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Executive Summary 

 

Altered species biogeography poses a myriad of conservation challenges because changes 

in species distributions can move stocks into and out of fixed boundaries Therefore, predicting 

responses of important fish stocks to future climatic conditions is critical to the implementation 

of adaptive conservation planning measures. However, likely shifts in biogeography for many 

species moving into the future remain largely unknown. Correlative species distribution models 

(SDMs), which rely on quantified species-environment relationships to explain and predict 

spatial distributions of species, have become important tools in adaptive natural resource 

management. In the Mid Atlantic Bight to the New York Bight (MAB-NYB), the biogeography 

of many marine species is currently shifting in response to climate-related changes which will 

influence large scale marine spatial planning projects going into this area.  Understanding these 

shifts can help the State of New York to better address concerns over impacts from the future 

offshore wind energy areas to the ecologically and economically important fisheries.  

 

An emerging consensus recommends that uncertainty associated with climate-driven 

changes in species distribution can be better addressed through an ensemble species distribution 

modeling approach.  This project develops and parameterizes a habitat suitability index (HSI) 

model and SDM for Atlantic Scallop (Placopecten magellanicus) off the New York coast. In this 

study, we combined an ensemble SDM platform (BIOMOD 2) and a high-resolution global 

climate model (NOAA GFDL CM2.6) to quantify spatiotemporal changes in the distribution for 

Atlantic scallop in the MAB-NYB. The ensemble model was calibrated using data from the 

National Marine Fisheries Service (NMFS) bottom trawl survey as well as NEFSC Scallop 

Dredge survey to develop the models. Additionally, both the HSI model and SDM are evaluated 

for performance in a cross validation study.  The final model is used to hindcast the suitable 

scallop habitat and distribution in the past and then forecast the distributions under different 

climate change scenarios. 

 

The HSI model, built using a random forest regression approach, showed bottom stress as 

the most important predictor for suitability of habitat for scallop in the MAB-NYB, followed by 

depth, bottom salinity, and temperature. Sediment grain size was of relatively little importance in 

predicting scallop habitat quality. The results from the random forest model cross validation 

study (out-of-bag error evaluation for each tree) showed low error (2.67) and high variance 

explained (61.16%) suggesting good model performance. General trends for HSI-based 

bioclimate envelopes for scallop showed a gradient of increasing habitat quality moving from 

inshore  to offshore areas. Warming across the MAB-NYB over the hindcasted study period 

(1980-2014) resulted in spatial changes in habitat suitability for scallop, with shallower, inshore 

waters in general undergoing a projected decline in habitat suitability and deeper areas, further 

offshore, increasing in habitat suitability.  

 

The ensemble modeling framework developed for the Atlantic sea scallop had most (7 

out of 10) of the  tuned SDM algorithms meet the predefined performance thresholds (True Skill 

Statistic TSS > 0.5 and Receiver Operator Curve ROC > 0.8). The response curves from the 

individual SDM algorithms included in final ensemble models indicate that non-linear 

relationships between the probability of presence and environmental variables for this species. 

The projections produced from the final ensemble model show a spatial distribution that 
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corresponds well to the known general, broad scale distribution of scallop over the MAB-NYB 

with higher probability of presence being generally along offshore areas up to ~ 100m in depth. 

Changing oceanographic conditions across the MAB-NYB, based on CM2.6 projections,  

resulted in large spatial changes in probability of presence for scallop. These changes occur 

along a north-south gradient, with southern areas experiencing a sharper decline in probability of 

occupancy relative to northern areas. However, selected areas within southern New England 

(SNE) showed a projected increase in probability of occupancy for scallop. 

 

While the effects of climate change are complex and diverse, the impacts on fisheries can 

be grouped into two general categories: changes to stock biomass or productivity, and changes to 

stock distribution, each of which poses different management challenges. This study focused on 

the latter, and proposed an ensemble means to infer potential future habitats, based on high-

resolution climate data, of an economically important fisheries resource in the MAB-NYB.  The 

modeling framework developed in this study adds quality projections of spatiotemporal trends in 

the distribution of scallop, in response to changing oceanographic conditions over the next 80 

years and constitutes a step both towards improving conservation planning within the MAB-

NYB as well as increasing the capacity of New York State to generate models needed to inform 

managers to make decisions based on shifts in species distribution. 
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Introduction 

Finfish, shellfish and crustacean species, distributed along the coast of northeastern United 

States, support some of the most valuable fisheries in the USA. Many coastal communities in the 

northeastern USA heavily depend on the fisheries, and such dependence on the fisheries leaves the 

coupled natural and human system vulnerable to environmental (e.g., climate changes) and 

regulatory changes and human activities (e.g., development of offshore wind power). Offshore 

wind power farm development is considered to have a great potential to provide a more sustainable 

source of energy. However, before developing an offshore wind power project, it is important to 

identify and understand potential impacts that the development and operation of offshore wind 

farms may have on marine environments and the organisms which dwell there. Thus, it is 

important to identify possible spatial distributions of key suitable habitat for ecologically and 

economically important fish species to inform placement of offshore wind power projects, and 

evaluate how spatial distributions of species may change as a result of climate changes.   

Offshore wind power in the New York Bight has been a topic of much interest. 

Unfortunately, much of the baseline information that is needed to be able to predict and assess 

the possible impacts of offshore wind energy development on commercial fisheries is still 

lacking. Site-specific data such as in-depth sampling of hard bottom habitats along the Northeast 

U.S. shelf are absent, due to most of stock assessment work focusing on relative abundance and 

not identification of essential habitat (Petruny-Parker et al. 2015). There is also general 

recognition that these wind energy areas on the east coast are located in a region of the 

continental shelf that appears be undergoing change as a result of climate change, stock depletion 

and rebuilding, and changes in the ecological dynamics (Petruny-Parker et al. 2015). 

To address these concerns it is critical to develop modeling tools to hind-, now-, and fore-

cast key habitat areas for the distribution of key fish species in the New York Bight. These 

modeling tools allow us to understand spatial dynamics of critical habitats and fish distributions 

in the past and present, and possibly in the future with different climate change scenarios.  Such 

information has become extremely important to government agencies to properly manage fish 

quotas, protect important habitat, and to site offshore projects in an environmentally responsible 

manner. Inability to understand these shifts could result in economic and ecological harm to New 

York State’s valuable marine resources. Currently, the State does not have the capacity to 

generate the models needed to inform managers to make decisions based on these shifts.  Dr. 

Yong Chen’s lab at the University of Maine has been asked to create a distribution modeling 

framework to assess the spatio-temporal dynamics of Atlantic scallop in the New York Bight.  

Dr. Yong Chen’s lab at the University of Maine’s School of Marine Sciences has been 

able to develop habitat suitability index (HSI) models and Species Distributional Models (SDMs) 

that can be used as a tool for the State’s marine resource managers. These developed HSI Models 

and SDMs have been peer reviewed and accepted by the scientific community. These models 

have been successfully applied across the Gulf of Maine to hindcast and predict the spatio-

temporal distributions of suitable habitat and abundance of American lobster (Homarus 

americanus), Atlantic Scallop (Placopecten magellanicus), Cusk (Brosme brosme), Northern 

Shrimp (Pandalus borealis), and Atlantic Cod (Gadus morhua) under present conditions and 

future climatic conditions (Chang et al. 2010; Tanaka and Chen 2016; Tanaka et al. 2018; Torre 

et al. 2019; Guan et al. 2017; Li et al. 2018; Runnebaum et al. 2019; Tanaka et al. 2019). The 
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HSI and SDM models have performed well and the results have identified spatiotemporal blocks 

where each species is likely to gain, lose, or maintain suitable climatic niches. 

 

Other products produced by the Chen Lab have also been used by the New England 

Fisheries Management Council and the Atlantic States Marine Fisheries Commission. By 

utilizing these additional vetted tools, New York marine resource managers can make more 

informed decisions about our valuable resources.  The objectives of this study are to (1) develop 

and parameterize the HSI models and SDMs for the scallop in the New York Bight; (2) use the 

defined models to hindcast the distributions of suitable habitat and abundance distributions of 

scallop in the New York Bight; and (3) forecast the scallop abundance distributions under 

defined climate change scenarios.  

 

Materials and methods 

We used previously developed SDMs for the Gulf of Maine and adapt them as needed for 

the New York Bight. This modeling framework constitutes a culmination of knowledge acquired 

by the Chen Lab from numerous peer-reviewed studies on modeling species distribution (Chang 

et al. 2010; Tanaka and Chen 2016; Tanaka et al. 2018; Torre et al. 2018; Torre et al. 2019). It 

includes utilizing previously available National Marine Fisheries Service (NMFS) bottom trawl 

data as well as more recent bottom trawl data if it is available.  Additional environmental data 

specific to the New York Bight are also included in the model. These SDMs are able to show 

current distribution and/or abundance of a species, as well as shifts in species distribution under 

future climatic conditions. Thus, the output of these models are flexible and can be tailored to the 

needs of the New York Department of Environment Conservation (DEC). 

New York DEC has requested that Atlantic Scallop be the target species for the HSI model 

and SDM.  This species has previously been modeled for the Gulf of Maine and the model 

compared extremely well to real world observations (Torre et al. 2018, 2019). Atlantic Scallop are 

also an extremely economically valuable species found in the waters of the New York Bight. 

Previous success with this species coupled with large amounts of readily available data, and 

economic importance make this a good test species for developing an HSI model and SDM for the 

New York Bight. 

Furthermore, the spatial resolution of the models was improved to meet the needs of New 

York DEC. Currently, the Gulf of Maine SDM for Atlantic Scallop uses a resolution of 0.05 

decimal degrees.  While this level of resolution is high and acceptable for understanding species 

shifts, a finer resolution could help resource managers site offshore projects in areas that reduce 

conflicts and protect valuable habitat. Changing the resolution on the model is a minor task in the 

overall model development. However, as the resolution becomes finer the required computing 

power increases, thus increasing the overall time needed to run each model iteration.  Balancing 

resolution needs with model run time is optimized after an initial model is developed using the 

original model resolution. 

A New York Bight specific HSI model and SDM can forecast Atlantic scallop distribution 

and abundance over different time series (5 years, 10 years, 20 years, etc.) in response to changing 

climate and environmental conditions on a spatial scale of 0.025 and 0.01 decimal degrees. It is 
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expected that this New York Bight SDM could be applied to other species of importance with 

relative ease as long as survey data and appropriate environmental data are available.   

 

Survey and Environmental data used in model projections 

 

The data available for these analyses were a multi-decade scientific scallop dredge survey 

as well as a bottom trawl survey dataset and associated environmental (bottom temperature, 

bottom salinity, and depth) variables. The fishery-independent survey data for Atlantic sea 

scallop were collected by the Northeast Fisheries Science Center (NEFSC: 1984-2016) covering 

offshore continental shelf waters (Figure 1). In addition, external data in the form of bottom 

stress and sediment grain size were used to add important environmental variables relating to 

scallop distribution on abundance (Figure 2). 

 

 

Figure 1. Delineation of survey areas during a typical NEFSC Scallop Dredge Survey. Figure 

credit: Virginia Institute of Marine Sciences (VIMS) 

Historical bottom temperature and salinity climatology within the MAB-NYB  were 

developed using high-resolution, quality-controlled monthly means from the Northwest Atlantic 
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regional bottom temperature and salinity climatology for 1955-2012 (1/10°; Seidov et al. 2016). 

Bathymetry data was obtained from the U.S. Coastal Relief Model (NGDC 1999).  

Projected oceanographic conditions used in this study were developed using the delta-

method (Fogarty et al. 2008; Hare et al. 2012). The delta method is commonly used for future 

climate projection, which relies on the difference between future climate anomalies and a 

baseline regional climatology (historical climate condition). The delta-method can remove the 

climate model projection biases (e.g. drift) and provide a simple and robust projection of future 

climate conditions (Hare et al. 2012). 

Projected bottom temperature and salinity conditions used in this modeling framework 

are from a high-resolution global climate model developed at the NOAA Geophysical Fluid 

Dynamics Laboratory (GFDL CM2.6; Delworth et al. 2012; Saba et al. 2016). CM2.6 is a 

coupled atmosphere-ocean-land-sea ice global climate model, with a 0.1° average horizontal 

resolution for its ocean component (Saba et al. 2016). CM2.6 resolves mesoscale oceanographic 

processes and fine-scale bathymetry within the NEUS-LME leading to a better simulation of 

regional ocean and shelf circulation when compared to global climate models with coarser ocean 

components (Saba et al. 2016). The bottom temperature and salinity projections from CM2.6 are 

based on (1) the standard model initialization procedure where global atmospheric CO2 is fixed 

at a 1860 pre-industrial concentration to bring the climate system into near-equilibrium, and (2) a 

transient climate response to simulated 1% year-1 increase in global atmospheric CO2 run (i.e. 

2xCO2 simulation) up to 70-years and is then fixed for an additional 10-years. The CM2.6 

2xCO2 simulation can be roughly compared to the IPCC highest greenhouse gas emissions 

scenario (IPCC-RCP8.5). Under the IPCC RCP8.5 scenario, the global mean surface temperature 

increases by 2 °C by 2060-70 relative to the 1986-2005 climatology (Winton et al. 2014). The 

CM2.6 2xCO2 simulation projects the global mean temperature increases by 2 °C by year 60-80. 

The regional 1955-2012 bottom temperature and salinity climatologies were used in 

conjunction with CM2.6 delta values to depict change in bottom temperature and salinity over 

the future 80-years. This results in bottom temperature warming on the scale of 1.8-2.9 °C over 

the simulated 80-years across the NEUS-LMES (Figure 2). 
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Figure 2. Environmental variables used in modeling framework. Dynamic environmental 

variables (bottom temperature, bottom salinity, and bottom stress) are annual mean values to 

represent the range of seasonal exposure for this species.    

Development of a Habitat Suitability Index (HSI) 

Suitability indices (SIs) and Habitat Suitability Index scores (HSI) were developed using 

a machine learning technique, Random Forest models, from the R package randomForest (Liaw 

and Wiener 2002; R Core Team Development 2016) to regress presence of P. magellanicus with 

a suite of environmental covariates. Random forest regression was used because of its robustness 

to overfitting and flexibility of implementation (Liaw and Wiener 2002; Prasad et al. 2006). 

Random Forest regression is an ensemble learning technique based on combinations of sets of 

decision trees, where each tree is trained through the selection of a random bootstrap subset of 

the original dataset alongside a random set of predictor variables. To assess the importance of 

each predictor variable to the presence/absence of scallops in the study area as well as for the 

calculation of root mean squared error (RMSE),  the random forest model withholds data (OOB, 

out-of-bag) to validate each tree for the classification of OOB error (Liaw and Wiener 2002; 

Prasad et al. 2006). This commonly used evaluation criterion shows the average error of a model 

when testing against the independent OOB data (Chai and Draxler 2014). 
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Ensemble species distribution modeling algorithm 

 

Ensemble species distribution models (SDMs) for scallop were calibrated using presence-

absence data from the NEFSC scallop dredge survey. The environmental variables used for the 

ensemble scallop habitat modelling were directly obtained from the survey dataset (1982-2016). 

Bottom temperature, salinity and depth that were available at each tow location were used 

(Tanaka and Chen 2016; Torre et al. 2018). Furthermore, the location variables (i.e., latitude and 

longitude) were used to capture localized effects of a suite of proxy habitat factors (Winton et al. 

2014; Rooper et al. 2014; Tanaka et al. 2017, 2018). Dynamic environmental variables (bottom 

temperature and salinity) collected from the bottom trawl survey were averaged across all 

seasons. Temporal aggregation of these variables was carried out in order to incorporate the 

largely sedentary nature of this species and reflect an annual range of conditions from a given 

location (Torre et al. 2018). Potential collinearity among environmental variables used to predict 

species occurrence were assessed by calculating variance inflation factors (VIFs; Zuur et al. 

2007). No predictor variable showed VIF value >3, therefore the multicollinearity was assumed 

to be negligible. 

 

Our ensemble SDM platform is based on the BIOMOD2 package developed in the R 

Programming environment (Alabia et al. 2016, 2018; Thuiller et al. 2016). The BIOMOD2-based 

ensemble SDM algorithm can incorporate species presence-absence data and combine multiple 

SDM algorithms to provide robust species occurrence-environment relationships. The following 

10 SDM algorithms were explored to predict spatiotemporal changes in presence probability of 

scallop across the study area under current (average 1980-2015 climatology) and future climatic 

conditions (CM2.6; Figure 3): generalized linear model (GLM), boosted regression tree (GBM), 

generalized additive model (GAM), classification tree analysis (CTA), artificial neural network 

(ANN), surface range envelope (SRE), flexible discriminant analysis (FDA), multiple adaptive 

regression splines (MARS), random forest (RF), and maximum entropy (Maxent). In order to 

optimize the fit to species’ response curves and increase predictive performance from all SDM 

algorithms used in the ensemble modeling framework, a tuning process was developed where 

individual SDM parameters were varied by means of a 10-fold cross-validation procedure 

(Breiner et al. 2018). For each algorithm, the SDM parameter setting yielding highest receiver 

operator curve (ROC) value during the cross-validation procedure was kept. For model tuning, 

the BIOMOD tuning function was used, which uses tuning functions from the CARET R-

package to tune GBM, ANN, GAM, MARS, GLM, and CTA (Kuhn 2008), and ENMEVAL R-

package to tune Maxent (Muscarella et al. 2014). 

Appendix A describes the results from the parameter tuning process for each algorithm 

used in the ensemble species distribution model (SDM) developed for scallops in the Mid-

Atlantic to New York Bight study area. Tuned parameters for each algorithm were set based on 

these results (Appendix A) for the final ensemble SDM to optimize model performance. 
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Figure 3. Schematic diagram describing the development of ensemble species distribution 

models. 

 

Once SDMs were fitted with optimized parameters, all SDMs were run three times each 

using a randomly chosen 80% of the presence-absence data, with the remaining 20% of the data 

being used to cross-validate model results. A balance of three runs per each SDM was struck to 

limit computational demands while still achieving stable results (Thuiller et al. 2016). Two SDM 

evaluation criteria, ROC and the true skill statistic (TSS), were calculated through cross 

validation and used to assess the performance of each algorithm, with higher values for each 

metric being an indication of higher model skill (Hill et al. 2017; Mi et al. 2017; Figure 3).The 

best-fitting SDM performance were evaluated against predetermined thresholds (TSS > 0.5 and 

ROC > 0.8; Hill et al. 2017; Mi et al. 2017). The built-in BIOMOD2 function was used to 

compute the relative variable importance derived from the SDM runs that meet TSS and ROC 

thresholds. 

An ensemble SDM was built for scallop using a composite of the SDM runs that meet 

predetermined TSS and ROC thresholds. Additionally, the response curves for all selected SDM 

outputs (response curves and spatial predictions) were visually assessed for validity. Top 

performing algorithms (excluding those with implausible results) were ranked by the TSS score 

and combined, using a weighted average of TSS scores, to produce the final ensemble model, 

which predicts the probability of presence for scallop at 0.1° resolution across the study area. 

The weighted average of individual SDMs to form the final ensemble projection (FEP) was 

calculated as follows: 
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[1.] 

where Ai denotes the habitat suitability (probability of presence) a single run of one of the 10 

SDM algorithms;  TSSi denotes the true skill statistic score received by that run; and n is the 

total number of all runs of all algorithms to be included into the final ensemble model. 

Projections of future habitat 

Weighted species-specific ensemble SDM was used to project the probability of 

occupancy of scallop across the NEUS-LME under historic bottom temperature and salinity 

conditions and over the future 80-years based on the transient climate-driven bottom temperature 

and salinity changes in response to the doubling of 1% CO2 per year increase scenario applied in 

the NOAA GFDL CM2.6 (Saba et al. 2016). The mean regional bottom temperature and salinity 

climatology for 1955-2012 was used to project species-specific habitat suitability under the 

“current” conditions. Species-specific habitat suitability change under future bottom temperature 

and salinity conditions were generated by combining the weighted ensemble SDM with the 

CM2.6 bottom temperature and salinity fields at each time step. 

The magnitude of temperature and salinity-driven changes in species-specific habitat 

suitability across the study area were analyzed. A two-sample Kolmogorov-Smirnov test (KS-

test) test at the 95% level was used to quantify the difference in the modeled probability of 

presence at a given location between first and last 10-years of the projected 80-years (Conover 

1971; DeGroot and Schervish 2002). A two-sample KS-test was conducted at every ensemble 

projection output grid (0.1°), and all the “local” hypothesis tests (p < 0.05 indicating that the 

distribution of two samples compared are significantly different) were aggregated and 

summarized using both D-statistic and p-values. In order to further evaluate the spatial changes 

in probability of occupancy of scallop across the NEUS-LME, ensemble projections were further 

aggregated for each management zone (see Figure 1) to highlight changes in species habitat 

suitability within those economically relevant areas (GOM-GB and SNE nearshore areas) and 

also to isolate distinct areas spanning a gradient of oceanographic conditions (e.g. GOM-GB and 

SNE). 

Assessment of uncertainty in the ensemble projections 

Finally, unanimity of agreement among individual ensemble members (i.e., every SDM 

run with TSS > 0.5 and ROC > 0.8) was analyzed to assess the magnitude of uncertainty in 

ensemble projections (Collins et al. 2013). A linear trend from every individual SDM projection 

was classified as either an increase (positive slope with p < 0.05), decrease (negative slope 

coefficient with p < 0.05), or no change (p ≥ 0.05). Agreement ratio among individual ensemble 

members was then calculated for each management area, where a ratio of 1 indicates that all 

individual SDM projections exhibited the same trend (increase, decrease or no change). 

Agreement ratio was calculated from both weighted and unweighted individual SDM 

projections. Unweighted agreement ratio indicated that all individual SDM projections were 

considered equally, while weighted agreement ratio indicated that individual SDMs with higher 
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skills were given more weight on agreement ratio. For a given management area, a projected 

trend was considered “likely” (agreement ratio above 66%) or “unlikely” (agreement ratio less 

than 33%). Furthermore, agreement ratio from both weighted and unweighted individual 

ensemble members was compared to assess the robustness of projected habitat suitability 

changes within each management area.  

 

Results 

Habitat Suitability Index (HSI) 

Suitability indices and variable importance 

Peak Suitability Index values for each Scallop-Environment relationship were as follows: 

ideal yearly bottom temperature ~ 9 °C inshore, ideal depth range <  100m, bottom stress < 0.10; 

sediment grain size between 4 and 6.5 (Figure 4). Salinity did not appear to have large contrast 

over the study area. However, a slightly decreasing trend was observed likely reflecting the 

offshore distribution of this species in the MAB-NYB. 
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Figure 4. Scallop-Environment response curves developed from the random forest model. These 

curves represent suitability indices, where highest scallop abundance is structured along the 

peaks of each respective plot. 

 

The results from the random forest model cross validation study (out-of-bag error 

evaluation for each tree) show the relative importance of each environmental predictor on habitat 

quality for scallops in the MAB-NYB. In this model, bottom stress was considered to be the most 

important predictor, followed by depth, bottom salinity, and temperature (Figure 5). Sediment 

grain size was of relatively little importance in predicting scallop habitat quality, likely due to the 

largely homogeneous distribution of sediment type throughout the region. The results from the 

random forest model cross validation study also show high performance of this approach with 

mean of squared residuals = 2.67 and percent of explained variance =61.1. 

 

Figure 5. Relative importance of each environmental variable with respect to its predictive ability 

in the random forest model for scallop habitat suitability in the MAB-NYB.  
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Spatial HSI evaluation 

The HSI-based bioclimate envelopes for scallop showed higher habitat suitability in 

offshore (> ~30nm) areas relative to inshore (< ~30nm) areas along most of the MAB-NYB 

(Figure 6). However, in SNE along southern Long Island suitable habitat (HSI > 0.8) extends 

closer to inshore areas. Additionally, the area along southern Georges Bank showed high habitat 

suitability. 

The proportion of total habitat with at least moderate habitat suitability (HSI > 0.5) for 

scallop along the MAB-NYB shelf was 64.5%. The proportion of total habitat with high habitat 

suitability (HSI value > 0.8) was 56.3%. 

 

 

 

 

Figure 6. Spatial distribution of Habitat Suitability Index (HSI) values over the Mid-Atlantic 

Bight to the New York Bight. HSI values are shown here averaged across three distinct time 

periods spanning the study period (1980-2014). The HSI value indicates the change of habitat 

quality with 1 being the highest quality and 0 being unsuitable habitat.   

 

Warming across the MAB-NYB over the hindcasted study period (1980-2014) resulted in 

spatial changes in habitat suitability for scallop (Figure 6). General changes in the distribution of 

available habitat for scallop shows an inshore-offshore trend where shallower waters have 

declined in habitat suitability and deeper areas, further offshore, have experienced an increase in 

habitat suitability. In addition, select areas within southern New England (SNE) have shown an 

increase in habitat suitability for scallop (Figure 7). 
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Figure 7. Temporal changes in the spatial distribution of Habitat Suitability Index (HSI) values 

for scallops within the Mid-Atlantic Bight to the New York Bight over the study period (1980-

2014). Red (warm) color has a positive temporal trend, indicating an improved habitat quality 

over time, while blue (cold) color has a negative temporal trend, indicating a reduced habitat 

quality over time from 1980 to 2014.  

 

Scallop distribution in the New York Bight 

Mapping of the NEFSC scallop dredge survey data gives an initial look at general scallop 

distribution in the MAB-NYB and provides a means to visualize the current distribution of 

scallop biomass in these areas. In general, scallops are primarily found in offshore waters 

shallower than 100m with very few individuals found deeper than 100m (Figure 8). Highest 

densities of scallops are shown between 45-75m (Figure 8). Scallops have undergone large 

decadal variations in distribution and biomass as the fishery has undergone boom and bust cycles 

over the past 30-40 years.  
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Figure 8. Scallop distribution and abundance based on data from the NEFSC Scallop Dredge 

Survey. Figures are broken up into 5 to 10 year periods from 1980 - 2015 in order to demonstrate 

temporal changes over the study period. Figures on the left show individual survey samples and 

figures on the right show a smoothed interpolated surface developed using ordinary kriging.  

 

Ensemble species distribution model for scallop 

The ensemble modeling framework developed for the Atlantic sea scallop had 8 out of 11  

tuned SDM algorithms meet the performance thresholds (TSS > 0.5 and ROC > 0.8; Figure 9). 

SRE, Maxent Phillips, and GLM did not meet the performance thresholds and were rejected 

from the final model. The prediction accuracies of the selected SDM runs were considered 

acceptable. Of the selected SDM runs, the best performing and highest weighted on the final 

ensemble model for scallop was GBM (Figure 9). Maxent Tsuruoka had the lowest acceptable 

performance and thus had the lowest weight on the final ensemble model (Figure 9).  



 

20 

 

Figure 9. Performance criteria (TSS = True Skill Statistic; ROC = Receiver Operator Curve) for 

each SDM algorithm included in the ensemble modeling framework for scallops in the MAB-

NYB.  

 

Response curves from the individual SDM algorithms included in final ensemble models 

indicate non-linear relationships between the probability of presence and environmental variables 

for this species. The final ensemble model produced a spatial distribution that corresponds well 

to consensus of the general, broad scale distribution of scallop over the MAB-NYB (Figure 10). 

In general, higher probability of presence is found along offshore areas up to ~ 100m in depth 

(Figure 10).

Figure 10. Spatial distribution of probability of presence values for scallops over the Mid-

Atlantic Bight to the New York Bight. Probability of presence values in this figure represent a 

median value for hindcasted oceanographic conditions from 2015-2000 in order to portray a 

“current” distribution upon which projected values can be compared against. The scale (0 - 1000) 
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corresponds to the probability (0 low probability, 1000 high probability) of encountering the 

modeled species within a given cell. 

 

Projected warming across the MAB-NYB over the next 80-years resulted in large spatial 

changes in probability of presence for scallop (Figure 11). The general distribution of changes in 

scallop probability of presence over the study period showed a general north-south trend, with 

southern areas experiencing a projected more sharp decline in probability of occupancy relative 

to northern areas (Figure 11). Select areas within southern New England  (SNE) showed a 

projected increase in probability of occupancy for scallop (Figure 11). 

Figure 11.  Climate-driven change in the spatial distribution of probability of occupancy values 

for scallops over the Mid-Atlantic Bight to the New York Bight. Changes in probability of 

occupancy values in this figure represent the degree of change at each raster cell over the 80 year 

projection with red (warm) color indicating increasing trends (positive trend) and blue (cold) 

color indicating decreasing trends over the 80 years of projection time period.  

 

Discussion 
Altered oceanographic conditions driven by climate change are likely to result in shifts in 

species distribution, which may influence large scale marine spatial planning projects in the New 

York Bight.  The ability to better understand these shifts can help the State to address concerns 

over impacts from future offshore wind energy areas to ecologically and economically important 

fisheries. Specifically, this project develops and parameterizes a species distribution model 

(SDM) for Atlantic Scallop in the MAB-NYB and establishes a means to infer the potential 

future habitats, based on the high-resolution climate data. The modeling effort also developed the 
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ability to visualize the current distribution of scallops within this area as well as projected 

changes to this distribution. The suite of modeling and visualization tools made available by this 

project will allow the state to better interface with wind energy developers and help to inform 

responsible placement of wind turbines within lease sites.  

 

Justification for using ensemble SDM approach 

This modeling framework uses an ensemble approach in the development of the species 

distribution model (SDM) for scallop. Ensemble SDMs are increasingly being used in ecology as 

they address a major challenge associated with the choice of SDM algorithm that can have a 

large impact on projections (Araújo and New 2007; Buisson et al. 2010; Forester et al. 2013). A 

major challenge in the development of SDMs deals with the selection of an appropriate modeling 

methodology among a range of alternatives (Araújo and New 2007). Studies have shown that 

projections based on a single SDM, out of the myriad biostatistical approaches currently 

available, can have enough variability to cause misinterpretation of even a simple application 

(Pearson et al. 2006; Araújo and Luoto 2007). This challenge constitutes a large source of 

uncertainty in SDM outputs, however, a growing body of literature suggests that the combination 

of individual algorithms yield lower mean error than any individual constituent part (Araújo and 

New 2007; Buisson et al. 2010). In order to avoid issues associated with model selection bias, an 

ensemble modeling approach was used where multiple individual SDM algorithms are selected 

and weighted based on performance metrics along with visual assessment to ensure that model 

results fall within known physiological understanding of scallop. Through providing a method to 

alleviate issues associated with variability in ecological predictions across a wide range of 

currently available statistical methods, ensemble SDMs provide the distinct advantages of 

offering a more straightforward approach to model selection. 

Limitations to this modeling approach 

It is critical to acknowledge that that modeled habitat suitability in this study should be 

interpreted as a proxy for probability of presence (occupancy) as opposed to actual lobster and 

scallop habitat suitability, given that measured catch was affected by some niche dimensions and 

processes not explicitly included in the predictors (e.g., territorial occupancy occurring at smaller 

scales) (Tanaka et al. 2018; Torre et al. 2018). Furthermore, projected species habitat suitability 

changes in this study should be viewed as a potential change in occupancy of a species due to 

changes in bottom temperature and salinity while holding all other top-down and bottom up 

variables constant (e.g. fishing pressure and species interaction). For example, environment-

presence relationships for sea scallop were defined upon only five predictor variables when in 

reality, regional predator-prey interactions such as sea star predation on sea scallops can have a 

significant effect on the distribution of the species at smaller scales (Hart and Chute 2004; Hart 

2006). Furthermore, we used latitude and longitude as proxy variables to capture a wide range of 

covarying bio-climate factors such as spatiotemporally variable fishing pressure and larval 

supply (Guernier et al. 2004; Wikgren et al. 2014; Shumway and Parsons 2016; Tanaka et al. 

2018). As a result, certain areas with high quality habitats may have lower probability of 

detected presence. Another potential limitation of our modeling approach is that the interpolation 

of survey-derived environmental data masks the scale at which fine-scale habitat selection 

(active or passive) is occurring for each species. While these are important points to consider in 
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future studies, our study focused on evaluating changing probability of presence over a large 

spatial scale. The large spatiotemporal extent of observations used in this study reflect species 

presence-environment relationships reasonably well for both lobster and scallop. As more 

comprehensive environmental data becomes available in the future, a further detailed ensemble 

SDM approach could include additional variables such as pH, dissolved oxygen, predator-prey, 

and other food-web interactions to capture a more comprehensive representation of the 

biogeography of lobster and scallop (e.g., Bio-ORACLE http://www.bio-oracle.org/). 

Spatial trends in projected scallop distribution 

The dominant temporal trend for scallop over the simulated 80-years is a climate-driven 

habitat reduction in the MAB-NYB. A significant decreasing trend in scallop habitat quality was 

projected in many parts of the study area. These results signify a likely contraction of suitable 

scallop habitat in offshore waters of the MAB-NYB. These findings parallel other studies on the 

spatial distribution of scallop in response to oceanographic change in the Northwest Atlantic 

(Howell 2012; Steneck and Wahle 2013; Wahle et al. 2013; Tanaka and Chen 2016; Torre et al. 

2018). However, select northern areas within the MAB-NYB (south of Nantucket sound) show a 

projected increase in habitat quality which suggests a north-south gradient of habitat change over 

the course of the model projection. This modeling effort suggests that climate change will act as 

a likely stressor to the southern scallop fisheries and continues to drive the further contraction of 

scallop and habitats into northern areas. Similar findings were also reported for other major 

commercial stocks in the regions Nye et al. (2009). 

Conclusions 

This study provides ensemble estimates of climate-driven changes and associated 

uncertainties in the biogeography of the Atlantic sea scallop, in the area from the Mid-Atlantic to 

the New York Bight (MAB-NYB), and has developed a modeling framework capable of being 

extended to other species of interest. Large spatial heterogeneity is present in the habitat 

suitability and distributions for the scallop in the MAB-NYB. Such spatial variabilities change 

over time, with some areas having improved habitat and distribution and other areas having 

reduced habitat quality and distribution for scallop over time in the MAB-NYB.  Projected 

climate change in the MAB-NYB will pose management challenges for the scallop, and these 

ensemble projections provide useful information for climate-ready management of commercial 

fisheries. 
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Appendix A 

 

 
Appendix A. Each figure represents the results from the parameter tuning process for each 

algorithm used in the ensemble species distribution model (SDM) developed for scallops in the 

Mid-Atlantic to New York Bight study area. Tuned parameters for each algorithm were set based 

on these results for the final ensemble SDM to optimize model performance. 


