

SITE CHARACTERIZATION REPORT

HOOSICK FALLS LANDFILL SITE 9 WALNUT STREET TOWN OF HOOSICK, NEW YORK 12090

NYSDEC Site No. 442007 Work Assignment No. D007620-34.1

Submitted to:

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233

Prepared by:
TRC Engineers, Inc.
10 Maxwell Drive
Clifton Park, New York 12065
TRC Project No. 270939.0000.0000

JANUARY 2019

TABLE OF CONTENTS

<u>SEC</u>	<u>CTION</u>		<u>PAGE</u>
1.0		INTRODUCTION	1
2.0		SITE DESCRIPTION AND HISTORY	2
	2.1 2.2 2.3 2.4	Site Location and Setting Site Features and Use Site History/Past Use Topography and Site Drainage	
3.0		PREVIOUS INVESTIGATIONS	5
	3.1	Wehran Engineering, P.C. Phase I Investigation	
		3.1.3 Preliminary Hazard Ranking System Score	<i>6</i>
	3.2	Gibbs & Hill, Inc. Phase II Investigation	
		3.2.1 Geophysical Survey	
		3.2.2 Groundwater Sampling	
		3.2.3 Surface Water Sampling	
		3.2.5 Final Hazard Ranking System Score	
	3.3	Laberge Engineering and Consulting Group LTD Closure Investigation Re	
		3.3.1 Private Water Well Survey	
		3.3.2 Groundwater Sampling	
		3.3.3 Leachate Sampling	
		3.3.4 Surface Water Sampling	10
		3.3.5 Soil Gas Survey	10
4.0		SITE CHARACTERIZATION	12
	4.1	Implementation of Community Air Monitoring Plan (CAMP)	13
	4.2	Surface Soil Sampling	
	4.3	Surface Water and Sediment Sampling	14
	4.4	Monitoring Well Installation and Subsurface Soil Sampling	
		4.4.1 Overburden Groundwater Monitoring Wells	
		4.4.2 Intermediate-Depth Bedrock Groundwater Monitoring Well	
	4 -	4.4.3 Deep Bedrock Groundwater Monitoring Wells	
	4.5	Monitoring Well Development	
	4.6	Groundwater Level Measurements	
	4.7	Groundwater and Leachate Sampling	
		4.7.1 June 2017 Sampling Event	
	4.8	Site Survey	
	4.9	Investigation-Derived Waste (IDW)	
5 O		_	
5.0		DISCUSSION OF RESULTS	

	5.1	Appno	cable Regulatory Standards	
		5.1.1	Surface Water	
		5.1.2	Sediment	
		5.1.3	Soil	
		5.1.4	Groundwater and Leachate	
	5.2		ce Soil Sampling	
		5.2.1	VOCs in Surface Soil	
		5.2.2	SVOCs in Surface Soil	
		5.2.3	Pesticides in Surface Soil	
		5.2.4	Polychlorinated Biphenyls in Surface Soil	
		5.2.5	Metals in Surface Soil	
		5.2.6	Per- and Polyfluoroalkyl Substances (PFAS) in Surface Soil	25
	5.3	Surfac	ce Water Sampling	
		5.3.1	VOCs in Surface Water	
		5.3.2	SVOCs in Surface Water	
		5.3.3	Pesticides in Surface Water	
		5.3.4	Polychlorinated Biphenyls (PCBs) in Surface Water	
		5.3.5	Metals in Surface Water	
		5.3.6	Per- and Polyfluoroalkyl Substances (PFAS) in Surface Water	
	5.4	Sedim	ent Sampling	
		5.4.1	VOCs in Sediment	
		5.4.2	SVOCs in Sediment	
		5.4.3	Pesticides in Sediment	
		5.4.4	Polychlorinated Biphenyls (PCBs) in Sediment	
		5.4.5	Metals in Sediment	
		5.4.6	Per- and Polyfluoroalkyl Substances (PFAS) in Sediment	
	5.5		rface Soil Sampling	
		5.5.1	VOCs in Subsurface Soil	
		5.5.2	SVOCs in Subsurface Soil	
		5.5.3	Pesticides in Subsurface Soil	
		5.5.4	Polychlorinated Biphenyls in Subsurface Soil	
		5.5.5	Metals in Subsurface Soil	
		5.5.6	Per- and Polyfluoroalkyl Substances (PFAS) in Subsurface Soil	
	5.6		ndwater and Leachate Sampling	
		5.6.1	VOCs in Groundwater and Leachate	
		5.6.2	SVOCs in Groundwater and Leachate	
		5.6.3	Pesticides in Groundwater and Leachate	
		5.6.4	Polychlorinated Biphenyls (PCBs) in Groundwater and Leachate	
		5.6.5	Metals in Groundwater and Leachate	
		5.6.6	Per- and Polyfluoroalkyl Substances (PFAS) in Groundwater and Leachate	
	5.7		Usability	
	5.8	Geolo	gy and Hydrogeology	37
6.0		FINDI	INGS	38
7.0		CERT	TIFICATION OF ENVIRONMENTAL PROFESSIONALS	41
8.0		REFE	RENCES	42

TABLE OF CONTENTS (Continued)

LIST OF TABLES

Table 1 – Summary of Results of Analysis of Surface Soil for Volatile Organic Compounds
Table 2 – Summary of Results of Analysis of Surface Soil for Semivolatile Organic Compounds
Table 3 – Summary of Results of Analysis of Surface Soil for Pesticides and Polychlorinated Biphenyls
Table 4 – Summary of Results of Analysis of Surface Soil for Metals
Table 5 – Summary of Results of Analysis of Surface Soil for Per- and Polyfluoroalkyl Substances
Table 6 – Summary of Results of Analysis of Surface Water for Volatile Organic Compounds
Table 7 – Summary of Results of Analysis of Surface Water for Semivolatile Organic Compounds
Table 8 – Summary of Results of Analysis of Surface Water for Pesticides and Polychlorinated Biphenyls
Table 9 – Summary of Results of Analysis of Surface Water for Metals
Table 10 – Summary of Results of Analysis of Surface Water for Per- and Polyfluoroalkyl Substances
Table 11 – Summary of Results of Analysis of Sediment for Volatile Organic Compounds
Table 12 – Summary of Results of Analysis of Sediment for Semivolatile Organic Compounds
Table 13 – Summary of Results of Analysis of Sediment for Pesticides and Polychlorinated Biphenyls
Table 14 – Summary of Results of Analysis of Sediment for Metals
Table 15 – Summary of Results of Analysis of Sediment for Per- and Polyfluoroalkyl Substances
Table 16 – Summary of Results of Analysis of Subsurface Soil for Volatile Organic Compounds
Table 17 – Summary of Results of Analysis of Subsurface Soil for Semivolatile Organic Compounds
Table 18 – Summary of Results of Analysis of Subsurface Soil for Pesticides and Polychlorinated Biphenyls
Table 19 – Summary of Results of Analysis of Subsurface Soil for Metals
Table 20 – Summary of Results of Analysis of Subsurface Soil for Per- and Polyfluoroalkyl Substances
Table 21 – Summary of Results of Analysis of Groundwater for Volatile Organic Compounds
Table 22 – Summary of Results of Analysis of Groundwater for Semivolatile Organic Compounds
Table 23 – Summary of Results of Analysis of Groundwater for Pesticides and Polychlorinated Biphenyls
Table 24 – Summary of Results of Analysis of Groundwater for Metals
Table 25 – Summary of Results of Analysis of Groundwater for Per- and Polyfluoroalkyl Substances

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Project Limits and Pre-Existing Site Features
Figure 3	Sampling Location Plan
Figure 4	Select Surface Soil Analytical Results
Figure 5	Select Surface Water Analytical Results for Metals
Figure 6	Select Surface Water Analytical Results for PFAS
Figure 7	Select Sediment Analytical Results
Figure 8	Select Subsurface Soil Analytical Results
Figure 9	Groundwater Surface Elevation Contour Map – Overburden – June 2017
Figure 10	Groundwater Surface Elevation Contour Map – Overburden – February 2018
Figure 11	Groundwater Surface Elevation Contour Map – Overburden and Bedrock – June 2018
Figure 12	Groundwater Surface Elevation Contour Map – Overburden and Bedrock – July 2018
Figure 13	Select Groundwater Analytical Results for Metals
Figure 14	Select Groundwater Analytical Results for PFAS

LIST OF APPENDICES

- Appendix A Soil Boring and Monitoring Well Construction Logs
- Appendix B Field Forms Groundwater Sampling Logs
- Appendix C Site Survey
- Appendix D Waste Disposal Records
- Appendix E Data Usability Summary Reports
- Appendix F For Reference Purposes Only

Thayer's Pond Fish Sampling Results Summary for PFOA and PFOS

iv

1.0 INTRODUCTION

This report presents the results of the Site Characterization (SC) for the Hoosick Falls Landfill Site (referred to as the "Site") located at 9 Walnut Street, near the intersection with New York State Route 22 (RT-22), in the Town of Hoosick Falls, Rensselaer County, New York. Refer to **Figure 1**, Site Location Map. The SC was completed in accordance with the New York State Department of Environmental Conservation (NYSDEC or the "Department") Division of Environmental Remediation (DER) Work Assignment (WA) No. D007620-34 Notice to Proceed dated December 23, 2016, the NYSDEC-approved amended Scope of Work dated June 18, 2018 (WA No. D007620-34.1), and NYSDEC DER-10, Technical Guidance for Site Investigation and Remediation (DER-10).

The Site Investigation Area includes the Hoosick Falls Landfill Site, properties bordering the Site and off-site properties located north of the landfill. Refer to **Figure 2**, Project Limits and Pre-Existing Site Features. The Site has been assigned NYSDEC Site No. 442007. The SC was performed to further investigate known and potential contamination caused by the historic operations at the Site for the purposes of assisting the Department in determining whether the Site poses a significant threat to public health and/or the environment, warranting a Remedial Investigation (RI).

During operation, the Hoosick Falls Landfill is believed to have accepted industrial waste, including waste containing per- and polyfluoroalkyl substances (PFAS). Monitoring wells at the Site were sampled and found to contain concentrations of PFAS above United States Environmental Protection Agency (USEPA) Health Advisory Levels for drinking water. A leachate sample and surface water sample collected from the Site also contained elevated PFAS concentrations. As indicated above, in December 2016, the Department issued a SC WA to TRC Engineers, Inc. (TRC) to further investigate known and potential contamination on the Hoosick Falls Landfill property and adjacent parcels. The scope of the SC included surface soil sampling, surface water and sediment sampling, monitoring well installation and subsurface soil sampling, groundwater sampling, and surveying. The SC field investigation activities were implemented between May 2017 and June 2018, as described in this report.

2.0 SITE DESCRIPTION AND HISTORY

2.1 Site Location and Setting

The Hoosick Falls Landfill Site is in a mixed residential, agricultural and commercial area approximately one-half mile north of the Village of Hoosick Falls (referred to as the "Village"), in northeastern Rensselaer County, New York (see **Figure 1**). The Site is primarily comprised of an irregularly shaped 28.55-acre parcel of land identified on the Town of Hoosick Tax Maps as Section 17, Block 2, Lot 16.2. The Site's Property Class is "852 – Landfill". The Village owned and operated a landfill at the Site from the mid-1930s until the facility stopped accepting waste in 1993. The Site is currently owned and/or operated by the Village (subject to several easements, etc.), and access is via a gated gravel driveway at the end of Walnut Street, which leads to the Village's active Transfer Station at the northeastern corner of the Site. The Site is not fenced.

The Site is bordered by undeveloped land, a railroad corridor for Pan Am Southern (PAS), Hoosick Junction Road and Walloomsac River to the north; undeveloped land, residential and commercial properties, and RT-22 to the east; undeveloped land, Thayer's Pond, residential and commercial properties, and Sewer Plant Road to the south; and, a railroad corridor for PAS, the Hoosick River and undeveloped land to the west. There is an 80-foot wide north-northwest - south-southeast easement for Niagara Mohawk Power Corporation on the western portion of the Site. However, the utility poles and lines associated with this easement were re-routed around the Site to extend the operational life of the landfill.

Thayer's Pond is the closest surface water body to the Site. A portion of the pond is within the southernmost part of the Site. The Hoosick River, a "protected stream" designated as Class C (T) waters, is located less than 200 feet west of the Site. The Walloomsac River, also a "protected stream" designated as Class C (T) waters, is located approximately 2,850 feet north of the Site. A municipal water supply well, which supplies drinking water for the Village, is located approximately 2 miles south of the Site. Some homes and businesses within the Site Investigation Area are serviced by private water supply wells and private sewer systems.

2.2 Site Features and Use

The landfill is currently inactive. However, the Village operates a Transfer Station in the northeastern part of the Site. The Transfer Station area consists of a gravel driveway and lot, which contains two (2) small storage sheds, portable sanitary facilities, roll-off containers, a waste staging pad and a loading platform. Monolith Solar Associates, LLC operates an approximately 75,000 square foot solar farm on top of the southwest portion of the landfill. The solar farm consists of three (3) 200 kilowatt systems and includes solar panels, inverters, modules, conduit trenches, a summing panel and a utility tie-in point. Other notable features include the utility poles and power lines along the southern, eastern and northern perimeters of the Site, a leachate collection vault (HFL-GW-PW-1), a manhole (HFL-MH-001, purpose unknown), and three (3)

overburden groundwater monitoring wells (HFL-MW-001B, HFL-MW-002 and HFL-MW-004). **Figure 2** shows the locations of the Site features which existed at the start of the SC field investigation activities.

2.3 Site History/Past Use¹

The Village of Hoosick Falls operated an "unlined" municipal landfill at the Site from the mid-1930s until it stopped accepting waste at the landfill in 1993. During this time, the landfill reportedly received an average of 23 tons of municipal and industrial waste per day from local residential and industrial communities. The municipal waste included sewage sludge from the Hoosick Falls Wastewater Treatment Plant and general household trash. The industrial waste included oil, wastepaper sludge, polymerized epoxy resin, thermoset molding flash, TeflonTM chips, and phenolic resin. The landfill reportedly operated more like an "open dump" rather than a planned facility. Historically, sludge piles, lagoons, and open metal drums were noted as being randomly placed throughout the Site and comingled with the general fill and waste material. The Hoosick Falls Landfill closure system consists of an approximately 12-inch thick passive gas venting layer beneath an approximately 24-inch thick clay barrier layer. Above the clay barrier layer is an approximately 24-inch thick soil protection layer and an approximately 6-inch thick topsoil final cap surface layer.

In 2012, the Village of Hoosick Falls entered into a partnership with Monolith Solar to design and install a solar power facility on the Hoosick Falls Landfill property. Construction of the solar power facility was completed in November 2015. The active facility consists of ground-mounted solar panels producing approximately 590 kilowatts of power, encompassing approximately 1.77 acres of the Hoosick Falls Landfill cap area. **Figure 2** shows the locations of the solar panels which existed at the start of the SC field investigation activities.

¹ Detailed historical information obtained from the following reports:

[•] Engineering Investigations at Inactive Hazardous Waste Sites in the State of New York, Phase I Investigation for Hoosick Falls Landfill, Site Code: 442007, Hoosick, Rensselaer County, New York, prepared by Wehran Engineering, P.C., dated May 1987.

[•] Engineering Investigations at Inactive Hazardous Waste Sites, Phase II Investigation, Hoosick Falls Landfill, Site No. 442007, Town of Hoosick, Rensselaer County, prepared by Gibbs & Hill, Inc., dated March 1991.

[•] Closure Investigation Report, Village of Hoosick Falls Landfill, Rensselaer County, New York, prepared by Laberge Engineering and Consulting Group LTD, December 1991.

Buonanno, Nicholas. "Hoosick Falls Solar Garden Now Open." *The Record*, 16 Nov. 2015, www.troyrecord.com/news/hoosick-falls-solar-garden-now-open/article_2d72df18-d6a5-5eba-9d12-070c321b0260.html.

^{• &}quot;Solar Energy Ribbon Cutting." *The Village of Hoosick Falls, NY*, www.villageofhoosickfalls.com/Events/solar ribbon cutting.html#.XDJL0FxKg2x.

2.4 Topography and Site Drainage

The Site is located on a steep slope approximately 200 feet east of the Hoosick River. Elevations at the Site range from approximately 420 to 540 feet North American Vertical Datum (NAVD) 1988, with the highest elevations on the northern portion of the landfill and the lowest elevations near the Hoosick River. The overall slope of the Site is downward from east to west. The majority of surface water runoff at the Site occurs via sheet flow, although there are a few small ditches around the landfill. Drainage at the Site is towards the west and generally away from the landfill. Surface water runoff from the Site drains to Thayer's Pond and the Hoosick River.

3.0 PREVIOUS INVESTIGATIONS

Summaries of previous environmental investigations for the Hoosick Falls Landfill Site are presented in this Section. The investigations are documented in the following reports:

- Engineering Investigations at Inactive Hazardous Waste Sites in the State of New York, Phase I
 Investigation for Hoosick Falls Landfill, Site Code: 442007, Hoosick, Rensselaer County, New
 York, prepared by Wehran Engineering, P.C., dated May 1987;
- Engineering Investigations at Inactive Hazardous Waste Sites, Phase II Investigation, Hoosick Falls Landfill, Site No. 442007, Town of Hoosick, Rensselaer County, prepared by Gibbs & Hill, Inc., dated March 1991; and,
- Closure Investigation Report, Village of Hoosick Falls Landfill, Rensselaer County, New York, prepared by Laberge Engineering and Consulting Group LTD, December 1991.

3.1 Wehran Engineering, P.C. Phase I Investigation

In 1987, Wehran Engineering, P.C. (Wehran), was retained by NYSDEC to complete a Phase I Investigation (Phase I) to evaluate the potential environmental or public health hazards associated with past disposal activities at the Site. The Phase I consisted of a file review, site inspection and development of a preliminary Hazard Ranking System (HRS) score. The May 1987 Phase I Investigation Report for Hoosick Falls Landfill, Site Code: 442007, prepared by Wehran, presents the results of the Phase I, which are summarized below.

3.1.1 File Review

NYSDEC's files reportedly showed that the following materials were disposed of at the landfill: hydraulic oil, wastepaper sludge, polymerized epoxy resin, phenolic thermoset molding flash, TeflonTM chips, formaldehyde, septic sludge and general municipal trash. The files also showed that the Site had a history of being poorly operated and was under a Consent Order with the Department beginning in 1979. According to the Phase I Report, the RCDH noted numerous violations at the Site in 1979 including leachate entering surface water; open burning; missing or inadequate soil and vegetative cover; soil erosion and drainage problems; refuse within 50 feet of surface water or site boundary; refuse layer more than 2 feet thick; and, poorly compacted refuse. A subsequent site inspection completed by the RCDH and/or the NYSDEC on February 16, 1984 noted numerous 6 NYCRR Part 360 violations, including the presence of leaking waste containers. Sampling of leachate from the landfill in 1975, 1979, 1981, and 1984 reportedly showed the presence of iron, cadmium, lead, zinc, manganese, chloroform, and 1,1-dichloroethene at low concentrations.

3.1.2 Site Inspection

As part of the Phase I, a site inspection was completed by Wehran on April 24, 1986. During the site inspection, the landfill was observed to contain metal debris, sludge, and general municipal trash. In addition, approximately 35 empty metal drums were noted throughout the landfill. Exposed debris was reportedly observed in all portions of the landfill, including within 50 feet of Thayer's Pond. In the northeastern portion of the landfill, a large exposed pile of septic sludge was observed. A large pile of reddish sludge was noted in the active portion of the landfill. Leachate seeps were noted in all portions of the landfill and soil staining was noted on the landfill access road. Leachate was reportedly observed flowing from the landfill into Thayer's Pond.

3.1.3 Preliminary Hazard Ranking System Score

Based on the Phase I report, the preliminary HRS scores for the Hoosick Falls Landfill were as follows: Migration Routes (i.e., groundwater, surface water, and air) = 37.31, Fire and Explosion = 0 and Direct Contact = 25. In terms of the HRS, the Migration Routes score reflects the potential for harm due to migration of hazardous substances away from the facility. This score is a composite of the scores for groundwater, surface water and air exposure routes. The Fire and Explosion score reflects the potential for harm from substances that can cause fires and explosions, and the Direct Contact score reflects the potential for harm from direct contact with hazardous substances.

The low Fire and Explosion score was attributed to a lack of documentation of a fire and explosion threat at the Site from either a state or local fire marshal. The threat of potential contamination from direct contact was attributed primarily to the lack of proper soil cover and containment mechanisms at the Site. Due to the potential for human health and environmental impacts at the Site, and the absence of site-specific information, the Phase I report recommended completion of a Phase II investigation.

3.2 Gibbs & Hill, Inc. Phase II Investigation

In 1991, Gibbs & Hill, Inc. (Gibbs & Hill), was retained by NYSDEC to complete a Phase II Investigation (Phase II) to gather additional information to classify the Site and to calculate a Final HRS score for the Site. Phase II field investigation activities included a geophysical investigation; installation of four (4) overburden groundwater monitoring wells (MW-1, MW-2, MW-3 and MW-4); and, the collection and analysis of groundwater, surface water, sediment and soil samples. A description of the monitoring well locations is presented below:

• MW-1 – former upgradient overburden well located near the eastern Site boundary, west of the offsite residential area, replaced by overburden monitoring well HFL-MW-001B shown on **Figure 2**.

- MW-2 downgradient overburden well located in the northwest portion of the Site, east of the Hoosick River, shown as overburden monitoring well HFL-MW-002 on **Figure 2**.
- MW-3 former downgradient overburden well located east of the Hoosick River, along the western Site boundary near manhole HFL-MH-001 as shown on **Figure 2**.
- MW-4 downgradient overburden well in the southwest corner of the Site, east of the Hoosick River and west of Thayer's Pond, shown as overburden monitoring well HFL-MW-004 on **Figure 2**.

The May 1991 Phase II Investigation Report for the Hoosick Falls Landfill, Site No. 442007, prepared by Gibbs & Hill, presents the results of the Phase II, which are summarized below.

3.2.1 Geophysical Survey

A geophysical survey was completed at the Site to characterize subsurface conditions. A terrain conductivity survey was performed to locate potential areas of de-graded groundwater quality. A magnetometer survey was completed at proposed monitoring well locations to detect buried metals objects which may be present in the subsurface prior to drilling. The conductivity survey reportedly provided limited evidence (i.e., higher conductivity readings) that groundwater was de-graded near the locations of proposed monitoring wells MW-3 and MW-4. The conductivity survey identified evidence of fill east of the scrap metal pile (i.e., near Thayer's Pond). Results of the magnetometer survey indicated there were no buried objects near the proposed monitoring well locations.

3.2.2 Groundwater Sampling

Four (4) groundwater samples (GW-1, GW-2, GW-3 and GW-4) were collected from the four (4) overburden groundwater monitoring wells (MW-1, MW-2, MW-3 and MW-4) that were installed at the Site. The samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOCs), TCL semivolatile organic compounds (SVOCs), TCL polychlorinated biphenyl (PCBs), TCL pesticides, and Target Analyte List (TAL) metals. The results of the analysis of the groundwater samples revealed the following:

- The VOCs 1,1,2-trichloroethane, vinyl chloride, 1,1-dichloroethene, 1,2-dichloroethene, and 1,2-dichloroethane were detected at concentrations above state and federal drinking water standards in the groundwater sample collected from monitoring well MW-1. No VOCs were detected at concentrations above state or federal standards in the downgradient monitoring wells (MW-2, MW-3 and MW-4).
- No SVOCs, PCBs or pesticides were detected in the groundwater samples at concentrations above state and federal drinking water standards.
- The metals cadmium, chromium, lead, and manganese were detected at concentrations above state and federal drinking water standards in the groundwater samples collected from monitoring wells

MW-1, MW-3, and MW-4. However, the Phase II report noted that the concentrations may have been attributed to high turbidity as the samples were unfiltered.

3.2.3 Surface Water Sampling

Surface water samples were collected from two (2) locations along the Hoosick River (SW-2 and SW-3) and one (1) location along a small stream draining from the Site into Thayer's Pond. The samples were analyzed for TCL VOCs, TCL SVOCs, TCL PCBs, TCL pesticides, and TAL metals. The results of the analysis suggested that there was no adverse impact to the water quality of the Hoosick River or Thayer's Pond resulting from surface water runoff from the Site.

3.2.4 Sediment and Soil Sampling

Three (3) sediment samples (SD-1, SD-2, and SD-3) and one (1) soil sample (W-1) were collected from the Site as part of the Phase II investigation. The three (3) sediment sample locations corresponded to the three (3) surface water sample locations. The soil sample was collected in the northeastern part of the Site. The sediment and soil samples were analyzed for TCL VOCs, TCL SVOCs, TCL PCBs, TCL pesticides, and TAL metals. The results of the analysis of the sediment and soil samples revealed the following:

- No VOCs, SVOCs or PCBs were detected in the sediment or soil samples.
- Lindane was detected in sediment sample SD-2 at a concentration of 25 micrograms per kilogram ($\mu g/kg$) and sediment sample SD-3 at a concentration of 72 $\mu g/kg$. Lindane was the only pesticide detected in the sediment samples.
- Analytical results showed similar concentrations of metals in all three (3) sediment samples. SD-1, which was collected closest to the Site, contained barium concentrations three (3) times greater than sediment samples SD-2 and SD-3, but lower than the Contract Required Quantitation Limit (CRQL).
- Lead was detected in sediment sample SD-1 at concentrations twenty (20) times greater than sediment sample SD-2 and eight (8) times greater than sediment sample SD-3. Sediment sample SD-1 contained concentrations of zinc significantly higher than sediment samples SD-2 and SD-3.
- Soil sample W-1 contained metal concentrations similar to sediment samples SD-2 and SD-3.

3.2.5 Final Hazard Ranking System Score

Based on the results of the Phase II investigation, the final HRS scores for the Hoosick Falls Landfill were as follows: Migration Routes (i.e., groundwater, surface water and air) = No Score, Fire and Explosion = Not Applicable and Direct Contact = 0. A "No Score" value indicates that there was insufficient information available to draw a conclusion.

Based on the results of the field investigation activities, the Phase II report recommended installation of two (2) additional groundwater monitoring wells to better assess groundwater flow direction at the Site and to determine the source of the VOCs detected in monitoring well MW-1.

3.3 Laberge Engineering and Consulting Group LTD Closure Investigation Report

On behalf of the Village, Laberge Engineering and Consulting Group LTD (Laberge) initiated investigation activities at the landfill in connection with a preliminary plan for landfill closure. The objective of the investigation was to evaluate the current and future potential for contaminant migration from the Site. The investigation also assessed the hydrogeologic conditions at the Site, including groundwater quality at and near the landfill, migration of explosive gas, and surface leachate and vectors. Presented below are summaries of the results of the investigation presented in the closure investigation report.

3.3.1 Private Water Well Survey

A private water well survey was conducted as part of the closure investigation. Surveys were reportedly sent to property owners up to one mile downgradient of the Site and up to one-half mile upgradient of the Site. Of the 152 surveys distributed, 71 were returned. Thirty-five property owners indicated that water wells were present on their properties, and the remaining responses were negative. Reportedly, the survey results did not identify any issues with the private wells.

3.3.2 Groundwater Sampling

Six (6) groundwater samples were collected from (6) overburden groundwater monitoring wells (MW-1, MW-1A, MW-1B, MW-2, MW-3 and MW-4) at the Site. The samples were analyzed for 6 NYCRR Part 360 Baseline Parameters. The results of the analysis of the groundwater samples revealed the following:

- The VOCs 1,1,2-trichloroethane, vinyl chloride, 1,1-dichloroethene, 1,2-dichloroethene, and chloroethane were detected in monitoring wells MW-1 and MW-3 at concentrations ranging from 3 micrograms per liter (μ g/L) to 170 μ g/L.
- The metals barium, cadmium, chromium, lead, and zinc were detected in monitoring wells MW-1, MW-1A, MW-2 and MW-3 at concentrations ranging from 0.02 milligrams per liter (mg/L) to 0.38 mg/L.
- Leachate indicators including aluminum, calcium, iron, magnesium, manganese, potassium and sodium were detected at varying concentrations in each of the six (6) monitoring wells, with the highest concentrations downgradient of the landfill.

3.3.3 Leachate Sampling

Two (2) leachate samples were collected near the landfill waste mass (L-1 and L-2) and two (2) were collected downgradient of the Site (L-3 and L-4). The samples were analyzed for 6 NYCRR Part 360 Baseline Parameters. The results of the analysis of the leachate samples revealed the following:

- The VOCs trichlorofluoromethane, ethylbenzene, vinyl chloride, and trans-1,2-dichloroethane were detected in leachate samples L-1, L-2 and L-3 at concentrations ranging from 2 μg/L to 3 μg/L.
- The metals barium, beryllium, copper, nickel and zinc were detected in each sample at concentrations ranging from 0.006 mg/L to 6.4 mg/L.
- Leachate indicators including aluminum, calcium, iron, magnesium, manganese, nickel and sodium were detected at varying concentrations in each of the samples.
- Dissolved solids were detected in samples L-1 and L-2 with the highest concentration of 3,230 mg/l at L-1. Chloride was also detected in the samples with the highest concentration of 226 mg/l at L-1.

3.3.4 Surface Water Sampling

One (1) surface water sample was collected from Thayer's Pond. The laboratory analyses showed no evidence of contamination.

3.3.5 Soil Gas Survey

Soil gas samples were collected from twenty (20) points advanced at the Site. Soil gas was screened for volatile organic compounds, lower explosive limit (LEL), percent oxygen, percent methane, and hydrogen sulfide. The soil gas survey identified two (2) locations on the landfill which exhibited excessive levels of landfill gasses and low oxygen levels.

The closure investigation report contained the following conclusions:

- Although VOCs were detected in monitoring wells MW-1 and MW-3, the steep groundwater gradient in
 the area should prevent migration of the contamination to upgradient locations. Additionally, the
 Hoosick River should intercept contamination migrating west toward the river. The contaminants could
 either move with the groundwater gradient below the river or enter the surface water and be transported
 by the flow. However, the majority of locations (e.g., private water supply wells) west of the river should
 be unaffected.
- Covering the landfill with an impermeable cap should reduce the quantity of leachate and improve the leachate quality over time. As such, it was determined that a leachate collection system was not initially required.

- Based on the results of the soil gas survey, it was determined that landfill gas was not migrating off-site under current conditions and would likely not migrate off-site once the landfill was capped.
- The landfill is not having a significant impact on the surrounding environment and the closure design will not present any significant issues.

11

4.0 SITE CHARACTERIZATION

The SC field activities were performed between May 2017 and June 2018 in general conformance with the NYSDEC DER WA No. D007620-34 Notice to Proceed dated December 23, 2016, the NYSDEC-approved amended Scope of Work dated June 18, 2018 (WA No. D007620-34.1), and DER-10. The SC field activities consisted of the following:

- Implementation of a Community Air Monitoring Plan (CAMP), which included real-time monitoring
 for VOCs and particulates at the downwind perimeter of each work area during ground intrusive
 work.
- Collection of five (5) surface soil samples (HFL-SS-101, HFL-SS-102, HFL-SS-104, HFL-SS-105, and HFL-SS-106). HFL-SS-101 and HFL-SS-102 were collected on the western side of the landfill while inspecting the Site for leachate seeps and HFL-SS-104, HFL-SS-105, and HFL-SS-106 were collected at locations of newly installed monitoring wells HFL-MW-104, HFL-MW-105, and HFL-MW-106.
- Collection of co-located surface water and sediment samples from eleven (11) locations (HFL-WS/SD-102 through HFL-WS/SD-106, HFL-WS/SD-108, HFL-WS/SD-109, HFL-WS/SD-111 through HFL-WS/SD-113, and HFL-MH-WS/SD) throughout the Site. Collection of one (1) sediment sample (HFL-SD-101) from a small depression downgradient and adjacent to the northwest corner of the landfill. Collection of one (1) surface water sample (HFL-WS-114) from a drainage ditch along the western side of the landfill, downgradient of the suspected discharge point of manhole HFL-MH-001.
- Installation of six (6) overburden groundwater monitoring wells (HFL-MW-101, HFL-MW-102, HFL-MW-103, HFL-MW-104, HFL-MW-105, HFL-MW-106), one (1) intermediate-depth bedrock groundwater monitoring well (HFL-MW-101B), and four (4) deep bedrock groundwater monitoring wells (HFL-MW-101C, HFL-MW-104C, HFL-MW-105C and HFL-MW-106C). Groundwater monitoring well clusters HFL-MW-101/101B/101C and HFL-MW-104/104C and groundwater monitoring wells HFL-MW-102 and HFL-MW-103 are located on the Hoosick Falls Landfill Site. Groundwater monitoring well clusters HFL-MW-105/105C and HFL-MW-106/106C are located on off-site properties north of the landfill along Hoosick Junction Road. During installation of each monitoring well, soil sampling was performed. Approximately ten (10) feet of bedrock cores were collected from intermediate-depth bedrock groundwater monitoring well (HFL-MW-101B) and approximately thirty (30) feet of bedrock cores were collected from the bedrock monitoring wells HFL-MW-101C, HFL-MW-104C, HFL-MW-105C, and HFL-MW-106C. Six (6) subsurface soil samples (collected from the boreholes for monitoring wells HFL-MW-101, HFL-MW-101B, HFL-MW-103, HFL-MW-104, HFL-MW-105, and HFL-MW-106) were submitted for laboratory analysis.
- Development of the eleven (11) newly installed groundwater monitoring wells.

- Collection of two (2) rounds of groundwater elevation measurement from the pre-existing and newly installed groundwater monitoring wells.
- Collection and analysis of two (2) rounds of groundwater samples, including groundwater elevation measurements, and collection of two (2) rounds of leachate samples. In June 2017 samples were collected from the three (3) newly installed monitoring wells (HFL-MW-101 through HFL-MW-103), three (3) pre-existing monitoring wells (HFL-MW-001B, HFL-MW-002 and HFL-MW-004), and the leachate collection vault (HFL-GW-PW-1). Samples were collected from the eleven (11) newly installed monitoring wells (HFL-MW-101, HFL-MW-101B, HFL-MW-101C, HFL-MW-102, HFL-MW-103, HFL-MW-104, HFL-MW-104C, HFL-MW-105, HFL-MW-105C, HFL-MW-106, and HFL-MW-106C), three (3) pre-existing monitoring wells (HFL-MW-001B, HFL-MW-002 and HFL-MW-004), and the leachate collection vault (HFL-GW-PW-1) in June 2018.
- A survey of physical features, utilities, property boundaries and sample locations.
- Off-site disposal of investigation-derived waste, including development water, purge water, decontamination fluids, and drill cuttings.

A sampling location plan is presented as **Figure 3**. The scope of work for the SC and associated field methods are described in detail below. The methods implemented during the SC were in accordance with the NYSDEC-approved generic Health and Safety Plan (HASP), Field Activities Plan (FAP), and Quality Assurance Project Plan (QAPP), including modifications for sampling of emerging contaminants (i.e., PFAS and 1,4-dioxane). Equipment and materials (i.e., PFAS-free pumps, stainless steel, high density polyethylene (HDPE) and polypropylene) compatible with recent recommendations from NYSDEC for sampling of emerging contaminants were used at the Site. In addition, equipment blank samples were collected for PFAS analysis to confirm PFAS contamination was not introduced by the sampling methods, equipment or materials.

Standard chain-of-custody procedures were followed for all samples. Quality control samples, including matrix spike and matrix spike duplicates, were collected at a minimum frequency of one per 20 samples in accordance with the approved generic QAPP. Trip blanks were included in each cooler containing aqueous samples for VOC analysis. Category B data deliverable packages were requested.

4.1 Implementation of Community Air Monitoring Plan (CAMP)

A Community Air Monitoring Plan (CAMP) was implemented during intrusive investigation activities. The CAMP was implemented in accordance with NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, Appendix 1A - Generic Community Air Monitoring Plan. A DustTRAKTM II aerosol monitor and a photoionization detector (PID) were positioned at locations upwind and downwind of the work areas. The CAMP was implemented during advancement of soil borings and monitoring well installation, but not during surface soil sampling, surface water and sediment sampling, monitoring well development and

sampling, and surveying. The purpose of the CAMP was to monitor air downwind of the work area for potential impacts associated with the investigation activities. There were no exceedances of the CAMP action levels during the performance of the SC field activities.

4.2 Surface Soil Sampling

Surface soil sampling was completed on June 13, 2017 and April 4, 2018. The 2017 sampling consisted of collecting two (2) samples along the western side of the landfill during a Site inspection for suspected leachate seeps. Since no leachate seeps were identified during the Site inspection, the samples were collected near the drainage swale leading to Thayer's Pond. The two (2) locations sampled as part of this event were HFL-SS-101 and HFL-SS-102. The 2018 surface soil sampling was completed at the locations of newly installed monitoring wells HFL-MW-104, HFL-MW-105 and HFL-MW-106. The three (3) samples collected are HFL-SS-104, HFL-SS-105, and HFL-SS-106. Surface soil samples were collected from 0 to 0.5 feet below the vegetative layer using a 2-inch diameter bucket auger. During sample collection, the surface soil samples were visually examined for evidence of contamination. No odors, staining or visual evidence of impacts were noted. Field screening results and soil characteristics are presented on the field forms provided in **Appendix B**. The surface soil sampling locations are presented on **Figure 3**.

The five (5) surface soil samples were submitted to TestAmerica, Inc. (TestAmerica) and analyzed for TCL VOCs by USEPA Method 8260, TCL SVOCs by USEPA Method 8270, TCL pesticides by USEPA Method 8081, TCL PCBs by USEPA Method 8082, TAL metals by USEPA Methods 6010 and 7471, and PFAS by Modified USEPA Method 537 Revision 1.1. Additionally, surface soil samples HFL-SS-104, HFL-SS-105, and HFL-SS-106 were analyzed for 1,4-dioxane by USEPA Method 8270.

4.3 Surface Water and Sediment Sampling

Surface water and sediment sampling was completed between June 2, 2017 and June 11, 2018. Co-located surface water and sediment samples were collected from eleven (11) locations (HFL-WS/SD-102 through HFL-WS/SD-106, HFL-WS/SD-108, HFL-WS/SD-109, HFL-WS/SD-111 through HFL-WS/SD-113 and HFL-MH-WS/SD) throughout the Site, including the small drainage ditches around the landfill (HFL-WS/SD-102 through HFL-WS/SD-106, HFL-WS/SD-108 and HFL-WS/SD-109), Thayer's Pond (HFL-WS/SD-111 through HFL-WS/SD-113), and the manhole (HFL-MH-WS/SD) located on the western side of the landfill. One (1) sediment sample (HFL-SD-101) was collected from a small depression downgradient and adjacent to the northwest corner of the landfill. It should be noted that this location was only sampled for sediment due to a lack of water at the time of sampling. Additionally, one (1) surface water sample (HFL-WS-114) was collected from a drainage ditch located along the western side of the landfill and downgradient from the suspected discharge point of the manhole. This location was sampled for surface water only. The surface water and sediment sampling locations are presented on **Figure 3**.

The surface water samples from the drainage ditches and Thayer's Pond were obtained by collecting the water directly in laboratory-supplied containers. The surface water sample from the manhole was collected using a peristaltic pump and HDPE tubing. Sediment samples from the drainage ditches were collected using a 2-inch diameter bucket auger. Sediment samples from Thayer's Pond were collected using a Ponar Grab Sampler. During sample collection, the surface water and sediment samples were visually examined for evidence of contamination. No odors, staining or visual evidence of impacts were noted. Field screening results and surface water and sediment characteristics are presented on the field forms provided in **Appendix B**.

The surface water and sediment samples were submitted to TestAmerica and analyzed for TCL VOCs by USEPA Method 8260, TCL SVOCs by USEPA Method 8270 (including 1,4-dioxane), TCL pesticides by USEPA Method 8081, TCL PCBs by USEPA Method 8082, TAL metals by USEPA Methods 6010 and 7470/7471, and PFAS by Modified USEPA Method 537 Revision 1.1. Additionally, the surface water and sediment samples collected from the manhole (HFL-MH-WS/SD) and the surface water sample collected from the drainage ditch downgradient of the manhole (HFL-WS-114) were analyzed for 1,4-dioxane by USEPA Method 8270.

4.4 Monitoring Well Installation and Subsurface Soil Sampling

Six (6) overburden groundwater monitoring wells (HFL-MW-101, HFL-MW-102, HFL-MW-103, HFL-MW-104, HFL-MW-105, HFL-MW-106), one (1) intermediate-depth bedrock groundwater monitoring well (HFL-MW-101B), and four (4) deep bedrock groundwater monitoring wells (HFL-MW-101C, HFL-MW-104C, HFL-MW-105C and HFL-MW-106C) were installed between May 2017 and April 2018. Groundwater monitoring well clusters HFL-MW-101/101B/101C and HFL-MW-104/104C and groundwater monitoring wells HFL-MW-102 and HFL-MW-103 are located on the Hoosick Falls Landfill Site. Groundwater monitoring well clusters HFL-MW-105/105C and HFL-MW-106/106C are located on off-site properties north of the landfill along Hoosick Junction Road. Parratt-Wolff, Inc. was retained as a subcontractor by TRC to install the groundwater monitoring wells using a combination of hollow stem auger (HSA) and mud rotary drilling and rock coring methods. The monitoring well locations are presented on **Figure 3**. A summary of the monitoring well type, depth of each well and depth to bedrock, approximate screen interval depths, maximum PID readings recorded during soil sampling, and soil sample intervals submitted for laboratory samples are presented in the table below.

Summary of Depths of Monitoring Wells, Depth to Bedrock, Monitoring Well Screened Interval Depths and Diameters,
Maximum PID Screening Results, and Soil Sample Intervals Selected for Analysis

Monitoring Well Identification Number	Monitoring Well Type	Approx. Total Depth of Well (feet bgs)	Approx. Depth to Bedrock (feet bgs)	Approx. Depth of Screened Interval (feet bgs)	Monitoring Well Screen Length (feet)/Well Diameter (inches)	Maximum PID Reading during Borehole Sampling (ppm)	Depth of Sample Intervals Selected for Laboratory Analysis (feet bgs)
HFL-MW-101	Overburden	28.84	NA	13.84-28.84	15.00/4.00	0.0	16.00-20.00
HFL-MW-102	Overburden	63.46	NA	48.46-63.46	15.00/4.00	0.0	NA
HFL-MW-103	Overburden	19.85	NA	4.85-19.85	15.00/4.00	0.0	6.00-10.00
HFL-MW-104	Overburden	22.78	NA	7.78-22.78	15.00/2.00	0.0	9.00-11.00
HFL-MW-105	Overburden	29.09	NA	14.09-29.09	15.00/2.00	0.0	22.00-24.00
HFL-MW-106	Overburden	29.62	NA	14.62-29.62	15.00/2.00	0.0	19.00-21.00
HFL-MW-101B	Intermediate- Depth Bedrock	79.69	70.00	64.69-79.69	15.00/2.00	0.0	48.00-50.00
HFL-MW-101C	Deep Bedrock	99.55	70.00	71.55-99.55	28.00/2.00	0.0	NA
HFL-MW-104C	Deep Bedrock	93.51	63.00	65.51-93.51	28.00/2.00	0.0	NA
HFL-MW-105C	Deep Bedrock	152.77	122.00	124.77-152.77	28.00/2.00	0.0	NA
HFL-MW-106C	Deep Bedrock	137.93	106.00	109.93-137.93	28.00/2.00	0.0	NA

Notes:

Approx.: Approximate bgs: Below ground surface NA: Not applicable PID: Photoionization detector

ppm: Parts per million

4.4.1 Overburden Groundwater Monitoring Wells

The six (6) overburden groundwater monitoring wells (HFL-MW-101, HFL-MW-102, HFL-MW-103, HFL-MW-104, HFL-MW-105, and HFL-MW-106) were completed at depths ranging from approximately 19.85 feet below ground surface (bgs) to 63.46 feet bgs. Monitoring wells HFL-MW-101 through HFL-MW-103 were constructed with 4-inch diameter polyvinyl chloride (PVC) casing and 15 feet of 10-slot (0.010-inch) PVC well screen. Monitoring wells HFL-MW-104 through HFL-MW-106 were constructed with 2-inch diameter PVC casing and 15 feet of 10-slot (0.010-inch) PVC well screen.

Boreholes for monitoring wells HFL-MW-101 through HFL-MW-103 were advanced using a track-mounted HSA drill rig and 6.25-inch inside diameter (I.D.) augers. The borehole for monitoring well HFL-MW-104 was also advanced using a track-mounted HSA drill rig; however, 4.25-inch I.D. augers were used at this location. Boreholes for monitoring wells HFL-MW-105 and HFL-MW-106 were advanced using a truck-mounted HSA drill rig and 4.25-inch I.D. augers. During soil boring advancement at HFL-MW-101 through HFL-MW-103 soil samples were collected continuously from the ground surface to the well completion depth using 2-inch diameter split spoon samplers. Utility clearance test pits were completed to a depth of approximately 5 feet bgs at monitoring well locations HFL-MW-104 through HFL-MW-106 prior to soil boring advancement. As a result, soil samples at these locations were collected continuously from the bottom

of the utility clearance test pits to the well completion depths using 2-inch diameter split spoon samplers. The soil samples were inspected for physical evidence of impacts and screened for VOCs with a PID. In addition, a description of the soil was logged in a field book. No odors, staining, or PID readings were detected in the samples recovered from the soil borings. Soil boring and monitoring well construction logs are provided in **Appendix A**.

Five (5) subsurface soil samples (HFL-MW-101 (16'-20'), HFL-MW-103 (6'-10'), HFL-MW-104 (9'-11'), HFL-MW-105 (22'-24'), and HFL-MW-106 (19'-21')) were submitted to TestAmerica and analyzed for TCL VOCs by USEPA Method 8260 (including 1,4-dioxane), TCL SVOCs by USEPA Method 8270, TCL pesticides by USEPA Method 8081, TCL PCBs by USEPA Method 8082, TAL metals by USEPA Methods 6010 and 7471, and PFAS by Modified USEPA Method 537 Revision 1.1. Additionally, subsurface soil samples HFL-MW-104 (9'-11'), HFL-MW-105 (22'-24'), and HFL-MW-106 (19'-21') were analyzed for 1,4-dioxane by USEPA Method 8270.

4.4.2 Intermediate-Depth Bedrock Groundwater Monitoring Well

The intermediate-depth bedrock groundwater monitoring well, HFL-MW-101B, was completed at approximately 79.69 feet bgs, approximately 10 feet into bedrock. HFL-MW-101B was constructed with 2-inch diameter PVC casing and 15 feet of 10-slot (0.010-inch) PVC well screen.

The borehole for monitoring well HFL-MW-101B was advanced using a track-mounted drill rig and a combination of 6-inch diameter mud rotary drilling and HQ diameter rock coring methods. During mud rotary drilling soil samples were collected continuously from the ground surface to the top of bedrock, which was encountered approximately 70 feet bgs, using 2-inch diameter split spoon samplers. Rock core samples were collected in 5-foot lengths starting at the top of bedrock and extending to the completion depth of the well. The soil and rock core samples were inspected for physical evidence of impacts and screened for the presence of VOCs with a PID. In addition, a description of the soil and rock was logged in a field book. No odors, staining, or PID readings were detected in the samples recovered from the borehole. Soil boring and monitoring well construction logs are provided in **Appendix A**.

One (1) subsurface soil sample (HFL-MW-101B (48'-50')) was submitted to TestAmerica and analyzed for TCL VOCs by USEPA Method 8260 (including 1,4-dioxane), TCL SVOCs by USEPA Method 8270 (including 1,4-dioxane), TCL pesticides by USEPA Method 8081, TCL PCBs by USEPA Method 8082, TAL metals by USEPA Methods 6010 and 7471, and PFAS by Modified USEPA Method 537 Revision 1.1.

4.4.3 Deep Bedrock Groundwater Monitoring Wells

Four (4) deep bedrock groundwater monitoring wells (HFL-MW-101C, HFL-MW-104C, HFL-MW-105C, and HFL-MW-106C) were completed at depths ranging from approximately 93.51 feet bgs to 152.77 feet bgs, approximately 30 feet into bedrock. The monitoring wells were constructed with 2-inch diameter PVC casing and 28 feet of 10-slot (0.010-inch) PVC well screen. A 4-inch diameter permanent outer steel casing was also installed at monitoring well HFL-MW-101C.

The boreholes for monitoring well HFL-MW-101C and HFL-MW-104C were advanced using a track-mounted drill rig and the boreholes for monitoring well HFL-MW-105C and HFL-MW-106C were advanced using a truck-mounted drill rig. All deep bedrock monitoring well boreholes were advanced using a combination of 6-inch diameter mud rotary drilling and HQ diameter rock coring methods.

During mud rotary drilling at monitoring wells HFL-MW-104C, HFL-MW-105C and HFL-MW-106C, soil samples were collected continuously from the bottom of the adjacent overburden monitoring well to the top of bedrock, which was encountered approximately 63 feet bgs, 122.00 feet bgs and 106 feet bgs, respectively, using 2-inch diameter split spoon samplers. During mud rotary drilling at monitoring well HFL-MW-101C soil samples were collected continuously from 46 feet bgs to 54 feet bgs using 2-inch diameter split spoon samplers to determine if a water-bearing zone existed below the bottom of existing overburden monitoring well HFL-MW-101. Mud rotary drilling was also used at monitoring well HFL-MW-101C to extend the borehole approximately 5 feet into rock, so the 4-inch diameter outer steel casing could be grouted into place prior to rock coring.

Rock core samples were collected in 5-foot lengths starting at the top of bedrock (bottom of the 4-inch diameter steel casing at HFL-MW-101C) and extending to the completion depth of each well. The soil and rock core samples were inspected for physical evidence of impacts and screened for the presence of VOCs with a PID. In addition, a description of the soil and rock was logged in a field book. No odors, staining, or PID readings were detected in the samples recovered from the boreholes. No subsurface soil samples collected from the deep bedrock groundwater monitoring well boreholes were submitted for laboratory analysis. Soil boring and monitoring well construction logs are provided in **Appendix A**.

4.5 Monitoring Well Development

After installation, the monitoring wells were developed using a Wattera Hydrolift-2 pump and dedicated HDPE tubing until the water was reasonably free of turbidity or 10 well volumes were removed. Conductivity, pH, temperature, and dissolved oxygen were also monitored using a YSI Pro DSS water quality meter during development. Development water was containerized in 55-gallon drums for off-site disposal. During well development, depth to groundwater and total well depth were measured using an oil/water

interface probe. Light non-aqueous phase liquid (LNAPL) and evidence of contamination (sheens, odors, etc.) were not observed during monitoring well development.

4.6 Groundwater Level Measurements

Two (2) rounds of groundwater level measurements were completed during the SC field activities. Groundwater levels in the pre-existing and new wells installed in 2017 were measured in February 2018. Groundwater levels in the pre-existing wells and the new wells installed in 2018 were measured in July 2018. Depth to groundwater was measured in each monitoring well using an oil/water interface probe to determine groundwater surface elevation. While completing groundwater level measurements, headspace readings were also measured using a PID. No PID readings or LNAPL were encountered during either groundwater level measurement event. PID headspace readings are presented on the field forms provided in **Appendix B. Figure 10** and **Figure 12** present the groundwater surface elevations and contours from the groundwater level measurement events.

4.7 Groundwater and Leachate Sampling

Two (2) rounds of groundwater and leachate samples were collected from the Site monitoring wells and leachate collection vault, in June 2017 and June 2018. Prior to the collection of samples, the groundwater monitoring wells were gauged for total well depth, depth to water, and if present, depth to LNAPL. **Figure 9** and **Figure 11** present the groundwater surface elevations and contours from the groundwater sampling events. While completing the measurements, headspace readings were also measured using a PID. PID headspace readings are presented on the field forms provided in **Appendix B**.

Except for HFL-MW-102, the overburden groundwater monitoring wells were purged using a peristaltic pump and dedicated HDPE tubing connected to a flow-through cell for monitoring water quality parameters. Overburden groundwater monitoring well HFL-MW-102 and the bedrock groundwater monitoring wells were purged using a PFAS-free bladder pump and dedicated HDPE tubing also connected to a flow-through cell. Low-flow purging rates and techniques were used to minimize suspension of particulate matter in the wells. Water quality parameters, including temperature, pH, conductivity, dissolved oxygen concentration, oxidation reduction potential, and turbidity were recorded prior to and during purging. Groundwater samples were collected after field parameters stabilized within established ranges. Water quality readings collected during the sampling events were recorded on low-flow groundwater sampling logs. The leachate samples from the leachate collection vault were collected using a peristaltic pump and HDPE tubing. The leachate collection vault was not purged prior to sample collection due to the configuration of the vault. Copies of the low-flow sampling logs are included as **Appendix B**. No elevated PID headspace readings or LNAPL was encountered during the sampling activities.

4.7.1 June 2017 Sampling Event

Samples were collected from the three (3) newly installed monitoring wells (HFL-MW-101, HFL-MW-102, and HFL-MW-103), three (3) pre-existing monitoring wells (HFL-MW-001B, HFL-MW-002, and HFL-MW-004), and the leachate collection vault (HFL-GW-PW-1) in June 2017.

Following stabilization of the water quality parameters (at monitoring well locations only), groundwater and leachate samples were collected and submitted to TestAmerica and analyzed for TCL VOCs by USEPA Method 8260 (including 1,4-dioxane), TCL SVOCs by USEPA Method 8270, TCL pesticides by USEPA Method 8081, TCL PCBs by USEPA Method 8082, TAL metals by USEPA Methods 6010 and 7470, and PFAS by Modified USEPA Method 537 Revision 1.1.

4.7.2 June 2018 Sampling Event

Samples were collected from the eleven (11) newly installed monitoring wells (HFL-MW-101, HFL-MW-101B, HFL-MW-101C, HFL-MW-102, HFL-MW-103, HFL-MW-104, HFL-MW-104C, HFL-MW-105, HFL-MW-105C, HFL-MW-106, and HFL-MW-106C), three (3) pre-existing monitoring wells (HFL-MW-001B, HFL-MW-002 and HFL-MW-004), and leachate collection vault (HFL-GW-PW-1) in June 2018.

Following stabilization of the water quality parameters (at monitoring well locations only), groundwater and leachate samples were collected and submitted to TestAmerica and analyzed for TCL VOCs by USEPA Method 8260 (including 1,4-dioxane), TCL SVOCs by USEPA Method 8270 (including 1,4-dioxane), TCL pesticides by USEPA Method 8081, TCL PCBs by USEPA Method 8082, TAL metals by USEPA Methods 6010 and 7470, and PFAS by Modified USEPA Method 537 Revision 1.1.

4.8 Site Survey

In August 2017, C.T. Male Associates (C.T. Male), a New York State licensed land surveyor, completed a survey of physical features, property boundaries, and known utilities at the Site. Additionally, the survey included the locations and elevations (ground surface and top of PVC well casing) of the pre-existing and new monitoring wells as well as the locations of surface soil, surface water and sediment sampling locations. A second survey was completed in August 2018 by C.T. Male to survey the locations and elevations of the monitoring wells installed in April 2018. The survey map prepared by C.T. Male is presented in **Appendix C**.

4.9 Investigation-Derived Waste (IDW)

Investigation-derived waste (IDW) generated during the investigation included soil generated during drilling and coring activities, and water from well development, well purging, and decontamination of sampling equipment. The IDW was placed in United States Department of Transportation (USDOT) approved 55-gallon drums, labeled and secured awaiting transportation off-site for disposal.

On September 7, 2017, the IDW generated during 2017 SC activities was loaded and transported by Brookside Environmental, Inc. of Copiague, New York (Brookside) for disposal off-site at Clean Water of New York located in Staten Island, New York. A total of 10 drums of non-hazardous water generated during well development, well purging, and decontamination of sampling equipment and 13 drums of soil generated during drilling activities were transported off-site for disposal.

On November 1, 2018, the IDW generated during 2018 SC activities was loaded and transported by Brookside for disposal off-Site at Cycle Chem, Inc. in Elizabeth, New Jersey. In total, 35 drums of water from well development, well purging, and decontamination of sampling equipment and 84 drums of soil generated during drilling and coring activities were transported off-Site for disposal.

A total of 142 drums were shipped for off-site disposal during SC activities. The final waste disposal manifests are included in **Appendix D**.

5.0 DISCUSSION OF RESULTS

This section presents a discussion of the results of the SC. The results of laboratory analyses are summarized in **Tables 1** through **25**. The results of validation of the laboratory analytical data are summarized in the Data Usability Summary Report (DUSR) in **Appendix E**. The data validation was performed in accordance with NYSDEC requirements, as well as the requirements for development of DUSRs in Appendix 2B of DER-10, Technical Guidance for Site Investigations and Remediation. The complete Analytical Services Protocol (ASP) Category B Laboratory Analytical Data Reports will be provided separately from this report.

5.1 Applicable Regulatory Standards

This section identifies the regulatory standards and guidelines used to evaluate the results of analysis of the surface water and sediment, surface soil, subsurface soil and groundwater samples. The standards and guidelines used to evaluate the data associated with each specific media are described individually below.

5.1.1 Surface Water

Surface water sampling results were evaluated by comparison to the NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values for Class C Water. Surface water sampling results were compared to the most stringent Standards and Guidance Values listed for the following Class C Water Types: Type A(A) (Fish Survival), Type A(C) (Fish Propagation), Type H(FC) (Human Consumption of Fish), and Type W (Wildlife Protection). The USEPA Health Advisory Level for PFAS in drinking water of 70 nanograms per liter (ng/L) is provided as a reference only.

5.1.2 Sediment

Sediment sampling results were evaluated by comparison to the NYSDEC Division of Fish, Wildlife and Marine Resources Bureau of Habitat Screening and Assessment of Contaminated Sediment Class A Freshwater Sediment Guidance Values (SGVs). Additionally, sediment sampling results for metals were evaluated by comparison to the Class A, Class B, and Class C Freshwater SGVs.

5.1.3 Soil

Soil sampling results were evaluated by comparison to Unrestricted Use Soil Cleanup Objectives (SCOs) in Table 375-6.8(a) of 6 NYCRR Part 375, Residential Use and Commercial Use SCOs in Table 375-6.8(b) of 6 NYCRR Part 375 and the Commissioner Policy 51 (CP-51) Supplemental SCOs. For PFAS, soil sampling results were evaluated by comparison to the New York State Department of Health (NYSDOH) preliminary Residential Use SCO of 140 micrograms per kilogram (µg/kg) developed for a potential site or sites in the Hoosick Falls area.

5.1.4 Groundwater and Leachate

Groundwater and Leachate sampling results were evaluated by comparison to the following NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values: Standards and Guidance Values for Class GA Water ("Class GA Values"). The USEPA Health Advisory Level for PFAS in drinking water of 70 ng/L is provided as a reference only.

5.2 Surface Soil Sampling

Summaries of the results of the analyses of the surface soil samples are presented in **Tables 1** through **5**. **Figure 4** presents a summary of the results of the analyses of the surface soil samples. A review of the results of the analyses of the surface soil samples is presented below.

5.2.1 VOCs in Surface Soil

There were no VOCs detected at concentrations exceeding the Commercial Use, Residential Use, or Unrestricted Use SCOs in the surface soil samples submitted for analysis. The complete results of the analyses of surface soil samples for VOCs are presented in **Table 1**.

5.2.2 SVOCs in Surface Soil

There were no SVOCs detected at concentrations exceeding the Commercial Use, Residential Use, or Unrestricted Use SCOs in the surface soil samples submitted for analysis. 1,4-Dioxane was not detected in the samples analyzed for 1,4-dioxane via USEPA Method 8270². The complete results of analyses of surface soil samples for SVOCs are presented in **Table 2**.

5.2.3 Pesticides in Surface Soil

With the exception of 4,4'-DDT, no pesticides were detected at concentrations exceeding the Commercial Use, Residential Use, or Unrestricted Use SCOs in the surface soil samples. 4,4'-DDT was detected at a concentration of 0.0039 milligrams per kilogram (mg/kg) in surface soil sample HFL-SS-101, collected in the southwestern part of the Site, which is above the Unrestricted Use SCO of 0.0033 mg/kg. The complete results of analyses of surface soil samples for pesticides are presented in **Table 3**.

TRC ENGINEERS, INC.

² The non-detect VOC results for 1,4-dioxane were rejected due to low relative response factors in VOC initial and continuing calibrations, causing the result to not be usable for project objectives. Results for 1,4-dioxane reported from the SVOC analysis of the samples have been determined to be usable for the purposes of this report.

5.2.4 Polychlorinated Biphenyls in Surface Soil

There were no PCBs detected at concentrations above the Commercial Use, Residential Use, or Unrestricted Use SCOs in the surface soil samples submitted for analysis. The results of the analyses of surface soil samples for PCBs are presented in **Table 3**.

5.2.5 Metals in Surface Soil

Metals were detected in each of the surface soil samples analyzed. The results of the analyses of the surface soil samples for metals are presented in **Table 4**. **Figure 4** shows the surface soil sampling locations and results of analyses for metals above the comparison criteria. Results of the analyses of surface soil samples for metals are further discussed below.

Arsenic was detected in one (1) surface soil sample, HFL-SS-101, at a concentration (18.6 mg/kg) above the Commercial Use SCO of 16 mg/kg. Barium, chromium, copper, lead, mercury, nickel, and zinc were detected at concentrations above the Residential Use or Unrestricted Use SCOs in surface soil. The more stringent SCOs for hexavalent chromium were used for screening total chromium results since there are no SCOs for total chromium. Additionally, iron was detected in surface soil at concentrations above the CP-51 Residential Use SCO. A summary of the concentrations of metals detected above SCOs in surface soil samples is presented in the table below. There were no other metals detected at concentrations exceeding the Commercial Use, Residential Use, or Unrestricted Use SCOs in the surface soil samples.

Metals Detected at Concentrations Above Commercial Use, Residential Use, and/or Unrestricted Use SCOs in Surface Soil Samples								
Sample Location:	HFL-SS-101	HFL-SS-102	HFL-SS-104	HFL-SS-105	HFL-SS-106			
Analytes	Results	Results	Results	Results	Results			
Arsenic	18.6	6.1	6.3	5.8	6.2			
Barium	394	103	131 J	83.1 J	78.6 J			
Chromium*	30.2	21.1	20.5 J	12.3 J	13.6 J			
Copper	50.8	23.6	22.4	59.3	25			
Iron	139,000	25,300	28,000 J	20,700 J	24,900 J			
Lead	120	25.5	25.1	164	83.4			
Mercury	0.38	0.055	0.05	0.15	0.037			
Nickel	32.2	25.5	26.2	19.2	21.6			
Zinc	237	81.6	87.9	208	91			

Notes:

All concentrations are in milligrams per kilogram (mg/kg).

Values in **bold** indicate the analyte was detected.

Shading indicates the result exceeds Commercial Use, Residential Use, and/or Unrestricted Use SCOs.

J: Estimated value

SCO: Soil Cleanup Objective

^{*}The more stringent SCOs for hexavalent chromium were used for screening total chromium results.

5.2.6 Per- and Polyfluoroalkyl Substances (PFAS) in Surface Soil

There were no PFAS detected in the surface soil at concentrations exceeding the preliminary Residential Use SCO of 140 μ g/kg for a potential site or sites in the Hoosick Falls area. The complete results of analyses of surface soil samples for PFAS are presented in **Table 5**.

5.3 Surface Water Sampling

Summaries of the results of the analyses of the surface water samples are presented in **Tables 6** through **10**. **Figure 5** and **Figure 6** show the surface water sampling locations and results of analyses greater than applicable comparison criteria. A review of the results of the analyses of the surface water samples is presented below.

5.3.1 VOCs in Surface Water

There were no VOCs detected at concentrations exceeding the comparison criteria in the surface water samples submitted for analysis. The complete results of the analyses of surface water samples for VOCs are presented in **Table 6**.

5.3.2 SVOCs in Surface Water

There were no SVOCs detected at concentrations exceeding the comparison criteria in the surface water samples submitted for analysis. 1,4-Dioxane was detected at concentrations of 0.3 μ g/L (HFL-WS-114) and 1.5 μ g/L (HFL-MH-WS) in the samples analyzed for 1,4-dioxane using USEPA Method 8270³. The complete results of the analyses of surface water samples for SVOCs are presented in **Table 7**.

5.3.3 Pesticides in Surface Water

There were no pesticides detected at concentrations exceeding the comparison criteria in the surface water samples submitted for analysis. The complete results of the analyses of surface water samples for pesticides are presented in **Table 8**.

TRC ENGINEERS, INC.

³ The non-detect VOC results for 1,4-dioxane were rejected due to low relative response factors in VOC initial and continuing calibrations, causing the result to not be usable for project objectives. Results for 1,4-dioxane reported from the SVOC analysis of the samples have been determined to be usable for the purposes of this report.

5.3.4 Polychlorinated Biphenyls (PCBs) in Surface Water

There were no PCBs detected at concentrations exceeding the comparison criteria in the surface water samples submitted for analysis. The complete results of the analyses of surface water samples for PCBs are presented in **Table 8**.

5.3.5 Metals in Surface Water

Aluminum, cadmium, cobalt, copper, iron, lead, nickel, vanadium, and zinc were detected at concentrations above the comparison criteria for Class C surface water. A summary of the concentrations of metals detected above the comparison criteria in surface water samples is presented in the table below. There were no other metals detected in the surface water samples at concentrations exceeding the comparison criteria.

	Metals Detected at Concentrations Above the Comparison Criteria in Surface Water Samples								
Sample Location:	HFL-WS-102	HFL-WS-103	HFL-WS-104	HFL-WS-105	HFL-WS-106	HFL-WS-108			
Analytes	Results	Results	Results	Results	Results	Results			
Aluminum	24,500	63 J	150 J	520	650	200 U			
Cadmium	1.5 J	2 U	2 U	2 U	2 U	2 U			
Cobalt	27	4 U	4 U	4 U	4 U	4 U			
Copper	53	10 U	22	23	15	10 U			
Iron	61,000	590	160	580	670	410			
Lead	34	4.2 J	11	25	9.7 J	10 U			
Nickel	45	10 U	1.8 J	2.7 J	2.3 J	2.2 J			
Vanadium	35	5 U	5 U	5 U	5 U	5 U			
Zinc	180	11 J+	48	51	35	10 U			
Sample Location:	HFL-WS-109	HFL-WS-111	HFL-WS-112	HFL-WS-113	HFL-WS-114	HFL-MH-WS			
Analytes	Results	Results	Results	Results	Results	Results			
Aluminum	200 U	200 U	200 U	200 U	170 J	6,800			
Cadmium	2 U	2 U	2 U	2 U	2 U	2.1			
Cobalt	4 U	4 U	4 U	4 U	0.86 J	5.1			
Copper	10 U	2.6 J	3 Ј	1.8 J	3.8 J	20			
Iron	500	71	500	65	2,500	156,000			
Lead	3 J	10 U	10 U	10 U	57	26 J+			
Nickel	1.6 J	10 U	10 U	10 U	3.4 J	13 J-			
Vanadium	5 U	5 U	5 U	5 U	5 U	11			
Zinc	2.3 U	5.3 J	6 J	2.8 J	3 J	260			

Notes:

All concentrations are in micrograms per Liter (μ g/L).

Values in **bold** indicate the analyte was detected.

Shading indicates the result exceeds one or more comparison criteria.

- J: Estimated value.
- J-: Estimate value; biased low.
- J+: Estimate value; biased high.
- U: Analyte was not detected at specified quantitation limit.

The complete results of the analyses of surface water samples for metals are presented in **Table 9**.

5.3.6 Per- and Polyfluoroalkyl Substances (PFAS) in Surface Water

PFAS compounds PFOA and/or PFOS were detected in all surface water samples submitted for analysis. The table below summarizes the concentrations of PFAS detected in surface water samples. The USEPA Health Advisory Level is for drinking water and is provided as a reference only.

PFAS Concentrations Detected in Surface Water Samples								
Sample Location:	HFL-WS-106	HFL-WS-108						
Analytes	Results	Results	Results	Results	Results	Results		
PFOS	45	11	3.4	5	4.1	44		
PFOA	280	390	150	170	190	11,000		
Sample Location:	HFL-WS-109	HFL-WS-111	HFL-WS-112	HFL-WS-113	HFL-WS-114	HFL-MH-WS		
Analytes	Results	Results	Results	Results	Results	Results		
PFOS	41	4.9	8.9	4.4	150 J	20		
PFOA	10,000	930	920	910	24,000	4,700		

Notes:

All concentrations are in nanograms per Liter (ng/L).

As reference only: the USEPA Health Advisory Level for drinking water is 70 ng/L (individual or combined concentrations).

The complete results of the analyses of surface water samples for PFAS are presented in **Table 10**. For reference purposes only, **Appendix F** contains a summary of the results of Thayer's Pond fish sampling (for PFOA and PFOS only) generated by NYSDEC Division of Fish and Wildlife as part of a 2016 – 2017 Hoosick Falls area PFAS fish study, independent of the Hoosick Falls Landfill SC efforts.

5.4 Sediment Sampling

Summaries of the results of the analyses of the sediment samples are presented in **Tables 11** through **15**. **Figure 7** shows the sediment sampling locations and results of analyses greater than applicable comparison criteria. A review of the results of the analyses of the sediment samples is presented below. Note: the manhole sediment sample (HFL-MH-SD) is not compared to the sediment guidance values since the sample location is within a manhole and is not readily accessible to fish and wildlife.

5.4.1 VOCs in Sediment

There were no VOCs detected at concentrations exceeding the Class A SGVs in the sediment samples submitted for analysis. The complete results of the analyses of the sediment samples for VOCs are presented in **Table 11**.

5.4.2 SVOCs in Sediment

There were no SVOCs detected at concentrations exceeding the Class A SGVs in the sediment samples submitted for analysis. 1,4-Dioxane was not detected in the sample (HFL-MH-SD) analyzed for 1,4-dioxane

J: Estimated value.

U: Analyte was not detected at specified quantitation limit.

via USEPA Method 8270⁴. The complete results of the analyses of the sediment samples for SVOCs are presented in **Table 12**.

5.4.3 Pesticides in Sediment

There were no pesticides detected at concentrations exceeding the Class A SGVs in the sediment samples submitted for analysis. The complete results of the analyses of the sediment samples for pesticides are presented in **Table 13**.

5.4.4 Polychlorinated Biphenyls (PCBs) in Sediment

There were no PCBs detected at concentrations exceeding the Class A SGVs in the sediment samples submitted for analysis. The complete results of the analyses of the sediment samples for PCBs are presented in **Table 13**.

5.4.5 Metals in Sediment

Arsenic, cadmium, copper, lead, mercury, nickel, and zinc were detected at concentrations above the Class A SGVs in sediment. A summary of the concentrations of metals detected above Class A SGVs in the sediment samples is presented in the table below. There were no other metals detected at concentrations exceeding the Class A SGVs in the sediment samples.

TRC ENGINEERS, INC.

⁴ The non-detect VOC results for 1,4-dioxane were rejected due to low relative response factors in VOC initial and continuing calibrations, causing the result to not be usable for project objectives. Results for 1,4-dioxane are reported from the SVOC analysis of the samples and have been determined to be usable for the purposes of this report.

Metals Detected at Concentrations Above Class A SGVs in Sediment Samples							
Sample Location:	HFL-SD-101	HFL-SD-102	HFL-SD-104	HFL-SD-105			
Analytes	Results	Results	Results	Results			
Arsenic	5.6	6.2	9.6 J	10.3			
Cadmium	0.31 J+	0.2 J	0.87	0.62 J+			
Copper	30	22.6	102	35.1			
Lead	18.4	13.3	354	45.4			
Mercury	0.058	0.019 J	2.7	0.58			
Nickel	29.3	25.9	21.1	45.6			
Zinc	75.3	64	318	107			
Sample Location:	HFL-SD-106	HFL-SD-111	HFL-SD-112	HFL-SD-113			
Analytes	Results	Results	Results	Results			
Arsenic	11 J-	8	9.8	14.8 J			
Cadmium	1.1 J+	1.4 J+	1.4 J+	1.4 J			
Copper	93.6	71.1	72	71.7 J			
Lead	542	147	137	93.7 J			
Mercury	0.31	0.15	0.2	0.11 J			
Nickel	25.2	31.9	41.6	45.7			
Zinc	393	357	361	336 J			

Notes:

All concentrations are in milligrams per kilogram (mg/kg).

Values in **bold** indicate the analyte was detected.

No shading indicates the result meets Class A SGVs.

Shading indicates the result corresponds with Class B SGVs. **Shading** indicates the result corresponds with Class C SGVs

J: Estimated value.

J-: Estimate value; biased low. J+: Estimate value; biased high.

The complete results of the analyses of sediment samples for metals are presented in **Table 14**.

5.4.6 Per- and Polyfluoroalkyl Substances (PFAS) in Sediment

There are no SGVs currently established for PFAS in sediment; however, no PFAS were detected in sediment at a concentration above the preliminary Residential Use SCO of 140 μ g/kg for PFAS in soil at a potential site or sites in the Hoosick Falls area. The complete results of the analyses of the sediment samples for PFAS are presented in **Table 15**. For reference purposes only, **Appendix F** contains a summary of the results of Thayer's Pond fish sampling (for PFOA and PFOS only) generated by NYSDEC Division of Fish and Wildlife as part of a 2016 – 2017 Hoosick Falls area PFAS fish study, independent of the Hoosick Falls Landfill SC efforts.

5.5 Subsurface Soil Sampling

Summaries of the results of the analyses of the subsurface soil samples are presented in **Tables 16** through **20**. **Figure 8** presents a summary of the results of the analyses of the subsurface soil samples. A review of the results of the analyses of the subsurface soil samples is presented below.

5.5.1 VOCs in Subsurface Soil

There were no VOCs detected at concentrations exceeding the Commercial Use, Residential Use, or Unrestricted Use SCOs in any subsurface soil samples submitted for analysis. The complete results of the analyses of subsurface soil samples for VOCs are presented in **Table 16**.

5.5.2 SVOCs in Subsurface Soil

There were no SVOCs detected at concentrations exceeding the Commercial Use, Residential Use, or Unrestricted Use SCOs in any subsurface soil samples submitted for analysis. 1,4-Dioxane was not detected in the samples analyzed for 1,4-dioxane via USEPA Method 8270⁵. The complete results of analyses of subsurface soil samples for SVOCs are presented in **Table 17**.

5.5.3 Pesticides in Subsurface Soil

There were no pesticides detected at concentrations above the Commercial Use, Residential Use, or Unrestricted Use SCOs in the subsurface soil samples submitted for analysis. The results of the analyses of subsurface soil samples for pesticides are presented in **Table 18**.

5.5.4 Polychlorinated Biphenyls in Subsurface Soil

PCBs were detected at a concentration of 4.8 mg/kg, which exceeds the Commercial Use SCO of 1 mg/kg, in the sample collected 6 to 10 feet bgs in the borehole for monitoring well HFL-MW-103, located in the southeast corner of the Site. There were no PCBs detected at concentrations above the Commercial Use, Residential Use, or Unrestricted Use SCOs in the other subsurface soil samples submitted for laboratory analysis. The results of the analyses of subsurface soil samples for PCBs are presented in **Table 18**. **Figure 8** shows the subsurface soil sampling locations and results of analyses for PCBs above the comparison criteria.

_

⁵ The non-detect VOC results for 1,4-dioxane were rejected due to low relative response factors in VOC initial and continuing calibrations, causing the result to not be usable for project objectives. Results for 1,4-dioxane reported from the SVOC analysis of the samples have been determined to be usable for the purposes of this report.

5.5.5 Metals in Subsurface Soil

Metals were detected in each of the subsurface soil samples analyzed. The results of the analyses of the subsurface soil samples for metals are presented in **Table 19**. **Figure 8** shows the subsurface soil sampling locations and results of analyses for metals above the comparison criteria. Results of the analyses of soil samples for metals are discussed further below.

Chromium was detected at concentrations exceeding the Unrestricted Use SCO in five of the subsurface soil samples and at a concentration above the Residential Use SCO in one of the subsurface soil samples (HFL-MW-101B (48'-50')). The more stringent SCOs for hexavalent chromium were used for screening total chromium results since there are no SCOs for total chromium. Nickel was detected at a concentration above the Unrestricted Use SCO in one subsurface soil sample (HFL-MW-101B (48'-50')). Additionally, iron was detected in subsurface soil at concentrations above the CP-51 Residential Use SCO in all subsurface soil samples. A summary of the concentrations of metals detected above SCOs in subsurface soil samples is presented in the table below. There were no other metals detected at concentrations exceeding the Commercial Use, Residential Use or Unrestricted Use SCOs in the subsurface soil samples.

	Metals Detected at Concentrations Above Residential Use and/or Unrestricted Use SCOs in Subsurface Soil Samples											
Sample Location:	HFL-MW-101	HFL-MW- 101B	HFL-MW-103	HFL-MW-104	HFL-MW-105	HFL-MW-106						
Sample Depth:	16-20	48-50	6-10	9-11	22-24	19-21						
Analytes	Results	Results	Results	Results	Results	Results						
Chromium*	13.8	32.4	17.3	17.1	16.2	19.7						
Iron	17,700 37,300		25,500	26,400	25,200	21,300						
Nickel	17.8 41.5 28.2 26.3 26.8 20											

Notes:

All concentrations are in milligrams per kilogram (mg/kg).

Sample depths in feet below ground surface (bgs).

Values in **bold** indicate the analyte was detected.

Shading indicates the result exceeds Residential Use and/or Unrestricted Use SCOs.

SCO: Soil Cleanup Objective

The complete results of the analyses of subsurface soil samples for metals are presented in **Table 19**.

5.5.6 Per- and Polyfluoroalkyl Substances (PFAS) in Subsurface Soil

There were no PFAS detected in the subsurface soil samples at concentrations exceeding the preliminary Residential Use SCO of $140 \,\mu\text{g/kg}$ for a potential site or sites in the Hoosick Falls area. The complete results of analyses of subsurface soil samples for PFAS are presented in **Table 20**.

^{*}The more stringent SCOs for hexavalent chromium were used for screening total chromium results.

Site Characterization Report New York State Department of Environmental Conservation Hoosick Falls Landfill Site Town of Hoosick, New York 12090

5.6 Groundwater and Leachate Sampling

Summaries of the results of the analyses of the groundwater and leachate samples are presented in **Tables 21** through **Table 25**. **Figures 13** and **14** show the monitoring well locations and results of analyses greater than the Class GA Values. A review of the results of the analyses of the groundwater and leachate samples is presented below.

5.6.1 VOCs in Groundwater and Leachate

There were no VOCs detected at concentrations exceeding the Class GA Values in the groundwater and leachate samples submitted for analysis. The complete results of the analyses of groundwater and leachate samples for VOCs are presented in **Table 21**.

5.6.2 SVOCs in Groundwater and Leachate

There were no SVOCs detected at concentrations exceeding the Class GA Values in the groundwater and leachate samples submitted for analysis. 1,4-Dioxane concentrations ranged from not detected to $180 \mu g/L$ (estimated value biased high, detected in sample collected from HFL-MW-002) in the samples analyzed for 1,4-dioxane via USEPA Method 8270^6 . The complete results of the analyses of groundwater and leachate samples for SVOCs are presented in **Table 22**.

5.6.3 Pesticides in Groundwater and Leachate

There were no pesticides detected at concentrations exceeding the Class GA Values in the groundwater and leachate samples submitted for analysis. The complete results of the analyses of groundwater and leachate samples for pesticides are presented in **Table 23**.

5.6.4 Polychlorinated Biphenyls (PCBs) in Groundwater and Leachate

There were no PCBs detected at concentrations exceeding the Class GA Values in the groundwater and leachate samples submitted for analysis. The complete results of the analyses of groundwater and leachate samples for PCBs are presented in **Table 23**.

⁶ The non-detect VOC results for 1,4-dioxane were rejected due to low relative response factors in VOC initial and continuing calibrations, causing the result to not be usable for project objectives. Results for 1,4-dioxane reported from the SVOC analysis of the samples have been determined to be usable for the purposes of this report.

5.6.5 Metals in Groundwater and Leachate

Arsenic, chromium, iron, lead, magnesium, manganese, and sodium were detected at concentrations above the Class GA Values in groundwater and leachate. A summary of the concentrations of metals detected above Class GA Values in groundwater and leachate samples is presented in the table below. There were no other metals detected at concentrations exceeding the Class GA Values in the groundwater and leachate samples.

	Metals Detected	l at Concentrations A	bove Class GA Value	s in Groundwater an	d Leachate Samples	S
Sample Location:	HFL-GW-PW1	HFL-M	IW-002	HFL-M	W-004	HFL-MW-101
Sample Date:	6/6/2018	6/8/2017	6/7/2018	6/8/2017	6/7/2018	6/7/2017
Analytes	Results	Results	Results	Results	Results	Results
Arsenic	15 U	15 U	15 U	15 U	15 U	8.6 J
Iron	35,200	1,700	2,000	2,500	1,700	4,100
Magnesium	13,600	35,600	35,700	51,500	51,300	34,400
Manganese	830	600	690	10,200	3,200	1,300
Sodium	49,900	30,500	29,800	23,400	25,700	14,200
Sample Location:	HFL-MW-101	HFL-MW-101B	HFL-MW-101C	HFL-M	W-102	HFL-MW-103
Sample Date:	6/6/2018	6/6/2018	6/6/2018	6/8/2017	6/7/2018	6/7/2017
Analytes	Results	Results	Results	Results	Results	Results
Arsenic	43	7.7 J	8.5J	15 U	15 U	15 U
Iron	11,100	4,800	18,400	2,700	10,200	300
Magnesium	36,400	15,000	18,800	23,200	19,000	18,300
Manganese	1,500	1,700	1,700	590	770	67
Sodium	14,700	15,400	16,800	27,000	21,900	76,000
Sample Location:	HFL-MW-103	HFL-MW-104	HFL-MW-104C	HFL-MW-105C	HFL-MW-106	HFL-MW-106C
Sample Date:	6/6/2018	6/6/2018	6/6/2018	6/5/2018	6/5/2018	6/6/2018
Analytes	Results	Results	Results	Results	Results	Results
Arsenic	15 U	15 U	15 U	14 J	15 U	15 U
Chromium	4 U	4 U	4 U	69	2.2 J	4 U
Iron	1,100	560	560	30,500	400	740
Lead	10 U	10 U	10 U	34	10 U	10 U
Magnesium	26,700	27,800	30,500	37,500	37,500 5,400	
Manganese	42	240	1,300	1,500	54	170
Sodium	85,800	18,300	19,800	98,700	10,600	24,800

Notes:

All concentrations are in micrograms per kilogram ($\mu g/L$).

Values in **bold** indicate the analyte was detected.

Shading indicates the result exceeds the Class GA Value.

J: Estimated value.

U: Analyte was not detected at specified quantitation limit.

^{*:} NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.

The complete results of the analyses of groundwater and leachate samples for metals are presented in **Table 24**.

5.6.6 Per- and Polyfluoroalkyl Substances (PFAS) in Groundwater and Leachate

The PFAS compound PFOA was detected in each of the groundwater samples collected from overburden wells. The highest concentration of PFAS was detected in a sample collected from HFL-MW-002, located near the western boundary of the Site. A concentration of PFOA of 25,000 ng/L was detected in the sample collected from HFL-MW-002 in June 2018. The highest concentration of PFOA or PFOS detected in bedrock groundwater was 28 ng/L of PFOA, detected in the groundwater sample collected from intermediate-depth bedrock well HFL-MW-101B, located near the northern boundary of the Site. PFOA and PFOS were also detected in the leachate samples collected from the leachate collection vault. The highest concentration of PFAS detected in leachate was the concentration of PFOA of 1,300 ng/L, detected in the leachate sample collected in June 2018. A summary of concentrations of PFAS detected in groundwater and leachate samples is presented in the table below. The USEPA Health Advisory Level for drinking water is provided as a reference only.

	Summar	y of PFAS Concentra	tions Detected in Gro	oundwater and Leach	nate Samples	
Sample Location:	HFL-G	W-PW-1	HFL-M	W-001B	HFL-M	IW-002
Sample Date:	6/13/2017	6/6/2018	6/8/2017	6/6/2018	6/8/2017	6/7/2018
Analytes	Results	Results	Results	Results	Results	Results
PFOS	2.2	10	1.2 J	0.71 J	1.9 U	20 U
PFOA	43	1,300	550	310	24,000	25,000
Sample Location:	HFL-I	MW-004	HFL-M	IW-101	HFL-MW-101B	HFL-MW-101C
Sample Date:	6/8/2017	6/7/2018	6/7/2018	6/6/2018	6/6/2018	6/6/2018
Analytes	Results	Results	Results	Results	Results	Results
PFOS	6.7	9.9 J	46	34	2.1 U	1.9 U
PFOA	1,900	2,200	5,300	4,400	28	10
Sample Location:	HFL-I	MW-102	HFL-MW-103	HFL-MW-103	HFL-MW-104	HFL-MW-104C
Sample Date:	6/8/2017	6/7/2018	6/7/2017	6/6/2018	6/6/2018	6/6/2018
Analytes	Results	Results	Results	Results	Results	Results
PFOS	2.1	0.88 J	11	8.5 J	1.2 J	2.1 U
PFOA	94	1,800	570	650	590	5.3
Sample Location:	HFL-MW-105	HFL-MW-105C	HFL-MW-106			
Sample Date:	6/5/2018	6/5/2018	6/5/2018]		
Analytes	Results	Results	Results			
PFOS	2.5 J	1.9 U	1.1 J]		
PFOA	930	2.5	850			

Notes:

All concentrations are in nanograms per liter (ng/L).

Values in **bold** indicate the analyte was detected.

 $As\ reference\ only:\ the\ USEPA\ Health\ Advisory\ Level\ for\ drinking\ water\ is\ 70\ ng/L\ (individual\ or\ combined\ concentrations).$

The complete results of the analyses of groundwater samples for PFAS are presented in **Table 25**.

5.7 Data Usability

The results of the data validation are summarized in Data Usability Summary Reports (DUSRs). The DUSRs are provided in **Appendix E** and include a discussion on each qualified result, the potential bias and the effects on data usability. With the exception of the analyses of 1,4-dioxane by USEPA Method 8260 and TCL VOCs by USEPA Method 8260 in one (1) sediment sample (HFL-SD-103), the results of analyses of the surface soil, surface water, sediment, subsurface soil, and groundwater samples were found to be valid and usable for decision-making purposes. The non-detect sample results for 1,4-dioxane by USEPA Method 8260 were rejected due to low relative response factors (RRFs) in initial and continuing calibrations. The

J: Estimated value.

U: Analyte was not detected at specified quantitation limit.

non-detect VOC results in sediment sample HFL-SD-103 were rejected due to significantly low recoveries of internal standards. Since 1,4-dioxane was also analyzed using USEPA Method 8270 at select surface soil, surface water, sediment, subsurface soil, and groundwater sample locations, the rejection of the 1,4-dioxane in the VOC analysis did not have a significant impact on the SC. TCL VOCs were analyzed at other sediment sample locations as well as surface soil, surface water, subsurface soil and groundwater sample locations. There were no VOCs detected at concentrations above applicable screening criteria in the samples collected at the Site. As a result, the rejection of the VOC analysis in sediment sample HFL-SD-103 did not have a significant impact on the SC.

5.8 Geology and Hydrogeology

Based on published information, unconsolidated material near the Site consists of glacial deposits, primarily sand and gravel. The soil type at the Site is classified as man-made. Deeper soils underlying and adjacent to the Site are primarily silty loams with slopes ranging from 3 to 40 percent. Bedrock near the Site is the Walloomsac Formation and the Stockbridge Limestone, which are Ordovician and Late Cambrian in age, respectively. The high permeability sand and gravel over bedrock within the site investigation area generally promotes a potential hydraulic connection between the unconsolidated material and bedrock where confining layers do not exist. Regional groundwater flow direction near the Site is west towards the Hoosick River.

Based on the information gathered during the SC field activities and previous environmental investigations, the subsurface geology outside the limits of waste at the Site consists primarily of a brown/gray silty sand with sub-angular rock fragments from 0 to15 feet bgs, a finely graded sand with silt and clay from 15 to 50 feet bgs, and glacial till from 50 feet bgs to bedrock. Bedrock was encountered at 63 feet bgs at monitoring well HFL-MW-104C (located in the southeast part of the Site) and at 122 feet bgs at monitoring well HFL-MW-105C (located in the northwest part of the site investigation area). The bedrock at the Site consists primarily of phyllite/slate, likely associated with the Walloomsac, with prevalent post depositional fractures which have been filled with quartz and/or calcite varying in thickness from a few millimeters to several centimeters. The original orientation of the bedding has been deformed by regional deformation. Weathered seams and un-filled fractures are also evident throughout the bedrock. Boring logs and monitoring well construction logs are presented in **Appendix A**.

Overburden groundwater surface elevations were found to vary between 368.26 feet (HFL-MW-105, July 2018) and 497.82 feet (HFL-MW-001B, June 2017) during the SC field activities. Bedrock groundwater surface elevations were found to vary between 365.54 feet (HFL-MW-105C, June 2018) and 471.87 feet (HFL-MW-104C, June 2018) during the SC field activities. Based on groundwater surface elevation measurements, the predominant direction of overburden groundwater flow is west towards the Hoosick River and the predominant direction of bedrock groundwater flow is northwest. Groundwater surface elevations and contours are shown on **Figures 9** through **12**.

6.0 FINDINGS

The Site Characterization for the Hoosick Falls Landfill Site was completed in general accordance with the NYSDEC DER Work Assignment No. D007620-34 Notice to Proceed dated December 23, 2016, the NYSDEC-approved amended Scope of Work dated June 18, 2018 (WA No. D007620-34.1), and NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation. The findings, based on the results of the Site Characterization, are presented below.

- There was no physical evidence of contamination observed in any of the surface soil, subsurface soil, or sediment samples collected. Additionally, no physical evidence of contamination was observed in any of the groundwater, surface water or leachate samples collected, and no leachate seeps were identified during the site inspection. The subsurface geology outside the limits of waste at the Site consists primarily of a brown/gray silty sand with sub-angular rock fragments from 0 to 15 feet bgs, a finely graded sand with silt and clay from 15 to 50 feet bgs, and glacial till from 50 feet bgs to bedrock. Bedrock was encountered at depths ranging from 63 feet bgs (monitoring well HFL-MW-104C) to 122 feet bgs (monitoring well HFL-MW-105C) within the site investigation area. The bedrock at the Site consists primarily of phyllite/slate, with prevalent lenses of vein quartz and calcite varying in thickness from a few millimeters to several centimeters. Overburden groundwater surface elevations were found to vary between 368.26 feet (HFL-MW-105, July 2018) and 497.82 feet (HFL-MW-001B, June 2017) during the SC field activities. Bedrock groundwater surface elevations were found to vary between 365.54 feet (HFL-MW-105C, June 2018) and 471.87 feet (HFL-MW-104C, June 2018) during the SC field activities. Based on groundwater surface elevation measurements, the predominant direction of overburden groundwater flow is west towards the Hoosick River and the predominant direction of bedrock groundwater flow is northwest.
- With the exception of 4,4'-DDT in one (1) surface soil sample (HFL-SS-101) and PCBs in one (1) subsurface soil sample (HFL-MW-103 (6'-10')), there were no VOCs, SVOCs, pesticides or PCBs detected at concentrations above applicable screening criteria in surface soil, subsurface soil, sediment, surface water or groundwater.
- Arsenic was detected in one (1) surface soil sample, HFL-SS-101, at a concentration (18.6 mg/kg) above the Commercial Use SCO of 16 mg/kg. Barium, chromium, copper, iron, lead, mercury, nickel, and zinc were detected at concentrations above the Residential Use or Unrestricted Use SCOs in surface soil.
- In subsurface soil samples, the metals chromium, iron, and nickel were detected at concentrations above the Unrestricted Use SCOs. Chromium was detected in one (1) subsurface soil sample at a concentration marginally above the Residential Use SCO. (The more stringent SCOs for hexavalent chromium were used for screening total chromium results since there are no SCOs for total chromium).

- The metals lead and mercury (mercury in one (1) sample only, HFL-SD-104, collected from a drainage ditch southeast of the Village's Transfer Station) were detected at concentrations exceeding the Class A SGVs in sediment samples.
- The metals aluminum, cadmium, cobalt, copper, iron, lead, nickel, vanadium, and zinc were detected in surface water at concentrations above the comparison criteria. Generally, the highest concentrations of metals were detected in the surface water sample (HFL-WS-102) collected from a ditch in the southeastern part of the Site between the Village's Transfer Station and the limits of the landfill cap and in the surface water sample collected from the manhole on the western side of the landfill.
- The metals arsenic, chromium, iron, lead, magnesium, manganese, and sodium were detected at
 concentrations above the Class GA Values in groundwater samples. Chromium and lead were
 detected at concentrations above the Class GA Values in the groundwater sample collected from offsite bedrock well HFL-MW-105C. Arsenic was detected at a concentration above the Class GA
 Value in the groundwater sample collected from HFL-MW-101. (Note: all groundwater samples
 were analyzed unfiltered.)
- There were no PFAS detected in surface and subsurface soil at concentrations above the NYSDOH preliminary Residential Use SCO of 140 μg/kg developed for a potential site or sites in the Hoosick Falls area. The highest concentrations of PFAS (PFOS and PFOA combined) in sediment were detected in sample HFL-SD-108 (21.6 μg/kg) and the sediment sample collected from the manhole (22.7 μg/kg). HFL-SD-108 was collected from the drainage ditch located downgradient of the suspected discharge point of the manhole on the western side of the landfill.
- The PFAS compounds PFOA and/or PFOS were detected in all surface water samples collected. PFAS concentrations (PFOA and PFOS combined) in surface water samples ranged from 153.4 ng/L (in HFL-WS-104) to 24,150 ng/L (in HFL-WS-114). Surface water sample HFL-WS-114 was collected from the drainage ditch located downgradient of the suspected discharge point of the manhole on the western side of the landfill. Elevated concentrations of PFAS (greater than 10,000 ng/L) were also detected in surface water samples HFL-WS-108 and HFL-WS-109, also collected from the drainage ditch on the western side of the landfill. The concentrations of PFAS in surface water samples collected from Thayer's Pond ranged from 914.4 ng/L to 934.9 ng/L.
- The PFAS compound PFOA was detected in all overburden monitoring wells, including in the off-site overburden wells and leachate. In the off-site overburden monitoring wells, HFL-MW-105 and HFL-MW-106, PFOA was detected at 930 ng/L and 850 ng/L, respectively. The highest concentrations of PFAS (PFOA and PFOS combined) in groundwater were detected in HFL-MW-002, up to 25,000 ng/L. Monitoring well HFL-MW-002 is located west of the capped landfill, between the capped landfill and the Hoosick River. No PFAS compounds were detected at concentrations greater than 65 ng/L in any of the bedrock monitoring wells. The maximum

Site Characterization Report New York State Department of Environmental Conservation Hoosick Falls Landfill Site Town of Hoosick, New York 12090

concentration of PFOA detected in the bedrock monitoring wells was 28 ng/L, detected in the intermediate-depth bedrock groundwater monitoring well (HFL-MW-101B). PFOS was not detected in the bedrock groundwater monitoring wells. Similar to the surface water and leachate samples, in groundwater PFOA was consistently detected at significantly higher concentrations than PFOS.

Site Characterization Report New York State Department of Environmental Conservation Hoosick Falls Landfill Site Town of Hoosick, New York 12090

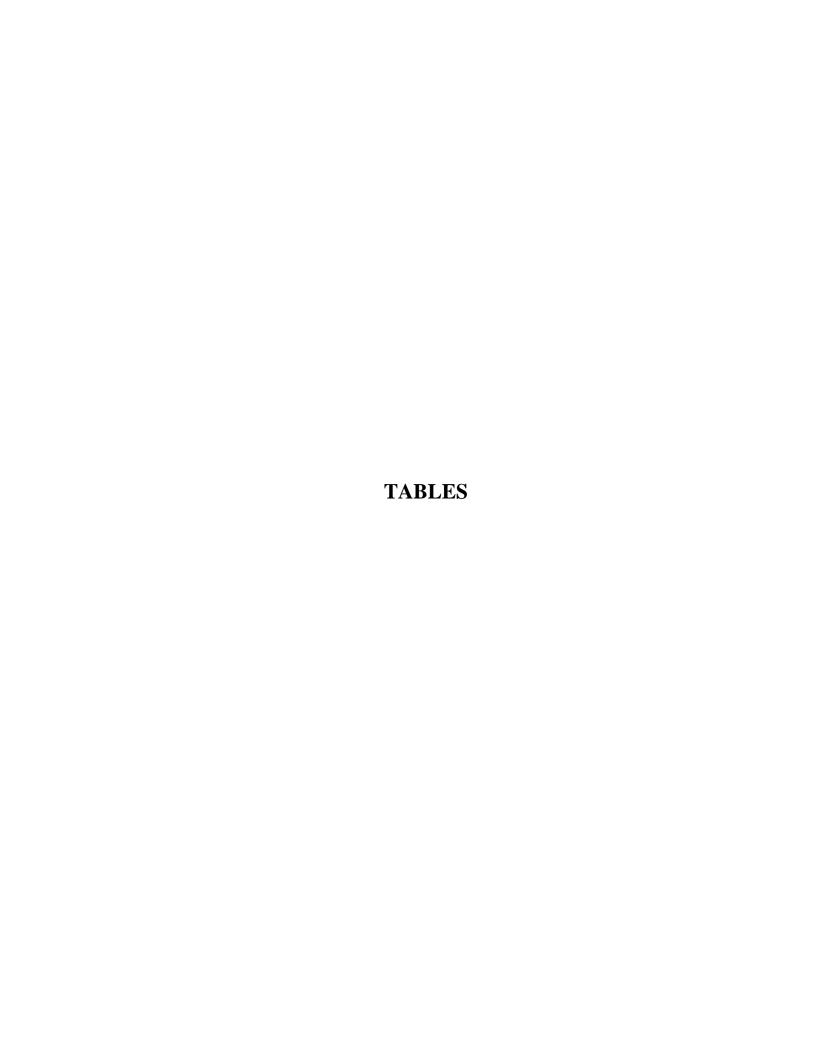
7.0 CERTIFICATION OF ENVIRONMENTAL PROFESSIONALS

I, Ryan Jorrey, certify that I am currently a NYS Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Site Characterization Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

TRC Engineers, Inc.

Prepared By:

Ryan S. Jorrey, P.G. (PA)


Staff Geologist

Reviewed By:

Jeffrey W. LaRock, P.G. Senior Technical Reviewer

8.0 REFERENCES

- 6 NYCRR 375, Remedial Program Requirements.
- 6 NYCRR 703, Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations.
- Buonanno, Nicholas. "Hoosick Falls Solar Garden Now Open." *The Record*, 16 Nov. 2015, www.troyrecord.com/news/hoosick-falls-solar-garden-now-open/article_2d72df18-d6a5-5eba-9d12-070c321b0260.html.
- Closure Investigation Report, Village of Hoosick Falls Landfill, Rensselaer County, New York, prepared by Laberge Engineering and Consulting Group LTD, December 1991.
- Engineering Investigations at Inactive Hazardous Waste Sites in the State of New York, Phase I
 Investigation for Hoosick Falls Landfill, Site Code: 442007, Hoosick, Rensselaer County, New
 York, prepared by Wehran Engineering, P.C., dated May 1987.
- Engineering Investigations at Inactive Hazardous Waste Sites, Phase II Investigation, Hoosick Falls Landfill, Site No. 442007, Town of Hoosick, Rensselaer County, prepared by Gibbs & Hill, Inc., dated March 1991.
- New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER)-10, Technical Guidance for Site Investigation and Remediation, May 2010.
- New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Program Management, Work Assignment Notice to Proceed, December 16, 2016.
- New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998, January 1999, April 2000 and June 2004.
- New York State Department of Environmental Conservation Division of Fish, Wildlife and Marine Resources Bureau of Habitat Screening and Assessment of Contaminated Sediment, June 24, 2014.
- New York State Department of Environmental Conservation Environmental Remediation Database.
- New York State Department of Environmental Conservation Draft Guidance Document, Sampling for PFAS, October 2017.
- "Solar Energy Ribbon Cutting." *The Village of Hoosick Falls, NY*, www.villageofhoosickfalls.com/Events/solar_ribbon_cutting.html#.XDJL0FxKg2x.
- TRC Engineers, Inc. Standby Engineering Contract Work Assignment (WA) No. D007620-34.1, NYSDEC-approved amended Scope of Work dated June 18, 2018.

Table 1 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Surface Soil for Volatile Organic Compounds

		SAMPLE	LOCATION:	HFL-SS-101	HFL-SS-102	HFL-SS-104	HFL-SS-105	HFL-SS-106
	I.A	BORATORY		480-119437-2	480-119437-3	480-133590-1	480-133590-3	480-133590-2
		AMPLE DEPT		0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
	5.		MPLE DATE:	6/13/2017	6/13/2017	4/4/2018	4/4/2018	4/4/2018
		57 1	UNITS:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Unrestricted	Residential	Commercial	mg kg	mg/kg	mg/kg	mg/kg	mg/kg
ANALYTES	Use SCO*	Use SCO*	Use SCO*	Results	Results	Results	Results	Results
1,1,1-Trichloroethane	0.68	100	500	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
1,1,2,2-Tetrachloroethane	NS	35	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
1,1,2-Trichloroethane	NS	NS	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
1,1,2-Trichloro- 1,2,2-trifluoroethane (Freon 113)	NS	100	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
1,1-Dichloroethane	0.27	19	240	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
1,1-Dichloroethylene	0.33	100	500	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
1,2,4-Trichlorobenzene	NS	NS	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
1,2-Dibromo-3-chloropropane (DBCP)	NS	NS	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
1,2-Dichlorobenzene	1.1	100	500	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
1,2-Dichloroethane	0.02	2.3	30	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
1,2-Dichloropropane	NS	NS	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
1,3-Dichlorobenzene	2.4	17	280	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
1,4-Dichlorobenzene	1.8	9.8	130	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
2-Butanone (MEK)	0.12	100	500	0.066 U	0.026 U	0.019 U	0.024 U	0.023 U
2-Hexanone (MBK)	NS	NS	NS	0.066 U	0.026 U	0.019 U	0.024 U	0.023 U
4-Methyl-2-pentanone (MIBK)	NS	NS	NS	0.066 U	0.026 U	0.019 U	0.024 U	0.023 U
Acetone	0.05	100	500	0.04 J	0.021 J	0.0032 J	0.024 U	0.023 U
Benzene	0.06	2.9	44	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Bromodichloromethane	NS	NS	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Bromoform	NS	NS	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Bromomethane	NS	NS	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Carbon Disulfide	NS	100	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Carbon Tetrachloride	0.76	1.4	22	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Chlorobenzene	1.1	100	500	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Chloroethane	NS	NS	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Chloroform	0.37	10	350	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Chloromethane	NS	NS	NS	0.013 UJ	0.0052 UJ	0.0038 U	0.0048 U	0.0046 U
1,4-Dioxane	0.1	9.8	130	R	R	R	R	R
cis-1,2-Dichloroethylene	0.25	59	500	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
cis-1,3-Dichloropropene	NS	NS	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Cyclohexane	NS	NS	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Chlorodibromomethane	NS	NS	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Dichlorodifluoromethane (Freon 12)	NS	NS	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Ethylbenzene	1	30	390	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
1,2-Dibromoethane (EDB)	NS	NS 100	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Isopropylbenzene (Cumene)	NS NG	100	NS	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Methyl acetate Methyl test Putyl Ether (MTRE)	NS 0.02	NS 62	NS 500	0.066 U	0.026 U	0.019 U	0.024 U	0.023 U
Methyl tert-Butyl Ether (MTBE)	0.93	62 NC	500 NS	0.013 U 0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Methylcyclohexane Mathylana Chlorida	NS 0.05	NS 51	NS 500		0.0052 U	0.0038 U	0.0048 U	0.0046 U
Methylene Chloride	0.05	51 NC	500	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Styrene Totrochloroothylono	NS 1.2	NS 5.5	NS 150	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
Tetrachloroethylene Toluene	1.3 0.7	5.5 100	150 500	0.013 U 0.013 U	0.0052 U 0.0052 U	0.0038 U 0.0038 U	0.0048 U 0.0048 U	0.0046 U 0.0046 U
trans-1,2-Dichloroethylene		100	500	0.013 U 0.013 U	0.0052 U 0.0052 U	0.0038 U	0.0048 U	0.0046 U
trans-1,3-Dichloropropene	0.19 NS	NS	NS NS	0.013 U 0.013 U	0.0052 U 0.0052 U	0.0038 U	0.0048 U	0.0046 U
Trichloroethylene	NS 0.47	NS 10	NS 200	0.013 U 0.013 U	0.0052 U 0.0052 U	0.0038 U	0.0048 U	0.0046 U
Trichlorofluoromethane (Freon 11)	NS	NS	NS NS	0.013 U 0.013 U	0.0052 U 0.0052 U	0.0038 U	0.0048 U	0.0046 U
Vinyl Chloride	0.02	0.21	13	0.013 U	0.0052 U	0.0038 U	0.0048 U	0.0046 U
_								
Xylene (Total)	0.26	100	500	0.026 U	0.01 U	0.0077 U	0.0096 U	0.0091 U

Notes:

FT. BGS - Feet below ground surface.

mg/kg - Milligrams per kilogram.

J - Estimated value

R - Rejected data point during data validation.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

* - New York State Department of Environmental Conservation, Soil Cleanup Objectives (SCOs) (6NYCRR Part 375 and CP-51).

NS - No NYSDEC standard exists for this analyte.

Table 2 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Surface Soil for Semivolatile Organic Compounds

			LOCATION:	HFL-SS-101	HFL-SS-102	HFL-SS-104	HFL-SS-105	HFL-SS-106
			SAMPLE ID: H (FT. BGS):	480-119437-2 0-0.5	480-119437-3 0-0.5	480-133590-1 0-0.5	480-133590-3 0-0.5	480-133590-2 0-0.5
	3A		MPLE DATE:	6/13/2017	6/13/2017	4/4/2018	4/4/2018	4/4/2018
		Di li	UNITS:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ANALYTES	Unrestricte d Use SCO*	Residential Use SCO*	Commercial Use SCO*	Results	Results	Results	Results	Results
1,1'-Biphenyl	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
2,2'-Oxybis(1-chloropropane)	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
2,4,5-Trichlorophenol	NS	100	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
2,4,6-Trichlorophenol	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
2,4-Dichlorophenol	NS	100	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
2,4-Dimethylphenol	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
2,4-Dinitrophenol	NS	100	NS	84 U	20 U	2.1 U	9.4 U	10 U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	NS NS	NS 1.02	NS NS	8.6 U 8.6 U	2 U 2 U	0.21 U 0.21 U	0.96 U 0.96 U	1.1 U 1.1 U
2-Chloronaphthalene	NS NS	1.03 NS	NS NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
2-Chlorophenol	NS	100	NS NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
2-Methylphenol	0.33	100	500	8.6 U	2 U	0.21 U	0.96 U	1.1 U
2-Methylnaphthalene	NS	0.41	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
2-Nitroaniline	NS	NS	NS	17 U	4 U	0.41 U	1.9 U	2.1 U
2-Nitrophenol	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
3,3'-Dichlorobenzidine	NS	NS	NS	17 U	4 U	0.41 U	1.9 U	2.1 U
3-Nitroaniline	NS	NS	NS	17 U	4 U	0.41 U	1.9 U	2.1 U
4,6-Dinitro-2-methylphenol	NS	NS	NS	17 UJ	4 UJ	0.41 U	1.9 U	2.1 U
4-Bromophenyl-phenylether	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
4-Chloro-3-methylphenol	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
4-Chloroaniline 4-Chlorophenyl-phenyl ether	NS NS	100 NS	NS NS	8.6 U 8.6 U	2 U 2 U	0.21 U 0.21 U	0.96 U 0.96 U	1.1 U 1.1 U
4-Methylphenol	0.33	34	500	17 U	4 U	0.41 U	1.9 U	2.1 U
4-Nitroaniline	NS	NS	NS	17 U	4 U	0.41 U	1.9 U	2.1 U
4-Nitrophenol	NS	NS	NS	17 U	4 U	0.41 U	1.9 U	2.1 U
Acenaphthene	20	100	500	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Acenaphthylene	100	100	500	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Acetophenone	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Anthracene	100	100	500	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Atrazine	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Benzaldehyde Benzo(a)anthracene	NS 1	NS 1	NS 5.6	8.6 U 8.6 U	2 U 2 U	0.21 U 0.21 U	0.96 U 0.18 J	1.1 U 1.1 U
Benzo(a)pyrene	1	1	1	8.6 U	2 U	0.21 U	0.18 J 0.96 U	1.1 U
Benzo(b)fluoranthene	1	1	5.6	8.6 U	2 U	0.21 U	0.25 J	1.1 U
Benzo(g,h,i)perylene	100	100	500	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Benzo(k)fluoranthene	0.8	1	56	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Bis(2-chloroethoxy)methane	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Bis(2-chloroethyl) ether	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Bis(2-ethylhexyl)phthalate	NS	50	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Butylbenzylphthalate Caprolactam	NS NS	100 NS	NS NS	8.6 U 8.6 U	2 U 2 U	0.21 U 0.21 U	0.96 U 0.96 U	1.1 U 1.1 U
Carbazole	NS NS	NS NS	NS NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Chrysene	1	1	56	8.6 U	2 U	0.21 U	0.23 J	1.1 U
Dibenz(a,h)anthracene	0.33	0.33	0.56	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Di-n-butylphthalate	NS	100	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Di-n-octylphthalate	NS	100	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Dibenzofuran	7	14	350	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Diethyl phthalate	NS	100	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Dimethylphthalate Fluoranthene	NS 100	100	NS 500	8.6 U	2 U 2 U	0.21 U	0.96 U	1.1 U
Fluoranthene Fluorene	100 30	100 100	500 500	8.6 U 8.6 U	2 U 2 U	0.21 U 0.21 U	0.4 J 0.96 U	1.1 U 1.1 U
Hexachlorobenzene	0.33	0.33	6	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Hexachlorobutadiene	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Hexachlorocyclopentadiene	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Hexachloroethane	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Indeno(1,2,3-cd)pyrene	0.5	0.5	5.6	8.6 U	2 U	0.21 U	0.18 J	1.1 U
Isophorone	NS	100	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
n-Nitroso-di-n-propylamine	NS	NS	NS	8.6 U	2 U	0.21 U	0.96 U	1.1 U
N-Nitrosodiphenylamine Naphthalene	NS 12	NS 100	NS 500	8.6 U 8.6 U	2 U 2 U	0.21 U 0.21 U	0.96 U 0.96 U	1.1 U 1.1 U
Nitrobenzene	NS	3.7	69	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Pentachlorophenol	0.8	2.4	6.7	17 U	4 U	0.41 U	1.9 U	2.1 U
Phenanthrene	100	100	500	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Phenol	0.33	100	500	8.6 U	2 U	0.21 U	0.96 U	1.1 U
Pyrene	100	100	500	8.6 U	2 U	0.21 U	0.32 J	1.1 U
1,4-Dioxane	0.1	9.8	130	NA	NA	0.25 U	1.1 U	1.3 U

Notes:

FT. BGS - Feet below ground surface.

mg/kg - Milligrams per kilogram.

J - Estimated value.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

* - New York State Department of Environmental Conservation, Soil Cleanup Objectives (SCOs) (6NYCRR Part 375 and CP-51).

NA - Sample not analyzed for the listed analyte.

NS - No NYSDEC standard exists for this analyte. Values in **bold** indicate the analyte was detected.

Table 3 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Surface Soil for Pesticides and Polychlorinated Biphenyls

	T A T		LOCATION:	HFL-SS-101	HFL-SS-102	HFL-SS-104	HFL-SS-105	HFL-SS-106
			SAMPLE ID:	480-119437-2 0-0.5	480-119437-3 0-0.5	480-133590-1 0-0.5	480-133590-3 0-0.5	480-133590-2 0-0.5
	SA		H (FT. BGS): MPLE DATE:	6/13/2017	6/13/2017	4/4/2018	4/4/2018	0-0.3 4/4/2018
		SAI	UNITS:					
	Unrestricted	Decidential	Commercial	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ANALYTES	Use SCO*	Use SCO*	Use SCO*	Results	Results	Results	Results	Results
PESTICIDES								
4,4'-DDD	0.0033	2.6	92	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
4,4'-DDE	0.0033	1.8	62	0.0016 J	0.002 U	0.0021 U	0.0019 U	0.0021 U
4,4'-DDT	0.0033	1.7	47	0.0039 J	0.00085 J	0.0021 U	0.0019 U	0.0021 U
Aldrin	0.005	0.019	0.68	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
alpha-BHC	0.02	0.097	3.4	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
alpha-Chlordane	0.094	0.91	24	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
beta-BHC	0.036	0.072	3	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
delta-BHC	0.04	100	500	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
Dieldrin	0.005	0.039	1.4	0.0012 J	0.002 U	0.0021 U	0.0019 U	0.0021 U
Endosulfan I	2.4 ^(a)	4.8 ^(a)	200 ^(a)	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
Endosulfan II	2.4 ^(a)	4.8 ^(a)	200 ^(a)	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
Endosulfan sulfate	2.4 ^(a)	4.8 ^(a)	200 ^(a)	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
Endrin	0.014	2.2	89	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
Endrin aldehyde	NS	NS	NS	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
Endrin ketone	NS	NS	NS	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
gamma-BHC (Lindane)	0.1	0.28	9.2	0.0042 U	0.00046 J	0.0021 U	0.0019 U	0.0021 U
trans-Chlordane	NS	NS	NS	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
Heptachlor	0.042	0.42	15	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
Heptachlor epoxide	NS	0.077	NS	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
Methoxychlor	NS	100	NS	0.0042 U	0.002 U	0.0021 U	0.0019 U	0.0021 U
Toxaphene	NS	NS	NS	0.042 U	0.02 U	0.021 U	0.019 U	0.021 U
PCBs								
Aroclor-1016	NS	NS	NS	0.61 U	0.25 U	0.27 U	0.22 U	0.28 U
Aroclor-1221	NS	NS	NS	0.61 U	0.25 U	0.27 U	0.22 U	0.28 U
Aroclor-1232	NS	NS	NS	0.61 U	0.25 U	0.27 U	0.22 U	0.28 U
Aroclor-1242	NS	NS	NS	0.61 U	0.25 U	0.27 U	0.22 U	0.28 U
Aroclor-1248	NS	NS	NS	0.61 U	0.25 U	0.27 U	0.22 U	0.28 U
Aroclor-1254	NS	NS	NS	0.61 U	0.25 U	0.27 U	0.22 U	0.28 U
Aroclor-1260	NS	NS	NS	0.61 U	0.25 U	0.27 U	0.22 U	0.28 U
PCBs, Total	0.1	1	1	0.61 U	0.25 U	0.27 U	0.22 U	0.28 U

Notes:

FT. BGS - Feet below ground surface

mg/kg - Milligrams per kilogram.

J - Estimated value.

U - Analyte was not detected at specified quantitation limit.

PCBs - Polychlorinated biphenyls.

* - New York State Department of Environmental Conservation, Soil Cleanup Objectives (SCOs) (6NYCRR Part 375 and CP-51).

NS - No NYSDEC standard exists for this analyte.

Values in **bold** indicate the analyte was detected.

Shading indicates result above the corresponding SCO.

 $^{(a)}$ - Criteria applicable to the sum of Endosulfan I, Endosulfan II and Endosulfan Sulfate.

Table 4 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY Summary of Results of Analysis of Surface Soil for Metals

		SAMPLI	E LOCATION:	HFL-SS-101	HFL-SS-102	HFL-SS-104	HFL-SS-105	HFL-SS-106
	LA	BORATORY	SAMPLE ID:	480-119437-2	480-119437-3	480-133590-1	480-133590-3	480-133590-2
	SA	MPLE DEP	ΓH (FT. BGS):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
		SA	MPLE DATE:	6/13/2017	6/13/2017	4/4/2018	4/4/2018	4/4/2018
			UNITS:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Unrestricted		Commercial					
ANALYTES	Use SCO*	Use SCO*	Use SCO*	Results	Results	Results	Results	Results
Aluminum	NS	NS	NS	19,300	16,200	19,400	10,500	13,900
Antimony	NS	NS	NS	4.1 J	0.79 J	2 UJ	1.5 UJ	1.7 UJ
Arsenic	13	16	16	18.6	6.1	6.3	5.8	6.2
Barium	350	350	400	394	103	131 J	83.1 J	78.6 J
Beryllium	7.2	14	590	0.78	0.63	0.74	0.4	0.49
Cadmium	2.5	2.5	9.3	1.7 J+	0.31 J+	0.068 J	0.17 J	0.28 J-
Calcium	NS	NS	NS	5,610	2,990	2,810 J	5,240 J	3,180 J
Chromium	1 ^(a)	22 ^(a)	400 ^(a)	30.2	21.1	20.5 J	12.3 J	13.6 J
Cobalt	NS	30	NS	12.3	11.5	12.3	9.2	10.7
Copper	50	270	270	50.8	23.6	22.4	59.3	25
Iron	NS	2,000	NS	139,000	25,300	28,000 J	20,700 J	24,900 J
Lead	63	400	1,000	120	25.5	25.1	164	83.4
Magnesium	NS	NS	NS	5,310	6,060	6,180	6,110	4,830
Manganese	1,600	2,000	10,000	905	638	725 J	565 J	702 J
Mercury	0.18	0.81	2.8	0.38	0.055	0.05	0.15	0.037
Nickel	30	140	310	32.2	25.5	26.2	19.2	21.6
Potassium	NS	NS	NS	3,910	3,270	2,920 J	1,740 J	1,440 J
Selenium	3.9	36	1,500	1.6 U	4.5 U	0.62 J	4.8 U	0.61 J
Silver	2	36	1,500	1 J	0.68 U	0.82 U	0.72 U	0.77 U
Sodium	NS	NS	NS	196 J	116 J	112 U	169 U	66.1 U
Thallium	NS	NS	NS	16.9 U	6.8 U	8.2 UJ	7.2 UJ	7.7 UJ
Vanadium	NS	100	NS	27.7	21.3	24.8	13.9	17
Zinc	109	2,200	10,000	237	81.6	87.9	208	91

Notes:

FT. BGS - Feet below ground surface

mg/kg - Milligrams per kilogram.

- J Estimated value.
- J- Estimated value; biased low.
- J+ Estimated value; biased high.
- U Analyte was not detected at specified quantitation limit.
- UJ Estimated non-detect.
- $*- New \ York \ State \ Department \ of \ Environmental \ Conservation, \ Soil \ Cleanup \ Objectives \ (SCOs) \ (6NYCRR \ Part \ 375 \ and \ CP-51).$

NS - No NYSDEC standard exists for this analyte.

Values in **bold** indicate the analyte was detected.

Shading indicates result above the corresponding SCO.

(a) - SCO for Chromium (VI) used.

Table 5 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Surface Soil for Per- and Polyfluoroalkyl Substances

SAMPLE LOCATION:	HFL-SS-10	01	HFL-SS-	102	HFL-SS-	104	HFL-SS-	105	HFL-SS-	106
LABORATORY SAMPLE ID:	480-119437	7-2	480-11943	37-3	480-13359	90-1	480-13359	90-3	480-13359	90-2
SAMPLE DEPTH (FT. BGS):	0-0.5		0-0.5		0-0.5		0-0.5		0-0.5	
SAMPLE DATE:	6/13/2017	7	6/13/201	17	4/4/201	8	4/4/201	8	4/4/201	8
UNITS:	μg/kg		μg/kg		μg/kg		μg/kg		μg/kg	
ANALYTES	Results		Results	S	Result	s	Results	s	Result	S
Perfluorobutanoic acid (PFBA)	0.52	U	0.23	J	0.25	U	0.23	U	0.27	
Perfluoropentanoic acid (PFPeA)	0.52	U	0.24	U	0.25	U	0.23	U	0.25	U
Perfluorohexanoic acid (PFHxA)	0.87		0.24	U	0.25	U	0.23	U	0.25	U
Perfluoroheptanoic acid (PFHpA)	0.26	J	0.24	U	0.084	J	0.061	J	0.065	J
Perfluorononanoic acid (PFNA)	0.42	J	0.24	U	0.072	J	0.12	J	0.14	J
Perfluorodecanoic acid (PFDA)	0.27	J	0.073	J	0.06	J	0.076	J	0.087	J
Perfluoroundecanoic acid (PFUnA)	0.48	J	0.24	U	0.077	J	0.089	J	0.13	J
Perfluorododecanoic acid (PFDoA)	0.52	U	0.24	U	0.25	U	0.23	U	0.25	U
Perfluorotridecanoic acid (PFTriA)	0.52	U	0.24	U	0.25	U	0.23	U	0.25	U
Perfluorotetradecanoic acid (PFTeA)	0.52	U	0.24	U	0.25	U	0.23	U	0.25	U
Perfluorobutanesulfonic acid (PFBS)	0.52	U	0.24	U	0.25	U	0.23	U	0.25	U
Perfluorohexanesulfonic acid (PFHxS)	0.52	U	0.24	U	0.25	U	0.23	U	0.25	U
Perfluoroheptanesulfonic acid (PFHpS)	0.52	U	0.24	U	0.25	U	0.23	U	0.25	U
Perfluorooctanesulfonic acid (PFOS)	2.9		0.5		0.63	U	2.1		0.46	J
Perfluorodecanesulfonic acid (PFDS)	0.52	U	0.24	U	0.25	U	0.23	U	0.25	U
Perfluorooctane Sulfonamide (FOSA)	0.52	UJ	0.24	U	0.25	U	0.23	U	0.25	U
Perfluorooctanoic acid (PFOA)	14		1.7		2.9		0.53		0.56	
6:2 Perfluorooctane Sulfonate (6:2 FTS)	NA		NA		2.5	U	2.3	U	2.5	U
8:2 Perfluorodecane Sulfonate (8:2 FTS)	NA		NA		2.5	U	2.3	U	2.5	U
N-ethyl perfluorooctane sulfonamidoacetic acid (N-	NA		NA		2.5	U	2.3	U	2.5	U
EtFOSAA)										
N-methyl perfluorooctane sulfonamido) acetic acid (N-MeFOSAA)	NA		NA		2.5	U	2.3	U	2.5	U

Notes:

FT. BGS - Feet below ground surface.

μg/kg - Micrograms per kilogram.

J - Estimated value.

NA - Sample not analyzed for the listed analyte.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Per- and polyfluoroalkyl substances (PFAS) soil sampling results were evaluated by comparison to the NYSDOH preliminary Residential Use SCO of 140 μ g/kg developed for a potential site or sites located in the Hoosick Falls area.

Values in **bold** indicate the analyte was detected.

Table 6 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Surface Water for Volatile Organic Compounds

	E LOCATION:	HFL-WS-102	HFL-WS-103	HFL-WS-104	HFL-WS-105	HFL-WS-106	HFL-WS-108	HFL-WS-109	HFL-WS-111	HFL-WS-112	HFL-WS-113	HFL-WS-114	HFL-MH-WS
LABORATORY		480-119330-3	480-119330-1	480-119183-1	480-119183-3	480-119183-5	480-119330-7	480-119330-5	480-118947-1	480-118947-3	480-118947-5	480-137240-2	480-137240-1
SA	MPLE DATE:	6/9/2017	6/9/2017	6/7/2017	6/7/2017	6/7/2017	6/9/2017	6/9/2017	6/2/2017	6/2/2017	6/2/2017	06/11/2018	06/11/2018
	UNITS: Class C	μg/L											
ANALYTES	Value*	Results											
1,1,1-Trichloroethane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloro- 1,2,2-trifluoroethane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethylene	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	5 ^(a)	1 U	1 U	1 UJ	1 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane (DBCP)	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 UJ	1 UJ	1 UJ	1 U	1 U
1,2-Dichlorobenzene	5 ^(b)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.31 J	1 U
1,2-Dichloropropane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	5 ^(b)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	5 ^(b)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone (MEK)	NS	10 U	10 UJ	10 UJ	10 UJ	10 U	10 U						
2-Hexanone (MBK)	NS NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone (MIBK)	NS NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone (WIBK)	NS NS	5 J	10 U	10 U	4.4 J	10 U	3.2 J	10 U	10 UJ	10 UJ	10 UJ	4.9 J	19
Benzene	10	1 U	10 U	10 U	1 U	10 U	1 U	1 U	10 U	1 U	10 U	1 U	1 U
Bromodichloromethane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	NS	1 UJ	1 U	1 U									
Carbon Disulfide	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	NS	1 UJ	1 U	1 U									
Chloroform	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloromethane	NS	1 UJ	1 UJ	1 U	1 U	1 U	1 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U
1,4-Dioxane	NS	R	R	R	R	R	R	R	R	R	R	66 J	R
cis-1,2-Dichloroethylene	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.9 J
cis-1,3-Dichloropropene	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cyclohexane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorodibromomethane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane (Freon 12)	NS	1 UJ	1 UJ	1 UJ	1 U	1 U	1 UJ	1 U	1 U				
Ethylbenzene	17	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane (EDB)	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Isopropylbenzene (Cumene)	2.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl acetate	NS	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ	2.5 U	2.5 U						
Methyl tert-Butyl Ether (MTBE)	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylcyclohexane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene Chloride	200	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethylene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	100	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethylene	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethylene	40	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichlorofluoromethane (Freon 11)	NS	1 UJ	1 UJ	1 U	1 U	1 U	1 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U
Vinyl Chloride	NS	1 UJ	1 UJ	1 U	1 U	1 U	1.6 J	1 UJ	1 U	1 U	1 U	1 U	1 U
Xylene (Total)	65 ^(c)	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Notes:

μg/L - Micrograms per liter.

J - Estimated value.

R - Rejected data point during data validation.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class C water. Most stringent guidance value used.

NS - No NYSDEC standard exists for this analyte.

Values in **bold** indicate the analyte was detected.

(a) - Applies to the sum of 1,2,3-, 1,2,4-, and 1,3,5-Trichlorobenzene.

(b) - Applies to the sum of 1,2-, 1,3-, and 1,4-Dichlorobenzene.

(c) - Criteria for p-Xylene used.

	Table 7 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY Summary of Results of Analysis of Surface Water for Semivolatile Organic Compounds												
SAMPLE LOCATION: HFL-WS-102 HFL-WS-103 HFL-WS-104 HFL-WS-105 HFL-WS-106 HFL-WS-108 HFL-WS-109 HFL-WS-111 HFL-WS-112 HFL-WS-113 HFL-WS-114 HFL-WH-V											HFL-MH-WS		
LABORATORY SA	AMPLE ID:	480-119330-3	480-119330-1	480-119183-1	480-119183-3	480-119183-5	480-119330-7	480-119330-5	480-118947-1	480-118947-3	480-118947-5	480-137240-2	480-137240-1
SAMP	LE DATE:	6/9/2017	6/9/2017	6/7/2017	6/7/2017	6/7/2017	6/9/2017	6/9/2017	6/2/2017	6/2/2017	6/2/2017	06/11/2018	06/11/2018
	UNITS:	μg/L											
ANALYTES	Class C Value*	Results											
1,1'-Biphenyl	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
Bis(2-chloroisopropyl)ether	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
2,4,5-Trichlorophenol	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
2,4,6-Trichlorophenol	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
2,4-Dichlorophenol	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
2,4-Dimethylphenol	1,000	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
2,4-Dinitrophenol	400	10 U	100 U	11 U	10 U	10 U	10 U	10 U	50 U	50 U	50 U	10 UJ	10 UJ
2,4-Dinitrotoluene	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
2,6-Dinitrotoluene	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
2-Chloronaphthalene	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
2-Chlorophenol	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
o-Cresol	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
2-Methylnaphthalene	4.7	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
2-Nitroaniline	NS	10 U	100 U	11 U	10 U	10 U	10 U	10 U	50 U	50 U	50 U	10 U	10 U
2-Nitrophenol	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
3,3'-Dichlorobenzidine	NS	5 U	50 U	5.4 UJ	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
3-Nitroaniline	NS	10 U	100 U	11 U	10 U	10 U	10 U	10 U	50 U	50 U	50 U	10 U	10 U
4,6-Dinitro-2-methylphenol	NS	10 U	100 U	11 U	10 U	10 U	10 U	10 U	50 U	50 U	50 U	10 U	10 U
4-Bromophenyl phenyl ether	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
4-Chloro-3-methylphenol	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
4-Chloroaniline	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
4-Chlorophenylphenyl ether	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
4-Methylphenol	NS	10 U	100 U	11 U	10 U	10 U	10 U	10 U	50 U	50 U	50 U	10 U	10 U
4-Nitroaniline	NS	10 U	100 U	11 U	10 U	10 U	10 U	10 U	50 U	50 U	50 U	10 U	10 U
4-Nitrophenol	NS	10 U	100 U	11 U	10 U	10 U	10 U	10 U	50 U	50 U	50 U	10 U	10 U
Acenaphthene	5.3	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
Acenaphthylene	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
Acetophenone	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
Anthracene	3.8	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U
Atrazine	NS	5 U	50 U	5.4 U	5 U	5 U	5.1 U	5 U	25 U	25 U	25 U	5 U	5.2 U

5 U

5 U

0.68 J

10 U

5 U 5 U

5 U

5 U

5 U

5 U

5 U

5 U

5.1 U

10 U 5.1 U

5.1 U 5.1 U 5.1 U

5.1 U

5.1 U

5.1 U

5.1 U

5.1 U

5.1 U

5.1 U

5.1 U

5.1 U

5.1 U

10 U

5.1 U

5.1 U

5.1 U

25 U

50 U

25 U 25 U

25 U

25 U

25 U

25 U

25 U

25 U

25 U

25 U

25 U

25 U

50 U

25 U

25 U

25 U

5 U

5 U

5 U

5 U

5 U

10 U

5 U

5 U

5 U

5 U

5 U

5 U

5 U

5 U

5 U

25 U

25 U 25 U

25 U

25 U

25 U

25 U

25 U

25 U

25 U

25 U

25 U 25 U

25 U

25 U

50 U

25 U 25 U 25 U 25 U

25 U 25 U 25 U 25 U

25 U 25 U

25 U

25 U

25 U 25 U

25 U

25 U

25 U

25 U

25 U

25 U

25 U

25 U

25 U

25 U

50 U

25 U

25 U

25 U

25 II

25 U

25 U

25 U

25 U

25 U

25 U

25 U 25 U

25 U

50 U

25 U

25 U

5.2 U

5.2 U

5.2

5.2

5.2

5.2

5.2

5.2

5.2

5.2

5.2

5.2 5.2 U 5.2 U

5.2

5.2 U

10 U

5.2 U 5.2 U

5.2 U 5.2 U

5.2 U

5.2 U

5.2 U

5.2

5.2

5.2

5.2

5.2

5.2 U

10 U

5.2 U

5.2 U

5.2 U

5.2

5 U

5 U 5 U

5 U

5 U 5 U

5 U

5 U

5 U

10 U

5 U

5 II

5 U

5 U 5 UJ

5 U 5 U

5 U

5 U 5 U

10 UJ

0.34 J

0.42 J

$\mu g/L$ - Micrograms per liter.

Benzaldehvde

Benzo(a)anthracene

enzo(b)fluoranthene

Benzo(g,h,i)perylene

enzo(k)fluoranthene

Bis(2-chloroethyl)ether Bis(2-ethylhexyl)phthalate

Butylbenzylphthalate

Dibenz(a,h)anthracene

Di-n-butylphthalate

Di-n-octylphthalate

Dibenzofuran

Fluoranthene

Fluorene

Isophorone

Naphthalene

Phenol

1,4-Dioxane

Vitrobenzene

Pentachlorophenol

Diethylphthalate

Dimethylphthalate

Hexachlorobenzene

Hexachloroethane

Hexachlorobutadiene

Hexachlorocyclopentadiene

N-Nitroso-di-n-propylamine

N-Nitrosodiphenylamine

Indeno(1,2,3-cd)pyrene

Carbazole

Chrysene

Bis(2-chloroethoxy)methane

Benzo(a)pyrene

NS

0.03

0.0012

NS

NS NS

NS

0.54

0.00003

0.01

0.45

0.6

NS

NS

NS

NS

NS

NS

NS

4.6

10 U

5 U

5 U

5 I

J - Estimated value. U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class C water. Most stringent guidance value used.

50 U

100 U

50 U

50 II

50 U

50 II

50 U

50 U

50 U

50 U

50 U

50 U

100 U

50 U

50 U

5.4 U

11 U

5.4 U

5.4 U

5.4 U 5.4 U

5.4 U

5.4 U

5.4 U

5.4 U

5.4 U

5.4 U

5.4 U

5.4 U

5.4 U

5.4 U

11 U

5.4 U

5.4 U

5.4 U

0.85 J

10 U

5 U

5 U

5 U

5 U

5 U

5 U

NA - Sample not analyzed for the listed analyte.

NS - No NYSDEC standard exists for this analyte.

Table 8

New York State Department of Environmental Conservation

Hoosick Falls Landfill - Hoosick Falls, NY

	,
Summary of Results of Analysis of Surface	Water for Pesticides and Polychlorinated Biphenyls

SAMPLE I	OCATION:	HFL-WS-102	HFL-WS-103	HFL-WS-104	HFL-WS-105	HFL-WS-106	HFL-WS-108	HFL-WS-109	HFL-WS-111	HFL-WS-112	HFL-WS-113	HFL-WS-114	HFL-MH-WS
LABORATORY S	AMPLE ID:	480-119330-3	480-119330-1	480-119183-1	480-119183-3	480-119183-5	480-119330-7	480-119330-5	480-118947-1	480-118947-3	480-118947-5	480-137240-2	480-137240-1
SAM	PLE DATE:	6/9/2017	6/9/2017	6/7/2017	6/7/2017	6/7/2017	6/9/2017	6/9/2017	6/2/2017	6/2/2017	6/2/2017	06/11/2018	06/11/2018
	UNITS:	μg/L	μg/L										
	Class C												
ANALYTES	Value*	Results	Results										
PESTICIDES													
4,4'-DDD	$0.000011^{(a)}$	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
4,4'-DDE	0.000011 ^(a)	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
4,4'-DDT	0.000011 ^(a)	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Aldrin	0.001 ^(b)	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
alpha-BHC	0.002	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
alpha-Chlordane	0.00002 ^(c)	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
beta-BHC	0.007	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
delta-BHC	0.008	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dieldrin	6.0E-07	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Endosulfan I	0.009 ^(d)	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Endosulfan II	0.009 ^(d)	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Endosulfan sulfate	0.009 ^(d)	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Endrin	0.002	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Endrin aldehyde	NS	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Endrin ketone	NS	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
gamma-BHC (Lindane)	0.008	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
trans-Chlordane	0.00002 ^(c)	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Heptachlor	0.0002	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Heptachlor epoxide	0.0003	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Methoxychlor	0.03	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.052 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Toxaphene	0.000006	2.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.52 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PCBs													
Aroclor-1016	NS	0.5 U	0.5 U										
Aroclor-1221	NS	0.5 U	0.5 UJ	0.5 UJ									
Aroclor-1232	NS NG	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ 0.5 U	0.5 UJ
Aroclor-1242 Aroclor-1248	NS NS	0.5 U 0.5 U	0.5 U 0.5 U										
Aroclor-1248 Aroclor-1254	NS NS	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ
Aroclor-1254 Aroclor-1260	NS NS	0.5 U	0.5 U										
Total PCBs	0.000001	0.5 U	0.5 UJ	0.5 UJ									
Notari	0.000001	0.5	0.5	0.5	0.5 0	0.5	0.5	0.5	0.5	0.5	0.5	0.5 03	0.5 03

Notes:

μg/L - Micrograms per liter.

U - Analyte was not detected at specified quantitation limit.

NS - No NYSDEC standard exists for this analyte.

PCBs - Polychlorinated Biphenyls.

^{* -} NYSDEC Ambient Water Quality Standards and Guidance Values for Class C water. Most stringent guidance value used.

⁽a) - Applies to the sum of 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT.

⁽b) - Applies to the sum of Aldrin and Dieldrin.

⁽c) - Criteria for Chlordane used.

⁽d) - Criteria for Endosulfan used.

Table 9

New York State Department of Environmental Conservation
Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Surface Water for Metals

		HFL-WS-102	HFL-WS-103	HFL-WS-104	HFL-WS-105	HFL-WS-106	HFL-WS-108	HFL-WS-109	HFL-WS-111	HFL-WS-112	HFL-WS-113	HFL-WS-114	HFL-MH-WS
		480-119330-3	480-119330-1	480-119183-1	480-119183-3	480-119183-5	480-119330-7	480-119330-5	480-118947-1	480-118947-3	480-118947-5	480-137240-2	480-137240-1
		6/9/2017	6/9/2017	6/7/2017	6/7/2017	6/7/2017	6/9/2017	6/9/2017	6/2/2017	6/2/2017	6/2/2017	06/11/2018	06/11/2018
		μg/L											
	Class C												
ANALYTES	Value*	Results											
Aluminum	100	24,500	63 J	150 J	520	650	200 U	170 J	6,800				
Antimony	NS	20 U											
Arsenic	150 ^(a)	24	15 U	54 J-									
Barium	NS	350	38	48	48	49	160	210	58	57	58	240	750
Beryllium	11**	1.2 J	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	0.38 J
Cadmium	1.7**	1.5 J	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.1
Calcium	NS	72,000	60,100	19,700	23,800	35,500	96,900	95,200	45,500	46,100	45,900	103,000	93,100
Chromium	46**	24 J+	4 U	4 U	1 J	1.1 J	4 U	4 U	4 U	4 U	4 U	4 U	8.9 J+
Cobalt	5	27	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	0.86 J	5.1
Copper	6.7**	53	10 U	22	23	15	10 U	10 U	2.6 J	3 J	1.8 J	3.8 J	20
Iron	300	61,000	590	160	580	670	410	500	71	500	65	2,500	156,000
Lead	2.8**	34	4.2 J	11	25	9.7 J	10 U	3 J	10 U	10 U	10 U	57	26 J+
Magnesium	NS	18,600	11,100	5,200	5,900	6,700	19,800	19,100	13,500	14,100	14,200	27,700	18,400
Manganese	NS	4,700	440	3.2 J+	19	29	1,400	1,200	53	64	55	2,100	1,600
Mercury	$0.0007^{(a)}$	0.2 U											
Nickel	40.8**	45	10 U	1.8 J	2.7 J	2.3 J	2.2 J	1.6 J	10 U	10 U	10 U	3.4 J	13 J-
Potassium	NS	6,400	800	1,100	1,400	2,700	6,100	5,600	1,700	1,600	1,600	10,700	6,900
Selenium	4.6 ^(a)	25 U											
Silver	$0.1^{(b)}$	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Sodium	NS	28,600	33,000	31,200	32,800	32,100	15,800	21,700	34,000	34,500	34,600	26,500	43,700
Thallium	8	20 U											
Vanadium	14	35	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	11
Zinc	64.7 ^(a) **	180	11 J+	48	51	35	10 U	2.3 U	5.3 J	6 J	2.8 J	3 J	260

Notes:

μg/L - Micrograms per liter.

- J Estimated value.
- J- Estimated value; biased low.
- J+ Estimated value; biased high.
- U Analyte was not detected at specified quantitation limit.
- * NYSDEC Ambient Water Quality Standards and Guidance Values for Class C water. Most stringent guidance value used.
- NS No NYSDEC standard exists for this analyte.

Values in **bold** indicate the analyte was detected.

Shading indicates result above the corresponding Class C Guidance Value.

- (a) Value for dissolved form used.
- (b) Value for ionic silver used.
- **Values are calculated based on hardness; value assumes hardness is less than or equal to 75,000 µg/L.

Table 10 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Surface Water for Per- and Polyfluoroalkyl Substances

SAMPLE LOCATION:	HFL-WS-102	HFL-WS-103	HFL-WS-104	HFL-WS-105	HFL-WS-106	HFL-WS-108	HFL-WS-109	HFL-WS-111	HFL-WS-112	HFL-WS-113	HFL-WS-114	HFL-MH-WS
LABORATORY SAMPLE ID:	480-119330-3	480-119330-1	480-119183-1	480-119183-3	480-119183-5	480-119330-7	480-119330-5	480-118947-1	480-118947-3	480-118947-5	480-137240-2	480-137240-1
SAMPLE DATE:	6/9/2017	6/9/2017	6/7/2017	6/7/2017	6/7/2017	6/9/2017	6/9/2017	6/2/2017	6/2/2017	6/2/2017	06/11/2018	06/11/2018
UNITS:	ng/L											
ANALYTES	Results											
Perfluorobutyric Acid (PFBA)	4.2	6.2	2.2	2.5 J-	4.5 J-	18	18	6.1	6.2	6	43 J	9.4
Perfluoropentanoic Acid (PFPeA)	2.4	4.3	2.1	3.1	5	19	18	4.9	4.8	4.7	180 U	12
Perfluorohexanoic Acid (PFHxA)	4.4	8.7	6.5	7.2	9.7	120	110	15	15	15	270	65
Perfluoroheptanoic Acid (PFHpA)	7.4	12	8.7	9.7	11	140	130	23	21	22	310	83
Perfluoronoanoic Acid (PFNA)	1.1 J	1.2 J	1 J	1.1 J	1.5 J	5.1	5.4	1.4 J	1.5 J	1.5 J	180 U	4.8
Perfluorodecanoic Acid (PFDA)	2.1 U	0.47 J	0.59 J	0.68 J	0.64 J	1.7 J	2.1 J	1.9 U	1.9 U	1.9 U	180 U	1.8 U
Perfluoroundecanoic Acid (PFUnA)	2.1 U	2 U	1.9 U	1.9 U	2 U	2 U	2.2 U	1.9 UJ	1.9 U	1.9 UJ	180 U	1.8 U
Perfluorododecanoic Acid (PFDoA)	2.1 U	2 U	1.9 U	1.9 U	2 U	2 U	0.7 J	1.9 UJ	1.9 UJ	1.9 UJ	180 U	1.8 U
Perfluorothidecanoic Acid (PFTriA)	2.1 U	2 U	1.9 U	1.9 U	2 U	2 U	1.3 J	1.9 U	1.9 U	1.9 U	180 U	1.8 U
Perfluorotetradecanoic Acid (PFTeA)	2.1 U	2 U	1.9 U	1.9 U	2 U	2 U	2.2 U	1.9 U	1.9 U	1.9 U	180 U	1.8 U
Perfluorobutane Sulfonate (PFBS)	2.1 U	1.4 J	1 J	1.3 J	1.6 J	2.6	2.8	1.5 J	1.4 J	1.4 J	200	2.5
Perfluorohexane Sulfonic Acid (PFHxS)	1 J	1.9 J	0.84 J	0.97 J	1.2 J	5.5	5.5	1.2 J	1.2 J	1.3 J	180 U	4.7
Perflouoroheptane Sulfonate (PFHpS)	2.1 U	2 U	1.9 U	1.9 U	2 U	2 U	2.2 U	1.9 U	1.9 U	1.9 U	180 U	0.24 J
Perfluorooctanesulfonic Acid (PFOS)	45	11	3.4	5	4.1	44	41	4.9	8.9	4.4	150 J	20
Perfluorodecanesulfonic Acid (PFDS)	2.1 U	2 U	1.9 U	1.9 U	2 U	2 U	2.2 U	1.9 U	1.9 U	1.9 U	180 U	1.8 U
Perfluorooctane Sulfonamide (PFOSA)	2.1 UJ	2 UJ	1.9 UJ	1.9 UJ	2 UJ	2 UJ	2.2 UJ	1.9 UJ	1.9 UJ	1.9 UJ	180 U	0.32 J
Perfluorooctanoic acid (PFOA)	280	390	150	170	190	11,000	10,000	930	920	910	24,000	4,700
6:2 Perfluorooctane Sulfonate (6:2 FTS)	NA	1,800 U	18 U									
8:2 Perfluorodecane Sulfonate (8:2 FTS)	NA	1,800 U	18 U									
N-Ethyl-N-((heptadecafluorooctyl)sulphonyl)	NA	1,800 U	4.1 J									
glycine (N-EtFOSAA)	INA	1,000 0	4.1 J									
2-(N-methyl perfluorooctanesulfonamido) acetic acid (N-MeFOSAA)	NA	1,800 U	18 U									

Notes:

ng/L - Nanograms per liter.

- J Estimated value.
- J- Estimated value; biased low.
- U Analyte was not detected at specified quantitation limit.
- UJ Estimated non-detect.

For reference only: The USEPA has set a Health Advisory Level of 70 ng/L for PFOA and PFOS in drinking water (individual or combined concentrations).

NA - Sample not analyzed for the listed analyte.

Table 11 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY Summary of Results of Analysis of Sediment for Volatile Organic Compounds

SAMI	PLE LOCATION:	HFL-SD-101	HFL-SD-102	HFL-SD-103	HFL-SD-104	HFL-SD-105	HFL-SD-106	HFL-SD-108	HFL-SD-109	HFL-SD-111	HFL-SD-112	HFL-SD-113	HFL-MH-SD ⁽¹⁾
LABORATO	RY SAMPLE ID:	480-119437-4	480-119330-4	480-119330-2	480-119183-2	480-119183-4	480-119183-6	480-119330-8	480-119330-6	480-118947-2	480-118947-4	480-118947-6	480-137240-3
SAMPLE DI	EPTH (FT. BGS):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
	SAMPLE DATE:	6/13/2017	6/9/2017	6/9/2017	6/7/2017	6/7/2017	6/7/2017	6/9/2017	6/9/2017	6/2/2017	6/2/2017	6/2/2017	06/11/2018
	UNITS:	mg/kg											
ANALYTES	Class A SGV*	Results											
1.1.1-Trichloroethane	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
1,1,2,2-Tetrachloroethane	< 2.8	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
1,1,2-Trichloroethane	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
1,1,2-Trichloro- 1,2,2-trifluoroethane	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
1,1-Dichloroethane	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
1,1-Dichloroethylene	< 0.52	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
1,2,4-Trichlorobenzene	< 35	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0073 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
1,2-Dibromo-3-chloropropane (DBCP)	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0074 U	0.0059 U	0.0039 U	0.011 UJ	0.016 UJ	0.031 UJ	0.01 U
1,2-Dichlorobenzene	< 0.28	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0075 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
1,2-Dichloroethane	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0076 U	0.00088 J	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
1,2-Dichloropropane	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0077 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
1,3-Dichlorobenzene	< 1.8	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0078 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
1,4-Dichlorobenzene	< 0.72	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0079 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
2-Butanone (MEK)	NS	0.027 U	0.021 UJ	R	0.045 U	0.024 U	0.008	0.029 U	0.019 UJ	0.073	0.096	0.23 J	0.052 U
2-Hexanone (MBK)	NS	0.027 U	0.021 U	R	0.045 U	0.024 U	0.0081 U	0.029 U	0.019 U	0.057 U	0.078 U	0.15 UJ	0.052 U
4-Methyl-2-pentanone (MIBK)	NS	0.027 U	0.021 U	R	0.045 U	0.024 U	0.0082 U	0.029 U	0.019 U	0.057 U	0.078 U	0.15 UJ	0.052 U
Acetone	NS	0.0087 J	0.021 UJ	R	0.045 U	0.0089 J	0.0083	0.029 U	0.019 UJ	0.32	0.47	1.1 J	0.034 J
Benzene	< 0.53	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0084 U	0.0059 U	0.0039 U	0.0021 J	0.016 U	0.031 UJ	0.01 U
Bromodichloromethane	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0085 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Bromoform	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0086 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Bromomethane	NS	0.0054 U	0.0041 U	R	0.0089 UJ	0.0048 UJ	0.0087 U	0.0059 UJ	0.0039 U	0.011 UJ	0.016 UJ	0.031 UJ	0.01 U
Carbon Disulfide	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0088 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Carbon Tetrachloride	< 1.07	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0089 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Chlorobenzene	< 0.2	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.009 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Chloroethane	NS	0.0054 U	0.0041 U	R	0.0089 UJ	0.0048 UJ	0.0091 UJ	0.0059 UJ	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Chloroform	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0092 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Chloromethane	NS	0.0054 UJ	0.0041 U	R	0.0089 U	0.0048 U	0.0093 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
1,4-Dioxane	NS	R	R	R	R	R	R	R	R	R	R	R	R
cis-1,2-Dichloroethylene	< 1.2 ^(a)	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0017 J	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
cis-1,3-Dichloropropene	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Cyclohexane	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 UJ	0.016 UJ	0.031 UJ	0.01 U
Chlorodibromomethane	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Dichlorodifluoromethane (Freon 12)	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 UJ	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Ethylbenzene	< 0.43	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
1,2-Dibromoethane (EDB)	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Isopropylbenzene (Cumene)	< 0.21	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Methyl acetate	NS	0.027 U	0.021 U	R	0.045 U	0.024 U	0.036 U	0.029 U	0.019 U	0.057 U	0.078 U	0.15 UJ	0.052 U
Methyl tert-Butyl Ether (MTBE)	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Methylcyclohexane	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Methylene Chloride	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Styrene	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Tetrachloroethylene	< 16	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Toluene	< 0.93	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.00068 J	0.0059 U	0.00032 J	0.011 U	0.016 U	0.031 UJ	0.01 U
trans-1,2-Dichloroethylene	< 1.2	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
trans-1,3-Dichloropropene	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Trichloroethylene	< 1.8	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Trichlorofluoromethane (Freon 11)	NS	0.0054 U	0.0041 U	R	0.0089 UJ	0.0048 UJ	0.0072 U	0.0059 U	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Vinyl Chloride	NS	0.0054 U	0.0041 U	R	0.0089 U	0.0048 U	0.0072 U	0.00082 J	0.0039 U	0.011 U	0.016 U	0.031 UJ	0.01 U
Xylene (Total)	< 0.48 ^(b)	0.011 U	0.0082 U	R	0.018 U	0.0096 U	0.014 U	0.012 U	0.0077 U	0.023 U	0.031 U	0.061 UJ	0.021 U
Notes:				-									

- FT. BGS Feet below ground surface.
- mg/kg Milligrams per kilogram.
- J Estimated value.
- R Rejected data point during data validation.
- U Analyte was not detected at specified quantitation limit.
- UJ Estimated non-detect.
- NS No NYSDEC standard exists for this analyte.

- $*- Sediment\ Guidance\ Values\ from\ NYSDEC\ "Screening\ and\ Assessment\ of\ Contaminated\ Sediment",\ June\ 24,\ 2014.$
- (a) Criteria for trans-1,2-Dichloroethene used.
- (b) Criteria for m-Xylene used; lowest of all Xylene standards.
- (1) Results for sample HFL-MH-SD are not compared to NYSDEC Sediment Guidance Values as the sediment sample location is within a manhole and is not readily accessible to fish and wildlife.

Table 12 New York State Department of Environmental Conservation

Hoosick Falls Landfill - Hoosick Falls, NY Summary of Results of Analysis of Sediment for Semivolatile Organic Compounds

Summary of Results of Analysis of Sediment for Semivolatile Organic Compounds													
SAM	PLE LOCATION:	HFL-SD-101	HFL-SD-102	HFL-SD-103	HFL-SD-104	HFL-SD-105	HFL-SD-106	HFL-SD-108	HFL-SD-109	HFL-SD-111	HFL-SD-112	HFL-SD-113	HFL-MH-SD ⁽¹⁾
	ORY SAMPLE ID:	480-119437-4	480-119330-4	480-119330-2	480-119183-2	480-119183-4	480-119183-6	480-119330-8	480-119330-6	480-118947-2	480-118947-4	480-118947-6	480-137240-3
SAMPLE D	EPTH (FT. BGS):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
	SAMPLE DATE:	6/13/2017	6/9/2017	6/9/2017	6/7/2017	6/7/2017	6/7/2017	6/9/2017	6/9/2017	6/2/2017	6/2/2017	6/2/2017	06/11/2018
ANALYTES	UNITS:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Class A SGV*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
1,1'-Biphenyl Bis(2-chloroisopropyl)ether	NS NS	2.2 U 2.2 U	0.2 U 0.2 U	0.22 U 0.22 U	0.28 U 0.28 U	1.1 U 1.1 U	2.7 U 2.7 U	1.2 U 1.2 U	1 U 1 U	5.4 U 5.4 U	7.2 U 7.2 U	13 UJ 13 UJ	0.36 U 0.36 UJ
2,4,5-Trichlorophenol	NS NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
2,4,6-Trichlorophenol	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
2,4-Dichlorophenol	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
2,4-Dimethylphenol	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
2,4-Dinitrophenol	NS	21 U	2 U	2.2 U	2.7 U	11 U	26 U	11 U	9.9 U	53 U	70 U	120 UJ	3.5 U
2,4-Dinitrotoluene	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
2,6-Dinitrotoluene	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
2-Chloronaphthalene	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
2-Chlorophenol	NS NC	2.2 U 2.2 U	0.2 U 0.2 U	0.22 U 0.22 U	0.28 U 0.28 U	1.1 U	2.7 U	1.2 U	1 U 1 U	5.4 U	7.2 U 7.2 U	13 UJ 13 UJ	0.36 U 0.36 U
o-cresol 2-Methylnaphthalene	NS NS	2.2 U 2.2 U	0.2 U	0.22 U 0.22 U	0.28 U 0.28 U	1.1 U 1.1 U	2.7 U 2.7 U	1.2 U 1.2 U	1 U 1 U	5.4 U 5.4 U	7.2 U	13 UJ	0.36 U 0.36 U
2-Nitroaniline	NS NS	4.2 U	0.2 U	0.43 U	0.28 U	2.1 U	5.2 U	2.3 U	2 U	10 U	14 U	24 UJ	0.30 U
2-Nitrophenol	NS NS	2.2 U	0.39 U	0.43 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.7 U
3,3'-Dichlorobenzidine	NS NS	4.2 U	0.39 U	0.43 U	0.54 U	2.1 U	5.2 U	2.3 U	2 U	10 U	14 U	24 UJ	0.7 U
3-Nitroaniline	NS	4.2 U	0.39 U	0.43 U	0.54 U	2.1 U	5.2 U	2.3 U	2 U	10 U	14 U	24 UJ	0.7 U
4,6-Dinitro-2-methylphenol	NS	4.2 UJ	0.39 U	0.43 U	0.54 U	2.1 U	5.2 U	2.3 U	2 U	10 U	14 U	24 UJ	0.7 U
4-Bromophenyl phenyl ether	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
4-Chloro-3-methylphenol	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
4-Chloroaniline	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
4-Chlorophenylphenyl ether	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
4-Methylphenol	NS NC	4.2 U 4.2 U	0.39 U 0.39 U	0.43 U	0.54 U 0.54 U	2.1 U 2.1 U	5.2 U 5.2 U	2.3 U 2.3 U	2 U 2 U	10 U	14 U 14 U	24 UJ	0.7 U 0.7 U
4-Nitroaniline 4-Nitrophenol	NS NS	4.2 U 4.2 U	0.39 U	0.43 U 0.43 U	0.54 U 0.54 U	2.1 U 2.1 U	5.2 U 5.2 U	2.3 U 2.3 U	2 U 2 U	10 U 10 U	14 U	24 UJ 24 UJ	0.7 U 0.7 UJ
Acenaphthene	NS NS	2.2 U	0.39 U	0.43 U 0.22 U	0.34 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.7 UJ
Acenaphthylene	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Acetophenone	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Anthracene	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Atrazine	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 UJ
Benzaldehyde	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Benzo(a)anthracene	NS	2.2 U	0.2 U	0.22 U	0.044 J	0.18 J	2.7 U	1.2 U	0.12 J	5.4 U	7.2 U	13 UJ	0.1 J
Benzo(a)pyrene	NS	2.2 U	0.2 U	0.22 U	0.048 J	0.18 J	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.11 J
Benzo(b)fluoranthene Benzo(g,h,i)perylene	NS NS	2.2 U 2.2 U	0.2 U 0.2 U	0.22 U 0.22 U	0.074 J 0.28 U	0.24 J 0.15 J	2.7 U 2.7 U	1.2 U 1.2 U	1 U 1 U	5.4 U 5.4 U	7.2 U 7.2 U	13 UJ 13 UJ	0.15 J 0.36 U
Benzo(k)fluoranthene	NS NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.055 J
Bis(2-chloroethoxy)methane	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Bis(2-chloroethyl)ether	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Bis(2-ethylhexyl)phthalate	< 360	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Butylbenzylphthalate	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Caprolactam	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Carbazole	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Chrysene	NS NC	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.091 J
Dibenz(a,h)anthracene Di-n-butylphthalate	NS NS	2.2 U 2.2 U	0.2 U 0.2 U	0.22 U 0.22 U	0.28 U 0.28 U	1.1 U 1.1 U	2.7 U 2.7 U	1.2 U 1.2 U	1 U 1 U	5.4 U 5.4 U	7.2 U 7.2 U	13 UJ 13 UJ	0.36 U 0.36 U
Di-n-octylphthalate	NS NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Dibenzofuran	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Diethylphthalate	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Dimethylphthalate	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Fluoranthene	NS	2.2 U	0.2 U	0.22 U	0.046 J	0.4 J	2.7 U	1.2 U	0.17 J	5.4 U	7.2 U	13 UJ	0.19 J
Fluorene	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Hexachlorobenzene	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Hexachlorogualenentadione	< 1.2	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 UJ
Hexachlorocyclopentadiene Hexachloroethane	< 0.81 NS	2.2 U 2.2 U	0.2 U 0.2 U	0.22 U 0.22 U	0.28 U 0.28 U	1.1 U 1.1 U	2.7 U 2.7 U	1.2 U 1.2 U	1 U 1 U	5.4 U 5.4 U	7.2 U 7.2 U	13 UJ 13 UJ	0.36 U 0.36 U
Indeno(1,2,3-cd)pyrene	NS NS	2.2 U 2.2 U	0.2 U 0.2 U	0.22 U 0.22 U	0.28 U 0.28 U	1.1 U 1.1 U	2.7 U	1.2 U	1 U	5.4 U 5.4 U	7.2 U	13 UJ	0.36 U 0.36 U
Isophorone	NS NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
N-Nitroso-di-n-propylamine	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
N-Nitrosodiphenylamine	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Naphthalene	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Nitrobenzene	NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Pentachlorophenol	< 14	4.2 U	0.39 U	0.43 U	0.54 U	2.1 U	5.2 U	2.3 U	2 U	10 U	14 U	24 UJ	0.7 U
Phenanthrene	NS	2.2 U	0.2 U	0.22 U	0.28 U	0.25 J	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.08 J
Phenol	NS NS	2.2 U	0.2 U	0.22 U	0.28 U	1.1 U	2.7 U	1.2 U	1 U	5.4 U	7.2 U	13 UJ	0.36 U
Pyrene	NS NS	2.2 U	0.2 U	0.22 U	0.056 J	0.43 J	2.7 U	1.2 U	0.16 J	5.4 U	7.2 U	13 UJ	0.19 J
1,4-Dioxane	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.42 UJ

FT. BGS - Feet below ground surface.

mg/kg - Milligrams per kilogram. J - Estimated value.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

* - Sediment Guidance Values from NYSDEC "Screening and Assessment of Contaminated Sediment", June 24, 2014.

NA - Sample not analyzed for the listed analyte.

NS - No NYSDEC standard exists for this analyte.

Values in **bold** indicate the analyte was detected. (1) - Results for sample HFL-MH-SD are not compared to NYSDEC Sediment Guidance Values as the sediment sample location is within a manhole and is not readily accessible to fish and wildlife.

Table 13

New York State Department of Environmental Conservation

Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Sediment for Pesticides and Polychlorinated Biphenyls

SAMPLE	LOCATION:	HFL-SD-101	HFL-SD-102	HFL-SD-103	HFL-SD-104	HFL-SD-105	HFL-SD-106	HFL-SD-108	HFL-SD-109	HFL-SD-111	HFL-SD-112	HFL-SD-113	HFL-MH-SD ⁽¹⁾
LABORATORY	SAMPLE ID:	480-119437-4	480-119330-4	480-119330-2	480-119183-2	480-119183-4	480-119183-6	480-119330-8	480-119330-6	480-118947-2	480-118947-4	480-118947-6	480-137240-3
SAMPLE DEPT	H (FT. BGS):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
SAN	MPLE DATE:	6/13/2017	6/9/2017	6/9/2017	6/7/2017	6/7/2017	6/7/2017	6/9/2017	6/9/2017	6/2/2017	6/2/2017	6/2/2017	06/11/2018
	UNITS:	mg/kg											
	Class A												
ANALYTES	SGV*	Results											
Pesticides													
4,4'-DDD	NS	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.00069 J	0.013 U	0.00077 J	0.002 U	0.011 U	0.15 U	0.25 UJ	0.0036 U
4,4'-DDE	NS	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.00093 J	0.002 U	0.011 U	0.15 U	0.25 UJ	0.0036 U
4,4'-DDT	< 0.044	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.0057 J	0.0016 J	0.002 U	0.016	0.15 U	0.25 UJ	0.0036 U
Aldrin	NS	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.002 U	0.0033 J	0.15 U	0.25 UJ	0.0036 U
alpha-BHC	NS	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.002 U	0.011 U	0.15 U	0.25 UJ	0.0036 U
alpha-Chlordane	< 0.068 ^(a)	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.002 U	0.011 U	0.15 U	0.25 UJ	0.0036 U
beta-BHC	NS	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.00066 J	0.011 U	0.15 U	0.25 UJ	0.0036 U
delta-BHC	NS	0.0021 U	0.0004 J	0.0022 U	0.0028 U	0.00051 J	0.013 U	0.0023 U	0.002 U	0.011 U	0.15 U	0.25 UJ	0.0036 U
Dieldrin	< 0.18	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.002 U	0.011 U	0.15 U	0.25 UJ	0.0036 U
Endosulfan I	< 0.001 ^(b)	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.002 U	0.011 U	0.15 U	0.25 UJ	0.0036 U
Endosulfan II	< 0.001 ^(b)	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.002 U	0.011 U	0.15 U	0.25 UJ	0.0036 U
Endosulfan sulfate	$< 0.001^{(b)}$	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.002 U	0.011 U	0.15 U	0.25 UJ	0.0036 U
Endrin	< 0.09	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.002 U	0.011 U	0.15 U	0.25 UJ	0.0036 U
Endrin aldehyde	NS	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.002 U	0.0065 J	0.15 U	0.25 UJ	0.001 J
Endrin ketone	NS	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.002 U	0.011 U	0.15 U	0.25 UJ	0.0036 U
gamma-BHC (Lindane)	< 0.047	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.00051 J	0.011 U	0.15 U	0.25 UJ	0.0036 U
trans-Chlordane	< 0.068 ^(a)	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.002 U	0.011 U	0.15 U	0.25 UJ	0.0036 U
Heptachlor	< 0.075	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.002 U	0.011 U	0.15 U	0.25 UJ	0.0036 U
Heptachlor epoxide	< 0.015	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.002 U	0.011 U	0.15 U	0.25 UJ	0.0036 U
Methoxychlor	< 0.059	0.0021 U	0.002 U	0.0022 U	0.0028 U	0.0022 U	0.013 U	0.0023 U	0.0018 J	0.011 U	0.15 U	0.25 UJ	0.0036 U
Toxaphene	< 0.006	0.021 U	0.02 U	0.022 U	0.028 U	0.022 U	0.13 U	0.023 U	0.02 U	0.11 U	1.5 U	2.5 UJ	0.036 U
PCBS													
Aroclor-1016	NS	0.24 U	0.21 U	0.28 U	0.33 U	0.25 U	0.31 U	0.28 U	0.23 U	0.45 U	0.69 U	1 UJ	0.46 U
Aroclor-1221	NS	0.24 U	0.21 U	0.28 U	0.33 U	0.25 U	0.31 U	0.28 U	0.23 U	0.45 U	0.69 U	1 UJ	0.46 U
Aroclor-1232	NS	0.24 U	0.21 U	0.28 U	0.33 U	0.25 U	0.31 U	0.28 U	0.23 U	0.45 U	0.69 U	1 UJ	0.46 UJ
Aroclor-1242	NS	0.24 U	0.21 U	0.28 U	0.33 U	0.25 U	0.31 U	0.28 U	0.23 U	0.45 U	0.69 U	1 UJ	0.46 U
Aroclor-1248	NS	0.24 U	0.21 U	0.28 U	0.33 U	0.25 U	0.31 U	0.28 U	0.23 U	0.45 U	0.69 U	1 UJ	0.46 U
Aroclor-1254	NS	0.24 U	0.21 U	0.28 U	0.33 U	0.25 U	0.31 U	0.28 U	0.23 U	0.45 U	0.69 U	1 UJ	0.46 U
Aroclor-1260	NS	0.24 U	0.21 U	0.28 U	0.33 U	0.25 U	0.31 U	0.28 U	0.23 U	0.45 U	0.69 U	1 UJ	0.46 U
Total PCBs	< 0.1	0.24 U	0.21 U	0.28 U	0.33 U	0.25 U	0.31 U	0.28 U	0.23 U	0.45 U	0.69 U	1 UJ	0.46 UJ

Notes:

FT. BGS - Feet below ground surface.

mg/kg - Milligrams per kilogram.

J - Estimated value.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

* - Sediment Guidance Values from NYSDEC "Screening and Assessment of Contaminated Sediment", June 24, 2014.

PCBs - Polychlorinated Biphenyls.

NS - No NYSDEC standard exists for this analyte.

Values in \boldsymbol{bold} indicate the analyte was detected.

(a) - Criteria for Chlordane used.

(b) - Criteria for Endosulfan used.

^{(1) -} Results for sample HFL-MH-SD are not compared to NYSDEC Sediment Guidance Values as the sediment sample location is within a manhole and is not readily accessible to fish and wildlife.

Table 14

New York State Department of Environmental Conservation

Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Sediment for Metals

		SAMPLE	LOCATION:	HFL-SD-101	HFL-SD-102	HFL-SD-103	HFL-SD-104	HFL-SD-105	HFL-SD-106	HFL-SD-108	HFL-SD-109	HFL-SD-111	HFL-SD-112	HFL-SD-113	HFL-MH-SD ⁽¹⁾
	L	ABORATORY		480-119437-4	480-119330-4	480-119330-2	480-119183-2	480-119183-4	480-119183-6	480-119330-8	480-119330-6	480-118947-2	480-118947-4	480-118947-6	480-137240-3
		SAMPLE DEPT		0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
		SA	MPLE DATE:	6/13/2017	6/9/2017	6/9/2017	6/7/2017	6/7/2017	6/7/2017	6/9/2017	6/9/2017	6/2/2017	6/2/2017	6/2/2017	06/11/2018
			UNITS:	mg/kg											
	Class A	Class B	Class C												
ANALYTES	SGV*	SGV*	SGV*	Results											
Aluminum	NS	NS	NS	19,100	14,500	11,100	8,620	22,900	11,900	15,200	11,400	17,800	27,900	32,200 J	11,700
Antimony	NS	NS	NS	1 J	0.62 J	18.2 U	24.9 U	18.3 U	0.87 J	0.88 J	0.74 J	28.2 UJ	39.1 UJ	67.7 UJ	33.6 UJ
Arsenic	< 10	10-33	> 33	5.6	6.2	4.8	9.6 J-	10.3	11 J-	3.8	3.3	8	9.8	14.8 J	8.9
Barium	NS	NS	NS	142	103	88.9	188	365	176	114	107	170	278	340 J	301
Beryllium	NS	NS	NS	0.79	0.61	0.58	0.68	1.1	0.77	0.65	0.47	0.78	1.2	1.4 J	0.55
Cadmium	< 1	1-5	> 5	0.31 J+	0.2 J	0.36 J+	0.87	0.62 J+	1.1 J+	0.34 J+	0.28 J+	1.4 J+	1.4 J+	1.4 J	0.9 UJ
Calcium	NS	NS	NS	5,620	1,820	1,620	2,370	1,760	2,440	1,710	2,070	4,740	5,910	13,600 J	4,300
Chromium	< 43	43-110	> 110	20.1	15.9	13.4	16.5	24.1	22.4	16	18.3	24.6	33.4	36.5 J	16.1
Cobalt	NS	NS	NS	13.7	11.2	8.5	7.7	21.3	10.1	10.6	8.7	12.5	15.4	17.4 J	11.1
Copper	< 32	32-150	> 150	30.5	22.6	19.2	102	35.1	93.6	19.6	25.7	71.1	72	71.7 J	26.7
Iron	NS	NS	NS	27,700	24,800	18,800	17,200	33,300	30,100	18,300	20,300	27,400	41,000	46,800 J	169,000
Lead	< 36	36-130	> 130	18.4	13.3	11.6	354	45.4	542	24.3	26.3	147	137	93.7 J	35 J+
Magnesium	NS	NS	NS	6,860	5,380	4,200	1,340	6,420	3,710	4,090	3,950	5,310	7,440	8,780 J	5,560
Manganese	NS	NS	NS	482	502	344	199	1,560	415	414	479	544	888	2,500 J	1,010
Mercury	< 0.2	0.2-1	>1	0.058	0.019 J	0.013 J	2.7	0.58	0.31	0.06	0.061	0.15	0.2	0.11 J	0.046
Nickel	< 23	23-49	> 49	29.3	25.9	21.6	21.1	45.6	25.2	22.7	20.3	31.9	41.6	45.7 J	26.4
Potassium	NS	NS	NS	4,110	2,870	2,360	989	4,980	2,070	2,350	2,230	3,780	5,650	7,090 J	2,130
Selenium	NS	NS	NS	1.3 J	4.2 U	4.8 U	6.6 UJ	4.9 UJ	1.1 J	0.85 J	4.7 U	7.5 U	10.4 U	18.1 UJ	9 U
Silver	< 1	1-2.2	> 2.2	0.84 U	0.63 U	0.73 U	1 U	0.73 U	0.95 U	0.75 U	0.71 U	1.1 U	1.6 U	2.7 UJ	2.7 U
Sodium	NS	NS	NS	121 J	84.6 J	104 J	321	183	169 J	82.6 J	76.6 J	167 J	290 J	431 J	89.7 J
Thallium	NS	NS	NS	8.4 U	6.3 U	7.3 U	10 UJ	7.3 UJ	9.5 UJ	7.5 U	7.1 U	11.3 U	15.6 U	27.1 UJ	13.4 UJ
Vanadium	NS	NS	NS	25.5	19.6	16.7	22.5	29	23.5	22.9	15	32	42.5	47 J	17.9 J+
Zinc	< 120	120-460	> 460	75.3	64	56	318	107	393	89.1	98.9	357	361	336 J	273

Notes:

FT. BGS - Feet below ground surface.

mg/kg - Milligrams per kilogram.

- J Estimated value.
- J- Estimated value; biased low.
- J+ Estimated value; biased high.
- U Analyte was not detected at specified quantitation limit.
- UJ Estimated non-detect.
- * Sediment Guidance Values from NYSDEC "Screening and Assessment of Contaminated Sediment", June 24, 2014.

NS - No NYSDEC standard exists for this analyte.

Values in **bold** indicate the analyte was detected.

Shading indicates result is within limits of corresponding SGV for classification of sediment. Results meeting Class A SGVs are not shaded.

(1) - Results for sample HFL-MH-SD are not compared to NYSDEC Sediment Guidance Values as the sediment sample location is within a manhole and is not readily accessible to fish and wildlife.

Table 15

New York State Department of Environmental Conservation

Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Sediment for Per- and Polyfluoroalkyl Substances

SAMPLE LOCATION:	HFL-SD-101	HFL-SD-102	HFL-SD-103	HFL-SD-104	HFL-SD-105	HFL-SD-106	HFL-SD-108	HFL-SD-109	HFL-SD-111	HFL-SD-112	HFL-SD-113	HFL-MH-SD ⁽¹⁾
LABORATORY SAMPLE ID:	480-119437-4	480-119330-4	480-119330-2	480-119183-2	480-119183-4	480-119183-6	480-119330-8	480-119330-6	480-118947-2	480-118947-4	480-118947-6	480-137240-3
SAMPLE DEPTH (FT. BGS):		0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
SAMPLE DATE:	6/13/2017	6/9/2017	6/9/2017	6/7/2017	6/7/2017	6/7/2017	6/9/2017	6/9/2017	6/2/2017	6/2/2017	6/2/2017	06/11/2018
UNITS:	μg/kg											
ANALYTES	Results											
Perfluorobutyric Acid (PFBA)	0.26 U	0.41	0.27 U	2.1	8.2	5.8	0.32	0.24 U	0.44 U	0.6 U	1 UJ	0.07 J
Perfluoropentanoic Acid (PFPeA)	0.26 U	0.24 U	0.27 U	0.34 U	0.27 U	0.32 U	0.28 U	0.24 U	0.44 U	0.6 U	1 UJ	0.42 U
Perfluorohexanoic Acid (PFHxA)	0.13 J	0.24 U	0.27 U	0.34 U	0.27 U	0.32 U	0.22 J	0.25	0.29 J	0.29 J	0.72 J	0.21 J
Perfluoroheptanoic Acid (PFHpA)	0.26 U	0.24 U	0.27 U	0.34 U	0.27 U	0.32 U	0.21 J	0.14 J	0.44 U	0.6 U	1 UJ	0.16 J
Perfluoronoanoic Acid (PFNA)	0.26 U	0.24 U	0.27 U	0.34 U	0.27 U	0.32 U	0.28 U	0.12 J	0.44 U	0.6 U	1 UJ	0.098 J
Perfluorodecanoic Acid (PFDA)	0.084 J	0.24 U	0.27 U	0.13 J	0.27 U	0.32 U	0.17 J	0.2 J	0.44 U	0.6 U	1 UJ	0.19 J
Perfluoroundecanoic Acid (PFUnA)	0.26 U	0.24 U	0.27 U	0.34 U	0.15 J	0.32 U	0.23 J	0.24	0.87	1	1.7 J	0.42 U
Perfluorododecanoic Acid (PFDoA)	0.26 U	0.24 U	0.27 U	0.34 U	0.27 U	0.32 U	0.28 U	0.26	0.44 U	0.6 U	1 UJ	0.42 U
Perfluorothidecanoic Acid (PFTriA)	0.26 U	0.24 U	0.27 U	0.34 U	0.27 U	0.32 U	0.28 U	0.19 J	0.44 U	0.6 U	1 UJ	0.42 U
Perfluorotetradecanoic Acid (PFTeA)	0.26 U	0.24 U	0.27 U	0.34 U	0.27 U	0.32 U	0.28 U	0.12 J	0.44 U	0.6 U	1 UJ	0.42 U
Perfluorobutane Sulfonate (PFBS)	0.26 U	0.24 U	0.27 U	0.34 U	0.27 U	0.32 U	0.28 U	0.24 U	0.44 U	0.6 U	1 UJ	0.42 U
Perfluorohexane Sulfonic Acid (PFHxS)	0.26 U	0.24 U	0.27 U	0.26 J	0.27 U	0.32 U	0.28 U	0.24 U	0.44 U	0.45 J	0.71 J	0.42 U
Perflouoroheptane Sulfonate (PFHpS)	0.26 U	0.24 U	0.27 U	0.34 U	0.27 U	0.32 U	0.28 U	0.24 U	0.44 U	0.6 U	1 UJ	0.42 U
Perfluorooctanesulfonic Acid (PFOS)	2	0.24 U	0.27 U	0.66	0.33	0.37	1.6	0.95	0.61	0.98	1.8 J	2.7
Perfluorodecanesulfonic Acid (PFDS)	0.26 U	0.24 U	0.27 U	0.34 U	0.27 U	0.32 U	0.28 U	0.15 J	0.44 U	0.6 U	1 UJ	0.42 U
Perfluorooctane Sulfonamide (PFOSA)	0.26 UJ	0.24 U	0.27 U	0.34 U	0.27 U	0.32 U	0.12 J	0.16 J	0.44 UJ	0.6 UJ	1 UJ	0.24 J
Perfluorooctanoic acid (PFOA)	6.6 J-	1.6	0.5	2.8	2.6	1.5	20	12	4.6	5	11	20
6:2 Perfluorooctane Sulfonate (6:2 FTS)	NA	4.2 U										
8:2 Perfluorodecane Sulfonate (8:2 FTS)	NA	4.2 U										
N-Ethyl-N-((heptadecafluorooctyl)sulphonyl) glycine												
(N-EtFOSAA)	NA	0.92 J										
2-(N-methyl perfluorooctanesulfonamido) acetic acid												
(N-MeFOSAA)	NA	4.2 U										

Notes:

FT. BGS - Feet below ground surface.

 $\mu g/kg$ - Micrograms per kilogram.

- J Estimated value.
- J- Estimated value; biased low.
- U Analyte was not detected at specified quantitation limit.
- UJ Estimated non-detect.

Per- and polyfluoroalkyl substances (PFAS) sediment sampling results were evaluated by comparison to the NYSDOH preliminary Residential Use SCO of 140 µg/kg developed for a potential site or sites located in the Hoosick Falls area. Values in **bold** indicate the analyte was detected.

(1) - Results for sample HFL-MH-SD are not compared to NYSDEC Sediment Guidance Values as the sediment sample location is within a manhole and is not readily accessible to fish and wildlife.

Table 16 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY Summary of Results of Analysis of Subsurface Soil for Volatile Organic Compounds

		SAMPLE	LOCATION:	HFL-MW-101	HFL-MW-101B	HFL-MW-103	HFL-MW-104	HFL-MW-105	HFL-MW-106
	LA	BORATORY	SAMPLE ID:	480-118425-1	480-133189-1	480-118514-1	480-133608-1	480-134080-1	480-134613-1
	SA	AMPLE DEPT	TH (FT. BGS):	16-20	48-50	6-10	9-11	22-24	19-21
		SA	MPLE DATE:	5/23/2017	3/27/2018	5/24/2017	4/4/2018	4/11/2018	4/20/2018
			UNITS:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Unrestricted	Residential	Commercial						
ANALYTES	Use SCO*	Use SCO*	Use SCO*	Results	Results	Results	Results	Results	Results
1,1,1-Trichloroethane	0.68	100	500	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
1,1,2,2-Tetrachloroethane	NS	35	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 UJ	0.0036 U
1,1,2-Trichloroethane	NS	NS	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
1,1,2-Trichloro- 1,2,2-trifluoroethane (Freon 113)	NS	100	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
1,1-Dichloroethane	0.27	19	240	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
1,1-Dichloroethylene	0.33	100	500	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
1,2,4-Trichlorobenzene	NS	NS	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
1,2-Dibromo-3-chloropropane (DBCP)	NS	NS	NS	0.0045 U	0.0044 UJ	0.0044 U	0.0049 U	0.0047 UJ	0.0036 U
1,2-Dichlorobenzene	1.1	100	500	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
1,2-Dichloroethane	0.02	2.3	30	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
1,2-Dichloropropane	NS	NS	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
1,3-Dichlorobenzene	2.4	17	280	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
1,4-Dichlorobenzene	1.8	9.8	130	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
2-Butanone (MEK)	0.12	100	500	0.023 U	0.022 UJ	0.022 U	0.025 U	0.023 UJ	0.018 U
2-Hexanone (MBK)	NS	NS	NS	0.023 U	0.022 UJ	0.022 U	0.025 U	0.023 U	0.018 U
4-Methyl-2-pentanone (MIBK)	NS	NS	NS	0.023 U	0.022 UJ	0.022 U	0.025 U	0.023 U	0.018 U
Acetone	0.05	100	500	0.023 U	0.005 J	0.022 U	0.025 U	0.023 U	0.0065 J
Benzene	0.06	2.9	44	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Bromodichloromethane	NS	NS	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Bromoform	NS	NS	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Bromomethane	NS	NS	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Carbon Disulfide	NS	100	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Carbon Tetrachloride	0.76	1.4	22	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Chlorobenzene	1.1	100	500	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Chloroethane	NS	NS	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Chloroform	0.37	10	350	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Chloromethane	NS	NS	NS	0.0045 U	0.0044 UJ	0.0044 U	0.0049 U	0.0047 U	0.0036 U
1,4-Dioxane	0.1	9.8	130	R	R	R	R	R	R
cis-1,2-Dichloroethylene	0.25	59	500	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
cis-1,3-Dichloropropene	NS	NS	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Cyclohexane	NS	NS	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Chlorodibromomethane	NS	NS	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Dichlorodifluoromethane (Freon 12)	NS	NS	NS	0.0045 U	0.0044 UJ	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Ethylbenzene	1	30	390	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
1,2-Dibromoethane (EDB)	NS	NS	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Isopropylbenzene (Cumene)	NS	100	NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Methyl acetate	NS 0.02	NS	NS 500	0.023 U	0.022 UJ	0.022 U	0.025 U	0.023 U	0.018 U
Methyl tert-Butyl Ether (MTBE)	0.93	62 NC	500	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Methylcyclohexane Methylene Chloride	NS 0.05	NS 51	NS 500	0.0045 U 0.0045 U	0.0044 U 0.0044 U	0.0044 U 0.0044 U	0.0049 U 0.0049 U	0.0047 U 0.0047 U	0.0036 U 0.0036 U
Methylene Chloride Styrene	0.05 NS	51 NS	500 NS	0.0045 U 0.0045 U	0.0044 U 0.0044 U	0.0044 U 0.0044 U	0.0049 U 0.0049 U	0.0047 U 0.0047 U	0.0036 U 0.0036 U
Styrene Tetrachloroethylene		NS 5.5	NS 150	0.0045 U 0.0045 U	0.0044 U 0.0044 U	0.0044 U 0.0044 U	0.0049 U 0.0049 U	0.0047 U 0.0047 U	0.0036 U 0.0036 U
Toluene	1.3 0.7	100	500	0.0045 U 0.0045 U	0.0044 U	0.0044 U 0.0044 U	0.0049 U 0.0049 U	0.0047 U 0.0047 U	0.0036 U
trans-1,2-Dichloroethylene	0.7	100	500	0.0045 U	0.0044 U	0.0044 U 0.0044 U	0.0049 U 0.0049 U	0.0047 U 0.0047 U	0.0036 U
trans-1,2-Dichloropetnylene trans-1,3-Dichloropropene	0.19 NS	NS	NS NS	0.0045 U	0.0044 U	0.0044 U 0.0044 U	0.0049 U 0.0049 U	0.0047 U 0.0047 U	0.0036 U
Trichloroethylene	0.47	10	200	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Trichlorofluoromethane (Freon 11)	NS	NS	NS NS	0.0045 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Vinyl Chloride	0.02	0.21	13	0.0045 U	0.0044 UJ	0.0044 U	0.0049 U	0.0047 U	0.0036 U
Xylene (Total)	0.02	100	500	0.0043 U	0.0044 U	0.0044 U	0.0049 U	0.0047 U	0.0030 U
Notes:	0.20	100	550	0.007	0.0007	0.0000	0.0077	0.0074 0	0.0072

Notes:

FT. BGS - Feet below ground surface.

mg/kg - Milligrams per kilogram.

J - Estimated value.

R - Rejected data point during data validation.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

 $^{*-} New York \ State \ Department \ of \ Environmental \ Conservation, \ Soil \ Cleanup \ Objectives \ (SCOs) \ (6NYCRR \ Part \ 375 \ and \ CP-51).$

NS - No NYSDEC standard exists for this analyte.

Table 17 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Subsurface Soil for Semivolatile Organic Compounds

		SAMPLE	LOCATION:	HFL-MW-101	HFL-MW-101B	HFL-MW-103	HFL-MW-104	HFL-MW-105	HFL-MW-106
		BORATORY	SAMPLE ID:	480-118425-1	480-133189-1	480-118514-1	480-133608-1	480-134080-1	480-134613-1
	SA		H (FT. BGS):	16-20	48-50	6-10	9-11	22-24	19-21
		SAI	MPLE DATE:	5/23/2017	3/27/2018	5/24/2017	4/4/2018	4/11/2018	4/20/2018
	Unrestricte	Residential	UNITS: Commercial	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ANALYTES	d Use SCO*	Use SCO*	Use SCO*	Results	Results	Results	Results	Results	Results
1,1'-Biphenyl	NS	NS	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
2,2'-Oxybis(1-chloropropane)	NS	NS	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 UJ	0.19 U
2,4,5-Trichlorophenol	NS	100	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
2,4,6-Trichlorophenol	NS NS	NS 100	NS NS	0.2 U 0.2 U	0.22 U 0.22 U	2.1 U 2.1 U	0.24 U 0.24 U	0.21 U 0.21 U	0.19 U 0.19 U
2,4-Dichlorophenol 2,4-Dimethylphenol	NS NS	NS	NS NS	0.2 U	0.22 U	2.1 U 2.1 U	0.24 U	0.21 U	0.19 U
2,4-Dinitrophenol	NS	100	NS	2 U	2.2 U	20 U	2.3 U	2.1 U	1.9 U
2,4-Dinitrotoluene	NS	NS	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
2,6-Dinitrotoluene	NS	1.03	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
2-Chloronaphthalene	NS	NS	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
2-Chlorophenol	NS	100	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
2-Methylphenol	0.33	100	500	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
2-Methylnaphthalene 2-Nitroaniline	NS NS	0.41 NS	NS NS	0.2 U 0.39 U	0.22 U 0.43 U	2.1 U 4.1 U	0.24 U 0.47 U	0.21 U 0.41 U	0.19 U 0.37 U
2-Nitroannine 2-Nitrophenol	NS NS	NS NS	NS NS	0.39 U 0.2 U	0.43 U 0.22 U	2.1 U	0.47 U 0.24 U	0.41 U 0.21 U	0.37 U 0.19 U
3,3'-Dichlorobenzidine	NS	NS	NS	0.39 U	0.43 U	4.1 U	0.47 U	0.41 U	0.37 U
3-Nitroaniline	NS	NS	NS	0.39 U	0.43 U	4.1 U	0.47 U	0.41 U	0.37 U
4,6-Dinitro-2-methylphenol	NS	NS	NS	0.39 U	0.43 U	4.1 U	0.47 U	0.41 U	0.37 U
4-Bromophenyl-phenylether	NS	NS	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
4-Chloro-3-methylphenol	NS	NS	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
4-Chloroaniline	NS NC	100	NS NS	0.2 U	0.22 U 0.22 U	2.1 U 2.1 U	0.24 U	0.21 U 0.21 U	0.19 U
4-Chlorophenyl-phenyl ether 4-Methylphenol	NS 0.33	NS 34	500	0.2 U 0.39 U	0.22 U 0.43 U	2.1 U 4.1 U	0.24 U 0.47 U	0.21 U 0.41 U	0.19 U 0.37 U
4-Nitroaniline	NS	NS	NS	0.39 U	0.43 U	4.1 U	0.47 U	0.41 U	0.37 U
4-Nitrophenol	NS	NS	NS	0.39 U	0.43 U	4.1 U	0.47 U	0.41 U	0.37 U
Acenaphthene	20	100	500	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Acenaphthylene	100	100	500	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Acetophenone	NS	NS	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Anthracene	100	100	500	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Atrazine Benzaldehyde	NS NS	NS NS	NS NS	0.2 U 0.2 U	0.22 U 0.22 U	2.1 U 2.1 UJ	0.24 U 0.24 U	0.21 U 0.21 U	0.19 U 0.19 U
Benzo(a)anthracene	1	1	5.6	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Benzo(a)pyrene	1	1	1	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Benzo(b)fluoranthene	1	1	5.6	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Benzo(g,h,i)perylene	100	100	500	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Benzo(k)fluoranthene	0.8	1	56	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Bis(2-chloroethoxy)methane	NS	NS	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Bis(2-chloroethyl) ether	NS NS	NS 50	NS NS	0.2 U 0.095 J	0.22 U 0.22 U	2.1 U 2.1 U	0.24 U 0.24 U	0.21 U 0.21 U	0.19 U 0.19 U
Bis(2-ethylhexyl)phthalate Butylbenzylphthalate	NS NS	100	NS NS	0.095 J 0.2 U	0.22 U	2.1 U	0.24 U 0.24 U	0.21 U	0.19 U 0.19 U
Caprolactam	NS	NS	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Carbazole	NS	NS	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Chrysene	1	1	56	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Dibenz(a,h)anthracene	0.33	0.33	0.56	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Di-n-butylphthalate	NS	100	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Di-n-octylphthalate	NS 7	100	NS 350	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Dibenzofuran Diethyl phthalate	NS	14 100	NS NS	0.2 U 0.2 U	0.22 U 0.22 U	2.1 U 2.1 U	0.24 U 0.24 U	0.21 U 0.21 U	0.19 U 0.19 U
Dimethylphthalate	NS NS	100	NS NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Fluoranthene	100	100	500	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Fluorene	30	100	500	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Hexachlorobenzene	0.33	0.33	6	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Hexachlorobutadiene	NS	NS	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Hexachlorocyclopentadiene	NS NC	NS	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Hexachloroethane	NS 0.5	NS 0.5	NS 5.6	0.2 U 0.2 U	0.22 U 0.22 U	2.1 U 2.1 U	0.24 U 0.24 U	0.21 U 0.21 U	0.19 U 0.19 U
Indeno(1,2,3-cd)pyrene Isophorone	NS	100	S.6 NS	0.2 U 0.2 U	0.22 U 0.22 U	2.1 U 2.1 U	0.24 U 0.24 U	0.21 U 0.21 U	0.19 U 0.19 U
n-Nitroso-di-n-propylamine	NS NS	NS	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
N-Nitrosodiphenylamine	NS	NS	NS	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Naphthalene	12	100	500	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Nitrobenzene	NS	3.7	69	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Pentachlorophenol	0.8	2.4	6.7	0.39 U	0.43 U	4.1 U	0.47 U	0.41 U	0.37 U
Phenanthrene	100	100	500	0.2 U	0.22 U	2.1 U	0.24 U	0.21 U	0.19 U
Phenol	0.33 100	100 100	500 500	0.2 U 0.2 U	0.22 U 0.22 U	2.1 U	0.24 U 0.24 U	0.21 U 0.21 U	0.19 U
Pyrene 1,4-Dioxane	0.1	9.8	130	0.2 U NA	0.22 U 0.26 U	2.1 U NA	0.24 U 0.28 U	0.21 U 0.25 U	0.19 U 0.22 U
Notes:	0.1	7.0	130	INM	0.20 U	INA	U.20 U	U.23 U	U.22 U

Notes

FT. BGS - Feet below ground surface.

mg/kg - Milligrams per kilogram.

I - Estimated value

U - Analyte was not detected at specified quantitation limit.

^{* -} New York State Department of Environmental Conservation, Soil Cleanup Objectives (SCOs) (6NYCRR Part 375 and CP-51).

NA - Sample not analyzed for the listed analyte.

NS - No NYSDEC standard exists for this analyte.

Table 18

New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Subsurface Soil for Pesticides and Polychlorinated Biphenyls

		SAMPLE	LOCATION:	HFL-MW-101	HFL-MW-101B	HFL-MW-103	HFL-MW-104	HFL-MW-105	HFL-MW-106
	LAF	BORATORY	SAMPLE ID:	480-118425-1	480-133189-1	480-118514-1	480-133608-1	480-134080-1	480-134613-1
	SA	MPLE DEPT	H (FT. BGS):	16-20	48-50	6-10	9-11	22-24	19-21
			MPLE DATE:	5/23/2017	3/27/2018	5/24/2017	4/4/2018	4/11/2018	4/20/2018
			UNITS:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Unrestricted	Residential	Commercial						
ANALYTES	Use SCO*	Use SCO*	Use SCO*	Results	Results	Results	Results	Results	Results
Pesticides									
4,4'-DDD	0.0033	2.6	92	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
4,4'-DDE	0.0033	1.8	62	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
4,4'-DDT	0.0033	1.7	47	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
Aldrin	0.005	0.019	0.68	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
alpha-BHC	0.02	0.097	3.4	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
alpha-Chlordane	0.094	0.91	24	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
beta-BHC	0.036	0.072	3	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
delta-BHC	0.04	100	500	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
Dieldrin	0.005	0.039	1.4	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
Endosulfan I	2.4 ^(a)	4.8 ^(a)	200 ^(a)	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
Endosulfan II	2.4 ^(a)	4.8 ^(a)	200 ^(a)	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
Endosulfan sulfate	2.4 ^(a)	4.8 ^(a)	200 ^(a)	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
Endrin	0.014	2.2	89	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
Endrin aldehyde	NS	NS	NS	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
Endrin ketone	NS	NS	NS	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
gamma-BHC (Lindane)	0.1	0.28	9.2	0.002 U	0.0022 U	0.0052 J	0.0024 U	0.0021 U	0.0019 U
trans-Chlordane	NS	NS	NS	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
Heptachlor	0.042	0.42	15	0.002 U	0.0022 U	0.0057 J	0.0024 U	0.0021 U	0.0019 U
Heptachlor epoxide	NS	0.077	NS	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
Methoxychlor	NS	100	NS	0.002 U	0.0022 U	0.02 U	0.0024 U	0.0021 U	0.0019 U
Toxaphene	NS	NS	NS	0.02 U	0.022 U	0.2 UJ	0.024 U	0.021 U	0.019 U
PCBs									
Aroclor-1016	NS	NS	NS	0.25 U	0.32 U	0.27 U	0.34 U	0.25 U	0.22 U
Aroclor-1221	NS	NS	NS	0.25 U	0.32 UJ	0.27 U	0.34 U	0.25 U	0.22 U
Aroclor-1232	NS	NS	NS	0.25 U	0.32 UJ	0.27 U	0.34 U	0.25 U	0.22 UJ
Aroclor-1242	NS	NS	NS	0.25 U	0.32 UJ	0.27 U	0.34 U	0.25 U	0.22 UJ
Aroclor-1248	NS	NS	NS	0.25 U	0.32 U	4.8	0.34 U	0.25 U	0.22 U
Aroclor-1254	NS	NS	NS	0.25 U	0.32 U	0.27 U	0.34 U	0.25 U	0.22 U
Aroclor-1260	NS	NS	NS	0.25 U	0.32 U	0.27 U	0.34 U	0.25 U	0.22 U
PCBs, Total	0.1	1	1	0.25 U	0.32 U	4.8	0.34 U	0.25 U	0.22 U

Notes:

FT. BGS - Feet below ground surface.

mg/kg - Milligrams per kilogram.

J - Estimated value.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

* - New York State Department of Environmental Conservation, Soil Cleanup Objectives (SCOs) (6NYCRR Part 375 and CP-51).

NS - No NYSDEC standard exists for this analyte.

PCBs - Polychlorinated Biphenyls.

Values in \boldsymbol{bold} indicate the analyte was detected.

Shading indicates result above the corresponding SCO.

 $^{(a)}$ - Criteria applicable to the sum of endosulfan I, endosulfan II and endosulfan sulfate.

Table 19 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY Summary of Results of Analysis of Subsurface Soil for Metals

		SAMPLE	E LOCATION:	HFL-MW-	101	HFL-MW-1	01B	HFL-MW-	-103	HFL-MW-	104	HFL-MW-	105	HFL-MW	V-106
	LA	BORATORY	SAMPLE ID:	480-11842	25-1	480-13318	9-1	480-1185	14-1	480-13360	08-1	480-13408	30-1	480-1346	513-1
	SA	MPLE DEP	ΓH (FT. BGS):	16-20		48-50		6-10		9-11		22-24		19-21	1
		SA	MPLE DATE:	5/23/201	7	3/27/201	8	5/24/20	17	4/4/201	8	4/11/20	18	4/20/20	018
			UNITS:	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/k	g
	Unrestricted	Residential	Commercial												
ANALYTES	Use SCO*	Use SCO*	Use SCO*	Results	S	Results	;	Result	s	Results	S	Result	s	Resul	ts
Aluminum	NS	NS	NS	11,700		26,200		14,700		15,100		13,500		15,800	
Antimony	NS	NS	NS	17.9	U	20.6	UJ	18.6	U	22.8	UJ	18.6	UJ	16.2	UJ
Arsenic	13	16	16	4.3	J-	10.5		9	J-	8.1		5.2		4.9	
Barium	350	350	400	108		288		157		94.7	$\mathbf{J}+$	80.7	$\mathbf{J}+$	121	
Beryllium	7.2	14	590	0.59		1.4		0.73		0.61		0.71		0.73	
Cadmium	2.5	2.5	9.3	0.2	J	0.19	J	0.17	J	0.061	J	0.083	J	0.064	J
Calcium	NS	NS	NS	14,200		4,250		1,740		22,800	$\mathbf{J}+$	9,470	$\mathbf{J}+$	1,080	
Chromium	1 ^(a)	22 ^(a)	400 ^(a)	13.8		32.4		17.3		17.1		16.2		19.7	
Cobalt	NS	30	NS	7.9		19.2		12.3		12.4		10.8		9	
Copper	50	270	270	15.9		39.4		26.5		23.8		24.7		19.9	
Iron	NS	2,000	NS	17,700		37,300		25,500		26,400		25,200		21,300	
Lead	63	400	1,000	10.1		27.2		15.5		13.9		12.2		10.6	
Magnesium	NS	NS	NS	7,420		9,650		5,020		11,400	J+	7,110	J+	5,150	
Manganese	1,600	2,000	10,000	427		604		1,120		434		564		415	
Mercury	0.18	0.81	2.8	0.015	J	0.043		0.025		0.016	J	0.012	J	0.018	J
Nickel	30	140	310	17.8		41.5		28.2		26.3		26.8		20	
Potassium	NS	NS	NS	3,230		6,720		3,410		3,130	$\mathbf{J}+$	2,700	$\mathbf{J}+$	5,210	
Selenium	3.9	36	1,500	4.8	U	5.5	U	5	U	6.1	U	5	U	4.3	U
Silver	2	36	1,500	0.72	U	0.83	U	0.74	U	0.91	U	0.74	U	0.65	U
Sodium	NS	NS	NS	80.2	J	191	J	118	J	213	U	174	U	90	J
Thallium	NS	NS	NS	7.2	UJ	8.3	U	7.4	UJ	9.1	UJ	7.4	UJ	6.5	U
Vanadium	NS	100	NS	19.4		40.1		22.9		19.5		19.8		28.2	
Zinc	109	2,200	10,000	43.3		105		66.4		72.9		70.6		55.7	

Notes:

FT. BGS - Feet below ground surface.

mg/kg - Milligrams per kilogram.

- J Estimated value.
- J- Estimated value; biased low.
- J+ Estimated value; biased high.
- U Analyte was not detected at specified quantitation limit.
- UJ Estimated non-detect.
- $*- New\ York\ State\ Department\ of\ Environmental\ Conservation,\ Soil\ Cleanup\ Objectives\ (SCOs)\ (6NYCRR\ Part\ 375\ and\ CP-51).$
- NS No NYSDEC standard exists for this analyte.

Values in \boldsymbol{bold} indicate the analyte was detected.

Shading indicates result above the corresponding SCO.

(a) - SCO for Chromium (VI) used.

Table 20 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Subsurface Soil for Per- and Polyfluoroalkyl Substances

SAMPLE LOCATION:	HFL-MW-101	HFL-MW-101B	HFL-MW-103	HFL-MW-104	HFL-MW-105	HFL-MW-106
LABORATORY SAMPLE ID:	480-118425-1	480-133189-1	480-118514-1	480-133608-1	480-134080-1	480-134613-1
SAMPLE DEPTH (FT. BGS):	16-20	48-50	6-10	9-11	22-24	19-21
SAMPLE DATE:	5/23/2017	3/27/2018	5/24/2017	4/4/2018	4/11/2018	4/20/2018
UNITS:	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg
ANALYTES	Results	Results	Results	Results	Results	Results
Perfluorobutanoic acid (PFBA)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluoropentanoic acid (PFPeA)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluorohexanoic acid (PFHxA)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluoroheptanoic acid (PFHpA)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluorononanoic acid (PFNA)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluorodecanoic acid (PFDA)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluoroundecanoic acid (PFUnA)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluorododecanoic acid (PFDoA)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluorotridecanoic acid (PFTriA)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluorotetradecanoic acid (PFTeA)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluorobutanesulfonic acid (PFBS)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluorohexanesulfonic acid (PFHxS)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluoroheptanesulfonic acid (PFHpS)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluorooctanesulfonic acid (PFOS)	0.25 U	0.66 U	0.25 U	0.71 U	0.63 U	0.57 U
Perfluorodecanesulfonic acid (PFDS)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluorooctane Sulfonamide (FOSA)	0.25 U	0.26 U	0.25 U	0.29 U	0.25 U	0.23 U
Perfluorooctanoic acid (PFOA)	1.6	0.3	0.36	0.46	0.23 J	0.33
6:2 Perfluorooctane Sulfonate (6:2 FTS)	NA	NA	NA	2.9 U	2.5 U	2.3 U
8:2 Perfluorodecane Sulfonate (8:2 FTS)	NA	NA	NA	2.9 U	2.5 U	2.3 U
N-ethyl perfluorooctane sulfonamidoacetic acid	NA	NA	NA	2.9 U	2.5 U	2.3 U
(N-EtFOSAA)						
N-methyl perfluorooctane sulfonamido) acetic acid (N-MeFOSAA)	NA	NA	NA	2.9 U	2.5 U	2.3 U

Notes:

FT. BGS - Feet below ground surface.

μg/kg - Micrograms per kilogram.

U - Analyte was not detected at specified quantitation limit.

Per- and polyfluoroalkyl substances (PFAS) soil sampling results were evaluated by comparison to the NYSDOH preliminary Residential Use SCO of 140 μ g/kg developed for a potential site or sites located in the Hoosick Falls area.

NA - Sample not analyzed for the listed analyte.

J - Estimated value.

New York State Department of Environmental Conservation

Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Groundwater and Leachate for Volatile Organic Compounds

SAMP	SAMPLE LOCATION:		FL-GW-PW1 HFL-MW-001B			HFIN	/W-002	HFIN	MW-004	HFL-N	MW-101	HFL-MW-101B	HFL-MW-101C
	RY SAMPLE ID:		480-137103-15	480-119270-4	480-137103-1	480-119270-5	480-137103-2	480-119270-6	480-137103-3	480-119270-1	480-137103-4	480-137103-5	480-137103-6
	AMPLE DATE		06/06/2018	6/8/2017	06/06/2018	6/8/2017	06/07/2018	6/8/2017	06/07/2018	6/7/2017	06/06/2018	06/06/2018	06/06/2018
	UNITS	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
ANALYTES	Class GA Value*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
1,1,1-Trichloroethane	5	1 U	1 U	1 UJ	1 U	1 UJ	1 U	1 UJ	1 U	1 UJ	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloro- 1,2,2-trifluoroethane (Freon 113)	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethylene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane (DBCP)	0.04	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone (MEK)	50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone (MBK)	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U
4-Methyl-2-pentanone (MIBK)	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	10 U	10 UJ	10 U	4.5 J	10 U	10 U	10 U					
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50	1 U	1 U	1 U	1 UJ	1 UJ	1 UJ						
Bromomethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U
Carbon Disulfide	60	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.27 J	1 U
Carbon Tetrachloride	5	1 U	1 U	1 UJ	1 U	1 UJ	1 U	1 UJ	1 U	1 UJ	1 U	1 U	1 U
Chlorobenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloromethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dioxane	0.35 ^(a)	R	R	R	R	R	160 J	R	R	R	R	R	R
cis-1,2-Dichloroethylene	5	1 U	1.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	0.4 ^(b)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cyclohexane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorodibromomethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane (Freon 12)	5	1 U	1 U	1 UJ	1 U	1 UJ	1 U	1 UJ	1 U	1 UJ	1 U	1 U	1 U
Ethylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane (EDB)	0.0006	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Isopropylbenzene (Cumene)	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl acetate	NS	2.5 UJ	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Methyl tert-Butyl Ether (MTBE)	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylcyclohexane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene Chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethylene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethylene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	0.4 ^(b)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethylene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichlorofluoromethane (Freon 11)	5	1 U	1 U	1 UJ	1 U	1 UJ	1 U	1 UJ	1 U	1 UJ	1 U	1 U	1 U
Vinyl Chloride	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.8	1 U	1 U
Xylene (Total)	5 ^(c)	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Notes:

 $\mu g/L$ - Micrograms per liter.

- J Estimated value.
- R Rejected data point during data validation.
- U Compound was not detected at specified quantitation limit.
- UJ Estimated non-detect.
- * NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.
- NS No NYSDEC standard exists for this analyte.
- Values in **bold** indicate the compound was detected.

Shading indicates result is above the corresponding Class GA Value.

- (a) NYSDEC screening level for 1,4-Dioxane.
- ^(b) Criteria applicable to the sum of the cis and trans isomers.
- $(c) There is no \ Standard \ or \ Guidance \ Value \ for \ Xylene \ (Total). \ The \ Standard \ for \ o-Xylene, \ m-Xylene, \ and \ p-Xylene \ is \ 5 \ \mu g/L.$

Table 21 (continued)

New York State Department of Environmental Conservation

Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Groundwater and Leachate for Volatile Organic Compounds

SAMPI E	LOCATION:	HEI "	/W-102	HEI "Y	1W-103	HFL-MW-104	HFL-MW-104C	HFL-MW-105	HFL-MW-105C	HFL-MW-106	HFL-MW-106C	
LABORATORY		480-119270-2	480-137103-7	480-119270-3	480-137103-8	480-137103-9	480-137103-10	480-137103-11	480-137103-12	480-137103-13	480-137103-14	
	MPLE DATE:	6/8/2017	06/07/2018	6/7/2017	06/06/2018	06/06/2018	06/06/2018	06/05/2018	06/05/2018	06/05/2018	06/06/2018	
5.2	UNITS:	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	
	Class GA	1.0	10	1.0	1.0	1.6	1.0	1.0	1.0	1.0	1.0	
ANALYTES	Value*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	
1,1,1-Trichloroethane	5	1 UJ	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,1,2,2-Tetrachloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,1,2-Trichloroethane	1 5	1 U	1 U	1 U	1 U	1 U	1 U	1 U 1 U	1 U	1 U	1 U 1 U	
1,1,2-Trichloro- 1,2,2-trifluoroethane (Freon 113) 1,1-Dichloroethane	5	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U						
1,1-Dichloroethylene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,2,4-Trichlorobenzene	5	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,2-Dibromo-3-chloropropane (DBCP)	0.04	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,2-Diolono-5-emolopropane (BBCI)	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,2-Dichloroethane	0.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,2-Dichloropropane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,3-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,4-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
2-Butanone (MEK)	50	10 U	10 U	10 U	10 U	10 U						
2-Hexanone (MBK)	50	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
4-Methyl-2-pentanone (MIBK)	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Acetone	50	6.6 J	10 U	10 UJ	10 U	10 U	10 U	10 UJ	10 UJ	10 U	10 UJ	
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Bromodichloromethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Bromoform	50	1 U	1 UJ	1 U	1 UJ	1 UJ	1 UJ	1 U	1 U	1 UJ	1 U	
Bromomethane	5	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Carbon Disulfide	60	1 U	1 U	1 U	1 U	1 U	0.68 J	1 U	0.39 J	1 U	0.3 J	
Carbon Tetrachloride	5	1 UJ	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Chlorobenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Chloroethane	5	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Chloroform	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Chloromethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,4-Dioxane	0.35 ^(a)	R	R	R	R	R	R	R	R	R	R	
cis-1,2-Dichloroethylene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
cis-1,3-Dichloropropene	$0.4^{(b)}$	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Cyclohexane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Chlorodibromomethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Dichlorodifluoromethane (Freon 12)	5	1 UJ	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Ethylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,2-Dibromoethane (EDB)	0.0006	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Isopropylbenzene (Cumene)	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Methyl acetate	NS	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U						
Methyl tert-Butyl Ether (MTBE)	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Methylcyclohexane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Methylene Chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Styrene Tetrachloroethylone	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Tetrachloroethylene Toluene	5	1 U 1 U	1 U	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U	1 U	1 U 1 U	1 U 1 U	
	5	1 U	1 U	1 U	1 U		1 U	1 U	1 U			
trans-1,2-Dichloroethylene trans-1,3-Dichloropropene	5 0.4 ^(b)	1 U 1 U	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	
* *				1 1								
Trichloroethylene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Trichlorofluoromethane (Freon 11)	5	1 UJ	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Vinyl Chloride	2 5(c)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Xylene (Total)	5 ^(c)	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	

Notes:

 $\mu g/L$ - Micrograms per liter.

- J Estimated value.
- R Rejected data point during data validation.
- U Compound was not detected at specified quantitation limit.
- UJ Estimated non-detect.
- * NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.
- NS No NYSDEC standard exists for this analyte.

Values in **bold** indicate the compound was detected.

Shading indicates result is above the corresponding Class GA Value.

- (a) NYSDEC screening level for 1,4-Dioxane.
- ^(b) Criteria applicable to the sum of the cis and trans isomers.
- (c) There is no Standard or Guidance Value for Xylene (Total). The Standard for o-Xylene, m-Xylene, and p-Xylene is 5 μ g/L.

Table 22 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY Summary of Results of Analysis of Groundwater and Leachate for Semivolatile Organic Compounds

	SAMPLE LOCATION:	HFL-G	W-PW1	HFL-M	fW-001B	HFL-M	IW-002	HFL-N	IW-004	HFL-N	MW-101	HFL-MW-101B	HFL-MW-101C	HFL-N	MW-102	HFL-N	MW-103	HFL-MW-104	HFL-MW-104
	LABORATORY SAMPLE ID:	480-119437-1	480-137103-15	480-119270-4	480-137103-1	480-119270-5	480-137103-2	480-119270-6	480-137103-3	480-119270-1	480-137103-4	480-137103-5	480-137103-6	480-119270-2	480-137103-7	480-119270-3	480-137103-8	480-137103-9	480-137103-1
	SAMPLE DATE: UNITS:	6/13/2017 μg/L	06/06/2018 μg/L	6/8/2017 µg/L	06/06/2018 μg/L	6/8/2017 μg/L	06/07/2018 μg/L	6/8/2017 μg/L	06/07/2018 μg/L	6/7/2017 µg/L	06/06/2018 μg/L	06/06/2018 μg/L	06/06/2018 μg/L	6/8/2017 μg/L	06/07/2018 μg/L	6/7/2017 µg/L	06/06/2018 μg/L	06/06/2018 μg/L	06/06/2018 μg/L
	Class GA	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
NALYTES	Value*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
,1'-Biphenyl ,2'-Oxybis(1-chloropropane)	5	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
,4,5-Trichlorophenol	1 ^(a)	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 L
,4,6-Trichlorophenol	1 ^(a)	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 L
,4-Dichlorophenol	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 L
,4-Dimethylphenol	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 L
,4-Dinitrophenol	10	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
,4-Dinitrotoluene	5	5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U	5 U
,6-Dinitrotoluene -Chloronaphthalene	10	5 U 5 U	5 U	5 U 5 U	5 U	5 U	5 U 5 U	5 U	5 U	5 U 5 U	5 U	5 U	5 U 5 U	5 U	5 U	5 U 5 U	5 U	5 U	5 U
-Chlorophenol	1 ^(a)	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 T
-Methylphenol	1 ^(a)	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 T
-Methylnaphthalene	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
-Nitroaniline	5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
-Nitrophenol	1 ^(a)	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
,3'-Dichlorobenzidine	5	5 U	5 U	5 UJ	5 U	5 U	5 U	5 UJ	5 U	5 UJ	5 U	5 U	5 L						
-Nitroaniline	5	10 U	10 U 10 U	10 U 10 U	10 U	10 U	10 U 10 U	10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U	10 U 10 U	10 U	10 U	10 U
,6-Dinitro-2-methylphenol	T ^(a)	10 U 5 U	10 U 5 U	5 U	10 U 5 U	10 U 5 U	10 U	10 U 5 U	10 U 5 U	5 U	10 U		5 U	10 U 5 U	10 U 5 U	5 U	10 U 5 U	10 U	
-Bromophenyl-phenylether -Chloro-3-methylphenol	NS 1(a)	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U 5 U	5 U	5 U	5 U	5 U	5 U	5 U 5 U	5 U 5 U
-Chloroaniline	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 L
-Chlorophenyl-phenyl ether	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 L
-Methylphenol	NS	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
-Nitroaniline	5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 L
-Nitrophenol	1 ^(a)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
cenaphthene	20 NS	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
cenaphthylene cetophenone	NS NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 L
anthracene	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 L
atrazine	7.5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 L
Benzaldehyde	NS 0.002	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 L
Senzo(a)anthracene Senzo(a)pyrene	0.002 ND	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
denzo(b)fluoranthene	0.002	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 L
Senzo(g,h,i)perylene	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 L
enzo(k)fluoranthene	0.002	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 L
sis(2-chloroethoxy)methane sis(2-chloroethyl) ether	5	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U
sis(2-ethylhexyl)phthalate	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Sutylbenzylphthalate	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Caprolactam	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Carbazole	NS 0.002	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U	5 L
Chrysene Dibenz(a,h)anthracene	0.002 NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U 5 U	5 U	5 U	5 U	5 U	5 U	5 U 5 U	5 U	5 U 5 U	5 U
Pi-n-butylphthalate	50	0.33 J	5 U	0.46 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	0.35
Di-n-octylphthalate	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Dibenzofuran	NS 50	10 U	10 U 5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Diethyl phthalate Dimethylphthalate	50 50	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	0.72 J 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U
luoranthene	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 t
luorene	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 1
exachlorobenzene	0.04	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 1
exachlorobutadiene	0.5	5 UJ 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U	5 U	5 U 5 U	5 U 5 U	5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U	5
exachlorocyclopentadiene exachloroethane	5	5 U 5 U	5 U	5 U	5 U 5 U	5 U 5 U	5 U	5 U	5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 5
deno(1,2,3-cd)pyrene	0.002	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 1
ophorone	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 1
Nitroso-di-n-propylamine	NS 50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5
-Nitrosodiphenylamine aphthalene	50 10	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 5
trobenzene	0.4	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5
entachlorophenol	1 ^(a)	10 U	10 UJ	10 U	10 UJ	10 U	10 UJ	10 U	10 UJ	10 U	10 UJ	10 UJ	10 UJ	10 U	10 UJ	10 U	10 UJ	10 UJ	10 U
henanthrene	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5
henol	1 ^(a)	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5
yrene	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5
1-Dioxane	0.35 ^(b)	NA	0.74	NA	0.2 U	NA	180 J+	NA	0.51	NA	1.9	0.8	0.19 J	NA	6.7	NA	0.2 U	0.21	0.2

Notes: μg/L - Micrograms per liter. J - Estimated value.

J+ - Estimated value; biased high.
U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.

NA - Sample not analyzed for the listed analyte.

NS - No NYSDEC standard exists for this analyte.

ND - A non-detectable concentration by the approved analytical method specified in Section 700.3 of the NYCRR Water Quality Regulations.

Values in **bold** indicate the compound was detected.

(a) - Criteria applicable to total phenolics. (b) - NYSDEC screening level for 1,4-Dioxane.

Shading indicates result is above the corresponding Class GA Value.

Table 22 (continued)

Page 2 of 2

New York State Department of Environmental Conservation
Hoosick Falls Landfill - Hoosick Falls, NY
Summary of Results of Analysis of Groundwater and Leachate for Semivolatile Organic Compounds

CAMPLE	LOCATION			TIEL NOV 100	
SAMPLE LABORATORY	E LOCATION: SAMPLE ID:	HFL-MW-105 480-137103-11	HFL-MW-105C 480-137103-12	HFL-MW-106 480-137103-13	HFL-MW-106C 480-137103-14
	MPLE DATE:	06/05/2018	06/05/2018	06/05/2018	06/06/2018
	UNITS:	μg/L	μg/L	μg/L	μg/L
ANALYTES	Class GA Value*	Results	Results	Results	Results
ANALYTES 1,1'-Biphenyl	5	5 U	5 U	5 U	5 U
2,2'-Oxybis(1-chloropropane) 2,4,5-Trichlorophenol	5	5 U	5 U	5 U	5 U
2,4,5-Trichlorophenol	1 ^(a)	5 U	5 U	5 U	5 U
2,4,6-Trichlorophenol	1 ^(a)	5 U	5 U	5 U	5 U
2,4-Dichlorophenol	5 50	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
2.4-Dinietrophenol	10	10 U	10 U	10 U	10 U
2,4-Dinitrotoluene	5	5 U	5 U	5 U	5 U
2,6-Dinitrotoluene	5	5 U	5 U	5 U	5 U
2.4.6-Trichlorophenol 2.4-Dichlorophenol 2.4-Dimethylphenol 2.4-Dimitrophenol 2.4-Dimitrotoluene 2.6-Dimitrotoluene 2-Chloronaphthalene 2-Chlorophenol	10	5 U	5 U	5 U	5 U
2-Chiorophenol 2-Methylphenol	1 ^(a)	5 U	5 U	5 U	5 U
2-Methylphenol	1 ^(a)	5 U	5 U	5 U	5 U
2-Methylnaphthalene 2-Nitroaniline	NS 5	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U
2-Nitrophenol	1 ^(a)	5 U	5 U	5 U	5 U
3,3'-Dichlorobenzidine	5	5 U	5 U	5 U	5 U
3-Nitroaniline	5	10 U	10 U	10 U	10 U
4,6-Dinitro-2-methylphenol	1 ^(a)	10 U	10 U	10 U	10 U
2-Methylphenol 2-Methylnaphthalene 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl-phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitrophenol Acenaphthene	NS	5 U	5 U	5 U	5 U
4-Chloro-3-methylphenol	1 ^(a)	5 U	5 U	5 U	5 U
4-Chloroaniline	5	5 U	5 U	5 U	5 U
4-Chlorophenyl-phenyl ether 4 Mathylphenyl	NS NS	5 U 10 U	5 U 10 U	5 U 10 U	5 U 10 U
4-Nitroaniline	5	10 U	10 U	10 U	10 U
4-Nitrophenol	1 ^(a)	10 U	10 U	10 U	10 U
Acenaphthene	20	5 U	5 U	5 U	5 U
Acenaphthylene	NS	5 U	5 U	5 U	5 U
Actophenone	NS 50	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
4-Nitrophenol Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethy) ether Bis(2-ethylhexyl)phthalate Butylbenzylphthalate Caprolactam Carbazole Chrysene Dibenz(a,h)anthracene Di-n-butylphthalate Di-n-octylphthalate	7.5	5 U	5 U	5 U	5 U
Benzaldehyde	NS	5 U	5 U	5 U	5 U
Benzo(a)anthracene	0.002	5 U	5 U	5 U	5 U
Benzo(a)pyrene	ND	5 U	5 U	5 U	5 U
Benzo(a h i)perylene	0.002 NS	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
Benzo(k)fluoranthene	0.002	5 U	5 U	5 U	5 U
Bis(2-chloroethoxy)methane	5	5 U	5 U	5 U	5 U
Bis(2-chloroethyl) ether	1	5 U	5 U	5 U	5 U
Bis(2-ethylhexyl)phthalate	5	5 U	5 U	5 U	5 U
Caprolactam	50 NS	5 U 5 U	5 U 44	5 U 5 U	5 U 5 U
Carbazole	NS	5 U	5 U	5 U	5 U
Chrysene	0.002	5 U	5 U	5 U	5 U
Dibenz(a,h)anthracene	NS	5 U	5 U	5 U	5 U
Di-n-butylphthalate	50 50	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
Dibenzofuran	NS	10 U	10 U	10 U	10 U
Dietilyi pittiaiate	50	5 U	1.9 J	5 U	5 U
Dimethylphthalate	50	5 U	5 U	5 U	5 U
Fluoranthene Fluorene	50	5 U	5 U	5 U	5 U
riuorene Hexachlorobenzene	50 0.04	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
Hexachlorobutadiene	0.5	5 U	5 U	5 U	5 U
Hexachlorocyclopentadiene	5	5 U	5 U	5 U	5 U
Hexachloroethane	5	5 U	5 U	5 U	5 U
Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno(1,2,3-cd)pyrene Isophorone	0.002 50	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
isopiorone n-Nitroso-di-n-propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol	NS NS	5 U	5 U	5 U	5 U
N-Nitrosodiphenylamine	50	5 U	5 U	5 U	5 U
Naphthalene	10	5 U	5 U	5 U	5 U
Nitrobenzene	0.4	5 U	5 U	5 U	5 U
remacmorophenoi	1 ^(a)	10 UJ	10 UJ	10 UJ	10 UJ
Phenanthrene Phenol	50 1 ^(a)	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
Pyrene	50	5 U	5 U	5 U	5 U
1,4-Dioxane	0.35 ^(b)	0.16 J	0.2 U	0.2 U	0.2 U
Note:	0.55				

- μg/L Micrograms per liter. J Estimated value.

- J+ Estimated value; biased high.
 U Compound was not detected at specified quantitation limit.
- UJ Estimated non-detect.
- * NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.
- NA Sample not analyzed for the listed analyte.
- NS No NYSDEC standard exists for this analyte.
- ND A non-detectable concentration by the approved analytical method specified in Section 700.3 of the NYCRR Water Quality Regulations.
- Values in **bold** indicate the compound was detected.
- Shading indicates result is above the corresponding Class GA Value. (a) - Criteria applicable to total phenolics.
- (b) NYSDEC screening level for 1,4-Dioxane.

Table 23
New York State Department of Environmental Conservation
Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Groundwater and Leachate for Pesticides and Polychlorinated Biphenyls

SAMPLE L	OCATION:	HFL-G	GW-PW1	HFL-M	W-001B	HFL-N	1W-002	HFL-N	1W-004	HFL-N	MW-101	HFL-MW-101B	HFL-MW-101C
LABORATORY S.	AMPLE ID:	480-119437-1	480-137103-15	480-119270-4	480-137103-1	480-119270-5	480-137103-2	480-119270-6	480-137103-3	480-119270-1	480-137103-4	480-137103-5	480-137103-6
SAMI	PLE DATE:	6/13/2017	06/06/2018	6/8/2017	06/06/2018	6/8/2017	06/07/2018	6/8/2017	06/07/2018	6/7/2017	06/06/2018	06/06/2018	06/06/2018
	UNITS:	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Class GA												
ANALYTES	Value*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
Pesticides													
4,4'-DDD	0.3	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
4,4'-DDE	0.2	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
4,4'-DDT	0.2	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Aldrin	ND	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
alpha-BHC	0.01	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
alpha-Chlordane	$0.05^{(a)}$	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
beta-BHC	0.04	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
delta-BHC	0.04	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dieldrin	0.004	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Endosulfan I	NS	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Endosulfan II	NS	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Endosulfan sulfate	NS	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Endrin	ND	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Endrin aldehyde	5	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Endrin ketone	5	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
gamma-BHC (Lindane)	0.05	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
trans-Chlordane	$0.05^{(a)}$	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.011 J	0.05 U	0.014 J	0.05 U	0.017 J	0.019 J	0.05 U
Heptachlor	0.04	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Heptachlor epoxide	0.03	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Methoxychlor	35	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Toxaphene	0.06	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PCBs													
Aroclor-1016	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Aroclor-1221	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Aroclor-1232	NS	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 UJ
Aroclor-1242	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Aroclor-1248	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Aroclor-1254	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Aroclor-1260	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PCBs, Total	0.09	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 UJ

Notes:

 $\mu g/L$ - Micrograms per liter.

J - Estimated value.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

^{* -} NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.

NS - No NYSDEC standard exists for this analyte.

ND - A non-detectable concentration by the approved analytical method specified in Section 700.3 of the NYCRR Water Quality Regulations.

PCBs - Polychlorinated Biphenyls.

Values in **bold** indicate the compound was detected.

⁽a) - Criteria for Chlordane used.

Table 23 (continued)

New York State Department of Environmental Conservation

Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Groundwater and Leachate for Pesticides and Polychlorinated Biphenyls

SAMPLE LOCATION:		HFL-N	MW-102	HFL-N	MW-103	HFL-MW-104	HFL-MW-104C	HFL-MW-105	HFL-MW-105C	HFL-MW-106	HFL-MW-106C
LABORATORY S.	AMPLE ID:	480-119270-2	480-137103-7	480-119270-3	480-137103-8	480-137103-9	480-137103-10	480-137103-11	480-137103-12	480-137103-13	480-137103-14
SAMPLE DATE		6/8/2017	06/07/2018	6/7/2017	06/06/2018	06/06/2018	06/06/2018	06/05/2018	06/05/2018	06/05/2018	06/06/2018
	UNITS:	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Class GA										
ANALYTES	Value*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
Pesticides											
4,4'-DDD	0.3	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
4,4'-DDE	0.2	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
4,4'-DDT	0.2	0.05 U	0.05 U	0.05 U	0.013 J	0.05 U					
Aldrin	ND	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
alpha-BHC	0.01	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
alpha-Chlordane	0.05(a)	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
beta-BHC	0.04	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
delta-BHC	0.04	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
Dieldrin	0.004	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
Endosulfan I	NS	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
Endosulfan II	NS	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
Endosulfan sulfate	NS	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
Endrin	ND	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
Endrin aldehyde	5	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
Endrin ketone	5	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
gamma-BHC (Lindane)	0.05	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
trans-Chlordane	0.05(a)	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
Heptachlor	0.04	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
Heptachlor epoxide	0.03	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
Methoxychlor	35	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U					
Toxaphene	0.06	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U					
PCB Aroclors											
Aroclor-1016	NS	0.5 U	0.5 U	2.5 U	0.5 U	0.5 U					
Aroclor-1221	NS	0.5 U	0.5 U	2.5 U	0.5 UJ	0.5 U					
Aroclor-1232	NS	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	2.5 UJ	0.5 U	0.5 UJ
Aroclor-1242	NS	0.5 U	0.5 U	2.5 U	0.5 U	0.5 U					
Aroclor-1248	NS	0.5 U	0.5 U	2.5 U	0.5 U	0.5 U					
Aroclor-1254	NS	0.5 U	0.5 U	2.5 U	0.5 UJ	0.5 U					
Aroclor-1260	NS	0.5 U	0.5 U	2.5 U	0.5 U	0.5 U					
PCBs, Total	0.09	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	2.5 UJ	0.5 UJ	0.5 UJ

Notes:

 μ g/L - Micrograms per liter.

J - Estimated value.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

^{* -} NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.

NS - No NYSDEC standard exists for this analyte.

ND - A non-detectable concentration by the approved analytical method specified in Section 700.3 of the NYCRR Water Quality Regulations.

PCBs - Polychlorinated Biphenyls.

Values in **bold** indicate the compound was detected.

⁽a) - Criteria for Chlordane used.

Table 24
New York State Department of Environmental Conservation
Hoosick Falls Landfill - Hoosick Falls, NY
Summary of Results of Analysis of Groundwater and Leachate for Metals

SAMPLE L	OCATION:	HFL-G	W-PW1	HFL-M	W-001B	HFL-N	/W-002	HFL-N	MW-004	HFL-N	MW-101	HFL-MW-101B	HFL-MW-101C
LABORATORY SA	AMPLE ID:	480-119437-1	480-137103-15	480-119270-4	480-137103-1	480-119270-5	480-137103-2	480-119270-6	480-137103-3	480-119270-1	480-137103-4	480-137103-5	480-137103-6
SAMI	PLE DATE:	6/13/2017	06/06/2018	6/8/2017	06/06/2018	6/8/2017	06/07/2018	6/8/2017	06/07/2018	6/7/2017	06/06/2018	06/06/2018	06/06/2018
	UNITS:	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Class GA												
ANALYTES	Value*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
Aluminum	NS	200 U	200 U	200 U	200 U	950	200 U	650	78 J	150 J	200 U	3,700	11,400
Antimony	3	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Arsenic	25	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	8.6 J	43	7.7 J	8.5 J
Barium	1,000	85	630	47	39	370	330	350	230	560	760	60	170
Beryllium	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	0.54 J
Cadmium	5	2 U	2 U	2 U	2 U	2 U	2 U	0.55 J	2 U	2 U	2 U	2 U	2 U
Calcium	NS	27,400	75,900	100,000	86,900	124,000	129,000	148,000	153,000	105,000	123,000	48,300	80,800
Chromium	50	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	6.3	26
Cobalt	NS	4 U	4 U	4 U	4 U	4 U	4 U	2.5 J	4 U	4 U	0.85 J	2.7 J	12
Copper	200	2.3 J	10 U	10 U	10 U	10 U	10 U	2.7 J	10 U	10 U	10 U	7.7 J	43
Iron	300	170	35,200	92	30 J	1,700	2,000	2,500	1,700	4,100	11,100	4,800	18,400
Lead	25	10 U	10 U	3 J	10 U	5.2 J	17						
Magnesium	35,000	2,900	13,600	30,100	24,300	35,600	35,700	51,500	51,300	34,400	36,400	15,000	18,800
Manganese	300	5.7	830	5.8	7.5	600	690	10,200	3,200	1,300	1,500	1,700	1,700
Mercury	0.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Nickel	100	1.4 J	1.3 J	10 U	10 U	2 J	10 U	3.2 J	10 U	1.5 J	10 U	4.7 J	20
Potassium	NS	2,200	4,800	780 J+	590	2,000 J+	1,300	2,300	1,900	4,600	3,300	2,400	5,500
Selenium	10	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
Silver	50	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Sodium	20,000	7,800	49,900	8,800	7,700	30,500	29,800	23,400	25,700	14,200	14,700	15,400	16,800
Thallium	0.5	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Vanadium	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.7	19
Zinc	2,000	10 U	2.8 J	2.6 J	1.7 J	4.6 J	10 U	11	2.8 J	2.5 J	10 U	15	67

Notes:

 $\mu g/L$ - Micrograms per liter.

J - Estimated value.

J+ - Estimated value; biased high.

U - Compound was not detected at specified quantitation limit.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.

NS - No NYSDEC standard exists for this analyte.

Values in **bold** indicate the compound was detected.

Shading indicates result exceeds guidance value.

Table 24 (continued)

New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Groundwater and Leachate for Metals

SAMPLE L	OCATION:	HFL-N	/W-102	HFL-N	MW-103	HFL-MW-104	HFL-MW-104C	HFL-MW-105	HFL-MW-105C	HFL-MW-106	HFL-MW-106C
LABORATORY SA		480-119270-2	480-137103-7	480-119270-3	480-137103-8	480-137103-9	480-137103-10	480-137103-11	480-137103-12	480-137103-13	480-137103-14
	PLE DATE:	6/8/2017	06/07/2018	6/7/2017	06/06/2018	06/06/2018	06/06/2018	06/05/2018	06/05/2018	06/05/2018	06/06/2018
	UNITS:	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Class GA	1.0	, 0	, 0	, 0			10		10	
ANALYTES	Value*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
Aluminum	NS	2,400	7,300	280	860	470	200 U	200 U	12,500	230	200 U
Antimony	3	20 U	20 U	20 U	20 U	20 U					
Arsenic	25	15 U	15 U	14 J	15 U	15 U					
Barium	1,000	140	240	42	48	99	39	40	410	22	200
Beryllium	3	2 U	0.56 J	2 U	2 U	2 U	2 U	2 U	0.97 J	2 U	2 U
Cadmium	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	0.52 J	2 U	2 U
Calcium	NS	106,000	73,800	63,000	97,600	105,000	83,000	76,700	70,100	24,100	43,000
Chromium	50	2.2 J	8.9	4 U	4 U	4 U	4 U	4 U	69	2.2 J	4 U
Cobalt	NS	0.84 J	5.2	4 U	4 U	4 U	4 U	4 U	22	4 U	4 U
Copper	200	3.4 J	18	10 U	10 U	10 U	10 U	10 U	96	10 U	10 U
Iron	300	2,700	10,200	300	1,100	560	560	19 J	30,500	400	740
Lead	25	3 J	9 J	10 U	10 U	10 U	10 U	10 U	34	10 U	10 U
Magnesium	35,000	23,200	19,000	18,300	26,700	27,800	30,500	16,000	37,500	5,400	22,700
Manganese	300	590	770	67	42	240	1,300	7.1	1,500	54	170
Mercury	0.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U					
Nickel	100	3.2 J	10	10 U	10 U	10 U	10 U	10 U	37	10 U	10 U
Potassium	NS	4,000	4,800	880 J+	1,100	910	1,400	1,200	19,800	800	2,300
Selenium	10	25 U	25 U	25 U	25 U	25 U					
Silver	50	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Sodium	20,000	27,000	21,900	76,000	85,800	18,300	19,800	18,700	98,700	10,600	24,800
Thallium	0.5	20 U	20 U	20 U	20 U	20 U					
Vanadium	NS	2.6 J	10	5 U	5 U	5 U	5 U	5 U	18	5 U	5 U
Zinc	2,000	11	34	2.5 J	4.3 J	3.2 J	1.6 J	10 U	170	1.7 J	10 U

Notes:

 μ g/L - Micrograms per liter.

- J Estimated value.
- J+ Estimated value; biased high.
- U Compound was not detected at specified quantitation limit.
- $\ensuremath{^*}$ NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water.

NS - No NYSDEC standard exists for this analyte.

Values in **bold** indicate the compound was detected.

Shading indicates result exceeds guidance value.

Table 25 New York State Department of Environmental Conservation Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Groundwater and Leachate for Per- and Polyfluoroalkyl Substances

SAMPLE LOCATION:	HFL-G	W-PW1	HFL-M	W-001B	HFL-N	MW-002	HFL-N	MW-004	HFL-N	MW-101	HFL-MW-101B	HFL-MW-101C
LABORATORY SAMPLE ID:	480-119437-1	480-137103-15	480-119270-4	480-137103-1	480-119270-5	480-137103-2	480-119270-6	480-137103-3	480-119270-1	480-137103-4	480-137103-5	480-137103-6
SAMPLE DATE:	6/13/2017	06/06/2018	6/8/2017	06/06/2018	6/8/2017	06/07/2018	6/8/2017	06/07/2018	6/7/2017	06/06/2018	06/06/2018	06/06/2018
UNITS:	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
ANALYTES	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
Perfluorobutanoic acid (PFBA)	2.3	7.6	7.1	3.3	71	58	11	9.5	8	6.7	2.1 U	1.9 U
Perfluoropentanoic acid (PFPeA)	4.5	8.6	8	2.1	99	88	8.8	7.7	6.8	5.2	2.1 U	1.9 U
Perfluorohexanoic acid (PFHxA)	1.2 J	30	18	6.5	610	520	28	26	37	27	2.2 UJ	1.9 U
Perfluoroheptanoic acid (PFHpA)	1.8 J	27	21	6.6	450	500	40	36	55	45	1.3 J	0.54 J
Perfluorononanoic acid (PFNA)	1.9 U	3.7	1.8 U	1.9 U	3.3	20 U	6.6	11	4.1	2.6	2.1 U	1.9 U
Perfluorodecanoic acid (PFDA)	1.9 U	0.53 J	1.8 U	1.9 U	1.9 U	20 U	1.9 U	2.1 U	1.9 U	1.9 U	2.1 U	1.9 U
Perfluoroundecanoic acid (PFUnA)	1.9 U	2 U	1.8 U	1.9 U	1.9 U	20 U	1.9 U	2.1 U	1.9 U	1.9 U	2.1 U	1.9 U
Perfluorododecanoic acid (PFDoA)	1.9 U	2 U	1.8 U	1.9 U	1.9 U	20 U	1.9 U	2.1 U	1.9 U	1.9 U	2.1 U	1.9 U
Perfluorotridecanoic acid (PFTriA)	1.9 U	2 U	1.8 U	1.9 U	1.9 U	20 U	1.9 U	2.1 U	1.9 U	1.9 U	2.1 U	1.9 U
Perfluorotetradecanoic acid (PFTeA)	1.9 U	2 U	1.8 U	1.9 U	1.9 U	20 U	1.9 U	2.1 U	1.9 U	1.9 U	2.1 U	1.9 U
Perfluorobutanesulfonic acid (PFBS)	1.9 U	2.4	1.1 J	0.52 J	7.3	6.6 J	1.8 J	1.6 J	2.1	1.9	2.1 U	1.9 U
Perfluorohexanesulfonic acid (PFHxS)	1.9 U	2.7	2.3	1.9 U	5.6	20 U	3.3	3.2	4.9	3.8	2.1 U	1.9 U
Perfluoroheptanesulfonic acid (PFHpS)	1.9 U	2 U	1.8 U	1.9 U	1.9 U	20 U	1.9 U	0.39 J	1 J	0.77 J	2.1 U	1.9 U
Perfluorooctanesulfonic acid (PFOS)	2.2	10	1.2 J	0.71 J	1.9 U	20 U	6.7	9.9 J	46	34	2.1 U	1.9 U
Perfluorodecanesulfonic acid (PFDS)	1.9 U	2 U	1.8 U	1.9 U	1.9 U	20 U	1.9 U	2.1 U	1.9 U	1.9 U	2.1 U	1.9 U
Perfluorooctane Sulfonamide (FOSA)	1.9 UJ	2 U	1.8 UJ	1.9 U	1.9 UJ	20 U	1.9 UJ	2.1 U	1.9 UJ	1.9 U	2.1 U	1.9 U
Perfluorooctanoic acid (PFOA)	43	1,300	550	310	24,000	25,000	1,900	2,200	5,300	4,400	28	10
6:2 Perfluorooctane Sulfonate (6:2 FTS)	NA	20 U	NA	19 U	NA	200 U	NA	21 U	NA	3.5 J	21 U	19 U
8:2 Perfluorodecane Sulfonate (8:2 FTS)	NA	20 U	NA	19 U	NA	200 U	NA	21 U	NA	19 U	21 U	19 U
N-Ethyl-N-((heptadecafluorooctyl)sulphonyl) glycine (N-	NA	20 U	NA	19 U	NA	200 U	NA	21 11	NA	19 U	21 U	19 U
EtFOSAA)	NA	20 U	NA	19 U	I NA	200 U	NA NA	21 U	I NA	19 0	21 0	19 0
2-(N-methyl perfluorooctanesulfonamido) acetic acid (N- MeFOSAA)	NA	20 U	NA	19 U	NA	200 U	NA	21 U	NA	19 U	21 U	19 U

Notes:

ng/L - Nanograms per liter.

- J Estimated value.
- U Compound was not detected at specified quantitation limit.
- UJ Estimated non-detect

For reference only: The USEPA has set a Health Advisory Level of 70 ng/L for PFOA and PFOS in drinking water (individual or combined concentrations).

NA - Sample not analyzed for the listed analyte.

Values in **bold** indicate the compound was detected.

Table 25 (continued)

New York State Department of Environmental Conservation

Hoosick Falls Landfill - Hoosick Falls, NY

Summary of Results of Analysis of Groundwater and Leachate for Per- and Polyfluoroalkyl Substances

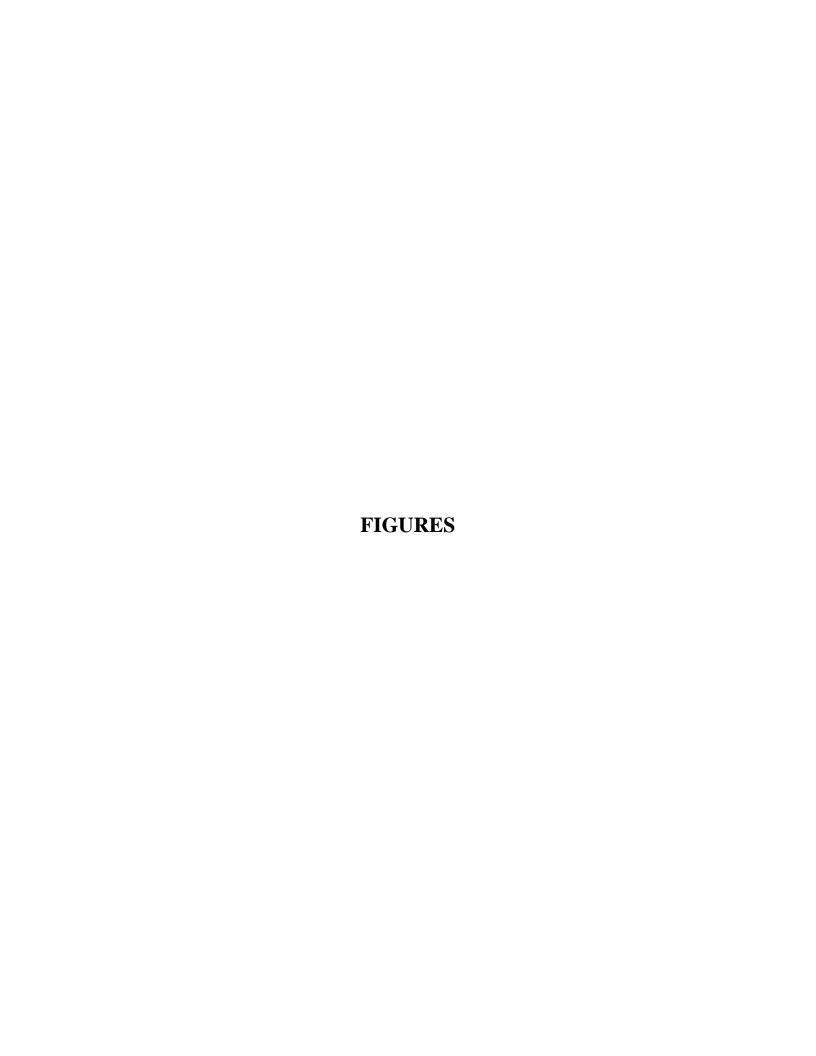
SAMPLE LOCATION:	HFL-N	MW-102	HFL-N	MW-103	HFL-MW-104	HFL-MW-104C	HFL-MW-105	HFL-MW-105C	HFL-MW-106	HFL-MW-106C
LABORATORY SAMPLE ID:	480-119270-2	480-137103-7	480-119270-3	480-137103-8	480-137103-9	480-137103-10	480-137103-11	480-137103-12	480-137103-13	480-137103-14
SAMPLE DATE:	6/8/2017	06/07/2018	6/7/2017	06/06/2018	06/06/2018	06/06/2018	06/05/2018	06/05/2018	06/05/2018	06/06/2018
UNITS:	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
ANALYTES	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
Perfluorobutanoic acid (PFBA)	3	3.3	4.3	4.8	7.3	2.1 U	3.1	1.9 U	2 U	1.9 U
Perfluoropentanoic acid (PFPeA)	1.9 U	3.2	4.1	4.9	7.8	2.1 U	3.1	1.9 U	0.54 J	1.9 U
Perfluorohexanoic acid (PFHxA)	2.1	28	11	14	20	2.1 U	15	1.9 U	7.4	1.9 U
Perfluoroheptanoic acid (PFHpA)	2.3	38	17	22	24	2.1 U	25	1.9 U	25	1.9 U
Perfluorononanoic acid (PFNA)	1.9 U	1.9 U	3.8	4.2	1.9 U	2.1 U	0.66 J	1.9 U	0.44 J	1.9 U
Perfluorodecanoic acid (PFDA)	1.9 U	1.9 U	1.8 U	2 U	1.9 U	2.1 U	1.9 U	1.9 U	2 U	1.9 U
Perfluoroundecanoic acid (PFUnA)	1.9 U	1.9 U	1.8 U	2 U	1.9 U	2.1 U	1.9 U	1.9 U	2 U	1.9 U
Perfluorododecanoic acid (PFDoA)	1.9 U	1.9 U	1.8 U	2 U	1.9 U	2.1 U	1.9 U	1.9 U	2 U	1.9 U
Perfluorotridecanoic acid (PFTriA)	1.9 U	1.9 U	1.8 U	2 U	1.9 U	2.1 U	1.9 U	1.9 U	2 U	1.9 U
Perfluorotetradecanoic acid (PFTeA)	1.9 U	1.9 U	1.8 U	2 U	1.9 U	2.1 U	1.9 U	1.9 U	2 U	1.9 U
Perfluorobutanesulfonic acid (PFBS)	1.9 U	0.24 J	1 J	0.48 J	0.78 J	2.1 U	0.8 J	1.9 U	0.51 J	1.9 U
Perfluorohexanesulfonic acid (PFHxS)	1.9 U	1.9 U	0.87 J	2 U	1.9 U	2.1 U	1.9 U	1.9 U	2 U	1.9 U
Perfluoroheptanesulfonic acid (PFHpS)	1.9 U	1.9 U	1.8 U	2 U	1.9 U	2.1 U	1.9 U	1.9 U	2 U	1.9 U
Perfluorooctanesulfonic acid (PFOS)	2.1	0.88 J	11	8.5 J	1.2 J	2.1 U	2.5 J	1.9 U	1.1 J	1.9 U
Perfluorodecanesulfonic acid (PFDS)	1.9 U	1.9 U	1.8 U	2 U	1.9 U	2.1 U	1.9 U	1.9 U	2 U	1.9 U
Perfluorooctane Sulfonamide (FOSA)	1.9 UJ	1.9 U	1.8 UJ	2 U	1.9 U	2.1 U	1.9 U	1.9 U	2 U	1.9 U
Perfluorooctanoic acid (PFOA)	94	1,800	570	650	590	5.3	930	2.5	850	1.9 U
6:2 Perfluorooctane Sulfonate (6:2 FTS)	NA	2.7 J	NA	20 U	19 U	12 J	19 U	3.5 J	20 U	65
8:2 Perfluorodecane Sulfonate (8:2 FTS)	NA	19 U	NA	20 U	19 U	21 U	19 U	19 U	20 U	19 U
N-Ethyl-N-((heptadecafluorooctyl)sulphonyl) glycine (N-EtFOSAA)	NA	19 U	NA	20 U	19 U	21 U	19 U	19 U	20 U	19 U
2-(N-methyl perfluorooctanesulfonamido) acetic acid (N- MeFOSAA)	NA	19 U	NA	20 U	19 U	21 U	19 U	19 U	20 U	19 U

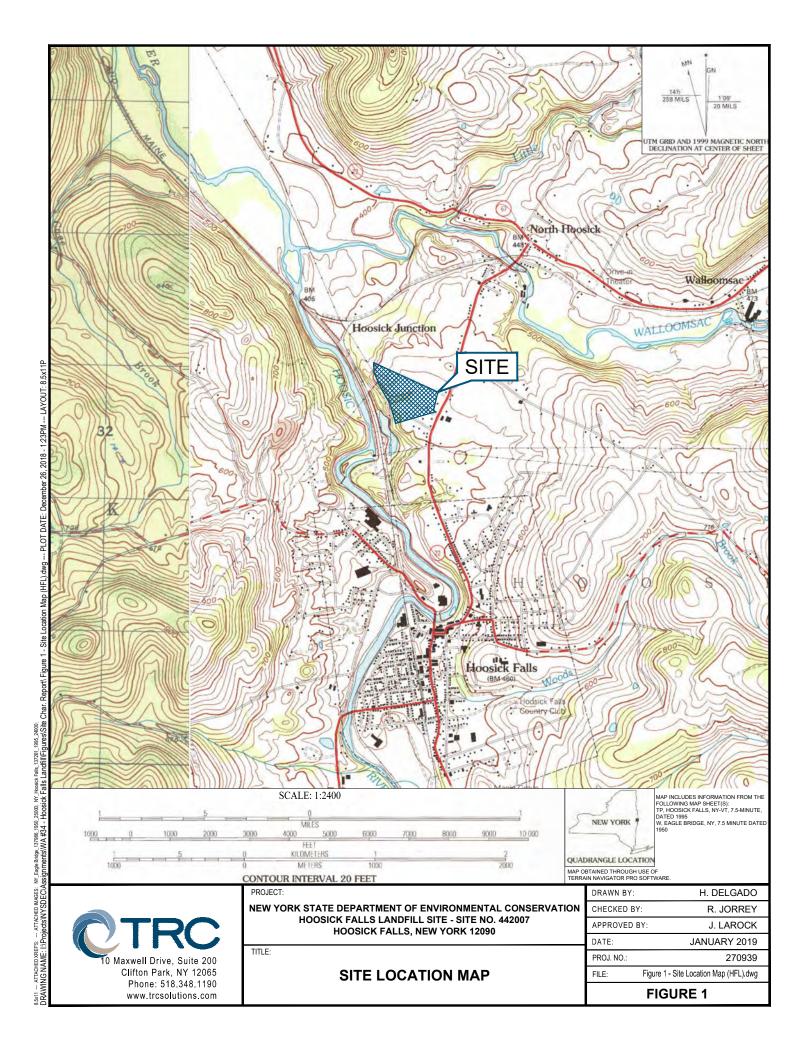
Notes:

ng/L - Nanograms per liter.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.


For reference only: The USEPA has set a Health Advisory Level of 70 ng/L for PFOA and PFOS in drinking water (individual or combined concentrations).

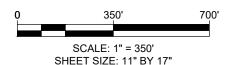

NA - Sample not analyzed for the listed analyte.

Values in **bold** indicate the compound was detected.

J - Estimated value.

HFL-MH-001

MANHOLE LOCATION AND IDENTIFICATION NUMBER


PRE-EXISTING OVERBURDEN MONITORING WELL LOCATION AND IDENTIFICATION NUMBER (INSTALLED 1990 AND 1991)

LEACHATE COLLECTION VAULT

NOTES:

- 1. BASE MAP IMAGERY SOURCED FROM ESRI 2017.
- 2. APPROXIMATE LANDFILL BOUNDARY INFORMATION FROM PREVIOUS REPORTS.
- POINT LOCATION INFORMATION BASED ON SURVEY COMPLETED BY C.T. MALE ASSOCIATES ON SEPTEMBER 1, 2017.
- LOCATIONS AND DIMENSIONS OF PHYSICAL FEATURES AND BOUNDARIES ARE APPROXIMATE.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION HOOSICK FALLS LANDFILL SITE - SITE NO. 442007 HOOSICK FALLS, NEW YORK 12090

PROJECT LIMITS AND PRE-EXISTING SITE FEATURES

DRAWN BY:	H. DELGADO
CHECKED BY:	R. JORREY
APPROVED BY:	J. LAROCK
DATE:	JANUARY 2019

PROJ NO.:

FIGURE 2

CTRC

10 Maxwell Drive, Suite 200 Clifton Park, NY 12065 Phone: 518.348.1190

270939

Figure 2 - Proj. Limits and Pre-Exist. Site Feat..dwg

HFL-MH-001

MANHOLE LOCATION AND IDENTIFICATION NUMBER

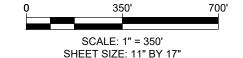
PRE-EXISTING OVERBURDEN MONITORING WELL LOCATION AND IDENTIFICATION NUMBER (INSTALLED 1990 AND 1991)

OVERBURDEN GROUNDWATER MONITORING WELL LOCATION AND **IDENTIFICATION NUMBER** (INSTALLED MAY 2017)

OVERBURDEN GROUNDWATER MONITORING WELL LOCATION AND IDENTIFICATION NUMBER (INSTALLED MARCH AND APRIL 2018)

BEDROCK GROUNDWATER MONITORING WELL LOCATION AND IDENTIFICATION NUMBER (INSTALLED MARCH AND APRIL

SURFACE SOIL SAMPLE LOCATION AND IDENTIFICATION NUMBER (COLLECTED JUNE 2017 AND APRIL 2018)


SURFACE WATER / SEDIMENT SAMPLE LOCATION AND IDENTIFICATION NUMBER (COLLECTED JUNE 2017 AND JUNE 2018)

LEACHATE COLLECTION VAULT

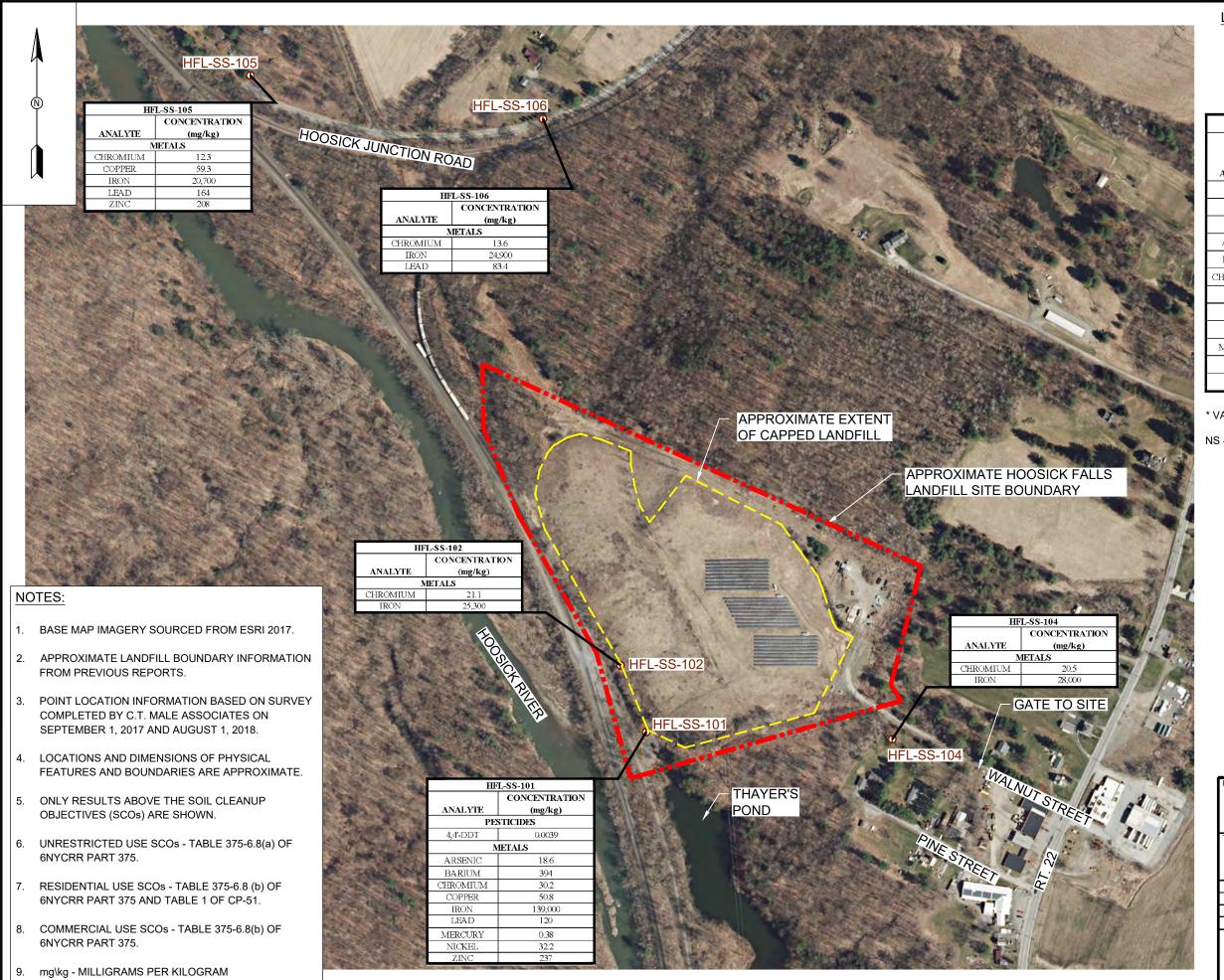
NOTES:

- 1. BASE MAP IMAGERY SOURCED FROM ESRI 2017.
- 2. APPROXIMATE LANDFILL BOUNDARY INFORMATION FROM PREVIOUS REPORTS.
- 3. POINT LOCATION INFORMATION BASED ON SURVEY COMPLETED BY C.T. MALE ASSOCIATES ON SEPTEMBER 1, 2017 AND AUGUST 1, 2018.
- 4. LOCATIONS AND DIMENSIONS OF PHYSICAL FEATURES AND BOUNDARIES ARE APPROXIMATE.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION HOOSICK FALLS LANDFILL SITE - SITE NO. 442007 HOOSICK FALLS, NEW YORK 12090

SAMPLING LOCATION PLAN

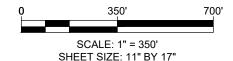
DRAWN BY:	H. DELGADO	PROJ NO.:
CHECKED BY:	R. JORREY	
APPROVED BY:	J. LAROCK	
DATE:	JANUARY 2019	


FIGURE 3

Clifton Park, NY 12065 Phone: 518.348.1190

270939

Figure 3 - Sampling Location Plan.dwg



SURFACE SOIL SAMPLE LOCATION AND IDENTIFICATION NUMBER (COLLECTED JUNE 2017 AND APRIL 2018)

NY	NYSDEC SOIL CLEANUP OBJECTIVES (SCOs)									
ANALYTE	UNRESTRICTED USE SCO (mg/kg)	RESIDENTIAL USE SCO (mg/kg)	COMMERCIAL USE SCO (mg/kg)							
	PESTI	CIDES								
4,4'-DDT	0.0033	1.7	47							
	MEI	ALS								
ARSENIC	13	16	16							
BARIUM	350	350	400							
CHROMIUM*	1	22	400							
COPPER	50	270	270							
IRON	NS	2,000	NS							
LEAD	63	400	1,000							
MERCURY	0.18	0.81	2.8							
NICKEL	30	140	310							
ZINC	109	2,200	10,000							

* VALUES ARE FOR HEXAVALENT CHROMIUM

NS - NO NYSDEC STANDARDS EXIST FOR THIS ANALYTE

PROJECT:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION HOOSICK FALLS LANDFILL SITE - SITE NO. 442007 HOOSICK FALLS, NEW YORK 12090

TITLE:

SELECT SURFACE SOIL ANALYTICAL RESULTS

DRAWN BY:	H. DELGADO	Р
CHECKED BY:	R. JORREY	
APPROVED BY:	J. LAROCK	
		1

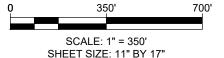


FIGURE 4

10 Maxwell Drive, Suite 200 Clifton Park, NY 12065 Phone: 518.348.1190 www.trcsolutions.com

NO.: Figure 4 - Select Surf. Soil Anal. Res..dwg

HFL-MH-001


MANHOLE LOCATION AND IDENTIFICATION NUMBER

SURFACE WATER SAMPLE LOCATION AND IDENTIFICATION NUMBER (COLLECTED JUNE 2017 AND JUNE 2018)

NOTES:

- 1. BASE MAP IMAGERY SOURCED FROM ESRI 2017.
- 2. APPROXIMATE LANDFILL BOUNDARY INFORMATION FROM PREVIOUS REPORTS.
- POINT LOCATION INFORMATION BASED ON SURVEY COMPLETED BY C.T. MALE ASSOCIATES ON SEPTEMBER 1, 2017 AND AUGUST 1, 2018.
- LOCATIONS AND DIMENSIONS OF PHYSICAL FEATURES AND BOUNDARIES ARE APPROXIMATE.
- 5. ONLY RESULTS ABOVE THE NYSDEC AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES FOR CLASS C WATER ARE SHOWN. THE MOST STRINGENT GUIDANCE VALUES FOR CLASS C WATER WERE USED FOR COMPARISON.
- 6. μg\L MICROGRAMS PER LITER
- SURFACE WATER SAMPLE HFL-MH-WS
 COLLECTED FROM WITHIN MANHOLE HFL-MH-001.

PROJECT:

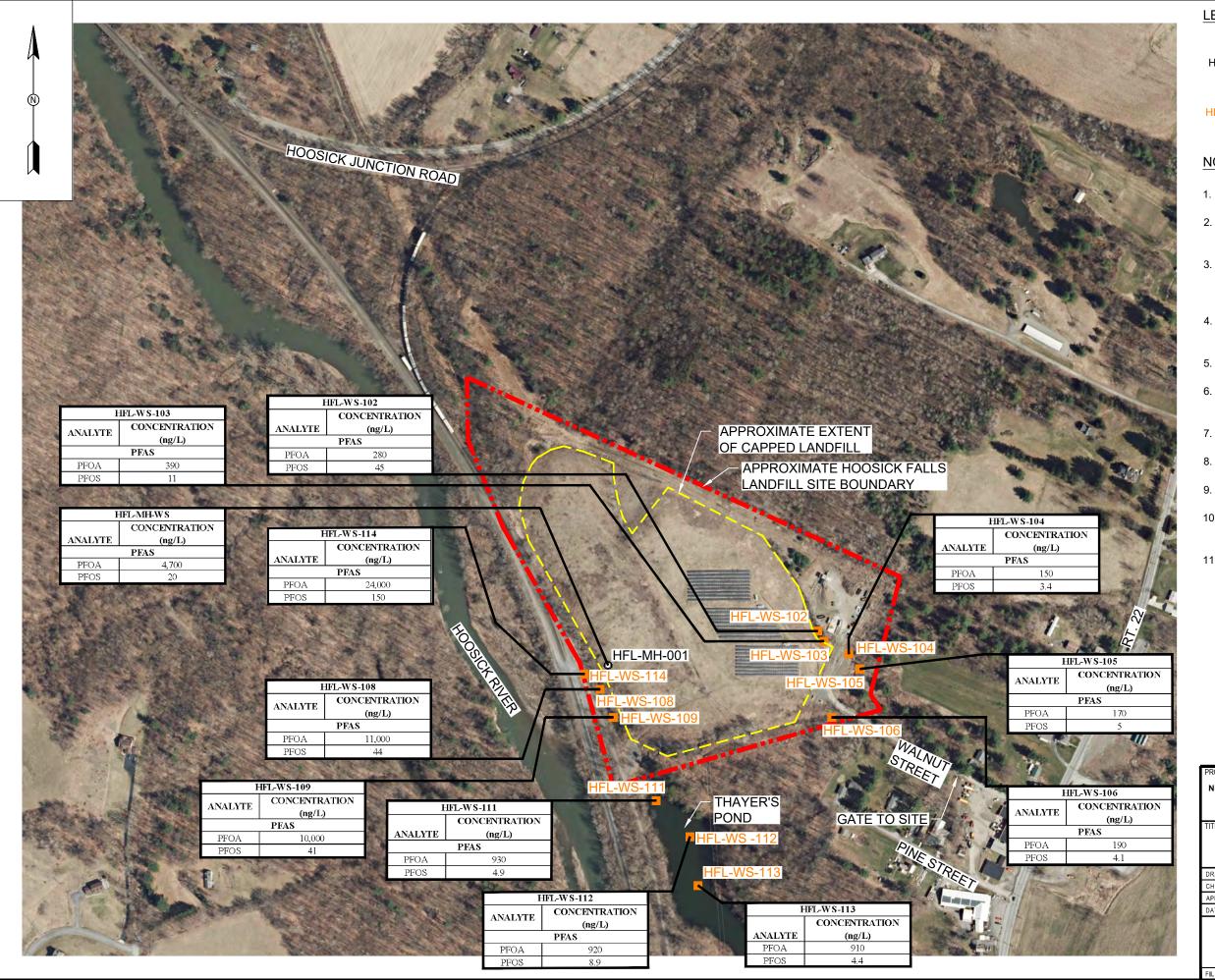
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION HOOSICK FALLS LANDFILL SITE - SITE NO. 442007 HOOSICK FALLS, NEW YORK 12090

TITLE

SELECT SURFACE WATER ANALYTICAL RESULTS FOR METALS

PROJ NO.:

DRAWN BT:	H. DELGADO
CHECKED BY:	R. JORREY
APPROVED BY:	J. LAROCK
DATE:	JANUARY 2019


FIGURE 5

CTRC

Maxwell Drive, Suite 200 Clifton Park, NY 12065 Phone: 518.348.1190 www.trcsolutions.com

270939

Figure 5 - Select Surf. Water and Sed. Anal. Res. for Metals.dwg

O HFL-MH-001 MANHOLE LOCATION AND IDENTIFICATION NUMBER

SURFACE WATER SAMPLE LOCATION
AND IDENTIFICATION NUMBER
(COLLECTED JUNE 2017 AND JUNE 2018)

NOTES:

- 1. BASE MAP IMAGERY SOURCED FROM ESRI 2017.
- APPROXIMATE LANDFILL BOUNDARY INFORMATION FROM PREVIOUS REPORTS.
- POINT LOCATION INFORMATION BASED ON SURVEY COMPLETED BY C.T. MALE ASSOCIATES ON SEPTEMBER 1, 2017 AND AUGUST 1, 2018.
- LOCATIONS AND DIMENSIONS OF PHYSICAL FEATURES AND BOUNDARIES ARE APPROXIMATE.
- 5. ONLY PFOA AND PFOS RESULTS ARE SHOWN.
- 6. PFAS PER- AND POLYFLUOROALKYL SUBSTANCES
- 7. PFOA PERFLUOROOCTANOIC ACID
- 8. PFOS PERFLUOROOCTANESULFONIC ACID
- 9. ng\L NANOGRAMS PER LITER
- 10. SURFACE WATER SAMPLE HFL-MH-WS COLLECTED FROM WITHIN MANHOLE HFL-MH-001.
- 11. FOR REFERENCE ONLY, THE USEPA HAS SET A HEALTH ADVISORY LEVEL OF 70 ng/L FOR PFOA AND PFOS IN DRINKING WATER (INDIVIDUAL OR COMBINED CONCENTRATIONS).

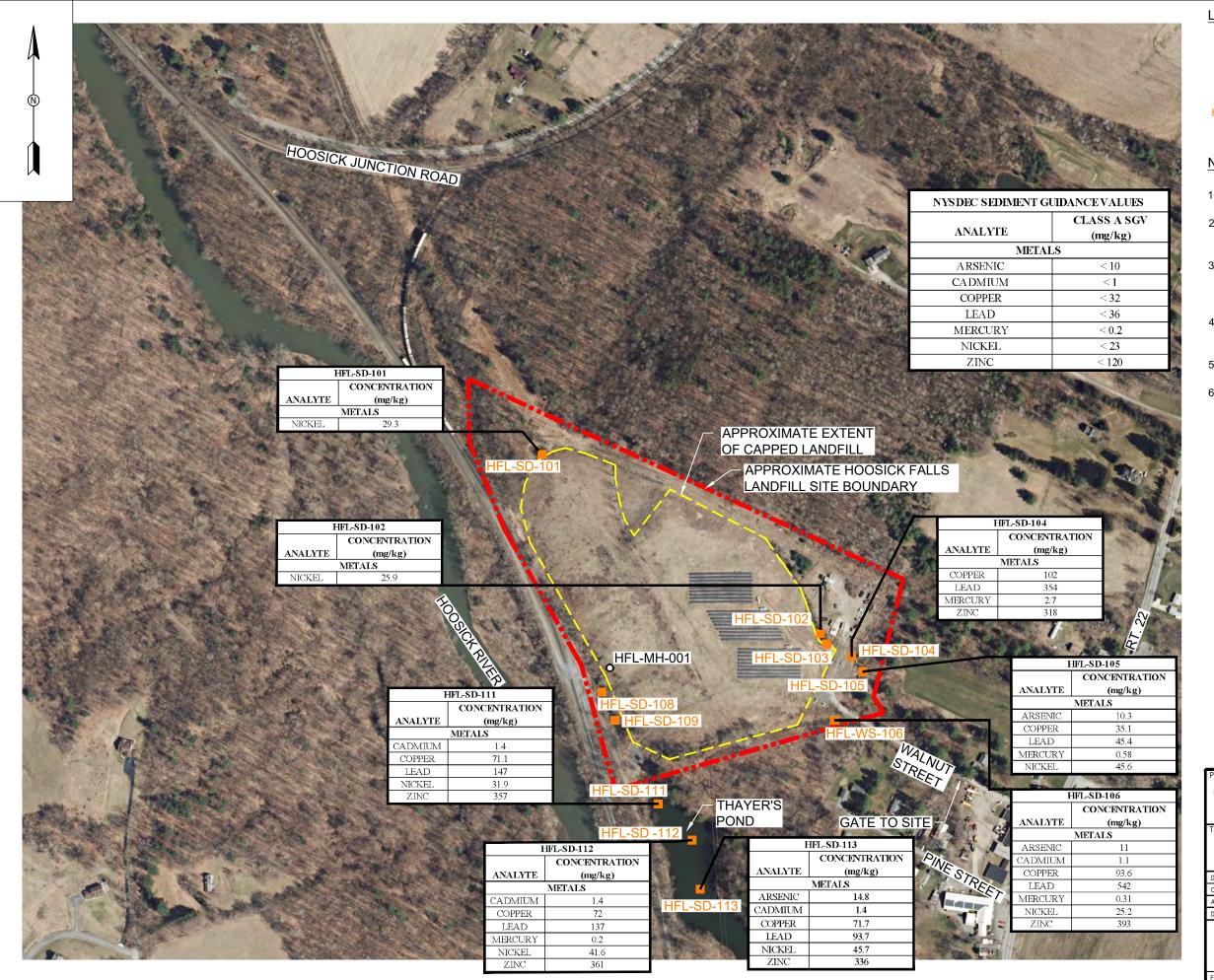
PROJECT:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION HOOSICK FALLS LANDFILL SITE - SITE NO. 442007 HOOSICK FALLS, NEW YORK 12090

IIILL.

SELECT SURFACE WATER
ANALYTICAL RESULTS FOR PFAS

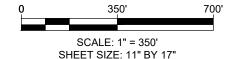
APPROVED BY:	J. LAROCK	F
CHECKED BY:	R. JORREY	
DRAWN BY:	H. DELGADO	PROJ NO.:


FIGURE 6

Maxwell Drive, Suite 200 Clifton Park, NY 12065 Phone: 518.348.1190 www.trcsolutions.com

270939

ILE NO.: Figure 6 - Select Surf. Water and Sed. Anal. Res. for PFAS.dwg


O HFL-MH-001 MANHOLE LOCATION AND IDENTIFICATION NUMBER

SEDIMENT SAMPLE LOCATION AND IDENTIFICATION NUMBER (COLLECTED JUNE 2017 AND JUNE 2018)

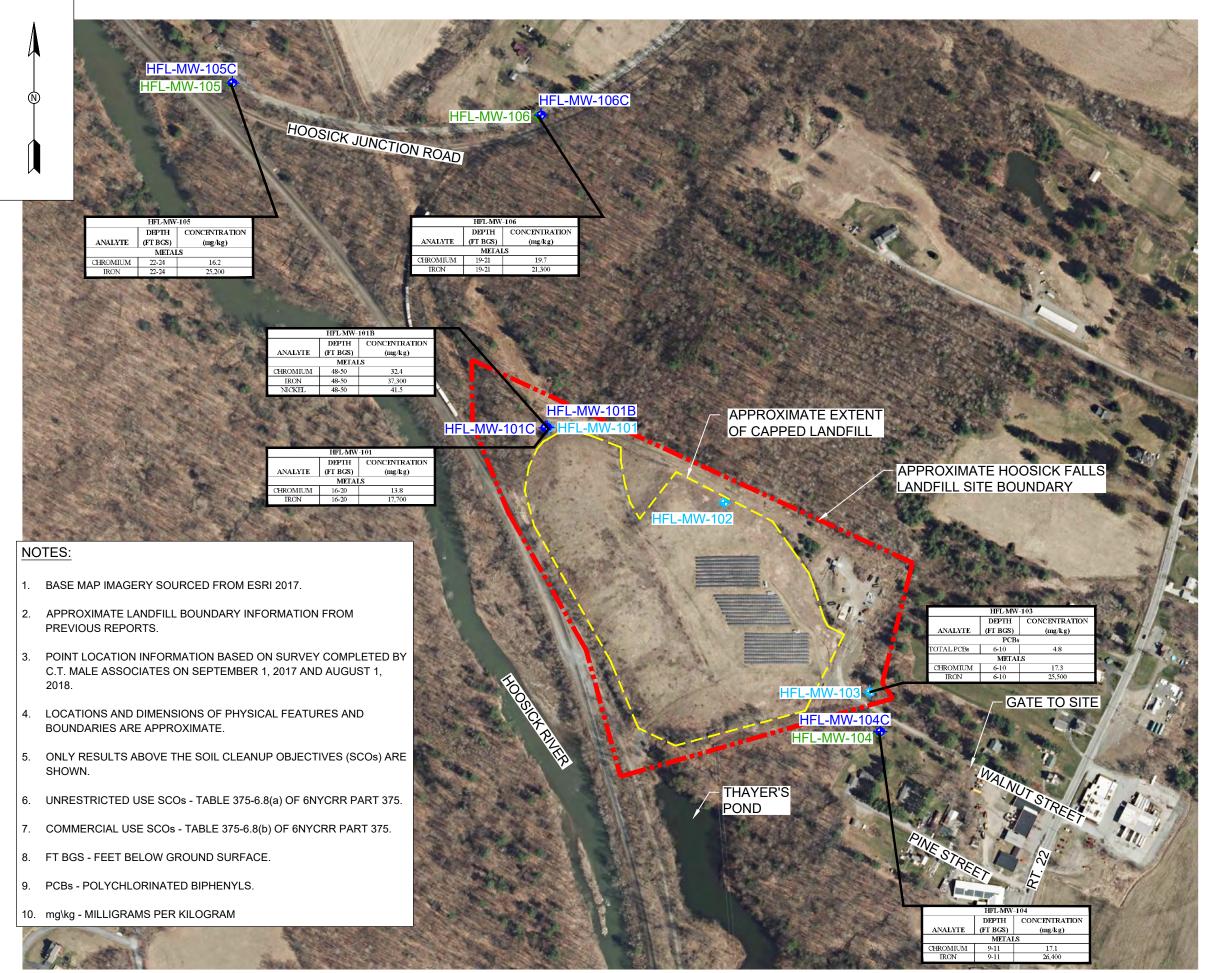
NOTES:

- 1. BASE MAP IMAGERY SOURCED FROM ESRI 2017.
- APPROXIMATE LANDFILL BOUNDARY
 INFORMATION FROM PREVIOUS REPORTS.
- POINT LOCATION INFORMATION BASED ON SURVEY COMPLETED BY C.T. MALE ASSOCIATES ON SEPTEMBER 1, 2017 AND AUGUST 1, 2018.
- 4. LOCATIONS AND DIMENSIONS OF PHYSICAL FEATURES AND BOUNDARIES ARE APPROXIMATE.
- 5. mg\kg MILLIGRAMS PER KILOGRAMS
- 6. THE RESULTS FOR THE MANHOLE SEDIMENT SAMPLE (HFL-MH-SD) HAVE NOT BEEN COMPARED TO THE SEDIMENT GUIDANCE VALUES AS THE SEDIMENT SAMPLE LOCATION IS WITHIN A MANHOLE AND IS NOT READILY ACCESSIBLE TO FISH AND WILDLIFE.

PROJECT:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION HOOSICK FALLS LANDFILL SITE - SITE NO. 442007 HOOSICK FALLS, NEW YORK 12090

TITLE


SELECT SEDIMENT ANALYTICAL RESULTS

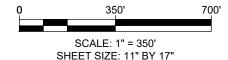
DRAWN BY:	H. DELGADO	PROJ NO.: 270939
CHECKED BY:	R. JORREY	
APPROVED BY:	J. LAROCK	FIGURE 7

0 Maxwell Drive, Suite 200 Clifton Park, NY 12065 Phone: 518.348.1190 www.trcsolutions.com

No.: Figure 7 - Select Sediment Anal. Res..dwg

OVERBURDEN GROUNDWATER
MONITORING WELL LOCATION AND
IDENTIFICATION NUMBER
(INSTALLED MAY 2017)

OVERBURDEN GROUNDWATER
MONITORING WELL LOCATION AND
IDENTIFICATION NUMBER
(INSTALLED MARCH AND APRIL 2018)



BEDROCK GROUNDWATER MONITORING WELL LOCATION AND IDENTIFICATION NUMBER (INSTALLED MARCH AND APRIL 2018)

NYSDEC SOIL CLEANUP OBJECTIVES (SCOs)												
	UNRESTRICTED	RESIDENTIAL	COMMERCIAL									
	USESCO	USESCO	USESCO									
ANALYTE	(mg/kg)	(mg/kg)	(mg/kg)									
PCBs												
TOTAL PCBs	0.1	1	1									
	МЕТ	ALS										
CHROMIUM*	1	22	400									
IRON	NS	2,000	NS									
NICKEL	30	140	310									

* VALUES ARE FOR HEXAVALENT CHROMIUM

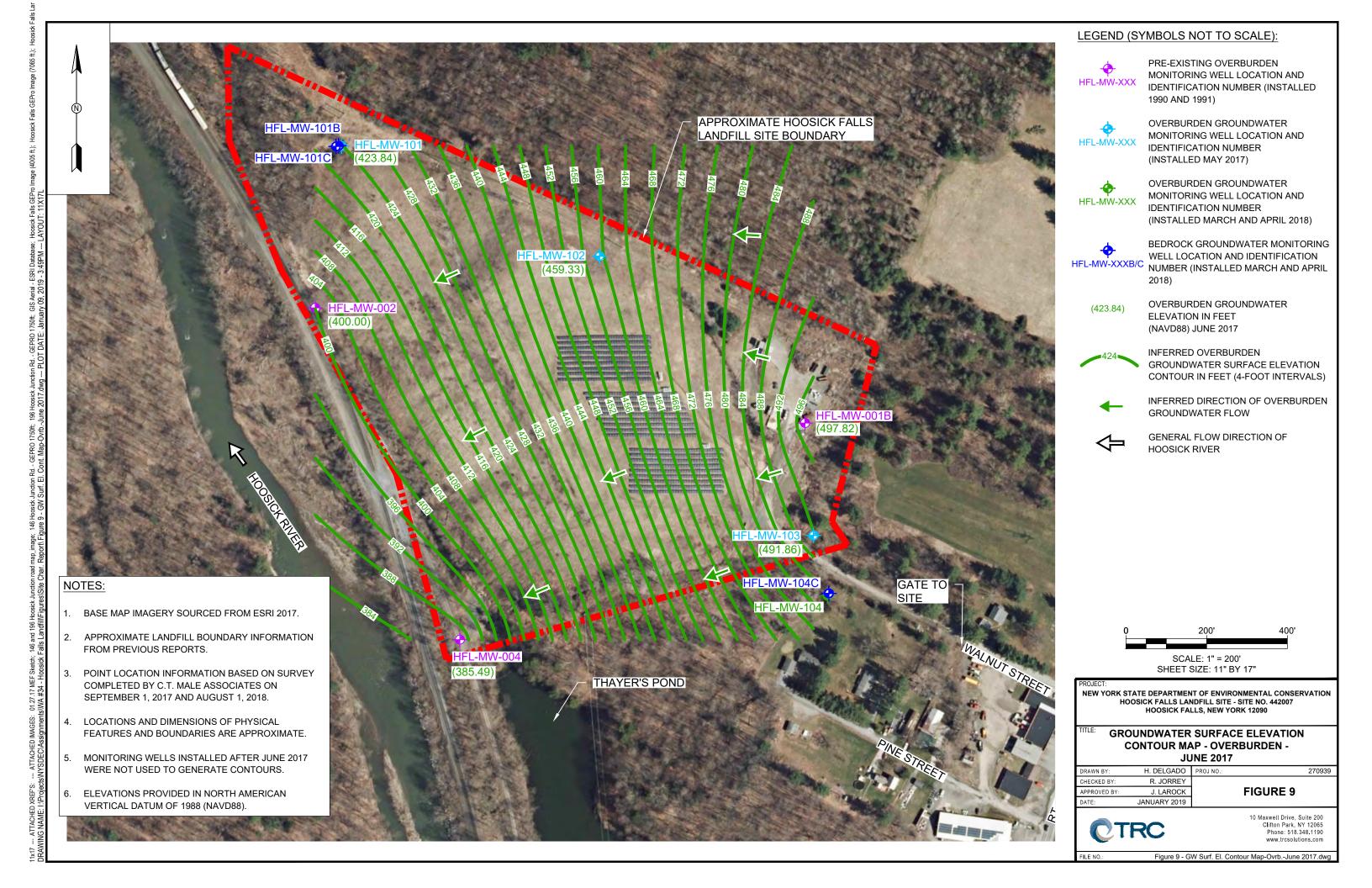
NS - NO NYSDEC STANDARD EXISTS FOR THIS ANALYTE

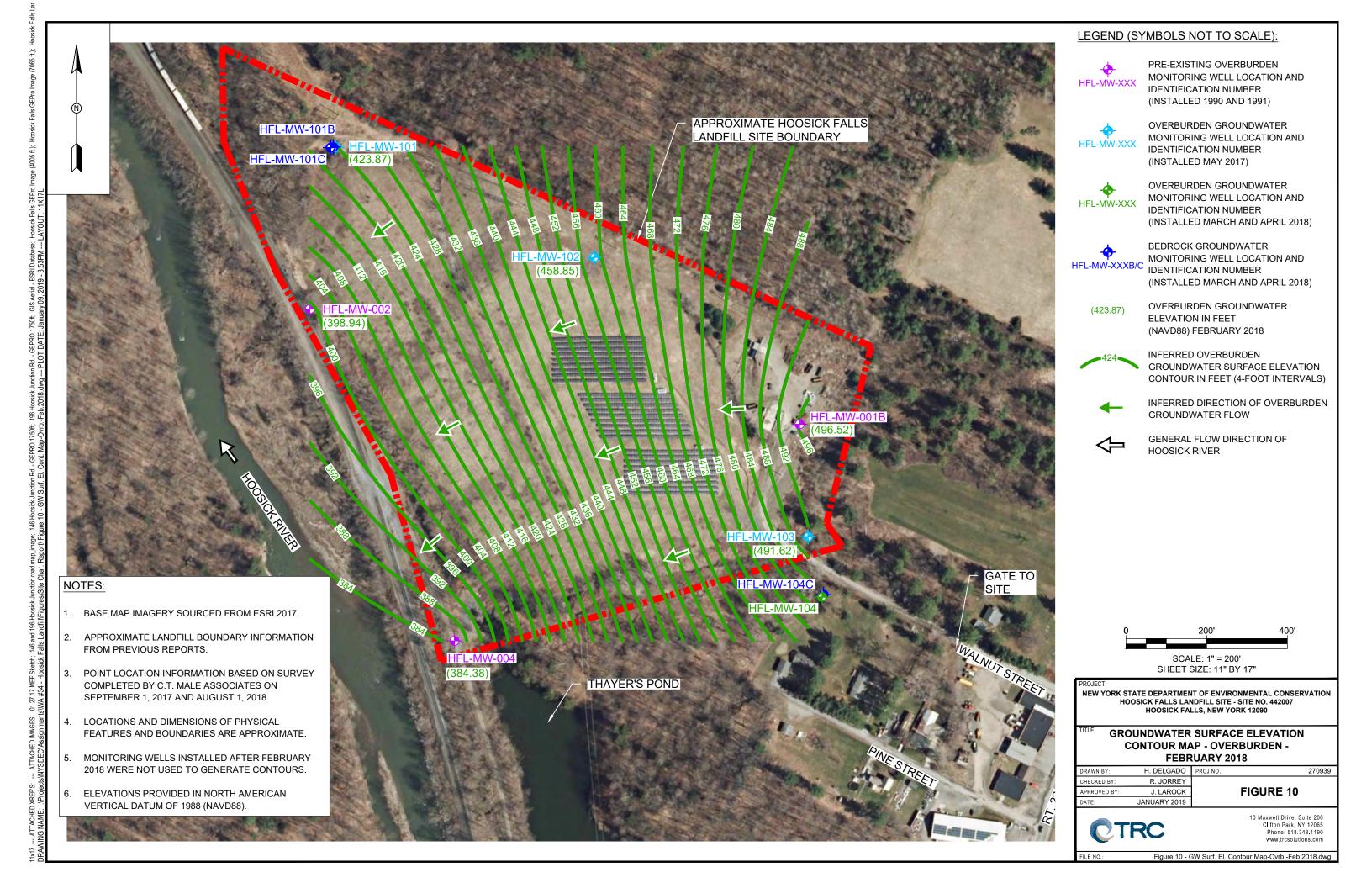
ROJECT:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION HOOSICK FALLS LANDFILL SITE - SITE NO. 442007 HOOSICK FALLS, NEW YORK 12090

TITLE

SELECT SUBSURFACE SOIL ANALYTICAL RESULTS


DRAWN BY:	H. DELGADO	PROJ NO.:	270939
CHECKED BY:	R. JORREY		
APPROVED BY:	J. LAROCK	FIGURE 8	
DATE:	JANUARY 2019		


OTRC

0 Maxwell Drive, Suite 20 Clifton Park, NY 1206

10 Maxwell Drive, Suite 200 Clifton Park, NY 12065 Phone: 518.348.1190 www.trcsolutions.com

0.: Figure 8 - Select SubSurface Soil Anal. Res..dwg

PRE-EXISTING OVERBURDEN MONITORING WELL LOCATION AND IDENTIFICATION NUMBER (INSTALLED 1990 AND 1991)

OVERBURDEN GROUNDWATER MONITORING WELL LOCATION AND **IDENTIFICATION NUMBER** (INSTALLED MAY 2017)

OVERBURDEN GROUNDWATER MONITORING WELL LOCATION AND IDENTIFICATION NUMBER (INSTALLED MARCH AND APRIL 2018)

BEDROCK GROUNDWATER MONITORING WELL LOCATION AND IDENTIFICATION NUMBER (INSTALLED MARCH AND APRIL

(422.37)

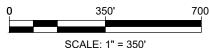
OVERBURDEN GROUNDWATER ELEVATION IN FEET (NAVD88) JUNE 2018

INFERRED OVERBURDEN GROUNDWATER SURFACE ELEVATION CONTOUR IN FEET (4-FOOT INTERVALS)

INFERRED DIRECTION OF OVERBURDEN **GROUNDWATER FLOW**

(384.77)

BEDROCK GROUNDWATER ELEVATION IN FEET (NAVD88) JUNE 2018


INFERRED BEDROCK GROUNDWATER SURFACE ELEVATION CONTOUR IN FEET (4-FOOT INTERVALS)

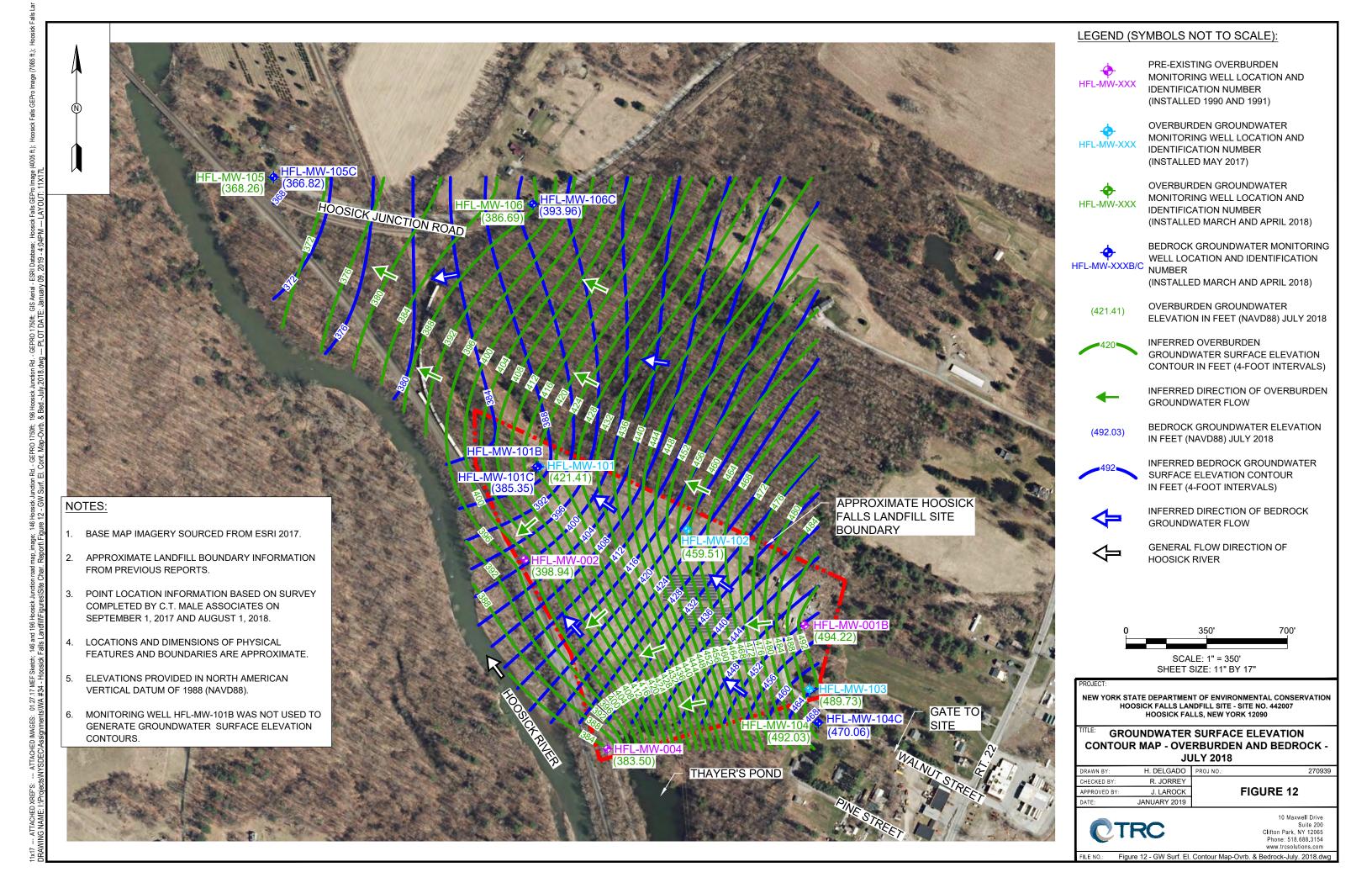
INFERRED DIRECTION OF BEDROCK **GROUNDWATER FLOW**

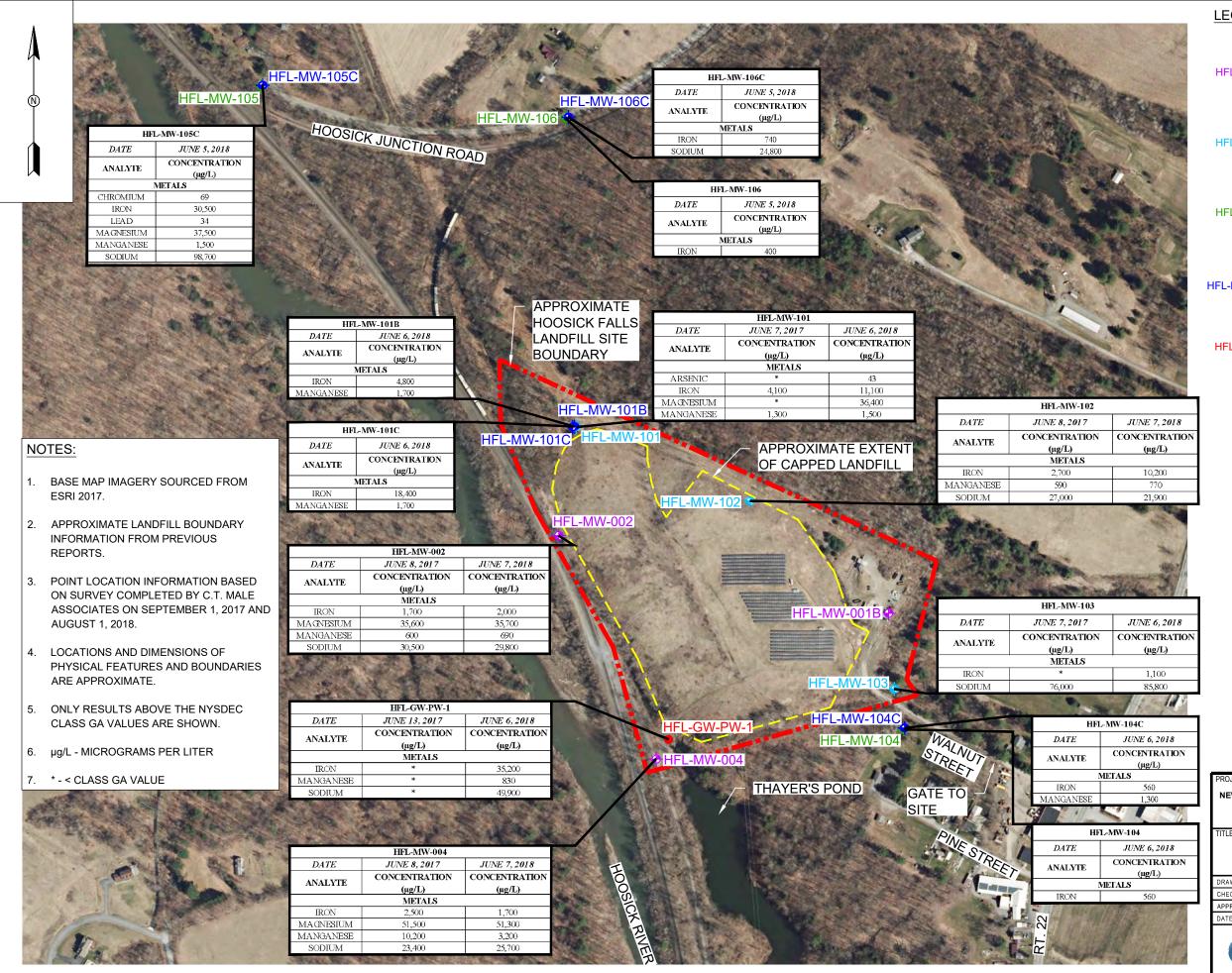
GENERAL FLOW DIRECTION OF HOOSICK RIVER

SHEET SIZE: 11" BY 17"

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION HOOSICK FALLS LANDFILL SITE - SITE NO. 442007 HOOSICK FALLS, NEW YORK 12090

GROUNDWATER SURFACE ELEVATION CONTOUR MAP - OVERBURDEN AND BEDROCK -JUNE 2018


DRAWN BY:	H. DELGADO	
CHECKED BY:	R. JORREY	
APPROVED BY:	J. LAROCK	
DATE:	JANUARY 2019	


PROJ NO.: FIGURE 11

10 Maxwell Drive Suite 200 Clifton Park, NY 12065 Phone: 518,688,3154 www.trcsolutions.com

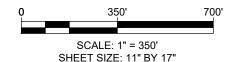
FILE NO.: Figure 11 - GW Surf. El. Contour Map-Ovrb. & Bedrock-June. 2018.dwg

PRE-EXISTING OVERBURDEN

MONITORING WELL LOCATION AND
IDENTIFICATION NUMBER
(INSTALLED 1990 AND 1991)

OVERBURDEN GROUNDWATER
MONITORING WELL LOCATION AND
IDENTIFICATION NUMBER
(INSTALLED MAY 2017)

OVERBURDEN GROUNDWATER
MONITORING WELL LOCATION AND
IDENTIFICATION NUMBER
(INSTALLED MARCH AND APRIL 2018)



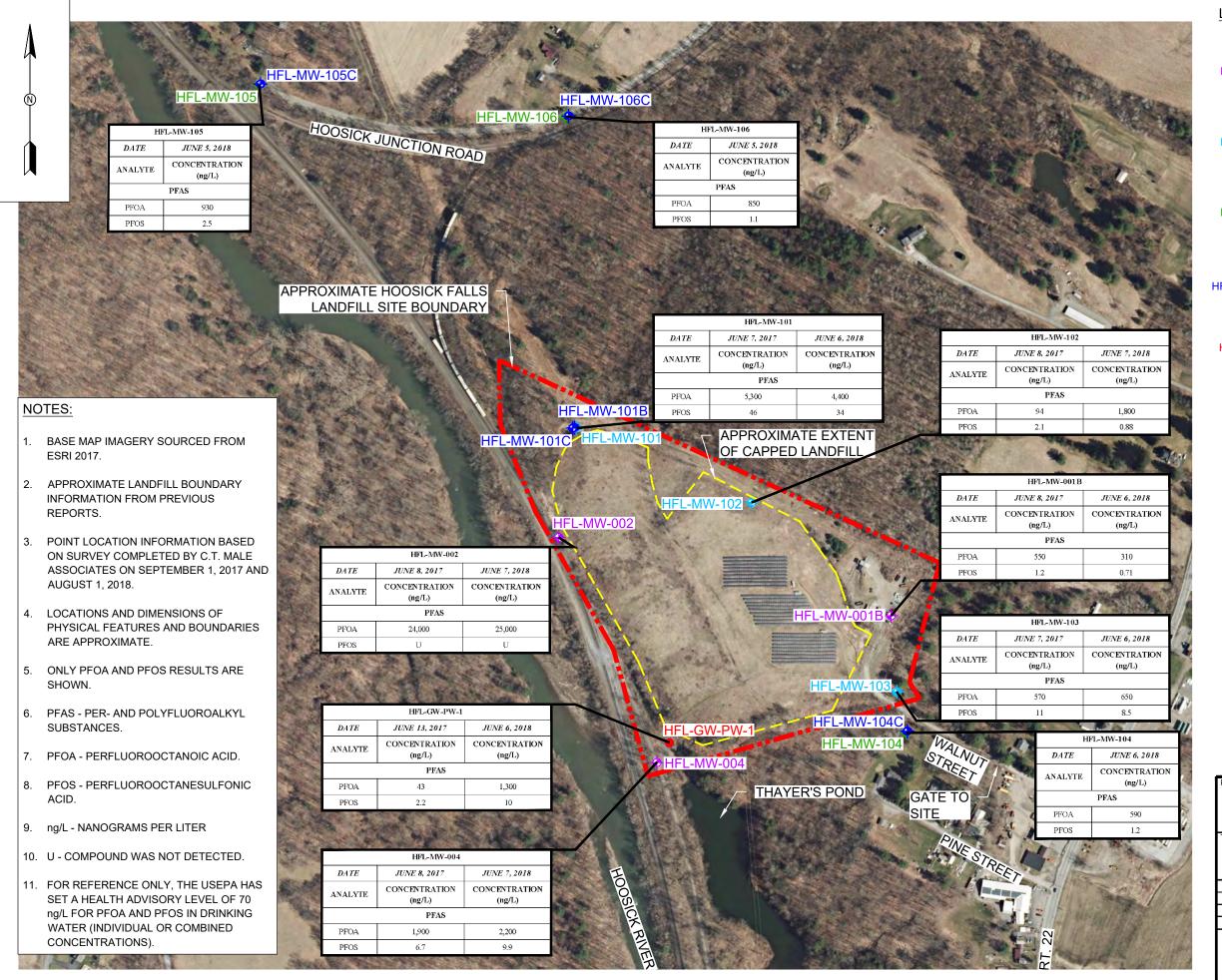
BEDROCK GROUNDWATER
MONITORING WELL LOCATION AND
IDENTIFICATION NUMBER
(INSTALLED MARCH AND APRIL 2018)

LEACHATE COLLECTION VAULT

NYSDEC CLASS GA VALUES										
ANALYTE	CLASS GA VALUE (µg/L)									
METALS										
ARSENIC	25									
CHROMIUM	50									
IRON	300									
LEAD	25									
MAGNESIUM	35,000									
MANGANESE	300									
SODIUM	20,000									

PROJECT:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION HOOSICK FALLS LANDFILL SITE - SITE NO. 442007 HOOSICK FALLS, NEW YORK 12090


SELECT GROUNDWATER ANALYTICAL RESULTS FOR METALS

DRAWN BY:	H. DELGADO	PROJ NO.: 270939
CHECKED BY:	R. JORREY	
APPROVED BY:	J. LAROCK	FIGURE 13
DATE:	IANITARY 2010	

Maxwell Drive, Suite 200 Clifton Park, NY 12065 Phone: 518.348.1190 www.trcsolutions.com

Figure 13 - Select GW Anal. Res. for Metals.dwg

HFL-MW-XXX

PRE-EXISTING OVERBURDEN
MONITORING WELL LOCATION AND
IDENTIFICATION NUMBER
(INSTALLED 1990 AND 1991)

OVERBURDEN GROUNDWATER
MONITORING WELL LOCATION AND
IDENTIFICATION NUMBER
(INSTALLED MAY 2017)

OVERBURDEN GROUNDWATER
MONITORING WELL LOCATION AND
IDENTIFICATION NUMBER
(INSTALLED MARCH AND APRIL 2018)

BEDROCK GROUNDWATER MONITORING
WELL LOCATION AND IDENTIFICATION
NUMBER (INSTALLED MARCH AND APRIL
2019)

LEACHATE COLLECTION VAULT

SHEET SIZE: 11" BY 17"

PROJECT:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION HOOSICK FALLS LANDFILL SITE - SITE NO. 442007 HOOSICK FALLS, NEW YORK 12090

SELECT GROUNDWATER AND LEACHATE
ANALYTICAL RESULTS FOR PFAS

DRAWN BY:	H. DELGADO	PROJ NO.:
CHECKED BY:	R. JORREY	
APPROVED BY:	J. LAROCK	FIGURE 14

0 Maxwell Drive, Suite 20

270939

10 Maxwell Drive, Suite 200 Clifton Park, NY 12065 Phone: 518.348.1199 www.trcsolutions.com

E NO.: Figure 14 - Select GW and Leachate Anal. Res. for PFAS.dwg

APPENDIX A SOIL BORING AND MONITORING WELL CONSTRUCTION LOGS

CTRC Results you can rely on

BH / TP / WELL - TRC-STD US, GDT - 1/18/19 OJECTSINYSDECWA #34 - HOOSICK FALLS LANDFILLISC ACTIVITIESISOIL BORING LOGSIHOOSICK-SOIL BORING LOGS, GPJ 10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

WELL NUMBER HFL-MW-101

PAGE 1 OF 1

CLIENT New York State Department of Environmental Conservation PROJECT NAME Site No. 442007 - Hoosick Falls Landfill PROJECT NUMBER 270939.0000.0000 PROJECT LOCATION Hoosick Falls, NY **DATE STARTED** 5/23/17 **COMPLETED** 5/23/17 **GROUND ELEVATION** 435.16 ft HOLE SIZE 4 DRILLING CONTRACTOR Parratt-Wolff, Inc. **GROUND WATER LEVELS:** DRILLING METHOD Hollow Stem Auger $\overline{igspace}$ AT TIME OF DRILLING $\underline{}$ 14.00 ft / Elev 421.16 ft **T** AT END OF DRILLING 13.50 ft / Elev 421.66 ft LOGGED BY Stephen Johansson CHECKED BY Ryan Jorrey **Y** AFTER DRILLING 13.75 ft / Elev 421.41 ft NOTES Elevation Datum: NAVD 88 SAMPLE TYPE NUMBER Environmental Data BLOW COUNTS (N VALUE) GRAPHIC LOG U.S.C.S. RECOVERY MATERIAL DESCRIPTION WELL DIAGRAM Top of Metal Casing Top of Riser 0'- 2' (SM) Brown, medium silty sand, dry. PID = 02-2-4-4 SS 38 SM (6)2.0 433.2 2'- 4' (SM) Brown, medium silty sand, moist. 4-4-6-7 SS 25 SM (10)431.2 4.0 4'- 6' (SM) Gray, medium silty sand, moist. Grout 5 8-7-4-5 SS 25 SM (11)6.0 429.2 6'- 8' (SM) Gray, medium silty sand, moist. 7-7-10-8 SS 75 SM (17)8.0 427.2 8'- 10' (ML) Brown/gray, silt, soft, moist. 3-3-4-3 SS ML 88 (7) 10 10.0 425 2 Bentonite PID = 010'- 12' (ML) Brown/gray, silt, soft, moist. Seal 1-2-4-50 SS 38 ML (6)12.0 423.2 12'- 14' (CL-ML) Brown/gray, silty clay, moist. 6-10-5-4 CL-SS 38 (15)ML 14.0 421.2 14'- 16' (CL-ML) Brown/gray, silty clay, wet. 15 12-14-5-4 CL-SS 50 ML (19)419.2 16'- 18' (CL-ML) Gray, silty clay, wet. 10-12-17-SS 75 ML (29)18.0 417.2 18'- 20' (CL-ML) Brown/gray, silty clay, moist, 2-4-9-10 CLcobble at 18'. SS 50 ML (13)20 20.0 415.2 20'- 24' (CL-ML) Gray, silty clay. PID = 07-10-24-11 Well Screen SS 75 (34)ML10-14-17-SS 100 (31)24.0 411.2 24'- 26' (ML) Gray, silt. 10-14-21-25 SS 100 ML 23 PID = 0(35)26.0 409.2 26'- 29' No recovery. 20-24-33-NR 0 41 (57)29.0 406.2 Bottom of borehole at 29.0 feet.

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

WELL NUMBER HFL-MW-101B PAGE 1 OF 2

1								AME Site No. 442007 -		ls Landf	ill
1				270939.00				OCATION Hoosick Falls		175 ^	
				26/18 C TOR <u>Parr</u>				.EVATION <u>437.54 ft</u> ATER LEVELS:	_ HOLE S	oI ZE _∠_	
				Hollow Ste				ME OF DRILLING 49.00	ft / Elev 388	.54 ft	
1								D OF DRILLING 50.53 f			
NOTE	ES _	Eleva	tion D	atum: NAV	D 88		AFTER	R DRILLING 49.57 ft / E	lev 387.97 ft		
O DEPTH	SAMBI E TYBE	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC	MATERIAL DESCRIPT	ΓΙΟΝ	Environmental Data	W	ELL DIAGRAM Top of Metal Casing
	M	SS	50	1-3-4-5 (7)	OL		0'- 2' (OL) Brown, topsoil with organ	nics. 435.5	PID = 0		Top of Riser
	M	SS	63	5-5-5-6 (10)	SM		2'- 6' (SM) Brown, silty sand, some	angular gravel.			
5	\mathbb{N}	SS	25	5-6-7-6 (13)	SIVI		6.0	431.5			
	A	SS	100	5-6-6 (12)	ML	<u> </u>	8.0 8'- 10' (SP-SM) Brown, medium silt	429.5			
<u> 10</u>	$\frac{1}{4}$	SS	88	2-3-3-3 (6)	SP- SM		10.0 10'- 12' (SP-SM) Brown, medium s	427.5	PID = 0		
	$\frac{1}{1}$	SS	50	4-4-9-10 (13)	SP- SM		12.0 12'- 14' (SP-SM) Brown, silty sand	425.5	115 0		
15	$\frac{1}{A}$	SS	25	4-5-12-8 (17) 4-6-8-8	SP- SM CL-		gravel. 14.0 14'- 16' (CL-ML) Gray, silty clay, m	423.5			
	\mathbb{M}	SS	38	(14)	ML		16.0	421.5			
10 10 10 10 10 10 10 10 10 10 10 10 10 1	M	SS	75	16-20-20- 17 (40)			16'- 38' (CL-ML) Gray, silty clay.				
	X	SS	50	15-17-22- 27 (39)					PID = 0		
	$\frac{1}{\lambda}$	SS		6-18-18-26 (36) 20-27-31-							
25		SS	100	34 (58) 16-20-27-							
		SS SS	100	29 (47) 22-32-42- 47	CL-						
	A	SS		(74) 8-11-17-21	ML						
25 - 401 MILLION A STANDARD A STA	$\frac{1}{M}$	SS	100	(28) 12-20-26- 22					PID = 0		⊲ Grout
TSDECIW.	$\frac{1}{M}$	SS	88	(46) 12-18-26- 37							
35		SS	100	(44) 20-32-34- 32 (66)							
	$\frac{1}{N}$	SS	100	11-19-16- 20 (35)			38.0	399.5			

WELL NUMBER HFL-MW-101B

PAGE 2 OF 2

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

CLIENT New York State Department of Environmental Conservation PROJECT NAME Site No. 442007 - Hoosick Falls Landfill

DEPTH (ft)	SAMPI E TYPE	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	Environmental Data	WELL DIAGRAN
	M	SS	100	21-25-28- 29	СН		38'- 40' (CH) Gray, silty clay, more plastic.		
40	M	SS	100	(53) 13-15-16- 18			40.0 397.5 40'- 48' (CL-ML) Gray, silty clay.	PID = 0	
· -	M	SS	100	(31) 15-15-16- 16					
- 45	\bigcirc			(31) 5-13-13-17	CL- ML				
	A	SS	50	(26) 17-25-21-					
· -	X	SS	100	21 (46)			48.0 389.5	-	
50	X	SS	50	1-6	CL- ML		50.0 🛨 387.5	DID 0	
· -	X	SS	63	8-14-20-14 (34)	CL-		▼ 50'- 54' (CL-ML) Gray, silty clay, wet.	PID = 0	
	M	SS	100	6-9-13-17 (22)	ML		54.0 383.5		
55	M	ss	100	14-20-16- 16 (36)			54'- 62' (CL-ML) Gray, silty clay, stiff.		
	M	SS	100	6-11-10-12 (21)	CL-				
- 60	M	ss	100	5-14-15-15 (29)	N/I				
	M	ss	100	16-15-16- 16				PID = 0	
· -	M	ss	100	(31) 20-44-45- 40			62.0 375.5 62'- 70' (CL-ML) Gray, silty clay, some angular gravel, stiff.		■ Bentonite Seal
65	M	SS	63	(89) 15-53-60- 62					
. <u>-</u>	M	SS	38	(113) 75-75	CL- ML				
- -	\bigvee	SS	63	32-50-100					
70		SS	100	(150) 100/1"			70.0 367.5 70'- 75' Black, slate/phyllite, calcite veins, thin	PID = 0	
		RC	90				foliation, highly weathered.		▼Filter Sand Well Scree
· -		110	(30)						
75	Ħ						75.0 362.5 75'- 80' Black, slate/phyllite, calcite veins, thin foliation.	_	
· -		RC	100 (75)						
 80							80.0 357.5	PID = 0	

WELL NUMBER HFL-MW-101C PAGE 1 OF 2

Results you can rely on

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

DATE STAI DRILLING (DRILLING I	RTED 3/ CONTRAC	CTOR Parr	att-Wo	CON olff, In ger	PLETED 4/2/18 GROUND ELEVATION 437.05 GROUND WATER LEVELS:	PROJECT LOCATION Hoosick Falls, NY GROUND ELEVATION 437.05 ft HOLE SIZE 2 GROUND WATER LEVELS: AT TIME OF DRILLING 49.00 ft / Elev 388.05 ft					
NOTES E				CHE	CKED BY Ryan Jorrey						
O DEPTH (ft) SAMPLE TYPE			U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		Environmental Data	WELL DIAGRAM Top of Metal			
\(\)	S 50	1-3-4-5 (7)	OL		0'- 2' (OL) Brown, topsoil with organics.	435.1	PID = 0	Top of Riser			
	S 63	5-5-5-6 (10)			2'- 6' (SM) Brown, silty sand, some angular gravel.						
5 (S 25	5-6-7-6 (13)	SM		6.0	431.1					
	S 100	5-6-6-6 (12)	ML		6'- 8' (ML) Light brown, fine silt with sand, dry.	429.1					
10 -	S 88	2-3-3-3 (6)	SP- SM		8'- 10' (SP-SM) Brown, medium silty sand.	427.1					
	S 50	4-4-9-10 (13)	SP- SM		10'- 12' (SP-SM) Brown, medium silty sand, moist.		PID = 0				
	S 25	4-5-12-8 (17)	SP- SM		12'- 14' (SP-SM) Brown, silty sand with angular	425.1					
15	S 38	4-6-8-8 (14)	CL- ML		14'- 16' (CL-ML) Gray, silty clay, moist.	423.1					
	S 75	16-20-20- 17	IVIL		16.0 16'- 48' (CL-ML) Gray, silty clay.	421.1					
	S 50	(40) 15-17-22-									
20	S 75	27 (39) 6-18-18-26					PID = 0				
	S 100	(36) 20-27-31-									
25	S 88	34 (58) 16-20-27-									
	S 100	29 (47)									
	S 88	22-32-42- 47									
30	S 100	(74) 8-11-17-21 (28)	C				PID = 0				
	S 88	12-20-26- 22	CL- ML								
35	S 100	(46) 12-18-26- 37						Grout			
	S 100	(44) 20-32-34-									
- 40 + 5	S 100	32 (66) 11-19-16-									
40	S 100	20 (35)					PID = 0				
	S 100	21-25-28- 29									
45	S 50	(53) 13-15-16- 18									
- []	1	(31)						K/A K/A			

WELL NUMBER HFL-MW-101C

PAGE 2 OF 2

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

CLIENT New York State Department of Environmental Conservation

PROJECT NAME Site No. 442007 - Hoosick Falls Landfill

DEPTH (ft)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG			Environmental Data	WE	LL DIAGRAM
50	X	SS	50	(31) 5-13-13-17	CL- ML		48'- 50' (CL-ML) Gray, silty clay, moist to wet.	387.1			
-	X	SS	63	(26) 17-25-21- 21	CL-		50'- 54' (CL-ML) Gray, silty clay, wet.		PID = 0		
_	M	SS	100	(46) 1-6	ML			202.4			
55	M	SS	100	8-14-20-14 (34)			54.0 54'- 62' (CH) Gray, silty clay, stiff.	383.1			
-	()			(34) 6-9-13-17 (22)							
· -	X	SS	100	(22) 14-20-16- 16	СН						
60	X	SS	100	(36) 6-11-10-12							
	M	ss	100	(21) 5-14-15-15			ca o	075.4	PID = 0		
· -	M	SS	100	(29) 16-15-16-			62.0 62'- 70' (CH) Gray, silty clay, some angular gravel,	375.1			
65	()			16			stiff. ▼				
	\mathbb{A}	SS	63	(31) 20-44-45-	СН						
-	X	SS	38	40 (89)							
- 	M	ss	63	15-53-60- 62			70.0	007.4			≺Bentonite Seal
70	П	SS	100	(113) 75-75			70.0 70'- 75' Black, slate/phyllite, calcite veins, thin	367.1	PID = 0		Seal
		RC	90	32-50-100 (150)			foliation, highly fractured with horizontal/vertical orientation.				:
·		110	(30)	100/1"							:
75 _	H						75.0 75'- 80' Black, weathered phyllite/slate, calcite	362.1			:
		RC	80				veins, thin wavy foliation.				
· -		110	(0)								
80	H						80.0 80'- 85' Black, phyllite/slate, calcite veins, thin	357.1	PID = 0		:
· -			100				foliation.		0		;
		RC	(70)								
85	Ц						85.0	352.1			Filter Sand
 			100				85'- 90' Black, phyllite/slate, calcite veins throughout, thin foliation, fractured with oxydation				Well Scree
		RC	100 (65)				present.				
90	Ц						90.0	347.1			
-							90'- 95' Black, phyllite/slate, fractured throughout, calcite from 90'-93'.		PID = 0		:
· -		RC	100 (75)								;
95							95.0	342.1			
_	П						95'- 100' Black, phyllite/slate, calcite veins, thin foliation, fractured throughout.				
 		RC	94 (66)				ionation, nactarea unoughout.				
100			(50)				100.0	337.1	PID = 0		
100	ш			<u> </u>		V/X//	Bottom of borehole at 100.0 feet.	<u> </u>		1-4-1-	-

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

WELL NUMBER HFL-MW-102 PAGE 1 OF 2

				ou can rei														
1				•			vironr	mental Conservation	PROJECT LOCATION - Hoosick Falls Landfill									
1				270939.00	00.00		.n	FED 5/05/45	PROJECT LOCATION Hoosick Falls, NY GROUND ELEVATION 509.56 ft HOLE SIZE 4									
DATE					- 44 \ \ \ \ \			FED _5/25/17										
				TOR Parr			C.		GROUND WATER LEVELS: VALUE OF DRILLING 52.00 ft / Floy 457.56 ft									
1				<u>Hollow Ste</u> en Johanss			CKEL	DBY Ryan Jorrey	✓ AT TIME OF DRILLING 52.00 ft / Elev 457.56 ft ▼ AT END OF DRILLING 50.62 ft / Elev 458.94 ft									
1				atum: NAV		CHE	CKEL	Kyan Joney	AFTER DRILLING 50.0									
NOTE			ם ווטוו	atum. NAV	D 00				AFTER DRILLING _50.0	JJ 11 / L1	ev 439.31 II	·						
O DEPTH (ft)	L	SAMPLE I YPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG			IAL DESCRIPTION		Environmental Data	\		_ DIAGRAM Top of Metal Casing				
	\bigvee	SS	67	1-5-10-0	OL SP		0.3	0'- 0.33' (OL) Brown 0.33'- 1.5' (SP) Brow	, topsoil with organics.	<u>509.2</u> /	PID = 0			Top of Riser				
L .	Δ			(15)			1.5	1.5'- 3.5' (SM) Gray		508.1								
ļ	M	SS	75	7-10-11-14	SM				•	500.4								
-	\triangle			(21)		1 1	3.5	3.5'- 6' (ML) Gray, s	ilt, trace clay, dry.	506.1								
_ 5	\bigvee	SS	65	0-2-10-8	ML													
<u> </u>	Λ			(12)			6.0			503.6	PID = 0.4							
ļ	\bigvee	SS	80	5-7-10-10	GC			6'- 8' (GC) Gray, silt (till).	, clay, clay, sub-angular gravel									
5	\triangle			(17)		12	8.0			501.6								
		NR	0	11-21-20- 18				8'- 10' No recovery.										
10		IVIX	0	(41)			10.0			499.6								
	\mathbb{N}	SS	25	8-10-21-21				10'- 28' (GC) Gray, s moist.	silt, clay, subangular gravel (till),		PID = 0							
2 2 2	Λ	55	20	(31)														
<u> </u>	\mathbb{N}	SS	75	15-22-22- 23														
2	Λ	55	7.5	(44)									%	⋖Grout				
15_	N	SS	70	13-19-19- 19			ı			1								
	Λ	55	70	(38)														
		SS	75	21-22-21- 23														
<u>_</u>	Λ	JJ	13	(43)														
L		SS	50	19-21-20- 21	GC		1											
20	Λ	JJ	50	(41)	30		4											
5		SS	75	12-18-26- 30			1				PID = 0							
	\triangle	JJ	13	(44)														
		SS	75	19-34-37-														
	\mathbb{N}	JJ	13	50 (71)														
25		SS	50	19-31-32- 40			1											
	\mathbb{N}	JJ	JU	(63)														
; ;		66	25	19-15-14-														
	\mathbb{N}	SS	25	16 (29)			28.0			481.6								
		NID	0	50				28'- 30' No recovery										
30	\square	NR	0	50			30.0			479.6				Bentonite				
3	\bigvee	90	75	12-14-17-				30'- 34' (GC) Gray,	silt, clay, subangular gravel (till).		PID = 0			Seal				
[SS 75 25 GC																	
PAICKIPROJECTS/NVSDEC/WA #34 - HOOSICK FALLS LANDFILL/SC ACTIVITIES/SOIL BORING LOGS/GPJ 10 10 10 10 10 10 10 10 10 10 10 10 10	X																	

WELL NUMBER HFL-MW-102

PAGE 2 OF 2

Results you can rely on

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

CLIENT New York State Department of Environmental Conservation PROJECT NAME Site No. 442007 - Hoosick Falls Landfill

PROJECT NUM	/IBER	270939.0	000.00	000	PROJECT LOCATION Hoosick Falls	s, NY	
DEPTH (ft) SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	Environmental Data	WELL DIAGRAM
35 40	50	21-50	GC		30'- 34' (GC) Gray, silt, clay, subangular gravel (till). (continued) 34'- 70' Per discussion with NYSDEC, no sampling was completed for soil classification beyond 34' bgs.	PID = 0	
 45							
55					$ar{ar{\Lambda}}$		▼Filter Sand
55							
60							Well Screen
65							
70					70.0 439.6 Bottom of borehole at 70.0 feet.		<u> </u>

WELL NUMBER HFL-MW-103 10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 PAGE 1 OF 1 Telephone: (518) 688-3102 CLIENT New York State Department of Environmental Conservation PROJECT NAME Site No. 442007 - Hoosick Falls Landfill PROJECT LOCATION Hoosick Falls, NY PROJECT NUMBER 270939.0000.0000 **COMPLETED** 5/24/17 **DATE STARTED** 5/24/17 **GROUND ELEVATION** 493.83 ft HOLE SIZE 4 DRILLING CONTRACTOR Parratt-Wolff, Inc. **GROUND WATER LEVELS:** $\sqrt{2}$ AT TIME OF DRILLING 6.00 ft / Elev 487.83 ft DRILLING METHOD Hollow Stem Auger TAT END OF DRILLING 4.32 ft / Elev 489.51 ft LOGGED BY Stephen Johansson CHECKED BY Ryan Jorrey **▼ AFTER DRILLING** 4.10 ft / Elev 489.73 ft NOTES Elevation Datum: NAVD 88 SAMPLE TYPE NUMBER Environmental Data BLOW COUNTS (N VALUE) GRAPHIC LOG U.S.C.S. RECOVERY MATERIAL DESCRIPTION WELL DIAGRAM Top of Metal Casing Top of Riser 0'- 2' (OL) Light brown, topsoil with medium sand. PID = 02-2-2-2 SS 88 OL Grout (4) 491.8 2.0 2'- 4' (ML) Light brown, silt, moist. 4-5-6-8 SS 75 ML Bentonite (11)Seal 489.8 4'- 6' (ML) Light brown, silt, soft, wet. 5 2-2-2-3 SS 88 ML (4) 487.8 6'- 8' (ML) Brown, silt, wet. 6-4-3-10 SS ML 75 (7) 8.0 485.8 8'- 10' (GC) Brown, silt and gray till, moist. 6-5-5-5 SS GC 38 (10)10 10.0 483.8 PID = 010'- 12' No recovery. 3-5-4-6 NR 0 (9) 481.8 Filter Sand 12'- 24' (GC) Gray, till, moist. Well Screen 4-6-6-6 SS 75 (12)3-5-12-8 15 SS 25 (17)

AL BH / TP / WELL - TRC-STD US,GDT - 1/18/19 PROJECTSINYSDECWA #34 - HOOSICK FALLS LANDFILL\SC ACTIVITIES\SOIL BORING LOGS\HOOSICK-SOIL BORING LOGS.GPJ

25

5-7-8-9

(15)

4-9-12-6

(21)

7-5-4-6

(9)

7-9-12-15

(21)

2-50

12-27-28-

(55)

21-33-50

(83)

GC

GC

SS

SS

SS

SS

NR

SS

SS

75

38

50

75

0

75

Bottom of borehole at 30.0 feet.

24'- 26' No recovery.

26'- 30' (GC) Gray, till, moist.

PID = 0

PID = 0

469.8

467.8

463.8

CTRC Results you can rely on

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

WELL NUMBER HFL-MW-104

PAGE 1 OF 1

ORILL ORILL LOGG	ING ING SED	CON MET BY	HOD Stephe	TOR Parr	em Au on	olff, iger	Inc.	GROUND ELEVATION 500.14 ft GROUND WATER LEVELS: AT TIME OF DRILLING 11.00 AFTER DRILLING 6.34 ft / E) ft / Elev 489 t / Elev 497.5	9.14 ft 54 ft	
O DEPIH	SAMPI F TYPF	NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC	507	MATERIAL DESCRIPTION	Environmental Data	,	L DIAGRAM ▼Top of Me Casing
-					ОН			0'- 5' (OH) Dark brown topsoil with organics, moist ▼	PID = 0		Top of Ris
5 _	M	SS	65	2-3-3-4 (6)	МН						⋖ Bentonite Seal
-		SS	100	3-2-2-2 (4)	ML			7'- 9' (ML) Brown, silt, stiff.			
10 _	M	SS	88	1-2-5-6 (7)	ML		1	9'- 11' (ML) Dark brown, sandy silt, moist. 1.0 489.	PID = 0		
-		SS	0	4-5-6-4 (11)		ि ।	1	11'- 13' No recovery. 3.0 487.	1		
15		SS	88	2-3-3-3 (6)	ML		1	13'- 15' (ML) Dark brown, sandy silt, wet. 5.0 485. 15'- 23' (ML) Dark brown-gray, silt, stiff, moist.	1		⋖ Filter San
-		SS	100	2-3-3-3 (6)				13-23 (IVIL) DAIN DIOWII-YIAY, SIII, SIIII, MOISI.			−Well Scre
-		SS	100	5-8-9-9 (17)	ML						
20 _		SS	100	3-3-10-10 (13)					PID = 0		
_	M	ss	100	7-10-15-15 (25)					PID = 0		

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

WELL NUMBER HFL-MW-104C PAGE 1 OF 2

PRO DATI DRIL DRIL LOG	JEC E ST LINC LINC GED	T NUM ARTE CON MET BY	IBER D 4/4 ITRAC HOD Marnie	270939.00 4/18 CTOR Parr Hollow Ste	att-W	000 COM olff, Ir	/PLE	TED 4/10/18 D BY Ryan Jorrey	PROJECT LOCATION Hoosi GROUND ELEVATION 500.4 GROUND WATER LEVELS: AT TIME OF DRILLING	ck Falls 9 ft 11.00 f 24.84 ft	, NY HOLE S ft / Elev 489 t / Elev 475.	.49 ft 65 ft	2	
O DEPTH (ft)		NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATER	IAL DESCRIPTION		Environmental Data	<u>-</u>		DIAGRAM Top of Metal Casing
- - - - 5	_ _ _				ОН		\ \ \	0'- 5' (OH) Dark bro moist.	wn, topsoil with organics, loose,	495.5	PID = 0			Top of Riser
-	- M	ss	65	2-3-3-4 (6)	мн	Ì	7.0	5'- 7' (MH) Brown, s	ilt, soft, wet.	493.5				
F		SS	100	3-2-2-2 (4)	ML			7'- 9' (ML) Brown, si	lt, stiff.					
10		SS	88	1-2-5-6 (7)	ML		9.0		own, sandy silt, moist.	491.5	PID = 0			
25 - 15 - 15 - 20 - 25 - 25 - 25 - 25 - 25 - 25 - 2	$\downarrow \downarrow$	SS	0	4-5-6-4			11.0	11'- 13' No recovery		489.5	י וט – ט			
<u> </u>	$\downarrow \downarrow$	SS	88	(11) 2-3-3-3	ML		13.0	13'- 15' (ML) Dark b	rown, sandy silt, wet.	487.5				
15	$\downarrow \downarrow$	SS	100	(6) 2-3-3-3			15.0		rown-gray, silt, stiff, moist.	485.5				
_	\bigoplus	SS	100	(6) 5-8-9-9										
20	\forall			(17) 3-3-10-10	ML									
-	$\downarrow \downarrow$	SS	100	(13) 7-10-15-15							PID = 0			
F	$\frac{1}{1}$	SS	100	(25) 37-32-22-			23.0		subangular gravel with sand.	477.5				
25	$\downarrow \downarrow \downarrow$	SS	25	21 (54)	GP	000		_	abangalar graver with band.					
<u> </u>	\mathbb{A}	SS	13	23-17-25- 25		000	27.0	07!_00! (14) \ 0	114 - 4155	473.5				
- -	\mathbb{M}	SS	50	(42) 7-14-16-29 (30)	ML		29.0	▼ 27'- 29' (ML) Gray, s		471.5				
30	M	SS	25	30-50	NAI			29'- 33' (ML) Gray, s	silt with some gravel, moist.		PID = 0			
F	$\overline{\mathbb{X}}$	SS	50	34-50-65- 63	ML		33.0			467.5			-	Grout
35	X	SS	0	(115) 60			35.0	33'- 35' No recovery		465.5				
33		SS	25	38-50			33.0	35'- 47' (ML) Gray, s	silt with gravel, stiff, moist.	400.5				
<u> </u>	$\downarrow \downarrow$	SS	38	30-50										
40	\bigwedge	SS	63	39-32-50										
Ŀ	\mathbb{H}			(82) 28-32-29-	ML	60					PID = 0			
F	A	SS	88	60 (61)		900								
35	$\downarrow \downarrow \downarrow$	SS	0	45-50										
	\mathbb{X}	SS	25	50		99	47.0			453.5				

WELL NUMBER HFL-MW-104C

PAGE 2 OF 2

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

CLIENT New York State Department of Environmental Conservation

PROJECT NAME Site No. 442007 - Hoosick Falls Landfill

PROJECT NUMBER 270939.0000.0000

PROJECT LOCATION Hoosick Falls, NY

	PROJ	EC	T NUI	/IBER	270939.00	000.00	000	PROJECT LOCATION Hoosick Fall	s, NY	
	DEPTH (ft)	במאד דו ומאף	SAMPLE I YPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	Environmental Data	WELL DIAGRAM
[X	SS	25	50			47'- 51' (ML) Brown-gray, sandy silt, moist.		
İ	50	X	SS	50	36-50	ML		51.0 449.	PID = 0	
İ		X	SS	25	7-37-50 (87)			51'- 57' (ML) Brown-gray, sandy silt, trace of gravel, moist.		
	 - 55	X	SS	13	110	ML				
		X	SS	13	50			57.0 443.	5	
Ī		X	SS	38	50		. 0	57'- 63' (ML) Gray-orange, silt, traces of gravel, wet.		
	60	X	SS	25	50	ML			PID = 0	
ŀ		M	SS	25	50			63.0 437.	5	✓ Bentonite
G.	 65	M	SS	0	100			63'- 65' No recovery. Bedrock at 63' bgs. 65.0 435.	5	Seal
.0GS.G		\prod	SS RC	100	100/1"			65'- 72.2' Black, phyllite/slate, weathered.		
IL BORING	 - 70		RC	100						
SICK-SC	 	H		(45)				72.2 428.3	PID = 0	
VITIES/SOIL BORING LOGS/HOOSICK-SOIL BORING LOGS.GPJ	 - 75		RC	100 (75)				72.2'- 77.2' Black, phyllite/slate, weathered, calcite veins, thin foliation.		
30RING		Ц						77.2 423.3	3	
TIES/SOIL I	80		RC	100 (75)				77.2'- 82' Black, phyllite/slate, calcite veins, thin foliation, highly weathered.	PID = 0	Filter Sand
	 	Ц		100				82.0 418.9		Well Screen
ILL\SC	- 	Н	RC	100 (88)				82'- 83.5' White calcite, minor phyllite/slate, minor weathering. 417.0)	
SLANDF	85		RC	100 (53)				83.5'- 87' Black, phyllite/slate, fractured throughout, calcite vein from 84'-85'		
K FALL	 	H						87'- 93.51' Black, phyllite/slate, calcite veins throughout, thin foliation, highly weathered.	PID = 0	
SDECWA#34 - HOOSICK FALLS LANDFILL\SC ACTI	90		RC	100 (48)				raginary mining in modulo od.	FID = 0	
1,WA #3	 							93.5 407.0	PID = 0	
Ü.						•		Bottom of borehole at 93.5 feet.	•	

GENERAL BH / TP / WELL - TRC-STD US GDT - 1/18/19 P:/ECR:PROJECTS!NYSDEC:WA #34 - HOOSICK FALLS

10 Maxwell Drive, Suite 200 Oifton Park, NY 12180 Telephone: (518) 688-3102

WELL NUMBER HFL-MW-105

PAGE 1 OF 1

CLIER	NT _	New \	ork S	State Depar	tment	of En	vironmental Conservation	PROJECT NAME Site No. 442007 - Hoosick Falls Landfill					
PROJ	EC1	NUM	BER	270939.00	00.00	000		PROJECT LOCATION Hoosig	k Falls	, NY			
DATE	ST	ARTE	1 <u>4</u> /	11/18		CON	IPLETED 4/12/18	GROUND ELEVATION 390.8	9 ft	HOLE SIZE 2			
DRILL	ING	CON	TRAC	CTOR Parr	att-W	olff, In	C.	GROUND WATER LEVELS:					
DRILL	ING	MET	HOD	Hollow Ste	em Au	ıger		$\overline{igspace}$ at time of drilling $_{f 1}$	22.50	ft / Elev 368	.39 ft		
LOGG	ED	BY N	/larnie	e Chancey		CHE	CKED BY Ryan Jorrey	lacksquare at end of drilling $lacksquare$	20.81 f	t / Elev 370.	08 ft		
NOTE	S	Elevat	ion D	atum: NAVI	D 88			Ψ after drilling 22.6	4 ft / EI	ev 368.25 ft			
O DEPTH	SAMPI E TYPE	NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIA	AL DESCRIPTION		Environmental Data	WELL DIAGRAM		
-					ОН	1/ 1/ 1/ 1/ 1/ 1/	moist.	n, topsoil with organics, loose,	388.9	PID = 0.3	Manhole Cover Top of Rise		
- - 5	-				GP		2'- 5' (GP) Dark brow organics, moist.	n, gravel and sand, some	385.9				
_	M	ss	13	5-6-6-3 (12)	ML		5'- 7' (ML) Brown, silt	with sand, loose, moist.	383.9		Grout		
-	M	ss	50	5-4-6-3 (10)	SP		7'- 9' (SP) Brown, me loose.	dium-coarse sand and gravel,	381.9				
10	M	SS	75	0-1-2-7 (3)	SM		9'- 13' (SM) Brown-gr sorted, moist.	ay, fine sand and silt, poorly		PID = 0			
-	M	ss	63	2-4-6-9 (10)	O.W.		13.0		377.9		≺ Bentonite Seal		
- 15	X	SS	50	7-27-17-27 (44)	SM		silt, trace clay, moist.		375.9				
-	M	SS	38	20-25-50- 25 (75)	SP		15'- 17' (SP) Brown, 1	medium sand and gravel.	373.9				
-	\bigvee	SS	75	39-22-30- 30 (52)	ML		17'- 19' (ML) Gray-bro moist.	own, coarse sand and silt,	371.9				
20	M	SS	38	6-15-13-12 (28)	GC		19'- 23' (GC) Brown-r moist.	ed, till, subangular gravel, stiff,		PID = 0	▼ Filter Sand		
-	M	SS	75	20-20-16- 14 (36)	00		23.0		367.9		Well Scree		
- 25	M	SS	88	18-12-12- 12 (24)			23'- 29.5' (GC) Browr stiff, wet.	n-red, till, subangular gravel,					
-	M	ss	75	9-11-16-16 (27)	GC								
-		SS	50	10-10-11- 12 (21)			29.5		361.4	PID = 0			

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

WELL NUMBER HFL-MW-105C PAGE 1 OF 3

				270939.00			/ironmental Conservation	PROJECT NAME Site No. 442007 - Hoosick Falls Landfill PROJECT LOCATION Hoosick Falls, NY				
				2/18 TOR Parr			PLETED 4/18/18	GROUND ELEVATION 390.2 GROUND WATER LEVELS:	8 ft	_ HOLE S	SIZE 2	
LOGG	SED B	Y Ma	arnie	Hollow Ste Chancey atum: NAVI			CKED BY Ryan Jorrey	□ AT TIME OF DRILLING □ AT END OF DRILLING □ AFTER DRILLING 23.6	25.02 ff	ft / Elev 365.26 ft		
o DEPTH (ft)	SAMPLE TYPE	NUMBER RECOVERY %	(RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIA	AL DESCRIPTION		Environmental Data	WELL DIAGRAM	
 					OH GP		2.0 moist. 2'- 5' (GP) Dark brow organics, moist.	n, topsoil with organics, loose, n, gravel and sand, some	388.3	PID = 0	Manhole Cover Top of Rise	
<u> </u>	\$	ss ·	13	5-6-6-3 (12)	ML		7.0	with sand, loose, moist.	385.3			
10	\longleftrightarrow		50 75	5-4-6-3 (10) 0-1-2-7	SP		_{9.0} loose.	ray, fine sand and silt, moist.	381.3			
- - -	\vdash		63	(3) 2-4-6-9 (10)	SM		13.0		377.3	PID = 0		
15	\longleftrightarrow		50 38	7-27-17-27 (44) 20-25-50-	SM SP		15.0 silt, trace clay, moist.	red, medium-coarse sand and medium sand and gravel.	375.3			
- -	$\left\langle \cdot \right\rangle$		75	25 (75) 39-22-30- 30	ML		_{19.0} moist.	own, coarse sand and silt,	373.3 371.3			
20 _	+		38 75	(52) 6-15-13-12 (28) 20-20-16-	GC		19'- 23' (GC) Brown-i moist.	red, till, subangular gravel, stiff,		PID = 0		
- 25	\longleftrightarrow		-	14 (36) 18-12-12-			23.0 <u>V</u> 23'- 29' (GC) Brown-I <u>V</u> wet.	red, till, subangular gravel, stiff,	367.3			
	$\left\langle \cdot \right\rangle$		75	12 (24) 9-11-16-16 (27) 10-10-11-	GC		-					
30	\forall		63	10-10-11- 12 (21) 12-16-17-			29.0 29'- 33' (CL) Brown-g wet.	ray, silty clay, some fine sand,	361.3	PID = 0		
- -	\vdash		75	22 (33) 11-20-20-	CL		33.0 33'- 37' (CL) Brown-g	ray, clay, some sand, stiff.	357.3			
35	$\left\langle \cdot \right\rangle$		50 63	25 (40) 10-12-15- 15	CL		37.0		353.3			
40	$\left\langle \cdot \right\rangle$		75	(27) 11-16-20- 20 (36)	SP- SM	<u> </u>	37'- 39' (SP-SM) Bro moist.	wn-gray, fine sand with silt, ed, clay with fine sand, stiff.	351.3			
-	\vdash		38 38	11-11-21- 21 (32)	CL		41.0	ray, clay with fine sand, stiff.	349.3	PID = 0		
45		SS :	50	12-20-30- 29 (50) 15-16-15-	CL							
-	{	ss e	63	14			47.0		343.3			

WELL NUMBER HFL-MW-105C

PAGE 2 OF 3

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

CLIENT New York State Department of Environmental Conservation

PROJECT NAME Site No. 442007 - Hoosick Falls Landfill

PROJECT NUMBER 270939.0000.0000

PROJECT LOCATION Hoosick Falls, NY

PRO.	PROJECT NUMBER 270939.0000.0000						PROJECT LOCATION Hoosick Falls, NY							
DEPTH (ft)	II GM 40	SAMPLE I TPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		Environmental Data	WELL DIAGRAM				
-	M	SS	100	(31) 30-30-18-	CL		47'- 49' (CL) Gray, clay with fine sand, stiff.	341.3						
50	M	SS	75	25 (48)	CL		49'- 51' (CL) Gray-brown, clay with fine sand, stiff,		PID = 0					
-	M	SS	88	9-10-9-10 (19) 8-11-16-16			51'- 55' (CL) Gray, clay with fine sand, stiff.	339.3	PID = 0					
-	\forall			(27) 7-11-13-14	CL									
55	$\langle \rangle$	SS		(24) 3-9-15-20			55.0 55'- 57' (CL) Gray, clay with fine sand, trace gravel,	335.3						
-	\mathbb{A}	SS	38	(24) 8-28-34-36	CL		57.0 stiff.	333.3						
	M	SS	50	(62) 9-10-36-50	CL		57'- 61' (CL) Gray-brown, clay with fine sand, stiff, moist.							
_ 60	X	SS	25	(46) 30-30-25-	OL		61.0	329.3	PID = 0	Grout				
-	M	SS	13	18 (55) 30-55-50	CL		61'- 63' (CL) Gray, clay with fine sand, trace gravel,							
_ - :	M	SS	13	(105) 100-0-0-0			63.0 Stiff, moist. 63'- 103' (GC) Gray, clayey sand with gravel (till), stiff, moist.	327.3						
65 89 89	M	SS	13	(0) 100-0-0-0			Suil, Hoist.							
SI .	\bigcirc			(0) 100-0-0-0										
- 70 - 70	\mathbb{A}	SS	25	(0) 100-0-0-0										
70	X	SS	25	50-0-0-0					PID = 0					
	M	SS	25	(0) 60-0-0-0										
H/S50 75	M	SS	38	(0) 50-0-0-0 (0)										
515 15N	M	SS	25	50-0-0-0										
ref sool bonned 100s/sool bonned 100s/so	M	SS	25	100-0-0-0										
80	M	SS	25	(0) 50-0-0-0										
	\bigcirc			(0) 60-0-0-0	GC				PID = 0					
LISCA	$\langle \rangle$	SS	38	(0) 50-30-0-0	00									
85	\mathbb{A}	SS	50	(30)										
P. IECRIPROJECTSON YSDECIWA #34 - HOOSIGK FALLS LANDFILLISC ACTIV	M	SS	0	50-0-0-0 (0)										
CK FA	X	SS	25	40-50-0-0 (50)										
90	M	SS	100	30-45-50- 30					PID = 0					
A #34 -		SS	88	(95) 18-45-60-					-					
		SS	50	55 (105) 25-65-50-0										
95 NS	\mathbb{N}			26-62-40-										
JECT:	$\langle \rangle$	SS	75	90 (102)										
N - 12	\mathbb{A}	SS	50	50-0-0-0										
입 100	\mathbb{N}	SS	63	(0) 32-50-0-0			(Continued Next Page)		PID = 0					

GENERAL BH / TP / WELL - TRC-STD US.GDT - 1/18/19 PAFCRIPROJECTSINYSDECIWA #34 - HOOSICK FALLS LANDFILLISC ACTIVITIESISOIL BORING LOGSIHOOSICK-SOIL BORING LOGS, GPJ

WELL NUMBER HFL-MW-105C

PAGE 3 OF 3

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

CLIENT New York State Department of Environmental Conservation PROJECT NAME Site No. 442007 - Hoosick Falls Landfill

DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE) U.S.C.S. GRAPHIC LOG			MATERIAL DESCRIPTION	Environmental Data	WELL DIAGRAM
- -	ss	25	(50) 35-70-65- 65 (135)	GC		63'- 103' (GC) Gray, clayey sand with gravel (till), stiff, moist. <i>(continued)</i> 287.3 103'- 105' (GC) Red-gray, clayey sand with gravel		
105	SS	63	(135) 100-0-0-0 (0)	GC		105- 105 (GC) Nea-gray, clayey sand with gravel (till), stiff, moist. 285.3 105'- 119' (GC) Gray, clayey sand with gravel (till),	-	
· -	ss	63	(0) 34-80-85- 65			stiff, moist.		
 	ss	50	(165) 50-0-0-0					
110	ss	75	(0) 35-35-45- 47				PID = 0	
	ss	100	(80) 50-0-0-0	GC				
115	ss	100	(0) 30-33-35- 60					
	ss	50	(68) 70-0-0-0					
	ss	75	(0) 40-34-60- 50			119.0 271.3		
120	ss	13	(94) 110-70-0-0	СН		119'- 121' (CH) Gray, fat clay with sand and gravel, stiff, wet. 269.3		
	SS	0 100	(70) 100-0-0- 0/0"	СН		122.0 121'- 122' (CH) Gray, fat clay with sand and gravel, 268.3	1	■ Bentonite Seal
- - 125		(1) 100	0/0			123.3 122'- 123.3' Black, phyllite/slate, little fracturing. 267.0 123.3'- 133.3' Black, phyllite/slate, fractures	-	
. –	RC	(26)				throughout.		
	RC	100 (0)						
130		100					PID = 0	
	RC	(60)					PID = 0	
· -						133.3 257.0 133.3'- 153' Black, phyllite/slate, calcite veins, thin	-	
135 _	RC	100 (63)				foliation, fractured.		
		(63)						- Filter Sand
125								- Well Scree
	RC	(30)					PID = 0	
145_	RC	100 (57)						
		(37)						
_ 150		400						
	RC	100 (63)					PID = 0	
_						153.0 237.3 Bottom of borehole at 153.0 feet.		

10 Maxwell Drive, Suite 200 Olifton Park, NY 12180 Telephone: (518) 688-3102 WELL NUMBER HFL-MW-106 PAGE 1 OF 1

Results you can rely on

CLIENT New York State Department of Environmental Conservation PROJECT NUMBER 270939.0000.0000							VIIOIIIIEIILAI COIISEI VALIOII	PROJECT LOCATION Hoosick Falls NV					
					00.00		DI ETED 4/20/40	PROJECT LOCATION Hoosick Falls, NY GROUND ELEVATION 408.88 ft HOLE SIZE 2					
DATE :					o# \^/		PLETED 4/20/18	GROUND WATER LEVELS:	π	_ HOLE S	DI ZE _Z		
				TOR Parr			C	_					
				Hollow Ste			CKED BY Ryan Jorrey						
		_		atum: NAVI		CHE	CRED BY _ Ryan Joney						
NOTES			ם ווטוו	atum. NAVI	J 00			AFTER DRILLING _22.00	U IL / ER	ev 300.20 II	·		
O DEPTH (ft)	SAMDIE TVDE	NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERI	AL DESCRIPTION		Environmental Data	WELL DIAGRAM		
_					ОН	10 11 11 11 11 11 11 11 11 11 11 11 11 1	moist.	vn, topsoil with organics, loose,	406.9	PID = 0	Manhole Cover Top of Rise		
- - -					SP	· ()		n-red, sand and gravel, trace					
5	1							n-gray, sand, some clay and	403.9		Grout		
-	$\frac{X}{A}$	SS	50	6-7-6-9 (13)	SP- SC		gravel, loose, moist.	•					
-	X	ss	63	8-8-8-8 (16)			9.0		399.9				
10	X	ss	38	4-5-6-7 (11)	CL		moist.	ray, clay with fine sand, gravel,		PID = 0	✓Bentonite		
	X	ss	38	7-14-21-7 (35)			13.0		395.9		Seal		
15	\bigvee	ss	38	3-8-9-6 (17)	SP- SC		13'- 15' (SP-SC) Bro clay and gravel. 15.0	wn-red, medium sand, some	393.9				
-	X	ss	13	38-30-25- 15 (55)	SM		15'- 17' (SM) Brown- clay, wet.	gray, medium sand with silt and	391.9				
 	\bigvee	ss	38	18-10-8-10 (18)	SM		▼ clay, wet.	medium sand with silt and					
20	\bigvee	SS	88	8-8-8-7 (16)	SP- SC		19.0 ∑ 19'- 21' (SP-SC) Bro clay and gravel, den: 21.0	wn-red, medium sand, some se.	389.9	PID = 0	- Filter Sand		
		SS	100	9-10-11-8 (21)	SM			medium sand with silt and	385.9		Well Scree		
25	M	SS	100	4-9-11-11 (20)	SM		23'- 25' (SM) Brown- clay, wet. 25.0	gray, medium sand with silt and	383.9				
	\bigvee	ss	63	5-6-11-11 (17)				rown, sand and clay, dense.	000.0				
30		ss	50	13-13-15- 22 (28)	SC		30.0		378.9	PID = 0			

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

WELL NUMBER HFL-MW-106C PAGE 1 OF 3

PROJE	ECT NUN	IBER	270939.00	00.00	000		PROJECT NAME Site No. 442007 - Hoosick Falls Landfill PROJECT LOCATION _ Hoosick Falls, NY					
						PLETED <u>5/2/18</u>	GROUND WATER LEVELS: AT TIME OF DRILLING 19.00 ft / Elev 390.19 ft					
DRILL LOGG	ING MET	'HOD Marnie	CTOR Parr Hollow Stee Chancey atum: NAVI	em Au	ıger	c. CKED BY Ryan Jorrey						
SAMPLE TYPE NUMBER RECOVERY % (RQD) BLOW COUNTS (N VALUE) U.S.C.S.					GRAPHIC LOG	MATER	IIAL DESCRIPTION	Environmental Data	WELL DIAGRAM			
				ОН	1/ 1//	0'- 2' (OH) Dark bro moist.	wn, topsoil with organics, loose,	407.2	PID = 0	Manhole		
 				SP	; ; ;	2'- 5' (SP) Dark brow clay, moist.	wn-red, sand and gravel, trace			Top of Rise		
5 -	ss	50	6-7-6-9 (13)	0.0		5:0 5'- 9' (SP-SC) Brow gravel, loose, moist	n-gray, sand, some clay and	404.2				
- 	ss	63	8-8-8-8 (16)	SP- SC				400.0				
10	ss	38	4-5-6-7 (11)			9.0 9'- 13' (CL) Brown-g moist.	gray, clay with fine sand, gravel,	400.2	PID = 0			
- 	ss	38	7-14-21-7 (35)	CL		13.0		396.2				
- (- 15	ss	38	3-8-9-6 (17)	SP- SC			own-red, medium sand, some	394.2				
	ss	13	38-30-25- 15	SM		15'- 17' (SM) Brown clay, wet.	-gray, medium sand with silt and					
	ss	38	(55) 18-10-8-10 (18)	SM			, medium sand with silt and	390.2				
20	ss	88	8-8-8-7 (16)	SP- SC		19'- 21' (SP-SC) Bro clay and gravel, der	own-red, medium sand, some nse.	388.2	PID = 0			
	ss	100	9-10-11-8 (21)	SM		21'- 23' (SM) Brown clay, wet.	, medium sand with silt and	386.2				
 	ss	100	4-9-11-11 (20)	SM		clay, wet.		384.2				
 	ss	63	5-6-11-11 (17)	sc		25'- 29' (SC) Light b	prown, sand and clay, dense.					
 	ss	75	13-13-15- 22 (28)			29.0		380.2				
30	ss	63	9-11-14-14 (25)	SM		stiff, wet. /	, fine sand with silt and clay,	378.2	PID = 0			
 	ss	100	18-19-20- 28 (39)			31'- 46' (SM) Gray, wet.	sand, some silt and clay, stiff,					
	ss	75	14-17-22- 25 (39)									
 	ss	88	16-20-32- 32									
 	ss	63	(52) 14-22-26- 33	SM								
40	ss	88	(48) 9-10-22-22 (32)						PID = 0			
	ss	63	12-15-21- 21 (36)									

WELL NUMBER HFL-MW-106C

PAGE 2 OF 3

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

CLIENT New York State Department of Environmental Conservation PROJECT NAME Site No. 442007 - Hoosick Falls Landfill

PROJECT	NUMBER	270939.00	00.00	000	PROJECT LOCATION Hoos	ick Falls	, NY		
DEPTH (ft) SAMPLE TYPE		BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	Environmental Data	WELL DIAGRAM		
45	NR 0		SM		31'- 46' (SM) Gray, sand, some silt and clay, stiff, wet. <i>(continued)</i>	363.2			
	SS 50	12-12-12- 12	SP		46'- 48' (SP) Gray, fine sand, medium dense, wet.				
- +	SS 100	(24) 2-24-22-22			48.0 48'- 54' (SP-SC) Gray, fine sand with clay, dense.	361.2			
50		(46) 8-13-13-13					PID = 0		
- 1	SS 75	(26)	sc						
- 44	SS 63	15 - (24) 20-20-18-			54.0	355.2		Grout	
55	SS 50	20			54'- 66' (GC) Gray, clayey sand with gravel (till), moist, stiff.				
	SS 38	(38) 32-22-16- 16							
60	SS 25	(38) 14-26-30-							
	SS 13	33 (56) 70	GC				PID = 0		
	SS 13	50							
+ }									
-	SS 10	50			66.0 66'- 71' No recovery.	343.2			
0	NR 0				,				
70	NR 0								
-	00 5	50	GC		71.0 71'- 73' (GC) Gray, clayey sand with gravel (till),	338.2	PID = 0		
	SS 5	50	GC		73.0 moist, stiff. 73'- 76' No recovery.	336.2			
75	NR 0								
	SS 13	50	GC		76.0 76'- 78' (GC) Gray, clayey sand with gravel (till), moist, stiff.	333.2			
	- 13			8 <i>[]</i>	78.0 78'- 81' No recovery.	331.2			
80	NR 0				81.0	328.2	PID = 0		
	SS 13	50	GC		81'- 83' (GC) Gray, clayey sand with gravel (till),				
				<i>V.L./\\\</i> }	83.0 83'- 86' No recovery.	326.2			
85	NR 0				86.0	323.2			
	SS 0	50	GC		86'- 88' (GC) Gray, clayey sand with gravel (till), moist, stiff.	321.2			
	NR 0			r1-x / \$\forall \cdot \c	88'- 91' No recovery.	021.2			
90	INTX U			ZXZVV	91.0	318.2	PID = 0		
	SS 17	100	GC		91'- 93' (GC) Gray, clayey sand with gravel (till), moist, stiff.	316.2			
					93'- 96' No recovery.				

WELL NUMBER HFL-MW-106C

PAGE 3 OF 3

10 Maxwell Drive, Suite 200 Clifton Park, NY 12180 Telephone: (518) 688-3102

CLIENT New York State Department of Environmental Conservation

PROJECT NAME Site No. 442007 - Hoosick Falls Landfill

PRO JECT NUMBER 270939 0000 0000

PROJECT LOCATION Hoosick Falls NY

PRO	PROJECT NUMBER 270939.0000.0000 PROJECT LOCATION Hoosick Falls, NY									
DEPTH (ft)	SAI				U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	Environmental Data	WELL DIAGRAM	
95		NR	0				93'- 96' No recovery. (continued)			
	X	SS	13	50	GC		96.0 96'- 98' (GC) Gray, clayey sand with gravel (till), moist, stiff.	313.2		
							98'- 101' No recovery.			
100	10	NR	0				101.0	308.2	PID = 0	
	X	ss	10	100	GC		101'- 103' (GC) Gray, clayey sand with gravel (till), moist, stiff.	306.2		
105	$\frac{1}{2}$	NR	0				103'- 106' No recovery.			
105	\top						106.0	303.2		
		SS	100	100/2"			106'- 121.2' Black, phyllite/slate, calcite veins, thin foliation, highly fractured.			
-	10	NR	0				ionation, mgmy natitated.			≺Bentonite Seal
110	П	RC	100 (50)							
- ·	Н	RC	100						PID = 0	
	Н		(61)							
198 115		RC	100 (83)							
77- 120 120 120		RC	100 (71)				121.2	288.0	PID = 0	
	-	RC	100 (82)				121.2'- 126.3' Black, phyllite/slate, minor fracturing. 126.3	282.9		▼Filter Sand Well Screen
TANDHIT SC ACIN		RC	100 (96)				126.3'- 138' Black, phyllite/slate, highly fractured.	202.0	PID = 0	
115 120		RC	100 (75)				129.0	274.0	PID = 0	
JUN JUN JUN JUN JUN JUN JUN JUN JUN JUN						<u> </u>	Bottom of borehole at 138.0 feet.	271.2		

GENERAL BH / TP / WELL - TRC-STD US.GDT - 1/18/19 P:/ECR!PROJECTS!NYSDEC!WA #34 - HOOSICK FALLS LAND

WELL: HFL-MW-101 **OTRC** STICK-UP WELL CONSTRUCTION LOG SHEET 1 OF 1 WELL NUMBER: PROJECT NAME: Hoosick Falls Landfill HFL-MW-101 ADDRESS: Hoosick Falls, NY DRILLING METHOD: Hollow Stem Auger INSTALLATION DATE: 5/23/2017 DRILLER: Parratt-Wolff, Inc. GAUGING DATE: 7/19/2018 DEVELOPMENT DATE: 5/26/2017 DEPTH TO WATER²: 16.01 HEIGHT OF STICK-UP: 2.26 ELEVATION¹: 437.42 DEPTH TO PRODUCT²: NGVD88 DATUM: SCREEN MATERIAL: CASING MATERIAL: PVC PVC FILTER PACK TYPE: #0 Sand SEAL TYPE: Grout Depth from Ground Elevation¹ Surface (feet) 2.55 437.71 Top of Metal Casing 2.26 437.42 Top of Casing (TOC) 0.00 435.16 Ground Surface, Top of Concrete Top of Bentonite Slurry/Bottom 432.16 3.00 of Concrete Collar Top of Sand Pack/ Bottom of 11.00 424.16 Bentonite Slurry 13.00 422.16 Top of Well Screen Slot Size: 0.010" 13.75 421.41 Depth to Water 406.32 End of Well Screen 28.84 29.00 406.16 End of Boring Not to Scale Notes: ¹Feet above datum

WELL: HFL-MW-101B **OTRC** STICK-UP WELL CONSTRUCTION LOG SHEET 1 OF 1 Hoosick Falls Landfill WELL NUMBER: PROJECT NAME: HFL-MW-101B ADDRESS: Hoosick Falls, NY DRILLING METHOD: Hollow Stem Auger INSTALLATION DATE: 3/29/2018 DRILLER: Parratt-Wolff, Inc. GAUGING DATE: 7/19/2018 DEVELOPMENT DATE: 5/4/2018 DEPTH TO WATER²: 51.89 HEIGHT OF STICK-UP: 2.32 ELEVATION¹: 437.54 DEPTH TO PRODUCT²: NGVD88 DATUM: SCREEN MATERIAL: CASING MATERIAL: PVC PVC FILTER PACK TYPE: #0 Sand SEAL TYPE: Grout Depth from Ground Elevation¹ Surface (feet) 2.43 437.65 Top of Metal Casing 2.32 437.54 Top of Casing (TOC) 0.00 435.22 Ground Surface, Top of Concrete Top of Bentonite Slurry/Bottom 374.22 61.00 of Concrete Collar Top of Sand Pack/ Bottom of 63.00 372.22 Bentonite Slurry 65.00 370.22 Top of Well Screen Slot Size: 0.010" 49.57 Depth to Water 385.65 79.69 355.53 End of Well Screen 80.00 355.22 End of Boring Not to Scale Notes: ¹Feet above datum

WELL: HFL-MW-101C **OTRC** STICK-UP WELL CONSTRUCTION LOG SHEET 1 OF 1 WELL NUMBER: PROJECT NAME: Hoosick Falls Landfill HFL-MW-101C ADDRESS: Hoosick Falls, NY DRILLING METHOD: Hollow Stem Auger INSTALLATION DATE: 4/3/2018 DRILLER: Parratt-Wolff, Inc. GAUGING DATE: 7/19/2018 DEVELOPMENT DATE: 5/4/2018 DEPTH TO WATER²: 51.70 HEIGHT OF STICK-UP: 2.25 ELEVATION¹: 437.05 DEPTH TO PRODUCT²: NGVD88 DATUM: SCREEN MATERIAL: CASING MATERIAL: PVC PVC FILTER PACK TYPE: #0 Sand SEAL TYPE: Grout Depth from Ground Elevation¹ Surface (feet) 2.55 437.35 Top of Metal Casing 2.25 437.05 Top of Casing (TOC) 0.00 434.80 Ground Surface, Top of Concrete Top of Bentonite Slurry/Bottom 68.00 366.80 of Concrete Collar Top of Sand Pack/ Bottom of 70.00 364.80 Bentonite Slurry 72.00 362.80 Top of Well Screen Slot Size: 0.010" 49.45 385.35 Depth to Water 99.55 335.25 End of Well Screen 100.00 334.80 End of Boring Not to Scale Notes: ¹Feet above datum

WELL: HFL-MW-102 **OTRC** STICK-UP WELL CONSTRUCTION LOG SHEET 1 OF 1 WELL NUMBER: PROJECT NAME: Hoosick Falls Landfill HFL-MW-102 ADDRESS: Hoosick Falls, NY DRILLING METHOD: Hollow Stem Auger INSTALLATION DATE: 5/25/2017 DRILLER: Parratt-Wolff, Inc. GAUGING DATE: 7/19/2018 DEVELOPMENT DATE: 6/5/2017 DEPTH TO WATER²: 52.54 HEIGHT OF STICK-UP: 2.49 ELEVATION¹: 512.05 DEPTH TO PRODUCT²: NGVD88 DATUM: SCREEN MATERIAL: CASING MATERIAL: PVC PVC FILTER PACK TYPE: #0 Sand SEAL TYPE: Grout Depth from Ground Elevation¹ Surface (feet) 2.49 512.05 Top of Metal Casing 2.49 512.05 Top of Casing (TOC) 0.00 509.56 Ground Surface, Top of Concrete Top of Bentonite Slurry/Bottom 482.56 27.00 of Concrete Collar Top of Sand Pack/ Bottom of 32.00 477.56 Bentonite Slurry 55.00 454.56 Top of Well Screen Slot Size: 0.010" 50.05 459.51 Depth to Water End of Well Screen 63.46 446.10 70.00 439.56 End of Boring Not to Scale Notes: ¹Feet above datum

WELL: HFL-MW-103 **OTRC** STICK-UP WELL CONSTRUCTION LOG SHEET 1 OF 1 WELL NUMBER: PROJECT NAME: Hoosick Falls Landfill HFL-MW-103 ADDRESS: Hoosick Falls, NY DRILLING METHOD: Hollow-stem auger INSTALLATION DATE: 5/24/2017 DRILLER: Parratt-Wolff, Inc. GAUGING DATE: 7/19/2018 DEVELOPMENT DATE: 5/26/2017 DEPTH TO WATER²: 6.84 HEIGHT OF STICK-UP: 2.74 ELEVATION¹: 496.57 DEPTH TO PRODUCT²: NGVD88 DATUM: SCREEN MATERIAL: CASING MATERIAL: PVC PVC FILTER PACK TYPE: #0 Sand SEAL TYPE: Grout Depth from Ground Elevation¹ Surface (feet) 3.05 496.88 Top of Metal Casing 2.74 496.57 Top of Casing (TOC) 0.00 493.83 Ground Surface, Top of Concrete Top of Bentonite Slurry/Bottom 2.00 491.83 of Concrete Collar Top of Sand Pack/ Bottom of 489.83 4.00 Bentonite Slurry 5.00 488.83 Top of Well Screen Slot Size: 0.010" 4.10 489.73 Depth to Water End of Well Screen 19.85 473.98 30.00 463.83 End of Boring Not to Scale Notes: ¹Feet above datum

WELL: HFL-MW-104 **OTRC** STICK-UP WELL CONSTRUCTION LOG SHEET 1 OF 1 Hoosick Falls Landfill WELL NUMBER: PROJECT NAME: HFL-MW-104 ADDRESS: Hoosick Falls, NY DRILLING METHOD: Hollow-stem auger INSTALLATION DATE: 4/4/2018 DRILLER: Parratt-Wolff, Inc. GAUGING DATE: 7/19/2018 DEVELOPMENT DATE: 5/3/2018 DEPTH TO WATER²: 8.11 HEIGHT OF STICK-UP: 1.77 ELEVATION¹: 500.14 NGVD88 DEPTH TO PRODUCT²: DATUM: SCREEN MATERIAL: CASING MATERIAL: PVC PVC FILTER PACK TYPE: #0 Sand SEAL TYPE: Grout Depth from Ground Elevation¹ Surface (feet) 2.06 500.43 Top of Metal Casing 1.77 500.14 Top of Casing (TOC) 0.00 498.37 Ground Surface, Top of Concrete Top of Bentonite Slurry/Bottom 494.37 4.00 of Concrete Collar Top of Sand Pack/ Bottom of 6.00 492.37 Bentonite Slurry 8.00 490.37 Top of Well Screen Slot Size: 0.010" 6.34 492.03 Depth to Water End of Well Screen 22.78 475.59 23.00 475.37 End of Boring Not to Scale Notes: ¹Feet above datum

WELL: HFL-MW-104C **OTRC** STICK-UP WELL CONSTRUCTION LOG SHEET 1 OF 1 WELL NUMBER: PROJECT NAME: Hoosick Falls Landfill HFL-MW-104C ADDRESS: Hoosick Falls, NY DRILLING METHOD: Hollow-stem auger INSTALLATION DATE: 4/10/2018 DRILLER: Parratt-Wolff, Inc. GAUGING DATE: 7/19/2018 DEVELOPMENT DATE: 5/3/2018 DEPTH TO WATER²: 30.43 HEIGHT OF STICK-UP: 2.51 ELEVATION¹: 500.49 DEPTH TO PRODUCT²: NGVD88 DATUM: CASING MATERIAL: PVC PVC SCREEN MATERIAL: FILTER PACK TYPE: #0 Sand SEAL TYPE: Grout Depth from Ground Elevation¹ Surface (feet) 2.75 500.73 Top of Metal Casing 2.51 500.49 Top of Casing (TOC) 0.00 497.98 Ground Surface, Top of Concrete Top of Bentonite Slurry/Bottom 439.23 58.75 of Concrete Collar Top of Sand Pack/ Bottom of 60.99 436.99 Bentonite Slurry 68.50 429.48 Top of Well Screen Slot Size: 0.010" 27.92 470.06 Depth to Water End of Well Screen 93.51 404.47 93.51 404.47 End of Boring Not to Scale Notes: ¹Feet above datum

©TRC		ELL CONSTRUCTIO	ON SHEET 1 OF 1
PROJECT NAME:		WELL NUMBER:	
ADDRESS:	·	_ DRILLING METHOD:	
INSTALLATION DATE:	4/11/2018	_ DRILLER:	Parratt-Wolff, Inc.
DEVELOPMENT DATE:	5/7/2018	_ GAUGING DATE:	7/19/2018
HEIGHT OF STICK-UP:		DEPTH TO WATER ² :	22.63
ELEVATION ¹ : DATUM:		DEPTH TO PRODUCT ² :	N/A
CASING MATERIAL:	PVC	SCREEN MATERIAL:	PVC
FILTER PACK TYPE:	#0 Sand	SEAL TYPE:	Grout
Depth from Ground Surface (feet)	Elevation ¹		
0.00	390.90		Manhole Cover, Ground Surface
0.01	390.89		Top of Casing (TOC)
0.75	390.15		Top of Concrete Collar
10.80	380.10		Top of Bentonite Slurry/Bottom of Concrete Collar
12.80	378.10		Top of Sand Pack/ Bottom of Bentonite Slurry
14.50	376.40		·Top of Well Screen
			Slot Size:
	368.26		Depth to Water
29.09 29.50	361.81 361.40	lot to Scale	End of Well Screen End of Boring

NOT TO SCALE

Notes:

¹Feet above datum ²Feet below top of casing

©TRC	FLUSH-MOUNT	WELL CONSTRUCTION	N WELL: HFL-MW-105C SHEET 1 OF 1
	Hoosick Falls Landfill		
•	Hoosick Falls, NY		
INSTALLATION DATE:	4/11/2018	DRILLER:	Parratt-Wolff, Inc.
DEVELOPMENT DATE:	5/7/2018	GAUGING DATE:	7/19/2018
HEIGHT OF STICK-UP:		DEPTH TO WATER ² :	23.46
ELEVATION ¹ : _ DATUM:		DEPTH TO PRODUCT ² :	N/A
CASING MATERIAL:		SCREEN MATERIAL:	
FILTER PACK TYPE:		SEAL TYPE:	
Surface (feet)	Elevation ¹		
0.00	390.50		Manhole Cover, Ground Surface
0.22	390.28		Top of Casing (TOC)
1.75	388.75		Top of Concrete Collar
120.10 123.00	270.40 267.50		Top of Bentonite Slurry/Bottom of Concrete Collar Top of Sand Pack/ Bottom of Bentonite Slurry
125.00	265.50		Top of Well Screen
			Slot Size:
	366.82		Depth to Water
152.77	237.73		End of Well Screen
153.00	237.50	Not to Scale	End of Boring
Notes: ¹ Feet above datum			

©TRC	FLUSH-MOUN		LL CONSTRUCT DG	FION WELL: HFL-MW-106 SHEET 1 OF 1
	Hoosick Falls Landf		WELL NUMBE	
ADDRESS:	Hoosick Falls, NY	<u>′</u>	DRILLING METHO	OD: Hollow-stem auger
INSTALLATION DATE:	4/11/2018		DRILLE	ER: Parratt-Wolff, Inc.
DEVELOPMENT DATE:	5/7/2018		GAUGING DA	TE:7/19/2018
HEIGHT OF STICK-UP:			DEPTH TO WATE	R ² : 22.19
ELEVATION ¹ : DATUM:			DEPTH TO PRODUC	CT ² : N/A
CASING MATERIAL:	PVC		SCREEN MATERIA	AL: PVC
FILTER PACK TYPE:	#0 Sand		SEAL TYP	PE: Grout
Depth from Ground Surface (feet)	Elevation ¹			
0.00	409.29			Manhole Cover, Ground Surface
0.41	408.88			Top of Casing (TOC)
0.75	408.54			Top of Concrete Collar
9.50	399.79			Top of Bentonite Slurry/Bottom of Concrete Collar
12.00	397.29			Top of Sand Pack/ Bottom of Bentonite Slurry
14.00	395.29			Top of Well Screen
				Slot Size:
	386.69			Depth to Water
29.62 30.00	379.67 379.29	No.	ot to Scale	End of Well Screen End of Boring

Notes:

¹Feet above datum ²Feet below top of casing

©TRC	FLUSH-MOUNT WE		WELL: HFL-MW-106C SHEET 1 OF 1
	L	OG	SHEET TOP T
	Hoosick Falls Landfill	WELL NUMBER:	
ADDRESS:	Hoosick Falls, NY	DRILLING METHOD:	Hollow-stem auger
INSTALLATION DATE:	4/11/2018	DRILLER:	Parratt-Wolff, Inc.
DEVELOPMENT DATE:	5/7/2018	GAUGING DATE:	7/19/2018
HEIGHT OF STICK-UP:		DEPTH TO WATER ² :	15.23
ELEVATION ¹ :			NIA
DATUM: CASING MATERIAL:	NGVD88 PVC	DEPTH TO PRODUCT ² : SCREEN MATERIAL:	N/A PVC
FILTER PACK TYPE:		SEAL TYPE:	
•	Elevation ¹		
0.00	409.48		Manhole Cover, Ground Surface
0.29	409.19		Top of Casing (TOC)
0.50	408.98		Top of Concrete Collar
107.00 109.00	302.48 300.48 298.48		Top of Bentonite Slurry/Bottom of Concrete Collar Top of Sand Pack/ Bottom of Bentonite Slurry
15.52	393.96	- - - - - - - - - - - - - - - - - - -	Top of Well Screen Slot Size: Depth to Water
137.63 138.00	271.85 271.48		End of Well Screen End of Boring

Not to Scale

NOT TO SCALE

Notes:

¹Feet above datum ²Feet below top of casing

WELL: MW-1B **CTRC** STICK-UP WELL CONSTRUCTION LOG SHEET 1 OF 1 WELL NUMBER: PROJECT NAME: Hoosick Falls Landfill MW-1B ADDRESS: Hoosick Falls, NY DRILLING METHOD: Hollow-stem auger INSTALLATION DATE: 9/10/1991 DRILLER: Gibbs & Hill, Inc. GAUGING DATE: 7/19/2018 DEVELOPMENT DATE: 6/5/2017 DEPTH TO WATER²: 4.78 HEIGHT OF STICK-UP: 0.66 ELEVATION¹: 499 NGVD88 DEPTH TO PRODUCT²: DATUM: SCREEN MATERIAL: PVC CASING MATERIAL: PVC FILTER PACK TYPE: #0 Sand SEAL TYPE: Grout Depth from Ground Elevation¹ Surface (feet) 0.96 499.30 Top of Metal Casing 0.66 499.00 Top of Casing (TOC) 0.00 498.34 Ground Surface, Top of Concrete Top of Bentonite Slurry/Bottom 1.80 496.54 of Concrete Collar Top of Sand Pack/ Bottom of 492.54 5.80 Bentonite Slurry 8.20 490.14 Top of Well Screen Slot Size: 0.010" 4.12 494.22 Depth to Water

Notes:

Well construction log has been re-drawn based upon the "Overburden Well Construcion Schematic" provided in the December 1991 Closure Investigation Report by Laberge Engineering & Consulting Group Ltd.

Not to Scale

End of Well Screen

End of Boring

¹Feet above datum

20.19

22.00

478.15

476.34

WELL: MW-2 **CTRC** STICK-UP WELL CONSTRUCTION LOG SHEET 1 OF 1 WELL NUMBER: PROJECT NAME: Hoosick Falls Landfill MW-2 ADDRESS: Hoosick Falls, NY DRILLING METHOD: Hollow-stem auger INSTALLATION DATE: 1/31/1990 DRILLER: Gibbs & Hill, Inc. GAUGING DATE: 7/19/2018 DEVELOPMENT DATE: 6/8/2017 DEPTH TO WATER²: 4.83 HEIGHT OF STICK-UP: 2.11 ELEVATION¹: 400.8 NGVD88 DEPTH TO PRODUCT²: DATUM: SCREEN MATERIAL: PVC CASING MATERIAL: PVC FILTER PACK TYPE: #0 Sand SEAL TYPE: Grout Depth from Ground Elevation¹ Surface (feet) 2.45 403.25 Top of Metal Casing 2.11 402.91 Top of Casing (TOC) 0.00 400.80 Ground Surface, Top of Concrete Top of Bentonite Slurry/Bottom 2.00 398.80 of Concrete Collar Top of Sand Pack/ Bottom of 17.70 383.10 Bentonite Slurry 20.00 380.80 Top of Well Screen Slot Size: 0.010" 2.72 Depth to Water 398.08

Notes:

Well construction log has been re-drawn based upon the "Overburden Well Construcion Schematic" provided in the December 1991 Closure Investigation Report by Laberge Engineering & Consulting Group Ltd.

Not to Scale

End of Well Screen

End of Boring

¹Feet above datum

30.03

35.00

370.77

365.80

WELL: MW-4 **CTRC** STICK-UP WELL CONSTRUCTION LOG SHEET 1 OF 1 WELL NUMBER: PROJECT NAME: Hoosick Falls Landfill MW-4 ADDRESS: Hoosick Falls, NY DRILLING METHOD: Hollow-stem auger INSTALLATION DATE: 2/6/1990 DRILLER: Gibbs & Hill, Inc. GAUGING DATE: 2/13/2018 DEVELOPMENT DATE: 6/8/2017 DEPTH TO WATER²: 22.65 HEIGHT OF STICK-UP: 2.76 ELEVATION¹: 403.39 NGVD88 DEPTH TO PRODUCT²: DATUM: SCREEN MATERIAL: PVC CASING MATERIAL: PVC FILTER PACK TYPE: #0 Sand SEAL TYPE: Grout Depth from Ground Elevation¹ Surface (feet) 2.79 406.18 Top of Metal Casing 2.76 406.15 Top of Casing (TOC) 0.00 403.39 Ground Surface, Top of Concrete Top of Bentonite Slurry/Bottom 2.00 401.39 of Concrete Collar Top of Sand Pack/ Bottom of 20.00 383.39 Bentonite Slurry 22.00 381.39 Top of Well Screen Slot Size: 0.010" 19.89 383.50 Depth to Water

Notes:

Well construction log has been re-drawn based upon the "Overburden Well Construcion Schematic" provided in the December 1991 Closure Investigation Report by Laberge Engineering & Consulting Group Ltd.

Not to Scale

End of Well Screen

End of Boring

¹Feet above datum

31.70

35.00

371.69

368.39

APPENDIX B FIELD FORMS – GROUNDWATER SAMPLING LOGS

				LOW	FLOW GR	DUNDW	/AT	ER SAMP	LING RE	COR	D		
	PROJECT NAME		NYS	SDEC Hoosick Falls Lar	adfill		LOC	ATION ID HFL-MW-	103	DATE	6/7/201	17	1
	PROJECT NUMB	ER		270939.0000.0000			STAI	RT TIME 14:02		END T	TIME 15:00)	1
	SAMPLE ID	HFL-M	W-101	SAM	14:47		SITE	2 NAME/NUMBE 442007		PAGE	1 OF	1]
WELL DIAM	IETER (INCHES)	1		2 X 4	6	8		OTHER					WELL INTEGRITY YES NO N/A
TUBING ID ((INCHES)	1/8	_	1/4 X 3/8	1/2	5/8		OTHER				CAP CASING	<u>X</u>
MEASUREM	IENT POINT (MP)	X	TOP OF	RISER (TOR)	TOP OF CASIN	IG (TOC)		OTHER				LOCKED COLLAR	
INITIAL I (BMP)	DTW 13	1.58	FT	FINAL DTW (BMP)	15.33	FT		T. CASING CKUP (AGS)	2.55	2.55 FT		TOC/TOR DIFFERENC	0.29 FT
WELL DEPTH 28 FT				SCREEN LENGTH	15	PID FT AMBIENT AIR			0	0 PPM			IER SEC
WATER COLUMN	14	.42	FT	DRAWDOWN VOLUME	1.15	GAL	PID V	WELL JTH	0	0 PPM			E - SEC
CALCULA GAL/VOL	٠ 9.	.46	GAL	(final DTW - initial D'TOTAL VOL. PURGED	GAL		WDOWN/ AL PURGED	0.4	19		PRESSURE TO PUMP	- PSI	
	well diameter square			(mL per minute X tota									
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURC	E RATE	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANO (mS/cm) (+/- 3%)			DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (+/- 10% <10		REDOX (mv) (+/- 10 mv)	PUMP INTAKE DEPTH (ft)	COMMENTS
14:02	BEGIN PUR	GING											•
14:07	13.91	:	200	22.8	0.645	6.12		1.84	24.6		103	25	
14:12	14.11	:	200	18.4	0.67	6.61		0	29.9		105	25	
14:17	14.39		200	17.6	0.681	6.65		0	55.9		86	25	
14:22	14.58		200	17.5	0.686	6.6		0	67.6		98	25	
14:27 14:32	14.78 14.96		200	16.9	0.691	6.54 0 6.54 0		0	70.9 64.5		95	25 25	
14:37	15.15	200 17.1 0.69 6.34		+	0	55.3		93	25				
14:42	15.24	:	200			53.3		99	25				
14:47	15.33		200	17.5	0.693	6.47		0	49.0		97	25	
	_			<u> </u>									legree (ex. 10.1 = 10)
	F	INAL S	STABILI	ZED FIELD PAR	AMETERS (to ap	propriate s	signifi	icant figures[S	F])			COND.: 3 SF mar pH: nearest tenth DO: nearest tenth	
				18	0.693	6.5		0	49		97	TURB: 3 SF max.	t, nearest tenth (6.19 = 6.2, 101 = 101) = 44, 191 = 190)
-	DOCUMENTATION TYPE OF PUMP	N	D	ECON FLUIDS USED		TURI	NG/PH	MP/BLADDER MA	TERIALS				EQUIPMENT USED
X PERIS	TALTIC ERSIBLE		X	LIQUINOX DEIONIZED WATER		TUBING TUBING	110/1 0/	S. ST	EEL PUMP MAT PUMP MATERIA			X WL M	
BLAD				POTABLE WATER	TEFLON	LINED TUBIN	٩G	GEO	PROBE SCREEN	ıL		X WQ M	
WATT				NITRIC ACID HEXANE	X HDPE TO			OTH				X PUMP	
OTHE	R			METHANOL PFAS FREE WATER	OTHER OTHER		_	OTH OTH				OTHEI FILTE	
ANALYTIC	CAL PARAMETER PARAM			METHOD	FIELD				OLUME		MPLE	QC	SAMPLE BOTTLE ID
v	PFA			NUMBER 537.1	FILTERE No	D	METH		EQUIRED 500 mL		ECTED Yes	COLLECTED No	NUMBERS NUMBERS
X	1,4-dio	xane		8270-SIM	No		Ico		2 L		Yes .	No	
X	PCB	Bs		8082A	No		Ico	e	500 mL	,	Yes	No	
X	TCL Pes			8081B	No		Ice		500 mL		Yes	No	_
X	TCL SV			8270D 8260C	No No		Ice HC		500 mL 150 mL		r'es	No No	_
X	Total M			6010C, 7470.	A No		Nitric .		500 mL		Yes Yes	No No	_
ш	SERVATIONS							KETCH/NOTES					
PURGE WA CONTAINE		NO NO	1	NUMBER OF GALL GENERATED	ONS 2.3	4							
NO-PURGE		NO NO		If yes, purged approxima									
UTILIZED		X	1	to sampling or	mL for this sample lo	cation.	-						
Sampler Sign	nature:	DL		Print Name:	Stephen Johansson								
Checked By:	Ryan Jorrey			Date: 6/	7/2017								

					LOV	V FLOW GRO	UNDW	AT	ER SAN	MPL	ING RECO	ORD		
	PROJECT I	NAME		NYS	SDEC Hoosick Falls Lan	dfill		LOCA	ATION ID	-MW-1		ATE 6/8/20	017	
	PROJECT !	NUMBE	ER		270939.0000.0000			STAR	RT TIME	9:55		ND TIME		
	SAMPLE II	D	HFL-MV	W-102	SAM	PLE TIME 10:40		SITE	NAME/NU		PA	AGE 1 OF	1	
WELL DIAM	IETER (INC	снеѕ) Г	1		2 X 4	6	18		OTHER					WELL INTEGRITY YES NO N/A
		/ [1/8		1/4 X 3/8	1/2	15/8	_	OTHER				CAP CASING	X
TUBING ID (L Γ (MP)			RISER (TOR)	TOP OF CASING	_	_	OTHER				LOCKED COLLAR	
INITIAL I (BMP)	DTW	52.	72	FT	FINAL DTW (BMP)	54.33	FT		T. CASING KUP (AGS)		2.49	FT	TOC/TOR DIFFERENCE	0.0 FT
WELL DE (BMP)	ЕРТН	71.	77	FT	SCREEN LENGTH	15	FT	PID	PID AMBIENT AIR		0 PPM		REFILL TIMI	ER 25 SEC
WATER	/ATER 19.05			DRAWDOWN 1.06		PID WELI		WELL		0		DISCHARGE	5	
CALCUL		12.:	50	FT	VOLUME (final DTW - initial D' TOTAL VOL.	TW X well diam. square	GAL d X 0.041)	MOU	WDOWN/		0.42	PPM	PRESSURE	SEC 60
	well diameter	r squared	1 X 0.041)		` *	l minutes X 0.00026 gal		TOTA	AL PURGE	D			TO PUMP	PSI
	DTW (F					SP. CONDUCTANCE			DICC C			\ n=====	PUMP	
TIME 3-5 Minutes	0.0-0.33 Drawdo	3 ft		E RATE /min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	pH (unit (+/- 0.1 un		DISS. O ₂ (r (+/- 10%		TURBIDITY (nt (+/- 10% <10 nt	,	INTAKE DEPTH (ft)	COMMENTS
9:52	BEGIN	PURG	GING										_	
10:05	53.12	2	2	200	16.14	0.733	7.23		2.91		0	197	60	
10:10	53.48			200	14.2	0.743	7.23		1.81		0	203	60	
10:15	53.67			200	14.37	0.744	7.2		1.59		13.7 28.5	207	60	
10:25	53.92			200	13.98	0.744	7.16		0.98		44.1	208	60	
10:30	30 54.11 200		200	13.95	0.738	7.14		0.7		55.3	208	60		
10:35	54.26 200		200	14.2	0.739	7.12		0.78		59.2	208	60		
10:40	54.33	3	2	200	14.1	0.749	7.11		0.64		58.9	208	60	
														gree (ex. 10.1 = 10)
		F	INAL S	STABIL	1	AMETERS (to app	1	ignific		es[SF]	· 	200	pH: nearest tenth (e DO: nearest tenth (ex. 3.51 = 3.5)
EQUIPMENT	DOCUMEN	TATIO	N		14	0.749	7.1		0.6		58.9	208	ORP: 2 SF (44.1 =	nearest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
	TYPE OF PUM	<u>IP</u>			ECON FLUIDS USED LIQUINOX	SILICON T		NG/PUM	MP/BLADDEF		<u>RIALS</u> EL PUMP MATERI	AL	X WL ME	EQUIPMENT USED TER
SUBM BLAD	IERSIBLE DER				DEIONIZED WATER POTABLE WATER	TEFLON T	UBING INED TUBIN	IG.			UMP MATERIAL ROBE SCREEN			MultiRae ETER Horiba
WATT					NITRIC ACID HEXANE	X HDPE TUB LDPE TUB	ING				N BLADDER		X TURB.	METER Geopump
OTHE	R				METHANOL	OTHER	ING			OTHER	₹		OTHER	
ANALYTIC	R CAL PARAM	METERS	 S	X	PFAS FREE WATER	OTHER				OTHE	₹		FILTER	S NO. TYPE
		ARAME	ETER		METHOD NUMBER	FIELD FILTERED		METH		REG	QUIRED C	SAMPLE	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X		PFAS 1,4-diox			537.1 8270-SIM	No No		Ice			00 mL 2 L	Yes	No No	
X		PCBs	S		8082A	No		Ice	e	5	00 mL	Yes	No	
X	Т	CL Pesti	icides		8081B	No		Ice		5	00 mL	Yes	No	
X	7	TCL SV	OCs		8270D	No		Ice	e	5	00 mL	Yes	No	· ·
X		TCL VC			8260C	No		HC			50 mL	Yes	No	
X		Total Me	etals		6010C, 7470A	A No		Nitric A			00 mL	Yes	No	
PURGE OB PURGE WA CONTAINE		YES X	NO		NUMBER OF GALL GENERATED	ONS 2.50		SK	KETCH/NO	TES				
NO-PURGE UTILIZED		YES	NO X			tely 1 standing volume prio mL for this sample local								
a		MI	1	_	B W	61								
Sampler Sign		911				Stephen Johansson								
Checked By:	Ryan Jo	orrey			Date: 6/8/2	U1/		1						

					LOW	FLOW GR	OUNDW	AT	ER SA	MPL	ING RECO	ORD		
	PROJECT N	NAME		NYS	DEC Hoosick Falls Lan	dfill		LOC	ATION II			ATE		
	PROJECT N	NUMBE	R		270939.0000.0000			STAI	HFL-I	MW-103		6/7/20 ND TIME		
	SAMPLE ID)				PLE TIME		SITE	NAME/N	12:36 UMBEF	R PA	13:1 AGE	.0	
	HF	FL-MW-	103			13:00				442007		1 OF		
WELL DIAM	METER (INC	HES)	1		2 X 4	6	8		OTHER _					WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES)		1/8		1/4 X 3/8	1/2	5/8		OTHER _				CAP CASING LOCKED	<u>X</u>
MEASUREM	IENT POINT	(MP)	X	TOP OF I	RISER (TOR)	TOP OF CASI	NG (TOC)		OTHER _				COLLAR	X
INITIAL I (BMP)	DTW	4.7	1	FT	FINAL DTW (BMP)	5.84			T. CASIN CKUP (AG		3.05	FT	TOC/TOR DIFFERENCE	0.31 FT
WELL DE (BMP)	2LL DEPTH 19.71 FT		FT	SCREEN LENGTH	15	FT AM) IBIENT AIR		0 PPM		REFILL TIMI SETTING	ER SEC	
WATER COLUMN			FT	DRAWDOWN VOLUME	0.74			D WELL OUTH		0 PPM		DISCHARGE TIMER SETT		
CALCULA GAL/VOL		9.84	4	GAL	(final DTW - initial D' TOTAL VOL. PURGED	TW X well diam. squa	DRAW		WDOWN AL PURG	0.39			PRESSURE TO PUMP	- PSI
(column X	well diameter				(mL per minute X tota		gal/mL)							
TIME	DTW (F 0.0-0.33	T)		E RATE	TEMP. (°C)	SP. CONDUCTANO (mS/cm)		ts)	DISS. O ₂	(mg/L)	TURBIDITY (nt	u) REDOX (mv	PUMP INTAKE	COMMENTS
3-5 Minutes	Drawdov	wn	-	/min)	(+/- 3 degrees)	(+/- 3%)	(+/- 0.1 ur	nits)	(+/- 10	0%)	(+/- 10% <10 nt	(+/- 10 mv)	DEPTH (ft)	COMMENTS
12:36	BEGIN	PURG			1						I		1	
12:40	5.01			000	18.91	0.701	5.97		4.6		0	224	18	
12:45	5.24			.00	15.25	0.714	6.2		0.8		0	231	18	
12:50	5.42			.00	14.56	0.719	6.23		0		0	236	18	
12:55	5.67			.00	14.90	0.718	6.3		0		0	236	18	
13:00	5.84		2	.00	14.97	0.719	6.32		0		0	236	18	<u> </u>
												-		
		E	DIAT C	TABILI	ZED EIEI D DAD	METERS (4			4 6°	ICE	D.			gree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
		F	INAL S	IADILI	ZED FIELD PAR			igiiiii			<u> </u>	1	pH: nearest tenth (e DO: nearest tenth (e	ex. 5.53 = 5.5) ex. 3.51 = 3.5)
EQUIPMENT	DOCUMENT	TATION	J		15	0.719	6.3		0		0	240	TURB: 3 SF max, r ORP: 2 SF (44.1 =	nearest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
	TYPE OF PUMI		` .		ECON FLUIDS USED			NG/PU	MP/BLADE					EQUIPMENT USED
SUBM	TALTIC IERSIBLE				LIQUINOX DEIONIZED WATER	TEFLON	N TUBING N TUBING			PVC P	EL PUMP MATERI UMP MATERIAL	AL		MultiRae TER Horiba
BLAD			_		POTABLE WATER NITRIC ACID	X HDPE T		ıG			ROBE SCREEN ON BLADDER		X TURB.	
OTHE	R		_		HEXANE METHANOL	OTHER	UBING			OTHE	R		OTHER	
ANALYTIC	CAL PARAM	IETERS		X	PFAS FREE WATER	OTHER				OTHE			FILTER	
	PA	ARAME			METHOD NUMBER	FIELD FILTERE		METH		RE	-	SAMPLE OLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X		PFAS 1,4-dioxa			537.1 8270-SIM	No No		Ice		5	2 L	Yes	No No	
X		PCBs			8082A	No No		Ice		5	00 mL	Yes	No	
X	ТС	CL Pestic	cides		8081B	No		Ice	e	- 5	00 mL	Yes	No	
X	Т	TCL SVC	OCs		8270D	No		Ice	e	5	00 mL	Yes	No	
X		TCL VO			8260C	No No		HC		_	50 mL	Yes	No	
Y PURCE OR	SERVATION	Total Met	als		6010C, 7470A	A No		Nitric .	Acid KETCH/N	_	00 mL	Yes	No	
PURGE WA	TER	YES	NO		NUMBER OF GALL	ONS 1.2	5	51	XETCH/N	OILS				
CONTAINE NO-PURGE		X YES	NO		GENERATED If yes, purged approxima	tely 1 standing volume [prior							
UTILIZED		Ш	X		to sampling or	mL for this sample lo	ocation.							
Sampler Sigr	nature:	TAI	1		Print Name:	Stephen Johansson								
Checked By:	Ryan Joi	rrey			Date: 6/	7/2017								

			LOV	V FLOW GRO	DUNDWA	TER SAM	PLING REC	CORD		
	PROJECT NAM	E	ANGERGA	100	LO	OCATION ID		DATE		
	DD O JECT NUM		NYSDEC Hoosick Falls La	indfill	CITE	HFL-MW		6/8/20)17	
	PROJECT NUM	BEK	270939.0000.000			ART TIME 8:3	4	END TIME 9:10)	
	SAMPLE ID	HFL-MW-1E		PLE TIME 9:00	SI	TE NAME/NUM 442		PAGE 1 OF	1	
WELL DIA	METER (INCHES)	1								WELL INTEGRITY
	METER (INCHES)		X 2 4	[6					CAP	YES NO N/A X
TUBING ID		1/8	1/4 X 3/8		5/8	_			CASING LOCKED	
	MENT POINT (MP	y) X TO	OF RISER (TOR)	TOP OF CASINO					COLLAR	<u>x</u>
INITIAL (BMP)	DTW	1.18 FI	FINAL DTW (BMP)	1.23		OT. CASING ICKUP (AGS)	0.96	FT	TOC/TOR DIFFERENCE	E 0.3 FT
(BMP)	ЕРТН 2	20.85 FT	SCREEN LENGTH	15	FT AM	D MBIENT AIR	0	PPM	REFILL TIMI SETTING	ER SEC
WATER COLUM		19.67 FT		0.0082	GAL MO	D WELL OUTH	0	PPM	DISCHARGE TIMER SETT	
CALCUI		.2259	TOTAL VOL.	OTW X well diam. squar 1.69	DR	AWDOWN/	0.00	5	PRESSURE	
GAL/VO	L Well diameter squar	GAI red X 0.041)		tal minutes X 0.00026 ga		TAL PURGED			TO PUMP	PSI
	DTW (FT)		TABILIZATION CRITE	RIA (AS LISTED IN T SP. CONDUCTANCE	: 1				PUMP	
TIME 3-5 Minutes	0.0-0.33 ft Drawdown	PURGE RA (mL/min		(mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg (+/- 10%)	L) TURBIDITY ((+/- 10% <10		INTAKE DEPTH (ft)	COMMENTS
8:34	BEGIN PUI	RGING		(1, 2,12)					(.,	
8:40	1.23	250	12.43	0.599	6.9	0	0	197	18	
8:45	1.23	250	11.44	0.610	6.96	0	0	195	18	
8:50	1.23	250	11.28	0.610	6.98	0	0	193	18	
8:55	1.23	250	11.37	0.607	7.03	0	0	189	18	
9:00	1.23	250	11.63	0.606	7.07	0	0	185	18	
7.00	1.25	250	11.05	0.000	7.07			105	10	
		FINAL STAI	BILIZED FIELD PAR	AMETERS (to app	oropriate sign	ificant figures	[SF])			gree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696) ex. 5.53 = 5.5)
			12	0.606	7.1	0	0	190	DO: nearest tenth (ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
-	DOCUMENTATI	ION		ļ.	1	Ļ				
	TYPE OF PUMP STALTIC	X	DECON FLUIDS USED LIQUINOX	SILICON		PUMP/BLADDER S.	<u>IATERIALS</u> STEEL PUMP MATE	RIAL	X WL ME	EQUIPMENT USED ETER
SUBM BLAI	MERSIBLE ODER		DEIONIZED WATER POTABLE WATER		LINED TUBING	G	C PUMP MATERIAL OPROBE SCREEN	-	X WQ ME	MultiRae ETER Horiba
	TERA		NITRIC ACID HEXANE	X HDPE TUI		0	FLON BLADDER THER		X PUMP	METER Geopump
OTHI		X	METHANOL PFAS FREE WATER	OTHER OTHER			THER		OTHER FILTER	
ANALYTI	CAL PARAMETE		METHOD	FIELD	PRESE	RVATION	VOLUME	SAMPLE	QC	SAMPLE BOTTLE ID
l	PARAM PFA		NUMBER 537.1	FILTERED No		THOD Ice	REQUIRED 500 mL	COLLECTED Yes	COLLECTED No	NUMBERS
X	1,4-di		8270-SIM			Ice	2 L	Yes	No	
X	PC	Bs	8082A	No		Ice	500 mL	Yes	No	·
X	TCL Pe	sticides	8081B	No	_	Ice	500 mL	Yes	No	
X	TCL S		8270D	No No		Ice	500 mL	Yes	No	
X	TCL V		8260C 6010C, 7470)A No		HCl ic Acid	150 mL 500 mL	Yes	No No	
	BSERVATIONS		<u> </u>			SKETCH/NOTI		-		· · · · · · · · · · · · · · · · · · ·
PURGE WA			NUMBER OF GALL GENERATED	LONS 1.69						
NO-PURGI	E METHOD YE	ES NO	If yes, purged approxim	nately 1 standing volume pri						
UTILIZED		X	to sampling or	mL for this sample loc	auon.					
Sampler Sig	gnature: A	DL	Print Name:	Steohen Johansson						
Checked By	r: Ryan Jorrey		Date: 6	/8/2017						

			LOW	FLOW GRO	UNDWA	TER SAMPI	LING RECO	RD		
	PROJECT NAME		The state of the s	1011	Lo	OCATION ID	DA	ГЕ		
	DD O FECT AND 4D		SDEC Hoosick Falls Land	Ifill	en	HFL-MW-4	ENI	6/8/20	17	
	PROJECT NUMB	EK	270939.0000.0000		81	TART TIME 11:35	ENI	12:30	0	
	SAMPLE ID	HFL-MW-4	SAMP	LE TIME 12:20	SI	TE NAME/NUMBE 442007	R PAG	GE 1 OF	1	
				<u> </u>						WELL INTEGRITY
WELL DIAM	METER (INCHES)	1 X	2 4	6	8	OTHER			CAP	YES NO N/A
TUBING ID	(INCHES)	1/8	1/4 X 3/8	1/2	5/8	OTHER			CASING LOCKED	X
MEASUREM	MENT POINT (MP)	X TOP OF	RISER (TOR)	TOP OF CASING	(TOC)	OTHER			COLLAR	X
INITIAL I (BMP)	DTW 20).66 FT	FINAL DTW (BMP)	25.06		ROT. CASING FICKUP (AGS)	2.79	FT	TOC/TOR DIFFERENCE	0.3 FT
WELL DE (BMP)	ЕРТН 34	FT FT	SCREEN LENGTH	15	FT A	ID MBIENT AIR	0	PPM	REFILL TIME SETTING	ER SEC
WATER COLUMN	N 13	3.95 FT	DRAWDOWN VOLUME	0.72	GAL M	D WELL OUTH	0	PPM	DISCHARGE TIMER SETT	ING SEC
CALCULA GAL/VOL		.29 GAL	(final DTW - initial DTV TOTAL VOL. PURGED	2.34	GAL TO	RAWDOWN/ OTAL PURGED	0.31		PRESSURE TO PUMP	- PSI
	well diameter square	-	(mL per minute X total							
TIME	DTW (FT) 0.0-0.33 ft	PURGE RATE	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)		PUMP INTAKE	COMMENTS
3-5 Minutes	Drawdown	(mL/min)	(+/- 3 degrees)	(+/- 3%)	(+/- 0.1 units	(+/- 10%)	(+/- 10% <10 ntu)	(+/- 10 mv)	DEPTH (ft)	L
11:35	BEGIN PUR	GING	T		1	1	1			
11:45	22.3	250	18.4	0.881	6.59	4.53	0	227	32	
11:50	23.08	250	15.7	0.929	6.45	4.4	0	249	32	
11:55	23.76	250	13.6	0.979	6.38	4.73	0	261	32	
12:00	23.79	200	14.9	0.95	6.29	3.1	0	268	32	
12:05	24.2	200	15.35	0.969	6.2	3.99	0	273	32	
12:10	24.58	200	14.34	0.985	6.24	3.62	0	274	32	
12:15	24.83	200	14.38	0.979	6.27	3.69	0	274	32	
12:20	25.06	200	14.45	0.984	6.27	3.45	0	273	32	
		TNA COLADA	WED EVEL D DADA	METERS (4	<u> </u>	*e*			TEMP.: nearest deg	
	r	INAL STABILI	ZED FIELD PARA	METERS (to app	ropriate sig	nificant figures[S]	F])		pH: nearest tenth (e DO: nearest tenth (e	(ex. 3333 = 3330, 0.696 = 0.696) ex. 5.53 = 5.5) ex. 3.51 = 3.5)
			15	0.984	6.3	3.5	0	270		nearest tenth (6.19 = 6.2, 101 = 101)
-	DOCUMENTATION TYPE OF PUMP		ECON FLUIDS USED		TUBING/	PUMP/BLADDER MAT	TERIALS			EQUIPMENT USED
X PERIS	STALTIC MERSIBLE	X	LIQUINOX DEIONIZED WATER	SILICON T TEFLON TO	UBING	S. STI	EEL PUMP MATERIAL	L	X WL ME	
BLAD			POTABLE WATER NITRIC ACID		INED TUBING	GEOP	ROBE SCREEN ON BLADDER			ETER Horiba
WATT			HEXANE METHANOL	LDPE TUB!		OTHE	ER			Geopump
OTHE	R	X	PFAS FREE WATER	OTHER		OTHE			FILTER	
ANALYTIC	CAL PARAMETER PARAME	ETER	METHOD NUMBER	FIELD FILTERED				AMPLE LLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X	PFAS 1,4-diox		537.1 8270-SIM	No No	-		500 mL 2 L	Yes Yes	No	
X	PCB:		8082A	No No	<u> </u>	Ice :	500 mL	Yes	No No	
X	TCL Pesti		8081B	No	-		500 mL	Yes	No	
X	TCL SV	OCs	8270D	No		Ice :	500 mL	Yes	No	
X	TCL VC	OCs	8260C	No			150 mL	Yes	No	
X	Total Me	etals	6010C, 7470A	No	Nit		500 mL	Yes	No	
PURGE OB PURGE WA	SERVATIONS ATER YES	S NO	NUMBER OF GALLO	NS 2.34		SKETCH/NOTES				
CONTAINE NO-PURGE			GENERATED If yes, purged approximate		NF.					
UTILIZED	LINOD TES	X		_mL for this sample locat						
Sampler Sigr	nature: AA	DL	Print Name: S	tephen Johansson						
Checked By:	: Ryan Jorrey		Date: 6/8/	2017						

				LOV	V FLOW (GRO	UNDV	VAT	ER S	SAM	PL	ING RE	COI	RD						
	PROJECT NAM	E						LOC	ATION	ID			DATI	E			1			
			NYSD	DEC Hoosick Falls La	ndfill					IFL-MV	V-2			6/8/20	17					
	PROJECT NUM	BER		270939.0000.0000					RT TIM	14:				TIME 15:0:	5					
	SAMPLE ID	HFL-MW-	2	SAM	PLE TIME 14:55			SITE	NAMI	E/NUM 4420			PAGI	E 1 OF		1				
WELL DIAN	METER (INCHES		X	2 🗖 4	6	_	8		OTHE	n							WELL I	NTEGRITY	/ N/A	
		_				_										CAP	X		IV/A	
TUBING ID	(INCHES) IENT POINT (MF	1/8		1/4 X 3/8 RISER (TOR)	TOP OF CA		5/8 (TOC)		OTHE]	CASING LOCKED COLLAR		_	_	
INITIAL	DTW	2.91	_	FINAL DTW	7.12		(100)		T. CAS		ſ	2.45				/TOR	<u> </u>	0.34		٦
(BMP)		2.91 F1		BMP)	7.12		FT		CKUP (A	AGS)		2.43		FT		FERENCI		0.34	F	Γ
(BMP)	EPTH 3	32.23 F1		SCREEN LENGTH	15		FT	PID AMB	SIENT A	AIR		0]	PPM		ILL TIM FING	ER	-	SE	C.
WATER COLUMN	N 2	29.32 F1	· v	ORAWDOWN VOLUME	0.69		GAL	PID V MOU	WELL JTH			0]	PPM		CHARGE ER SETT		=	SE	iC.
CALCUL		4.81	Т	final DTW - initial D'	TW X well diam.	squared			WDOV		Ī	0.25	5			SSURE		-		CI.
GAL/VOI (column X	well diameter squar	GA red X 0.041)		PURGED mL per minute X tota	d minutes X 0.000	026 gal/	GAL mL)	101	AL PUI	KGED	L				101	PUMP			Р	SI
	DTW (FT)			ILIZATION CRITE	ERIA (AS LISTE SP. CONDUCTA		THE QAPI	P)			1				l n	PUMP	1			
TIME 3-5 Minutes	0.0-0.33 ft Drawdown	PURGE R (mL/mir		TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	ANCE	pH (uni (+/- 0.1 u			O ₂ (mg/ - 10%)	/L)	TURBIDITY (+/- 10% <10		REDOX (mv) (+/- 10 mv)	IN	TAKE PTH (ft)		COM	MENTS	
14:12	BEGIN PUI	RGING	<u> </u>		(2,2)	l					!						ı			
14:20	4.82	250		18.6	0.737		6.71			0		40.2		141		30				
14:25	5.49	250		17	0.755		6.61			0		69.2		116		30				
14:30	5.91	250		16.5	0.758		6.57			0		65.1		107		30				
14:35	6.35	250		16.1	0.768		6.53			0		60.2		92		30				
14:40	6.61	250		15.84	0.772		6.46			0		58.8		81		30				
14:45	6.88	250		15.65	0.773		6.38			0		56.4		73		30				
14:50	7.06	250		15.58	0.779		6.3			0		51.7		76		30				
14:55	7.12	250		15.42	0.777		6.28			0		51.9		72		30				
		EDIAL OF A	DII 17	VED EVEL D DAD	AMERICA (FOR	<u> </u>					egree (ex. 10.			
		FINAL STA	BILIZ	ED FIELD PAR		o appi		signiii	icant i		s[Sr]	-			pH: ne DO: ne	earest tenth ((ex. 5.53 = 5.6) (ex. 3.51 = 3.6)	.5)		
FOLIPMENT	DOCUMENTATI	ION		15	0.777		6.3			0		51.9		72	ORP:	2 SF (44.1 =	nearest tenth = 44, 191 = 1	n (6.19 = 6.2, 10 90)	1 = 101)	
-	TYPE OF PUMP	ION	DEC	CON FLUIDS USED			TUBI	NG/PUN	MP/BLA	DDER M	ИАТЕІ	RIALS					EQUIPME	ENT USED		
	TALTIC IERSIBLE	X		QUINOX EIONIZED WATER		ICON TU LON TU						EL PUMP MATE JMP MATERIAI			X	WL ME PID	ETER MultiRae			
BLAD			PO	TABLE WATER	TEF	LON LI	NED TUBIN	NG		Gl	EOPR	OBE SCREEN	-		X	WQ MI	ETER Hori	ba		
WATT	ΓERA			TRIC ACID EXANE		PE TUBI PE TUBI					EFLOI THER	N BLADDER			X		METER Geopump			
OTHE OTHE		X	_	ETHANOL AS FREE WATER	OTH OTH						THER THER					OTHER FILTER		TY	DE	
	CAL PARAMETE		FF	AS FREE WATER	OII	1EK					ITEK					FILTER	<u>KS</u> NO.		- E	
	PARAM			METHOD NUMBER	FIE FILTE		PR	ESERV METH	VATION HOD	N		LUME UIRED		MPLE LECTED	COL	QC LECTED		SAMPLE I NUM	BOTTLE I BERS	D
X	PFA		_	537.1	N			Ice				00 mL		Yes		No	_			
X	1,4-dic		_	8270-SIM	N			Ice				2 L		Yes		No				
X	PCI		_	8082A	N		_	Ice				00 mL		Yes		No				
X	TCL Pes		_	8081B	N		_	Ice				00 mL		Yes		No	_			
X	TCL S		_	8270D	N		_	Ice				00 mL		Yes		No				
X	TCL V		_	8260C	N		_	HC				50 mL		Yes		No				
X	Total M	ietals	_	6010C, 7470	A N	lo		Nitric A				00 mL		Yes	_	No				
PURGE OB PURGE WA	SERVATIONS ATER YE	ES NO		NUMBER OF GALL	ONS		_	SF	KETCH	I/NOTE	ES					_		_		_
CONTAINE	_			GENERATED	0.10	2.8														
NO-PURGE UTILIZED	E METHOD YE	ES NO X		f yes, purged approxima o sampling or	tely 1 standing volu mL for this sam															
	1.4	51						1												
Sampler Sign	nature:	VI_		Print Name:	Stephen Johansso	n														
Checked By:	: Ryan Jorrey			Date:	6/8/2017															

			LUW	FLOW GRO	JUNDWAI	EK SAMPI	ING REC	UKD		
	PROJECT NAME	NI C	IDDG II . I D II I	1011	LO	CATION ID]	DATE]
			SDEC Hoosick Falls Lar	nariii		HFL-MW-		6/6/20	18	
	PROJECT NUMBE	R	270939.0000.0000)	STA	ART TIME 14:40]	END TIME 16:3:	5	
	SAMPLE ID		SAM	PLE TIME	SIT	E NAME/NUMBE	R I	PAGE		
		HFL-MW-101		16:10		442007	'	l OF	1	
WELL DIAM	METER (INCHES)	<u> </u>	2 X 4	6	8	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES)	1/8	1/4 X 3/8	1/2	5/8	OTHER			CAP CASING	<u>X</u>
			<u> </u>	TOP OF CASIN					LOCKED	<u>X</u>
	MENT POINT (MP)	X TOP OF	RISER (TOR)	TOP OF CASIF		OTHER			COLLAR	<u>x</u>
INITIAL I (BMP)	DTW 15.	05 FT	FINAL DTW (BMP)	16.34		OT. CASING CKUP (AGS)	2.55	FT	TOC/TOR DIFFERENCE	E 0.29 FT
WELL DE (BMP)	ЕРТН 23	8 FT	SCREEN LENGTH	15	FT AM) IBIENT AIR	0	PPM	REFILL TIME SETTING	ER - SEC
WATER COLUMN	N 12.	95 FT	DRAWDOWN VOLUME	0.85	GAL MO	WELL OUTH	0	PPM	DISCHARGE TIMER SETT	
CALCUL GAL/VOI	L 8	GAL	(final DTW - initial D' TOTAL VOL. PURGED	4.16	GAL TO	AWDOWN/ TAL PURGED	0.20		PRESSURE TO PUMP	- PSI
	well diameter squared		(mL per minute X tota	•						
TIME	DTW (FT)	PURGE RATE	TEMP. (°C)	SP. CONDUCTANO		DISS. O ₂ (mg/L)	TURBIDITY (i	ntu) REDOX (mv)	PUMP	
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10 r	, , ,	INTAKE DEPTH (ft)	COMMENTS
14:40	BEGIN PURG	SING								
14:50	15.52	200	12.3	0.847	7.02	0.60	36.8	-67.9	31	
14:55	15.64	200	11.5	0.841	6.99	0.33	33.5	-68.1	31	
15:00	15.6	200	11.2	0.842	6.99	0.27	304.1	-68.7	31	
15:05	15.58	200	10.7	0.837	6.99	0.21	384.9	-68.4	31	
15:10	15.54	200	10.7	0.838	6.99	0.18	33.4	-69.1	31	
15:15	15.52	200	11.4	0.837	6.99	0.21	49.8	-68.7	31	Pump malfunction, stop pumping
15:40	15.62	200	9.5	0.838	7.05	0.96	66.2	-54.8	31	15:35 - Resume pumping
15:45	16.02	200	9.3	0.837	6.98	0.17	62.9	-60.0	31	
15:50	16.2	200	9.4	0.837	9.98	0.13	30.7	-61.1	31	
15:55	16.3	200	9.3	0.833	6.98	0.10	27.2	-62.1	31	
16:00	16.34	200	9.2	0.837	6.98	0.07	30.8	-63.3	31	
	FI	NAL STABILIZ	ED FIELD PARA	METERS (to app	ropriate signif	icant figures[SF])			egree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
			9	0.837	7.0	0.07	30.8	-63	DO: nearest tenth (TURB: 3 SF max,	(ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT D	OCUMENTATION		<u> </u>						ORP: 2 SF (44.1 =	44, 191 = 190)
	TYPE OF PUMP		ECON FLUIDS USED			UMP/BLADDER MA				EQUIPMENT USED
	STALTIC MERSIBLE		LIQUINOX DEIONIZED WATER		TUBING		EEL PUMP MATEI PUMP MATERIAL		X WL ME	ETER
BLAD	DDER		POTABLE WATER NITRIC ACID	TEFLON X HDPE T	LINED TUBING		PROBE SCREEN ON BLADDER		X WQ MI	ETER Horiba METER
WATT			HEXANE	LDPE TU		OTH	ER		X PUMP	GeoPump
OTHE			METHANOL PFAS FREE WATER	OTHER OTHER		OTH		-	OTHER FILTER	
ANALYTICA	AL PARAMETERS									
	PARAME	TER	METHOD NUMBER	FIELD FILTERE			OLUME EQUIRED	SAMPLE COLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X	PFAS	<u> </u>	537.1	No			500 mL	Yes	No	
X	1,4-diox	ane	8270-SIM	No		Ice	2 L	Yes	No	
X	PCBs	·	8082A	No	1	Ice	500 mL	Yes	No	<u> </u>
X	TCL Pesti	cides	8081B	No	1	lce	500 mL	Yes	No	
X	TCL SVC	OCs	8270D	No	1	Ice	500 mL	Yes	No	
X	TCL VC	OCs	8260C	No	I	ICI	150 mL	Yes	No	
X	Total Me	tals	6010C, 7470a	A No	Nitri	ic Acid	500 mL	Yes	No	<u> </u>
PURGE OBS					5	SKETCH/NOTES				
PURGE WAT CONTAINER		NO	NUMBER OF GALL GENERATED	ONS 4.1	6					
NO-PURGE N UTILIZED		NO X	If yes, purged approximatel	y 1 standing volume prior mL for this sample location						
UTILIZED			to sampling or	ini. ior unis sample location						
Sampler Signa	ture: Marnie (Chancy	Print Name:	Marnie Chancey						
Checked By:	Rvan Jorrev		Date:	6/6/2018						

	PROJECT NAME	NN/6			JUNDW		CATION ID		DATE					
	PROJECT NUMBER		SDEC Hoosick Falls La			STA	HFL-MW-10		END TIM	6/6/2 E	2018			
	SAMPLE ID		270939.0000.0000	PLE TIME		SITE	17:00 E NAME/NUMBER		PAGE	18:	00			
		HFL-MW-101B	5.11.2	17:50			442007		1	OF	7 1			
WELL DIAM	IETER (INCHES)	1 X	2 4	6	8		OTHER					YES	NTEGRITY S NO N/A	
TUBING ID ((INCHES)	1/8 X	1/4 3/8	1/2	5/8		OTHER				CAP CASING	X		
MEASUREM	IENT POINT (MP)	X TOP OF	RISER (TOR)	TOP OF CAS	ING (TOC)		OTHER				LOCKED COLLAR	X		
INITIAL I (BMP)	DTW 52.	93 FT	FINAL DTW (BMP)	54.0	FT		T. CASING CKUP (AGS)	2.43	FT		TOC/TOR DIFFERENCE		0.11 FT	
WELL DE	ЕРТН 83	55	SCREEN	15		PID		0			REFILL TIME		10	
(BMP)		FT	DRAWDOWN		FT		BIENT AIR WELL	[PM		SETTING DISCHARGE		SEC	
WATER COLUMN	30.	62 FT	VOLUME (final DTW - initial D	0.18	GAL	MOU		0	PM		TIMER SETTI	NG	5 SEC	
CALCULA GAL/VOL	5.0)2 GAL	TOTAL VOL. PURGED	3.25	GAL	DRA	AWDOWN/ CAL PURGED	0.054			PRESSURE TO PUMP		80 PSI	
(column X	well diameter squared	X 0.041)	(mL per minute X tota		6 gal/mL)						1010			
TIME	DTW (FT)	PURGE RATE	TEMP. (°C)	SP. CONDUCTAN		nits)	DISS. O ₂ (mg/L)	TURBIDITY (ntii)	EDOX	PUMP			
3-5 Minutes	0.0-0.33 ft Drawdown		(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1		(+/- 10%)	(+/- 10% <10	tu)	mv) 10 mv)	INTAKE DEPTH (ft)		COMMENTS	
17:00	BEGIN PURG	ING												
17:10	53.60	250	10.5	0.370	8.5	1	0.80	915	-	21.9				
17:20	53.72	250	10.3	0.361	8.25	:5	1.68	547	-	39.9				
17:25	53.78	250	10.3	0.360	8.17	7	1.90	355		-48				
17:30	53.82	250	10.4	0.358	8.04	14	2.36	229	-	56.8				
17:35	53.87	250	10.3	0.354	8.0	1	2.53	183		-56				
17:40	53.92	250	10.3	0.352	7.98	8	2.46	110	-	56.7				
17:45	53.96	250	10.4	0.351	7.96	16	2.50	113	-	55.3				
17:50	54.00	250	10.3	0.352	7.95	5	2.47	105	-	54.4				
									_					
									_					
											TEMP.: nearest deg	ree (ex. 10	.1 = 10)	
	FIN	AL STABILIZE	ED FIELD PARAN	METERS (to ap	propriate sig	gnifica	ant figures[SF])		-		COND.: 3 SF max (pH: nearest tenth (e	ex. 3333 = x. 5.53 = 5	3330, 0.696 = 0.696) 5)	
			10	0.352	8.0	0	2.5	105		-54	DO: nearest tenth (e TURB: 3 SF max, n ORP: 2 SF (44.1 =	earest tent	n (6.19 = 6.2, 101 = 101)	
PERIS	TERA	X 1	ECON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL	TEFLO TEFLO X HDPE	ON TUBING ON TUBING ON LINED TUBI TUBING TUBING		PVC PI GEOPE	EL PUMP MATE UMP MATERIAL ROBE SCREEN ON BLADDER R			X WL ME	TER MultiRAE TER Hori METER		<u>_</u>
OTHE	R		PFAS FREE WATER	OTHE			OTHE				FILTER	S NO.	TYPE	
ANALYTICA	L PARAMETERS PARAMET	ΓER	METHOD NUMBER	FIELI FILTER		RESERV		OLUME QUIRED	SAMPLI		QC COLLECTED		SAMPLE BOTTLE ID NUMBERS	
X	PFAS		537.1	No	ED	Ice		00 mL	Yes	ED	No		NUMBERS	
X	1,4-dioxa	nne	8270-SIM	No		Ice		2 L	Yes		No			
X	PCBs TCL Pestic	nidos	8082A 8081B	No No		Ice		00 mL 00 mL	Yes		No No			
X	TCL SVC		8270D	No No	<u> </u>	Ice		00 mL	Yes		No			_
X	TCL VO		8260C	No		HC		50 mL	Yes		No			
X	Total Met	als	6010C, 7470	A No		Nitric A	Acid 5	00 mL	Yes		No			
PURGE OBSE PURGE WATE CONTAINER! NO-PURGE M UTILIZED	ER YES ZED X	NO NO X	NUMBER OF GALLS GENERATED If yes, purged approximatel to sampling or	J.	25 or tion.	SI	KETCH/NOTES							
Sampler Signate Checked By:	ure: Ryan Jorrey	PL		Stephen Johansson 6/6/2018										

					LOV	V FLOW G	ROUNDWA	ATE	ER SAMPLI	NG RECOR	RD			
	PROJECT	NAME		NYS	SDEC Hoosick Falls La	ndfill	[LOCA	ATION ID HFL-MW-101		TE 6/6/	2018		
-	PROJECT	NUMBER			270939.0000.0000)		STAR	RT TIME		D TIME			
-	SAMPLE I			016	SAM	PLE TIME		SITE	NAME/NUMBER	PA	GE	:35		
L		Н	FL-MW-1	01C		16:25	l l		442007		1 0)F	1	WELL INTEGRITY
WELL DIAM	IETER (IN	CHES)	1	X	2 4	6	8		OTHER				CAP	YES NO N/A X
TUBING ID (INCHES)		1/8	X	1/4 3/8	1/2	5/8	(OTHER				CASING LOCKED	X X
MEASUREM	ENT POIN	T (MP)	X	TOP OF	RISER (TOR)	TOP OF CAS	ING (TOC)	(OTHER				COLLAR	X
INITIAL I (BMP)	DTW	52.0	8	FT	FINAL DTW (BMP)	52.72			r. CASING KUP (AGS)	2.55	FT		C/TOR FFERENCE	0.3 FT
WELL DE (BMP)	ЕРТН	100.3	39	FT	SCREEN LENGTH	28		PID AMBI	IENT AIR	0	PPM		FILL TIMI ITING	ER 10 SEC
WATER COLUMN	. [48.3	1	FT	DRAWDOWN VOLUME	0.10	GAL	PID W		0	PPM		SCHARGE MER SETT	ING 5 SEC
CALCULA GAL/VOL		7.92	2	7.41	(final DTW - initial D' TOTAL VOL. PURGED	4.88			WDOWN/	0.02			ESSURE	85 PSI
(column X	well diamete	er squared X	0.041)	3AL	(mL per minute X tota		gal/mL)	IOIA	AL PURGED			10	PUMP	PSI
TIME		(FT)	OGRAM S		TEMP. (°C)	SP. CONDUCTAN)	DISS. O ₂ (mg/L)	TURBIDITY (ntu) REDOX (m		PUMP	
		Drawdown	(mL/		(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 uni		(+/- 10%)	(+/- 10% <10 ntu		, 1	NTAKE EPTH (ft)	COMMENTS
15:10	BEGI	N PURGI	NG							ı	,			
15:20		2.51	25		11.8	0.344	8.01		4.33	387.6	72.8			
15:25		1.54	25		11.6	0.345	7.85		3.58	554.3	49.8			
15:30		2.56	25		11.5	0.345	7.82		3.87	377.6	41.8			
15:35		1.62	25		11.4	0.344	7.82		4.16	340.2	42.2			
15:40		1.64	25		11.4	0.343	7.84		4.21	324.6	45.5			
15:45		2.66	25		11.6	0.341	7.91		4.29	297.4	53.2			
15:50		2.68	25		11.6	0.34	7.96	-	4.35	300	59.7	+		
15:55 16:00		2.69	25		11.8	0.342	8.04 8.14		4.03	405	63.3			
16:05		2.7	25		11.9	0.335	8.14		4.18	410	86.8	-		
16:10		71	25		11.9	0.333	8.42		4.5	431	94.4			
16:15		1.72	25		11.9	0.331	8.47		4.54	444	97.2			
16:20		1.72	25		11.9	0.33	8.5		4.56	453	98.6			
16:25		1.72	25		11.9	0.33	8.51		4.57	449	101.3			
		FI	NAL ST	TABILI	ZED FIELD PAR	AMETERS (to	appropriate sig	nifica	ant figures[SF])			CON	ND.: 3 SF max	gree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
					12	0.330	8.51		4.6	449	100	DO:	nearest tenth (c nearest tenth (ex. 5.53 = 5.5) (ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT D	OCUMEN	TATION					0.01				100	ORE	P: 2 SF (44.1 =	44, 191 = 190)
	TYPE OF PUTALTIC	UMP			ECON FLUIDS USED LIQUINOX	SILICO	TUBIN ON TUBING	G/PUM	MP/BLADDER MATER S. STE	IALS EL PUMP MATERI	AL	X	WL ME	
X SUBM X BLADI	IERSIBLE DER				DEIONIZED WATER POTABLE WATER	TEFLO	ON TUBING ON LINED TUBING		GEOPI	UMP MATERIAL ROBE SCREEN		X	WQ MI	MultiRae ETER Horiba
WATT					NITRIC ACID HEXANE	LDPE	TUBING TUBING		OTHE			X	PUMP	METER Bladder
OTHE					METHANOL PFAS FREE WATER	OTHE		_	OTHE				OTHER FILTER	
ANALYTIC		METERS PARAMETI	ER		METHOD NUMBER	FIELI FILTER		SERV.			SAMPLE OLLECTED	CO	QC DLLECTED	SAMPLE BOTTLE ID NUMBERS
х		PFAS			537.1	No		Ice	5	00 mL	Yes		No	
X		1,4-dioxan	ie		8270-SIM 8082A	No No		Ice		2 L 00 mL	Yes		No No	
X X		TCL Pesticio	des		8081B	No		Ice		00 mL	Yes		No	
X		TCL SVO	Cs		8270D	No		Ice	5	00 mL	Yes	_	No	
X		TCL VOC			8260C 6010C, 7470	No No		HCl Nitric A		50 mL 00 mL	Yes	_	No No	
PURGE OBS		ONS			-				KETCH/NOTES			_		
PURGE WAT CONTAINER		YES X	NO		NUMBER OF GALLO GENERATED	ONS 4.	.88							
NO-PURGE I UTILIZED	METHOD	YES	NO X		If yes, purged approximatel to sampling or	y 1 standing volume prio mL for this sample locat								
Sampler Signa	ature:	1AD,	1		Print Name:	Stephen Johansson								

				LOW	FLOW GR	OUND	VAT	ER SAI	MPL	ING RE	CORD					
	PROJEC	T NAME		NYSDEC Hoosick Falls L	andfill	1	LOC	CATION ID			DATE			1		
	PROJEC"	T NUMB				1	STA	HFL RT TIME	-MW-1	02	END TIN	6/7/2 1E	018			
				270939.0000.000					8:00			9:0	0			
	SAMPLE	ID	HFL-MW-102		MPLE TIME 8:50		SITI	E NAME/NU 4	J MBER 142007	l	PAGE 1	OF	1			
WELL DIAM	METER (IN	NCHES)	1	2 X4	6			OTHER			1			WELL : YE	INTEGRITY IS NO N/A	
TUBING ID ((INCHES)		1/8	1/4 X 3/8	1/2	5/8		OTHER					CAP CASING	X	-	
MEASUREM	IENT POI	NT (MP)	X TOP	OF RISER (TOR)	TOP OF CA	SING (TOC)		OTHER _					LOCKED COLLAR	X	-	
INITIAL I (BMP)	DTW	52	36 FT	FINAL DTW (BMP)	54.87	FT		OT. CASING CKUP (AGS		2.49	FT		TOC/TOR DIFFERENCE	C	0.0 FT	
WELL DE (BMP)	ЕРТН	71	.77 FT	SCREEN LENGTH	15	FT	PID AMI	BIENT AIR		0	PPM		REFILL TIME SETTING	ER	25 SEC	
WATER COLUMN	ı	19	9.41 FT		1.65	GAL	MO	WELL UTH		0	PPM		DISCHARGE TIMER SETT		5 SEC	
CALCUL	ATED	12	1.73	(final DTW - initial TOTAL VOL.	DTW X well diam. s 3.25	quared X 0.04		AWDOWN/		0.5	1	1	PRESSURE		60	
GAL/VOL (column X			GAL ed X 0.041)	PURGED (mL per minute X to		GAL 26 gal/mL)	ТОТ	TAL PURGE	ED	0.5]	TO PUMP		PSI	
FIELD PAR			PROGRAM ST	ABILIZATION CRITE			P)	1		1	1 5	FDOV	DUMAD			_
TIME 3-5 Minutes	DTW 0.0-0.	.33 ft	PURGE RA' (mL/min)		SP. CONDUCTA (mS/cm)	ph (units) 1 units)	DISS. O ₂ ((+/- 10		TURBIDITY (+/- 10% <10	(ntu)	EDOX (mv)	PUMP INTAKE		COMMENTS	
8:00	Drawe BEGI	lN PUR	, ,	(iii 3 degrees)	(+/- 3%)	,		(,, -,	/	,	(+/	- 10 mv)	DEPTH (ft)			_
8:10	53.		250	10.3	0.483	7.	54	0.16	<u> </u>	262		108.5			_	
8:15	54	.2	250	10.2	0.482	7.	54	0.11		228		105.5				_
8:20	54.	34	250	10.4	0.483	7.	54	0.14		217		102.3				_
8:25	54.	44	250	10.4	0.482	7.	54	0.11		241		97				
8:30	54.	53	250	10.4	0.482	7.	54	0.09)	267		93.7				
8:35	54.	63	250	10.4	0.482	7.	54	0.08	;	260		89.4				
8:40	54.	72	250	10.4	0.481	7.	54	0.08	;	271		86.4				
8:45	54	.8	250	10.4	0.481	7.	54	0.07	•	280		84.9				
8:50	54.	87	250	10.4	0.480	7.	54	0.07	•	277		82.6				
													TEMP.: nearest de	orga (av. 1	0.1 – 10)	_
		FI	NAL STABI	LIZED FIELD PAR	AMETERS (to a	ppropriate	signifi	icant figur	es[SF]	D			COND.: 3 SF max pH: nearest tenth (e	(ex. 3333 = ex. 5.53 = 5	= 3330, 0.696 = 0.696) 5.5)	
				10	0.48	7	.5	0.07	7	277		83	DO: nearest tenth (TURB: 3 SF max, 1 ORP: 2 SF (44.1 =	nearest ten	th (6.19 = 6.2, 101 = 101)	
EQUIPMENT I	DOCUME! TYPE OF PU		N	DECON FLUIDS USED		TU	BING/PU	JMP/BLADDE	R MATE	ERIALS				EOUIPM	ENT USED	
X PERIS	TALTIC IERSIBLE		X	LIQUINOX DEIONIZED WATER		ON TUBING			S. STE	EL PUMP MAT			X WL ME			
BLAD				POTABLE WATER	TEFL	ON LINED TU	BING		GEOPI	ROBE SCREEN	ıL		X WQ ME	ETER Hor		
WATT	ΓERA			NITRIC ACID HEXANE		TUBING			OTHE	ON BLADDER R				METER Geopump	,	
OTHE			X	METHANOL PFAS FREE WATER	OTH			. 🔲	OTHE				OTHER FILTER		. TYPE	
ANALYTIC		METERS								-						_
		PARAMI	ETER	METHOI NUMBER			RESER MET	VATION HOD		OLUME QUIRED	SAMPI		QC COLLECTED		SAMPLE BOTTLE ID NUMBERS	
X		PFA	S	537.1	No		Id	ce		600 mL	Yes		No			
X		1,4-dio	xane	8270-SIN	I No		Id	ce		2 L	Yes		No			
X		PCB	is	8082A	No		Id	ce	5	00 mL	Yes		No			
X		TCL Pest	ticides	8081B	No		Id	ce	5	00 mL	Yes		No	_		
X		TCL SV	OCs .	8270D	No		Id	ce	5	00 mL	Yes		No	_		
X		TCL V	OCs	8260C	No		Н	ICI	1	50 mL	Yes		No			
X		Total Mo	etals	6010C, 747	0A No		Nitric	Acid	5	600 mL	Yes		No			
PURGE OBS PURGE WA' CONTAINEI	TER	ONS YES X	S NO	NUMBER OF GAL GENERATED	LONS	.25	S	KETCH/NO	OTES							
	-															
NO-PURGE UTILIZED	METHOD	YES	NO X	If yes, purged approxist to sampling or	mately 1 standing volus_mL for this sample											
Sampler Sign	nature:	M	DL	Print Name:	Stephen Johansson											
Checked By:	Ryan	Jorrey		Date: 6	5/7/2018											

					LO	W F	LOW G	RO	UNDV	VAT	ER SA	MPL	ING RE	COR	D						
	PROJECT	NAME		NVC	DEC Hoosick Falls La	ndfill		T		LOCA	ATION ID			DATE				7			
	PROJECT	NUMRE	'R	NIS	DEC HOOSICK PallS La	ındımı		-		STAR	HFL-I	MW-103		END T	6/6/20 TME	018		-			
	ROJECI	NUMBE	AK.		270939.0000.000	0				SIAN	1 TIVIL	10:50		LIND I	11:5	50					
	SAMPLE I		HFL-MW-1	03	SAM		TIME 1:35			SITE	NAME/NU	MBER 142007		PAGE	l OF		1				
									•									WELL I	NTEGRITY	Y	
WELL DIAM	IETER (IN	CHES)	1		2 X 4		6		8		OTHER _					,	CAP	YES X	S NO	N/A	
TUBING ID (INCHES)		1/8		1/4 X 3/8		1/2		5/8		OTHER _						CASING LOCKED	X	_	_	
MEASUREM	ENT POIN	NT (MP)	Х	OP OF	RISER (TOR)		TOP OF CAS	SING (TOC)		OTHER _						COLLAR		=	_	
INITIAL I (BMP)	OTW	6.8	31 F	Γ	FINAL DTW (BMP)		7.62	I			CASING KUP (AGS		3.05	F	Т		TOR ERENC	E	0.31		FT
WELL DE (BMP)	РТН	19.	71 F	Γ	SCREEN LENGTH		15	1		PID AMBI	IENT AIR		0	PP	M		ILL TIM TING	IER	=		SEC
WATER COLUMN		12.	.9 F	Γ	DRAWDOWN VOLUME		0.13		AL	PID V MOU			0	PP	M		CHARGI ER SET		-		SEC
CALCUL		2.12		J	(final DTW - initial D TOTAL VOL.	IWA	2.08				WDOWN/		0.06	5			SSURE		-		
GAL/VOL (column X	well diamete	er squared	X 0.041)	L	PURGED (mL per minute X total	al minu	ates X 0.0002			TOTA	AL PURGI	D				тог	UMP				PSI
	RAMETER DTW				BILIZATION CRIT		(AS LISTEI						I			P	UMP	1			
TIME 3-5 Minutes	0.0-0.3 Drawd	33 ft	PURGE F (mL/m		TEMP. (°C) (+/- 3 degrees)		(mS/cm) (+/- 3%)		pH (units (+/- 0.1 un		DISS. O ₂ (+/- 10		TURBIDITY (+/- 10% <10		EDOX (mv) (+/- 10 mv)) IN	TAKE PTH (ft)		COM	MENTS	
10:50		N PURG	SING		l .		(2,1,)	l					ı	l		1	()	1			
10:55	7.3	12	250		9.3		1.094		6.59		0.30	5	50.2		130.0						
11:00	7.5	i4	200		9.3		1.094		6.51		0.22	2	28.9		131.6						
11:05	7.6	i6	200		9.3		1.094		6.47		0.17	,	25.7		132.6						
11:10	7.7		200		9.4		1.093		6.45		0.14		24.6		133.2						
11:15	7.8		200		9.6		1.091		6.44		0.13		23.5		133.9						
																		-			
11:20	7.8		200		9.9		1.092		6.44		0.14		21.3		134.4	-					
11:25	7.8		200		10.1		1.091		6.44		0.14		21.0		134.4			1			
11:30	7.6	52	200		11.0		1.092		6.44		0.13	5	20.8		134.0						
		F	INAL ST	BILI	ZED FIELD PAR	RAMI	ETERS (to	appr	opriate s	ignifi	cant figu	res[SF])			CONE	.: 3 SF max	egree (ex. 10 x (ex. 3333 = (ex. 5.53 = 5.	3330, 0.696 = 0	.696)	
					11		1.09		6.4		0.2		20.8		130	DO: no	arest tenth 3 SF max,	(ex. 3.51 = 3) nearest tenth	.5) 1 (6.19 = 6.2, 10	1 = 101)	
EQUIPMENT	DOCUME	ENTATIO	ON													ORP:	2 SF (44.1 :	= 44, 191 = 1	90)		
	TYPE OF PU TALTIC	JMP_	Г		ECON FLUIDS USED LIQUINOX	Г	SILIC	ON TU		G/PUM	P/BLADDE		<u>RIALS</u> EL PUMP MATI	ERIAL		X	WL M		ENT USED		
	ERSIBLE			Ι	DEIONIZED WATER POTABLE WATER	F	TEFL	ON TUI		G			UMP MATERIA ROBE SCREEN	L		X	PID WO M	MultiRae ETER Hori	iha		
WATT			_	N	NITRIC ACID HEXANE	-	X HDPE	E TUBIN	NG				ON BLADDER			X	TURB	. METER Geopump			
OTHE	R		_ [N	METHANOL PFAS FREE WATER	-	OTHE	ER				OTHE	R				OTHE	R	TY	PE	
ANALYTI		AMETER			METHOD		FIEL		DDE	CEDV	ATION		OLUME	CAN	IPLE		QC		SAMPLE		E ID
	P	PARAMET			NUMBER		FILTER	RED		METH		RE	QUIRED	COLLI	ECTED	COL	LECTED)		MBERS	LID
X		PFAS 1,4-dioxa		_	537.1 8270-SIM		No No			Ice Ice			2 L		es		No No				
X		PCBs		_	8082A	_	No			Ice		- 5	00 mL		es		No				
X	Т	ΓCL Pestic	eides	_	8081B		No)		Ice		5	00 mL	Y	es		No				
X		TCL SVC		_	8270D		No			Ice			00 mL		es		No	_			
X		TCL VO		_	8260C 6010C, 7470		No No			HCl Nitric A			50 mL 00 mL		es		No No				
PURGE O				_	33100, 7470	_					ETCH/NO						-10				
PURGE WA	ATER	YES	NO		NUMBER OF GALL GENERATED	ONS	2	2.08													
NO-PURGI			NO		If yes, purged approximate				_												
UTILIZED			X				this sample locat			ļ											
Sampler Sig	gnature:	Narnie	Chancy		Print Name:	Marni	ie Chancey														
Checked By	r: I	Rvan Jorre	v		Date: 6/	6/2018	8														

					LOW	FLOW GR	OUNI	DWATI	ER SAMPLIN	NG RECO	RD					
	PROJECT	NAME		NYS	DEC Hoosick Falls La	ndfill		LOG	CATION ID HFL-MW-10	04	DATE 6	5/6/201	18			
	PROJECT	NUMBER			270939			STA	RT TIME 8:15		END TIME	9:50				
	SAMPLE		FL-MW-104		SAM	PLE TIME 9:30		SIT	E NAME/NUMBER 442007		PAGE 1	OF	1			
WELL DIAM	IETED (IN	CHES)	1	X	12 4	6	8		OTHER					WELL I	INTEGRITY S NO	N/A
TUBING ID (CHES)	1/8		1/4 3/8	1/2	5/8					-	CAP CASING	X X X		N/A
MEASUREM	IENT POIN	NT (MP)	X TO	OP OF	RISER (TOR)	TOP OF CAS	SING (TOO	C)	OTHER			_	LOCKED COLLAR	X	=	<u> </u>
INITIAL I (BMP)	DTW	6.16	FT	r	FINAL DTW (BMP)	7.48	FT		OT. CASING CKUP (AGS)	2.06	FT		TOC/TOR DIFFERENCE	Ē	0.29	FT
WELL DE	ЕРТН	24.51	l FI		SCREEN LENGTH	15	FT	PID AM	BIENT AIR	0	'nРМ		REFILL TIMI	ER	-	SEC
WATER COLUMN	. [18.35	5 FT	,	DRAWDOWN VOLUME	0.22	GAL		WELL UTH	0	'nРМ		DISCHARGE TIMER SETT		-	SEC
CALCULA GAL/VOL	ATED	3.01		_ 	(final DTW - initial D TOTAL VOL.	TW X well diam. so		0.041) DR A	AWDOWN/	0.064			PRESSURE	ING	-	PSI
(column X	well diamete	er squared X (PURGED (mL per minute X tota		6 gal/mL)	•	FAL PURGED				TO PUMP			P31
TIME		WITH PRO W (FT)	PURGE RA		TEMP. (°C)	SP. CONDUCTAN (mS/cm)	NCE	P) oH (units)	DISS. O ₂ (mg/L)	TURBIDITY	(ntu) REDOX	(mv)	PUMP INTAKE		COMME	NTS
3-5 Minutes 8:15		t Drawdown N PURGIN	(mL/mir	n)	(+/- 3 degrees)	(+/- 3%)	(+/-	- 0.1 units)	(+/- 10%)	(+/- 10% <10	ntu) (+/- 10	mv)	DEPTH (ft)	<u> </u>		
8:20		7.56	300		9.8	0.745		7.03	0.50	250.3	95.1	ı	24			
8:25		1.47	200		10.0	0.744		7.00	0.36	188.7	88.3		24			
8:30	7	7.41	200		10.0	0.744		7.00	0.29	119.3	82.9)	24			
8:35	7	7.40	200		10.2	0.745		7.00	0.23	96.7	80.1	l	24			
8:40	7	7.40	200		10.0	0.744		7.01	0.20	82.3	78.3	3	24			
8:45	7	7.41	200		10.2	0.74		7.01	0.20	73.8	77		24			
8:50	7	7.40	200		10.1	0.737		7.00	0.19	36.2	73.4	1	24			
8:55	7	7.40	200		9.9	0.735		6.99	0.17	29.3	65.7	7	24			
9:00	7	7.43	200		9.9	0.736		7.00	0.16	25.2	62		24			
9:05	7	7.46	200		10.1	0.738		7.01	0.14	25.7	59.1	l	24			
9:10	7	7.48	200		10.1	0.74		7.01	0.13	22.3	56.6	5	24	<u> </u>		
9:15		7.48	200		10.0	0.742		7.02	0.12	22.4	55.9		24			
9:20	7	7.48	200		10.0	0.741		7.03	0.12	21.8	54		24 TEMP.: nearest de			
		FIN	AL STAB	ILIZ	ED FIELD PARA		ppropri		<u> </u>	***			pH: nearest tenth (e DO: nearest tenth (e	ex. 5.53 = 5.5 ex. 3.51 = 3.	.5)	
EQUIPMENT I	DOCUMEN	TATION			10	0.741		7.0	0.1	21.8	54		TURB: 3 SF max, 1 ORP: 2 SF (44.1 =	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1 (6.19 = 6.2, 101 = 90)	101)
SUBM BLADI WATT OTHE	TERA IR IR		X	I	ECON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL PFAS FREE WATER	TEFLO TEFLO X HDPE		G G	PVC I GEOF	EEL PUMP MATE PUMP MATERIAI PROBE SCREEN ON BLADDER ER ER		-	X WL ME X PID X WQ ME X TURB.	MultiRAE ETER Hori METER Geopump	iba	
ANALYTIC	AL PARAN	METERS PARAMETE	ER		METHOD NUMBER	FIELI FILTER		PRESER MET		OLUME QUIRED	SAMPLE COLLECTED	,	QC COLLECTED		SAMPLE BO	
X		PFAS		_	537.1	No		Id	ce :	500 mL	Yes		No			
X		1,4-dioxano	e	_	8270-SIM 8082A	No No		Io		2 L 500 mL	Yes Yes		No No	- —		
X		TCL Pesticio	les	_	8081B	No		Id		500 mL	Yes		No	· <u> </u>		
X		TCL SVOC		_	8270D	No No		Id		500 mL	Yes		No	- —		
X		TCL VOC		-	8260C 6010C, 7470.	A No		H Nitrio		150 mL 500 mL	Yes Yes		No No	. —		
PURGE OBS	TER	YES X	NO	_	NUMBER OF GALL GENERATED	ONS 3.	.38	S	SKETCH/NOTES							
NO-PURGE I UTILIZED		YES	NO X		If yes, purged approximately	y 1 standing volume prior mL for this sample locat										
Sampler Signa	ature:	MADI	1		Print Name:	Stephen Johansson										
Checked By:	1	Rvan Jorrev			Date: 6/	5/2018		1								

			LOV	V FLOW GR	OUNDWA	ATER SAME	LING RECO	ORD		
	PROJECT NAM	Е	NYSDEC Hoosick Falls La	ndfill		LOCATION ID		DATE		
	PROJECT NUM		270939.0000.000			HFL-MV START TIME		6/6/2 END TIME	018	
	SAMPLE ID			IPLE TIME		10: SITE NAME/NUM		PAGE	45	
	SAM LE ID	HFL-MW-104C		11:35		4420		1 01	F 1	
WELL DIAM	IETER (INCHES	1	X 2 4	6	8	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES)	1/8	X 1/4 3/8	1/2	5/8	OTHER			CAP CASING	<u>X</u>
MEASUREM	IENT POINT (MI	Y TO	OF RISER (TOR)	TOP OF CASI	NG (TOC)	OTHER			LOCKED COLLAR	
INITIAL I (BMP)	DTW	28.62 FT	FINAL DTW (BMP)	30.59		PROT. CASING STICKUP (AGS)	2.75	FT	TOC/TOR DIFFERENCE	E 0.24 FT
WELL DE (BMP)	СРТН	97.48 FT	SCREEN LENGTH	28		PID AMBIENT AIR	0	PPM	REFILL TIMI SETTING	ER 10 SEC
WATER COLUMN	1	68.86 FT	DRAWDOWN VOLUME (final DTW - initial D	0.32	GAL	PID WELL MOUTH	0	PPM	DISCHARGE TIMER SETT	
CALCULA GAL/VOL		11.29 GAL	TOTAL VOL.	3.58		DRAWDOWN/ TOTAL PURGED	0.09		PRESSURE TO PUMP	85 PSI
	well diameter squa	•	(mL per minute X tot							
TIME	DTW (FT)	PURGE RA		SP. CONDUCTANO (mS/cm)		DISS. O ₂ (mg			PUMP INTAKE	COMMENTS
3-5 Minutes	0.0-0.33 ft Drawd	own (mL/min)	(+/- 3 degrees)	(H/- 3%)	(+/- 0.1 uni	(+/- 10%)	(+/- 10% <10 n	tu) (+/- 10 mv)	DEPTH (ft)	COMMENTS
10:40	BEGIN PUI	RGING		T		1			1	
10:45	29.38	250	10.9	0.583	7.42	0.76	10	46.9		
10:50	29.69	250	11.0	0.583	7.41	0.59	2.2	33.7		
11:00	29.97	250	10.9	0.581	7.41	0.46	1.6	15.1		
11:05	30.13	250	10.9	0.58	7.41	0.38	0.5	0.70		
11:10	30.26	250	10.9	0.58	7.41	0.35	3.2	-5.4		
11:15	30.39	250	10.7	0.579	7.41	0.29	1.2	-13.3		
11:20	30.45	250	10.8	0.58	7.41	0.33	2.9	-15.3		
11:25	30.5	250	10.6	0.578	7.41	0.32	6.7	-18.1		
11:30	30.55	250	10.7	0.577	7.40	0.3	5.2	-18.9		
11:35	30.59	250	10.5	0.577	7.40	0.31	3.9	-19.2		
		FINAL STAD	ILIZED FIELD PAR	AMETERS (to a	annonvioto sic	mificant figures	SIFI)			gree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
		FINAL STAD		<u> </u>	1	1	-		pH: nearest tenth (e	ex. 5.53 = 5.5)
		WO.11	10.5	0.577	7.4	0.31	3.9	-19	TURB: 3 SF max, r ORP: 2 SF (44.1 =	nearest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
PERIS	TYPE OF PUMP TALTIC JERSIBLE	X	DECON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER	TEFLO	TUBING N TUBING N TUBING N LINED TUBING	P	ATERIALS STEEL PUMP MATER VC PUMP MATERIAL EOPROBE SCREEN	RIAL	X WL ME X PID	EQUIPMENT USED STER MultiRae STER Horiba
WATT			NITRIC ACID HEXANE	X HDPE T	UBING	T	EFLON BLADDER THER		X TURB.	METER Bladder
OTHE OTHE	R	X	METHANOL PFAS FREE WATER	OTHER OTHER		0	THER THER		OTHER	ł.
	CAL PARAMET		•					GAN EN E		<u> </u>
		METER	METHOD NUMBER	FIELD FILTERE		SERVATION METHOD	-	SAMPLE COLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X		FAS	537.1 8270-SIM	No No		Ice	500 mL 2 L	Yes	No No	
X		CBs	8082A	No		Ice	500 mL	Yes	No	
X	TCL F	esticides	8081B	No		Ice	500 mL	Yes	No	
X		SVOCs	8270D	No		Ice	500 mL	Yes	No	
X		VOCs Metals	8260C 6010C, 7470	A No		HCl litric Acid	150 mL 500 mL	Yes	No No	
Ш	BSERVATIONS		00100, 7470			SKETCH/NOTI		. 00		
PURGE W.		S NO	NUMBER OF GALI GENERATED	ONS 3.5	8					
NO-PURGI UTILIZED	E METHOD YI	S NO X	If yes, purged approxim to sampling or	ately 1 standing volume mL for this sample 1						
Sampler Sig	gnature:	DL	Print Name:	Stephen Johansson						
Checked By	y: Ryan Jo	rrey	Date: 6/	6/2018						

			LOV	V FLOW GRO	DUNDWA	TER SAMPI	ING REC	ORD		
	PROJECT NAME	NY	SDEC Hoosick Falls La	ndfill	LO	OCATION ID		DATE		
	PROJECT NUMBER				ST	HFL-MW-	105	6/5/20 END TIME	018	
	SAMPLE ID		270939.0000.0000	PLE TIME	er	14:00	0	PAGE	40	
		HFL-MW-105	SAM	15:30	31	442007		1 OF	1	
WELL DIAM	METER (INCHES)	1 X	2 4	6	8	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID			1/4 3/8	1/2	5/8	OTHER			CAP CASING	X
	IENT POINT (MP)		F RISER (TOR)	TOP OF CASINO		OTHER		_	LOCKED COLLAR	<u>X</u> <u>X</u>
INITIAL	DTW		FINAL DTW			ROT. CASING			TOC/TOR	
(BMP)	22.3	FT FT	(BMP)	22.73		TCKUP (AGS)	-	FT	DIFFERENCE	0.01 FT
WELL DI (BMP)	ЕРТН 29.3	32 FT	SCREEN LENGTH	15	FT A!	D MBIENT AIR	0	PPM	REFILL TIME SETTING	- SEC
WATER COLUMN	6.9	6 FT	DRAWDOWN VOLUME		GAL M	D WELL OUTH	0	PPM	DISCHARGE TIMER SETT	
CALCUL GAL/VOI	L 1.14	GAL	TOTAL VOL. PURGED		GAL TO	RAWDOWN/ DTAL PURGED	0.01	4	PRESSURE TO PUMP	- PSI
	well diameter squared			A (AS LISTED IN TH						_
TIME	DTW (FT)	PURGE RATE	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)		ntu) REDOX (mv	PUMP INTAKE	COMMENTS
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(+/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10	ntu) (+/- 10 mv)	DEPTH (ft)	
14:00	BEGIN PURG		1			T		1	1	
14:05	22.41	200	12.40	0.533	8.62	3.72	192.3	203.1	29	
14:10	22.41	200	12.38	0.532	8.60	3.52	195.7	199.7	29	
14:15	22.42	200	12.30	0.523	8.60	3.39	211.9	198.4	29	
14:20	22.48	200	12.26	0.519	8.52	3.32	203.4	195.7	29	
14:25	22.5	200	12.18	0.519	8.54	3.29	173.2	195.5	29	
14:30	22.57	200	12.12	0.513	8.51	3.21	155.6	192.3	29	
14:35	22.62	200	12.09	0.513	8.49	3.19	132.9	194.6	29	
14:40	22.7	200	12.04	0.514	8.49	3.13	118.4	191.1	29	
14:45	22.72	200	11.98	0.512	8.45	3.12	90.1	190.8	29	
14:50	22.73	200	11.91	0.511	8.45	3.08	49.7	187.6	29	
14:55	22.73	200	11.90	0.512	8.45	3.04	32.2	188.4	29	
15:00	22.73	200	11.89	0.512	8.44	3.01	19.9	184.3	29	
15:05	22.73	200	11.89	0.511	8.42	2.97	13.6	182.9	29	
15:10	22.73	200	11.87	0.51	8.42	2.84	10.1	181.7	29	
15:15	22.73	200	11.86	0.509	8.40	2.86	9.3	180.9	29	
15:20	22.73	200	11.84	0.509	8.37	2.74	7.4	181.0	29	
15:25	22.73	200	11.84	0.507	8.35	2.69	8.3	180.1	29	
		1	IZED FIELD PAR		l .		1		TEMP.: nearest deg	gree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
		IVAL STABIL	1		1	1	1	100	pH: nearest tenth (ex DO: nearest tenth (ex	x. 5.53 = 5.5) x. 3.51 = 3.5)
FOUIDMENT	OOCUMENTATION		12	0.507	8.4	2.7	8.3	180	TURB: 3 SF max, n ORP: 2 SF (44.1 = 4	nearest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
X PERIS	TYPE OF PUMP STALTIC MERSIBLE		DECON FLUIDS USED LIQUINOX DEIONIZED WATER	SILICON TEFLON	TUBING		ERIALS TEEL PUMP MAT PUMP MATERIA		X WL ME	EQUIPMENT USED ETER MultiRae
BLAD	DDER	=	POTABLE WATER NITRIC ACID	X HDPE TU	LINED TUBING BING		OPROBE SCREEN LON BLADDER			ETER Horiba METER
OTHE	R		HEXANE METHANOL	LDPE TUI OTHER	BING	OT	HER HER		OTHER	
ANALYTIC	AL PARAMETERS	X	PFAS FREE WATER	OTHER		OT	IER_		FILTER	RS NO. TYPE
	PARAMET	ER	METHOD NUMBER	FIELD FILTERED			VOLUME EQUIRED	SAMPLE COLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X	PFAS		537.1	No		Ice	500 mL	Yes	No	
X	1,4-dioxai	ne	8270-SIM 8082A	No No		Ice	2 L 500 mL	Yes Yes	No No	
X	TCL Pestici	ides	8081B	No		Ice	500 mL	Yes	No	
X	TCL SVO		8270D	No		Ice	500 mL	Yes	No	
X	TCL VOC		8260C 6010C, 7470A	No No		HCl ic Acid	150 mL 500 mL	Yes	No No	
ш	SERVATIONS		00100, 74/07	. INU	INITI	SKETCH/NOTES	JOO IIIL	103	110	
PURGE WA'	TER YES	NO	NUMBER OF GALLO GENERATED	ONS 4.42	_					
NO-PURGE UTILIZED	METHOD YES	NO X	If yes, purged approximately to sampling or	1 standing volume prior nL for this sample location.						
Sampler Sign	nature: Marine C	hancy	Print Name:	Marnie Chancey						
Checked By:	Ryan Jorrey		Date:	6/5/2018						

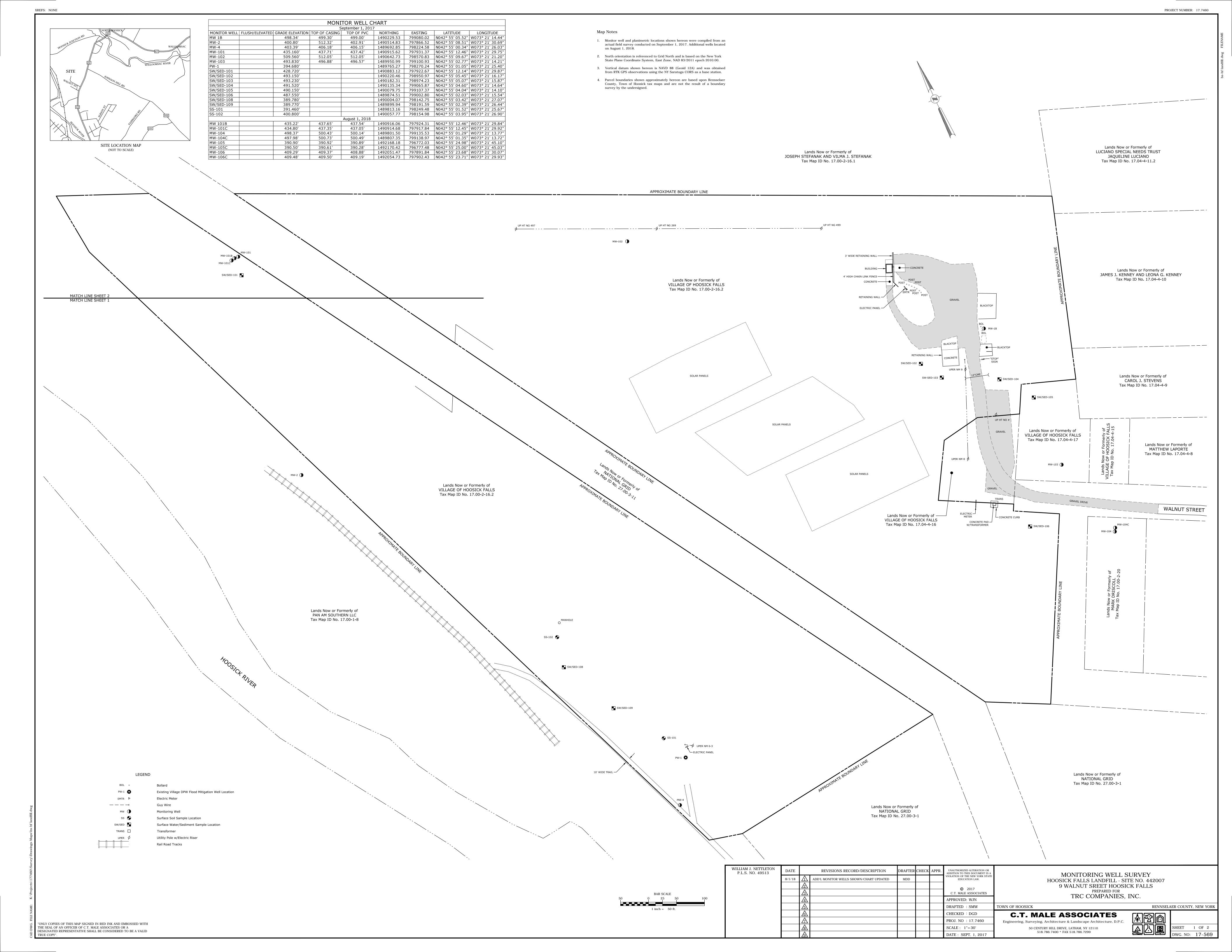
			LOW I	ELOW GRO	UNDWAT	ER SAMPL	ING RECO	ORD		
	PROJECT NAME	NY	SDEC Hoosick Falls La	ndfill	LC	OCATION ID		DATE]
	PROJECT NUMBER		270939.0000.0000		ST	HFL-MW-1		6/5/2 END TIME	018	
	SAMPLE ID			PLE TIME	SI	14:10 FE NAME/NUMBE	R I	PAGE	55	
	H	IFL-MW-105C		16:45		442007		1 OF]
WELL DIAM	METER (INCHES)	1 X	24	6	8	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES)	1/8 X	1/4 3/8	1/2	5/8	OTHER			CAP CASING LOCKED	<u>X</u>
MEASUREM	MENT POINT (MP)	X TOP O	F RISER (TOR)	TOP OF CAS	ING (TOC)	OTHER			COLLAR	<u>X</u>
INITIAL (BMP)	DTW 23.0)7 FT	FINAL DTW (BMP)	27.63		OT. CASING ICKUP (AGS)	-	FT	TOC/TOR DIFFERENCE	0.22 FT
WELL DI	ЕРТН 154.	84 FT	SCREEN LENGTH	28	FT AM	D MBIENT AIR	0	PPM	REFILL TIME	ER 10 SEC
WATER COLUM	N 131.	77 FT	DRAWDOWN VOLUME	0.75		D WELL OUTH	0	PPM	DISCHARGE TIMER SETT	
CALCUL			(final DTW - initial D' TOTAL VOL.	TW X well diam. sq	uared X 0.041)	RAWDOWN/	0.25		PRESSURE	90
GAL/VOI (column X	L 21.01 K well diameter squared X	GAL (0.041)	PURGED (mL per minute X tota			OTAL PURGED	0.23		TO PUMP	PSI
	RAMETERS WITH PR			. (AS LISTED IN T SP. CONDUCTAN	CE			REDOX	PUMP	
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (r (+/- 10% <10 n	itu) (mv)	INTAKE DEPTH (ft)	COMMENTS
14:10	BEGIN PURGI	1	1 1		1	T	1	1	1	T
14:20	24.82	100	12.2	0.733	10.03	2.57	1225	-128.7	154	
14:30	25.39	100	11.6	0.732	9.99	2.56	905	-153.6	154	
14:40	25.51	100	11.1	0.72	9.92	6.67	969	-110.9	154	
14:50	25.73	100	10.9	0.719	9.92	7.57	1203	-89.1	154	
15:00	26.32 26.19	100	11.1	0.719	9.9	11.75	1020	-39.5 -25	154	
15:10	20.19	100	11.1		SI to recalibrate.	15.55	11/3	-23	134	
15:30	26.52	100	11.5	0.717	9.8	17.3	859	15.9	154	
					_	+	+	18.5	-	
15:40 15:45	26.5 26.5	100	12	0.715	9.78	17.21	843 862	21.3	154	
15:43	26.7	100	12	0.713	9.76	18.82	832	22.6	154	
15:55	20.7	100	Issue with pump. Bri				032	22.0	154	
16:10	26.79	100	11.4	0.73	9.99	19.3	635	26.7	154	
16:15	27.24	100	10.6	0.743	10.06	21.7	675	39.1	154	
16:20	27.19	100	10.5	0.721	9.8	21.11	767	46.2	154	
16:30	27.54	100	10.5	0.711	9.57	19.5	815	27.4	154	
16:35	27.6	100	10.7	0.712	9.54	20.48	753	26	154	
16:40	27.62	100	10.9	0.712	9.52	20.54	769	27.7	154	
16:45	27.63	100	11	0.711	9.51	20.87	725	28.3	154	
	FIN	AL STABILIZI	ED FIELD PARAM	IETERS (to app	ropriate signif	icant figures[SF])		COND.: 3 SF max	gree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
			11	0.711	9.5	20.9	725	28	pH: nearest tenth (c DO: nearest tenth (c TURB: 3 SF max, ORP: 2 SF (44.1 =	(ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT	DOCUMENTATION									
	TYPE OF PUMP STALTIC		DECON FLUIDS USED LIQUINOX		ON TUBING		EEL PUMP MATE		X WL MI	
X SUBN X BLAI	MERSIBLE ODER		DEIONIZED WATER POTABLE WATER		ON TUBING ON LINED TUBING		PUMP MATERIAL PROBE SCREEN			MultiRae IETEF Horiba
	TERA	_ 🗏	NITRIC ACID HEXANE	X HDPE	TUBING TUBING		ON BLADDER		X TURB.	METER Bladder
OTHE	ER	日	METHANOL	OTHE	R	OTH	ER		OTHE	R
ANALYTIC	ER CAL PARAMETERS	X	PFAS FREE WATER	OTHE	К	OTH	E <u>K</u>		FILTE	RS NO. TYPE
	PARAMET	ER	METHOD NUMBER	FIELI FILTER			OLUME EQUIRED (SAMPLE COLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X	PFAS 1,4-dioxa		537.1 8270-SIM	No No		Ice	500 mL 2 L	Yes	No No	<u> </u>
X	PCBs	nie	8082A	No No			500 mL	Yes	No	<u> </u>
X	TCL Pestic	ides	8081B	No			500 mL	Yes	No	· -
X	TCL SVO	Cs	8270D	No		Ice	500 mL	Yes	No	
X	TCL VOC		8260C	No			150 mL	Yes	No	
PURGE OF	Total Meta	ıls	6010C, 7470A	A No	Niti	SKETCH/NOTES	500 mL	Yes	No	<u>- </u>
PURGE WA	ATER YES	NO	NUMBER OF GALLO	ONS 3						
CONTAINE NO-PURGE		NO	GENERATED If yes, purged approximately							
UTILIZED		X		y 1 standing volume prior mL for this sample locati						
Sampler Sig	nature: AAD,		Print Name:	Stephen Johansson						
Checked By:	: Ryan Jorrey		Date:	6/5/2018						

	PROJECT NAME NYSDEC Hoosick Falls Landfill					LOCATION ID DATE 6/5/2018]	
PROJECT NUMBER			270939.0000.0000		ST	START TIME END		END TIME	2018		
SAMPLE ID			SAMPLE TIME		SIT	10:30 TE NAME/NUMBE	R	PAGE	55		
		HFL-MW-106		12:10	<u> </u>	442007		1 O	F 1]	
WELL INTEGRITY WELL DIAMETER (INCHES) 1 X 2 4 6 8 OTHER YES NO N/A											
TUBING ID	(INCHES)	1/8 X	1/4 3/8	1/2	5/8	OTHER			CAP CASING LOCKED	<u>X</u> <u>X</u>	
MEASUREM	MENT POINT (MP)	X TOP OF	FRISER (TOR)	TOP OF CASING	NG (TOC) OTHER				COLLAR		
INITIAL DTW 19.31 FT			FINAL DTW (BMP)	19.67		OT. CASING ICKUP (AGS)	- FT		TOC/TOR DIFFERENCE	E 0.41 FT	
WELL DI (BMP)	ЕРТН 27	7.39 FT	SCREEN LENGTH	15	FT AM	D MBIENT AIR	0	PPM	REFILL TIM SETTING	ER - SEC	
WATER COLUM!	N 8	.08 FT	DRAWDOWN VOLUME (final DTW - initial D	0.06 TW X well diam. square	GAL MO	D WELL DUTH	0	PPM	DISCHARGE TIMER SETT		
CALCULATED 1.33 3AL			TOTAL VOL. PURGED	6.2	DDAWDOU		0.0	10	PRESSURE TO PUMP	- PSI	
	well diameter squar	red X 0.041)		ll minutes X 0.00026 gal	/mL)			-			
TIME	DTW (FT) 0.0-0.33 ft	PURGE RATE	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY			COMMENTS	
3-5 Minutes	Drawdown	(mL/min)	(+/- 3 degrees)	(+/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10) ntu) (+/- 10 mv)	DEPTH (ft)	COMMENTS	
10:30	BEGIN PUF	1	0.2	0.524	0.54	0.50	112.2	10.2	25	Г	
10:40	19.38	250 250	9.3	0.526	8.56 8.55	0.59	112.3 124.3	-19.2 -38.5	25 25		
						+			_		
10:50	19.52 19.54	250 250	9.5 9.4	0.516	8.49 8.49	0.57	245.7 151.6	-32.6 -33.9	25 25		
						-					
11:00	19.54	250	9.5 9.5	0.514	8.47 8.45	0.51	94.7	-40.7	25 25		
11:10	19.6	250 250	9.5	0.513	8.44	0.55	89.6	-44.6 -39.7	25		
		250		0.513	8.45	0.54	-		_		
11:15	19.67	-	9.6			-	74.5	-42.3	25		
11:20	19.67 19.67	250 250	9.6 9.7	0.514	8.44 8.44	0.54	77.9 64.3	-44.5 -40.7	25 25		
11:30	19.67	250	9.7	0.513	8.43	0.51	54.7	-36.1	25		
11:35	19.67	250	9.5	0.512	8.41	0.5	54.1	-27.8	25		
11:40	19.67	250	9.9	0.509	8.41	0.49	24.5	-26.8	25		
11:45	19.67	250	9.9	0.509	8.41	0.45	17.6	-29.3	25		
11:50	19.67	250	9.9	0.507	8.4	0.43	10.6	-24.8	25		
11:55	19.67	250	9.7	0.504	8.4	0.44	9.9	-21.4	25		
12:00	19.67	250	9.7	0.501	8.4	0.4	6.5	-20.7	25		
12:05	19.67	250	9.7	0.501	8.4	0.41	7.8	-19.1	25		
				AMETERS (to app		<u> </u>				egree (ex. 10.1 = 10) : (ex. 3333 = 3330, 0.696 = 0.696)	
			10	0.501	8.4	0.4	7.8	-19	pH: nearest tenth (c DO: nearest tenth (ex. 5.53 = 5.5)	
EQUIPMENT DOCUMENTATION					0.4	0.4	7.0	-17	ORP: 2 SF (44.1 =		
	TYPE OF PUMP STALTIC		ECON FLUIDS USED LIQUINOX	SILICON T		PUMP/BLADDER MAT S. ST	ERIALS EEL PUMP MAT	TERIAL	X WL MI	EQUIPMENT USED ETER	
SUBMERSIBLE BLADDER X			DEIONIZED WATER POTABLE WATER	TER TEFLON TUB				PUMP MATERIAL PROBE SCREEN		X PID MultiRae X WQ METEF Horiba X TURB. METER	
WATTERA			NITRIC ACID HEXANE	X HDPE TUB LDPE TUB				ON BLADDER ER		. METER Geopump	
OTHE			METHANOL OTHER	OTHER OTHER		OTH			OTHE FILTE		
ANALYTIC	CAL PARAMETER	FIELD	RVATION V	OLUME	SAMPLE	QC	SAMPLE BOTTLE ID				
	PARAME PFAS		NUMBER 537.1	FILTERED No		THOD RE	QUIRED 1.5 L	COLLECTED Yes	COLLECTED Yes	NUMBERS	
X	1,4-diox		8270-SIM	No		Ice	6 L	Yes	Yes	· · · · · · · · · · · · · · · · · · ·	
X	X PCBs		8082A	No		Ice	1.5 L 1.5 L	Yes	Yes		
X TCL Pesticides X TCL SVOCs				8081B No 8270D No		Ice		Yes	Yes	<u> </u>	
X TCL VOCs				8260C No		Ice HCl		Yes Yes	Yes	<u> </u>	
X Total Metals		etals		6010C, 7470A No		Nitric Acid		Yes	Yes		
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS Blind field duplicate sample collected										<u> </u>	
CONTAINE	ERIZED X		NUMBER OF GALLONS GENERATED 6.2		Blir	nu neia duplicate sam	pie collected				
NO-PURGE UTILIZED	E METHOD YE	S NO X	If yes, purged approximato sampling or	tely 1 standing volume prio mL for this sample locat							
	m	e Chancus									
Sampler Signature: Print Name: Marnie Chancey											
Checked By:	: Ryan Jorrey		Date: 6/	5/2018							

LOW FLOW GROUNDWATER SAMPLING RECORD

DATE			
PROJECT NUMBER 270939.0000.0000 START TIME END TIME 8:40 9:50			
SAMPLE ID SAMPLE TIME SITE NAME/NUMBER PAGE			
WELL INTEGRITY			
WELL DIAMETER (INCHES) 1 X 2 4 6 8 OTHER YES NO CAP X	N/A		
TUBING ID (INCHES) 1/8 X 1/4 3/8 1/2 5/8 OTHER CASING X LOCKED X	<u>=</u>		
INITIAL DTW (BMP) 13.18 FT (BMP) 20.5 FT PROT. CASING TOC/TOR 0.29	FT		
	SEC		
WATER COLUMN 125.45 FT VOLUME 1.2 GAL PID WELL 0 DISCHARGE 5 TIMER SETTING	SEC		
(final DTW - initial DTW X well diam. squared X 0.041) CALCULATED 20.57 TOTAL VOL. 3.9 DRAWDOWN/ 0.31 PRESSURE 90	par		
GAL/VOL GAL PURGED GAL (column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/mL)	PSI		
FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN THE QAPP) THAT DTW (FT) NIPCE PATE STATE SPECIAL CONDUCTANCE HE			
TIME 3-5 Minutes 0.0-0.33 ft Drawdown D	ENTS		
8:40 BEGIN PURGING			
8:50 16.38 250 9.4 0.426 7.88 0.29 22.2 -179.2 130			
8:55 17.43 250 9.4 0.425 7.89 0.15 24.3 -338.5 130			
9:00 17.79 250 9.5 0.426 7.89 0.17 44.3 -412.6 130			
9:05 18.42 250 9.4 0.425 7.89 0.16 51.6 -433.9 130			
9:10 18.63 250 9.4 0.424 7.89 0.11 54.8 -440.7 130			
9:15 19.18 250 9.4 0.423 7.87 0.09 103.5 -446.2 130			
9:20 19.58 250 9.3 0.423 7.86 0.05 127.2 -439.3 130			
9:25 19.92 250 9.4 0.423 7.86 0.04 138.2 -442.8 130			
9:30 20.28 250 9.5 0.424 7.85 0.04 25.5 -445.4 130			
9:35 20.41 200 9.7 0.425 7.85 0.1 24.6 -440.7 130			
9:40 20.5 200 9.7 0.425 7.85 0.11 23.9 -446.1 130 TEMP: nearest degree (ex. 10.1 = 10)			
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures[SF]) COND.: 3 SF max (ex. 3333 = 3330, 0.696 = 0.6 pH: nearest tenth (ex. 5.53 = 5.5)			
10 0.425 7.9 0.1 23.9 -450 TURB: 3 SF max, nearest tenth (6.19 = 6.2, 101 ORP: 2 SF (44.1 = 44, 191 = 190)	= 101)		
EQUIPMENT DOCUMENTATION TYPE OF PUMP DECON FLUIDS USED TUBING/PUMP/BLADDER MATERIALS PERISTALTIC SUBMERSIBLE DEIONIZED WATER SUBMERSIBLE DEIONIZED WATER TEFLON TUBING PVC PUMP MATERIAL X WL METER X PID MuliRae REPLON TUBING GEOPROBE SCREEN X WQ METER Horiba NITRIC ACID NITRIC ACID WATTERA HEXANE LDPE TUBING OTHER OTHER OTHER OTHER			
OTHER X PFAS FREE WATER OTHER OTHER TYPE	3		
ANALYTICAL PARAMETERS PARAMETER PARAMETER METHOD FIELD PRESERVATION VOLUME SAMPLE QC SAMPLE BY NUMBER FILTERED METHOD REQUIRED COLLECTED COLLECTED NUMBER NO SOUTH VOLUME SAMPLE VOLUME SAMPLE VOLUME SAMPLE VOLUME SAMPLE VOLUME SAMPLE VOLUME NO NO VOLUME SAMPLE VOLUME SAMPLE VOLUME SAMPLE VOLUME SAMPLE VOLUME SAMPLE VOLUME SAMPLE VOLUME NUMBER NO VOLUME SAMPLE SAMP			
X 1,4-dioxane 8270-SIM No Ice 2 L Yes No			
X PCBs 8082A No Ice 500 mL Yes No			
X			
X TCL VOCs 8260C No HCl 150 mL Yes No			
X Total Metals 6010C, 7470A No Nitric Acid 500 mL Yes No			
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS 3.9 CONTAINERIZED X GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling ormL for this sample location.			
Sampler Signature: Print Name: Stephen Johansson Checked By: Ryan Jorrey Date: 6/6/2018			

	PROJECT NAME		SDEC Hoosick Falls La	ındfill	L	OCATION ID HFL-MW	1R	DATE	6/6/2018]
	PROJECT NUMB	ER	270939		S	TART TIME		END TIME	:		
	SAMPLE ID			IPLE TIME	SI	12: TE NAME/NUM		PAGE	13:20		
		HFL-MW-1B	, , , , , , , , , , , , , , , , , , ,	13:10		4420		1	OF	1	
WELL DIAM	METER (INCHES)	1 2	2 4	6	8	OTHER			_	CAP	WELL INTEGRITY YES NO N/A X
TUBING ID	(INCHES)	1/8	1/4 X 3/8	1/2	5/8	OTHER				CASING LOCKED	X
MEASUREM	IENT POINT (MP)	X TOP O	F RISER (TOR)	TOP OF CASIN	NG (TOC)	OTHER			_	COLLAR	
INITIAL I (BMP)	DTW 3.	.24 FT	FINAL DTW (BMP)	3.34		ROT. CASING FICKUP (AGS)	0.96	0.96 FT			E 0.3 FT
WELL DE (BMP)	20).85 FT	SCREEN LENGTH	15		ID MBIENT AIR	0	PPM	RE SE	ER - SEC	
WATER COLUMN	17	7.61 FT	DRAWDOWN VOLUME	0.02	GAL M	D WELL OUTH	0	PPM		SCHARGE MER SETT	
CALCUL		.89	TOTAL VOL.	TW X well diam. squa	D	RAWDOWN/	0.0	06		RESSURE	
GAL/VOL (column X	well diameter square	GAL ed X 0.041)	PURGED (mL per minute X total	al minutes X 0.00026 g		OTAL PURGED			тс) PUMP	PSI
	DTW (FT)		BILIZATION CRITE	RIA (AS LISTED IN SP. CONDUCTANO	Έ					PUMP	
TIME 3-5 Minutes	0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units	DISS. O ₂ (mg. s) (+/- 10%)	(+/- 10% <1	(ntu) REDC 0 ntu) (+/- 1	(0 my)	INTAKE DEPTH (ft)	COMMENTS
12:30	BEGIN PUR	GING		(17 370)						, LI 111 (II)	
12:40	3.34	250	10.7	0.533	7.35	0.23	4.6	17	73.0		
12:45	3.34	250	10.7	0.53	7.35	0.09	3.4	18	31.4		
12:50	3.34	250	10.7	0.528	7.34	0.02	1.8	18	35.7		
12:55	3.34	250	10.6	0.528	7.35	0	2	18	36.2		
13:00	3.34	250	10.7	0.526	7.34	0	3	18	36.5		
13:05	3.34	250	10.7	0.525	7.34	0	3.7	18	35.9		
13:10	3.34	250	10.7	0.525	7.35	0	5.2	18	35.0		
	Fl	INAL STABIL	ZED FIELD PAR	AMETERS (to ap	propriate sigi	nificant figures	[SF])	,	co	ND.: 3 SF max	egree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
			11	0.525	7.4	0	5.2	1	DO	nearest tenth (nearest tenth (RB: 3 SF max,	
EQUIPMENT I	DOCUMENTATIO	N							OR	P: 2 SF (44.1 =	= 44, 191 = 190)
	YPE OF PUMP TALTIC	X	DECON FLUIDS USED LIQUINOX	SILICON	TUBING/ N TUBING	PUMP/BLADDER N	MATERIALS STEEL PUMP MAT	FERIAL.	Х	_	EQUIPMENT USED
	IERSIBLE		DEIONIZED WATER POTABLE WATER	TEFLON	TUBING	PV	C PUMP MATERI.	AL	X	PID	MultiRae ETER Horiba
WATT		_	NITRIC ACID HEXANE	X HDPE TO	UBING	TI	EFLON BLADDER THER		X	TURB.	METER Geopump
OTHE	R	X	METHANOL PFAS FREE WATER	OTHER		Or	THER THER		=	OTHER	3
	AL PARAMETERS			<u> </u>	pppg			0.13 fby F			
	PARAMI		METHOD NUMBER	FILTERE		ERVATION ETHOD	VOLUME REQUIRED	SAMPLE COLLECTI		QC OLLECTED	SAMPLE BOTTLE ID NUMBERS
X	PFA:		537.1 8270-SIM	No No		Ice Ice	500 mL 2 L	Yes		No No	<u> </u>
X	PCB		8082A	No No		Ice	500 mL	Yes		No	-
X	TCL Pest	icides	8081B	No		Ice	500 mL	Yes		No	<u> </u>
X	TCL SV	OCs	8270D	No		Ice	500 mL	Yes		No	
X	TCL VO		8260C	No No		HCl	150 mL	Yes		No	<u> </u>
PURGE OBS	Total Me	ctals	6010C, 7470	A No	Ni	SKETCH/NOTE	500 mL	Yes		No	<u> </u>
PURGE WAT	TER YES		NUMBER OF GALL	LONS 2.6	j						
CONTAINER NO-PURGE		S NO		ately 1 standing volume p	prior						
UTILIZED		X	to sampling or	mL for this sample lo	ocation.						
Sampler Signa	ature:	DL	Print Name:	Stephen Johansson							
<i>a</i>	D 1		D.	6/6/2019							


	PROJECT NAME		SDEC Hoosick Falls La	ndfill		LOCA	TION ID HFL-MW	4	DAT	E 6/7/20	18	
	PROJECT NUMB	ER	270020 0000 0000			START	T TIME	-4	END	TIME	10	
			270939.0000.0000				7:4:			9:05		
	SAMPLE ID	HFL-MW-4	SAM	PLE TIME 8:40		SITEN	NAME/NUMI 4420		PAG	1 OF	1	
WELL DIAM	METER (INCHES)	1 2	2 4	6	8	0	THER				CAP	WELL INTEGRITY YES NO N/A X
TUBING ID	(INCHES)	1/8	1/4 X 3/8	1/2	5/8	O	THER				CASING LOCKED	X
MEASUREM	IENT POINT (MP)	X TOP OF	RISER (TOR)	TOP OF CASI	NG (TOC)	O	THER				COLLAR	
INITIAL I (BMP)	DTW 21	42 FT	FINAL DTW (BMP)	25.03	PROT. CASING FT STICKUP (AGS)			2.	2.79 FT TOC/TOR DIFFEREN			0.3 FT
WELL DE (BMP)	ЕРТН 34	l.69 FT	SCREEN LENGTH	15	FT	PID AMBII	ENT AIR)	PPM	REFILL TIME SETTING	ER - SEC
WATER COLUMN	13	3.27 FT	DRAWDOWN VOLUME (final DTW - initial D'	0.59	GAL	PID WI)	PPM	DISCHARGE TIMER SETT	
CALCULA GAL/VOL (column X		.18 GAL	TOTAL VOL. PURGED (mL per minute X tota	2.6	GAL		DOWN/ L PURGED		0.23		PRESSURE TO PUMP	- PSI
			BILIZATION CRITE)						
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTAN (mS/cm) (+/- 3%)	CE pH (unit		OISS. O ₂ (mg/ (+/- 10%)	L) TURBID (+/- 10%		REDOX (mv) (+/- 10 mv)	PUMP INTAKE DEPTH (ft)	COMMENTS
7:45	BEGIN PUR	GING			•	•		•				
7:55	22.76	200	10.8	1.177	6.79		0.51	65	i.5	70	34	
8:00	23.36	200	11.1	1.181	6.76		0.59	40	0.1	77.1	34	
8:05	23.84	200	11.1	1.184	6.75		0.29	33	.5	82.4	34	
8:10	24.15	200	11.2	1.184	6.75		0.22	28	28.8 85.1		34	
8:15	24.56	200	11.3	1.188	6.75		0.2	24	.8	85.9	34	
8:20	24.81	200	11.5	1.186	6.76		0.2	23	23.3 85.1		34	
8:25	25.03	200	11.5	1.189	6.76		0.2	2		85.1	34	
8:30	25.03	200	11.8	0.188	6.76	_	0.2		20.9 82		34	
8:35	25.03	200	11.8	0.189	6.76		0.2	20	0.6	81.5	34	
											TEMP.: nearest de	gree (ex. 10.1 = 10)
	F	INAL STABIL	IZED FIELD PARA	AMETERS (to a	ppropriate s	ignific	ant figures	[SF])			COND.: 3 SF max pH: nearest tenth (DO: nearest tenth (
			12	0.189	6.8		0.2	20	.6	82		nearest tenth (6.19 = 6.2, 101 = 101)
	DOCUMENTATION OF PUMP	I	DECON FLUIDS USED			NG/PUM	P/BLADDER N					EQUIPMENT USED
SUBM	TALTIC IERSIBLE	X	LIQUINOX DEIONIZED WATER	TEFLO	N TUBING N TUBING		PV	STEEL PUMP N C PUMP MATI	RIAL			MultiRae
BLAD		_ 🖽	POTABLE WATER NITRIC ACID	X HDPE 7	N LINED TUBII TUBING	NG	TE	OPROBE SCRI FLON BLADD			X TURB.	ETER Horiba METER
WATT OTHE	R	🖯	HEXANE METHANOL	LDPE T OTHER	!		TO	HER HER			OTHER	
OTHE		X	PFAS FREE WATER	OTHER	!		TO	HER			FILTER	RS NO. TYPE
ANALYTIC	CAL PARAMETER PARAMI PFA	ETER	METHOD NUMBER	FIELD FILTERE		SERVA METHO		VOLUME REQUIRED		AMPLE LECTED Yes	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X	1,4-diox		537.1 8270-SIM	No No		Ice		500 mL 2 L	_	Yes	No No	
X	PCB	s	8082A	No		Ice		500 mL		Yes	No	
X	TCL Pest	icides	8081B	No		Ice		500 mL		Yes	No	
X	TCL SV	'OCs	8270D	No		Ice		500 mL		Yes	No	
X	TCL V		8260C	No		HCl		150 mL		Yes	No	
X	Total Me	etals	6010C, 7470.	A No		Nitric Ac		500 mL		Yes	No	
PURGE OB PURGE WA CONTAINE			NUMBER OF GALL GENERATED	ONS 2.	6	SKE	ETCH/NOTE	s				
NO-PURGE UTILIZED	METHOD YES	S NO X	If yes, purged approximate to sampling or	ntely 1 standing volume _mL for this sample								
	100		· · · · · · · · · · · · · · · · · · ·	1								
Sampler Sign	nature:	Chancy	Print Name:	Marnie Chancey								
Checked By:	Ryan Jorn	rey	Date: 6/	7/2018								

					LOV	V FLOW GR	OUNDV	VAT	TER SAM	PL	ING RECO	RD			
	PROJEC	T NAME		NV	SDEC Hoosick Falls La	ndfill		LOC	CATION ID		DAT	ГЕ			
	PROJEC	T NUMB	FR	NI	SDEC HOOSICK Palls La	ilidilii		STA	HFL-MW RT TIME	7-2	ENI	6/7/20 TIME	18		
					270939.0000.0000				10:0			11:0	0		
	SAMPLE ID HFL-MW-2 SAMPLE TIME 10:40						SITE	E NAME/NUMI 4420		PAG	GE 1 OF	1			
														WELL INTEGRITY	
WELL DIAM	IETER (I	NCHES)	1	X	2 4	6	8		OTHER				CAP	YES NO N/A X	
TUBING ID	(INCHES)	1	/8	1/4 X 3/8	1/2	5/8		OTHER				CASING LOCKED	X	
MEASUREM	IENT POI	INT (MP)	2	X TOP OF	RISER (TOR)	TOP OF CASI	NG (TOC)		OTHER				COLLAR		
INITIAL I (BMP)	DTW	4.	.68	FT	FINAL DTW (BMP)	8.12	FT	PROT. CASING STICKUP (AGS)			2.45 FT		TOC/TOR DIFFERENCE	0.34 FT	
WELL DE (BMP)	WELL DEPTH (BMP) 32.07 FT		FT	SCREEN LENGTH	15	FT AM		BIENT AIR		0 PPM		REFILL TIME SETTING	ER - SEC		
WATER COLUMN	ſ	27	1.39	FT	DRAWDOWN VOLUME	0.56	GAL	MOU	WELL UTH		0	PPM	DISCHARGE TIMER SETT		
CALCUL		4.	.49		(final DTW - initial D TOTAL VOL.	1.82		DRA	WDOWN/	Γ	0.31		PRESSURE		
GAL/VOL (column X		eter square	d X 0.0	GAL (41)	PURGED (mL per minute X total	al minutes X 0.00026	GAL gal/mL)	тот	AL PURGED	L			TO PUMP	PSI	
		RS WITH			BILIZATION CRITE	SP. CONDUCTANO	TE			1		1	PUMP		
TIME 3-5 Minutes	0.0-0	0.33 ft down		RGE RATE mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	pH (un (+/- 0.1 t		DISS. O ₂ (mg/ (+/- 10%)		TURBIDITY (ntu) (+/- 10% <10 ntu)	REDOX (mv) (+/- 10 mv)	INTAKE DEPTH (ft)	COMMENTS	
10:00		IN PUR	GING	ļ	1	(+/- 3/0)						.	DLI III (II)		
10:10	6.	.24		200	11.9	0.981	7.43	;	0.42		8.0	-79.5			
10:15	6.	.96		200	11.9	0.984	7.41		0.29		9.3	-83.4			
10:20		.44		200	12.0	0.985	7.41		0.22		8.5	-84.9			
10:25		.82		200	12.1	0.985	7.40		0.18		7.7 -85.7				
10:30	8.	.12		200	11.8	0.987	7.40)	0.16		7.5	-85.6			
10:35	8.	.12		200	12.3	0.986	7.40)	0.17		6.0	-86.0			
	l	F	INAL	STABIL	IZED FIELD PAR	AMETERS (to a	opropriate	signi	ficant figures	(SF))	ı		gree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)	
					12	0.986	7.4	1	0.2		6	-86	pH: nearest tenth (ex. 5.53 = 5.5) DO: nearest tenth (ex. 3.51 = 3.5) TURB: 3 SF max, nearest tenth (6.19 = 6.2, 101 = 101) ORP: 2 SF (44.1 = 44, 191 = 190)		
EQUIPMENT			ON		-1							ļ			
X PERIS	<u>TYPE OF P</u> TALTIC	UMP_		X	ECON FLUIDS USED LIQUINOX		N TUBING	NG/PU		STEE	L PUMP MATERIAI	L	X WL ME		
SUBM BLAD	ERSIBLE DER				DEIONIZED WATER POTABLE WATER	TEFLO	N TUBING N LINED TUBI	NG	GE	EOPRO	MP MATERIAL OBE SCREEN		X WQ ME	MultiRae ETER Horiba	
WATT					NITRIC ACID HEXANE	LDPE T	UBING UBING		TO	THER	N BLADDER		X PUMP	METER	
OTHE			_		METHANOL PFAS FREE WATER	OTHER OTHER				THER THER			OTHER FILTER		
ANALYTIC					METHOD	FIELD	PR	ESER'	VATION	VOI	LUME S	AMPLE	QC	SAMPLE BOTTLE ID	
		PARAME			NUMBER 537.1	FILTERE		MET	HOD	REQ	UIRED CO	LLECTED Yes	COLLECTED	NUMBERS	
X		1,4-diox			8270-SIM	No No		Ic			0 mL 2 L	Yes	No No		
X		PCB			8082A	No		Ic			0 mL	Yes	No		
х		TCL Pest	icides		8081B	No		Ic	ce	50	0 mL	Yes	No		
X		TCL SV			8270D	No		Ic			0 mL	Yes	No		
X		TCL VC			8260C 6010C, 7470	A No		He Nitric			0 mL 0 mL	Yes	No No		
PURGE OB	SERVAT		-cus		00100, 7470	110			KETCH/NOTE		V.11L.	103	110		
PURGE WA	TER	YES		O	NUMBER OF GALL	ONS 1.8	2								
CONTAINE NO-PURGE		X O YES	S N	10	GENERATED If yes, purged approximately appr										
UTILIZED] []	X	to sampling or	mL for this sample l	ocation.	-							
Sampler Sign	nature:	Marnie	Cha	neug	Print Name:	Marnie Chancey									
Checked By:	Ryan	. Iorrev			Date:	6/7/2018									

APPENDIX C SITE SURVEY

Map Notes

1. Monitor well and planimetric locations shown hereon were compiled from an actual field survey conducted on September 1, 2017. Additional wells located

on August 1, 2018. 2. North orientation is referenced to Grid North and is based on the New York State Plane Coordinate System, East Zone, NAD 83/2011 epoch 2010.00.

3. Vertical datum shown hereon is NAVD 88 (Geoid 12A) and was obtained from RTK GPS observations using the NY Saratoga CORS as a base station.

4. Parcel boundaries shown approximately hereon are based upon Rensselaer County, Town of Hoosick tax maps and are not the result of a boundary survey by the undersigned.

LEGEND Existing Village DPW Flood Mitigation Well Location EMTR ▶ Guy Wire ---MW (Monitoring Well ss 🕀 Surface Soil Sample Location SW/SED Surface Water/Sediment Sample Location TRANS Transformer UPER \$ Utility Pole w/Electric Riser Rail Road Tracks

	1	BAR SCAL	Е								
50 	0	25	50 	10							
1 inch = 50 ft.											

WILLIAM J. NETTLETON P.L.S. NO. 49513	DATE		REVISIONS RECORD/DESCRIPTION	DRAFTER	СНЕСК	APPR.	UNAUTHORIZED ALTERATION OR ADDITION TO THIS DOCUMENT IS A	MONITORING WELL SURVEY
	8/1/18	$\overline{\mathbb{V}}$	ADD'L MONITOR WELLS SHOWN/CHART UPDATED	MDD			VIOLATION OF THE NEW YORK STATE EDUCATION LAW.	HOOSICK FALLS LANDFILL - SITE NO. 442007
		<u>2</u>					© 2017 C.T. MALE ASSOCIATES	9 WALNUT SREET HOOSICK FALLS PREPARED FOR
		4					APPROVED: WJN	TRC COMPANIES, INC.
		<u>\$</u>					DRAFTED : SMW	TOWN OF HOOSICK RENNSELAER COUNTY, NEW YORK
		<u>6</u>					CHECKED : DGD	C.T. MALE ASSOCIATES MAN
		\triangle					PROJ. NO: 17.7460	Engineering, Surveying, Architecture & Landscape Architecture, D.P.C.
		8					SCALE: 1"=30'	50 CENTURY HILL DRIVE, LATHAM, NY 12110 SHEET 2 OF 2
		<u></u>					DATE: SEPT. 1, 2017	518.786.7400 * FAX 518.786.7299 DWG. NO: 17-569

"ONLY COPIES OF THIS MAP SIGNED IN RED INK AND EMBOSSED WITH THE SEAL OF AN OFFICER OF C.T. MALE ASSOCIATES OR A
DESIGNATED REPRESENTATIVE SHALL BE CONSIDERED TO BE A VALID
TRUE COPY".

APPENDIX D WASTE DISPOSAL RECORDS

PHONE: 631.608.8810 FAX: 631.608.8811

Transporter Permit #1A-644 EPA ID #NYR000081661 BIC # 2935

A	NON-HAZARDOUS MANIFEST	1. Customer's US EPA I Not: Re	DNO equired	Docume	ent No	2. Ps	age 1 of							
	3 Generator Site Address and Mailing Address NYS	EC-Hoosie	ck Falls Land	F: 11			ocument No		,					
	Route 22, Hoosick Fall					_	E190 late ID	11 1-	- 1					
	4 Phone 518-688-3154													
	5. Transporter 1 Company Name Brookside Environmental, Inc.	1	6. US EPA ID Number NYR000081661			C State Transporter's Phone (631) 608-8810								
	7. Transponer 2 Company Name		8. US EPA ID Number						(031)0	<u>ua-05</u> ,				
	7. Haraponer 2 Cumpany Name			EPA ID Number E. State Transporter's ID F. Transporter's Phone										
П	9. Designated Facility Name and Site Address		10. US EPA ID Number			G. Si	tate Facility	s ID			·····			
	Clean Water of New York		NYD000968545											
	3249 Richmond Terrace		1			H Fa	acility's Pho							
	Staten Island, NY 10303				40 0	<u></u>	(/18)	981-4	1600					
П	11 US DOT Description (Including Proper Shipping Name)			12. Containe	irs.	13 Tota		14 Unit	14.	L aste No			
					No.	Туре	Quan	Lity	Wt/Vol	**	2216 140			
Ġ E	Non-hazardous waste solid, nos				012	DM	1	پنجار پ	þ					
1 % E	Non-RCRA/Non-DOT Hazardous		(77		600	H.Z	٤					
R	b	- A	The state of the s	37										
T 0	Non-hazardous waste liquid, no	5		(OP CO	MC	inf 5	0	G					
R	Non-RCRA/Non-DOT Hazardous													
	c.													
	d.													
					l									
											 	W		
	J. Additional Descriptions for Materials Listed Above				[Hand	lang Codes	TOF Waste	s Listed Ab	ove				
	15 Special Handling Instructions and Additional Informati	DN.												
	a) App# 237-028 b) App# 237-029													
H	5) Appr 237-023													
	16 GENERATOR'S CERTIFICATION: I hereby declare that the	a contents of this conside	ment are fully and accurately	described	above by pro	per ship	ppìng name	and are	classified, p	acked, m	arked, ar	nd		
	labeled, and are in all respects in proper condition for	transport by highway ac	cording to applicable internation	onal and na	ational govern	ment re	gulations.				DATE			
Ų	Primed / Type Name X Mary Flandager dates as		Signature	J. J. J. J. J. J. J. J. J. J. J. J. J. J	The state of the s	. 601	our F	. N	750FC	Month	Day 7	Year 77		
-	17. Transporter 1 Acknowledgement of Receipt of Materia				383	J	<u>X. (</u>		<u> </u>		DATE			
R	Printed / Type Name		Signature	/s	161	7				Month	Day	Year		
S	Nicholas Holdener		Mickel	<u> </u>	<u> 4-27 (/_</u>	<u> L</u>	. \			f	7	17		
Ó	18. Transporter 2 Acknowledgement of Receipt of Materia	ts .	T.G								DATE			
ANSPORTER	Printed / Type Name		Signature							Month	Day	Year		
R			L							<u></u>				
F														
Â														
1	19. Facility Owner or Operator: Certification of receipt of v	vasta materiale coverent h	ov this manifest except as note	d.										
L	18. Paciny Owner or Operator. Centrication of receipt of a	THE PERSON NAMED IN THE PE	., z								DATE			
Ϋ́	Printed / Typed Name	n.,	proprietary .	11 11						Month	Day	Year		
	Printed / Typed Name	100	X-	yku ykuzawi	and the second					9	K.	17		

16. Generator/Offeror's Cartification: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name and are classified, packaged, marked and labeled/placarded and are in all respects proper condition for transport according to applicable international and national governmental regulations.

Printed/Typed Name

17. Transporter 1 Acknowledgment of Receipt of Materials

Signature

Printed/Typed Name

18. Transporter 2 Acknowledgment of Receipt of Materials

Signature

Printed/Typed Name

19. Discrepancy Indication Space (to be completed by Designated Facility)

20. Discrepancy Facility: Certification of receipt of the materials fovered by this shipping paper except as noted in itspir 19

Printed/Typed Name

13.278-40-5

13278-40-5

Straight Rill of Lading

se type or print		Generator EPA ID # (If applicable)	2. Page 1 of	3. Emerger	ncy Response	# 4. Document T	racking Number	_
A(CV	vsqg	1	908-354		ACV		9
5. Generator N NYSDE C/O TR	lame and Mallin	CK FALLS LANDFILL FIN RD		Generator's	HOOSIC RT 22	(If different) CK FALLS LANDFILL CK FALLS, NY 12090		
Generator Pho	one: 3°	15-671-4049		ACV Job N	umber:			
6. Tranjapofter,	A PemperyNe	MeVAC		US EPA	ID Number (i	f applicable NJD003812047		
7. Transporter	2 Company Na	ame		US EPA	ID Number (i	fapplicable)		
CYCLE 217 SC	CHEM, IN	TSTREET		US EPA	ID Number (I	f applicable) NJD002200046	3	
8. Designated	Facility Phone	908-355-5800	4					1
9a. HM	(Proper	9b. Material Description shipping name required if DOT Hazardous Ma	terial)	10. Contair No.	Type	11. Total Quantity	12. Unit (Wt/Vol)	13. Waste Codes
	1.NON REC	GULATED MATERIAL	0	60	DM	43,000	P	72
2	2.							*
3	3.	-	~_			*		
4	4.							
				L	Pass	* I I I		
		SROUNDWATER	nt D7951 Sales	Order 70	19	Tel 61 perof 0	19 16815	
16. Generato packaged, ma	r/Offeror's Cert arked and labe	ification: I hereby declare that the contents of the ded/placarded and are in all respects proper contents of the ded/placarded and are in all respects proper contents.	nis consignment are full adition for transport acco	y and accurate	ely described cable internat	above by the proper shipping na	me and are clas	
	oten J	o Francism Agenta (NYS	Signature Signature	A	>/	,	Month //	Day /
Printed Typed	er 2 Acknowled	Martista gment of Receipt of Materials	Signature	As	ISN.		Month //	1/1/
		pace (to be completed by Designated Facility)						
20. Discrepan		tification of receipt of the materials covered by	this shipping paper exce Signature	ept as noted in	item 19	0.	Monti	n Day
	V	JUDEDNI		1 .	42e	pu	11	ed January

APPENDIX E DATA USABILITY SUMMARY REPORTS

APPENDIX F FOR REFERENCE PURPOSES ONLY THAYER'S POND FISH SAMPLING RESULTS SUMMARY FOR PFOA AND PFOS

FOR REFERENCE PURPOSES ONLY

Thayers Pond Fish Sampling Results Summary for PFOA¹ and PFOS²

(Based on October 2016 and April 2017 Sampling Events by NYSDEC Division of Fish and Wildlife)

SPECIES	SAMPLE PREP	NUMBER of	PFOA ¹	PFOS ²	
	TYPE	SAMPLES	CONCENTRATION	CONCENTRATION	
		ANALYZED	RANGE ³ (ppb)	RANGE ³ (ppb)	
Black Crappie	Carcass	6	6.82 – 14.3	99.4 – 328	
	Standard Fillet	6	3.02 – 7.18	50.2 – 166	
	Viscera	6	11.7 – 30.1	191 – 670	
	Whole Body	7	6.47 – 31.4	72.4 – 311.76	
Bluegill	Whole Body	8	1.98 – 9.78	32.4 – 105	
Brown Bullhead	Carcass	10	0.688 – 2.11	1.14 – 4.85	
	Standard Fillet	10	< 0.469 - 0.945	< 0.99 – 2	
	Viscera	10	1.97 – 4.5	16.7 – 33.4	
	Whole Body	10	0.93 – 2.18	3.6 – 7.39	
Largemouth Bass	Carcass	5	0.918 – 1.97	117 – 165	
	Standard Fillet	5	< 0.493 – 1.15	43.4 – 65.3	
	Viscera	5	1.02 – 3.31	179 – 417	
	Whole Body	5	0.74 – 1.88	106.43 – 157.46	
Pumpkinseed	Carcass	8	3.6 - 17	12.2 – 21.6	
	Standard Fillet	8	1.63 – 7.45	4.63 – 9.29	
	Viscera	8	7.69 – 24.2	19.3 – 34.5	
	Whole Body	10	3.47 – 15.14	11.77 – 21.4	
Rock Bass	Carcass	3	0.541 - 0.93	28.8 – 41.4	
	Standard Fillet	3	< 0.498 - 0.913	15.9 – 19.2	
	Viscera	3	1.46 - 6.56	32 – 69.6	
	Whole Body	3	0.6 – 1.55	26.73 – 38.89	

¹ PFOA = Perfluorooctanoic acid

² PFOS = Perfluorooctanesulfonic acid

³ ppb = parts per billion, ng/g