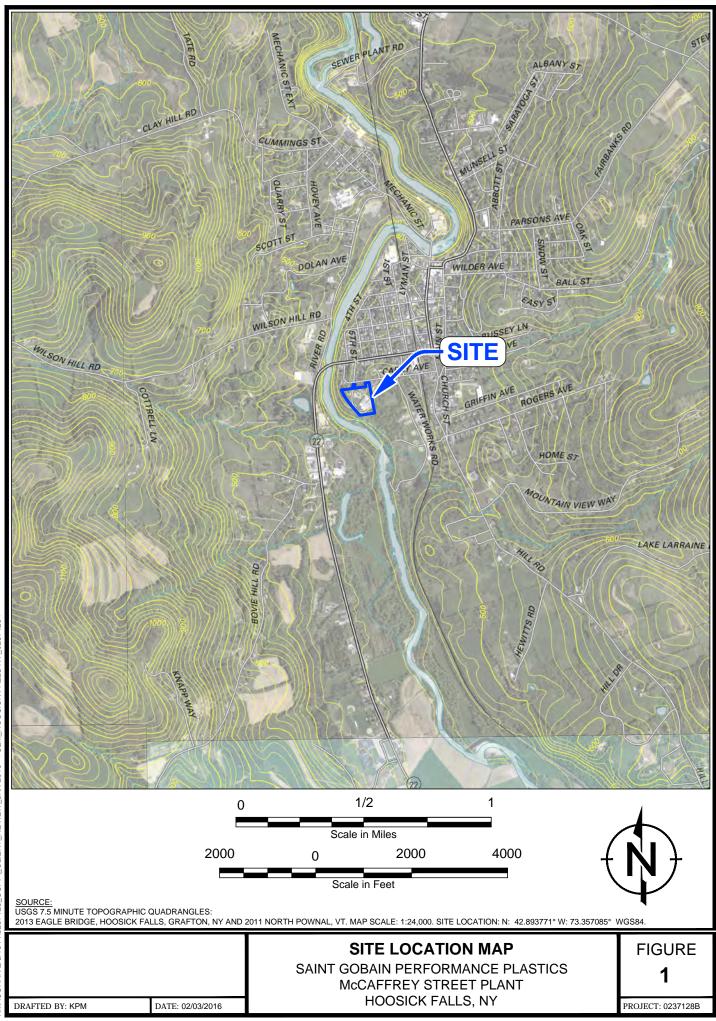
U -- Not Detected.

TABLE **5** Groundwater Elevation Data SGPP Hoosick Falls

	Top of	8/27/2015			9/2/2015			
Well ID	Casing Elevation (ft AMSL)	Depth to Water (feet below TOC)	Depth of Well (feet below TOC)	Water Elevation (ft AMSL)	Depth to Water (feet below TOC)	Depth of Well (feet below TOC)	Water Elevation (ft AMSL)	
MW-1S*	455.01	5.57	14.73	449.44	10.44	14.73	444.57	
MW-1	455.46	21.19	26.72	434.27	23.60	26.72	431.86	
MW-2S*	460.21	13.63	19.03	446.58	13.10	19.03	447.11	
MW-2	460.11	31.26	44.42	428.85	31.24	44.42	428.87	
MW-3	436.33	12.13	18.51	424.2	12.46	18.51	423.87	
MW-4	430.86	12.50	25.77	418.36	12.66	25.77	418.20	
MW-5	433.50	11.72	21.42	421.78	12.02	21.42	421.48	

Notes:

* = shallow monitoring well with perched groundwater


ft AMSL = feet above mean sea level

TOC = top of casing at monitoring well

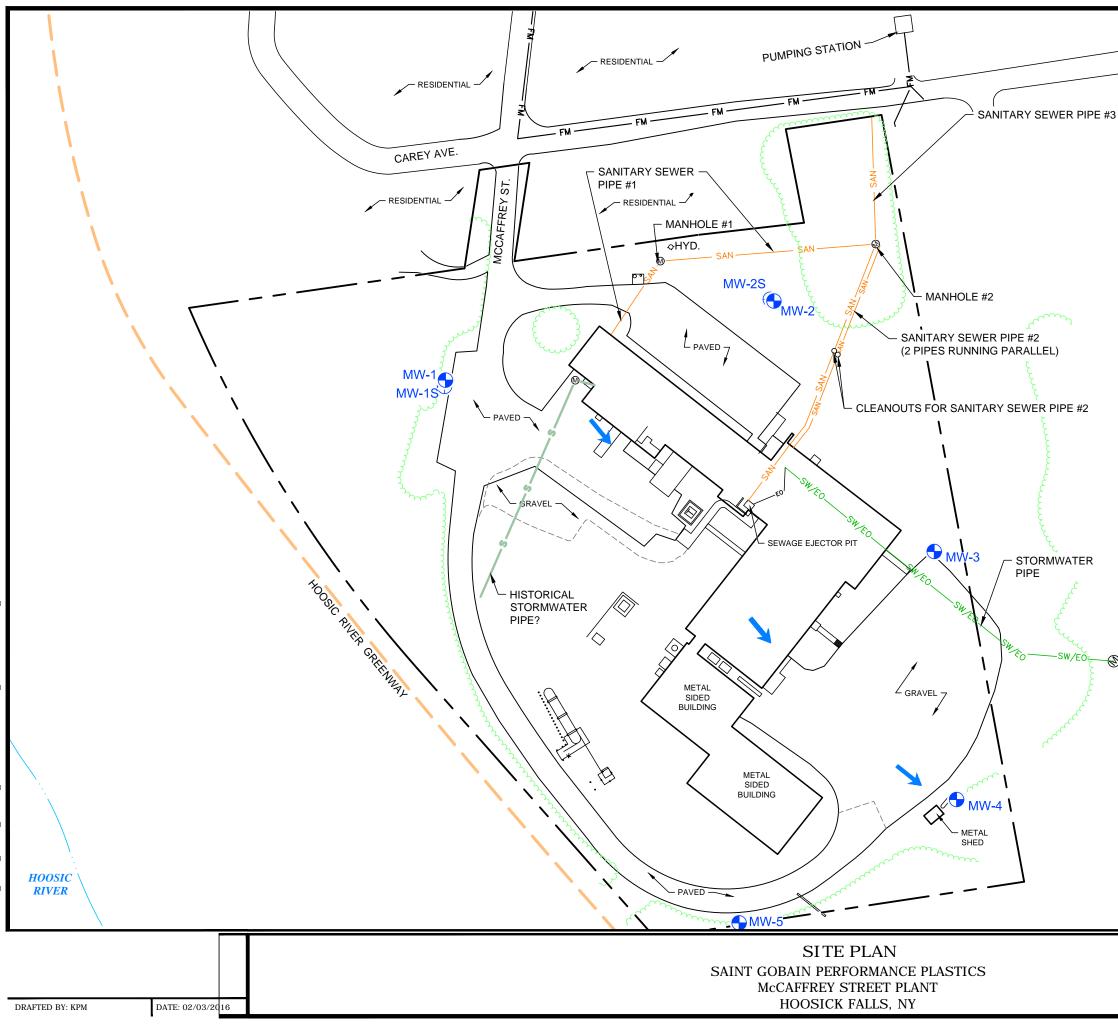

II. Figures

Figure 1: Site Location Map Figure 2: Site Plan

KMAUGHAN 2/3/16 F:\0237128_SGPP_CLIENT_REVIEW_JAN 2016 < SLM_HOOSICK FALLS NY_0237128 >

- SOURCES: 1. BING AERIAL. 2. SITE MAP, EXTE 3. ADDITIONAL SUI ST.FACILITY dwg 4. APPROXIMATE F HOOSICK FALLS 5. INTERIOR UTILIT "FOUNDATION P 6. PUMP STATION, STATION PLAN. 2. 2002 CHAL INDEI
- 7. 2002 CHA UNDE

III. Data Validation Reports

LEVEL II DATA VALIDATION REVIEW Field Sampling Event Saint Gobain Facility **14 McCaffrey Street Hoosick Falls, New York**

Laboratory Sample Delivery Groups (SDGs): 345165

Laboratory: Eurofins Eaton Analytical, South Bend, Indiana

Reviewer: Wendy Stonestreet Date Reviewed: September 17, 2015

This data validation report has been prepared by Ramboll Environ US Corporation (Ramboll Environ) to assess the validity and usability of laboratory analytical data generated from samples collected during the field sampling event at the Saint Gobain Facility in Hoosick Falls, New York on July 29, 2015.

The analytical data were evaluated for quality assurance and quality control (QA/QC) based on the following documents:

- Field Sampling Plan, Saint Gobain Facility (July 2015);
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008): and
- DER-10/Technical Guidance for Site Investigation and Remediation (May 2010).

Analytical services for determination of selected perfluorinated alkyl acids (PFAAs) was provided by Eurofins Eaton Analytical (Eurofins) of South Bend, Indiana.

This report summarizes the QA/QC evaluation of the data according to precision, accuracy, representativeness, completeness and comparability relative to the project data quality objectives. This report provides a quantitative and qualitative assessment of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall usability of the data.

Eight (8) aqueous samples were submitted to the laboratory for PFAA analysis and are evaluated in this data validation report. The following table lists the samples identification and analysis associated with this SDG.

Field ID	Sample Type	Lab ID	Matrix	Analyses Sevential Analyses
SG1-RB01-150729	RB	3289462	Aqueous	Х
SG1-RB02-150729	RB	3289463	Aqueous	Х
SG1-RB03-150729	RB	3289464	Aqueous	Х
SG1-RB04-150729	RB	3289465	Aqueous	Х
SG1-RB05-150729	RB	3289466	Aqueous	Х
SG1-RB06-150729	RB	3289467	Aqueous	Х
SG1-FB01-150729	SA	3289468	Aqueous	Х
SG1-TB01-150729	TB	3289469	Aqueous	Х
Sample Type: SA = Sa	mple TB =	Trip Blank FD =	Field Duplicate	RB = Rinsate Blank

RB = Rinsate Blank

PFAAs = Perfluorinated alkyl acids by USEPA Method SW-846 537 by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS).

TB = Trip Blank MS = Matrix Spike MSD = Matrix Spike Duplicate

The following components of the laboratory report were evaluated as part of this Tier II Data Validation Review:

- Data Package Completeness,
- Sample Preservation and Holding Times,
- Blanks,
- Surrogate Compound Recoveries
- Laboratory Control Samples,
- Matrix Spike/Matrix Spike Duplicates,
- Laboratory and Field Precision,
- Overall Assessment of Data.

Based on the results of the Tier II Data Validation Review, the following conclusion was determined regarding data usability.

General Overall Assessment:

X Data are usable without qualification.

_____ Data are usable with qualification (noted below).

Some or all data are unusable for any purpose (detailed below).

More analysis of specific data quality topics and parameters are discussed below.

Case Narrative Comments: Any case narrative comments concerning data qualification are noted below.

1.0 Data Package Completeness

Q: Were all items delivered as specified on the Chain of Custody (COC) and is the data package complete?

A: Yes, the analysis was performed as requested on the chain-of-custody records. All sample ID's noted on the COC were revised by the laboratory per Rob Huening of Ramboll Environ on July 30, 2015. All samples were received by the laboratory and analyzed properly with appropriate corrective actions taken when appropriate. No data points were rejected. The data completeness measure for this data package is 100% and is acceptable.

2.0 Laboratory Case Narrative, Sample Preservation and Cooler Receipt Form

Q: Were problems noted in the laboratory case narrative or cooler receipt form?

A: Samples were received by the laboratory in good condition and at proper temperature. However, the laboratory case narrative did indicate the following notation regarding sample volume:

The laboratory noted that two samples were evaluated at an elevated reporting limit due to smaller sample volume analyzed.

These elevated detection limits represent a small loss of sensitivity but do not affect overall usability of the data.

3.0 Technical Holding Times

Q: Were samples extracted/analyzed within method specific holding time requirements?

A: Yes. All samples were prepared and/or analyzed within the method specific required holding time.

4.0 Blank Contamination

Q: Were any analytes detected in the associated laboratory or field blanks?

A: No. All blanks results were reported as non-detect.

5.0 Surrogate Recoveries

Q: Were surrogate recoveries within evaluation criteria?

A: Yes. Surrogates are added to all samples prior to purging to evaluate the laboratory performance on individual samples. Two surrogates (SS-PFDA-13C2 and SS-PFHxA-13C2) were added to each sample. Percent recoveries (%R) for all surrogates in all samples were within the method acceptance limits of 70-130%. No analytical data were qualified based on the recoveries of the surrogate compounds.

6.0 Internal Standards

Q: Were the internal standard areas within control limits and was the retention time criteria met?

A: Yes. Internal standards indicate whether MS sensitivity and response were stable during each analysis. The laboratory reported that all criteria were within method requirements. No analytical data were qualified based on the results of internal standard recovery.

7.0 Fortified Blank Samples

Q: Were fortified blank sample recoveries within evaluation criteria?

A: Yes. Per the method, the laboratory ran a fortified blank (FB) at low, medium and high concentrations. All recoveries were within laboratory control limits and no analytical data were qualified based on the results of the fortified blanks.

8.0 Matrix Spike and Matrix Spike Duplicate (MS/MSD) Recoveries

Q: Were MS/MSD samples reported as part of these SDGs?

A: No. Matrix spike recoveries were not submitted for analysis and the accuracy evaluation was determined to be satisfactory based on the results of the FB samples.

9.0 Laboratory Duplicate Results

Q: Were laboratory duplicate samples performed as part of this SDG?

A: No. This is due to the small size of the sample batch. Since all samples were used for QC purposes, the lack of precision metrics does not affect usability.

10.0 Field Duplicate Results (Field Precision)

Q: Were field duplicate samples collected as part of the evaluated SDGs?

A: No

11.0 Detects and Calibration Range

Q: For samples that were diluted and nondetect, were undiluted results also reported?

A: Not Applicable. Samples were not diluted. However, two reporting limits were elevated due to reduced sample volume. While this non-conformance to established reporting limits does not affect the usability of the data, it does reduce the sensitivity of the instrument.

Q: For samples that were not diluted and detected, were the results within calibration range?

A: Yes

12.0 Additional Qualifications

Q: Were additional qualifications applied?

A: No

13.0 Overall Data Assessment

The data are usable for its intended purpose based on an evaluation of the QC parameters discussed in this report.

LEVEL II DATA VALIDATION REVIEW Field Sampling Event Saint Gobain Facility 14 McCaffrey Street Hoosick Falls, New York

Laboratory Sample Delivery Groups (SDGs): 345317

Laboratory: Eurofins Eaton Analytical, South Bend, Indiana

Reviewer: Wendy Stonestreet Date Reviewed: September 18, 2015

This data validation report has been prepared by Ramboll Environ US Corporation (Ramboll Environ) to assess the validity and usability of laboratory analytical data generated from samples collected during the field sampling event at the Saint Gobain Facility in Hoosick Falls, New York on July 31, 2015.

The analytical data were evaluated for quality assurance and quality control (QA/QC) based on the following documents:

- Field Sampling Plan, Saint Gobain Facility (July 2015);
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008); and
- DER-10/Technical Guidance for Site Investigation and Remediation (May 2010).

Analytical services for determination of selected perfluorinated alkyl acids (PFAAs) was provided by Eurofins Eurofins Eurofins) of South Bend, Indiana.

This report summarizes the QA/QC evaluation of the data according to precision, accuracy, representativeness, completeness and comparability relative to the project data quality objectives. This report provides a quantitative and qualitative assessment of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall usability of the data.

Three (3) aqueous samples were submitted to the laboratory for PFAA analysis and are evaluated in this data validation report. The following table lists the samples identification and analysis associated with this SDG.

Field ID	Sample Type	Lab ID	Matrix	Analyses V V H H
SG1-FB01-150731	FB	3290665	Aqueous	X
SG1-FB02-150731	FB	3290666	Aqueous	X
SG1-TB01-150731	TB	3290667	Aqueous	X

 Sample Type:
 SA = Sample
 TB = Trip Blank
 FB = Field Blank
 RB = Rinsate Blank

 MS =Matrix Spike
 MSD = Matrix Spike Duplicate
 MSD = Matrix Spike Duplicate

PFAAs = Perfluorinated alkyl acids by USEPA Method SW-846 537 by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS).

The following components of the laboratory report were evaluated as part of this Tier II Data Validation Review:

- Data Package Completeness,
- Sample Preservation and Holding Times,
- Blanks,
- Surrogate Compound Recoveries
- Laboratory Control Samples,
- Matrix Spike/Matrix Spike Duplicates,
- Laboratory and Field Precision,
- Overall Assessment of Data.

Based on the results of the Tier II Data Validation Review, the following conclusion was determined regarding data usability.

General Overall Assessment:

X Data are usable without qualification.

_____ Data are usable with qualification (noted below).

_____ Some or all data are unusable for any purpose (detailed below).

Case Narrative Comments: Any case narrative comments concerning data qualification are noted below.

1.0 Data Package Completeness

Q: Were all items delivered as specified on the Chain of Custody (COC) and is the data package complete?

A: Yes, the analysis was performed as requested on the chain-of-custody records. All samples were received by the laboratory and analyzed properly with appropriate corrective actions taken when applicable. No data points were rejected. The data completeness measure for this data package is 100% and is acceptable.

2.0 Laboratory Case Narrative, Sample Preservation and Cooler Receipt Form

Q: Were problems noted in the laboratory case narrative or cooler receipt form?

A: No. The laboratory did not note any problems in the laboratory case narrative or cooler receipt form.

3.0 Technical Holding Times

Q: Were samples extracted/analysed within method specific holding time requirements?

A: Yes. All samples were prepared and/or analyzed within the method specific required holding time.

4.0 Blank Contamination

Q: Were any analytes detected in the associated laboratory or field blanks?

A: No. All blanks results were reported as non-detect.

5.0 Surrogate Recoveries

Q: Were surrogate recoveries within evaluation criteria?

A: Yes. Surrogates are added to all samples prior to purging to evaluate the laboratory performance on individual samples. Two surrogates (SS-PFDA-13C2 and SS-PFHxA-13C2) were added to each sample. Percent recoveries (%R) for all surrogates in all samples were within the method acceptance limits of 70-130%.

No analytical data were qualified based on the recoveries of the surrogate compounds.

6.0 Internal Standards

Q: Were the internal standard areas within control limits and was the retention time criteria met?

A: Yes. Internal standards indicate whether MS sensitivity and response were stable during each analysis. The laboratory reported that all criteria were within method requirements.

No analytical data were qualified based on the results of internal standard recovery.

7.0 Fortified Blank Samples

Q: Were fortified blank sample recoveries within evaluation criteria?

A: Yes. Per the method, the laboratory ran a fortified blank (FB) at low, medium and high concentrations. All recoveries were within laboratory control limits and no analytical data were qualified based on the results of the fortified blanks.

8.0 Matrix Spike and Matrix Spike Duplicate (MS/MSD) Recoveries

Q: Were MS/MSD samples reported as part of these SDGs?

A: No. Matrix spike recoveries were not submitted for analysis and the accuracy evaluation was determined to be satisfactory based on the results of the FB samples.

9.0 Laboratory Duplicate Results

Q: Were laboratory duplicate samples performed as part of this SDG?

A: No. Since all samples were used for QC purposes, the lack of precision metrics does not affect usability.

10.0 Field Duplicate Results (Field Precision)

Q: Were field duplicate samples collected as part of the evaluated SDGs?

A: No. This is due to the small size of the sample batch.

11.0 Detects and Calibration Range

Q: For samples that were diluted and nondetect, were undiluted results also reported?

A: Not Applicable. Samples were not diluted.

Q: For samples that were not diluted and detected, were the results within calibration range?

A: Not Applicable. No detections were reported.

12.0 Additional Qualifications

Q: Were additional qualifications applied?

A: No

13.0 Overall Data Assessment

The data are usable for its intended purpose based on an evaluation of the QC parameters discussed in this report.

LEVEL II DATA VALIDATION REVIEW Field Sampling Event Saint Gobain Facility 14 McCaffrey Street Hoosick Falls, New York

Laboratory Sample Delivery Groups (SDGs): 346703

Laboratory: Eurofins Eaton Analytical, South Bend, Indiana

Reviewer: Wendy Stonestreet Date Reviewed: September 18, 2015

This data validation report has been prepared by Ramboll Environ US Corporation (Ramboll Environ) to assess the validity and usability of laboratory analytical data generated from samples collected during the field sampling event at the Saint Gobain Facility in Hoosick Falls, New York on August 7, 2015 and August 10th through August 13th, 2015.

The analytical data were evaluated for quality assurance and quality control (QA/QC) based on the following documents:

- Field Sampling Plan, Saint Gobain Facility (July 2015);
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008); and
- DER-10/Technical Guidance for Site Investigation and Remediation (May 2010).

Analytical services for determination of selected perfluorinated alkyl acids (PFAAs) was provided by Eurofins Eurofins Eurofins) of South Bend, Indiana.

This report summarizes the QA/QC evaluation of the data according to precision, accuracy, representativeness, completeness and comparability relative to the project data quality objectives. This report provides a quantitative and qualitative assessment of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall usability of the data.

Thirteen (13) aqueous samples were submitted to the laboratory for PFAA analysis and are evaluated in this data validation report. The following table lists the samples identification and analysis associated with this SDG.

Field ID	Sample Type	Lab ID	Matrix	Analyses S S S S S S S S S S S S S S S S S S
SG1-TB01-150807	TB	3301316	Aqueous	Х
SG1-RB01-150807	RB	3301317	Aqueous	Х
SG1-FB01-150810	SA	3301318	Aqueous	Х
SG1-RB01-150810	RB	3301319	Aqueous	Х
SG1-RB02-150810	RB	3301320	Aqueous	Х
SG1-RB03-150810	RB	3301321	Aqueous	Х
SG1-RB01-150811	RB	3301322	Aqueous	Х
SG1-RB02-150811	RB	3301323	Aqueous	Х
SG1-RB03-150811	RB	3301324	Aqueous	Х
SG1-RB01-150812	RB	3301325	Aqueous	Х

SG1-RB01-150813	RB	3301326	Aqueous	Х
SG1-RB02-150813	RB	3301327	Aqueous	Х
SG1-RB03-150813	RB	3301328	Aqueous	Х

 Sample Type:
 SA = Sample
 TB = Trip Blank
 FB = Field Blank
 RB = Rinsate Blank

 MS =Matrix Spike
 MSD = Matrix Spike Duplicate
 PFAAs = Perfluorinated alkyl acids by USEPA Method SW-846 537 by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS).

The following components of the laboratory report were evaluated as part of this Tier II Data Validation Review:

- Data Package Completeness,
- Sample Preservation and Holding Times,
- Blanks,
- Surrogate Compound Recoveries
- Laboratory Control Samples,
- Matrix Spike/Matrix Spike Duplicates,
- Laboratory and Field Precision,
- Overall Assessment of Data.

Based on the results of the Tier II Data Validation Review, the following conclusion was determined regarding data usability.

General Overall Assessment:

X Data are usable without qualification.

Data are usable with qualification (noted below).

_ Some or all data are unusable for any purpose (detailed below).

More analysis of specific data quality topics and parameters are discussed below.

Case Narrative Comments: Any case narrative comments concerning data qualification were noted below.

1.0 Data Package Completeness

Q: Were all items delivered as specified on the Chain of Custody (COC) and is the data package complete?

A: Yes, the analysis was performed as requested on the chain-of-custody records. All samples were received by the laboratory and analyzed properly with appropriate corrective actions taken when applicable. No data points were rejected. The data completeness measure for this data package is 100% and is acceptable.

2.0 Laboratory Case Narrative, Sample Preservation and Cooler Receipt Form

Q: Were problems noted in the laboratory case narrative or cooler receipt form?

A: No. The laboratory did not note any problems in the laboratory case narrative or cooler receipt form.

3.0 Technical Holding Times

Q: Were samples extracted/analyzed within method specific holding time requirements?

A: Yes. All samples were prepared and/or analyzed within the method specific required holding time.

4.0 Blank Contamination

Q: Were any analytes detected in the associated laboratory or field blanks?

A: No. All blanks results were reported as non-detect.

5.0 Surrogate Recoveries

Q: Were surrogate recoveries within evaluation criteria?

A: Yes. Surrogates are added to all samples prior to purging to evaluate the laboratory performance on individual samples. Two surrogates (SS-PFDA-13C2 and SS-PFHxA-13C2) were added to each sample. Percent recoveries (%R) for all surrogates in all samples were within the method acceptance limits of 70-130%.

No analytical data were qualified based on the recoveries of the surrogate compounds.

6.0 Internal Standards

Q: Were the internal standard areas within control limits and was the retention time criteria met?

A: Yes. Internal standards indicate whether MS sensitivity and response were stable during each analysis. The laboratory reported that all criteria were within method requirements.

No analytical data were qualified based on the results of internal standard recovery.

7.0 Fortified Blank Samples

Q: Were fortified blank sample recoveries within evaluation criteria?

A: Yes. Per the method, the laboratory ran a fortified blank (FB) at low, medium and high concentrations. All recoveries were within laboratory control limits and no analytical data were qualified based on the results of the fortified blanks.

8.0 Matrix Spike and Matrix Spike Duplicate (MS/MSD) Recoveries

Q:Were MS/MSD samples reported as part of these SDGs?

A: No. Matrix spike recoveries were not submitted for analysis and the accuracy evaluation was determined to be satisfactory based on the results of the FB samples.

9.0 Laboratory Duplicate Results

Q: Were laboratory duplicate samples performed as part of this SDG?

A: No. This is due to the small size of the sample batch. Since all samples were used for QC purposes, the lack of precision metrics does not affect usability.

10.0 Field Duplicate Results (Field Precision)

Q: Were field duplicate samples collected as part of the evaluated SDGs?

A: No

11.0 Detects and Calibration Range

Q: For samples that were diluted and nondetect, were undiluted results also reported?

A: Not Applicable. Samples were not diluted.

Q: For samples that were not diluted and detected, were the results within calibration range?

A: Not Applicable. No detections were reported.

12.0 Additional Qualifications

Q: Were additional qualifications applied?

A: No

13.0 Overall Data Assessment

The data are usable for its intended purpose based on an evaluation of the QC parameters discussed in this report.

LEVEL II DATA VALIDATION REVIEW Field Sampling Event Saint Gobain Facility 14 McCaffrey Street Hoosick Falls, New York

Laboratory Sample Delivery Groups (SDGs): 348249

Laboratory: Eurofins Eaton Analytical, South Bend, Indiana

Reviewer: Wendy Stonestreet Date Reviewed: September 18, 2015

This data validation report has been prepared by Ramboll Environ US Corporation (Ramboll Environ) to assess the validity and usability of laboratory analytical data generated from samples collected during the field sampling event at the Saint Gobain Facility in Hoosick Falls, New York on September 2 and September 3, 2015.

The analytical data were evaluated for quality assurance and quality control (QA/QC) based on the following documents:

- Field Sampling Plan, Saint Gobain Facility (July 2015);
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008); and
- DER-10/Technical Guidance for Site Investigation and Remediation (May 2010).

Analytical services for determination of selected perfluorinated alkyl acids (PFAAs) was provided by Eurofins Eurofins Eurofins) of South Bend, Indiana.

This report summarizes the QA/QC evaluation of the data according to precision, accuracy, representativeness, completeness and comparability relative to the project data quality objectives. This report provides a quantitative and qualitative assessment of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall usability of the data.

Seventeen (17) aqueous samples were submitted to the laboratory for PFAA analysis and are evaluated in this data validation report. The following table lists the samples identification and analysis associated with this SDG.

Field ID	Sample Type	Lab ID	Matrix	Analyses V V V L L L L
SG1-TB01-150902	TB	3315941	Aqueous	Х
SG1-RB01-150902	SA	3315942	Aqueous	Х
SG1-RB02-150902	SA	3315943	Aqueous	Х
SG1-RB03-150902	SA	3315944	Aqueous	Х
SG1-RB04-150902	SA	3315945	Aqueous	Х
SG1-MW02-150902	SA	3315946	Aqueous	Х
SG1-RB05-150902	SA	3315947	Aqueous	Х
SG1-RB06-150902	SA	3315948	Aqueous	Х
SG1-FB01-150902	SA	3315949	Aqueous	Х
SG1-MW02S-150902	SA	3315950	Aqueous	Х

SG1-MW01D-150903	SA	3315951	Aqueous	Х	
SG1-MW01S-150903	SA	3315952	Aqueous	Х	
SG1-MW05-150903	SA/MS/ MSD	3315953, 3315954, 3315955	Aqueous	Х	
SG1-TB01-150903	TB	3315956	Aqueous	Х	
SG1-MW04-150903	SA	3315957	Aqueous	Х	
SG1-DS01-150903	FD	3315958	Aqueous	Х	
SG1-MW03-150903	SA	3315959	Aqueous	Х	
Sample Type: SA = S	ample TB =	Trip Blank FD = F	Field Duplicate	RB = Rinsate Blank	

Sample Type:

TB = Trip Blank FD = Field Duplicate RB = Rinsate Blank MS = Matrix Spike MSD = Matrix Spike Duplicate

PFAAs = Perfluorinated alkyl acids by USEPA Method SW-846 537 by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS).

The following components of the laboratory report were evaluated as part of this Tier II Data Validation Review:

- Data Package Completeness, •
- Sample Preservation and Holding Times, •
- Blanks,
- Surrogate Compound Recoveries •
- Laboratory Control Samples, •
- Matrix Spike/Matrix Spike Duplicates, •
- Laboratory and Field Precision, •
- Overall Assessment of Data. •

Based on the results of the Tier II Data Validation Review, the following conclusion was determined regarding data usability.

General Overall Assessment:

X Data are usable without qualification.

Data are usable with qualification (noted below).

Some or all data are unusable for any purpose (detailed below).

More analysis of specific data quality topics and parameters are discussed below.

Case Narrative Comments: Any case narrative comments concerning data qualification were noted below.

1.0 **Data Package Completeness**

Q: Were all items delivered as specified on the Chain of Custody (COC) and is the data package complete?

A: Yes, the analysis was performed as requested on the chain-of-custody records. All samples were received by the laboratory and analyzed properly with appropriate corrective actions taken when appropriate. No data points were rejected. The data completeness measure for this data package is 100% and is acceptable.

2.0 Laboratory Case Narrative, Sample Preservation and Cooler Receipt Form

Q: Were problems noted in the laboratory case narrative or cooler receipt form?

A: Yes, a deviation from EPA Method 537 was noted on the chain of custody (cooler receipt form), as described below. Samples were received at the Eurofins, South Bend, Indiana laboratory in good condition. Two coolers were received at 1.4°C and 0.2°C which were below the proper temperature range 4°C \pm 2°C. However, given that the temperature was taken using an Infrared thermometer, which has an error tolerance of +/-1.0 degrees Celsius, and the laboratory did not note any freezing of the samples, this non-conformance does not affect the usability of the data.

3.0 Technical Holding Times

Q: Were samples extracted/analyzed within method specific holding time requirements?

A: Yes. All samples were prepared and/or analyzed within the method specific required holding time.

4.0 Blank Contamination

Q: Were any analytes detected in the associated laboratory or field blanks?

A: No. All blanks results were reported as non-detect.

5.0 Surrogate Recoveries

Q: Were surrogate recoveries within evaluation criteria?

A: Yes. Surrogates are added to all samples prior to purging to evaluate the laboratory performance on individual samples. Two surrogates (SS-PFDA-13C2 and SS-PFHxA-13C2) were added to each sample. Percent recoveries (%R) for all surrogates in all samples were within the method acceptance limits of 70-130%.

No analytical data were qualified based on the recoveries of the surrogate compounds.

6.0 Internal Standards

Q: Were the internal standard areas within control limits and was the retention time criteria met?

A: Yes. Internal standards indicate whether MS sensitivity and response were stable during each analysis. The laboratory reported that all criteria were within method requirements.

No analytical data were qualified based on the results of internal standard recovery.

7.0 Fortified Blank Samples

Q: Were fortified blank sample recoveries within evaluation criteria?

A: Yes. Per the method, the laboratory ran a fortified blank (FB) at low, medium and high concentrations. All recoveries were within laboratory control limits and no analytical data were qualified based on the results of the fortified blanks.

8.0 Matrix Spike and Matrix Spike Duplicate (MS/MSD) Recoveries

Q: Were MS/MSD samples reported as part of these SDGs?

A: Yes. A matrix spike and matrix spike duplicate was submitted to the laboratory for analysis. All MS/MSD recoveries were reported within the laboratory acceptance limits of 50-150% indicating satisfactory analytical accuracy. In addition all MS/MSD relative percent differences (RPDs) were reported within laboratory acceptance limits indicating satisfactory analytical precision.

9.0 Laboratory Duplicate Results

Q: Were laboratory duplicate samples performed as part of this SDG?

A: Yes. All duplicate RPDs were within control limits.

10.0 Field Duplicate Results (Field Precision)

Q: Were field duplicate samples collected as part of the evaluated SDGs?

A: Yes, the evaluated relative percent differences (RPDs) between the reported results are indicated in the following table.

Analyte	SG1-MW03-150903	SG1-DS01-150903	RPD
	(ng/L)	(ng/L)	(%)
Perfluorooctanoic Acid (PFOA)	4200	5300	23.2%

ng/L = nanograms/Liter RPD = Relative Percent Difference

11.0 Detects and Calibration Range

Q: For samples that were diluted and nondetect, were undiluted results also reported?

A: Not Applicable. Samples were not diluted.

Q: For samples that were not diluted and detected, were the results within calibration range?

A: Yes

12.0 Additional Qualifications

Q: Were additional qualifications applied?

A: No

13.0 Overall Data Assessment

The data are usable for its intended purpose based on an evaluation of the QC parameters discussed in this report.

LEVEL II DATA VALIDATION REVIEW Field Sampling Event Saint Gobain Facility 14 McCaffrey Street Hoosick Falls, New York

Laboratory Sample Delivery Groups (SDGs): 350056 (Eurofins) and B5J9607 (Maxxam)

Laboratory: Eurofins Eaton Analytical, South Bend, Indiana and Maxxam Analytics, Mississauga, Ontario

Reviewer: Wendy Stonestreet Date Reviewed: October 13, 2015

This data validation report has been prepared by Ramboll Environ US Corporation (Ramboll Environ) to assess the validity and usability of laboratory analytical data generated from samples collected during the field sampling event at the Saint Gobain Facility in Hoosick Falls, New York on September 30, 2015.

The analytical data were evaluated for quality assurance and quality control (QA/QC) based on the following documents:

- Field Sampling Plan, Saint Gobain Facility (July 2015);
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008); and
- DER-10/Technical Guidance for Site Investigation and Remediation (May 2010).

Analytical services for determination of selected perfluorinated alkyl acids (PFAAs) was provided by Eurofins Eaton Analytical (Eurofins) of South Bend, Indiana and split samples were sent to Maxxam Analytics (Maxxam) in Mississauga, Ontario.

This report summarizes the QA/QC evaluation of the data according to precision, accuracy, representativeness, completeness and comparability relative to the project data quality objectives. This report provides a quantitative and qualitative assessment of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall usability of the data.

Three (3) aqueous samples were submitted to the Eurofins and Maxxam laboratories for PFAA analysis and evaluated in this data validation report. The following table lists the samples identification and analysis associated with this SDG.

Field ID	Sample Type	Lab ID Eurofins/Maxxam	Matrix	Analyses S V L L L L
SG1-MW02-150930	SA	3332984 (Eurofins), BBX430 (Maxxam)	Aqueous	Х
SG1-TB01-150930	TB	BBX431 (Maxxam)	Aqueous	Х
SG1-TB02-150930	ТВ	3332985 (Eurofins)	Aqueous	Х

 Sample Type:
 SA = Sample
 TB = Trip Blank
 FD = Field Duplicate
 RB = Rinsate Blank

 MS =Matrix Spike
 MSD = Matrix Spike Duplicate
 RB = Rinsate Blank

PFAAs = Perfluorinated alkyl acids by USEPA Method SW-846 537 by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS).

The following components of the laboratory report were evaluated as part of this Tier II Data Validation Review:

- Data Package Completeness,
- Sample Preservation and Holding Times,
- Blanks,
- Surrogate Compound Recoveries
- Laboratory Control Samples,
- Matrix Spike/Matrix Spike Duplicates,
- Laboratory and Field Precision,
- Overall Assessment of Data.

Based on the results of the Tier II Data Validation Review, the following conclusion was determined regarding data usability.

General Overall Assessment:

_____ Data are usable without qualification.

X Data are usable with qualification (noted below).

_____ Some or all data are unusable for any purpose (detailed below).

More analysis of specific data quality topics and parameters are discussed below.

Case Narrative Comments: Any case narrative comments concerning data qualification were noted below.

1.0 Data Package Completeness

Q: Were all items delivered as specified on the Chain of Custody (COC) and is the data package complete?

A: Yes, the analysis was performed as requested on the chain-of-custody records. All samples were received by the laboratory and analyzed properly with appropriate corrective actions taken when appropriate. No data points were rejected. The data completeness measure for this data package is 100% and is acceptable.

2.0 Laboratory Case Narrative, Sample Preservation and Cooler Receipt Form

Q: Were problems noted in the laboratory case narrative or cooler receipt form?

A: Yes, a deviation from EPA Method 537 was noted on the chain of custody (cooler receipt form) from Eurofins. Samples were received at the Eurofins, South Bend, Indiana laboratory in good condition. One cooler was received at 1.2°C which was below the proper temperature range 4°C \pm 2°C. However, given that the temperature was taken using an Infrared thermometer, which has an error tolerance of +/-1.0 degrees Celsius, and the laboratory did not note any freezing of the samples, this non-conformance does not affect the usability of the data.

The Maxxam data package case narrative indicated that one sample required dilution. See Section 11.0 for further discussion and resultant data qualification. The samples were received at the Maxxam laboratory in Mississauga, Ontario in good condition and proper temperature range $(4^{\circ}C \pm 2^{\circ}C)$.

3.0 Technical Holding Times

Q: Were samples extracted/analyzed within method specific holding time requirements?

A: Yes. All samples were prepared and/or analyzed within the method specific required holding time.

4.0 Blank Contamination

Q: Were any analytes detected in the associated laboratory or field blanks?

A: No. All blanks results were reported as non-detect.

5.0 Surrogate Recoveries

Q: Were surrogate recoveries within evaluation criteria?

A: Yes. Surrogates are added to all samples prior to purging to evaluate the laboratory performance on individual samples. Two surrogates (SS-PFDA-13C2 and SS-PFHxA-13C2) were added to each Eurofins evaluated sample. Percent recoveries (%R) for all surrogates in all samples were within the method acceptance limits of 70-130%.

Two surrogates (13C4-Perfluorooctanesulfonate and 13C4-Perfluorooctanoic acid) were added to each Maxxam evaluated sample. The recovery of 13C4-Perfluorooctanoic acid was reported at 136% which was slightly above the method acceptance limits of 70-130% for sample SG1-MW02-150930 indicating possible high analytical bias. All other surrogate recoveries were reported within laboratory control limits.

Data qualification of sample results due to surrogate recovery is summarized in the table below.

SDG	Field ID	Parameter	Analyte	Qualification
	004 10400 450000	PFAAs	Perfluoroheptanoic Acid (PFHpA)	J
B5J9607	SG1-MW02-150930		Perfluorooctanoic Acid (PFOA)	J

6.0 Internal Standards

Q: Were the internal standard areas within control limits and was the retention time criteria met?

A: Yes. Internal standards indicate whether MS sensitivity and response were stable during each analysis. The laboratory reported that all criteria were within method requirements.

No analytical data were qualified based on the results of internal standard recovery.

7.0 Fortified Blank Samples

Q: Were fortified blank sample recoveries within evaluation criteria?

A: Yes. Per the method, the laboratory ran a fortified blank (FB) at low, medium and high concentrations. All recoveries were within laboratory control limits and no analytical data were qualified based on the results of the fortified blanks.

8.0 Matrix Spike and Matrix Spike Duplicate (MS/MSD) Recoveries

Q: Were MS/MSD samples reported as part of these SDGs?

A: No. Matrix spike recoveries were not submitted for analysis and the accuracy evaluation was determined to be satisfactory based on the results of the FB samples.

9.0 Laboratory Duplicate Results

Q: Were laboratory duplicate samples performed as part of this SDG?

A: Yes. All duplicate RPDs were within laboratory control limits.

10.0 Field Duplicate Results (Field Precision)

Q: Were field duplicate samples collected as part of the evaluated SDGs?

A: No, however the results evaluated in these data packages were duplicate split samples. The evaluated relative percent differences (RPDs) between each laboratory's reported results are indicated in the following table.

Sample ID	Analyte	Eurofins SDG: 350056 (ug/L)	Maxxam SDG: B5J9607 (ug/L)	RPD (%)
SG1-MW02-150930	Perfluoroheptanoic Acid (PFHpA)	0.31	0.39	22.9%
3G1-WW02-150930	Perfluorooctanoic Acid (PFOA)	17.0	16.0	6.0%

ug/L = micrograms/Liter RPD = Relative Percent Difference

11.0 Detects and Calibration Range

Q: For samples that were diluted and nondetect, were undiluted results also reported?

A: Not Applicable. Samples which required dilution had reported results.

Q: For samples that were not diluted and detected, were the results within calibration range?

A: Yes

12.0 Additional Qualifications

Q: Were additional qualifications applied?

A: No

13.0 Overall Data Assessment

The data are usable for its intended purpose based on an evaluation of the QC parameters discussed in this report. Some data are qualified as estimated due to the inability to meet all QC criteria. The table below summarizes the final qualifications for the analytical data.

SDG	Field ID	Parameter	Analyte	Qualification	Reason Code
B5J9607	SG1-MW02-150930	PFAAs	Perfluoroheptanoic Acid (PFHpA)	J	1
B5J9607	SG1-MW02-150930	PFAAs	Perfluorooctanoic Acid (PFOA)	J	1

Data Validation Qualifier Codes:

U = Non-detect. The compound was analyzed for, but not detected.

J = Estimated. The associated numerical value is an estimated quantity. The analyte was detected but the reported value may not be accurate or precise.

UJ = Estimated Non-detect. The analyte was not detected above the method detection limit. However, it is an estimated quantity due to poor accuracy or precision. This qualification is also used to flag possible false negative results in the case where low bias in the analytical system is indicated by low calibration response, surrogate or other spike recovery.

 \mathbf{R} = Rejected. The sample results are unusable due to the quality of the data generated.

Data Qualifier Reason Codes:

1 Samples were qualified as estimated due to possible high analytical bias.

LEVEL II DATA VALIDATION REVIEW Field Sampling Event Saint Gobain Facility 14 McCaffrey Street Hoosick Falls, New York

Laboratory Sample Delivery Groups (SDGs): 350168

Laboratory: Eurofins Eaton Analytical, South Bend, Indiana

Reviewer: Wendy Stonestreet Date Reviewed: October 13, 2015

This data validation report has been prepared by Ramboll Environ US Corporation (Ramboll Environ) to assess the validity and usability of laboratory analytical data generated from samples collected during the field sampling event at the Saint Gobain Facility in Hoosick Falls, New York on September 30, 2015 and October 1, 2015.

The analytical data were evaluated for quality assurance and quality control (QA/QC) based on the following documents:

- Field Sampling Plan, Saint Gobain Facility (July 2015);
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008); and
- DER-10/Technical Guidance for Site Investigation and Remediation (May 2010).

Analytical services for determination of selected perfluorinated alkyl acids (PFAAs) was provided by Eurofins Eurofins Eurofins) of South Bend, Indiana.

This report summarizes the QA/QC evaluation of the data according to precision, accuracy, representativeness, completeness and comparability relative to the project data quality objectives. This report provides a quantitative and qualitative assessment of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall usability of the data.

Eleven (11) aqueous samples were submitted to the laboratory for PFAA analysis and are evaluated in this data validation report. The following table lists the samples identification and analysis associated with this SDG.

	Sample Type	Lab ID	Matrix	Analyses S S S S S S S S S S S S S S S S S S
SG1-TB03-151001	TB	3333953	Aqueous	Х
SG1-MW02S-151001	SA	3333954	Aqueous	Х
SG1-MW05-151001	SA, MS, MSD	3333955, 3333956, 3333957	Aqueous	Х
SG1-MW03-151001	SA	3333958	Aqueous	Х
SG1-MW04-151001	SA	3333959	Aqueous	Х
SG1-DS01-151001	FD	3333960	Aqueous	Х
SG1-MW01-151001	SA	3333961	Aqueous	Х
SG1-MW01S-151001	SA	3333962	Aqueous	Х
SG1-RB01-151001	RB	3333963	Aqueous	Х

Field ID	Sample Type	Lab ID	Matrix	Analyses Sevential Analyses
SG1-RB01-150930	RB	3333964	Aqueous	Х
SG1-FB01-151001	FB	3333965	Aqueous	Х
Sample Type: SA = Sa	mple TB =	Trip Blank FD =	Field Duplicate	RB = Rinsate Blank

SA = Sample TB = Trip Blank FD = Field Duplicate RB = Rinsate Blank

MS =Matrix Spike MSD = Matrix Spike Duplicate

PFAAs = Perfluorinated alkyl acids by USEPA Method SW-846 537 by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS).

The following components of the laboratory report were evaluated as part of this Tier II Data Validation Review:

- Data Package Completeness, •
- Sample Preservation and Holding Times,
- Blanks, •
- Surrogate Compound Recoveries
- Laboratory Control Samples, •
- Matrix Spike/Matrix Spike Duplicates, •
- Laboratory and Field Precision, •
- Overall Assessment of Data. •

Based on the results of the Tier II Data Validation Review, the following conclusion was determined regarding data usability.

General Overall Assessment:

- X Data are usable without qualification.
- Data are usable with qualification (noted below).
 - Some or all data are unusable for any purpose (detailed below).

More analysis of specific data quality topics and parameters are discussed below.

Case Narrative Comments: Any case narrative comments concerning data qualification were noted below.

1.0 **Data Package Completeness**

Q: Were all items delivered as specified on the Chain of Custody (COC) and is the data package complete?

A: Yes, the analysis was performed as requested on the chain-of-custody records. All samples were received by the laboratory and analyzed properly with appropriate corrective actions taken when appropriate. No data points were rejected. The data completeness measure for this data package is 100% and is acceptable.

2.0 Laboratory Case Narrative, Sample Preservation and Cooler Receipt Form

Q: Were problems noted in the laboratory case narrative or cooler receipt form?

A: Yes, a deviation from EPA Method 537 was noted on the chain of custody (cooler receipt form). One cooler was received at 1.0°C which was below the proper temperature range 4°C \pm 2°C. However, given that the temperature was taken using an Infrared thermometer, which has an error tolerance of +/-1.0 degrees Celsius, and the laboratory did not note any freezing of the samples, this non-conformance does not affect the usability of the data.

3.0 Technical Holding Times

Q: Were samples extracted/analyzed within method specific holding time requirements?

A: Yes. All samples were prepared and/or analyzed within the method specific required holding time.

4.0 Blank Contamination

Q: Were any analytes detected in the associated laboratory or field blanks?

A: No. All blanks results were reported as non-detect.

5.0 Surrogate Recoveries

Q: Were surrogate recoveries within evaluation criteria?

A: Yes. Surrogates are added to all samples prior to purging to evaluate the laboratory performance on individual samples. Two surrogates (SS-PFDA-13C2 and SS-PFHxA-13C2) were added to each sample. Percent recoveries (%R) for all surrogates in all samples were within the method acceptance limits of 70-130%.

No analytical data were qualified based on the recoveries of the surrogate compounds.

6.0 Internal Standards

Q: Were the internal standard areas within control limits and was the retention time criteria met?

A: Yes. Internal standards indicate whether MS sensitivity and response were stable during each analysis. The laboratory reported that all criteria were within method requirements.

No analytical data were qualified based on the results of internal standard recovery.

7.0 Fortified Blank Samples

Q: Were fortified blank sample recoveries within evaluation criteria?

A: Yes. Per the method, the laboratory ran a fortified blank (FB) at low, medium and high concentrations. All recoveries were within laboratory control limits and no analytical data were qualified based on the results of the fortified blanks.

8.0 Matrix Spike and Matrix Spike Duplicate (MS/MSD) Recoveries

Q: Were MS/MSD samples reported as part of these SDGs?

A: Yes. Matrix spike recoveries were submitted for analysis and the accuracy evaluation was determined to be satisfactory based on reported recoveries. All relative percent differences (RPDs) evaluated from MS/MSD recoveries were reported within laboratory control limits indicating acceptable analytical precision.

9.0 Laboratory Duplicate Results

Q: Were laboratory duplicate samples performed as part of this SDG?

A: Yes. All duplicate RPDs were within laboratory control limits.

10.0 Field Duplicate Results (Field Precision)

Q: Were field duplicate samples collected as part of the evaluated SDGs?

A: Yes, the evaluated relative percent differences (RPDs) between the reported results are indicated in the following table.

Analyte	SG1-MW04-151001	SG1-DS01-151001	RPD
	(ng/L)	(ng/L)	(%)
Perfluorooctanoic Acid (PFOA)	1400	1400	0%

ng/L = nanograms/Liter RPD = Relative Percent Difference

11.0 Detects and Calibration Range

Q: For samples that were diluted and nondetect, were undiluted results also reported?

A: Not Applicable. Samples were not diluted.

Q: For samples that were not diluted and detected, were the results within calibration range?

A: Yes

12.0 Additional Qualifications

Q: Were additional qualifications applied?

A: No

13.0 Overall Data Assessment

The data are usable for its intended purpose based on an evaluation of the QC parameters discussed in this report.

LEVEL II DATA VALIDATION REVIEW Field Sampling Event Saint Gobain Facility 14 McCaffrey Street Hoosick Falls, New York

Laboratory Sample Delivery Groups (SDGs): 351818

Laboratory: Eurofins Eaton Analytical, South Bend, Indiana

Reviewer: Wendy StonestreetDate Reviewed:November 8, 2015

This data validation report has been prepared by Ramboll Environ US Corporation (Ramboll Environ) to assess the validity and usability of laboratory analytical data generated from samples collected during the field sampling event at the Saint Gobain Facility in Hoosick Falls, New York on October 27, 2015.

The analytical data were evaluated for quality assurance and quality control (QA/QC) based on the following documents:

- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008); and
- DER-10/Technical Guidance for Site Investigation and Remediation (May 2010).

Analytical services for determination of selected perfluorinated alkyl acids (PFAAs) were provided by Eurofins Eurofins Eurofins) of South Bend, Indiana.

This report summarizes the QA/QC evaluation of the data according to precision, accuracy, representativeness, completeness and comparability relative to the project data quality objectives. This report provides a quantitative and qualitative assessment of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall usability of the data.

Seven (7) aqueous samples were submitted to the laboratory for PFAA analysis and evaluated in this data validation report. The following table lists the samples identification and analysis associated with this SDG.

Field ID	Sample Type	Lab ID	Matrix	Analys V V H H	Ses
SG1-FB01-151027	FB	3348699	Aqueous	Х	
SG1-RB01-151027	RB	3348700	Aqueous	Х	
SG1-North Manhole-151027	SA	3348701	Aqueous	Х	
SG1-TB01-151027	ТВ	3348702	Aqueous	Х	
SG1-Sump Pit-151027	SA	3348703	Aqueous	Х	
SG1-DS01-151027	FD	3348704	Aqueous	Х	
SG1-RB02-151027	RB	3348705	Aqueous	Х	
Sample Type: SA = Sample	TB = Trip	Blank FD =	Field Duplicate	RB = Rinsate Blank	FB = Field Blank

 Sample Type:
 SA = Sample
 TB = Trip Blank
 FD = Field Duplicate
 RB = Rinsate Blank
 FB = Field Blank

 MS =Matrix Spike
 MSD = Matrix Spike Duplicate
 RB = Rinsate Blank
 FB = Field Blank

The following components of the laboratory report were evaluated as part of this Tier II Data Validation

PFAAs = Perfluorinated alkyl acids by USEPA Method SW-846 537 by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS).

Review:

- Data Package Completeness,
- Sample Preservation and Holding Times,
- Blanks,
- Surrogate Compound Recoveries
- Laboratory Control Samples,
- Matrix Spike/Matrix Spike Duplicates,
- Laboratory and Field Precision,
- Overall Assessment of Data.

Based on the results of the Tier II Data Validation Review, the following conclusion was determined regarding data usability.

General Overall Assessment:

____ Data are usable without qualification.

X Data are usable with qualification (noted below).

Some or all data are unusable for any purpose (detailed below).

More analysis of specific data quality topics and parameters are discussed below.

Case Narrative Comments: Any case narrative comments concerning data qualification were noted below.

1.0 Data Package Completeness

Q: Were all items delivered as specified on the Chain of Custody (COC) and is the data package complete?

A: Yes, the analysis was performed as requested on the chain-of-custody records. All samples were received by the laboratory and analyzed properly with appropriate corrective actions taken when appropriate. No data points were rejected. The data completeness measure for this data package is 100% and is acceptable.

2.0 Laboratory Case Narrative, Sample Preservation and Cooler Receipt Form

Q: Were problems noted in the laboratory case narrative or cooler receipt form?

A: Yes. The laboratory indicated in the laboratory case narrative that the surrogate standard recovery was outside of the laboratory control limits for sample SG1-North Manhole-151027.

In addition, the laboratory indicated on the chain of custody (cooler receipt form) that sample SG1-North Manhole-151027 had a very poor sample matrix which may have been attributed to poor surrogate recovery in the sample. See Section 5.0 for further discussion and resultant data qualification.

Moreover, the laboratory indicated very poor sample matrix for samples SG1-Sump Pit-151027 and SG1-DS01-151027 chain of custody (cooler receipt form); however no additional quality control non-conformances were discussed in the laboratory report related to these samples. See Section 10.0 for further discussion and resultant data qualification.

Samples were received at the Eurofins, South Bend, Indiana laboratory in good condition and at proper temperature range $4^{\circ}C \pm 2^{\circ}C$ (one cooler at 2.8 °C).

3.0 Technical Holding Times

Q: Were samples extracted/analysed within method specific holding time requirements?

A: Yes. All samples were prepared and/or analysed within the method specific required holding time.

4.0 Blank Contamination

Q: Were any analytes detected in the associated laboratory or field blanks?

A: No. All blanks results were reported as non-detect.

5.0 Surrogate Recoveries

Q: Were surrogate recoveries within evaluation criteria?

A: No. Surrogates are added to all samples prior to purging to evaluate the laboratory performance on individual samples. Two surrogates (SS-PFDA-13C2 and SS-PFHxA-13C2) were added to each sample. Percent recoveries (%R) for all surrogates in all samples were within the method acceptance limits of 70-130% with the exception of SS-PFHxA in sample SG1-North Manhole-151027 at 58%.

Data qualification of sample results due to surrogate recovery non-conformances are summarized in the table below due to possible low analytical bias.

Field ID	Parameter	Analyte	Qualification
SG1-North Manhole-151027	SW-846 537	Perfluorobutanesulfonic acid (PFBS)	U
SG1-North Manhole-151027	SW-846 537	Perfluoroheptanoic acid (PFHpA)	J
SG1-North Manhole-151027	SW-846 537	Perfluorohexanesulfonic acid (PFHxS)	U
SG1-North Manhole-151027	SW-846 537	Perfluorononanoic acid (PFNA)	U
SG1-North Manhole-151027	SW-846 537	Perfluorooctane sulfonate (PFOS)	U

6.0 Internal Standards

Q: Were the internal standard areas within control limits and was the retention time criteria met?

A: Yes. Internal standards indicate whether MS sensitivity and response were stable during each analysis. The laboratory reported that all criteria were within method requirements.

No analytical data were qualified based on the results of internal standard recovery.

7.0 Fortified Blank Samples

Q: Were fortified blank sample recoveries within evaluation criteria?

A: Yes. Per the method, the laboratory ran a fortified blank (FB) at low, medium and high concentrations. All recoveries were within laboratory control limits and no analytical data were qualified based on the results of the fortified blanks.

8.0 Matrix Spike and Matrix Spike Duplicate (MS/MSD) Recoveries

Q: Were MS/MSD samples reported as part of these SDGs?

A: No.

9.0 Laboratory Duplicate Results

Q: Were laboratory duplicate samples performed as part of this SDG?

A: No

10.0 Field Duplicate Results (Field Precision)

Q: Were field duplicate samples collected as part of the evaluated SDGs?

A: Yes the table below summarizes field duplicate pairs.

Field ID	Field Duplicate ID
SG1-Sump Pit-151027	SG1-DS01-151027

Q: Were field duplicates within evaluation criteria?

A: No. RPD values were less than the control limit of <30% for all compounds with concentrations greater than the reporting limit with the exception of the duplicate of PFOA at 57.6%. The following table summarizes sample and duplicate result concentrations and their relative percent difference.

Field ID	Duplicate ID	Analyte	Sample Result (ng/L)	Duplicate Result (ng/L)	RPD (%)
SG1-Sump	SG1-DS01-	Perfluoroheptanoic acid (PFHpA)	10	10	0
Pit-151027	151027	Perfluoro-n-octanoic acid (PFOA)	850	470	57.6

ng/L = nanograms per Liter RPD = Relative Percent Difference % = Percent

The RPD for PFOA at 57.6% was above the acceptable control limit for aqueous samples of 30%. The laboratory noted in the sample acknowledgement form that the sample matrix was very poor. The laboratory indicated during a phone call on 11/11/2015 that the sample matrix was sludge which is a difficult matrix to evaluate for this method. Therefore the high RPD may be attributed to a non-homogenous sample matrix.

11.0 Detects and Calibration Range

Q: For samples that were diluted and nondetect, were undiluted results also reported?

A: Not Applicable, all samples results which were reported at dilution had detectable concentrations above the method reporting limit (MRL).

Q: For samples that were not diluted and detected, were the results within calibration range?

A: Yes

12.0 Additional Qualifications

Q: Were additional qualifications applied?

A: No

13.0 Overall Data Assessment

The data are usable for its intended purpose based on an evaluation of the QC parameters discussed in this report. Some data are qualified as estimated due to the inability to meet all QC criteria. The table below summarizes the final qualifications for the analytical data.

Field ID	Parameter	Analyte	Qualification	Reason Code
SG1-North Manhole-151027	SW-846 537	Perfluorobutanesulfonic acid (PFBS)	U	1
SG1-North Manhole-151027	SW-846 537	Perfluoroheptanoic acid (PFHpA)	J	1
SG1-North Manhole-151027	SW-846 537	Perfluorohexanesulfonic acid (PFHxS)	U	1
SG1-North Manhole-151027	SW-846 537	Perfluorononanoic acid (PFNA)	U	1
SG1-North Manhole-151027	SW-846 537	Perfluorooctane sulfonate (PFOS)	U	1

Data Validation Qualifier Codes:

U = Non-detect. The compound was analyzed for, but not detected.

J = Estimated. The associated numerical value is an estimated quantity. The analyte was detected but the reported value may not be accurate or precise.

UJ = Estimated Non-detect. The analyte was not detected above the method detection limit. However, it is an estimated quantity due to poor accuracy or precision. This qualification is also used to flag possible false negative results in the case where low bias in the analytical system is indicated by low calibration response, surrogate or other spike recovery.

R = Rejected. The sample results are unusable due to the quality of the data generated.

Data Qualifier Reason Codes:

1 Samples were qualified as estimated due to possible low analytical bias.

LEVEL II DATA VALIDATION REVIEW Field Sampling Event Saint Gobain Facility 14 McCaffrey Street Hoosick Falls, New York

Laboratory Sample Delivery Groups (SDGs): B5F6982

Laboratory: Maxxam Analytics, Mississauga, Ontario

Reviewer: Wendy Stonestreet Date Reviewed: September 17, 2015

This data validation report has been prepared by Ramboll Environ US Corporation (Ramboll Environ) to assess the validity and usability of laboratory analytical data generated from samples collected during the field sampling event at the Saint Gobain Facility in Hoosick Falls, New York on August 5, August 6 and August 10, 2015.

The analytical data were evaluated for quality assurance and quality control (QA/QC) based on the following documents:

- Field Sampling Plan, Saint Gobain Facility (July 2015);
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008); and
- DER-10/Technical Guidance for Site Investigation and Remediation (May 2010).

Analytical services for determination of selected perfluorinated alkyl acids (PFAAs) and TOC were provided by Maxxam Analytics (Maxxam) of Mississauga, Ontario.

This report summarizes the QA/QC evaluation of the data according to precision, accuracy, representativeness, completeness and comparability relative to the project data quality objectives. This report provides a quantitative and qualitative assessment of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall usability of the data.

Twenty-three (23) solid samples were submitted to the laboratory for PFAA and TOC analysis and evaluated in this data validation report. The following table lists the samples identification and analysis associated with this SDG.

				Analyses	
Field ID	Sample Type	Lab ID	Matrix	PFAAs	TOC
SG1-MW04S-00.0	SA	ATN765	Solid	Х	
SG1-MW04S-02.0	SA	ATN766	Solid	Х	
SG1-MW04S-15.0	SA	ATN767	Solid		Х
SG1-MW04S-21.0	SA	ATN768	Solid		Х
SG1-MW04S-24.0	SA	ATN769	Solid		Х
SG1-DS01-150805	FD	ATN770	Solid	Х	
SG1-MW02D-00.0	SA	ATN771	Solid	Х	
SG1-MW02D-02.0	SA, MS, MSD	ATN772	Solid	х	
SG1-MW02D-42.0	SA	ATN773	Solid		Х
SG1-MW02D-24.0	SA	ATN774	Solid		Х

				Analyses	
Field ID	Sample Type	Lab ID	Matrix	PFAAs	TOC
SG1-MW01D-00.0	SA	AUP457	Solid	Х	
SG1-MW01D-02.0	SA	AUP458	Solid	Х	
SG1-MW01D-13.0	SA	AUP459	Solid		Х
SG1-MW01S-06.0	SA	AUP460	Solid		Х
SG1-MW05S-00.0	SA	AUP461	Solid	Х	
SG1-MW05S-02.0	SA	AUP462	Solid	Х	
SG1-MW05S-17.0	SA	AUP463	Solid		Х
SG1-MW01D-12.0	SA	AUP464	Solid		Х
SG1-MW01D-23.0	SA	AUP465	Solid		Х
SG1-DS01-150812	FD	AUP466	Solid		Х
SG1-MW03S-00.0	SA	AUP467	Solid	Х	
SG1-MW03S-02.0	SA	AUP468	Solid	Х	
SG1-MW03S-13.0	SA	AUP469	Solid		Х
Sample Type: SA =	= Sample	TB = Trip Blank	FD = Field	Duplicate RB = Rinsate	e Blank

SA = Sample

TB = Trip Blank FD = Field Duplicate MS = Matrix Spike MSD = Matrix Spike Duplicate

PFAAs = Perfluorinated alkyl acids by USEPA Method SW-846 537 Modified by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS).

TOC = Total Organic Carbon by Method LECO 203-601-224

The following components of the laboratory report were evaluated as part of this Tier II Data Validation Review:

- Data Package Completeness, •
- Sample Preservation and Holding Times, •
- Blanks,
- Surrogate Compound Recoveries •
- Laboratory Control Samples, •
- Matrix Spike/Matrix Spike Duplicates, •
- Laboratory and Field Precision, •
- Overall Assessment of Data. •

Based on the results of the Tier II Data Validation Review, the following conclusion was determined regarding data usability.

General Overall Assessment:

- X Data are usable without qualification.
- Data are usable with qualification (noted below).
- _____ Some or all data are unusable for any purpose (detailed below).

More analysis of specific data quality topics and parameters are discussed below.

Case Narrative Comments: Any case narrative comments concerning data qualification were noted below.

1.0 Data Package Completeness

Q: Were all items delivered as specified on the Chain of Custody (COC) and is the data package complete?

A: Yes, the analysis was performed as requested on the chain-of-custody records. All samples were received by the laboratory and analyzed properly with appropriate corrective actions taken when appropriate. No data points were rejected. The data completeness measure for this data package is 100% and is acceptable.

2.0 Laboratory Case Narrative, Sample Preservation and Cooler Receipt Form

Q: Were problems noted in the laboratory case narrative or cooler receipt form?

A: Yes, the laboratory case narrative indicated the following:

The laboratory noted that two samples evaluated for perfluorinated compounds at elevated detection limits due to matrix interferences. See Section 11.0 for further discussion and resultant data qualification.

3.0 Technical Holding Times

Q: Were samples extracted/analyzed within method specific holding time requirements?

A: Yes. All samples were prepared and/or analyzed within the method specific required holding time.

4.0 Blank Contamination

Q: Were any analytes detected in the associated laboratory or field blanks?

A: No. All blanks results were reported as non-detect.

5.0 Surrogate Recoveries

Q: Were surrogate recoveries within evaluation criteria?

A: Yes. Surrogates are added to all samples prior to purging to evaluate the laboratory performance on individual samples. Two surrogates (SS-PFDA-13C2 and SS-PFHxA-13C2) were added to each sample. Percent recoveries (%R) for all surrogates in all samples were within the method acceptance limits of 70-130%.

No analytical data were qualified based on the recoveries of the surrogate compounds.

6.0 Internal Standards

Q: Were the internal standard areas within control limits and was the retention time criteria met?

A: Yes. Internal standards indicate whether MS sensitivity and response were stable during each analysis. The laboratory reported that all criteria were within method requirements.

No analytical data were qualified based on the results of internal standard recovery.

7.0 Fortified Blank Samples

Q: Were fortified blank sample recoveries within evaluation criteria?

A: Yes. Per the method, the laboratory ran a fortified blank (FB) or spiked blank with each batch. All recoveries were within laboratory control limits and no analytical data were qualified based on the results of the fortified blanks.

8.0 Matrix Spike and Matrix Spike Duplicate (MS/MSD) Recoveries

Q: Were MS/MSD samples reported as part of these SDGs?

A: Yes. All Matrix Spike recoveries were reported within the laboratory control limits of 70-130% for perfluorinated compounds and 75-125% for TOC.

9.0 Laboratory Duplicate Results

Q: Were laboratory duplicate samples performed as part of this SDG?

A: Yes. All laboratory duplicate sample relative percent differences (RPDs) were reported within laboratory acceptance criteria of less than 30%.

10.0 Field Duplicate Results (Field Precision)

Q: Were field duplicate samples collected as part of the evaluated SDGs?

A: Yes, the evaluated relative percent differences (RPDs) between the reported results are indicated in the following tables.

Analyte	SG1-MW02D-00.0 (ug/kg)	SG1-DS01-150805 (ug/kg)	RPD (%)
Perfluoro-n-octanoic Acid (PFOA)	1.3	1.5	14.3%
Perfluorononanoic Acid (PFNA)	0.01	0.02	66.7%
Perfluorooctane Sulfonate (PFOS)	0.028	0.035	19.4%

Analyte	SG1-MW01D-23.0	SG1-DS01-150812	RPD
	(mg/kg)	(mg/kg)	(%)
Total Organic Carbon	4700	4300	8.9%

ug/kg = micrograms per kilogram mg/kg = milligrams per kilogram RPD = Relative Percent Difference

The RPD for PFNA at 66.7% was above the acceptable control limit for solid samples of 50%. However, as the original and duplicate sample values are less than five times the reporting limit, the RPD is not statistically relevant and qualification of data is not required.

11.0 Detects and Calibration Range

Q: For samples that were diluted and nondetect, were undiluted results also reported?

A: Not Applicable. Samples did not require dilution. However, two sample results SG1-MW04S-00.0 and SG1-MW05S-00.0 were reported at elevated detection limits due to matrix interferences. While this non-conformance to established reporting limits does not affect the usability of the data, it does reduce the sensitivity of the instrument.

Q: For samples that were not diluted and detected, were the results within calibration range?

A: Yes

12.0 Additional Qualifications

Q: Were additional qualifications applied?

A: No

13.0 Overall Data Assessment

The data are usable for its intended purpose based on an evaluation of the QC parameters discussed in this report.

IV. Laboratory Data Reports

Eaton Analytical

LABORATORY REPORT

If you have any questions concerning this report, please do not hesitate to call us at (800) 332-4345 or (574) 233-4777.

This report may not be reproduced, except in full, without written approval from EEA.

Eaton Analytical

STATE CERTIFICATION LIST

State	Certification	State	Certification
Alabama	40700	Montana	CERT0026
Alaska	IN00035	Nebraska	E87775
Arizona	AZ0432	Nevada	IN000352015-1
Arkansas	IN035	New Hampshire*	2124
California	2920	New Mexico	IN00035
Colorado	IN035	New Jersey*	IN598
Colorado Radiochemistry	IN035	New York*	11398
Connecticut	PH-0132	North Carolina	18700
Delaware	IN035	North Dakota	R-035
Florida (Primary AB)*	E87775	Ohio	87775
Georgia	929	Oklahoma	D9508
Hawaii	IN035	Oregon*	IN200001
Idaho	IN00035/E87775	Pennsylvania*	68-00466
Illinois*	200001	Puerto Rico	IN00035
Illinois Microbiology	200001	Rhode Island	LAO00241
Indiana Chemistry	C-71-01	South Carolina	95005
Indiana Microbiology	M-76-07	South Dakota	IN00035
lowa	098	Tennessee	TN02973
Kansas*	E-10233	Texas*	T104704187-14-7
Kentucky	90056	Texas/TCEQ	TX207
Louisiana*	LA150003	Utah*	IN00035
Maine	IN00035	Vermont	VT-8775
Maryland	209	Virginia*	00127
Massachusetts	M-IN035	Washington	C837
Michigan	9926	West Virginia	9927 C
Minnesota*	018-999-338	Wisconsin	999766900
Mississippi	IN035	Wyoming	IN035
Missouri	880		

*NELAP/TNI Recognized Accreditation Bodies

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Client:	Ramboll Environ	Report:	345165
Attn:	Valerie Turner	Priority:	Immediate Verbal
/	3 Carlisle Road	Status:	Final
	Suite 210	PWS ID:	Not Supplied
- .	Westford, MA 01886		
Copies to:	Rob Huening		

Sample Information						
EEA ID #	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time	
3289462	SG1-RB01-150729	537	07/29/15 15:30	Client	07/30/15 09:00	
3289463	SG1-RB02-150729	537	07/29/15 15:35	Client	07/30/15 09:00	
3289464	SG1-RB03-150729	537	07/29/15 15:40	Client	07/30/15 09:00	
3289465	SG1-RB04-150729	537	07/29/15 15:45	Client	07/30/15 09:00	
3289466	SG1-RB05-150729	537	07/29/15 15:50	Client	07/30/15 09:00	
3289467	SG1-RB06-150729	537	07/29/15 16:00	Client	07/30/15 09:00	
3289468	SG1-FB01-150729	537	07/29/15 16:05	Client	07/30/15 09:00	
3289469	SG1-TB01-150729	537	07/29/15 00:00	Client	07/30/15 09:00	
		Report Summary				

Note: Method 537 results for sites SG1-RB02-150729 and SG1-RB03-150729 are based on a correction factor due to sample volume analyzed.

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Jim Vernon at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

Authorized Signature

Ramboll Environ

345165

Client Name:

Report #:

Title

08/11/2015

Date

Page 1 of 5

Sampling Point: SG1-RB01-150729

PWS ID: Not Supplied

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	07/30/15 09:30	07/30/15 20:24	3289462
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	07/30/15 09:30	07/30/15 20:24	3289462
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	07/30/15 09:30	07/30/15 20:24	3289462
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	07/30/15 09:30	07/30/15 20:24	3289462
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	07/30/15 09:30	07/30/15 20:24	3289462
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	07/30/15 09:30	07/30/15 20:24	3289462

Sampling Point: SG1-RB02-150729

PWS ID: Not Supplied

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 100	ng/L	07/30/15 09:30	07/30/15 20:55	3289463
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	340	ng/L	07/30/15 09:30	08/02/15 11:36	3289463
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	07/30/15 09:30	07/30/15 20:55	3289463
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	07/30/15 09:30	07/30/15 20:55	3289463
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	07/30/15 09:30	07/30/15 20:55	3289463
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	07/30/15 09:30	07/30/15 20:55	3289463

Sampling Point: SG1-RB03-150729

PWS ID: Not Supplied

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 110	ng/L	07/30/15 09:30	07/30/15 21:26	3289464
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	07/30/15 09:30	07/30/15 21:26	3289464
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 40	ng/L	07/30/15 09:30	07/30/15 21:26	3289464
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	07/30/15 09:30	07/30/15 21:26	3289464
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 50	ng/L	07/30/15 09:30	07/30/15 21:26	3289464
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	07/30/15 09:30	07/30/15 21:26	3289464

Sampling Point: SG1-RB04-150729

PWS ID: Not Supplied

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	07/30/15 09:30	07/30/15 21:57	3289465
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	07/30/15 09:30	07/30/15 21:57	3289465
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	07/30/15 09:30	07/30/15 21:57	3289465
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	07/30/15 09:30	07/30/15 21:57	3289465
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	07/30/15 09:30	07/30/15 21:57	3289465
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	07/30/15 09:30	07/30/15 21:57	3289465

Sampling Point: SG1-RB05-150729

PWS ID: Not Supplied

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	07/30/15 09:30	07/30/15 22:28	3289466
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	07/30/15 09:30	07/30/15 22:28	3289466
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	07/30/15 09:30	07/30/15 22:28	3289466
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	07/30/15 09:30	07/30/15 22:28	3289466
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	07/30/15 09:30	07/30/15 22:28	3289466
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	07/30/15 09:30	07/30/15 22:28	3289466

Sampling Point: SG1-RB06-150729

PWS ID: Not Supplied

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	07/30/15 09:30	07/30/15 22:59	3289467
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	07/30/15 09:30	07/30/15 22:59	3289467
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	07/30/15 09:30	07/30/15 22:59	3289467
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	07/30/15 09:30	07/30/15 22:59	3289467
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	07/30/15 09:30	07/30/15 22:59	3289467
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	07/30/15 09:30	07/30/15 22:59	3289467

Sampling Point: SG1-FB01-150729

PWS ID: Not Supplied

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	07/30/15 09:30	07/30/15 23:30	3289468
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	07/30/15 09:30	07/30/15 23:30	3289468
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	07/30/15 09:30	07/30/15 23:30	3289468
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	07/30/15 09:30	07/30/15 23:30	3289468
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	07/30/15 09:30	07/30/15 23:30	3289468
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	07/30/15 09:30	07/30/15 23:30	3289468

Sampling Point: SG1-TB01-150729

PWS ID: Not Supplied

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	07/30/15 09:30	07/31/15 00:00	3289469
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	07/30/15 09:30	07/31/15 00:00	3289469
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	07/30/15 09:30	07/31/15 00:00	3289469
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	07/30/15 09:30	07/31/15 00:00	3289469
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	07/30/15 09:30	07/31/15 00:00	3289469
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	07/30/15 09:30	07/31/15 00:00	3289469

† EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	*	^	!

Lab Definitions

Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis.

Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control.

Laboratory Method Blank (LMB) / Laboratory Reagent Blank (LRB) - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.

Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample aliquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results.

Quality Control Standard (QCS) / **Second Source Calibration Verification (SSCV)** - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / Surrogate Analyte (SUR) - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

		Г		IMI		ЯАИЯО		-						>			Т	П	Т	П		0	30-12					-
SE	-	-				XIATAN	-							>			\uparrow				×	bee.	25-7-32					10-5
RE	of			รษ	ЭИІАТИ	i OE CO	# -	-	1	1	ł	N	1	(T				CLIENT	Sik	as	E	NIA				: 2014-0
Order #	Page _	#Od	t2-20	NIC	(147)	CHLORINATED								$\mathbf{\dot{\mathbf{A}}}$					-	QUEOUS SAMPLES TO	Reinsed	poor h	updated	teceipt		nounced with less	ime remaining may charges.	.0 Effective Date: 2014-05-01
2	0	PROJECT NAME	56- ,	Hoside	Falls	SAMPLE REMARKS	A11 5 mile	100		PF40A	PFILA	PFNA	PFOS	PF04/)				ED PORTIONS OF NON-A	o for	601 51-0		Sile CUpon Receipt		Samples received unannounced with less	than 48 hours holding time rema be subject to additional charges.	06-LO-F0435 Issue 4.0
110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345 F: 1.574.233.8207	hE	STATE (sample origin)	MA	SOURCE WATER)		1 PH and							÷						LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT	when a have	ns 557-3		ent				
	CHAIN OF CUSTODY RECORD	PWS ID # OI SM		POPULATION SERVED	1	TEST NAME	EP4 523 1	10000	RD								00			LAB RESERVES THE	1 a alloched even Pfr Revised	Descriptions is 7-30-15 logitoor has been		CONDITIONS UPON RECEIPT (check one):		ays) 100% lays) 125%	CALL	
	CUSTOD	PWS	,	POPULATIC			DICEL)	Volume					>			NON NON			TIME		TIME	-			<pre>IV* = Immediate Verbal: (3 working days) IV* =Immediate Written: (3 working days)</pre>	<pre>SP* = Weekend, Holiday STAT* = Less than 48 hours</pre>	1.1
	CHAIN OF			s No	X	Ë	10 CTU	b2t.	MON- bZto	7729	6220	0729	0724	0729			<u>olate</u>			DATE		DATE		DATE 7. JULG		IV* = Immedi IW* =Immedi	SP* = Weekend, Holiday STAT* = Less than 48 hc	
vtical		nature)	Alane 1	Yes	AG D	SAMPLING SITE	CTU2106-108	-20	03.	EB04-20150	05-2015	06-2015	501 - 20150	501-20150729			DBC			:(Signature)		:(Signature)		RECEIVED FOR LABORATORY BY:	- SURCHARGES			ilable for all testing
Eaton Analytic		SAMPLER (Signature)			COMPLIANCE MONITORING		4/2D-L	11	B	1 56PP JE	(1979-EB	SOPP-ER	V SAP-FBO	- 5689-TBO		-				E RECEIVED BY:(Signatu	2	E RECEIVED BY:(Signature)		AE RECEIVED FOR	IME (TAT) - SURC	(15 working days) 0% orking days) 50%	vorking days) 75%	* Please call, expedited service not available for all testing
	vino	01119	Il ENVIRON				WIN (525	1540	1545	1550	1600	1605	1							4/29/15/10-12	DATE TIME	4	DATE TIME		<pre>SW = Standard Written: (15 working days) RV* = Rush Verbal: (5 working days)</pre>	RW* = Rush Written: (5 working days)	* Please call, exped
fins	tical.com Shadad area for EEA use only	101 FFV 436	M. Ramboll			CO	2/20/12	11-417						>						(en	Proved the	ure)					0	
😵 eurofins	www.eatonanalytical.com	REPORT TO:	Saron Wilkinson,	ö	Same	LAB Number	23 29 1102	0	hoh	Satu	466	1 4107	1. 468	V Heg	•					RELINQUISHED BY: (Signature)	Butter 2.	RELINQUISHED BY: (Signature)		RELINQUISHED BY:(Signature)	MATRIX CODES.	DW-DRINKING WATER RW-REAGENT WATER GW-GROUND WATER	EW-EXPOSURE WATER SW-SURFACE WATER PW-POOL WATER	WW-WASTE WATER * Please call, expedited service not available for all testing
•	www.e	REPO	ħ	BILL TO:			2		3	4	5	6	7	8	6	10	12	13	14	RELIN	1	RELIN		RELIN				

2	
C)
٩	J
5	5
-	
-	2
5	1
V	1
٠:	
	J
2	
V	2

From: Sent: To: Subice:	Nathan Trowbridge Thursday, July 30, 2015 3:05 PM Sheri Spurgeon RF- Requested Revisions to COC #345165
Subject:	
345165	
Nathan Trowbridge	
Phone: +1 574 472 5528 Mobile: +1 574 302 2590	
From: Sheri Spurgeon Sent: Thursday, July 30, 2015 3:01 PM To: Nathan Trowbridge Cc: Kellie DePriest Subject: RE: Requested Revisions to COC #345165	3:01 PM ions to COC #345165
OK, if you can give me the batc	OK, if you can give me the batch numbers, l'll take care of it ©
Sheri Spurgeon	
Phone: +1 574 472 5505	
From: Nathan Trowbridge Sent: Thursday, July 30, 2015 3:01 PM To: Sheri Spurgeon; Kellie DePriest Subject: RE: Requested Revisions to COC #345165	3:01 PM Priest ions to COC #345165

Probably should rescan to include the email with the change request.

Thanks,

Φ
D
σ
· 5
Ω
~>
6
<u> </u>
}
Ē
က္
5
يىپ يېر
s dans

Phone: +1 574 472 5528 Mobile: +1 574 302 2590 From: Sheri Spurgeon Sent: Thursday, July 30, 2015 3:00 PM To: Nathan Trowbridge; Kellie DePriest Subject: RE: Requested Revisions to COC #345165 This can be done either in Logbook or HG since they are single site changes we can go ahead and do it in logbook to get it done 🕲 do you have the batch #s?? I'll take care of it... do we need to rescan the cocs?

Sheri Spurgeon

Phone: +1 574 472 5505

From: Nathan Trowbridge Sent: Thursday, July 30, 2015 2:23 PM To: Sheri Spurgeon; Kellie DePriest Subject: FW: Requested Revisions to COC #345165 Is this something that can be done in Receiving or should it wait for HG?

Thanks,

Nathan Trowbridge

Phone: +1 574 472 5528 Mobile: +1 574 302 2590 From: Rob Huening [mailto:rhuening@environcorp.com] Sent: Thursday, July 30, 2015 2:21 PM To: Nathan Trowbridge Cc: Jason Wilkinson Subject: Requested Revisions to COC #345165

Nathan,

of the chain but there is not enough room to clearly make changes. Therefore I have listed the changes in the table below. Could you please make the following As discussed we would like to make some revisions to the Sample ID's on the COC. (COC #345165 from order #280821) Our plan was to mark-up the original pdf changes to the sample ID's?

Original Sample ID	Requested Revised Sample ID
SGPP-EB01-20150729	SG1-RB01-150729
SGPP-EB02-20150729	SG1-RB02-150729
SGPP-EB03-20150729	SG1-RB03-150729
SGPP-EB04-20150729	SG1-RB04-150729
SGPP-EB05-20150729	SG1-RB05-150729
SGPP-EB06-20150729	SG1-RB06-150729
SGPP-FB01-20150729	SG1-FB01-150729
SGPP-TB01-20150729	SG1-TB01-150729

Please let me know if anything is unclear.

-Rob

Rob Huening

Associate

D 9784490309 M 8478946598 rhuening@environcorp.com

Ramboll Environ 3 Carlisle Road Suite 210 Westford, MA 01886 USA www.ramboll-environ.com EVALUATE ENVIRON

	Analytical
	Eaton
rofins	
eui	

Eurofins Eaton Analytical

Run ID: 205797 Method: 537

	Calibration File	073015M537a.mdb												
	<u>Analysis Date</u>	07/30/2015 16:47	07/30/2015 18:20	07/30/2015 18:51	07/30/2015 19:22	07/30/2015 20:24	07/30/2015 20:55	07/30/2015 21:26	07/30/2015 21:57	07/30/2015 22:28	07/30/2015 22:59	07/30/2015 23:30	07/31/2015 00:00	07/31/2015 02:04
8	Instrument ID	С	С	С	С	С	СY							
	<u>Matrix</u>	SO	RW	RW	RW	DW	SO							
	Sample Site					SG1-RB01-150729	SG1-RB02-150729	SG1-RB03-150729	SG1-RB04-150729	SG1-RB05-150729	SG1-RB06-150729	SG1-FB01-150729	SG1-TB01-150729	
	Sample Id	3289657	3290036	3290037	3290038	3289462	3289463	3289464	3289465	3289466	3289467	3289468	3289469	3289658
	Type	CCL	LRB	FBL	FBM	FS	CCM							

Mather Antion Mather Mather<						ပ္မွ	Summary Report	/ Repor	t								
Problem Problem <t< th=""><th>Sample Type</th><th>Analyte</th><th>Method</th><th>MRL</th><th>Client ID</th><th>Result Flag</th><th>Amount</th><th>Target</th><th>Units</th><th>% Recovery</th><th></th><th>╞══┥</th><th></th><th>Dil Factor</th><th></th><th>Analyzed</th><th>EEA ID #</th></t<>	Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery		╞══┥		Dil Factor		Analyzed	EEA ID #
Isotatical(a)	CCL	IS-PFOA-13C2	537	N/A			4315.61	4315.61	ng/L	100	70 - 14(i	1.0	07/27/2015 09:53	07/30/2015 16:47	3289657
Sindh-Joll 0 0 0 0	CCL	IS-PFOS-13C4	537	N/A	I		5030.37	5030.37	ng/L	100	70 - 14(1	1.0	07/27/2015 09:53	07/30/2015 16:47	3289657
Symbolic00 </td <td>CCL</td> <td>SS-PFDA-13C2</td> <td>537</td> <td>N/A</td> <td>I</td> <td></td> <td>101.2420</td> <td>100</td> <td>ng/L</td> <td>101</td> <td>70 - 13</td> <td> </td> <td> </td> <td>1.0</td> <td>07/27/2015 09:53</td> <td>07/30/2015 16:47</td> <td>3289657</td>	CCL	SS-PFDA-13C2	537	N/A	I		101.2420	100	ng/L	101	70 - 13			1.0	07/27/2015 09:53	07/30/2015 16:47	3289657
Matrix Matrix<	CCL	SS-PFHxA-13C2	537	N/A	I		50.9124	50.0	ng/L	102	70 - 13		1	1.0	07/27/2015 09:53	07/30/2015 16:47	3289657
International and angle of a constant	CCL	Perfluorobutanesulfonic acid (PFBS)	537	06	I		93.8840	90.0	ng/L	104	50 - 15		1	1.0	07/27/2015 09:53	07/30/2015 16:47	3289657
Pertonentione anticipation QI QI QI QI	CCL	Perfluoroheptanoic acid (PFHpA)	537	10	I		10.4889	10.0	ng/L	105	50 - 150		1	1.0	07/27/2015 09:53	07/30/2015 16:47	3289657
Method9333 <td>ccL</td> <td>Perfluorohexanesulfonic acid (PFHxS)</td> <td>537</td> <td>30</td> <td>I</td> <td></td> <td>30.6208</td> <td>30.0</td> <td>ng/L</td> <td>102</td> <td>50 - 150</td> <td> </td> <td>I</td> <td>1.0</td> <td>07/27/2015 09:53</td> <td>07/30/2015 16:47</td> <td>3289657</td>	ccL	Perfluorohexanesulfonic acid (PFHxS)	537	30	I		30.6208	30.0	ng/L	102	50 - 150		I	1.0	07/27/2015 09:53	07/30/2015 16:47	3289657
PerformanceCuto <td>CCL</td> <td>Perfluorononanoic acid (PFNA)</td> <td>537</td> <td>20</td> <td></td> <td></td> <td>21.0728</td> <td>20.0</td> <td>ng/L</td> <td>105</td> <td>50 - 15(</td> <td> </td> <td>i</td> <td>1.0</td> <td>07/27/2015 09:53</td> <td>07/30/2015 16:47</td> <td>3289657</td>	CCL	Perfluorononanoic acid (PFNA)	537	20			21.0728	20.0	ng/L	105	50 - 15(i	1.0	07/27/2015 09:53	07/30/2015 16:47	3289657
Performance of FOV301301301301301301301301301301301301SFF0-K52577777777777777777777777SFF0-K52577777777777777777777777SFF0-K5277777777777777777777777777SFF0-K52777	CCL	Perfluorooctane sulfonate (PFOS)	537	40	I		41.0658	40.0	ng/L	103	50 - 15(1	1.0	07/27/2015 09:53	07/30/2015 16:47	3289657
ByrefordSignNAAlade21381OptNN	CCL	Perfluorooctanoic acid (PFOA)	537	20	I		20.8768	20.0	ng/L	104	50 - 15(1.0	07/27/2015 09:53	07/30/2015 16:47	3289657
Byte/Byte/Byte Byte/Byte/Byte Byte/Byte/Byte/Byte Byte/Byte/Byte/Byte Byte/Byte/Byte/Byte Byte/Byte/Byte/Byte Byte/Byte/Byte/Byte Byte/Byte/Byte/Byte Byte/Byte/Byte/Byte/Byte Byte/Byte/Byte/Byte/Byte Byte/Byte/Byte/Byte/Byte Byte/Byte/Byte/Byte/Byte/Byte Byte/Byte/Byte/Byte/Byte/Byte Byte/Byte/Byte/Byte/Byte/Byte/Byte/Byte/	LRB	IS-PFOA-13C2	537	N/A	I		4349.45	4315.61	ng/L	101	70 - 14(I	1.0	07/30/2015 09:30	07/30/2015 18:20	3290036
SPENDLACKBitNo.	LRB	IS-PFOS-13C4	537	N/A			5151.06	5030.37	ng/L	102	70 - 14(I	1.0	07/30/2015 09:30	07/30/2015 18:20	3290036
SPENIM-VGZ GI Mode	LRB	SS-PFDA-13C2	537	N/A	I		98.2499	100	ng/L	98	70 - 13		1	1.0	07/30/2015 09:30	07/30/2015 18:20	3290036
Mathemathematical (FE) 90 91 92 92 10 0.00016.000 0.00016.000 Performemention cale (FFM) 57 90 10 10 0.00016.000 0.00016.000 Performemention cale (FFM) 57 90 10 10 0.00016.000 0.00016.000 Performemention cale (FFM) 587 90 10 10 10 0.00016.000 0.00016.000 Performemention cale (FFM) 587 90 10 10 10 10 0.00016.000 Performemention cale (FFM) 587 90 90 10 10 10 10 100016.000 Performemention cale (FFM) 587 90 90 90 90 90 10 10 10 100016.000 Performemention cale (FFM) 587 90 90 90 90 90 10 10 10 100016.000 Performemention cale (FFM) 597 90 90 90 90 90 10 10 10 10 10 10 10 10 <td< td=""><td>LRB</td><td>SS-PFHxA-13C2</td><td>537</td><td>N/A</td><td>I</td><td></td><td>48.7229</td><td>50.0</td><td>ng/L</td><td>67</td><td>70 - 13</td><td> </td><td>1</td><td>1.0</td><td>07/30/2015 09:30</td><td>07/30/2015 18:20</td><td>3290036</td></td<>	LRB	SS-PFHxA-13C2	537	N/A	I		48.7229	50.0	ng/L	67	70 - 13		1	1.0	07/30/2015 09:30	07/30/2015 18:20	3290036
Perfluctoreprised (FF4) S01 C 10 <td>LRB</td> <td>Perfluorobutanesulfonic acid (PFBS)</td> <td>537</td> <td>06</td> <td>I</td> <td>v</td> <td>06</td> <td></td> <td>ng/L</td> <td>I</td> <td>I</td> <td>1</td> <td>I</td> <td>1.0</td> <td>07/30/2015 09:30</td> <td>07/30/2015 18:20</td> <td>3290036</td>	LRB	Perfluorobutanesulfonic acid (PFBS)	537	06	I	v	06		ng/L	I	I	1	I	1.0	07/30/2015 09:30	07/30/2015 18:20	3290036
Performance and (FM-K) S1 2 <th2< th=""> 2 2 2</th2<>	LRB	Perfluoroheptanoic acid (PFHpA)	537	10	I	v	10		ng/L	I	1	1	1	1.0	07/30/2015 09:30	07/30/2015 18:20	3290036
Performance act (FNo) Sty 20 2 20 1	LRB	Perfluorohexanesulfonic acid (PFHxS)	537	30	I	v	30		ng/L	1	1		I	1.0	07/30/2015 09:30	07/30/2015 18:20	3290036
Perfluorednese effective Size 40 64 40 64 64 64 64 64 64 64 64 64 64 64 64 64 10 17300016930 </td <td>LRB</td> <td>Perfluorononanoic acid (PFNA)</td> <td>537</td> <td>20</td> <td></td> <td>v</td> <td>20</td> <td></td> <td>ng/L</td> <td>I</td> <td>1</td> <td>1</td> <td>1</td> <td>1.0</td> <td>07/30/2015 09:30</td> <td>07/30/2015 18:20</td> <td>3290036</td>	LRB	Perfluorononanoic acid (PFNA)	537	20		v	20		ng/L	I	1	1	1	1.0	07/30/2015 09:30	07/30/2015 18:20	3290036
Performance Bar Bar <th< td=""><td>LRB</td><td>Perfluorooctane sulfonate (PFOS)</td><td>537</td><td>40</td><td>I</td><td>v</td><td>40</td><td></td><td>ng/L</td><td>I</td><td>I</td><td>1</td><td>1</td><td>1.0</td><td>07/30/2015 09:30</td><td>07/30/2015 18:20</td><td>3290036</td></th<>	LRB	Perfluorooctane sulfonate (PFOS)	537	40	I	v	40		ng/L	I	I	1	1	1.0	07/30/2015 09:30	07/30/2015 18:20	3290036
SFTGA-13CB37NAA4754.215.41PU2PU	LRB	Perfluorooctanoic acid (PFOA)	537	20	I	v	20		ng/L	1	I	1	I	1.0	07/30/2015 09:30	07/30/2015 18:20	3290036
(FFOS-13C4(S77(NA)	FBL	IS-PFOA-13C2	537	N/A	I		4427.14	4315.61	ng/L	103	70 - 14(1	1.0	07/30/2015 09:30	07/30/2015 18:51	3290037
SFPDA:132637NA	FBL	IS-PFOS-13C4	537	N/A	I		5057.35	5030.37	ng/L	101	70 - 14(1	1.0	07/30/2015 09:30	07/30/2015 18:51	3290037
SPFHAA-13C2B37NANA47.7919500ng/L600ng/L600ng/L6001001001001000000000000000000000000000000000000	FBL	SS-PFDA-13C2	537	N/A	I		96.5667	100	ng/L	67	70 - 13(1	1.0	07/30/2015 09:30	07/30/2015 18:51	3290037
Perfluctorubmending 537 80	FBL	SS-PFHxA-13C2	537	N/A	I		47.7919	50.0	ng/L	96	70 - 130		1	1.0	07/30/2015 09:30	07/30/2015 18:51	3290037
Perfluorobepance act (FFHA) 327 10	FBL	Perfluorobutanesulfonic acid (PFBS)	537	6	I		93.4057	90.0	ng/L	104	50 - 15(1	1.0	07/30/2015 09:30	07/30/2015 18:51	3290037
Perfluorontexanesulforic acid (PFMs) 337 30 magu magu 101 50-150 101 60-150 101	FBL	Perfluoroheptanoic acid (PFHpA)	537	10	I		10.0561	10.0	ng/L	101	50 - 15(1	1.0	07/30/2015 09:30	07/30/2015 18:51	3290037
Perfluoronancia ca(FW)5372012.0.7092.0.7092.0.7097.070215 06.307.730215 06.30<	FBL	Perfluorohexanesulfonic acid (PFHxS)	537	30	I		30.2129	30.0	ng/L	101	50 - 15(1	1.0	07/30/2015 09:30	07/30/2015 18:51	3290037
Perfluoroccares sufforate (FCG) S37 40	FBL	Perfluorononanoic acid (PFNA)	537	20	I		20.2709	20.0	ng/L	101	50 - 15(1	1.0	07/30/2015 09:30	07/30/2015 18:51	3290037
Perfluocodanoc add (FToA) 237 20 10 10 07/3026156330 07/3026156330 15 FFOA-13C2 537 NA 10 10 10 10/302615030 10/3026150330 15 FFOA-13C2 537 NA 10 10 07/3026150330 17/3026150330 15 FFOA-13C2 537 NA 10 10 10 10 17/3026150330 17/302615032 15 FFOA-13C2 537 NA 10 10 10 17/3026150330 17/302615032 15 FFOA-13C2 537 NA 10 10 17/3026150330 17/302615032 15 FFOA-13C2 537 NA 10 10 17/302615030 17/302615032 15 FFOA-13C2 537 9 10 10 10 17/302615032 17/302615023 17/302615023 15 FFOA-13C2 537 9 10 10 10 17/302615033 17/302615032 17/3026151922 <td>FBL</td> <td>Perfluorooctane sulfonate (PFOS)</td> <td>537</td> <td>40</td> <td>I</td> <td></td> <td>39.7392</td> <td>40.0</td> <td>ng/L</td> <td>66</td> <td>50 - 15(</td> <td> </td> <td>1</td> <td>1.0</td> <td>07/30/2015 09:30</td> <td>07/30/2015 18:51</td> <td>3290037</td>	FBL	Perfluorooctane sulfonate (PFOS)	537	40	I		39.7392	40.0	ng/L	66	50 - 15(1	1.0	07/30/2015 09:30	07/30/2015 18:51	3290037
IS-FIOA-13C2537N/A	FBL	Perfluorooctanoic acid (PFOA)	537	20	I		20.6095	20.0	ng/L	103	50 - 150		1	1.0	07/30/2015 09:30	07/30/2015 18:51	3290037
IS-FFOS-13C4 537 N/A 5216.15 5030.37 ng/L 104 70-140 10 07/30/2015 09:30 07/30/2015 19:22 SS-FFDA-13C2 337 N/A 99.412 100 ng/L 99 70-130 70-130 77/30/2015 09:30 07/30/2015 19:22 SS-FFDA-13C2 337 N/A 99.412 100 ng/L 99 70-130 70-130 77/30/2015 09:30 07/30/2015 19:22 Perfluorobutanesufonic acid (FFMA) 537 N/A 90 70-130 70-130 70-130 70-130 70/30/2015 09:30 07/30/2015 19:22 Perfluorobutanesufonic acid (FFMA) 537 90 100 70-130 70-130 70-130 70-130 70/30/2015 09:30 07/30/2015 19:22 Perfluorobutanesufonic acid (FFMA) 537 90 100 70-130 70-130 70/30/2015 99:30 70/30/2015 99:30 70/30/2015 99:30 70/30/2015 99:30 70/30/2015 99:30 70/30/2015 99:30 70/30/2015 99:30	FBM	IS-PFOA-13C2	537	N/A	I		4428.44	4315.61	ng/L	103	70 - 14(1	1.0	07/30/2015 09:30	07/30/2015 19:22	3290038
SS-FIDA-13C2 537 N/A 99.412 100 mg/L 99 70-130 10 07/30/2015 69:30 07/30/2015	FBM	IS-PFOS-13C4	537	N/A	I		5216.15	5030.37	ng/L	104	70 - 14(I	1.0	07/30/2015 09:30	07/30/2015 19:22	3290038
SS-FFHXA-13C2 537 INA 49.2243 500 ngL 98 70-130 10 07302015 69:30 07730215 19:22 Perfluorobutanesulfonic acid (PFBS) 537 90 10 70-130 70-130 70-130 70-130 70/302015 69:30 07/302015 19:22 Perfluorobutanesulfonic acid (PFBA) 537 10 10 70-130 70-130 70-130 70-130 70/302015 69:30 07/302015 19:22 Perfluorobutanesulfonic acid (PFHAS) 537 10 10 70-130 70-130 70-130 70-130 70/302015 69:30 07/302015 19:22 Perfluorobutanesulfonic acid (PFHAS) 537 30 10 70-130 70-130 70-130 70-130 70/302015 69:30 70/302015 69:30 70/302015 69:30 70/302015 69:30 70/302015 69:30 70/302015 69:30 70/302015 69:30 70/302015 69:30 70/302015 69:30 70/302015 69:30 70/302015 69:30 70/302015 69:30 70/302015 69:30 70/302015 69:30 70/302015 69:30 70/302015 69:30	FBM	SS-PFDA-13C2	537	N/A	I		99.4112	100	ng/L	66	70 - 13		1	1.0	07/30/2015 09:30	07/30/2015 19:22	3290038
Perfluorobutanesulfonic acid (PEIS) 537 90 1 100 70-130 70-130 773021513:22 Perfluorobutanesulfonic acid (PEIA) 537 10 10 70-3021650:30 7730201513:22 Perfluorobutanesulfonic acid (PEIA) 537 10 10 7730201505:30 7730201513:22 Perfluorobutanesulfonic acid (PEIAS) 537 10 10 7730201505:30 7730201513:22 Perfluorobutanesulfonic acid (PEIAS) 537 20 213.7720 225 mg/L 99 70-130 10 7730201509:30 7730201519:22 Perfluorobutanesulfonic acid (PEIAS) 537 20 213.7720 225 mg/L 99 70-130 10 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 7730201509:30 <td< td=""><td>FBM</td><td>SS-PFHxA-13C2</td><td>537</td><td>N/A</td><td>I</td><td></td><td>49.2243</td><td>50.0</td><td>ng/L</td><td>98</td><td>70 - 13(</td><td> </td><td>1</td><td>1.0</td><td>07/30/2015 09:30</td><td>07/30/2015 19:22</td><td>3290038</td></td<>	FBM	SS-PFHxA-13C2	537	N/A	I		49.2243	50.0	ng/L	98	70 - 13(1	1.0	07/30/2015 09:30	07/30/2015 19:22	3290038
Perfluoroheptanoic acid (PFHA) 537 10 74.5057 75.0 ng/L 99 70-130 - 10 07.302.015 69:30 07.302.015 69:	FBM	Perfluorobutanesulfonic acid (PFBS)	537	06	I		675.6810	675	ng/L	100	70 - 13		1	1.0	07/30/2015 09:30	07/30/2015 19:22	3290038
Perfluorohexameultonic acid (PFNx) 537 30 213,772 225 ng/L 98 70-130 10 07302015 09:30 07302015 19:22 Perfluorohexameultonic acid (PFNx) 537 20 10 10 07302015 09:30 07302015 09:30 07302015 19:22 Perfluoronancic acid (PFNx) 537 20 148,7970 150 ng/L 98 70-130 07 07302015 09:30 07302015 19:22 Perfluoronancic acid (PFNx) 537 40 120 10 07302015 09:30 07302015 19:22 Perfluoronancic acid (PFNx) 537 20 150 150 10 10 07302015 09:30 07302015 19:22	FBM	Perfluoroheptanoic acid (PFHpA)	537	10	I		74.5057	75.0	ng/L	66	70 - 13		I	1.0	07/30/2015 09:30	07/30/2015 19:22	3290038
Perfluctoronamolic acid (PFNA) 537 20 148.7970 150 mg/L 99 70-130 10 07/30/2015 09:30 07/30/2015 19:22 Perfluctorotane sulfonate (PFOS) 537 40 10 107 07/30/2015 09:30 07/30/2015 19:22 Perfluctorotane sulfonate (PFOS) 537 40 10 107 10 70-130 67/30/2015 09:30 07/30/2015 19:22 Perfluctorotane sulfonate (PFOA) 537 20 150.0380 150 mg/L 100 70-130 67/30/2015 09:30 07/30/2015 19:22	Pa	Perfluorohexanesulfonic acid (PFHxS)	537	30	I		219.7720	225	ng/L	98	70 - 13(1	1.0	07/30/2015 09:30	07/30/2015 19:22	3290038
Perfluorooctane ultionate (PFOS) 537 40 289.1260 300 ng/L 96 70-130 1.0 07/30/2015 09:30 07/30/2015 19:22 Perfluorooctanoic acid (PFOA) 537 20 100 70-130 1.0 07/30/2015 09:30 07/30/2015 19:22	uge	Perfluorononanoic acid (PFNA)	537	20	I		148.7970	150	ng/L	66	70 - 13(1	1.0	07/30/2015 09:30	07/30/2015 19:22	3290038
Perfluorooctanoic acid (PFOA) 537 20 10 70 - 130 1.0 07/30/2015 08:30 07/30/2015 18:22	^{₩8⊔} 13	Perfluorooctane sulfonate (PFOS)	537	40	I		289.1260	300	ng/L	96	70 - 13(I	1.0	07/30/2015 09:30	07/30/2015 19:22	3290038
	MB ^H BM		537	20	I		150.0380	150	ng/L	100	70 - 13(1	1.0	07/30/2015 09:30	07/30/2015 19:22	3290038

					gC	Summary Report (cont.	oort (cont.)									
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
FS	IS-PFOA-13C2	537	N/A	SG1-RB01-150729		4483.00	4315.61	ng/L	104	70 - 140	1		0.98	07/30/2015 09:30	07/30/2015 20:24	3289462
FS	IS-PFOS-13C4	537	N/A	SG1-RB01-150729		5361.69	5030.37	ng/L	107	70 - 140	1	1	0.98	07/30/2015 09:30	07/30/2015 20:24	3289462
FS	SS-PFDA-13C2	537	N/A	SG1-RB01-150729		107.1280	100	ng/L	109	70 - 130	I	1	0.98	07/30/2015 09:30	07/30/2015 20:24	3289462
FS	SS-PFHxA-13C2	537	N/A	SG1-RB01-150729		46.3924	50.0	ng/L	95	70 - 130	1		0.98	07/30/2015 09:30	07/30/2015 20:24	3289462
FS	Perfluorobutanesulfonic acid (PFBS)	537	6	SG1-RB01-150729	v	06		ng/L	1	1	1	1	0.98	07/30/2015 09:30	07/30/2015 20:24	3289462
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB01-150729	v	10		ng/L	-	1	1	1	0.98	07/30/2015 09:30	07/30/2015 20:24	3289462
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB01-150729	v	30		ng/L	1	I	1		0.98	07/30/2015 09:30	07/30/2015 20:24	3289462
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB01-150729	v	20		ng/L	-	-	1	1	0.98	07/30/2015 09:30	07/30/2015 20:24	3289462
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB01-150729	v	40		ng/L	1	1	1	1	0.98	07/30/2015 09:30	07/30/2015 20:24	3289462
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB01-150729	v	20		ng/L	1	1	I	1	0.98	07/30/2015 09:30	07/30/2015 20:24	3289462
FS	IS-PFOA-13C2	537	N/A	SG1-RB02-150729		4855.10	4315.61	ng/L	113	70 - 140	I	1	1.1	07/30/2015 09:30	07/30/2015 20:55	3289463
FS	IS-PFOS-13C4	537	N/A	SG1-RB02-150729		5238.05	5030.37	ng/L	104	70 - 140	I	1	1.1	07/30/2015 09:30	07/30/2015 20:55	3289463
FS	SS-PFDA-13C2	537	N/A	SG1-RB02-150729		128.9010	100	ng/L	117	70 - 130	I	1	1.1	07/30/2015 09:30	07/30/2015 20:55	3289463
FS	SS-PFHxA-13C2	537	N/A	SG1-RB02-150729		47.8621	50.0	ng/L	87	70 - 130	I	I	1:	07/30/2015 09:30	07/30/2015 20:55	3289463
FS	Perfluorobutanesulfonic acid (PFBS)	537	06	SG1-RB02-150729	v	100		ng/L	1	I	I	1	1.1	07/30/2015 09:30	07/30/2015 20:55	3289463
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB02-150729	v	30		ng/L	1	I	I	I	1:	07/30/2015 09:30	07/30/2015 20:55	3289463
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB02-150729	v	20		ng/L	I	I	I	1	1.1	07/30/2015 09:30	07/30/2015 20:55	3289463
FS	Perfiuorooctane sulfonate (PFOS)	537	40	SG1-RB02-150729	v	40		ng/L	I	I	I	1	<u>+</u> :	07/30/2015 09:30	07/30/2015 20:55	3289463
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB02-150729	v	20		ng/L	1	I	I	I	1:	07/30/2015 09:30	07/30/2015 20:55	3289463
FS	IS-PFOA-13C2	537	N/A	SG1-RB03-150729		3703.38	4315.61	ng/L	86	70 - 140	1	1	1.18	07/30/2015 09:30	07/30/2015 21:26	3289464
FS	IS-PFOS-13C4	537	N/A	SG1-RB03-150729		4385.60	5030.37	ng/L	87	70 - 140	1	1	1.18	07/30/2015 09:30	07/30/2015 21:26	3289464
FS	SS-PFDA-13C2	537	N/A	SG1-RB03-150729		131.2690	100	ng/L	111	70 - 130	1		1.18	07/30/2015 09:30	07/30/2015 21:26	3289464
FS	SS-PFHxA-13C2	537	N/A	SG1-RB03-150729		56.7593	50.0	ng/L	96	70 - 130	I	1	1.18	07/30/2015 09:30	07/30/2015 21:26	3289464
FS	Perfluorobutanesulfonic acid (PFBS)	537	6	SG1-RB03-150729	v	110		ng/L	1	1	1	1	1.18	07/30/2015 09:30	07/30/2015 21:26	3289464
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB03-150729	v	10		ng/L	•	1	I	-	1.18	07/30/2015 09:30	07/30/2015 21:26	3289464
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB03-150729	v	40		ng/L	1	I	1	1	1.18	07/30/2015 09:30	07/30/2015 21:26	3289464
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB03-150729	v	20		ng/L	1	1	1	1	1.18	07/30/2015 09:30	07/30/2015 21:26	3289464
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB03-150729	v	50		ng/L	I	I	I	1	1.18	07/30/2015 09:30	07/30/2015 21:26	3289464
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB03-150729	v	20		ng/L	1	1	1	1	1.18	07/30/2015 09:30	07/30/2015 21:26	3289464
FS	IS-PFOA-13C2	537	N/A	SG1-RB04-150729		3359.66	4315.61	ng/L	78	70 - 140	I	1	0.97	07/30/2015 09:30	07/30/2015 21:57	3289465
FS	IS-PFOS-13C4	537	N/A	SG1-RB04-150729		4011.00	5030.37	ng/L	80	70 - 140	I	1	0.97	07/30/2015 09:30	07/30/2015 21:57	3289465
FS	SS-PFDA-13C2	537	N/A	SG1-RB04-150729		90.9222	100	ng/L	94	70 - 130	I	1	0.97	07/30/2015 09:30	07/30/2015 21:57	3289465
FS	SS-PFHxA-13C2	537	N/A	SG1-RB04-150729		44.0784	50.0	ng/L	91	70 - 130	I	1	0.97	07/30/2015 09:30	07/30/2015 21:57	3289465
FS	Perfluorobutanesulfonic acid (PFBS)	537	6	SG1-RB04-150729	v	06		ng/L	I	I	I	1	0.97	07/30/2015 09:30	07/30/2015 21:57	3289465
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB04-150729	v	10		ng/L	1	I	I	1	0.97	07/30/2015 09:30	07/30/2015 21:57	3289465
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB04-150729	v	30		ng/L	1	1	I	1	0.97	07/30/2015 09:30	07/30/2015 21:57	3289465
FS	Perfluoronoanoic acid (PFNA)	537	20	SG1-RB04-150729	v	20		ng/L	1	I	I	1	0.97	07/30/2015 09:30	07/30/2015 21:57	3289465
S ² P	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB04-150729	v	40		ng/L	I	I	I	1	0.97	07/30/2015 09:30	07/30/2015 21:57	3289465
ୁ age	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB04-150729	v	20		ng/L	I	I	I	1	0.97	07/30/2015 09:30	07/30/2015 21:57	3289465
ନ୍ଧ ହ 14	IS-PFOA-13C2	537	N/A	SG1-RB05-150729		3146.54	4315.61	ng/L	73	70 - 140	I	1	0.94	07/30/2015 09:30	07/30/2015 22:28	3289466
ନ୍ଧ 4 of	IS-PFOS-13C4	537	N/A	SG1-RB05-150729		3936.51	5030.37	ng/L	78	70 - 140	1	1	0.94	07/30/2015 09:30	07/30/2015 22:28	3289466
ر f 1	1									Ĺ	1	!				

EEA Run ID 205797 / EEA Report # 345165

ල් Page 3 of 5

					g	QC Summary Report (cont.)	ort (cont.)									
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
FS	SS-PFDA-13C2	537	N/A	SG1-RB05-150729		90.4774	100	ng/L	96	70 - 130	I	1	0.94	07/30/2015 09:30	07/30/2015 22:28	3289466
FS	SS-PFHxA-13C2	537	N/A	SG1-RB05-150729		42.9796	50.0	ng/L	91	70 - 130	I	1	0.94	07/30/2015 09:30	07/30/2015 22:28	3289466
FS	Perfluorobutanesulfonic acid (PFBS)	537	6	SG1-RB05-150729	v	06		ng/L			I	1	0.94	07/30/2015 09:30	07/30/2015 22:28	3289466
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB05-150729	v	10		ng/L			1		0.94	07/30/2015 09:30	07/30/2015 22:28	3289466
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB05-150729	v	30		ng/L	1	1	I		0.94	07/30/2015 09:30	07/30/2015 22:28	3289466
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB05-150729	v	20		ng/L	-		I	1	0.94	07/30/2015 09:30	07/30/2015 22:28	3289466
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB05-150729	v	40		ng/L			I	1	0.94	07/30/2015 09:30	07/30/2015 22:28	3289466
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB05-150729	v	20		ng/L			I	1	0.94	07/30/2015 09:30	07/30/2015 22:28	3289466
FS	IS-PFOA-13C2	537	N/A	SG1-RB06-150729		3172.60	4315.61	ng/L	74	70 - 140	I	I	0.97	07/30/2015 09:30	07/30/2015 22:59	3289467
FS	IS-PFOS-13C4	537	N/A	SG1-RB06-150729		3927.46	5030.37	ng/L	78	70 - 140	I	1	0.97	07/30/2015 09:30	07/30/2015 22:59	3289467
FS	SS-PFDA-13C2	537	N/A	SG1-RB06-150729		89.6939	100	ng/L	92	70 - 130	I	1	0.97	07/30/2015 09:30	07/30/2015 22:59	3289467
FS	SS-PFHxA-13C2	537	N/A	SG1-RB06-150729		46.9763	50.0	ng/L	97	70 - 130	I	I	0.97	07/30/2015 09:30	07/30/2015 22:59	3289467
FS	Perfluorobutanesulfonic acid (PFBS)	537	06	SG1-RB06-150729	v	06		ng/L	1	I	I	1	0.97	07/30/2015 09:30	07/30/2015 22:59	3289467
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB06-150729	v	10		ng/L	1	I	I	I	0.97	07/30/2015 09:30	07/30/2015 22:59	3289467
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB06-150729	v	30		ng/L	1	1	I	I	0.97	07/30/2015 09:30	07/30/2015 22:59	3289467
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB06-150729	v	20		ng/L	1	I	I	1	0.97	07/30/2015 09:30	07/30/2015 22:59	3289467
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB06-150729	v	40		ng/L	I	I	I	I	0.97	07/30/2015 09:30	07/30/2015 22:59	3289467
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB06-150729	v	20		ng/L	1	I	I	I	0.97	07/30/2015 09:30	07/30/2015 22:59	3289467
FS	IS-PFOA-13C2	537	N/A	SG1-FB01-150729		3149.98	4315.61	ng/L	73	70 - 140	I	1	1.0	07/30/2015 09:30	07/30/2015 23:30	3289468
FS	IS-PFOS-13C4	537	N/A	SG1-FB01-150729		3953.19	5030.37	ng/L	46	70 - 140	I	1	1.0	07/30/2015 09:30	07/30/2015 23:30	3289468
FS	SS-PFDA-13C2	537	N/A	SG1-FB01-150729		96.8721	100	ng/L	67	70 - 130	I	1	1.0	07/30/2015 09:30	07/30/2015 23:30	3289468
FS	SS-PFHxA-13C2	537	N/A	SG1-FB01-150729		46.6364	50.0	ng/L	93	70 - 130	I	1	1.0	07/30/2015 09:30	07/30/2015 23:30	3289468
FS	Perfluorobutanesulfonic acid (PFBS)	537	06	SG1-FB01-150729	v	06		ng/L			I	1	1.0	07/30/2015 09:30	07/30/2015 23:30	3289468
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-FB01-150729	v	10		ng/L	1	1	I	1	1.0	07/30/2015 09:30	07/30/2015 23:30	3289468
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-FB01-150729	v	30		ng/L	-	-	I	1	1.0	07/30/2015 09:30	07/30/2015 23:30	3289468
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-FB01-150729	v	20		ng/L	1	1	I	1	1.0	07/30/2015 09:30	07/30/2015 23:30	3289468
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-FB01-150729	v	40		ng/L			I		1.0	07/30/2015 09:30	07/30/2015 23:30	3289468
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-FB01-150729	v	20		ng/L	1		I		1.0	07/30/2015 09:30	07/30/2015 23:30	3289468
FS	IS-PFOA-13C2	537	N/A	SG1-TB01-150729		3339.67	4315.61	ng/L	17	70 - 140	I	1	0.96	07/30/2015 09:30	07/31/2015 00:00	3289469
FS	IS-PFOS-13C4	537	N/A	SG1-TB01-150729		4258.08	5030.37	ng/L	85	70 - 140	I	1	0.96	07/30/2015 09:30	07/31/2015 00:00	3289469
FS	SS-PFDA-13C2	537	N/A	SG1-TB01-150729		96.6316	100	ng/L	101	70 - 130	I	I	0.96	07/30/2015 09:30	07/31/2015 00:00	3289469
FS	SS-PFHxA-13C2	537	N/A	SG1-TB01-150729		45.9283	50.0	ng/L	96	70 - 130	I	I	0.96	07/30/2015 09:30	07/31/2015 00:00	3289469
FS	Perfluorobutanesulfonic acid (PFBS)	537	66	SG1-TB01-150729	v	06		ng/L	I	I	I	I	0.96	07/30/2015 09:30	07/31/2015 00:00	3289469
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-TB01-150729	v	10		ng/L	1	I	I	I	0.96	07/30/2015 09:30	07/31/2015 00:00	3289469
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-TB01-150729	v	30		ng/L	I	I	I	I	0.96	07/30/2015 09:30	07/31/2015 00:00	3289469
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-TB01-150729	v	20		ng/L	1	I	I	1	0.96	07/30/2015 09:30	07/31/2015 00:00	3289469
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-TB01-150729	v	40		ng/L	1	I	I	1	0.96	07/30/2015 09:30	07/31/2015 00:00	3289469
SI P	Perfluorooctanoic acid (PFOA)	537	20	SG1-TB01-150729	v	20		ng/L	1	1	I	I	0.96	07/30/2015 09:30	07/31/2015 00:00	3289469
woo ag	IS-PFOA-13C2	537	N/A	1		3261.81	3261.81	ng/L	100	70 - 140	I	1	1.0	07/27/2015 09:53	07/31/2015 02:04	3289658
[₩] e 1:	IS-PFOS-13C4	537	N/A	1		4081.63	4081.63	ng/L	100	70 - 140	I		1.0	07/27/2015 09:53	07/31/2015 02:04	3289658
^{₩DD}	SS-PFDA-13C2	537	N/A	1		102.7790	100	ng/L	103	70 - 130	1	1	1.0	07/27/2015 09:53	07/31/2015 02:04	3289658
f 1										i		!				

EEA Run ID 205797 / EEA Report # 345165

යි Page 4 of 5

					gc	QC Summary Report (cont.)	ort (cont.)									
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID#
CCM	SS-PFHxA-13C2	537	N/A	-		52.1822	50.0	ng/L	104	70 - 130	I	i	1:0	07/27/2015 09:53	07/31/2015 02:04	3289658
CCM	Perfluorobutanesulfonic acid (PFBS)	537	66	I		700.0260	675	ng/L	104	70 - 130			1.0	07/27/2015 09:53	07/31/2015 02:04	3289658
CCM	Perfluoroheptanoic acid (PFHpA)	537	10	I		78.1038	75.0	ng/L	104	70 - 130			1.0	07/27/2015 09:53	07/31/2015 02:04	3289658
CCM	Perfluorohexanesulfonic acid (PFHxS)	537	30	I		227.9070	225	ng/L	101	70 - 130			1.0	07/27/2015 09:53	07/31/2015 02:04	3289658
CCM	Perfluorononanoic acid (PFNA)	537	20	I		158.6200	150	ng/L	106	70 - 130	1		1.0	07/27/2015 09:53	07/31/2015 02:04	3289658
CCM	Perfluorooctane sulfonate (PFOS)	537	40	I		305.4140	300	ng/L	102	70 - 130			1.0	07/27/2015 09:53	07/31/2015 02:04	3289658
CCM	Perfluorooctanoic acid (PFOA)	537	20	I		156.9030	150	ng/L	105	70 - 130	1		1.0	07/27/2015 09:53	07/31/2015 02:04	3289658

	Analytical
	Eaton
ofins	
📸 eur	

Eurofins Eaton Analytical

Run ID: 205815 Method: 537

Calibration File	080115M537a.mdb										
<u>Analysis Date</u>	08/02/2015 01:48	08/02/2015 01:48	08/02/2015 03:21	08/02/2015 03:21	08/02/2015 03:52	08/02/2015 03:52	08/02/2015 04:23	08/02/2015 04:23	08/02/2015 11:36	08/02/2015 12:07	08/02/2015 12:07
Instrument ID	сY	СY	СY	СY	СY	С	сY	СY	СY	СY	сY
<u>Matrix</u>	SO	SO	RW	RW	RW	RW	RW	RW	DW	SO	SO
Sample Site									SG1-RB02-150729		
<u>Sample Id</u>	3290766	3290766	3290770	3290770	3290771	3290771	3290772	3290772	3289463	3290767	3290767
Type	CCL	CCL	LRB	LRB	FBL	FBL	FBH	FBH	FS	CCM	CCM

	۲ #	766	766	766	766	766	770	770	770	770	770	771	771	771	771	771	772	772	772	772	772	463	767	767	767	767	767
	EEA ID #	3290766	3 3290766	3290766	3 3290766	3290766	1 3290770	1 3290770	1 3290770	1 3290770	1 3290770	2 3290771	2 3290771	2 3290771	2 3290771	2 3290771	3 3290772	3 3290772	3 3290772	3 3290772	3 3290772	3289463	7 3290767	7 3290767	7 3290767	7 3290767	7 3290767
	Analyzed	08/02/2015 01:48	08/02/2015 01:48	08/02/2015 01:48	08/02/2015 01:48	08/02/2015 01:48	08/02/2015 03:21	08/02/2015 03:21	08/02/2015 03:21	08/02/2015 03:21	08/02/2015 03:21	08/02/2015 03:52	08/02/2015 03:52	08/02/2015 03:52	08/02/2015 03:52	08/02/2015 03:52	08/02/2015 04:23	08/02/2015 04:23	08/02/2015 04:23	08/02/2015 04:23	08/02/2015 04:23	08/02/2015 11:36	08/02/2015 12:07	08/02/2015 12:07	08/02/2015 12:07	08/02/2015 12:07	08/02/2015 12:07
	Extracted	08/01/2015 13:00	08/01/2015 13:00	08/01/2015 13:00	08/01/2015 13:00	08/01/2015 13:00	08/01/2015 09:00	08/01/2015 09:00	08/01/2015 09:00	08/01/2015 09:00	08/01/2015 09:00	08/01/2015 09:00	08/01/2015 09:00	08/01/2015 09:00	08/01/2015 09:00	08/01/2015 09:00	08/01/2015 09:00	08/01/2015 09:00	08/01/2015 09:00	08/01/2015 09:00	08/01/2015 09:00	07/30/2015 09:30	08/01/2015 13:00	08/01/2015 13:00	08/01/2015 13:00	08/01/2015 13:00	08/01/2015 13:00
	Dil Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	÷	1.0	1.0	1.0	1.0	1.0
	RPD Limit	1	1	1	1	1	1	i	1	i	1	1	1	I	1	I		I	1	1	1	1	1	1	1	1	1
	RPD	I	I	I	I	I	1	I	1	I	1	1	I	I	I	I	1	I	I	1	I		I	1	1		1
	Recovery Limits	50 - 150	70 - 140	70 - 140	70 - 130	70 - 130	I	70 - 140	70 - 140	70 - 130	70 - 130	50 - 150	70 - 140	70 - 140	70 - 130	70 - 130	70 - 130	70 - 140	70 - 140	70 - 130	70 - 130	I	70 - 130	70 - 140	70 - 140	70 - 130	70 - 130
	% Recovery	111	100	100	100	66	1	103	104	92	89	66	103	103	94	06	06	66	101	96	94	1	66	100	100	107	102
	Units	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
/ Report	Target	10.0	5649.39	6452.1	100	50.0		5649.39	6452.1	100	50.0	10.0	5649.39	6452.1	100	50.0	125	5649.39	6452.1	100	50.0		75.0	5395.91	6516.9	100	50.0
QC Summary Report	Amount	11.1155	5649.39	6452.10	100.0680	49.6788	10	5845.46	6691.20	92.3315	44.5620	9.9279	5835.35	6673.02	94.4827	45.0501	112.8280	5615.35	6527.86	95.6187	46.9235	340	74.1616	5395.91	6516.90	107.3480	50.7742
Ö	Result Flag						v																				
	Client ID		I	I	I	I	I	I	I	I	I	1	I	I	I	I	I	I	I	I	I	SG1-RB02-150729	I	1	1	1	-
	MRL	10	N/A	N/A	N/A	N/A	10	N/A	N/A	N/A	N/A	10	N/A	N/A	N/A	N/A	10	N/A	N/A	N/A	N/A	10	10	N/A	N/A	N/A	N/A
	Method	537	537	537	537	537	537	537	537	537	537	537	537	537	537	537	537	537	537	537	537	537	537	537	537	537	537
	Analyte	Perfluoroheptanoic acid (PFHpA)	IS-PFOA-13C2	IS-PFOS-13C4	SS-PFDA-13C2	SS-PFHxA-13C2	Perfluoroheptanoic acid (PFHpA)	IS-PFOA-13C2	IS-PFOS-13C4	SS-PFDA-13C2	SS-PFHxA-13C2	Perfluoroheptanoic acid (PFHpA)	IS-PFOA-13C2	IS-PFOS-13C4	SS-PFDA-13C2	SS-PFHxA-13C2	Perfluoroheptanoic acid (PFHpA)	IS-PFOA-13C2	IS-PFOS-13C4	SS-PFDA-13C2	SS-PFHxA-13C2	Perfluoroheptanoic acid (PFHpA)	Perfluoroheptanoic acid (PFHpA)	IS-PFOA-13C2	IS-PFOS-13C4	SS-PFDA-13C2	SS-PFHxA-13C2
	Sample Type	ccL	CCL	ccL	CCL	ccL	LRB	LRB	LRB	LRB	LRB	FBL	FBL	FBL	FBL	FBL	FBH	FBH	FBH	FBH	FBH	FS	CCM	CCM	CCM	CCM	CCM

EEA Run ID 205815 / EEA Report # 345165

Sample Type Key	Type (Abbr.) Sample Type									
	Sample Type	Continuing Calibration Low	Continuing Calibration Mid	Field Sample	Fortified Blank High	Fortified Blank Low	Fortified Blank Mid	Laboratory Reagent Blank		
	Type (Abbr.)	CCL	CCM	FS	FBH	FBL	FBM	LRB	F	Page

Eaton Analytical

LABORATORY REPORT

If you have any questions concerning this report, please do not hesitate to call us at (800) 332-4345 or (574) 233-4777.

This report may not be reproduced, except in full, without written approval from EEA.

Eaton Analytical

STATE CERTIFICATION LIST

State	Certification	State	Certification
Alabama	40700	Montana	CERT0026
Alaska	IN00035	Nebraska	E87775
Arizona	AZ0432	Nevada	IN000352015-1
Arkansas	IN035	New Hampshire*	2124
California	2920	New Mexico	IN00035
Colorado	IN035	New Jersey*	IN598
Colorado Radiochemistry	IN035	New York*	11398
Connecticut	PH-0132	North Carolina	18700
Delaware	IN035	North Dakota	R-035
Florida (Primary AB)*	E87775	Ohio	87775
Georgia	929	Oklahoma	D9508
Hawaii	IN035	Oregon*	IN200001
Idaho	IN00035/E87775	Pennsylvania*	68-00466
Illinois*	200001	Puerto Rico	IN00035
Illinois Microbiology	200001	Rhode Island	LAO00241
Indiana Chemistry	C-71-01	South Carolina	95005
Indiana Microbiology	M-76-07	South Dakota	IN00035
lowa	098	Tennessee	TN02973
Kansas*	E-10233	Texas*	T104704187-14-7
Kentucky	90056	Texas/TCEQ	TX207
Louisiana*	LA150003	Utah*	IN00035
Maine	IN00035	Vermont	VT-8775
Maryland	209	Virginia*	00127
Massachusetts	M-IN035	Washington	C837
Michigan	9926	West Virginia	9927 C
Minnesota*	018-999-338	Wisconsin	999766900
Mississippi	IN035	Wyoming	IN035
Missouri	880		

*NELAP/TNI Recognized Accreditation Bodies

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Client:	Ramboll Environ	Report:	345317	
Attn:	Valerie Turner	Priority:	Weekend or Holiday	
Aun.	3 Carlisle Road	Status:	Final	
Suite 210		PWS ID:	Not Supplied	
Copies to:	Westford, MA 01886	Lab ELAP #:	11398	
	Rob Huening			

Sample Information							
EEA ID #	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time		
3290665	SG1-FB01-150731	537	07/31/15 08:40	Client	08/01/15 08:45		
3290666	SG1-FB02-150731	537	07/31/15 09:13	Client	08/01/15 08:45		
Report Summarv							

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Nathan Trowbridge at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

C.S. Manager Title

08/03/2015

Date

Authorized Signature Client Name: Ramboll Environ Report #: 345317

Page 1 of 3

Sampling Point: SG1-FB01-150731

Ramboll Environ

Client Name:

PWS ID: Not Supplied

	EEA Methods									
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #	
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	08/01/15 09:00	08/02/15 06:58	3290665	
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	08/01/15 09:00	08/02/15 06:58	3290665	
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	08/01/15 09:00	08/02/15 06:58	3290665	
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	08/01/15 09:00	08/02/15 06:58	3290665	
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	08/01/15 09:00	08/02/15 06:58	3290665	
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	08/01/15 09:00	08/02/15 06:58	3290665	

Sampling Point: SG1-FB02-150731

PWS ID: Not Supplied

	EEA Methods										
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #		
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	08/01/15 09:00	08/02/15 07:28	3290666		
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	08/01/15 09:00	08/02/15 07:28	3290666		
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	08/01/15 09:00	08/02/15 07:28	3290666		
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	08/01/15 09:00	08/02/15 07:28	3290666		
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	08/01/15 09:00	08/02/15 07:28	3290666		
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	08/01/15 09:00	08/02/15 07:28	3290666		

† EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	*	۸	!

Lab Definitions

Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis.

Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control.

Laboratory Method Blank (LMB) / Laboratory Reagent Blank (LRB) - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.

Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample aliquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results.

Quality Control Standard (QCS) / Second Source Calibration Verification (SSCV) - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / Surrogate Analyte (SUR) - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

eurofins	

Eurofins Eaton Analytical Run Log Run ID: 205815 Method: 537

Eaton Analytical

Type	Sample Id	Sample Site	Matrix	Instrument ID	Analysis Date	Calibration File
CCL	3290766		OS	CY	08/02/2015 01:48	080115M537a.mdb
LRB	3290770		RW	CY	08/02/2015 03:21	080115M537a.mdb
FBL	3290771		RW	CY	08/02/2015 03:52	080115M537a.mdb
FBH	3290772		RW	CY	08/02/2015 04:23	080115M537a.mdb
FTB	3290667	SG1-TB01-150731	RW	CY	08/02/2015 05:25	080115M537a.mdb
FS	3290665	SG1-FB01-150731	DW	CY	08/02/2015 06:58	080115M537a.mdb
FS	3290666	SG1-FB02-150731	DW	CY	08/02/2015 07:28	080115M537a.mdb
LFSML	3290773	SG1-FB02-150731	DW	CY	08/02/2015 07:59	080115M537a.mdb
LFSMDL	3290774	SG1-FB02-150731	DW	CY	08/02/2015 08:30	080115M537a.mdb
CCM	3290767		OS	CY	08/02/2015 12:07	080115M537a.mdb

					QC S	Summar	y Repo	ort								
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
CCL	IS-PFOA-13C2	537	N/A			5649.39	5649.39	ng/L	100	70 - 140			1.0	08/01/2015 13:00	08/02/2015 01:48	3290766
CCL	IS-PFOS-13C4	537	N/A			6452.10	6452.1	ng/L	100	70 - 140			1.0	08/01/2015 13:00	08/02/2015 01:48	3290766
CCL	SS-PFDA-13C2	537	N/A			100.0680	100	ng/L	100	70 - 130			1.0	08/01/2015 13:00	08/02/2015 01:48	3290766
CCL	SS-PFHxA-13C2	537	N/A			49.6788	50.0	ng/L	99	70 - 130			1.0	08/01/2015 13:00	08/02/2015 01:48	3290766
CCL	Perfluorobutanesulfonic acid (PFBS)	537	90			98.6508	90.0	ng/L	110	50 - 150			1.0	08/01/2015 13:00	08/02/2015 01:48	3290766
CCL	Perfluoroheptanoic acid (PFHpA)	537	10			11.1155	10.0	ng/L	111	50 - 150			1.0	08/01/2015 13:00	08/02/2015 01:48	3290766
CCL	Perfluorohexanesulfonic acid (PFHxS)	537	30			33.0395	30.0	ng/L	110	50 - 150			1.0	08/01/2015 13:00	08/02/2015 01:48	3290766
CCL	Perfluorononanoic acid (PFNA)	537	20			22.3134	20.0	ng/L	112	50 - 150			1.0	08/01/2015 13:00	08/02/2015 01:48	3290766
CCL	Perfluorooctane sulfonate (PFOS)	537	40			43.4649	40.0	ng/L	109	50 - 150			1.0	08/01/2015 13:00	08/02/2015 01:48	3290766
CCL	Perfluorooctanoic acid (PFOA)	537	20			21.6583	20.0	ng/L	108	50 - 150	1		1.0	08/01/2015 13:00	08/02/2015 01:48	3290766
LRB	IS-PFOA-13C2	537	N/A			5845.46	5649.39	ng/L	103	70 - 140			1.0	08/01/2015 09:00	08/02/2015 03:21	3290770
LRB	IS-PFOS-13C4	537	N/A			6691.20	6452.1	ng/L	104	70 - 140			1.0	08/01/2015 09:00	08/02/2015 03:21	3290770
LRB	SS-PFDA-13C2	537	N/A			92.3315	100	ng/L	92	70 - 130			1.0	08/01/2015 09:00	08/02/2015 03:21	3290770
LRB	SS-PFHxA-13C2	537	N/A			44.5620	50.0	ng/L	89	70 - 130			1.0	08/01/2015 09:00	08/02/2015 03:21	3290770
LRB	Perfluorobutanesulfonic acid (PFBS)	537	90		<	90		ng/L					1.0	08/01/2015 09:00	08/02/2015 03:21	3290770
LRB	Perfluoroheptanoic acid (PFHpA)	537	10		<	10		ng/L					1.0		08/02/2015 03:21	
LRB	Perfluorohexanesulfonic acid (PFHxS)	537	30		<	30		ng/L					1.0		08/02/2015 03:21	
LRB	Perfluorononanoic acid (PFNA)	537	20		<	20	_	ng/L					1.0		08/02/2015 03:21	
LRB	Perfluorooctane sulfonate (PFOS)	537	40		<	40		ng/L					1.0	08/01/2015 09:00	08/02/2015 03:21	3290770
LRB	Perfluorooctanoic acid (PFOA)	537	20		<	20	_	ng/L					1.0	08/01/2015 09:00	08/02/2015 03:21	3290770
FBL	IS-PFOA-13C2	537	N/A			5835.35	5649.39	ng/L	103	70 - 140			1.0		08/02/2015 03:52	
FBL	IS-PFOS-13C4	537	N/A			6673.02	6452.1	ng/L	103	70 - 140			1.0		08/02/2015 03:52	
FBL	SS-PFDA-13C2	537	N/A			94.4827	100	ng/L	94	70 - 130			1.0	L	08/02/2015 03:52	
FBL	SS-PFHxA-13C2	537	N/A			45.0501	50.0	ng/L	90	70 - 130			1.0		08/02/2015 03:52	
FBL	Perfluorobutanesulfonic acid (PFBS)	537	90			89.8462	90.0	ng/L	100	50 - 150			1.0		08/02/2015 03:52	
FBL	Perfluoroheptanoic acid (PFHpA)	537	10			9.9279	10.0	ng/L	99	50 - 150			1.0		08/02/2015 03:52	
FBL	Perfluorohexanesulfonic acid (PFHxS)	537	30			31.0229	30.0	ng/L	103	50 - 150			1.0		08/02/2015 03:52	
FBL	Perfluorononanoic acid (PFNA)	537	20			20.0196	20.0	ng/L	100	50 - 150			1.0		08/02/2015 03:52	
FBL	Perfluorooctane sulfonate (PFOS)	537	40			41.9104	40.0	ng/L	105	50 - 150			1.0		08/02/2015 03:52	
FBL	Perfluorooctanoic acid (PFOA)	537	20			20.1715	20.0	ng/L	101	50 - 150			1.0		08/02/2015 03:52	
FBH	IS-PFOA-13C2	537	N/A			5615.35	5649.39	ng/L	99	70 - 140			1.0		08/02/2015 04:23	
FBH	IS-PFOS-13C4	537	N/A			6527.86	6452.1	ng/L	101	70 - 140			1.0		08/02/2015 04:23	
FBH	SS-PFDA-13C2	537	N/A			95.6187	100	-	96	70 - 130			1.0		08/02/2015 04:23	
FBH	SS-PFHxA-13C2	537	N/A			46.9235	50.0	ng/L	94	70 - 130			1.0		08/02/2015 04:23	
FBH	Perfluorobutanesulfonic acid (PFBS)	537	90			1039.3800	1125	ng/L	92	70 - 130			1.0		08/02/2015 04:23	
FBH	Perfluoroheptanoic acid (PFHpA)	537	10			112.8280	125	ng/L	90	70 - 130			1.0		08/02/2015 04:23	
FBH	Perfluorohexanesulfonic acid (PFHxS)	537	30			350.8900	375	ng/L	94	70 - 130			1.0		08/02/2015 04:23	
о Geren	Perfluorononanoic acid (PFNA)	537	20			235.2200	250	ng/L	94	70 - 130			1.0		08/02/2015 04:23	
	Perfluorooctane sulfonate (PFOS)	537	40			481.1070	500	ng/L	96	70 - 130			1.0		08/02/2015 04:23	
FBH	Perfluorooctanoic acid (PFOA)	537	20			232.1750	250	-	90	70 - 130			1.0		08/02/2015 04:23	
<u> </u>	2 of 4		20			232.1750	200	ng/L	95							

					QC S	Summary Re	port (cont.)								
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	Dil Factor	Extracted	Analyzed	EEA ID #
FTB	IS-PFOA-13C2	537	N/A	SG1-TB01-150731		6141.95	5649.39	ng/L	109	70 - 140		 0.96	08/01/2015 09:00	08/02/2015 05:25	3290667
FTB	IS-PFOS-13C4	537	N/A	SG1-TB01-150731		7030.27	6452.1	ng/L	109	70 - 140		 0.96	08/01/2015 09:00	08/02/2015 05:25	3290667
FTB	SS-PFDA-13C2	537	N/A	SG1-TB01-150731		92.4080	100	ng/L	96	70 - 130		 0.96	08/01/2015 09:00	08/02/2015 05:25	3290667
FTB	SS-PFHxA-13C2	537	N/A	SG1-TB01-150731	1	44.1600	50.0	ng/L	92	70 - 130		 0.96	08/01/2015 09:00	08/02/2015 05:25	3290667
FTB	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-TB01-150731	<	90		ng/L				 0.96	08/01/2015 09:00	08/02/2015 05:25	3290667
FTB	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-TB01-150731	<	10		ng/L				 0.96	08/01/2015 09:00	08/02/2015 05:25	3290667
FTB	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-TB01-150731	<	30		ng/L				 0.96	08/01/2015 09:00	08/02/2015 05:25	3290667
FTB	Perfluorononanoic acid (PFNA)	537	20	SG1-TB01-150731	<	20		ng/L				 0.96	08/01/2015 09:00	08/02/2015 05:25	3290667
FTB	Perfluorooctane sulfonate (PFOS)	537	40	SG1-TB01-150731	<	40		ng/L				 0.96	08/01/2015 09:00	08/02/2015 05:25	3290667
FTB	Perfluorooctanoic acid (PFOA)	537	20	SG1-TB01-150731	<	20		ng/L				 0.96	08/01/2015 09:00	08/02/2015 05:25	3290667
FS	IS-PFOA-13C2	537	N/A	SG1-FB01-150731		5971.47	5649.39	ng/L	106	70 - 140		 0.98	08/01/2015 09:00	08/02/2015 06:58	3290665
FS	IS-PFOS-13C4	537	N/A	SG1-FB01-150731		6896.64	6452.1	ng/L	107	70 - 140		 0.98	08/01/2015 09:00	08/02/2015 06:58	3290665
FS	SS-PFDA-13C2	537	N/A	SG1-FB01-150731		95.8449	100	ng/L	98	70 - 130		 0.98	08/01/2015 09:00	08/02/2015 06:58	3290665
FS	SS-PFHxA-13C2	537	N/A	SG1-FB01-150731		48.2167	50.0	ng/L	98	70 - 130		 0.98	08/01/2015 09:00	08/02/2015 06:58	3290665
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-FB01-150731	<	90		ng/L				 0.98	08/01/2015 09:00	08/02/2015 06:58	3290665
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-FB01-150731	<	10		ng/L				 0.98	08/01/2015 09:00	08/02/2015 06:58	3290665
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-FB01-150731	<	30		ng/L				 0.98	08/01/2015 09:00	08/02/2015 06:58	3290665
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-FB01-150731	<	20		ng/L				 0.98	08/01/2015 09:00	08/02/2015 06:58	3290665
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-FB01-150731	<	40		ng/L				 0.98	08/01/2015 09:00	08/02/2015 06:58	3290665
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-FB01-150731	<	20		ng/L				 0.98	08/01/2015 09:00	08/02/2015 06:58	3290665
FS	IS-PFOA-13C2	537	N/A	SG1-FB02-150731		5830.62	5649.39	ng/L	103	70 - 140		 0.94	08/01/2015 09:00	08/02/2015 07:28	3290666
FS	IS-PFOS-13C4	537	N/A	SG1-FB02-150731		6748.51	6452.1	ng/L	105	70 - 140		 0.94	08/01/2015 09:00	08/02/2015 07:28	3290666
FS	SS-PFDA-13C2	537	N/A	SG1-FB02-150731		86.8260	100	ng/L	92	70 - 130		 0.94	08/01/2015 09:00	08/02/2015 07:28	3290666
FS	SS-PFHxA-13C2	537	N/A	SG1-FB02-150731		43.8692	50.0	ng/L	93	70 - 130		 0.94	08/01/2015 09:00	08/02/2015 07:28	3290666
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-FB02-150731	<	90		ng/L				 0.94	08/01/2015 09:00	08/02/2015 07:28	3290666
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-FB02-150731	<	10		ng/L				 0.94	08/01/2015 09:00	08/02/2015 07:28	3290666
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-FB02-150731	<	30		ng/L				 0.94	08/01/2015 09:00	08/02/2015 07:28	3290666
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-FB02-150731	<	20		ng/L				 0.94	08/01/2015 09:00	08/02/2015 07:28	3290666
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-FB02-150731	<	40		ng/L				 0.94	08/01/2015 09:00	08/02/2015 07:28	3290666
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-FB02-150731	<	20		ng/L				 0.94	08/01/2015 09:00	08/02/2015 07:28	3290666
LFSML	IS-PFOA-13C2	537	N/A	SG1-FB02-150731		5980.60	5649.39	ng/L	106	70 - 140		 1.0	08/01/2015 09:00	08/02/2015 07:59	3290773
LFSML	IS-PFOS-13C4	537	N/A	SG1-FB02-150731		7029.19	6452.1	ng/L	109	70 - 140		 1.0	08/01/2015 09:00	08/02/2015 07:59	3290773
LFSML	SS-PFDA-13C2	537	N/A	SG1-FB02-150731		91.2824	100	ng/L	91	70 - 130		 1.0	08/01/2015 09:00	08/02/2015 07:59	3290773
LFSML	SS-PFHxA-13C2	537	N/A	SG1-FB02-150731		42.3373	50.0	ng/L	85	70 - 130		 1.0	08/01/2015 09:00	08/02/2015 07:59	3290773
LFSML	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-FB02-150731		91.9178	90.0	ng/L	102	50 - 150		 1.0	08/01/2015 09:00	08/02/2015 07:59	3290773
LFSML	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-FB02-150731		9.6946	10.0	ng/L	97	50 - 150		 1.0	08/01/2015 09:00	08/02/2015 07:59	3290773
LFSML	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-FB02-150731		30.8931	30.0	ng/L	103	50 - 150		 1.0	08/01/2015 09:00	08/02/2015 07:59	3290773
	Perfluorononanoic acid (PFNA)	537	20	SG1-FB02-150731		20.6167	20.0	ng/L	103	50 - 150		 1.0	08/01/2015 09:00	08/02/2015 07:59	3290773
BESML	Perfluorooctane sulfonate (PFOS)	537	40	SG1-FB02-150731		41.0394	40.0	ng/L	103	50 - 150		 1.0	08/01/2015 09:00	08/02/2015 07:59	3290773
or coreFSML	Perfluorooctanoic acid (PFOA)	537	20	SG1-FB02-150731		20.1454	20.0	ng/L	101	50 - 150		 1.0	08/01/2015 09:00	08/02/2015 07:59	3290773
9 ⊊SMDL	IS-PFOA-13C2	537	N/A	SG1-FB02-150731		6273.78	5649.39	ng/L	111	70 - 140		 1.0	08/01/2015 09:00	08/02/2015 08:30	3290774

EEA Run ID 205815 / EEA Report # 345317

	QC Summary Report (cont.)															
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD		Dil Factor	Extracted	Analyzed	EEA ID #
LFSMDL	IS-PFOS-13C4	537	N/A	SG1-FB02-150731		7279.08	6452.1	ng/L	113	70 - 140			1.0	08/01/2015 09:00	08/02/2015 08:30	3290774
LFSMDL	SS-PFDA-13C2	537	N/A	SG1-FB02-150731		93.6744	100	ng/L	94	70 - 130			1.0	08/01/2015 09:00	08/02/2015 08:30	3290774
LFSMDL	SS-PFHxA-13C2	537	N/A	SG1-FB02-150731		45.6649	50.0	ng/L	91	70 - 130			1.0	08/01/2015 09:00	08/02/2015 08:30	3290774
LFSMDL	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-FB02-150731		92.0015	90.0	ng/L	102	50 - 150	0.1		1.0	08/01/2015 09:00	08/02/2015 08:30	3290774
LFSMDL	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-FB02-150731		10.2661	10.0	ng/L	103	50 - 150			1.0	08/01/2015 09:00	08/02/2015 08:30	3290774
LFSMDL	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-FB02-150731		30.1298	30.0	ng/L	100	50 - 150	2.5		1.0	08/01/2015 09:00	08/02/2015 08:30	3290774
LFSMDL	Perfluorononanoic acid (PFNA)	537	20	SG1-FB02-150731		20.3950	20.0	ng/L	102	50 - 150	1.1		1.0	08/01/2015 09:00	08/02/2015 08:30	3290774
LFSMDL	Perfluorooctane sulfonate (PFOS)	537	40	SG1-FB02-150731		41.1795	40.0	ng/L	103	50 - 150	0.3		1.0	08/01/2015 09:00	08/02/2015 08:30	3290774
LFSMDL	Perfluorooctanoic acid (PFOA)	537	20	SG1-FB02-150731		19.8882	20.0	ng/L	99	50 - 150			1.0	08/01/2015 09:00	08/02/2015 08:30	3290774
CCM	IS-PFOA-13C2	537	N/A			5395.91	5395.91	ng/L	100	70 - 140			1.0	08/01/2015 13:00	08/02/2015 12:07	3290767
CCM	IS-PFOS-13C4	537	N/A			6516.90	6516.9	ng/L	100	70 - 140			1.0	08/01/2015 13:00	08/02/2015 12:07	3290767
CCM	SS-PFDA-13C2	537	N/A			107.3480	100	ng/L	107	70 - 130			1.0	08/01/2015 13:00	08/02/2015 12:07	3290767
CCM	SS-PFHxA-13C2	537	N/A			50.7742	50.0	ng/L	102	70 - 130			1.0	08/01/2015 13:00	08/02/2015 12:07	3290767
CCM	Perfluorobutanesulfonic acid (PFBS)	537	90			672.7620	675	ng/L	100	70 - 130			1.0	08/01/2015 13:00	08/02/2015 12:07	3290767
CCM	Perfluoroheptanoic acid (PFHpA)	537	10			74.1616	75.0	ng/L	99	70 - 130			1.0	08/01/2015 13:00	08/02/2015 12:07	3290767
CCM	Perfluorohexanesulfonic acid (PFHxS)	537	30			220.4270	225	ng/L	98	70 - 130			1.0	08/01/2015 13:00	08/02/2015 12:07	3290767
CCM	Perfluorononanoic acid (PFNA)	537	20			151.8440	150	ng/L	101	70 - 130			1.0	08/01/2015 13:00	08/02/2015 12:07	3290767
CCM	Perfluorooctane sulfonate (PFOS)	537	40			304.2380	300	ng/L	101	70 - 130			1.0	08/01/2015 13:00	08/02/2015 12:07	3290767
CCM	Perfluorooctanoic acid (PFOA)	537	20			150.6320	150	ng/L	100	70 - 130			1.0	08/01/2015 13:00	08/02/2015 12:07	3290767

Sample Type Key									
Type (Abbr.)	Sample Type	<u>Type (Abbr.)</u>	Sample Type						
CCL	Continuing Calibration Low								
CCM	Continuing Calibration Mid								
FS	Field Sample								
FTB	Field Trip Blank								
FBH	Fortified Blank High								
FBL	Fortified Blank Low								
LFSMDL	LFSM Duplicate Low								
LFSML	LFSM Low								
LRB	Laboratory Reagent Blank								

	contraction	2		SAMPLER (Signature	1		CUSTO	DY RECO	RD		Page	1	. of	1	
DRT TO: Jason W. K mboll Environ arlisle Road, 5 estford, MA C To: Same as; "R LAB Number 3290,665	contraction	2		SAMPLER (Signature	1 Kirkingoli	ine									
LAB Number	2:12 210 01886 eport T	0 0		RIV	11		1	PWS ID #	STATE (sample origin)	PROJECT NAME	I P	PO#	1	-	
Same as: "R LAB Number 3290,665	cc	0			lat	*			NY	SGPP			1		
LAB Number	cc			COMPLIANCE	Yes	No	POPUL	ATION SERVED	SOURCE WATER	Hoosick Falls			CONTAINERS	ш	ID TIME
3290,665				MONTORING		~				Fairs		2	NTA	CODE	SOUN
	DATE	TIME	AM PN		AMPLING SITE			TEST NA		SAMPLE REMARKS			# OF CC	MATRIX (TURNAROUND TIME
~ Idda	7-31-15		X	5G1 - FB01-	- 150731		EPAMe	thed 537 * ethod 537 Nethod 53		CI-A	X		3	DW	
	7-31-15		X	541 - FBOZ			EPA M.	ethod 537	*	1		X	3	DW	SP
1 667	7-31-15	0824	×	541 - TBOI	-150731		EPA N	Nethod 53	7*	4		×	1	RW	١V
				* EPAMe	thed 537 -	for the	Follo	wing PFC	s' PFOA						
	-							7	PFBS						
				n Ré					PFHPA						
		12.777		THE L			-		PFHXS				_		
		()							PFNA				1	(
				No all a	777 4 1	111		1	PFOS				_		
			-	NO other	PFC's show	ud be r	eported	4.							
		-													
NOUISHED BY:(Signature)		DATE	TIME	RECEIVED BY:(Signa	ature)	DATE	TIME		ES THE RIGHT TO RETURN UNUS			CAMPIES T			_
DIM 11.		7-31-15	1350				ī	AB COMMENTS	es me non to retorn one.	ED FOR HONS OF NON-A	002003	SAMPLES I	OCLIENT	-	-
11 al			AM	0			AM PM								
NQUISHED BY:(Signature)		DATE		RECEIVED BY:(Signa	iture)	DATE	TIME								
NQUISHED BY:(Signature)		DATE	AM PN TIME	RECEIVED FOR LABO	RATORY BY:	DATE	AM PM		and the second se		_		_		
	-		AM PM	Selan	an	8-1-15	0845°			5.8 °C Upon F	Receipt	_	N/A		
MATRIX CODES:		TURN-ARO		E (TAT) - SURCHARG	ES	-									
DW-DRINKING WATER RW-REAGENT WATER GW-GROUND WATER EW-EXPOSURE WATER SW-SURFACE WATER PW-POOL WATER	F	SW = Standard RV* = Rush Veri RW* = Rush Wri	bal: (5 worki		/	IV* = Immediate IW* =Immediate SP* = Weekend, STAT* = Less th	Written: (3 worl Holiday			Samples received unan han 48 hours holding t be subject to additional	ime remai	ining may			

Page 11 of 11

Sample analysis will be provided according to the standard EEA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agree to in writing by EEA.

Eaton Analytical

LABORATORY REPORT

If you have any questions concerning this report, please do not hesitate to call us at (800) 332-4345 or (574) 233-4777.

This report may not be reproduced, except in full, without written approval from EEA.

Eaton Analytical

STATE CERTIFICATION LIST

State	Certification	State	Certification
Alabama	40700	Montana	CERT0026
Alaska	IN00035	Nebraska	E87775
Arizona	AZ0432	Nevada	IN000352015-1
Arkansas	IN035	New Hampshire*	2124
California	2920	New Mexico	IN00035
Colorado	IN035	New Jersey*	IN598
Colorado Radiochemistry	IN035	New York*	11398
Connecticut	PH-0132	North Carolina	18700
Delaware	IN035	North Dakota	R-035
Florida (Primary AB)*	E87775	Ohio	87775
Georgia	929	Oklahoma	D9508
Hawaii	IN035	Oregon*	IN200001
Idaho	IN00035/E87775	Pennsylvania*	68-00466
Illinois*	200001	Puerto Rico	IN00035
Illinois Microbiology	200001	Rhode Island	LAO00241
Indiana Chemistry	C-71-01	South Carolina	95005
Indiana Microbiology	M-76-07	South Dakota	IN00035
lowa	098	Tennessee	TN02973
Kansas*	E-10233	Texas*	T104704187-14-7
Kentucky	90056	Texas/TCEQ	TX207
Louisiana*	LA150003	Utah*	IN00035
Maine	IN00035	Vermont	VT-8775
Maryland	209	Virginia*	00127
Massachusetts	M-IN035	Washington	C837
Michigan	9926	West Virginia	9927 C
Minnesota*	018-999-338	Wisconsin	999766900
Mississippi	IN035	Wyoming	IN035
Missouri	880		

*NELAP/TNI Recognized Accreditation Bodies

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Client:	Ramboll Environ	Report:	346703
Attn:	Valerie Turner	Priority:	Standard Written
Aun.	3 Carlisle Road	Status:	Final
	Suite 210	PWS ID:	Not Supplied
	Westford, MA 01886		
Copies			

to: Rob Huening

	Sample Information											
EEA ID #	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time							
3301317	SG1-RB01-150807	537	08/07/15 09:35	Client	08/14/15 10:00							
3301318	SG1-FB01-150810	537	08/10/15 09:35	Client	08/14/15 10:00							
3301319	SG1-RB01-150810	537	08/10/15 12:10	Client	08/14/15 10:00							
3301320	SG1-RB02-150810	537	08/10/15 12:30	Client	08/14/15 10:00							
3301321	SG1-RB03-150810	537	08/10/15 16:05	Client	08/14/15 10:00							
3301322	SG1-RB01-150811	537	08/11/15 07:55	Client	08/14/15 10:00							
3301323	SG1-RB02-150811	537	08/11/15 08:00	Client	08/14/15 10:00							
3301324	SG1-RB03-150811	537	08/11/15 11:30	Client	08/14/15 10:00							
3301325	SG1-RB01-150812	537	08/12/15 10:20	Client	08/14/15 10:00							
3301326	SG1-RB01-150813	537	08/13/15 08:10	Client	08/14/15 10:00							
3301327	SG1-RB02-150813	537	08/13/15 11:00	Client	08/14/15 10:00							
3301328	SG1-RB03-150813	537	08/13/15 16:10	Client	08/14/15 10:00							
	Report Summary											

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Nathan Trowbridge at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

Date

Authorized SignatureClient Name:Ramboll EnvironReport #:346703

Sampling Point: SG1-RB01-150807

Ramboll Environ

Client Name:

PWS ID: Not Supplied

	EEA Methods												
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #				
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	08/18/15 06:45	08/18/15 23:45	3301317				
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	08/18/15 06:45	08/18/15 23:45	3301317				
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	08/18/15 06:45	08/18/15 23:45	3301317				
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	08/18/15 06:45	08/18/15 23:45	3301317				
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	08/18/15 06:45	08/18/15 23:45	3301317				
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	08/18/15 06:45	08/18/15 23:45	3301317				

Sampling Point: SG1-FB01-150810

PWS ID: Not Supplied

	EEA Methods												
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #				
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	08/18/15 06:45	08/19/15 00:16	3301318				
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	08/18/15 06:45	08/19/15 00:16	3301318				
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	08/18/15 06:45	08/19/15 00:16	3301318				
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 00:16	3301318				
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	08/18/15 06:45	08/19/15 00:16	3301318				
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 00:16	3301318				

Sampling Point: SG1-RB01-150810

PWS ID: Not Supplied

	EEA Methods												
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #				
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	08/18/15 06:45	08/19/15 00:47	3301319				
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	08/18/15 06:45	08/19/15 00:47	3301319				
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	08/18/15 06:45	08/19/15 00:47	3301319				
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 00:47	3301319				
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	08/18/15 06:45	08/19/15 00:47	3301319				
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 00:47	3301319				

Sampling Point: SG1-RB02-150810

Ramboll Environ

Client Name:

PWS ID: Not Supplied

	EEA Methods												
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #				
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	08/18/15 06:45	08/19/15 02:19	3301320				
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	08/18/15 06:45	08/19/15 02:19	3301320				
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	08/18/15 06:45	08/19/15 02:19	3301320				
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 02:19	3301320				
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	08/18/15 06:45	08/19/15 02:19	3301320				
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 02:19	3301320				

Sampling Point: SG1-RB03-150810

PWS ID: Not Supplied

	EEA Methods														
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #						
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	08/18/15 06:45	08/19/15 02:50	3301321						
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	08/18/15 06:45	08/19/15 02:50	3301321						
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	08/18/15 06:45	08/19/15 02:50	3301321						
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 02:50	3301321						
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	08/18/15 06:45	08/19/15 02:50	3301321						
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 02:50	3301321						

Sampling Point: SG1-RB01-150811

PWS ID: Not Supplied

	EEA Methods													
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #					
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	08/18/15 06:45	08/19/15 03:21	3301322					
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	08/18/15 06:45	08/19/15 03:21	3301322					
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	08/18/15 06:45	08/19/15 03:21	3301322					
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 03:21	3301322					
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	08/18/15 06:45	08/19/15 03:21	3301322					
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 03:21	3301322					

Sampling Point: SG1-RB02-150811

Ramboll Environ

Client Name:

PWS ID: Not Supplied

	EEA Methods														
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #						
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	08/18/15 06:45	08/19/15 03:52	3301323						
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	08/18/15 06:45	08/19/15 03:52	3301323						
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	08/18/15 06:45	08/19/15 03:52	3301323						
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 03:52	3301323						
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	08/18/15 06:45	08/19/15 03:52	3301323						
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 03:52	3301323						

Sampling Point: SG1-RB03-150811

PWS ID: Not Supplied

	EEA Methods														
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #						
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	08/18/15 06:45	08/19/15 04:23	3301324						
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	08/18/15 06:45	08/19/15 04:23	3301324						
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	08/18/15 06:45	08/19/15 04:23	3301324						
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 04:23	3301324						
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	08/18/15 06:45	08/19/15 04:23	3301324						
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 04:23	3301324						

Sampling Point: SG1-RB01-150812

PWS ID: Not Supplied

	EEA Methods														
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #						
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	08/18/15 06:45	08/19/15 04:54	3301325						
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	08/18/15 06:45	08/19/15 04:54	3301325						
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	08/18/15 06:45	08/19/15 04:54	3301325						
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 04:54	3301325						
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	08/18/15 06:45	08/19/15 04:54	3301325						
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 04:54	3301325						

Sampling Point: SG1-RB01-150813

Ramboll Environ

Client Name:

Report #: 346703

PWS ID: Not Supplied

	EEA Methods														
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #						
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	08/18/15 06:45	08/19/15 05:25	3301326						
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	08/18/15 06:45	08/19/15 05:25	3301326						
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	08/18/15 06:45	08/19/15 05:25	3301326						
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 05:25	3301326						
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	08/18/15 06:45	08/19/15 05:25	3301326						
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 05:25	3301326						

Sampling Point: SG1-RB02-150813

PWS ID: Not Supplied

	EEA Methods														
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #						
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	08/18/15 06:45	08/19/15 05:56	3301327						
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	08/18/15 06:45	08/19/15 05:56	3301327						
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	08/18/15 06:45	08/19/15 05:56	3301327						
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 05:56	3301327						
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	08/18/15 06:45	08/19/15 05:56	3301327						
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 05:56	3301327						

Sampling Point: SG1-RB03-150813

PWS ID: Not Supplied

	EEA Methods														
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #						
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	08/18/15 06:45	08/19/15 06:27	3301328						
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	08/18/15 06:45	08/19/15 06:27	3301328						
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	08/18/15 06:45	08/19/15 06:27	3301328						
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 06:27	3301328						
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	08/18/15 06:45	08/19/15 06:27	3301328						
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	08/18/15 06:45	08/19/15 06:27	3301328						

† EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	*	۸	!

Lab Definitions

Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis.

Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control.

Laboratory Method Blank (LMB) / Laboratory Reagent Blank (LRB) - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.

Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample aliquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results.

Quality Control Standard (QCS) / Second Source Calibration Verification (SSCV) - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / Surrogate Analyte (SUR) - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

🔅 euro	otins		Eato	on Analytic	al			5	110 S. Hill Street South Bend, IN 40 F: 1.800.332.4345 F: 1.574.233.8207			# <u>2</u> # <u>3</u>			
ww.eatonanalytical.com	a for EEA use	only			CH	AIN OF	CUSTODY R	ECORD		100	Page	1	of	2	
	Wilkinson			SAMPLER (Signature)	Jonethen	Deput	PWS ID #	STATE (sa	ample origin) PROJ	ECT NAME	P	O#			
Ramboll Envir 3 Carliste Rd, westerd MA ILL TO: Same As	Suite 210 01886			COMPLIANCE MONITORING	Yes	No	POPULATION SEF	AVED SOURC	EWATER H	PP possick alle			CONTAINERS	CODE	TURNAROUND TIME
LAB Number					MPLING SITE		г	EST NAME	SAMPL	E REMARKS	CHLOR		# OF CON	MATRIX C	TURNARC
3301316	DATE 8/7//5	0930	AM F		01-150807		EPA Muthod	537#			1120	X	#	PRIM	
Sur 317	8/7/15	0935	x		1 - 150807		EPA Method	537#				×	3	DU	50
318	8/10/15	0935	×	SG1-FB0.			EPA Method				X	+	3	DW	SL
319	8/10/15	1210		× 561-R80			EPA Mithe					X	3	DW	SI
320	8/10/15	1230		SG1-RBC			EPA Metho					x	3	DU	51
321	8/10/15	1605		5 567 - RAO			ElA Mithed	537 AC				X	3	44	51
322	8/11/15	8 0755	×	561 - RB03	1 - 150811		EBA Method	537*				×	3	DW	Si
323	8/1./15	0800	×	SG1 - RBOZ			EPA Mothed	537 #				×	3	DW	SL
324	8/ulis	1130	×	561 - RB03			EPA Method	537*			1	X	3	PLS	Sh
× 325	8/12/15	1020	X	561 -RB01	- 150312			537*				×	3	DW	54
				* EPA Muthod 5	37 for the	following	PFCs: PFOR								-
2		1. C				2	PFHpA	, PFHx S,			-				-
3							PENA	PFOS							-
1				No other PFC	s should b	e reported.					_			-	L
ELINQUISHED BY:(Signatu	ure)	DATE 8/13/15	TIME 165	0	ure)	DATE		AB RESERVES THE RIGHT 1	TO RETURN UNUSED PORT	FIONS OF NON-4	AQUEOUS S	SAMPLES T	O CLIENT		
ELINQUISHED BY:(Signatu	ıre)	DATE	TIM		ure)	DATE	TIME								
ELINQUISHED BY:(Signatu	ure)	DATE	AM F TIMI	E RECEIVED FOR LABOR	Dery "	DATE 8 14 (15		UPON RECEIPT (cheo	ambient 2,2	C Upon	Receipt	4	N/A		
MATRIX CODE	S:	TURN-ARC	OUND T	IME (TAT) - SURCHARGE	S	1 Constants		1996							
DW-DRINKING WATER RW-REAGENT WATER GW-GROUND WATER EW-EXPOSURE WATER SW-SURFACE WATER		SW = Standar RV* = Rush Ve RW* = Rush W	rbal: (5 wo					100% 125% CALL CALL	than 48 t	received unai hours holding ct to additiona	time rema	ining may			

Page 9 of 17

Sample analysis will be provided according to the standard EEA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agree to in writing by EEA.

🔅 euro	ofins		Eator	n Analytical			110 S. Hill South Ber T: 1.800.3 F: 1.574.2	nd, IN 46617 32.4345	Order Batch	# <u>28</u> n#	Ľ	Ø	£
www.eatonanalytical.com					CHAIN OF	CUSTODY RECO	ORD	0.1.	Page	2	of	2	
	ea for EEA us	e only					STATE (sample origin)	PROJECT NAME		0#	-	-	-
REPORT TO: Jason Ramboll Env. 3 Carlisla Rd , Westfield , MI	Wilkinson Suite 210 A 01886			SAMPLER (Signature)	Ves No	PWS ID #	SOURCE WATER	SGPP		<u>On</u>	ŝ		ME
ILL TO: SAME AS RE.	PORT			COMPLIANCE MONITORING				Hoosick Falls			CONTAINERS	K CODE	TURNAROUND TIME
LAB Number				SAMPLING	SITE	TEST	JAME	SAMPLE REMARKS	CHLOF		# OF C	MATRIX	LURNA
1 3301 326	B/13/15	DIME 0910	AM PM	SG1 - RB01-1	CARIA	FRA Muthod 5	37#		120	X	3	DW	SW
2 327	8/13/15	1/00	X	SG1 - RBO2 - 15		ELA Method 53	74			×	3	DW	SW
3 J 328	8/13/15	1610	×	SG1-RB03-15		EPA Mothed 5 EIN Mathed 53 EIN Mathed 53	17*			x	3	DW	SW
7													
8 9 10													
1				* EPA Method 537 +	for the following	PFC:: PFOR, PK	BS, PFHPA FHXS, PFNA;	PFOS					
3 4				No other PEC: sho	It be reported.								
RELINQUISHED BY:(Signa		DATE SIS	1650 AM (PM)	RECEIVED BY:(Signature)	DATE	TIME LAB RESI LAB COMMENTS AM PM TIME	ERVES THE RIGHT TO RETURN UN	USED PORTIONS OF NON-	AQUEOUS :	SAMPLES T	D CLIENT		
			AM PM	RECEIVED FOR LABORATORY B		AM PM TIME					_		_
ELINQUISHED BY:(Signa	iure)	DATE		Received FOR LABORATORY B	81.11	CONDITIONS UPON	Wet/Bue Ambient	2.2 ℃ Upon	Receipt_	-	N/A		
MATRIX COD	ES:			E (TAT) - SURCHARGES									
DW-DRINKING WATER RW-REAGENT WATER GW-GROUND WATER EW-EXPOSURE WATER SW-SURFACE WATER PW-POOL WATER		RV* = Rush V	rd Written: (15 erbal: (5 workir Vrilten: (5 work	ig days) 50%	IW* ≈Immedia SP* = Weeker	te Verbal: (3 working days) 100% te Written: (3 working days) 125% ad, Holiday CA than 48 hours CALI	u	Samples received unar than 48 hours holding be subject to additiona	time rema	ining may			
PW-POOL WATER WW-WASTE WATER * Please call, expedited service not available for		d service not available for all testi	ng	06-LO-F0435 Issue	35 Issue 4.0 Effective Date: 2014-05-01								

Page 10 of 17

Sample analysis will be provided according to the standard EEA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agree to in writing by EEA.

	rot	INC
		ins

Eaton Analytical

Eurofins Eaton Analytical Run Log

Run ID: 206459 Method: 537

Type	Sample Id	Sample Site	<u>Matrix</u>	Instrument ID	Analysis Date	Calibration File
CCL	3302235		OS	CY	08/18/2015 15:30	081815M537a.mdb
LRB	3302268		RW	CY	08/18/2015 17:03	081815M537a.mdb
FBL	3302269		RW	CY	08/18/2015 17:34	081815M537a.mdb
FTB	3301316	FTB-SG1-TB01-150807	RW	CY	08/18/2015 18:36	081815M537a.mdb
FS	3301317	SG1-RB01-150807	DW	CY	08/18/2015 23:45	081815M537a.mdb
FS	3301318	SG1-FB01-150810	DW	CY	08/19/2015 00:16	081815M537a.mdb
FS	3301319	SG1-RB01-150810	DW	CY	08/19/2015 00:47	081815M537a.mdb
CCM	3302236		OS	CY	08/19/2015 01:18	081815M537a.mdb
FS	3301320	SG1-RB02-150810	DW	CY	08/19/2015 02:19	081815M537a.mdb
FS	3301321	SG1-RB03-150810	DW	CY	08/19/2015 02:50	081815M537a.mdb
FS	3301322	SG1-RB01-150811	DW	CY	08/19/2015 03:21	081815M537a.mdb
FS	3301323	SG1-RB02-150811	DW	CY	08/19/2015 03:52	081815M537a.mdb
FS	3301324	SG1-RB03-150811	DW	CY	08/19/2015 04:23	081815M537a.mdb
FS	3301325	SG1-RB01-150812	DW	CY	08/19/2015 04:54	081815M537a.mdb
FS	3301326	SG1-RB01-150813	DW	CY	08/19/2015 05:25	081815M537a.mdb
FS	3301327	SG1-RB02-150813	DW	CY	08/19/2015 05:56	081815M537a.mdb
FS	3301328	SG1-RB03-150813	DW	CY	08/19/2015 06:27	081815M537a.mdb
CCH	3302237		OS	CY	08/19/2015 06:58	081815M537a.mdb

					QC S	Summar	y Repo	ort								
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
CCL	IS-PFOA-13C2	537	N/A			2794.38	2794.38	ng/L	100	70 - 140			1.0	08/17/2015 10:40	08/18/2015 15:30	3302235
CCL	IS-PFOS-13C4	537	N/A			4089.96	4089.96	ng/L	100	70 - 140			1.0	08/17/2015 10:40	08/18/2015 15:30	3302235
CCL	SS-PFDA-13C2	537	N/A			93.1916	100	ng/L	93	70 - 130			1.0	08/17/2015 10:40	08/18/2015 15:30	3302235
CCL	SS-PFHxA-13C2	537	N/A			49.2576	50.0	ng/L	99	70 - 130			1.0	08/17/2015 10:40	08/18/2015 15:30	3302235
CCL	Perfluorobutanesulfonic acid (PFBS)	537	90			93.4664	90.0	ng/L	104	50 - 150			1.0	08/17/2015 10:40	08/18/2015 15:30	3302235
CCL	Perfluoroheptanoic acid (PFHpA)	537	10			11.3430	10.0	ng/L	113	50 - 150			1.0	08/17/2015 10:40	08/18/2015 15:30	3302235
CCL	Perfluorohexanesulfonic acid (PFHxS)	537	30			29.6187	30.0	ng/L	99	50 - 150			1.0	08/17/2015 10:40	08/18/2015 15:30	3302235
CCL	Perfluorononanoic acid (PFNA)	537	20			21.3240	20.0	ng/L	107	50 - 150			1.0	08/17/2015 10:40	08/18/2015 15:30	3302235
CCL	Perfluorooctane sulfonate (PFOS)	537	40			41.5466	40.0	ng/L	104	50 - 150			1.0	08/17/2015 10:40	08/18/2015 15:30	3302235
CCL	Perfluorooctanoic acid (PFOA)	537	20			21.0560	20.0	ng/L	105	50 - 150			1.0	08/17/2015 10:40	08/18/2015 15:30	3302235
LRB	IS-PFOA-13C2	537	N/A			2985.30	2794.38	ng/L	107	70 - 140			1.0	08/18/2015 06:45	08/18/2015 17:03	3302268
LRB	IS-PFOS-13C4	537	N/A			4131.74	4089.96	ng/L	101	70 - 140			1.0	08/18/2015 06:45	08/18/2015 17:03	3302268
LRB	SS-PFDA-13C2	537	N/A			89.2434	100	ng/L	89	70 - 130			1.0	08/18/2015 06:45	08/18/2015 17:03	3302268
LRB	SS-PFHxA-13C2	537	N/A			44.9372	50.0	ng/L	90	70 - 130			1.0	08/18/2015 06:45	08/18/2015 17:03	3302268
LRB	Perfluorobutanesulfonic acid (PFBS)	537	90		<	90		ng/L					1.0	1	08/18/2015 17:03	
LRB	Perfluoroheptanoic acid (PFHpA)	537	10		<	10		ng/L					1.0	08/18/2015 06:45	08/18/2015 17:03	3302268
LRB	Perfluorohexanesulfonic acid (PFHxS)	537	30		<	30		ng/L					1.0		08/18/2015 17:03	
LRB	Perfluorononanoic acid (PFNA)	537	20		<	20		ng/L					1.0		08/18/2015 17:03	
LRB	Perfluorooctane sulfonate (PFOS)	537	40		<	40		ng/L					1.0	1	08/18/2015 17:03	
LRB	Perfluorooctanoic acid (PFOA)	537	20		<	20		ng/L					1.0		08/18/2015 17:03	
FBL	IS-PFOA-13C2	537	N/A			3057.40	2794.38	ng/L	109	70 - 140			1.0		08/18/2015 17:34	
FBL	IS-PFOS-13C4	537	N/A			4304.42	4089.96	ng/L	105	70 - 140			1.0		08/18/2015 17:34	
FBL	SS-PFDA-13C2	537	N/A			89.6341	100	ng/L	90	70 - 130			1.0	L	08/18/2015 17:34	
FBL	SS-PFHxA-13C2	537	N/A			47.0657	50.0	ng/L	94	70 - 130			1.0		08/18/2015 17:34	
FBL	Perfluorobutanesulfonic acid (PFBS)	537	90			92.8462	90.0	ng/L	103	50 - 150			1.0	L	08/18/2015 17:34	
FBL	Perfluoroheptanoic acid (PFHpA)	537	10			10.1934	10.0	ng/L	100	50 - 150			1.0		08/18/2015 17:34	
FBL	Perfluorohexanesulfonic acid (PFHxS)	537	30			30.7762	30.0	ng/L	102	50 - 150			1.0		08/18/2015 17:34	
FBL	Perfluorononanoic acid (PFNA)	537	20			20.2344	20.0	ng/L	100	50 - 150			1.0	-	08/18/2015 17:34	
FBL	Perfluorooctane sulfonate (PFOS)	537	40			40.9056	40.0	ng/L	101	50 - 150			1.0		08/18/2015 17:34	
FBL	Perfluorooctanoic acid (PFOA)	537	20			20.5419	20.0	-	102	50 - 150			1.0	1	08/18/2015 17:34	
FTB	IS-PFOA-13C2	537	N/A	FTB-SG1-TB01-150807		3125.95	2794.38	ng/L ng/L	112	70 - 140			1.02		08/18/2015 18:36	
FTB	IS-PFOS-13C4	537	N/A	FTB-SG1-TB01-150807		4450.23	4089.96	-	109	70 - 140			1.02		08/18/2015 18:36	
FTB	SS-PFDA-13C2		N/A	FTB-SG1-TB01-150807		95.0385		ng/L	93	70 - 140			1.02	1	08/18/2015 18:36	
FTB		537					100	ng/L	95						08/18/2015 18:36	
FTB	SS-PFHxA-13C2	537	N/A	FTB-SG1-TB01-150807	<	48.4528	50.0	ng/L	_	70 - 130			1.02		08/18/2015 18:36	
FTB	Perfluorobutanesulfonic acid (PFBS)	537	90	FTB-SG1-TB01-150807		90		ng/L					1.02			
	Perfluoroheptanoic acid (PFHpA)	537	10	FTB-SG1-TB01-150807	<	10		ng/L					1.02		08/18/2015 18:36	
	Perfluorohexanesulfonic acid (PFHxS)	537	30	FTB-SG1-TB01-150807	<	30		ng/L					1.02		08/18/2015 18:36	
	Perfluorononanoic acid (PFNA)	537	20	FTB-SG1-TB01-150807	<	20		ng/L					1.02		08/18/2015 18:36	
	Perfluorooctane sulfonate (PFOS)	537	40	FTB-SG1-TB01-150807	<	40		ng/L					1.02		08/18/2015 18:36	
	Perfluorooctanoic acid (PFOA)	537	20	FTB-SG1-TB01-150807	<	20		ng/L						08/18/2015 06:45	08/18/2015 18:36	3301316

					QC S	Summary Re	port (cont.)					 			
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	Dil Factor	Extracted	Analyzed	EEA ID #
FS	IS-PFOA-13C2	537	N/A	SG1-RB01-150807		3251.05	2794.38	ng/L	116	70 - 140		 0.96	08/18/2015 06:45	08/18/2015 23:45	3301317
FS	IS-PFOS-13C4	537	N/A	SG1-RB01-150807		4536.96	4089.96	ng/L	111	70 - 140		 0.96	08/18/2015 06:45	08/18/2015 23:45	3301317
FS	SS-PFDA-13C2	537	N/A	SG1-RB01-150807		86.0775	100	ng/L	90	70 - 130		 0.96	08/18/2015 06:45	08/18/2015 23:45	3301317
FS	SS-PFHxA-13C2	537	N/A	SG1-RB01-150807		46.3623	50.0	ng/L	97	70 - 130		 0.96	08/18/2015 06:45	08/18/2015 23:45	3301317
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB01-150807	<	90		ng/L				 0.96	08/18/2015 06:45	08/18/2015 23:45	3301317
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB01-150807	<	10		ng/L				 0.96	08/18/2015 06:45	08/18/2015 23:45	3301317
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB01-150807	<	30		ng/L				 0.96	08/18/2015 06:45	08/18/2015 23:45	3301317
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB01-150807	<	20		ng/L				 0.96	08/18/2015 06:45	08/18/2015 23:45	3301317
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB01-150807	<	40		ng/L				 0.96		08/18/2015 23:45	
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB01-150807	<	20		ng/L				 0.96	08/18/2015 06:45	08/18/2015 23:45	3301317
FS	IS-PFOA-13C2	537	N/A	SG1-FB01-150810		3159.05	2794.38	ng/L	113	70 - 140		 0.97	08/18/2015 06:45	08/19/2015 00:16	3301318
FS	IS-PFOS-13C4	537	N/A	SG1-FB01-150810		4485.56	4089.96	ng/L	110	70 - 140		 0.97	08/18/2015 06:45	08/19/2015 00:16	3301318
FS	SS-PFDA-13C2	537	N/A	SG1-FB01-150810		88.4014	100	ng/L	91	70 - 130		 0.97		08/19/2015 00:16	
FS	SS-PFHxA-13C2	537	N/A	SG1-FB01-150810		47.9550	50.0	ng/L	99	70 - 130		 0.97	08/18/2015 06:45	08/19/2015 00:16	3301318
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-FB01-150810	<	90		ng/L				 0.97	08/18/2015 06:45	08/19/2015 00:16	3301318
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-FB01-150810	<	10		ng/L				 0.97	08/18/2015 06:45	08/19/2015 00:16	3301318
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-FB01-150810	<	30		ng/L				 0.97		08/19/2015 00:16	
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-FB01-150810	<	20		ng/L				 0.97	08/18/2015 06:45	08/19/2015 00:16	3301318
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-FB01-150810	<	40		ng/L				 0.97		08/19/2015 00:16	
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-FB01-150810	<	20		ng/L				 0.97		08/19/2015 00:16	
FS	IS-PFOA-13C2	537	N/A	SG1-RB01-150810		3185.26	2794.38	ng/L	114	70 - 140		 0.99		08/19/2015 00:47	
FS	IS-PFOS-13C4	537	N/A	SG1-RB01-150810		4402.67	4089.96	ng/L	108	70 - 140		 0.99		08/19/2015 00:47	
FS	SS-PFDA-13C2	537	N/A	SG1-RB01-150810		88.5595	100	ng/L	89	70 - 130		 0.99		08/19/2015 00:47	
FS	SS-PFHxA-13C2	537	N/A	SG1-RB01-150810		46.6574	50.0	ng/L	94	70 - 130		 0.99		08/19/2015 00:47	
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB01-150810	<	90		ng/L				 0.99		08/19/2015 00:47	
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB01-150810	<	10		ng/L				 0.99		08/19/2015 00:47	
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB01-150810	<	30		ng/L				 0.99		08/19/2015 00:47	
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB01-150810	<	20		ng/L				 0.99		08/19/2015 00:47	
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB01-150810	<	40		ng/L				 0.99		08/19/2015 00:47	
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB01-150810	<	20		ng/L				 0.99		08/19/2015 00:47	
ССМ	IS-PFOA-13C2	537	N/A			3019.19	3019.19	ng/L	100	70 - 140		 1.0		08/19/2015 01:18	
ССМ	IS-PFOS-13C4	537	N/A			4119.97	4119.97	ng/L	100	70 - 140		 1.0		08/19/2015 01:18	
ССМ	SS-PFDA-13C2	537	N/A			101.2040	100	ng/L	101	70 - 130		 1.0		08/19/2015 01:18	
CCM	SS-PFHxA-13C2	537	N/A			51.1846	50.0	ng/L	101	70 - 130		 1.0		08/19/2015 01:18	
CCM	Perfluorobutanesulfonic acid (PFBS)	537	90			704.6730	675	ng/L	102	70 - 130		 1.0		08/19/2015 01:18	
CCM	Perfluoroheptanoic acid (PFHpA)	537	10			75.9843	75.0	ng/L	104	70 - 130		 1.0		08/19/2015 01:18	
CCM	Perfluorohexanesulfonic acid (PFHxS)	537	30			227.7280	225	ng/L	101	70 - 130		 1.0		08/19/2015 01:18	
	Perfluorononanoic acid (PFNA)	537	20			149.8760	150	ng/L	100	70 - 130		 1.0		08/19/2015 01:18	
MOD G	Perfluorooctane sulfonate (PFOS)	537	40			297.6560	300	ng/L	99	70 - 130		 1.0		08/19/2015 01:18	
	Perfluorooctanoic acid (PFOA)	537	20			150.8680	150	-	101	70 - 130		1.0		08/19/2015 01:18	
3 Of FS	IS-PFOA-13C2	537	20 N/A	 SG1-RB02-150810		3279.24	3019.19	ng/L	101	70 - 130		 0.98		08/19/2015 01:18	

EEA Run ID 206459 / EEA Report # 346703

					QC S	Summary Re	port (cont.)							
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	Dil Factor	Extracted	Analyzed	EEA ID #
FS	IS-PFOS-13C4	537	N/A	SG1-RB02-150810		4583.12	4119.97	ng/L	111	70 - 140		 0.98	08/18/2015 06:45	08/19/2015 02:19	3301320
FS	SS-PFDA-13C2	537	N/A	SG1-RB02-150810		94.7991	100	ng/L	97	70 - 130		 0.98	08/18/2015 06:45	08/19/2015 02:19	3301320
FS	SS-PFHxA-13C2	537	N/A	SG1-RB02-150810	11	49.7427	50.0	ng/L	102	70 - 130		 0.98	08/18/2015 06:45	08/19/2015 02:19	3301320
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB02-150810	<	90		ng/L				 0.98	08/18/2015 06:45	08/19/2015 02:19	3301320
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB02-150810	<	10		ng/L				 0.98	08/18/2015 06:45	08/19/2015 02:19	3301320
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB02-150810	<	30		ng/L				 0.98	08/18/2015 06:45	08/19/2015 02:19	3301320
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB02-150810	<	20		ng/L				 0.98	08/18/2015 06:45	08/19/2015 02:19	3301320
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB02-150810	<	40		ng/L				 0.98	08/18/2015 06:45	08/19/2015 02:19	3301320
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB02-150810	<	20		ng/L				 0.98	08/18/2015 06:45	08/19/2015 02:19	3301320
FS	IS-PFOA-13C2	537	N/A	SG1-RB03-150810	1	3216.36	3019.19	ng/L	107	70 - 140		 0.99	08/18/2015 06:45	08/19/2015 02:50	3301321
FS	IS-PFOS-13C4	537	N/A	SG1-RB03-150810		4436.41	4119.97	ng/L	108	70 - 140		 0.99		08/19/2015 02:50	
FS	SS-PFDA-13C2	537	N/A	SG1-RB03-150810		98.7243	100	ng/L	100	70 - 130		 0.99	08/18/2015 06:45	08/19/2015 02:50	3301321
FS	SS-PFHxA-13C2	537	N/A	SG1-RB03-150810		49.4912	50.0	ng/L	100	70 - 130		 0.99		08/19/2015 02:50	
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB03-150810	<	90		ng/L				 0.99	08/18/2015 06:45	08/19/2015 02:50	3301321
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB03-150810	<	10		ng/L				 0.99	08/18/2015 06:45	08/19/2015 02:50	3301321
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB03-150810	<	30		ng/L				 0.99	08/18/2015 06:45	08/19/2015 02:50	3301321
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB03-150810	<	20		ng/L				 0.99		08/19/2015 02:50	
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB03-150810	<	40		ng/L				 0.99		08/19/2015 02:50	
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB03-150810	<	20	_	ng/L				 0.99		08/19/2015 02:50	
FS	IS-PFOA-13C2	537	N/A	SG1-RB01-150811		3266.17	3019.19	ng/L	108	70 - 140		 1.02		08/19/2015 03:21	
FS	IS-PFOS-13C4	537	N/A	SG1-RB01-150811		4412.45	4119.97	ng/L	107	70 - 140		 1.02		08/19/2015 03:21	
FS	SS-PFDA-13C2	537	N/A	SG1-RB01-150811		94.2269	100	ng/L	92	70 - 130		 1.02		08/19/2015 03:21	
FS	SS-PFHxA-13C2	537	N/A	SG1-RB01-150811		51.1220	50.0	ng/L	100	70 - 130		 1.02		08/19/2015 03:21	
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB01-150811	<	90	00.0	ng/L				 1.02		08/19/2015 03:21	
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB01-150811	<	10		ng/L				 1.02		08/19/2015 03:21	
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB01-150811	<	30		ng/L				 1.02		08/19/2015 03:21	
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB01-150811	<	20		ng/L				 1.02		08/19/2015 03:21	
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB01-150811	<	40		ng/L				 1.02		08/19/2015 03:21	
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB01-150811	<	20		ng/L				 1.02		08/19/2015 03:21	
FS	IS-PFOA-13C2	537	N/A	SG1-RB02-150811		3453.18	3019.19	ng/L	114	70 - 140		 1.02		08/19/2015 03:52	
FS	IS-PFOS-13C4	537	N/A	SG1-RB02-150811		4735.23	4119.97	ng/L	115	70 - 140		 1.02		08/19/2015 03:52	
FS	SS-PFDA-13C2	537	N/A	SG1-RB02-150811		94.1744	100	ng/L	92	70 - 130		 1.02		08/19/2015 03:52	
FS	SS-PFHxA-13C2	537	N/A	SG1-RB02-150811		48.1354	50.0	ng/L	94	70 - 130		 1.02		08/19/2015 03:52	
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB02-150811	<	90	00.0	ng/L				 1.02		08/19/2015 03:52	
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB02-150811	<	10		ng/L				 1.02		08/19/2015 03:52	
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB02-150811	<	30		ng/L				 1.02		08/19/2015 03:52	
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB02-150811	<	20		ng/L				 1.02		08/19/2015 03:52	
	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB02-150811	、 、	40						1.02	08/18/2015 06:45		
မှ FS	, ,	537	20		<			ng/L				 1.02		08/19/2015 03:52	
age 1	Perfluorooctanoic acid (PFOA)			SG1-RB02-150811		20	2010.10	ng/L				 			
	IS-PFOA-13C2	537	N/A	SG1-RB03-150811		3323.45	3019.19	ng/L	110	70 - 140		 0.96		08/19/2015 04:23	
of FS	IS-PFOS-13C4	537	N/A	SG1-RB03-150811		4470.79	4119.97	ng/L	109	70 - 140		 0.96	08/18/2015 06:45	08/19/2015 04:23	3301324

					QC S	Summary Re	port (cont.)							
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	Dil Factor	Extracted	Analyzed	EEA ID #
FS	SS-PFDA-13C2	537	N/A	SG1-RB03-150811		88.4150	100	ng/L	92	70 - 130		 0.96	08/18/2015 06:45	08/19/2015 04:23	3301324
FS	SS-PFHxA-13C2	537	N/A	SG1-RB03-150811		46.3135	50.0	ng/L	96	70 - 130		 0.96	08/18/2015 06:45	08/19/2015 04:23	3301324
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB03-150811	<	90		ng/L				 0.96	08/18/2015 06:45	08/19/2015 04:23	3301324
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB03-150811	<	10		ng/L				 0.96	08/18/2015 06:45	08/19/2015 04:23	3301324
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB03-150811	<	30		ng/L				 0.96	08/18/2015 06:45	08/19/2015 04:23	3301324
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB03-150811	<	20		ng/L				 0.96	08/18/2015 06:45	08/19/2015 04:23	3301324
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB03-150811	<	40		ng/L				 0.96	08/18/2015 06:45	08/19/2015 04:23	3301324
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB03-150811	<	20		ng/L				 0.96	08/18/2015 06:45	08/19/2015 04:23	3301324
FS	IS-PFOA-13C2	537	N/A	SG1-RB01-150812		3263.22	3019.19	ng/L	108	70 - 140		 0.97	08/18/2015 06:45	08/19/2015 04:54	3301325
FS	IS-PFOS-13C4	537	N/A	SG1-RB01-150812		4592.10	4119.97	ng/L	111	70 - 140		 0.97	08/18/2015 06:45	08/19/2015 04:54	3301325
FS	SS-PFDA-13C2	537	N/A	SG1-RB01-150812		91.8197	100	ng/L	95	70 - 130		 0.97		08/19/2015 04:54	
FS	SS-PFHxA-13C2	537	N/A	SG1-RB01-150812		46.4646	50.0	ng/L	96	70 - 130		 0.97		08/19/2015 04:54	
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB01-150812	<	90		ng/L				 0.97		08/19/2015 04:54	
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB01-150812	<	10		ng/L				 0.97	08/18/2015 06:45	08/19/2015 04:54	3301325
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB01-150812	<	30		ng/L				 0.97		08/19/2015 04:54	
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB01-150812	<	20		ng/L				 0.97		08/19/2015 04:54	
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB01-150812	<	40		ng/L				 0.97		08/19/2015 04:54	
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB01-150812	<	20		ng/L				 0.97		08/19/2015 04:54	
FS	IS-PFOA-13C2	537	N/A	SG1-RB01-150813		3103.59	3019.19	ng/L	103	70 - 140		 0.97		08/19/2015 05:25	
FS	IS-PFOS-13C4	537	N/A	SG1-RB01-150813		4397.68	4119.97	ng/L	100	70 - 140		 0.97		08/19/2015 05:25	
FS	SS-PFDA-13C2	537	N/A	SG1-RB01-150813		91.1637	100	ng/L	94	70 - 130		 0.97		08/19/2015 05:25	
FS	SS-PFHxA-13C2	537	N/A	SG1-RB01-150813		47.9029	50.0	ng/L	99	70 - 130		 0.97		08/19/2015 05:25	
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB01-150813	<	90	00.0	ng/L				 0.97		08/19/2015 05:25	
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB01-150813	、 く	10		ng/L				 0.97		08/19/2015 05:25	
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB01-150813	<	30		ng/L				 0.97		08/19/2015 05:25	
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB01-150813	<	20		ng/L				 0.97		08/19/2015 05:25	
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB01-150813	<	40		ng/L				0.97		08/19/2015 05:25	
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB01-150813	、 く	20		ng/L				 0.97		08/19/2015 05:25	
FS	IS-PFOA-13C2	537	N/A	SG1-RB02-150813		3027.38	3019.19	ng/L	100	70 - 140		 1.01		08/19/2015 05:56	
FS	IS-PFOS-13C4	537	N/A	SG1-RB02-150813		4319.07	4119.97	ng/L	105	70 - 140		 1.01		08/19/2015 05:56	
FS	SS-PFDA-13C2	537	N/A	SG1-RB02-150813		95.7697	100	ng/L	95	70 - 140		 1.01		08/19/2015 05:56	
FS	SS-PFHxA-13C2	537	N/A	SG1-RB02-150813		51.0353	50.0	ng/L	101	70 - 130		 1.01		08/19/2015 05:56	
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB02-150813	<	90	50.0	ng/L				 1.01	08/18/2015 06:45		
FS		-		SG1-RB02-150813				-							
FS	Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS)	537	10		<	10		ng/L				 1.01	08/18/2015 06:45		
FS	Perfluorononanoic acid (PFNA)	537	30	SG1-RB02-150813 SG1-RB02-150813		30 20		ng/L				 1.01	08/18/2015 06:45 08/18/2015 06:45		
FS	Perfluorooctane sulfonate (PFOS)		20	SG1-RB02-150813 SG1-RB02-150813	<	40		ng/L				 1.01	08/18/2015 06:45		
		537	40	1				ng/L				 1.01			
Page	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB02-150813	<	20	2010.10	ng/L				 1.01	08/18/2015 06:45		
grs ers	IS-PFOA-13C2	537	N/A	SG1-RB03-150813		3213.67	3019.19	ng/L	106	70 - 140		 0.95	08/18/2015 06:45		
<u>→ ^{FS}</u>	IS-PF0S-13C4	537	N/A	SG1-RB03-150813		4472.90	4119.97	ng/L	109	70 - 140		 0.95		08/19/2015 06:27	
ហ្ _{FS}	SS-PFDA-13C2	537	N/A	SG1-RB03-150813		80.3936	100	ng/L	85	70 - 130		 0.95	08/18/2015 06:45	08/19/2015 06:27	3301328

					QC S	Summary Rep	oort (cont.)							
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	 Dil Factor	Extracted	Analyzed	EEA ID #
FS	SS-PFHxA-13C2	537	N/A	SG1-RB03-150813		38.6814	50.0	ng/L	81	70 - 130		 0.95	08/18/2015 06:45	08/19/2015 06:27	3301328
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB03-150813	<	90		ng/L				 0.95	08/18/2015 06:45	08/19/2015 06:27	3301328
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB03-150813	<	10		ng/L				 0.95	08/18/2015 06:45	08/19/2015 06:27	3301328
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB03-150813	<	30		ng/L				 0.95	08/18/2015 06:45	08/19/2015 06:27	3301328
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB03-150813	<	20		ng/L				 0.95	08/18/2015 06:45	08/19/2015 06:27	3301328
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB03-150813	<	40		ng/L				 0.95	08/18/2015 06:45	08/19/2015 06:27	3301328
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB03-150813	<	20		ng/L				 0.95	08/18/2015 06:45	08/19/2015 06:27	3301328
ССН	IS-PFOA-13C2	537	N/A			2831.18	2831.18	ng/L	100	70 - 140		 1.0	08/17/2015 10:40	08/19/2015 06:58	3302237
ССН	IS-PFOS-13C4	537	N/A			3977.45	3977.45	ng/L	100	70 - 140		 1.0	08/17/2015 10:40	08/19/2015 06:58	3302237
ССН	SS-PFDA-13C2	537	N/A			94.7125	100	ng/L	95	70 - 130		 1.0	08/17/2015 10:40	08/19/2015 06:58	3302237
ССН	SS-PFHxA-13C2	537	N/A			50.8567	50.0	ng/L	102	70 - 130		 1.0	08/17/2015 10:40	08/19/2015 06:58	3302237
ССН	Perfluorobutanesulfonic acid (PFBS)	537	90			1141.0100	1125	ng/L	101	70 - 130		 1.0	08/17/2015 10:40	08/19/2015 06:58	3302237
ССН	Perfluoroheptanoic acid (PFHpA)	537	10			123.5540	125	ng/L	99	70 - 130		 1.0	08/17/2015 10:40	08/19/2015 06:58	3302237
ССН	Perfluorohexanesulfonic acid (PFHxS)	537	30			368.9330	375	ng/L	98	70 - 130		 1.0	08/17/2015 10:40	08/19/2015 06:58	3302237
ССН	Perfluorononanoic acid (PFNA)	537	20			248.8910	250	ng/L	100	70 - 130		 1.0	08/17/2015 10:40	08/19/2015 06:58	3302237
ССН	Perfluorooctane sulfonate (PFOS)	537	40			483.9230	500	ng/L	97	70 - 130		 1.0	08/17/2015 10:40	08/19/2015 06:58	3302237
ССН	Perfluorooctanoic acid (PFOA)	537	20			242.9730	250	ng/L	97	70 - 130		 1.0	08/17/2015 10:40	08/19/2015 06:58	3302237

		Sample Type Key		
Type (Abbr.)	Sample Type	<u>Type (Abbr.)</u>	Sample Type	
CCH	Continuing Calibration High			
CCL	Continuing Calibration Low			
CCM	Continuing Calibration Mid			
FS	Field Sample			
FTB	Field Trip Blank			
FBL	Fortified Blank Low			
LRB	Laboratory Reagent Blank			

Your Project #: 02-37128B(RE) 15-5133 (CTM) Site Location: SGPP HOOSICK FALLS Your C.O.C. #: 524261-01-01, N/A

Attention: Jason Wilkinson/ Kirk Moline Ramboll Environ 3 Carlisle Rd.

3 Carlisle Rd. Westford, MA USA 01886

> Report Date: 2015/09/10 Report #: R3656817 Version: 3R

CERTIFICATE OF ANALYSIS - REVISED REPORT

MAXXAM JOB #: B5F6982 Received: 2015/08/14, 14:25

Sample Matrix: Soil # Samples Received: 23

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Moisture	5	N/A	2015/08/17 CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture	6	N/A	2015/08/18 CAM SOP-00445	Carter 2nd ed 51.2 m
PFOS and PFOA in soil	5	2015/08/26	2015/08/28 CAM SOP-00894	EPA537 m
PFOS and PFOA in soil	6	2015/08/27	2015/08/28 CAM SOP-00894	EPA537 m
Total Organic Carbon in Soil	5	N/A	2015/08/19 CAM SOP-00468	LECO 203-601-224
Total Organic Carbon in Soil	7	N/A	2015/08/21 CAM SOP-00468	LECO 203-601-224

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Melissa DiGrazia, Project Manager - ATUT Email: MDiGrazia@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics Inc. is a NELAC accredited laboratory. Certificate # CANA001. Use of the NELAC logo however does not insure that Maxxam is accredited for all of the methods indicated. This certificate shall not be reproduced except in full, without the written approval of Maxxam Analytics Inc. Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section.

Total cover pages: 1

Page 1 of 14

Ramboll Environ Client Project #: 02-37128B(RE) 15-5133 (CTM) Site Location: SGPP HOOSICK FALLS Sampler Initials: JD

RESULTS OF ANALYSES OF SOIL

Maxxam ID		ATN765		ATN766	ATN767			
Sampling Date		2015/08/05		2015/08/05	2015/08/05			
		08:25		08:30	12:30			
COC Number		524261-01-01		524261-01-01	524261-01-01			
	Units	SG1-MW04S-00.0	RDL	SG1-MW04S-02.0	SG1-MW04S-15.0	RDL	MDL	QC Batch
	1			1	1			
Moisture	%	22	1.0	25	N/A	1.0	0.50	4151642
Total Organic Carbon	mg/kg	N/A	N/A	N/A	1300	500	100	4152610
Perfluorobutane Sulfonate (PFBS)	ug/kg	0.039	1	<0.014	N/A	0.1	0.014	4167364
Perfluoroheptanoic Acid (PFHpA)	ug/kg	0.17	1	0.080	N/A	0.1	0.015	4167364
Perfluorohexane Sulfonate (PFHxS)	ug/kg	0.15	1	<0.015	N/A	0.1	0.015	4167364
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	4.1	1	1.8	N/A	0.1	0.023	4167364
Perfluorononanoic Acid (PFNA)	ug/kg	0.14	1	0.07	N/A	0.1	0.01	4167364
Perfluorooctane Sulfonate (PFOS)	ug/kg	0.63	1	0.28	N/A	0.1	0.015	4167364

N/A = Not Applicable

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam ID		ATN768	ATN769	ATN770	ATN771			
Sampling Date		2015/08/05	2015/08/05	2015/08/05	2015/08/05			
		12:35	12:40	14:45	15:00			
COC Number		524261-01-01	524261-01-01	524261-01-01	524261-01-01			
	Units	SG1-MW04S-21.0	SG1-MW04S-24.0	SG1-DS01-150805	SG1-MW02D-00.0	RDL	MDL	QC Batch
Moisture	%	N/A	N/A	11	11	1.0	0.50	4151642
Total Organic Carbon	mg/kg	1900	2200	N/A	N/A	500	100	4152610
Perfluorobutane Sulfonate (PFBS)	ug/kg	N/A	N/A	<0.014	<0.014	0.1	0.014	4167364
Perfluoroheptanoic Acid (PFHpA)	ug/kg	N/A	N/A	<0.015	<0.015	0.1	0.015	4167364
Perfluorohexane Sulfonate (PFHxS)	ug/kg	N/A	N/A	<0.015	<0.015	0.1	0.015	4167364
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	N/A	N/A	1.5	1.3	0.1	0.023	4167364
Perfluorononanoic Acid (PFNA)	ug/kg	N/A	N/A	0.02	0.01	0.1	0.01	4167364
Perfluorooctane Sulfonate (PFOS)	ug/kg	N/A	N/A	0.035	0.028	0.1	0.015	4167364

N/A = Not Applicable RDL = Reportable Detection Limit

Ramboll Environ Client Project #: 02-37128B(RE) 15-5133 (CTM) Site Location: SGPP HOOSICK FALLS Sampler Initials: JD

RESULTS OF ANALYSES OF SOIL

Maxxam ID		ATN772	ATN772	ATN773	ATN774			
Sampling Date		2015/08/05	2015/08/05	2015/08/06	2015/08/06			
		15:10	15:10	12:30	12:55			
COC Number		524261-01-01	524261-01-01	524261-01-01	524261-01-01			
	Units	SG1-MW02D-02.0	SG1-MW02D-02.0	SG1-MW02D-42.0	SG1-MW02D-24.0	RDL	MDL	QC Batch
			Lab-Dup					
Moisture	%	11	N/A	N/A	N/A	1.0	0.50	4151642
Total Organic Carbon	mg/kg	N/A	N/A	<500	1100	500	100	4152610
Perfluorobutane Sulfonate (PFBS)	ug/kg	<0.014	<0.014	N/A	N/A	0.1	0.014	4167364
Perfluoroheptanoic Acid (PFHpA)	ug/kg	<0.015	<0.015	N/A	N/A	0.1	0.015	4167364
Perfluorohexane Sulfonate (PFHxS)	ug/kg	<0.015	<0.015	N/A	N/A	0.1	0.015	4167364
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	0.35	0.41	N/A	N/A	0.1	0.023	4167364
Perfluorononanoic Acid (PFNA)	ug/kg	<0.01	<0.01	N/A	N/A	0.1	0.01	4167364
Perfluorooctane Sulfonate (PFOS)	ug/kg	<0.015	<0.015	N/A	N/A	0.1	0.015	4167364

N/A = Not Applicable RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		AUP457	AUP458	AUP459	AUP459			
Sampling Date		2015/08/10	2015/08/10	2015/08/10	2015/08/10			
		13:10	13:15	15:50	15:50			
COC Number		N/A	N/A	N/A	N/A			
	Units	SG1-MW01D-00.0	SG1-MW01D-02.0	SG1-MW01D-13.0	SG1-MW01D-13.0	RDL	MDL	QC Batch
					Lab-Dup			
Moisture	%	11	9.6	N/A	N/A	1.0	0.50	4153056
Total Organic Carbon	mg/kg	N/A	N/A	2400	2500	500	100	4156837
Perfluorobutane Sulfonate (PFBS)	ug/kg	<0.014	<0.014	N/A	N/A	0.1	0.014	4167364
Perfluoroheptanoic Acid (PFHpA)	ug/kg	<0.015	<0.015	N/A	N/A	0.1	0.015	4167364
Perfluorohexane Sulfonate (PFHxS)	ug/kg	<0.015	<0.015	N/A	N/A	0.1	0.015	4167364
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	1.0	2.4	N/A	N/A	0.1	0.023	4167364
Perfluorononanoic Acid (PFNA)	ug/kg	<0.01	<0.01	N/A	N/A	0.1	0.01	4167364
Perfluorooctane Sulfonate (PFOS)	ug/kg	<0.015	<0.015	N/A	N/A	0.1	0.015	4167364

N/A = Not Applicable RDL = Reportable Detection Limit

Ramboll Environ Client Project #: 02-37128B(RE) 15-5133 (CTM) Site Location: SGPP HOOSICK FALLS Sampler Initials: JD

RESULTS OF ANALYSES OF SOIL

Maxxam ID		AUP460			AUP461			
Sampling Date		2015/08/11			2015/08/11			
		09:30			12:10			
COC Number		N/A			N/A			
	Units	SG1-MW01S-06.0	RDL	MDL	SG1-MW05S-00.0	RDL	MDL	QC Batch
		1	-	-	1			r
Moisture	%	N/A	1.0	0.50	12	1.0	0.50	4153056
Total Organic Carbon	mg/kg	2000	500	100	N/A	500	100	4156837
Perfluorobutane Sulfonate (PFBS)	ug/kg	N/A	0.1	0.014	<0.14	1	0.14	4167364
Perfluoroheptanoic Acid (PFHpA)	ug/kg	N/A	0.1	0.015	<0.15	1	0.15	4167364
Perfluorohexane Sulfonate (PFHxS)	ug/kg	N/A	0.1	0.015	<0.15	1	0.15	4167364
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	N/A	0.1	0.023	1.4	1	0.23	4167364
Perfluorononanoic Acid (PFNA)	ug/kg	N/A	0.1	0.01	<0.1	1	0.1	4167364
Perfluorooctane Sulfonate (PFOS)	ug/kg	N/A	0.1	0.015	0.25	1	0.15	4167364

QC Batch = Quality Control Batch

Maxxam ID		AUP462	AUP463	AUP464	AUP465			
Sampling Date		2015/08/11	2015/08/11	2015/08/10	2015/08/12			
		12:12	13:00	09:10	12:00			
COC Number		N/A	N/A	N/A	N/A			
	Units	SG1-MW05S-02.0	SG1-MW05S-17.0	SG1-MW02S-12.0	SG1-MW01D-23.0	RDL	MDL	QC Batch
				-				
Moisture	%	15	N/A	N/A	N/A	1.0	0.50	4153056
Total Organic Carbon	mg/kg	N/A	1600	930	4700	500	100	4156837
Perfluorobutane Sulfonate (PFBS)	ug/kg	<0.014	N/A	N/A	N/A	0.1	0.014	4167364
Perfluoroheptanoic Acid (PFHpA)	ug/kg	0.038	N/A	N/A	N/A	0.1	0.015	4167364
Perfluorohexane Sulfonate (PFHxS)	ug/kg	<0.015	N/A	N/A	N/A	0.1	0.015	4167364
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	1.2	N/A	N/A	N/A	0.1	0.023	4167364
Perfluorononanoic Acid (PFNA)	ug/kg	0.06	N/A	N/A	N/A	0.1	0.01	4167364
Perfluorooctane Sulfonate (PFOS)	ug/kg	0.099	N/A	N/A	N/A	0.1	0.015	4167364

N/A = Not Applicable RDL = Reportable Detection Limit

Ramboll Environ Client Project #: 02-37128B(RE) 15-5133 (CTM) Site Location: SGPP HOOSICK FALLS Sampler Initials: JD

RESULTS OF ANALYSES OF SOIL

Maxxam ID		AUP466	AUP467	AUP468	AUP469			
Sampling Date		2015/08/12	2015/08/13	2015/08/13	2015/08/13			
		13:00	08:40	08:42	10:20			
COC Number		N/A	N/A	N/A	N/A			
	Units	SG1-DS01-150812	SG1-MW03S-00.0	SG1-MW03S-02.0	SG1-MW03S-13.0	RDL	MDL	QC Batch
		-			-		-	
Moisture	%	N/A	14	16	N/A	1.0	0.50	4153056
Total Organic Carbon	mg/kg	4300	N/A	N/A	1100	500	100	4156837
Perfluorobutane Sulfonate (PFBS)	ug/kg	N/A	<0.014	<0.014	N/A	0.1	0.014	4167364
Perfluoroheptanoic Acid (PFHpA)	ug/kg	N/A	0.11	<0.015	N/A	0.1	0.015	4167364
Perfluorohexane Sulfonate (PFHxS)	ug/kg	N/A	<0.015	<0.015	N/A	0.1	0.015	4167364
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	N/A	2.5	0.67	N/A	0.1	0.023	4167364
Perfluorononanoic Acid (PFNA)	ug/kg	N/A	0.11	0.03	N/A	0.1	0.01	4167364
Perfluorooctane Sulfonate (PFOS)	ug/kg	N/A	0.19	0.018	N/A	0.1	0.015	4167364
			•	•				

N/A = Not Applicable

RDL = Reportable Detection Limit

Maxxam ID		AUP469			
Sampling Date		2015/08/13			
		10:20			
COC Number		N/A			
	Units	SG1-MW03S-13.0	RDL	MDL	QC Batch
		Lab-Dup			
	-				
Total Organic Carbon	mg/kg	1900	500	100	4156837

Ramboll Environ Client Project #: 02-37128B(RE) 15-5133 (CTM) Site Location: SGPP HOOSICK FALLS Sampler Initials: JD

Maxxam ID Sample ID Matrix	SG1-MW04S-00.0					Collected 2015/08/05 Shipped 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Moisture		BAL	4151642	N/A	2015/08/17	Shivani Desai
PFOS and PFOA	in soil	LCMS	4167364	2015/08/26	2015/08/28	Colm McNamara
			4107304	2013/00/20	2010/00/20	
Maxxam ID	ATN766					Collected 2015/08/05
	SG1-MW04S-02.0					Shipped
Matrix						Received 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Moisture		BAL	4151642	N/A	2015/08/17	Shivani Desai
PFOS and PFOA	in soil	LCMS	4167364	2015/08/26	2015/08/28	Colm McNamara
Maxxam ID Sample ID	ATN767 SG1-MW04S-15.0					Collected 2015/08/05 Shipped
Matrix						Received 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Organic Car	bon in Soil	COMB	4152610	N/A	2015/08/19	Birenkumar Patel
Maxxam ID Sample ID Matrix	SG1-MW04S-21.0					Collected 2015/08/05 Shipped 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Organic Car	bon in Soil	COMB	4152610	N/A	2015/08/19	Birenkumar Patel
Maxxam ID Sample ID Matrix	SG1-MW04S-24.0					Collected 2015/08/05 Shipped 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Organic Carl	hon in Soil	COMB	4152610	N/A	2015/08/19	Birenkumar Patel
			1102010		2010/00/10	
Maxxam ID						Collected 2015/08/05
	SG1-DS01-150805					Shipped
Matrix	Soil					Received 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Moisture		BAL	4151642	N/A	2015/08/17	Shivani Desai
PFOS and PFOA	in soil	LCMS	4167364	2015/08/26	2015/08/28	Colm McNamara

Ramboll Environ Client Project #: 02-37128B(RE) 15-5133 (CTM) Site Location: SGPP HOOSICK FALLS Sampler Initials: JD

Maxxam ID Sample ID Matrix	SG1-MW02D-00.0					Collected 2015/08/05 Shipped 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Moisture		BAL	4151642	N/A	2015/08/17	Shivani Desai
PFOS and PFOA i	in soil	LCMS	4167364	2015/08/26	2015/08/28	Colm McNamara
Maxxam ID Sample ID Matrix	SG1-MW02D-02.0					Collected 2015/08/05 Shipped 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Moisture		BAL	4151642	N/A	2015/08/17	Shivani Desai
PFOS and PFOA i	in soil	LCMS	4167364	2015/08/26	2015/08/28	Colm McNamara
		LOMO	4107304	2013/00/20	2013/00/20	
	ATN772 Dup SG1-MW02D-02.0					Collected 2015/08/05
Matrix						Shipped Received 2015/08/14
Matrix	5011					Received 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
PFOS and PFOA i	in soil	LCMS	4167364	2015/08/27	2015/08/28	Colm McNamara
Maxxam ID Sample ID Matrix	SG1-MW02D-42.0					Collected 2015/08/06 Shipped 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Organic Carl	oon in Soil	COMB	4152610	N/A	2015/08/19	Birenkumar Patel
Maxxam ID Sample ID Matrix	SG1-MW02D-24.0					Collected 2015/08/06 Shipped 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Organic Carl	oon in Soil	COMB	4152610	N/A	2015/08/19	Birenkumar Patel
Maxxam ID Sample ID Matrix	SG1-MW01D-00.0					Collected 2015/08/10 Shipped 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Test Description Moisture		Instrumentation BAL	Batch 4153056	Extracted N/A	Analyzed 2015/08/18	Analyst Valentina Kaftani

Ramboll Environ Client Project #: 02-37128B(RE) 15-5133 (CTM) Site Location: SGPP HOOSICK FALLS Sampler Initials: JD

Matrix Soli Received 2015/08/14 Moisture BAL 4153056 N/A 2015/08/14 Analyst Moisture BAL 4153056 N/A 2015/08/18 Collected 2015/08/17 Maxxam ID AUP459 Sample ID SG1-MW01D-13.0 Shipped Received 2015/08/17 Maxxam ID AUP459 Sample ID SG1-MW01D-13.0 Shipped Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Analyzed Analyzed Maxxam ID AUP459 Collected 2015/08/14 Extracted Analyzed Analyzed Maxxam ID AUP459 Dup Collected 2015/08/14 Extracted Analyzed Analyzed </th <th>Maxxam ID Sample ID</th> <th>AUP458 SG1-MW01D-02.0</th> <th></th> <th></th> <th></th> <th></th> <th>Collected 2015/08/10 Shipped</th>	Maxxam ID Sample ID	AUP458 SG1-MW01D-02.0					Collected 2015/08/10 Shipped
Molecular BAL 4153056 N/A 2015/08/18 Valentina Kattani PFOS and PFOA in soil LCMS 4167364 2015/08/27 2015/08/28 Collm McNamara Maxxam ID AUP459 Collected 2015/08/14 Collected 2015/08/14 Test Description Instrumentation Batch Extracted Analyst Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/14 Maxxam ID AUP459 Dup Collected 2015/08/10 Shipped Maxxam ID AUP459 Dup Collected 2015/08/14 Extracted Maxxam ID AUP459 Dup Collected 2015/08/14 Extracted Maxxin ID AUP459 Dup Collected 2015/08/14 Extracted Maxxin ID AUP460 Collected 2015/08/14 Extracted Maxxam ID AUP460 Collected 2015/08/11 Shipped Sample ID SG1-MW015-06.0 Shipped Received 2015/08/14 Maxxam ID AUP460 Collected 2015/08/11 Shipped Sample ID SG1-MW015-06.0 Shipped Received 2015/08/14 Maxxam ID AUP461 Collected 2015/08/14 Extracted Analy	•						
PFOS and PFOA in soil LCMS 4167364 2015/08/27 2015/08/28 Colm MeNamara Maxxam ID Matrix AUP459 Soil Soil Collected 2015/08/10 Shipped Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Analyst Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/14 Birenkumar Patel Maxxam ID Sample ID SG1-MW01D-13.0 Collected 2015/08/14 Birenkumar Patel Maxxam ID AUP459 Dup Sample ID SG1-MW01D-13.0 Collected 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Analyst Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/14 Extracted Maxxam ID AUP460 Collected 2015/08/11 Shipped Matrix Soil Collected 2015/08/14 Extracted Analyzet Matrix Soil Collected 2015/08/14 Extracted Analyzet Maxam ID AUP461 Collected 2015/08/14 Extracted Analyzet Maxxam ID AUP461 Collected 2015/08/14 Extracted Analyzet Matrix	Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
PFOS and PFOA in soil LCMS 4167364 2015/08/27 2015/08/28 Colm MeNamara Maxxam ID Matrix AUP459 Soil Soil Collected 2015/08/10 Shipped Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Analyst Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/14 Birenkumar Patel Maxxam ID Sample ID SG1-MW01D-13.0 Collected 2015/08/14 Birenkumar Patel Maxxam ID AUP459 Dup Sample ID SG1-MW01D-13.0 Collected 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Analyst Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/14 Extracted Maxxam ID AUP460 Collected 2015/08/11 Shipped Matrix Soil Collected 2015/08/14 Extracted Analyzet Matrix Soil Collected 2015/08/14 Extracted Analyzet Maxam ID AUP461 Collected 2015/08/14 Extracted Analyzet Maxxam ID AUP461 Collected 2015/08/14 Extracted Analyzet Matrix	Moisture		BAL	4153056	N/A		
Sample ID SG1-MW01D-13.0 Matrix Shipped Received Shipped Received Shipped Received Test Description Instrumentation Batch Extracted Analyst Maxxam ID AUP459 Dup Sample ID SG1-MW01D-13.0 Birenkumar Patel Maxxam ID AUP459 Dup Sample ID SG1-MW01D-13.0 Collected 2015/08/10 Matrix Soil COMB 4156837 N/A 2015/08/21 Birenkumar Patel Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/21 Birenkumar Patel Maxxam ID AUP460 Sample ID SG1-MW01S-06.0 Extracted Analyst Collected 2015/08/11 Maxxam ID AUP460 Sample ID SG1-MW01S-06.0 Shipped Matrix Soil Collected 2015/08/14 Test Description Instrumentation Batch Extracted Analyst Collected 2015/08/14 Test Description Instrumentation Batch Extracted Analyst Collected 2015/08/14 Maxxam ID AUP461 Sample ID SG1-MW05S-00.0 Shipped Matrix Shipped Analyst Collected 2015/08/14	PFOS and PFOA	in soil	LCMS	4167364	2015/08/27	2015/08/28	
Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/21 Birenkumar Patel Maxxam ID AUP459 Dup Sample ID SG1-MW01D-13.0 Shipped Received 2015/08/10 Matrix Soil Instrumentation Batch Extracted Analyzed Analyst Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/21 Birenkumar Patel Maxxam ID AUP460 Sample ID SG1-MW01S-06.0 Collected 2015/08/21 Birenkumar Patel Maxxam ID AUP460 Sample ID SG1-MW01S-06.0 Collected 2015/08/11 Shipped Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Analyst Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/21 Birenkumar Patel Maxxam ID AUP461 Sample ID SG1-MW05S-00.0 Batch Extracted Analyzed Analyst Moisture BAL 4153056 N/A 2015/08/14 Shipped Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed <td< th=""><th>Sample ID</th><th>SG1-MW01D-13.0</th><th></th><th></th><th></th><th></th><th>Shipped</th></td<>	Sample ID	SG1-MW01D-13.0					Shipped
Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/21 Birenkumar Patel Maxxam ID AUP459 Dup Sample ID SG1-MW01D-13.0 Shipped Received 2015/08/10 Matrix Soil Instrumentation Batch Extracted Analyzed Analyst Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/21 Birenkumar Patel Maxxam ID AUP460 Sample ID SG1-MW01S-06.0 Collected 2015/08/21 Birenkumar Patel Maxxam ID AUP460 Sample ID SG1-MW01S-06.0 Collected 2015/08/11 Shipped Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Analyst Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/21 Birenkumar Patel Maxxam ID AUP461 Sample ID SG1-MW05S-00.0 Batch Extracted Analyzed Analyst Moisture BAL 4153056 N/A 2015/08/14 Shipped Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed <td< td=""><td>Test Description</td><td></td><td>Instrumentation</td><td>Batch</td><td>Extracted</td><td>Analyzed</td><td>Analyst</td></td<>	Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Maxxam ID AUP459 Dup Matrix Collected Soll 2015/08/10 Shipped Received Test Description Instrumentation Batch Extracted Analyzed Analyst Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/14 Shipped Maxxam ID AUP460 Collected 2015/08/14 Shipped Sample ID SG1-MW01S-06.0 Shipped Shipped Matrix Soil COMB 4156837 N/A 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Analyst Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/21 Birenkumar Patel Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/21 Birenkumar Patel Maxxam ID AUP461 Somple D SG1-MW05S-00.0 Shipped Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Analyst Moisture BAL 4153056 N/A 2015/08/18 Valentina Kaftani PFOS and PFOA in soi							
Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/21 Birenkumar Patel Maxxam ID AUP460 Sample ID SG1-MW01S-06.0 Shipped Received 2015/08/11 Matrix Soil Instrumentation Batch Extracted Analyzed Analyst Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/14 Einenkumar Patel Maxxam ID AUP461 Sample ID SG1-MW05S-00.0 Shipped Received 2015/08/11 Sample ID SG1-MW05S-00.0 Matrix Soil Collected 2015/08/11 Masxam ID AUP461 Sample ID SG1-MW05S-00.0 Shipped Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyst Matrix Moisture BAL 415056 N/A 2015/08/18 Valentina Kaftani PPOS and PFOA in soil LCMS 4167364 2015/08/27 2015/08/28 Collected 2015/08/11 Shipped Sample ID SG1-MW05S-02.0 Matrix Soil Shipped Received 2015/08/14	Sample ID	SG1-MW01D-13.0					Shipped
Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/21 Birenkumar Patel Maxxam ID AUP460 Sample ID SG1-MW01S-06.0 Shipped Received 2015/08/11 Matrix Soil Instrumentation Batch Extracted Analyzed Analyst Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/14 Einenkumar Patel Maxxam ID AUP461 Sample ID SG1-MW05S-00.0 Shipped Received 2015/08/11 Sample ID SG1-MW05S-00.0 Matrix Soil Collected 2015/08/11 Masxam ID AUP461 Sample ID SG1-MW05S-00.0 Shipped Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyst Matrix Moisture BAL 415056 N/A 2015/08/18 Valentina Kaftani PPOS and PFOA in soil LCMS 4167364 2015/08/27 2015/08/28 Collected 2015/08/11 Shipped Sample ID SG1-MW05S-02.0 Matrix Soil Shipped Received 2015/08/14	Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Maxxam ID AUP460 Collected 2015/08/11 Sample ID SG1-MW01S-06.0 Shipped Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Analyst Total Organic Carbon in Soil COMB 4156837 N/A 2015/08/21 Birenkumar Patel Maxxam ID AUP461 Collected 2015/08/21 Birenkumar Patel Shipped Maxxam ID SG1-MW05S-00.0 Shipped Shipped Received 2015/08/11 Matrix Soil Soil Collected 2015/08/14 Shipped Moisture BAL 4153056 N/A 2015/08/18 Valentina Kaftani PFOS and PFOA in soil LCMS 4167364 2015/08/27 2015/08/28 Collected 2015/08/11 Sample ID SG1-MW05S-02.0 Shipped Shipped Received 2015/08/14 Maxxam ID AUP462 Soil Collected 2015/08/14 Shipped Matrix Soil BAL 4167364 2015/08/27 2015/08/28 Collected 2015/08/14		bon in Soil					
Total Organic Carbon in SoilCOMB4156837N/A2015/08/21Birenkumar PatelMaxxam IDAUP461Collected2015/08/11ShippedSample IDSG1-MW05S-00.0ShippedReceived2015/08/14MatrixSoilInstrumentationBatchExtractedAnalyzedAnalystMoistureBAL4153056N/A2015/08/18ValentinaKaftaniPFOS and PFOA in soilLCMS41673642015/08/272015/08/28Collected2015/08/11Maxxam IDAUP462Collected2015/08/272015/08/28Collected2015/08/11MatrixSoilSG1-MW05S-02.0ShippedReceived2015/08/14MatrixSoilInstrumentationBatchExtractedAnalyzedAnalystTest DescriptionInstrumentationBatchExtractedAnalyzedAnalystMoistureBAL4153056N/A2015/08/18Valentina Kaftani	Sample ID	SG1-MW01S-06.0					Shipped
Maxxam ID AUP461 Sample ID Collected 2015/08/11 Matrix Soil Shipped Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Analyst Moisture BAL 4153056 N/A 2015/08/18 Valentina Kaftani PFOS and PFOA in soil LCMS 4167364 2015/08/27 2015/08/28 Colm McNamara Maxxam ID AUP462 Sample ID SG1-MW05S-02.0 Shipped Received 2015/08/11 Matrix Soil Instrumentation Batch Extracted Analyzet 2015/08/14 Test Description Instrumentation Batch Extracted Analyzet Analyst Moisture BAL 4153056 N/A 2015/08/18 Valentina Kaftani	Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Maxxam ID AUP461 Sample ID Collected 2015/08/11 Matrix Soil Shipped Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Analyst Moisture BAL 4153056 N/A 2015/08/18 Valentina Kaftani PFOS and PFOA in soil LCMS 4167364 2015/08/27 2015/08/28 Colm McNamara Maxxam ID AUP462 Sample ID SG1-MW05S-02.0 Shipped Received 2015/08/11 Matrix Soil Instrumentation Batch Extracted Analyzet 2015/08/14 Test Description Instrumentation Batch Extracted Analyzet Analyst Moisture BAL 4153056 N/A 2015/08/18 Valentina Kaftani	Total Organic Car	bon in Soil	COMB	4156837	N/A		
Moisture BAL 4153056 N/A 2015/08/18 Valentina Kaftani PFOS and PFOA in soil LCMS 4167364 2015/08/27 2015/08/28 Colm McNamara Maxxam ID AUP462 Collected 2015/08/11 Shipped Sample ID SG1-MW05S-02.0 Shipped Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Analyst Moisture BAL 4153056 N/A 2015/08/18 Valentina Kaftani	Sample ID Matrix	SG1-MW05S-00.0 Soil	ka tu ma ta ti an	Datah	Future to d	Ameliand	Shipped Received 2015/08/14
PFOS and PFOA in soil LCMS 4167364 2015/08/27 2015/08/28 Colm McNamara Maxxam ID AUP462 Collected 2015/08/11 Sample ID SG1-MW05S-02.0 Shipped Matrix Soil Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Moisture BAL 4153056 N/A 2015/08/18 Valentina							
Maxxam ID AUP462 Collected 2015/08/11 Sample ID SG1-MW05S-02.0 Shipped Matrix Soil Received 2015/08/14 Test Description Instrumentation Batch Extracted Analyzed Analyst Moisture BAL 4153056 N/A 2015/08/18 Valentina Kaftani		in soil					
Moisture BAL 4153056 N/A 2015/08/18 Valentina Kaftani	Maxxam ID Sample ID	AUP462 SG1-MW05S-02.0			2010/00/21	2010/00/20	Collected 2015/08/11 Shipped
Moisture BAL 4153056 N/A 2015/08/18 Valentina Kaftani	Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
PFOS and PFOA in soil LCMS 4167364 2015/08/27 2015/08/28 Colm McNamara							
	PFOS and PFOA	in soil	LCMS	4167364	2015/08/27	2015/08/28	Colm McNamara

Ramboll Environ Client Project #: 02-37128B(RE) 15-5133 (CTM) Site Location: SGPP HOOSICK FALLS Sampler Initials: JD

Maxxam ID Sample ID Matrix	SG1-MW05S-17.0					Collected 2015/08/11 Shipped Received 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Organic Car	bon in Soil	COMB	4156837	N/A	2015/08/21	Birenkumar Patel
Maxxam ID Sample ID Matrix	SG1-MW02S-12.0					Collected 2015/08/10 Shipped 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Organic Car	bon in Soil	COMB	4156837	N/A	2015/08/21	Birenkumar Patel
Maxxam ID Sample ID Matrix	SG1-MW01D-23.0					Collected 2015/08/12 Shipped 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Organic Car		COMB	4156837	N/A	2015/08/21	Birenkumar Patel
Maxxam ID Sample ID Matrix	SG1-DS01-150812					Collected 2015/08/12 Shipped 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Organic Car	bon in Soil	COMB	4156837	N/A	2015/08/21	Birenkumar Patel
Maxxam ID Sample ID Matrix	SG1-MW03S-00.0					Collected 2015/08/13 Shipped 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Moisture		BAL	4153056	N/A	2015/08/18	Valentina Kaftani
PFOS and PFOA	in soil	LCMS	4167364	2015/08/27	2015/08/28	Colm McNamara
Matrix	SG1-MW03S-02.0 Soil					Collected 2015/08/13 Shipped Received 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Moisture	in coil	BAL LCMS	4153056	N/A	2015/08/18	Valentina Kaftani
PFOS and PFOA	IN SOIL		4167364	2015/08/27	2015/08/28	Colm McNamara

Ramboll Environ Client Project #: 02-37128B(RE) 15-5133 (CTM) Site Location: SGPP HOOSICK FALLS Sampler Initials: JD

Maxxam ID Al Sample ID So Matrix So	G1-MW03S-13.0					Shipped	2015/08/13 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst	
Total Organic Carbor	n in Soil	COMB	4156837	N/A	2015/08/21	Birenkum	ar Patel
Maxxam ID Al Sample ID So Matrix So	G1-MW03S-13.0					Shipped	2015/08/13 2015/08/14
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst	
Total Organic Carbor	n in Soil	COMB	4156837	N/A	2015/08/21	Birenkum	ar Patel

Success Through Science®

Ramboll Environ Client Project #: 02-37128B(RE) 15-5133 (CTM) Site Location: SGPP HOOSICK FALLS Sampler Initials: JD

GENERAL COMMENTS

Revision reflects change to APU466-01 sample ID Revision reflects change to MDLs

Sample ATN765-01: Perfluorinated Compounds (PFCs): Elevated detection limits due to matrix interference(s).

Sample AUP461-01: Perfluorinated Compounds (PFCs): Elevated detection limits due to matrix interference(s).

Sample AUP469-01: Spike Expected value = 33000mg/kg Spike recovery = 92.68% and 90.24%

Results relate only to the items tested.

Ramboll Environ Attention: Jason Wilkinson/ Kirk Moline Client Project #: 02-37128B(RE) 15-5133 (CTM) P.O. #: Site Location: SGPP HOOSICK FALLS

Quality Assurance Report

Maxxam Job Number: GB5F6982

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	%Recovery	Units	QC Limits
4151642 BOP	RPD -						
	Sample/Sample						
	Dup	Moisture	2015/08/17	1.3		%	20
4152610 BIP	QC Standard	Total Organic Carbon	2015/08/19		101	%	75 - 125
	Method Blank	Total Organic Carbon	2015/08/19	<500		mg/kg	
4153056 NS3	RPD -						
	Sample/Sample						
	Dup	Moisture	2015/08/18	NC		%	20
4156837 BIP	Matrix Spike						
	(AUP469)	Total Organic Carbon	2015/08/27		105	%	75 - 125
	Matrix Spike DUP						
	(AUP469)	Total Organic Carbon	2015/08/27		96	%	75 - 125
	MS/MSD RPD	Total Organic Carbon	2015/08/27	8.4		%	35
	QC Standard	Total Organic Carbon	2015/08/21		99	%	75 - 125
	Method Blank	Total Organic Carbon	2015/08/21	<500		mg/kg	
	RPD -	0				0 0	
	Sample/Sample						
	Dup	Total Organic Carbon	2015/08/21	NC		%	35
	RPD -	0					
	Sample/Sample						
	Dup	Total Organic Carbon	2015/08/21	NC		%	35
4167364 CM5	Matrix Spike		2010/00/21			70	
	(ATN772)	Perfluorobutane Sulfonate (PFBS)	2015/08/28		92	%	70 - 130
	Matrix Spike DUP		2010/00/20			70	
	(ATN772)	Perfluorobutane Sulfonate (PFBS)	2015/08/28		97	%	70 - 130
	MS/MSD RPD	Perfluorobutane Sulfonate (PFBS)	2015/08/28	4.6	0.	%	30
	Matrix Spike		2010/00/20			70	
	(ATN772)	Perfluoroheptanoic Acid (PFHpA)	2015/08/28		92	%	70 - 130
	Matrix Spike DUP		2010/00/20		02	70	10 100
	(ATN772)	Perfluoroheptanoic Acid (PFHpA)	2015/08/28		95	%	70 - 130
	MS/MSD RPD	Perfluoroheptanoic Acid (PFHpA)	2015/08/28	3.9	00	%	30
	Matrix Spike		2010/00/20	0.0		70	00
	(ATN772)	Perfluorohexane Sulfonate (PFHxS)	2015/08/28		97	%	70 - 130
	Matrix Spike DUP		2010/00/20		57	70	70 100
	(ATN772)	Perfluorohexane Sulfonate (PFHxS)	2015/08/28		101	%	70 - 130
	MS/MSD RPD	Perfluorohexane Sulfonate (PFHxS)	2015/08/28	3.6	101	%	30
	Matrix Spike		2013/00/20	0.0		70	
	(ATN772)	Perfluoro-n-Octanoic Acid (PFOA)	2015/08/28		95	%	70 - 130
	Matrix Spike DUP	Femiliono-n-Octanoic Acid (FFOA)	2015/00/20		90	70	70 - 130
	(ATN772)	Perfluoro-n-Octanoic Acid (PFOA)	2015/08/28		95	%	70 - 130
	MS/MSD RPD	Perfluoro-n-Octanoic Acid (PFOA)	2015/08/28	0.42	90	%	30
		Periluoro-n-Octanoic Acid (PPOA)	2013/00/20	0.42		70	30
	Matrix Spike	Derfluerenenerie Acid (DENA)	2015/00/20		104	0/	70 420
	(ATN772) Matrix Spike DUD	Perfluorononanoic Acid (PFNA)	2015/08/28		104	%	70 - 130
	Matrix Spike DUP		0045/00/00		110	0/	70 400
	(ATN772)	Perfluorononanoic Acid (PFNA)	2015/08/28	7.0	112	%	70 - 130
	MS/MSD RPD	Perfluorononanoic Acid (PFNA)	2015/08/28	7.8		%	30
	Matrix Spike		0045/00/00		00	0/	70 400
	(ATN772)	Perfluorooctane Sulfonate (PFOS)	2015/08/28		98	%	70 - 130
	Matrix Spike DUP		0045/00/00			0/	70 100
	(ATN772)	Perfluorooctane Sulfonate (PFOS)	2015/08/28		101	%	70 - 130
	MS/MSD RPD	Perfluorooctane Sulfonate (PFOS)	2015/08/28	2.8		%	30
	Spiked Blank	Perfluorobutane Sulfonate (PFBS)	2015/08/28		96	%	70 - 130
		Perfluoroheptanoic Acid (PFHpA)	2015/08/28		96	%	70 - 130
		Perfluorohexane Sulfonate (PFHxS)	2015/08/28		99	%	70 - 130
		Perfluoro-n-Octanoic Acid (PFOA)	2015/08/28		100	%	70 - 130

Ramboll Environ Attention: Jason Wilkinson/ Kirk Moline Client Project #: 02-37128B(RE) 15-5133 (CTM) P.O. #: Site Location: SGPP HOOSICK FALLS

Quality Assurance Report (Continued)

Maxxam Job Number: GB5F6982

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
4167364 CM5	Spiked Blank	Perfluorononanoic Acid (PFNA)	2015/08/28	103	%	70 - 130
		Perfluorooctane Sulfonate (PFOS)	2015/08/28	98	%	70 - 130
	Method Blank	Perfluorobutane Sulfonate (PFBS)	2015/08/28	<0.014, MDL=0.014	ug/kg	
		Perfluoroheptanoic Acid (PFHpA)	2015/08/28	<0.015, MDL=0.015	ug/kg	
		Perfluorohexane Sulfonate (PFHxS)	2015/08/28	<0.015, MDL=0.015	ug/kg	
		Perfluoro-n-Octanoic Acid (PFOA)	2015/08/28	<0.023, MDL=0.023	ug/kg	
		Perfluorononanoic Acid (PFNA)	2015/08/28	<0.01, MDL=0.01	ug/kg	
		Perfluorooctane Sulfonate (PFOS)	2015/08/28	<0.015, MDL=0.015	ug/kg	
	RPD -					
	Sample/Sample					
	Dup	Perfluorobutane Sulfonate (PFBS)	2015/08/28	NC	%	30
		Perfluoroheptanoic Acid (PFHpA)	2015/08/28	NC	%	30
		Perfluorohexane Sulfonate (PFHxS)	2015/08/28	NC	%	30
		Perfluoro-n-Octanoic Acid (PFOA)	2015/08/28	NC	%	30
		Perfluorononanoic Acid (PFNA)	2015/08/28	NC	%	30
		Perfluorooctane Sulfonate (PFOS)	2015/08/28	NC	%	30

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference. QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination. NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Validation Signature Page

Maxxam Job #: B5F6982

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Clistia Carriere

Cristina Carriere, Scientific Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

LABORATORY REPORT

If you have any questions concerning this report, please do not hesitate to call us at (800) 332-4345 or (574) 233-4777.

This report may not be reproduced, except in full, without written approval from EEA.

STATE CERTIFICATION LIST

State	Certification	State	Certification
Alabama	40700	Montana	CERT0026
Alaska	IN00035	Nebraska	E87775
Arizona	AZ0432	Nevada	IN000352015-1
Arkansas	IN035	New Hampshire*	2124
California	2920	New Mexico	IN00035
Colorado	IN035	New Jersey*	IN598
Colorado Radiochemistry	IN035	New York*	11398
Connecticut	PH-0132	North Carolina	18700
Delaware	IN035	North Dakota	R-035
Florida (Primary AB)*	E87775	Ohio	87775
Georgia	929	Oklahoma	D9508
Hawaii	IN035	Oregon*	IN200001
Idaho	IN00035/E87775	Pennsylvania*	68-00466
Illinois*	200001	Puerto Rico	IN00035
Illinois Microbiology	200001	Rhode Island	LAO00241
Indiana Chemistry	C-71-01	South Carolina	95005
Indiana Microbiology	M-76-07	South Dakota	IN00035
lowa	098	Tennessee	TN02973
Kansas*	E-10233	Texas*	T104704187-14-7
Kentucky	90056	Texas/TCEQ	TX207
Louisiana*	LA150003	Utah*	IN00035
Maine	IN00035	Vermont	VT-8775
Maryland	209	Virginia*	00127
Massachusetts	M-IN035	Washington	C837
Michigan	9926	West Virginia	9927 C
Minnesota*	018-999-338	Wisconsin	999766900
Mississippi	IN035	Wyoming	IN035
Missouri	880		

*NELAP/TNI Recognized Accreditation Bodies

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Client:	Ramboll Environ	Report:	348249	
Attn:	Jason Wilkinson	Priority:	Standard Written	
/	3 Carlisle Road	Status:	Final	
	Suite 210	PWS ID:	Not Supplied	
o .	Westford, MA 01886	Lab ELAP #:	11398	
Copies to:	Rob Huening, Valerie Turner			

Sample Information EEA **Client ID** Method Collected Collected Received ID# Date / Time By: Date / Time 3315941 SG1-TB01-150902 537 09/02/15 12:15 Client 09/04/15 08:00 3315942 SG1-RB01-150902 537 09/02/15 12:20 Client 09/04/15 08:00 3315943 SG1-RB02-150902 537 09/02/15 12:25 Client 09/04/15 08:00 3315944 SG1-RB03-150902 537 09/02/15 12:35 Client 09/04/15 08:00 3315945 SG1-RB04-150902 537 09/02/15 12:45 Client 09/04/15 08:00 3315946 SG1-MW02D-150902 537 09/02/15 14:30 Client 09/04/15 08:00 3315947 SG1-RB05-150902 537 09/02/15 15:50 Client 09/04/15 08:00 3315948 SG1-RB06-150902 537 09/02/15 15:55 Client 09/04/15 08:00 3315949 SG1-FB01-150902 537 09/02/15 16:30 Client 09/04/15 08:00 Client 3315950 SG1-MW02S-150902 537 09/02/15 17:05 09/04/15 08:00 3315951 SG1-MW01D-150903 537 09/03/15 07:45 Client 09/04/15 08:00 3315952 SG1-MW01S-150903 09/03/15 08:00 Client 09/04/15 08:00 537 3315953 SG1-MW05S-150903 537 09/03/15 09:00 Client 09/04/15 08:00 3315956 SG1-TB02-150903 537 09/03/15 09:35 Client 09/04/15 08:00 3315957 SG1-MW04S-150903 537 09/03/15 11:00 Client 09/04/15 08:00 3315958 SG1-DS01-150903 537 09/03/15 13:00 Client 09/04/15 08:00 SG1-MW03S-150903 3315959 537 09/03/15 14:05 Client 09/04/15 08:00 **Report Summary**

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Nathan Trowbridge at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

C.S. Managor Title

09/18/2015

Date

Authorized SignatureClient Name:Ramboll EnvironReport #:348249

Page 1 of 8

Sampling Point: SG1-TB01-150902

PWS ID: Not Supplied

	EEA Methods										
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #		
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 02:55	3315941		
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	09/09/15 07:30	09/11/15 02:55	3315941		
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 02:55	3315941		
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 02:55	3315941		
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 02:55	3315941		
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 02:55	3315941		

Sampling Point: SG1-RB01-150902

PWS ID: Not Supplied

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 04:59	3315942			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	09/09/15 07:30	09/11/15 04:59	3315942			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 04:59	3315942			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 04:59	3315942			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 04:59	3315942			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 04:59	3315942			

Sampling Point: SG1-RB02-150902

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 05:30	3315943			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	09/09/15 07:30	09/11/15 05:30	3315943			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 05:30	3315943			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 05:30	3315943			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 05:30	3315943			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 05:30	3315943			

Sampling Point: SG1-RB03-150902

PWS ID: Not Supplied

	EEA Methods										
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #		
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 06:01	3315944		
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	09/09/15 07:30	09/11/15 06:01	3315944		
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 06:01	3315944		
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 06:01	3315944		
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 06:01	3315944		
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 06:01	3315944		

Sampling Point: SG1-RB04-150902

PWS ID: Not Supplied

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 06:31	3315945			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	09/09/15 07:30	09/11/15 06:31	3315945			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 06:31	3315945			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 06:31	3315945			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 06:31	3315945			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 06:31	3315945			

Sampling Point: SG1-MW02D-150902

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 07:02	3315946			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	340	ng/L	09/09/15 07:30	09/11/15 16:51	3315946			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 07:02	3315946			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 07:02	3315946			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 07:02	3315946			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	18000	ng/L	09/09/15 07:30	09/11/15 18:24	3315946			

Sampling Point: SG1-RB05-150902

PWS ID: Not Supplied

	EEA Methods										
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #		
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 07:33	3315947		
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	09/09/15 07:30	09/11/15 07:33	3315947		
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 07:33	3315947		
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 07:33	3315947		
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 07:33	3315947		
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 07:33	3315947		

Sampling Point: SG1-RB06-150902

PWS ID: Not Supplied

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 08:04	3315948			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	09/09/15 07:30	09/11/15 08:04	3315948			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 08:04	3315948			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 08:04	3315948			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 08:04	3315948			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 08:04	3315948			

Sampling Point: SG1-FB01-150902

	EEA Methods										
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #		
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 08:35	3315949		
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	09/09/15 07:30	09/11/15 08:35	3315949		
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 08:35	3315949		
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 08:35	3315949		
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 08:35	3315949		
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 08:35	3315949		

Sampling Point: SG1-MW02S-150902

PWS ID: Not Supplied

	EEA Methods									
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #	
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 10:08	3315950	
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	20	ng/L	09/09/15 07:30	09/11/15 10:08	3315950	
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 10:08	3315950	
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 10:08	3315950	
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 10:08	3315950	
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	1100	ng/L	09/09/15 07:30	09/11/15 14:48	3315950	

Sampling Point: SG1-MW01D-150903

PWS ID: Not Supplied

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 10:39	3315951
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	09/09/15 07:30	09/11/15 10:39	3315951
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 10:39	3315951
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 10:39	3315951
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 10:39	3315951
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 10:39	3315951

Sampling Point: SG1-MW01S-150903

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 11:10	3315952
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	20	ng/L	09/09/15 07:30	09/11/15 11:10	3315952
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 11:10	3315952
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 11:10	3315952
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 11:10	3315952
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 11:10	3315952

Sampling Point: SG1-MW05S-150903

PWS ID: Not Supplied

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 11:41	3315953
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	10	ng/L	09/09/15 07:30	09/11/15 11:41	3315953
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 11:41	3315953
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 11:41	3315953
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 11:41	3315953
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	580	ng/L	09/09/15 07:30	09/11/15 15:19	3315953

Sampling Point: SG1-TB02-150903

PWS ID: Not Supplied

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 03:26	3315956
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	09/09/15 07:30	09/11/15 03:26	3315956
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 03:26	3315956
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 03:26	3315956
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 03:26	3315956
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 03:26	3315956

Sampling Point: SG1-MW04S-150903

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 13:13	3315957
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	40	ng/L	09/09/15 07:30	09/11/15 13:13	3315957
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 13:13	3315957
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 13:13	3315957
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 13:13	3315957
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	1700	ng/L	09/09/15 07:30	09/11/15 15:50	3315957

Sampling Point: SG1-DS01-150903

PWS ID: Not Supplied

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 13:44	3315958
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	130	ng/L	09/09/15 07:30	09/11/15 13:44	3315958
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 13:44	3315958
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 13:44	3315958
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 13:44	3315958
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	4200	ng/L	09/09/15 07:30	09/11/15 17:53	3315958

Sampling Point: SG1-MW03S-150903

PWS ID: Not Supplied

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	09/09/15 07:30	09/11/15 14:15	3315959
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	130	ng/L	09/09/15 07:30	09/11/15 14:15	3315959
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	09/09/15 07:30	09/11/15 14:15	3315959
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	09/09/15 07:30	09/11/15 14:15	3315959
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	09/09/15 07:30	09/11/15 14:15	3315959
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	5300	ng/L	09/09/15 07:30	09/11/15 17:22	3315959

† EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	*	^	!

Lab Definitions

Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis.

Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control.

Laboratory Method Blank (LMB) / Laboratory Reagent Blank (LRB) - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.

Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample aliquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results.

Quality Control Standard (QCS) / **Second Source Calibration Verification (SSCV)** - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / Surrogate Analyte (SUR) - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

	euro	fins		Eat	on	Analytic	al				110 S. Hill South Ber T: 1.800.33 F: 1.574.23	nd, IN 46617 32.4345	Order # Batch #	20	82	240	B
.eatona	nalytical.com Shaded area	for EEA use	e only				CH	AIN OF	CUST	DDY RECO	RD	91.5.5	Page _	1	of _	2	
ORT T	0: Jason	Wilkinso.	1		S	AMPLER (Signature)	Imathan	Dippert	-	PWS ID #	STATE (sample origin)	PROJECT NAME	PO#		T		
Ramba 3 Car	I'de Rud, b	, Suite 21 Jestford	MA C	1886	;	1	Ram	>			NY	SGPP					ш
L TO:	1 1 1	1				A Later de Same	Yes	No	POPL	ILATION SERVED	SOURCE WATER	Howick			RS		TIM
-	Same As Rep	1-4				COMPLIANCE		X	1			Hossick Falls			CONTAINERS	CODE	TURNAROUND TIME
LA	B Number	C	OLLECTION			SA	MPLING SITE			TEST NA	ME	SAMPLE REMARKS		ATED	OF CO	MATRIX	JRNAR
20	10.11	DATE	TIME	AM		C 4 4 1 1 1 1			EDA	an MI ==	5. AL A			NO	#	_	
55	15941	9/2/15	1215	E	X		01 - 150992	6	LPH	merhod 53	7# CI-Agg			X	-	RN . DW	SW
-	942	9/2/15	1220	-	X		02 - 150902		-					0	-	DW	+
-	944	9/2/15	1235		X		103 - 150902							~	-	DW	-
-	945	9/2/15	1245		X		104 - 150902	-							-	DW	
-	946	9/2/15	1430		x		102D - 150902							-	-	GW	
	947	9/2/15	1550		X		5 - 150902							×	-	DU	
	948	9/2/15	1555		x	561 - RBO	6 - 150902						·	X	37	DU	
-	949	9/2/15	1630		X	SG1 - FBO						· · · · · · · · · · · · · · · · · · ·			_	DW	
	950	9/2/15	1705		×		25 -150902								_	GW	
	951	9/3/15	0745	X		SG1-MWO			-						_	GW	-
	952	9/3/15	0800	×			15-150903					inter lance				GU	-
	953*5	9/3/15	0900	X	-		55-150903		1			Ms/MSD		XX		GW	V
-	956	9/3/15	0935	~		561 - TBO3	- 13 0705			v	V	1		~ /		nn	
	HED BY:(Signature	e)	DATE	TIN	C	RECEIVED BY:(Signat	ure)	DATE	TIME		ES THE RIGHT TO RETURN UNI			MPLES TO CI	LIENT		
2	Da	3)	9/3/1	- 16	30					LAB COMMENTS	MW055 (3) MW055 (3)	331599	54				
	HED BY:(Signature	a)	DATE	AM		RECEIVED BY:(Signat	ure)	DATE	AM PM TIME	* 115	mu 05512	33159	55				
	Construction of the second sec	.)							, inte	*1151	11000000		-				
UNOU			DATE	AM		RECEIVED FOR LABOR	ATORY BY	DATE	AM PM TIME				-	_	_	_	-
	HED BY:(Signature	3)	DATE			SRLO	10	9-4-15	0800			1.4, 0.2 °C Upon	Receipt	. ,	N/A		
	MATRIX CODES		TURN-ARC			(TAT) - SURCHARGE	5	1									
	DRINKING WATER		SW = Standard	Written	: (15 wo	orking days) 0%	0	IV* = Immediate	e Verbal: (3 wo	rking days) 100%							
GW-	REAGENT WATER GROUND WATER		RV* = Rush Ve					IW* =Immediate				Samples received unat than 48 hours holding					
	EXPOSURE WATER		RW* = Rush W	ritten: (5	working) days) 75%		SP* = Weekend STAT* = Less t		CALL		be subject to additiona		-B may			

Page 11 of 21

Sample analysis will be provided according to the standard EEA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agree to in writing by EEA.

🔅 euro	fins		Eat	on Analytica	I				110 S. Hill South Ben T: 1.800.33 F: 1.574.23	d, IN 46617 32.4345	Order Batch	# <u></u>	30	Ø	2
www.eatonanalytical.com					СНА		USTO	DY RECO	RD		Page	2	of	Z	
Shaded area		e only		and faith and for all store		and the second									
REPORT TO: Jaion W	rilkrason			SAMPLER (Signature)	Jonethen D	spert	P	WS ID #	STATE (sample origin)	PROJECT NAME	PC	D#			
RAMBOLL ENVE 3 Carliele Rd , Sui Westford , MA	te 210 01886			12	22		1		NY	SGPP					ų
SILL TO: SAME AS RA	EPIRT			COMPLIANCE MONITORING	Yes	No	POPULA	ATION SERVED	SOURCE WATER	Hoosick Falls			CONTAINERS	CODE	TURNAROUND TIME
LAB Number								TEST NA	ME	SAMPLE REMARKS	CHLOR	NATED	Ч	MATRIX	URNAF
1 3315,957	DATE 9/3/15	TIME	AM	SG1 - MW04.	5-151907		FPA	Method 5	37*	CI-A 55	160	X	# 3		SW
1 3315,957	9/3/15	1300		× 561 - DS 01	10907		6111	The Third J	01.	CFA 35		×		GW	SW
3 11 959	9/2/15	1405		X SG1-MW03S	15003			1				×	_		SW
4 5 6 7 8 9 10 11 12 13 14				* ETA Methal : No other PFC's sh	527 for the ould be report	follow ted.	ing PFC	S: PFOA, F PF XXS ; F	OFBS, PFHpA, OFNA, PFOS						
RELINQUISHED BY:(Signature		DATE	ТІЛ 164 АМ ТІЛ	PMP E RECEIVED BY:(Signature)		DATE		LAB RESERV	ES THE RIGHT TO RETURN UNU	ISED PORTIONS OF NON-A	QUEOUS S	AMPLES TO	CLIENT		
RELINQUISHED BY:(Signature		DATE		Ser on	DRY BY:	date 3-4-15			ECEIPT (check one): trBlue Ambient	1.4, 0,2 °C Upon F	Receipt	-	N/A		
DW-DRINKING WATER RW-REAGENT WATER GW-GROUND WATER EW-EXPOSURE WATER SW-SURFACE WATER WW-POOL WATER WW-VASTE WATER		SW = Standar RV* = Rush V RW* = Rush V	rd Written erbal: (5 v Vritten: (5	(15 working days) 0% orking days) 50%	N S	/* = Immediate \ V* =Immediate \ P* = Weekend, TAT* = Less tha	Written: (3 worki Holiday			Samples received unan than 48 hours holding t be subject to additional 06-LO-F0435 issue 4	ime remai charges.	ning may	. 2014	DE 01	

Page 12 of 21

Sample analysis will be provided according to the standard EEA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agree to in writing by EEA.

eurofins

Eurofins Eaton Analytical

Run Log

Eaton Analytical

Run ID: 207498 Method: 537

Туре	Sample Id	Sample Site	<u>Matrix</u>	Instrument ID	Analysis Date	Calibration File
CCL	3316483		OS	CY	09/10/2015 23:18	091015M537a.mdb
LRB	3316467		RW	CY	09/11/2015 00:51	091015M537a.mdb
FBL	3316469		RW	CY	09/11/2015 01:22	091015M537a.mdb
FTB	3315941	SG1-TB01-150902	RW	CY	09/11/2015 02:55	091015M537a.mdb
FTB	3315956	SG1-TB02-150903	RW	CY	09/11/2015 03:26	091015M537a.mdb
FS	3315942	SG1-RB01-150902	DW	CY	09/11/2015 04:59	091015M537a.mdb
FS	3315943	SG1-RB02-150902	DW	CY	09/11/2015 05:30	091015M537a.mdb
FS	3315944	SG1-RB03-150902	DW	CY	09/11/2015 06:01	091015M537a.mdb
FS	3315945	SG1-RB04-150902	DW	CY	09/11/2015 06:31	091015M537a.mdb
FS	3315946	SG1-MW02D-150902	GW	CY	09/11/2015 07:02	091015M537a.mdb
FS	3315947	SG1-RB05-150902	DW	CY	09/11/2015 07:33	091015M537a.mdb
FS	3315948	SG1-RB06-150902	DW	CY	09/11/2015 08:04	091015M537a.mdb
FS	3315949	SG1-FB01-150902	DW	CY	09/11/2015 08:35	091015M537a.mdb
CCM	3316484		OS	CY	09/11/2015 09:06	091015M537a.mdb
FS	3315950	SG1-MW02S-150902	GW	CY	09/11/2015 10:08	091015M537a.mdb
FS	3315951	SG1-MW01D-150903	GW	CY	09/11/2015 10:39	091015M537a.mdb
FS	3315952	SG1-MW01S-150903	GW	CY	09/11/2015 11:10	091015M537a.mdb
FS	3315953	SG1-MW05S-150903	GW	CY	09/11/2015 11:41	091015M537a.mdb
LFSML	3315954	SG1-MW05S-150903	GW	CY	09/11/2015 12:12	091015M537a.mdb
LFSMDL	3315955	SG1-MW05S-150903	GW	CY	09/11/2015 12:42	091015M537a.mdb
FS	3315957	SG1-MW04S-150903	GW	CY	09/11/2015 13:13	091015M537a.mdb
FS	3315958	SG1-DS01-150903	GW	CY	09/11/2015 13:44	091015M537a.mdb
FS	3315959	SG1-MW03S-150903	GW	CY	09/11/2015 14:15	091015M537a.mdb
FS	3315950	SG1-MW02S-150902	GW	CY	09/11/2015 14:48	091015M537a.mdb
FS	3315953	SG1-MW05S-150903	GW	CY	09/11/2015 15:19	091015M537a.mdb
FS	3315957	SG1-MW04S-150903	GW	CY	09/11/2015 15:50	091015M537a.mdb
CCH	3316485		OS	CY	09/11/2015 16:21	091015M537a.mdb
FS	3315946	SG1-MW02D-150902	GW	CY	09/11/2015 16:51	091015M537a.mdb
FS	3315959	SG1-MW03S-150903	GW	CY	09/11/2015 17:22	091015M537a.mdb
FS	3315958	SG1-DS01-150903	GW	CY	09/11/2015 17:53	091015M537a.mdb
ບ FS	3315946	SG1-MW02D-150902	GW	CY	09/11/2015 18:24	091015M537a.mdb
CCM	3319308		OS	CY	09/11/2015 18:55	091015M537a.mdb
Page CCM 13 LRB	3319172		RW	CY	09/11/2015 19:26	091015M537a.mdb
[⊥] Page 1 of 8					EEA Run ID 207498 / E	EA Report # 348249

					QC	Summar	y Repor	t								
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
CCL	IS-PFOA-13C2	537	N/A			6074.06	6074.06	ng/L	100	70 - 140			1.0	09/09/2015 09:56	09/10/2015 23:18	3316483
CCL	IS-PFOS-13C4	537	N/A			5143.50	5143.5	ng/L	100	70 - 140			1.0	09/09/2015 09:56	09/10/2015 23:18	3316483
CCL	SS-PFDA-13C2	537	N/A			98.8910	100	ng/L	99	70 - 130			1.0	09/09/2015 09:56	09/10/2015 23:18	3316483
CCL	SS-PFHxA-13C2	537	N/A			48.6467	50.0	ng/L	97	70 - 130			1.0	09/09/2015 09:56	09/10/2015 23:18	3316483
CCL	Perfluorobutanesulfonic acid (PFBS)	537	90			91.9076	90.0	ng/L	102	50 - 150			1.0	09/09/2015 09:56	09/10/2015 23:18	3316483
CCL	Perfluoroheptanoic acid (PFHpA)	537	10			10.8147	10.0	ng/L	108	50 - 150			1.0	09/09/2015 09:56	09/10/2015 23:18	3316483
CCL	Perfluorohexanesulfonic acid (PFHxS)	537	30			30.7755	30.0	ng/L	103	50 - 150			1.0	09/09/2015 09:56	09/10/2015 23:18	3316483
CCL	Perfluorononanoic acid (PFNA)	537	20			21.4759	20.0	ng/L	107	50 - 150			1.0	09/09/2015 09:56	09/10/2015 23:18	3316483
CCL	Perfluorooctane sulfonate (PFOS)	537	40			41.5940	40.0	ng/L	104	50 - 150			1.0	09/09/2015 09:56	09/10/2015 23:18	3316483
CCL	Perfluorooctanoic acid (PFOA)	537	20			21.2569	20.0	ng/L	106	50 - 150			1.0	09/09/2015 09:56	09/10/2015 23:18	3316483
LRB	IS-PFOA-13C2	537	N/A			6572.52	6074.06	ng/L	108	70 - 140			1.0	09/09/2015 07:30	09/11/2015 00:51	3316467
LRB	IS-PFOS-13C4	537	N/A			5361.38	5143.5	ng/L	104	70 - 140			1.0	09/09/2015 07:30	09/11/2015 00:51	3316467
LRB	SS-PFDA-13C2	537	N/A			93.0939	100	ng/L	93	70 - 130			1.0	09/09/2015 07:30	09/11/2015 00:51	3316467
LRB	SS-PFHxA-13C2	537	N/A			46.8308	50.0	ng/L	94	70 - 130			1.0	09/09/2015 07:30	09/11/2015 00:51	3316467
LRB	Perfluorobutanesulfonic acid (PFBS)	537	90		<	90		ng/L					1.0	09/09/2015 07:30	09/11/2015 00:51	3316467
LRB	Perfluoroheptanoic acid (PFHpA)	537	10		<	10		ng/L					1.0	09/09/2015 07:30	09/11/2015 00:51	3316467
LRB	Perfluorohexanesulfonic acid (PFHxS)	537	30		<	30		ng/L					1.0	09/09/2015 07:30	09/11/2015 00:51	3316467
LRB	Perfluorononanoic acid (PFNA)	537	20		<	20		ng/L					1.0	09/09/2015 07:30	09/11/2015 00:51	3316467
LRB	Perfluorooctane sulfonate (PFOS)	537	40		<	40		ng/L					1.0	09/09/2015 07:30	09/11/2015 00:51	3316467
LRB	Perfluorooctanoic acid (PFOA)	537	20		<	20		ng/L					1.0	09/09/2015 07:30	09/11/2015 00:51	3316467
FBL	IS-PFOA-13C2	537	N/A			6443.45	6074.06	ng/L	106	70 - 140			1.0	09/09/2015 07:30	09/11/2015 01:22	3316469
FBL	IS-PFOS-13C4	537	N/A			5352.31	5143.5	ng/L	104	70 - 140			1.0	09/09/2015 07:30	09/11/2015 01:22	3316469
FBL	SS-PFDA-13C2	537	N/A			94.6122	100	ng/L	95	70 - 130			1.0	09/09/2015 07:30	09/11/2015 01:22	3316469
FBL	SS-PFHxA-13C2	537	N/A			49.0702	50.0	ng/L	98	70 - 130			1.0	09/09/2015 07:30	09/11/2015 01:22	3316469
FBL	Perfluorobutanesulfonic acid (PFBS)	537	90			91.6035	90.0	ng/L	102	50 - 150			1.0	09/09/2015 07:30	09/11/2015 01:22	3316469
FBL	Perfluoroheptanoic acid (PFHpA)	537	10			10.0948	10.0	ng/L	101	50 - 150			1.0	09/09/2015 07:30	09/11/2015 01:22	3316469
FBL	Perfluorohexanesulfonic acid (PFHxS)	537	30			30.3694	30.0	ng/L	101	50 - 150			1.0	09/09/2015 07:30	09/11/2015 01:22	
FBL	Perfluorononanoic acid (PFNA)	537	20			20.2056	20.0	ng/L	101	50 - 150			1.0	09/09/2015 07:30	09/11/2015 01:22	3316469
FBL	Perfluorooctane sulfonate (PFOS)	537	40			40.1695	40.0	ng/L	100	50 - 150			1.0	09/09/2015 07:30	09/11/2015 01:22	
FBL	Perfluorooctanoic acid (PFOA)	537	20			20.4671	20.0	ng/L	102	50 - 150			1.0	09/09/2015 07:30	09/11/2015 01:22	
FTB	IS-PFOA-13C2	537	N/A	SG1-TB01-150902		6539.83	6074.06	ng/L	102	70 - 140			1.0	09/09/2015 07:30	09/11/2015 02:55	331594
FTB	IS-PFOS-13C4	537	N/A	SG1-TB01-150902		5467.52	5143.5	ng/L	106	70 - 140			1.0	09/09/2015 07:30	09/11/2015 02:55	
FTB	SS-PFDA-13C2	537	N/A	SG1-TB01-150902		98.5646	100	ng/L	99	70 - 130			1.0	09/09/2015 07:30	09/11/2015 02:55	
FTB	SS-PFHxA-13C2	537	N/A	SG1-TB01-150902		50.1422	50.0	ng/L	100	70 - 130			1.0	09/09/2015 07:30	09/11/2015 02:55	
FTB	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-TB01-150902	<	90	00.0	ng/L					1.0	09/09/2015 07:30	09/11/2015 02:55	
FTB	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-TB01-150902	<	10		ng/L					1.0	09/09/2015 07:30	09/11/2015 02:55	
	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-TB01-150902	<	30		ng/L					1.0	09/09/2015 07:30	09/11/2015 02:55	
	Perfluorononanoic acid (PFNA)	537	20	SG1-TB01-150902	<	20							1.0	09/09/2015 07:30	09/11/2015 02:55	
	Perfluorooctane sulfonate (PFOS)	537	40	SG1-TB01-150902 SG1-TB01-150902	<	40		ng/L					1.0	09/09/2015 07:30	09/11/2015 02:55	
Δ ^{FTB} Δ ^{FTB}	Perfluorooctanoic acid (PFOA)	557	20	301-1001-13090Z		40		ng/L					1.0	08/08/2010 07.30	08/11/2010 02:00	551594

[№]Page 2 of 8

EEA Run ID 207498 / EEA Report # 348249

					QC	Summary Re	port (cont.)									
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
FTB	IS-PFOA-13C2	537	N/A	SG1-TB02-150903		6894.59	6074.06	ng/L	114	70 - 140			1.01	09/09/2015 07:30	09/11/2015 03:26	3315956
FTB	IS-PFOS-13C4	537	N/A	SG1-TB02-150903		5676.15	5143.5	ng/L	110	70 - 140			1.01	09/09/2015 07:30	09/11/2015 03:26	3315956
FTB	SS-PFDA-13C2	537	N/A	SG1-TB02-150903		95.2314	100	ng/L	94	70 - 130			1.01	09/09/2015 07:30	09/11/2015 03:26	3315956
FTB	SS-PFHxA-13C2	537	N/A	SG1-TB02-150903	11	48.8902	50.0	ng/L	97	70 - 130			1.01	09/09/2015 07:30	09/11/2015 03:26	3315956
FTB	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-TB02-150903	<	90		ng/L					1.01	09/09/2015 07:30	09/11/2015 03:26	3315956
FTB	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-TB02-150903	<	10		ng/L					1.01	09/09/2015 07:30	09/11/2015 03:26	3315956
FTB	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-TB02-150903	<	30		ng/L					1.01	09/09/2015 07:30	09/11/2015 03:26	3315956
FTB	Perfluorononanoic acid (PFNA)	537	20	SG1-TB02-150903	<	20		ng/L					1.01	09/09/2015 07:30	09/11/2015 03:26	3315956
FTB	Perfluorooctane sulfonate (PFOS)	537	40	SG1-TB02-150903	<	40		ng/L					1.01	09/09/2015 07:30	09/11/2015 03:26	3315956
FTB	Perfluorooctanoic acid (PFOA)	537	20	SG1-TB02-150903	<	20		ng/L					1.01	09/09/2015 07:30	09/11/2015 03:26	3315956
FS	IS-PFOA-13C2	537	N/A	SG1-RB01-150902		6565.10	6074.06	ng/L	108	70 - 140			0.95	09/09/2015 07:30	09/11/2015 04:59	3315942
FS	IS-PFOS-13C4	537	N/A	SG1-RB01-150902		5461.52	5143.5	ng/L	106	70 - 140			0.95	09/09/2015 07:30	09/11/2015 04:59	3315942
FS	SS-PFDA-13C2	537	N/A	SG1-RB01-150902		91.3494	100	ng/L	96	70 - 130			0.95	09/09/2015 07:30	09/11/2015 04:59	3315942
FS	SS-PFHxA-13C2	537	N/A	SG1-RB01-150902		47.8146	50.0	ng/L	101	70 - 130			0.95	09/09/2015 07:30	09/11/2015 04:59	3315942
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB01-150902	<	90		ng/L					0.95	09/09/2015 07:30	09/11/2015 04:59	3315942
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB01-150902	<	10		ng/L					0.95	09/09/2015 07:30	09/11/2015 04:59	3315942
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB01-150902	<	30		ng/L					0.95	09/09/2015 07:30	09/11/2015 04:59	3315942
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB01-150902	<	20		ng/L					0.95	09/09/2015 07:30	09/11/2015 04:59	3315942
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB01-150902	<	40		ng/L					0.95	09/09/2015 07:30	09/11/2015 04:59	3315942
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB01-150902	<	20		ng/L					0.95	09/09/2015 07:30	09/11/2015 04:59	3315942
FS	IS-PFOA-13C2	537	N/A	SG1-RB02-150902		6753.77	6074.06	ng/L	111	70 - 140			0.93	09/09/2015 07:30	09/11/2015 05:30	3315943
FS	IS-PFOS-13C4	537	N/A	SG1-RB02-150902		5405.79	5143.5	ng/L	105	70 - 140			0.93	09/09/2015 07:30	09/11/2015 05:30	3315943
FS	SS-PFDA-13C2	537	N/A	SG1-RB02-150902		88.2756	100	ng/L	95	70 - 130			0.93	09/09/2015 07:30	09/11/2015 05:30	3315943
FS	SS-PFHxA-13C2	537	N/A	SG1-RB02-150902	11	45.3973	50.0	ng/L	98	70 - 130			0.93	09/09/2015 07:30	09/11/2015 05:30	3315943
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB02-150902	<	90		ng/L					0.93	09/09/2015 07:30	09/11/2015 05:30	3315943
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB02-150902	<	10		ng/L					0.93	09/09/2015 07:30	09/11/2015 05:30	3315943
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB02-150902	<	30		ng/L					0.93	09/09/2015 07:30	09/11/2015 05:30	3315943
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB02-150902	<	20		ng/L					0.93	09/09/2015 07:30	09/11/2015 05:30	3315943
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB02-150902	<	40		ng/L					0.93	09/09/2015 07:30	09/11/2015 05:30	3315943
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB02-150902	<	20		ng/L					0.93	09/09/2015 07:30	09/11/2015 05:30	
FS	IS-PFOA-13C2	537	N/A	SG1-RB03-150902	1	6658.59	6074.06	ng/L	110	70 - 140			0.97	09/09/2015 07:30	09/11/2015 06:01	3315944
FS	IS-PFOS-13C4	537	N/A	SG1-RB03-150902		5485.95	5143.5	ng/L	107	70 - 140			0.97	09/09/2015 07:30	09/11/2015 06:01	3315944
FS	SS-PFDA-13C2	537	N/A	SG1-RB03-150902		91.9972	100	ng/L	95	70 - 130			0.97	09/09/2015 07:30	09/11/2015 06:01	3315944
FS	SS-PFHxA-13C2	537	N/A	SG1-RB03-150902		47.3578	50.0	ng/L	98	70 - 130			0.97	09/09/2015 07:30	09/11/2015 06:01	3315944
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB03-150902	<	90		ng/L					0.97	09/09/2015 07:30	09/11/2015 06:01	3315944
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB03-150902	<	10		ng/L					0.97	09/09/2015 07:30	09/11/2015 06:01	3315944
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB03-150902	<	30		ng/L					0.97	09/09/2015 07:30	09/11/2015 06:01	3315944
	Perfluorononanoic acid (PFNA)	537	20	SG1-RB03-150902	<	20		ng/L					0.97	09/09/2015 07:30	09/11/2015 06:01	3315944
a FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB03-150902	<	40		ng/L					0.97	09/09/2015 07:30	09/11/2015 06:01	3315944
Page 1	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB03-150902	<	20		ng/L					0.97	09/09/2015 07:30	09/11/2015 06:01	3315944
5 FS	IS-PFOA-13C2	537	N/A	SG1-RB04-150902		6850.70	6074.06	ng/L	113	70 - 140			1.0	09/09/2015 07:30	09/11/2015 06:31	3315945

EEA Run ID 207498 / EEA Report # 348249

QC Summary Report (cont.) Sample Analyte Method MRL Client ID Result Amount Target Units % Recovery RPD Dil Extracted Analyzed EEA Type 10															
	wethoa	MRL	Client ID	Result Flag	Amount	Target	Units		· ·	RPD			Extracted	Analyzed	
IS-PFOS-13C4	537	N/A	SG1-RB04-150902		5528.20	5143.5	ng/L	107	70 - 140			1.0	09/09/2015 07:30	09/11/2015 06:31	3315945
SS-PFDA-13C2	537	N/A	SG1-RB04-150902		92.7669	100	ng/L	93	70 - 130			1.0	09/09/2015 07:30	09/11/2015 06:31	3315945
SS-PFHxA-13C2	537	N/A	SG1-RB04-150902		46.9083	50.0	ng/L	94	70 - 130			1.0	09/09/2015 07:30	09/11/2015 06:31	3315945
Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB04-150902	<	90		ng/L					1.0	09/09/2015 07:30	09/11/2015 06:31	3315945
Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB04-150902	<	10		ng/L					1.0	09/09/2015 07:30	09/11/2015 06:31	3315945
Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB04-150902	<	30		ng/L					1.0	09/09/2015 07:30	09/11/2015 06:31	3315945
Perfluorononanoic acid (PFNA)	537	20	SG1-RB04-150902	<	20		ng/L					1.0	09/09/2015 07:30	09/11/2015 06:31	3315945
Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB04-150902	<	40		ng/L					1.0	09/09/2015 07:30	09/11/2015 06:31	3315945
Perfluorooctanoic acid (PFOA)	537	20	SG1-RB04-150902	<	20		ng/L					1.0	09/09/2015 07:30	09/11/2015 06:31	3315945
IS-PFOA-13C2	537	N/A	SG1-MW02D-150902		5633.08	6074.06	ng/L	93	70 - 140			0.97	09/09/2015 07:30	09/11/2015 07:02	3315946
IS-PFOA-13C2	537	N/A	SG1-MW02D-150902		5633.08	6074.06	ng/L	93	70 - 140			9.7	09/09/2015 07:30	09/11/2015 07:02	3315946
IS-PFOA-13C2	537	N/A	SG1-MW02D-150902		5633.08	6074.06	ng/L	93	70 - 140			97	09/09/2015 07:30	09/11/2015 07:02	3315946
IS-PFOS-13C4	537	N/A	SG1-MW02D-150902	ii	5458.87	5143.5		103	70 - 140			0.97	09/09/2015 07:30	09/11/2015 07:02	3315946
IS-PFOS-13C4	537	N/A	SG1-MW02D-150902		5458.87	5143.5		103	70 - 140			9.7	09/09/2015 07:30	09/11/2015 07:02	3315946
IS-PFOS-13C4	537	N/A	SG1-MW02D-150902			5143.5		103	70 - 140			97			
SS-PFDA-13C2	537					100		121	70 - 130			0.97			
				<											
				<											
. ,				<											
			1			6074.06	-	_							3315947
			1					-							
							-							1	
			1		[
				· · ·		30.0	-								
	1		1		[-	_						1	
							-								
					l		-								
,															
	1		I		l		-								3315947
	1					6074.06	-	_							3315947
															3315948
						_	-								
						50.0		_							
. ,															
. ,															
							ng/L								
	SS-PFHxA-13C2 Perfluorobutanesulfonic acid (PFBS) Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctane acid (PFNA) Perfluorooctane acid (PFOS) Perfluorooctanoic acid (PFOA) IS-PFOA-13C2 IS-PFOA-13C2 IS-PFOA-13C2 IS-PFOA-13C4	SS-PFHxA-13C2537Perfluorobutanesulfonic acid (PFBS)537Perfluoroheptanoic acid (PFHAS)537Perfluorohexanesulfonic acid (PFNA)537Perfluorooctane sulfonate (PFOS)537Perfluorooctane sulfonate (PFOS)537Perfluorooctane acid (PFOA)537SPerfluorooctane sulfonate (PFOS)537IS-PFOA-13C2537IS-PFOA-13C2537IS-PFOA-13C2537IS-PFOS-13C4537IS-PFOS-13C4537IS-PFOS-13C4537SS-PFHxA-13C2537SS-PFHxA-13C2537Perfluorobutanesulfonic acid (PFBS)537Perfluorobutanesulfonic acid (PFHxS)537Perfluorobutanesulfonic acid (PFNA)537Perfluorobutanesulfonic acid (PFNA)537Perfluorobutanesulfonic acid (PFNA)537SS-PFDA-13C2537SS-PFHxA-13C2537SS-PFHxA-13C2537Perfluorobutanesulfonic acid (PFHAS)537Perfluorobetanesulfonic acid (PFHA	SS-PFHxA-13C2 537 N/A Perfluorobutanesulfonic acid (PFBS) 537 90 Perfluoroheptanoic acid (PFHpA) 537 30 Perfluorohexanesulfonic acid (PFNA) 537 20 Perfluoroctane sulfonate (PFOS) 537 40 Perfluoroctane sulfonate (PFOA) 537 70 SS-PFA-13C2 537 N/A IS-PFOA-13C2 537 N/A IS-PFOS-13C4 537 N/A SS-PFDA-13C2 537 N/A SS-PFDA-13C2 537 N/A Perfluorobutanesulfonic acid (PFNA) 537 30 Perfluorobutanesulfonic acid (PFNA) 537 30 Perfluorobutanesulfonic acid (PFNA) 537 30 IS-PFOA-13C2 537 N/A SS-PFDA-13C2 537	SS-PFHA-13C2 537 N/A SG1-RB04-150902 Perfluorobutanesulfonic acid (PFBS) 537 90 SG1-RB04-150902 Perfluorobexanesulfonic acid (PFHX) 537 30 SG1-RB04-150902 Perfluorononanoic acid (PFNA) 537 30 SG1-RB04-150902 Perfluorononanoic acid (PFNA) 537 30 SG1-RB04-150902 Perfluorooctanoic acid (PFOA) 537 40 SG1-RB04-150902 Perfluorooctanoic acid (PFOA) 537 N/A SG1-RB04-150902 IS-PFOA-13C2 537 N/A SG1-MW02D-150902 IS-PFOA-13C2 537 N/A SG1-MW02D-150902 IS-PFOA-13C2 537 N/A SG1-MW02D-150902 IS-PFOA-13C2 537 N/A SG1-MW02D-150902 SS-PFDA-13C2 537 N/A SG1-MW02D-150902 SS-PFDA-13C2 537 N/A SG1-MW02D-150902 SS-PFDA-13C2 537 30 SG1-MW02D-150902 Perfluorobutanesulfonic acid (PFNA) 537 30 SG1-MW02D-150902 Perfluorobutanesulfonic a	SS-PFHxA-13C2 537 N/A SG1-RB04-150902 < Perfluorobutanesuffonic acid (PFHpA) 537 90 SG1-RB04-150902 <	SS-PFHxA-13C2 537 N/A SG1-RB04-150002 46.0031 Perfluorobutanesuffonic add (PFBS) 537 90 SG1-RB04-150002 <	SS-PFHzA-13C2 637 NA SG1-R64-150602 4 46 8083 50.0 Perfluorobutanesulfonic acid (PFBS) 537 90 SG1-R64-150602 4 90 10 Perfluorobutanesulfonic acid (PFNA) 537 30 SG1-R64-150602 4 20 10 Perfluorobutanesulfonic acid (PFNA) 537 20 SG1-R64-150602 4 20 10 Perfluorobutane adid (PFNA) 537 20 SG1-R64-150602 4 40 10 Perfluorobutane adid (PFNA) 537 40 SG1-R64-150602 4 663.08 6074.06 IS-PFOA-1302 537 NA SG1-MW02D-150602 563.30.8 6074.06 IS-PFOA-1302 537 NA SG1-MW02D-150602 563.30.8	SS-PFHoA-13C2 S37 N/A SG-1RB0A-15002 4 46.0683 50.0 ngL Perfluorobanesulfonic add (PFRs) 537 90 SG-1RB0A-150022 <	SS-PFHA.13C2 S37 NM SG1RB04150902 I 44.8083 50.0 rog.l. 944 Perflucrobaseuffonic add (PFHa) 537 90 537.R004150902 <	SS-PFHA-13C2 557 NA SG-PRE-15002 I 46.068 6.0 npL 9.4 70.130 Perflucordpaneautions and (PFBA) 557 00 SG-14806-15002 K 00 npL Perflucordpaneautions and (PFBA) 557 00 SG-14806-15002 K 00 npL Perflucordpaneautions and (PFBA) 557 00 SG-14806-15002 K 00 npL Perflucordpaneautions and (PFDA) SG7 03 SG-16806-15002 K 00 npL 01 Perflucordpaneautions and (PFDA) SG7 NA SG-16806-15002 K 00 npL 01 SFPGA-1502 SG7 NA SG-144002-15002 K SG53.06 674.06 npL 010 70-140 IS-PFGA-1502 SG7 NA SG-144002-15002 K SG48.87 S14.5 npL 010 70-140 IS	SS-PFHA-13C2 DOT NA SG-RB64-15002 I de.0683 50.0 mpt de. 70-130 mpt Perflucorophacenesulfonic add (PFBA) GS1 G0 SG-RB64-15002 4 G0 mpt mu mu<	SSPFNA-1SC2 S57 NA S57-R04-15002 Va 44.8983 50.0 rgth 4,4 70.10 1.4 .4 Perfloorbutinesulfinic add (PFBs) S57 00 S54-R04-10002 4 00 rgth	SS-PPHA-102 S37 NA S01-H804-15002 H45083 8.00 npt P P D <thd< th=""> D D</thd<>	SS PFlox-13C2 S57 NA S51-R00-15002 I 960 rgt I 961 76.30 76.30 861-8864-19802 4 900 rgt I I 1 0 00000110733 Perliconstations and (PH4N) D57 J S05-8864-19802 4 J 701 I I I I I I I I 0 00000110733 Perliconstations and (PH4N) D57 J S05-8864-19802 I I I I I I I I I I D D0000110733 Perliconstance and (PH4N) D57 I I S05-8864-19802 I I I I I I I I D0000110733 ISPTO-1522 D57 NA S51-486621-16802 I I I I I I I I I I I I I I I I I I I	NS.PPHA4-NGC 677 NA Shal Machadesco C 640 934 944 70-00 10 000000000000000000000000000000000000

EEA Run ID 207498 / EEA Report # 348249

					QC	Summary Rep	port (cont.)									
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
FS	IS-PFOA-13C2	537	N/A	SG1-FB01-150902		6819.73	6074.06	ng/L	112	70 - 140			0.98	09/09/2015 07:30	09/11/2015 08:35	3315949
FS	IS-PFOS-13C4	537	N/A	SG1-FB01-150902		5671.17	5143.5	ng/L	110	70 - 140			0.98	09/09/2015 07:30	09/11/2015 08:35	3315949
FS	SS-PFDA-13C2	537	N/A	SG1-FB01-150902		87.2380	100	ng/L	89	70 - 130			0.98	09/09/2015 07:30	09/11/2015 08:35	3315949
FS	SS-PFHxA-13C2	537	N/A	SG1-FB01-150902		47.3226	50.0	ng/L	97	70 - 130			0.98	09/09/2015 07:30	09/11/2015 08:35	3315949
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-FB01-150902	<	90		ng/L					0.98	09/09/2015 07:30	09/11/2015 08:35	3315949
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-FB01-150902	<	10		ng/L					0.98	09/09/2015 07:30	09/11/2015 08:35	3315949
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-FB01-150902	<	30		ng/L					0.98	09/09/2015 07:30	09/11/2015 08:35	3315949
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-FB01-150902	<	20		ng/L				·	0.98	09/09/2015 07:30	09/11/2015 08:35	3315949
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-FB01-150902	<	40	1	ng/L					0.98	09/09/2015 07:30	09/11/2015 08:35	3315949
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-FB01-150902	<	20		ng/L					0.98	09/09/2015 07:30	09/11/2015 08:35	3315949
ССМ	IS-PFOA-13C2	537	N/A			6500.01	6500.01	ng/L	100	70 - 140			1.0	09/09/2015 09:56	09/11/2015 09:06	3316484
ССМ	IS-PFOS-13C4	537	N/A			5385.51	5385.51	ng/L	100	70 - 140			1.0	09/09/2015 09:56	09/11/2015 09:06	3316484
CCM	SS-PFDA-13C2	537	N/A			98.0876	100	ng/L	98	70 - 130			1.0	09/09/2015 09:56	09/11/2015 09:06	3316484
CCM	SS-PFHxA-13C2	537	N/A			52.3620	50.0	ng/L	105	70 - 130			1.0	09/09/2015 09:56	09/11/2015 09:06	3316484
CCM	Perfluorobutanesulfonic acid (PFBS)	537	90			712.1910	675	ng/L	106	70 - 130			1.0	09/09/2015 09:56	09/11/2015 09:06	
ССМ	Perfluoroheptanoic acid (PFHpA)	537	10			78.7955	75.0	ng/L	105	70 - 130			1.0	09/09/2015 09:56	09/11/2015 09:06	
CCM	Perfluorohexanesulfonic acid (PFHxS)	537	30			229.6540	225	ng/L	102	70 - 130			1.0	09/09/2015 09:56	09/11/2015 09:06	
ССМ	Perfluorononanoic acid (PFNA)	537	20			154.0200	150	ng/L	103	70 - 130			1.0	09/09/2015 09:56	09/11/2015 09:06	
ССМ	Perfluorooctane sulfonate (PFOS)	537	40			300.1330	300	ng/L	100	70 - 130			1.0	09/09/2015 09:56	09/11/2015 09:06	
ССМ	Perfluorooctanoic acid (PFOA)	537	20			152.1490	150	ng/L	101	70 - 130			1.0	09/09/2015 09:56	09/11/2015 09:06	
FS	IS-PF0A-13C2	537	N/A	SG1-MW02S-150902		6585.15	6500.01	ng/L	101	70 - 140			1.01	09/09/2015 07:30	09/11/2015 10:08	
FS	IS-PF0A-13C2	537	N/A	SG1-MW02S-150902		6585.15	6500.01	ng/L	101	70 - 140			10.1	09/09/2015 07:30	09/11/2015 10:08	
FS	IS-PFOS-13C4	537	N/A	SG1-MW02S-150902		5611.14	5385.51	ng/L	104	70 - 140			1.01	09/09/2015 07:30	09/11/2015 10:08	
FS	IS-PF0S-13C4	537	N/A	SG1-MW02S-150902		5611.14	5385.51	ng/L	104	70 - 140			10.1	09/09/2015 07:30	09/11/2015 10:08	
FS	SS-PFDA-13C2	537	N/A	SG1-MW02S-150902		99.8089	100	ng/L	99	70 - 130			1.01	09/09/2015 07:30	09/11/2015 10:08	
FS	SS-PFHxA-13C2	537	N/A	SG1-MW02S-150902		53.2177	50.0	ng/L	105	70 - 130			1.01	09/09/2015 07:30	09/11/2015 10:08	
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW02S-150902	<	90	00.0	ng/L				 	1.01	09/09/2015 07:30	09/11/2015 10:08	
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW02S-150902		20		ng/L					1.01	09/09/2015 07:30	09/11/2015 10:08	
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW02S-150902	<	30		ng/L				 	1.01	09/09/2015 07:30	09/11/2015 10:08	
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-MW02S-150902	<	20		ng/L					1.01	09/09/2015 07:30	09/11/2015 10:08	
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW02S-150902	` <	40		ng/L					1.01	09/09/2015 07:30	09/11/2015 10:08	
FS	IS-PFOA-13C2	537	N/A	SG1-MW01D-150903		7390.33	6500.01	ng/L	114	70 - 140			1.01	09/09/2015 07:30	09/11/2015 10:39	_
FS	IS-PFOS-13C4	537	N/A	SG1-MW01D-150903		5931.02	5385.51	-	110	70 - 140			1.03	09/09/2015 07:30	09/11/2015 10:39	
FS								ng/L								
	SS-PFDA-13C2	537	N/A	SG1-MW01D-150903		89.8131	100	ng/L	87	70 - 130			1.03	09/09/2015 07:30	09/11/2015 10:39	
FS	SS-PFHxA-13C2	537	N/A	SG1-MW01D-150903		48.2862	50.0	ng/L	94	70 - 130			1.03	09/09/2015 07:30	09/11/2015 10:39	
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW01D-150903	<	90		ng/L					1.03	09/09/2015 07:30	09/11/2015 10:39	
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW01D-150903	<	10		ng/L					1.03	09/09/2015 07:30	09/11/2015 10:39	
Page 1	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW01D-150903	<	30		ng/L					1.03	09/09/2015 07:30	09/11/2015 10:39	
gers e	Perfluorononanoic acid (PFNA)	537	20	SG1-MW01D-150903	<	20		ng/L					1.03	09/09/2015 07:30	09/11/2015 10:39	
1 ^{FS} 7 0f	Perfluorooctane sulfonate (PFOS) Perfluorooctanoic acid (PFOA)	537	40 20	SG1-MW01D-150903 SG1-MW01D-150903	<	40 20		ng/L ng/L					1.03	09/09/2015 07:30 09/09/2015 07:30	09/11/2015 10:39 09/11/2015 10:39	

					Q	C Summary Re	port (cont.)									
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
FS	IS-PFOA-13C2	537	N/A	SG1-MW01S-150903		6757.22	6500.01	ng/L	104	70 - 140			1.03	09/09/2015 07:30	09/11/2015 11:10	3315952
FS	IS-PFOS-13C4	537	N/A	SG1-MW01S-150903		5488.58	5385.51	ng/L	102	70 - 140	1		1.03	09/09/2015 07:30	09/11/2015 11:10	3315952
FS	SS-PFDA-13C2	537	N/A	SG1-MW01S-150903		99.6958	100	ng/L	97	70 - 130	i		1.03	09/09/2015 07:30	09/11/2015 11:10	3315952
FS	SS-PFHxA-13C2	537	N/A	SG1-MW01S-150903		53.4706	50.0	ng/L	104	70 - 130	i		1.03	09/09/2015 07:30	09/11/2015 11:10	3315952
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW01S-150903	<	90		ng/L			·		1.03	09/09/2015 07:30	09/11/2015 11:10	3315952
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW01S-150903	1	20		ng/L			i		1.03	09/09/2015 07:30	09/11/2015 11:10	3315952
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW01S-150903	<	30		ng/L					1.03	09/09/2015 07:30	09/11/2015 11:10	3315952
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-MW01S-150903	<	20		ng/L			i		1.03	09/09/2015 07:30	09/11/2015 11:10	3315952
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW01S-150903	<	40		ng/L					1.03	09/09/2015 07:30	09/11/2015 11:10	3315952
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-MW01S-150903	<	20		ng/L			i		1.03	09/09/2015 07:30	09/11/2015 11:10	3315952
FS	IS-PFOA-13C2	537	N/A	SG1-MW05S-150903		6685.73	6500.01	ng/L	103	70 - 140			1.02	09/09/2015 07:30	09/11/2015 11:41	3315953
FS	IS-PFOA-13C2	537	N/A	SG1-MW05S-150903		6685.73	6500.01	ng/L	103	70 - 140			10.2	09/09/2015 07:30	09/11/2015 11:41	3315953
FS	IS-PFOS-13C4	537	N/A	SG1-MW05S-150903		5784.61	5385.51	ng/L	107	70 - 140			1.02	09/09/2015 07:30	09/11/2015 11:41	3315953
FS	IS-PFOS-13C4	537	N/A	SG1-MW05S-150903		5784.61	5385.51	ng/L	107	70 - 140			10.2	09/09/2015 07:30	09/11/2015 11:41	3315953
FS	SS-PFDA-13C2	537	N/A	SG1-MW05S-150903		98.3674	100	ng/L	96	70 - 130			1.02	09/09/2015 07:30	09/11/2015 11:41	3315953
FS	SS-PFHxA-13C2	537	N/A	SG1-MW05S-150903		52.2571	50.0	ng/L	102	70 - 130			1.02	09/09/2015 07:30	09/11/2015 11:41	3315953
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW05S-150903	<	90		ng/L					1.02	09/09/2015 07:30	09/11/2015 11:41	3315953
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW05S-150903		10		ng/L					1.02	09/09/2015 07:30	09/11/2015 11:41	3315953
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW05S-150903	<	30		ng/L					1.02	09/09/2015 07:30	09/11/2015 11:41	3315953
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-MW05S-150903	<	20		ng/L					1.02	09/09/2015 07:30	09/11/2015 11:41	3315953
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW05S-150903	<	40		ng/L					1.02	09/09/2015 07:30	09/11/2015 11:41	3315953
LFSML	IS-PFOA-13C2	537	N/A	SG1-MW05S-150903		6309.11	6500.01	ng/L	97	70 - 140			1.0	09/09/2015 07:30	09/11/2015 12:12	
LFSML	IS-PFOS-13C4	537	N/A	SG1-MW05S-150903	1	5449.82	5385.51	ng/L	101	70 - 140	í		1.0	09/09/2015 07:30	09/11/2015 12:12	
LFSML	SS-PFDA-13C2	537	N/A	SG1-MW05S-150903	1	98.5926	100	ng/L	99	70 - 130			1.0	09/09/2015 07:30	09/11/2015 12:12	
LFSML	SS-PFHxA-13C2	537	N/A	SG1-MW05S-150903		51.2521	50.0	ng/L	103	70 - 130	1		1.0	09/09/2015 07:30	09/11/2015 12:12	
LFSML	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW05S-150903	1	97.2873	90.0	ng/L	108	50 - 150			1.0	09/09/2015 07:30	09/11/2015 12:12	
LFSML	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW05S-150903		24.6431	23.6966	ng/L	109	50 - 150	1		1.0	09/09/2015 07:30	09/11/2015 12:12	
LFSML	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW05S-150903	1	31.3810	30.0	ng/L	105	50 - 150			1.0	09/09/2015 07:30	09/11/2015 12:12	
LFSML	Perfluorononanoic acid (PFNA)	537	20	SG1-MW05S-150903		21.9155	20.0	ng/L	110	50 - 150			1.0	09/09/2015 07:30	09/11/2015 12:12	
LFSML	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW05S-150903	1	40.2077	40.0	ng/L	101	50 - 150			1.0	09/09/2015 07:30	09/11/2015 12:12	
LFSMDL	IS-PFOA-13C2	537	N/A	SG1-MW05S-150903		6316.68	6500.01	ng/L	97	70 - 140			1.0	09/09/2015 07:30	09/11/2015 12:42	
LFSMDL	IS-PFOS-13C4	537	N/A	SG1-MW05S-150903		5416.79	5385.51	ng/L	101	70 - 140			1.0	09/09/2015 07:30	09/11/2015 12:42	
LFSMDL	SS-PFDA-13C2	537	N/A	SG1-MW05S-150903		97.6221	100	ng/L	98	70 - 130			1.0	09/09/2015 07:30	09/11/2015 12:42	
LFSMDL	SS-PFHxA-13C2	537	N/A	SG1-MW05S-150903		49.9284	50.0	ng/L	100	70 - 130			1.0	09/09/2015 07:30	09/11/2015 12:42	
LFSMDL	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW05S-150903		99.6473	90.0	ng/L	111	50 - 150	2.4		1.0	09/09/2015 07:30	09/11/2015 12:42	
LFSMDL	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW05S-150903		24.4612	23.6966	ng/L	108	50 - 150	0.7		1.0	09/09/2015 07:30	09/11/2015 12:42	
LFSMDL	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW05S-150903		32.0943	30.0	ng/L	100	50 - 150	2.2		1.0	09/09/2015 07:30	09/11/2015 12:42	
	Perfluorononanoic acid (PFNA)	537	20	SG1-MW05S-150903		22.0522	20.0	ng/L	110	50 - 150	0.6		1.0	09/09/2015 07:30	09/11/2015 12:42	
	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW05S-150903		41.6968	40.0	ng/L	104	50 - 150	3.6		1.0	09/09/2015 07:30	09/11/2015 12:42	
	IS-PFOA-13C2	537	40 N/A	SG1-MW04S-150903		6170.11	6500.01	ng/L	95	70 - 140			1.0	09/09/2015 07:30	09/11/2015 13:13	
1 13 8 FS 0	IS-PF0A-13C2	537	N/A	SG1-MW04S-150903		6170.11	6500.01	ng/L	95	70 - 140			1.0	09/09/2015 07:30	09/11/2015 13:13	

					QC	Summary Rep	oort (cont.)									
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
FS	IS-PFOS-13C4	537	N/A	SG1-MW04S-150903		5592.37	5385.51	ng/L	104	70 - 140			1.0	09/09/2015 07:30	09/11/2015 13:13	3315957
FS	IS-PFOS-13C4	537	N/A	SG1-MW04S-150903		5592.37	5385.51	ng/L	104	70 - 140			10	09/09/2015 07:30	09/11/2015 13:13	3315957
FS	SS-PFDA-13C2	537	N/A	SG1-MW04S-150903		102.6140	100	ng/L	103	70 - 130			1.0	09/09/2015 07:30	09/11/2015 13:13	3315957
FS	SS-PFHxA-13C2	537	N/A	SG1-MW04S-150903		54.1138	50.0	ng/L	108	70 - 130			1.0	09/09/2015 07:30	09/11/2015 13:13	3315957
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW04S-150903	<	90		ng/L					1.0	09/09/2015 07:30	09/11/2015 13:13	3315957
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW04S-150903		40		ng/L					1.0	09/09/2015 07:30	09/11/2015 13:13	3315957
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW04S-150903	<	30		ng/L					1.0	09/09/2015 07:30	09/11/2015 13:13	3315957
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-MW04S-150903	<	20		ng/L					1.0	09/09/2015 07:30	09/11/2015 13:13	3315957
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW04S-150903	<	40		ng/L					1.0	09/09/2015 07:30	09/11/2015 13:13	3315957
FS	IS-PFOA-13C2	537	N/A	SG1-DS01-150903		5842.25	6252.25	ng/L	90	70 - 140			0.99	09/09/2015 07:30	09/11/2015 13:44	3315958
FS	IS-PFOA-13C2	537	N/A	SG1-DS01-150903		5842.25	6252.25	ng/L	90	70 - 140			19.8	09/09/2015 07:30	09/11/2015 13:44	3315958
FS	IS-PFOS-13C4	537	N/A	SG1-DS01-150903		5382.74	5283.19	ng/L	100	70 - 140			0.99	09/09/2015 07:30	09/11/2015 13:44	3315958
FS	IS-PFOS-13C4	537	N/A	SG1-DS01-150903		5382.74	5283.19	ng/L	100	70 - 140			19.8	09/09/2015 07:30	09/11/2015 13:44	3315958
FS	SS-PFDA-13C2	537	N/A	SG1-DS01-150903		105.3310	100	ng/L	106	70 - 130			0.99	09/09/2015 07:30	09/11/2015 13:44	3315958
FS	SS-PFHxA-13C2	537	N/A	SG1-DS01-150903		54.6863	50.0	ng/L	110	70 - 130			0.99	09/09/2015 07:30	09/11/2015 13:44	3315958
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-DS01-150903	<	90		ng/L					0.99	09/09/2015 07:30	09/11/2015 13:44	3315958
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-DS01-150903		130		ng/L					0.99	09/09/2015 07:30	09/11/2015 13:44	3315958
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-DS01-150903	<	30		ng/L					0.99	09/09/2015 07:30	09/11/2015 13:44	3315958
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-DS01-150903	<	20		ng/L					0.99	09/09/2015 07:30	09/11/2015 13:44	3315958
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-DS01-150903	<	40		ng/L					0.99	09/09/2015 07:30	09/11/2015 13:44	3315958
FS	IS-PFOA-13C2	537	N/A	SG1-MW03S-150903		5673.23	6252.25	ng/L	87	70 - 140			0.97	09/09/2015 07:30	09/11/2015 14:15	3315959
FS	IS-PFOA-13C2	537	N/A	SG1-MW03S-150903		5673.23	6252.25	ng/L	87	70 - 140			48.5	09/09/2015 07:30	09/11/2015 14:15	3315959
FS	IS-PFOS-13C4	537	N/A	SG1-MW03S-150903		5549.39	5283.19	ng/L	103	70 - 140			0.97	09/09/2015 07:30	09/11/2015 14:15	3315959
FS	IS-PFOS-13C4	537	N/A	SG1-MW03S-150903		5549.39	5283.19	ng/L	103	70 - 140			48.5	09/09/2015 07:30	09/11/2015 14:15	
FS	SS-PFDA-13C2	537	N/A	SG1-MW03S-150903		109.3540	100	ng/L	113	70 - 130			0.97	09/09/2015 07:30	09/11/2015 14:15	3315959
FS	SS-PFHxA-13C2	537	N/A	SG1-MW03S-150903		56.5407	50.0	ng/L	117	70 - 130			0.97	09/09/2015 07:30	09/11/2015 14:15	3315959
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW03S-150903	<	90		ng/L					0.97	09/09/2015 07:30	09/11/2015 14:15	3315959
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW03S-150903		130		ng/L					0.97	09/09/2015 07:30	09/11/2015 14:15	3315959
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW03S-150903	<	30		ng/L					0.97	09/09/2015 07:30	09/11/2015 14:15	3315959
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-MW03S-150903	<	20		ng/L					0.97	09/09/2015 07:30	09/11/2015 14:15	3315959
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW03S-150903	<	40		ng/L					0.97	09/09/2015 07:30	09/11/2015 14:15	3315959
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-MW02S-150902		1100		ng/L					10.1	09/09/2015 07:30	09/11/2015 14:48	3315950
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-MW05S-150903		580		ng/L					10.2	09/09/2015 07:30	09/11/2015 15:19	3315953
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-MW04S-150903		1700		ng/L					10	09/09/2015 07:30	09/11/2015 15:50	3315957
ССН	IS-PFOA-13C2	537	N/A			6252.25	6252.25	ng/L	100	70 - 140			1.0	09/09/2015 09:56	09/11/2015 16:21	
ССН	IS-PFOS-13C4	537	N/A		í	5283.19	5283.19	ng/L	100	70 - 140			1.0	09/09/2015 09:56	09/11/2015 16:21	
ССН	SS-PFDA-13C2	537	N/A			102.1540	100	ng/L	102	70 - 130			1.0	09/09/2015 09:56	09/11/2015 16:21	
	SS-PFHxA-13C2	537	N/A			53.1639	50.0	ng/L	106	70 - 130			1.0	09/09/2015 09:56	09/11/2015 16:21	
	Perfluorobutanesulfonic acid (PFBS)	537	90			1154.6400	1125	ng/L	103	70 - 130			1.0	09/09/2015 09:56	09/11/2015 16:21	
ссн Ссн	Perfluoroheptanoic acid (PFHpA)	537	10			129.0860	125	ng/L	103	70 - 130			1.0	09/09/2015 09:56	09/11/2015 16:21	3316485
9 о ^{ссн}	Perfluorohexanesulfonic acid (PFHxS)	537	30			372.9960	375	ng/L	99	70 - 130			1.0	09/09/2015 09:56	09/11/2015 16:21	

					QC	Summary Rep	ort (cont.)									
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
ССН	Perfluorononanoic acid (PFNA)	537	20			254.8410	250	ng/L	102	70 - 130			1.0	09/09/2015 09:56	09/11/2015 16:21	3316485
ССН	Perfluorooctane sulfonate (PFOS)	537	40			498.1890	500	ng/L	100	70 - 130			1.0	09/09/2015 09:56	09/11/2015 16:21	3316485
ССН	Perfluorooctanoic acid (PFOA)	537	20			251.3240	250	ng/L	101	70 - 130			1.0	09/09/2015 09:56	09/11/2015 16:21	3316485
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW02D-150902		340		ng/L					9.7	09/09/2015 07:30	09/11/2015 16:51	3315946
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-MW03S-150903		5300		ng/L					48.5	09/09/2015 07:30	09/11/2015 17:22	3315959
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-DS01-150903		4200		ng/L					19.8	09/09/2015 07:30	09/11/2015 17:53	3315958
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-MW02D-150902		18000		ng/L					97	09/09/2015 07:30	09/11/2015 18:24	3315946
CCM	IS-PFOA-13C2	537	N/A			6659.52	6659.52	ng/L	100	70 - 140			1.0	09/09/2015 09:56	09/11/2015 18:55	3319308
CCM	IS-PFOS-13C4	537	N/A			5559.78	5559.78	ng/L	100	70 - 140			1.0	09/09/2015 09:56	09/11/2015 18:55	3319308
CCM	SS-PFDA-13C2	537	N/A			99.4288	100	ng/L	99	70 - 130			1.0	09/09/2015 09:56	09/11/2015 18:55	3319308
CCM	SS-PFHxA-13C2	537	N/A			52.0463	50.0	ng/L	104	70 - 130			1.0	09/09/2015 09:56	09/11/2015 18:55	3319308
CCM	Perfluorobutanesulfonic acid (PFBS)	537	90			712.9780	675	ng/L	106	70 - 130			1.0	09/09/2015 09:56	09/11/2015 18:55	3319308
CCM	Perfluoroheptanoic acid (PFHpA)	537	10			78.9467	75.0	ng/L	105	70 - 130			1.0	09/09/2015 09:56	09/11/2015 18:55	3319308
CCM	Perfluorohexanesulfonic acid (PFHxS)	537	30			227.4080	225	ng/L	101	70 - 130			1.0	09/09/2015 09:56	09/11/2015 18:55	3319308
CCM	Perfluorononanoic acid (PFNA)	537	20			154.3280	150	ng/L	103	70 - 130			1.0	09/09/2015 09:56	09/11/2015 18:55	3319308
CCM	Perfluorooctane sulfonate (PFOS)	537	40			304.7700	300	ng/L	102	70 - 130			1.0	09/09/2015 09:56	09/11/2015 18:55	3319308
CCM	Perfluorooctanoic acid (PFOA)	537	20			151.0350	150	ng/L	101	70 - 130			1.0	09/09/2015 09:56	09/11/2015 18:55	3319308
LRB	IS-PFOA-13C2	537	N/A			6374.36	6659.52	ng/L	96	70 - 140			1.0	09/11/2015 09:00	09/11/2015 19:26	3319172
LRB	IS-PFOS-13C4	537	N/A			5215.01	5559.78	ng/L	94	70 - 140			1.0	09/11/2015 09:00	09/11/2015 19:26	3319172
LRB	SS-PFDA-13C2	537	N/A			90.3777	100	ng/L	90	70 - 130			1.0	09/11/2015 09:00	09/11/2015 19:26	3319172
LRB	SS-PFHxA-13C2	537	N/A			46.9784	50.0	ng/L	94	70 - 130			1.0	09/11/2015 09:00	09/11/2015 19:26	3319172
LRB	Perfluorobutanesulfonic acid (PFBS)	537	90		<	90		ng/L					1.0	09/11/2015 09:00	09/11/2015 19:26	3319172
LRB	Perfluoroheptanoic acid (PFHpA)	537	10		<	10		ng/L					1.0	09/11/2015 09:00	09/11/2015 19:26	3319172
LRB	Perfluorohexanesulfonic acid (PFHxS)	537	30		<	30		ng/L					1.0	09/11/2015 09:00	09/11/2015 19:26	3319172
LRB	Perfluorononanoic acid (PFNA)	537	20		<	20		ng/L					1.0	09/11/2015 09:00	09/11/2015 19:26	3319172
LRB	Perfluorooctane sulfonate (PFOS)	537	40		<	40		ng/L					1.0	09/11/2015 09:00	09/11/2015 19:26	3319172
LRB	Perfluorooctanoic acid (PFOA)	537	20		<	20		ng/L					1.0	09/11/2015 09:00	09/11/2015 19:26	3319172

	Sample Type Key											
Type (Abbr.)	Sample Type	Type (Abbr.) Sample Type										
ССН	ССН											
CCL	CCL											
CCM	CCM											
FBL	FBL											
FS	FS											
FTB	FTB											
LFSMDL	LFSMDL											
LFSML	LFSML											
LRB	LRB											

Xam	6740 Campobello Road, Mississauga, Onta INVOICE TO:	-		REPOR		-				PROJECT	INFORMATION	4:			Laboratory Use	Only:
#200000 Damb			. 2.	bull Environ	1. 1. S. 1	T Mab	Associa	Au Quota	lise #				-		Maxxam Job #:	Bottle Order #:
	ason Wilkinson	Company Attention:		Wilkinson		it M		POI			7128B (A		5.5173	(crm)		
3 Carlisle Rd.	wied Presented	Address:		tale Rd			y HyD			5611	Husick	Falls				524261
Westford MA 0	1886		West	ford MA DISS			NY JU		t Name:						COC #:	Project Manager:
(978) 449-0390	X Fax	Tel	178-	449-0390	Fax	- 1.	-	Site #		-		11	1	11111		Melissa DiGrazia
rhuening@envi	roncorp.com	Email:	chuer	ing Centim	curp.com	/K.M	1/ine@ch	the costing				apart l	(TM)		C#524261-01-01 Turnaround Time (TAT) F	De avides de
GULATED DRINKI	IG WATER OR WATER INTENDED F	OR HUMAN CO	ONSUMPTION	MUST BE		-	9	ANALYSIS	REQUEST	ED (PLEASE BE	SPECIFIC)	1	T		Please provide advance notice for	A CONTRACTOR OF
SUBMITTEL	ON THE MAXXAM DRINKING WATE		USTODY	- Aller	le):	NO	44.								Standard) TAT:	K
ation 153 (2011)	Other Regulations		Special In	structions	circle) VI	FEC.	PFOS							Allower of the	ed if Rush TAT is not specified) T = 5.7 Working days for most tests	
Res/Park Med					(please	28	58							Diance onte	Standard TAT for cortain tests such as I	90D and Dioxins/Furans are >
Ind/Comm Coar Agri/Other For		19W		1	d (please Hg / Cr	the second	FERB							days - conta	ct your Project Manager for details.	
-	PWQ0				ered als /	2act	50							Job Specif	Tic Rush TAT (if applies to entire sub	mission) me Required:
	Other				Field Filtered Metals / H	a¥ a	Hx S								mation Number:	L
Include Crite	ria on Certificate of Analysis (Y/N)?				Field	FC	Pr	F	2					# of Bottles	Comm	call lab for #) nents
nfle Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix		NN	200		-			-	-		-	15 14:05
	S61 - AHOHD-00.0	8/5/15	0825	Soil		X						1		1		Aug-15 14:25
		· pp	00-	-0.7		1		-	-			-	-	1	– Melissa D	
ii) *	561 - AHAYD-02.0	8/5/15	0839	Soil		X								1		
	301-11	0/1/10	Uni	- 1		N		_	-		2	-			B5F69	82
	561-MW045-15.0	8/5/15	1230	Soil					,					1	FW	ENV-572
	SOT LINGIS 15:0	0/3/13	1000	2011				X			-	-	-	1	+	
	SG1- MH045 -21.0	01-1-	1235	Soil	-				1					1		
	361- MINOTS - 21.0	8/5/15	1622	1.05				1				-	-	1		
	and mining and a	8/5/15	1240	So.1					r					1	Intern	ational Solid
	S61 - MW045 - 24.0	0/3/15		20.1				1				-	_	/		Sample
	COL DEAL HEARS	8/5/15	1445	Soil		V								1		Treat Required
	561 - DS 0.1 - 150805	8/5-115-	1775	7011		X							-			
	SG1-MH020-00.0	st-l-	1500	Soit		V								1	High Risk (Controlled Storag	material
	SG1-MW020-0000	8/5/15	1,00	Jost		X								1		
	SG1 - MHOZD - 02.0	8/5/15	1510	1.1		V		-						3	MS/ASD colle	ckd
	201 -1010000 -02.0	8 15/15	1310	Soil		X								-		
	1/22 11/20	del	1.00	0.1					1					1		
	561-MW020-420	8/6/15	1230	Sout				1	1					1		
		. let		0 -1					n	0.00						
	561-MW02D-24.0	8/6/15	12.55	Sort				1	1					1		
* RELINQUISHED BY:	(Signature/Print) Date: (YY	/MM/DD) T	îme	RECEIV	ED BY: (Signa	ture/Print)		Date: (YY/	MM/DD)	Time		sed and bmitted		-	Laboratory Use Only	Custody Seal Yes
A		108/06 15	70 A	elitto	le	ku	mill	20151.	1.7	14:25	nocsu	omitted	Time Sen	sitive T	emperature/(*C) on Receipt	Present Present
1 3	and Nor	00/00/0		1: One	1ac			170	1					4	1. 2/ 4 4/44	Intact L
-	LINQUISHER TO ENSURE THE ACCURACY OF T			11/104	SUN.	UMM	R	1		No.			FRONTING	05 0 4100	IG UNTIL DELIVERY TO MAXXAM	White: Maxxam Yellow: C

LABORATORY REPORT

If you have any questions concerning this report, please do not hesitate to call us at (800) 332-4345 or (574) 233-4777.

This report may not be reproduced, except in full, without written approval from EEA.

STATE CERTIFICATION LIST

State	Certification	State	Certification
Alabama	40700	Montana	CERT0026
Alaska	IN00035	Nebraska	E87775
Arizona	AZ0432	Nevada	IN000352015-1
Arkansas	IN035	New Hampshire*	2124
California	2920	New Mexico	IN00035
Colorado	IN035	New Jersey*	IN598
Colorado Radiochemistry	IN035	New York*	11398
Connecticut	PH-0132	North Carolina	18700
Delaware	IN035	North Dakota	R-035
Florida (Primary AB)*	E87775	Ohio	87775
Georgia	929	Oklahoma	D9508
Hawaii	IN035	Oregon*	IN200001
Idaho	IN00035/E87775	Pennsylvania*	68-00466
Illinois*	200001	Puerto Rico	IN00035
Illinois Microbiology	200001	Rhode Island	LAO00241
Indiana Chemistry	C-71-01	South Carolina	95005
Indiana Microbiology	M-76-07	South Dakota	IN00035
lowa	098	Tennessee	TN02973
Kansas*	E-10233	Texas*	T104704187-14-7
Kentucky	90056	Texas/TCEQ	TX207
Louisiana*	LA150003	Utah*	IN00035
Maine	IN00035	Vermont	VT-8775
Maryland	209	Virginia*	00127
Massachusetts	M-IN035	Washington	C837
Michigan	9926	West Virginia	9927 C
Minnesota*	018-999-338	Wisconsin	999766900
Mississippi	IN035	Wyoming	IN035
Missouri	880		

*NELAP/TNI Recognized Accreditation Bodies

LABORATORY CASE NARRATIVE

Client: Ramboll Environ

Report #: 350056CN

All method QC was within acceptance limits.

Note: This report may not be reproduced, except in full, without written approval from EEA.

C.S. Managor

10/07/2015

Date

Authorized Signature

Page 1 of 1

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Client:	Ramboll Environ	Report:	350056
Attn:	Jason Wilkinson	Priority:	Rush Written
Aun.	3 Carlisle Road	Status:	Final
	Suite 210	PWS ID:	Not Supplied
. .	Westford, MA 01886	Lab ELAP #:	11398
Copies			

to: None

	Sampl	e Information			
EEA ID #	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time
3332984	SG1-MW02-150930	537	09/30/15 13:10	Client	10/01/15 09:15
3332985	SG1-TB02-150930	537	09/30/15 14:45	Client	10/01/15 09:15

Report Summary

Note: See attached page for additional comments.

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Nathan Trowbridge at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

horized Signature Title

10/07/2015

Date

Authorized SignatureClient Name:Ramboll EnvironReport #:350056

Page 1 of 3

Sampling Point: SG1-MW02-150930

Ramboll Environ

Client Name:

PWS ID: Not Supplied

		I	EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/02/15 07:35	10/03/15 07:57	3332984
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	310	ng/L	10/02/15 07:35	10/03/15 14:11	3332984
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/02/15 07:35	10/03/15 07:57	3332984
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/02/15 07:35	10/03/15 07:57	3332984
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/02/15 07:35	10/03/15 07:57	3332984
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	17000	ng/L	10/02/15 07:35	10/03/15 13:40	3332984

Sampling Point: SG1-TB02-150930

PWS ID: Not Supplied

		E	EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/02/15 07:35	10/03/15 01:46	3332985
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	10/02/15 07:35	10/03/15 01:46	3332985
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/02/15 07:35	10/03/15 01:46	3332985
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/02/15 07:35	10/03/15 01:46	3332985
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/02/15 07:35	10/03/15 01:46	3332985
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	10/02/15 07:35	10/03/15 01:46	3332985

† EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	*	۸	!

Lab Definitions

Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis. CCL, CCM, and CCH are the CCC standards at low, mid, and high concentration levels, respectively.

Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control. FBL, FBM, and FBH are the LFB samples at low, mid, and high concentration levels, respectively.

Laboratory Method Blank (LMB) / Laboratory Reagent Blank (LRB) - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.

Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample al6iquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix. SDL, SDM, and SDH / LFSMDL, LFSMDM, and LFSMDH are the MSD or LFSMD at low, mid, and high concentration levels, respectively.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results. MSL, MSM, and MSH / LFSML, LFSMM, and LFSMH are the MS or LFSM at low, mid, and high concentration levels, respectively.

Quality Control Standard (QCS) / Second Source Calibration Verification (SSCV) - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / Surrogate Analyte (SUR) - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

🛟 euro	fins		Eato	n Analytical			110 S. Hill South Ber T: 1.800.3 F: 1.574.2	nd, IN 46617 32.4345	Order Batch	# <u>78</u> # <u>3</u>	342	12	2
www.eatonanalytical.com					CHAIN OF	CUSTODY RECO	DD		12.1			4	
Shaded area REPORT TO:	for EEA use	e only			CHAIN OF	CUSTODY RECO	RD		Page	1	- of	1	
				SAMPLER (Signature)	7	PWS ID #	STATE (sample origin)	PROJECT NAME	P	0#		1	
Ramboil Envir 3 carliste Kd.#	tzio W	estro	andr.	Valn	5		NY	SGPP-			-		
BILL TO: Same				COMPLIANCE MONITORING	Yes No	POPULATION SERVED	SOURCE WATER	Falls			ITAINERS	CODE	TURNAROUND TIME
LAB Number		OLLECTION		SAMPLING	SITE	TEST NA	ME	SAMPLE REMARKS	CHLOR	INATED	FCON	ATRIX C	RNARC
333 20016	DATE	TIME	AM PM						YES	NO	1	2	の利
1 333 2984	9130/15		× ×	561-MW020-15	0930	PFZ, by EPA	1537-2	CLA		X	3	6~	SW
2 3332985	012017	1445	1	861-TB02-150	093 D	PFCS by EP.	A 537			X	1	-	SW
3			-					55				-	
4					o logitico	1 22							
5			-	only received	200Hus	FW FS SS 10	4-15						
6													
7					1								
8			-										
9													
10				EPA Muthod For 7	the following	PECS : PFOA , +	FBS AF Hot.	1	-				
11					J		FNA PFOS	1				-	-
12	-				10111		TAI			-			
13				R	SH	WRIT					-		
14						VVIIIII	Same 8 V		1	-	-		
RELINQUISHED BY:(Signature	A 1	DATE	TIME							-		-	
	,	ALL I		RECEIVED BY:(Signature)	DATE		ES THE RIGHT TO RETURN UNU	SED PORTIONS OF NON-A	QUEOUS S	AMPLES TO	CLIENT		
Jon		9/30/15	- 1845		4 -	LAB COMMENTS	RILL	arriv	20	T	TO	X	11.1
RELINQUISHED BY:(Signature	1	DATE	AM PM) RECEIVED BY:(Signature)	D.I.T.T.	AM PM	RW 8.		/	1	10	00	-1
Centra of office of a congristation	/	DATE	TIME	RECEIVED BY:(Signature)	DATE	TIME	14-1	-15	T	7-			
							10		-				
RELINQUISHED BY:(Signature)	DATE	AM PM TIME	RECEIVED FOR LABORATORY BY		AM PM							
	,	DATE		Staller		CONDITIONS UPON RE	1	1.2 °C Upon R	eceipt	_	N/A		
MATRIX CODES:		TURN-ARO	AM PM	(TAT) - SURCHARGES	10110	AM PM				-			
DW-DRINKING WATER RW-REAGENT WATER GW-GROUND WATER EW-EXPOSURE WATER SW-SURFACE WATER PW-POOL WATER WW-WASTE WATER	S F	SW = Standard RV* = Rush Ver RW* = Rush Wr	Written: (15 v bal: (5 working itten: (5 worki	vorking days) 0% g days) 50%	IW* =Immediate SP* = Weekend STAT* = Less ti			Samples received unany than 48 hours holding ti be subject to additional 06-LO-F0435 Issue 4.	me remain charges.	ing may			

~

Page 7 of 12

Sample analysis will be provided according to the standard EEA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agree to in writing by EEA.

n Analytical

Eurofins Eaton Analytical Run Log Run ID: 208267 Method: 537

<u>Type</u>	Sample Id	Sample Site	<u>Matrix</u>	Instrument ID	Analysis Date	Calibration File
CCL	3333366		OS	CY	10/02/2015 22:09	100215M537a.mdb
LRB	3333324		RW	CY	10/02/2015 23:42	100215M537a.mdb
FBL	3333325		RW	CY	10/03/2015 00:13	100215M537a.mdb
FBM	3333326		RW	CY	10/03/2015 00:44	100215M537a.mdb
FTB	3332985	SG1-TB02-150930	RW	CY	10/03/2015 01:46	100215M537a.mdb
FS	3332984	SG1-MW02-150930	GW	CY	10/03/2015 07:57	100215M537a.mdb
CCM	3333367		OS	CY	10/03/2015 08:28	100215M537a.mdb
FS	3332984	SG1-MW02-150930	GW	CY	10/03/2015 14:11	100215M537a.mdb
CCH	3333368		OS	CY	10/03/2015 14:42	100215M537a.mdb

Analyte IS-PFOA-13C2 IS-PFOS-13C4 SS-PFDA-13C2 SS-PFDA-13C2 SS-PFDA-13C2 Jorobutanesulfonic acid (PFBS) fluoroheptanoic acid (PFHpA) orohexanesulfonic acid (PFHxS) rfluorononanoic acid (PFNA) fluorooctane sulfonate (PFOS) erfluorooctanoic acid (PFOA) IS-PFOA-13C2 IS-PFOS-13C4 SS-PFDA-13C2 SS-PFDA-13C2 SS-PFHxA-13C2 sorobutanesulfonic acid (PFBS)	Method 537 537 537 537 537 537 537 537 537 537	MRL N/A N/A N/A N/A 90 10 30 20 40 20 N/A	Client ID	Result Flag	Amount 11656.40 6524.74 95.8643 49.6333 90.1888 9.9364 30.3116	Target 11656.4 6524.74 100 50.0 90.0 10.0	Units ng/L ng/L ng/L ng/L ng/L	% Recovery 100 100 96 99 100	Recovery Limits 70 - 140 70 - 140 70 - 130 70 - 130	 	Limit 	Dil Factor 1.0 1.0 1.0 1.0	09/30/2015 09:59	10/02/2015 22:09 10/02/2015 22:09	
IS-PFOS-13C4 SS-PFDA-13C2 SS-PFHXA-13C2 Jorobutanesulfonic acid (PFBS) fluoroheptanoic acid (PFHpA) orohexanesulfonic acid (PFHxS) rfluorononanoic acid (PFNA) fluorooctane sulfonate (PFOS) erfluorooctanoic acid (PFOA) IS-PFOA-13C2 IS-PFOS-13C4 SS-PFDA-13C2 SS-PFHxA-13C2	537 537 537 537 537 537 537 537 537 537	N/A N/A N/A 90 10 30 20 40 20	 		6524.74 95.8643 49.6333 90.1888 9.9364	6524.74 100 50.0 90.0	ng/L ng/L ng/L	100 96 99	70 - 140 70 - 130 70 - 130	 	 	1.0 1.0 1.0	09/30/2015 09:59 09/30/2015 09:59	10/02/2015 22:09 10/02/2015 22:09	
SS-PFDA-13C2 SS-PFDA-13C2 Jorobutanesulfonic acid (PFBS) fluoroheptanoic acid (PFHpA) orohexanesulfonic acid (PFHxS) rfluorononanoic acid (PFNA) fluorooctane sulfonate (PFOS) erfluorooctanoic acid (PFOA) IS-PFOA-13C2 IS-PFOS-13C4 SS-PFDA-13C2 SS-PFHxA-13C2	537 537 537 537 537 537 537 537 537 537	N/A N/A 90 10 30 20 40 20	 		95.8643 49.6333 90.1888 9.9364	100 50.0 90.0	ng/L ng/L	96 99	70 - 130 70 - 130			1.0 1.0	09/30/2015 09:59	10/02/2015 22:09	333336
SS-PFHxA-13C2 Jorobutanesulfonic acid (PFBS) fluoroheptanoic acid (PFHpA) prohexanesulfonic acid (PFHxS) influorononanoic acid (PFNA) aluorooctane sulfonate (PFOS) erfluorooctanoic acid (PFOA) IS-PFOA-13C2 IS-PFOS-13C4 SS-PFDA-13C2 SS-PFHxA-13C2	537 537 537 537 537 537 537 537 537 537	N/A 90 10 30 20 40 20			49.6333 90.1888 9.9364	50.0 90.0	ng/L	99	70 - 130			1.0		1	
Jorobutanesulfonic acid (PFBS) fluoroheptanoic acid (PFHpA) orohexanesulfonic acid (PFHxS) rfluorononanoic acid (PFNA) fluorooctane sulfonate (PFOS) erfluorooctanoic acid (PFOA) IS-PFOA-13C2 IS-PFOS-13C4 SS-PFDA-13C2 SS-PFHxA-13C2	537 537 537 537 537 537 537 537 537	90 10 30 20 40 20			90.1888 9.9364	90.0							09/30/2015 00.50		333336
fluoroheptanoic acid (PFHpA) orohexanesulfonic acid (PFHxS) rfluorononanoic acid (PFNA) luorooctane sulfonate (PFOS) erfluorooctanoic acid (PFOA) IS-PFOA-13C2 IS-PFOS-13C4 SS-PFDA-13C2 SS-PFDA-13C2	537 537 537 537 537 537 537 537	10 30 20 40 20			9.9364		ng/L	100					00/00/2010 09.09	10/02/2015 22:09	333336
orohexanesulfonic acid (PFHxS) rfluorononanoic acid (PFNA) luorooctane sulfonate (PFOS) erfluorooctanoic acid (PFOA) IS-PFOA-13C2 IS-PFOS-13C4 SS-PFDA-13C2 SS-PFHxA-13C2	537 537 537 537 537 537 537	30 20 40 20				10.0			50 - 150			1.0	09/30/2015 09:59	10/02/2015 22:09	333336
rfluorononanoic acid (PFNA) fluorooctane sulfonate (PFOS) erfluorooctanoic acid (PFOA) IS-PFOA-13C2 IS-PFOS-13C4 SS-PFDA-13C2 SS-PFHxA-13C2	537 537 537 537 537 537	20 40 20			20 2116		ng/L	99	50 - 150			1.0	09/30/2015 09:59	10/02/2015 22:09	333336
luorooctane sulfonate (PFOS) erfluorooctanoic acid (PFOA) IS-PFOA-13C2 IS-PFOS-13C4 SS-PFDA-13C2 SS-PFDA-13C2	537 537 537 537 537	40 20			30.3110	30.0	ng/L	101	50 - 150			1.0	09/30/2015 09:59	10/02/2015 22:09	333336
erfluorooctanoic acid (PFOA) IS-PFOA-13C2 IS-PFOS-13C4 SS-PFDA-13C2 SS-PFHxA-13C2	537 537 537	20			19.9372	20.0	ng/L	100	50 - 150			1.0	09/30/2015 09:59	10/02/2015 22:09	333336
IS-PFOA-13C2 IS-PFOS-13C4 SS-PFDA-13C2 SS-PFHxA-13C2	537 537				41.1147	40.0	ng/L	103	50 - 150			1.0	09/30/2015 09:59	10/02/2015 22:09	333336
IS-PFOS-13C4 SS-PFDA-13C2 SS-PFHxA-13C2	537	N/A			20.2689	20.0	ng/L	101	50 - 150			1.0	09/30/2015 09:59	10/02/2015 22:09	333336
SS-PFDA-13C2 SS-PFHxA-13C2					11266.50	11656.4	ng/L	97	70 - 140			1.0	10/02/2015 07:35	10/02/2015 23:42	333332
SS-PFHxA-13C2	537	N/A			6359.43	6524.74	ng/L	97	70 - 140			1.0	10/02/2015 07:35	10/02/2015 23:42	333332
		N/A			94.2210	100	ng/L	94	70 - 130			1.0	10/02/2015 07:35	10/02/2015 23:42	333332
uorobutanesulfonic acid (PFBS)	537	N/A			48.0828	50.0	ng/L	96	70 - 130			1.0	10/02/2015 07:35	10/02/2015 23:42	333332
	537	90		<	90		ng/L					1.0	10/02/2015 07:35	10/02/2015 23:42	333332
fluoroheptanoic acid (PFHpA)	537	10		<	10		ng/L					1.0	10/02/2015 07:35	10/02/2015 23:42	333332
orohexanesulfonic acid (PFHxS)	537	30		<	30		ng/L					1.0	10/02/2015 07:35	10/02/2015 23:42	333332
rfluorononanoic acid (PFNA)	537	20		<	20		ng/L					1.0	10/02/2015 07:35	10/02/2015 23:42	333332
luorooctane sulfonate (PFOS)	537	40		<	40		ng/L					1.0	10/02/2015 07:35	10/02/2015 23:42	333332
erfluorooctanoic acid (PFOA)	537	20		<	20		ng/L					1.0	10/02/2015 07:35	10/02/2015 23:42	333332
IS-PFOA-13C2	537	N/A			11536.40	11656.4	ng/L	99	70 - 140			1.0	10/02/2015 07:35	10/03/2015 00:13	333332
IS-PFOS-13C4	537	N/A			6414.15	6524.74	ng/L	98	70 - 140			1.0	10/02/2015 07:35		
SS-PFDA-13C2	537	N/A			95.1900	100	ng/L	95	70 - 130			1.0	10/02/2015 07:35	I	
SS-PFHxA-13C2	537	N/A			48.6870	50.0	ng/L	97	70 - 130			1.0	10/02/2015 07:35	I	
uorobutanesulfonic acid (PFBS)	537	90			92.8062	90.0		103	50 - 150			1.0		I	
. ,							-							I	
. ,							-							1	
. , , ,															
. ,							-							I	
. ,														1	
								_							
. ,															
,															
. ,															
muorononanoic aciu (PENA)															
(uorooctane sulfonato (PEOS)					141.0900		ng/L	95	70 - 130			1.0	10/02/2015 07.35	10/03/2015 00:44	333332
fl or fl fl uc fl	uoroheptanoic acid (PFHpA) rohexanesulfonic acid (PFHxS) fluorononanoic acid (PFNA) Jorooctane sulfonate (PFOS) fluorooctanoic acid (PFOA) IS-PFOA-13C2 IS-PFOA-13C2 SS-PFDA-13C2 SS-PFDA-13C2 SS-PFHxA-13C2 orobutanesulfonic acid (PFBS) uoroheptanoic acid (PFHxS) fluorononanoic acid (PFNA) Jorooctane sulfonate (PFOS)	uoroheptanoic acid (PFHpA)537rohexanesulfonic acid (PFHxS)537iluorononanoic acid (PFNA)537iluoronotanoic acid (PFOS)537fluorooctanoic acid (PFOA)537fluorooctanoic acid (PFOA)537IS-PFOA-13C2537IS-PFOA-13C2537SS-PFDA-13C2537SS-PFDA-13C2537orobutanesulfonic acid (PFBS)537uoroheptanoic acid (PFHpA)537rohexanesulfonic acid (PFHxS)537fluorononanoic acid (PFNA)537	uoroheptanoic acid (PFHpA)53710rohexanesulfonic acid (PFHxS)53730fluorononanoic acid (PFNA)53720Jorooctane sulfonate (PFOS)53740fluorooctanoic acid (PFOA)53720IS-PFOA-13C2537N/AIS-PFOA-13C2537N/ASS-PFDA-13C2537N/ASS-PFDA-13C2537N/ASS-PFDA-13C2537N/Aorobutanesulfonic acid (PFBS)53790uoroheptanoic acid (PFHpA)53710rohexanesulfonic acid (PFNA)53730fluorononanoic acid (PFNA)53720uorooctane sulfonic acid (PFNA)53740	uoroheptanoic acid (PFHpA) 537 10 rohexanesulfonic acid (PFHxS) 537 30 fluorononanoic acid (PFNA) 537 20 jorooctane sulfonate (PFOS) 537 40 fluorooctanoic acid (PFOA) 537 20 fluorooctanoic acid (PFOA) 537 20 fluorooctanoic acid (PFOA) 537 20 IS-PFOA-13C2 537 N/A IS-PFOA-13C2 537 N/A SS-PFDA-13C2 537 90 sorobutanesulfonic acid (PFBS) 537 10 uoroheptanoic acid (PFHxS) 537 30 rohexanesulfonic acid (PFNA) 537 20	uoroheptanoic acid (PFHpA) 537 10 I rohexanesulfonic acid (PFHxS) 537 30 I I fluorononanoic acid (PFNA) 537 20 I I jorooctane sulfonate (PFOS) 537 40 I I fluorooctanoic acid (PFOA) 537 20 I I fluorooctanoic acid (PFOA) 537 20 I I I fluorooctanoic acid (PFOA) 537 20 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <	uoroheptanoic acid (PFHpA) 537 10 10.0059 rohexanesulfonic acid (PFHxS) 537 30 31.0605 fluorononanoic acid (PFNA) 537 20 19.9685 jorooctane sulfonate (PFOS) 537 40 40.0339 fluorooctanoic acid (PFOA) 537 20 20.2946 IS-PFOA-13C2 537 N/A 11291.20 IS-PFOA-13C2 537 N/A 6290.25 SS-PFDA-13C2 537 N/A 94.8387 SS-PFDA-13C2 537 N/A 656.3290 uoroheptanoic acid (PFBS) 537 90 69.6195 robutanesulfonic acid (PFBS) 537 30 217.5950 rohexanesulfonic acid (PFNA) 537 20 217.5950 rohexanesulfonic acid (PFNA) 537 20 217.5950 rohexanesulfonic acid (PFNA) 537 20	uoroheptanoic acid (PFHpA) 537 10 10.0059 10.0 rohexanesulfonic acid (PFHxS) 537 30 31.0605 30.0 fluorononanoic acid (PFNA) 537 20 19.9685 20.0 jorooctane sulfonate (PFOS) 537 40 40.0339 40.0 fluorooctanoic acid (PFOA) 537 20 20.2946 20.0 fluorooctanoic acid (PFOA) 537 20 40.0339 40.0 fluorooctanoic acid (PFOA) 537 20 20.2946 20.0 IS-PFOA-13C2 537 N/A 11291.20 11656.4 IS-PFOA-13C2 537 N/A 94.8387 100 SS-PFDA-13C2 537 N/A 94.8387 100 SS-PFHxA-13C2 537 N/A 47.4344 50.0 orobutanesulfonic acid (PFBS) 537 10 656.3290 675.0	uoroheptanoic acid (PFHpA) 537 10 10.0059 10.0 ng/L rohexanesulfonic acid (PFHxS) 537 30 31.0605 30.0 ng/L fluorononanoic acid (PFNA) 537 20 19.9685 20.0 ng/L juoronotanoic acid (PFNA) 537 20 40.0339 40.0 ng/L juorooctanoic acid (PFOA) 537 20 20.2946 20.0 ng/L fluorooctanoic acid (PFOA) 537 20 20.2946 20.0 ng/L IS-PFOA-13C2 537 N/A 6290.25 6524.74 ng/L IS-PFOA-13C2 537 N/A 94.8387 100 ng/L SS-PFDA-13C2 537 N/A 656.3290 675 ng/L SS-PFNA-13C2 537 N/A 69.6195 75.0 ng/L sorobutanesulfonic acid (PFBS) 537 90 69.6195 <td>uoroheptanoic acid (PFHpA) 537 10 10.0059 10.0 ng/L 100 rohexanesulfonic acid (PFHxS) 537 30 31.0605 30.0 ng/L 104 fluorononanoic acid (PFNA) 537 20 19.9685 20.0 ng/L 100 jorooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 100 fluorooctanoic acid (PFOA) 537 20 20.2946 20.0 ng/L 101 IS-PFOA-13C2 537 N/A 6290.25 6524.74 ng/L 96 SS-PFDA-13C2 537 N/A 94.8387 100 ng/L 95 SS-PFDA-13C2 537 N/A 656.3290 675 ng/L 97 SS-PFDA-13C2 537 N/A 69.6195 75.0 ng/L 95 SS-PFDA-13C2 537 N/A 656.3290 675</td> <td>uoroheptanoic acid (PFHpA)5371010.005910.0ng/L10050 - 150rohexanesulfonic acid (PFHxS)5373031.060530.0ng/L10450 - 150fluorononanoic acid (PFNA)5372019.968520.0ng/L10050 - 150iuorooctane sulfonate (PFOS)5374040.033940.0ng/L10050 - 150fluorooctanoic acid (PFOA)5372020.294620.0ng/L10050 - 150fluorooctanoic acid (PFOA)5372020.294620.0ng/L10150 - 150fluorooctanoic acid (PFOA)5372020.294620.0ng/L10150 - 150IS-PFOA-13C2537N/A6290.256524.74ng/L9770 - 140SS-PFDA-13C2537N/A94.8387100ng/L9570 - 130SS-PFDA-13C2537N/A47.434450.0ng/L9570 - 130SS-PFDA-13C2537N/A656.3290675ng/L9770 - 130SS-PFDA-13C25371069.619575.0ng/L9370 - 130uoroheptanoic acid (PFBS)5373069.619575.0ng/L9370 - 130uoroheptanoic acid (PFHAS)53730217.5950225ng/L9170 - 130<</td> <td>uoroheptanoic acid (PFHpA) 537 10 10.0059 10.0 ng/L 100 50 - 150 rohexanesulfonic acid (PFHxS) 537 30 31.0605 30.0 ng/L 104 50 - 150 fluorononanoic acid (PFNA) 537 20 19.9685 20.0 ng/L 100 50 - 150 porooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 100 50 - 150 porooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 100 50 - 150 fluorooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 101 50 - 150 fluorooctane sulfonate acid (PFOA) 537 20 20.2946 20.0 ng/L 90 IS-PFOA-13C2 537 N/A 6290.25 6524.74 ng/L 96 70 - 130</td> <td>uoroheptanoic acid (PFHpA) 537 10 10.0059 10.0 ng/L 100 50 - 150 rohexanesulfonic acid (PFHxS) 537 30 31.0605 30.0 ng/L 104 50 - 150 fluoronoanoic acid (PFNA) 537 20 19.9685 20.0 ng/L 100 50 - 150 porooctane sulfonic acid (PFNA) 537 40 40.0339 40.0 ng/L 100 50 - 150 porooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 101 50 - 150 porooctane sulfonate (PFOS) 537 40 20.2946 20.0 ng/L 101 50 - 150 IS-PFOA-13C2 537 N/A 6290.25 6524.74 ng/L 96 70 - 130 SS-PFDA-13C2 537<!--</td--><td>uoroheptanoic acid (PFHpA) 537 10 10.0059 10.0 ng/L 100 50 - 150 1.0 rohexanesulfonic acid (PFHxS) 537 30 31.0605 30.0 ng/L 104 50 - 150 1.0 rohexanesulfonic acid (PFNxS) 537 20 19.9685 20.0 ng/L 100 50 - 150 1.0 porooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 100 50 - 150 1.0 porooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 100 50 - 150 1.0 porooctane sulfonate (PFOS) 537 40 20.2946 20.0 ng/L 101 50 - 150 1.0 fluorooctanoic acid (PFOA) 537 N/A 11291.20 11656.4 ng/L 97 70 - 140 1.0 55.9FDA.13C2 537</td><td>uoroheptanoic acid (PFHpA) 537 10 10.0059 10.0 ng/L 100 50-150 1.0 10/02/2015 07:35 rohexanesulfonic acid (PFHxS) 537 30 1 19.9685 20.0 ng/L 100 50-150 1.0 10/02/2015 07:35 juoronanaic acid (PFNA) 537 20 1 19.9685 20.0 ng/L 100 50-150 1.0 10/02/2015 07:35 juoronatio acid (PFOA) 537 40 1 40.0339 40.0 ng/L 1010 50-150 1.0 10/02/2015 07:35 fluoronatio acid (PFOA) 537 20 1 20.2946 20.0 ng/L 1011 50-150 1.0 10/02/2015 07:35 IS-PFOA-13C2 537 N/A 1 6290.25 6524.74 ng/L 96 70-140 1.0 10/02/2015 07:35 SS-PFDA-13C2 537 N/</td><td>uoroheptanoic acid (PFHA) 537 10 1000059 10.0 ng/L 1000 50-150 1.0 10/02/2015 07:33 10/03/2015 07:33 nobexanesulfonic acid (PFHAS) 537 30 1 10/02/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:</td></td>	uoroheptanoic acid (PFHpA) 537 10 10.0059 10.0 ng/L 100 rohexanesulfonic acid (PFHxS) 537 30 31.0605 30.0 ng/L 104 fluorononanoic acid (PFNA) 537 20 19.9685 20.0 ng/L 100 jorooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 100 fluorooctanoic acid (PFOA) 537 20 20.2946 20.0 ng/L 101 IS-PFOA-13C2 537 N/A 6290.25 6524.74 ng/L 96 SS-PFDA-13C2 537 N/A 94.8387 100 ng/L 95 SS-PFDA-13C2 537 N/A 656.3290 675 ng/L 97 SS-PFDA-13C2 537 N/A 69.6195 75.0 ng/L 95 SS-PFDA-13C2 537 N/A 656.3290 675	uoroheptanoic acid (PFHpA)5371010.005910.0ng/L10050 - 150rohexanesulfonic acid (PFHxS)5373031.060530.0ng/L10450 - 150fluorononanoic acid (PFNA)5372019.968520.0ng/L10050 - 150iuorooctane sulfonate (PFOS)5374040.033940.0ng/L10050 - 150fluorooctanoic acid (PFOA)5372020.294620.0ng/L10050 - 150fluorooctanoic acid (PFOA)5372020.294620.0ng/L10150 - 150fluorooctanoic acid (PFOA)5372020.294620.0ng/L10150 - 150IS-PFOA-13C2537N/A6290.256524.74ng/L9770 - 140SS-PFDA-13C2537N/A94.8387100ng/L9570 - 130SS-PFDA-13C2537N/A47.434450.0ng/L9570 - 130SS-PFDA-13C2537N/A656.3290675ng/L9770 - 130SS-PFDA-13C25371069.619575.0ng/L9370 - 130uoroheptanoic acid (PFBS)5373069.619575.0ng/L9370 - 130uoroheptanoic acid (PFHAS)53730217.5950225ng/L9170 - 130<	uoroheptanoic acid (PFHpA) 537 10 10.0059 10.0 ng/L 100 50 - 150 rohexanesulfonic acid (PFHxS) 537 30 31.0605 30.0 ng/L 104 50 - 150 fluorononanoic acid (PFNA) 537 20 19.9685 20.0 ng/L 100 50 - 150 porooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 100 50 - 150 porooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 100 50 - 150 fluorooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 101 50 - 150 fluorooctane sulfonate acid (PFOA) 537 20 20.2946 20.0 ng/L 90 IS-PFOA-13C2 537 N/A 6290.25 6524.74 ng/L 96 70 - 130	uoroheptanoic acid (PFHpA) 537 10 10.0059 10.0 ng/L 100 50 - 150 rohexanesulfonic acid (PFHxS) 537 30 31.0605 30.0 ng/L 104 50 - 150 fluoronoanoic acid (PFNA) 537 20 19.9685 20.0 ng/L 100 50 - 150 porooctane sulfonic acid (PFNA) 537 40 40.0339 40.0 ng/L 100 50 - 150 porooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 101 50 - 150 porooctane sulfonate (PFOS) 537 40 20.2946 20.0 ng/L 101 50 - 150 IS-PFOA-13C2 537 N/A 6290.25 6524.74 ng/L 96 70 - 130 SS-PFDA-13C2 537 </td <td>uoroheptanoic acid (PFHpA) 537 10 10.0059 10.0 ng/L 100 50 - 150 1.0 rohexanesulfonic acid (PFHxS) 537 30 31.0605 30.0 ng/L 104 50 - 150 1.0 rohexanesulfonic acid (PFNxS) 537 20 19.9685 20.0 ng/L 100 50 - 150 1.0 porooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 100 50 - 150 1.0 porooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 100 50 - 150 1.0 porooctane sulfonate (PFOS) 537 40 20.2946 20.0 ng/L 101 50 - 150 1.0 fluorooctanoic acid (PFOA) 537 N/A 11291.20 11656.4 ng/L 97 70 - 140 1.0 55.9FDA.13C2 537</td> <td>uoroheptanoic acid (PFHpA) 537 10 10.0059 10.0 ng/L 100 50-150 1.0 10/02/2015 07:35 rohexanesulfonic acid (PFHxS) 537 30 1 19.9685 20.0 ng/L 100 50-150 1.0 10/02/2015 07:35 juoronanaic acid (PFNA) 537 20 1 19.9685 20.0 ng/L 100 50-150 1.0 10/02/2015 07:35 juoronatio acid (PFOA) 537 40 1 40.0339 40.0 ng/L 1010 50-150 1.0 10/02/2015 07:35 fluoronatio acid (PFOA) 537 20 1 20.2946 20.0 ng/L 1011 50-150 1.0 10/02/2015 07:35 IS-PFOA-13C2 537 N/A 1 6290.25 6524.74 ng/L 96 70-140 1.0 10/02/2015 07:35 SS-PFDA-13C2 537 N/</td> <td>uoroheptanoic acid (PFHA) 537 10 1000059 10.0 ng/L 1000 50-150 1.0 10/02/2015 07:33 10/03/2015 07:33 nobexanesulfonic acid (PFHAS) 537 30 1 10/02/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:</td>	uoroheptanoic acid (PFHpA) 537 10 10.0059 10.0 ng/L 100 50 - 150 1.0 rohexanesulfonic acid (PFHxS) 537 30 31.0605 30.0 ng/L 104 50 - 150 1.0 rohexanesulfonic acid (PFNxS) 537 20 19.9685 20.0 ng/L 100 50 - 150 1.0 porooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 100 50 - 150 1.0 porooctane sulfonate (PFOS) 537 40 40.0339 40.0 ng/L 100 50 - 150 1.0 porooctane sulfonate (PFOS) 537 40 20.2946 20.0 ng/L 101 50 - 150 1.0 fluorooctanoic acid (PFOA) 537 N/A 11291.20 11656.4 ng/L 97 70 - 140 1.0 55.9FDA.13C2 537	uoroheptanoic acid (PFHpA) 537 10 10.0059 10.0 ng/L 100 50-150 1.0 10/02/2015 07:35 rohexanesulfonic acid (PFHxS) 537 30 1 19.9685 20.0 ng/L 100 50-150 1.0 10/02/2015 07:35 juoronanaic acid (PFNA) 537 20 1 19.9685 20.0 ng/L 100 50-150 1.0 10/02/2015 07:35 juoronatio acid (PFOA) 537 40 1 40.0339 40.0 ng/L 1010 50-150 1.0 10/02/2015 07:35 fluoronatio acid (PFOA) 537 20 1 20.2946 20.0 ng/L 1011 50-150 1.0 10/02/2015 07:35 IS-PFOA-13C2 537 N/A 1 6290.25 6524.74 ng/L 96 70-140 1.0 10/02/2015 07:35 SS-PFDA-13C2 537 N/	uoroheptanoic acid (PFHA) 537 10 1000059 10.0 ng/L 1000 50-150 1.0 10/02/2015 07:33 10/03/2015 07:33 nobexanesulfonic acid (PFHAS) 537 30 1 10/02/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:33 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:34 10/03/2015 07:

FTBFTBFTBFTBFTBFTBFSFSFSFSFSFS	Analyte IS-PFOA-13C2 IS-PFOS-13C4 IS-PFOA-13C2 SS-PFDA-13C2 SS-PFDA-13C2 Perfluorobutanesulfonic acid (PFBS) Perfluorobeptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctane sulfonate (PFOS) Perfluorooctanoic acid (PFOA) IS-PFOA-13C2 IS-PFOA-13C2	Method 537 537 537 537 537 537 537 537 537	MRL N/A N/A N/A N/A 10 30 20	Client ID SG1-TB02-150930 SG1-TB02-150930 SG1-TB02-150930 SG1-TB02-150930 SG1-TB02-150930 SG1-TB02-150930	Result Flag	Amount 11692.50 6642.37 88.5974	Target 11656.4 6524.74	Units ng/L	% Recovery	Recovery Limits	RPD	RPD Limit			Analyzed	EEA ID #
FTB FS FS FS FS FS FS FS	IS-PFOS-13C4 SS-PFDA-13C2 SS-PFHxA-13C2 Perfluorobutanesulfonic acid (PFBS) Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluorononanoic acid (PFNA) Perfluorooctane sulfonate (PFOS) Perfluorooctanoic acid (PFOA) IS-PFOA-13C2	537 537 537 537 537 537 537 537	N/A N/A 90 10 30	SG1-TB02-150930 SG1-TB02-150930 SG1-TB02-150930 SG1-TB02-150930		6642.37		ng/L	100	70 - 140			0.05	10/00/00 15 55 5		
FTB FS FS FS FS FS FS FS	SS-PFDA-13C2 SS-PFDA-13C2 Perfluorobutanesulfonic acid (PFBS) Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluorononanoic acid (PFNA) Perfluorooctane sulfonate (PFOS) Perfluorooctanoic acid (PFOA) IS-PFOA-13C2	537 537 537 537 537 537 537	N/A N/A 90 10 30	SG1-TB02-150930 SG1-TB02-150930 SG1-TB02-150930		l	6524.74						0.95	10/02/2015 07:35	10/03/2015 01:46	3332985
FTB FS FS FS FS FS FS	SS-PFHxA-13C2 Perfluorobutanesulfonic acid (PFBS) Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluorononanoic acid (PFNA) Perfluorooctane sulfonate (PFOS) Perfluorooctanoic acid (PFOA) IS-PFOA-13C2	537 537 537 537 537 537	N/A 90 10 30	SG1-TB02-150930 SG1-TB02-150930		88.5974		ng/L	102	70 - 140			0.95	10/02/2015 07:35	10/03/2015 01:46	3332985
FTB FTB FS FS FS FS FS FS FS FS	Perfluorobutanesulfonic acid (PFBS) Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluorononanoic acid (PFNA) Perfluorooctane sulfonate (PFOS) Perfluorooctanoic acid (PFOA) IS-PFOA-13C2	537 537 537 537	90 10 30	SG1-TB02-150930			100	ng/L	93	70 - 130			0.95	10/02/2015 07:35	10/03/2015 01:46	3332985
FTB F FTB F FTB F FTB F FTB F FTB F FS F FS F FS F FS F FS F FS F	Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluorononanoic acid (PFNA) Perfluorooctane sulfonate (PFOS) Perfluorooctanoic acid (PFOA) IS-PFOA-13C2	537 537 537	10 30			43.8917	50.0	ng/L	92	70 - 130			0.95	10/02/2015 07:35	10/03/2015 01:46	3332985
FTB F FTB FTB FTB FTB FS FS FS FS FS FS FS	Perfluorohexanesulfonic acid (PFHxS) Perfluorononanoic acid (PFNA) Perfluorooctane sulfonate (PFOS) Perfluorooctanoic acid (PFOA) IS-PFOA-13C2	537 537	30	SG1-TB02-150930	<	90		ng/L					0.95	10/02/2015 07:35	10/03/2015 01:46	3332985
FTBFTBFTBFSFSFSFSFSFS	Perfluorononanoic acid (PFNA) Perfluorooctane sulfonate (PFOS) Perfluorooctanoic acid (PFOA) IS-PFOA-13C2	537			<	10		ng/L					0.95	10/02/2015 07:35	10/03/2015 01:46	3332985
FTBFTBFSFSFSFSFS	Perfluorooctane sulfonate (PFOS) Perfluorooctanoic acid (PFOA) IS-PFOA-13C2		20	SG1-TB02-150930	<	30		ng/L					0.95	10/02/2015 07:35	10/03/2015 01:46	3332985
FTBFSFSFSFSFS	Perfluorooctanoic acid (PFOA) IS-PFOA-13C2	537		SG1-TB02-150930	<	20		ng/L					0.95	10/02/2015 07:35	10/03/2015 01:46	3332985
FS FS FS FS FS	IS-PFOA-13C2		40	SG1-TB02-150930	<	40		ng/L					0.95	10/02/2015 07:35	10/03/2015 01:46	3332985
FS FS FS FS		537	20	SG1-TB02-150930	<	20		ng/L					0.95	10/02/2015 07:35	10/03/2015 01:46	3332985
FS FS FS	IS PEOA 1202	537	N/A	SG1-MW02-150930		8358.16	10013.5	ng/L	72	70 - 140			0.93	10/02/2015 07:35	10/03/2015 07:57	3332984
FS FS	13-FFUA-1362	537	N/A	SG1-MW02-150930		8358.16	10013.5	ng/L	72	70 - 140			9.3	10/02/2015 07:35	10/03/2015 07:57	3332984
FS	IS-PFOA-13C2	537	N/A	SG1-MW02-150930		8358.16	10013.5	ng/L	72	70 - 140			93	10/02/2015 07:35	10/03/2015 07:57	3332984
	IS-PFOS-13C4	537	N/A	SG1-MW02-150930		5422.67	5667.41	ng/L	90	70 - 140			0.93	10/02/2015 07:35	10/03/2015 07:57	3332984
50	IS-PFOS-13C4	537	N/A	SG1-MW02-150930		5422.67	5667.41	ng/L	90	70 - 140			9.3	10/02/2015 07:35		
FS	IS-PFOS-13C4	537	N/A	SG1-MW02-150930		5422.67	5667.41	ng/L	90	70 - 140			93	10/02/2015 07:35		
FS	SS-PFDA-13C2	537	N/A	SG1-MW02-150930		109.5460	100	ng/L	118	70 - 130			0.93	10/02/2015 07:35		
FS	SS-PFHxA-13C2	537	N/A	SG1-MW02-150930		55.6631	50.0	ng/L	120	70 - 130			0.93	10/02/2015 07:35		
	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW02-150930	<	90		ng/L					0.93		10/03/2015 07:57	
	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW02-150930	<	30		ng/L					0.93			
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-MW02-150930	<	20		ng/L					0.93		10/03/2015 07:57	
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW02-150930	<	40		ng/L					0.93		10/03/2015 07:57	
CCM	IS-PFOA-13C2	537	N/A			10013.50	10013.5	ng/L	100	70 - 140			1.0			
CCM	IS-PFOS-13C4	537	N/A			5667.41	5667.41	ng/L	100	70 - 140			1.0			
CCM	SS-PFDA-13C2	537	N/A			95.4073	100	ng/L	95	70 - 130			1.0			
ССМ	SS-PFHxA-13C2	537	N/A			48.6385	50.0	ng/L	97	70 - 130			1.0			
	Perfluorobutanesulfonic acid (PFBS)	537	90			674.2860	675	ng/L	100	70 - 130			1.0			
CCM	Perfluoroheptanoic acid (PFHpA)	537	10			74.0983	75.0	ng/L	99	70 - 130			1.0	09/30/2015 09:59		
	Perfluorohexanesulfonic acid (PFHxS)	537	30			219.9190	225	ng/L	98	70 - 130			1.0			
CCM	Perfluorononanoic acid (PFNA)	537	20			147.4430	150	ng/L	98	70 - 130			1.0			
CCM	Perfluorooctane sulfonate (PFOS)	537	40			296.6470	300	ng/L	99	70 - 130			1.0			
CCM	Perfluorooctanoic acid (PFOA)	537	20			150.0280	150	ng/L	100	70 - 130			1.0	09/30/2015 09:59		
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-MW02-150930		17000	130	ng/L					93	10/02/2015 07:35		
FS	. ,	537	10			310		-								
ССН	Perfluoroheptanoic acid (PFHpA) IS-PFOA-13C2	537	N/A	SG1-MW02-150930		9318.57	9318.57	ng/L ng/L	100	 70 - 140			9.3 1.0	10/02/2015 07:35 09/30/2015 09:59		
ССН	IS-PFOS-13C2	537	N/A							70 - 140			1.0	09/30/2015 09:59		
		537				5241.66 99.5422	5241.66	ng/L	100							
ССН	SS-PFDA-13C2		N/A				100	ng/L	100	70 - 130			1.0	09/30/2015 09:59		
	SS-PFHxA-13C2	537	N/A			49.7790	50.0	ng/L	100	70 - 130			1.0	09/30/2015 09:59		
	Perfluorobutanesulfonic acid (PFBS)	537	90			1127.6800	1125	ng/L	100	70 - 130			1.0	09/30/2015 09:59		
	Perfluoroheptanoic acid (PFHpA)	537	10 30			124.7560	125	ng/L	100	70 - 130			1.0	09/30/2015 09:59	10/03/2015 14:42	3333368

EEA Run ID 208267 / EEA Report # 350056

	QC Summary Report (cont.)															
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
ССН	Perfluorononanoic acid (PFNA)	537	20			248.5970	250	ng/L	99	70 - 130			1.0	09/30/2015 09:59	10/03/2015 14:42	3333368
ССН	Perfluorooctane sulfonate (PFOS)	537	40			515.9240	500	ng/L	103	70 - 130			1.0	09/30/2015 09:59	10/03/2015 14:42	3333368
ССН	Perfluorooctanoic acid (PFOA)	537	20			252.2000	250	ng/L	101	70 - 130			1.0	09/30/2015 09:59	10/03/2015 14:42	3333368

	Sample Type Key								
Type (Abbr.)	Sample Type	<u>Type (Abbr.)</u>	Sample Type						
CCH	Continuing Calibration High								
CCL	Continuing Calibration Low								
CCM	Continuing Calibration Mid								
FS	Field Sample								
FTB	Field Trip Blank								
FBL	Fortified Blank Low								
FBM	Fortified Blank Mid								
LRB	Laboratory Reagent Blank								

LABORATORY REPORT

If you have any questions concerning this report, please do not hesitate to call us at (800) 332-4345 or (574) 233-4777.

This report may not be reproduced, except in full, without written approval from EEA.

STATE CERTIFICATION LIST

State	Certification	State	Certification
Alabama	40700	Montana	CERT0026
Alaska	IN00035	Nebraska	E87775
Arizona	AZ0432	Nevada	IN000352015-1
Arkansas	IN035	New Hampshire*	2124
California	2920	New Mexico	IN00035
Colorado	IN035	New Jersey*	IN598
Colorado Radiochemistry	IN035	New York*	11398
Connecticut	PH-0132	North Carolina	18700
Delaware	IN035	North Dakota	R-035
Florida (Primary AB)*	E87775	Ohio	87775
Georgia	929	Oklahoma	D9508
Hawaii	IN035	Oregon*	IN200001
Idaho	IN00035/E87775	Pennsylvania*	68-00466
Illinois*	200001	Puerto Rico	IN00035
Illinois Microbiology	200001	Rhode Island	LAO00241
Indiana Chemistry	C-71-01	South Carolina	95005
Indiana Microbiology	M-76-07	South Dakota	IN00035
lowa	098	Tennessee	TN02973
Kansas*	E-10233	Texas*	T104704187-14-7
Kentucky	90056	Texas/TCEQ	TX207
Louisiana*	LA150003	Utah*	IN00035
Maine	IN00035	Vermont	VT-8775
Maryland	209	Virginia*	00127
Massachusetts	M-IN035	Washington	C837
Michigan	9926	West Virginia	9927 C
Minnesota*	018-999-338	Wisconsin	999766900
Mississippi	IN035	Wyoming	IN035
Missouri	880		

*NELAP/TNI Recognized Accreditation Bodies

Eaton Analytical

LABORATORY CASE NARRATIVE

Client: Ramboll Environ

Report #: 350168CN

All method QC was within acceptance limits.

Note: There were no reportable LFSMM or LFSMDM results in the Perfluorooctanoic acid (PFOA) analysis for site SG1-MW05-151001 due to spiking level.

Note: This report may not be reproduced, except in full, without written approval from *EEA*.

C.S. Managor

Authorized Signature

10/07/2015

Date

Page 1 of 1

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Client:	Ramboll Environ	Report:	350168
Attn:	Jason Wilkinson	Priority:	Rush Written
Aun.	3 Carlisle Road	Status:	Final
	Suite 210	PWS ID:	Not Supplied
Quita	Westford, MA 01886	Lab ELAP #:	11398
Copies to:	None		

	Sample Information											
EEA ID #	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time							
3333953	SG1-TB03-151001	537	10/01/15 07:30	Client	10/02/15 09:15							
3333954	SG1-MW02S-151001	537	10/01/15 08:00	Client	10/02/15 09:15							
3333955	SG1-MW05-151001	537	10/01/15 09:00	Client	10/02/15 09:15							
3333958	SG1-MW03-151001	537	10/01/15 10:20	Client	10/02/15 09:15							
3333959	SG1-MW04-151001	537	10/01/15 09:30	Client	10/02/15 09:15							
3333960	SG1-DS01-151001	537	10/01/15 00:00	Client	10/02/15 09:15							
3333961	SG1-MW01-151001	537	10/01/15 08:05	Client	10/02/15 09:15							
3333962	SG1-MW01S-151001	537	10/01/15 08:30	Client	10/02/15 09:15							
3333963	SG1-RB01-151001	537	10/01/15 10:45	Client	10/02/15 09:15							
3333964	SG1-RB01-150930	537	09/30/15 11:30	Client	10/02/15 09:15							
3333965	SG1-FB01-151001	537	10/01/15 11:50	Client	10/02/15 09:15							
	-											

Report Summary

Note: See attached page for additional comments.

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Nathan Trowbridge at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

10/07/2015

Date

Sampling Point: SG1-TB03-151001

Ramboll Environ

Client Name:

PWS ID: Not Supplied

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/05/15 07:25	10/06/15 00:31	3333953			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	10/05/15 07:25	10/06/15 00:31	3333953			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/05/15 07:25	10/06/15 00:31	3333953			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 00:31	3333953			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/05/15 07:25	10/06/15 00:31	3333953			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 00:31	3333953			

Sampling Point: SG1-MW02S-151001

PWS ID: Not Supplied

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/05/15 07:25	10/06/15 04:38	3333954			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	30	ng/L	10/05/15 07:25	10/06/15 04:38	3333954			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/05/15 07:25	10/06/15 04:38	3333954			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 04:38	3333954			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/05/15 07:25	10/06/15 04:38	3333954			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	750	ng/L	10/05/15 07:25	10/06/15 12:23	3333954			

Sampling Point: SG1-MW05-151001

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/05/15 07:25	10/06/15 05:40	3333955			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	10	ng/L	10/05/15 07:25	10/06/15 05:40	3333955			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/05/15 07:25	10/06/15 05:40	3333955			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 05:40	3333955			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/05/15 07:25	10/06/15 05:40	3333955			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	570	ng/L	10/05/15 07:25	10/06/15 12:54	3333955			

Sampling Point: SG1-MW03-151001

Ramboll Environ

Client Name:

Report #: 350168

PWS ID: Not Supplied

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/05/15 07:25	10/06/15 05:09	3333958			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	120	ng/L	10/05/15 07:25	10/06/15 05:09	3333958			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/05/15 07:25	10/06/15 05:09	3333958			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 05:09	3333958			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/05/15 07:25	10/06/15 05:09	3333958			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	4300	ng/L	10/05/15 07:25	10/06/15 11:52	3333958			

Sampling Point: SG1-MW04-151001

PWS ID: Not Supplied

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/05/15 07:25	10/06/15 08:15	3333959			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	40	ng/L	10/05/15 07:25	10/06/15 08:15	3333959			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/05/15 07:25	10/06/15 08:15	3333959			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 08:15	3333959			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/05/15 07:25	10/06/15 08:15	3333959			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	1400	ng/L	10/05/15 07:25	10/06/15 13:55	3333959			

Sampling Point: SG1-DS01-151001

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/05/15 07:25	10/06/15 08:46	3333960			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	40	ng/L	10/05/15 07:25	10/06/15 08:46	3333960			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/05/15 07:25	10/06/15 08:46	3333960			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 08:46	3333960			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/05/15 07:25	10/06/15 08:46	3333960			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	1400	ng/L	10/05/15 07:25	10/06/15 14:26	3333960			

Sampling Point: SG1-MW01-151001

Ramboll Environ

Client Name:

PWS ID: Not Supplied

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/05/15 07:25	10/06/15 09:17	3333961			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	10/05/15 07:25	10/06/15 09:17	3333961			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/05/15 07:25	10/06/15 09:17	3333961			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 09:17	3333961			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/05/15 07:25	10/06/15 09:17	3333961			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 09:17	3333961			

Sampling Point: SG1-MW01S-151001

PWS ID: Not Supplied

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/05/15 07:25	10/06/15 09:48	3333962			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	60	ng/L	10/05/15 07:25	10/06/15 09:48	3333962			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/05/15 07:25	10/06/15 09:48	3333962			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 09:48	3333962			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/05/15 07:25	10/06/15 09:48	3333962			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	60	ng/L	10/05/15 07:25	10/06/15 09:48	3333962			

Sampling Point: SG1-RB01-151001

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/05/15 07:25	10/06/15 10:19	3333963			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	10/05/15 07:25	10/06/15 10:19	3333963			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/05/15 07:25	10/06/15 10:19	3333963			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 10:19	3333963			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/05/15 07:25	10/06/15 10:19	3333963			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 10:19	3333963			

Sampling Point: SG1-RB01-150930

Ramboll Environ

Client Name:

PWS ID: Not Supplied

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/05/15 07:25	10/06/15 10:50	3333964			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	10/05/15 07:25	10/06/15 10:50	3333964			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/05/15 07:25	10/06/15 10:50	3333964			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 10:50	3333964			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/05/15 07:25	10/06/15 10:50	3333964			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 10:50	3333964			

Sampling Point: SG1-FB01-151001

PWS ID: Not Supplied

	EEA Methods														
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #						
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/05/15 07:25	10/06/15 11:21	3333965						
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	10/05/15 07:25	10/06/15 11:21	3333965						
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/05/15 07:25	10/06/15 11:21	3333965						
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 11:21	3333965						
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/05/15 07:25	10/06/15 11:21	3333965						
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	10/05/15 07:25	10/06/15 11:21	3333965						

† EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	*	۸	!

Lab Definitions

Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis. CCL, CCM, and CCH are the CCC standards at low, mid, and high concentration levels, respectively.

Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control. FBL, FBM, and FBH are the LFB samples at low, mid, and high concentration levels, respectively.

Laboratory Method Blank (LMB) / Laboratory Reagent Blank (LRB) - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.

Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample al6iquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix. SDL, SDM, and SDH / LFSMDL, LFSMDM, and LFSMDH are the MSD or LFSMD at low, mid, and high concentration levels, respectively.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results. MSL, MSM, and MSH / LFSML, LFSMM, and LFSMH are the MS or LFSM at low, mid, and high concentration levels, respectively.

Quality Control Standard (QCS) / Second Source Calibration Verification (SSCV) - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / Surrogate Analyte (SUR) - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

RUSH WRITTEN

	C'
\$	eurofins

110 S. Hill Street
South Bend, IN 46617
T: 1.800.332.4345
F: 1.574.233.8207

Order #	284272
Batch #	350168

s curo	11112		ato	n Analytic	al				South Ben T: 1.800.33 F: 1.574.23			er# <u>2</u> 2 h#_ <u>3</u>			
www.eatonanalytical.com					CH		CUSTODY	RECO			Page	e Ì	of	l	
Shaded area	for EEA us	e only												=	
REPORT TO:				SAMPLER (Signature)		PWS ID	#	STATE (sample origin)	PROJECT NAME	·	PO#			
READON ENVIOUM JEAFINSE R.1 +2 Westford, MA				Valn T-		The	>		NY	SGPP- Hoosick					щ
BILL TO: Some				COMPLIANCE MONITORING	Yes	No	POPULATION S	SERVED	SOURCE WATER	Fulls			CONTAINERS	CODE	TURNAROUND TIME
LAB Number	с	OLLECTION	_	SA	AMPLING SITE			TEST NA	AME	SAMPLE REMARK	CHLO	RINATED	OF CO	MATRIX	RNAF
	DATE	TIME	AM PM								YES	NO	74		
1 3333,953	10-1-15	0730	N	561.7603-					537 (PEDA,	C1-1	7	Y	· ·	<u>ن</u> ان	5.0
2 954		0000	Y	SGI-MWOLS	5-151201		PEBS, PEH	A. FF	HIS PENA		57	4	3		1
3 955 5		0900	v	SGI MUOS	-151001		PFOS)	<u> </u>		MSIMSD		Y	9		
4 958		1020	7	561-MW03	151001		SG1-MW04-15		er client RP 10	.7.15		4	3		
5 959		0930	4	SGI-MWOH	-151001	K	Bottles St	ndia IV	WO45 CEID	2-15		~	3		
6 960				561-0501-	151001		SG1-MW01-15		<u>er client RP 10</u>			¥	3		
7 961		0305	>	SGI-MWOI	-151001	K	Bottles S	Show 1	MWOID SSIC	2151		×	3		
8 962		0530	*	SGI- MWON	5-151201							v e	3		
9 963	\vee	1045	7	561-BB01	-151001			V.e				Y	3		
10 964	9-30:5	1130	xi	561-RB01.	-1509130			0		1,		×	3	44	Nº Y
11 965	10th	1150	الا	SUL- FBOL-	-151001			1/0				~	3		J
12 , 956 MS	10-1-15	0900		SET-AND DE	5-151001	1									
13 V 957 MSD	V	J		V	11	1500			0		_				
14						1 10-01-	í							\	<u> </u>
RELINQUISHED BY:(Signature	e)	DATE	TIME	RECEIVED BY:(Signa	ture)	DATE	TIME	LAB RESER	VES THE RIGHT TO RETURN UNU	SED PORTIONS OF NO	N-AQUEOUS	SAMPLES T	O CLIENT		
The		10/1/15	1400 AME PM					MENTS USC	bottles for a	Simple &	sites	s. 4	410	12/	15
RELINQUISHED BY:(Signature	2)	DATE	TIME	RECEIVED BY:(Signa	lure)	DATE			Offs on C						
RELINQUISHED BY:(Signature		DATE	AM PM	RECEIVED FOR LABO		DATE		122 1		000	y U	nor		_	
	-)			32	- COD-	10-2-15		LCed: W	ECEIPT (check one): sVBlue Ambient	1_ °C Upo	n Receipt_	_	N/A		1- agg
MATRIX CODES:		TURN-ARC	UND TIM	E (TAT) - SURCHARG	ES C		··						·		
DW-DRINKING WATER RW-REAGENT WATER GW-GROUND WATER EW-EXPOSURE WATER SW-SURFACE WATER PW-POOL WATER		SW = Standard RV* = Rush Ver RW* = Rush W	ibal: (5 worki	ng days) 50%				100%) 125% CALL CALL		Samples received un than 48 hours holdin be subject to addition	g time rema	alning may			
WW-WASTE WATER		* Please call	, expedite	d service not available f	or all testing					0610 50425 4000	• 4 0 E#	antine Date			1

Sample analysis will be provided according to the standard EEA/Water Services Terms, which are available upon request. Any other terms proposed by Customer are deemed material alterations and are rejected unless expressly agree to in writing by EEA.

C ¹
AUKATINC
eurofins
CMICINIS

Eaton Analytical

Eurofins Eaton Analytical Run Log

Run ID: 208351 Method: 537

Type	Sample Id	Sample Site	<u>Matrix</u>	Instrument ID	Analysis Date	Calibration File
CCL	3334078		OS	CY	10/05/2015 20:24	100515M537a.mdb
LRB	3334062		RW	CY	10/05/2015 21:56	100515M537a.mdb
FBL	3334063		RW	CY	10/05/2015 22:27	100515M537a.mdb
FBH	3334064		RW	CY	10/05/2015 22:58	100515M537a.mdb
FTB	3333953	SG1-TB03-151001	RW	CY	10/06/2015 00:31	100515M537a.mdb
FS	3333954	SG1-MW02S-151001	GW	CY	10/06/2015 04:38	100515M537a.mdb
FS	3333958	SG1-MW03-151001	GW	CY	10/06/2015 05:09	100515M537a.mdb
FS	3333955	SG1-MW05-151001	GW	CY	10/06/2015 05:40	100515M537a.mdb
LFSMM	3333956	SG1-MW05-151001	GW	CY	10/06/2015 06:11	100515M537a.mdb
LFSMDM	3333957	SG1-MW05-151001	GW	CY	10/06/2015 06:42	100515M537a.mdb
CCM	3334079		OS	CY	10/06/2015 07:13	100515M537a.mdb
FS	3333959	SG1-MW04-151001	GW	CY	10/06/2015 08:15	100515M537a.mdb
FS	3333960	SG1-DS01-151001	GW	CY	10/06/2015 08:46	100515M537a.mdb
FS	3333961	SG1-MW01-151001	GW	CY	10/06/2015 09:17	100515M537a.mdb
FS	3333962	SG1-MW01S-151001	GW	CY	10/06/2015 09:48	100515M537a.mdb
FS	3333963	SG1-RB01-151001	GW	CY	10/06/2015 10:19	100515M537a.mdb
FS	3333964	SG1-RB01-150930	GW	CY	10/06/2015 10:50	100515M537a.mdb
FS	3333965	SG1-FB01-151001	GW	CY	10/06/2015 11:21	100515M537a.mdb
FS	3333958	SG1-MW03-151001	GW	CY	10/06/2015 11:52	100515M537a.mdb
FS	3333954	SG1-MW02S-151001	GW	CY	10/06/2015 12:23	100515M537a.mdb
FS	3333955	SG1-MW05-151001	GW	CY	10/06/2015 12:54	100515M537a.mdb
CCH	3334080		OS	CY	10/06/2015 13:24	100515M537a.mdb
FS	3333959	SG1-MW04-151001	GW	CY	10/06/2015 13:55	100515M537a.mdb
FS	3333960	SG1-DS01-151001	GW	CY	10/06/2015 14:26	100515M537a.mdb
CCM	3335056		OS	CY	10/06/2015 14:57	100515M537a.mdb

					QC S	Summar	y Repo	ort								
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
CCL	IS-PFOA-13C2	537	N/A			11800.40	11800.4	ng/L	100	70 - 140			1.0	09/30/2015 09:59	10/05/2015 20:24	3334078
CCL	IS-PFOS-13C4	537	N/A			6324.13	6324.13	ng/L	100	70 - 140			1.0	09/30/2015 09:59	10/05/2015 20:24	3334078
CCL	SS-PFDA-13C2	537	N/A			96.6529	100	ng/L	97	70 - 130			1.0	09/30/2015 09:59	10/05/2015 20:24	3334078
CCL	SS-PFHxA-13C2	537	N/A			49.4984	50.0	ng/L	99	70 - 130			1.0	09/30/2015 09:59	10/05/2015 20:24	3334078
CCL	Perfluorobutanesulfonic acid (PFBS)	537	90			91.4673	90.0	ng/L	102	50 - 150			1.0	09/30/2015 09:59	10/05/2015 20:24	3334078
CCL	Perfluoroheptanoic acid (PFHpA)	537	10			9.8147	10.0	ng/L	98	50 - 150			1.0	09/30/2015 09:59	10/05/2015 20:24	3334078
CCL	Perfluorohexanesulfonic acid (PFHxS)	537	30			31.0623	30.0	ng/L	104	50 - 150			1.0	09/30/2015 09:59	10/05/2015 20:24	3334078
CCL	Perfluorononanoic acid (PFNA)	537	20			20.0750	20.0	ng/L	100	50 - 150			1.0	09/30/2015 09:59	10/05/2015 20:24	3334078
CCL	Perfluorooctane sulfonate (PFOS)	537	40			40.1864	40.0	ng/L	100	50 - 150			1.0	09/30/2015 09:59	10/05/2015 20:24	3334078
CCL	Perfluorooctanoic acid (PFOA)	537	20			19.8868	20.0	ng/L	99	50 - 150			1.0	09/30/2015 09:59	10/05/2015 20:24	3334078
LRB	IS-PFOA-13C2	537	N/A			11788.90	11800.4	ng/L	100	70 - 140			1.0	10/05/2015 07:25	10/05/2015 21:56	3334062
LRB	IS-PFOS-13C4	537	N/A			6572.86	6324.13	ng/L	104	70 - 140			1.0	10/05/2015 07:25	10/05/2015 21:56	3334062
LRB	SS-PFDA-13C2	537	N/A			94.9724	100	ng/L	95	70 - 130			1.0	10/05/2015 07:25	10/05/2015 21:56	3334062
LRB	SS-PFHxA-13C2	537	N/A			46.2050	50.0	ng/L	92	70 - 130			1.0	10/05/2015 07:25	10/05/2015 21:56	3334062
LRB	Perfluorobutanesulfonic acid (PFBS)	537	90		<	90		ng/L					1.0	10/05/2015 07:25	10/05/2015 21:56	3334062
LRB	Perfluoroheptanoic acid (PFHpA)	537	10		<	10		ng/L					1.0		10/05/2015 21:56	
LRB	Perfluorohexanesulfonic acid (PFHxS)	537	30		<	30		ng/L					1.0		10/05/2015 21:56	
LRB	Perfluorononanoic acid (PFNA)	537	20		<	20		ng/L					1.0		10/05/2015 21:56	
LRB	Perfluorooctane sulfonate (PFOS)	537	40		<	40		ng/L					1.0		10/05/2015 21:56	
LRB	Perfluorooctanoic acid (PFOA)	537	20		<	20		ng/L					1.0		10/05/2015 21:56	
FBL	IS-PFOA-13C2	537	N/A			12010.60	11800.4	ng/L	102	70 - 140			1.0		10/05/2015 22:27	
FBL	IS-PFOS-13C4	537	N/A			6528.02	6324.13	ng/L	103	70 - 140			1.0		10/05/2015 22:27	
FBL	SS-PFDA-13C2	537	N/A			94.3781	100	ng/L	94	70 - 130			1.0		10/05/2015 22:27	
FBL	SS-PFHxA-13C2	537	N/A			46.9166	50.0	ng/L	94	70 - 130			1.0		10/05/2015 22:27	
FBL	Perfluorobutanesulfonic acid (PFBS)	537	90			90.5719	90.0	ng/L	101	50 - 150			1.0		10/05/2015 22:27	1
FBL	Perfluoroheptanoic acid (PFHpA)	537	10			9.5630	10.0	ng/L	96	50 - 150			1.0		10/05/2015 22:27	1
FBL	Perfluorohexanesulfonic acid (PFHxS)	537	30			30.0285	30.0	ng/L	100	50 - 150			1.0		10/05/2015 22:27	
FBL	Perfluorononanoic acid (PFNA)	537	20			20.0097	20.0	ng/L	100	50 - 150			1.0		10/05/2015 22:27	
FBL	Perfluorooctane sulfonate (PFOS)	537	40			39.9255	40.0	ng/L	100	50 - 150			1.0		10/05/2015 22:27	
FBL	Perfluorooctanoic acid (PFOA)	537	20			20.2444	20.0	ng/L	100	50 - 150			1.0		10/05/2015 22:27	
FBH	IS-PFOA-13C2	537	N/A			11135.80	11800.4	ng/L	94	70 - 140			1.0		10/05/2015 22:58	
FBH	IS-PFOS-13C4	537	N/A			6101.50	6324.13	ng/L	96	70 - 140			1.0		10/05/2015 22:58	
FBH	SS-PFDA-13C2		N/A			97.9034	100	-	98	70 - 140			1.0		10/05/2015 22:58	
FBH		537						ng/L								
FBH	SS-PFHxA-13C2	537	N/A 90			47.8429	50.0	ng/L	96	70 - 130 70 - 130			1.0		10/05/2015 22:58 10/05/2015 22:58	
FBH	Perfluorobutanesulfonic acid (PFBS)					1073.8000	1125	ng/L	95				1.0			
	Perfluoroheptanoic acid (PFHpA)	537	10			115.5070	125	ng/L	92	70 - 130			1.0		10/05/2015 22:58	
DEBH	Perfluorohexanesulfonic acid (PFHxS)	537	30			363.3290	375	ng/L	97	70 - 130			1.0		10/05/2015 22:58	
	Perfluorononanoic acid (PFNA)	537	20			230.7970	250	ng/L	92	70 - 130			1.0		10/05/2015 22:58	
	Perfluorooctane sulfonate (PFOS)	537	40			473.6320	500	ng/L	95	70 - 130			1.0		10/05/2015 22:58	
Q,FBH	Perfluorooctanoic acid (PFOA)	537	20			235.8990	250	ng/L	94	70 - 130			1.0		10/05/2015 22:58	

ம்Page 2 of 7

					QC S	Summary Re	port (cont.)								
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	Dil Factor	Extracted	Analyzed	EEA ID #
FTB	IS-PFOA-13C2	537	N/A	SG1-TB03-151001		11652.60	11800.4	ng/L	99	70 - 140		 0.98	10/05/2015 07:25	10/06/2015 00:31	3333953
FTB	IS-PFOS-13C4	537	N/A	SG1-TB03-151001		6566.74	6324.13	ng/L	104	70 - 140		 0.98	10/05/2015 07:25	10/06/2015 00:31	3333953
FTB	SS-PFDA-13C2	537	N/A	SG1-TB03-151001		94.2624	100	ng/L	96	70 - 130		 0.98	10/05/2015 07:25	10/06/2015 00:31	3333953
FTB	SS-PFHxA-13C2	537	N/A	SG1-TB03-151001		46.6573	50.0	ng/L	95	70 - 130		 0.98	10/05/2015 07:25	10/06/2015 00:31	3333953
FTB	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-TB03-151001	<	90		ng/L				 0.98	10/05/2015 07:25	10/06/2015 00:31	3333953
FTB	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-TB03-151001	<	10		ng/L				 0.98	10/05/2015 07:25	10/06/2015 00:31	3333953
FTB	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-TB03-151001	<	30		ng/L				 0.98	10/05/2015 07:25	10/06/2015 00:31	3333953
FTB	Perfluorononanoic acid (PFNA)	537	20	SG1-TB03-151001	<	20		ng/L				 0.98	10/05/2015 07:25	10/06/2015 00:31	3333953
FTB	Perfluorooctane sulfonate (PFOS)	537	40	SG1-TB03-151001	<	40		ng/L				 0.98	10/05/2015 07:25	10/06/2015 00:31	3333953
FTB	Perfluorooctanoic acid (PFOA)	537	20	SG1-TB03-151001	<	20		ng/L				 0.98	10/05/2015 07:25	10/06/2015 00:31	3333953
FS	IS-PFOA-13C2	537	N/A	SG1-MW02S-151001		10658.00	10537.5	ng/L	90	70 - 140		 0.95	10/05/2015 07:25	10/06/2015 04:38	3333954
FS	IS-PFOA-13C2	537	N/A	SG1-MW02S-151001		10658.00	10537.5	ng/L	90	70 - 140		 9.5	10/05/2015 07:25	10/06/2015 04:38	3333954
FS	IS-PFOS-13C4	537	N/A	SG1-MW02S-151001		6269.66	5827.03	ng/L	99	70 - 140		 0.95	10/05/2015 07:25	10/06/2015 04:38	3333954
FS	IS-PFOS-13C4	537	N/A	SG1-MW02S-151001		6269.66	5827.03	ng/L	99	70 - 140		 9.5	10/05/2015 07:25	10/06/2015 04:38	3333954
FS	SS-PFDA-13C2	537	N/A	SG1-MW02S-151001		96.0232	100	ng/L	101	70 - 130		 0.95	10/05/2015 07:25	10/06/2015 04:38	3333954
FS	SS-PFHxA-13C2	537	N/A	SG1-MW02S-151001		49.4648	50.0	ng/L	104	70 - 130		 0.95	10/05/2015 07:25	10/06/2015 04:38	3333954
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW02S-151001	<	90		ng/L				 0.95	10/05/2015 07:25	10/06/2015 04:38	3333954
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW02S-151001		30		ng/L				 0.95	10/05/2015 07:25	10/06/2015 04:38	3333954
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW02S-151001	<	30		ng/L				 0.95	10/05/2015 07:25	10/06/2015 04:38	3333954
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-MW02S-151001	<	20		ng/L				 0.95	10/05/2015 07:25	10/06/2015 04:38	3333954
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW02S-151001	<	40		ng/L				 0.95	10/05/2015 07:25	10/06/2015 04:38	3333954
FS	IS-PFOA-13C2	537	N/A	SG1-MW03-151001		10069.10	10537.5	ng/L	85	70 - 140		 0.98	10/05/2015 07:25	10/06/2015 05:09	3333958
FS	IS-PFOA-13C2	537	N/A	SG1-MW03-151001		10069.10	10537.5	ng/L	85	70 - 140		 19.6	10/05/2015 07:25	10/06/2015 05:09	3333958
FS	IS-PFOS-13C4	537	N/A	SG1-MW03-151001		6232.74	5827.03	ng/L	102	70 - 140		 0.98		10/06/2015 05:09	
FS	IS-PFOS-13C4	537	N/A	SG1-MW03-151001		6232.74	5827.03	ng/L	102	70 - 140		 19.6	10/05/2015 07:25	10/06/2015 05:09	3333958
FS	SS-PFDA-13C2	537	N/A	SG1-MW03-151001		107.5650	100	ng/L	110	70 - 130		 0.98	10/05/2015 07:25	10/06/2015 05:09	3333958
FS	SS-PFHxA-13C2	537	N/A	SG1-MW03-151001		54.2950	50.0	ng/L	111	70 - 130		 0.98	10/05/2015 07:25	10/06/2015 05:09	3333958
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW03-151001	<	90		ng/L				 0.98		10/06/2015 05:09	
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW03-151001		120		ng/L				 0.98	10/05/2015 07:25	10/06/2015 05:09	3333958
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW03-151001	<	30		ng/L				 0.98		10/06/2015 05:09	
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-MW03-151001	<	20		ng/L				 0.98	10/05/2015 07:25	10/06/2015 05:09	3333958
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW03-151001	<	40		ng/L				 0.98	10/05/2015 07:25	10/06/2015 05:09	3333958
FS	IS-PFOA-13C2	537	N/A	SG1-MW05-151001		10833.60	10537.5	ng/L	92	70 - 140		 0.94	10/05/2015 07:25	10/06/2015 05:40	3333955
FS	IS-PFOA-13C2	537	N/A	SG1-MW05-151001		10833.60	10537.5	ng/L	92	70 - 140		 9.4	10/05/2015 07:25	10/06/2015 05:40	3333955
FS	IS-PFOS-13C4	537	N/A	SG1-MW05-151001		6258.43	5827.03	ng/L	100	70 - 140		 0.94		10/06/2015 05:40	
FS	IS-PFOS-13C4	537	N/A	SG1-MW05-151001		6258.43	5827.03	ng/L	100	70 - 140		 9.4		10/06/2015 05:40	
FS	SS-PFDA-13C2	537	N/A	SG1-MW05-151001		95.6626	100	ng/L	102	70 - 130		 0.94		10/06/2015 05:40	
	SS-PFHxA-13C2	537	N/A	SG1-MW05-151001		47.0676	50.0	ng/L	100	70 - 130		 0.94		10/06/2015 05:40	
Page FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW05-151001	<	90	2.2.0	ng/L				 0.94		10/06/2015 05:40	
	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW05-151001		10		ng/L				 0.94		10/06/2015 05:40	
Δ _{FS}	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW05-151001	<	30		ng/L				 0.94	10/05/2015 07:25		

					QC S	Summary Re	port (cont.)								
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	 Dil Factor	Extracted	Analyzed	EEA ID #
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-MW05-151001	<	20		ng/L				 0.94	10/05/2015 07:25	10/06/2015 05:40	3333955
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW05-151001	<	40		ng/L				 0.94	10/05/2015 07:25	10/06/2015 05:40	3333955
LFSMM	IS-PFOA-13C2	537	N/A	SG1-MW05-151001		10613.70	11800.4	ng/L	90	70 - 140		 1.0	10/05/2015 07:25	10/06/2015 06:11	3333956
LFSMM	IS-PFOS-13C4	537	N/A	SG1-MW05-151001		6046.24	6324.13	ng/L	96	70 - 140		 1.0	10/05/2015 07:25	10/06/2015 06:11	3333956
LFSMM	SS-PFDA-13C2	537	N/A	SG1-MW05-151001		99.5265	100	ng/L	100	70 - 130		 1.0	10/05/2015 07:25	10/06/2015 06:11	3333956
LFSMM	SS-PFHxA-13C2	537	N/A	SG1-MW05-151001		50.3942	50.0	ng/L	101	70 - 130		 1.0	10/05/2015 07:25	10/06/2015 06:11	3333956
LFSMM	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW05-151001		634.0240	675	ng/L	94	70 - 130		 1.0	10/05/2015 07:25	10/06/2015 06:11	3333956
LFSMM	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW05-151001		85.0425	87.8667	ng/L	96	70 - 130		 1.0	10/05/2015 07:25	10/06/2015 06:11	3333956
LFSMM	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW05-151001		208.5660	225	ng/L	93	70 - 130		 1.0	10/05/2015 07:25	10/06/2015 06:11	3333956
LFSMM	Perfluorononanoic acid (PFNA)	537	20	SG1-MW05-151001		146.5260	150	ng/L	98	70 - 130		 1.0	10/05/2015 07:25	10/06/2015 06:11	3333956
LFSMM	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW05-151001		274.0950	300	ng/L	91	70 - 130		 1.0	10/05/2015 07:25	10/06/2015 06:11	3333956
LFSMDM	IS-PFOA-13C2	537	N/A	SG1-MW05-151001		10513.10	11800.4	ng/L	89	70 - 140		 1.0	10/05/2015 07:25	10/06/2015 06:42	3333957
LFSMDM	IS-PFOS-13C4	537	N/A	SG1-MW05-151001		6069.87	6324.13	ng/L	96	70 - 140		 1.0	10/05/2015 07:25	10/06/2015 06:42	3333957
LFSMDM	SS-PFDA-13C2	537	N/A	SG1-MW05-151001		103.2360	100	ng/L	103	70 - 130		 1.0	10/05/2015 07:25	10/06/2015 06:42	3333957
LFSMDM	SS-PFHxA-13C2	537	N/A	SG1-MW05-151001		51.0069	50.0	ng/L	102	70 - 130		 1.0	10/05/2015 07:25	10/06/2015 06:42	3333957
LFSMDM	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW05-151001		667.6460	675	ng/L	99	70 - 130	5.2	 1.0	10/05/2015 07:25	10/06/2015 06:42	3333957
LFSMDM	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW05-151001		89.3227	87.8667	ng/L	102	70 - 130	4.9	 1.0	10/05/2015 07:25	10/06/2015 06:42	3333957
LFSMDM	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW05-151001		220.3660	225	ng/L	98	70 - 130	5.5	 1.0		10/06/2015 06:42	
LFSMDM	Perfluorononanoic acid (PFNA)	537	20	SG1-MW05-151001		154.4270	150	ng/L	103	70 - 130	5.3	 1.0	10/05/2015 07:25	10/06/2015 06:42	3333957
LFSMDM	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW05-151001		290.4310	300	ng/L	97	70 - 130	5.8	 1.0		10/06/2015 06:42	
ССМ	IS-PFOA-13C2	537	N/A			10537.50	10537.5	ng/L	100	70 - 140		 1.0		10/06/2015 07:13	
ССМ	IS-PFOS-13C4	537	N/A			5827.03	5827.03	ng/L	100	70 - 140		 1.0		10/06/2015 07:13	
ССМ	SS-PFDA-13C2	537	N/A			101.7620	100	ng/L	102	70 - 130		 1.0		10/06/2015 07:13	
ССМ	SS-PFHxA-13C2	537	N/A			48.6432	50.0	ng/L	97	70 - 130		 1.0		10/06/2015 07:13	
ССМ	Perfluorobutanesulfonic acid (PFBS)	537	90			671.9200	675	ng/L	100	70 - 130		 1.0		10/06/2015 07:13	
ССМ	Perfluoroheptanoic acid (PFHpA)	537	10			74.8401	75.0	ng/L	100	70 - 130		 1.0		10/06/2015 07:13	
CCM	Perfluorohexanesulfonic acid (PFHxS)	537	30			218.7260	225	ng/L	97	70 - 130		 1.0		10/06/2015 07:13	
ССМ	Perfluorononanoic acid (PFNA)	537	20			148.8750	150	ng/L	99	70 - 130		 1.0		10/06/2015 07:13	
ССМ	Perfluorooctane sulfonate (PFOS)	537	40			292.7440	300	ng/L	98	70 - 130		 1.0		10/06/2015 07:13	
ССМ	Perfluorooctanoic acid (PFOA)	537	20			145.8350	150	ng/L	97	70 - 130		 1.0		10/06/2015 07:13	
FS	IS-PFOA-13C2	537	N/A	SG1-MW04-151001		10413.40	10537.5	ng/L	99	70 - 140		 0.97		10/06/2015 08:15	
FS	IS-PFOA-13C2	537	N/A	SG1-MW04-151001		10413.40	10537.5	ng/L	99	70 - 140		 9.7		10/06/2015 08:15	
FS	IS-PFOS-13C4	537	N/A	SG1-MW04-151001		6224.98	5921.9	ng/L	107	70 - 140		 0.97		10/06/2015 08:15	
FS	IS-PFOS-13C4	537	N/A	SG1-MW04-151001		6224.98	5921.9	ng/L	107	70 - 140		 9.7		10/06/2015 08:15	
FS	SS-PFDA-13C2	537	N/A	SG1-MW04-151001		99.1457	100	ng/L	102	70 - 130		 0.97		10/06/2015 08:15	
FS	SS-PFHxA-13C2	537	N/A	SG1-MW04-151001		49.9328	50.0	ng/L	102	70 - 130		 0.97		10/06/2015 08:15	
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW04-151001	<	90	00.0	ng/L				 0.97		10/06/2015 08:15	
	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW04-151001		40		ng/L				 0.97		10/06/2015 08:15	
Page FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW04-151001	<	30		ng/L				 0.97		10/06/2015 08:15	
	Perfluorononanoic acid (PFNA)	537	20	SG1-MW04-151001	<	20		ng/L				0.97		10/06/2015 08:15	
110 4 FS of	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW04-151001	<	40		ng/L				 0.97		10/06/2015 08:15	

					QC S	Summary Re	port (cont.)									
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
FS	IS-PFOA-13C2	537	N/A	SG1-DS01-151001		10597.90	10537.5	ng/L	101	70 - 140			0.98	10/05/2015 07:25	10/06/2015 08:46	3333960
FS	IS-PFOA-13C2	537	N/A	SG1-DS01-151001		10597.90	10537.5	ng/L	101	70 - 140			9.8	10/05/2015 07:25	10/06/2015 08:46	3333960
FS	IS-PFOS-13C4	537	N/A	SG1-DS01-151001		6409.52	5921.9	ng/L	108	70 - 140			0.98	10/05/2015 07:25	10/06/2015 08:46	3333960
FS	IS-PFOS-13C4	537	N/A	SG1-DS01-151001		6409.52	5921.9	ng/L	108	70 - 140			9.8	10/05/2015 07:25	10/06/2015 08:46	3333960
FS	SS-PFDA-13C2	537	N/A	SG1-DS01-151001		100.5800	100	ng/L	103	70 - 130			0.98	10/05/2015 07:25	10/06/2015 08:46	3333960
FS	SS-PFHxA-13C2	537	N/A	SG1-DS01-151001		51.4256	50.0	ng/L	105	70 - 130			0.98	10/05/2015 07:25	10/06/2015 08:46	3333960
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-DS01-151001	<	90		ng/L					0.98	10/05/2015 07:25	10/06/2015 08:46	3333960
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-DS01-151001		40		ng/L					0.98	10/05/2015 07:25	10/06/2015 08:46	3333960
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-DS01-151001	<	30		ng/L					0.98	10/05/2015 07:25	10/06/2015 08:46	3333960
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-DS01-151001	<	20		ng/L					0.98	10/05/2015 07:25	10/06/2015 08:46	3333960
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-DS01-151001	<	40		ng/L					0.98	10/05/2015 07:25	10/06/2015 08:46	3333960
FS	IS-PFOA-13C2	537	N/A	SG1-MW01-151001		12100.70	10537.5	ng/L	115	70 - 140			1.02	10/05/2015 07:25	10/06/2015 09:17	3333961
FS	IS-PFOS-13C4	537	N/A	SG1-MW01-151001		6528.03	5827.03	ng/L	112	70 - 140			1.02	10/05/2015 07:25	10/06/2015 09:17	3333961
FS	SS-PFDA-13C2	537	N/A	SG1-MW01-151001		97.1533	100	ng/L	95	70 - 130			1.02	10/05/2015 07:25	10/06/2015 09:17	3333961
FS	SS-PFHxA-13C2	537	N/A	SG1-MW01-151001		50.5522	50.0	ng/L	99	70 - 130			1.02	10/05/2015 07:25	10/06/2015 09:17	3333961
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW01-151001	<	90		ng/L					1.02	10/05/2015 07:25	10/06/2015 09:17	3333961
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW01-151001	<	10		ng/L					1.02	10/05/2015 07:25	10/06/2015 09:17	3333961
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW01-151001	<	30		ng/L					1.02	10/05/2015 07:25	10/06/2015 09:17	3333961
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-MW01-151001	<	20		ng/L					1.02	10/05/2015 07:25	10/06/2015 09:17	3333961
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW01-151001	<	40		ng/L					1.02	10/05/2015 07:25	10/06/2015 09:17	3333961
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-MW01-151001	<	20		ng/L					1.02	10/05/2015 07:25	10/06/2015 09:17	3333961
FS	IS-PFOA-13C2	537	N/A	SG1-MW01S-151001		11341.90	10537.5	ng/L	108	70 - 140			1.01	10/05/2015 07:25	10/06/2015 09:48	3333962
FS	IS-PFOS-13C4	537	N/A	SG1-MW01S-151001		6551.94	5827.03	ng/L	112	70 - 140			1.01	10/05/2015 07:25	10/06/2015 09:48	3333962
FS	SS-PFDA-13C2	537	N/A	SG1-MW01S-151001		97.7437	100	ng/L	97	70 - 130			1.01	10/05/2015 07:25	10/06/2015 09:48	3333962
FS	SS-PFHxA-13C2	537	N/A	SG1-MW01S-151001		48.8399	50.0	ng/L	97	70 - 130			1.01	10/05/2015 07:25	10/06/2015 09:48	3333962
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-MW01S-151001	<	90		ng/L					1.01	10/05/2015 07:25	10/06/2015 09:48	3333962
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-MW01S-151001		60		ng/L					1.01	10/05/2015 07:25	10/06/2015 09:48	3333962
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-MW01S-151001	<	30		ng/L					1.01	10/05/2015 07:25	10/06/2015 09:48	3333962
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-MW01S-151001	<	20		ng/L					1.01	10/05/2015 07:25	10/06/2015 09:48	3333962
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-MW01S-151001	<	40		ng/L					1.01	10/05/2015 07:25	10/06/2015 09:48	3333962
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-MW01S-151001		60		ng/L					1.01	10/05/2015 07:25	10/06/2015 09:48	3333962
FS	IS-PFOA-13C2	537	N/A	SG1-RB01-151001		11227.70	10537.5	ng/L	107	70 - 140			0.98	10/05/2015 07:25	10/06/2015 10:19	3333963
FS	IS-PFOS-13C4	537	N/A	SG1-RB01-151001		6255.64	5827.03	ng/L	107	70 - 140			0.98	10/05/2015 07:25	10/06/2015 10:19	3333963
FS	SS-PFDA-13C2	537	N/A	SG1-RB01-151001		93.3658	100	ng/L	95	70 - 130			0.98	10/05/2015 07:25	10/06/2015 10:19	3333963
FS	SS-PFHxA-13C2	537	N/A	SG1-RB01-151001		46.1663	50.0	ng/L	94	70 - 130			0.98		10/06/2015 10:19	
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB01-151001	<	90		ng/L					0.98	10/05/2015 07:25	10/06/2015 10:19	3333963
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB01-151001	<	10		ng/L					0.98		10/06/2015 10:19	
	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB01-151001	<	30		ng/L					0.98		10/06/2015 10:19	
Page 1	Perfluorononanoic acid (PFNA)	537	20	SG1-RB01-151001	<	20		ng/L					0.98		10/06/2015 10:19	
n FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB01-151001	<	40		ng/L					0.98		10/06/2015 10:19	
5 FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB01-151001	<	20		ng/L					0.98		10/06/2015 10:19	

	QC Summary Report (cont.)															
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD		Dil Factor	Extracted	Analyzed	EEA ID #
FS	IS-PFOA-13C2	537	N/A	SG1-RB01-150930		11166.40	10537.5	ng/L	106	70 - 140			0.95	10/05/2015 07:25	10/06/2015 10:50	3333964
FS	IS-PFOS-13C4	537	N/A	SG1-RB01-150930		6192.94	5827.03	ng/L	106	70 - 140			0.95	10/05/2015 07:25	10/06/2015 10:50	3333964
FS	SS-PFDA-13C2	537	N/A	SG1-RB01-150930		92.0670	100	ng/L	97	70 - 130			0.95	10/05/2015 07:25	10/06/2015 10:50	3333964
FS	SS-PFHxA-13C2	537	N/A	SG1-RB01-150930		44.0563	50.0	ng/L	93	70 - 130	i		0.95	10/05/2015 07:25	10/06/2015 10:50	3333964
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-RB01-150930	<	90		ng/L					0.95	10/05/2015 07:25	10/06/2015 10:50	3333964
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB01-150930	<	10		ng/L			i		0.95	10/05/2015 07:25	10/06/2015 10:50	3333964
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB01-150930	<	30		ng/L					0.95	10/05/2015 07:25	10/06/2015 10:50	3333964
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB01-150930	<	20		ng/L					0.95	10/05/2015 07:25	10/06/2015 10:50	3333964
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB01-150930	<	40		ng/L					0.95	10/05/2015 07:25	10/06/2015 10:50	3333964
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB01-150930	<	20		ng/L					0.95	10/05/2015 07:25	10/06/2015 10:50	3333964
FS	IS-PFOA-13C2	537	N/A	SG1-FB01-151001		11040.50	10537.5	ng/L	105	70 - 140			0.91	10/05/2015 07:25	10/06/2015 11:21	3333965
FS	IS-PFOS-13C4	537	N/A	SG1-FB01-151001		6109.93	5827.03	ng/L	105	70 - 140			0.91	10/05/2015 07:25	10/06/2015 11:21	3333965
FS	SS-PFDA-13C2	537	N/A	SG1-FB01-151001		86.8713	100	ng/L	95	70 - 130			0.91	10/05/2015 07:25	10/06/2015 11:21	3333965
FS	SS-PFHxA-13C2	537	N/A	SG1-FB01-151001		42.9741	50.0	ng/L	94	70 - 130			0.91	10/05/2015 07:25	10/06/2015 11:21	3333965
FS	Perfluorobutanesulfonic acid (PFBS)	537	90	SG1-FB01-151001	<	90		ng/L					0.91	10/05/2015 07:25	10/06/2015 11:21	3333965
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-FB01-151001	<	10		ng/L					0.91	10/05/2015 07:25	10/06/2015 11:21	3333965
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-FB01-151001	<	30		ng/L					0.91		10/06/2015 11:21	
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-FB01-151001	<	20		ng/L					0.91		10/06/2015 11:21	
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-FB01-151001	<	40		ng/L					0.91		10/06/2015 11:21	
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-FB01-151001	<	20		ng/L					0.91		10/06/2015 11:21	
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-MW03-151001		4300		ng/L					19.6		10/06/2015 11:52	_
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-MW02S-151001		750		ng/L					9.5		10/06/2015 12:23	
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-MW05-151001		570		ng/L					9.4		10/06/2015 12:54	_
ССН	IS-PFOA-13C2	537	N/A			10543.60	10543.6	ng/L	100	70 - 140			1.0	09/30/2015 09:59		
CCH	IS-PFOS-13C4	537	N/A			5921.90	5921.9	ng/L	100	70 - 140			1.0	09/30/2015 09:59		
ССН	SS-PFDA-13C2	537	N/A			102.1290	100	ng/L	102	70 - 130			1.0	09/30/2015 09:59		
CCH	SS-PFHxA-13C2	537	N/A			51.0063	50.0	ng/L	102	70 - 130			1.0	09/30/2015 09:59		
ССН	Perfluorobutanesulfonic acid (PFBS)	537	90			1109.2600	1125	ng/L	99	70 - 130			1.0	09/30/2015 09:59		
ССН	Perfluoroheptanoic acid (PFHpA)	537	10			123.1860	125	ng/L	99	70 - 130			1.0		10/06/2015 13:24	
ССН	Perfluorohexanesulfonic acid (PFHxS)	537	30			368.3800	375	ng/L	98	70 - 130			1.0		10/06/2015 13:24	
ССН	Perfluorononanoic acid (PFNA)	537	20			251.5370	250	ng/L	101	70 - 130			1.0		10/06/2015 13:24	
ССН	Perfluorooctane sulfonate (PFOS)	537	40			499.6820	500	ng/L	101	70 - 130			1.0		10/06/2015 13:24	
ССН	Perfluorooctanoic acid (PFOA)	537	20			246.2870	250	ng/L	99	70 - 130			1.0	09/30/2015 09:59		
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-MW04-151001		1400	230	ng/L					9.7		10/06/2015 13:55	
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-DS01-151001		1400		ng/L					9.8		10/06/2015 14:26	
CCM	IS-PFOA-13C2	537	N/A			10570.00	10570	ng/L	100	70 - 140			9.8		10/06/2015 14:57	
CCM	IS-PFOS-13C2	537	N/A			5882.67	5882.67	ng/L	100	70 - 140			1.0		10/06/2015 14:57	
	SS-PFDA-13C2	537	N/A			102.8950	100	ng/L	100	70 - 140			1.0	09/30/2015 09:59		
	SS-PFDA-13C2 SS-PFHxA-13C2	537	N/A			49.5403	50.0	-	99	70 - 130			1.0		10/06/2015 14:57	
								ng/L						09/30/2015 09:59		
	Perfluorobutanesulfonic acid (PFBS) Perfluoroheptanoic acid (PFHpA)	537	90 10			672.3070 73.8815	675 75.0	ng/L ng/L	99	70 - 130 70 - 130			1.0 1.0	09/30/2015 09:59		

	QC Summary Report (cont.)															
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits			Dil Factor	Extracted	Analyzed	EEA ID #
CCM	Perfluorohexanesulfonic acid (PFHxS)	537	30			222.6320	225	ng/L	99	70 - 130			1.0	09/30/2015 09:59	10/06/2015 14:57	3335056
CCM	Perfluorononanoic acid (PFNA)	537	20			151.4210	150	ng/L	101	70 - 130			1.0	09/30/2015 09:59	10/06/2015 14:57	3335056
CCM	Perfluorooctane sulfonate (PFOS)	537	40			300.8010	300	ng/L	100	70 - 130			1.0	09/30/2015 09:59	10/06/2015 14:57	3335056
CCM	Perfluorooctanoic acid (PFOA)	537	20			148.3810	150	ng/L	99	70 - 130			1.0	09/30/2015 09:59	10/06/2015 14:57	3335056

	Sample Type Key									
Type (Abbr.)	Sample Type	<u>Type (Abbr.)</u>	Sample Type							
CCH	Continuing Calibration High									
CCL	Continuing Calibration Low									
CCM	Continuing Calibration Mid									
FS	Field Sample									
FTB	Field Trip Blank									
FBH	Fortified Blank High									
FBL	Fortified Blank Low									
LFSMDM	LFSM Duplicate Mid									
LFSMM	LFSM Mid									
LRB	Laboratory Reagent Blank									

END OF REPORT

Eaton Analytical

LABORATORY REPORT

If you have any questions concerning this report, please do not hesitate to call us at (800) 332-4345 or (574) 233-4777.

This report may not be reproduced, except in full, without written approval from EEA.

Eaton Analytical

STATE CERTIFICATION LIST

State	Certification	State	Certification
Alabama	40700	Montana	CERT0026
Alaska	IN00035	Nebraska	E87775
Arizona	AZ0432	Nevada	IN000352015-1
Arkansas	IN035	New Hampshire*	2124
California	2920	New Mexico	IN00035
Colorado	IN035	New Jersey*	IN598
Colorado Radiochemistry	IN035	New York*	11398
Connecticut	PH-0132	North Carolina	18700
Delaware	IN035	North Dakota	R-035
Florida (Primary AB)*	E87775	Ohio	87775
Georgia	929	Oklahoma	D9508
Hawaii	IN035	Oregon*	IN200001
Idaho	IN00035/E87775	Pennsylvania*	68-00466
Illinois*	200001	Puerto Rico	IN00035
Illinois Microbiology	200001	Rhode Island	LAO00241
Indiana Chemistry	C-71-01	South Carolina	95005
Indiana Microbiology	M-76-07	South Dakota	IN00035
lowa	098	Tennessee	TN02973
Kansas*	E-10233	Texas*	T104704187-14-7
Kentucky	90056	Texas/TCEQ	TX207
Louisiana*	LA150003	Utah*	IN00035
Maine	IN00035	Vermont	VT-8775
Maryland	209	Virginia*	00127
Massachusetts	M-IN035	Washington	C837
Michigan	9926	West Virginia	9927 C
Minnesota*	018-999-338	Wisconsin	999766900
Mississippi	IN035	Wyoming	IN035
Missouri	880		

*NELAP/TNI Recognized Accreditation Bodies

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Client:	Ramboll Environ	Report:	351818
Attn:	Jason Wilkinson	Priority:	Rush Written
Λι	3 Carlisle Road	Status:	Final
	Suite 210	PWS ID:	Not Supplied
	Westford, MA 01886		
Copies			
to:	None		

	Sample Information											
EEA ID #	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time							
3348699	SG1-FB01-151027	537	10/27/15 14:45	Client	10/29/15 09:45							
3348700	SG1-RB01-151027	537	10/27/15 14:50	Client	10/29/15 09:45							
3348701	SG1-North Manhole-151027	537	10/27/15 15:30	Client	10/29/15 09:45							
3348702	SG1-TP01-151027/FTB	537	10/27/15 14:00	EEA	10/29/15 09:45							
3348703	SG1-Sump Pit -151027	537	10/27/15 14:20	Client	10/29/15 09:45							
3348704	SG1-DS01-151027	537	10/27/15 15:45	Client	10/29/15 09:45							
3348705	SG1-RB02-151027	537	10/27/15 18:00	Client	10/29/15 09:45							
	Papart Summery											

Report Summary

Note: In the Method 537 analysis, the SS recovery in sample SG1-North Manhole-151027 was low (58%) outside the acceptance limits of 70-130% recovery. Any result is potentially low biased.

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Nathan Trowbridge at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

11/03/2015

Date

Client Name: Ramboll Environ Report #: 351818

Sampling Point: SG1-FB01-151027

PWS ID: Not Supplied

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/30/15 07:20	10/31/15 23:07	3348699			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	10/30/15 07:20	10/31/15 23:07	3348699			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/30/15 07:20	10/31/15 23:07	3348699			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/30/15 07:20	10/31/15 23:07	3348699			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/30/15 07:20	10/31/15 23:07	3348699			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	10/30/15 07:20	10/31/15 23:07	3348699			

Sampling Point: SG1-RB01-151027

PWS ID: Not Supplied

	EEA Methods												
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #				
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/30/15 07:20	10/31/15 23:38	3348700				
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	10/30/15 07:20	10/31/15 23:38	3348700				
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/30/15 07:20	10/31/15 23:38	3348700				
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/30/15 07:20	10/31/15 23:38	3348700				
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/30/15 07:20	10/31/15 23:38	3348700				
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	10/30/15 07:20	10/31/15 23:38	3348700				

Sampling Point: SG1-North Manhole-151027

	EEA Methods												
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #				
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/30/15 07:20	11/01/15 06:52	3348701				
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	20	ng/L	10/30/15 07:20	11/01/15 06:52	3348701				
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/30/15 07:20	11/01/15 06:52	3348701				
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/30/15 07:20	11/01/15 06:52	3348701				
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/30/15 07:20	11/01/15 06:52	3348701				
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	1000	ng/L	10/30/15 07:20	11/01/15 06:21	3348701				

Sampling Point: SG1-TP01-151027/FTB

PWS ID: Not Supplied

	EEA Methods											
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #			
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/30/15 07:20	10/31/15 22:36	3348702			
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	10/30/15 07:20	10/31/15 22:36	3348702			
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/30/15 07:20	10/31/15 22:36	3348702			
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/30/15 07:20	10/31/15 22:36	3348702			
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/30/15 07:20	10/31/15 22:36	3348702			
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	10/30/15 07:20	10/31/15 22:36	3348702			

Sampling Point: SG1-Sump Pit -151027

PWS ID: Not Supplied

	EEA Methods												
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #				
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/30/15 07:20	11/01/15 00:09	3348703				
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	10	ng/L	10/30/15 07:20	11/01/15 00:09	3348703				
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/30/15 07:20	11/01/15 00:09	3348703				
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/30/15 07:20	11/01/15 00:09	3348703				
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/30/15 07:20	11/01/15 00:09	3348703				
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	850	ng/L	10/30/15 07:20	11/01/15 05:20	3348703				

Sampling Point: SG1-DS01-151027

	EEA Methods												
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #				
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/30/15 07:20	11/01/15 00:40	3348704				
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	10	ng/L	10/30/15 07:20	11/01/15 00:40	3348704				
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/30/15 07:20	11/01/15 00:40	3348704				
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/30/15 07:20	11/01/15 00:40	3348704				
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/30/15 07:20	11/01/15 00:40	3348704				
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	470	ng/L	10/30/15 07:20	11/01/15 05:50	3348704				

Sampling Point: SG1-RB02-151027

PWS ID: Not Supplied

			EEA Met	hods					
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID #
375-73-5	Perfluorobutanesulfonic acid (PFBS)	537		90	< 90	ng/L	10/30/15 07:20	11/01/15 01:10	3348705
375-85-9	Perfluoroheptanoic acid (PFHpA)	537		10	< 10	ng/L	10/30/15 07:20	11/01/15 01:10	3348705
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	537		30	< 30	ng/L	10/30/15 07:20	11/01/15 01:10	3348705
375-95-1	Perfluorononanoic acid (PFNA)	537		20	< 20	ng/L	10/30/15 07:20	11/01/15 01:10	3348705
1763-23-1	Perfluorooctane sulfonate (PFOS)	537		40	< 40	ng/L	10/30/15 07:20	11/01/15 01:10	3348705
335-67-1	Perfluorooctanoic acid (PFOA)	537		20	< 20	ng/L	10/30/15 07:20	11/01/15 01:10	3348705

† EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	*	۸	!

Lab Definitions

Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis. CCL, CCM, and CCH are the CCC standards at low, mid, and high concentration levels, respectively.

Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control. FBL, FBM, and FBH are the LFB samples at low, mid, and high concentration levels, respectively.

Laboratory Method Blank (LMB) / Laboratory Reagent Blank (LRB) - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.

Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample al6iquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix. SDL, SDM, and SDH / LFSMDL, LFSMDM, and LFSMDH are the MSD or LFSMD at low, mid, and high concentration levels, respectively.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results. MSL, MSM, and MSH / LFSML, LFSMM, and LFSMH are the MS or LFSM at low, mid, and high concentration levels, respectively.

Quality Control Standard (QCS) / **Second Source Calibration Verification (SSCV)** - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / Surrogate Analyte (SUR) - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

eurotins	otins		- ABU		F: 1.574.233.8207 F: 1.574.233.8207		Order # <u>356</u> Batch # <u>351</u>	3518	818	
www.egtonanalytical.com	tical.com		CHAIN	N OF CUSTODY	RECORD		Page	1 01	N	
REPORT TO: JASSN W RAMBUL 3	JASON WILKINGENER ONIN JASON WILKINGSON RAMBOL ENVIRON	0	SAMPLER (Signature)	STATE (of sample organ)	PWS10#	PROJECT NAME	PO#			
BILL TO: NESTFORD, SAME AS	strue as report		TORING	No POPULATION SERVED	source water	Housick		SAENIA	ÐŒ	BWIL ON
LAB Number	COLLECTION DATE 1 TIME A	AM PM	SAMPLING SITE		TEST NAME	Receiving Checks	CHLORINATED YES NO	¢ OE CON1	OD XIATAN	ОЯАИЯЦТ
9345699	25:H SI	X	261-FB0J-151027	537 / Alkyl Acids 🛠		A	-	-	17	RW
1002	50		200151-TO 80-		¥		X			Sw.
102 M	08: 11 21/Le/01	XX	60161-121021-121027-121027	537 / Alkyl Acids T	FTB ROHAR - ICM	SA .	XX	5-	MM	NN
				537 / Alkyl Acids						
				537 / Alkyl Acids 537 / Alkyl Acids					T	T
			* = P & M2000 537 & Ha	537 / Alkyl Acids						1
			2 ruy PECSI Prog PEBS	OFH A 537 I Alkyl Acids				4		
		-	PEHXS PENA PEOS	537 / Alkyl Acids 537 / Alkyl Acids				4		
			No other PECs should be a	Prove 537 / Aikyl Acids						
			Field Blank	537 / Alkyl Acids						
RELINQUISHED BY: (Signature)	DATE DATE	TIME F	RECEIVED BY (Signature)	DATE TIME LABRESE	LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT LAB COMMENTS	PORTIONS OF NOM-AQUEOUS	SAMPLES TO CLIEN	-		
RELINQUISHED BY: (Signature)	DATE	TIME P	RECEIVED BY:(Signature)		* sumple shar a very poor mount.	nor har	ADI MARI	24	ż	
RELINOUISHED BY (Signature)	DATE	ME	RECEIVED FOR LABORATORY BY DATE	TIME CONS	CONDITIONS UPON RECEIPT (check one)	S.C.	0 I Innn Recent		NIA	
PRESERVATIVE CODES	MATRIXC	ODES:		10y	TURN-AROUND TIME (TAT) - SURCHARGES		when were here			T
	c Acid DW = Drinking Water Buffer DW = Segreet Water GW = Ground Water GW = Scrosure Water PW = Pool Water PW = Poole Water WM = Water Water		SW = Standard Written ⁻ (15 working days 20% RV = 8 fush Verbal (5 working days) 50% RW = Rush Written (5 working days) 75%	 IV - Immediate Vertiol (3 working days) IW - Immediate Written (3 working days SP - Vertient transity STAT - Less them de hours 	Immediate Vertion (3 working days) 100% Immediate Written (3 working days) 125% Weekend timbaw Elles then 4 hours = Less then 4 hours = CALL		ding Ion 8 bus	niarnounce ne remann	ed with less ig may he '	s their
Na;50; 10=EDA			· Please call, expedited service not available for all testing			06 LU-F0436 155/re 5.0	0.0 Effective Date		2014 05-01	-

Page 8 of 16

Order #295679 Batch #	Page 1 of Ch	PROJECT NAME PO# C	SR3NIA JOE	Receiving Checks CHLORINATED I. DF CONT. MATRIX CC VFS NO MATRIX CC	X 3 WW	A 3 WW RW	and a								F NON-AQUEOUS SAMPLES TO CLIENT	han a were not	d I bint hat	NT. HO 10- 29-2015	28 Clone Bronied		Samples received unannounced with less than	48 hours holding time remaining may be subject of additional charges	06-10-60436 Issue 3.0 Effective Date 2014-05-01
110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345 F: 1.574.233.8207	CUSTODY RECORD	STATE (of sample origin) PWS ID# P	POPULATION SERVED SOURCE WATER	TEST NAME	537 / Alkyl Acids 🌴 🌟	537 I Alkyl Acids * 🐥 537 I Alkyl Acids *	537 / Alkyl Acids	537 / Alkyl Acids 537 / Alkyl Acids	537 / Alkyl Acids 537 / Alkyl Acids	537 / Alkyl Acids	TIME LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT	LAB COMMENTS	. tintomo	E Dume In Did	ALL CONDITIONS UPON RECEIPT (check one):	N-AROUNDITIME (TAT) - SURCHARGES	 IV* = Immediate Verbali (3 working days) I00% IW* =Immediate Written: (3 working days) 125% 		SIAI* = Less finan 48 hours CALL				
Eaton Analytical	CHAIN OF	SAMPLER (Signature)	COMPLIANCE MONITORING	SAMPLING SITE	Leo ISI - LIddword - ISI	Leaisi - TORI - TOR						REDA 2837 For the Following	AND STOS	Blank	RECEIVED BY:(Signature) DATE		RECEIVED BY:(Signature) DATE		KDUNUG NOT BY DATE	-	SW = Standard Written: (15 wörking days)0% IV* RV* = Rush Verbal: (5 working days) 50% IW*	RW* = Rush Written: (5 working days) 75% SP*	 Please call, expedited service not available for all testing
ofins	www.eg.onanarytica.com Shaded area for EEA use only	SASON WILKIN SON RAMBOLL ENVIRON 3 CARLIELE RD, WETTORD MA	SAME AS REPORT	LAB Number COLLECTION COLLECTION DATE AM PM	0 c. +1 Si/Le/01	× 00:51 21/201 502 1									DATE	Warry My Carlot , My Carlo	RELINQUISHED BY (Signature) DATE TIME	MM MM		PRESERVATIVE CODES: MATRIX CODES:	6=Ascorbic Acid DW=Drnking Water 7=MCAA Buffer Ground Water	8= NaOH/NaBH ₄ EW-Exposure Water o-nH CI SW-Surdace Water	ww≃roor water WW≃Waste Water

	Analytical
	Eaton
rofins	
eu 😜	

Eurofins Eaton Analytical

Run ID: 209357 Method: 537

Calibration File	103115M537a.mdb	103115M537a.mdb	103115M537a.mdb	103115M537a.mdb	103115M537a.mdb	103115M537a.mdb	103115M537a.mdb	103115M537a.mdb	103115M537a.mdb	103115M537a.mdb	103115M537a.mdb	103115M537a.mdb	103115M537a.mdb	103115M537a.mdb
Analysis Date	10/31/2015 18:59	10/31/2015 20:32	10/31/2015 21:03	10/31/2015 21:34	10/31/2015 22:36	10/31/2015 23:07	10/31/2015 23:38	11/01/2015 00:09	11/01/2015 00:40	11/01/2015 01:10	11/01/2015 04:18	11/01/2015 05:20	11/01/2015 05:50	11/01/2015 06:52
Instrument ID	ς	СY	С	С	С	СY	СY	ς	СY	СY	С	С	С	СY
<u>Matrix</u>	SO	RW	RW	RW	RW	GW	GW	GW	GW	GW	SO	GW	GW	GW
<u>Sample Site</u>					SG1-TP01-151027/FTB	SG1-FB01-151027	SG1-RB01-151027	SG1-Sump Pit -151027	SG1-DS01-151027	SG1-RB02-151027		SG1-Sump Pit -151027	SG1-DS01-151027	SG1-North Manhole-151027
Sample Id	3349685	3349667	3349668	3349669	3348702	3348699	3348700	3348703	3348704	3348705	3349686	3348703	3348704	3348701
Type	CCL	LRB	FBL	FBH	FTB	FS	FS	FS	FS	FS	CCM	FS	FS	FS

103115M537a.mdb

11/01/2015 07:23

ç

SO

3349687

ССН

Mathematic Mathema	Image Ambje Mentode Me		%	Recoverv		RPD	: -			L L L
No. No. <th>International (1) International (1)</th> <th></th> <th>Recovery</th> <th></th> <th></th> <th></th> <th>Dil actor</th> <th>Extracted</th> <th>Analyzea</th> <th>EEA ID #</th>	International (1) International (1)		Recovery				Dil actor	Extracted	Analyzea	EEA ID #
(prind):(p)<	Instruction		100	70 - 140	1		1.0	10/26/2015 09:55	10/31/2015 18:59	3349685
Special Special <t< td=""><td>Si-FFI-0.2 SY = P1 NM P</td><td></td><td>100</td><td>70 - 140</td><td>1</td><td>1</td><td>1.0</td><td>10/26/2015 09:55</td><td>10/31/2015 18:59</td><td>3349685</td></t<>	Si-FFI-0.2 SY = P1 NM P		100	70 - 140	1	1	1.0	10/26/2015 09:55	10/31/2015 18:59	3349685
Terretunities and the second of the se	Sk-Friuk, GLZ SU NM 1 4.773 5 0<		6	70 - 130	1		1.0	10/26/2015 09:55	10/31/2015 18:59	3349685
The control of	Printochansendine cai (FHS) S87 9 8 7 9 <		100	70 - 130			1.0	10/26/2015 09:55	10/31/2015 18:59	3349685
International and antipolational antipolation	Perfluctoreristion and (FPIoN) Style 10 10 102.33 100 0p0.4 100 Perfluctoreristion and (FPIoN) Style St		66	50 - 150	1	-	1.0	10/26/2015 09:55	10/31/2015 18:59	3349685
Protoconcerted (FM) 0	Performance act (FHA) SY Q C Z <thz< th=""> Z Z Z</thz<>		102	50 - 150	1	1	1.0	10/26/2015 09:55	10/31/2015 18:59	3349685
Indumonectation 0.01	Fundomonection (FNA) S2F 20 700		98	50 - 150	1	1	1.0	10/26/2015 09:55	10/31/2015 18:59	3349685
Princional functione Gal Functione Gal Gal </td <td>Perfunctorine afforain (PCS) G27 40 13.8476 400 10 10 100 1</td> <td></td> <td>108</td> <td>50 - 150</td> <td>1</td> <td>1</td> <td>1.0</td> <td>10/26/2015 09:55</td> <td>10/31/2015 18:59</td> <td>3349685</td>	Perfunctorine afforain (PCS) G27 40 13.8476 400 10 10 100 1		108	50 - 150	1	1	1.0	10/26/2015 09:55	10/31/2015 18:59	3349685
Introductor(8) <td>Perfluonocutuno: et of (PCo), S27 No No</td> <td></td> <td>100</td> <td>50 - 150</td> <td>1</td> <td>1</td> <td>1.0</td> <td>10/26/2015 09:55</td> <td>10/31/2015 18:59</td> <td>3349685</td>	Perfluonocutuno: et of (PCo), S27 No		100	50 - 150	1	1	1.0	10/26/2015 09:55	10/31/2015 18:59	3349685
SFF0L02010	SFPCA-13C S1 NA		66	50 - 150	1	1	1.0	10/26/2015 09:55	10/31/2015 18:59	3349685
Series-iold Sig No	IFFOS-13C4 S87 NA 1977 1980.46 0pl. 60 SFPFOA-13C2 S37 NA 1 66.402 100 0pl. 60 FFMA0001amellocated (PFBS) S37 NA 1 66.402 100 100 100 Perfluoroblamellocated (PFBS) S37 00 1 1 0pl. 100 1 100 1 <td></td> <td>67</td> <td>70 - 140</td> <td>I</td> <td>1</td> <td>1.0</td> <td>10/30/2015 07:20</td> <td>10/31/2015 20:32</td> <td>3349667</td>		67	70 - 140	I	1	1.0	10/30/2015 07:20	10/31/2015 20:32	3349667
Sereth-victic and frequency (Sereth-victic and frequency (Sereth-victic and frequency)) Sereth-victic and frequency (Sereth-victic and frequency) Sereth-victic and frequenc	SFPFDA-I3C2 S1 MA 96 90 91 96 Territorications and (PFBS) S3 MA <		66	70 - 140	I	i	1.0	10/30/2015 07:20	10/31/2015 20:32	3349667
Stehu 323 Bit Description Bit Description Descrippin Descrippin Description Description	SFFHA.13C2 Sty NA 500733 500 rgl. 100 Perfluctorlamenulture acid (FFlax) 537 90 <		96	70 - 130	1	1	1.0	10/30/2015 07:20	10/31/2015 20:32	3349667
Performantenerative act (FFB) State State <t< td=""><td>Perfluctorbutamesultant actid (PEB) SS7 80 90 191 191 191 <</td><td></td><td>100</td><td>70 - 130</td><td>1</td><td>1</td><td>1.0</td><td>10/30/2015 07:20</td><td>10/31/2015 20:32</td><td>3349667</td></t<>	Perfluctorbutamesultant actid (PEB) SS7 80 90 191 191 191 <		100	70 - 130	1	1	1.0	10/30/2015 07:20	10/31/2015 20:32	3349667
Putubenenee de (FFe) Str 10 - 10 - 10 - 10 1000016702 1000016702 Putubenenee de (FFe) Str 20 - 10 - 10 10 1000016702 1000016702 Putubenenee de (FFe) Str 20 - - - - - 10 1000016702	Perfluoroblesuresultoric acid (FFHa) 657 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	ug/L	1	I	1	1	1.0	10/30/2015 07:20	10/31/2015 20:32	3349667
Performantenent (FH6) St St </td <td>Perfluorotheramesulforic acid (PFNAs) S37 30 <</td> <td>ug/L</td> <td>1</td> <td>I</td> <td>I</td> <td>1</td> <td>1.0</td> <td>10/30/2015 07:20</td> <td>10/31/2015 20:32</td> <td>3349667</td>	Perfluorotheramesulforic acid (PFNAs) S37 30 <	ug/L	1	I	I	1	1.0	10/30/2015 07:20	10/31/2015 20:32	3349667
Perfloxemente acid (FN4) Stat Z<	Perfluoronance add (FVM) S37 20 20 09L Perfluoronance add (FOA) S37 40 <	ug/L	1	I	1	1	1.0	10/30/2015 07:20	10/31/2015 20:32	3349667
Performance and/mere (FG) SG 40 40 <td>Perfluoroctarres alforate (PCOs) 537 40 < 40 mgl. Perfluoroctarres ald (PFOA) 537 20 <</td> 2 7 mgl. IS-PFOA-13C2 537 NA 1 2 247.51 287.88 mgl. IS-PFOA-13C2 537 NA 1 2 247.51 287.88 mgl. 1001 101	Perfluoroctarres alforate (PCOs) 537 40 < 40 mgl. Perfluoroctarres ald (PFOA) 537 20 <	ug/L	1	I	I	1	1.0	10/30/2015 07:20	10/31/2015 20:32	3349667
Performance (FGA) S1 Z2	Perfluoroctance actid (PCA), 637 20 7 70/L 70/L 70/	ug/L	1	I	1	1	1.0	10/30/2015 07:20	10/31/2015 20:32	3349667
SFFOA-13C2 Sty1 Wat wat Same model	IS-FPCA-13C2 537 NA 247.51 297.56 npL 99 IS-FPCA-13C2 537 NA 100 297.56 100 101 101 IS-FPCA-13C2 537 NA 101 2010.62 1993.48 101 101 IS-FPCA-13C2 537 NA 101 102 102 101 101 IS-FPCA-13C2 537 NA 101 102 101 101 101 IS-FPCA-13C2 537 NA 101 102 101 101 101 IS-FPCA-13C2 537 VA 101 102 101 101 101 IS-FPCA-13C2 537 VA 101 102 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101	ug/L	1	I	I	1	1.0	10/30/2015 07:20	10/31/2015 20:32	3349667
SFFO-13C4 S27 NA	IS-PFOS-13C4 537 NA 100 100 101 SS-PFDA-13C2 537 NA 102 102 100 101 SS-PFDA-13C2 537 NA 102 102 107 107 SS-PFDA-13C2 537 NA 10 102 107 107 Perfluorobutareatifont acid (PFHS) 537 90 105579 100 107 106 Perfluorobutareatifont acid (PFHS) 537 90 105579 100 107 106 Perfluorobutareatifont acid (PFHS) 537 20 21438 200 107 107 Perfluorobutareatifont acid (PFNS) 537 20 21438 200 107 107 Perfluorobutareatifont acid (PFNS) 537 20 21438 200 107 107 Perfluorobutareatifont acid (PFNS) 537 20 21438 200 107 107 Perfluorobutareatifont acid (PFNS) <td></td> <td>66</td> <td>70 - 140</td> <td>1</td> <td>1</td> <td>1.0</td> <td>10/30/2015 07:20</td> <td>10/31/2015 21:03</td> <td>3349668</td>		66	70 - 140	1	1	1.0	10/30/2015 07:20	10/31/2015 21:03	3349668
SFPEA152281NA m <t< td=""><td>SPFDA.13C2 537 NA 102.1850 100 ngL 102 FPIAA.13C2 537 NA 0 50.216 50.0 ngL 102 Pehluorobutanesuffonts acti (PFIBS) 537 NA 0 86.032 90.0 ngL 101 Pehluorobutanesuffonts acti (PFIAS) 537 0 0 10.6579 100 ngL 106</td><td></td><td>101</td><td>70 - 140</td><td>1</td><td>1</td><td>1.0</td><td>10/30/2015 07:20</td><td>10/31/2015 21:03</td><td>3349668</td></t<>	SPFDA.13C2 537 NA 102.1850 100 ngL 102 FPIAA.13C2 537 NA 0 50.216 50.0 ngL 102 Pehluorobutanesuffonts acti (PFIBS) 537 NA 0 86.032 90.0 ngL 101 Pehluorobutanesuffonts acti (PFIAS) 537 0 0 10.6579 100 ngL 106		101	70 - 140	1	1	1.0	10/30/2015 07:20	10/31/2015 21:03	3349668
SPFHAu-13C2 S37 MA	SS-FHAA-13C2 537 NA 50.3216 50.0 mg/L 101 Perflucorbuaresulfonts actd (FFBS) 537 90 98.6092 90.0 mg/L 98 Perflucorbuaresulfonts actd (FFHx) 537 10 10.5579 100 mg/L 98 Perflucorbuaresulfonts actd (FHx) 537 10 10.5579 100 mg/L 106 Perflucorbuaresulfonts actd (FHx) 537 20 10 101 106 107 Perflucorbuaresulfonts actd (FHx) 537 20 10 10.0 101 107 Perflucorbuaresulfonts actd (FHx) 537 20 10 10.0 101 101 Perflucorbuaresulfonts actd (FFX) 537 NA 10 102 101 101 Perflucorbuaresulfonts actd (FFX) 537 NA 10 102 101 101 SS-FFX-13C2 537 NA 10 102 103		102	70 - 130	1	1	1.0	10/30/2015 07:20	10/31/2015 21:03	3349668
Perfluorouteneatificita add (PFBs) S87 90 90 10 10002015770 10002015770 10002015770 10002015770 Perfluorouteneatificita add (PFHs) 557 100 100 10057510 100 10020157720 10012015710 Perfluorouteneatificita add (PFHs) 557 100 100 10057510 100 10020157720 1001205710 Perfluorouteneatificita add (PFHs) 557 100 100 10057510 1001 1001205710 1001205710 Perfluorouteneatificita add (PFHs) 557 100 1001 1001 1001 1001205710 1001205710 Perfluorouteneatificita add (PFHs) 557 100 1001 1001 1001 1001 1001205710 1001205710 Perfluorouteneatificita add (PFHs) 557 1001 1001 1001 1001 1001 1001205710 1001205710 Perfluorouteneatificita (PFHs) 557 1001	Perfluorobutanesulfonto acid (PFHs) 537 90 88.6022 90.0 ng/L 98 Perfluorobutanesulfonto acid (PFHsk) 537 10 10.5579 10.0 ng/L 106 Perfluorobutanesulfonto acid (PFHsk) 537 10 10.5579 10.0 ng/L 106 Perfluorobutanesulfonto acid (PFHsk) 537 20 10.5243 30.0 ng/L 106 Perfluorobutanesulfonto acid (PFUs) 537 20 10.52453 30.0 ng/L 107 107 Perfluorobutanesulfonto acid (PFOs) 537 20 19.6553 200 ng/L 101 Perfluorobutanesulfonto acid (PFOs) 537 NA 19.6553 28763 100 ng/L 101 SS-PFDA-13C2 537 NA 19.65563 28763 101 101 SS-PFDA-13C2 537 NA 105.6563 28748 101 103 SS-PFDA-13C		101	70 - 130	1	1	1.0	10/30/2015 07:20	10/31/2015 21:03	3349668
Perthuorbepance acid (FHAs) S7 10 10 10 10 1	Perfluoroheptanoic acid (PFHAx) 537 10 10.5579 10.0 ng/L 106 Perfluorohexanesulforic acid (PFHx) 537 30 28.4623 30.0 ng/L 95 Perfluorohexanesulforic acid (PFNx) 537 20 0 2.4433 20.0 ng/L 107 95 Perfluoronanoic acid (PFNx) 537 20 0 2.4433 20.0 ng/L 107 107 Perfluoronanoic acid (PFNx) 537 20 0 2.4433 20.0 ng/L 107 107 Perfluoroctaneic acid (PFNx) 537 20 196536 20.0 ng/L 100 107 Perfluoroctaneic acid (PFNx) 537 N/A 2965.39 287.88 ng/L 107 107 SS-PFDA-13C2 537 N/A 1965.86 1993.48 ng/L 109 SS-PFDA-13C2 537 N/A 1965.86 100		98	50 - 150	1	1	1.0	10/30/2015 07:20	10/31/2015 21:03	3349668
Perfluoroteareaultionic acid (PT-Ms) 537 30 - - - 10 10 1002016 77.20 1012016 21:02 Perfluoroteareaultionic acid (PT-Ms) 537 20 - - - 10 10 1002016 77.20 1012016 12:10 Perfluoroteareaultione ed (PT-Ms) 537 40 - - 10 10 100 100 100 100 1012016 77.20 1012016 17:20 1012012016 17:	Perfluoroheanesulfonic acid (PFHxS) 537 30 28.4623 30.0 mg/L 95 Perfluorohanoic acid (PFNx) 537 20 21.4138 20.0 mg/L 95 Perfluorohanoic acid (PFNx) 537 20 20 21.4138 20.0 mg/L 107 Perfluorobane suffonate (PCOx) 537 40 19.6586 40.0 mg/L 107 107 IS-PFOA-13C2 537 N/A 2005.39 287.889 mg/L 100 101 IS-PFOA-13C2 537 N/A 2005.39 287.889 mg/L 101 IS-PFOA-13C2 537 N/A 102.3380 107 101 IS-PFOA-13C2 537 N/A 102.3380 100 mg/L 103 IS-PFOA-13C2 537 N/A 102.3380 100 mg/L 103 IS-PFOA-13C2 537 N/A 102.338		106	50 - 150	1	1	1.0	10/30/2015 07:20	10/31/2015 21:03	3349668
Perthononanol add (FFN) S37 20 21438 200 mgL 107 60-150 10 10302615720 103120152103 Perthononanol add (FFN) 537 40 10 103-10 10032015720 103120152103 Perthonoctane suffrate (FCN) 537 40 10 10302015720 103120152103 Perthonoctane suffrate (FCN) 537 20 10 10032015720 103120152103 Perthonoctane add (FCN) 537 20 10 10302015720 10312015213 Perthonoctane add (FCN) 537 V 10 10302015720 10312015213 SFPFDA-1322 537 V 10 10302015720 10312015213 SFPFDA-1322 537 V 10 10302015720 10312015213 SFPFDA-1322 537 V 101 1010 1030 10302015720 10312015213 SFPFDA-1322 537 V <td>Perfuoronancic acid (FNA) 537 20 21,4138 20.0 mg/L 107 Perfuoronancic acid (FNA) 537 40 40.5209 40.0 mg/L 101 101 Perfuoroctane sufforate (PCOS) 537 20 20 40.0 mg/L 101 101 Perfuoroctancic acid (PFOA) 537 N/A 205.539 2878.88 mg/L 100 IS-PFOA-13C2 537 N/A 196.655 2905.390 100 101 101 IS-PFOA-13C2 537 N/A 196.655 2878.88 mg/L 101 IS-PFDA-13C2 537 N/A 196.655 2905.380 100 101 103 IS-PFDA-13C2 537 N/A 102.8380 100 101 103 103 IS-PFDA-13C2 537 N/A 102.8380 102 103 103 103 IS-PFDA-13C2 537</td> <td></td> <td>95</td> <td>50 - 150</td> <td>1</td> <td>1</td> <td>1.0</td> <td>10/30/2015 07:20</td> <td>10/31/2015 21:03</td> <td>3349668</td>	Perfuoronancic acid (FNA) 537 20 21,4138 20.0 mg/L 107 Perfuoronancic acid (FNA) 537 40 40.5209 40.0 mg/L 101 101 Perfuoroctane sufforate (PCOS) 537 20 20 40.0 mg/L 101 101 Perfuoroctancic acid (PFOA) 537 N/A 205.539 2878.88 mg/L 100 IS-PFOA-13C2 537 N/A 196.655 2905.390 100 101 101 IS-PFOA-13C2 537 N/A 196.655 2878.88 mg/L 101 IS-PFDA-13C2 537 N/A 196.655 2905.380 100 101 103 IS-PFDA-13C2 537 N/A 102.8380 100 101 103 103 IS-PFDA-13C2 537 N/A 102.8380 102 103 103 103 IS-PFDA-13C2 537		95	50 - 150	1	1	1.0	10/30/2015 07:20	10/31/2015 21:03	3349668
Perfluorooctane sufforate (PTOS) 537 40 400 0ndl 101 50 100 1030/2015 0720 1030/2015 0720 1030/2015 0720 Perfluorooctane sufforate (PTOS) 537 20 101 100 50 100	Perfluoroctane sufforate (PFOS) 537 40 40 40.5209 40.0 ng/L 101 Perfluoroctance acid (PFOS) 537 20 19.9635 20.0 ng/L 100 101 IS-PFOA-13C2 537 NA 0 19.655 20.0 ng/L 100 101 IS-PFOA-13C2 537 NA 195.85 193.48 ng/L 101 101 IS-PFOA-13C2 537 NA 195.85 193.48 ng/L 103 101 103 IS-PFOA-13C2 537 NA 195.85 193.48 ng/L 103 103 IS-PFOA-13C2 537 NA 102.8380 100 ng/L 103 103 IS-PFHAA-13C2 537 NA 102.8380 100 ng/L 103 103 Perfluorobulanesuffonic acid (PFHAS) 537 103 125 ng/L 103 103 <		107	50 - 150			1.0	10/30/2015 07:20	10/31/2015 21:03	3349668
Perfluoroxclance acid (PCA)63720-19.66.35200ng/L10050-1501010.302015 07:2010372015 27:30ISPFOA-13C2537NA11050-1501010101010312015 27:30ISPFOA-13C2537NA11056.583193348ng/L19110110110110302015 07:2010312015 27:30ISPFOA-13C2537NA11056.583193348ng/L193101101101032015 07:2010312015 27:34SePFNA-13C2537NA11056.583100ng/L103101101032015 07:2010312015 27:34Perfluoroutanesultoric acid (PFBS)537NA11026.78010312015 07:2010312015 27:34Perfluoroutanesultoric acid (PFHA)53710-11011011011011011032015 07:2010312015 27:34Perfluoroutanesultoric acid (PFHA)53710-11011011011011032015 07:2010312015 27:34Perfluoroutanesultoric acid (PFHA)5371011056.760125510911075101032015 07:2010312015 27:34Perfluoroutanesultoric acid (PFHA)5371011011011011011011011032015 07:2010312015 77:34Perfluoroutanesultoric acid (PFHA)537	Perfluoroctancic acid (PFOA) 537 20 19.655 20.0 ng/L 100 Ins PFOA-13C2 637 NA 296.539 20.0 ng/L 101 101 Ins PFOA-13C2 637 NA 196.585 1993.48 ng/L 101 101 Ins PFOA-13C2 537 NA 105 195.86 193.48 ng/L 101 <td< td=""><td></td><td>101</td><td>50 - 150</td><td>1</td><td></td><td>1.0</td><td>10/30/2015 07:20</td><td>10/31/2015 21:03</td><td>3349668</td></td<>		101	50 - 150	1		1.0	10/30/2015 07:20	10/31/2015 21:03	3349668
IS-FIOA-13C2537N/A2905.392878.88ng/L10170-140101030201607.20103120152134IS-FIOA-13C2537N/A196.861993.48ng/L10170-140101030201607.20103120152134IS-FIDA-13C2537N/A102.85861993.48ng/L10370-130101030201607.20103120152134SS-FIDA-13C2537N/A10102.8580100ng/L10370-130101030201607.20103120152134Perfluotubutaneuflonic acid (FIBS)5379010210211125ng/L10970-130101030201507.20103120152134Perfluotubutaneuflonic acid (FIBS)537901021125ng/L1091001010101030201507.20103120152134Perfluotubutaneuflonic acid (FIBA)537101051125ng/L10910010101030201507.20103120152134Perfluotubutaneuflonic acid (FILA)5371010251125109105109101001001011030201507.20103120152134Perfluotubutaneuflonic acid (FILA)53710911251091125109100100100100100103120150720103120150720103120150720103120150720Perfluotubutaneucla (PENA)537 <td>IS-FFOA-13C2 537 N/A 296.39 2878.88 ng/L 101 IS-FFOA-13C2 637 N/A 1966.85 1993.48 ng/L 101 IS-FFOA-13C2 637 N/A 1966.85 1993.48 ng/L 103 SS-FFDA-13C2 537 N/A 102.8380 100 ng/L 103 SS-FFDA-13C2 537 N/A 102.8380 100 ng/L 103 Perfluorobutaneutionic acid (PFHS) 537 N/A 102.8380 112 99 1 Perfluorobutaneutionic acid (PFHS) 537 90 1056.7600 1125 0g/L 94 1 Perfluorobutaneutionic acid (PFHS) 537 90 1056.7600 125 0g/L 106 100 Perfluorobutaneutionic acid (PFHX) 537 30 1056.7600 125 0g/L 106 106 Perfluorobutaneution acid (PFHX) 537</td> <td></td> <td>100</td> <td>50 - 150</td> <td>1</td> <td></td> <td>1.0</td> <td>10/30/2015 07:20</td> <td>10/31/2015 21:03</td> <td>3349668</td>	IS-FFOA-13C2 537 N/A 296.39 2878.88 ng/L 101 IS-FFOA-13C2 637 N/A 1966.85 1993.48 ng/L 101 IS-FFOA-13C2 637 N/A 1966.85 1993.48 ng/L 103 SS-FFDA-13C2 537 N/A 102.8380 100 ng/L 103 SS-FFDA-13C2 537 N/A 102.8380 100 ng/L 103 Perfluorobutaneutionic acid (PFHS) 537 N/A 102.8380 112 99 1 Perfluorobutaneutionic acid (PFHS) 537 90 1056.7600 1125 0g/L 94 1 Perfluorobutaneutionic acid (PFHS) 537 90 1056.7600 125 0g/L 106 100 Perfluorobutaneutionic acid (PFHX) 537 30 1056.7600 125 0g/L 106 106 Perfluorobutaneution acid (PFHX) 537		100	50 - 150	1		1.0	10/30/2015 07:20	10/31/2015 21:03	3349668
IS-FFOS-13C4 537 N/A 196.6.85 193.48 ng/L 99 70140 10 10302016 07:20 10312015 21:34 SS-FFDA-13C2 537 N/A 10 1023 10 10312015 21:34 SS-FFDA-13C2 537 N/A 10 1023 10 10302016 07:20 10312015 21:34 Perfluorobaracel/FEAS) 537 N/A 10 103 1032015 07:20 10312015 21:34 Perfluorobaracel/FEAS) 537 90 1125 ng/L 98 70-130 10 10302015 07:20 10312015 21:34 Perfluorobaracel/FEAS) 537 90 124.7580 125 ng/L 98 70-130 10312015 07:20 10312015 21:34 Perfluorobaracel/FEAS) 537 90 124.7580 125 ng/L 98 70-130 10 10302015 07:20 10312015 21:34 Perfluorobaracel/FEAS) 537 90 125 10/L 10 10 10	IS-PFOS-13C4 537 N/A 1965.85 1993.48 ng/L 99 No SS-PFDA-13C2 537 N/A 102.8380 100 ng/L 99 SS-PFDA-13C2 537 N/A 102.8380 100 ng/L 99 Perfluctobutanesultonic acid (PFBS) 537 N/A 1056.7600 1125 00/L 98 Perfluctobutanesultonic acid (PFHS) 537 90 1056.7600 125 ng/L 98 Perfluctobutanesultonic acid (PFHS) 537 10 1056.7600 125 09/L 94 Perfluctobutanesultonic acid (PFHS) 537 30 124.7580 125 09/L 96 Perfluctonbutanesultonic acid (PFHS) 537 30 124.7580 135 09/L 100 Perfluctonbutanesultonic acid (PFHS) 537 30 124.7580 125 09/L 100 Perfluctonbutanesultonic acid (PFHS)		101	70 - 140	I	1	1.0	10/30/2015 07:20	10/31/2015 21:34	3349669
SFPA-13C2537N/A102,3380100mg/L10370-13070-1301010302015 07:201031/2015 21:34SS-FPA-13C2537N/AN/A1049.11350.0mg/L9870-1301010302015 07:201031/2015 21:34Perfluorobutanestrifonic acid (PEBS)537901056.76001125mg/L9470-1301010.302015 07:201031/2015 21:34Perfluorobutanestrifonic acid (PFHA)537901056.76001125mg/L10070-1301010/302015 07:2010/31/2015 21:34Perfluorobutanestrifonic acid (PFHA)53790124.7580125mg/L10070-1301010/302015 07:2010/31/2015 21:34Perfluorobutanestrifonic acid (PFHA)53730124.7580125mg/L10070-1301010/302015 07:2010/31/2015 21:34Perfluorobutanestrifonic acid (PFHA)53720mg/L9670-13070-1301010/302015 07:2010/31/2015 21:34Perfluorobutanestrifonic acid (PFNA)5372090mg/L9670-13070-1301010/302015 07:2010/31/2015 21:34Perfluorobutanestrifonic acid (PFNA)5372090mg/L9670-13070-1301010/302015 07:2010/31/2015 21:34Perfluorobutanestrifone acid (PFNA)537209010%/L9770-13070-130 <t< td=""><td>SS-FPDA-13C2 537 N/A 102.8380 100 ng/L 103 SS-FFHXA-13C2 537 N/A 49.113 50.0 ng/L 103 Perfluorobutanesulfonic acid (PFBS) 537 N/A 1056.7600 1125 ng/L 98 1 Perfluorobutanesulfonic acid (PFHAS) 537 10 125 ng/L 100 143 10 143 10 143 10 10 143 10 143 10 143 10 143 10</td><td></td><td>66</td><td>70 - 140</td><td>I</td><td>1</td><td>1.0</td><td>10/30/2015 07:20</td><td>10/31/2015 21:34</td><td>3349669</td></t<>	SS-FPDA-13C2 537 N/A 102.8380 100 ng/L 103 SS-FFHXA-13C2 537 N/A 49.113 50.0 ng/L 103 Perfluorobutanesulfonic acid (PFBS) 537 N/A 1056.7600 1125 ng/L 98 1 Perfluorobutanesulfonic acid (PFHAS) 537 10 125 ng/L 100 143 10 143 10 143 10 10 143 10 143 10 143 10 143 10		66	70 - 140	I	1	1.0	10/30/2015 07:20	10/31/2015 21:34	3349669
SS-PFHxA-13C2 537 N/A 49.113 50.0 ng/L 98 70-130 10 10/302015 07:20 10/31/2015 21:34 Perfluorobutanesulfino acid (PEBS) 537 90 1056.7600 1125 ng/L 94 70-130 10 10/302015 07:20 10/31/2015 21:34 Perfluorobutanesulfonic acid (PEBS) 537 10 10 10/302015 07:20 10/31/2015 21:34 Perfluorobutanesulfonic acid (PFMX) 537 10 124.7580 125 ng/L 94 70-130 70-130 70 70 70 70 70 70/31/2015 21:34 Perfluorobutanesulfonic acid (PFMX) 537 20 124.7580 125 70730 70-130 70 70 70 70 70 70/31/2015 21:34 Perfluorobutanesulfonic acid (PFMX) 537 20 10 70/302015 07:20 10/31/2015 07:20 10/31/2015 07:20 10/31/2015 07:20 10/31/2015 07:20 10/31/2015 07:20 10/31/2015 07:20 10/31/2015 07:2	SS-FFHAA-13C2 537 N/A 49.113 50.0 ng/L 98 Perfluorobutanesuffonic acid (PEBS) 537 90 1056.7600 1125 ng/L 94 1 Perfluorobutanesuffonic acid (PFHAS) 537 10 126.7500 125 ng/L 94 1 Perfluorobutanesuffonic acid (PFHAS) 537 10 124.7580 125 ng/L 100 Perfluorobexanesuffonic acid (PFHAS) 537 30 358.1440 375 ng/L 96 Perfluorobexanesuffonic acid (PFNAS) 537 20 243.7330 250 ng/L 96 Perfluorobane suffonic acid (PFNAS) 537 20 243.7330 250 ng/L 96 Perfluorobane suffonic acid (PFNAS) 537 40 243.7330 250 ng/L 96		103	70 - 130	I	1	1.0	10/30/2015 07:20	10/31/2015 21:34	3349669
Perfluorobutanesultonic acid (PEBS) 537 90 1056,7600 1125 ng/L 94 70-130 10 10/302015 07:20 10/31/2015 21:34 Perfluorobutanesultonic acid (PFHA) 537 10 10 70-130 10 10/302015 07:20 10/31/2015 21:34 Perfluorobetanoic acid (PFHA) 537 10 10 10/302015 07:20 10/31/2015 21:34 Perfluorobetanoic acid (PFHA) 537 30 105 70-130 70-130 70 10 10/302015 07:20 10/31/2015 21:34 Perfluorobacane suffontic acid (PFHA) 537 20 100 70-130 10 10/302015 07:20 10/31/2015 21:34 Perfluorobacane suffontic PFOS) 537 20 0 70-130 70-130 10 10/302015 07:20 10/31/2015 21:34 Perfluorobacane suffontic (PFOS) 537 20 0 70-130 70-130 70-130 70-130 10/31/2015 07:20 10/31/2015 21:34 Perfluorobacane suffontic (PFOS)	Perfluorobutanesulfonic acid (PFBS) 537 90 1056.7600 1125 ng/L 94 Perfluorobutanesulfonic acid (PFHAS) 537 10 124.7580 125 ng/L 100 Perfluorobexanesulfonic acid (PFHAS) 537 30 358.1440 375 ng/L 96 Perfluorobexanesulfonic acid (PFNAS) 537 20 243.7330 250 ng/L 96 Perfluorobare sulfonate (PFOS) 537 40 478.960 500 ng/L 96		98	70 - 130	I	1	1.0	10/30/2015 07:20	10/31/2015 21:34	3349669
Perfluoroteptanoic acid (PFHA) 537 10 124,7580 125 ng/L 100 70-130 10.0 10/30/2015 07:20 10/31/2015 21:34 Perfluoroteptanoic acid (PFHAS) 537 30 100 70-130 70-130 70-130 70 10 10/30/2015 07:20 10/31/2015 21:34 Perfluorotevaresultionic acid (PFHAS) 537 30 100 10/30/2015 07:20 10/31/2015 21:34 Perfluorotoraneic acid (PFNA) 537 20 100 70-130 10 10/30/2015 07:20 10/31/2015 21:34 Perfluorotoraneic acid (PFNA) 537 40 100 70-130 10 10/30/2015 07:20 10/31/2015 21:34 Perfluoroctane sulforate (PFOA) 537 40 10 10 10/30/2015 07:20 10/31/2015 21:34 Perfluoroctaneic acid (PFOA) 537 0 0/1 0/1 0/1 0/1 0/1 0/1 0/1 10/30/2015 07:20 10/31/2015 21:34	Perfluoroheptanoic acid (PFHpA) 537 10 124.7580 125 ng/L 100 Perfluorohexanesulfonic acid (PFHxS) 537 30 358.1440 375 ng/L 96 Perfluorohexanesulfonic acid (PFNxS) 537 20 243.7330 250 ng/L 96 Perfluoronocane sulfonate (PFOS) 537 40 478.960 500 ng/L 96		94	70 - 130	I	1	1.0	10/30/2015 07:20	10/31/2015 21:34	3349669
Perfluorohexanesulfonic acid (PFNAS) 537 30 358.140 375 ng/L 66 70-130 10.302015 07:20 10/31/2015 21:34 Perfluorohexanesulfonic acid (PFNA) 537 20 10 10.302015 07:20 10/31/2015 21:34 Perfluoronanoic acid (PFNA) 537 20 10 10/302015 07:20 10/31/2015 21:34 Perfluorootane suffonate (PFOS) 537 40 478.3060 500 ng/L 96 70-130 10 10/302015 07:20 10/31/2015 21:34 Perfluorootane suffonate (PFOS) 537 40 10 10/302015 07:20 10/31/2015 21:34 Perfluorootane suffonate (PFOS) 537 20 10 10/302015 07:20 10/31/2015 21:34	Perfluorohexanesulfonic acid (PFNx) 537 30 358.1440 375 ng/L 96 Perfluorohanoic acid (PFNA) 537 20 243.7330 250 ng/L 97 Perfluoroodane sulfonate (PFOS) 537 40 478.9060 500 ng/L 96		100	70 - 130	I	1	1.0	10/30/2015 07:20	10/31/2015 21:34	3349669
Perfluoronanolic acid (PFNA) 537 20 170 170 130 110 10/30/2015 07:12015 21:34 Perfluoronanolic acid (PFOS) 537 40 478:9060 500 ng/L 96 70-130 1.0 10/30/2015 07:12015 21:34 Perfluoronanolic acid (PFOS) 537 40 1478:9060 500 ng/L 96 70-130 1.0 10/30/2015 07:2015 10/31/2015 21:34 Perfluoronanolic acid (PFOA) 537 20 130 10 10/30/2015 07:130 10/31/2015 21:34	Perfluorononanoic acid (PFNA) 537 20 243.7330 250 ng/L 97 Perfluorooctane sulfonate (PFOS) 537 40 478.9060 500 ng/L 96		96	70 - 130	I	1	1.0	10/30/2015 07:20	10/31/2015 21:34	3349669
Perfluorooctane sulforate (PFOS) 537 40 478.3060 500 mg/L 96 70-130 1.0 10/30/2015 07:20 10/31/2015 21:34 Perfluorooctanoic acid (PFOA) 537 20 233.6850 250 mg/L 93 70-130 1.0 10/30/2015 07:20 10/31/2015 21:34	Perfluorooctane sulfonate (PFOS) 537 40 478.9060 500 ng/L 96		97	70 - 130	I	1	1.0	10/30/2015 07:20	10/31/2015 21:34	3349669
Perfluorooctanoic acid (PFOA) 537 20 233.6850 250 ng/L 93 70 1.0 10/30/2015 07.20 10/31/2015 21:34			96	70 - 130	1	1	1.0	10/30/2015 07:20	10/31/2015 21:34	3349669
	Perfluorocotanoic acid (PFOA) 537 20 233.8850 250 ng/L 93		6	70 - 130	1	1	1.0	10/30/2015 07:20	10/31/2015 21:34	3349669

					gC	Summary Report (cont.	oort (cont.)									
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
FTB	IS-PFOA-13C2	537	N/A	SG1-TP01-151027/FTB		3018.28	2878.88	ng/L	105	70 - 140	1	1	0.99	10/30/2015 07:20	10/31/2015 22:36	3348702
FTB	IS-PFOS-13C4	537	N/A	SG1-TP01-151027/FTB		2118.90	1993.48	ng/L	106	70 - 140	I	1	0.99	10/30/2015 07:20	10/31/2015 22:36	3348702
FTB	SS-PFDA-13C2	537	N/A	SG1-TP01-151027/FTB		94.2769	100	ng/L	95	70 - 130	I	1	0.99	10/30/2015 07:20	10/31/2015 22:36	3348702
FTB	SS-PFHxA-13C2	537	N/A	SG1-TP01-151027/FTB		49.2332	50.0	ng/L	66	70 - 130	1	1	0.99	10/30/2015 07:20	10/31/2015 22:36	3348702
FTB	Perfluorobutanesulfonic acid (PFBS)	537	06	SG1-TP01-151027/FTB	v	06		ng/L	1	1	1	1	0.99	10/30/2015 07:20	10/31/2015 22:36	3348702
FTB	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-TP01-151027/FTB	v	10		ng/L	1	1	1	1	0.99	10/30/2015 07:20	10/31/2015 22:36	3348702
FTB	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-TP01-151027/FTB	v	30		ng/L	i	I	1	1	0.99	10/30/2015 07:20	10/31/2015 22:36	3348702
FTB	Perfluorononanoic acid (PFNA)	537	20	SG1-TP01-151027/FTB	v	20		ng/L	-		I	1	0.99	10/30/2015 07:20	10/31/2015 22:36	3348702
FTB	Perfluorooctane sulfonate (PFOS)	537	40	SG1-TP01-151027/FTB	v	40		ng/L	1	1	I	1	0.99	10/30/2015 07:20	10/31/2015 22:36	3348702
FTB	Perfluorooctanoic acid (PFOA)	537	20	SG1-TP01-151027/FTB	v	20		ng/L	-		I	1	0.99	10/30/2015 07:20	10/31/2015 22:36	3348702
FS	IS-PFOA-13C2	537	N/A	SG1-FB01-151027		2978.51	2878.88	ng/L	103	70 - 140	I	I	1.0	10/30/2015 07:20	10/31/2015 23:07	3348699
FS	IS-PFOS-13C4	537	N/A	SG1-FB01-151027		2106.11	1993.48	ng/L	106	70 - 140	I	1	1.0	10/30/2015 07:20	10/31/2015 23:07	3348699
FS	SS-PFDA-13C2	537	N/A	SG1-FB01-151027		94.0613	100	ng/L	94	70 - 130	I	ł	1.0	10/30/2015 07:20	10/31/2015 23:07	3348699
FS	SS-PFHxA-13C2	537	N/A	SG1-FB01-151027		48.8766	50.0	ng/L	86	70 - 130	I	1	1.0	10/30/2015 07:20	10/31/2015 23:07	3348699
FS	Perfluorobutanesulfonic acid (PFBS)	537	06	SG1-FB01-151027	v	06		ng/L	1	I	I	1	1.0	10/30/2015 07:20	10/31/2015 23:07	3348699
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-FB01-151027	v	10		ng/L	1	I	I	1	1.0	10/30/2015 07:20	10/31/2015 23:07	3348699
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-FB01-151027	v	30		ng/L	I	I	I	1	1.0	10/30/2015 07:20	10/31/2015 23:07	3348699
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-FB01-151027	v	20		ng/L	i	I	I	1	1.0	10/30/2015 07:20	10/31/2015 23:07	3348699
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-FB01-151027	v	40		ng/L	1	I	I	ł	1.0	10/30/2015 07:20	10/31/2015 23:07	3348699
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-FB01-151027	v	20		ng/L	1	I	I	I	1.0	10/30/2015 07:20	10/31/2015 23:07	3348699
FS	IS-PFOA-13C2	537	N/A	SG1-RB01-151027		3043.29	2878.88	ng/L	106	70 - 140	I	1	0.98	10/30/2015 07:20	10/31/2015 23:38	3348700
FS	IS-PFOS-13C4	537	N/A	SG1-RB01-151027		2097.91	1993.48	ng/L	105	70 - 140	1	1	0.98	10/30/2015 07:20	10/31/2015 23:38	3348700
FS	SS-PFDA-13C2	537	N/A	SG1-RB01-151027		95.1469	100	ng/L	97	70 - 130	I	1	0.98	10/30/2015 07:20	10/31/2015 23:38	3348700
FS	SS-PFHxA-13C2	537	N/A	SG1-RB01-151027		48.0039	50.0	ng/L	98	70 - 130	I	1	0.98	10/30/2015 07:20	10/31/2015 23:38	3348700
FS	Perfluorobutanesulfonic acid (PFBS)	537	66	SG1-RB01-151027	v	06		ng/L	1	1	1	1	0.98	10/30/2015 07:20	10/31/2015 23:38	3348700
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB01-151027	v	10		ng/L	1	1	1	1	0.98	10/30/2015 07:20	10/31/2015 23:38	3348700
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB01-151027	v	30		ng/L	1		1	1	0.98	10/30/2015 07:20	10/31/2015 23:38	3348700
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB01-151027	v	20		ng/L	1		1	1	0.98	10/30/2015 07:20	10/31/2015 23:38	3348700
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB01-151027	v	40		ng/L	1	1	1	1	0.98	10/30/2015 07:20	10/31/2015 23:38	3348700
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB01-151027	v	20		ng/L	1	1	1	1	0.98	10/30/2015 07:20	10/31/2015 23:38	3348700
FS	IS-PFOA-13C2	537	N/A	SG1-Sump Pit -151027		2986.62	2878.88	ng/L	91	70 - 140	I	1	1.0	10/30/2015 07:20	11/01/2015 00:09	3348703
FS	IS-PFOA-13C2	537	N/A	SG1-Sump Pit -151027		2986.62	2878.88	ng/L	91	70 - 140	I	1	10	10/30/2015 07:20	11/01/2015 00:09	3348703
FS	IS-PFOS-13C4	537	N/A	SG1-Sump Pit -151027		2016.96	1993.48	ng/L	95	70 - 140	I	1	1.0	10/30/2015 07:20	11/01/2015 00:09	3348703
FS	IS-PFOS-13C4	537	N/A	SG1-Sump Pit -151027		2016.96	1993.48	ng/L	95	70 - 140	I	1	10	10/30/2015 07:20	11/01/2015 00:09	3348703
FS	SS-PFDA-13C2	537	N/A	SG1-Sump Pit -151027		91.9612	100	ng/L	92	70 - 130	I	I	1.0	10/30/2015 07:20	11/01/2015 00:09	3348703
FS	SS-PFHxA-13C2	537	N/A	SG1-Sump Pit -151027		49.3457	50.0	ng/L	66	70 - 130	I	1	1.0	10/30/2015 07:20	11/01/2015 00:09	3348703
FS	Perfluorobutanesulfonic acid (PFBS)	537	06	SG1-Sump Pit -151027	v	06		ng/L	ł	I	I	1	1.0	10/30/2015 07:20	11/01/2015 00:09	3348703
S ^E	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-Sump Pit -151027		10		ng/L	i	I	I	1	1.0	10/30/2015 07:20	11/01/2015 00:09	3348703
ୁ age	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-Sump Pit -151027	v	30		ng/L	ł	I	I	1	1.0	10/30/2015 07:20	11/01/2015 00:09	3348703
ନ ଜୁମ 2	Perfluorononanoic acid (PFNA)	537	20	SG1-Sump Pit -151027	v	20		ng/L	1	I	I	1	1.0	10/30/2015 07:20	11/01/2015 00:09	3348703
ନ୍ଦ 2 of	Perfluorooctane sulfonate (PFOS)	537	40	SG1-Sump Pit -151027	v	40		ng/L	1	I	I	1	1.0	10/30/2015 07:20	11/01/2015 00:09	3348703
ر f 1	1									L	1	!		1		

EEA Run ID 209357 / EEA Report # 351818

ත්Page 3 of 5

					gC	Summary Report (cont.	ort (cont.)									
Sample Type	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID#
FS	IS-PFOA-13C2	537	N/A	SG1-DS01-151027		3178.30	2878.88	ng/L	102	70 - 140	1	1	1.01	10/30/2015 07:20	11/01/2015 00:40	3348704
FS	IS-PFOA-13C2	537	N/A	SG1-DS01-151027		3178.30	2878.88	ng/L	102	70 - 140	1		10.1	10/30/2015 07:20	11/01/2015 00:40	3348704
FS	IS-PFOS-13C4	537	N/A	SG1-DS01-151027		2158.14	1993.48	ng/L	102	70 - 140		1	1.01	10/30/2015 07:20	11/01/2015 00:40	3348704
FS	IS-PFOS-13C4	537	N/A	SG1-DS01-151027		2158.14	1993.48	ng/L	102	70 - 140		1	10.1	10/30/2015 07:20	11/01/2015 00:40	3348704
FS	SS-PFDA-13C2	537	N/A	SG1-DS01-151027		100.0250	100	ng/L	66	70 - 130		1	1.01	10/30/2015 07:20	11/01/2015 00:40	3348704
FS	SS-PFHxA-13C2	537	N/A	SG1-DS01-151027		50.1048	50.0	ng/L	66	70 - 130		1	1.01	10/30/2015 07:20	11/01/2015 00:40	3348704
FS	Perfluorobutanesulfonic acid (PFBS)	537	66	SG1-DS01-151027	v	06		ng/L	-	-		1	1.01	10/30/2015 07:20	11/01/2015 00:40	3348704
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-DS01-151027		10		ng/L	-	-	1	1	1.01	10/30/2015 07:20	11/01/2015 00:40	3348704
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-DS01-151027	v	30		ng/L	1	1	1	i	1.01	10/30/2015 07:20	11/01/2015 00:40	3348704
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-DS01-151027	v	20		ng/L	1	1	1	i	1.01	10/30/2015 07:20	11/01/2015 00:40	3348704
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-DS01-151027	v	40		ng/L	1	1	1	1	1.01	10/30/2015 07:20	11/01/2015 00:40	3348704
FS	IS-PFOA-13C2	537	N/A	SG1-RB02-151027		3213.00	2878.88	ng/L	112	70 - 140	I	I	1.01	10/30/2015 07:20	11/01/2015 01:10	3348705
FS	IS-PFOS-13C4	537	N/A	SG1-RB02-151027		2238.80	1993.48	ng/L	112	70 - 140	I	I	1.01	10/30/2015 07:20	11/01/2015 01:10	3348705
FS	SS-PFDA-13C2	537	N/A	SG1-RB02-151027		97.0013	100	ng/L	96	70 - 130	1	I	1.01	10/30/2015 07:20	11/01/2015 01:10	3348705
FS	SS-PFHxA-13C2	537	N/A	SG1-RB02-151027		48.3305	50.0	ng/L	96	70 - 130	I	I	1.01	10/30/2015 07:20	11/01/2015 01:10	3348705
FS	Perfluorobutanesulfonic acid (PFBS)	537	6	SG1-RB02-151027	v	06		ng/L	I	I	1	1	1.01	10/30/2015 07:20	11/01/2015 01:10	3348705
FS	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-RB02-151027	v	10		ng/L	1	1	1	I	1.01	10/30/2015 07:20	11/01/2015 01:10	3348705
FS	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-RB02-151027	v	30		ng/L	1	1	1	I	1.01	10/30/2015 07:20	11/01/2015 01:10	3348705
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-RB02-151027	v	20		ng/L	I	I	1	1	1.01	10/30/2015 07:20	11/01/2015 01:10	3348705
FS	Perfluorooctane sulfonate (PFOS)	537	40	SG1-RB02-151027	v	40		ng/L	I	I	I	I	1.01	10/30/2015 07:20	11/01/2015 01:10	3348705
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-RB02-151027	v	20		ng/L	I	I	Ι	I	1.01	10/30/2015 07:20	11/01/2015 01:10	3348705
CCM	IS-PFOA-13C2	537	N/A	1		3285.29	3285.29	ng/L	100	70 - 140	1	1	1.0	10/26/2015 09:55	11/01/2015 04:18	3349686
CCM	IS-PFOS-13C4	537	N/A	-		2112.29	2112.29	ng/L	100	70 - 140	1	1	1.0	10/26/2015 09:55	11/01/2015 04:18	3349686
CCM	SS-PFDA-13C2	537	N/A	-		97.9868	100	ng/L	98	70 - 130	1	1	1.0	10/26/2015 09:55	11/01/2015 04:18	3349686
CCM	SS-PFHxA-13C2	537	N/A	-		50.4448	50.0	ng/L	101	70 - 130	1	1	1.0	10/26/2015 09:55	11/01/2015 04:18	3349686
CCM	Perfluorobutanesulfonic acid (PFBS)	537	6	-		674.4950	675	ng/L	100	70 - 130	1	1	1.0	10/26/2015 09:55	11/01/2015 04:18	3349686
CCM	Perfluoroheptanoic acid (PFHpA)	537	10	1		77.9674	75.0	ng/L	104	70 - 130		1	1.0	10/26/2015 09:55	11/01/2015 04:18	3349686
CCM	Perfluorohexanesulfonic acid (PFHxS)	537	30	1		217.9190	225	ng/L	67	70 - 130		1	1.0	10/26/2015 09:55	11/01/2015 04:18	3349686
CCM	Perfluorononanoic acid (PFNA)	537	20	1		155.6780	150	ng/L	104	70 - 130	1	1	1.0	10/26/2015 09:55	11/01/2015 04:18	3349686
CCM	Perfluorooctane sulfonate (PFOS)	537	40	1		303.8940	300	ng/L	101	70 - 130			1.0	10/26/2015 09:55	11/01/2015 04:18	3349686
CCM	Perfluorooctanoic acid (PFOA)	537	20	-		146.2130	150	ng/L	67	70 - 130			1.0	10/26/2015 09:55	11/01/2015 04:18	3349686
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-Sump Pit -151027		850		ng/L	I	I	I	I	10	10/30/2015 07:20	11/01/2015 05:20	3348703
FS	Perfluorooctanoic acid (PFOA)	537	20	SG1-DS01-151027		470		ng/L	I	1	1	1	10.1	10/30/2015 07:20	11/01/2015 05:50	3348704
FS	IS-PFOA-13C2	537	N/A	SG1-North Manhole-151027		3416.06	3285.29	ng/L	104	70 - 140	I	I	1.01	10/30/2015 07:20	11/01/2015 06:21	3348701
FS	IS-PFOA-13C2	537	N/A	SG1-North Manhole-151027		3416.06	3285.29	ng/L	104	70 - 140	1	I	10.1	10/30/2015 07:20	11/01/2015 06:21	3348701
FS	IS-PFOS-13C4	537	N/A	SG1-North Manhole-151027		2199.36	2112.29	ng/L	104	70 - 140	I	I	1.01	10/30/2015 07:20	11/01/2015 06:21	3348701
FS	IS-PFOS-13C4	537	N/A	SG1-North Manhole-151027		2199.36	2112.29	ng/L	104	70 - 140	Ι	I	10.1	10/30/2015 07:20	11/01/2015 06:21	3348701
S ^E P	Perfluorooctanoic acid (PFOA)	537	20	SG1-North Manhole-151027		1000		ng/L	I	I	1	I	10.1	10/30/2015 07:20	11/01/2015 06:21	3348701
ୁ age	SS-PFDA-13C2	537	N/A	SG1-North Manhole-151027		107.6520	100	ng/L	107	70 - 130	I	I	1.01	10/30/2015 07:20	11/01/2015 06:52	3348701
ନ୍ଧ କ 13	SS-PFHxA-13C2	537	N/A	SG1-North Manhole-151027		29.1281	50.0	ng/L	58	70 - 130	Ι	I	1.01	10/30/2015 07:20	11/01/2015 06:52	3348701
്ല 3 of	Perfluorobutanesulfonic acid (PFBS)	537	6	SG1-North Manhole-151027	v	06		ng/L	I	I	1	i	1.01	10/30/2015 07:20	11/01/2015 06:52	3348701
f 1										i	 					

EEA Run ID 209357 / EEA Report # 351818

ත්Page 4 of 5

Sample Type								ľ								
	Analyte	Method	MRL	Client ID	Result Flag	Amount	Target	Units	% Recovery	Recovery Limits	RPD	RPD Limit	Dil Factor	Extracted	Analyzed	EEA ID #
FS Perf	Perfluoroheptanoic acid (PFHpA)	537	10	SG1-North Manhole-151027		20		ng/L	1	1			1.01	10/30/2015 07:20	11/01/2015 06:52	3348701
FS Perfluc	Perfluorohexanesulfonic acid (PFHxS)	537	30	SG1-North Manhole-151027	v	30		ng/L	I	I	I	1	1.01	10/30/2015 07:20	11/01/2015 06:52	3348701
FS	Perfluorononanoic acid (PFNA)	537	20	SG1-North Manhole-151027	v	20		ng/L	I	I	I	1	1.01	10/30/2015 07:20	11/01/2015 06:52	3348701
FS Perf	Perfluorooctane sulfonate (PFOS)	537	40	SG1-North Manhole-151027	v	40		ng/L	I	I	I	1	1.01	10/30/2015 07:20	11/01/2015 06:52	3348701
ССН	IS-PFOA-13C2	537	N/A			3877.96	3877.96	ng/L	100	70 - 140	1	1	1.0	10/26/2015 09:55	11/01/2015 07:23	3349687
ССН	IS-PFOS-13C4	537	N/A	1		2618.31	2618.31	ng/L	100	70 - 140	1		1.0	10/26/2015 09:55	11/01/2015 07:23	3349687
ССН	SS-PFDA-13C2	537	N/A	1		94.3381	100	ng/L	94	70 - 130	1		1.0	10/26/2015 09:55	11/01/2015 07:23	3349687
ССН	SS-PFHxA-13C2	537	N/A			50.0283	50.0	ng/L	100	70 - 130	1	1	1.0	10/26/2015 09:55	11/01/2015 07:23	3349687
CCH Perflu	Perfluorobutanesulfonic acid (PFBS)	537	6			1073.4900	1125	ng/L	95	70 - 130	1	1	1.0	10/26/2015 09:55	11/01/2015 07:23	3349687
CCH Perf	Perfluoroheptanoic acid (PFHpA)	537	10	I		122.6270	125	ng/L	86	70 - 130	1	1	1.0	10/26/2015 09:55	11/01/2015 07:23	3349687
CCH Perfluc	Perfluorohexanesulfonic acid (PFHxS)	537	30			361.6090	375	ng/L	96	70 - 130	1	1	1.0	10/26/2015 09:55	11/01/2015 07:23	3349687
CCH	Perfluorononanoic acid (PFNA)	537	20	1		238.6730	250	ng/L	95	70 - 130	1	1	1.0	10/26/2015 09:55	11/01/2015 07:23	3349687
CCH Perf	Perfluorooctane sulfonate (PFOS)	537	40	1		475.3780	500	ng/L	95	70 - 130	1	1	1.0	10/26/2015 09:55	11/01/2015 07:23	3349687
ССН Ре	Perfluorooctanoic acid (PFOA)	537	20	1		244.6290	250	ng/L	98	70 - 130	1	-	1:0	10/26/2015 09:55	11/01/2015 07:23	3349687

END OF REPORT

Your Project #: S6PP-HOOSICK FALL-S Your C.O.C. #: 532063-01-01

Attention:Jason Wilkinson

Ramboll Environ 3 Carlisle Rd. Westford, MA USA 01886

> Report Date: 2015/10/07 Report #: R3712895 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B5J9607

Received: 2015/10/01, 14:05

Sample Matrix: Water # Samples Received: 2

	Date	Date		
Analyses	Quantity Extracted	Analyzed	Laboratory Method	Reference
PFOS and PFOA in water	2 2015/10/0	5 2015/10/0	5 CAM SOP-00894	EPA 537 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Melissa DiGrazia, Project Manager - ATUT Email: MDiGrazia@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics International Corporation is a NELAC accredited laboratory. Certificate # 04012. Use of the NELAC logo however does not insure that Maxxam is accredited for all of the methods indicated. This certificate shall not be reproduced except in full, without the written approval of Maxxam.

Report Date: 2015/10/07

Ramboll Environ Client Project #: S6PP-HOOSICK FALL-S Sampler Initials: VT

RESULTS OF ANALYSES OF WATER

Maxxam ID		BBX430				BBX431			
Sampling Date		2015/09/30 13:10				2015/09/30 13:10			
COC Number		532063-01-01				532063-01-01			
	UNITS	SG1-MW02-150930	RDL	MDL	QC Batch	SG1-TB01-150930	RDL	MDL	QC Batch
Perfluorobutane Sulfonate (PFBS)	ug/L	<0.020	0.020	0.0047	4216610	<0.020	0.020	0.0047	4216610
Perfluoroheptanoic Acid (PFHpA)	ug/L	0.39	0.020	0.0054	4216610	<0.020	0.020	0.0054	4216610
Perfluorohexane Sulfonate (PFHxS)	ug/L	<0.020	0.020	0.0054	4216610	<0.020	0.020	0.0054	4216610
Perfluoro-n-Octanoic Acid (PFOA)	ug/L	16	0.80	0.18	4216651	<0.020	0.020	0.0044	4216610
Perfluorononanoic Acid (PFNA)	ug/L	<0.020	0.020	0.0063	4216610	<0.020	0.020	0.0063	4216610
Perfluorooctane Sulfonate (PFOS)	ug/L	<0.020	0.020	0.0037	4216610	<0.020	0.020	0.0037	4216610
Surrogate Recovery (%)	-								
13C4-Perfluorooctanesulfonate	%	94	N/A	N/A	4216610	101	N/A	N/A	4216610
13C4-Perfluorooctanoic acid	%	136 (1)	N/A	N/A	4216651	105	N/A	N/A	4216610

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Surrogate recovery was above the defined upper control limit (UCL). Laboratory spiked water resulted in satisfactory recovery of the surrogate. When considered together, these QC data suggest that matrix interferences may be biasing the data high. Because quantitation is performed using isotope dilution techniques, any apparent gains of the native compound that may occur during any of the sample preparation, extraction, cleanup or determinative steps will be mirrored by a similar gain of the labeled standard, and as such can be accounted for and corrected. Therefore, the quantification of this target compound is not affected by the high surrogate recovery.

Report Date: 2015/10/07

Ramboll Environ Client Project #: S6PP-HOOSICK FALL-S Sampler Initials: VT

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BBX430 SG1-MW02-150930 Water					Collected: Shipped: Received:	2015/09/30 2015/10/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4216610	2015/10/05	2015/10/05	Sin Chii Ch	ia
Maxxam ID: Sample ID:	BBX431 SG1-TB01-150930					Collected: Shipped:	2015/09/30
Matrix:	Water					Received:	2015/10/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4216610	2015/10/05	2015/10/05	Sin Chii Ch	ia

Maxxam Job #: B5J9607 Report Date: 2015/10/07 Ramboll Environ Client Project #: S6PP-HOOSICK FALL-S Sampler Initials: VT

GENERAL COMMENTS

Revision reflects change to sample ID of BBX430-01

Sample BBX430-01 : Perfluorinated Compounds (PFCs): Due to high concentrations of the target analytes, sample required dilution. Detection limits were adjusted accordingly.

Sample BBX430, PFOS and PFOA in water: Test repeated.

Results relate only to the items tested.

Report Date: 2015/10/07

Ramboll Environ Client Project #: S6PP-HOOSICK FALL-S Sampler Initials: VT

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4216610	SCH	Matrix Spike	13C4-Perfluorooctanesulfonate	2015/10/05		126	%	70 - 130
			13C4-Perfluorooctanoic acid	2015/10/05		119	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2015/10/05		107	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2015/10/05		102	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2015/10/05		103	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2015/10/05		106	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2015/10/05		105	%	70 - 130
			Perfluorooctane Sulfonate (PFOS)	2015/10/05		100	%	70 - 130
4216610	SCH	Spiked Blank	13C4-Perfluorooctanesulfonate	2015/10/05		106	%	70 - 130
			13C4-Perfluorooctanoic acid	2015/10/05		113	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2015/10/05		101	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2015/10/05		106	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2015/10/05		101	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2015/10/05		105	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2015/10/05		104	%	70 - 130
			Perfluorooctane Sulfonate (PFOS)	2015/10/05		107	%	70 - 130
4216610	SCH	Method Blank	13C4-Perfluorooctanesulfonate	2015/10/05		117	%	70 - 130
			13C4-Perfluorooctanoic acid	2015/10/05		120	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2015/10/05	<0.020		ug/L	
			Perfluoroheptanoic Acid (PFHpA)	2015/10/05	<0.020		ug/L	
			Perfluorohexane Sulfonate (PFHxS)	2015/10/05	<0.020		ug/L	
			Perfluorononanoic Acid (PFNA)	2015/10/05	<0.020		ug/L	
			Perfluoro-n-Octanoic Acid (PFOA)	2015/10/05	<0.020		ug/L	
			Perfluorooctane Sulfonate (PFOS)	2015/10/05	<0.020		ug/L	
4216610	SCH	RPD - Sample/Sample Dup	Perfluorobutane Sulfonate (PFBS)	2015/10/05	NC		%	30
			Perfluoroheptanoic Acid (PFHpA)	2015/10/05	NC		%	30
			Perfluorohexane Sulfonate (PFHxS)	2015/10/05	NC		%	30
			Perfluorononanoic Acid (PFNA)	2015/10/05	NC		%	30
			Perfluoro-n-Octanoic Acid (PFOA)	2015/10/05	NC		%	30
			Perfluorooctane Sulfonate (PFOS)	2015/10/05	NC		%	30
4216651	SCH	Matrix Spike	13C4-Perfluorooctanoic acid	2015/10/05		103	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2015/10/05		NC	%	70 - 130
4216651	SCH	Spiked Blank	13C4-Perfluorooctanoic acid	2015/10/05		106	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2015/10/05		102	%	70 - 130
4216651	SCH	Method Blank	13C4-Perfluorooctanoic acid	2015/10/05		103	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2015/10/05	<0.80		ug/L	

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Report Date: 2015/10/07

Ramboll Environ Client Project #: S6PP-HOOSICK FALL-S Sampler Initials: VT

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

AN,

Adam Robinson, Technical Service

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		6740 Campobello Road, Mississauga, C INVOICE TO:	untario Ganada LSN	2L8 19/(905) 817-		00) 553-6266	Fax: (905) 8	17-5777 ww	w.maxxam	lica						Melis	01-Oct-15 14:05 ssa DiGrazia	Page of
ar	y Name #29980 Ram		Compar	Name RA	mboll E		-		-			ROJECT	INFORMATION				I A II I AI II AI AI AI I AII	
		Jason Wilkinson	Attention	10 70	LAD WOLL	111	-			Quotation #		-				H	35J9607	ittle Order #:
58	Westford MA 0		Address	30	stord,	RAN	210	2.1		Project						LL	ENV-910	532063
	(978) 449-0390	F dA.	Tet			Parts				Project Nam	e	SGPP	- HOOLI	uk f	wh s			Project Manager:
	vturner@enviro		Email	Im	Ikinin	Cenvi	and	or pet	in	Site #: Sampled By		VT	-		-	100	C#532063-01-01	Melissa DiGrazia
10	E REGULATED DRINKI SUBMITTER	NG WATER OR WATER INTENDED O ON THE MAXXAM DRINKING WA	FOR HUMAN	ONSUMPTION	N MUST BE		1			ALYSIS REQU	JESTED (PI	EASE BE	SPECIFIC)			1	Turnaround Time (TAT) R	equired
l	Regulation 153 (2011)	Other Regulatio			and the second second	circle):	t offer	12 6		_						Regular (Please provide advance notice fo Standard) TAT:	r rush projects
le	t Res/Park Med	ium/Fine CCME Sanitary Sew		Special in	nstructions		40	PFOS		1 1							ed if Rush TAT is not specified):	X
ile le	2 Ind/Comm Coar 3 Agri/Other For		Bylaw			leas	5.										T = 5-7 Working days for most tests.	
le		RSC MISA Municipality _				Field Filtered (please ci Metals / Hg / Cr VI	2	EN01								days - conta	Standard TAT for certain tests such as Bi ct your Project Manager for details	
		Other				Filten	.5	2	2							Job Specifi Date Require	fic Rush TAT (if applies to entire subm	ission) e Required:
		ria on Certificate of Analysis (Y/N)?				M	Pr	40 %									mation Number	
_	Sample Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	- u	C 13	2 d								# of Batties	(ca Comme	If lab for #)
	300	561-MW020-150710	9-30-15	1310	6~		X									X2		
	2011	SG1-TB01-150930	09-3-11		-		×									1		
		1									-							
							-				+				-			**
			-								-			-	-			
				-					_			_						
							-	_							-			
									>		_		-		-			
								_	-		-							
-						-	-	16				-		1				
	* RELINQUISHED BY: (S	Signature/Print) Date: (YY	/MM/DD) Ti			D D14 101									V	.2	-	
1	11.1	- (Ranboll Envira) 15/09				D BY: (Signati	ure/Print)		-	(YY/MM/DD)	-	ime	# jars used not submit	Had -	Time Sensit		Laboratory Use Only	
f	Y		20 111		CING uShah	1			2015	10901	14:	05	_		Time Sensit			tody Seal Yes No

Maxxam Analytics International Corporation o/a Maxxam Analytics

V. Boring Logs and Well Construction Logs

	.T. M		E A קו	\SS(DCI 1	IATE	ES		SL	JBSURFA	CE EXPLORA	TION	log	
		ľž Z	2[2][BORING NO.: ELEVATION: LATITUDE: START DATE: SHEET 1 OF		DATUM: LONGITUDE: FINISH DATE:	NAVD88 8/11/201	5	
PR	OJE	CT:	SGF	PP						_	CTM PROJECT	NO.:	15.5	5133
LO	CAT	ION:	Ноо	sick I	Falls,	NY				_	CTM OBSERV	/ER:	J.Dip	opert
DEPTH (FT.)	SAN SAN	NO.	BL 0/6			AMPL 18/24		RECOVERY			IFICATION		NOTE	ES
		1						5'	Refer to MW-01	for soil classific	ration			
									-					
5		2						5'	4					
								5	4					
	/								4					
10		3						5'						
									-					
15	/								1		±15.0'			
									Bor	ing Terminated				
									4					
20									4					
									-					
									+					
25									-					
									4					
30									4					
			0\%/©			ا ۲ ۹ ۹		2 12"	J WITH A 140 LB. V			GROU	NDWAT	ER LEVEL
						ade Di		× 12				DATE LEV		STABILIZATION TIME
		G TYF		Mini		- 4								
ME	THOD		NVES	IIGAT	ION:	5' x 4	sam	pie ba						
									ON WAS OBTAIN					
TO TH	HE SA	ME IN	FORM	MATIO	N AV	AILABI	E TO	C.T.	MALE. IT IS PRE	SENTED IN G	MAY HAVE ACCESS OOD FAITH, BUT IS	SAMPLE	CLASSIF	ICATION BY:
		ided / Horiz				E FOF	K INVE	STIG	ATIONS, INTERF	KETATION OF	R JUDGMENT OF	Dip	pert	

	.T. M	AAL	E A		DCI 1	ATE	ES		SUBSURFACE EXPLORA	TION LOG
			2[2][]				BORING NO.: MW-01 ELEVATION: 455.77 DATUM: LATITUDE: LONGITUDE: START DATE: 8/10/2015 FINISH DATE: SHEET 1 OF 1	NAVD88 8/12/2015
PR	OJE	CT:	SGF	P					CTM PROJECT	NO.: 15.5133
LO	CAT	ION:	Hoo	sick F	-alls,	NY			CTM OBSER	VER: J.Dippert
-	SAM	IPLE	BL	OWS	ON S	AMPL	ER			
DEPTH (FT.)	ТҮРЕ	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION	NOTES
		1						5'	Brown fine SAND and SILT, Some fine and medium Gravel, trace clay +2 5	moist
5		2							Brown fine SAND, fine to coarse GRAVEL, Some medium Sand, little silt	
		3						5'	grades to Gray and Brown at ±5'	
		4							seam of fine and medium SAND, Some fine to coarse Gravel, little silt at $\pm 6'$ $\pm 7.0'$	very moist to wet
	/								Gray fine SAND and SILT, trace clay, interbedded	very moist
10		5						5'	with fine and medium SAND, fine to coarse GRAVEL (±1' layers)	
									±12.0'	
		6							Gray fine SAND and SILT, fine to coarse GRAVEL, little clay (TILL)	moist
15		_								
		7						5'		
		8								
20	/								COBBLE and BOULDER at ±19-21'	very moist
		9						5'		Set 6" casing and grout in place at ±20' bgs on 8/10/15.
		10								Continued drilling on
25	/									8/12/15.
		11						5'		
		12							±27.0' Black SLATE (Possible Bedrock)	-
	/	12							DIACK SEATE (LOSSIDIE DEUTOCK)	Boring Terminated at ±30' bgs
30	/								±30.0'	-
N =	NO.	OF BL	ows	TO DI	RIVE	2" SAN	IPLEF	R 12" \	WITH A 140 LB. WT. FALLING 30" PER BLOW	GROUNDWATER LEVEL
DRI	ILLING	G CON	TRAC	TOR:	Casc	ade Di	illing			DATE LEVEL CASING STABILIZATION TIME
		G TYP		Mini S						
ME	THOD	OF IN	IVEST	пGАГ	ION:	5 X 8	sam	pie ba	rrel to 20',5' x 4" sample barrel to 30'.	
	יסחווכ						14/611			
PURP	OSES	5. IT I	s Mae	DE AV	AILAE	BLE TO) AUT	HORI	DN WAS OBTAINED FOR C.T. MALE DESIGN ZED USERS ONLY THAT THEY MAY HAVE ACCESS	
									MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS ATIONS, INTERPRETATION OR JUDGMENT OF	SAMPLE CLASSIFICATION BY:
SUCH										Dippert

C C	.T. M	AAI	E A קור	\SS(DCI	IATE	ËS		SL	JBSURFA	CE EXPLORA	TION I	.OG	
			2][2][BORING NO.: ELEVATION: LATITUDE: START DATE: SHEET 1 OF		DATUM: LONGITUDE: FINISH DATE:	NAVD88 8/10/2015		
PR	OJE	CT:	SGF	P					-	_	CTM PROJECT	NO.:	15.5	5133
LO	CAT	ION:	Hoo	sick I	Falls,	NY				_	CTM OBSER	/ER:	J.Dip	opert
DЕРТН (FT.)	SAN SAN	IPLE NO.	BL 0/6			AMPL 18/24		RECOVERY			IFICATION		NOTE	S
		1						5'	Refer to MW-02	for soil classific	ation			
5	/	2						5'	•					
								0	+					
10	/								-					
10	/	3						3'	+					
									-					
15		4						2'	-					
		5						4'						
									-		±19.0'			
_20	·								Bor	ing Terminated				
									-					
									4					
_25									-					
30									}					
N =	NO.	OF BL	.ows	TO D	RIVE	2" SAN	/PLEF	R 12" \	- WITH A 140 LB. V	VT. FALLING 3	0" PER BLOW	GROUN	DWAT	ER LEVEL
						ade Di	rilling					DATE LEVEL	CASING	STABILIZATION TIME
		G TYF OF IN		Mini : TIGAT		5' x 4	" samı	ole ba	rrel.			╢┼┼		
									ON WAS OBTAIN ZED USERS ONL		IALE DESIGN MAY HAVE ACCESS			
ΤΟ ΤΙ	HE SA	ME IN	IFORM	ΛΑΤΙΟ	N AVA	AILABI	LE TO	C.T.	MALE. IT IS PRE	SENTED IN G	OOD FAITH, BUT IS R JUDGMENT OF	SAMPLE (CLASSIF	ICATION BY:
		HORIZ								0.		Dipp	pert	

	.T. M		E A		DCI 1	IATE	ES		SUI	BSURFA	CE EXPLORA	10IT	1 LOG	2
			2[2][]				ELEVATION: LATITUDE:	MW-02 460.46 8/5/2015 2	DATUM: LONGITUDE: FINISH DATE:	NAVD 8/6/20		
PR	OJE	CT:	SGF	P							CTM PROJECT	NO.:	15	5133
LO	CAT	ON:	Hoo	sick I	Falls,	NY					CTM OBSER\	/ER:	J.D	ippert
<u>,</u>	SAM	IPLE	BL	.ows	ON S	AMPLI	ER					1		
DEPTH (FT.)	ТҮРЕ	NO.	0/6	6/12	12/18	18/24	N	RECOVERY			SIFICATION		NOT	
		1						5'	Brown SILT, GRA	VEL (angular	r), Some fine Sand	vegeta moist	ition at sur to dry	face
		2							4			monot	to thy	
5	V								-					
		3						2'	-			Dofus	lat 17 ba	s. Switched to
	K /	4						3'	BOULDER		±7.0'	core b		s. Switched to
10									-		±10.0'			
	\square										LT, Some Gravel (sub-	very n	noist	
		5						4'	angular to angula	r)		Grave	l layer at ±	12-13' bgs
15		6							-		115.01	(wet).		
	/	7						5'		nd SILT, fine	±15.0' to coarse GRAVEL,	moist		
		8							trace clay (TILL)					
20														
20		9						5'	-					
		10							-		±23.0'			
		10							Greenish Gray SII	.T, little fine s		moist		
25		11						5'	-					
		12							-					
		12								e fine to coars	±28.0' e Gravel, little fine	moist		
30	/								sand, trace clay					
								R 12"	WITH A 140 LB. W	T. FALLING 3	30" PER BLOW			
						ade Dr	illing					DATE I	20.5 26	TIME 10 min
	ILL RI THOD			Mini S IGAT		5' x 4'	" samı	ple ba	rrel.				20.5 26	15 hrs
									ON WAS OBTAINE			╟─┤		
TO TH	HE SA	ME IN	FORM	ΙΑΤΙΟ	N AVA	AILABL	E TO	C.T.	MALE. IT IS PRES	SENTED IN G	MAY HAVE ACCESS OOD FAITH, BUT IS	SAMP	LE CLASSI	FICATION BY:
NOT I SUCH						E FOR	R INVE	STIG	ATIONS, INTERPF	RETATION OF	R JUDGMENT OF		ippert	
												U		

	.T. M		E A קוב) 2	ATE	ËS		SUBSURFACE EXPLORA	TION LOG
			2[][]				BORING NO.:MW-02ELEVATION:460.46DATUM:LATITUDE:LONGITUDE:START DATE:8/5/2015FINISH DATE:SHEET2OF2	NAVD88 8/6/2015
PR	OJE	CT:	SGF	P					CTM PROJECT	NO.: 15.5133
LO	CAT	ION:	Hoo	sick I	Falls,	NY			CTM OBSER	VER: J.Dippert
(; 	SAM	1PLE	BL	ows	ON S	AMPL	ER	~		
DEPTH (FT.)	ТҮРЕ	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION	NOTES
		13						4'	Brown SILT, fine to coarse GRAVEL, Some mottling with Gray fine Sand, trace clay	moist 4' sample due to barrel
		14								overfilling
35								5'	±34.0 Gray and Brownish Gray fine SAND and SILT, fine to	
		15							coarse GRAVEL (sub-rounded to rounded), trace orange brown fine and medium sand	±35-37' bgs - very moist
	/	16							±38.0	,
40		17						5'	WEATHERED ROCK, Brown fine SAND with laminated gray SILT ±40.0	,
									PULVERIZED ROCK +42.0	very moist
	/	18							Dark Brown fine to coarse SAND, fine to coarse	wet
45		19						1'	GRAVEL, trace silt±43.0WEATHERED ROCK, Some gray Silt±45.0	moist
									Boring Terminated at ±45' bgs	
50										
55										
60									1	
				–	L					GROUNDWATER LEVEL
					RIVE 2 Casca			۲ 12" ۱	WITH A 140 LB. WT. FALLING 30" PER BLOW	DATE LEVEL CASING STABILIZATION TIME
		G TYP		Mini S			iiiiiy			IIME
ME	THOD	OF IN	IVEST	IGAT	ION:	5' x 4	" samı	ole ba	rrel.	
									N WAS OBTAINED FOR C.T. MALE DESIGN ZED USERS ONLY THAT THEY MAY HAVE ACCESS	
TO TH	HE SA	ME IN	FORM	ΙΑΤΙΟ	N AVA	AILABI	E TO	C.T.	MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS ATIONS, INTERPRETATION OR JUDGMENT OF	SAMPLE CLASSIFICATION BY:
		HORIZ						.5116		Dippert

	.T. M		E A קו	4.SS0	эс 1	IATE	ËS		SUBSURFACE EXPL	ORA	TION	log	
			2][2][BORING NO.: MW-03 ELEVATION: 436.69 DATUM LATITUDE: LONGI START DATE: 8/13/2015 FINISH SHEET 1 OF 1	TUDE:	NAVD88 8/13/201		
PR	OJE	CT:	SGF	Р					CTM PRC	JECT	NO.:	15.5	5133
LO	CAT	ION:	Ноо	sick	Falls,	NY			СТМ С	BSER\	/ER:	J.Dip	opert
DEPTH (FT.)	TYPE S	NO.	BL 0/6			AMPL 18/24	ER N	RECOVERY	SAMPLE CLASSIFICATION			NOTE	S
		1						5'	Dark Brown SILT, fine and medium GRAV trace organics Brown SILT, Some fine Sand		vegetatic moist	on at surfa	ice
5 10		3						5'	Brown fine and medium SAND, Some fine and medium Gravel Brown fine SAND, fine to coarse GRAVEL, So little orange brown fine sand	±8.0'	very moi	st	
15		5 6 7						5'	Brown fine SAND, fine to coarse GRAVEL, lit medium sand, trace silt Brown fine SAND and SILT, GRAVEL to COB	±15.0'	wet		
20		8							grades to gray at ±17' WEATHERED ROCK, little gray silt and clay	±19.0' ±20.0'	moist		
25		Run 1 Run 2						5'	Black SLATE (Possible Bedrock)		pulverize black coa Driller sta the same Run 2: red black slat coarse bla	rse angula ated the in as 19-30'. covery cor	ich appeared r sand. terval drilled usisted of th some r sand at
30									Boring Terminated at ±30' bgs	±30.0'	-		
DRI DRI	ILLING	G CON	ITRAC PE:	CTOR: Mini S	Casc Sonic	2" SAN ade Di <u>5' x 4</u>	rilling		WITH A 140 LB. WT. FALLING 30" PER BLOW		GROU DATE LEVI	-	ER LEVEL STABILIZATION TIME
PURF TO TH	POSES HE SA NTEN	3. IT I ME IN IDED /	s Mai Iforn As a s	DE AV MATIC SUBS	'AILAE N AV/ TITUT	BLE TO AILABI) AUT _E TO	HORI C.T.	ON WAS OBTAINED FOR C.T. MALE DESIGN ZED USERS ONLY THAT THEY MAY HAVE A MALE. IT IS PRESENTED IN GOOD FAITH, E ATIONS, INTERPRETATION OR JUDGMENT	CCESS UT IS		CLASSIF	ICATION BY:

C C	.T. M		ב A הר	\SS(ATE	ËS		SUBSURFACE EXPLORA	TION	log	
			2[2][BORING NO.: MW-04 ELEVATION: 431.17 DATUM: LATITUDE: LONGITUDE: START DATE: 8/5/2015 FINISH DATE: SHEET 1 OF 1	NAVD88 8/5/2015		
PR	OJE	CT:	SGF	P					CTM PROJECT	NO.:	15.5	5133
LO	CAT	ON:	Hoo	sick I	Falls,	NY			CTM OBSER'	VER:	J.Dip	opert
L.)	SAN	IPLE	BL	ows	ON S	AMPL	ER	· ≻				
DEPTH (FT.)	ТҮРЕ	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION		NOTE	
		1						2'	Dark Brown SILT, Some Organics, little clay ±0.5 Dark Brown fine SAND and SILT, fine to coarse	vegetatio: moist	n at surfa	ace
	$ \land$	2						3'	GRAVEL, trace organics ±1.5			
5									Brown SILT, trace orange brown fine sand	very mois	st	
		3						5'				
		4		-					trace brown and gray mottling ±7.5	'		
									Gray fine SAND, Some Silt, Some orange brown fine			
10		5						2'	Sand Parting ±11.0	,,		
									Orange Brown fine to coarse SAND, fine to	wet		
		6							coarse GRAVEL (sub-rounded)±12.0Gray fine SAND, Some Silt	<u>'</u>		
15		7							±15.0	'		
		7						5'	Gray fine to coarse SAND ±17.0	,		
		8							Gray fine to coarse SAND, fine to coarse GRAVEL			
20	V											
	7	9						5'				
		10										
25												
		11						1'	±26.0	,		
		Run 1						4'	Black SLATE (Possible Bedrock)	Run 1: rec black slate		nsisted of
30									Boring Terminated at ±30' bgs ±30.0'			
N =	NO.	OF BL	ows	TO D	RIVE	2" SAN	/IPLEF	R 12" \	VITH A 140 LB. WT. FALLING 30" PER BLOW		1	ER LEVEL
						ade Di	rilling			DATE LEVE		TIME
	ILL RIO THOD			Mini S		5' v /	" cam	nle ha	rel	8/5 13.7	25	10 min
					1011.	0 1 4	Jan		roi.	╢─┼─		
THE S	SUBSI	JRFA	CE INF	FORM		N SHO	WN F	IERE	N WAS OBTAINED FOR C.T. MALE DESIGN			
PURF	POSES	5. IT I	s Mai	DE AV	'AILAE	BLE TO) AUT	HORI	ZED USERS ONLY THAT THEY MAY HAVE ACCESS			
NOT	INTEN	DED /	AS A S	SUBS ⁻	TITUT				MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS ATIONS, INTERPRETATION OR JUDGMENT OF			ICATION BY:
SUCH	I AUTI	HORIZ	ED U	SERS	i.					Dip	pert	

	.T. M	AAL	ב A הכי	\SS(IATE	S		SUBSURFACE EXPLORA	TION LOG
			2[2]]				BORING NO.: MW-05 ELEVATION: 433.83 DATUM: LATITUDE: LONGITUDE: START DATE: 8/11/2015 FINISH DATE: SHEET 1 OF 1	NAVD88 8/11/2015
PR	OJE	CT:	SGF	P					CTM PROJECT	NO.: 15.5133
LO	CAT	ION:	Hoo	sick I	Falls,	NY			CTM OBSER	/ER: J.Dippert
	SAM	יסיב	Ы	OWE		AMPL	- D	1		
DEPTH (FT.)	TYPE	NO.	0/6			18/24	ER N	RECOVERY	SAMPLE CLASSIFICATION	NOTES
		1						5'	Brown SILT, Some fine Sand	vegetation at surface moist
5		2							±5.0	
		3						5'	Brown fine and medium SAND, fine and medium GRAVEL Grayish Brown fine SAND, Some Silt	±6.0' very moist to wet ±6' bgs ±7.0' orange brown parting at ±7'
		4							Brown fine to coarse SAND, fine to coarse GRAVEL	$\pm 8.0^{\circ}$ moist at $\pm 7^{\circ}$ bgs
10	/								Brown fine SAND and SILT, Some fine and medium Gravel	±9.0' very moist to wet at ±8' bgs
10		5						5'	Brown fine SAND, fine to coarse GRAVEL, little silt ±11.0	1
									Gray fine SAND, Some fine to coarse Gravel, Some Silt	
		6								
15	\mathbf{V}								±14.5	14.5 025
	7	7						4'	Brown fine SAND, Some Silt <u>±15.0</u> Gray PULVARIZED ROCK <u>±16.5</u>	
		8							Gray and Brown Parting, fine SAND and SILT,	
	\langle	0							Some Weathered Rock, Some fine to coarse Gravel ±17.0	
20	\sim	9						1'	Brown fine to coarse GRAVEL, Some fine to coarse Sand	Saturated Gravel is angular to
		10						3'	Gray and Brown Parting, fine SAND and SILT, Some	sub-angular and is similar to bedrock fragments
									Weathered Rock, Some fine to coarse Gravel ± 21.0	
25		11						2'	Black SLATE (Possible Bedrock)	
									±26.0'	
									Boring Terminated at ±26' bgs	
30									1	
N =	NO 0		0W.S			2" SAN		- ۲ 12" ۱	- NITH A 140 LB. WT. FALLING 30" PER BLOW	GROUNDWATER LEVEL
						ade Dr		. 12		DATE LEVEL CASING STABILIZATION TIME
				Mini S						
						5' x 4'	' samı	ole ba	rrel.	
THE S	SUBSI	JRFAC		FORM		N SHO	WN H	IEREC	ON WAS OBTAINED FOR C.T. MALE DESIGN	
PURP	OSES	5. IT I	s Mae	DE AV	AILAE	BLE TO) AUT	HORI	ZED USERS ONLY THAT THEY MAY HAVE ACCESS	
									MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS ATIONS, INTERPRETATION OR JUDGMENT OF	SAMPLE CLASSIFICATION BY:
SUCH										Dippert

SGPP Hoosick Falls

MONITORING WELL CONSTRUCTION LOG

Project Name:

	Protective Enclosure	
	Curb Box	Project Num
ft. elev.	Guard Pipe	
	ft. elev.	Well No.:
<u>ft.elev.</u>	GROUND SURFACE	Town/City:
	Concrete Surface Seal	
	1 ft.*	County:
	6 inch diameter	
	drilled hole	Installation [
	Well Casing/Riser	Drilling Cont
	2 inch diameter	Ū
		Drilling Meth
	Backfill	
	Grout	Water Depth
		C.T. Male O
	<u>1.0</u> ft*	Materials Us
	Bentonite	3.75
	3.5 ft* ■ penets thips	4/0
	5.0 ft*	1/2
	<u>5.0</u> n	10
	Well Screen	5
	2 -inch diameter	2
	10 slot	
	Gravel Pack	
	Sand Pack	Grout Mixtu
	Formation Collapse	
	45.0.64	
	<u>15.0</u> ft*	
	15.0 ft*	
	<u>a 10.0</u> lt	
		Notoo

Well No.: MW-01S MW-01S Town/City: Hoosick Falls
Town/City: Hoosick Falls
County: Rensselaer State: New York
Installation Date(s): 8/11/2015
Drilling Contractor: Cascade Drilling
Drilling Method: Roto Sonic
Water Depth From Top of Riser:ft
Date C.T. Male Observer: Jonathan Dippert
Materials Used: 3.75 Bags of Sand (50 lb. bags) Sand Size: #0 Brand: FilPro 1/2 Bags of Bentonite (50 lb. bags) Brand: Cetco Medium Chips 10 ft. of Schedule 40 PVC 5 ft. of Schedule 40 PVC 2 Bags of Cement/Concrete (60 lb. bags) Brand: Quikrete
Grout Mixture: Bags of Cement (Ib. bags) Lbs. of Bentonite Gallons of Water Grout Batches Grout Batches

	Project Name: SGPP
	Hoosick Falls
Protective Enclosure	Project Number: 15.5133
ft. elev. Guard Pipe ft. elev. ft. elev.	Well No.: MW-01 Boring No.: MW-01
	Town/City: Hoosick Falls
Concrete Surface Seal	County: <u>Rensselaer</u> State: <u>New York</u>
<u>6</u> inch diameter drilled hole inch diameter	Installation Date(s): 8/12/2015
10 drilled hole Well Casing/Riser	Drilling Contractor: Cascade Drilling
<u>2</u> inch diameter	Drilling Method: Roto Sonic
Backfill Grout	Water Depth From Top of Riser:ft
Well Casing (steel) 6 inch diameter	Date C.T. Male Observer: Jonathan Dippert
17.0 ft* slurry pellets Bentonite 21.0 ft* 21.0 ft* chips 22.0 ft* well Screen 2 -inch diameter 10 slot Gravel Pack Sand Pack Formation Collapse 71.0 ft* 71.0 ft* 71.0 ft*	Materials Used: 6 Bags of Sand (50 lb. bags) Sand Size: #0 Brand: FilPro 1/2 Bags of Bentonite (50 lb. bags) Brand: Cetco Medium Chips 5 ft. of Schedule 40 PVC well screen 22 ft. of Schedule 40 PVC well riser 2 Bags of Cement/Concrete (60 lb. bags) Brand: Quikrete Concrete Mix Grout Mixture: 3 Bags of Cement (94 lb. bags) 10 Lbs. of Bentonite 20 Gallons of Water 1 Grout Batches 1
* Depth below ground surface.	<u>Notes:</u> #00 - 1/4 bag - FilPro - 50 lb. bag

#00 - 1/4 bag - FilPro - 50 lb. bag 20' = 6" Steel Casing

Protective Enclosure	
Curb Box	Proje
ft. elev. 🗸 🔲 Guard Pipe	,
ft. elev.	Well
ft elev	Tow
ft.elevGROUND SURFACE	1011
1 ft.*	Cou
	000
6 inch diameter	
drilled hole	Insta
Well Casing/Riser	Drilli
2 inch diameter	
	Drilli
Backfill	2
Grout	Wate
	mat
	C.T.
	0.1.
<u>2.5</u> ft*	
choke sand #00 3.0 ft*	Mate
Bentonite	_
chips	
<u></u>	_
<u>9.0</u> ft*	
	_
Well Screen	_
2 -inch diameter	_
<u>10</u> slot	
Gravel Pack	~
Sand Pack	<u>Gro</u>
Formation Collapse	-
	-
19.0 ft*	-
	-
<u>19.0</u> ft*	

Project Name:	SGPP	
	Hoosick Falls	
Project Number:	15.5133	
Well No.: M	N-02S Boring No.: MW-02S	
Town/City: Hoosi	ck Falls	
County:	Rensselaer State: New York	
Installation Date(s): 8/10/2015	
Drilling Contractor	Cascade Drilling	
Drilling Method:	Roto Sonic	
Water Depth Fron C.T. Male Observ	n Top of Riser:ft Date er:Jonathan Dippert	
1/2 Bags of Brand: 10 ft. of 9 ft. of 2 Bags of	of Sand (<u>50</u> lb. bags) Size: <u>#0</u> Brand: FilPro of Bentonite (<u>50</u> lb. bags) Cetco Medium Chips Schedule 40 PVC well screen Schedule 40 PVC well riser of Cement/Concrete (<u>60</u> lb. bags) Quikrete	
Lbs. of Gallon	of Cement (Ib. bags) f Bentonite s of Water Batches	
<u>Notes:</u> #00 Sand - FilP Grout from MW	ro - 50 lb. bag - 1/2 bag -02D used	

Protective Enclosure	
Curb Box	P
ft. elev. 🗸 🗍 Guard Pipe	
ft. elev.	l v
	Т
Concrete Surface Seal	
ft.*	C C
10 inch diameter	
drilled hole	Ir
6 inch diameter well	
casing	
Well Casing/Riser	
<u>2</u> inch diameter	
Backfill	
Grout	V
Grout 5.78" diameter drilled hole	
6" casing 25.2 ft*	C
5 7/8" Drilled Hole 29.7 ft*	
#00 Sand 30.2 ft*	N
Bentonite 33.2 ft* pellets	
#00 Sand 34.0 ft*	
35.0 ft*	
Well Screen	
2 -inch diameter	
<u>10</u> slot	
Gravel Pack	
Sand Pack	<u>G</u>
Formation Collapse	
45.0 ft*	
45.0 ft*	

Project Name:	SGPP	
	Hoosick Falls	
Project Number:	15.5133	
Well No.: MV	V-02 Boring No.: MW-02	
Town/City: Hoosi	ck Falls	
County:	Rensselaer State: New York	
Installation Date(s): 8/6/2015-8/7/2015	
Drilling Contractor	: Cascade Drilling	
Drilling Method:	Roto Sonic	
Water Depth From	· · · · · · · · · · · · · · · · · · ·	
C.T. Male Observ	Date er: Jonathan Dippert	
<u>Materials Used</u> : <u>4.5</u> Bags of Sand S <u>1</u> Bags of	Size: #0 Brand: FilPro	
35 ft. of	Cetco Medium Chips Schedule 40 PVC well screen Schedule 40 PVC well riser of Cement/Concrete 60 lb bags)	
<u>10</u> ft. of	Schedule 40 PVC well riser	
2 Dugs 0		
Grout Mixture: <u>3</u> Bags of 0 <u>10</u> Lbs. of <u>20</u> Gallon	Quikrete Concrete Mix Cement-Quikrete Portland (94 lb. bags) Bentonite s of Water Batches	
<u>Notes:</u> #00 - 1/2 bag - 25' of 6" steel c	FilPro - 50 lb. bag asing	

	Protective Enclosure	
	Curb Box	P
ft. elev.	Guard Pipe	
	ft. elev.	W
<u>ft. elev.</u>	GROUND SURFACE	Т
	Concrete Surface Seal	
	1 ft.*	С
	6 inch diameter	
	drilled hole	In
	Well Casing/Riser	D
	2 inch diameter	
		D
	Backfill	
	Grout	W
	—	
		С
		_
	1.0 ft*	M
	Bentonite	
	2.5 It chips	
	Choke Sand 3.0 ft*	
	4.0 ft*	
	Well Screen	
	2 -inch diameter	
	<u>10</u> slot	
	Gravel Pack	
	Sand Pack	<u>G</u>
	Formation Collapse	
	10.0 (1)	
	<u> </u>	
	20.0 ft*	
	30.0 ft* bentonite chips	

Project Name:	SGPP Hoosick Falls	
Project Number:	15.5133	
Well No.: M	N-03 Boring No.: MW-03	
Town/City: Hoosi	ck Falls	
County:	Rensselaer State: New York	
Installation Date(s): 8/13/2015	
Drilling Contractor	: Cascade Drilling	
Drilling Method:	Roto Sonic	
Water Depth From	·	
	n Top of Riser:ft Date er:Jonathan Dippert	
C.T. Male Observe	Date	
C.T. Male Observe	er: Jonathan Dippert	
C.T. Male Observe <u>Materials Used</u> : <u>8</u> Bags of Sand S 2 25 Bags of	Date Date Date Date Date Date Date Date	
C.T. Male Observe <u>Materials Used</u> : <u>8</u> Bags of Sand S 2 25 Bags of	Date Date Date Date Date Date Date Date	
C.T. Male Observer <u>Materials Used</u> : <u>8</u> Bags of Sand S <u>2.25</u> Bags of Brand: <u>15</u> ft. of	Date Date Date Of Sand (50 lb. bags) Size: #0 Brand: FilPro Of Bentonite (50 lb. bags) Cetco Medium Chips Schedule 40 PVC well screen	
C.T. Male Observe <u>Materials Used</u> : <u>8</u> Bags of Sand S <u>2.25</u> Bags of Brand: <u>15</u> ft. of <u>4</u> ft. of	Date Date	
C.T. Male Observer <u>Materials Used</u> : <u>8</u> Bags of Sand S <u>2.25</u> Bags of Brand: <u>15</u> ft. of <u>4</u> ft. of <u>2</u> Bags of Bags of Brand:	Date Date	
C.T. Male Observe <u>Materials Used</u> : <u>8</u> Bags of Sand S <u>2.25</u> Bags of Brand: <u>15</u> ft. of <u>4</u> ft. of <u>2</u> Bags of Brand:	Date Date Date Date Date Date Date Date	
C.T. Male Observer <u>Materials Used</u> : <u>8</u> Bags of Sand S <u>2.25</u> Bags of Brand: <u>15</u> ft. of <u>4</u> ft. of <u>2</u> Bags of Brand: <u>Carout Mixture:</u>	Date Date Date Date Date Date Date Date	
C.T. Male Observer <u>Materials Used</u> : <u>8</u> Bags of Sand S <u>2.25</u> Bags of Brand: <u>15</u> ft. of <u>4</u> ft. of <u>2</u> Bags of Brand: <u>Construction</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u> <u>Brand:</u>	Date Date Date Date Date Date Date Date	
C.T. Male Observe <u>Materials Used</u> : <u>8</u> Bags of Sand S <u>2.25</u> Bags of Brand: <u>15</u> ft. of <u>4</u> ft. of <u>2</u> Bags of Brand: <u>Crout Mixture:</u> <u>Bags of</u> <u>Crout Mixture:</u> <u>Bags of</u> <u>Contert</u>	Date Date Date Date Date Date Date Date	

MONITORING WELL CONSTRUCTION LOG

[Protective Enclosure
	Curb Box
ft. elev.	Guard Pipe
·	ft. elev.
	GROUND SURFACE
	Concrete Surface Seal
	ft.*
	6 inch diameter
	drilled hole
	Well Casing/Riser
	<u>2</u> inch diameter
	Backfill
	Grout
	5.0 ft*
	Slurry
	8.5 ft* chips
	#00 sand 9.0 ft*
	<u>11.0</u> ft*
	Well Screen
	2 -inch diameter
	<u>10</u> slot
	Gravel Pack
	Sand Pack
	Formation Collapse
	26.0 ft*
	ft*
	30.0 ft* bentonite chips

* Depth below ground surface.

Project Name:	SGPP		
	Hoosick Falls		
Project Numbe	er: 15.5133		
Well No.:	MW-04 Boring No.: MW-04		
Town/City: Ho	posick Falls		
County:	Rensselaer State: New York		
Installation Date(s): 8/5/2015			
Drilling Contra	ctor: Cascade Drilling		
Drilling Method: Roto Sonic			
Water Depth From Top of Riser: ft			
C.T. Male Observer: Jonathan Dippert			
3/4 Ba 3/4 Ba 15 ft. 10 ft. 2 Ba	d: gs of Sand (50 lb. bags) nd Size: #0 Brand: FilPro gs of Bentonite (50 lb. bags) and: Cetco Medium Chips of Schedule 40 PVC well screen of Schedule 40 PVC well riser gs of Cement/Concrete (60 lb. bags) and: Quikrete		
<u>10</u> Lb <u>8</u> Ga	us of Cement-Quikrete Portland (<u>94</u> lb. bags) s. of Bentonite - Cetco Super 50 lb. bags Illons of Water out Batches		

1/2 bag #00 sand 50 lbs. - FilPro

	Protective Enclosure
	Curb Box
ft. elev	Guard Pipe
	ft. elev.
<u>ft. elev.</u>	GROUND SURFACE
	Concrete Surface Seal
	1 ft.*
	6 inch diameter
	drilled hole
	Well Casing/Riser
	2 inch diameter
	Backfill
	Grout
	<u>1.0</u> ft*
	Bentonite 3.5 ft* ☐ slurry Bentonite 5.5 ft* ☐ pellets Chips
	#00 Sand 4.0 ft*
	6.0 ft*
	Well Screen
	2 -inch diameter
	10 slot
	Gravel Pack
	Formation Collapse
	21.0 ft*
	110 ft*
	26.0 ft* bentonite chips
1-	<u> </u>

Project Name:		SGPP
	Hoosick Falls	
Project Number:	15.5133	_
Well No.:M	N-05 Boring	No.: <u>MW-05</u>
Town/City: Hoosi	ck Falls	
County:	Rensselaer	State: New York
Installation Date(s): 8/11/2015-8/12	/2015
Drilling Contractor	: Cascade Drillin	g
Drilling Method:	Roto Sonic	
Water Depth Fron	n Top of Riser:	ft Date
C.T. Male Observ	er: Jonathan Di	
<u>Materials Used</u> : 6.75 Bags o	of Sand	(50 lb. bags)
Sand S		Brand: FilPro
Brand	of Bentonite Cetco M	ledium Chins
15 ft. of	Schedule 40 P	VC well screen VC well riser
<u>6</u> ft. of	Schedule 40 P	VC well riser
Z Bays C	or Cement/Concrete	$(\underline{00}$ lb. bags)
Brand:	Quikrete	Concrete Mix
Grout Mixture:		
	of Cement	(lb. bags)
	Bentonite	
	s of Water	
Grout	Batches	
<u>Notes:</u> #00 Sand - 1/4	bag - FilPro - 50 lbs.	

EXHIBIT 2

NYSDEC Comment Letter - June 26, 2016

NYSDEC Comment Letter - August 19, 2016

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau D 625 Broadway, 12th Floor, Albany, NY 12233-7013 P: (518) 402-9676 | F: (518) 402-9773 www.dec.ny.gov

June 10, 2016

Mr. Edward J. Canning Director Environment, Health & Safety Saint-Gobain Performance Plastics 14 McCaffrey Street Hoosick Falls, NY 12090

Re: Draft Remedial Investigation Work Plan - Saint-Gobain McCaffrey Street Site – May 2016 (Site No. 4-42-046)

Dear Mr. Canning:

The New York State Department of Environmental Conservation (Department) has reviewed the May 2016 "Draft Remedial Investigation Work Plan, Saint-Gobain Performance Plastics Site" (Work Plan). The Work Plan must be revised before it can be approved. The following comments describe needed revisions for incorporation into the revised work plan.

- 1. The Work Plan should be revised to incorporate a section which discusses the FS scoping portion of the RI/FS process. Thus, the revised document should be an RI/FS Work Plan, as per the governing consent order.
- 2. Section 2.8.3 Environmental Orders, Decrees, and Violations associated with the Site: A previous spill # 9909741 was not listed in this section. Please include and reference it in this section.
- 3. Section 3.2 Scope and Rational: Dust wipe samples may be need to be collected since the emissions from the stacks may have affected the downwind structures more than the site buildings. Please map and locate all possible roof drain outlets and former floor drain outlets on the property.
- 4. Section 3.2.2 Soil Sampling at Test Borings: The text should be expanded to include the ability to adjust sample depths to include mottling zones within a boring. This adjustment would be made in the field with input from Department field-oversight staff.
- 5. Section 3.2.4 Surface Water Sampling: Surface water samples should also be analyzed for TCL/TAL parameters.
- 6. Section 3.2.6 Rooftop Wipe Samples: Dust wipe samples may be need to be collected since the emissions from the stacks may have affected the downwind structures more than the site buildings. Although the current processes in the site buildings are not using PFC's, a stack test may be needed to check to see if any residual leftover PFC's are being emitted.
- Section 3.2.8 Sampling Quality Control: Please check with the laboratory and field equipment manufacturers to see if any of their sampling equipment contain any PFC's or any parts within the sampling equipment contain PFC's.

- 8. Section 5.2 Schedule: The current schedule only indicates when field work would commence. A full schedule for the RI/FS process should be provided.
- 9. Section 5.2 Schedule: The schedule revisions must address the Study of alternatives to eliminate or reduce PFOA in the Village municipal water supply. As you know, the Department has already commenced the portion of this study that will evaluate alternate water supply alternatives. The revised work plan should describe the transition of this work from DEC to Saint-Gobain/Honeywell.
- Figure 2: Proposed Sampling Locations Plan: Two (2) additional wells should be located between MW-13 and MW-12, but significantly closer to the river (toward SED-7and SED-10). Final locations to be determined in the field with input from the DEC field oversight staff.
- 11. Figure 2: Proposed Sampling Location Plan: An additional soil boring (and soil sampling) should be located northeast of SED-14 within the 420 foot elevation area. An additional soil boring (and soil sampling) should be located between SED-3 and SED-4. Final locations to be determined in the field with input from the DEC field oversight staff.
- 12. Table 1: Proposed Sampling Schedule, Groundwater: The table discusses low-flow sampling using a peristaltic pump. Please ensure that the peristaltic sump does not have Teflon components. The Department has used mechanical pumps for PFOA sampling to eliminate Teflon components.
- Appendix A, Field Sampling Plan, Section 3.6 Monitoring Well Development: In addition to the field parameters discussed in the section, dissolved oxygen should also be measured and recorded.

It is recommended we meet to discuss these comments and/or your corresponding proposed responses/plan revisions in advance of your submission of the revised work plan in order to help expedite development of an approvable document. The revised document should be submitted to the Department for review and approval by July 11, 2016.

If you have any questions regarding this letter and/or if you would like to arrange a meeting to discuss these comments, please contact feel free to contact me at 518-402-9788.

Sincerely,

Richard A. Mustico, P.E. Project Manager Remedial Bureau D Division of Environmental Remediation

ec: Bill Daigle – NYSDEC Jim Quinn – NYSDEC, Schenectady Dolores Tuohy, Esq. – NYSDEC Krista Anders – NYSDOH Justin Deming – NYSDOH Albert DeMarco – NYSDOH Lauren Alterman, Esq. – Saint-Gobain Thomas Byrne, Esq. - Honeywell John McAuliffe – Honeywell, Syracuse Christopher Gibson, Esq. - Archer & Greiner Dale Desnoyers, Esq. – Allen & Desnoyers

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau D 625 Broadway, 12th Floor, Albany, NY 12233-7013 P: (518) 402-9676 I F: (518) 402-9773 www.dec.ny.gov

August 19, 2016

Mr. Edward J. Canning Director Environment, Health & Safety Saint-Gobain Performance Plastics 14 McCaffrey Street Hoosick Falls, NY 12090

Re: Remedial Investigation/Feasibility Study Work Plan dated May 2016 (Revised July 2016) for the Saint-Gobain McCaffrey Street Site (No. 442046)

Dear Mr. Canning:

The New York State Department of Environmental Conservation (Department) has completed review of the revised Remedial Investigation/Feasibility Study Work Plan, dated May 2016 (revised July 2016), for the Saint-Gobain McCaffrey Street Site (Site No. 442046). The proposed field sampling work, as described in Sections 3.2 and 4.1, is hereby conditionally approved, and Saint-Gobain/Honeywell is authorized to commence field work. This approval is conditioned upon the following four (4) work plan modifications:

- 1. Water chemistry calibration For all surface water and groundwater samples, a calibrated YSI or equivalent electronic field parameter meter should be utilized to collect geochemical data. The field parameter meter should be calibrated at the start of each day and should also have documented calibration checks at the middle and end of each day. All calibration records and checks should be documented in field notes or on sampling records by recording the value of the calibration solution, what the instrument was reading prior to calibration, and a checkmark if re-calibration was needed. Select insitu geochemical parameters including temperature, conductivity, pH, oxidation-reduction potential (ORP), and dissolved oxygen (DO) should be monitored and recorded to provide general geochemical data and evaluate groundwater stabilization criteria prior to sample collection. Fresh calibration solution shall be used each day, but may be re-used throughout the day. This comment should be incorporated into both the surface water and groundwater sections of the field sampling plan.
- In order to achieve consistency between the Field Sampling Plan and the RI/FS Work Plan, all protocol regarding sample collection depth intervals, calibration instructions and protocols should be the same in both the field sampling plan and in the main section of the RI/FS Work Plan.
- Consistent with the Liberty Street Site sampling, water samples, when available, should be collected from the within the off-site sewer manholes/catch basins in addition to the sediment samples called for in the work plan.

4. Subsurface soil sampling should be consistent with the soil sampling at the Liberty Street Site "Collection and laboratory analysis of soil samples from the soil test borings from major stratigraphic changes within the depth of the soil borings, and immediately above the water table. These potential samples are in addition to the samples already planned to be collected from the 0 -12" depth interval, at soil mottling zones, at the fill/native soil interface, and of subjectively impacted subsurface materials. These samples should be analyzed for the same parameters as the planned soil samples from the soil test borings." If no stratigraphic changes are encountered then they should collect the 5-7' and 10-12' depth intervals as they proposed.

The remainder of the RI/FS work plan will be approved once the following review comments have been addressed with the submission of a revised work plan:

- Section 3.3.1.1 Scope of Work The initial meeting discussed in item #3 should be described as being with NYSDEC. Other parties may participate as appropriate and available in the initial and subsequent meetings. The text in the item should be revised accordingly.
- Section 3.3.1.1 Scope of Work What is the "area wide EDR Environmental Database Search Report" referenced in Item#4? What is involved with securing this report?
- Section 3.3.1.2 Anticipated Alternatives for AWS Assessment and Appendix D-Preliminary Proposed Schedule - A feasibility study assessment of each of the AWS alternatives, with the exception of Alternative #4 (Remediating and/or treating the sources of PFOA to the groundwater and the MWS), should be completed in 2016. consistent with the project schedule provided in Appendix D. The feasibility of remediating the sources of PFOA that impact the MWS will likely not be able to be evaluated in 2016 since the remedial investigation will likely not have advanced sufficiently by the end of 2016. In this regard, the project schedule provided in Appendix D will need to be modified to indicate that a draft AWS feasibility study report will be submitted to NYSDEC by December 1, 2016. This report could indicate that the feasibility of alternative #4 has yet to be determined and that this will be done once the RI has produced sufficient information to enable such evaluation. It should be noted that this alternative would be required under the RI/FS for this site regardless of whether a study of alternative municipal water supply was included in the remedial program or not. Evaluation of alternatives for remediating sources of groundwater contamination are a basic remedial program component and regardless of which AWS alternative may be selected by NYSDEC, alternatives for the remediation of the source of groundwater contamination will need to be evaluated and may be a component of the selected remedy for the site.

Also, is there a difference between alternative #5 (continuation of existing IRMs, including the full capacity GAC treatment system) and alternative #7 (no further action)? No further action would be the continuation of existing IRMs.

 Section 3.3.1.3 Evaluation Factors for AWS Assessment: In the evaluation of AWS alternatives, all of the evaluation criteria set forth in 6 NYCRR 375-1.8 (f), in conjunction with the additional guidance provided for each criterion in subdivisions (b) through (j) of DER-10 Section 4.2 Remedy Selection Evaluation Criteria, should be used.

- Appendix D- Preliminary Project Schedule: The schedule should be revised to indicate that a draft Alternate water supply assessment report will be submitted to NYSDEC by December 1, 2016.
- Appendix D- Preliminary Project Schedule: The schedule should be revised to indicate that a draft Remedial Investigation Report will be submitted to NYSDEC by May 1, 2017.
- Appendix D- Preliminary Project Schedule: The schedule should be revised to indicate that a draft Feasibility Study Report will be submitted to NYSDEC by October 1, 2017.
- Appendix D- Preliminary Project Schedule: The evaluation of IRMs task should span from the start of field investigation work through completion of the remedial investigation. The need for and/or advantage of implementing IRMs could be realized very early during field investigations and continues through the collection and evaluation of field data.
- Appendix D- Preliminary Project Schedule: General comment. It should be noted that the preliminary schedule is subject to revision, as approved by NYSDEC, based upon the potential need for supplemental field sampling work and/or engineering evaluations beyond that currently approved; the actual duration of field work; and further direction from NYSDEC, as appropriate.

The revised RI/FS Work plan, incorporating the comments above, should be submitted to the Department by September 2, 2016.

If you have any questions regarding this letter, please call me at 518-402-9676.

Sincerely,

Richard A. Mustico, P.E.

Richard A. Mustico, P.E. Project Manager Remedial Bureau D Division of Environmental Remediation

Enclosure

ec: Bill Daigle – NYSDEC Dolores Tuohy, Esq. – NYSDEC Rick Leone – NYSDEC, Region 4 Krista Anders – NYSDOH Justin Deming – NYSDOH Albert DeMarco – NYSDOH Thomas Byrne, Esq. - Honeywell John McAuliffe – Honeywell, Syracuse Christopher Gibson, Esq. - Archer & Greiner Dale Desnoyers, Esq. – Allen & Desnoyers