Honeywell

Shallow Groundwater IRM Work Plan

Former Oak Materials Fluorglas Division John Street (NYSDEC Site No. 442049)

Village of Hoosick Falls Rensselaer County, New York

Honeywell

June 2019

www.erm.com

I, James Ryan, certify that I am currently a NYS Registered Professional Engineer as defined in 6 NYCRR Part 375 and that this Shallow Groundwater Interim Remedial Measure Work Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

James Ryan, P.E.

New York State Professional Engineer License No. 099986 ERM Consulting & Engineering, Inc.

Date: 7 June 2019

1.0	INII	KODUCI	ION/ PURPOSE	1						
2.0	PRE-	-DESIGN	INVESTIGATION RESULTS	2						
	2.1	GEOL	OGY AND HYDROGEOLOGY	2						
	2.2	PRE-D	DESIGN INVESTIGATION RESULTS	2						
		2.2.1	Soil and Groundwater PDI Results	2						
		2.2.2	Pre-Design Studies	3						
			2.2.2.1 Total Oxidizable Precursor (TOP) Assay	3						
			2.2.2.2 Infiltration Testing 2.2.2.3 Slug Testing	3						
			2.2.2.3 Slug Testing 2.2.2.4 Soil Mixability Results	3 3						
			2.2.2.5 Oxidation Treatability Study Results	4						
			2.2.2.6 Microbial and Geochemical Analyses	4						
	2.3	SUMN	IARY	4						
3.0	IRM TECHNOLOGY EVALUATION									
	3.1	TECHI	NOLOGIES FOR REMOVAL OR DESTRUCTION OF CVOCS	6						
	3.2	SITE-S	SPECIFIC CONSIDERATIONS FOR TECHNOLOGY SELECTION	7						
	3.3	IRM S	TRATEGIES FOR SHALLOW GROUNDWATER	8						
	3.4	SELEC	CTION OF IRM FOR SHALLOW GROUNDWATER	8						
4.0	IRM	SCOPE (OF WORK	10						
	4.1		PPROACH AND CONCEPTUAL DESIGN	10						
		4.1.1	Design of Permeable Treatment Barrier	10						
		4.1.2	Remedial Reagents	10						
		4.1.3	Required Reagent Mass	11						
	4.2	PERM	ITS AND APPROVALS	11						
	4.3	HEAL	TH AND SAFETY PLAN FOR IRM	12						
	4.4	COMN	MUNITY AIR MONITORING PLAN	12						
	4.5	SITE A	ACCESS/PREPARATION	12						
		4.5.1	Temporary Facilities	12						
			4.5.1.1 Site Access Control	12						
			4.5.1.2 Storage Areas 4.5.1.3 Sanitary Facilities	12 13						
		4.5.2	Security Provisions	13						
		4.5.3	Equipment Decontamination	13						
		4.5.4	Survey and Work Stake-out	13						
	4.6	IRM I	MPLEMENTATION PLAN	13						
		4.6.1	Installation of Temporary Performance Monitoring Wells	13						
		4.6.2	Well Development	14						
		4.6.3	Installation of Temporary Soil Vapor Monitoring Points	14						
		4.6.4	DNAPL Removal	14						
		4.6.5	Baseline Groundwater Sampling Event	15						
		4.6.6	Baseline Soil Vapor Sampling Event	15						
		4.6.7	Process and Equipment Requirements	15						

		4.6.8	Injection Event	16				
	4. 7	PERFORMANCE MONITORING PLAN						
		4.7.1	Well Selection	16				
		4.7.2	Groundwater Sampling	17				
		4.7.3	Groundwater Sample Analysis	17				
		4.7.4	Soil Vapor Sampling	18				
	4.8	INVES	STIGATION-DERIVED WASTES (IDW)	18				
	4.9	SITE R	RESTORATION	18				
	4.10	DEMC	OBILIZATION	18				
5.0	IRM :	SCHEDU	ULE AND REPORTING	19				
	5.1	IRM S	SCHEDULE	19				
	5.2	IRM S	SITE MANAGEMENT PLAN	19				
	5.3	IRM P	PROGRESS REPORTING	19				
	5.4	IRM C	CONSTRUCTION COMPLETION REPORT	19				
6.0	REFE	20						

LIST OF FIGURES

- 1 Site Location Map
- 2 Site Layout
- 3 Proposed Injection Well Locations for Permeable Barrier

LIST OF TABLES

- 1 Technology Screening Table
- 2 John Street Shallow IRM Groundwater Performance Monitoring Plan
- 3 Estimated IRM Project Schedule

LIST OF ATTACHMENTS

Attachment 1 - PlumeStop - SDS and Technical Specifications

Attachment 2 - AquaZVI - SDS and Technical Specifications

Attachment 3 - Summary Calculation Sheet for Remedial Reagents

LIST OF APPENDICES

Appendix A - Shallow Groundwater IRM PDI Summary Memorandum

ACRONYMS AND ABBREVIATIONS

°C Degrees Celsius 1,1,1-TCA 1,1,1-trichloroethane bgs below ground surface

CVOCs Chlorinated Volatile Organic Compounds

DNAPL Dense non-aqueous phase liquid DOT Department of Transportation

DTW Depth to Water

DER Division of Environmental Remediation

EDD Electronic Data Deliverable

ERM Consulting and Engineering, Inc.

foc Fraction organic carbon

ft/day feet per day

gph/ft-s gallons per hour per foot of screen

gpm gallons per minute
HASP Health and Safety Plan
Honeywell Honeywell International Inc.
IRM Interim Remedial Measure
IDW Investigation-Derived Waste
NTU Nepholometric Turbidity Units

NYCRR New York Codes, Rules and Regulations

NYS New York State

NYSDEC New York State Department of Environmental Conservation

ORP Oxygen Reduction Potential

PFAS Per- and Polyfluoroalkyl Substances

lbs pounds

PFOA Perfluorooctanoic acid PDI Pre-Design Investigation QAPP Quality Assurance Project Plan

RI Remedial Investigation
SDS Safety Data Sheet
SC Site Characterization
SpC Specific Conductivity

SSC Sub-Surface Clearance Procedures SVE/AS Soil Vapor Extraction/Air Sparging

TCE Trichloroethene

TOP Total Oxidizable Precursor
UIC Underground Injection Control

USEPA United States Environmental Protection Agency

WP Work Plan

ZVI Zero Valent Iron

1.0 INTRODUCTION/PURPOSE

This Interim Remedial Measure (IRM) Work Plan (WP) provides the scope of work to mitigate the migration of chlorinated volatile organic compounds (CVOCs) in shallow groundwater at the John Street Site (Figures 1 and 2) in the Village of Hoosick Falls, Rensselaer County, New York.

Honeywell International Inc. (Honeywell) entered into an Order on Consent and Administrative Settlement with the New York State Department of Environmental Conservation (NYSDEC) dated 3 June 2016 (the Order; Index Number +CO 4-20160415-79) for the Former Oak Materials Fluorglas Division - John Street Site (the Site) (No. 442049) (NYSDEC, 2016).

In 2016, initial Site Characterization (SC) work was performed in accordance with the NYSDEC-approved SC Field Sampling and Analysis Plan (ERM, 2016). CVOCs were detected (primarily trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA)) in on-site soil and groundwater and in off-site groundwater. The draft report of the SC results for the Site has been submitted to NYSDEC for review (ERM, 2018a; ERM, 2019a).

In 2018, work on the Remedial Investigation (RI) commenced after the approval of several tasks proposed in the draft Remedial Investigation Work Plan (ERM, 2017; ERM, 2019b).

Additional site characterization activities/pre-design studies were performed during 2018 in accordance with the NYSDEC-approved work plan entitled "Shallow Groundwater Interim Remedial Measure Pre-Design Investigation & Treatability Study Work Plan" dated 16 March 2018 (ERM, 2018b). The Pre-Design Investigation (PDI) activities included the delineation of CVOCs in on-site shallow soil and groundwater, and additional data collection to determine the physical and chemical characteristics of the shallow subsurface environment at the Site. The additional characterization data from the PDI are presented in Appendix A and summarized in Section 2.0 of this IRM WP.

After completion of the PDI activities, a technology screening was conducted to select an appropriate approach for IRM implementation. The findings of the technology screening are presented in Section 3.0 of this IRM WP.

This WP provides for implementation of an IRM to mitigate the mass flux of CVOCs in shallow groundwater that are migrating off-site in shallow groundwater. This goal will be achieved through implementation of a permeable barrier composed of PlumeStop and Zero Valent Iron (ZVI) in the form of AquaZVI that will create a zone of enhanced adsorption and degradation of CVOCs to minimize off-site migration.

The design and scope of work for implementation and post-implementation performance monitoring are presented in Section 4.0 of this IRM WP.

This IRM WP and appendices also serve as the Technical Memorandum that was proposed under the PDI scope and present the findings of the PDI, technology screening, an IRM implementation plan, and a performance monitoring program.

2.0 PRE-DESIGN INVESTIGATION RESULTS

The results of the 2018 PDI activities are included in Appendix A and summarized below, along with relevant information collected during the SC and RI activities.

2.1 GEOLOGY AND HYDROGEOLOGY

The shallow unconsolidated geologic materials that are relevant to the IRM consist of the following:

- An upper shallow layer of fine-grained alluvium (predominantly silt and clay) deposited in the Hoosic River valley;
- A coarse-grained alluvium, consisting predominantly of sand and gravel, with lesser amounts of silt also deposited in the Hoosic River valley; and
- A clay and silt unit deposited in glacial and post-glacial lakes that is laterally continuous across the site.

Groundwater occurs in both the overburden deposits and bedrock beneath the Site. The water table surface is encountered in the alluvium unit above the clay and silt unit at the Site at depths of approximately 6 to 14 feet below ground surface (bgs), groundwater flow within this unit is controlled primarily by areal topography, and flows northward toward the Hoosic River. Available data suggest that the clay and silt unit appears to represent an aquitard separating the shallow groundwater table from deeper overburden deposits beneath the clay and silt.

A more detailed discussion of the hydrogeology and the geologic materials encountered at the Site and surrounding area during the SC and PDI are presented in Appendix A Section 2.1.1 and Figures A-3 and A-4.

2.2 PRE-DESIGN INVESTIGATION RESULTS

The 2018 PDI activities were performed in support of an IRM to address transport of CVOCs off-site in shallow groundwater. The PDI was designed to delineate CVOC impact in the subsurface and collect information to evaluate the viability of physical, chemical and biological technologies for treatment of the primary CVOCs (TCE and 1,1,1-TCA). The results of the PDI are presented in Appendix A and summarized below.

2.2.1 Soil and Groundwater PDI Results

Forty-eight (48) soil borings and 12 temporary groundwater monitoring wells were installed during the 2018 PDI. The locations of these borings and wells are shown in Appendix A Figure A-9. The results are included in Appendix A Tables A-4 to A-8 and Figures A-10 to A-14. The sampling results indicate the majority of the CVOC mass is present in the silt-clay unit, where the CVOC mass is generally located several feet below the top of the silt-clay, and the vertical extent of CVOC mass generally limited to less than 20 feet bgs. There is limited CVOC mass present in soil and groundwater within the overlying sand and gravel unit.

Two areas of CVOC impact were identified near JS-MW-001 and JS-MW-003 (northern and center portions of the Site) as shown in Figures A-11 and A-13 in Appendix A.

A dense non-aqueous phase liquid (DNAPL) was detected in one temporary monitoring well, JS-TMW-039. Analytical results of the DNAPL sample indicate that the primary constituent is TCE. DNAPL was not detected in surrounding wells screened in the silt-clay indicating that this is a localized pocket of mass.

2.2.2 Pre-Design Studies

Pre-design studies were conducted to provide information in support of technology selection and design for the shallow groundwater IRM. The results of these studies are summarized below and presented in more detail in the PeroxyChem report, which is attached as Appendix A-3 to the PDI memorandum in Appendix A.

2.2.2.1 Total Oxidizable Precursor (TOP) Assay

TOP Assays were conducted on five soil samples and showed no evidence of the presence of "precursors", which are PFAS that can be converted to perfluoroalkyl acids such as perfluoroactanoic acid (PFOA) by persulfate oxidation. These results confirm that the use of oxidants such as sodium persulfate will not create additional perfluoroalkyl acid mass.

2.2.2.2 *Infiltration Testing*

Infiltration testing ("falling-head") was conducted at 10 temporary groundwater monitoring wells screened in the silt-clay layer. Infiltration rates in nine of the 10 wells ranged between 0.02 – 1.6 gallons per hour per foot of screen (gph/ft-s) with an average rate of 0.39 gph/ft-s. A higher rate of 14.5 gph/ft-s was measured in the tenth well (JS-TMW-030). These low infiltration rates indicate that the efficacy of injection of a remedial reagent or air sparging would be limited in the silt-clay unit.

2.2.2.3 Slug Testing

As part of the ongoing RI, single-well aquifer slug tests were performed in three onsite and two off-site downgradient wells screened across the water table in the shallow sand and gravel to develop a range of hydraulic conductivities (K) for that aquifer unit.

Estimated hydraulic conductivities for on-site and downgradient wells screened in the shallow sand and gravel alluvium deposits ranged from 32.6 feet/day (ft/day) to 408.8 ft/day. This information was used to estimate groundwater flow velocities and design remedial injection approaches.

A groundwater flow velocity (seepage velocity) of 0.51 ft/day or 187 feet per year was calculated for use in designing the groundwater IRM using a K of 85.2, a horizontal hydraulic gradient (i) of 0.0015 (dimensionless) and an assumed effective porosity (n) of 0.25. A more detailed discussion of the slug testing and results is presented in Appendix A Section 2.2.7.

2.2.2.4 Soil Mixability Results

Two soil composites (one from the sand and gravel unit and one from the silt-clay unit) were submitted for simulated soil mixing. Both samples were found to be suitable for *in situ* mixing. The silt-clay material is plastic and may require more time to complete the mixing and to clean the mixing head periodically. These results indicate that soil mixing to blend reagents into the soil is likely feasible.

2.2.2.5 Oxidation Treatability Study Results

Oxidant treatability testing was conducted on two soil composites, one from the sand and gravel unit and one from the silt-clay unit, and a composite groundwater sample from on-site shallow monitoring wells screened in the sand and gravel unit.

Soil base buffer capacity and natural oxidant demand testing indicate a moderate base buffer capacity and a moderate oxidant demand in both soil composites. These results indicate moderate base buffer capacity and oxidant demand in the soil. This information can support the design for an oxidant technology.

Oxidant treatability tests were conducted to evaluate the destruction of CVOCs by oxidation with sodium persulfate or potassium permanganate. Reductions in TCE concentrations ranged from 65% to 93% in the alkali persulfate treatments and from 37% to greater than 95% in the permanganate treatments. PFAS concentrations before and after oxidation were also measured to assess potential formation of perfluoroalkyl acids from precursor substances during oxidation. No significant increases in PFOA concentrations were observed between the control and treatments.

2.2.2.6 Microbial and Geochemical Analyses

The results of geochemical analyses indicate that conditions within shallow groundwater are generally aerobic and oxidizing. The presence of aerobic cometabolic dechlorinating bacteria and the absence of anaerobic bacteria are consistent with the aerobic and oxidizing conditions. These results indicate that conditions within the shallow groundwater are conducive to natural degradation of CVOCs through aerobic cometabolism; however, use of enhanced anaerobic bioremediation would require generation of reducing conditions and potentially bioaugmentation with anaerobic dechlorinating microorganisms.

2.3 SUMMARY

Based on the SC and PDI results, the following findings are noted:

Sand and Gravel Unit:

- The water table surface is encountered in this unit at depths of approximately 6 to 14 feet bgs, groundwater flow is in this unit controlled primarily by areal topography, and flows northward toward the Hoosic River.
- Shallow groundwater is a likely source of CVOCs to indoor air in buildings to the north of the Site.
- Limited CVOC mass is present in soil and groundwater within this unit.
- This unit is very permeable and amenable to injection-based technologies.
- The soil was found to be "mixable" and suitable for *in situ* mixing technology.
- The soil was found to be amenable to oxidant treatment.
- Geochemical conditions are generally aerobic cometabolic and oxidizing; these conditions are conducive to aerobic degradation of CVOCs but not to anaerobic degradation of CVOCs.
- Former foundations, metal and concrete are present and may make implementation of an IRM more difficult.

Silt-Clay Unit

- Majority of the CVOC mass is present in this unit with the vertical extent of CVOC mass generally limited to less than 20 feet bgs.
- CVOC mass is generally located several feet below the top of the silt-clay.
- This unit appears to represent an aquitard separating the shallow groundwater table from deeper overburden deposits beneath the clay and silt.
- This unit has low permeability and is unlikely to be amenable to injection-based technologies.
- The soil was found to be "mixable" and suitable for in situ mixing technology;
 the silt-clay material is plastic and may require more time to complete mixing.
- The soil was found to be amenable to oxidant treatment.
- The surface of silt-clay beneath the Site is not flat, with up to nine feet relief observed resulting in variable groundwater saturated thickness.

Although the majority of the mass of CVOCs is in the slit-clay unit, migration of CVOCs in shallow groundwater in the sand and gravel unit is a likely source of CVOCs to indoor air in nearby buildings. The sand and gravel unit is also easily accessible and amenable to implementation of a number of technologies, which limit disruption to the surrounding residences and businesses.

Based on these factors, the shallow sand and groundwater unit is chosen for implementation of this IRM.

3.0 IRM TECHNOLOGY EVALUATION

After completion of the PDI activities, a technology screen was conducted to select an appropriate technology for IRM implementation with the goal of reducing CVOC migration off-site in shallow groundwater within the sand and gravel layer. The screening looked at barrier and source treatment technologies and considered whether the technology could be implemented in the shallow sand & gravel aquifer.

3.1 TECHNOLOGIES FOR REMOVAL OR DESTRUCTION OF CVOCS

Many technologies are applicable for the removal or destruction of CVOCs in soil and/or groundwater since they are amenable to treatment by physical, chemical and biological processes. The most common technologies for CVOCs are:

Soil Vapor Extraction and Air Sparging – CVOCs can be stripped from groundwater and volatilized from soil due to their high vapor pressures and Henry's Law constants. *In situ* approaches involve the injection/extraction of air with treatment of off-gases, if necessary by activated carbon, thermal oxidation with scrubbing, or other conventional air treatment technologies.

Adsorption – Due to their hydrophobicity, CVOCs are adsorbed by hydrophobic media such as activated carbon. Such media can be used *ex situ* for treatment of groundwater or vapors. Alternatively, hydrophobic media can be used *in situ* to create a highly adsorptive zone to remove CVOCs from groundwater. The adsorptive zone increases CVOC retention time allowing enhanced natural attenuation through abiotic and biotic degradation. Examples are mulch, activated carbon, and PlumeStop, which is a proprietary colloidal carbon material sold by Regenesis.

Anaerobic Biological Degradation – CVOCs are amenable to biological degradation by naturally occurring bacteria under anaerobic conditions through reductive dechlorination. In this process, chlorine atoms are successively removed with the transient production of less chlorinated intermediate daughter products. This process requires strong reducing conditions and the presence of a carbon substrate to act as a source of electron donor. Carbon substrates such as lactate or emulsified vegetable oils can be applied through *in situ* mixing or injected as liquids, or entrenched (e.g. mulch).

Chemical Oxidation – CVOCs can be mineralized to carbon dioxide, water and inorganic chloride through chemical oxidation. Chlorinated ethenes are amenable to more oxidants than are chlorinated ethanes. Only the chlorinated ethenes are amenable to sodium or potassium permanganate, while both classes of CVOCs are amenable to oxidation by hydrogen peroxide, activated persulfate and ozone. Hydrogen peroxide and persulfate can be applied through *in situ* mixing or injected as liquids; ozone is applied as a gas by injection.

Chemical Reduction – Chlorinated ethenes will react with reduced metals such as ferrous iron and zero valent iron (ZVI), while chlorinated ethanes are much less reactive to these reduced metals. ZVI is extremely reducing and can create an environment that is conducive to biological reductive dechlorination of both the ethenes and ethanes. ZVI can be applied by *in situ* mixing, slurry or microemulsion (e.g. AquaZVI) injection, or in a trench mixed with sand.

Thermal Treatment – Since vapor pressure increases with temperature, the application of heat increases the volatility of CVOCs and enhances the removal of CVOCs from soil and groundwater. Heat is commonly applied through steam injection or radio frequency (RF) heating. For enhancement of CVOC volatilization, temperatures of 40 to 100°C with capture of vapors by soil vapor extraction is required. Application of heat to 30 to 35°C can also be used to enhance abiotic or biological degradation processes.

Groundwater Extraction and Treatment – Extraction of groundwater containing dissolved CVOCs can slowly remove CVOC mass from the aquifer. Over time, CVOCs adsorbed to the soil matrix will slowly desorb into groundwater and will be removed. Extracted groundwater would require treatment through activated carbon, air stripping with vapor treatment by activated carbon, or other conventional technology.

Soil Excavation – Soil impacted with CVOCs can be removed by excavation and either disposed in a landfill or treated to remove CVOCs. This technology could be implemented in the sand and gravel and silt-clay layers; however, excavation would likely require stabilization of the excavation (e.g. with sheet piling), groundwater containment, and vapor controls.

3.2 SITE-SPECIFIC CONSIDERATIONS FOR TECHNOLOGY SELECTION

While all of the technologies discussed in Section 3.1 are generally applicable for CVOCs, site-specific features of the John Street site will constrain their implementation.

Environmental Considerations:

- High Permeability Shallow Sand and Gravel Layer The high permeability of
 the shallow sand and gravel allows for a groundwater velocity estimated at 180
 to 190 feet per year. The high permeability is conducive to the use of injection
 technologies and will allow for large radii of influence, which are favorable.
 Conversely, certain technologies, such as excavation and thermal treatment,
 have the potential to mobilize CVOC into shallow groundwater; therefore, these
 technologies would likely require groundwater containment through extraction
 or barriers to avoid potential negative impacts to downgradient properties.
- Silt-clay Layer The zone with the most CVOC mass is the silt-clay layer, which has a low permeability and can accept only very low infiltration rates of water. Technologies that involve injection of water, air, or other gases, or the extraction of water will have limited application in the silt-clay layer. In addition, back-diffusion of CVOC mass from the silt-clay layer has the potential to continue to affect the shallow sand and gravel layer.

Physical Considerations:

- Sewer Line and Concrete Channel Structure These structures need to be
 maintained and limit the ability to implement remedies such as excavation or in
 situ mixing. Investigation of CVOC extent near these structures has also been
 limited due to subsurface clearance concerns and, in the case of the channel
 structure, access limitation.
- *Site Size and Surrounding Property Use* The Site is a very small parcel (approximately 0.6 acres) located adjacent to residential and commercial

properties. Technologies that cause noise, dust or other disturbances will need to be implemented with controls to limit these disturbances.

Presence of PFAS:

• **PFAS** in Soils and Groundwater – Although PFAS are not the target compounds for the IRM, their presence in soil and groundwater were considered during technology screening. For example, the presence of PFAS may influence treatment of extracted groundwater and soil disposal options.

3.3 IRM STRATEGIES FOR SHALLOW GROUNDWATER

The technologies discussed in Section 3.1 were evaluated as IRM treatment strategies, considering the site-specific conditions discussed in Section 3.2, with the goal of reducing off-site migration of CVOCs in shallow groundwater. A summary of the IRM strategies, their application and evaluation parameters is given in Table 1.

Selection Criteria Included:

- *Implementability* Technologies such as injection technologies that can be easily implemented on a small site and that can be designed around access limitations and subsurface structures are ranked higher.
- *Disruption to Surrounding Community* Technologies that can be quickly implemented with limited noise, dust, heavy equipment, etc. are ranked higher.
- Ability to Treat CVOCs That Back-diffuse From Clay Over Time Technologies that can continue to treat any CVOC mass that back-diffuses from the clay will be more effective in preventing migration of CVOCs and are ranked higher.
- *Likelihood of Reducing Vapor Intrusion* All technologies can treat CVOCs but it may take multiple years to see reductions in indoor air concentrations.
- *Cost* Cost effectiveness is considered in technology selection. Both capital and long-term operations and maintenance are considered.
- Requirement for Active Operation and Maintenance (O&M) Technologies with no requirement for O&M are rated higher than those that require active O&M.
- *Soil Disposal* Due to current constraints on disposal of soil containing PFAS, technologies that generate little soil wastes are rated higher than those that yield more soil waste.

3.4 SELECTION OF IRM FOR SHALLOW GROUNDWATER

In the final selection of an IRM, preference was given to technologies that could be implemented to reduce off-site migration of CVOCs in shallow groundwater effectively with limited disruption to the surrounding residences and business. The technology that was ranked the highest was:

• Permeable Barrier With PlumeStop and ZVI Injection

This technology has the ability to decrease CVOCs concentrations and migration in shallow groundwater. PlumeStop is a colloidal carbon material that will bind to the soil matrix and adsorb CVOCs, similar to activated carbon. The addition of ZVI can enhance abiotic and biotic degradation of CVOCs by inducing reducing conditions within the aquifer. Since these reagents are stable and stay in place, they are able to continue to treat CVOC mass that may back diffuse from the silt-clay layer.

Disruption to the community will be limited since implementation will only take one to two weeks and no operation and maintenance will be required as long as the barriers continue to remove CVOC mass from groundwater. The vendor of PlumeStop, Regenesis, estimates that the barrier can be designed to last at least 25 years and can be replenished if necessary to increase its longevity.

4.0 IRM SCOPE OF WORK

This section describes the scope of work for implementation of permeable barrier through the injection of PlumeStop and AquaZVI into the shallow aquifer. The goal of the IRM is to mitigate the mass flux of CVOCs in shallow groundwater and limit off-site migration of CVOCs in shallow groundwater.

4.1 IRM APPROACH AND CONCEPTUAL DESIGN

The IRM described in this document will provide a permeable barrier to reduce the migration of CVOCs in shallow groundwater off-site to the north of the John Street Site. The barrier will be implemented by the injection of a mixture of PlumeStop and AquaZVI into the shallow aquifer through a series of injection points near the northern property boundary of the Site. Within the barrier, CVOCs will be removed from groundwater primarily by enhanced adsorption with a lesser contribution by biodegradation. The barrier will capture CVOCs present in shallow groundwater, from both the southern and northern areas of the Site prior to CVOCs leaving the property.

4.1.1 Design of Permeable Treatment Barrier

The design length of the permeable barrier is approximately 65 feet to cover the accessible portions of the northern property boundary of the Site and extending into Village right-of-ways. See Figure 3 for the proposed locations of the injection points. The eastern portion of the site boundary is partially inaccessible due to subsurface structures including a sewer line owned by the Village and the footers of the concrete channel of Woods Brook. Access is also limited due to a setback from the NYSDEC-owned property around the Woods Brook channel.

The average vertical treatment thickness is approximately eight feet and extends from the water table down to the top of clay. The depth to the silt-clay layer is shown on Figure A-10 in Appendix A.

The injection configuration includes 16 injection points aligned in three offset rows and spaced approximately 12 feet apart. These proposed locations are shown in Figure 16. The final locations of the injection points may be adjusted based on subsurface clearance results and access limitations.

4.1.2 Remedial Reagents

PlumeStop, which is supplied by Regenesis, is a colloidal activated carbon in water. The activated carbon particles are 1 to 2 microns (μ m) in diameter and suspended in water. PlumeStop is injected as a liquid, which will move with groundwater until it sorbs/coats the soil particles. A typical travel time from injection before sorption is 30 days, or 15 feet assuming a velocity of 0.51 ft/day. As with activated carbon used in *ex situ* groundwater treatment, PlumeStop will sorb CVOCs and other organic compounds into the carbon coating. In the case of CVOCs, which are amenable to abiotic and biotic degradation, the sorbed CVOCs may also be removed through these processes within the PlumeStop treatment zone. A Safety Data Sheet (SDS) and technical specifications for PlumeStop are in Attachment 1.

AquaZVI, also supplied by Regenesis, is an *in situ* chemical reduction (ISCR) reagent that promotes the destruction of CVOCs. The purpose of adding ZVI is to

enhance the abiotic degradation of TCE and increase the useful lifetime of PlumeStop by reducing the mass of TCE to be adsorbed to PlumeStop.

The overall abiotic degradation reaction of TCE with ZVI is:

$$3Fe^{\circ} + C_2HCl_3 + 3H_2O \rightarrow C_2H_4 + 3Fe^{+2} + 3OH^- + 3Cl^-$$

Biotic degradation through reductive dechlorination may also occur, but is not the primary degradation pathway for ZVI. AquaZVI is composed of colloidal ZVI particles (3 to 4 microns) suspended in an aqueous medium with environmentally acceptable, proprietary dispersant (a carboxy methylcellulose stabilizer). The passivation technique of sulfidation, completed through proprietary processing methods, provides reactivity with CVOCs and increases its *in situ* stability and longevity. An SDS for ZVI and technical specifications for AquaZVI are in Attachment 2.

The addition of PlumeStop and AquaZVI are expected have limited effects on the aquifer. Both reagents consist of micron-sized particles that will create a thin coating on the aquifer soil grains. The amount of reagents added to the overall aquifer matrix is small and will not cause measurable changes to aquifer hydraulic characteristics such as effective porosity (n) or hydraulic conductivity (K). The addition of AquaZVI will lower the oxidation-reduction potential (ORP) of the aquifer near the injections for approximately two years.

4.1.3 Required Reagent Mass

The required mass of the remedial reagents was estimated based on:

- Mass flux of CVOCs in groundwater through the treatment zone;
- Mass flux of other organic compounds (for example, PFAS) that will compete with CVOCs for sorption sites on the carbon;
- Groundwater seepage velocity;
- Natural fraction organic carbon (f_{oc}) within the aquifer;
- Volume of the treatment barrier; and
- Barrier longevity of up to 25 years.

A summary calculation sheet provided by Regenesis is included in Attachment 3. Based on the existing data from the Site, the requirements for remedial reagents for the permeable barrier will be:

- PlumeStop 11,200 pounds (lbs) (1,342 gallons); and
- AquaZVI 1,600 lbs (120 gallons).

After the baseline groundwater sampling event discussed in Section 4.6.5 and the final placement of the injection wells, these requirements will be re-evaluated and adjusted if necessary. NYSDEC will be notified if the remedial reagent requirements are adjusted.

4.2 PERMITS AND APPROVALS

Necessary permits and approvals for the project will include:

USEPA Underground Injection Control (UIC) Permit, if required;

- Village of Hoosick Falls road opening permit for any work that might infringe on Village right-of-ways; and
- Access approval from the Village of Hoosick Falls for work to be conducted on Village property.

4.3 HEALTH AND SAFETY PLAN FOR IRM

The Site Health and Safety Plan (HASP) will be modified to address the Shallow Groundwater IRM work activities and requirements as approved by NYSDEC.

4.4 COMMUNITY AIR MONITORING PLAN

Community air monitoring for CVOCs and particulates will be performed during all intrusive field activities in accordance with the previously approved Community Air Monitoring Plan for the Site.

4.5 SITE ACCESS/PREPARATION

Mobilization will involve designating general work zones on the Site and procurement/transport/delivery of the necessary resources to implement the project requirements (i.e. labor, materials, and equipment). General Site preparation activities include the following operations:

- Clearing of debris (e.g. gravel, vegetation, etc.) as necessary to access the work areas. Materials are to be staged in areas identified by ERM.
- A new underground utility mark out/subsurface clearance activity will be required in accordance with ERM's Sub-Surface Clearance Procedures (SSC).
- Construction of temporary decontamination pad for personnel and equipment.
- Mobilization of reagent injection and mixing equipment (including an injection trailer provided by Regenesis), reagent storage and application equipment, and necessary personnel.

4.5.1 Temporary Facilities

4.5.1.1 Site Access Control

The Site is currently surrounded by a six-foot high steel security fence with locking gates. Work and staging areas will be maintained inside of the perimeter fencing with the exception of injections on Village property along John Street and/or Lyman Street. Access to the Site shall be via Lyman Street.

4.5.1.2 Storage Areas

Designated storage areas will be established in a secured portion of the Site. The locations will be chosen to not interfere with access to the specific areas to be treated and provide secure storage, weather resistance, proper labelling and segregation of incompatibles, if required for the materials to be used. Materials shall not be stockpiled outside the designated area. Mobile equipment, such as drilling rigs, mixers, and trucks, shall be parked within the designated area at the end of each workday, unless otherwise approved by ERM.

4.5.1.3 Sanitary Facilities

Temporary sanitary facilities with regular maintenance services shall be provided for Site workers.

4.5.2 Security Provisions

The Site will be secured against trespass, vandalism and theft by the existing security fencing and vehicle gates that will be locked at the end of each workday. A daily visitor's log will be maintained to document all visitors to the Site.

Site security will be maintained to control access to the injection trailer, application system and injection well locations. A minimum two-person field crew will be required on-site at all times; no unattended injections will be conducted. Additional security measures will include:

- Securing chemical storage and mixing/distribution areas with a padlock to lock the fence at all times when the Site is unoccupied;
- Site personnel should anticipate no/limited pedestrian traffic in the work area; however, field activities shall maintain an exclusion zone, demarked by traffic cones, caution tape or equivalent;
- Site personnel should maintain access around all work areas sufficient to facilitate access for fire and/or emergency vehicles; and
- All non-ERM personnel should be accompanied by an ERM person at all times.

4.5.3 Equipment Decontamination

Injection rods and equipment in direct contact with contaminated media or remedial amendments will be cleaned and flushed with PFAS-free clean water at least daily. This equipment includes injection pumps, delivery hose/piping and fully draining batch mixing tanks.

Pressurized water with a detergent solution (Alconox®) is preferred for equipment decontamination at the conclusion of activities and prior to demobilizing from the Site. A temporary decontamination pad will be established on-site that is of suitable size and provides containment of decontamination liquids and solids. The decon wastes shall be managed in accordance with Investigation-Derived Waste (IDW) management requirements specified in Section 4.7.

4.5.4 Survey and Work Stake-out

The new well locations and treatment areas will be staked from existing site control control points. Final well locations/treatment areas will be mapped by a New York-licensed surveyor utilizing traditional survey equipment and/or Global Positioning Equipment (GPS) equipment, as appropriate, will be employed. Each injection point will be numbered for identification purposes and the location will be surveyed in the field.

4.6 IRM IMPLEMENTATION PLAN

4.6.1 Installation of Temporary Performance Monitoring Wells

Prior to implementation of the IRM, new temporary monitoring points will be installed with screen intervals in the shallow sand and gravel layer for performance

monitoring of the proposed IRM. These points will consist of six wells, with two wells to be located approximately 10 feet upgradient of the injection zone, two wells approximately 25 feet downgradient of the zone, and two wells within the injection zone. The proposed locations of these temporary monitoring wells are shown on Figure 3.

These new temporary performance wells will be installed via the rotosonic drilling method. Each new well will be constructed of two-inch polyvinyl chloride (PVC) pipe. Monitoring wells will be constructed using 10-foot long, 0.010-inch preslotted screens to the top of clay. Sand filter packs will be placed around each well screen using Morie #1 or equivalent sand to a minimum of two-feet above the top of the well screen. A minimum two-foot thick bentonite seal will be installed and hydrated above the filter pack using approved potable water. Cement-bentonite grout will be tremie-grouted with a Portland cement/high-grade bentonite mixture to backfill the remainder of the borehole to approximately one-foot below ground surface. The cement-bentonite grout will be mixed using approved potable water. A flush-mounted steel protective casing will be cemented in place over each performance well.

New groundwater monitoring well locations will be surveyed by a New York-licensed land surveyor. Survey crews utilizing traditional survey equipment and/or Global Positioning Equipment (GPS) equipment will be employed, as appropriate.

4.6.2 Well Development

The new wells will be developed via pumping, surging, or bailing to facilitate collection of representative groundwater samples. Field parameters will be measured and recorded during well development activities using a calibrated multi-parameter meter with a flow cell and a water level indicator which allows for measurement of temperature (°C), specific conductivity (SpC), dissolved oxygen (DO), pH, turbidity (nepholometric turbidity units {NTU}), oxidation-reduction potential (ORP), and depth to water (DTW) data.

4.6.3 Installation of Temporary Soil Vapor Monitoring Points

Three temporary soil vapor monitoring points will be installed to provide information on soil gas concentrations in the vicinity of the treatment zone. One point will be installed upgradient of the treatment zone and two points will be installed at downgradient locations. Stainless steel rods equipped with a detachable stainless steel sampling point will be driven to a depth of approximately 3 to 4 feet below ground surface, or a minimum of 1 foot above groundwater. Dedicated Nylaflow® tubing will be attached to each sampling point. Boreholes will be backfilled with glass beads to a minimum of 6 inches above the soil vapor sampling point. The remainder of the annular space will be filled with bentonite chips and immediately hydrated with PFAS-free water.

4.6.4 DNAPL Removal

DNAPL will be removed from well JS-TMW-039 on a quarterly basis using a peristaltic pump, double-check valve bailer or sinkable absorbent socks. Observations will be made monthly after the first event to determine if more frequent removal or change out of absorbent socks is warranted. The frequency will be adjusted based on the rate of return of product to the well, in consultation

and agreement with NYSDEC. Wells surrounding JS-TMW-039 will be checked for product at the same frequency. The volume of recovered free-phase liquid will be reported to NYSDEC.

The recovered DNAPL/water mixture or socks will be placed in a new DOT 55-gallon drum for accumulation and proper disposal. As part of this effort, depth to water and DNAPL thickness measurements will be collected to confirm product thickness over time.

4.6.5 Baseline Groundwater Sampling Event

Prior to implementation of the IRM, the six new performance monitoring wells and select existing on-site and off-site shallow groundwater monitoring wells will be sampled to provide a groundwater quality baseline for measuring IRM performance. See Section 4.7 and Table 2. Changes in CVOC concentrations from current interpretations outlined in Appendix A may require a modification to the IRM implementation plan, in consultation with NYSDEC. Any change to the plan will be documented in the deviation section of the monthly project reports.

4.6.6 Baseline Soil Vapor Sampling Event

Soil vapor samples will be collected from the three new temporary soil vapor monitoring points using Summa canisters over a 24-hour period and will be analyzed for CVOCs by USEPA Method TO-15. An outdoor ambient air sample will also be collected upwind during soil vapor sampling activities.

4.6.7 Process and Equipment Requirements

Regenesis will provide equipment for mixing and dilution of the remedial amendments. The equipment will be trailer-mounted and will include pumps, mixing tanks, delivery manifold, injection heads with flow and pressure gauges, and safety bypass valves.

The approach is based on Direct Push Technology (DPT) application techniques utilizing a Geoprobe® DT series track rigs (or equivalent) with 1.5-inch injection rods. The PlumeStop and Aqua ZVI material will be prepared for injection via an injection trailer to be supplied by Regenesis.

During injection, the injection pressures are typically less than 20 psi. The application delivery system is designed to mix and deliver PlumeStop and AquaZVI solutions that range from 3% to 20% weight/weight at up to 20 gallons per minute (gpm).

The remedial reagents will be delivered to the Site in advance of the injection event and will be securely stored within the locked security fence. PlumeStop will be delivered in 2,000-lb totes and 400-lb drums on pallets. AquaZVI will be delivered in 500-lb drums and 50-lb pails on pallets.

All water used for mixing, dilution of remedial amendments, drilling, steam cleaning and decontamination will be PFAS-free water. Information on the source of PFAS-free water and associated analytical results will be provided to NYSDEC for approval prior to use.

4.6.8 Injection Event

Prior to injection, PlumeStop and AquaZVI will be mixed together and diluted with PFAS-free water to the desired concentration (17,300 milligrams per liter PlumeStop). In total, 1,342 gallons of PlumeStop plus 120 gallons of AquaZVI will be mixed with 7,496 gallons PFAS-free water for a total injection volume of 8,958. This volume equates to the injection of approximately 70 gallons of injectate solution containing 87.5 lbs PlumeStop and 12.5 lbs AquaZVI per foot of injection well screen (16 wells times an average 8-foot treatment interval) in one injection event. These volumes are based on current estimates of remedial reagent requirements and may be adjusted after the baseline sampling.

Injection will be by direct-push (DP) drilling equipment. These rigs provide greater flexibility for site access and mobility and they can inject the volumes of reagents at precise intervals in the anticipated shallow depths of the site treatment zones.

The injection configuration includes 16 injection points aligned in three off-set rows and spaced approximately 12 feet apart. Injections will begin at the bottom of the average 8-ft injection interval. The drive rods will be retracted slowly as the reagent mixture is injected to allow for the appropriate quantity of reagent to be injected into each vertical foot of aquifer being treated.

During injection, the downhole operating injection pressures are typically less than 20 psi. Injection rates of approximately 20 gallons per minute (gpm) are anticipated. The injection into the 16 proposed points will occur at one event over five days.

4.7 PERFORMANCE MONITORING PLAN

The performance monitoring plan to evaluate the effectiveness of the IRM treatment is presented below. The plan is to conduct a baseline sampling event prior to the injection event, monthly sampling for three months after the injection, followed by three quarterly sampling events. Select wells will be sampled annually until the final remedy has been implemented. Table 2 summarizes the performance monitoring plan.

During the injection event and weekly for the first month afterwards, observations will be made in the performance monitoring wells to look for the presence of PlumeStop in groundwater. Since PlumeStop may remain suspended in groundwater for a few weeks after injection, select wells may not be sampled at the first sampling event after injection if PlumeStop is still observed in the temporary performance monitoring wells. NYSDEC will be notified of any change in the planned sampling frequency or locations.

4.7.1 Well Selection

In addition to the six temporary performance monitoring wells shown on Figure 3, select existing monitoring wells will be included in the sampling plan as listed in Table 2.

The injection of PlumeStop and AquaZVI are not expected to have any effect on the silt-clay layer or the sand-gravel aquifer beneath the silt-clay layer. However, two wells (JS-MW-001B and -003B) that are screened immediately below the silt-clay layer are included in the monitoring plan.

The screened interval, location relative to the PlumeStop barrier, and the rationale for selection of these wells is provided in Table 2.

As part of the proposed RI work, all on-site and off-site permanent monitoring wells (A, B, C, D and BR) associated with the Site will be sampled twice a year for two years. This two-year RI monitoring period is expected to overlap with, and supplement the first two years of IRM performance monitoring

4.7.2 Groundwater Sampling

All groundwater sampling will be performed using low flow well purging /sample collection techniques, in accordance with the NYSDEC-approved SC Field Sampling and Analysis Plan (ERM, 2016) and will include the PFAS sampling considerations. Samples will be stored on ice and transported under chain-of-custody procedures to a NYSDOH-approved environmental laboratory, for analysis in accordance with the 2018 NYSDEC-approved QAPP (ERM, 2018c).

4.7.3 Groundwater Sample Analysis

All performance monitoring groundwater samples, including baseline samples, will be analyzed for the following parameters:

- VOCs by EPA 8260;
- PFAS by USEPA Method 537 Revision 1.1 (modified);
- Total Organic Carbon (TOC) by Lloyd Kahn method; and
- pH by Standard Method 9045D.

PFAS analyses will include the following 21 target analytes:

Compounds	CAS Number	Acronym		
1. Perfluorobutanoic acid	375-22-4	PFBA		
2. Perfluoropentanoic acid	2706-90-3	PFPeA		
3. Perfluorohexanoic acid	307-24-4	PFHxA		
4. Perfluoroheptanoic acid	375-85-9	PFHpA		
5. Perfluorooctanoic acid	335-67-1	PFOA		
6. Perfluorononanoic acid	375-95-1	PFNA		
7. Perfluorodecanoic acid	335-76-2	PFDA		
8. Perfluoroundecanoic acid	2058-94-8	PFUnA		
9. Perfluorododecanoic acid	307-55-1	PFDoA		
10. Perfluoro-n-tridecanoic acid	72629-94-8	PFTriA		
11. Perfluorotetradecanoic acid	376-06-7	PFTeA		
12. Perfluorobutanesulfonic acid	375-73-5	PFBS		
13. Perfluorohexanesulfonic acid	355-46-4	PFHxS		
14. Perfluoroheptanesulfonic acid	375-92-8	PFHpS		
15. Perfluorooctanesulfonic acid	1763-23-1	PFOS		
16. Perfluorodecanesulfonic acid	335-77-3	PFDS		
17. 6:2 Fluorotelomersulfonic acid	27619-97-2	6:2FTS		
18. 8:2 Fluorotelomersulfonic acid	39108-34-4	8:2 FTS		
19. Perfluorooctanesulfonamide	754-91-6	FOSA		
20. N-methyl perfluoro-1-	2355-31-9	N-MeFOSAA		
octanesulfonamidoacetic acid				
21. N-ethyl perfluoro-1-	2991-50-6	N-EtFSOSAA		
octanesulfonamidoacetic acid				
17				

The temporary performance monitoring wells will also be sampled and analyzed at the baseline, 6-month and one-year events for:

Dissolved gases (methane, ethane, and ethene).

The laboratory analytical report will contain NYSDEC Analytical Services Protocol (ASP) Category B deliverables to facilitate data validation or usability evaluation. Electronic data deliverables (EDDs) will also be provided by the project laboratory.

Reductions in CVOC concentrations within the treatment area are expected to occur within three months. Based on groundwater flow velocity (~ 187 feet per year) and the estimated retardation factor for TCE (3.125), the reductions in CVOC concentrations downgradient of the treatment area may be observed at the performance monitoring wells (located about 25 ft away) within 1 year and at OS-MW-31A (located about 187 ft away) within about 3 to 4 years. These estimates do not take into account other factors such as CVOC mass adsorbed to soil in the unsaturated and capillary fringe zones.

If the monitoring results indicate that breakthrough of the original PlumeStop/AquaZVI injections is occurring before a final remedy has been implemented, injection of additional PlumeStop and AquaZVI, or other remedies, will be considered in consultation with NYSDEC.

4.7.4 Soil Vapor Sampling

Soil vapor samples will be collected from the three new temporary soil vapor monitoring points at six months and 12 months after implementation. The samples will be collected using Summa canisters over a 24-hour period and will be analyzed for CVOCs by USEPA Method TO-15. An outdoor ambient air sample will also be collected upwind during soil vapor sampling activities.

4.8 INVESTIGATION-DERIVED WASTES (IDW)

All investigation-derived waste (IDW) will be handled as discussed in Section 2.4 of Appendix A.

4.9 SITE RESTORATION

Construction debris, waste materials, and other solid wastes shall be covered and secured at the work site on a daily basis and removed from the work site per applicable waste handling requirements. Upon completion of IRM construction and after removal of materials and equipment, the areas used for storage and transporting equipment and/or materials between work areas, will be restored to original or better condition.

4.10 DEMOBILIZATION

Following completion and acceptance of the work, equipment, materials, supplies, debris/waste generated by the IRM construction activities, temporary utilities and facilities, and manpower will be removed from the Site.

5.0 IRM SCHEDULE AND REPORTING

5.1 IRM SCHEDULE

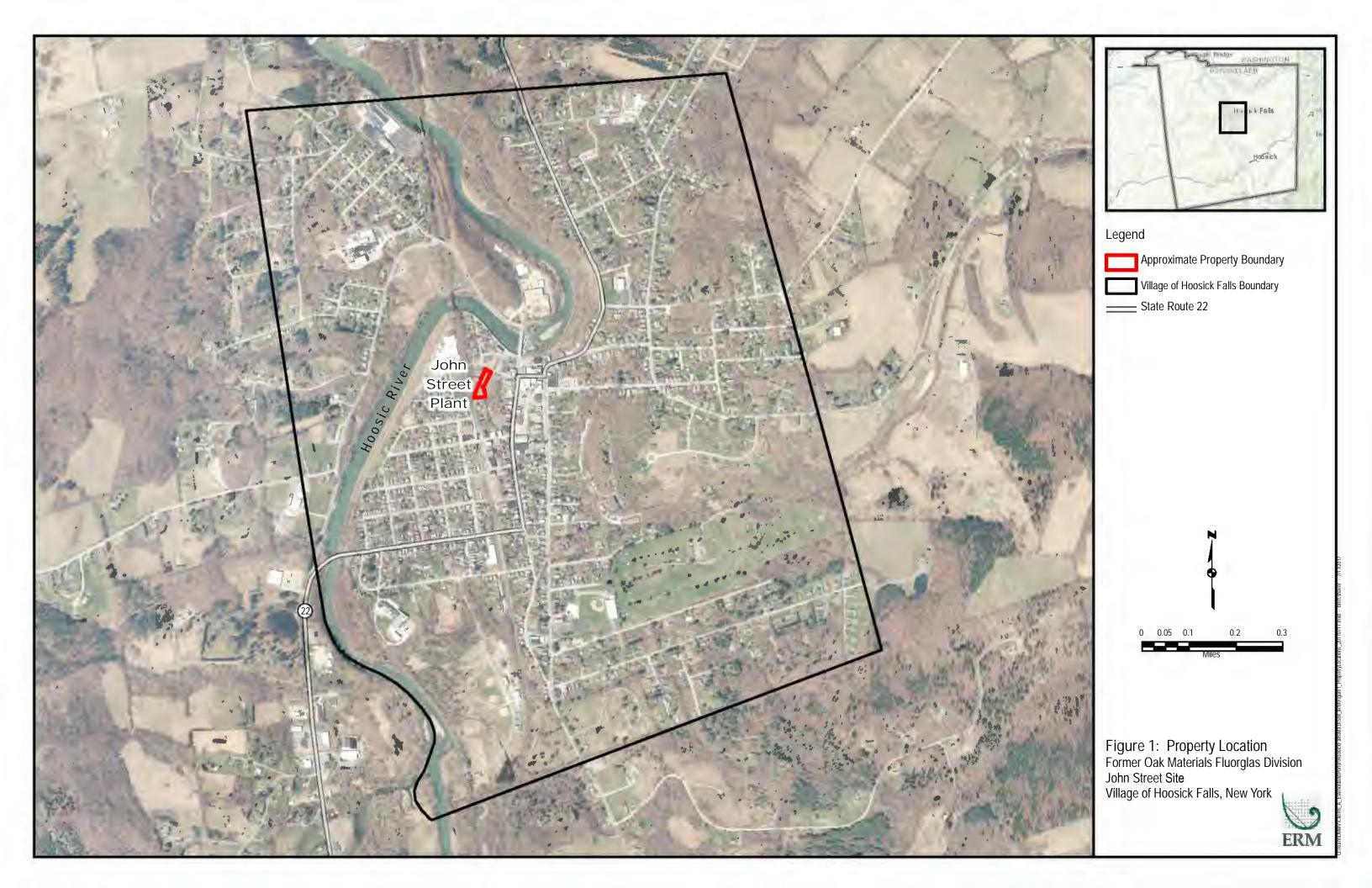
The estimated IRM schedule is provided in Table 3. Work on Site will begin within approximately 30 days of written approval from NYSDEC. This schedule is contingent upon securing any required permits or other approvals, cooperation of stakeholders, and does not contemplate significant delays due to weather or other conditions beyond ERM and/or Honeywell's control. NYSDEC will be provided with written notice a minimum of five business days prior to the initiation of IRM site work.

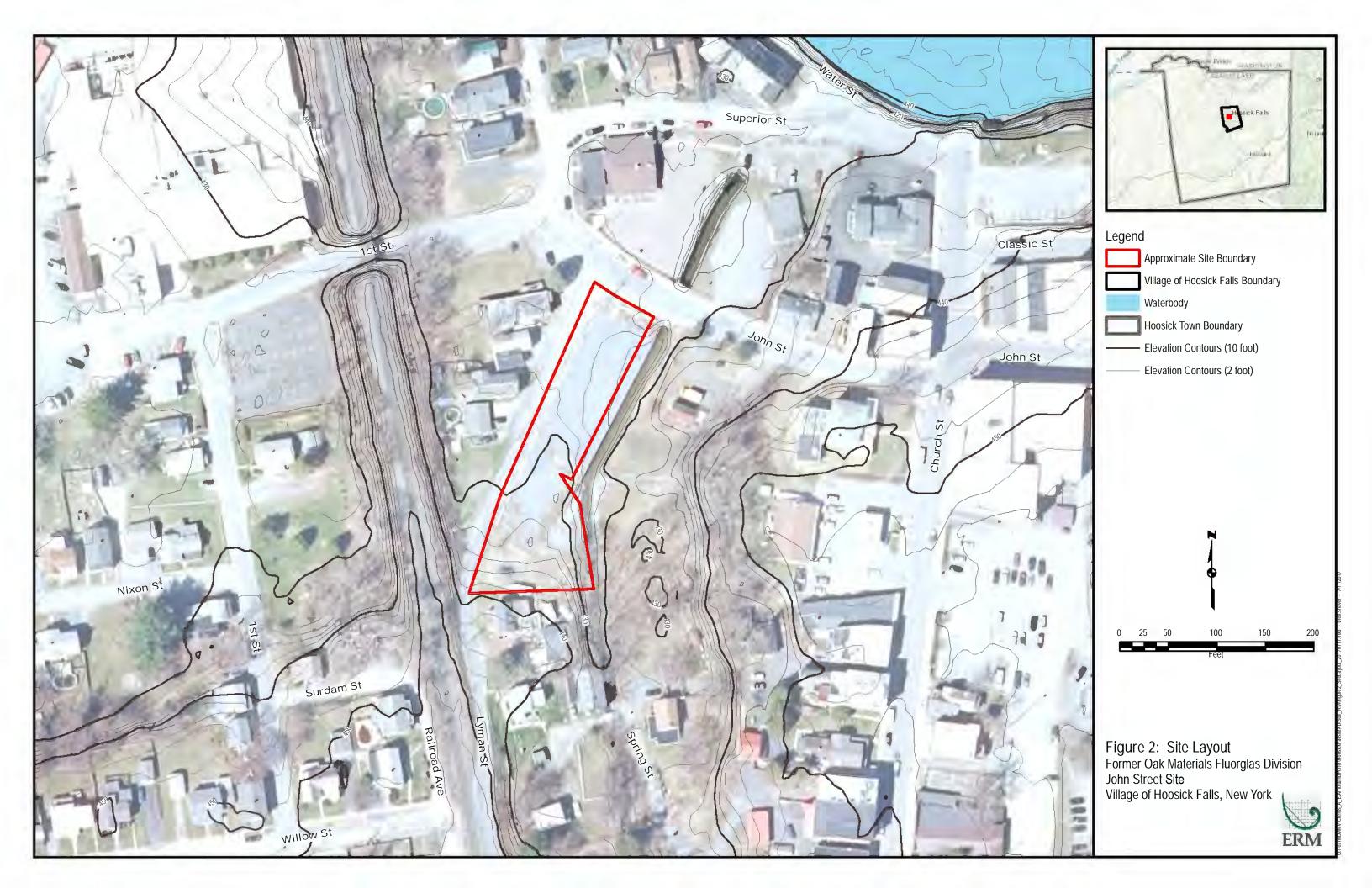
5.2 IRM SITE MANAGEMENT PLAN

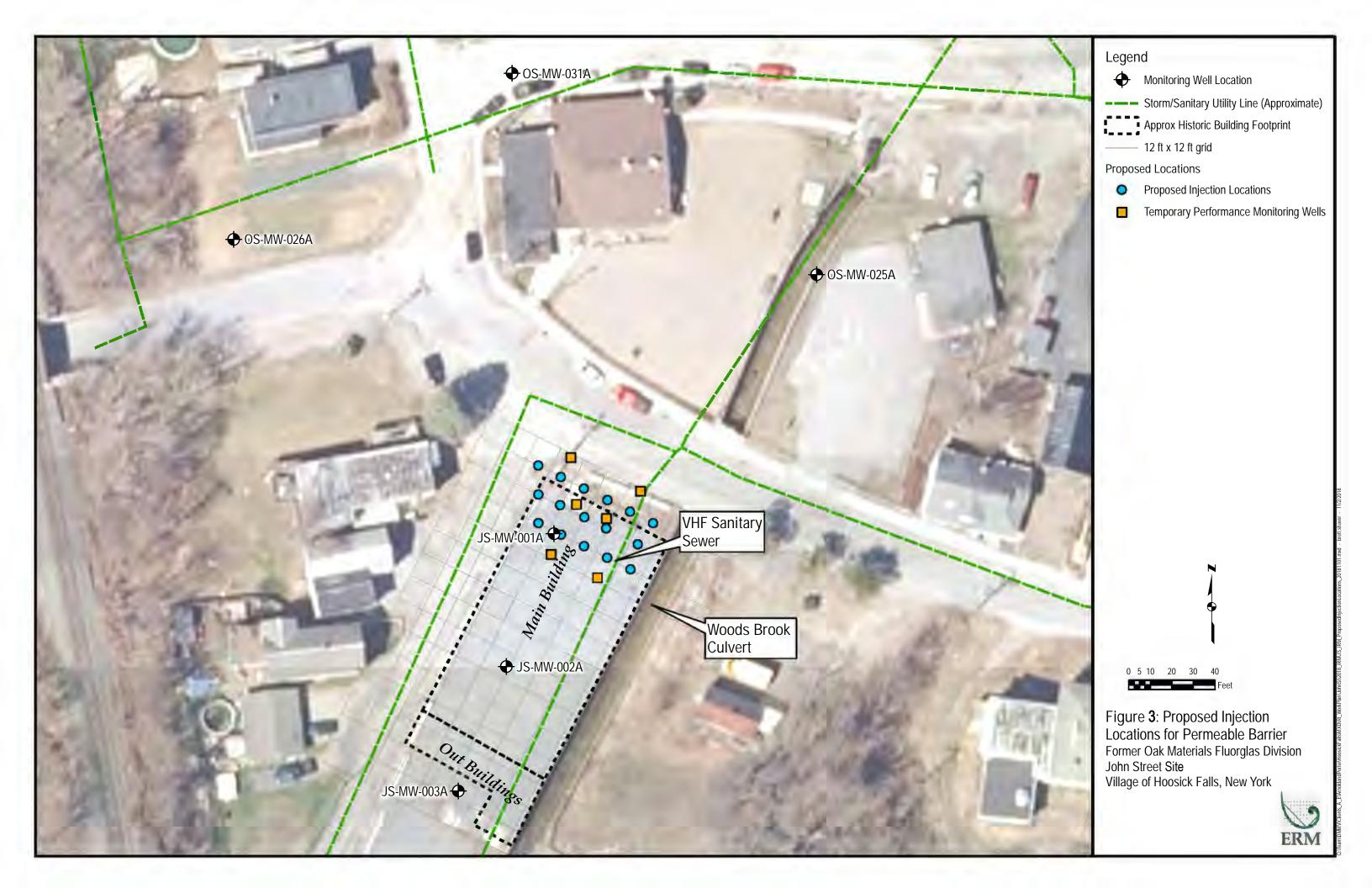
An IRM Site Management Plan will be prepared.

5.3 IRM PROGRESS REPORTING

IRM construction and performance monitoring activities will be included in the John Street monthly progress reports that are submitted to the NYSDEC Project Manager and the New York State Department of Health Project Manager.


5.4 IRM CONSTRUCTION COMPLETION REPORT


An IRM Construction Completion Report (CCR) will be prepared and incorporated into the final RI Report and the Final Engineering Report (FER).


- Cadwell, D.H. and Dineen, R.J., 1987. Surficial Geologic Map of New York: Hudson-Mohawk Sheet. New York State Museum and Science Service, Map and Chart Series Number 40, Albany.
- ERM, 2016. Final Site Characterization Field Sampling and Analysis Plan Phase 1: Oak Materials River Road 1, 2 and 3 (No. 442008) and Former Oak Materials Fluorglas Division John Street (No. 442049): Town of Hoosick and Village of Hoosick Falls, Rensselaer County, New York. ERM Consulting and Engineering, Inc., Syracuse, 20 July 2016.
- ERM, 2017. Draft Site Characterization Report and Remedial Investigation Work Plan. Oak Materials-River Road 1, 2 and 3 and Former Oak Materials Fluorglas Division–John Street: Town of Hoosick and Village of Hoosick Falls, Rensselaer County, New York. ERM Consulting and Engineering, Inc., Syracuse, 11 August 2017.
- ERM, 2018a. Draft Site Characterization Report. Former Oak Materials Fluorglas Division–John Street: Town of Hoosick and Village of Hoosick Falls, Rensselaer County, New York. ERM Consulting and Engineering, Inc., Melville, 3 December 2018.
- ERM, 2018b. Shallow Groundwater Interim Remedial Measure Pre-Design Investigation & Treatability Study Work Plan, Site No. 442049), Village of Hoosick Falls, Rensselaer County, New York. ERM Consulting and Engineering, Inc., Syracuse. 16 March 2018.
- ERM, 2018c. Quality Assurance Project Plan for Environmental Investigations in the Town of Hoosick and Village of Hoosick Falls, New York, Rensselaer County, New York. ERM Consulting and Engineering, Inc., Syracuse. 16 March 2018.
- ERM, 2019a. Revised Draft Site Characterization Report. Former Oak Materials Fluorglas Division–John Street: Town of Hoosick and Village of Hoosick Falls, Rensselaer County, New York. ERM Consulting and Engineering, Inc., Melville, 10 May 2019.
- ERM, 2019b. Draft Remedial Investigation Work Plan. Former Oak Materials Fluorglas Division–John Street: Village of Hoosick Falls, Rensselaer County, New York. ERM Consulting and Engineering, Inc., Melville, 13 May 2019.
- NYSDEC, 1992. Sampling Guidelines and Protocols: Technologies Background and Quality Control/Quality Assurance for the NYSDEC Spill Response Program. Division of Spills Management, Albany, September 1992.
- NYSDEC, 2010. DER-10: Technical Guidance for Site Investigation and Remediation. NYSDEC Division of Environmental Remediation, Albany, May 2010.
- NYSDEC, 2016. Order on Consent and Administrative Settlement Index Number CO 4-20160415-79: Oak Materials Fluorglas Division John Street (No. 442049) and Oak Materials River Road 1, 2 and 3 (No. 442008). Division of Environmental Remediation, Albany, 3 June 2016.
- USDA, 2017. Natural Resources Conservation Service Web Soil Survey for Rensselaer County, New York.

FIGURES

- 1 Site Location Map
- 2 Site Layout
- 3 Proposed Injection Well Locations for Permeable Barrier

TABLES

- 1 Technology Screening Table
- 2 John Street Shallow Groundwater IRM Performance Monitoring Plan
- 3 Estimated IRM Project Schedule

Table 1 Technology Screening Former Oak Materials Fluorglas Division - John Street

	Application		Weighting Factors								
Technology	Barrier	Source Treatment	Implement- ability	Disruption to Surrounding Community	Treat Back Diffused Mass	Likelihood of Reducing VI	Cost	Active O&M	Soil Disposal		
Injection - Oxidant	Yes	Yes	High	Low	No	Moderate	Low	No	No		
Injection – Bioremediation	Yes	Yes	High	Moderate	Yes	Low	Low	Yes	No		
Injection – ZVI	Yes	Yes	High	Low	Yes	Low	Low	No	No		
Injection - PlumeStop + ZVI	Yes	Yes	High	Low	Yes	Moderate	Low	No	No		
Air Sparge Barrier /SVE - 5 yr	Yes	Yes	High	Moderate	Yes	Moderate	Moderate	Yes	No		
ZVI Barrier	Yes	No	Moderate	Moderate	Yes	Moderate	Moderate	No	Yes		
Mulch Barrier (Bioremediation)	Yes	No	Moderate	Moderate	Yes	Low	Moderate	No	No		
Groundwater Extraction – 5 yr	Yes	No	High	Moderate	Yes	Moderate	Moderate	Yes	No		
Excavation	No	Yes	Low	High	No	Moderate	High	No	Yes		
Thermal treatment	No	Yes	Low	High	Yes	Moderate	High	No	No		

Table 2 John Street Shallow IRM Groundwater Performance Monitoring Plan

						Performance Monitoring Sampling Events							
Sampling Location	Status of Well	Sampled Aquifer	Location Relative to Barrier	Methods/Work Scope Summary	Sampling Method	Baseline	Month 1	Month 2	Month 3	Month 6	Month 9	Month 12	Annually until Final Remedy Note 1
DMATAT 1	N	Cl 11	I 1:	Maritania Grant and anti-time to the treatment	I (I	VOC- DEAC	VOC- DEAC	VOC- DEAC	VOC- DEAC	VOC- DEAC	VOC- DEAC	L VOC- DEAC	VOCs, PFAS,
PMW1	New	Shallow overburden	Immediately upgradient	Monitor influent concentrations to the treatment zone	Low-flow Sampling	VOCs, PFAS, TOC, pH, dissolved gases	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH, dissolved gases	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH, dissolved gases	TOC, pH
PMW2	New	Shallow overburden	Immediately upgradient	Monitor influent concentrations to the treatment zone	Low-flow Sampling	VOCs, PFAS, TOC, pH,	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH,	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH,	VOCs, PFAS, TOC, pH
PMW3	New	Shallow overburden	Within treatment zone	Monitor concentrations within the treatement zone and assess breakthrough	Low-flow Sampling	dissolved gases VOCs, PFAS, TOC, pH,	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	dissolved gases VOCs, PFAS, TOC, pH,	VOCs, PFAS, TOC, pH	dissolved gases VOCs, PFAS, TOC, pH,	VOCs, PFAS, TOC, pH
PMW4	New	Shallow overburden	Within treatment zone	Monitor concentrations within the treatement zone and assess breakthrough	Low-flow Sampling	dissolved gases VOCs, PFAS, TOC, pH,	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	dissolved gases VOCs, PFAS, TOC, pH,	VOCs, PFAS, TOC, pH	dissolved gases VOCs, PFAS, TOC, pH,	VOCs, PFAS, TOC, pH
PMW5	New	Shallow	Immediately	Monitor effluent concentrations from the treatment zone and assess breakthrough	Low-flow	dissolved gases VOCs, PFAS,	VOCs, PFAS,	VOCs, PFAS,	VOCs, PFAS,	dissolved gases VOCs, PFAS,	VOCs, PFAS,	dissolved gases VOCs, PFAS,	VOCs, PFAS,
		overburden	downgradient		Sampling	TOC, pH, dissolved gases	TOC, pH	TOC, pH	TOC, pH	TOC, pH, dissolved gases	TOC, pH	TOC, pH, dissolved gases	TOC, pH
PMW6	New	Shallow overburden	Immediately downgradient	Monitor effluent concentrations from the treatment zone and assess breakthrough	Low-flow Sampling	VOCs, PFAS, TOC, pH, dissolved gases	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH, dissolved gases	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH, dissolved gases	VOCs, PFAS, TOC, pH
JS-MW-001A	Existing	Shallow overburden	Within treatment zone	Monitor concentrations within the treatement zone and assess breakthrough	Low-flow Sampling	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	na	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH
JS-MW-001B JS-MW-002A	Existing Existing	Deep overburden Shallow	Within treatment zone Upgradient	Assess potential effects on the lower overburden aquifer Monitor influent concentrations to the treatment zone	Low-flow Sampling Low-flow	VOCs, PFAS, TOC, pH VOCs, PFAS,	VOCs, PFAS, TOC, pH VOCs, PFAS,	na na	na VOCs, PFAS,	VOCs, PFAS, TOC, pH VOCs, PFAS,	na VOCs, PFAS,	VOCs, PFAS, TOC, pH VOCs, PFAS,	na VOCs, PFAS,
JS-MW-003A	Existing	overburden Shallow	Upgradient	Monitor influent concentrations to the treatment zone	Sampling Low-flow	TOC, pH VOCs, PFAS,	TOC, pH VOCs, PFAS,	na	TOC, pH VOCs, PFAS,	TOC, pH VOCs, PFAS,	TOC, pH VOCs, PFAS,	TOC, pH VOCs, PFAS,	TOC, pH VOCs, PFAS,
JS-MW-003B	Existing	overburden Deep	Upgradient	Assess potential effects on the lower overburden aquifer	Sampling Low-flow	TOC, pH VOCs, PFAS,	TOC, pH VOCs, PFAS,	na	TOC, pH na	TOC, pH VOCs, PFAS,	TOC, pH na	TOC, pH VOCs, PFAS,	TOC, pH na
TMW-0xx	Proposed	overburden Shallow overburden	Cross-gradient	Assess groundwater quality and potential effects in westward flow direction	Sampling Low-flow Sampling	TOC, pH VOCs, PFAS, TOC, pH	TOC, pH VOCs, PFAS, TOC, pH	na	na	TOC, pH VOCs, PFAS, TOC, pH	na	TOC, pH VOCs, PFAS, TOC, pH	na
TMW-0xx	Proposed	Shallow overburden		Assess groundwater quality and potential effects in westward flow direction	Low-flow Sampling	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	na	na	VOCs, PFAS, TOC, pH	na	VOCs, PFAS, TOC, pH	na
OS-MW-025A	Existing	Shallow overburden	/cross-gradient	Monitor effectiveness	Low-flow Sampling	VOCs, PFAS, TOC, pH	na	na	na	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH	VOCs, PFAS, TOC, pH
OS-MW-026A OS-MW-031A	Existing Existing	Shallow overburden Shallow	/cross-gradient	Monitor effectiveness Monitor effectiveness	Low-flow Sampling Low-flow	VOCs, PFAS, TOC, pH VOCs, PFAS,	na na	na na	na na	VOCs, PFAS, TOC, pH VOCs, PFAS,	VOCs, PFAS, TOC, pH VOCs, PFAS,	VOCs, PFAS, TOC, pH VOCs, PFAS,	VOCs, PFAS, TOC, pH VOCs, PFAS,
Other existing	Existing	overburden Shallow (A),	Various	Monitor VOC concentrations in wells surrounding the treatment area.	Sampling Low-flow	TOC, pH	na	na	na	TOC, pH	TOC, pH	TOC, pH	TOC, pH Note 2
and proposed John St wells, as agreed to in RIWP		deep (B, C, D) overburden; shallow bedrock (BR)			Sampling								

Abbreviations:

PFAS - Perfluorinated Alkyl Substances (21 PFAS analytes as listed in the text)

VOCs - Volatile Organic Compounds

TOC = Total Organic Carbon by the Lloyd Kahn method

Dissolved gases - methane, ethene, ethane

Notes:

1. The wells selected for annual sampling after the first year are based on currently available information.

2. Four semi-annual groundwater sampling events for all wells are proposed in the RIWP and relevant data (VOCs, PFAS, pH, TOC) will be used for performance monitoring of the IRM.

Field Parameters including Specific Conductance (SpC), pH, Dissolved Oxygen (DO), and Oxidation-Reduction Potential (ORP) will be collected at every sampling events

Table 3
Estimated IRM Project Schedule
Former Oak Materials Fluorglas Division - John Street

Milestone	Estimated Completion Date*				
Final IRM Work Plan submitted to NYSDEC	10 June 2019				
NYSDEC Approval of IRM Work Plan	14 June 2019				
Initiate IRM Field Work	15 July 2019				
Baseline Sampling Event	19 August 2019				
Finalize design (reagent loading) based on baseline	26 September 2019				
sampling results, in consultation with NYSDEC					
Mobilization for injection event	24 October 2019				
Injection event	28 October to 8 November 2019				
Month 1 Sampling Event	Late-November 2019				
Month 2 Sampling Event	Late-December 2019				
Month 3 Sampling Event	Late-January 2020				
Month 6 Sampling Event	Late-April 2020				
Month 12 Sampling Event	October 2020				
Continued annual sampling until final remedy	October 2021 through TBD				
Submission of Construction Completion Report	TBD				
with RI Report and FER					
Submission of Construction Completion Report					

TBD - to be determined

^{*}The schedule is estimated and is subject to change based on site access and other conditions.

Attachment 1
PlumeStop - SDS and Technical Specifications

PlumeStop[®] Liquid Activated Carbon[™] Technical Description

PlumeStop Liquid Activated Carbon is an innovative groundwater remediation technology designed to rapidly remove and permanently degrade groundwater contaminants. PlumeStop is composed of very fine particles of activated carbon (1-2µm) suspended in water through the use of unique organic polymer dispersion chemistry. Once in the subsurface, the material behaves as a colloidal biomatrix, binding to the aquifer matrix, rapidly removing contaminants from groundwater, and expediting permanent contaminant biodegradation.

This unique remediation technology accomplishes treatment with the use of highly dispersible, fast-acting, sorption-based technology, capturing and concentrating dissolved-phase contaminants within its matrix-like structure. Once contaminants are sorbed onto the regenerative matrix, biodegradation processes achieve complete remediation at an accelerated rate.

Distribution of PlumeStop in water

To see a list of treatable contaminants with the use of PlumeStop, view the Range of Treatable Contaminants Guide.

Chemical Composition

- Water CAS# 7732-18-5
- Colloidal Activated Carbon ≤2.5 CAS# µm 7440-44-0
- Proprietary Additives

Properties

- · Physical state: Liquid
- Form: Aqueous suspension
- · Color: Black
- · Odor: Odorless
- pH: 8 10

Storage and Handling Guidelines

Storage

Store in original tightly closed container Store away from incompatible materials Protect from freezing

Handling

Avoid contact with skin and eyes

Avoid prolonged exposure

Observe good industrial hygiene practices

Wash thoroughly after handling

Wear appropriate personal protective equipment

PlumeStop[®] Liquid Activated Carbon[™] Technical Description

Applications

PlumeStop is easily applied into the subsurface through gravity-feed or low-pressure injection.

Health and Safety

Wash hands after handling. Dispose of waste and residues in accordance with local authority requirements. Please review the Material Safety Data Sheet for additional storage, usage, and handling requirements here: PlumeStop SDS.

SAFETY DATA SHEET

1. Identification

Product identifier PlumeSTOP® S

Other means of identification

Recommended use Soil and Groundwater Remediation.

None known. Recommended restrictions

Manufacturer/Importer/Supplier/Distributor information

Company Name Regenesis

Address 1011 Calle Sombra

San Clemente, CA 92673

Telephone 949-366-8000

E-mail CustomerService@regenesis.com

CHEMTREC® at 1-800-424-9300 (International) Emergency phone number

2. Hazard(s) identification

Not classified. Physical hazards

Health hazards Not classified.

OSHA defined hazards Not classified.

Label elements

None. Hazard symbol Signal word None.

Hazard statement The mixture does not meet the criteria for classification.

Precautionary statement

Prevention Observe good industrial hygiene practices,

Response Wash hands after handling.

Store away from incompatible materials. Storage

Disposal Dispose of waste and residues in accordance with local authority requirements.

Hazard(s) not otherwise

classified (HNOC)

None known.

3. Composition/information on ingredients

Mixtures

Chemical name	CAS number	%	
Water	7732-18-5	>75	
Colloidal activated carbon ≤2.5 µm	7440-44-0	<25	
Proprietary additives		⊴	

Composition comments All concentrations are in percent by weight unless otherwise indicated.

4. First-aid measures

Inhalation Move to fresh air. Call a physician if symptoms develop or persist.

Skin contact Wash off with soap and water, Get medical attention if irritation develops and persists.

Eye contact Rinse with water. Get medical attention if irritation develops and persists.

Rinse mouth. Get medical attention if symptoms occur. Ingestion Direct contact with eyes may cause temporary imitation. Most important

symptoms/effects, acute and

delayed

PlumeSTOP* S 923801 Version #: 01 Revision date: - Issue date: 26-February-2015 Indication of immediate medical attention and special treatment needed

General information

media

Treat symptomatically.

If you feel unwell, seek medical advice (show the label where possible). Show this safety data sheet to the doctor in attendance.

5. Fire-fighting measures

Suitable extinguishing media Unsuitable extinguishing Carbon dioxide, alcohol-resistant foam, dry chemical, water spray, or water fog.

None known.

Specific hazards arising from the chemical

During fire, gases hazardous to health may be formed. Combustion products may include carbon monoxide, carbon dioxide, sodium oxides, metal oxides.

Special protective equipment and precautions for firefighters

Use protective equipment appropriate for surrounding materials.

and precautions for firefighter
Fire fighting

Move containers from fire area if you can do so without risk.

equipment/instructions Specific methods

Use standard firefighting procedures and consider the hazards of other involved materials. Use

water spray to keep fire-exposed containers cool.

General fire hazards This material will not burn until the water has evaporated. Residue can burn. When dry may form

combustible dust concentrations in air.

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures

Keep unnecessary personnel away. Avoid contact with spilled material. For personal protection, see section 8 of the SDS.

Methods and materials for containment and cleaning up

This product is miscible in water

Large Spills: Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible. Cover with plastic sheet to prevent spreading. Absorb in vermiculite, dry sand or earth and place into containers. Following product recovery, flush area with water.

Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination.

Never return spills to original containers for re-use. For waste disposal, see section 13 of the SDS.

Environmental precautions

Avoid discharge into drains, water courses or onto the ground.

7. Handling and storage

Precautions for safe handling

Avoid contact with skin and eyes. Avoid prolonged exposure. Observe good industrial hygiene practices. Wash thoroughly after handling. Wear appropriate personal protective equipment (See Section 8).

Conditions for safe storage, including any incompatibilities Store in original tightly closed container. Store away from (ncompatible materials (see Section 10 of the SDS). Protect from freezing.

8. Exposure controls/personal protection

Occupational exposure limits

US. OSHA Table Z-3 (29 CFR 1910.1000)

Components	lype	Value	Form
Colloidal activated carbon ≤2.5 µm (CAS 7440-44-0)	TWA	5 mg/m3	Respirable fraction.
		15 mg/m3	Total dust.
US. NIOSH: Pocket Guide to Che	mical Hazards		
Components	Туре	Value	Form

Colloidal activated carbon ≤2.5 µm (CAS 7440-44-0)

No biological exposure limits noted for the ingredient(s).

TWA

Biological limit values

Appropriate engineering controls

Good general ventilation (typically 10 air changes per hour) should be used. Ventilation rates should be matched to conditions. If applicable, use process enclosures, local exhaust ventilation, or other engineering controls to maintain airborne levels below recommended exposure limits. If exposure limits have not been established, maintain airborne levels to an acceptable level.

2.5 mg/m3

Respirable.

PlumeSTOP® S SDS US

Individual protection measures, such as personal protective equipment

Eye/face protection Wear approved chemical safety goggles.

Skin protection

Rubber, neoprene or PVC gloves are recommended. Wash hands after handling. Hand protection

Avoid contact with the skin. Wear suitable protective clothing. Other

Respiratory protection Not normally needed. In case of insufficient ventilation, wear suitable respiratory equipment. If

> engineering controls do not maintain airborne concentrations below recommended exposure limits (where applicable) or to an acceptable level (in countries where exposure limits have not been

established), an approved respirator must be worn.

Thermal hazards Wear appropriate thermal protective clothing, when necessary.

General hygiene considerations

Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective

equipment to remove contaminants.

9. Physical and chemical properties

Appearance

Physical state Liquid

Form Aqueous suspension.

Color Black. Odorless. Odor Not available. Odor threshold

8 - 10pΗ

Not available. Melting point/freezing point Initial boiling point and boiling Not available.

range

Not flammable. Flash point Not available. Evaporation rate Flammability (solid, gas) Not applicable.

Upper/lower flammability or explosive limits

Flammability limit - lower

(%)

Not available.

Flammability limit - upper

(%)

Not available

Not available.

Not available. Explosive limit - Jower (%) Not available. Explosive limit - upper (%) Vapor pressure Not available.

Vapor density Relative density 1 - 1.2

Solubility(ies)

Miscible Solubility (water)

Not available. Partition coefficient

(n-octanol/water)

Not available.

Auto-ignition temperature Not available. Decomposition temperature Not available. **Viscosity**

10. Stability and reactivity

Reactivity The product is stable and non-reactive under normal conditions of use, storage and transport

Chemical stability Material is stable under normal conditions

Possibility of hazardous

reactions

No dangerous reaction known under conditions of normal use.

Conditions to avoid Contact with incompatible materials. Keep from freezing

Incompatible materials Strong exidizing agents. Water reactive materials.

PiumeSTOP® S SDS US Hazardous decomposition

products

Combustion may produce: carbon oxides.

11. Toxicological information

Information on likely routes of exposure

Inhalation Prolonged inhalation may be harmful.

Skin contact Prolonged or repeated skin contact may result in minor irritation.

Eye contact Direct contact with eyes may cause temporary irritation.

Ingestion Expected to be a low ingestion hazard.

Symptoms related to the physical, chemical and toxicological characteristics Direct contact with eyes may cause temporary Irritation.

Information on toxicological effects

Acute toxicity Not expected to be acutely toxic

Components Species Test Results

Colloidal activated carbon ≤2.5 µm (CAS 7440-44-0)

Acute

inhalation

LC50 Rat > 8500 mg/m³, air

Oral

LD50 Rat > 2000 mg/kg, (Female)

Skin corrosion/irritation Prolonged skin contact may cause temporary irritation.

Serious eye damage/eye Direct contact with eyes may cause temporary irritation.

irritation

Respiratory or skin sensitization

Respiratory sensitization Not a respiratory sensitizer.

Skin sensitization This product is not expected to cause skin sensitization.

Germ cell mutagenicity No data available to indicate product or any components present at greater than 0.1% are

mutagenic or genotoxic.

Carcinogenicity This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA.

OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050)

Not listed.

Reproductive toxicity

This product is not expected to cause reproductive or developmental effects.

Specific target organ toxicity -

single exposure

Not classified.

Specific target organ toxicity -

repeated exposure

Not classified.

Aspiration hazard Not an aspiration hazard.

Chronic effects Protonged inhalation may be harmful.

12. Ecological information

EcotoxicityThe product is not classified as environmentally hazardous. However, this does not exclude the

possibility that large or frequent spills can have a harmful or damaging effect on the environment.

Persistence and degradability No data is available on the degradability of this product.

Bioaccumulative potential No data available.

Mobility in soil Expected to be temporarily highly mobile in soil

Other adverse effects None known

13. Disposal considerations

Disposal instructions Collect and reclaim or dispose in sealed containers at licensed waste disposal site.

Local disposal regulations Dispose in accordance with all applicable regulations.

Hazardous waste code The waste code should be assigned in discussion between the user, the producer and the waste

disposal company

PlumeSTOP® S SDS US

Waste from residues / unused

products

Dispose of in accordance with local regulations. Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe manner (see:

Disposal instructions).

Contaminated packaging

Empty containers should be taken to an approved waste handling site for recycling or disposal. Since emptied containers may retain product residue, follow label warnings even after container is

emptied.

14. Transport information

DOT

Not regulated as dangerous goods.

IATA

Not regulated as dangerous goods.

IMDG

Not regulated as dangerous goods.

Transport in bulk according to

Not established.

Annex II of MARPOL 73/78 and

the IBC Code

15. Regulatory information

US federal regulations

All components are listed on or exempt from the U.S. EPA TSCA Inventory List.

This product is not known to be a "Hazardous Chemical" as defined by the OSHA Hazard

Communication Standard, 29 CFR 1910.1200.

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)

Not regulated.

OSHA Specifically Regulated Substances (29 CFR 1910,1001-1050)

Not listed

CERCLA Hazardous Substance List (40 CFR 302.4)

Not listed.

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Hazard categories Immediate Hazard - No

Delayed Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No

SARA 302 Extremely hazardous substance

Not listed.

SARA 311/312 Hazardous No

chemical

SARA 313 (TRI reporting)

Not regulated.

Other federal regulations

Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List

Not regulated.

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130)

Not regulated.

Safe Drinking Water Act

Not regulated

(\$DWA)

US state regulations

US. Massachusetts RTK - Substance List

Not regulated.

US. New Jersey Worker and Community Right-to-Know Act

Colloidal activated carbon ≤2,5 µm (CAS 7440-44-0)

US. Pennsylvania Worker and Community Right-to-Know Law

Not listed.

US. Rhode Island RTK

Not regulated

PiumeSTOP® S SDS US

US. California Proposition 65

Not Listed.

Country(s) or region

International Inventories

Podito Just or region	mirement in the manner	on mitoritory groundy
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	No
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	No

Japan Inventory of Existing and New Chemical Substances (ENCS)

Korea Existing Chemicals List (ECL)

New Zealand

New Zealand

New Zealand

New Zealand

Philippines

Philippine Inventory of Chemicals and Chemical Substances

Yes

(PICCS)

United States & Puerto Rico Toxic Substances Control Act (TSCA) Inventory

16. Other information, including date of preparation or last revision

Inventory name

Issue date 26-February-2015

Revision date Version # 01

Further information HMIS® is a registered trade and service mark of the American Coatings Association (ACA).

HMIS® ratings Health: 0

Flammability: 0 Physical hazard: 0

NFPA ratings

Disclaimer

Regenesis cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written based on the best knowledge and experience currently available.

PiumeSTOP® S SDS US

On inventory (ves/no)*

Yes

^{*}A "Yes" indicates this product complies with the inventory requirements administered by the governing country(s).

A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

SAFETY DATA SHEET

1. Identification

Product identifier PlumeSTOP® Nutrients

Other means of identification

Recommended use Soil and Groundwater Remediation

Recommended restrictions None known.

Manufacturer/Importer/Supplier/Distributor information

Company Name Regenesis

1011 Calle Sombra **Address**

San Clemente, CA 92673

949-366-8000 Telephone

E-mail CustomerService@regenesis.com

CHEMTREC® at 1-800-424-9300 (International) Emergency phone number

2. Hazard(s) identification

Physical hazards Not classified. Health hazards Not classified. OSHA defined hazards Not classified

Label elements

None. Hazard symbol Signal word None

Hazard statement The mixture does not meet the criteria for classification.

Precautionary statement

Observe good industrial hygiene practices. Prevention

Wash hands after handling. Response

Store away from incompatible materials. Storage

Disposal Dispose of waste and residues in accordance with local authority requirements

Hazard(s) not otherwise

classified (HNOC)

None known.

Supplemental information None.

3. Composition/information on ingredients

Mixtures

The manufacturer lists no ingredients as hazardous according to OSHA 29 CFR 1910.1200.

4. First-aid measures

Inhalation Move to fresh air. Call a physician if symptoms develop or persist.

Wash off with soap and water. Get medical attention if irritation develops and persists. Skin contact Eye contact Do not rub eyes. Rinse with water. Get medical attention if irritation develops and persists.

Ingestion Rinse mouth. Get medical attention if symptoms occur. Most important

symptoms/effects, acute and

delayed

Dusts may irritate the respiratory tract, skin and eyes.

Indication of immediate medical attention and special Treat symptomatically.

treatment needed

Ensure that medical personnel are aware of the material(s) involved, and take precautions to General information

protect themselves.

SDS US PiumeSTOP® Nutrients

931709 Version #: 01 Revision date. -Issue date: 07-January-2016

5. Fire-fighting measures

Suitable extinguishing media Water fog. Foam. Dry chemical powder. Carbon dioxide (CO2). Apply extinguishing media

carefully to avoid creating airborne dust

Unsuitable extinguishing

media

Specific hazards arising from

the chemical

During fire, gases hazardous to health may be formed.

Special protective equipment and precautions for firefighters

Self-contained breathing apparatus and full protective clothing must be worn in case of fire.

and precautions for firefighte Fire fighting

equipment/instructions

Use water spray to cool unopened containers. Avoid dust formation.

Specific methods

Use standard firefighting procedures and consider the hazards of other involved materials.

General fire hazards No unusual fire or explosion hazards noted.

None known

Accidental release measures

Personal precautions, protective equipment and emergency procedures Keep unnecessary personnel away. Wear appropriate protective equipment and clothing during clean-up. Use a NIOSH/MSHA approved respirator if there is a risk of exposure to dust/fume at levels exceeding the exposure limits. For personal protection, see section 8 of the SDS.

Methods and materials for containment and cleaning up

Avoid the generation of dusts during clean-up. Collect dust using a vacuum cleaner equipped with HEPA filter. This product is miscible in water. Stop the flow of material, if this is without risk.

Large Spills: Wet down with water and dike for later disposal. Shovel the material into waste

container. Following product recovery, flush area with water.

Small Spills: Sweep up or vacuum up spillage and collect in suitable container for disposal. For

waste disposal, see section 13 of the SDS.

Environmental precautions Avoid discharge into drains, water courses or onto the ground.

7. Handling and storage

Precautions for safe handling Minimize dust generation and accumulation. Provide appropriate exhaust ventilation at places

where dust is formed. Practice good housekeeping.

Conditions for safe storage, including any incompatibilities

Store in original tightly closed container. Store in a well-ventilated place. Store away from

incompatible materials (see Section 10 of the SDS).

8. Exposure controls/personal protection

Occupational exposure limits

Bio

controls

Appropriate engineering

US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000)

Components	Туре	Value	Form
PlumeSTOP® Nutrients (as dust)	PEL	5 mg/m3	Respirable fraction.
		15 mg/m3	Total dust.
US, OSHA Table Z-3 (29 C	FR 1910.1000)		
Components	Туре	Value	Form
PlumeSTOP® Nutrients (as dust)	TWA	5 mg/m3	Respirable fraction.
		15 mg/m3	Total dust.
		50 mppcf	Total dust.
		15 mppcf	Respirable fraction.
US. ACGIH Threshold Lin	nit Values		
Components	Туре	Value	Form
PlumeSTOP® Nutrients (as dust)	TWA	3 mg/m3	Respirable particles.
		10 mg/m3	Inhalable particles.
ogical limit values	No biological exposure limits noted t	for the ingredient(s)	
₩	<u> </u>	- 17	

PlumeSTOP® Nutrients SDS US

where possible, in enclosed or confined spaces.

Ensure adequate ventilation, especially in confined areas. Local exhaust is suggested for use,

Individual protection measures, such as personal protective equipment

Eye/face protection Wear safety glasses with side shields (or goggles). Unvented, tight fitting goggles should be worn

in dusty areas.

Skin protection

Hand protection Wear appropriate chemical resistant gloves. Suitable gloves can be recommended by the glove

supplier.

Skin protection

Other Wear suitable protective clothing

Respiratory protection In case of inadequate ventilation, use MSHA/NIOSH approved dust respirator

Thermal hazards Wear appropriate thermal protective clothing, when necessary.

General hygiene considerations Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective

equipment to remove contaminants.

9. Physical and chemical properties

Appearance

Physical state Solid.
Form Powder.
Color White.

Odor Odorless.
Odor threshold Not available.
PH Not available.
Melting point/freezing point Not available.
Initial boiling point and boiling Not available.

range

Flash point Not available.

Evaporation rate Not available.

Flammability (solid, gas) The product is non-combustible.

Upper/lower flammability or explosive limits

Flammability limit - lower

(%)

Not available.

Flammability limit - upper

(%)

Not available.

Explosive limit - lower (%) Not available.

Explosive limit - upper (%) Not available.

Vapor pressure Not available.

Vapor density Not available.

Relative density Not available.

Solubility (ies)

Solubility (water) Completely soluble.

Partition coefficient

(n-octanol/water)

Not available.

Auto-ignition temperature Not available.

Decomposition temperature Not available.

Viscosity Not available.

Other information

Explosive properties Not explosive.

Oxidizing properties Not oxidizing.

10. Stability and reactivity

Reactivity The product is stable and non-reactive under normal conditions of use, storage and transport.

Chemical stability Material is stable under normal conditions.

PiumeSTOP® Nutrients SDS US

Possibility of hazardous

reactions

No dangerous reaction known under conditions of normal use. Ammonia fumes may be released

upon heating.

Conditions to avoid

Contact with incompatible materials. Excessive heat.

Incompatible materials

Strong oxidizing agents. Bases.

Hazardous decomposition

Strong Oxidizing agents, bases

products

Ammonia fumes may be released upon heating

11. Toxicological information

Information on likely routes of exposure

 Inhalation
 Dust may irritate respiratory system.

 Skin contact
 Dust or powder may irritate the skin.

Eye contact Dust may irritate the eyes.

Ingestion Expected to be a low ingestion hazard.

Symptoms related to the physical, chemical and toxicological characteristics Dusts may irritate the respiratory tract, skin and eyes.

Information on toxicological effects

Acute toxicity Not expected to be acutely toxic

Skin corrosion/irritation Prolonged skin contact may cause temporary irritation.

Serious eye damage/eye Direct contact with eyes may cause temporary irritation.

irritation

Respiratory or skin sensitization

Respiratory sensitization Not a respiratory sensitizer.

Skin sensitization This product is not expected to cause skin sensitization

Germ cell mutagenicity No data available to indicate product or any components present at greater than 0.1% are

mutagenic or genotoxic.

Carcinogenicity This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA

IARC Monographs. Overall Evaluation of Carcinogenicity

Not listed.

NTP Report on Carcinogens

Not listed.

OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050)

Not regulated.

Reproductive toxicity This product is not expected to cause reproductive or developmental effects.

Specific target organ toxicity -

single exposure

Not classified

Specific target organ toxicity -

repeated exposure

Not classified.

Aspiration hazard Not an aspiration hazard

12. Ecological information

Ecotoxicity The product is not classified as environmentally hazardous. However, this does not exclude the

possibility that large or frequent spills can have a harmful or damaging effect on the environment.

Persistence and degradability No data is available on the degradability of this product.

Bioaccumulative potential No data available.

Mobility In soil This product is completely water soluble and will disperse in soil.

Other adverse effects No other adverse environmental effects (e.g. ozone depletion, photochemical ozone creation

potential, endocrine disruption, global warming potential) are expected from this component

13. Disposal considerations

Disposal instructions Collect and reclaim or dispose in sealed containers at licensed waste disposal site.

Local disposal regulations Dispose in accordance with all applicable regulations.

Hazardous waste code The waste code should be assigned in discussion between the user, the producer and the waste

disposal company.

PlumeSTOP® Nutrients SDS US

Waste from residues / unused

products

Dispose of in accordance with local regulations. Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe manner (see:

Disposal instructions).

Contaminated packaging

Since emptied containers may retain product residue, follow tabel warnings even after container is emptied. Empty containers should be taken to an approved waste handling site for recycling or

disposal.

14. Transport information

DOT

Not regulated as dangerous goods.

IATA

Not regulated as dangerous goods.

IMDG

Not regulated as dangerous goods.

Transport in bulk according to

Not applicable.

Annex II of MARPOL 73/78 and

the IBC Code

15. Regulatory information

US federal regulations

This product is not known to be a "Hazardous Chemical" as defined by the OSHA Hazard

Communication Standard, 29 CFR 1910.1200.

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)

Not regulated

OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050)

Not regulated.

CERCLA Hazardous Substance List (40 CFR 302.4)

Not listed.

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Hazard categories Immediate Hazard - No

Delayed Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No

SARA 302 Extremely hazardous substance

Not listed.

SARA 311/312 Hazardous No

chemical

SARA 313 (TRI reporting)

Chemical name	CAS number	% by wt.
Ammonium sulfate	7783-20-2	40-50

Other federal regulations

Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List

Not regulated.

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130)

Not regulated.

Safe Drinking Water Act Not regulated.

(SDWA)

US state regulations

US. Massachusetts RTK - Substance List

Ammonium sulfate (CAS 7783-20-2)

US. New Jersey Worker and Community Right-to-Know Act

Not listed.

US. Pennsylvania Worker and Community Right-to-Know Law

Ammonium sulfate (CAS 7783-20-2)

US. Rhode Island RTK

Not regulated.

PiumeSTOP® Nutrients SDS US

931709 Version #: 01 Revision date. - Issue date. 07-January-2016

US. California Proposition 65

California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65): This material is not known to contain any chemicals currently listed as carcinogens or reproductive toxins.

International Inventories

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AtCS)	No
Canada	Domestic Substances List (DSL)	No
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (tECSC)	No
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	No
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	No
Korea	Existing Chemicals List (ECL)	No
New Zealand	New Zealand Inventory	No
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PECCS)	No
United States & Puerlo Rico	Toxic Substances Control Act (TSCA) Inventory	No

^{*}A "Yes" indicates this product complies with the inventory requirements administered by the governing country(s).

16. Other information, including date of preparation or last revision

Issue date 07-January-2016

Revision date Version # 01

HMIS® ratings Health: 1

Flammability: 0 Physical hazard: 0

NFPA ratings

Disclaimer

Regenesis cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written based on the best knowledge and experience currently available.

6/6

PiumeSTOP® Nutrients SDS US

Issue date: 07-January-2016

Revision date. -

A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

Attachment 2 AquaZVI - SDS and Technical Specifications

AquaZVI Specification Sheet

AquaZVI Technical Description

Aqua ZVI^{TM} is an *In Situ* Chemical Reduction (ISCR) reagent that promotes the destruction of many organic pollutants and is most commonly used with chlorinated hydrocarbons. It is engineered to provide an optimal source of micron-scale zero valent iron (ZVI) that is both easy to use and delivers enhanced reactivity with the target contaminants of concern via multiple pathways. AquaZVI will stimulate anaerobic biological degradation by rapidly creating a reducing environment favorable for reductive dechlorination. In many cases this improved formulation of ZVI can also destroy contaminants through a direct chemical reaction, see Figure 1.

AquaZVI is composed of colloidal, sulfidated zero-valent iron (ZVI) particles suspended in an aqueous medium with environmentally-acceptable, proprietary dispersants. The passivation technique of sulfidation, completed through proprietary processing methods, provides unparalleled reactivity with chlorinated hydrocarbons like PCE and TCE, and increases its stability and longevity *in situ* by minimizing undesirable side-reactions.

In addition to superior reactivity, AquaZVI is designed for easy handling that is unmatched by any ZVI material on the market. Shipped as an aqueous suspension, AquaZVI requires no powder feeders, no thickening with guar, and pneumatic or hydraulic fracturing is not mandatory. When diluted with water in the field, the resulting suspension is easy to mix and inject using direct push or injections wells.

Figure 1. Example of chlorinated ethene degradation pathways and products. The top line with single-line arrows represents the reductive dechlorination (hydrogenolysis) pathway. The downward facing double-arrows represent the abiotic beta-elimination pathway.

AquaZVI Specification Sheet

Chemical Composition

Iron, powders CAS 7439-89-6 Iron(II) sulfide CAS 1317-37-9

Properties

Physical State: Liquid

Form: Viscous metallic suspension

Color: Dark gray
Odor: Slight

pH: Typically 7-9 as applied

Density: 14 lbs/gal

Storage and Handling Guidelines

Storage:

- Use within two weeks of delivery
- Store at temperatures above freezing and below 95°F
- Store in original containers
- Store away from incompatible materials

Handling:

- Never mix with oxidants or acids.
- Wear appropriate personal protective equipment
- Do not taste or swallow.
- Observe good industrial hygiene practices.

Applications

AquaZVI is diluted with water on site and easily applied into the subsurface through low-pressure injections. AquaZVI can also be mixed with products like 3-D Microemulsion® or PlumeStop® prior to injection.

Health and Safety

Material is relatively safe to handle; however, avoid contact with eyes, skin and clothing. OSHA Level D personal protection equipment including: vinyl or rubber gloves and eye protection are recommended when handling this product. Please review the Safety Data Sheet for additional storage, usage, and handling requirements here: AquaZVI SDS.

www.regenesis.com 1011 Calle Sombra, San Clemente CA 92673 949.366.8000

SAFETY DATA SHEET

1. Identification

Product identifier AquaZVI
Other means of identification None.

Recommended use Remediation of contaminants in soil and groundwater.

Recommended restrictions None known.

Manufacturer/Importer/Supplier/Distributor information

Company Name Regenesis

Address 1011 Calle Sombra

San Clemente, CA 92673 USA

General information 949-366-8000

E-mail CustomerService@regenesis.com

Emergency phone number For Hazardous Materials Incidents ONLY (spill, leak, fire, exposure or accident), call

CHEMTREC 24/7 at:

USA, Canada, Mexico 1-800-424-9300 **International** 1-703-527-3887

2. Hazard(s) identification

Physical hazards Not classified.

Health hazards Not classified.

OSHA defined hazards Not classified.

Label elements

Hazard symbol None.
Signal word None.

Hazard statement The mixture does not meet the criteria for classification.

Precautionary statement

Prevention Observe good industrial hygiene practices.

Response Wash hands after handling.

Storage Store away from incompatible materials.

Disposal Dispose of waste and residues in accordance with local authority requirements.

Hazard(s) not otherwise

classified (HNOC)

None known.

Supplemental information Contact with acids liberates very toxic gas.

3. Composition/information on ingredients

Mixtures

Chemical name	CAS number	%
Iron, powders	7439-89-6	30 - 50
Iron(II) sulfide	1317-37-9	0 - 2

Composition comments All concentrations are in percent by weight unless otherwise indicated.

Components not listed are either non-hazardous or are below reportable limits.

4. First-aid measures

Inhalation Move to fresh air. Call a physician if symptoms develop or persist.

Skin contact Wash off with soap and water. Get medical attention if irritation develops and persists.

Eye contact Rinse with water. Get medical attention if irritation develops and persists.

Ingestion Rinse mouth. Get medical attention if symptoms occur.

AquaZVI SDS US

942500 Version #: 02 Revision date: 12-April-2018 Issue date: 15-February-2018

Most important

symptoms/effects, acute and

delayed

Direct contact with eyes may cause temporary irritation.

Indication of immediate medical attention and special

treatment needed

Treat symptomatically.

General information

Ensure that medical personnel are aware of the material(s) involved, and take precautions to

protect themselves.

5. Fire-fighting measures

Suitable extinguishing media

Unsuitable extinguishing

media

Use extinguishing agent suitable for type of surrounding fire.

None known.

Specific hazards arising from

the chemical

Fire fighting

During fire, gases hazardous to health may be formed. Combustion products may include: carbon

Self-contained breathing apparatus and full protective clothing must be worn in case of fire.

oxides, iron oxides, sulfur oxides.

Special protective equipment

and precautions for firefighters

Move containers from fire area if you can do so without risk.

equipment/instructions

Specific methods

Use standard firefighting procedures and consider the hazards of other involved materials.

This material will not burn until the water has evaporated. Residue can burn. When dry may form General fire hazards combustible dust concentrations in air.

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures

Keep unnecessary personnel away. For personal protection, see section 8 of the SDS.

Methods and materials for containment and cleaning up

Large Spills: Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible. Absorb in vermiculite, dry sand or earth and place into containers. Following product recovery, flush area with water.

Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination.

Never return spills to original containers for re-use. For waste disposal, see section 13 of the SDS.

Environmental precautions

Avoid discharge into drains, water courses or onto the ground.

7. Handling and storage

Precautions for safe handling

Observe good industrial hygiene practices.

Conditions for safe storage, including any incompatibilities Store in original tightly closed container. Store away from incompatible materials (see Section 10

of the SDS).

8. Exposure controls/personal protection

Occupational exposure limits

No exposure limits noted for ingredient(s).

Biological limit values

No biological exposure limits noted for the ingredient(s).

Appropriate engineering controls

Good general ventilation (typically 10 air changes per hour) should be used. Ventilation rates should be matched to conditions. If applicable, use process enclosures, local exhaust ventilation, or other engineering controls to maintain airborne levels below recommended exposure limits. If exposure limits have not been established, maintain airborne levels to an acceptable level.

Individual protection measures, such as personal protective equipment

Wear safety glasses with side shields (or goggles). Eye/face protection

Skin protection

Hand protection Wear appropriate chemical resistant gloves. Suitable gloves can be recommended by the glove

supplier.

Skin protection

Other Wear suitable protective clothing.

Respiratory protection In case of insufficient ventilation, wear suitable respiratory equipment.

Thermal hazards Wear appropriate thermal protective clothing, when necessary.

SDS US 2/6 942500 Version #: 02 Revision date: 12-April-2018 Issue date: 15-February-2018

AquaZVI

General hygiene considerations

Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants.

9. Physical and chemical properties

Appearance

Physical state Liquid.

Form Viscous metallic suspension.

Color Dark gray. Odor Slight.

Odor threshold Not available.

7 - 8 (When mixed with water) pН

10 (As shipped)

Melting point/freezing point Not available. Initial boiling point and boiling Not available.

range

Not available. Flash point Not available. **Evaporation rate** Not applicable. Flammability (solid, gas) Upper/lower flammability or explosive limits

Flammability limit - lower

Not available.

(%)

Flammability limit - upper

Not available.

Not available. Vapor pressure Vapor density Not available. Relative density Not available.

Solubility(ies)

Not available. Solubility (water) Partition coefficient Not available.

(n-octanol/water)

Not available. **Auto-ignition temperature** Not available. **Decomposition temperature**

3000 cP (77 °F (25 °C)) **Viscosity**

Other information

Explosive properties Not explosive. Oxidizing properties Not oxidizing.

10. Stability and reactivity

The product is stable and non-reactive under normal conditions of use, storage and transport. Reactivity

Contact with acids will cause evolution of heat.

Material is stable under normal conditions. **Chemical stability**

Possibility of hazardous reactions

Contact with acids liberates very toxic gas. Can react with some acids with the evolution of

hydrogen.

Conditions to avoid Contact with incompatible materials. Avoid drying out product. May generate combustible dust if

material dries.

Incompatible materials Strong oxidizing agents. Strong acids.

Hazardous decomposition

No hazardous decomposition products are known.

products

11. Toxicological information

Information on likely routes of exposure

Inhalation Spray mist may irritate the respiratory system. For dry material: Dust may irritate respiratory

system.

Skin contact May cause mild skin irritation upon prolonged and excessive contact.

AquaZVI SDS US 942500 Version #: 02 Revision date: 12-April-2018 Issue date: 15-February-2018

Eye contact Direct contact with eyes may cause temporary irritation.

Ingestion May cause discomfort if swallowed.

Symptoms related to the physical, chemical and toxicological characteristics

Direct contact with eyes may cause temporary irritation.

Information on toxicological effects

Acute toxicity Not expected to be acutely toxic.

Skin corrosion/irritation Prolonged skin contact may cause temporary irritation.

Serious eye damage/eye Direct contact with eyes may cause temporary irritation.

i...it - 4i - ...

irritation

Respiratory or skin sensitization

Respiratory sensitization Not a respiratory sensitizer.

Skin sensitization This product is not expected to cause skin sensitization.

Germ cell mutagenicityNo data available to indicate product or any components present at greater than 0.1% are

mutagenic or genotoxic.

Carcinogenicity Not classifiable as to carcinogenicity to humans.

IARC Monographs. Overall Evaluation of Carcinogenicity

Not listed.

NTP Report on Carcinogens

Not listed.

OSHA Specifically Regulated Substances (29 CFR 1910.1001-1053)

Not regulated.

Reproductive toxicityThis product is not expected to cause reproductive or developmental effects.

Specific target organ toxicity -

single exposure

Not classified.

Specific target organ toxicity -

repeated exposure

Not classified.

Aspiration hazard Not an aspiration hazard.

12. Ecological information

Ecotoxicity The product is not classified as environmentally hazardous. However, this does not exclude the

possibility that large or frequent spills can have a harmful or damaging effect on the environment.

Persistence and degradability The majority of components in this product are inorganic compounds that are not biodegradable.

No data is available for the organic components.

Bioaccumulative potential No data available.

Mobility in soil No data available.

Other adverse effects None known.

13. Disposal considerations

Disposal instructionsCollect and reclaim or dispose in sealed containers at licensed waste disposal site.

Local disposal regulations Dispose in accordance with all applicable regulations.

Hazardous waste code The waste code should be assigned in discussion between the user, the producer and the waste

disposal company.

Waste from residues / unused

products

Dispose of in accordance with local regulations. Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe manner (see:

Disposal instructions).

Contaminated packaging Since emptied containers may retain product residue, follow label warnings even after container is

emptied. Empty containers should be taken to an approved waste handling site for recycling or

disposal.

14. Transport information

DOT

Not regulated as dangerous goods.

IATA

Not regulated as dangerous goods.

AquaZVI SDS US

IMDG

Not regulated as dangerous goods.

Transport in bulk according to Not established. Annex II of MARPOL 73/78 and

the IBC Code

15. Regulatory information

US federal regulations

This product is not known to be a "Hazardous Chemical" as defined by the OSHA Hazard

Communication Standard, 29 CFR 1910.1200.

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)

Not regulated.

CERCLA Hazardous Substance List (40 CFR 302.4)

Not listed.

SARA 304 Emergency release notification

Not regulated.

OSHA Specifically Regulated Substances (29 CFR 1910.1001-1053)

Not regulated.

Superfund Amendments and Reauthorization Act of 1986 (SARA)

SARA 302 Extremely hazardous substance

Not listed.

SARA 311/312 Hazardous No

chemical

SARA 313 (TRI reporting)

Not regulated.

Other federal regulations

Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List

Not regulated.

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130)

Not regulated.

Safe Drinking Water Act

Not regulated.

(SDWA)

US state regulations

US. Massachusetts RTK - Substance List

Not regulated.

US. New Jersey Worker and Community Right-to-Know Act

Not listed.

US. Pennsylvania Worker and Community Right-to-Know Law

Not listed.

US. Rhode Island RTK

Not regulated.

California Proposition 65

California Safe Drinking Water and Toxic Enforcement Act of 2016 (Proposition 65): This material is not known to contain any chemicals currently listed as carcinogens or reproductive toxins. For more information go to www.P65Warnings.ca.gov.

US. California. Candidate Chemicals List. Safer Consumer Products Regulations (Cal. Code Regs, tit. 22, 69502.3, subd. (a))

Iron, powders (CAS 7439-89-6)

International Inventories

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes

AquaZVI SDS US

 Europe
 European Inventory of Existing Commercial Chemical Substances (EINECS)
 No

 Europe
 European List of Notified Chemical Substances (ELINCS)
 No

 Japan
 Inventory of Existing and New Chemical Substances (ENCS)
 No

 Korea
 Existing Chemicals List (ECL)
 Yes

New ZealandNew Zealand InventoryYesPhilippinesPhilippine Inventory of Chemicals and Chemical SubstancesYes

(PICCS)

Inventory name

Taiwan Chemical Substance Inventory (TCSI)

United States & Puerto Rico

Toxic Substances Control Act (TSCA) Inventory

Yes

*A "Yes" indicates this product complies with the inventory requirements administered by the governing country(s).

A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

16. Other information, including date of preparation or last revision

Issue date15-February-2018Revision date12-April-2018

Version # 02

Country(s) or region

HMIS® ratings Health: 1

Flammability: 1 Physical hazard: 0

NFPA ratings

Disclaimer

Regenesis cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written based on the best knowledge and experience currently available.

AquaZVI SDS US

942500 Version #: 02 Revision date: 12-April-2018 Issue date: 15-February-2018

On inventory (yes/no)*

Attachment 3
Summary Calculation Sheet for Remedial Reagents

	ject Info		PlumeStop® Application De		
	treet Area		JSMW001A barr	er	
Hoosick Falls NY			PlumeStop		Technical Notes/Discussion
	01A barrier		Barrier Length (ft)	65	
	pared For:		Spacing Within Barrier (ft)	12	
ERM Ma	aureen Leahy		Number of Lines	3	
Target Treatment Zone (TTZ) Info	Unit	Value	Application Points	16	
Barrier Length	ft	65	Application Method	Direct Push	
Гор Treat Depth	ft	11.0	Top Application Depth (ft bgs)	11	
Bot Treat Depth	ft	19.0	Bottom Application Depth (ft bgs)	19	
/ertical Treatment Interval	ft	8.0	PlumeStop to be Applied (lbs)	11,200	PSTOP Injection Concentration (mg/L)
reatment Zone Volume	ft ³	7,800	PlumeStop to be Applied (gals)	1,342	17,500
reatment Zone Volume	су	289	In Situ Chemical Reductio	n AquaZVI	
Soil Type		silty sand	AquaZVI to be added to PlumeStop (lbs)	1,600	
Porosity	cm ³ /cm ³	0.30	AquaZVI to be added to PlumeStop (gals)	120	
Effective Porosity	cm ³ /cm ³	0.25	PlumeStop + AquaZVI Vol	ume Totals	
Freatment Zone Pore Volume	gals	17,504	Mixing Water (gal)	7,496	
reatment Zone Effective Pore Volume	gals	14,587	Total Application Volume (gals)	8,958	
reatment Zone Pore Volume	liters	66261	Injection Volume per Point (gals)	560	
reatment Zone Effective Pore Volume	liters	55218	Anaerobic Bioremediat		
raction Organic Carbon (foc)	g/g	0.002	HRC Application Points	16	
soil Density	g/cm ³	1.6	HRC to be Applied (lbs)	0	
	lb/ft ³	100		0	
Soil Density Soil Weight	lbs	7.8E+05	HRC per point (lbs)	0	
Hydraulic Conductivity	ft/day	7.8E+05 85.2	Total Application Volume (gals) Injection Volume per Point (gals)	0.0	
Hydraulic Conductivity	cm/sec	3.01E-02	Bioaugmentation - BI		
·	·	0.002		16	
Hydraulic Gradient	ft/ft		BDI Plus Application Points		
GW Velocity GW Velocity	ft/day ft/yr	0.51 187	BDI Plus to be Applied (Liters)	0 0.0	
			BDI Plus per point (Liters)		
Sources of Hydrogen Demand	Unit	Value		Assumptions/Qualification	
Dissolved Phase Contaminant Mass	lbs	0			
Sorbed Phase Contaminant Mass	lbs	0 13	In generating this preliminary estimate, Regenesis reli		
Competing Electron Acceptor Mass	lbs		this information as input, we performed calculations to mass of product and subsurface placement required to		
Total Mass Contributing to H ₂ Demand	lbs	13	mass of product and substitute placement required t	o arrect remediation of the site.	
Stoichiometric Demand	Unit	Value			
Stoichiometric H ₂ Demand	lbs	1	REGENESIS developed this Scope of Work in reliance u		
toichiometric HRC Demand	lbs	38	earlier environmental site assessment(s). The fees an	•	
			proprietary formulas and thus may not conform to bil reimbursement directly from any government agency		
Application Dosing	Unit	Value	where REGENESIS may serve as a supplier or subcontr	, •	
			the services performed or products provided by REGE	•	·
PlumeStop to be Applied	lbs	6,800	Scope of Work and associated charges are in compliance with and acceptable to the Government prior to submission. When serving as a		
PlumeStop-S	lbs	4,400	supplier or subcontractor to an entity which seeks rein		ent, REGENESIS does not knowingly present or caus
AquaZVI to be Applied	lbs	1,600	be presented any claim for payment to the Governme	nt.	
				Prepare	d by: DaP61626
			J.		Date: 9/25/2018

Appendix A
Shallow Groundwater IRM PDI Summary Memorandum

Honeywell

Shallow Groundwater Interim Remedial Measure Pre-Design Investigation Summary Memorandum

Former Oak Materials Fluorglas Division John Street (NYSDEC Site No. 442049)

Village of Hoosick Falls Rensselaer County, New York

Honeywell

June 2019

I, Chris Wenczel, certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Shallow Groundwater Interim Remedial Measure Pre-Design Investigation Summary Memorandum was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Chris W. Wenczel, P.G.

New York State Professional Geologist License No. 000744

ERM Consulting & Engineering, Inc.

Date: 18 June 2019

1.0	INTRODUCTION/PURPOSE					
2.0	SITE	CHARA	CTERIZATION AND PRE-DESIGN INVESTIGATION RESULTS	2		
	2.1	2016 S	ITE CHARACTERIZATION	2		
		2.1.1	Geology and Hydrogeology 2.1.1.1 Soil 2.1.1.2 Geologic Setting	2 2 3		
		2.1.2	 2.1.1.3 Hydrogeologic Setting SC Soil and Groundwater Analytical Results 2.1.2.1 Soil Results 2.1.2.2 Groundwater Results 	3 4 4 4		
	2.2	2018 P	RE-DESIGN INVESTIGATION	4		
		2.2.1	2018 PDI Activities	4		
		2.2.2	Soil Results	6		
		2.2.3	Total Oxidizable Precursor (TOP) Assay	8		
		2.2.4	Dense Non-Aqueous Phase Liquid	8		
		2.2.5	Groundwater Results	g		
		2.2.6	Infiltration Testing	g		
		2.2.7	Slug Testing	9		
		2.2.8	Soil Mixability Results	10		
		2.2.9	Oxidation Treatability Study Results 2.2.9.1 Soil Base Buffer Capacity and Natural Oxidant Demand 2.2.9.2 Oxidant Treatability Study	11 11 11		
		2.2.10	Microbial and Geochemical Analyses	12		
	2.3		LUSIONS BASED ON SC AND PDI RESULTS	13		
		2.3.1	Sand and Gravel Unit	13		
		2.3.2	Silt-Clay Unit	13		
3.0	REFI	ERENCES	3	15		
LIST	OF FIG	GURES				
A-1	2016 S	C Sample	Locations			
<i>A-</i> 2	Туріса	l Stratigr	raphic Section			
A-3	Geolog	gic Cross-	Section A-A'			
A-4	Shallo	w Overbi	urden Water Table Contours - July 2018 Gauging Event			
<i>A-</i> 5	TCE in	Shallow	Soil: Plan View			
A-6	TCE in	Shallow	Soil: Cross-Section A-A'			
<i>A-</i> 7	TCE in	Shallow	Groundwater: Plan View			
A-8	TCE in	Shallow	Groundwater: Cross-Section A-A'			
A-9	Soil Bo	oring Loca	ations – Groundwater IRM PDI			
A-10		•	Gravel Thickness – Depth to Silt-Clay			
A-11	Maxim	um PID I	Readings – Groundwater IRM PDI			
			l VOCs – Groundwater IRM PDI			
			8-B': PID Readings/Total VOC Results – Groundwater IRM PDI			
			A – Groundwater IRM PDI			

LIST OF TABLES

- A-1 Detected VOC Analytical Results from Shallow Soil Samples
- A-2 Detected VOC Analytical Results from Shallow Groundwater Samples by Waterloo APS
- A-3 Detected VOC Analytical Results for Groundwater Samples from Shallow Monitoring Wells
- A-4 Analytical Results in IRM PDI Soil Samples for PFAS, TOC, pH, and VOCs
- A-5 Comparative Analytical Results for PFAS and TOP Assay PFAS
- A-6 Analytical Results for Non-Aqueous Phase Liquid (DNAPL) in Temporary Monitoring Wells
- A-7 Analytical Results for PFAS, VOCs, pH and TOC from Groundwater Samples from Temporary Monitoring Wells
- A-8 Analytical Results in Groundwater Samples from Shallow Monitoring Wells

LIST OF APPENDICES

- A-1 Boring Logs
- A-2 Groundwater Sampling Logs
- A-3 PeroxyChem Report: Bench Scale Evaluation of ISCO Technologies for the Treatment of CVOCs in Groundwater and Soil from the Confidential Site

ACRONYMS AND ABBREVIATIONS

°C Degrees Celsius
1,1,1-TCA 1,1,1-trichloroethane
1,1-DCA 1,1-dichloroethane
1,1-DCE 1,1-dichloroethene

APS Advanced Profiling System

BBC Base Buffer Capacity bgs below ground surface cis-1,2-DCE cis-1,2-dichloroethene

CVOCs Chlorinated Volatile Organic Compounds DER Division of Environmental Remediation

DO Dissolved Oxygen eV electron volt

ERM Consulting and Engineering, Inc. gph/ft-s gallons per hour per foot of screen

g/kg Grams per Kilogram

Honeywell International Inc. ISCO In Situ Chemical Oxidation

ISM In Situ Soil Mixing

IRM Interim Remedial Measure KMnO4 Potassium Permanganate

μg/kg Micrograms per Kilogram (parts per billion {ppb}) μg/L Micrograms per Liter (parts per billion {ppb})

MOB Methane Oxidizing Bacteria mg/kg Milligrams per Kilogram mg/L Milligrams per Liter

mV millivolts

ng/L Nanograms per liter (parts per trillion)

NOD Natural Oxidant Demand NTU Nepholometric Turbidity Units

NYCRR New York Codes, Rules and Regulations

NYS New York State

NYSDEC New York State Department of Environmental Conservation

NYSGS New York State Geological Survey

ORP Oxygen Reduction Potential

PFAS Per- and Polyfluoroalkyl Substances

PCBs Polychlorinated Biphenyls
PFOA Perfluorooctanoic acid

PFOS Perfluorooctane sulfonic acid

PXC PeroxyChem

PID Photoionization detector PPE Personal Protective Equipment

ppm Parts Per Million
PTFE Polytetrafluoroethylene
PDI Pre-Design Investigation
RI Remedial Investigation

SOW Scope of Work

SVOCs Semi-Volatile Organic Compounds

SC Site Characterization SCOs Soil Cleanup Objectives

SVE/AS Soil Vapor Extraction/Air Sparging

TCE Trichloroethene

TCL Target Compound List

TOC Total Organic CarbonTOP Total Oxidizable PrecursorTPH Total Petroleum Hydrocarbon

USEPA United States Environmental Protection Agency

VOCs Volatile Organic Compounds

1.0 INTRODUCTION/PURPOSE

This Shallow Groundwater Interim Remedial Measure (IRM) Pre-Design Investigation (PDI) Summary Memorandum summarizes the findings of investigative activities undertaken to develop data to design a shallow groundwater IRM intended to mitigate the migration of chlorinated volatile organic compounds (CVOCs) in shallow groundwater at the John Street Property (Shallow Groundwater IRM Work Plan Figures 1 and 2) in the Village of Hoosick Falls, Rensselaer County, New York.

Honeywell International Inc. (Honeywell) entered into an Order on Consent and Administrative Settlement with the New York State Department of Environmental Conservation (NYSDEC) dated 3 June 2016 (the Order; Index Number CO 4-20160415-79: NYSDEC, 2016) for the Former Oak Materials Fluorglas Division - John Street Site (No. 442049), hereafter referred to as the Site.

In 2016, initial Site Characterization (SC) work was performed in accordance with the NYSDEC-approved SC Field Sampling and Analysis Plan (ERM, 2016a), where CVOCs were detected in on-site soil and groundwater and in off-Site groundwater. The draft report of the SC results for the Site has been submitted to NYSDEC for review (ERM, 2017).

To refine the conceptual IRM intended to mitigate migration of CVOCs in shallow groundwater, additional Site characterization activities and pre-design studies were performed during 2018 in accordance with the NYSDEC-approved work plan entitled "Shallow Groundwater Interim Remedial Measure Pre-Design Investigation & Treatability Study Work Plan" dated 16 March 2018 (ERM, 2018b). The Pre-Design Investigation (PDI) activities included the delineation of CVOCs in on-site shallow soil, further delineation in groundwater and collection of additional data to determine the physical and chemical characteristics of the shallow subsurface. Additional characterization data are presented in Section 2.0 along with relevant data collected during SC and Remedial Investigation (RI) activities.

2.0 SITE CHARACTERIZATION AND PRE-DESIGN INVESTIGATION RESULTS

The investigation activities and findings of the 2016 SC and 2018 PDI that are relevant to the IRM technology screening and design are described in the following sections.

2.1 2016 SITE CHARACTERIZATION

The soil and groundwater exploratory and sampling activities completed at the Site during the 2016 SC included:

- Five Waterloo Advanced Profiling System (APS)[™] borings (JS-APS-001 through JS-APS-005) were installed to provide continuous soil logging and provide data on inferred hydraulic conductivity.
- Twelve direct-push borings (JS-B-001 through JS-B-012) were completed and continuous soil samples were collected and field screened with a photoionization ionization detector (PID) via soil headspace methodology. Soil samples were also collected at select intervals from the direct-push borings for laboratory analysis.
- Surface (0 to 2 inches) and near-surface (2 to 12 inches) soil samples were collected at JS-SS-001 and boring locations JS-B-003 through JS-B-005. Shallow soil samples (10 to 12 and 12 to 24 inches) were collected at JS-SS-002.
- Five monitoring well clusters (JS-MW-001 to JS-MW-005) were installed and representative groundwater samples were collected using low-flow procedures.

The soil and groundwater sampling locations completed during the SC are presented in Figure A-1. The results of the SC were used to develop an initial understanding of the geologic, hydrogeologic, soil and groundwater quality conditions upgradient, beneath and downgradient of the Site. Full details are presented in the draft Site Characterization Report for the Site.

The following sections present summaries of information used in the shallow groundwater IRM technology screening and design that includes the:

- Shallow subsurface geologic/hydrogeologic conditions,
- Soil and groundwater sample analytical results driving the need for a shallow groundwater IRM and continued remedial investigation, and
- Follow-up 2018 PDI.

2.1.1 Geology and Hydrogeology

2.1.1.1 Soil

Native soil in the area, mapped by the New York State Geological Survey (NYSGS), is shown primarily as alluvium and lacustrine silt and clay (Caldwell and Dineen, 1987). Localized areas of soil include coarse material associated with channel sand and glacial outwash sand and gravel (Caldwell and Dineen, 1987).

Surface soil at the Site is primarily fill material from grade to between eight and 17 feet below grade. Underlying native soil consists predominantly of Hamlin silt loam (USDA, 2017).

2.1.1.2 Geologic Setting

Figure A-2 summarizes geologic material identified on the Site and surrounding areas which were investigated during the SC and PDI. Unconsolidated geologic material above bedrock (collectively referred to as overburden) consist of the following:

- An upper shallow layer of fine-grained post-glacial alluvium (predominantly silt and clay) deposited in the Hoosic River valley.
- A coarse-grained alluvium, consisting predominantly of sand and gravel, with lesser amounts of silt.
- A clay and silt unit deposited in glacial and post-glacial lakes that is laterally continuous within the study area.
- Glacial outwash (predominantly sand and gravel) with interbedded sandy-silt, deposited by glacial meltwaters. Gravel and cobbles have been observed near the top of bedrock.
- Glacial till, where present, is typically a dense, compact, poorly sorted mix of silt, clay, sand, gravel, cobbles and boulders derived from material eroded and entrained beneath glaciers.

Bedrock consists of dark gray to black slate or phyllite which is weathered in varying thickness intervals between the overburden and competent rock.

2.1.1.3 *Hydrogeologic Setting*

The trace of cross-sectional plane A-A' is shown on Figure A-1 and the cross-section is presented in Figure A-3 which depicts the shallow subsurface stratigraphy beneath the Site.

Groundwater occurs in both the overburden deposits and bedrock beneath the Site. The water table surface is encountered in the alluvium unit (above the clay and silt unit at the Site) at depths of approximately 6 to 14 feet below ground surface (bgs) and groundwater flow within this unit is controlled primarily by areal topography.

Groundwater elevations from shallow overburden monitoring wells ("A" Wells) and mapped groundwater contours for 19 July 2018 are shown in Figure A-4. Review of these data indicate that groundwater flow in the shallow sandy overburden unit is towards the north (i.e., towards the Hoosic River) as depicted the blue arrows in cross-section A-A'.

Available data suggest that the upper sandy alluvium unit at the Site appears to represent an unconfined hydrogeologic unit. The clay and silt unit appears to represent an aquitard, while the lower sand and gravel unit appears to represent one semi-confined hydrogeologic unit.

Vertical hydraulic gradient data were calculated using groundwater elevations and screened interval elevations between the "A" and deeper "B" monitoring wells screened in the lower glacial outwash sand and gravel beneath the clay and silt. A negative vertical gradient indicates a net potential for downward groundwater flow, whereas a positive vertical gradient indicates net potential for upward groundwater flow. As noted in the SC Report, these data also show that vertical gradient is typically negative and suggest the potential for downward groundwater flow from the upper sandy unit through the clay and silt unit towards the lower

sand and gravel unit. Calculated vertical gradient values range from -0.353 to +0.003 (dimensionless).

2.1.2 SC Soil and Groundwater Analytical Results

Volatile organic compound (VOC) analytical results in soil and groundwater are presented in Tables A-1 through A-3 and are compared to the Part 375 Soil Cleanup Objectives and New York State (NYS) Class GA groundwater quality standards and/or guidance values.

2.1.2.1 Soil Results

Eight VOCs (TCE, 1,1,1-TCA, cis-1,2-dichloroethene (cis-1,2-DCE), 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), acetone, toluene, and vinyl chloride (VC)) were detected in shallow on-site samples at one or more locations. TCE and 1,1,1-TCA were detected at maximum concentrations of 420,000 micrograms per kilogram ($\mu g/kg$), and 88,000 $\mu g/kg$, respectively. The highest concentrations of TCE and 1,1,1-TCA in soil were found in a silt and clay layer occurring between 10 feet and 18 feet bgs on the Site. Multiple borings on the Site showed the highest concentrations occur in two limited "hot-spot" areas located in the central and northern portions of the property. These results prompted the 2018 PDI, which was intended to define the horizontal extent of the "hot-spots".

2.1.2.2 Groundwater Results

Groundwater at and near the Site is encountered in the overburden at depths of approximately 6 to 14 feet bgs and flows northward toward the Hoosic River.

Three VOCs (TCE, 1,1,1-TCA and cis-1,2-DCE) were detected in shallow groundwater at concentrations that exceed their respective NYS Class GA Standards. TCE was the only VOC detected at concentrations exceeding its NYS GA Standard at more than one shallow groundwater sample location. TCE concentrations ranged from 1 microgram per liter ($\mu g/L$) to 130 $\mu g/L$. No other VOCs exceeded applicable NYS Class GA Standards.

The SC results are summarized in plan and cross-sectional views that present TCE concentrations in shallow soil (Figures A-5 and A-6) and groundwater (Figures A-7 and A-8), respectively.

2.2 2018 PRE-DESIGN INVESTIGATION

The 2018 PDI activities were performed in support of the IRM. The PDI was designed to delineate CVOC impact in the subsurface and collect information to evaluate the viability of multiple physical, chemical and biological technologies for treatment of the primary CVOCs (TCE, 1,1,1-TCA and cis-1,2-DCE) including:

- In situ chemical oxidation (ISCO) or reduction (ISCR);
- Soil vapor extraction/air sparging (SVE/AS);
- Anaerobic bioremediation; and
- Adsorption.

2.2.1 2018 PDI Activities

The 2018 PDI activities were based on iterative field screenings. These included:

- Installation of soil borings and temporary groundwater monitoring wells;
- Sampling to delineate CVOCs in on-site shallow soils and groundwater; and
- Gathering additional information about the physical and chemical characteristics of the Site's shallow subsurface environment.

The 2018 PDI activities specifically included:

- Advancement of 48 direct-push soil borings with continuous lithological logging and PID screening from ground surface to termination depth (ranging from 2.5 to 40 feet bgs).
- Field screening in discrete one-foot intervals for VOCs using a PID equipped with an 11.7 electron volt (eV) lamp and the soil headspace method to facilitate delineation of the horizontal and vertical extents of impacted soils.
- Analyses of 55 confirmatory soil samples for VOCs, per- and polyfluoroalkyl substances (PFAS), total organic carbon (TOC), and pH (Table A-4).
- Duplicate soil samples collected for PFAS analyses were submitted to the laboratory and held for potential Total Oxidizable Precursor (TOP) Assay. Five samples were selected in consultation with NYSDEC personnel and analyzed for TOP Assay following a review of the preliminary VOC and PFAS results of the primary samples (Table A-5).
- Installation of 12 temporary groundwater monitoring wells constructed with screens straddling intervals in the silt-clay where field screening indicated VOC readings of 10 parts per million (ppm) or greater.
- Analyses of a non-aqueous free-phase liquid (DNAPL) discovered in one temporary well (JS-TMW-039) for PFAS, VOCs, semi-volatile organic compounds (SVOCs), total petroleum hydrocarbon (TPH) fingerprinting, polychlorinated biphenyls (PCBs) and pesticides (Table A-6).
- Analyses of 12 groundwater samples collected from temporary wells for VOCs, PFAS, TOC and pH (Table A-7).
- Submittal of two representative composites of soil exceeding 10 ppm by field screening, one from a predominant sand and gravel unit and one from a predominant silt and clay unit, to:
 - o PeroxyChem's (PXC) treatability laboratory for oxidant (sodium persulfate and permanganate) treatability testing to establish performance of an ISCO alternative:
 - Demand testing to determine short- and total oxidant demand, and potential activators;
 - Soil acidity;
 - Oxidant stability and possible dosing requirements; and
 - PFAS concentrations before and after oxidation to assess potential formation of perfluoroalkyl acids such as PFOA from precursor substances during oxidation.
 - A soil-mixing contractor to complete bench-scale mixing simulations using mechanical equipment. The samples were also analyzed for:
 - Grain size distribution sieve and hydrometer
 - Atterberg limits clay samples only
 - Standard proctor compaction

- Collection of groundwater samples from existing on-site shallow monitoring wells (JS-MW-001A, -002A, -003A, -004A and -005A) using low-flow sampling procedures and submittal to PXC for use in the treatability studies and the environmental laboratory TestAmerica for analysis of:
 - Target Compound List (TCL) VOCs using United States Environmental Protection Agency (USEPA) Method 8260C;
 - PFAS by USEPA Method 537-1.1 (modified; 21 analytes as listed in Section 2.8);
 - o TOC by Lloyd Kahn method;
 - o pH by Standard Method 9045D;
 - o Dissolved gases (methane, ethane, and ethene);
 - o Geochemical parameters (nitrate, nitrite, sulfate, sulfide, total and dissolved iron, total and dissolved manganese); and
 - o Field parameters (pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), specific conductance, temperature and turbidity).

Groundwater samples were also filtered through Bio-Flo filters and the filters were submitted to Microbial Insights for:

 Microbial analyses for *Dehalococcoides*, *Dehalobacter* spp., methane oxidizing bacteria, and the functional genes for TCE and vinyl chloride reductases and soluble methane monooxygenase.

Groundwater analytical results from monitoring well samples are included in Table A-8.

• Infiltration testing ("falling-head") of 10 of the 12 temporary groundwater monitoring wells to evaluate the infiltration rate of liquids in the soil strata and the potential use of injection technology, specifically the zones where PID screening indicated results of greater than 10 ppm.

The locations of the 48 soil borings and 12 temporary groundwater monitoring wells installed during the 2018 PDI are shown in Figure A-9. Also shown are the permanent well clusters (MWs 001A/B/C, 002A and 003A/B/C) installed during the SC, the former building footprint, the municipal sewer line, and the concrete box culvert that conveys Woods Brook to the Hoosic River.

Historic maps indicate that Woods Brook formerly ran across the Site from south to north beneath the former building. Woods Brook was redirected and contained in the current concrete box culvert as part of a flood control project undertaken by the Army Corps of Engineers in 1952. The facility building was razed in 2012. Subsurface clearance activities performed as part of the SC and 2018 PDI drilling programs indicated the presence of foundations, metal and concrete in the subsurface.

2.2.2 Soil Results

The soil borings were advanced using an iterative approach based on PID soil headspace screening to facilitate a stepwise horizontal delineation. With the exception of six locations, soil borings were advanced downward until five continuous feet of soil exhibiting PID headspace readings of less than 1.0 ppm were encountered to determine the vertical extent of impacted soils.

Soil boring logs that include soil descriptions, headspace readings, and identify analytical sample intervals are presented in Appendix A-1. The soil boring information indicates the sand and gravel overburden layer that contains the shallow groundwater table is variable in thickness ranging from 8 to 17 feet, or conversely, the underlying silt-clay layer surface is variable in depth by up to 9 feet as illustrated in Figure A-10. Consequently, the groundwater-saturated thickness varies across the Site.

The plan-view map presented in Figure A-11 was prepared using the maximum headspace reading from each boring. Delineation of two separate "hot-spot" areas (near JS-MW-001 and JS-MW-003) was achieved wherever possible, in step-out directions as indicated by the distribution of lower headspace readings depicted by blue and green symbols. Installation of additional soil borings along the east side of the southerly hot-spot area (MW-003) could not be completed safely, due to the presence of the active municipal sewer and the Woods Brook culvert.

Analytical results for VOCs, PFAS, TOC and pH from the 55 confirmatory soil samples collected from the silt-clay layer are summarized in Table A-4. The primary chemicals of concern are TCE and perfluorooctanoic acid (PFOA).

- TCE concentrations ranged from non-detect to 1,300,000 μ g/kg. Note that the 1,300,000 μ g/kg is a data outlier with all other detected concentrations between non-detect and 980,000 μ g/kg with an average concentration of 166,960 μ g/kg.
- PFOA concentrations ranged from non-detect to 21 μ g/kg with an average concentration of 3.6 μ g/kg.
- TOC concentrations ranged from 1,060 milligrams per kilogram (mg/kg) to 55,700 mg/kg with an average concentration of 4,912 mg/kg.
- pH values ranged from 7.6 to 11.1 with an average of 8.3.

The total CVOC¹ analytical results are shown by location in the plan-view map presented in Figure A-12. The PID headspace readings and total CVOC analytical results were used to prepare the cross-section presented in Figure A-13.

PFOA analytical results were used to prepare the plan-view map presented in Figure A-14.

Based on the soil borings and distribution of VOCs and PFOA in the subsurface, the following points are noted:

- Former foundations, metal and concrete are present in the subsurface;
- The surface of an underlying, site-wide silt-clay layer is not flat and displays up to a nine feet differential, from surface to top of clay. The observed differential results in variable groundwater saturated thickness;
- Fine sand bedding planes or "partings" were observed in the silt-clay at some PDI boring locations;
- Relatively low concentrations of CVOCs (limited mass) are present in the shallow sand and gravel;
- Relatively low concentrations of PFAS (limited mass) are present in the silt-clay layer;

ERM 7

.

¹ Sum of PCE, TCE, 1,2-DCE, VC, 1,1,1-TCA, 1,1-DCA, 1,1-DCE.

- The majority of the CVOC mass is in the silt-clay and present several feet below the top of the silt-clay; this location below the top of the silt-clay limits its ability to diffuse back into shallow groundwater; and
- The vertical extent of VOC mass is generally limited to less than 20 feet bgs.

2.2.3 Total Oxidizable Precursor (TOP) Assay

The analytical results of the primary and duplicate TOP Assay samples are summarized in Table A-5. Comparison of the primary PFAS results and the TOP Assay PFAS results by Relative Percent Difference (RPD) indicates that:

- PFOA concentrations in the TOP Assay increased slightly in two sample pairs:
 - o JS-B-019 (16-17 ft bgs): 9% RPD
 - o JS-B-047 (4-6 ft bgs): 7% RPD
- PFOA concentrations in the TOP Assay decreased in two pairs:
 - o JS-B-044 (17-19 ft bgs): 13% RPD
 - o JS-B-055 (5-7 ft bgs): 59% RPD
- In one sample (JS-B-039 (13-15 ft bgs)), no PFAS compounds were detected in the TOP assay sample but the detection limits were higher than the detections in the primary sample and an RPD for PFOA was not calculated.

These results show no evidence of the presence of "precursors", which are PFAS that can be converted to perfluoroalkyl acids such as PFOA by persulfate oxidation. These results confirm that the use of oxidants such as sodium persulfate will not create additional perfluoroalkyl acid mass.

2.2.4 Dense Non-Aqueous Phase Liquid

Approximately 0.77 feet of DNAPL (apparent thickness) was measured in temporary monitoring well JS-TMW-039. DNAPL was not detected in the surrounding temporary wells which indicates it is limited in extent. Analytical results of the DNAPL sample are presented in Table A-6 and summarized below:

- 28% TCE (280 grams per kilogram (g/kg));
- 0.64% Naphthalene (6.4 g/kg);
- 1.8% unknown hydrocarbons (18 g/kg);
- no PCBs were detected above method detection limits (<38 mg/kg);
- pesticides: (0.18 (estimated) to 0.31 mg/kg);
- PFAS: (1.1 (estimated) nanograms per liter (ng/L) for Perfluorooctane sulfonic acid (PFOS) to 170 ng/L for PFOA); and
- No other VOCs or SVOCs were detected, although method detection levels were elevated.

The DNAPL is limited in horizontal extent as evidenced by its absence in the surrounding temporary wells. The DNAPL will be addressed as part of the IRM as described in the Shallow Groundwater IRM Work Plan.

2.2.5 Groundwater Results

Groundwater sampling logs are provided in Appendix B. Analytical results for VOCs, PFAS, TOC and pH from the 12 temporary groundwater monitoring wells constructed with screens straddling intervals in the silt-clay are summarized in Table A-7. The predominant detected VOC and PFAS were TCE and PFOA, respectively.

- TCE concentrations ranged from 0.48 milligrams per liter (mg/L) to 1,900 mg/L with an average concentration of 655 mg/L.
- PFOA concentrations ranged from 680 ng/L to 4,100 ng/L with an average concentration of 1,568 ng/L.
- TOC concentrations ranged from 1.6 mg/L to 4.7 mg/L with an average concentration of 2.48 mg/L.
- pH values ranged from 7.35 9.31 with an average of 7.94.

The areal distribution of TCE and PFOA concentrations are shown in Figures A-12 and A-14, respectively.

2.2.6 Infiltration Testing

Infiltration testing ("falling-head") of 10 of the 12 temporary groundwater monitoring wells was conducted to evaluate the infiltration rate of liquids into the silt-clay layer, specifically the zones where PID screening values were greater than 10 ppm, and evaluate the potential use of injection technology. The testing results were normalized to gallons per hour per foot of screen (gph/ft-s) because the screen lengths of the temporary groundwater monitoring wells ranged from 4 feet to 14 feet depending on location.

Infiltration rates in nine of the 10 wells ranged between 0.02 – 1.6 gph/ft-s with an average rate of 0.39 gph/ft-s. A higher rate of 14.5 gph/ft-s was measured in the tenth well (JS-TMW-030).

These low infiltration rates confirm the low permeability of the silt-clay layer and indicate that the efficacy of a gravity-fed or pressurized injected remedial reagent or air sparging would be limited.

2.2.7 Slug Testing

As part of the ongoing RI, single well aquifer slug tests were performed in on-site and off-site wells screened across the water table in the shallow sand and gravel to develop a range of hydraulic conductivities (K) for that aquifer unit.

The slug test is designed to measure the response of an aquifer to an instantaneous displacement of a known volume of water within a well. Wells screened across the water table were tested using a physical method of water displacement with a physical slug.

Recovery of the water levels to the pre-test condition (static) were measured and stored at frequent time intervals using an electronic programmable data logger equipped with a pressure-sensitive water level transducer. The data set was then analyzed to calculate a hydraulic conductivity value for each well screen interval. A range of hydraulic conductivity values can be obtained for an aquifer unit by performing slug tests in multiple wells across the site. That information was used to estimate groundwater flow velocities and design remedial injection approaches.

A summary of the estimated hydraulic conductivities for on-site and downgradient wells screened in the shallow sand and gravel alluvium deposits is provided below.

Well ID	Analytical Solution	K (ft/day)
JS-MW-001A	Bouwer-Rice	85.2
JS-MW-003A	Bouwer-Rice	408.8
JS-MW-004A	Bouwer-Rice	123.4
OS-MW-025A	Bouwer-Rice	32.6
OS-MW-026A	Springer-Gelhar	205.4

The highest concentration of total VOCs in shallow on-site groundwater was 160 μ g/L in well JS-MW-001A on the north end of the Site. A groundwater flow velocity (seepage velocity) of 0.51 ft/day or 187 feet per year was calculated for use in designing the groundwater IRM using:

- A hydraulic conductivity (K) of 85.2 ft/day (JS-MW-001A);
- A horizontal hydraulic gradient (i) of 0.0015 (dimensionless);
- An effective porosity (n) of 0.25 (estimated range 0.20 to 0.25); and
- The formula to calculate seepage velocity: v = K*i/n.

2.2.8 Soil Mixability Results

The representative composite soil volumes, one from a predominant sand and gravel unit and one from the silt-clay unit were submitted to Redox Tech, LLC, a treatability subcontractor for characterization and simulated Soil Mixing (SM). This mixing test evaluated the physical parameters (grain size and proctor by ASTM Methods) for soil "mixability". In combination with other analytical and treatability data, these data facilitate evaluation of the applicability of soil mixing as a remedial option for these strata. The mixability was simulated using a scaled-down version of the mixing apparatus and compared to reference standards for sand and clay materials.

Composite	Classification	Maximum	Moisture	Optimal	Mixable
Material		Dry Density	Content	Moisture	
	(ASTM D422)	(PCF)	(%)	(%)	(Yes/No)
Upper	Sandy gravel with	129.4	13.6%	9.5%	Yes
Sand-	silt (SW-SM)				
Gravel	9.5% < #200				
	Slightly plastic				
Lower	Clay (CL)	101.9	49.3%	20.8%	Yes
Silt-Clay	99.3% < #200				
_	Medium plastic				
	Saturated - sticky				

Both samples were found to be suitable for transverse rotating head mixing technology. The silt-clay material is plastic and may require more time to complete the mixing (relative to non-plastic material) and to clean the mixing head periodically.

These results indicate that soil mixing to blend remedial reagents into the soil is likely feasible. However, significant preparatory work would be required to protect the existing sanitary sewer line and Woods Brook box culvert, and remove the remaining concrete foundation structures, and other wood, metal and concrete debris. Groundwater containment and vapor controls may also be required since mixing may mobilize CVOCs to shallow groundwater during the site preparatory and mixing work.

2.2.9 Oxidation Treatability Study Results

PeroxyChem (PXC), a treatability laboratory for oxidant (sodium persulfate and permanganate) testing, was provided representative soil composites (one from the sand-and-gravel unit and one from the silt-clay unit) and a composite groundwater sample from existing on-site shallow monitoring wells (JS-MW-001A, -002A, -003A, -004A and -005A). This information will be used in conjunction with other evaluations such as the mixability or infiltration testing to determine the viability of, and/or potential design of an ISCO remedial alternative. PXC's summary report is presented in Appendix A-3. The results are summarized below.

2.2.9.1 Soil Base Buffer Capacity and Natural Oxidant Demand

Soil base buffer capacity (BBC) for sodium hydroxide (NaOH) was determined to be:

- Sand and gravel material: 1.09 grams of 25% NaOH per kilogram of soil; and
- Silt-clay material: 1.64 grams of 25% NaOH per kilogram of soil.

Natural oxidant demand (NOD) of potassium permanganate (KMnO₄) was determined to be:

- Sand and gravel material: 4.36 grams of KMnO₄ per kilogram (g KMnO₄/kg) of soil; and
- Silt-clay material: 7.43 g KMnO4/kg of soil.

2.2.9.2 Oxidant Treatability Study

Oxidant treatability tests were conducted to evaluate the destruction of CVOCs by oxidation with sodium persulfate or potassium permanganate. The treatment evaluated using separate test conditions for sand and gravel and silt-clay soil samples.

- Sand and gravel:
 - o Permanganate TCE concentrations were reduced by greater than 95% after 7 days in both high and low dose treatments; and
 - Alkali Persulfate TCE concentrations were reduced by 93% in the high dose treatment and 85% in the low dose treatment.
- Silt-clay:
 - o Permanganate TCE concentrations were reduce by 37% in the low dose treatment and 100% in the high dose treatment; and
 - Alkali Persulfate TCE concentrations were reduced by 65.2% and 76.1% in the two low-dose treatments and 87 and 87.8% in the high dose treatment.

PFAS concentrations before and after oxidation were also measured to assess potential formation of perfluorinated alkyl acids from precursor substances during oxidation. Comparison of the PFAS concentrations in the control and the three

treatment conditions (sodium hydroxide alone, alkali persulfate and permanganate) with the TOP Assay PFAS results by RPD indicates that PFOA concentrations in the three treatment conditions are well within the acceptable range for duplicates with RPDs ranging from 20% to 29% and were higher in the control than treatment conditions.

2.2.10 Microbial and Geochemical Analyses

The results of microbial and geochemical analyses from on-site shallow groundwater monitoring wells are included in Table A-8 and summarized below.

ORP and DO:

- ORP values ranged from -2.8 to 59.9 millivolts (mV) with an average of 32.46 mV; and
- Dissolved oxygen (DO) concentrations ranged from 1.76 to 9.05 mg/L with an average of 6.7 mg/L.

These results indicate aerobic and low to moderately oxidizing conditions.

Geochemistry:

- Nitrate and Nitrite: Nitrite was not detected in the samples while nitrate concentrations ranged from 0.2 to 2.9 mg/L with an average concentration of 1.04 mg/L;
- Sulfate and Sulfide: Sulfide was not detected in the samples, while sulfate concentrations ranged from below the detection limit to 218 mg/L with an average concentration of 106.7 mg/L;
- Iron: Total iron concentrations ranged from 0.058 to 4.2 mg/L (with an average concentration of 2.13 mg/L; dissolved iron was not detected in the samples;
- Manganese: Total manganese and dissolved manganese were only detected in one sample at 1 mg/L for both; and
- Total Organic Carbon (TOC): TOC ranged from an estimated 1.2 mg/L to an estimated 2.7 mg/L with an average concentration of 1.52 mg/L.

The absence of nitrate, sulfide, and dissolved iron and manganese and the low TOC concentrations are consistent with the aerobic and low to moderately oxidizing conditions that were indicated by ORP and DO results.

Dissolved Gases:

- Methane, which is a product of anaerobic methanogenesis and a primary substrate for methane oxidizing bacteria (MOB), was only detected in a groundwater sample from one shallow monitoring well JS-MW-002A; and
- Ethene and ethane, which are produced from the complete dechlorination of TCE and 1,1,1-TCA under anaerobic conditions, were not detected.

These results are consistent with the ORP, DO and geochemistry results, which indicate that the shallow aquifer exhibits generally aerobic conditions, which can support aerobic cometabolic degradation of CVOCs but are not suitable to support methanogenesis or anaerobic reductive dechlorination of CVOCs.

Microbial Analyses:

- Dechlorinating bacteria were detected in groundwater from JS-MW-001A and JS-MW-002A, but at low concentrations. *Dehalococcoides* was detected in samples from both wells, while *Dehalobacter* spp. was only detected in the sample from JS-MW-002A.
- Functional genes for the *Dehalococcoides* TCE and vinyl chloride reductase enzymes that are responsible for complete dechlorination were only detected at low concentrations in the sample from JS-MW-002A.
- Methane oxidizing bacteria (MOB) were detected in groundwater samples from four of the five shallow monitoring wells at moderate to high concentrations.
- Functional MOB gene for soluble methane monooxygenase was only detected in the groundwater sample from one well JS-MW-002A.

These microbial results are consistent with the geochemistry, which indicates generally aerobic conditions that are capable of supporting aerobic bacteria such as methane oxidizing bacteria, but not anaerobic bacteria such as the dechlorinating bacteria - *Dehalococcoides* and *Dehalobacter* spp. Hence, a bioremediation remedial alternative would require significant augmentation of the shallow subsurface environment to create and maintain anaerobic geochemical conditions, as well as, inoculation of dechlorinating bacteria.

2.3 CONCLUSIONS BASED ON SC AND PDI RESULTS

Based on the soil borings and distribution of VOCs and PFOA in the subsurface, the following points are noted:

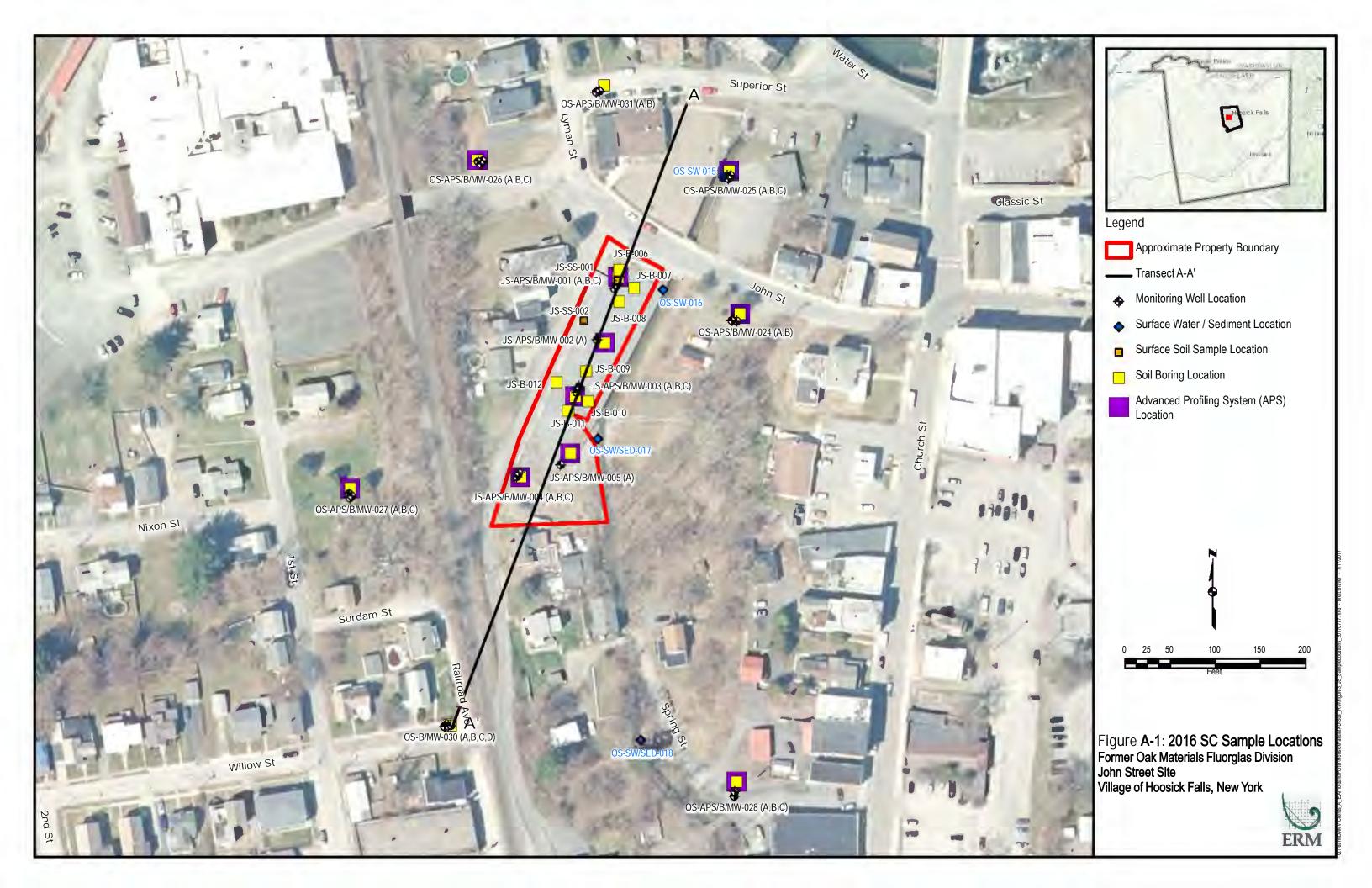
2.3.1 Sand and Gravel Unit

- Shallow groundwater is a likely source of CVOCs to indoor air in buildings to the north of the Site.
- Limited CVOC mass is present in soil and groundwater within this unit.
- This unit is very permeable and amenable to injection-based technologies.
- The soil was found to be "mixable" and suitable for in situ mixing technology.
- The soil was found to be amenable to oxidant treatment.
- Geochemical conditions are generally aerobic cometabolic and oxidizing; these
 conditions are conducive to aerobic degradation of CVOCs but not to anaerobic
 degradation of CVOCs.
- Former foundations, metal and concrete are present and may make implementation of an IRM more difficult.

2.3.2 Silt-Clay Unit

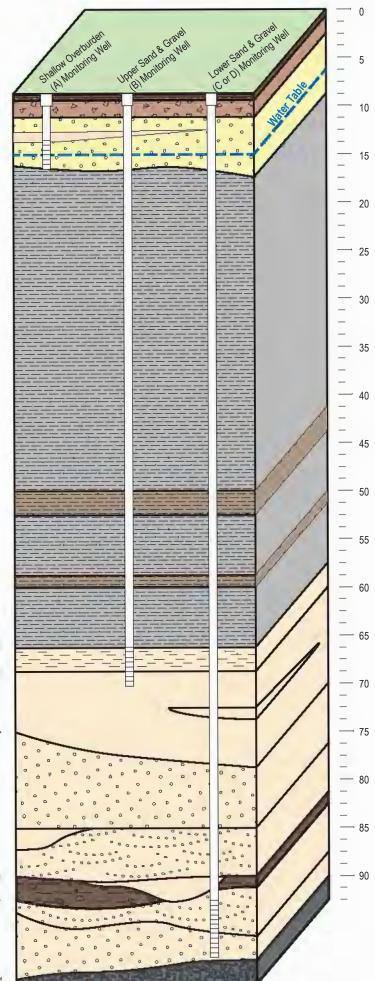
- Majority of the CVOC mass is present in this unit with the vertical extent of CVOC mass generally limited to less than 20 feet bgs.
- CVOC mass is generally located several feet below the top of the silt-clay.
- This unit has low permeability and is unlikely to be amenable to injection-based technologies.
- The soil was found to be "mixable" and suitable for in situ mixing technology; the silt-clay material is plastic and may require more time to complete mixing.

- The soil was found to be amenable to oxidant treatment.
- The surface of silt-clay beneath the Site is not flat, with up to nine feet relief observed resulting in variable groundwater saturated thickness.


Based on these conclusions, the shallow sand and groundwater unit is chosen for implementation of the IRM. This unit is amenable to implementation of a number of technologies, with limited disruption to the surrounding residences and businesses as discussed in Section 3.0 of the Shallow Groundwater IRM Work Plan.

The silt-clay layer, in which the majority of the mass of CVOCs has been identified, has the potential to be treated to remove or destroy the CVOC mass. However, due to its low permeability, treatment of this unit may require highly intrusive technologies such as excavation or in situ mixing.

- Cadwell, D.H. and Dineen, R.J., 1987. Surficial Geologic Map of New York: Hudson-Mohawk Sheet. New York State Museum and Science Service, Map and Chart Series Number 40, Albany.
- ERM, 2016. Final Site Characterization Field Sampling and Analysis Plan Phase 1: Oak Materials River Road 1, 2 and 3 (No. 442008) and Former Oak Materials Fluorglas Division John Street (No. 442049): Town of Hoosick and Village of Hoosick Falls, Rensselaer County, New York. ERM Consulting and Engineering, Inc., Syracuse, 20 July 2016.
- ERM, 2017. DRAFT Site Characterization Report and Remedial Investigation Work Plan. Oak Materials-River Road 1, 2 and 3 and Former Oak Materials Fluorglas Division–John Street: Town of Hoosick and Village of Hoosick Falls, Rensselaer County, New York. ERM Consulting and Engineering, Inc., Syracuse, 11 August 2017.
- ERM, 2017. Soil Vapor Intrusion Report. Former Oak Materials Fluorglas Division John Street (No. 442049), Village of Hoosick Falls, Rensselaer County, New York. ERM Consulting and Engineering, Inc., Syracuse. July 2017
- ERM, 2018a. Soil Vapor Intrusion Report. Former Oak Materials Fluorglas Division John Street (No. 442049), Village of Hoosick Falls, Rensselaer County, New York. ERM Consulting and Engineering, Inc., Syracuse. In preparation.
- ERM, 2018b. Shallow Groundwater Interim Remedial Measure Pre-Design Investigation & Treatability Study Work Plan, Site No. 442049), Village of Hoosick Falls, Rensselaer County, New York. ERM Consulting and Engineering, Inc., Syracuse. 16 March 2018
- NYSDEC, 1992. Sampling Guidelines and Protocols: Technologies Background and Quality Control/Quality Assurance for the NYSDEC Spill Response Program. Division of Spills Management, Albany, September 1992.
- NYSDEC, 2010. DER-10: Technical Guidance for Site Investigation and Remediation. NYSDEC Division of Environmental Remediation, Albany, May 2010.
- NYSDEC, 2016. Order on Consent and Administrative Settlement Index Number CO 4-20160415-79: Oak Materials Fluorglas Division John Street (No. 442049) and Oak Materials River Road 1, 2 and 3 (No. 442008). Division of Environmental Remediation, Albany, 3 June 2016.
- USDA, 2017. Natural Resources Conservation Service Web Soil Survey for Rensselaer County, New York.


FIGURES

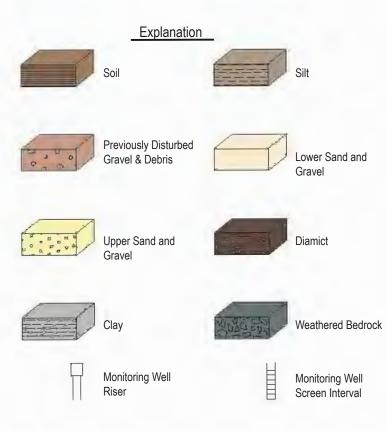
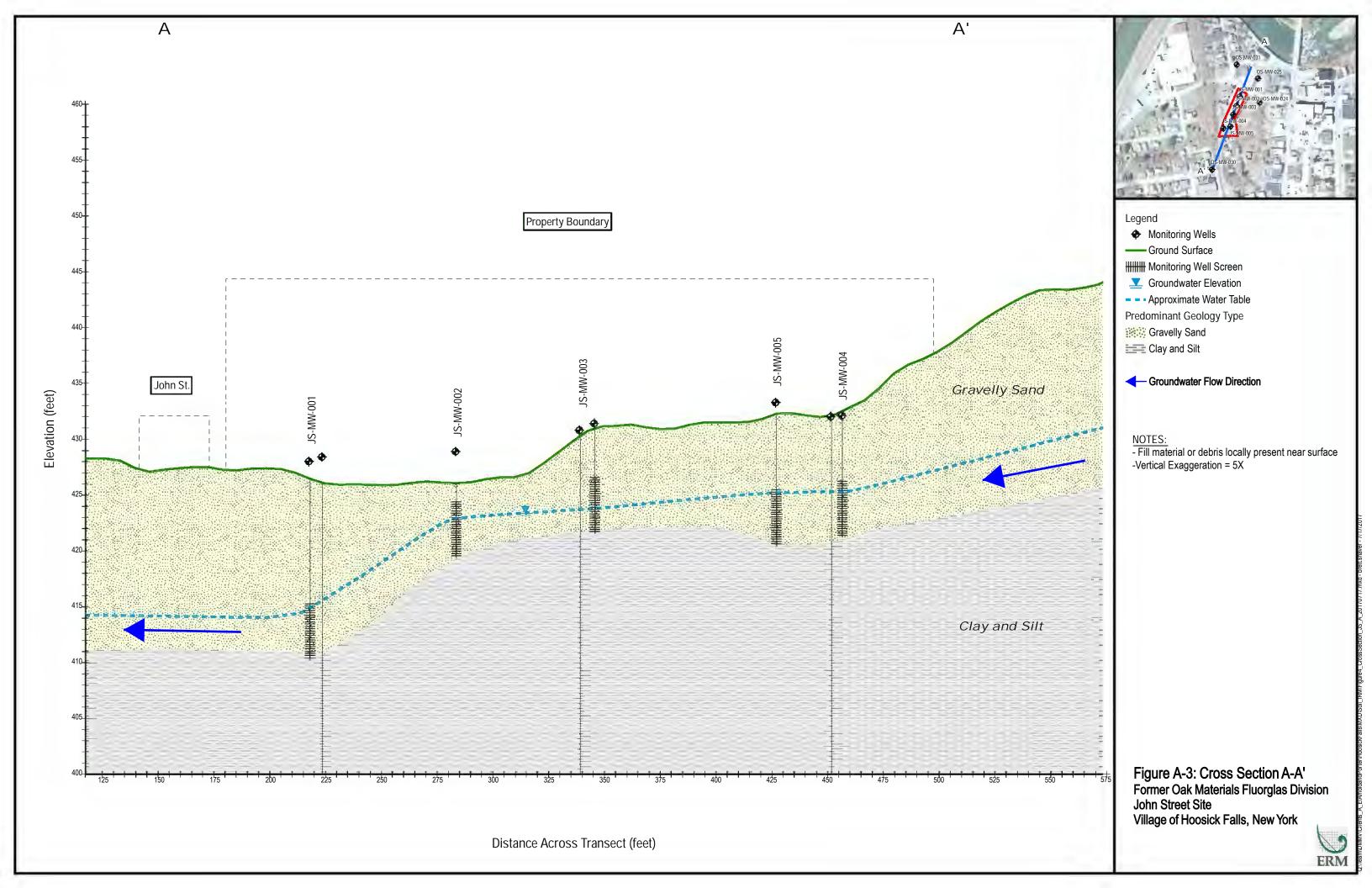
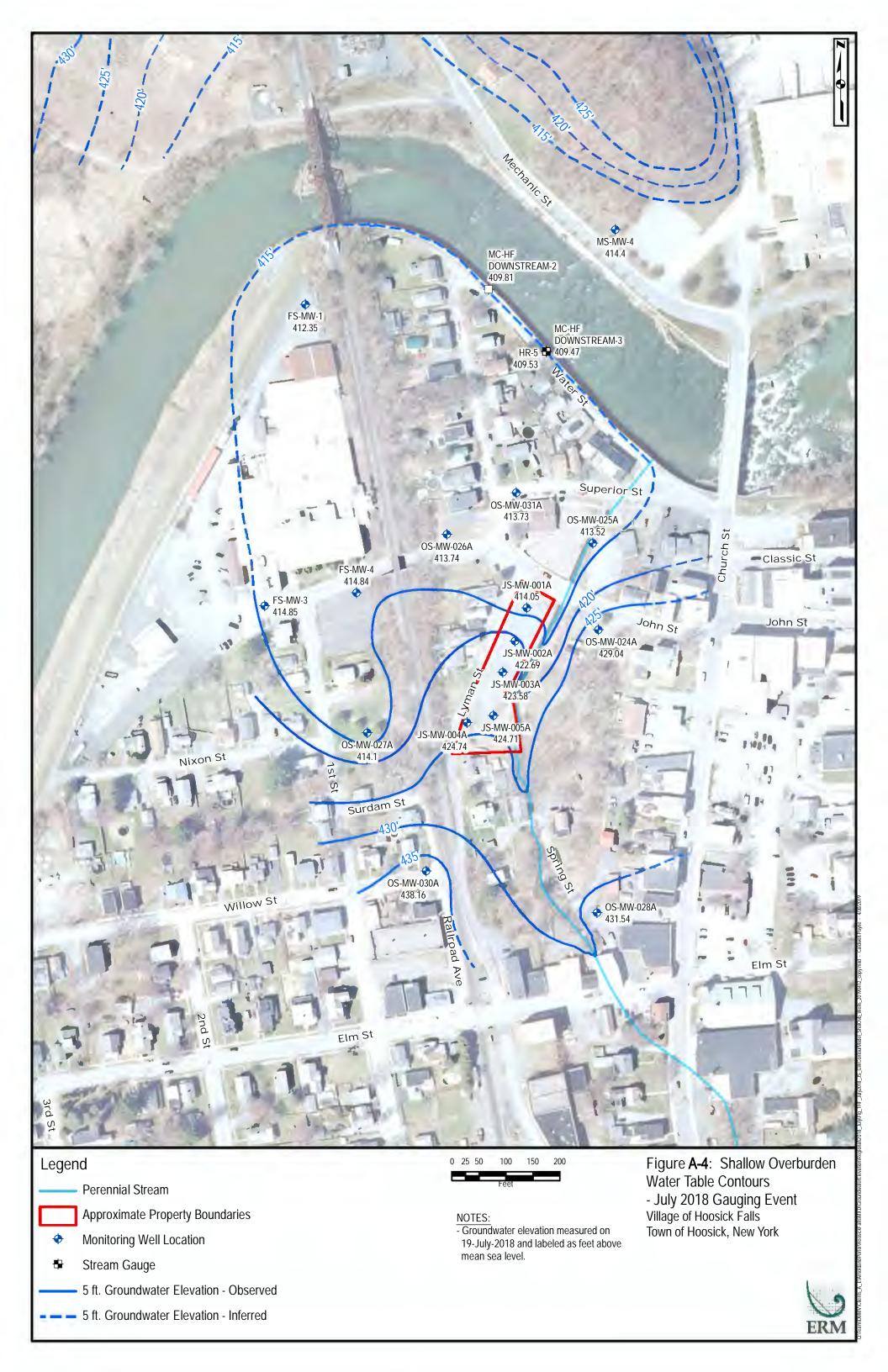
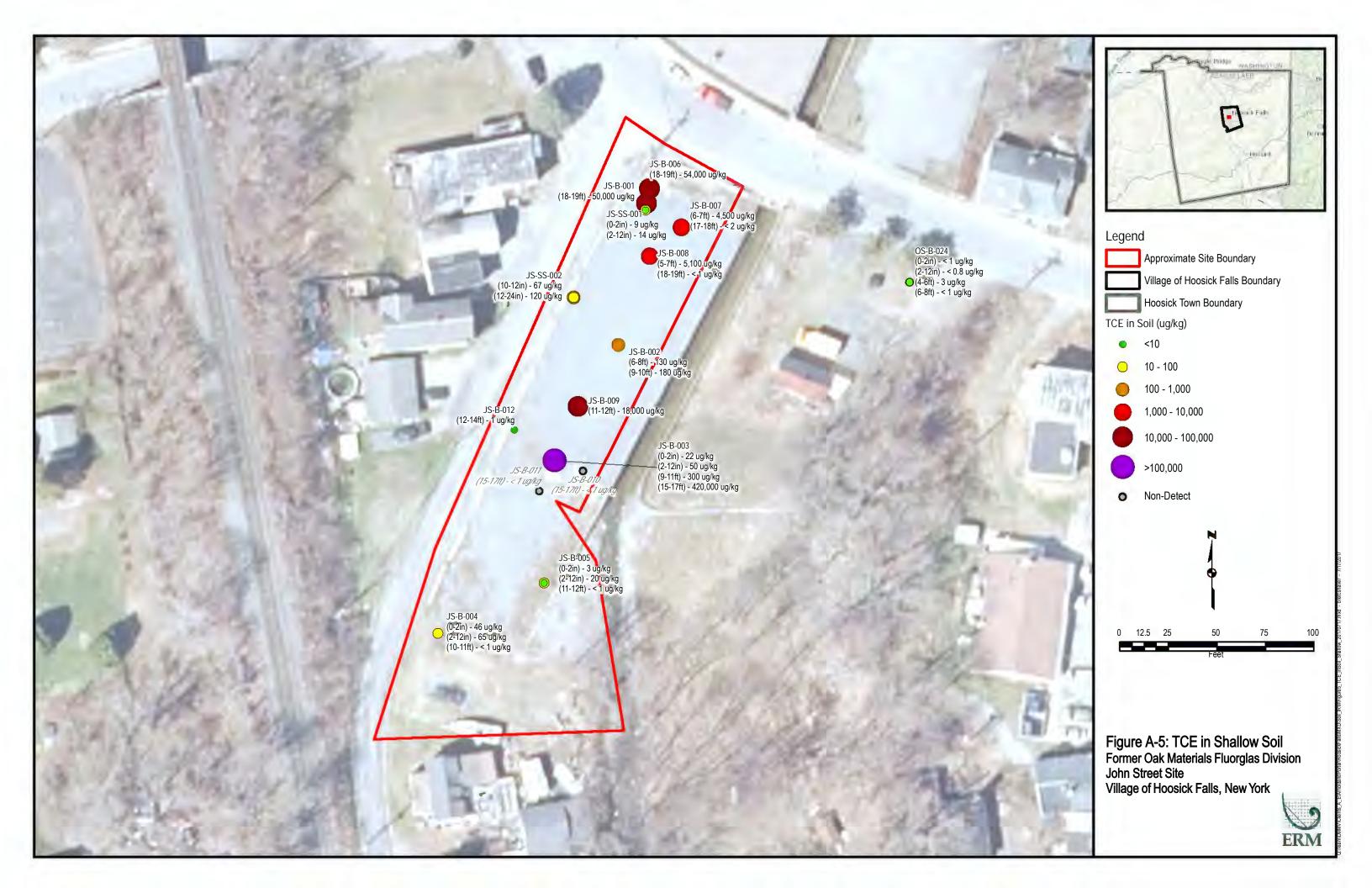
- A-1 2016 SC Sample Locations
- A-2 Typical Stratigraphic Section
- A-3 Geologic Cross-Section A-A'
- A-4 Shallow Overburden Water Table Contours July 2018 Gauging Event
- A-5 TCE in Shallow Soil: Plan View
- A-6 TCE in Shallow Soil: Cross-Section A-A'
- A-7 TCE in Shallow Groundwater: Plan View
- A-8 TCE in Shallow Groundwater: Cross-Section A-A'
- A-9 Soil Boring Locations Groundwater IRM PDI
- A-10 Shallow Sand/Gravel Thickness Depth to Silt-Clay
- A-11 Maximum PID Readings Groundwater IRM PDI
- A-12 Maximum Total VOCs Groundwater IRM PDI
- A-13 Cross-Section B-B': PID Readings/Total VOC Results Groundwater IRM PDI
- A-14 Maximum PFOA Groundwater IRM PDI

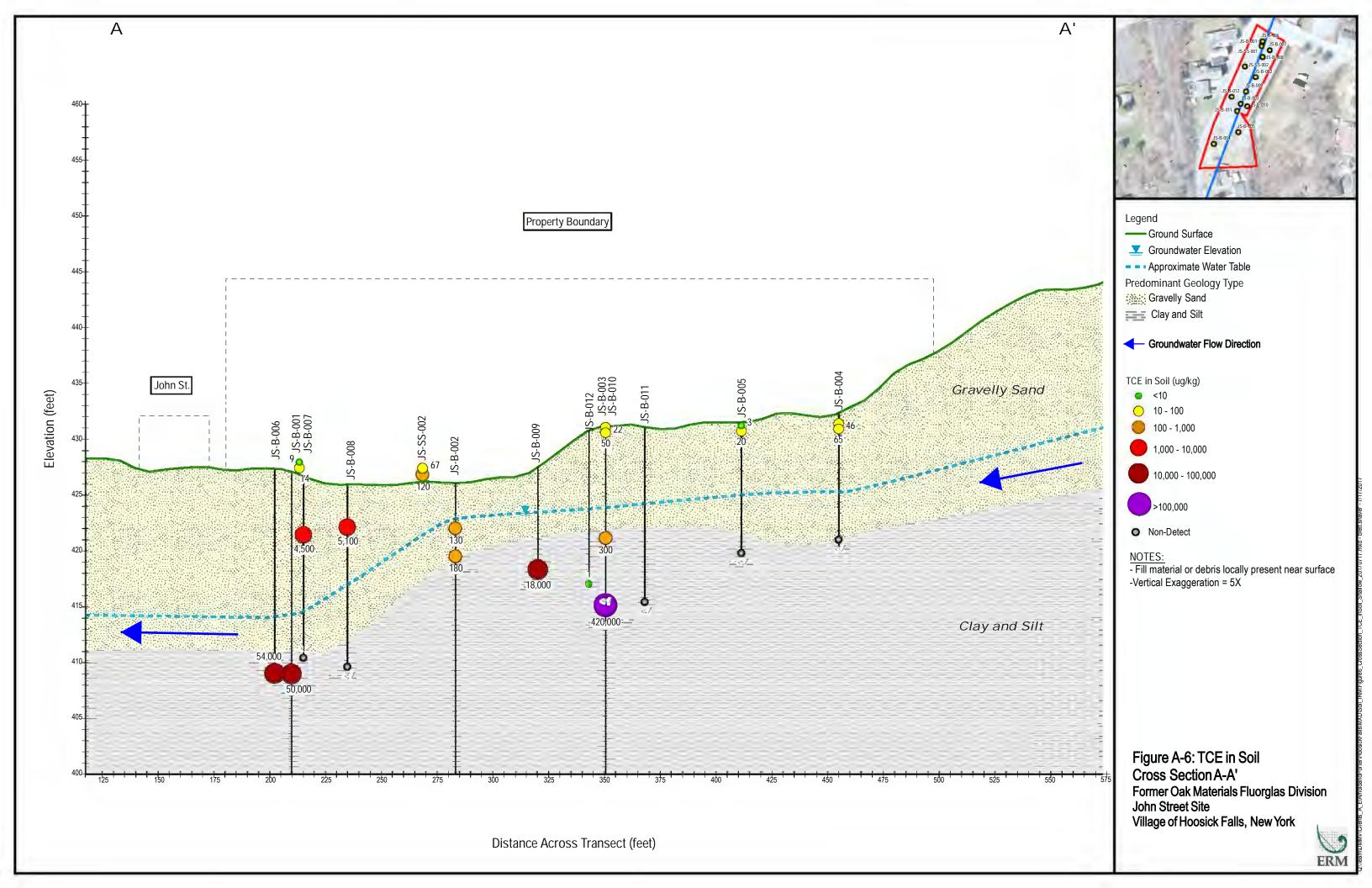
John Street Section

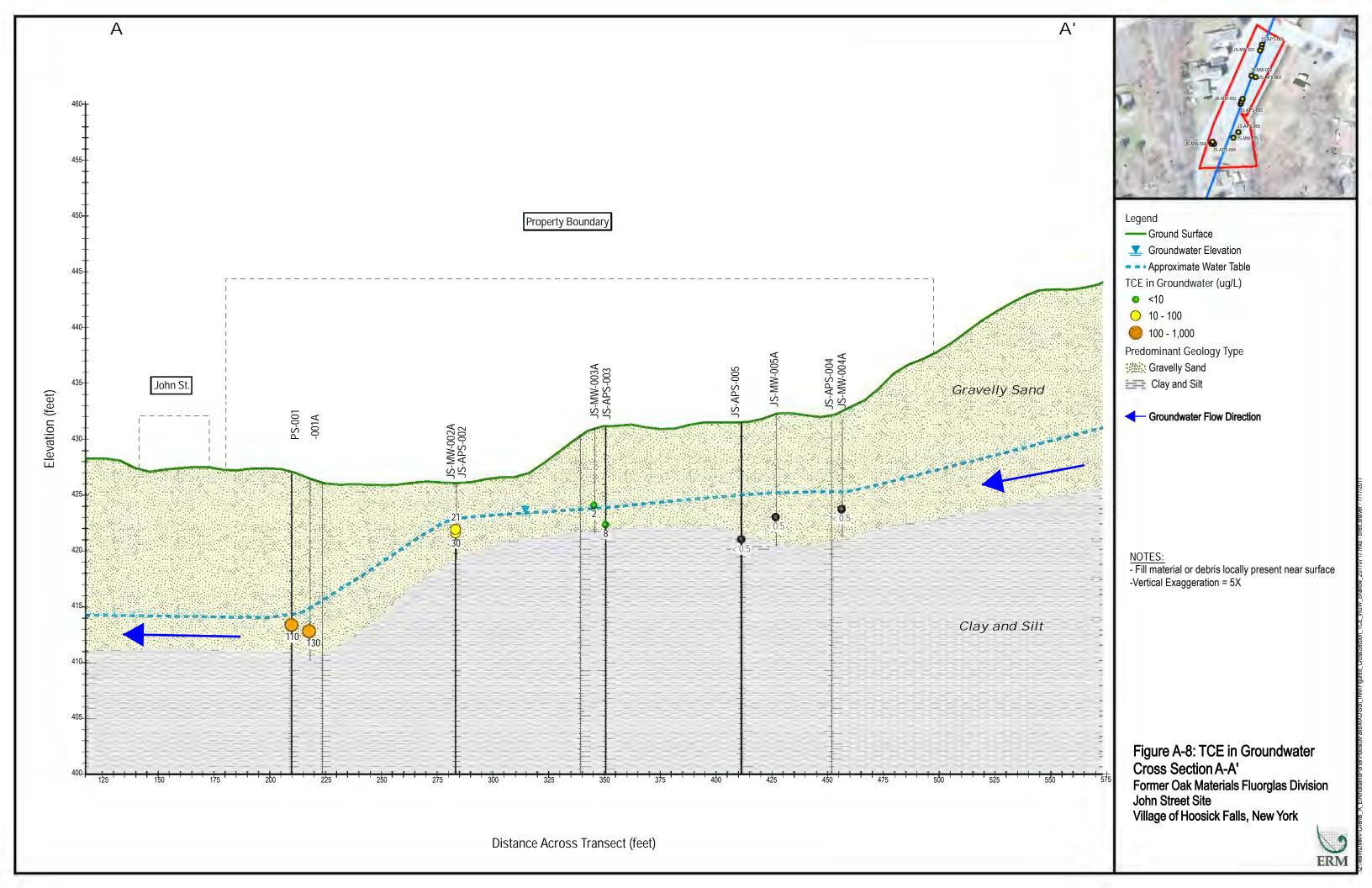
Depth (feet below ground surface)

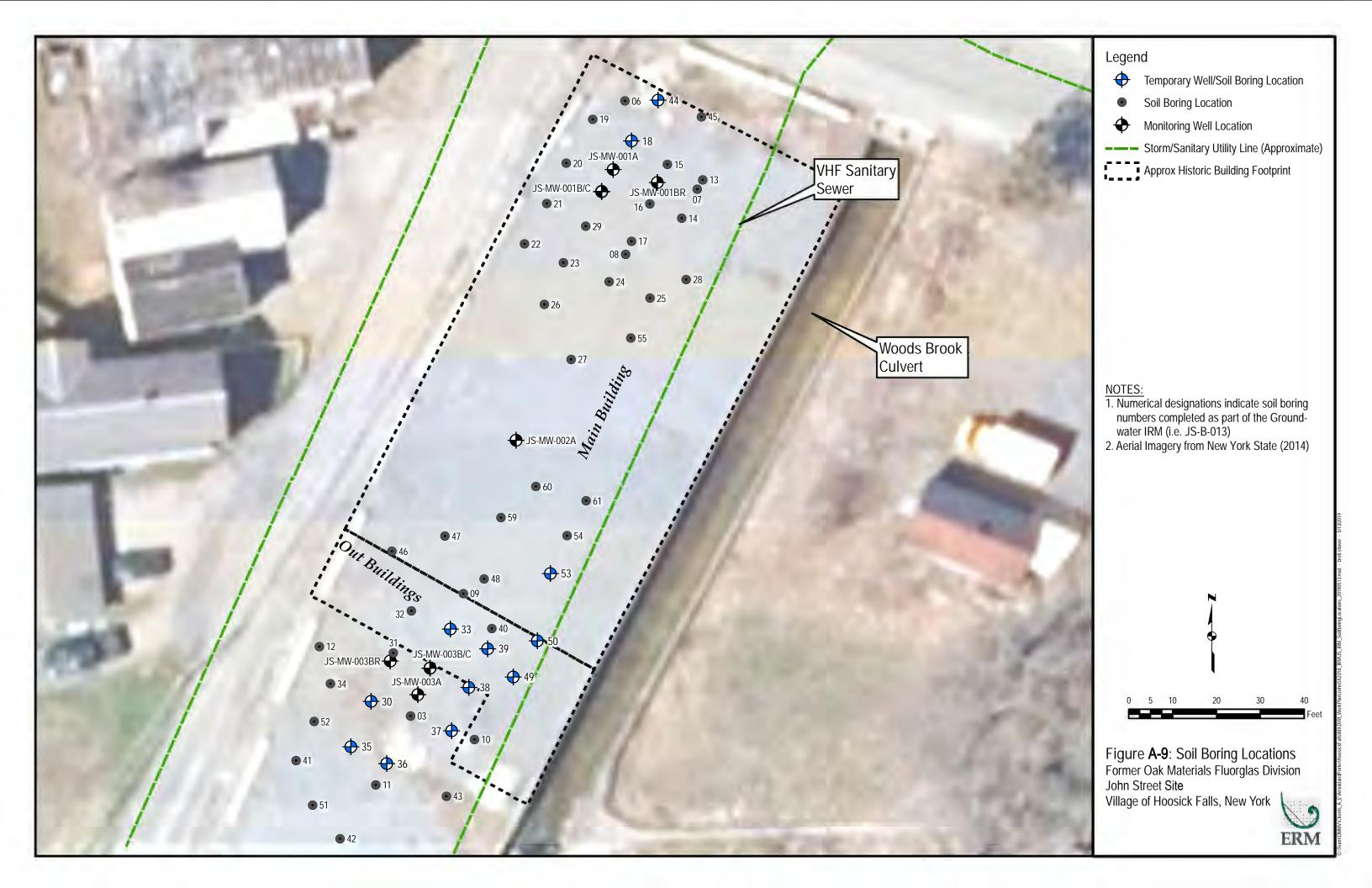
Notes:

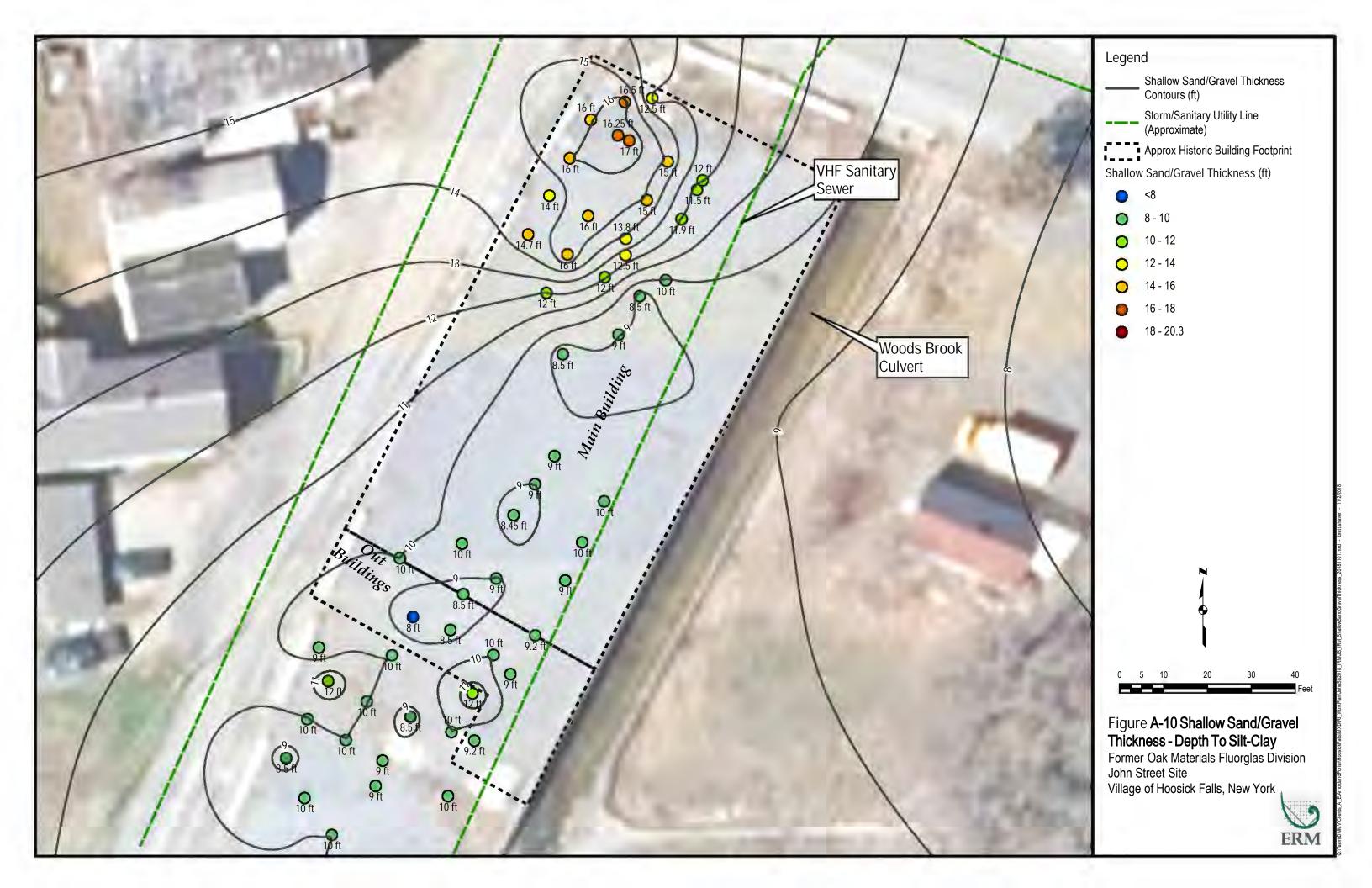
- 1 Except for fill, geological unit nomenclature is from the Surficial Geologic Map of New York, Hudson-Mohawk Sheet (Caldwell and Dineen, 1987).
- 2 Lithological descriptions, thickness ranges, and approximate water table elevations are from ERM's on-site boring logs.

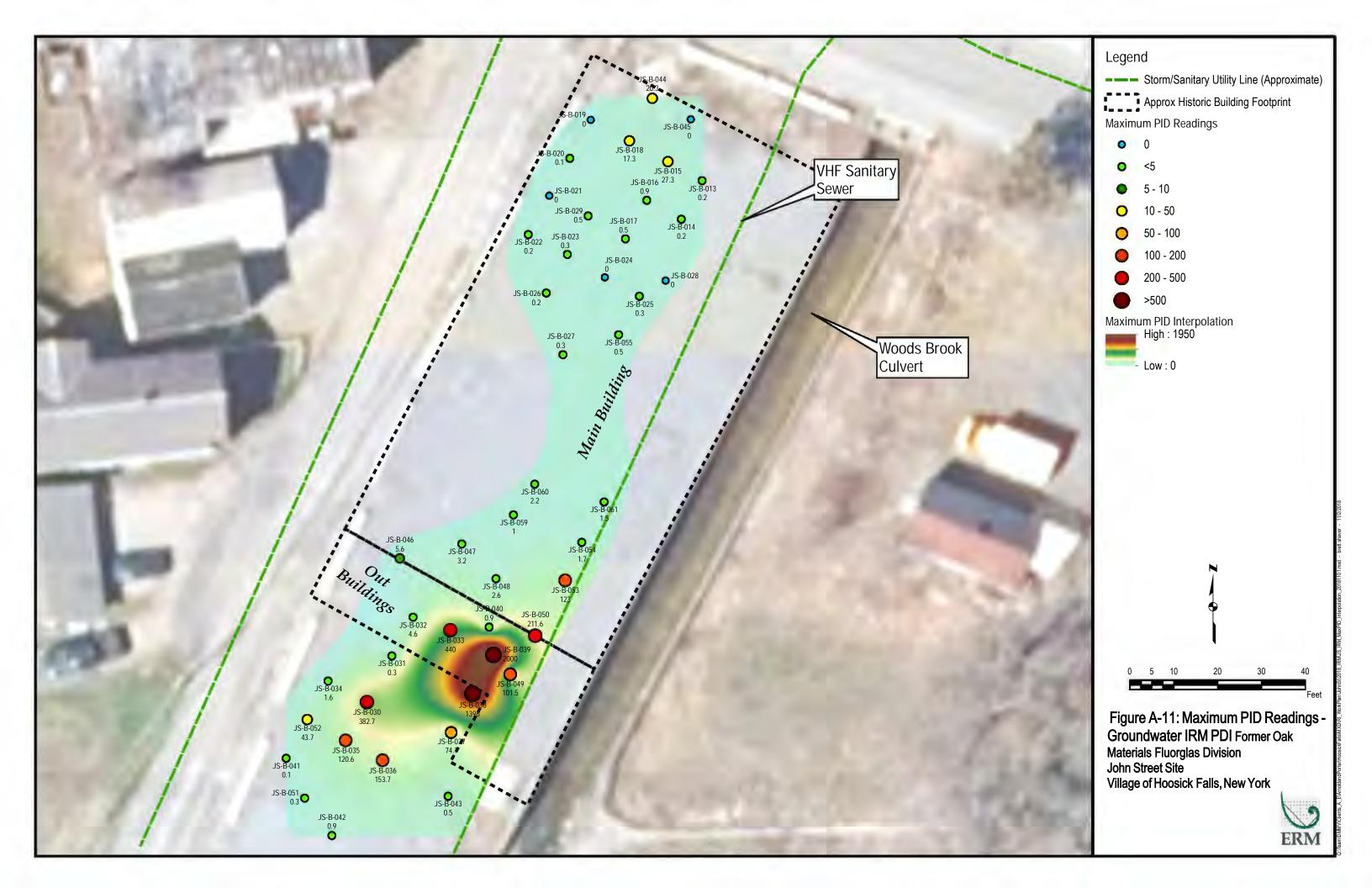





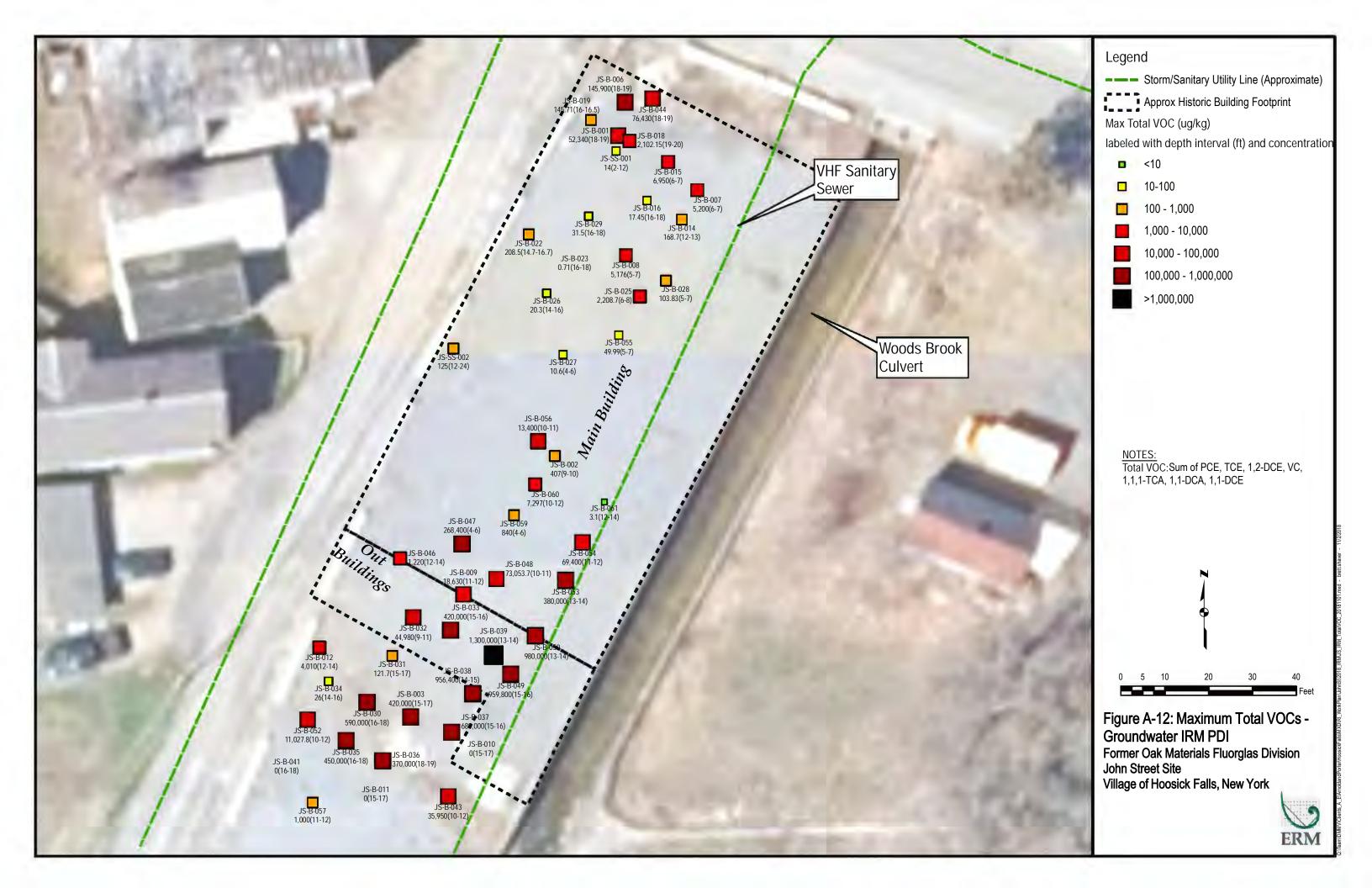

Figure A-2: Typical Stratigraphic Section John Street Site Village of Hoosick Falls, New York

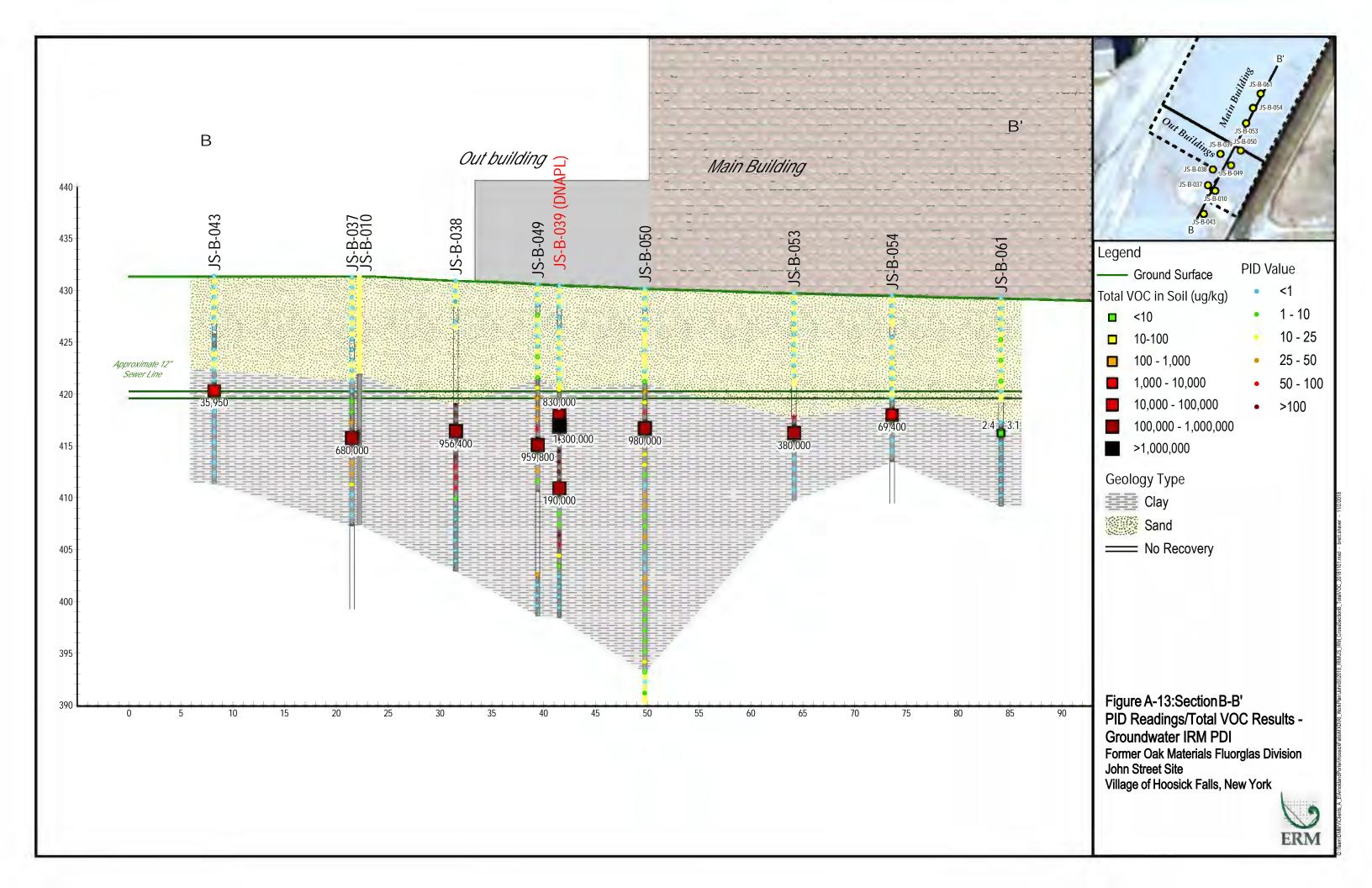


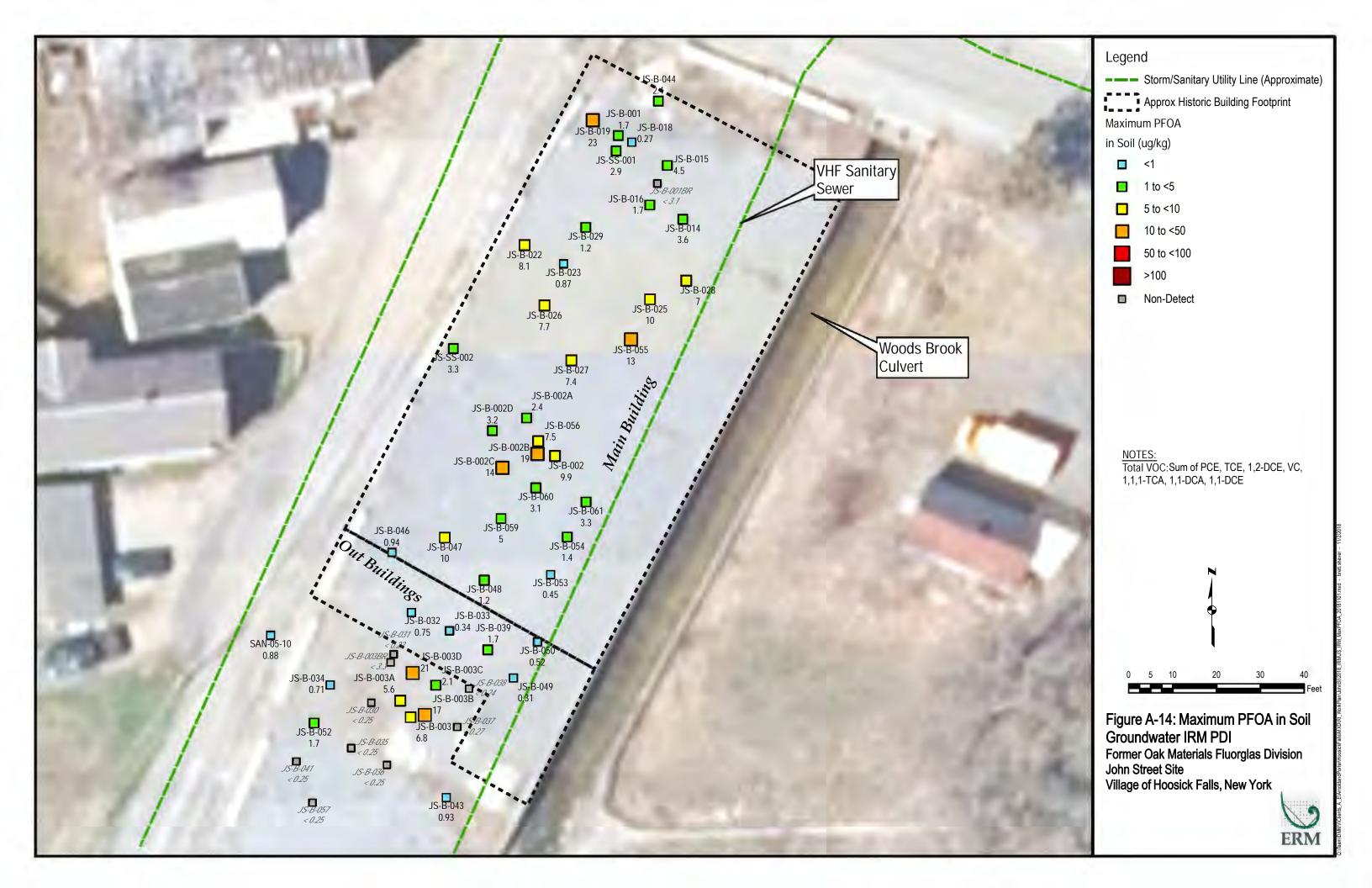












LIST OF TABLES

- A-1 Detected VOC Analytical Results from Shallow Soil Samples
- A-2 Detected VOC Analytical Results from Shallow Groundwater Samples by Waterloo APS
- A-3 Detected VOC Analytical Results for Groundwater Samples from Shallow Monitoring Wells
- A-4 Analytical Results in IRM PDI Soil Samples for PFAS, TOC, pH, and VOCs
- A-5 Comparative Analytical Results for PFAS and TOP Assay PFAS
- A-6 Analytical Results for Non-Aqueous Phase Liquid (DNAPL) in Temporary Monitoring Wells
- A-7 Analytical Results for PFAS, VOCs, pH and TOC from Groundwater Samples from Temporary Monitoring Wells
- A-8 Analytical Results in Groundwater Samples from Shallow Monitoring Wells

Table A-1
Detected VOC Analytical Results from Shallow Soil Samples
Former Oak Materials Fluorglas Division - John Street

								ation ID:	JS-B-001	JS-B-001	JS-B-002	JS-B-002	JS-B-003	JS-B-003	JS-B-003	JS-B-003	JS-B-004	JS-B-004
							Sam	ple Date:	08/16/2016	08/16/2016	08/11/2016	08/11/2016	07/21/2016	07/21/2016	08/08/2016	08/08/2016	07/21/2016	07/21/2016
							Samp	le Depth:	18 - 19 ft	18 - 20 ft	6 - 8 ft	9 - 10 ft	0 - 2 in	2 - 12 in	9 - 11 ft	15 - 17 ft	0 - 2 in	2 - 12 in
							Sam	ple Type:	N	N	N	N	N	N	N	N	N	N
		NY375	NY375	NY375	NY375	NY375	NY375	NY375										
Constituent	Units	1UNRES	2RPGW	3RRES	1	5RCOMM		7PER										
Volatile Organic Compounds (VOCs) by	USEPA N	1ethod 826	0														
1,1,1-Trichloroethane	μg/kg	680	680	100000	100000	500000	1000000	-	480	na	3 J	1 U	1 J	1 J	1 U	510 U	0.9 U	0.8 U
1,1,2-Trichloroethane	μg/kg	-	-	-	-	-	-	-	65 U	na	1 U	1 U	0.9 U	0.9 U	1 U	510 U	0.9 U	0.8 U
1,1-Dichloroethane	μg/kg	270	270	19000	26000	240000	480000	-	1400	na	1 U	5 J	0.9 U	0.9 U	27	510 U	0.9 U	0.8 U
1,1-Dichloroethene	μg/kg	330	330	100000	100000	500000	1000000	-	310 J	na	1 J	7	0.9 U	0.9 U	15	510 U	0.9 U	0.8 U
1,2,4-Trimethylbenzene	μg/kg	3600	3600	47000	52000	190000	380000	-	65 U	na	1 U	1 U	0.9 U	0.9 U	1 U	510 U	0.9 U	0.8 U
1,3,5-Trimethylbenzene	μg/kg	8400	8400	47000	52000	190000	380000	-	65 U	na	1 U	1 U	0.9 U	0.9 U	1 U	510 U	0.9 U	0.8 U
2-Butanone	μg/kg	120	120	100000	100000	500000	1000000	100000	260 U	na	4 U	5 U	4 U	4 U	4 U	2100 U	16	6 J
Acetone	μg/kg	50	50	100000	100000	500000	1000000	2200	780 J	na	24	9 J	27	19	8 U	3600 U	190	73
Benzene	μg/kg	60	60	2900	4800	44000	89000	70000	32 U	na	0.5 U	0.6 U	0.4 U	0.4 U	0.5 U	260 U	0.4 U	0.4 U
Carbon Disulfide	μg/kg	-	-	-	-	-	-	-	65 U	na	7	1 U	0.9 U	0.9 U	1 U	510 U	0.9 J	0.8 U
cis-1,2-Dichloroethene	μg/kg	250	250	59000	100000	500000	1000000	-	150 J	na	13	180	0.9 U	0.9 U	1 U	510 U	0.9 U	0.8 U
Ethylbenzene	μg/kg	1000	1000	30000	41000	390000	780000	-	65 U	na	1 U	1 U	0.9 U	0.9 U	1 U	510 U	0.9 U	0.8 U
Methyl Acetate	ug/kg	-	-	-	-	-	-	-	130 U	na	2 U	2 U	2 U	2 U	2 U	1000 U	2 U	2 U
n-Butylbenzene	μg/kg	12000	12000	100000	100000	500000	1000000	-	65 U	na	1 U	1 U	0.9 U	0.9 U	1 U	510 U	0.9 U	0.8 U
p-Isopropyltoluene	μg/kg	-	-	-	-	-	-	-	65 U	na	1 U	1 U	0.9 U	0.9 U	1 U	510 U	2 J	0.8 U
sec-Butylbenzene	μg/kg	11000	11000	100000	100000	500000	1000000	-	65 U	na	1 U	1 U	0.9 U	0.9 U	1 U	510 U	0.9 J	0.8 U
Tetrachloroethene	μg/kg	1300	1300	5500	19000	150000	300000	2000	65 U	na	2 J	2 J	2 J	3 J	1 U	510 U	0.9 U	0.8 U
Toluene	μg/kg	700	700	100000	100000	500000	1000000	36000	170 J	na	2 J	1 U	0.9 U	0.9 U	1 U	510 U	1 J	0.8 U
trans-1,2-Dichloroethene	μg/kg	190	190	100000	100000	500000	1000000	-	65 U	na	2 J	2 J	0.9 U	0.9 U	1 U	510 U	0.9 U	0.8 U
Trichloroethene	μg/kg	470	470	10000	21000	200000	400000	2000	50000	na	130	180 J	22	50 J	300	420000	46 J	65
Vinyl Chloride	μg/kg	20	20	210	900	13000	27000	-	65 U	na	1 U	33	0.9 U	0.9 U	1 U	510 U	0.9 U	0.8 U

 $\mu g/kg$ - microgram per kilogram

U - Compound not detected

J - Estimated value

N - Primary sample

FD - Field duplicate sample

na - Sample not analyzed for this parameter

Bold value indicates detected value

Shaded value indicates value equal to, or greater than, standard or guidance

NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Subpart 375-6.8(a).

NYS Unrestricted Use SCO

NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO

NYS Commercial Use SCO

NYS Industrial Use SCO

Table A-1 **Detected VOC Analytical Results from Shallow Soil Samples** Former Oak Materials Fluorglas Division - John Street

								ation ID:	JS-B-004	JS-B-004	JS-B-005	JS-B-005	JS-B-005	JS-B-006	JS-B-007	JS-B-007	JS-B-008	JS-B-008
								-										5 12/01/2016
								le Depth:	10 - 11 ft	10 - 12 ft	0 - 2 in	2 - 12 in	11 - 12 ft	18 - 19 ft	6 - 7 ft	17 - 18 ft	5 - 7 ft	5 - 7 ft
							Sam	ple Type:	N	N	N	N	N	N	N	N	FD	N
Constituent	Units	NY375 1UNRES	NY375 2RPGW	NY375 3RRES	NY375 4RRRES	NY375 5RCOMM	NY375 6RINDU	NY375 7PER										
Volatile Organic Compounds (VOCs) by	USEPA N	1ethod 826	0														
1,1,1-Trichloroethane	μg/kg	680	680	100000	100000	500000	1000000	-	1 U	na	1 U	1 U	1 U	88000	700	2 U	60	59
1,1,2-Trichloroethane	μg/kg	-	-	-	-	-	-	-	1 U	na	1 U	1 U	1 U	120 U	46 U	2 U	1 U	1 U
1,1-Dichloroethane	μg/kg	270	270	19000	26000	240000	480000	-	1 U	na	1 U	1 U	1 U	1400	46 U	2 J	4 J	3 J
1,1-Dichloroethene	μg/kg	330	330	100000	100000	500000	1000000	-	1 U	na	1 U	1 U	1 U	2500	46 U	2 U	1 J	1 J
1,2,4-Trimethylbenzene	μg/kg	3600	3600	47000	52000	190000	380000	-	1 U	na	1 U	1 U	1 U	2100	46 U	2 U	1 U	1 U
1,3,5-Trimethylbenzene	μg/kg	8400	8400	47000	52000	190000	380000	-	1 U	na	1 U	1 U	1 U	510 J	46 U	2 U	1 U	1 U
2-Butanone	μg/kg	120	120	100000	100000	500000	1000000	100000	5 U	na	34	14	4 U	500 U	180 U	7 U	4 U	4 U
Acetone	μg/kg	50	50	100000	100000	500000	1000000	2200	13 U	na	540	200	12 J	870 U	320 U	17 J	18 J	14 J
Benzene	μg/kg	60	60	2900	4800	44000	89000	70000	0.7 U	na	1 J	0.7 J	0.5 U	62 U	23 U	0.8 U	0.5 U	0.5 U
Carbon Disulfide	μg/kg	-	-	-	-	-	-		1 U	na	1 U	1 J	1 U	120 U	46 U	2 U	1 J	1 U
cis-1,2-Dichloroethene	μg/kg	250	250	59000	100000	500000	1000000	-	1 U	na	1 U	1 U	1 U	120 U	46 U	2 U	19	13
Ethylbenzene	μg/kg	1000	1000	30000	41000	390000	780000	-	1 U	na	7	4 J	1 U	120 U	46 U	2 U	1 U	1 U
Methyl Acetate	ug/kg	-	-	-	-	-	-	-	3 U	na	3 J	2 U	2 U	250 U	92 U	3 U	2 U	2 U
n-Butylbenzene	μg/kg	12000	12000	100000	100000	500000	1000000	-	1 U	na	1 U	1 U	1 U	960	46 U	2 U	1 U	1 U
p-Isopropyltoluene	μg/kg	-	-	-	-	-	-	-	1 U	na	11	5	1 U	160 J	46 U	2 U	1 U	1 U
sec-Butylbenzene	μg/kg	11000	11000	100000	100000	500000	1000000	-	1 U	na	1 U	1 U	1 U	150 J	46 U	2 U	1 U	1 U
Tetrachloroethene	μg/kg	1300	1300	5500	19000	150000	300000	2000	1 U	na	1 U	1 U	1 U	120 U	46 U	2 U	2 J	1 U
Toluene	μg/kg	700	700	100000	100000	500000	1000000	36000	1 U	na	2 J	1 J	1 U	740	46 U	2 U	1 U	1 U
trans-1,2-Dichloroethene	μg/kg	190	190	100000	100000	500000	1000000	-	1 U	na	1 U	1 U	1 U	120 U	- 46 U	2 U	2 J	1 J
Trichloroethene	μg/kg	470	470	10000	21000	200000	400000	2000	1 U	na	3 J	20 J	1 U	54000	4500	2 U	3400	5100
Vinyl Chloride	μg/kg	20	20	210	900	13000	27000	-	1 U	na	1 U	1 U	1 U	120 U	46 U	2 U	1 U	1 U

μg/kg - microgram per kilogram

U - Compound not detected

J - Estimated value

N - Primary sample

FD - Field duplicate sample na - Sample not analyzed for this parameter

Bold value indicates detected value

Shaded value indicates value equal to, or greater than, standard or guidance NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and 1

NYS Unrestricted Use SCO

NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO

NYS Commercial Use SCO

NYS Industrial Use SCO

Table A-1 **Detected VOC Analytical Results from Shallow Soil Samples** Former Oak Materials Fluorglas Division - John Street

							Loc	cation ID:	JS-B-008	JS-B-009	JS-B-010	JS-B-011	JS-B-012	JS-SS-001	JS-SS-001	JS-SS-002	JS-SS-002
							San	ıple Date:	12/01/2016	11/30/2016	11/29/2016	11/29/2016	11/30/2016	07/21/2016	07/21/2016	07/21/2016	07/21/2016
							Samp	le Depth:	18 - 19 ft	11 - 12 ft	15 - 17 ft	15 - 17 ft	12 - 14 ft	0 - 2 in	2 - 12 in	10 - 12 in	12 - 24 in
							Sam	ple Type:	N	N	N	N	N	N	N	N	N
		NY375	NY375	NY375	NY375	NY375	NY375	NY375									
Constituent	Units	1UNRES	2RPGW	3RRES	4RRRES	5RCOMM	6RINDU	7PER									
Volatile Organic Compounds (V	VOCs) by	USEPA N	lethod 826	0													
1,1,1-Trichloroethane	μg/kg	680	680	100000	100000	500000	1000000	-	1 U	61 U	1 U	1 U	1 U	0.9 U	0.9 U	2 J	4 J
1,1,2-Trichloroethane	μg/kg	-	-	-	-	-	-	-	1 U	61 U	1 U	1 U	5 J	0.9 U	0.9 U	0.8 U	0.8 U
1,1-Dichloroethane	μg/kg	270	270	19000	26000	240000	480000	-	1 U	61 U	1 U	1 U	4000	0.9 U	0.9 U	0.8 U	0.8 U
1,1-Dichloroethene	μg/kg	330	330	100000	100000	500000	1000000	-	1 U	61 U	1 U	1 U	2 J	0.9 U	0.9 U	0.8 U	0.8 U
1,2,4-Trimethylbenzene	μg/kg	3600	3600	47000	52000	190000	380000	-	1 U	61 U	1 U	1 U	1 U	0.9 U	0.9 U	0.8 U	0.8 U
1,3,5-Trimethylbenzene	μg/kg	8400	8400	47000	52000	190000	380000	-	1 U	61 U	1 U	1 U	1 U	0.9 U	0.9 U	0.8 U	0.8 U
2-Butanone	μg/kg	120	120	100000	100000	500000	1000000	100000	5 U	240 U	5 U	6 U	6 U	11	5 J	5 J	3 U
Acetone	μg/kg	50	50	100000	100000	500000	1000000	2200	9 U	430 U	20 J	13 J	14 J	170	47	39	33
Benzene	μg/kg	60	60	2900	4800	44000	89000	70000	0.7 U	30 U	0.7 U	0.7 U	0.7 U	0.5 U	0.4 U	0.4 U	0.4 U
Carbon Disulfide	μg/kg	-	-	-	-	-	-	_	1 U	61 U	1 U	1 U	1 U	6	1 J	0.8 U	2 J
cis-1,2-Dichloroethene	μg/kg	250	250	59000	100000	500000	1000000	-	1 U	630	1 U	1 U	1 U	0.9 U	0.9 U	0.8 U	0.8 U
Ethylbenzene	μg/kg	1000	1000	30000	41000	390000	780000	-	1 U	61 U	1 U	1 U	1 U	0.9 U	0.9 U	0.8 U	0.8 U
Methyl Acetate	ug/kg	-	-	-	-	-	-	-	3 U	120 U	3 U	3 U	3 U	2 U	2 U	2 U	2 U
n-Butylbenzene	μg/kg	12000	12000	100000	100000	500000	1000000	-	1 U	61 U	1 U	1 U	1 U	0.9 U	0.9 U	0.8 U	0.8 U
p-Isopropyltoluene	μg/kg	-	-	-	-	-	-	-	1 U	61 U	1 U	1 U	1 U	42	30	0.8 U	0.8 U
sec-Butylbenzene	μg/kg	11000	11000	100000	100000	500000	1000000	-	1 U	61 U	1 U	1 U	1 U	0.9 U	0.9 U	0.8 U	0.8 U
Tetrachloroethene	μg/kg	1300	1300	5500	19000	150000	300000	2000	1 U	61 U	1 U	1 U	1 U	0.9 U	0.9 U	0.8 U	1 J
Toluene	μg/kg	700	700	100000	100000	500000	1000000	36000	1 U	61 U	1 U	1 U	1 U	0.9 U	0.9 U	0.8 U	0.8 U
trans-1,2-Dichloroethene	μg/kg	190	190	100000	100000	500000	1000000	-	1 U	61 U	1 U	1 U	1 U	0.9 U	0.9 U	0.8 U	0.8 U
Trichloroethene	μg/kg	470	470	10000	21000	200000	400000	2000	1 U	18000	1 U	1 U	1 J	9	14	67	12 0
Vinyl Chloride	μg/kg	20	20	210	900	13000	27000	-	1 U	61 U	1 U	1 U	7 J	0.9 U	0.9 U	0.8 U	0.8 U

μg/kg - microgram per kilogram

U - Compound not detected

J - Estimated value

N - Primary sample

FD - Field duplicate sample na - Sample not analyzed for this parameter

Bold value indicates detected value

Shaded value indicates value equal to, or greater than, standard or guidance NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and 1

NYS Unrestricted Use SCO

NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO

NYS Commercial Use SCO

NYS Industrial Use SCO

Table A-2
Detected VOC Analytical Results from Shallow Groundwater Samples by Waterloo APS
Former Oak Materials Fluorglas Division - John Street

			Location ID:	JS-APS-001	JS-APS-002	JS-APS-003	JS-APS-005
			Sample Date:	08/09/2016	08/04/2016	08/03/2016	08/03/2016
		S	ample Depth:	14.1 ft	7.4 ft	8.8 ft	10.3 ft
		:	Sample Type:	N	N	N	N
		NYSDEC	NYSDEC				
		TOGS111 GA	TOGS111 GA				
Constituent	Units	GUIDANCE	STANDARD				
Volatile Organic Compounds (V	VOCs) by	USEPA Meth	od 8260				
1,1,1-Trichloroethane	μg/1	-	5	9	3	3	0.5 U
1,1-Dichloroethane	μg/1	-	5	0.8 J	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	μg/1	-	5	6	2	0.5 U	0.5 U
Tetrachloroethene	μg/1	-	5	0.6 J	0.5 U	1	0.5 U
Trichloroethene	μg/1	-	5	110	30	8	0.5 U

μg/L - micrograms per liter

U - Compound not detected

J - Estimated value

N - Primary sample

FD - Field duplicate sample

na - Sample not analyzed for this parameter

Bold value indicates detected value

Shaded value indicates value equal to, or greater than, standard or guidance

NYSDEC TOGS111 - Standards listed are from NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 val

Exceedance of NYS GA Guidance

Exceedance of NYS GA Standard

Table A-3
Detected VOC Analytical Results for Groundwater Samples from Shallow Monitoring Wells
Former Oak Materials Fluorglas Division - John Street

			Location ID:	JS-MW-001A	JS-MW-001A	JS-MW-002A	JS-MW-003A	JS-MW-004A	JS-MW-005A
			Sample Date:	01/09/2017	01/09/2017	01/04/2017	01/10/2017	01/10/2017	01/04/2017
			Sample Type:	FD	N	N	N	N	N
		NYSDEC	NYSDEC						
		TOGS111 GA	TOGS111 GA						
Constituent	Units	GUIDANCE	STANDARD						
Volatile Organic Compoun	ıds (VOCs)) by USEPA M	ethod 8260						
1,1,1-Trichloroethane	μg/1	-	5	19	19	1	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	μg/1	-	5	2	1	0.6 J	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	μg/l	-	5	0.6 J	0.6 J	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	μg/l	-	5	8	8	4	0.5 U	0.5 U	0.5 U
Tetrachloroethene	μg/1	-	5	0.6 J	0.6 J	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	μg/1	-	5	130	130	21	2	0.5 U	0.5 U
Vinyl Chloride	μg/1	-	2	0.5 U	0.5 U	0.9 J	0.5 U	0.5 U	0.5 U

μg/L - micrograms per liter

U - Compound not detected

J - Estimated value

N - Primary sample

FD - Field duplicate sample

na - Sample not analyzed for this parameter

Bold value indicates detected value

Shaded value indicates value equal to, or greater than, standard or guidance

NYSDEC TOGS111 - Standards listed are from NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 values for Class GA

Exceedance of NYS GA Guidance

Exceedance of NYS GA Standard

									Location ID:	JS-B-001BR	JS-B-001BR	JS-B-003	JS-B-003BR	JS-B-003BR	JS-B-003BR	JS-B-003BR
									Sample	5/15/2018	5/15/2018	5/16/2018	5/15/2018	5/15/2018	5/16/2018	5/16/2018
									Date:	141-147ft	14.7-16.8 ft	48.8-49.6 ft	8.2-8.5 ft	8.5-9.5 ft	48.8-49.6 ft	
							Sa	mple Dept San	h (ft bgs): ple Type:	N	N	10.0-19.0 It	0.2-0.5 R N	0.5-9.5 It N	10.0-19.0 It	N
		10/055) I) /OFF) I) /OFF) I) (2FF	11/055	10/075		USEPA	- 1						
Constituent	Units	NY375 1UNRES	NY375 2RPGW	NY375 3RRES	NY375 4RRRES	NY375 5RCOMM	NY375 6RINDU	NY375 7PER	Screen Value							
Perfluorinated Alkyl Compounds (PFAS) by USI	PA Metho	d 537-1.1 n	nodified					•								
Perfluorobutanesulfonic acid (PFBS)	ng/g	-	-	-	-	-	-	-	-	0.21 U	0.22 U	na	0.21 U	0.22 U	0.19 U	0.17 U
Perfluorobutanoic Acid	ng/g	-	-	-	-	-	-	-	-	0.22 U	0.23 U	na	0.23 U	0.23 U	0.21 U	0.18 U 0.17 U
Perfluorodecane Sulfonic Acid Perfluorodecanoic acid (PFDA)	ng/g ng/g	-	-	-	-	-	-	-	-	0.21 U 0.25 U	0.22 U 0.25 U	na na	0.21 U 0.25 U	0.22 U 0.26 U	0.19 U 0.23 U	0.17 U 0.2 U
Perfluorododecanoic acid (PFDoA)	ng/g	-	-	-	-	-	_	-	-	0.32 U	0.33 U	na	0.23 U	0.20 U	0.3 U	0.26 U
Perfluoroheptane Sulfonate (PFHPS)	ng/g	-	-	-	-	-	-	-	-	0.18 U	0.18 U	na	0.18 U	0.18 U	0.16 U	0.14 U
Perfluoroheptanoic acid (PFHpA)	ng/g	-	-	-	-	-	-	-	-	0.27 U	0.28 U	na	0.28 U	0.28 U	0.25 U	0.22 U
Perfluorohexanesulfonic acid (PFHxS)	ng/g	-	-	-	-	-	-	-	-	0.21 U	0.22 U	na	0.21 U	0.22 U	0.19 U	0.18 U
Perfluorohexanoic acid (PFHxA)	ng/g	-	-	-	-	-	-	-	-	0.26 U	0.27 U	na	0.26 U	0.27 U	0.24 U	0.21 U
Perfluorononanoic acid (PFNA) Perfluorooctane Sulfonamide (FOSA)	ng/g	-	-	-	-	-	-	-	-	0.3 J 0.16 U	0.43 J	na	0.31 J 0.17 U	0.24 J 0.17 U	0.21 U 0.15 U	0.18 U 0.13 U
Perfluorooctane suifonicacid (PFOS)	ng/g ng/g	-	-	-	-	-	-	-	6270	0.16 U 0.21 U	0.24 J 0.22 U	na na	0.17 U 0.21 U	0.17 U 0.22 U	0.15 U 0.19 U	0.13 U 0.17 U
Perfluorooctanoic acid (PFOA)	ng/g	_	_	_	_	_	_	_	15600	3.1 U	0.66 U	na	0.46 U	0.35 U	3.3 U	0.17 U
Perfluoropentanoic Acid (PFPeA)	ng/g	-	-	-	-	-	-	-	-	0.24 U	0.24 U	na	0.24 U	0.25 U	0.22 U	0.19 U
Perfluorotetradecanoic acid (PFTA)	ng/g	-	-	-	-	-	-	-	-	0.47 U	0.48 U	na	0.47 U	0.49 U	0.43 U	0.38 U
Perfluorotridecanoic Acid (PFTriA)	ng/g	-	-	-	-	-	-	-	-	0.19 U	0.21 J	na	0.19 J	0.23 J	0.17 U	0.2 J
Perfluoroundecanoic Acid (PFUnA)	ng/g	-	-	-	-	-	-	-	-	0.31 U	0.31 U	na	0.31 U	0.32 U	0.28 U	0.25 U
SODIUM 1H,1H,2H,2H-PERFLUORODECANE	ng/g	-	-	-	-	-	-	-	-	0.27 U	0.28 U	na	0.28 U	0.28 U	0.25 U	0.22 U
SULFONATE (8:2) SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE	ng/g	-	_	_	_	-	-	-	_	0.21 U	0.22 U	na	0.21 U	0.22 U	0.19 U	0.17 U
SULFONATE (6:2)	0, 0															
NEtFOSAA NMeFOSAA	ng/g ng/g	-	-	-	-	-	-	-	-	0.14 U 0.18 J	0.21 J 0.11 U	na na	0.15 J 0.11 U	0.14 U 0.11 U	0.13 U 0.095 U	0.11 U 0.13 J
Total Organic Carbon by Lloyd Kahn Method										,						,
Total Organic Carbon pH by Standard Method 9045D	mg/kg	-	-	-	-	-	-	-	-	4220	2100	1590	1870	3780	na	na
pH pH	pH units	_	_	_	_	-	-	_	-	7.6	8.1	7	7.9	8.1	na	na
	1															
Volatile Organic Compounds (VOCs) by USEPA																
1,1,1-Trichloroethane (TCA)	ug/kg	680	680	100000	100000	500000	1000000	-	-	68 U	6 UJ	72 UJ	41 J	250 U	na	na
1,1,2,2-Tetrachloroethane	ug/kg	-	-	-	-	-	-	-	-	68 UJ	6 UJ	72 UJ	88 UJ	250 UJ	na	na
1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane	ug/kg ug/kg	-	-	-	-	-	-	-	-	68 U 68 U	6 UJ 6 UJ	72 UJ 72 UJ	88 U 88 U	250 U 250 U	na na	na na
1,1-Dichloroethane	ug/kg ug/kg	270	270	19000	26000	240000	480000	-	-	37 I	4.1 J	2500 J	59 J	410	na	na
1,1-Dichloroethene	ug/kg ug/kg	330	330	100000	100000	500000	1000000	-	-	30 J	4.1 J	290 J	68 J	490	na	na
1,2,4-Trichlorobenzene	ug/kg	-	-	-	-	-	-	_	_	68 U	6 UJ	72 UJ	88 U	250 U	na	na
1,2-Dibromo-3-Chloropropane	ug/kg	-	-	-	-	-	-	-	-	68 UJ	6 UJ	72 UJ	88 UJ	250 UJ	na	na
1,2-Dibromoethane (Ethylene Dibromide)	ug/kg	-	-	-	-	-	-	-	-	68 U	6 UJ	72 UJ	88 U	250 U	na	na
1,2-Dichlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	-	-	68 U	6 UJ	72 UJ	88 U	250 U	na	na
1,2-Dichloroethane	ug/kg	20	20	2300	3100	30000	60000	10000	-	68 U	6 UJ	72 UJ	88 U	250 U	na	na
1,2-Dichloropropane	ug/kg	-	-	-	-	-	-	-	-	68 U	6 U	72 UJ	88 U	250 U	na	na
1,3-Dichlorobenzene	ug/kg	2400	2400	17000	49000	280000	560000	-	-	68 U	6 UJ	72 UJ	88 U	250 U	na	na
1,4-Dichlorobenzene	ug/kg	1800	1800	9800	13000	130000	250000	20000	-	68 U	6 UJ	72 UJ	88 U	250 U	na	na
2-Hexanone Acetone	ug/kg ug/kg	50	- 50	100000	100000	500000	1000000	2200	-	340 U 340 U	30 UJ 30 U	360 UJ 360 UJ	440 U 440 U	1200 U 1200 U	na	na
Benzene	ug/kg ug/kg	60	60	2900	4800	44000	89000	70000	-	68 U	6 UJ	72 UJ	88 U	250 U	na na	na na
Bromodichloromethane	ug/kg ug/kg	-	-	-	-	-	-	-	-	68 U	6 UJ	72 UJ	88 U	250 U	na	na
Bromoform	ug/kg	-	-	-	_	-	-	-	-	68 U	6 UJ	72 UJ	88 U	250 U	na	na
Bromomethane	ug/kg	-	-	-	-	-	-	-	-	68 U	6 U	72 UJ	88 U	250 U	na	na
Carbon Disulfide	ug/kg	-	-	-	-	-	-	-	-	68 U	6 UJ	72 UJ	88 U	250 U	na	na
Carbon Tetrachloride	ug/kg	760	760	1400	2400	22000	44000	-	-	68 U	6 U	72 UJ	88 U	250 U	na	na
Chlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	40000	-	68 U	6 UJ	72 UJ	88 U	250 U	na	na
Chloroethane	ug/kg	-	-	-	-	-	-	-	-	68 U	6 U	72 UJ	88 U	250 U	na	na
Chlorographers	ug/kg	370	370	10000	49000	350000	700000	12000	-	68 U	6 UJ	72 UJ	88 U	250 U	na	na
Chloromethane	ug/kg	250	250	-	100000	-	1000000	-	-	68 U	6 U	72 UJ	88 U	250 U	na	na
Cis-1,2-Dichloroethylene	ug/kg	250	250	59000	100000	500000	1000000	-	-	54 J 68 U	6 UJ 6 UJ	72 UJ 72 UJ	27 J 88 U	100 J 250 U	na	na
Cis-1,3-Dichloropropene Cyclohexane	ug/kg ug/kg	-	-	-	-	-	-	-	-	68 U 68 U	6 UJ 6 U	72 UJ 72 UJ	88 U 88 U	250 U 250 U	na na	na na
Dibromochloromethane	ug/kg ug/kg	-	-	-	-	-	-	-	_ [68 U	6 UJ	72 UJ	88 U	250 U	na na	na na
Dichlorodifluoromethane	ug/kg ug/kg	-	-	-	-	_	-	-	_	68 U	6 U	72 UJ	88 U	250 U	na	na
Ethylbenzene	ug/kg	1000	1000	30000	41000	390000	780000	-	-	68 U	6 UJ	72 UJ	88 U	250 U	na	na
Isopropylbenzene (Cumene)	ug/kg	-	-	-	-	-	-	-	-	68 U	6 U	72 UJ	88 U	250 U	na	na
Methyl Acetate	ug/kg	-	-	-	-	-	-	-	-	340 U	30 U	360 UJ	440 U	1200 U	na	na
Methyl Ethyl Ketone (2-Butanone)	ug/kg	120	120	100000	100000	500000	1000000	100000	-	340 U	30 UJ	360 UJ	440 U	1200 U	na	na
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ug/kg	-	-	-	-	-	-	-	-	340 U	30 UJ	360 UJ	440 U	1200 U	na	na
Methylcyclohexane	ug/kg	-	-	-	-	_	_	-	-	68 U	6 U	72 UJ	88 U	250 U	na	na
Methylene Chloride	ug/kg	50	50	51000	100000	500000	1000000	12000	-	68 U	6 U	72 UJ	88 U	250 U	na	na
Styrene	ug/kg	-	-	-	-	-	-	-	-	68 U	6 UJ	72 UJ	88 U	250 U	na	na
Tert-Butyl Methyl Ether Tetrachleroethylono (PCE)	ug/kg	930	930	62000	100000	500000	1000000	2000	-	68 U	6 U	72 UJ	88 U 170	250 U	na	na
Tetrachloroethylene (PCE) Toluene	ug/kg	1300	1300	5500 100000	19000	150000	300000	2000 36000	-	40 J 68 U	6 UJ	72 UJ 72 UJ	170 88 U	170 J 250 U	na	na
Trans-1,2-Dichloroethene	ug/kg ug/kg	700 190	700 190	100000 100000	100000 100000	500000 500000	1000000 1000000	36000	-	68 U 68 U	6 UJ 6 UJ	72 UJ 72 UJ	88 U 88 U	250 U 250 U	na na	na na
Trans-1,3-Dichloropropene	ug/kg ug/kg	190 -	-	-	-	-	-	-		68 U	6 UJ	72 UJ	88 U	250 U	na na	na na
Trichloroethylene (TCE)	ug/kg	470	470	10000	21000	200000	400000	2000		1400	6 UJ	440 J	5500	15000	na	na
Trichlorofluoromethane	ug/kg	-	-	-	-	-	-	-	-	68 U	6 U	72 UJ	88 U	250 U	na	na
Vinyl Chloride	ug/kg	20	20	210	900	13000	27000	-	-	68 U	6 U	72 UJ	88 U	250 U	na	na
	ug/kg	260	1600	100000	100000	500000	1000000	260	_	140 U	12 UJ	140 UJ	180 U	500 U	na	na

 $\mu g/kg$ - microgram per kilogram

mg/kg - milligrams per kilogram

U - Compound not detected J - Estimated value

UJ - Estimated Non-Detect

N - Primary sample

FD - Field duplicate sample

ft bgs - Feet below ground surface

na - Sample not analyzed for this parameter

IRM PDI - Interim Remedial Measure Pre-Design Investigation

Shaded value indicates value equal to, or greater than, standard or guidance.

NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Subpart 375-

USEPA Screening Values for PFOA and PFOS developed by USEPA based on the Health Advisory for PFOA and PFOS of 70 nanograms per liter. NYS Unrestricted Use SCO

NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO

NYS Commercial Use SCO NYS Industrial Use SCO

									Location ID:	JS-B-014	JS-B-015	JS-B-015	JS-B-015	JS-B-015	JS-B-016	JS-B-018
									Sample Date:	4/5/2018	4/10/2018	4/10/2018	4/10/2018	4/10/2018	4/5/2018	4/4/2018
							Sa	mple Dept		12-13 ft	5.5-7.5 ft	6-7 ft	15-17 ft	15-17 ft	16-18 ft	19-20 ft
									ple Type:	N	N	N	N	FD	N	N
		NY375	NY375	NY375	NY375	NY375	NY375	NY375	USEPA Screen							
Constituent Perfluorinated Alkyl Compounds (PFAS) by USE	Units PA Metho	1UNRES		3RRES	4RRRES	5RCOMM	6RINDU	7PER	Value							
Perfluorobutanesulfonic acid (PFBS)	ng/g	u 557-1.1 II		_	_	_	_	_	_	0.22 U	0.17 U	na	0.22 U	0.22 U	0.2 U	0.18 U
Perfluorobutanoic Acid	ng/g	-	-	-	-	-	-	-	-	0.22 U	0.17 U	na	0.22 U	0.22 U	0.21 U	0.19 U
Perfluorodecane Sulfonic Acid	ng/g	-	-	-	-	-	-	-	-	0.22 U	0.17 U	na	0.22 U	0.22 U	0.2 U	0.18 U
Perfluorodecanoic acid (PFDA)	ng/g	-	-	-	-	-	-	-	-	0.26 U	0.29 J	na	0.25 U	0.26 U	0.23 U	0.21 U
Perfluorododecanoic acid (PFDoA)	ng/g	-	-	-	-	-	-	-	-	0.33 U	0.26 U	na	0.33 U	0.34 U	0.3 U	0.28 U
Perfluoroheptane Sulfonate (PFHPS)	ng/g	-	-	-	-	-	-	-	-	0.18 U	0.14 U	na	0.18 U	0.18 U	0.16 U	0.15 U
Perfluoroheptanoic acid (PFHpA)	ng/g	-	-	-	-	-	-	-	-	0.28 U	0.22 U	na	0.28 U	0.28 U	0.25 U	0.24 U
Perfluorohexanesulfonic acid (PFHxS)	ng/g	-	-	-	-	-	-	-	-	0.22 U	0.17 J	na	0.22 U	0.22 U	0.29 J	0.18 U
Perfluorohexanoic acid (PFHxA)	ng/g	-	-	-	-	-	-	-	-	0.27 U	0.21 U	na	0.26 U	0.27 U	0.24 U	0.22 U
Perfluorononanoic acid (PFNA) Perfluorooctane Sulfonamide (FOSA)	ng/g	-	-	-	-	-	-	-		0.25 J 0.17 U	0.3 U 0.13 U	na	0.3 U 0.17 U	0.29 U 0.17 U	0.23 J 0.15 U	0.19 U 0.14 U
Perfluorooctane Sulfoniamide (FOSA)	ng/g ng/g	_	_	-	_	_	_	_	6270	0.17 U 0.22 U	0.13 U 0.17 U	na na	0.17 U 0.22 U	0.17 U 0.22 U	0.15 U 0.2 U	0.14 U 0.18 U
Perfluorooctanoic acid (PFOA)	ng/g	_	-	-	-	-	-	-	15600	3.6	4.5	na	1.3	1.5	1.7	0.18 U
Perfluoropentanoic Acid (PFPeA)	ng/g	_	_	_	_	_	_	_	-	0.24 U	0.19 U	na	0.24 U	0.25 U	0.22 U	0.2 U
Perfluorotetradecanoic acid (PFTA)	ng/g	_	_	-	_	-	_	_	-	0.48 U	0.38 U	na	0.48 U	0.49 U	0.43 U	0.4 U
Perfluorotridecanoic Acid (PFTriA)	ng/g	-	-	-	-	-	-	-	-	0.19 U	0.15 J	na	0.19 U	0.22 J	0.18 J	0.16 U
Perfluoroundecanoic Acid (PFUnA)	ng/g	-	-	-	-	-	-	-	-	0.34 J	0.31 U	na	0.39 U	0.32 U	0.29 U	0.27 U
SODIUM 1H,1H,2H,2H-PERFLUORODECANE	ng/g	-	-	-	-	-	-	-	-	0.28 U	0.22 U	na	0.28 U	0.28 U	0.25 U	0.24 U
SULFONATE (8:2) SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE	ng/g	-	-	-	-	-	-	-	-	0.22 U	0.17 U	na	0.22 U	0.22 U	0.2 U	0.18 U
SULFONATE (6:2) NEŧFOSAA	ng/g	_	_	_	_	_	_	_	_ ا	0.14 U	0.11 U	na	0.14 U	0.14 U	0.13 U	0.12 U
NMeFOSAA	ng/g	-	-	-	-	-	-	-	-	0.14 U	0.085 U	na	0.14 U	0.14 J	0.13 U 0.096 U	0.12 U 0.09 U
Total Organic Carbon by Lloyd Kahn Method Total Organic Carbon	mg/kg	-	-	-	-	-	-	-	-	2040	20000	na	2070	2380	2190	2270
pH by Standard Method 9045D pH	pH units	_	_	_	_	_	_	_	_	8.4	7.8	na	8.5	8.5	8.3	9.6
P	pri unus									0.1	7.0	110	0.5	0.0	0.5	5.0
Volatile Organic Compounds (VOCs) by USEPA	Method 82	260														
1,1,1-Trichloroethane (TCA)	ug/kg	680	680	100000	100000	500000	1000000	-	-	3.9 J	na	550	13	5.3 J	5.6 U	0.75 J
1,1,2,2-Tetrachloroethane	ug/kg	-	-	-	-	-	-	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	-	-	-	-	-	-	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
1,1,2-Trichloroethane	ug/kg	-	-	-	-	-	-	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	0.82 J
1,1-Dichloroethane	ug/kg	270	270	19000	26000	240000	480000	-	-	11	na	430 U	38	14	13	110
1,1-Dichloroethene	ug/kg	330	330	100000	100000	500000	1000000	-	-	12	na	430 U	53	12	1.5 J	63
1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane	ug/kg	-	-	-	-	-	-	-	-	5.1 U 5.1 U	na	430 U 430 U	6 U 6 U	6.2 U 6.2 U	5.6 U 5.6 U	4.5 U 4.5 U
1,2-Dibromoethane (Ethylene Dibromide)	ug/kg ug/kg	-	-	-	-	-	-	-		5.1 U	na na	430 U	6 U	6.2 U	5.6 U	4.5 U
1,2-Dichlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	_	_	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
1,2-Dichloroethane	ug/kg	20	20	2300	3100	30000	60000	10000	_	5.1 U	na	430 U	6 U	6.2 U	5.6 U	1.8 J
1,2-Dichloropropane	ug/kg	_	-	-	-	-	-	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
1,3-Dichlorobenzene	ug/kg	2400	2400	17000	49000	280000	560000	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
1,4-Dichlorobenzene	ug/kg	1800	1800	9800	13000	130000	250000	20000	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
2-Hexanone	ug/kg	-	-	-	-	-	-	-	-	25 U	na	2200 U	30 U	31 U	28 U	23 U
Acetone	ug/kg	50	50	100000	100000	500000	1000000	2200	-	22 J	na	2200 U	8.9 J	13 J	12 J	26
Benzene	ug/kg	60	60	2900	4800	44000	89000	70000	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Bromodichloromethane	ug/kg	-	-	-	-	-	-	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Bromoform	ug/kg	-	-	-	-	-	-	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Bromomethane	ug/kg	-	-	-	-	-	-	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Carbon Disulfide	ug/kg	760	760	1400	2400	22000	44000	-	-	5.1 U	na	430 UJ	6 U	6.2 U	5.6 U	4.5 U
Carbon Tetrachloride Chlorobenzene	ug/kg	760 1100	760 1100	1400 100000	2400 100000	22000 500000	44000 1000000	40000	-	5.1 U 5.1 U	na na	430 U 430 U	6 U 6 U	6.2 U 6.2 U	5.6 U 5.6 U	4.5 U 4.5 U
Chloroethane	ug/kg ug/kg	-	1100	-	-	500000	-	40000	[]	5.1 U 5.1 U	na na	430 U 430 U	6 U	6.2 U 6.2 U	5.6 U	4.5 U
Chloroform	ug/kg ug/kg	370	370	10000	49000	350000	700000	12000	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Chloromethane	ug/kg ug/kg	-	-	-	-	-	-	-	_	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Cis-1,2-Dichloroethylene	ug/kg	250	250	59000	100000	500000	1000000	-	-	5.8	na	430 U	17	3.7 J	0.75 J	26
Cis-1,3-Dichloropropene	ug/kg	-	-	-	-	-	-	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Cyclohexane	ug/kg	-	-	-	-	-	-	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Dibromochloromethane	ug/kg	-	-	-	-	-	-	-	-	5.1 U	na	430 UJ	6 U	6.2 U	5.6 U	4.5 U
Dichlorodifluoromethane	ug/kg	-	-	-	-	-	-	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Ethylbenzene	ug/kg	1000	1000	30000	41000	390000	780000	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Isopropylbenzene (Cumene)	ug/kg	-	-	-	-	-	-	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Methyl Acetate	ug/kg	-	-	-	-	_	-	-	-	25 U	na	2200 U	30 U	31 U	28 U	23 U
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ug/kg ug/kg	120	120	100000	100000	500000	1000000	100000		25 U 25 U	na na	2200 U 2200 U	30 U 30 U	31 U 31 U	28 U 28 U	23 U 23 U
,																
Methylcyclohexane	ug/kg	-	-	- E4.000	100000	-	1000000	10000	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Methylene Chloride	ug/kg	50	50	51000	100000	500000	1000000	12000	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Styrene	ug/kg	- 020	- 020	-	100000	-	1000000	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Tert-Butyl Methyl Ether	ug/kg	930 1300	930 1300	62000 5500	100000	500000 150000	1000000	2000	-	5.1 U	na	430 U 430 U	6 U	6.2 U	5.6 U	4.5 U
Tetrachloroethylene (PCE) Toluene	ug/kg	1300 700	1300 700	5500 100000	19000 100000	500000	300000 1000000	2000 36000	-	6 5.1 U	na na	430 U 430 U	13 6 U	1.3 J 6.2 U	5.6 U 5.6 U	4.5 U 5.3
Toluene Trans-1,2-Dichloroethene	ug/kg ug/kg	190	190	100000	100000	500000	1000000	36000		5.1 U 5.1 U	na na	430 U 430 U	1.2 J	6.2 U	5.6 U	0.62 J
Trans-1,3-Dichloropropene	ug/kg ug/kg	-	-	-	-	-	-	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Trichloroethylene (TCE)	ug/kg ug/kg	470	470	10000	21000	200000	400000	2000	-	130	na	6400	1700 J	80 J	2.2 J	82000
Trichlorofluoromethane	ug/kg	-	-	-	-	-	-	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	4.5 U
Vinyl Chloride	ug/kg	20	20	210	900	13000	27000	-	-	5.1 U	na	430 U	6 U	6.2 U	5.6 U	2.4 J
· myr emeride																

 $\mu g/kg$ - microgram per kilogram

mg/kg - milligrams per kilogram

U - Compound not detected J - Estimated value

UJ - Estimated Value
UJ - Estimated Non-Detect

N - Primary sample

FD - Field duplicate sample ft bgs - Feet below ground su

ft bgs - Feet below ground surface

na - Sample not analyzed for this parameter

IRM PDI - Interim Remedial Measure Pre-Design Investigation

Shaded value indicates value equal to, or greater than, standard or guidance.

NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and Regulations (6 NYC).

USEPA Screening Values for PFOA and PFOS developed by USEPA based on the Health Advisory for PFOA and PFOS of 70 nanogra

NYS Unrestricted Use SCO

NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO

NYS Commercial Use SCO NYS Industrial Use SCO

									Location ID:	JS-B-019	JS-B-019	JS-B-022	JS-B-023	JS-B-025	JS-B-026	JS-B-027
									Sample Date:	4/4/2018	4/4/2018	4/9/2018	4/6/2018	4/9/2018	4/6/2018	4/6/2018
							Sa	mple Dept	h (ft bgs):	16-16.5 ft	16-17 ft	14.7-16.7 ft	16-18 ft	6-8 ft	14-16 ft	4-6 ft
					1				ple Type:	N	N	N	N	N	N	N
		NY375	NY375	NY375	NY375	NY375	NY375	NY375	USEPA Screen							
Constituent Perfluorinated Alkyl Compounds (PFAS) by USE	Units	1UNRES		3RRES	4RRRES	5RCOMM	6RINDU	7PER	Value							
Perfluorobutanesulfonic acid (PFBS)	ng/g	u 557-1.1 n		_	_	_	_	_	_	na	0.2 U	0.22 UJ	0.24 U	0.2 U	0.21 U	0.18 U
Perfluorobutanoic Acid	ng/g	-	-	-	-	-	-	-	-	na	0.22 U	0.24 UJ	0.25 U	0.21 U	0.22 U	0.19 U
Perfluorodecane Sulfonic Acid	ng/g	-	-	-	-	-	-	-	-	na	0.2 U	0.22 UJ	0.24 U	0.2 U	0.21 U	0.18 U
Perfluorodecanoic acid (PFDA)	ng/g	-	-	-	-	-	-	-	-	na	0.24 U	0.26 UJ	0.28 U	0.38 J	0.25 U	0.46 J
Perfluorododecanoic acid (PFDoA)	ng/g	-	-	-	-	-	-	-	-	na	0.31 U	0.34 UJ	0.36 U	0.3 U	0.32 U	0.27 U
Perfluoroheptane Sulfonate (PFHPS) Perfluoroheptanoic acid (PFHpA)	ng/g ng/g	-	-	-	-	-	-	-	-	na na	0.17 U 0.26 U	0.18 UJ 0.29 UJ	0.2 U 0.31 U	0.17 U 0.26 U	0.18 U 0.27 U	0.15 U 0.23 U
Perfluorohexanesulfonic acid (PFHxS)	ng/g	-	-	-	-	-	-	-	-	na	0.20 U	0.22 UJ	0.24 U	0.2 U	0.27 U	0.18 U
Perfluorohexanoic acid (PFHxA)	ng/g	-	-	-	-	-	-	-	-	na	0.25 U	0.27 UJ	0.29 U	0.25 U	0.26 U	0.22 U
Perfluorononanoic acid (PFNA)	ng/g	-	-	-	-	-	-	-	-	na	0.22 U	0.29 UJ	0.26 J	0.36 J	0.22 U	0.34 J
Perfluorooctane Sulfonamide (FOSA)	ng/g	-	-	-	-	-	-	-	-	na	0.16 U	0.17 UJ	0.18 U	0.15 U	0.16 U	0.14 U
Perfluorooctanesulfonic acid (PFOS)	ng/g	-	-	-	-	-	-	-	6270	na	0.2 U	0.22 UJ	0.24 U	0.2 U	0.21 U	0.18 U
Perfluorooctanoic acid (PFOA) Perfluoropentanoic Acid (PFPeA)	ng/g	-	-	-	-	-	-	-	15600	na na	21 0.23 U	8.1 J 0.25 UJ	0.87 J 0.26 U	10 0.22 U	7.7 0.24 U	7.4 0.2 U
Perfluorotetradecanoic acid (PFTA)	ng/g ng/g	-	-	-	-	-	-	-		na	0.45 U	0.25 UJ	0.52 U	0.22 U 0.44 U	0.24 U	0.2 U
Perfluorotridecanoic Acid (PFTriA)	ng/g	-	-	-	-	-	-	-	-	na	0.18 U	0.2 UJ	0.21 U	0.18 U	0.19 U	0.28 J
Perfluoroundecanoic Acid (PFUnA)	ng/g	-	-	-	-	-	-	-	-	na	0.3 U	0.35 UJ	0.35 U	0.29 U	0.32 J	0.26 U
SODIUM 1H,1H,2H,2H-PERFLUORODECANE SULFONATE (8:2)	ng/g	-	-	-	-	-	-	-	-	na	0.26 U	0.29 UJ	0.31 U	0.26 U	0.27 U	0.23 U
SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE SULFONATE (6:2)	ng/g	-	-	-	-	-	-	-	-	na	0.2 U	0.22 UJ	0.24 U	0.2 U	0.21 U	0.18 U
NEtFOSAA	ng/g	-	-	-	-	-	-	-	-	na	0.13 U	0.15 UJ	0.16 U	0.13 U	0.14 U	0.12 U
NMeFOSAA Total Organic Carbon by Lloyd Kahn Method	ng/g	-	-	-	-	-	-	-	-	na	0.1 U	0.11 UJ	0.12 U	0.098 U	0.11 U	0.087 U
Total Organic Carbon pH by Standard Method 9045D	mg/kg	-	-	-	-	-	-	-	-	na	1790	2290	2450	24700	2310	3790
рН	pH units	-	-	-	-	-	-	-	-	na	8.2	8.5	8.6	8.2	8.4	8.3
Volatile Organic Compounds (VOCs) by USEPA	Method 82	260														
1,1,1-Trichloroethane (TCA)	ug/kg	680	680	100000	100000	500000	1000000	_	_	16	na	2.2 J	5.1 U	5.7	7.3 U	2.6 J
1,1,2,2-Tetrachloroethane	ug/kg	-	-	-	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	-	-	-	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
1,1,2-Trichloroethane	ug/kg	-	-	-	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
1,1-Dichloroethane	ug/kg	270	270	19000	26000	240000	480000	-	-	26	na	18	0.71 J	3.9 U	6.1 J	3.9 U
1,1-Dichloroethene 1,2,4-Trichlorobenzene	ug/kg ug/kg	330	330	100000	100000	500000	1000000	-	-	7.7 4.5 U	na na	20 6.9 U	5.1 U 5.1 U	3.9 U 3.9 U	7.3 U 7.3 U	3.9 U 3.9 U
1,2-Dibromo-3-Chloropropane	ug/kg ug/kg	-	-	-	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
1,2-Dibromoethane (Ethylene Dibromide)	ug/kg	-	-	-	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
1,2-Dichlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
1,2-Dichloroethane	ug/kg	20	20	2300	3100	30000	60000	10000	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
1,2-Dichloropropane	ug/kg	-	-	15000	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
1,3-Dichlorobenzene 1.4-Dichlorobenzene	ug/kg	2400	2400	17000	49000	280000	560000	20000	-	4.5 U 4.5 U	na	6.9 U 6.9 U	5.1 U 5.1 U	3.9 U 3.9 U	7.3 U 7.3 U	3.9 U
2-Hexanone	ug/kg ug/kg	1800	1800	9800	13000	130000	250000	20000	-	4.5 U 22 U	na na	6.9 U 34 U	25 U	3.9 U 19 U	7.5 U 36 U	3.9 U 20 U
Acetone	ug/kg ug/kg	50	50	100000	100000	500000	1000000	2200	-	18 J	na	31 J	17 J	16 J	23 J	13 J
Benzene	ug/kg	60	60	2900	4800	44000	89000	70000	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Bromodichloromethane	ug/kg	-	-	-	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Bromoform	ug/kg	-	-	-	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Bromomethane	ug/kg	-	-	-	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Carbon Disulfide Carbon Tetrachloride	ug/kg	760	- 760	1400	2400	22000	44000	-	-	4.5 U 4.5 U	na na	6.9 U 6.9 U	5.1 U 5.1 U	3.9 U 3.9 U	7.3 U 7.3 U	3.9 U 3.9 U
Chlorobenzene	ug/kg ug/kg	1100	1100	100000	100000	500000	1000000	40000	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Chloroethane	ug/kg	-	-	-	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Chloroform	ug/kg	370	370	10000	49000	350000	700000	12000	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Chloromethane	ug/kg	-	-	-	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Cis-1,2-Dichloroethylene	ug/kg	250	250	59000	100000	500000	1000000	-	-	3.2 J	na	8.3	5.1 U	1.7 J	3.2 J	3.9 U
Cis-1,3-Dichloropropene Cyclohexane	ug/kg	-	-	-	-	-	-	-	-	4.5 U 4.5 U	na na	6.9 U 6.9 U	5.1 U 5.1 U	3.9 U 3.9 U	7.3 U 7.3 U	3.9 U 3.9 U
Dibromochloromethane	ug/kg ug/kg	-	-	-	-	-	-	-	_ [4.5 U 4.5 U	na na	6.9 U 6.9 U	5.1 U 5.1 U	3.9 U 3.9 U	7.3 U 7.3 U	3.9 U 3.9 U
Dichlorodifluoromethane	ug/kg ug/kg	-	-	-	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Ethylbenzene	ug/kg	1000	1000	30000	41000	390000	780000	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Isopropylbenzene (Cumene)	ug/kg	-	-	-	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Methyl Acetate	ug/kg	-	-	100000	100000	-	1000000	100000	-	22 U	na	34 U	25 U	19 U	36 U	20 U
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ug/kg ug/kg	120 -	120	100000	100000	500000	1000000	100000	-	22 U 22 U	na na	34 U 34 U	25 U 25 U	19 U 19 U	36 U 36 U	20 U 20 U
Methylcyclohexane	ug/kg	-	_	-	_	-	-	_	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Methylene Chloride	ug/kg ug/kg	50	50	51000	100000	500000	1000000	12000	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Styrene	ug/kg	-	-	-	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Tert-Butyl Methyl Ether	ug/kg	930	930	62000	100000	500000	1000000	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Tetrachloroethylene (PCE)	ug/kg	1300	1300	5500	19000	150000	300000	2000	-	0.81 J	na	6.9 U	5.1 U	1.3 J	7.3 U	3.9 U
Toluene	ug/kg	700	700	100000	100000	500000	1000000	36000	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	ug/kg ug/kg	190	190	100000	100000	500000	1000000	-	-	4.5 U 4.5 U	na na	6.9 U 6.9 U	5.1 U 5.1 U	3.9 U 3.9 U	7.3 U 7.3 U	3.9 U 3.9 U
Trichloroethylene (TCE)	ug/kg ug/kg	470	470	10000	21000	200000	400000	2000	-	4.5 U 92	na na	160	5.1 U	2200	7.5 U 11	3.9 U 8
Trichlorofluoromethane	ug/kg ug/kg	-	-	-	-	-	-	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
Vinyl Chloride	ug/kg	20	20	210	900	13000	27000	-	-	4.5 U	na	6.9 U	5.1 U	3.9 U	7.3 U	3.9 U
		260	1600	100000	100000	500000	1000000	260		9 U		14 U	10 U	7.7 U	15 U	7.8 U

 $\mu g/kg$ - microgram per kilogram

mg/kg - milligrams per kilogram

U - Compound not detected J - Estimated value

UJ - Estimated Value
UJ - Estimated Non-Detect

N - Primary sample

FD - Field duplicate sample

ft bgs - Feet below ground surface

na - Sample not analyzed for this parameter

IRM PDI - Interim Remedial Measure Pre-Design Investigation

Shaded value indicates value equal to, or greater than, standard or guidance.

NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and Regulations (6 NYC

USEPA Screening Values for PFOA and PFOS developed by USEPA based on the Health Advisory for PFOA and PFOS of 70 nanogra NYS Unrestricted Use SCO

NYS Unrestricted Use SCO
NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO

NYS Commercial Use SCO NYS Industrial Use SCO

NYS Industrial Use SCO NYS Protection of Ecological Resources SCO

ERM Page 3 of 12 11/27/2018

									Location ID:	JS-B-028	JS-B-029	JS-B-030	JS-B-030	JS-B-031	JS-B-032	JS-B-033
									Sample Date:	4/10/2018	4/10/2018	4/12/2018	4/12/2018	4/11/2018	4/11/2018	4/11/2018
							Sa	mple Dep	th (ft bgs):	5-7 ft	16-18 ft	16-18 ft	16-18 ft	15-17 ft	9-11 ft	14-16 ft
								San	nple Type: USEPA	N	N	N	FD	N	N	N
Constituent	Units	NY375 1UNRES	NY375 2RPGW	NY375 3RRES	NY375 4RRRES	NY375 5RCOMM	NY375 6RINDU	NY375 7PER	Screen Value							
Perfluorinated Alkyl Compounds (PFAS) by USE		d 537-1.1 n	nodified	•												
Perfluorobutanesulfonic acid (PFBS)	ng/g	-	-	-	-	-	-	-	-	0.2 U	0.21 U	0.23 U	0.24 U	0.21 U	0.22 U	0.21 U
Perfluorobutanoic Acid Perfluorodecane Sulfonic Acid	ng/g ng/g	-	-	-	-	-	-	-	-	0.21 U 0.2 U	0.23 U 0.21 U	0.24 U 0.23 U	0.25 U 0.24 U	0.22 U 0.21 U	0.23 U 0.22 U	0.22 U 0.21 U
Perfluorodecanoic acid (PFDA)	ng/g	-	-	-	-	-	-	-	-	0.67 J	0.21 C	0.23 U	0.24 U	0.21 U	0.27 J	0.21 U
Perfluorododecanoic acid (PFDoA)	ng/g	-	-	-	-	-	-	-	-	0.3 U	0.32 U	0.35 U	0.36 U	0.32 U	0.33 U	0.31 U
Perfluoroheptane Sulfonate (PFHPS)	ng/g	-	-	-	-	-	-	-	-	0.17 U	0.18 U	0.19 U	0.2 U	0.18 U	0.18 U	0.17 U
Perfluoroheptanoic acid (PFHpA)	ng/g	-	-	-	-	-	-	-	-	0.26 U	0.28 U	0.29 U	0.31 U	0.27 U	0.28 U	0.27 U
Perfluorohexanesulfonic acid (PFHxS)	ng/g	-	-	-	-	-	-	-	-	0.2 U	0.23 J	0.23 U	0.24 J	0.21 U	0.22 U	0.21 U
Perfluorohexanoic acid (PFHxA) Perfluorononanoic acid (PFNA)	ng/g ng/g	-	-	-	-	-	-	-	-	0.25 U 0.45 U	0.26 U 0.25 U	0.28 U 0.24 U	0.29 U 0.26 U	0.26 U 0.3 U	0.27 U 0.33 U	0.26 U 0.27 U
Perfluorooctane Sulfonamide (FOSA)	ng/g	_	_	-	_	_	_	_	_	0.15 U	0.16 U	0.18 U	0.18 U	0.16 U	0.17 U	0.16 U
Perfluorooctanesulfonic acid (PFOS)	ng/g	-	-	-	-	-	-	-	6270	0.2 U	0.21 U	0.23 U	0.24 U	0.21 U	0.22 U	0.21 U
Perfluorooctanoic acid (PFOA)	ng/g	-	-	-	-	-	-	-	15600	7	1.2	0.24 U	0.25 U	0.22 U	0.75 J	0.34 J
Perfluoropentanoic Acid (PFPeA)	ng/g	-	-	-	-	-	-	-	-	0.22 U	0.24 U	0.25 U	0.26 U	0.24 U	0.24 U	0.23 U
Perfluorotetradecanoic acid (PFTA)	ng/g	-	-	-	-	-	-	-	-	0.44 U	0.47 U	0.5 U	0.52 U	0.47 U	0.48 U	0.46 U
Perfluorotridecanoic Acid (PFTriA)	ng/g	-	-	-	-	-	-	-	-	0.18 U 0.33 U	0.19 U 0.31 U	0.2 U	0.24 J 0.35 U	0.19 U 0.38 U	0.19 U 0.34 U	0.22 J 0.31 U
Perfluoroundecanoic Acid (PFUnA) SODIUM 1H,1H,2H,2H-PERFLUORODECANE	ng/g ng/g	-	-	-	-	-	-	-	-	0.33 U 0.26 U	0.31 U 0.28 U	0.4 U 0.29 U	0.35 U 0.31 U	0.38 U 0.27 U	0.34 U 0.28 U	0.31 U 0.27 U
SULFONATE (8:2)	115/ B	-	-	-	-	-	-	-	_	5.20 U	5.20 U	U.29 U	0.51 0	0.27 U	0.20 U	0.27 U
SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE	ng/g	-	-	-	-	-	-	-	-	0.2 U	0.21 U	0.23 U	0.24 U	0.21 U	0.22 U	0.21 U
SULFONATE (6:2) NEŧFOSAA	ng/c	_	_						_	0.13 U	0.14 U	0.15 U	0.16 U	0.14 U	0.14 U	0.14 U
NETFOSAA NMeFOSAA	ng/g ng/g	-	-	-	-	-	-	-	-	0.13 U 0.098 U	0.14 U 0.11 U	0.15 U 0.12 U	0.16 U 0.12 U	0.14 U 0.11 U	0.14 U 0.11 U	0.14 U 0.11 U
Total Organic Carbon by Lloyd Kahn Method	118/8								-	0.070 C	0.11 0	0.12 0	0.12 0	0.11 0	0.11 0	0.11 0
Total Organic Carbon	mg/kg	_	_	-	_	_	_	_	-	3910	2440	2350	2350	2800	2130	3080
pH by Standard Method 9045D	0, 0															
рН	pH units	-	-	-	-	-	-	-	-	8.1	8.6	8.3	8.6	8.7	8.6	8.5
VIII O CO LAVOCAL METRA	14.1.100															
Volatile Organic Compounds (VOCs) by USEPA				100000	400000	5 00000	4000000			- 4 7	5 0 TT	12000 11	40000 11		500 11	
1,1,1-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane	ug/kg	680	680	100000	100000	500000	1000000	-	-	5.1 J	5.8 U	12000 U	18000 U 18000 U	6.3 U 6.3 U	730 U 730 U	na
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg ug/kg	-	-	-	-	-	-	-	-	6.1 U 6.1 U	5.8 UJ 5.8 U	12000 U 12000 UJ	18000 UJ	6.3 U	730 UJ	na na
1.1.2-Trichloroethane	ug/kg	_	_	_	_	_	_	_	_	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na na
1,1-Dichloroethane	ug/kg	270	270	19000	26000	240000	480000	-	-	6.1 U	22	12000 U	18000 U	120	630 J	na
1,1-Dichloroethene	ug/kg	330	330	100000	100000	500000	1000000	-	-	6.1 U	5.6 J	12000 U	18000 U	6.3 U	350 J	na
1,2,4-Trichlorobenzene	ug/kg	-	-	-	-	-	-	-	-	6.1 U	5.8 UJ	12000 U	18000 U	6.3 U	730 U	na
1,2-Dibromo-3-Chloropropane	ug/kg	-	-	-	-	-	-	-	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
1,2-Dibromoethane (Ethylene Dibromide)	ug/kg	1100	1100	100000	100000	- E00000	1000000	-	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
1,2-Dichlorobenzene 1,2-Dichloroethane	ug/kg ug/kg	1100 20	1100 20	100000 2300	100000 3100	500000 30000	1000000 60000	10000		6.1 U 6.1 U	5.8 U 5.8 U	12000 U 12000 U	18000 U 18000 U	6.3 U 6.3 U	730 U 730 U	na na
1,2-Dichloropropane	ug/kg ug/kg	-	-	-	-	-	-	-		6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
1,3-Dichlorobenzene	ug/kg	2400	2400	17000	49000	280000	560000	_	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
1,4-Dichlorobenzene	ug/kg	1800	1800	9800	13000	130000	250000	20000	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
2-Hexanone	ug/kg	-	-	-	-	-	-	-	-	30 U	29 U	61000 U	89000 U	31 U	3700 U	na
Acetone	ug/kg	50	50	100000	100000	500000	1000000	2200	-	30 U	16 J	61000 U	89000 U	17 J	3700 U	na
Benzene	ug/kg	60	60	2900	4800	44000	89000	70000	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Bromodichloromethane	ug/kg	-	-	-	-	-	-	-	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Bromoform	ug/kg	-	-	-	-	-	-	-	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Bromomethane Carbon Disulfide	ug/kg	-	-	-	-	-	-	-	-	6.1 U 6.1 U	5.8 U 5.8 U	12000 U 12000 U	18000 U 18000 U	6.3 U 6.3 U	730 U 730 U	na
Carbon Tetrachloride	ug/kg ug/kg	760	- 760	1400	2400	22000	44000	-		6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na na
Chlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	40000	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Chloroethane	ug/kg	-	-	-	-	-	-	-	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Chloroform	ug/kg	370	370	10000	49000	350000	700000	12000	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Chloromethane	ug/kg	-	-	-	-	-	-	-	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Cis-1,2-Dichloroethylene	ug/kg	250	250	59000	100000	500000	1000000	-	-	0.83 J	2.5 J	12000 U	18000 U	6.3 U	1000	na
Cis-1,3-Dichloropropene	ug/kg	-	-	-	-	-	-	-	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Cyclohexane Dibromochloromethane	ug/kg ug/kg	-	-	-	-	-	-	-	-	6.1 U 6.1 U	5.8 U 5.8 U	12000 U 12000 U	18000 U 18000 U	6.3 U 6.3 U	730 U 730 U	na na
Dichlorodifluoromethane	ug/kg ug/kg	-	-	-	-	-	-	-	_	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na na
Ethylbenzene	ug/kg	1000	1000	30000	41000	390000	780000	-	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Isopropylbenzene (Cumene)	ug/kg	-	-	-	-	-	-	-	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Methyl Acetate	ug/kg	-	-	-	-	-	-	-	-	30 U	29 U	61000 U	89000 U	31 U	3700 U	na
Methyl Ethyl Ketone (2-Butanone)	ug/kg	120	120	100000	100000	500000	1000000	100000	-	30 U	29 UJ	61000 U	89000 U	31 U	3700 U	na
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ug/kg	-	-	-	-	-	-	-	-	30 U	29 U	61000 U	89000 U	31 U	3700 U	na
Methylcyclohexane	ug/kg	-	-	-	-	-	-	-	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Methylene Chloride	ug/kg	50	50	51000	100000	500000	1000000	12000	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Styrene	ug/kg	-	-	-	-	-	-	-	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Tert-Butyl Methyl Ether	ug/kg	930	930	62000	100000	500000	1000000	-	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Tetrachloroethylene (PCE)	ug/kg	1300	1300	5500	19000	150000	300000	2000	-	2.9 J	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Toluene Trans-1 2-Dichloroethene	ug/kg	700 190	700 190	100000	100000	500000	1000000	36000	-	6.1 U 6.1 U	5.8 U 5.8 U	12000 U	18000 U 18000 U	6.3 U 6.3 U	730 U 730 U	na
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	ug/kg ug/kg	190	190	100000	100000	500000	1000000	-	-	6.1 U 6.1 U	5.8 U 5.8 U	12000 U 12000 U	18000 U 18000 U	6.3 U 6.3 U	730 U 730 U	na na
Trans-1,3-Dichioropropene Trichloroethylene (TCE)	ug/kg ug/kg	470	470	10000	21000	200000	400000	2000	-	95	5.8 U 1.4 J	490000	590000 590000	1.7 J	43000	na na
Trichlorofluoromethane	ug/kg ug/kg	-	-	-	-	-	-	-	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Vinyl Chloride	ug/kg	20	20	210	900	13000	27000	-	-	6.1 U	5.8 U	12000 U	18000 U	6.3 U	730 U	na
Xylenes, Total	ug/kg	260	1600	100000	100000	500000	1000000	260	_	12 U	12 U	25000 U	36000 U	13 U	1500 U	na

 $\mu g/kg$ - microgram per kilogram

mg/kg - milligrams per kilogram

U - Compound not detected J - Estimated value

UJ - Estimated Value
UJ - Estimated Non-Detect

N - Primary sample

FD - Field duplicate sample

ft bgs - Feet below ground surface

na - Sample not analyzed for this parameter

IRM PDI - Interim Remedial Measure Pre-Design Investigation

Shaded value indicates value equal to, or greater than, standard or guidance.

NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and Regulations (6 NYC

USEPA Screening Values for PFOA and PFOS developed by USEPA based on the Health Advisory for PFOA and PFOS of 70 nanogra NYS Unrestricted Use SCO

NYS Unrestricted Use SCO
NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO NYS Commercial Use SCO

NYS Industrial Use SCO

									Location ID:	JS-B-033	JS-B-033	JS-B-034	JS-B-034	JS-B-035	JS-B-036	JS-B-036
									Sample Date:	4/11/2018	4/11/2018	4/12/2018	4/12/2018	4/12/2018	4/18/2018	4/18/201
							Sa	mple Dept	th (ft bgs):	14-16 ft	15-16 ft	14-16 ft	14-16 ft	16-18 ft	14-15 ft	17-19 ft
				1				Sam	ple Type:	SP	N	N	SP	N	N	N
		NY375	NY375	NY375	NY375	NY375	NY375	NY375	Screen							
Constituent Perfluorinated Alkyl Compounds (PFAS) by USE	Units PA Metho	1UNRES d 537-1.1 n		3RRES	4RRRES	5RCOMM	6RINDU	7PER	Value							
Perfluorobutanesulfonic acid (PFBS)	ng/g	-	- -	-	_	_	-	-	_	0.27 U	na	0.23 U	0.29 U	0.23 U	0.24 UJ	0.24 U
Perfluorobutanoic Acid	ng/g	-	-	-	-	-	-	-	-	0.27 U	na	0.24 U	0.29 U	0.25 U	0.25 UJ	0.25 U
Perfluorodecane Sulfonic Acid	ng/g	-	-	-	-	-	-	-	-	0.41 U	na	0.23 U	0.44 U	0.23 U	0.24 U	0.24 U
Perfluorodecanoic acid (PFDA)	ng/g	-	-	-	-	-	-	-	-	0.27 U	na	0.27 U	0.29 U	0.31 J	0.32 J	0.33 J
Perfluorododecanoic acid (PFDoA)	ng/g	-	-	-	-	-	-	-	-	0.27 U 0.27 U	na	0.35 U	0.29 U 0.29 U	0.35 U	0.36 U	0.36 U
Perfluoroheptane Sulfonate (PFHPS) Perfluoroheptanoic acid (PFHpA)	ng/g ng/g	-	-	-	-	-	-	-	-	0.27 U	na na	0.19 U 0.3 U	0.29 U 0.29 U	0.19 U 0.3 U	0.2 U 0.3 U	0.2 U 0.3 U
Perfluorohexanesulfonic acid (PFHxS)	ng/g	_	_	-	_	_	_	_	-	0.27 U	na	0.23 U	0.29 U	0.23 U	0.24 U	0.24 U
Perfluorohexanoic acid (PFHxA)	ng/g	-	-	-	-	-	-	-	-	0.27 U	na	0.28 U	0.29 U	0.29 U	0.29 UJ	0.29 U
Perfluorononanoic acid (PFNA)	ng/g	-	-	-	-	-	-	-	-	0.27 U	na	0.28 U	0.29 U	0.31 U	0.39 U	0.25 U
Perfluorooctane Sulfonamide (FOSA)	ng/g	-	-	-	-	-	-	-	-	0.27 UJ	na	0.18 U	0.29 UJ	0.18 U	0.18 U	0.18 U
Perfluorooctanesulfonic acid (PFOS)	ng/g	-	-	-	-	-	-	-	6270	0.41 U	na	0.23 U	0.44 U	0.23 U	0.24 U	0.24 U
Perfluorooctanoic acid (PFOA) Perfluoropentanoic Acid (PFPeA)	ng/g	-	-	-	-	-	-	-	15600	0.65 J 0.27 UJ	na	0.71 J 0.26 U	0.56 J 0.29 UJ	0.25 U 0.26 U	0.25 U 0.26 U	0.25 U 0.26 U
Perfluorotetradecanoic acid (PFTA)	ng/g ng/g	-	-	-	-	-	-	-		0.27 U 0.27 U	na na	0.26 U 0.51 U	0.29 U	0.26 U 0.51 U	0.52 U	0.28 U
Perfluorotridecanoic Acid (PFTriA)	ng/g	_	_	-	_	-	-	-	-	0.27 U	na	0.2 U	0.29 U	0.21 U	0.21 U	0.21 U
Perfluoroundecanoic Acid (PFUnA)	ng/g	-	-	-	-	-	-	-	-	0.27 U	na	0.38 U	0.29 U	0.37 U	0.35 U	0.37 J
SODIUM 1H,1H,2H,2H-PERFLUORODECANE SULFONATE (8:2)	ng/g	-	-	-	-	-	-	-	-	0.82 U	na	0.3 U	0.88 U	0.3 U	0.3 UJ	0.3 U
SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE SULFONATE (6:2)	ng/g	-	-	-	-	-	-	-	-	0.82 U	na	0.23 U	0.88 UJ	0.23 U	0.24 U	0.24 U
NEtFOSAA	ng/g	-	-	-	-	-	-	-	-	0.68 U	na	0.15 U	0.73 U	0.15 U	0.15 U	0.15 U
NMeFOSAA Total Organic Carbon by Lloyd Kahn Method	ng/g	-	-	-	-	-	-	-	-	0.68 U	na	0.12 U	0.73 U	0.12 U	0.12 UJ	0.14 J
Total Organic Carbon pH by Standard Method 9045D	mg/kg	-	-	-	-	-	-	-	-	na	na	2470	na	2840	na	na
pH	pH units	-	-	-	-	-	-	-	-	na	na	8.7	na	8.6	na	na
Volatile Organic Compounds (VOCs) by USEPA	Mathad 93	260														
1,1,1-Trichloroethane (TCA)		680	680	100000	100000	500000	1000000			no	15000 U	5.6 U	no	8700 U	5.6 U	20
1,1,2,2-Tetrachloroethane	ug/kg ug/kg	-	-	100000	100000	500000	1000000	-		na na	15000 U	5.6 U	na na	8700 U 8700 U	5.6 U	na na
1,1,2-Tetrachioroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg ug/kg	_	-	-	_	-	-	-		na	15000 U	5.6 U	na	8700 U	5.6 U	na
1,1,2-Trichloroethane	ug/kg	_	_	-	_	-	-	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
1,1-Dichloroethane	ug/kg	270	270	19000	26000	240000	480000	-	-	na	15000 U	26	na	8700 U	5.6 U	na
1,1-Dichloroethene	ug/kg	330	330	100000	100000	500000	1000000	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
1,2,4-Trichlorobenzene	ug/kg	-	-	-	-	-	-	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
1,2-Dibromo-3-Chloropropane	ug/kg	-	-	-	-	-	-	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
1,2-Dibromoethane (Ethylene Dibromide)	ug/kg	-	- 1100	-	100000	-	-	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
1,2-Dichlorobenzene 1,2-Dichloroethane	ug/kg	1100 20	1100 20	100000 2300	100000 3100	500000 30000	1000000 60000	10000	-	na	15000 U 15000 U	5.6 U 5.6 U	na	8700 U 8700 U	5.6 U 5.6 U	na
1,2-Dichloropropane	ug/kg ug/kg	-	-	-	-	-	-	-		na na	15000 U	5.6 U	na na	8700 U	5.6 U	na na
1,3-Dichlorobenzene	ug/kg	2400	2400	17000	49000	280000	560000	_	_	na	15000 U	5.6 U	na	8700 U	5.6 U	na
1,4-Dichlorobenzene	ug/kg	1800	1800	9800	13000	130000	250000	20000	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
2-Hexanone	ug/kg	-	-	-	-	-	-	-	-	na	77000 U	28 U	na	44000 U	28 U	na
Acetone	ug/kg	50	50	100000	100000	500000	1000000	2200	-	na	77000 U	12 J	na	44000 U	22 J	na
Benzene	ug/kg	60	60	2900	4800	44000	89000	70000	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Bromodichloromethane	ug/kg	-	-	-	-	-	-	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Bromoform	ug/kg	-	-	-	-	-	-	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Bromomethane	ug/kg	-	-	-	-	-	-	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Carbon Disulfide Carbon Tetrachloride	ug/kg ug/kg	760	760	1400	2400	22000	44000	-	-	na na	15000 U 15000 U	5.6 U 5.6 U	na na	8700 U 8700 U	5.6 U 5.6 U	na na
Chlorobenzene	ug/kg ug/kg	1100	1100	100000	100000	500000	1000000	40000	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Chloroethane	ug/kg	-	-	-	-	-	-	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Chloroform	ug/kg	370	370	10000	49000	350000	700000	12000	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Chloromethane	ug/kg	-	-	-	-	-	-	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Cis-1,2-Dichloroethylene	ug/kg	250	250	59000	100000	500000	1000000	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Cis-1,3-Dichloropropene	ug/kg	-	-	-	-	-	-	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Cyclohexane	ug/kg	-	-	-	-	-	-	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Dibromochloromethane	ug/kg	-	-	-	-	-	-	-	-	na	15000 U	5.6 U	na na	8700 U 8700 U	5.6 U 5.6 U	na
Dichlorodifluoromethane Ethylbenzene	ug/kg ug/kg	1000	1000	30000	41000	390000	780000	-	-	na na	15000 U 15000 U	5.6 U 5.6 U	na na	8700 U 8700 U	5.6 U 5.6 U	na na
Ethytoenzene Isopropylbenzene (Cumene)	ug/kg ug/kg	-	-	-	41000	390000 -	-	-	-	na na	15000 U	5.6 U	na na	8700 U 8700 U	5.6 U	na na
Methyl Acetate	ug/kg ug/kg	-	-	-	-	-	-	-	-	na	77000 U	28 U	na	44000 U	28 U	na
Methyl Ethyl Ketone (2-Butanone)	ug/kg	120	120	100000	100000	500000	1000000	100000	-	na	77000 U	28 U	na	44000 U	28 U	na
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ug/kg	-	-	-	-	-	-	-	-	na	77000 U	28 U	na	44000 U	28 U	na
Methylcyclohexane	ug/kg	-	-	-	-	-	-	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Methylene Chloride	ug/kg	50	50	51000	100000	500000	1000000	12000	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Styrene	ug/kg	-	-	-	-	-	-	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Tert-Butyl Methyl Ether	ug/kg	930	930	62000	100000	500000	1000000	2000	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Tetrachloroethylene (PCE)	ug/kg	1300	1300	5500	19000	150000	300000	2000	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
Toluene Trans-1,2-Dichloroethene	ug/kg	700 190	700 190	100000 100000	100000 100000	500000 500000	1000000 1000000	36000	-	na na	15000 U 15000 U	5.6 U 5.6 U	na na	8700 U 8700 U	5.6 U 5.6 U	na na
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	ug/kg ug/kg	190 -	190	100000	-	500000	1000000	-	-	na na	15000 U 15000 U	5.6 U 5.6 U	na na	8700 U 8700 U	5.6 U 5.6 U	na na
Trichloroethylene (TCE)	ug/kg ug/kg	470	470	10000	21000	200000	400000	2000	-	na	420000	5.6 U	na	450000	1600	na
Trichlorofluoromethane	ug/kg ug/kg	-	-	-	-	-	-	-	-	na	15000 U	5.6 U	na	8700 U	5.6 U	na
		20			900	13000	27000	_	_	na	15000 U	5.6 U				
Vinyl Chloride	ug/kg	20	20	210	900	13000	27000	-	- 1	11a	13000 U	5.6 U	na	8700 U	5.6 U	na

μg/kg - microgram per kilogram

mg/kg - milligrams per kilogram

U - Compound not detected J - Estimated value

UJ - Estimated Non-Detect

N - Primary sample

FD - Field duplicate sample

ft bgs - Feet below ground surface

na - Sample not analyzed for this parameter

IRM PDI - Interim Remedial Measure Pre-Design Investigation

Shaded value indicates value equal to, or greater than, standard or guidance. NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and Regulations (6 NYC

USEPA Screening Values for PFOA and PFOS developed by USEPA based on the Health Advisory for PFOA and PFOS of 70 nanogra

NYS Unrestricted Use SCO

NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO

NYS Commercial Use SCO NYS Industrial Use SCO

									Location ID:	JS-B-036	JS-B-036	JS-B-037	JS-B-037	JS-B-038	JS-B-038	JS-B-039
									Sample Date:	4/18/2018	4/18/2018	4/17/2018	4/17/2018	4/17/2018	4/17/2018	4/20/2018
										18-19 ft	19-20 ft	15-16 ft	15-17 ft	14-15 ft	14-16 ft	12-13 ft
		Sample Depth (ft bg: Sample Typ									N N	N	N	N	N	N
		NY375	NY375	NY375	NY375	NY375	NY375	NY375	USEPA Screen							
Constituent	Units	1UNRES	2RPGW	3RRES		5RCOMM	6RINDU	7PER	Value							
Perfluorinated Alkyl Compounds (PFAS) by USEF		d 537-1.1 n	ıodified								0.24 11		0.04.11		0.22.11	0.01.11
Perfluorobutanesulfonic acid (PFBS) Perfluorobutanoic Acid	ng/g ng/g	-	-	-	-	-	-	-		na na	0.24 U 0.25 U	na na	0.26 U 0.27 U	na na	0.22 U 0.24 U	0.21 U 0.22 U
Perfluorodecane Sulfonic Acid	ng/g	-	-	-	-	-	-	-	-	na	0.24 U	na	0.27 U	na	0.24 U	0.22 U
Perfluorodecanoic acid (PFDA)	ng/g	-	-	-	-	-	-	-	-	na	0.28 U	na	0.3 U	na	0.26 U	0.3 J
Perfluorododecanoic acid (PFDoA)	ng/g	-	-	-	-	-	-	-	-	na	0.37 U	na	0.39 U	na	0.34 U	0.32 U
Perfluoroheptane Sulfonate (PFHPS)	ng/g	-	-	-	-	-	-	-	-	na	0.2 U	na	0.21 U	na	0.18 U	0.18 U
Perfluoroheptanoic acid (PFHpA)	ng/g	-	-	-	-	-	-	-	-	na	0.31 U	na	0.33 U	na	0.29 U	0.42 J
Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanoic acid (PFHxA)	ng/g ng/g	-	-	-	-	-	-	-	[]	na na	0.24 U 0.3 U	na na	0.26 U 0.32 U	na na	0.22 U 0.27 U	0.25 J 0.26 U
Perfluorononanoic acid (PFNA)	ng/g	-	-	-	-	-	-	-		na	0.25 U	na	0.32 U	na	0.27 U	0.20 U
Perfluorooctane Sulfonamide (FOSA)	ng/g	-	-	-	-	-	-	-	-	na	0.19 U	na	0.2 U	na	0.17 U	0.16 U
Perfluorooctanesulfonic acid (PFOS)	ng/g	-	-	-	-	-	-	-	6270	na	0.24 U	na	0.26 U	na	0.22 U	0.21 U
Perfluorooctanoic acid (PFOA)	ng/g	-	-	-	-	-	-	-	15600	na	0.25 U	na	0.27 U	na	0.24 U	1.7
Perfluoropentanoic Acid (PFPeA)	ng/g	-	-	-	-	-	-	-	-	na	0.27 U	na	0.29 U	na	0.25 U	0.24 U
Perfluorotetradecanoic acid (PFTA)	ng/g	-	-	-	-	-	-	-	-	na	0.53 U	na	0.57 U	na	0.49 U	0.47 U
Perfluorotridecanoic Acid (PFTriA) Perfluoroundecanoic Acid (PFUnA)	ng/g ng/g	-	-	-	-	-	-	-	_ [na na	0.21 U 0.35 U	na na	0.24 U 0.38 U	na na	0.21 U 0.33 U	0.19 U 0.39 U
SODIUM 1H,1H,2H,2H-PERFLUORODECANE	ng/g ng/g	-	-	-	-	-	-	-	_	na	0.33 U 0.31 U	na na	0.38 U	na na	0.33 U 0.29 U	0.39 U 0.27 U
SULFONATE (8:2)	010									-		-		•		
SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE	ng/g	-	-	-	-	-	-	-	-	na	0.24 U	na	0.26 U	na	0.22 U	0.21 U
SULFONATE (6:2)																_
NEtFOSAA	ng/g	-	-	-	-	-	-	-	-	na	0.16 U	na	0.17 U	na	0.15 U	0.14 U
NMeFOSAA	ng/g	-	-	-	-	-	-	-	-	na	0.12 U	na	0.13 U	na	0.11 U	0.3 U
Total Organic Carbon by Lloyd Kahn Method Total Organic Carbon	ma/ka									1970	20	20	2400	na	2240	2060
pH by Standard Method 9045D	mg/kg	-	-	-	-	-	-	-	-	1970	na	na	2400	Ha	2240	2000
	pH units	_	_	_	_	_	_	_	_	8.3	na	na	8.3	na	8	7.8
,	pri unio									0.0			0.0		Ü	7.0
Volatile Organic Compounds (VOCs) by USEPA M	Method 82	260														
1,1,1-Trichloroethane (TCA)	ug/kg	680	680	100000	100000	500000	1000000	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
1,1,2,2-Tetrachloroethane	ug/kg	-	-	-	-	-	-	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	-	-	-	-	-	-	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
1,1,2-Trichloroethane	ug/kg	-	-	-	-	-	-	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
1,1-Dichloroethane	ug/kg	270	270	19000	26000	240000	480000	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
1,1-Dichloroethene	ug/kg	330	330	100000	100000	500000	1000000	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane	ug/kg ug/kg	-	-	-	-	-	-	-	-	1100 U 1100 U	3800 U 3800 U	17000 U 17000 U	na na	17000 U 17000 U	na na	35000 U 35000 U
1,2-Dibromoethane (Ethylene Dibromide)	ug/kg ug/kg	-	-	-	-	-	-	-	- [1100 U	3800 U	17000 U	na	17000 U	na	35000 U
1,2-Dichlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	_	_	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
1,2-Dichloroethane	ug/kg	20	20	2300	3100	30000	60000	10000	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
1,2-Dichloropropane	ug/kg	-	-	-	-	-	-	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
1,3-Dichlorobenzene	ug/kg	2400	2400	17000	49000	280000	560000	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
1,4-Dichlorobenzene	ug/kg	1800	1800	9800	13000	130000	250000	20000	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
2-Hexanone	ug/kg	-	-	-	-		-	-	-	5600 U	19000 U	84000 U	na	85000 U	na	180000 U
Acetone	ug/kg	50	50	100000	100000	500000	1000000	2200	-	5600 U	19000 U	84000 U	na	85000 U	na	180000 U
Benzene	ug/kg	60	60	2900	4800	44000	89000	70000	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
Bromodichloromethane Bromoform	ug/kg ug/kg	-	-	-	-	-	-	-	-	1100 U 1100 U	3800 U 3800 U	17000 U 17000 U	na na	17000 U 17000 U	na na	35000 U 35000 U
Bromomethane	ug/kg ug/kg	-	-	-	-	-	-	-		1100 U	3800 U	17000 U	na	17000 U	na	35000 U
Carbon Disulfide	ug/kg	_	_	_	_	_	_	_	_	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
Carbon Tetrachloride	ug/kg	760	760	1400	2400	22000	44000	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
Chlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	40000	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
Chloroethane	ug/kg	-	-	-	-	-	-	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
Chloroform	ug/kg	370	370	10000	49000	350000	700000	12000	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
Chloromethane	ug/kg	-	-	-	-	-	100000	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
Cis-1,2-Dichloroethylene	ug/kg	250	250	59000	100000	500000	1000000	-	-	1100 U	3800 U	17000 U	na	6400 J	na	35000 U
Cis-1,3-Dichloropropene Cyclohexane	ug/kg	-	-	-	-	-	-	-	-	1100 U 1100 U	3800 U 3800 U	17000 U 17000 U	na	17000 U 17000 U	na	35000 U 35000 U
Cyclohexane Dibromochloromethane	ug/kg ug/kg	-	-	-	-	-	-	-	_ [1100 U 1100 U	3800 U 3800 U	17000 U 17000 U	na na	17000 U 17000 U	na na	35000 U 35000 U
Dichlorodifluoromethane	ug/kg ug/kg	-	-	-	-	-	-	-	-	1100 U	3800 U	17000 U 17000 U	na na	17000 U 17000 U	na na	35000 U
Ethylbenzene	ug/kg	1000	1000	30000	41000	390000	780000	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
Isopropylbenzene (Cumene)	ug/kg	-	-	-	-	-	-	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
Methyl Acetate	ug/kg	-	-	-	-	-	-	-	-	5600 U	19000 U	84000 U	na	85000 U	na	180000 U
Methyl Ethyl Ketone (2-Butanone)	ug/kg	120	120	100000	100000	500000	1000000	100000	-	5600 U	19000 U	84000 U	na	85000 U	na	180000 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ug/kg	-	-	-	-	-	-	-	-	5600 U	19000 U	84000 U	na	85000 U	na	180000 U
Mathyleyelahayana	110 /1									1100 11	2000 11	17000 11	***	17000 11	***	25000 11
Methylcyclohexane Methylene Chloride	ug/kg ug/kg	50	- 50	- 51000	100000	500000	1000000	12000	-	1100 U 1100 U	3800 U 3800 U	17000 U 17000 U	na na	17000 U 17000 U	na na	35000 U 35000 U
Styrene	ug/kg ug/kg	-	-	-	-	-	-	-	-	1100 U	3800 U	17000 U 17000 U	na na	17000 U 17000 U	na na	35000 U
Tert-Butyl Methyl Ether	ug/kg ug/kg	930	930	62000	100000	500000	1000000	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
Tetrachloroethylene (PCE)	ug/kg ug/kg	1300	1300	5500	19000	150000	300000	2000	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
Toluene	ug/kg	700	700	100000	100000	500000	1000000	36000	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
Trans-1,2-Dichloroethene	ug/kg	190	190	100000	100000	500000	1000000	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
	ug/kg	-	-	-	-	-	-	-	-	1100 U	3800 U	17000 U	na	17000 U	na	35000 U
Trans-1,3-Dichloropropene																
Trichloroethylene (TCE)	ug/kg	470	470	10000	21000	200000	400000	2000	-	370000	220000	680000	na	950000	na	830000
* *		470 - 20	470 - 20	10000 - 210	21000 - 900	200000 - 13000	400000 - 27000	2000	-	370000 1100 U 1100 U	220000 3800 U 3800 U	680000 17000 U 17000 U	na na na	950000 17000 U 17000 U	na na na	830000 35000 U 35000 U

μg/kg - microgram per kilogram

mg/kg - milligrams per kilogram

U - Compound not detected J - Estimated value

UJ - Estimated Non-Detect

N - Primary sample

FD - Field duplicate sample

ft bgs - Feet below ground surface

na - Sample not analyzed for this parameter

IRM PDI - Interim Remedial Measure Pre-Design Investigation Shaded value indicates value equal to, or greater than, standard or guidance.

NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and Regulations (6 NYC

USEPA Screening Values for PFOA and PFOS developed by USEPA based on the Health Advisory for PFOA and PFOS of 70 nanogra

NYS Unrestricted Use SCO

NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO

NYS Commercial Use SCO

NYS Industrial Use SCO NYS Protection of Ecological Resources SCO

									Location ID:	JS-B-039	JS-B-039	JS-B-039	JS-B-039	JS-B-041	JS-B-043	JS-B-044
									Sample Date:	4/20/2018	4/20/2018	4/20/2018	4/20/2018	4/18/2018	4/18/2018	4/19/2018
										13-14 ft	13-15 ft	19-20 ft	19-20 ft	16-18 ft	10-12 ft	17-19 ft
							Sa	mple Dept San	th (ft bgs): uple Type:	N	N	N	N	N	N	N
		NY375	NY375	NY375	NY375	NY375	NY375	NY375	USEPA Screen							
Constituent	Units	1UNRES	2RPGW	3RRES		5RCOMM	6RINDU	7PER	Value							
Perfluorinated Alkyl Compounds (PFAS) by USE		d 537-1.1 n	ıodified								0.04.77		0.04.77	0.00.11	0.04.77	0.0.4.1
Perfluorobutanesulfonic acid (PFBS) Perfluorobutanoic Acid	ng/g	-	-	-	-	-	-	-	-	na na	0.21 U 0.22 U	na na	0.21 U 0.23 U	0.23 U 0.25 U	0.21 U 0.23 U	0.2 U 0.21 U
Perfluorodecane Sulfonic Acid	ng/g ng/g	-	-	-	-	-	-	-	-	na	0.22 U 0.21 U	na	0.23 U 0.21 U	0.23 U	0.23 U 0.21 U	0.21 U
Perfluorodecanoic acid (PFDA)	ng/g	-	-	-	-	-	-	-	-	na	0.3 J	na	0.29 J	0.28 U	0.29 J	0.24 U
Perfluorododecanoic acid (PFDoA)	ng/g	-	-	-	-	-	-	-	-	na	0.32 U	na	0.33 U	0.36 U	0.32 U	0.31 U
Perfluoroheptane Sulfonate (PFHPS)	ng/g	-	-	-	-	-	-	-	-	na	0.17 U	na	0.18 U	0.19 U	0.18 U	0.17 U
Perfluoroheptanoic acid (PFHpA)	ng/g	-	-	-	-	-	-	-	-	na	0.38 J	na	0.36 J	0.3 U	0.32 J	0.41 J
Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanoic acid (PFHxA)	ng/g	-	-	-	-	-	-	-	-	na	0.21 U 0.26 U	na	0.21 U 0.26 U	0.23 U 0.29 U	0.21 U 0.26 U	0.27 J 0.25 U
Perfluorononanoic acid (PFNA)	ng/g ng/g	-	-	-	-	-	-	-	-	na na	0.28 U	na na	0.26 U 0.27 U	0.29 U	0.28 U	0.23 U
Perfluorooctane Sulfonamide (FOSA)	ng/g	_	_	_	_	_	-	_	-	na	0.16 U	na	0.17 U	0.18 U	0.16 U	0.16 U
Perfluorooctanesulfonic acid (PFOS)	ng/g	-	-	-	-	-	-	-	6270	na	0.21 U	na	0.21 U	0.23 U	0.21 U	0.2 U
Perfluorooctanoic acid (PFOA)	ng/g	-	-	-	-	-	-	-	15600	na	0.81 J	na	0.33 J	0.25 U	0.93 J	2.4 J
Perfluoropentanoic Acid (PFPeA)	ng/g	-	-	-	-	-	-	-	-	na	0.23 U	na	0.24 U	0.26 U	0.24 U	0.23 U
Perfluorotetradecanoic acid (PFTA)	ng/g	-	-	-	-	-	-	-	-	na	0.46 U	na	0.47 U	0.52 U	0.47 U	0.45 U
Perfluorotridecanoic Acid (PFTriA) Perfluoroundecanoic Acid (PFUnA)	ng/g	-	-	-	-	-	-	-	_ [na na	0.2 U 0.38 U	na na	0.19 U 0.37 U	0.21 U 0.37 J	0.21 U 0.33 U	0.28 U 0.34 U
SODIUM 1H,1H,2H,2H-PERFLUORODECANE	ng/g ng/g	-	-	-	-	-	-	-	_ [na na	0.38 U 0.27 U	na na	0.37 U 0.28 U	0.37 J 0.3 U	0.33 U 0.27 U	0.34 U 0.26 U
SULFONATE (8:2)	6/ B										0.2, 0	-144	0.20 0	0.0 0	J, J	0.20 0
SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE	ng/g	-	-	-	-	-	-	-	-	na	0.21 U	na	0.21 U	0.23 U	0.21 U	0.2 U
SULFONATE (6:2)	-															
NEtFOSAA	ng/g	-	-	-	-	-	-	-	-	na	0.14 U	na	0.14 U	0.15 U	0.14 U	0.13 U
NMeFOSAA	ng/g	-	-	-	-	-	-	-	-	na	0.11 U	na	0.11 U	0.14 J	0.52 U	0.099 U
Total Organic Carbon by Lloyd Kahn Method	/1										2700	2240		21.00	2210	2060
Total Organic Carbon pH by Standard Method 9045D	mg/kg	-	-	-	-	-	-	-	-	na	2700	2240	na	2100	2210	2060
рН оу Зипиини местой эочэр рН	pH units	_	_	_	_	_	_	_	_	na	7.6	8.1	na	8.5	8	8
P11	pri unio									114	7.0	0.1	114	0.5	O	O
Volatile Organic Compounds (VOCs) by USEPA	Method 82	260														
1,1,1-Trichloroethane (TCA)	ug/kg	680	680	100000	100000	500000	1000000	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
1,1,2,2-Tetrachloroethane	ug/kg	-	-	-	-	-	-	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	-	-	-	-	-	-	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
1,1,2-Trichloroethane	ug/kg	-	-	-	-	-	-	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
1,1-Dichloroethane	ug/kg	270	270	19000	26000	240000	480000	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
1,1-Dichloroethene	ug/kg	330	330	100000	100000	500000	1000000	-	-	17000 U	na	6500 U 6500 U	na	6.3 U 6.3 U	600 U 600 U	na
1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane	ug/kg ug/kg	-	-	_	-	-	-	_	-	17000 U 17000 U	na na	6500 U	na na	6.3 U	600 U	na na
1,2-Dibromoethane (Ethylene Dibromide)	ug/kg ug/kg	-	-	-	-	-	-	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
1,2-Dichlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	_	-	17000 U	na	6500 U	na	6.3 U	600 U	na
1,2-Dichloroethane	ug/kg	20	20	2300	3100	30000	60000	10000	-	17000 U	na	6500 U	na	6.3 U	600 U	na
1,2-Dichloropropane	ug/kg	-	-	-	-	-	-	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
1,3-Dichlorobenzene	ug/kg	2400	2400	17000	49000	280000	560000	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
1,4-Dichlorobenzene	ug/kg	1800	1800	9800	13000	130000	250000	20000	-	17000 U	na	6500 U	na	6.3 U	600 U	na
2-Hexanone	ug/kg	-	-	-	-	-	-	-	-	84000 U	na	32000 U	na	32 U	3000 U	na
Acetone	ug/kg	50	50	100000	100000	500000	1000000	2200	-	84000 U 17000 U	na	32000 U 6500 U	na	31 J 6.3 U	3000 U 600 U	na
Benzene Bromodichloromethane	ug/kg ug/kg	60	60	2900	4800	44000	89000	70000	-	17000 U 17000 U	na na	6500 U	na na	6.3 U	600 U	na na
Bromoform	ug/kg ug/kg	-	-	-	-	-	-	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Bromomethane	ug/kg	_	_	_	_	-	-	_	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Carbon Disulfide	ug/kg	-	-	-	-	-	-	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Carbon Tetrachloride	ug/kg	760	760	1400	2400	22000	44000	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Chlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	40000	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Chloroethane	ug/kg	-	-	-	-	-	-	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Chloromothono	ug/kg	370	370	10000	49000	350000	700000	12000	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Cis 1.2 Dichloroothylono	ug/kg	- 250	- 250	50000	100000	500000	1000000	-	-	17000 U 17000 U	na	6500 U	na	6.3 U	600 U 950	na
Cis-1,2-Dichloroethylene Cis-1,3-Dichloropropene	ug/kg ug/kg	250	250	59000	100000	500000	1000000	-	-	17000 U 17000 U	na na	6500 U 6500 U	na na	6.3 U 6.3 U	950 600 U	na na
Cis-1,5-Dichioropropene Cyclohexane	ug/kg ug/kg	-	-	-	-	-	-	-	_	17000 U 17000 U	na na	6500 U	na na	6.3 U	600 U	na na
Dibromochloromethane	ug/kg ug/kg	-	-	-	-	-	-	-	_	17000 U	na	6500 U	na	6.3 UJ	600 U	na
Dichlorodifluoromethane	ug/kg	-	-	-	-	-	-	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Ethylbenzene	ug/kg	1000	1000	30000	41000	390000	780000	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Isopropylbenzene (Cumene)	ug/kg	-	-	-	-	-	-	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Methyl Acetate	ug/kg	-	-	100000	100000	-	1000000	100000	-	84000 U	na	32000 U	na	32 U	3000 U	na
Methyl Ethyl Ketone (2-Butanone)	ug/kg	120	120	100000	100000	500000	1000000	100000	-	84000 U 84000 U	na na	32000 U 32000 U	na na	32 U 32 U	3000 U 3000 U	na
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ug/kg	-	-	-	-	-	-	-	-	04000 U	na	32000 U	na	32 U	3000 U	na
Methylcyclohexane	ug/kg	_	-	-	-	-	-	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Methylene Chloride	ug/kg	50	50	51000	100000	500000	1000000	12000	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Styrene	ug/kg	-	-	-	-	-	-	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Tert-Butyl Methyl Ether	ug/kg	930	930	62000	100000	500000	1000000	-	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Tetrachloroethylene (PCE)	ug/kg	1300	1300	5500	19000	150000	300000	2000	-	17000 U	na	6500 U	na	6.3 UJ	21000	na
Toluene	ug/kg	700	700	100000	100000	500000	1000000	36000	-	17000 U	na	6500 U	na	6.3 U	600 U	na
Trans-1,2-Dichloroethene	ug/kg	190	190	100000	100000	500000	1000000	-	-	17000 U	na	6500 U	na	6.3 UJ	600 U	na
Trans-1,3-Dichloropropene Trichloropthylono (TCF)	ug/kg	- 470	- 470	10000	- 21000	200000	400000	2000	- 1	17000 U	na na	6500 U	na na	6.3 U	600 U	na
Trichloroethylene (TCE)	ug/kg	470	470	10000	21000	200000	400000	2000	-	1300000	na	190000	na	6.3 U	14000	na
* * *	110 /1.~									17000 11	20.0	6500	***	6211	6001	
Trichlorofluoromethane Vinyl Chloride	ug/kg ug/kg	- 20	20	- 210	900	13000	27000	-		17000 U 17000 U	na na	6500 U 6500 U	na na	6.3 U 6.3 U	600 U 600 U	na na

 $\mu g/kg$ - microgram per kilogram

mg/kg - milligrams per kilogram

U - Compound not detected J - Estimated value

UJ - Estimated Value
UJ - Estimated Non-Detect

N - Primary sample

FD - Field duplicate sample ft has - Feet below ground sur

ft bgs - Feet below ground surface

na - Sample not analyzed for this parameter

IRM PDI - Interim Remedial Measure Pre-Design Investigation

Shaded value indicates value equal to, or greater than, standard or guidance.

NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and Regulations (6 NYC).

USEPA Screening Values for PFOA and PFOS developed by USEPA based on the Health Advisory for PFOA and PFOS of 70 nanogra

NYS Unrestricted Use SCO

NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO

NYS Commercial Use SCO NYS Industrial Use SCO

									Location ID:	JS-B-044	JS-B-044	JS-B-046	JS-B-047	JS-B-047	JS-B-048	JS-B-048
									Sample Date:	4/19/2018	4/30/2018	4/19/2018	4/19/2018	4/19/2018	4/23/2018	4/23/201
										18-19 ft	18-19 ft	12-14 ft	4-6 ft	10-12 ft	10-11 ft	10-12 ft
							Sa	mple Dept Sam	th (ft bgs): uple Type:	N	N	N	N	N	N	N
		NY375	NY375	NY375	NY375	NY375	NY375	NY375	USEPA Screen							
Constituent	Units	1UNRES	2RPGW	3RRES		5RCOMM	6RINDU	7PER	Value							
Perfluorinated Alkyl Compounds (PFAS) by USE		d 537-1.1 n	nodified									0.04.77	0.4577	0.00.77		0.00.11
Perfluorobutanesulfonic acid (PFBS)	ng/g	-	-	-	-	-	-	-	-	na	na	0.21 U	0.17 U	0.22 U	na	0.22 U
Perfluorobutanoic Acid Perfluorodecane Sulfonic Acid	ng/g ng/g	-	-	-	-	-	-	-	-	na na	na na	0.22 U 0.21 U	0.18 U 0.17 U	0.23 U 0.22 U	na na	0.23 U 0.22 U
Perfluorodecanoic acid (PFDA)	ng/g	-	-	-	-	-	-	-	-	na	na	0.21 J	0.24 J	0.22 J	na	0.22 U
Perfluorododecanoic acid (PFDoA)	ng/g	-	-	-	-	-	-	-	-	na	na	0.31 U	0.26 U	0.33 U	na	0.34 U
Perfluoroheptane Sulfonate (PFHPS)	ng/g	-	-	-	-	-	-	-	-	na	na	0.17 U	0.14 U	0.18 U	na	0.18 U
Perfluoroheptanoic acid (PFHpA)	ng/g	-	-	-	-	-	-	-	-	na	na	0.31 J	0.34 J	0.28 U	na	0.34 J
Perfluorohexanesulfonic acid (PFHxS)	ng/g	-	-	-	-	-	-	-	-	na	na	0.21 U	0.17 U	0.22 U	na	0.22 U
Perfluorohexanoic acid (PFHxA)	ng/g	-	-	-	-	-	-	-	-	na	na	0.25 U	0.21 U	0.27 U	na	0.27 L
Perfluorononanoic acid (PFNA) Perfluorooctane Sulfonamide (FOSA)	ng/g	-	-	-	-	-	-	-	-	na na	na na	0.29 J 0.16 U	0.19 J 0.13 U	0.23 U 0.17 U	na na	0.25 J 0.17 L
Perfluorooctane sunonamue (POSA)	ng/g ng/g	-	-	-	-	-	-	-	6270	na	na	0.16 U 0.21 U	0.13 U 0.17 U	0.17 U 0.22 U	na	0.17 C
Perfluorooctanoic acid (PFOA)	ng/g	_	_	_	_	_	_	_	15600	na	na	0.94 J	9.3	1.3 J	na	1.2 J
Perfluoropentanoic Acid (PFPeA)	ng/g	_	-	_	_	-	-	_	-	na	na	0.23 U	0.19 U	0.24 U	na	0.25 U
Perfluorotetradecanoic acid (PFTA)	ng/g	-	-	-	-	-	-	-	-	na	na	0.46 U	0.38 U	0.48 U	na	0.49 U
Perfluorotridecanoic Acid (PFTriA)	ng/g	-	-	-	-	-	-	-	-	na	na	0.21 U	0.15 U	0.19 U	na	0.2 U
Perfluoroundecanoic Acid (PFUnA)	ng/g	-	-	-	-	-	-	-	-	na	na	0.35 U	0.31 U	0.33 U	na	0.32 U
ODIUM 1H,1H,2H,2H-PERFLUORODECANE SULFONATE (8:2)	ng/g	-	-	-	-	-	-	-	-	na	na	0.27 U	0.22 U	0.28 U	na	0.29 L
ODIUM 1H,1H,2H,2H-PERFLUOROOCTANE	ng/g	-	-	-	-	-	-	-	-	na	na	0.21 U	0.17 U	0.22 U	na	0.22 U
SULFONATE (6:2)	m=1:											01417	0.11.17	01417		0.40*
NEtFOSAA NMeFOSAA	ng/g ng/g	-	-	-	-	-	-	-	-	na na	na na	0.14 U 0.55 U	0.11 U 0.25 U	0.14 U 0.11 U	na na	0.48 J 0.31 U
Total Organic Carbon by Lloyd Kahn Method																
otal Organic Carbon OH by Standard Method 9045D	mg/kg	-	-	-	-	-	-	-	-	na	na	1930	55700	3770	na	3220
эH	pH units	-	-	-	-	-	-	-	-	na	8.1	8.3	7.8	8.3	na	8.2
Volatile Organic Compounds (VOCs) by USEPA	Mathod 82	260														
			680	100000	100000	500000	1000000			1400 U		160 U	2500 I	160 U	7.4 U	
,1,1-Trichloroethane (TCA) ,1,2,2-Tetrachloroethane	ug/kg ug/kg	680	680	100000	100000	500000	1000000	-	-	1400 U 1400 U	na na	160 U	3500 J 8300 U	160 U	7.4 U 7.4 U	na na
,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg ug/kg	-	-	-	-	-	-	-	_ [1400 U	na	160 U	8300 U	160 U	7.4 U 7.4 U	na
,1,2-Trichloroethane	ug/kg	_	_	_	_	_	_	_	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
,1-Dichloroethane	ug/kg	270	270	19000	26000	240000	480000	-	- 1	2700 J	na	550	8300 U	160 U	3.7 J	na
,1-Dichloroethene	ug/kg	330	330	100000	100000	500000	1000000	-	-	730 J	na	160 U	8300 U	160 U	6.8 J	na
,2,4-Trichlorobenzene	ug/kg	-	-	-	-	-	-	-	- [1400 U	na	160 U	8300 U	160 U	7.4 U	na
,2-Dibromo-3-Chloropropane	ug/kg	-	-	-	-	-	-	-	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
,2-Dibromoethane (Ethylene Dibromide)	ug/kg	-	-	-	-		-	-	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
,2-Dichlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	-	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
,2-Dichloroethane ,2-Dichloropropane	ug/kg	20	20	2300	3100	30000	60000	10000	-	1400 U	na	160 U	8300 U	160 U 160 U	7.4 U 7.4 U	na
,,2-Dichloropropane ,,3-Dichlorobenzene	ug/kg ug/kg	2400	2400	- 17000	49000	280000	560000	-	-	1400 U 1400 U	na	160 U 160 U	8300 U 8300 U	160 U	7.4 U 7.4 U	na
,4-Dichlorobenzene	ug/kg ug/kg	1800	1800	9800	13000	130000	250000	20000	-	1400 U	na na	160 U	8300 U	160 U	7.4 U 7.4 U	na na
!-Hexanone	ug/kg ug/kg	-	-	-	-	-	-	-	- 1	7200 U	na	800 U	42000 U	820 U	37 U	na
Acetone	ug/kg	50	50	100000	100000	500000	1000000	2200	<u> -</u>	7200 U	na	800 U	42000 U	820 U	37 U	na
Benzene	ug/kg	60	60	2900	4800	44000	89000	70000	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Bromodichloromethane	ug/kg	-	-	-	-	-	-	-	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Bromoform	ug/kg	-	-	-	-	-	-	-	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Bromomethane	ug/kg	-	-	-	-	-	-	-	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Carbon Disulfide	ug/kg	-	-	-	-	-	-	-	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Carbon Tetrachloride	ug/kg	760	760	1400	2400	22000	44000	-	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Chlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	40000	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Chloroethane	ug/kg	- 270	-	10000	-	-	700000	12000	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Chloroform	ug/kg	370	370	10000	49000	350000	700000	12000	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Chloromethane	ug/kg	250	250	- 59000	100000	500000	1000000	-	-	1400 U 1400 U	na	160 U 160 U	8300 U 4900 J	160 U 1200	7.4 U 40	na
Cis-1,2-Dichloroethylene Cis-1,3-Dichloropropene	ug/kg ug/kg	250	250	J9000 -	-	500000		-	-	1400 U 1400 U	na na	160 U	8300 U	160 U	7.4 U	na na
Cyclohexane	ug/kg ug/kg	-	-	-	-	-	-	-	_	1400 U	na	160 U	8300 U	160 U	7.4 U 7.4 U	na
Dibromochloromethane	ug/kg ug/kg	_	_	_	_	-	-	_	_	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Dichlorodifluoromethane	ug/kg	-	-	-	-	-	-	-	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
thylbenzene	ug/kg	1000	1000	30000	41000	390000	780000	-	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
sopropylbenzene (Cumene)	ug/kg	-	-	-	-	-	-	-	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Methyl Acetate	ug/kg	-	-	-	-	-	-	-	-	7200 U	na	800 U	42000 U	820 U	37 U	na
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ug/kg ug/kg	120	120	100000	100000	500000	1000000	100000	-	7200 U 7200 U	na na	800 U 800 U	42000 U 42000 U	820 U 820 U	37 U 37 U	na na
	~6/ № 6	-	-	-	-	-	-	-		. 200 0	114	555 5	12000 0	020 0	0, 0	110
Methylcyclohexane	ug/kg	-	-	-	-	-	-	-	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Methylene Chloride	ug/kg	50	50	51000	100000	500000	1000000	12000	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Styrene	ug/kg	- 020	- 020	-	100000	-	1000000	-	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Cert-Butyl Methyl Ether	ug/kg	930	930	62000	100000	500000	1000000	2000	-	1400 U	na	160 U	8300 U	160 U	7.4 U	na
Cetrachloroethylene (PCE) Coluene	ug/kg	1300	1300	5500 100000	19000	150000	300000	2000	-	1400 U 1400 U	na	160 U 160 U	8300 U 8300 U	180 160 U	3.2 J 7.4 U	na
Trans-1,2-Dichloroethene	ug/kg ug/kg	700 190	700 190	100000 100000	100000 100000	500000 500000	1000000 1000000	36000 -	-	1400 U 1400 U	na na	160 U	8300 U 8300 U	64 J	7.4 U 2.3 J	na na
rans-1,2-Dichloroethene Trans-1,3-Dichloropropene	ug/kg ug/kg	190 -	190	-	-	500000	1000000	-	- [1400 U	na na	160 U	8300 U 8300 U	160 U	2.3 J 7.4 U	na na
Frichloroethylene (TCE)	ug/kg ug/kg	470	470	10000	21000	200000	400000	2000		73000	na	670	260000	28000	7.4 0	na
Frichlorofluoromethane	ug/kg ug/kg	-	-	-	-	-	-	-		1400 U	na	160 U	8300 U	160 U	7.4 U	na
/inyl Chloride	ug/kg ug/kg	20	20	210	900	13000	27000	-	- 1	1400 U	na	160 U	8300 U	160 U	7.4 U	na
	0,6				100000	500000				2900 U		320 U				

 $\mu g/kg$ - microgram per kilogram

mg/kg - milligrams per kilogram

U - Compound not detected J - Estimated value

UJ - Estimated Value
UJ - Estimated Non-Detect

N - Primary sample

FD - Field duplicate sample

ft bgs - Feet below ground surface

na - Sample not analyzed for this parameter

IRM PDI - Interim Remedial Measure Pre-Design Investigation

Shaded value indicates value equal to, or greater than, standard or guidance.

NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and Regulations (6 NYC USEPA Screening Values for PFOA and PFOS developed by USEPA based on the Health Advisory for PFOA and PFOS of 70 nanogra

NYS Unrestricted Use SCO

NYS Unrestricted Use SCO
NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO

NYS Commercial Use SCO NYS Industrial Use SCO

									Location ID:	JS-B-049	JS-B-049	JS-B-050	JS-B-052	JS-B-052	JS-B-052	JS-B-052
									Sample Date:	4/23/2018	4/23/2018	4/24/2018	4/30/2018	4/30/2018	4/30/2018	4/30/201
							Sa	mple Dept	th (ft bgs):	14-16 ft	15-16 ft	13-14 ft	8-9 ft	8-10 ft	10-12 ft	10-12 ft
								Sam	ple Type: USEPA	N	N	N	N	N	N	N
Complituoret	I Imito	NY375 1UNRES	NY375	NY375 3RRES	NY375	NY375 5RCOMM	NY375 6RINDU	NY375 7PER	Screen Value							
Constituent Perfluorinated Alkyl Compounds (PFAS) by USE	Units PA Metho			SKKES	4KKKES	3KCOWIWI	OKINDU	/FEK	varue							
Perfluorobutanesulfonic acid (PFBS)	ng/g	-	-	_	_	_	-	_	-	0.22 U	na	0.19 U	na	0.2 U	na	0.19 U
Perfluorobutanoic Acid	ng/g	-	-	-	-	-	-	-	-	0.23 U	na	0.2 U	na	0.21 U	na	0.2 U
Perfluorodecane Sulfonic Acid	ng/g	-	-	-	-	-	-	-	-	0.22 U	na	0.19 U	na	0.2 U	na	0.19 U
Perfluorodecanoic acid (PFDA)	ng/g	-	-	-	-	-	-	-	-	0.28 J	na	0.22 U	na	0.24 U	na	0.24 J
Perfluorododecanoic acid (PFDoA)	ng/g	-	-	-	-	-	-	-	-	0.33 U	na	0.28 U	na	0.31 U	na	0.29 U
Perfluoroheptane Sulfonate (PFHPS)	ng/g	-	-	-	-	-	-	-	-	0.18 U	na	0.15 U	na	0.17 U	na	0.16 U
Perfluoroheptanoic acid (PFHpA)	ng/g	-	-	-	-	-	-	-	-	0.33 J	na	0.25 J	na	0.32 U	na	0.31 U
Perfluorohexanesulfonic acid (PFHxS)	ng/g	-	-	-	-	-	-	-	-	0.22 U 0.27 U	na	0.22 J	na	0.2 U	na	0.19 U
Perfluorohexanoic acid (PFHxA) Perfluorononanoic acid (PFNA)	ng/g	-	-	-	-	-	-	-	-	0.27 U 0.24 J	na	0.23 U 0.23 J	na na	0.25 U 0.3 U	na na	0.23 U 0.27 U
Perfluorooctane Sulfonamide (FOSA)	ng/g ng/g	_	-	_	_	-	-	_		0.24 J 0.17 U	na na	0.23 J 0.14 U	na na	0.3 U 0.16 U	na na	0.27 U
Perfluorooctane sunonamuce (PSOS)	ng/g	_	_	_	_	-	_	_	6270	0.17 U	na	0.14 U	na	0.10 U	na	0.19 U
Perfluorooctanoic acid (PFOA)	ng/g	_	_	_	_	_	_	_	15600	0.31 J	na	0.52 J	na	1.7	na	0.77 J
Perfluoropentanoic Acid (PFPeA)	ng/g	_	_	_	_	-	-	_	-	0.24 U	na	0.21 U	na	0.23 U	na	0.21 U
Perfluorotetradecanoic acid (PFTA)	ng/g	-	-	-	-	-	-	-	-	0.48 U	na	0.41 U	na	0.45 U	na	0.41 U
Perfluorotridecanoic Acid (PFTriA)	ng/g	-	-	-	-	-	-	-	-	0.19 U	na	0.16 U	na	0.18 U	na	0.17 U
Perfluoroundecanoic Acid (PFUnA)	ng/g	-	-	-	-	-	-	-	-	0.37 U	na	0.27 U	na	0.3 U	na	0.27 U
ODIUM 1H,1H,2H,2H-PERFLUORODECANE ULFONATE (8:2)	ng/g	-	-	-	-	-	-	-	-	0.28 U	na	0.24 U	na	0.26 U	na	0.24 U
ODIUM 1H,1H,2H,2H-PERFLUOROOCTANE	ng/g	-	-	-	-	-	-	-	-	0.22 U	na	0.19 U	na	0.2 U	na	0.19 U
SULFONATE (6:2) NEtFOSAA	ng/g	_	_	_	_	-	_	_	_	0.14 U	na	0.12 U	na	0.13 U	na	0.12 U
NMeFOSAA	ng/g ng/g	-	-	-	-	-	-	-	-	0.35 U	na	0.12 U 0.091 U	na	0.13 U 0.099 U	na	0.12 U 0.092 U
Total Organic Carbon by Lloyd Kahn Method Total Organic Carbon	mg/kg	_	_	_	_	_	_	_	_	2670 J	na	3230	na	3060	30400	na
pH by Standard Method 9045D										•						
Н	pH units	-	-	-	-	-	-	-	-	8.1	na	8	na	8.1	7.7	na
Volatile Organic Compounds (VOCs) by USEPA	Method 82	260														
,1,1-Trichloroethane (TCA)	ug/kg	680	680	100000	100000	500000	1000000	_	- I	na	27000 U	27000 U	3 J	na	8.7 U	na
,1,2,2-Tetrachloroethane	ug/kg	-	-	-	-	-	-	_	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	-	-	-	-	-	-	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
,1,2-Trichloroethane	ug/kg	-	-	-	-	-	-	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
,1-Dichloroethane	ug/kg	270	270	19000	26000	240000	480000	-	-	na	27000 U	27000 U	3.6 J	na	4.8 J	na
,1-Dichloroethene	ug/kg	330	330	100000	100000	500000	1000000	-	-	na	27000 U	27000 U	0.82 J	na	5.8 J	na
.,2,4-Trichlorobenzene	ug/kg	-	-	-	-	-	-	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
,2-Dibromo-3-Chloropropane	ug/kg	-	-	-	-	-	-	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
1,2-Dibromoethane (Ethylene Dibromide)	ug/kg	-	-	-	-	-	-	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
1,2-Dichlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
,2-Dichloroethane	ug/kg	20	20	2300	3100	30000	60000	10000	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
1,2-Dichloropropane	ug/kg	2400	2400	17000	40000	200000	- E60000	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
,3-Dichlorobenzene ,4-Dichlorobenzene	ug/kg	2400 1800	2400 1800	17000 9800	49000 13000	280000 130000	560000 250000	20000	-	na	27000 U 27000 U	27000 U 27000 U	4.5 U 4.5 U	na	8.7 U 8.7 U	na
2-Hexanone	ug/kg ug/kg	1000	-	-	-	-	250000	-	-	na na	130000 U	130000 U	4.5 U	na na	43 U	na na
Acetone	ug/kg ug/kg	50	50	100000	100000	500000	1000000	2200	-	na	130000 U	130000 U	39	na	23 J	na
Benzene	ug/kg ug/kg	60	60	2900	4800	44000	89000	70000	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
Bromodichloromethane	ug/kg	-	-	-	-	-	-	-	- I	na	27000 U	27000 U	4.5 U	na	8.7 U	na
Bromoform	ug/kg	-	-	-	-	-	-	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
Bromomethane	ug/kg	-	-	-	-	-	-	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
Carbon Disulfide	ug/kg	-	-	-	-	-	-	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
Carbon Tetrachloride	ug/kg	760	760	1400	2400	22000	44000	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
Chlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	40000	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
Chloroethane	ug/kg	-	-	-	-	-	-	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
Chloroform	ug/kg	370	370	10000	49000	350000	700000	12000	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
Chloromethane	ug/kg	-	-	-	-	-	40000	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
Cis-1,2-Dichloroethylene	ug/kg	250	250	59000	100000	500000	1000000	-	-	na	9800 J	27000 U	5.1	na	15	na
Cis-1,3-Dichloropropene	ug/kg	-	-	-	-	-	-	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
Cyclohexane Dibromochloromethane	ug/kg	-	-	-	-	-	-	-	-	na	27000 U 27000 U	27000 U 27000 U	4.5 U 4.5 U	na	8.7 U 8.7 U	na
Dibromochloromethane Dichlorodifluoromethane	ug/kg ug/kg	-	-	-	-	-	-	-	-	na na	27000 U 27000 U	27000 U 27000 U	4.5 U 4.5 U	na na	8.7 U 8.7 U	na na
Ethylbenzene	ug/kg ug/kg	1000	1000	30000	41000	390000	780000	-	_ [na na	27000 U 27000 U	27000 U 27000 U	4.5 U	na na	8.7 U	na na
sopropylbenzene (Cumene)	ug/kg ug/kg	-	-	-	-	-	-	-	-	na	27000 U	27000 U	1.2 J	na	8.7 U	na
Methyl Acetate	ug/kg	-	-	-	-	-	-	-	-	na	130000 U	130000 U	22 U	na	43 U	na
Methyl Ethyl Ketone (2-Butanone)	ug/kg	120	120	100000	100000	500000	1000000	100000	-	na	130000 U	130000 U	4.2 J	na	43 U	na
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ug/kg	-	-	-	-	-	-	-	-	na	130000 U	130000 U	22 U	na	43 U	na
Methylcyclohexane	ug/kg	-	-	-	-	-	-	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
Methylene Chloride	ug/kg	50	50	51000	100000	500000	1000000	12000	-	na	27000 U	27000 U	2.2 J	na	4.6 J	na
Styrene	ug/kg	-	-	-	-	-	-	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
ert-Butyl Methyl Ether	ug/kg	930	930	62000	100000	500000	1000000	-	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
Cetrachloroethylene (PCE)	ug/kg	1300	1300	5500	19000	150000	300000	2000	-	na	27000 U	27000 U	2.8 J	na	8.7 U	na
Coluene	ug/kg	700	700	100000	100000	500000	1000000	36000	-	na	27000 U	27000 U	0.74 J	na	8.7 U	na
Frans-1,2-Dichloroethene	ug/kg	190	190	100000	100000	500000	1000000	-	-	na	27000 U	27000 U	0.92 J	na	1.2 J	na
Frans-1,3-Dichloropropene	ug/kg	- 470	- 470	10000	21000	200000	400000	2000	-	na	27000 U	27000 U	4.5 U	na	8.7 U	na
Frichloroethylene (TCE) Frichlorofluoromethane	ug/kg	470	470	10000	21000	200000	400000	2000	-	na	950000 27000 U	980000 27000 U	23 4 5 HH	na	11000 8.7 I II	na
ricinoroniuorometnane	ug/kg	-	-	-	-	-	-	-	-	na			4.5 UJ	na	8.7 UJ	na
inyl Chloride	ug/kg	20	20	210	900	13000	27000	_	- 1	na	27000 U	27000 U	2.5 J	na	2.2 J	na

μg/kg - microgram per kilogram

mg/kg - milligrams per kilogram

U - Compound not detected J - Estimated value

UJ - Estimated Non-Detect

N - Primary sample

FD - Field duplicate sample

ft bgs - Feet below ground surface

na - Sample not analyzed for this parameter

IRM PDI - Interim Remedial Measure Pre-Design Investigation

Shaded value indicates value equal to, or greater than, standard or guidance. NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and Regulations (6 NYC

USEPA Screening Values for PFOA and PFOS developed by USEPA based on the Health Advisory for PFOA and PFOS of 70 nanogra

NYS Unrestricted Use SCO

NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO

NYS Commercial Use SCO NYS Industrial Use SCO

									Location ID:	JS-B-053	JS-B-054	JS-B-054	JS-B-055	JS-B-056	JS-B-056	JS-B-056
									Sample Date:	4/24/2018	4/25/2018	4/25/2018	5/1/2018	5/1/2018	5/1/2018	5/1/2018
							Sa	mple Dept		13-14 ft	10-12 ft	11-12 ft	5-7 ft	8.5-9.5 ft	8.5-9.5 ft	9.5-10 ft
									ple Type:	N	N	N	N	N	SP	N
0	**	NY375	NY375	NY375	NY375	NY375	NY375	NY375	Screen							
Constituent Perfluorinated Alkyl Compounds (PFAS) by USE	Units PA Metho	1UNRES d 537-1.1 n		3RRES	4KKKES	5RCOMM	6RINDU	7PER	Value							
Perfluorobutanesulfonic acid (PFBS)	ng/g	-	-	-	_	_	-	_	-	0.21 U	0.23 U	na	0.2 U	0.2 U	0.24 U	0.22 U
Perfluorobutanoic Acid	ng/g	-	-	-	-	-	-	-	-	0.22 U	0.25 U	na	0.21 U	0.21 U	0.24 U	0.23 U
Perfluorodecane Sulfonic Acid	ng/g	-	-	-	-	-	-	-	-	0.21 U	0.23 U	na	0.2 U	0.2 U	0.35 U	0.22 U
Perfluorodecanoic acid (PFDA)	ng/g	-	-	-	-	-	-	-	-	0.25 U	0.27 U	na	0.92 U	0.24 U	0.24 U	0.26 U
Perfluorododecanoic acid (PFDoA)	ng/g	-	-	-	-	-	-	-	-	0.32 U	0.35 U	na	0.3 U	0.31 U	0.24 U	0.34 U
Perfluoroheptane Sulfonate (PFHPS)	ng/g	-	-	-	-	-	-	-	-	0.17 U	0.19 U	na	0.16 U	0.17 U	0.24 U	0.18 U
Perfluoroheptanoic acid (PFHpA)	ng/g	-	-	-	-	-	-	-	-	0.34 J	0.35 J	na	0.25 U	0.3 U	0.24 U	0.35 U
Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanoic acid (PFHxA)	ng/g	-	-	-	-	-	-	-	-	0.4 J 0.26 U	0.23 U 0.29 U	na	0.2 U 0.24 U	0.2 U 0.25 U	0.24 U 0.24 U	0.22 U 0.27 U
Perfluorononanoic acid (PFNA)	ng/g ng/g	_	-	-	_	-	-	_	_ [0.20 U	0.29 U	na na	0.24 U 0.35 U	0.25 U	0.24 U	0.27 U
Perfluorooctane Sulfonamide (FOSA)	ng/g	-	-	-	-	-	-	-	- 1	0.17 J	0.18 U	na	0.35 U	0.32 U	0.24 U	0.17 U
Perfluorooctanesulfonic acid (PFOS)	ng/g	_	_	-	_	_	_	_	6270	0.21 U	0.23 U	na	0.25 J	0.2 U	0.35 U	0.22 U
Perfluorooctanoic acid (PFOA)	ng/g	-	-	-	-	-	-	-	15600	0.45 J	1.4	na	13	1.5	0.81 J	1.5
Perfluoropentanoic Acid (PFPeA)	ng/g	-	-	-	-	-	-	-	-	0.24 U	0.26 U	na	0.22 U	0.23 U	0.24 UJ	0.25 U
Perfluorotetradecanoic acid (PFTA)	ng/g	-	-	-	-	-	-	-	-	0.47 U	0.51 U	na	0.43 U	0.45 U	0.24 U	0.49 U
Perfluorotridecanoic Acid (PFTriA)	ng/g	-	-	-	-	-	-	-	-	0.21 U	0.21 U	na	0.27 U	0.24 J	0.24 U	0.2 U
Perfluoroundecanoic Acid (PFUnA)	ng/g	-	-	-	-	-	-	-	-	0.44 U	0.38 U	na	0.29 U	0.3 U	0.24 U	0.32 U
SODIUM 1H,1H,2H,2H-PERFLUORODECANE SULFONATE (8:2)	ng/g	-	-	-	-	-	-	-	-	0.27 U	0.3 U	na	0.25 U	0.26 U	0.71 U	0.28 U
SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE SULFONATE (6:2)	ng/g	-	-	-	-	-	-	-	-	0.21 U	0.23 U	na	0.2 U	0.2 U	0.71 U	0.22 U
NEtFOSAA	ng/g	-	-	-	-	-	-	-	-	0.14 U	0.15 U	na	0.13 U	0.13 U	0.59 U	0.14 U
NMeFOSAA Total Organic Carbon by Lloyd Kahn Method	ng/g	-	-	-	-	-	-	-	-	0.32 U	0.12 U	na	0.096 U	0.099 U	0.59 U	0.11 U
Total Organic Carbon	mg/kg	-	-	-	-	-	-	-	-	2620	2790	na	na	1810	na	2430
pH by Standard Method 9045D pH	pH units	_	_	_	_	_	_	_	_	8.2	8	na	na	8.3	na	8.3
	-															
Volatile Organic Compounds (VOCs) by USEPA	Method 82															
1,1,1-Trichloroethane (TCA)	ug/kg	680	680	100000	100000	500000	1000000	-	-	13000 U	na	1900 U	1.5 J	7.1 U	na	78 U
1,1,2,2-Tetrachloroethane	ug/kg	-	-	-	-	-	-	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	-	-	-	-	-	-	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
1,1,2-Trichloroethane 1.1-Dichloroethane	ug/kg	270	270	19000	26000	240000	480000	-	-	13000 U 13000 U	na	1900 U 1900 U	3.9 U 3.9 U	7.1 U 7.1 U	na	78 U 78 U
1,1-Dichloroethane	ug/kg ug/kg	330	330	100000	100000	500000	1000000	_	_ [13000 U	na na	1900 U 1900 U	3.9 U	7.1 U 7.1 U	na na	78 U
1,2,4-Trichlorobenzene	ug/kg ug/kg	-	-	-	-	-	-	-		13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
1,2-Dibromo-3-Chloropropane	ug/kg	_	_	_	_	_	_	_	_	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
1,2-Dibromoethane (Ethylene Dibromide)	ug/kg	-	-	-	-	-	-	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
1,2-Dichlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
1,2-Dichloroethane	ug/kg	20	20	2300	3100	30000	60000	10000	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
1,2-Dichloropropane	ug/kg	-	-	-	-	-	-	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
1,3-Dichlorobenzene	ug/kg	2400	2400	17000	49000	280000	560000	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
1,4-Dichlorobenzene	ug/kg	1800	1800	9800	13000	130000	250000	20000	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
2-Hexanone	ug/kg	-	-	-	-		-	-	-	65000 U	na	9500 U	19 U	36 U	na	390 U
Acetone	ug/kg	50	50	100000	100000	500000	1000000	2200	-	65000 U	na	9500 U	14 J	32 J	na	390 U
Benzene	ug/kg	60	60	2900	4800	44000	89000	70000	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Bromodichloromethane	ug/kg	-	-	-	-	-	-	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Bromoform Bromomethane	ug/kg ug/kg	-	-	-	-	-	-	-	-	13000 U 13000 U	na na	1900 U 1900 U	3.9 U 3.9 U	7.1 U 7.1 U	na na	78 U 78 U
Carbon Disulfide	ug/kg ug/kg	-	-	-	-	-	-	-	_ [13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Carbon Tetrachloride	ug/kg	760	760	1400	2400	22000	44000	_	<u> -</u>	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Chlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	40000	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Chloroethane	ug/kg	-	-	-	-	-	-	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 UJ
Chloroform	ug/kg	370	370	10000	49000	350000	700000	12000	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Chloromethane	ug/kg	-	-	-	-	-	-	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 UJ
Cis-1,2-Dichloroethylene	ug/kg	250	250	59000	100000	500000	1000000	-	-	13000 U	na	2400	0.97 J	3 J	na	59 J
Cis-1,3-Dichloropropene	ug/kg	-	-	-	-	-	-	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Cyclohexane	ug/kg	-	-	-	-	-	-	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Dibromochloromethane	ug/kg	-	-	-	-	-	-	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Dichlorodifluoromethane	ug/kg	1000	1000	20000	41000	200000	700000	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 UJ
Ethylbenzene Konronylbenzene (Cumene)	ug/kg	1000	1000	30000	41000	390000	780000	-	-	13000 U 13000 U	na	1900 U 1900 U	3.9 U 3.9 U	7.1 U 7.1 U	na	78 U 78 U
Isopropylbenzene (Cumene) Methyl Acetate	ug/kg ug/kg	-	-	-	-	-	-	-	-	65000 U	na na	9500 U	3.9 U 19 U	7.1 U 11 J	na na	78 U 390 U
Methyl Ethyl Ketone (2-Butanone)	ug/kg ug/kg	120	120	100000	100000	500000	1000000	100000	-	65000 U	na	9500 U	19 U	36 U	na	390 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ug/kg	-	-	-	-	-	-	-	-	65000 U	na	9500 U	19 U	36 U	na	390 U
Methylcyclohexane	ug/kg	-	-	-	-	-	-	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Methylene Chloride	ug/kg	50	50	51000	100000	500000	1000000	12000	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Styrene	ug/kg	-	-	-	-	-	-	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Геrt-Butyl Methyl Ether	ug/kg	930	930	62000	100000	500000	1000000	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Tetrachloroethylene (PCE)	ug/kg	1300	1300	5500	19000	150000	300000	2000	-	13000 U	na	1900 U	0.52 J	7.1 U	na	78 U
Toluene	ug/kg	700	700	100000	100000	500000	1000000	36000	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Trans-1,2-Dichloroethene	ug/kg	190	190	100000	100000	500000	1000000	-	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Trans-1,3-Dichloropropene	ug/kg	- 470	470	10000	21000	200000	400000	2000	-	13000 U	na	1900 U	3.9 U	7.1 U	na	78 U
Trichloroethylene (TCE)	ug/kg	470	470	10000	21000	200000	400000	2000	-	380000	na	67000	47	11	na	150
Trichlorofluoromothono	110-/1									12000 TT	** *	1000 11	2011	7111	44.4	
Trichlorofluoromethane Vinyl Chloride	ug/kg ug/kg	- 20	20	210	900	13000	27000	-	- 1	13000 U 13000 U	na na	1900 U 1900 U	3.9 UJ 3.9 U	7.1 U 7.1 U	na na	78 UJ 78 UJ

 $\mu g/kg$ - microgram per kilogram

mg/kg - milligrams per kilogram

U - Compound not detected J - Estimated value

UJ - Estimated Value
UJ - Estimated Non-Detect

N - Primary sample

FD - Field duplicate sample

ft bgs - Feet below ground surface

na - Sample not analyzed for this parameter

IRM PDI - Interim Remedial Measure Pre-Design Investigation

Shaded value indicates value equal to, or greater than, standard or guidance.

NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and Regulations (6 NYC).

USEPA Screening Values for PFOA and PFOS developed by USEPA based on the Health Advisory for PFOA and PFOS of 70 nanogra

NYS Unrestricted Use SCO

NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO NYS Commercial Use SCO

NYS Industrial Use SCO

									Location ID:	JS-B-056	JS-B-056	JS-B-057	JS-B-057	JS-B-057	JS-B-057	JS-B-057
									Sample Date:	5/1/2018	5/1/2018	5/1/2018	5/1/2018	5/1/2018	5/1/2018	5/1/2018
							Sa	mple Dep	th (ft bgs):	10-11 ft	44-44.5 ft	10-10.5 ft	10.5-11 ft	11-12 ft	42-44 ft	42-44 ft
									nple Type:	N	N	N	N	N	N	FD
Constituent	Units	NY375 1UNRES	NY375 2RPGW	NY375 3RRES	NY375	NY375 5RCOMM	NY375	NY375 7PER	Screen Value							
Constituent Perfluorinated Alkyl Compounds (PFAS) by USE				SKKES	4KKKE3	SKCOWIVI	OKINDO	/1 EK	v alue							
Perfluorobutanesulfonic acid (PFBS)	ng/g	-	-	-	-	-	-	-	-	0.24 U	0.17 U	0.19 U	0.23 U	0.21 U	0.19 U	0.21 U
Perfluorobutanoic Acid	ng/g	-	-	-	-	-	-	-	-	0.26 U	0.18 U	0.2 U	0.25 U	0.22 U	0.2 U	0.22 U
Perfluorodecane Sulfonic Acid	ng/g	-	-	-	-	-	-	-	-	0.24 U	0.17 U	0.19 U	0.23 U	0.21 U	0.19 U	0.21 U
Perfluorodecanoic acid (PFDA) Perfluorododecanoic acid (PFDoA)	ng/g	-	-	-	-	-	-	-	-	0.31 U 0.37 U	0.2 U 0.26 U	0.24 U 0.28 U	0.33 U 0.35 U	0.28 U 0.32 U	0.28 U 0.29 U	0.29 U 0.32 U
Perfluoroheptane Sulfonate (PFHPS)	ng/g ng/g	-	-	-	-	-	-	-	-	0.37 U	0.26 U 0.14 U	0.25 U	0.33 U 0.19 U	0.32 U 0.18 U	0.29 U 0.16 U	0.32 U 0.17 U
Perfluoroheptanoic acid (PFHpA)	ng/g	-	-	-	-	-	-	-	-	0.43 U	0.29 U	0.24 U	0.32 U	0.32 U	0.25 U	0.32 U
Perfluorohexanesulfonic acid (PFHxS)	ng/g	-	-	-	-	-	-	-	-	0.24 U	0.17 U	0.19 J	0.23 U	0.21 U	0.19 U	0.21 U
Perfluorohexanoic acid (PFHxA)	ng/g	-	-	-	-	-	-	-	-	0.3 U	0.21 U	0.23 U	0.29 U	0.26 U	0.23 U	0.26 U
Perfluorononanoic acid (PFNA)	ng/g	-	-	-	-	-	-	-	-	0.33 U	0.24 U	0.22 U	0.35 U	0.31 U	0.26 U	0.32 U
Perfluorooctane Sulfonamide (FOSA) Perfluorooctanesulfonic acid (PFOS)	ng/g	-	-	-	-	-	-	-	- (270	0.19 U	0.13 U	0.14 U	0.18 U	0.16 U	0.15 U	0.16 U
Perfluorooctanesuironic acid (PFOS)	ng/g ng/g	-	-	-	-	-	-	-	6270 15600	0.24 U 7.3	0.17 U 7.5	0.19 U 0.2 U	0.23 U 0.25 U	0.21 U 0.22 U	0.19 U 0.2 U	0.21 U 0.22 U
Perfluoropentanoic Acid (PFPeA)	ng/g	-	-	-	-	-	-	-	-	0.27 U	0.19 U	0.21 U	0.26 U	0.24 U	0.21 U	0.22 U
Perfluorotetradecanoic acid (PFTA)	ng/g	-	-	-	-	-	-	-	-	0.53 U	0.38 U	0.41 U	0.51 U	0.47 U	0.42 U	0.46 U
Perfluorotridecanoic Acid (PFTriA)	ng/g	-	-	-	-	-	-	-	-	0.21 U	0.25 J	0.18 J	0.21 U	0.19 U	0.17 U	0.34 J
Perfluoroundecanoic Acid (PFUnA)	ng/g	-	-	-	-	-	-	-	-	0.35 U	0.25 U	0.27 U	0.34 U	0.31 U	0.28 U	0.3 U
SODIUM 1H,1H,2H,2H-PERFLUORODECANE SULFONATE (8:2)	ng/g	-	-	-	-	-	-	-	-	0.31 U	0.22 U	0.24 U	0.3 U	0.27 U	0.24 U	0.27 U
SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE SULFONATE (6:2)	ng/g	-	-	-	-	-	-	-	-	0.24 U	0.17 U	0.19 U	0.23 U	0.21 U	0.19 U	0.21 U
NEtFOSAA	ng/g	-	-	-	-	-	-	-	-	0.16 U	0.11 U	0.12 U	0.15 U	0.14 U	0.12 U	0.14 U
NMeFOSAA	ng/g	-	-	-	-	-	-	-	-	0.12 U	0.085 U	0.091 U	0.12 U	0.11 U	0.093 U	0.11 U
Total Organic Carbon by Lloyd Kahn Method																
Total Organic Carbon	mg/kg	-	-	-	-	-	-	-	-	2960	na	1060	1540	2390	1870	1870
pH by Standard Method 9045D pH	pH units	_	_	_	_	_	_	_	_	8.5	na	7.8	8.1	8.2	8.4	8.3
P	pri unus									0.0	114	7.0	0.1	0.2	0.1	0.5
Volatile Organic Compounds (VOCs) by USEPA	Method 82	260														
1,1,1-Trichloroethane (TCA)	ug/kg	680	680	100000	100000	500000	1000000	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
1,1,2,2-Tetrachloroethane	ug/kg	-	-	-	-	-	-	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
1,1,2-Trichloro-1,2,2-Trifluoroethane 1.1.2-Trichloroethane	ug/kg	-	-	-	-	-	-	-	-	250 U 250 U	7.5 U 7.5 U	7.8 U 7.8 U	6.5 U 6.5 U	100 U 100 U	5.3 U 5.3 U	4.6 U 4.6 U
1,1-Dichloroethane	ug/kg ug/kg	270	270	19000	26000	240000	480000	_		250 U	7.5 U	7.8 U 7.8 U	6.5 U	100 U	5.3 U	4.6 U
1,1-Dichloroethene	ug/kg ug/kg	330	330	100000	100000	500000	1000000	-		250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
1,2,4-Trichlorobenzene	ug/kg	-	-	-	-	-	-	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
1,2-Dibromo-3-Chloropropane	ug/kg	-	-	-	-	-	-	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
1,2-Dibromoethane (Ethylene Dibromide)	ug/kg	-	-	-	-	-	-	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
1,2-Dichlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	-	-	250 U	7.5 U	7.8 U	0.54 J	100 U	5.3 U	4.6 U
1,2-Dichloroethane	ug/kg	20	20	2300	3100	30000	60000	10000	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
1,2-Dichloropropane 1,3-Dichlorobenzene	ug/kg	2400	2400	- 17000	49000	280000	- E60000	-	-	250 U 250 U	7.5 U 7.5 U	7.8 U 7.8 U	6.5 U 6.5 U	100 U 100 U	5.3 U 5.3 U	4.6 U
1,3-Dichlorobenzene	ug/kg ug/kg	2400 1800	2400 1800	9800	13000	130000	560000 250000	20000	-	250 U	7.5 U	7.8 U 7.8 U	6.5 U	100 U	5.3 U	4.6 U 4.6 U
2-Hexanone	ug/kg ug/kg	-	-	-	-	-	230000	-		1300 U	37 U	39 U	32 U	520 U	27 U	23 U
Acetone	ug/kg	50	50	100000	100000	500000	1000000	2200	-	1300 U	22 J	20 J	20 J	520 U	25 J	19 J
Benzene	ug/kg	60	60	2900	4800	44000	89000	70000	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Bromodichloromethane	ug/kg	-	-	-	-	-	-	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Bromoform	ug/kg	-	-	-	-	-	-	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Bromomethane	ug/kg	-	-	-	-	-	-	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Carbon Disulfide	ug/kg	760	- 760	1400	2400	22000	-	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Carbon Tetrachloride Chlorobenzene	ug/kg	760 1100	760 1100	1400 100000	2400 100000	22000 500000	44000 1000000	40000	-	250 U 250 U	7.5 U 7.5 U	7.8 U 7.8 U	6.5 U 6.5 U	100 U 100 U	5.3 U 5.3 U	4.6 U 4.6 U
Chlorobenzene Chloroethane	ug/kg ug/kg	-	-	-	-	500000	-	40000	-	250 U 250 UJ	7.5 U 7.5 U	7.8 U 7.8 U	6.5 U 6.5 U	100 U 100 UJ	5.3 U 5.3 U	4.6 U 4.6 U
Chloroform	ug/kg ug/kg	370	370	10000	49000	350000	700000	12000	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Chloromethane	ug/kg	-	-	-	-	-	-	-	-	250 UJ	7.5 U	7.8 U	6.5 U	100 UJ	5.3 U	4.6 U
Cis-1,2-Dichloroethylene	ug/kg	250	250	59000	100000	500000	1000000	-	- 1	3400	1.9 J	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Cis-1,3-Dichloropropene	ug/kg	-	-	-	-	-	-	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Cyclohexane	ug/kg	-	-	-	-	-	-	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Dibromochloromethane	ug/kg	-	-	-	-	-	-	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Dichlorodifluoromethane Ethylbonzono	ug/kg	1000	1000	20000	41000	300000	700000	-	-	250 UJ	7.5 U	7.8 U	6.5 U	100 UJ	5.3 U	4.6 U
Ethylbenzene Isopropylbenzene (Cumene)	ug/kg ug/kg	1000	1000	30000	41000	390000	780000	-	_ [250 U 250 U	7.5 U 7.5 U	7.8 U 7.8 U	6.5 U 6.5 U	100 U 100 U	5.3 U 5.3 U	4.6 U 4.6 U
Methyl Acetate	ug/kg ug/kg	_	-	-	-	-	-	-		1300 U	37 U	39 U	32 U	520 U	27 U	23 U
Methyl Ethyl Ketone (2-Butanone)	ug/kg	120	120	100000	100000	500000	1000000	100000	-	1300 U	37 U	39 U	32 U	520 U	27 U	23 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ug/kg	-	-	-	-	-	-	-	-	1300 U	37 U	39 U	32 U	520 U	27 U	23 U
Methylcyclohexane	ug/kg	_	_	_	_	-	-	_	_	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Methylene Chloride	ug/kg	50	50	51000	100000	500000	1000000	12000	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Styrene	ug/kg	-	-	-	-	-	-	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Tert-Butyl Methyl Ether	ug/kg	930	930	62000	100000	500000	1000000	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Tetrachloroethylene (PCE)	ug/kg	1300	1300	5500	19000	150000	300000	2000	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Toluene	ug/kg	700	700	100000	100000	500000	1000000	36000	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Trans-1,2-Dichloroethene	ug/kg	190	190	100000	100000	500000	1000000	-	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Trans-1,3-Dichloropropene	ug/kg	- 470	- 470	10000	21000	200000	400000	2000	-	250 U	7.5 U	7.8 U	6.5 U	100 U	5.3 U	4.6 U
Trichloroethylene (TCE) Trichlorofluoromethane	ug/kg	470	470	10000	21000	200000	400000	2000	-	10000 250 UJ	11 7.5 U	3.3 J - 7.8 U	6.4 J 6.5 U	1000 100 UJ	5.3 U 5.3 U	4.6 U 4.6 U
	ug/kg	-						-	-							
Vinyl Chloride	ug/kg	20	20	210	900	13000	27000	-	- 1	250 UJ	28	7.8 U	6.5 U	100 UJ	5.3 U	4.6 U

 $\mu g/kg$ - microgram per kilogram

mg/kg - milligrams per kilogram

U - Compound not detected J - Estimated value

UJ - Estimated Value
UJ - Estimated Non-Detect

N - Primary sample

FD - Field duplicate sample ft bgs - Feet below ground su

ft bgs - Feet below ground surface

na - Sample not analyzed for this parameter

IRM PDI - Interim Remedial Measure Pre-Design Investigation

Shaded value indicates value equal to, or greater than, standard or guidance.

NV Part 275 - NVC Soil Clearure Objective (SCO) in Title (16 Official Compilation of New York Codes Pulse and

NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and Regulations (6 NYC USEPA Screening Values for PFOA and PFOS developed by USEPA based on the Health Advisory for PFOA and PFOS of 70 nanogra

NYS Unrestricted Use SCO

NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO NYS Commercial Use SCO

NYS Industrial Use SCO

									Location	JS-B-058	JS-B-058	JS-B-058	JS-B-059	JS-B-060	JS-B-061	JS-B-061
									ID: Sample Date:	5/2/2018	5/2/2018	5/2/2018	5/2/2018	5/2/2018	5/2/2018	5/2/2018
							Sa	mnle Den	th (ft bgs):	10-10.25 ft	10.25-12 ft	47.5-48 ft	4-6 ft	10-12 ft	12-14 ft	12-14 ft
							Ja		nple Type:	N	N	N	N	N	N	FD
		NY375	NY375	NY375	NY375	NY375	NY375	NY375	USEPA Screen							
Constituent	Units	1UNRES	2RPGW	3RRES	4RRRES	5RCOMM		7PER	Value							
Perfluorinated Alkyl Compounds (PFAS) by USE		d 537-1.1 n	ıodified							0.2.11	0.00.11	0.24 II	0.1711	0.01.11	0.24 11	0.00.11
Perfluorobutanesulfonic acid (PFBS) Perfluorobutanoic Acid	ng/g	-	-	-	-	-	-	-	-	0.2 U 0.22 U	0.22 U 0.24 U	0.24 U 0.26 U	0.17 U 0.18 U	0.21 U 0.22 U	0.21 U 0.22 U	0.23 U 0.24 U
Perfluorodecane Sulfonic Acid	ng/g ng/g	-	-	-	-	-	-	-		0.22 U	0.24 U 0.22 U	0.24 U	0.18 U 0.17 U	0.22 U 0.21 U	0.22 U 0.21 U	0.24 U 0.23 U
Perfluorodecanoi acid (PFDA)	ng/g	-	-	-	-	-	-	-		0.25 J	0.22 U	0.24 C	0.26 J	0.24 J	0.21 U	0.27 U
Perfluorododecanoic acid (PFDoA)	ng/g	-	_	_	-	-	-	_	-	0.31 U	0.34 U	0.37 U	0.26 U	0.31 U	0.32 U	0.35 U
Perfluoroheptane Sulfonate (PFHPS)	ng/g	-	-	-	-	-	-	-	-	0.17 U	0.19 U	0.2 U	0.14 U	0.17 U	0.18 U	0.19 U
Perfluoroheptanoic acid (PFHpA)	ng/g	-	-	-	-	-	-	-	-	0.31 U	0.47 U	0.34 U	0.27 U	0.3 U	0.41 U	0.37 U
Perfluorohexanesulfonic acid (PFHxS)	ng/g	-	-	-	-	-	-	-	-	0.2 U	0.22 U	0.24 U	0.17 U	0.21 U	0.21 U	0.23 U
Perfluorohexanoic acid (PFHxA)	ng/g	-	-	-	-	-	-	-	-	0.25 U	0.28 U	0.3 U	0.21 U	0.25 U	0.26 U	0.28 U
Perfluorononanoic acid (PFNA)	ng/g	-	-	-	-	-	-	-	-	0.26 U	0.24 U	0.31 U	0.27 U	0.22 U	0.29 U	0.4 U
Perfluorooctane Sulfonamide (FOSA) Perfluorooctanesulfonic acid (PFOS)	ng/g	-	-	-	-	-	-	-	- 6270	0.16 U 0.2 U	0.17 U	0.19 U	0.13 U 0.17 U	0.16 U 0.21 U	0.18 J 0.21 U	0.2 J 0.23 U
Perfluorooctanesunonic acid (FFOS)	ng/g ng/g	-	_	_	-	-	-	-	15600	0.2 U	0.22 U 0.24 U	0.24 U 0.26 U	5	3.1	3.3	3
Perfluoropentanoic Acid (PFPeA)	ng/g	-	-	-	-	-	-	-	-	0.22 U	0.24 U	0.20 U	0.19 U	0.23 U	0.24 U	0.26 U
Perfluorotetradecanoic acid (PFTA)	ng/g	-	-	-	-	-	-	-	-	0.45 U	0.49 U	0.54 U	0.38 U	0.46 U	0.47 U	0.51 U
Perfluorotridecanoic Acid (PFTriA)	ng/g	-	-	-	-	-	-	-	-	0.2 J	0.31 J	0.33 J	0.15 U	0.25 J	0.26 J	0.23 J
Perfluoroundecanoic Acid (PFUnA)	ng/g	-	-	-	-	-	-	-	-	0.3 U	0.33 U	0.36 U	0.25 U	0.3 U	0.31 U	0.34 U
SODIUM 1H,1H,2H,2H-PERFLUORODECANE	ng/g	-	-	-	-	-	-	-	-	0.26 U	0.29 U	0.31 U	0.22 U	0.27 U	0.27 U	0.3 U
SULFONATE (8:2)	<i>1</i>									0.2.11	0.22.77	0.24 77	0.10.1	0.21.11	0.24.17	0.00.1
SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE SULFONATE (6:2)	ng/g	-	-	-	-	-	-	-	-	0.2 U	0.22 U	0.24 U	0.19 J	0.21 U	0.21 U	0.29 J
NEtFOSAA	ng/g	_	_	_	-	_	_	_	_	0.13 U	0.32 J	0.16 U	0.11 U	0.14 U	0.14 U	0.15 U
NMeFOSAA	ng/g	-	-	-	-	-	-	-	-	0.1 U	0.11 U	0.12 U	0.085 U	0.11 U	0.11 U	0.12 U
Total Organic Carbon by Lloyd Kahn Method	0, 0															
Total Organic Carbon	mg/kg	-	-	-	-	-	-	-	-	na	2300	2690	11300	3100	3010	2670
pH by Standard Method 9045D																
рН	pH units	-	-	-	-	-	-	-	-	na	8	8.3	11.1	8.4	8.2	8.2
Volatile Organic Compounds (VOCs) by USEPA																
1,1,1-Trichloroethane (TCA)	ug/kg	680	680	100000	100000	500000	1000000	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
1,1,2,2-Tetrachloroethane	ug/kg	-	-	-	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
1,1,2-Trichlero-1,2,2-Trifluoroethane	ug/kg	-	-	-	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
1,1,2-Trichloroethane 1,1-Dichloroethane	ug/kg ug/kg	270	270	19000	26000	240000	480000	-	-	8.1 U 8.1 U	4.6 U 4.6 U	8.3 U 8.3 U	600 U 600 U	80 U 80 U	6.2 U 3.1 J	8.6 U 2.4 J
1,1-Dichloroethene	ug/kg ug/kg	330	330	100000	100000	500000	1000000	-	_ [8.1 U	4.6 U	8.3 U	600 U	97	6.2 U	8.6 U
1,2,4-Trichlorobenzene	ug/kg	-	-	-	-	-	-	_	_	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
1,2-Dibromo-3-Chloropropane	ug/kg	-	-	-	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
1,2-Dibromoethane (Ethylene Dibromide)	ug/kg	-	-	-	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
1,2-Dichlorobenzene	ug/kg	1100	1100	100000	100000	500000	1000000	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
1,2-Dichloroethane	ug/kg	20	20	2300	3100	30000	60000	10000	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
1,2-Dichloropropane	ug/kg	-	-	-	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
1,3-Dichlorobenzene	ug/kg	2400	2400	17000	49000	280000	560000	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
1,4-Dichlorobenzene 2-Hexanone	ug/kg	1800	1800	9800	13000	130000	250000	20000	-	8.1 U 40 U	4.6 U 23 U	8.3 U 41 U	600 U 3000 U	80 U 400 U	6.2 U 31 U	8.6 U 43 U
Acetone	ug/kg ug/kg	50	50	100000	100000	500000	1000000	2200	-	42	15 J	27 J	3000 U	400 U	24 J	26 J
Benzene	ug/kg ug/kg	60	60	2900	4800	44000	89000	70000	_ [8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Bromodichloromethane	ug/kg	-	-	-	-	-	-	-	_	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Bromoform	ug/kg	-	-	-	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Bromomethane	ug/kg	-	-	-	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Carbon Disulfide	ug/kg	-	-	-	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Carbon Tetrachloride	ug/kg	760	760	1400	2400	22000	44000	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Chlorosthoro	ug/kg	1100	1100	100000	100000	500000	1000000	40000	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Chloroform	ug/kg	- 370	- 370	10000	49000	- 350000	700000	- 12000	-	8.1 U	4.6 U	8.3 U	600 UJ	80 UJ	6.2 U	8.6 U
Chloroform Chloromethane	ug/kg	370	370	10000	49000	350000	700000	12000	-	8.1 U 8.1 U	4.6 U 4.6 U	8.3 U 8.3 U	600 U 600 UJ	80 U 80 UJ	6.2 U 6.2 U	8.6 U 8.6 U
Chloromethane Cis-1,2-Dichloroethylene	ug/kg ug/kg	250	250	59000	100000	500000	1000000	-	-	8.1 U 8.1 U	4.6 U 4.6 U	8.3 U 8.3 U	600 UJ 600 U	2400	6.2 U 6.2 U	8.6 U 8.6 U
Cis-1,3-Dichloropropene	ug/kg ug/kg	-	-	-	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Cyclohexane	ug/kg ug/kg	-	-	-	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Dibromochloromethane	ug/kg	-	-	-	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Dichlorodifluoromethane	ug/kg	-	-	-	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 UJ	80 UJ	6.2 U	8.6 U
Ethylbenzene	ug/kg	1000	1000	30000	41000	390000	780000	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Isopropylbenzene (Cumene)	ug/kg	-	-	-	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Methyl Acetate	ug/kg	-	-	100000	100000	-	1000000	100000	-	40 U	23 U	41 U	2500 J	400 U	31 U	43 U
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ug/kg ug/kg	120	120	100000	100000	500000	1000000	100000	-	40 U 40 U	23 U 23 U	41 U 41 U	3000 U 3000 U	400 U 400 U	31 U 31 U	43 U 43 U
Menty isobuty i Ketone (4-Menty i-2-i entanone)	ug/ kg	-	-	-	-	-	-	-	-	40 0	23 0	41 0	3000 0	400 U	31 0	43 0
	ug/kg	-	-	-	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Methylcyclohexane		50	50	51000	100000	500000	1000000	12000	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Methylcyclohexane Methylene Chloride	ug/kg		_	_	-	-	-	-	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
2 2	ug/kg ug/kg	-	-					_	_	8.1 U	4.6 U	0.2.11				8.6 U
Methylene Chloride	ug/kg ug/kg	930	930	62000	100000	500000	1000000	_	- I	0.1 0	1.0 C	8.3 U	600 U	80 U	6.2 U	0.0 0
Methylene Chloride Styrene Tert-Butyl Methyl Ether Tetrachloroethylene (PCE)	ug/kg ug/kg ug/kg	930 1300	930 1300	5500	19000	150000	300000	2000	-	8.1 U	4.6 U	8.3 U	600 U	80 U	6.2 U	8.6 U
Methylene Chloride Styrene Tert-Butyl Methyl Ether Tetrachloroethylene (PCE) Toluene	ug/kg ug/kg ug/kg ug/kg	930 1300 700	930 1300 700	5500 100000	19000 100000	150000 500000	300000 1000000			8.1 U 8.1 U	4.6 U 4.6 U	8.3 U 8.3 U	600 U 600 U	80 U 80 U	6.2 U 6.2 U	8.6 U 8.6 U
Methylene Chloride Styrene Tert-Butyl Methyl Ether Tetrachloroethylene (PCE) Toluene Trans-1,2-Dichloroethene	ug/kg ug/kg ug/kg ug/kg ug/kg	930 1300	930 1300	5500	19000	150000	300000	2000		8.1 U 8.1 U 8.1 U	4.6 U 4.6 U 4.6 U	8.3 U 8.3 U 8.3 U	600 U 600 U 600 U	80 U 80 U 80 U	6.2 U 6.2 U 6.2 U	8.6 U 8.6 U 8.6 U
Methylene Chloride Styrene Tert-Butyl Methyl Ether Tetrachloroethylene (PCE) Toluene Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	930 1300 700 190	930 1300 700 190	5500 100000 100000	19000 100000 100000	150000 500000 500000	300000 1000000 1000000	2000 36000 - -	-	8.1 U 8.1 U 8.1 U 8.1 U	4.6 U 4.6 U 4.6 U 4.6 U	8.3 U 8.3 U 8.3 U 8.3 U	600 U 600 U 600 U	80 U 80 U 80 U 80 U	6.2 U 6.2 U 6.2 U 6.2 U	8.6 U 8.6 U 8.6 U 8.6 U
Methylene Chloride Styrene Tert-Butyl Methyl Ether Tetrachloroethylene (PCE) Toluene Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene Trichloroethylene (TCE)	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	930 1300 700 190 - 470	930 1300 700 190 - 470	5500 100000 100000	19000 100000 100000 - 21000	150000 500000 500000 - 200000	300000 1000000 1000000 - 400000	2000 36000 -	- - -	8.1 U 8.1 U 8.1 U 8.1 U 4.3 J	4.6 U 4.6 U 4.6 U 4.6 U 4.6 U	8.3 U 8.3 U 8.3 U 8.3 U 8.3 U	600 U 600 U 600 U 600 U 840	80 U 80 U 80 U 80 U 4800	6.2 U 6.2 U 6.2 U 6.2 U 6.2 U	8.6 U 8.6 U 8.6 U 8.6 U
Methylene Chloride Styrene Tert-Butyl Methyl Ether Tetrachloroethylene (PCE) Toluene Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	930 1300 700 190	930 1300 700 190	5500 100000 100000	19000 100000 100000	150000 500000 500000	300000 1000000 1000000	2000 36000 - -	- - -	8.1 U 8.1 U 8.1 U 8.1 U	4.6 U 4.6 U 4.6 U 4.6 U	8.3 U 8.3 U 8.3 U 8.3 U	600 U 600 U 600 U	80 U 80 U 80 U 80 U	6.2 U 6.2 U 6.2 U 6.2 U	8.6 U 8.6 U 8.6 U 8.6 U

 $\mu g/kg$ - microgram per kilogram

mg/kg - milligrams per kilogram

U - Compound not detected J - Estimated value

UJ - Estimated Value
UJ - Estimated Non-Detect

N - Primary sample

FD - Field duplicate sample

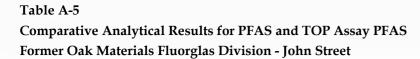
ft bgs - Feet below ground surface

na - Sample not analyzed for this parameter

IRM PDI - Interim Remedial Measure Pre-Design Investigation

Shaded value indicates value equal to, or greater than, standard or guidance.

NY Part 375 = NYS Soil Cleanup Objective (SCO) in Title 6 of Official Compilation of New York Codes, Rules and Regulations (6 NYC


USEPA Screening Values for PFOA and PFOS developed by USEPA based on the Health Advisory for PFOA and PFOS of 70 nanogra NYS Unrestricted Use SCO

NYS Unrestricted Use SCO
NYS Protection of Groundwater SCO

NYS Residential Use SCO

NYS Restricted Residential SCO

NYS Commercial Use SCO NYS Industrial Use SCO

		JS-B-019	JS-B-019	JS-B-039	JS-B-039	JS-B-044	JS-B-044	JS-B-047	JS-B-047	JS-B-055	JS-B-055
		Apr-04-2018	Apr-04-2018	Apr-20-2018	Apr-20-2018	Apr-19-2018	Apr-19-2018	Apr-19-2018	Apr-19-2018	May-01-2018	May-01-2018
		16-17	16-17	13-15	13-15	17-19	17-19	4-6	4-6	5-7	5-7
		N	N	N	N	N	N	N	N	N	N
		537-1.1	TOP Assay	537-1.1	TOP Assay						
Constituent	Units										
Perfluorinated Alkyl Compounds (PFAS) by USEPA Method 537-1.1	nodified										
Perfluorobutanoic Acid	ng/g	0.22 U	1.8 U	0.22 U	2.0 U	0.21 U	2.0 U	0.18 U	1.3 U	0.21 U	1.3 U
Perfluoropentanoic Acid (PFPeA)	ng/g	0.23 U	1.6 U	0.23 U	1.5 U	0.23 U	1.5 U	0.19 U	1.3 U	0.22 U	1.2 U
Perfluorohexanoic acid (PFHxA)	ng/g	0.25 U	34 U	0.26 U	31 U	0.25 U	38 U	0.21 U	30 U	0.24 U	24 U
Perfluoroheptanoic acid (PFHpA)	ng/g	0.26 U	1.4 U	0.38 J	1.5 UJ	0.41 J	1.4 UJ	0.34 J	1.1 UJ	0.25 U	1.2 UJ
Perfluorooctanoic acid (PFOA)	ng/g	21	23	0.81 J	1.5 U	2.4 J	2.1	9.3	10	13	7.1
Perfluorononanoic acid (PFNA)	ng/g	0.22 U	1.4 U	0.28 U	1.5 U	0.21 U	1.4 U	0.19 J	1.1 U	0.35 U	1.2 U
Perfluorodecanoic acid (PFDA)	ng/g	0.24 U	1.4 U	0.3 J	1.5 U	0.24 U	1.4 U	0.24 J	1.1 U	0.92 U	1.2 U
Perfluoroundecanoic Acid (PFUnA)	ng/g	0.3 U	1.4 U	0.38 U	1.5 U	0.34 U	1.4 U	0.31 U	1.1 U	0.29 U	1.2 U
Perfluorododecanoic acid (PFDoA)	ng/g	0.31 U	1.4 U	0.32 U	1.5 U	0.31 U	1.4 U	0.26 U	1.1 U	0.3 U	1.2 U
Perfluorotridecanoic Acid (PFTriA)	ng/g	0.18 U	1.4 U	0.2 U	1.5 U	0.28 U	1.4 U	0.15 U	1.1 U	0.27 U	1.2 U
Perfluorotetradecanoic acid (PFTA)	ng/g	0.45 U	1.4 U	0.46 U	1.5 U	0.45 U	1.4 U	0.38 U	1.1 U	0.43 U	1.2 U
Perfluorobutanesulfonic acid (PFBS)	ng/g	0.2 U	1.4 U	0.21 U	1.5 U	0.2 U	1.4 U	0.17 U	1.1 U	0.2 U	1.2 U
Perfluorohexanesulfonic acid (PFHxS)	ng/g	0.2 U	1.4 U	0.21 U	1.5 U	0.27 J	1.4 U	0.17 U	1.1 U	0.2 U	1.2 U
Perfluoroheptane Sulfonate (PFHPS)	ng/g	0.17 U	1.4 U	0.17 U	1.5 U	0.17 U	1.4 U	0.14 U	1.1 U	0.16 U	1.2 U
Perfluorooctanesulfonic acid (PFOS)	ng/g	0.2 U	1.4 U	0.21 U	1.5 U	0.2 U	1.4 U	0.17 U	1.1 U	0.25 J	1.2 U
Perfluorodecane Sulfonic Acid	ng/g	0.2 U	1.4 U	0.21 U	1.5 U	0.2 U	1.4 U	0.17 U	1.1 U	0.2 U	1.2 U
Perfluorooctane Sulfonamide (FOSA)	ng/g	0.16 U	1.4 U	0.16 U	1.5 U	0.16 U	1.4 U	0.13 U	1.1 U	0.15 U	1.2 U
SODIUM 1H,1H,2H,2H-PERFLUORODECANE SULFONATE (8:2)	ng/g	0.26 U	1.4 U	0.27 U	1.5 U	0.26 U	1.4 U	0.22 U	1.1 U	0.25 U	1.2 U
SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE SULFONATE (6:2)	ng/g	0.2 U	1.4 U	0.21 U	1.5 U	0.2 U	1.4 U	0.17 U	1.1 U	0.2 U	1.2 U
NEtFOSAA	ng/g	0.13 U	1.4 U	0.14 U	1.5 U	0.13 U	1.4 U	0.11 U	1.1 U	0.13 U	1.2 U
NMeFOSAA	ng/g	0.1 U	1.4 U	0.11 U	1.5 U	0.099 U	1.4 U	0.025 U	1.1 U	0.096 U	1.2 U
		21	23	1.49	0	3.08	2.1	10.07	10	13.25	7.1
Relative Percent Difference - PFOA	Λ		9%		ND		13%		7%		59%

U - Compound not detected

UJ - Estimated Non-Detect

N - Primary sample

ND - Non-Detect

ng/kg - nanograms per gram

TOP - Total Oxidizable Precursor

ft bgs - Feet below ground surface

Table A-6
Analytical Results for Non-Aqueous Phase Liquid (NAPL) in Temporary Monitoring Wells
Former Oak Materials Fluorglas Division - John Street

		Location ID	JS-TMW-039
Constituent		Sample Date	23-May-2018
Constituent		Sample Type	N
NEBTOSAA	Constituent	_ , , _	
NEBTOSAA	Perfluorinated Alkul Compounds (PFAS) by USEPA Method 537-1.1	modified	
NMeFOSAA	, ,	•	3.2 U
Perfluorobutanesulfonic acid (PFBS)	NMeFOSAA		
Perfluorobetanoic Acid Perfluorodecanoic Sulfonic Acid ng/1 0.58 U Perfluorodecanoic acid (PFDA) ng/1 0.52 U Perfluorodecanoic acid (PFDA) ng/1 0.92 U Perfluorodecanoic acid (PFDA) ng/1 0.92 U Perfluorobetanoic acid (PFHS) ng/1 0.32 U Perfluorohepanoic acid (PFHS) ng/1 0.24 U Perfluorohepanoic acid (PFHS) ng/1 0.28 U Perfluorohexanoic acid (PFHSA) ng/1 0.28 U Perfluorohexanoic acid (PFHSA) ng/1 3.6 Perfluorononanoic acid (PFNA) ng/1 3.6 Perfluorononanoic acid (PFNA) ng/1 3.6 Perfluoroctanoic acid (PFNA) ng/1 3.6 Perfluoroctanoic acid (PFNA) ng/1 3.6 Perfluoroctanoic acid (PFOA) ng/1 1.1 Perfluoroctanoic acid (PFOA) ng/1 1.1 Perfluoroctanoic acid (PFOA) ng/1 0.88 U Perfluorotetradecanoic acid (PFNA) ng/1 0.48 U Perfluorotetradecanoic acid (PFNA) ng/1 0.48 U Perfluorotetradecanoic acid (PFTA) ng/1 0.48 U 0.48 U	Perfluorobutanesulfonic acid (PFBS)		0.33 U
Perfluorodecanoi cacid (PFDA) ng/l 0.53 U Perfluorodecanoi cacid (PFDA) ng/l 0.52 U Perfluorodecanoic acid (PFDA) ng/l 0.52 U Perfluorodecanoic acid (PFDA) ng/l 0.32 U Perfluoroheptane Sulfonate (PFHPS) ng/l 0.32 U Perfluoroheptanoic acid (PFHA) ng/l 0.28 U Perfluorohexanoic acid (PFHAS) ng/l 0.28 U Perfluoronexanesulfonic acid (PFHAS) ng/l 0.7 Perfluoronexanesulfonic acid (PFNA) ng/l 0.7 Perfluoronexanesulfonic acid (PFNA) ng/l 0.58 U Perfluoronexanesulfonic acid (PFNA) ng/l 0.58 U Perfluoroctanoic sulformanide (FOSA) ng/l 1.70 Perfluoropentanoic Acid (PFPA) ng/l 1.70 Perfluoropentanoic Acid (PFPA) ng/l 1.70 Perfluorotridecanoic acid (PFNA) ng/l 0.82 U Perfluorotridecanoic Acid (PFNA) ng/l 0.81 U Perfluorotridecanoic Acid (PFNA) ng/l 0.82 U PERfluorotridecanoic Acid (PFNA) ng/l 0	Perfluorobutanoic Acid		0.58 U
Perfluorodecanoic acid (PFDA) ng/1 0.52 U Perfluorodecanoic acid (PFDS) ng/1 0.32 U Perfluoroheptanoic acid (PFHPS) ng/1 0.32 U Perfluoroheptanoic acid (PFHPA) ng/1 0.32 U Perfluoroheptanoic acid (PFHA) ng/1 0.41 Perfluorohemanosic acid (PFHA) ng/1 0.47 Perfluoronemanoic acid (PFHA) ng/1 4.7 Perfluoronemanoic acid (PFHA) ng/1 3.6 Perfluorootanosilionic acid (PFNA) ng/1 0.58 U Perfluorootanosilionic acid (PFNA) ng/1 0.58 U Perfluorootanoic acid (PFNA) ng/1 0.58 U Perfluorootanoic acid (PFOA) ng/1 1.1 Perfluorootanoic acid (PFOA) ng/1 0.82 U Perfluorootanoic acid (PFDA) ng/1 0.82 U Perfluorootanoic acid (PFTA) ng/1 0.82 U Perfluoroundecanoic Acid (PFUA) ng/1 0.82 U Perfluoroundecanoic Acid (PFEA) ng/1 0.82 U Perfluoroundecanoic Acid (PFEA) ng/1 0.82 U Perfluoroundecanoic Acid (PFEA) ng/1 0.82 U Perfluoroundecanoic Number	Perfluorodecane Sulfonic Acid		0.53 U
Perfluoroheptanc Sulfonate (PFHPS) mg/l 0.22 U Perfluoroheptancic acid (PFHA) mg/l 0.28 U Perfluorohexanesulfonic acid (PFHA) mg/l 0.28 U Perfluorohexanoic acid (PFHA) mg/l 3.6 Perfluoroncexanoic acid (PFHA) mg/l 3.6 Perfluoroncexanesulfonic acid (PFOA) mg/l 3.6 Perfluorocatane Sulfonamide (FOGA) mg/l 1.1 J Perfluorocatanesulfonic acid (PFOA) mg/l 1.70 Perfluorocatanesulfonic acid (PFOA) mg/l 1.70 Perfluorocatanesulfonic acid (PFOA) mg/l 1.70 Perfluoropentanoic acid (PFDA) mg/l 0.88 U Perfluorotetradecanoic acid (PFTA) mg/l 0.48 U Perfluorotetradecanoic Acid (PFTA) mg/l 0.29 U Perfluorotetradecanoic Acid (PFTA) mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #4 mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #4 mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #4 mg/kg 0.29 U PHC As Heavy/Residual Fuel Oils Fuel Oils #4 mg/kg 0.29 U PHC As Heavy/Residual Fuel Oils Fuel Oils #4 mg	Perfluorodecanoic acid (PFDA)	ng/l	0.52 U
Perfluorohexanoic acid (PFHpA) ng/1 0.28 U Perfluorohexanoic acid (PFHxS) ng/1 0.28 U Perfluorohexanoic acid (PFNA) ng/1 4.7 Perfluoroctane Sulfonamide (FOSA) ng/1 0.58 U Perfluoroctane Sulfonamide (FOSA) ng/1 1.1 J Perfluoroctane Sulfonamide (FOSA) ng/1 1.1 J Perfluoroctaneic acid (PFOA) ng/1 1.1 J Perfluoroctaneic acid (PFOA) ng/1 1.1 J Perfluoroctaneic acid (PFDA) ng/1 0.82 U Perfluorotetradecanoic acid (PFDA) ng/1 0.82 U Perfluorotetradecanoic acid (PFDA) ng/1 0.82 U Perfluorotetradecanoic acid (PFTA) ng/1 0.82 U Perfluorotetradecanoic Acid (PFTrA) ng/1 0.81 U Perfluorotetradecanoic Acid (PFDA) ng/1 1.8 J SODIUM 1H.JH.2H.2H-PERFLUORODECANE SULFONATE (8.2) ng/1 3.3 U SODIUM 1H.JH.2H.2H-PERFLUORODECANE SULFONATE (8.2) ng/1 3.3 U SODIUM 1H.JH.2H.2H-PERFLUORODECANE SULFONATE (8.2) ng/1 3.3 U SODIUM 1H.JH.2H.2H-PERFLUORODECANE SULFONATE (8.2) ng/1 3.0 U Total Petroleum Hydrocarbon (TPB) Fingerprinting by N/310-13 Gasoline Components mg/kg 420 U Motor Oils mg/kg 420 U Motor Oils mg/kg 420 U Motor Ale Pfuel Oils C10-C23 #2 Diesel, #2 Fuel Oil mg/kg 420 U MRICHARD mg/kg 420 U PHC As Heavy/ Residual Fuel Oils Fuel Oils #6 mg/kg 420 U WHC As Heavy/ Residual Fuel Oils Fuel Oils #6 mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 0.23 J Alpha Bhc (Alpha Hexachlorocyclohexane) mg/kg 0.29 U Westickles by UsEPA Method 8081 mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) m	Perfluorododecanoic acid (PFDoA)	ng/l	0.92 U
Perfluorohexanesulfonic acid (PFHxS)	Perfluoroheptane Sulfonate (PFHPS)	ng/l	0.32 U
Perfluoroncanoic acid (PFIXA) ng/1 3.6	Perfluoroheptanoic acid (PFHpA)	ng/l	2.4 J
Perfluorononanoic acid (PFNA) ng/1 3.6 Perfluoronoctane Sulfonamide (FOSA) ng/1 1.1 1 Perfluoronoctane Sulfonamide (FOSA) ng/1 1.1 Perfluoronoctanoic acid (PFOA) ng/1 1.70 Perfluoronoctanoic acid (PFOA) ng/1 0.82 U Perfluoropentanoic Acid (PFPA) ng/1 0.82 U Perfluorottradecanoic Acid (PFTA) ng/1 0.84 U Perfluorottradecanoic Acid (PFTA) ng/1 0.84 U Perfluorottradecanoic Acid (PFTA) ng/1 0.84 U Perfluorottradecanoic Acid (PFTA) ng/1 3.3 U Perfluoroundecanoic Acid (PFTA) ng/1 3.3 U SODIUM HI,HI,2H2,2H-PERFLUORODECANE SULFONATE (8:2) ng/1 3.3 U SODIUM HI,HI,2H2,2H-PERFLUOROCCTANE SULFONATE (8:2) ng/1 3.3 U SODIUM HI,HI,2H2,2H-PERFLUOROCCTANE SULFONATE (8:2) ng/1 17 J Total Petroleum Hydrocarbon (TPH) Fingerprinting by NY310-13 Gasoline Components mg/kg 420 U Motor Oils mg/kg 420 U PHC As #2 Fuel Oils C10-C23 #2 Diesel, #2 Fuel Oil mg/kg 420 U PHC As #2 Fuel Oils C10-C23 #2 Diesel, #2 Fuel Oil mg/kg 420 U PHC As Heavy/ Residual Fuel Oils Fuel Oils #4 mg/kg 420 U PHC As Heavy/ Residual Fuel Oils Fuel Oils #4 mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 0.31 Alpha Bhc (Alpha Hexachlorocyclohexane) mg/kg 0.23 J Alpha Bhc (Alpha Hexachlorocyclohexane) mg/kg 0.29 U Beta Bhc (Beta Ievachlorocyclohexane) mg/kg 0.29 U Beta Bhc (Beta Ievachlorocyclohexane) mg/kg 0.29 U Dieldrin mg/kg 0.29 U Dieldrin mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Endrin Letone mg/kg 0.29 U Endrin Letone mg/kg 0.29 U P-P-DDD mg/kg 0.29 U P-P-	Perfluorohexanesulfonic acid (PFHxS)	ng/l	0.28 U
Perfluoroctane Sulfonamide (FOSA) ng/1	, , ,	ng/l	4.7
Perfluoroctanosia (PFOS) ng/l 1.1 J Perfluoroctanosia (PFOA) ng/l 1.70 Perfluoroctanosia (PFOA) ng/l 0.82 U Perfluorotetranosia (PFTA) ng/l 0.48 U Perfluorotetranosia (PFTA) ng/l 1.8 J Perfluorotetranosia (PFTA) ng/l 1.8 J Perfluorotetranosia (PFUTA) ng/l 1.8 J SODIUM 1H,1H,2H,2H-PERFLUORODCTANE SULFONATE (8:2) ng/l 3.3 U SODIUM 1H,1H,2H,2H-PERFLUOROCTANE SULFONATE (8:2) ng/l 17 J Total Petroleum Hydrocarbon (TPH) Fingerprinting by NY310-13 Gasoline Components mg/kg 420 U Motor Oils mg/kg 830 U PHC As #2 Fuel Oils C10-C23 #2 Diesel, #2 Fuel Oil mg/kg 420 U Motor A #2 Fuel Oils C10-C23 #2 Diesel, #2 Fuel Oil mg/kg 420 U PHC As Heavy/ Residual Fuel Oils Fuel Oils #4 mg/kg 420 U PHC As Heavy/ Residual Fuel Oils Fuel Oils #6 mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 18000 Pesticides by USEPA Method 8081 mg/kg 0.23 I Alpha Bhc (Alpha Hexachlorocyclohexane) mg/kg 0.23 I Alpha Endosulfan mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Endrin Methode mg/kg 0.29 U Pr-DDD mg/kg	· '	ng/l	3.6
Perfluorocatanoic acid (PFOA)	l ' '	ng/l	0.58 U
Perfluoropentanoic Acid (PFPA)	` '	_	•
Perfluorotetradecanoic acid (PFTA)	` ′	_	
Perfluorotridecanoic Acid (PFTriA)	1 ' '	_	
Perfluoroundecanoic Acid (PFUnA)	· '	_	
SODIUM 1H,1H,2H,2H-PERFLUORODECANE SULFONATE (6:2) ng/l 1.3.3 U SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE SULFONATE (6:2) ng/l 1.71 Total Petroleum Hydrocarbon (TPH) Fingerprinting by NY310-13 mg/kg 420 U Gasoline Components mg/kg 420 U Motor Oils mg/kg 420 U PHC As #2 Fuel Oils C10-C23 #2 Diesel, #2 Fuel Oil mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #4 mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #6 mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 0.31 Alpha Endorous With 1st Highest Conc. mg/kg 0.31 Alpha Bho (Alpha Hexachlorocyclohexane) mg/kg 0.23 J Alpha Endosulfan mg/kg 0.23 J Alpha Endosulfan mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.29 U Beta Bhc (Delta Hexachlorocyclohexane) mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U <td>· '</td> <td>_</td> <td></td>	· '	_	
SODIUM 1H.1H.2H.2H.PERFLUOROOCTANE SULFONATE (6:2) ng/l 17 J Total Petroleum Hydrocarbon (TPH) Fingerprinting by NY310-13 mg/kg 170 U Gasoline Components mg/kg 420 U Kerosene mg/kg 830 U PHC As #2 Fuel Oils C10-C23 #2 Diesel, #2 Fuel Oil mg/kg 420 U PHC As #2 Fuel Oils C10-C23 #2 Diesel, #2 Fuel Oils #4 mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #4 mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #6 mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 18000 Pesticides by USEPA Method 8081 Mg/kg 0.21 Aldrin mg/kg 0.23 J Alpha Bhc (Alpha Hexachlorocyclohexane) mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.29 U Beta BhC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Dieldarin mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Aldehyde mg/kg	, , ,	_	·
Total Petroleum Hydrocarbon (TPH) Fingerprinting by NY310-13 Gasoline Components mg/kg 170 U Kerosene mg/kg 420 U Motor Oils mg/kg 830 U PHC As #2 Fuel Oils C10-C23 #2 Diesel, #2 Fuel Oil mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #4 mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #6 mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #6 mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 0.31 Aldrin mg/kg 0.23 J Aldrin mg/kg 0.23 J Aldrin mg/kg 0.29 U Beta Bhc (Alpha Hexachlorocyclohexane) mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.29 U Delta BhC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Delta BhC (Delta Hexachlorocyclohexane) mg/kg 0.29 U	· '	_	
Gasoline Components mg/kg 420 U Kerosene mg/kg 420 U Motor Oils mg/kg 830 U PHC As #2 Fuel Oils C10-C23 #2 Diesel, #2 Fuel Oil mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #4 mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #6 mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 0.31 Aldrin mg/kg 0.31 Alpha Bro (Alpha Hexachlorocyclohexane) mg/kg 0.23 J Alpha Endosulfan mg/kg 0.29 U Beta Bhe (Beta Hexachlorocyclohexane) mg/kg 0.29 U Beta Endosulfan mg/kg 0.29 U cis-Chlordane mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Dieldrin mg/kg 0.29 U Endrin Sulfate mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U<		ng/l	17 J
Kerosene mg/kg 420 U Motor Oils mg/kg 830 U PHC As #2 Fuel Oils C10-C23 #2 Diesel, #2 Fuel Oil mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #4 mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #6 mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 18000 Pesticides by USEPA Method 8081 mg/kg 0.31 Aldrin mg/kg 0.23 J Alpha Bhc (Alpha Hexachlorocyclohexane) mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.29 U Beta Endosulfan mg/kg 0.29 U cis-Chlordane mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Deildrin mg/kg 0.29 U Endrin Sulfate mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Heptachlor mg/kg 0.29 U		/1	450 11
Motor Oils mg/kg 830 U PHC As #2 Fuel Oils C10-C23 #2 Diesel, #2 Fuel Oil mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #4 mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #6 mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 18000 Pesticides by USEPA Method 8081 18000 Aldrin mg/kg 0.23 I Alpha Bhc (Alpha Hexachlorocyclohexane) mg/kg 0.23 J Alpha Bhc (Beta Hexachlorocyclohexane) mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.29 U Beta Endosulfan mg/kg 0.29 U cis-Chlordane mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Dieldrin mg/kg 0.29 U Endosulfan Sulfate mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heeptachlor Epoxide mg/kg <t< td=""><td><u> </u></td><td></td><td></td></t<>	<u> </u>		
PHC As #2 Fuel Oils C10-C23 #2 Diesel, #2 Fuel Oil mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #4 mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #6 mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 18000 Pesticides by USEPA Method 8081 mg/kg 0.31 Aldrin mg/kg 0.23 J Alpha Bhc (Alpha Hexachlorocyclohexane) mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.29 U Beta Bhc (Delta Hexachlorocyclohexane) mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Dieldrin mg/kg 0.29 U Endosulfan Sulfate mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P-DDE			
PHC As Heavy/Residual Fuel Oils Fuel Oils #4 mg/kg 420 U PHC As Heavy/Residual Fuel Oils Fuel Oils #6 mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 18000 Pesticides by USEPA Method 8081 W Aldrin mg/kg 0.23 J Alpha Bhc (Alpha Hexachlorocyclohexane) mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.29 U cis-Chlordane mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Dieldrin mg/kg 0.29 U Endosulfan Sulfate mg/kg 0.29 U Endrin mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P-DDD mg/kg 0.29 U P,P-DDT </td <td></td> <td></td> <td></td>			
PHC As Heavy/Residual Fuel Oils Fuel Oils #6 mg/kg 420 U Unknown Hydrocarbons With 1st Highest Conc. mg/kg 18000 Pesticides by USEPA Method 8081 Image: Microbial State of Sta			
Unknown Hydrocarbons With 1st Highest Conc. mg/kg 18000 Pesticides by USEPA Method 8081 Secticides by USEPA Method 8081 Aldrin mg/kg 0.31 Alpha Bhc (Alpha Hexachlorocyclohexane) mg/kg 0.23 J Alpha Endosulfan mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.29 U Cis-Chlordane mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Dieldrin mg/kg 0.29 U Endosulfan Sulfate mg/kg 0.29 U Endosulfan Sulfate mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 U Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P-DDD mg/kg 0.29 U P,P-DDT mg/kg 0.29 U Posaphene mg/kg 0.29 U <td>1</td> <td></td> <td></td>	1		
Pesticides by USEPA Method 8081 Aldrin mg/kg 0.31 Aldrin Alpha Bhc (Alpha Hexachlorocyclohexane) mg/kg 0.23 J Alpha Endosulfan mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.61 Beta Endosulfan mg/kg 0.29 U cis-Chlordane mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Dieldrin mg/kg 0.29 U Endosulfan Sulfate mg/kg 0.29 U Endorin Aldehyde mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 U Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P-DDD mg/kg 0.29 U P,P-DDT mg/kg 0.29 U P,P-DDT mg/kg 0.29 U Toxaphene mg/kg 0.29 U <td>1</td> <td></td> <td></td>	1		
Aldrin mg/kg 0.31 Alpha Bhc (Alpha Hexachlorocyclohexane) mg/kg 0.23 J Alpha Endosulfan mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.61 Beta Endosulfan mg/kg 0.29 U cis-Chlordane mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Dieldrin mg/kg 0.29 U Endosulfan Sulfate mg/kg 0.29 U Endrin mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 U Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.29 U P,P'-DDE mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 0.29 U Toxaphene mg/kg 38 U PCB-1221 (Aroclor 1016) mg/kg <		mg/ kg	10000
Alpha Bhc (Alpha Hexachlorocyclohexane) mg/kg 0.23 J Alpha Endosulfan mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.61 Beta Endosulfan mg/kg 0.29 U cis-Chlordane mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Dieldrin mg/kg 0.29 U Endosulfan Sulfate mg/kg 0.29 U Endrin mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 U Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.29 U P,P'-DDD mg/kg 0.29 U Toxaphene mg/kg 0.29 U trans-Chlordane mg/kg 0.29 U POB-1221 (Aroclor 1016) mg/kg 38 U PCB-1232 (Aroclor 1221) mg/kg 38 U PCB-1242 (Aroclor 1	1	mg/kg	0.31
Alpha Endosulfan mg/kg 0.29 U Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.61 Beta Endosulfan mg/kg 0.29 U cis-Chlordane mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Dieldrin mg/kg 0.29 U Endosulfan Sulfate mg/kg 0.29 U Endrin mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 U Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.29 U P,P'-DDE mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 0.29 U Toxaphene mg/kg 0.29 U POB-1016 (Aroclor 1016) mg/kg 38 U PCB-1221 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1242) mg/kg			
Beta Bhc (Beta Hexachlorocyclohexane) mg/kg 0.61 Beta Endosulfan mg/kg 0.29 U cis-Chlordane mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Dieldrin mg/kg 0.29 U Endosulfan Sulfate mg/kg 0.29 U Endrin mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P-DDD mg/kg 0.29 U P,P-DDD mg/kg 0.29 U P,P-DDE mg/kg 0.29 U P,P-DDT mg/kg 0.29 U P,P-DDT mg/kg 0.29 U Toxaphene mg/kg 0.29 U Toxaphene mg/kg 38 U PCB-1221 (Aroclor 1016) mg/kg 38 U PCB-1221 (Aroclor 1232) mg/kg 38 U			•
Beta Endosulfan mg/kg 0.29 U cis-Chlordane mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Dieldrin mg/kg 0.16 J Endosulfan Sulfate mg/kg 0.29 U Endrin mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 U Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.29 U P,P'-DDE mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 0.29 U Toxaphene mg/kg 0.29 U PCB-1016 (Aroclor 1016) mg/kg 38 U PCB-1021 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1248) mg/kg	1 *		
cis-Chlordane mg/kg 0.29 U Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Dieldrin mg/kg 0.16 J Endosulfan Sulfate mg/kg 0.29 U Endrin mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 U Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 0.29 U trans-Chlordane mg/kg 0.29 U POB-lotle (Aroclor 1016) mg/kg 38 U PCB-1212 (Aroclor 1221) mg/kg 38 U PCB-1224 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U			
Delta BHC (Delta Hexachlorocyclohexane) mg/kg 0.29 U Dieldrin mg/kg 0.16 J Endosulfan Sulfate mg/kg 0.29 U Endrin mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 U Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.29 U P,P'-DDE mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 0.29 U Toxaphene mg/kg 0.29 U POB-1016 (Aroclor 1016) mg/kg 38 U PCB-1021 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U			
Dieldrin mg/kg 0.16 J Endosulfan Sulfate mg/kg 0.29 U Endrin mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 U Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.18 J P,P'-DDE mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 0.29 U trans-Chlordane mg/kg 0.29 U POB-1016 (Aroclor 1016) mg/kg 38 U PCB-1021 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1248 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U			
Endosulfan Sulfate mg/kg 0.29 U Endrin mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 U Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.18 J P,P'-DDE mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 0.29 U trans-Chlordane mg/kg 0.29 U POB-1016 (Aroclor 1016) mg/kg 38 U PCB-1021 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1248 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U			
Endrin mg/kg 0.29 U Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 U Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.18 J P,P'-DDE mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 0.29 U trans-Chlordane mg/kg 0.29 U POB-1016 (Aroclor 1016) mg/kg 38 U PCB-1021 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1248 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U			*
Endrin Aldehyde mg/kg 0.29 U Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 U Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.18 J P,P'-DDE mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 0.29 U trans-Chlordane mg/kg 0.29 U POB-1016 (Aroclor 1016) mg/kg 38 U PCB-1221 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U			
Endrin Ketone mg/kg 0.29 U Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 0.29 U trans-Chlordane mg/kg 0.29 U POB-1016 (Aroclor 1016) mg/kg 38 U PCB-1221 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U	Endrin Aldehyde		
Gamma Bhc (Lindane) mg/kg 0.29 U Heptachlor mg/kg 0.29 Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.18 J P,P'-DDE mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 0.29 U trans-Chlordane mg/kg 0.29 U POB-1016 (Aroclor 1016) mg/kg 38 U PCB-1021 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U	1		
Heptachlor mg/kg 0.29 Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.18 J P,P'-DDE mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 2.9 U trans-Chlordane mg/kg 0.29 U POlychlorined Biphenyls (PCBs) by USEPA Method 8082 W PCB-1016 (Aroclor 1016) mg/kg 38 U PCB-1221 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U	Gamma Bhc (Lindane)		
Heptachlor Epoxide mg/kg 0.29 U Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.18 J P,P'-DDE mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 2.9 U trans-Chlordane mg/kg 0.29 U POlychlorined Biphenyls (PCBs) by USEPA Method 8082 W PCB-1016 (Aroclor 1016) mg/kg 38 U PCB-1221 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U	· ' '		
Methoxychlor mg/kg 0.29 U P,P'-DDD mg/kg 0.18 J P,P'-DDE mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 2.9 U trans-Chlordane mg/kg 0.29 U POlychlorined Biphenyls (PCBs) by USEPA Method 8082 wg/kg 38 U PCB-1016 (Aroclor 1016) mg/kg 38 U PCB-1221 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U			
P,P'-DDD mg/kg 0.18 J P,P'-DDE mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 2.9 U trans-Chlordane mg/kg 0.29 U POlychlorined Biphenyls (PCBs) by USEPA Method 8082 V PCB-1016 (Aroclor 1016) mg/kg 38 U PCB-1221 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U			
P,P'-DDE mg/kg 0.29 U P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 2.9 U trans-Chlordane mg/kg 0.29 U Polychlorined Biphenyls (PCBs) by USEPA Method 8082 PCB-1016 (Aroclor 1016) mg/kg 38 U PCB-1221 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U			0.18 J
P,P'-DDT mg/kg 0.29 U Toxaphene mg/kg 2.9 U trans-Chlordane mg/kg 0.29 U POB-1016 (Aroclor 1016) mg/kg 38 U PCB-1221 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U	P,P'-DDE		0.29 U
trans-Chlordane mg/kg 0.29 U Polychlorined Biphenyls (PCBs) by USEPA Method 8082 PCB-1016 (Aroclor 1016) mg/kg 38 U PCB-1221 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U	P,P'-DDT		0.29 U
Polychlorined Biphenyls (PCBs) by USEPA Method 8082 PCB-1016 (Aroclor 1016) mg/kg 38 U PCB-1221 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U	l -	mg/kg	2.9 U
PCB-1016 (Aroclor 1016) mg/kg 38 U PCB-1221 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U		mg/kg	0.29 U
PCB-1221 (Aroclor 1221) mg/kg 38 U PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U	, , ,		
PCB-1232 (Aroclor 1232) mg/kg 38 U PCB-1242 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U			
PCB-1242 (Aroclor 1242) mg/kg 38 U PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U	· '		
PCB-1248 (Aroclor 1248) mg/kg 38 U PCB-1254 (Aroclor 1254) mg/kg 38 U	l '		
PCB-1254 (Aroclor 1254) mg/kg 38 U	· '		
	1		
PCB-1260 (Aroclor 1260) mg/kg 38 U	1		
	PCB-1260 (Aroclor 1260)	mg/kg	38 U

Table A-6 Analytical Results for Non-Aqueous Phase Liquid (NAPL) in Temporary Monitoring Wells Former Oak Materials Fluorglas Division - John Street

	Location ID	JS-TMW-039
	Sample Date	23-May-2018
	Sample Type	N
Constituent	Units	
Volatile Organic Compounds (VOCs) by USEPA Method 8260		
1,1,1-Trichloroethane (TCA)	mg/kg	10000 U
1,1,2,2-Tetrachloroethane	mg/kg	10000 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	mg/kg	10000 U
1,1,2-Trichloroethane	mg/kg	10000 U
1,1-Dichloroethane	mg/kg	10000 U
1,1-Dichloroethene	mg/kg	10000 U
1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane	mg/kg mg/kg	10000 U 10000 U
1,2-Dibromoethane (Ethylene Dibromide)	mg/kg	10000 U
1,2-Dichlorobenzene	mg/kg	10000 U
1,2-Dichloroethane	mg/kg	10000 U
1,2-Dichloropropane	mg/kg	10000 U
1,3-Dichlorobenzene	mg/kg	10000 U
1,4-Dichlorobenzene	mg/kg	10000 U
2-Hexanone	mg/kg	50000 U
Acetone	mg/kg	50000 UJ
Benzene	mg/kg	10000 U
Bromodichloromethane	mg/kg	10000 U
Bromoform	mg/kg	10000 U
Bromomethane	mg/kg	10000 U
Carbon Disulfide	mg/kg	10000 U
Carbon Tetrachloride	mg/kg	10000 U
Chlorobenzene	mg/kg	10000 U
Chloroethane	mg/kg	10000 U
Chloroform	mg/kg	10000 U
Chloromethane	mg/kg	10000 U
Cis-1,2-Dichloroethylene	mg/kg	10000 U
Cis-1,3-Dichloropropene Cyclohexane	mg/kg	10000 U 10000 U
Dibromochloromethane	mg/kg mg/kg	10000 U
Dichlorodifluoromethane	mg/kg	10000 U
Ethylbenzene	mg/kg	10000 U
Isopropylbenzene (Cumene)	mg/kg	10000 U
Methyl Acetate	mg/kg	50000 U
Methyl Ethyl Ketone (2-Butanone)	mg/kg	50000 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	mg/kg	50000 U
Methylcyclohexane	mg/kg	10000 U
Methylene Chloride	mg/kg	10000 U
Styrene	mg/kg	10000 U
Tert-Butyl Methyl Ether	mg/kg	10000 U
Tetrachloroethylene (PCE)	mg/kg	10000 U
Toluene	mg/kg	10000 U
Trans-1,2-Dichloroethene	mg/kg	10000 U
Trans-1,3-Dichloropropene	mg/kg	10000 U
Trichloroethylene (TCE)	mg/kg	280000
Trichlorofluoromethane	mg/kg	10000 U
Vinyl Chloride	mg/kg	10000 U
Xylenes, Total	mg/kg	20000 U
2,4,5-Trichlorophenol	mg/kg	430 U
2,4,6-Trichlorophenol	mg/kg	430 U
2,4-Dichlorophenol	mg/kg	430 U
2,4-Dimethylphenol 2,4-Dinitrophenol	mg/kg	430 U 4200 U
2,4-Dinitrophenol 2,4-Dinitrotoluene	mg/kg	4200 U 430 U
2,4-Dinitrotoluene	mg/kg mg/kg	430 U 430 U
2-Chloronaphthalene	mg/kg	430 U
2-Chlorophenol	mg/kg	430 U
2-Methylnaphthalene	mg/kg	430 U
2-Methylphenol (O-Cresol)	mg/kg	430 U
2-Nitroaniline	mg/kg	830 U
2-Nitrophenol	mg/kg	430 U
3,3'-Dichlorobenzidine	mg/kg	830 U
3-Nitroaniline	mg/kg	830 U
4,6-Dinitro-2-Methylphenol	mg/kg	830 U
4-Bromophenyl Phenyl Ether	mg/kg	430 U

	Location ID	JS-TMW-039
	Sample Date	23-May-2018
	Sample Type	Ň
Constituent	Units	-
4-Chloroaniline	mg/kg	430 U
4-Chlorophenyl Phenyl Ether	mg/kg	430 U
4-Methylphenol (P-Cresol)	mg/kg	830 U
4-Nitroaniline	mg/kg	830 U
4-Nitrophenol	mg/kg	830 U
Acenaphthene	mg/kg	430 U
Acenaphthylene	mg/kg	430 U
Acetophenone	mg/kg	430 U
Anthracene	mg/kg	430 U
Atrazine	mg/kg	430 U
Benzaldehyde	mg/kg	430 U
Benzo(A)Anthracene	mg/kg	430 U
Benzo(A)Pyrene	mg/kg	430 U
Benzo(B)Fluoranthene	mg/kg	430 U
Benzo(G,H,I)Perylene	mg/kg	430 U
Benzo(K)Fluoranthene	mg/kg	430 U
Benzyl Butyl Phthalate	mg/kg	430 U
Biphenyl (Diphenyl)		430 U
Bis(2-Chloroethoxy) Methane	mg/kg	430 U
• • • • • • • • • • • • • • • • • • • •	mg/kg	
Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)	mg/kg	430 U
Bis(2-Chloroisopropyl) Ether	mg/kg	430 U
Bis(2-Ethylhexyl) Phthalate	mg/kg	430 U
Caprolactam	mg/kg	430 U
Carbazole	mg/kg	430 U
Chrysene	mg/kg	430 U
Dibenz(A,H)Anthracene	mg/kg	430 U
Dibenzofuran	mg/kg	430 U
Diethyl Phthalate	mg/kg	430 U
Dimethyl Phthalate	mg/kg	430 U
Di-N-Butyl Phthalate	mg/kg	430 U
Di-N-Octylphthalate	mg/kg	430 U
Fluoranthene	mg/kg	430 U
Fluorene	mg/kg	430 U
Hexachlorobenzene	mg/kg	430 U
Hexachlorobutadiene	mg/kg	430 U
Hexachlorocyclopentadiene	mg/kg	430 U
Hexachloroethane	mg/kg	430 U
Indeno(1,2,3-C,D)Pyrene	mg/kg	430 U
Isophorone	mg/kg	430 U
Naphthalene	mg/kg	6400
Nitrobenzene	mg/kg	430 U
N-Nitrosodi-N-Propylamine	mg/kg	430 U
N-Nitrosodiphenylamine	mg/kg	430 U
Pentachlorophenol	mg/kg	830 U
Phenanthrene	mg/kg	430 U
Phenol	mg/kg	430 U
Pyrene	mg/kg	430 U

mg/kg - milligrams per kilogram

ng/L - nanograms per liter

U - Compound not detected

J - Estimated value

UJ -Estimated Non-Detect

N - Primary sample

Table A-7
Analytical Results for PFAS, VOCs, pH and TOC from Groundwater Samples from Temporary Monitoring Wells
Former Oak Materials Fluorglas Division - John Street

			Location ID	JS-TMW-018	JS-TMW-030	JS-TMW-033	JS-TMW-035	JS-TMW-036	JS-TMW-037	JS-TMW-038	JS-TMW-039	JS-TMW-039	JS-TMW-044	JS-TMW-049	JS-TMW-050	JS-TMW-05:
			Sample Date	May-16-2018	May-24-2018	May-16-2018	May-24-2018	May-17-2018	May-16-2018	May-16-2018	May-15-2018	May-15-2018	May-15-2018	May-15-2018	May-14-2018	May-15-2018
			Sample Type	N	N	N	N	N	N	N	N	FD	N	N	N	N
		NYSDEC	NYSDEC													
		TOGS111 GA	TOGS111 GA													
Constituent	Units	GUIDANCE	STANDARD													
Perfluorinated Alkyl Compounds (PFAS) by USEPA Method 537-1.1 n	ıodified															
NEtFOSAA	ng/l	-	-	1.8 U	2.6 U	1.8 U	1.9 U	2 U	2 U	2 U	2 U	1.9 U	1.9 U	2 U	2.2 U	1.9 U
NMeFOSAA	ng/l	-	-	2.9 U	4.2 U	3 U	3.1 U	3.2 U	3.2 U	3.2 U	3.3 U	3 U	3.1 U	3.2 U	3.5 U	3.1 U
Perfluorobutanesulfonic acid (PFBS)	ng/l	-	-	1.7 J	0.5 J	0.59 J	1.8 J	0.21 U	0.6 J	0.21 U	0.74 J	0.8 J	1.2 J	1.3 J	1.6 J	0.2 U
Perfluorobutanoic Acid	ng/l	-	-	0.33 U	0.47 U	0.33 U	0.35 U	0.36 U	0.36 U	0.36 U	0.37 UJ	0.34 UJ	0.35 U	0.36 U	0.4 U	0.35 U
Perfluorodecane Sulfonic Acid	ng/l	-	-	0.3 U	0.43 U	0.31 U	0.32 U	0.33 U	0.33 U	0.33 U	0.34 Ú	0.31 Ú	0.32 U	0.33 U	0.37 U	0.32 U
Perfluorodecanoic acid (PFDA)	ng/l	-	-	0.63 J	0.42 U	0.3 U	0.31 U	0.32 U	0.32 U	0.32 U	0.33 U	0.3 U	1.1 J	0.42 J	0.44 J	0.31 U
Perfluorododecanoic acid (PFDoA)	ng/l	-	-	0.52 U	0.74 U	0.53 U	0.54 U	0.57 U	0.57 U	0.57 U	0.58 U	0.54 U	0.55 U	0.57 U	0.63 U	0.55 U
Perfluoroheptane Sulfonate (PFHPS)	ng/l	-	-	0.18 U	0.26 U	0.18 U	0.19 U	0.2 U	0.2 U	0.2 U	0.2 U	0.19 U	0.19 U	0.2 U	0.22 U	0.19 U
Perfluoroheptanoic acid (PFHpA)	ng/l	-	-	7.5	11	44	3.9	4.8	11	22	5.4	5.2	35	5.1	6.8	26
Perfluorohexanesulfonic acid (PFHxS)	ng/l	-	-	0.16 U	0.23 U	0.16 U	0.17 U	0.18 U	0.17 U	0.17 U	0.18 U	0.17 U	0.17 U	0.18 U	0.19 U	0.17 U
Perfluorohexanoic acid (PFHxA)	ng/l	-	-	14	10	38	3.7	6.1	6.7	17	4.4	4.1	16	3.8	5.6	27
Perfluorononanoic acid (PFNA)	ng/l	-	-	0.41 J	0.37 J	1.2 J	1.7 J	0.28 U	0.53 J	1.5 J	0.62 J	0.73 J	7	0.93 J	1.2 J	0.47 J
Perfluorooctane Sulfonamide (FOSA)	ng/l	-	-	0.33 U	0.47 U	0.33 U	0.35 U	0.36 U	0.36 U	0.36 U	0.37 U	0.34 U	0.35 U	0.36 U	0.4 U	0.35 U
Perfluorooctanesulfonic acid (PFOS)	ng/l	-	-	0.51 U	0.73 U	0.52 U	0.53 U	0.56 U	0.55 U	0.56 U	0.57 U	0.53 U	2.3	2.1	3.9	1.5 J
Perfluorooctanoic acid (PFOA)	ng/l	-	-	320	140	1200 J	120	68	1000 J	680 J	260	260	4100 J	260	290	860 J
Perfluoropentanoic Acid (PFPeA)	ng/l	-	-	3.1	2.4 J	9.2	0.88 J	1.5 J	1.7 J	3.3	0.8 J	0.98 J	6.4	2.1	4	6
Perfluorotetradecanoic acid (PFTA)	ng/l	-	-	0.27 U	0.39 U	0.28 U	0.29 U	0.3 U	0.3 U	0.3 U	0.31 U	0.28 U	0.29 U	0.3 U	0.33 U	0.29 U
Perfluorotridecanoic Acid (PFTriA)	ng/l	-	-	1.2 U	1.8 U	1.2 U	1.3 U	1.3 U	1.3 U	1.3 U	1.4 U	1.3 U	1.3 U	1.3 U	1.5 U	1.3 U
Perfluoroundecanoic Acid (PFUnA)	ng/l	-	-	1 U	1.5 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.2 U	1.1 U	1.1 U	1.1 U	1.3 U	1.1 U
SODIUM 1H,1H,2H,2H-PERFLUORODECANE SULFONATE (8:2)	ng/l	-	-	1.9 U	2.7 U	1.9 U	2 U	2.1 U	2.1 U	2.1 U	2.1 U	2 U	2 U	2.1 U	2.3 U	2 U
SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE SULFONATE (6:2)	ng/l	-	-	1.9 U	7.1 J	2.5 J	2 U	2.1 U	2.2 J	8.1 J	2.1 U	2 U	2 U	2.1 U	2.3 U	2.1 J
Volatile Organic Compounds (VOCs) by USEPA Method 8260																
1,1,1-Trichloroethane	μg/l	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	130	400 U	8 U	4000 U
1,1,2,2-Tetrachloroethane	μg/l	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
1,1,2-Trichloroethane	μg/l	-	1	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
1,1-Dichloroethane	μg/1	-	5	460 J	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	200	400 U	8 U	4000 U
1,1-Dichloroethene	μg/l	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
1,2,4-Trichlorobenzene	μg/l	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
1,2-Dibromo-3-chloropropane	μg/l	-	0.04	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
1,2-Dibromoethane	μg/l	-	0.0006	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
1,2-Dichlorobenzene	μg/l	-	3	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
1,2-Dichloroethane	μg/l	-	0.6	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
1,2-Dichloropropane	μg/l	-	1	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
1,3-Dichlorobenzene 1.4-Dichlorobenzene	μg/l	-	3	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
2-Butanone	μg/1 α/1	- 50	3	500 U 5000 U	40000 U 400000 U	20000 UJ 200000 UJ	1000 U 10000 U	4000 U 40000 U	4000 U 40000 U	20000 U 200000 U	40000 U 400000 U	40000 U 400000 U	40 U 400 U	400 U 4000 U	8 U 80 U	4000 U 40000 U
2-Hexanone	μg/1	50	-	2500 U	200000 U	100000 UJ	5000 U	20000 U	20000 U	100000 U	200000 U	200000 U	200 U	2000 U	40 U	20000 U
4-Methyl-2-pentanone	μg/1	30	-	2500 U	200000 U	100000 UJ	5000 U	20000 U	20000 U	100000 U	200000 U	200000 U	200 U	2000 U	40 U	20000 U
	μg/1	50	-	5000 U	400000 U	200000 UJ	10000 U	40000 U	40000 U	200000 U	400000 U	400000 U	400 U	4000 U	40 U	40000 U
Acetone Benzene	μg/l μg/l	- -	- 1	500 U	400000 U	200000 UJ	10000 U	4000 U	4000 U	200000 U	400000 U	40000 U	400 U	4000 U	8 U	4000 U
Bromodichloromethane		-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U 20000 U	40000 U 40000 U	40000 U 40000 U	40 U	400 U	8 U	4000 U 4000 U
Bromoform	μg/l μg/l	50	-	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U 20000 U	40000 U 40000 U	40000 U 40000 U	40 U	400 U	8 U	4000 U 4000 U
Bromomethane	μg/1 μg/1	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Carbon Disulfide	μg/1 μg/1	60	-	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Carbon Tetrachloride	μg/1 μg/1	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Chlorobenzene	μg/1 μg/1	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Chloroethane	μg/1 μg/1	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Chloroform	μg/1 μg/1	-	7	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Chloromethane	μg/1 μg/1	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
cis-1,2-Dichloroethene	μg/1 μg/1	_	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	24	4000 U
cis-1,3-Dichloropropene	μg/1	-	0.4	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Cyclohexane	μg/1	-		500 U	40000 UJ	20000 UJ	1000 UJ	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Dibromochloromethane	μg/1	50	-	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
	r.0/ -			I		,								2	~ =	-

Table A-7
Analytical Results for PFAS, VOCs, pH and TOC from Groundwater Samples from Temporary Monitoring Wells
Former Oak Materials Fluorglas Division - John Street

			Location ID	JS-TMW-018	JS-TMW-030	JS-TMW-033	JS-TMW-035	JS-TMW-036	JS-TMW-037	JS-TMW-038	JS-TMW-039	JS-TMW-039	JS-TMW-044	JS-TMW-049	JS-TMW-050	JS-TMW-053
				-	May-24-2018		•		•		-		•		-	-
			Sample Type	-	N	N	N	N	N	N	N	FD	N	N	N	N
		NYSDEC	NYSDEC													
		TOGS111 GA	TOGS111 GA													ļ
Constituent	Units	GUIDANCE	STANDARD													ļ
Dichlorodifluoromethane	μg/1	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Ethylbenzene	μg/1	=	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Freon 113	μg/1	=	5	500 U	40000 UJ	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Isopropylbenzene (Cumene)	μg/1	=	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Methyl Acetate	μg/1	-	-	1300 U	100000 U	50000 UJ	2500 U	10000 U	10000 U	50000 U	100000 U	100000 U	100 U	1000 U	20 U	10000 U
Methyl Tertiary Butyl Ether (MTBE)	μg/1	10	-	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Methylcyclohexane	μg/1	-	-	500 U	40000 UJ	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Methylene Chloride	μg/1	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Styrene	μg/1	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Tetrachloroethene	μg/1	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Toluene	μg/1	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
trans-1,2-Dichloroethene	μg/1	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
trans-1,3-Dichloropropene	μg/1	-	0.4	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Trichloroethene	μg/1	-	5	20000	1600000	1400000 J	210000	200000	200000	1000000	1900000	1800000	2100 J	18000	480	160000
Trichlorofluoromethane	μg/1	-	5	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Vinyl Chloride	μg/1	-	2	500 U	40000 U	20000 UJ	1000 U	4000 U	4000 U	20000 U	40000 U	40000 U	40 U	400 U	8 U	4000 U
Xylenes (Total)	μg/1	-	5	1000 U	80000 U	40000 UJ	2000 U	8000 U	8000 U	40000 U	80000 U	80000 U	80 U	800 U	16 U	8000 U
Total Organic Carbon by Lloyd Kahn Method	_															
Total Organic Carbon	mg/l	-	-	2.3 J	3 J	8.6	5.9	7	12.1	6.3	20 U	4.7 J	1.7 J	1.6 J	1.6 J	14.7
pH by Standard Method 9045D	-			I.												
pН	pH units	-	6.5 - 8.5	7.74	7.77	7.79	7.83	7.69	7.75	7.88	9.1	9.31	7.57	7.74	7.35	7.75

ng/L - nanograms per liter

μg/L - micrograms per liter

mg/L - milligrams per liter

U - Compound not detected

J - Estimated value

UJ - Estimated Non-Detect

N - Primary sample

FD - Field duplicate sample

NYSDEC TOGS111 - Standards listed are the New York State Department of Environmental Conservation (NYSDEC) Division

of Water Technical and Operational Guidance Series (TOGS) 1.1.1 values for Class GA groundwater.

Exceedance of NYS GA Guidance
Exceedance of NYS GA Standard

			Location ID Sample Date	JS-MW-001A 1-May-2018	JS-MW-002A 2-May-2018	JS-MW-003A 2-May-2018	JS-MW-004A 2-May-2018	JS-MW-005A 2-May-2018	JS-MW-005A 2-May-2018
		NYSDEC TOGS111 GA	Sample Type NYSDEC TOGS111 GA	N	Ñ	N	Ň	Ň	FD
Constituent Dechlorinating Bacteria	Unit	GUIDANCE	STANDARD						
Dehalococcoides TCEA Reductase	Cells/mL Cells/mL	-	-	0.2 0.5	31.4 9.1	0.5 0.5	0.4 0.4	0.5 0.5	0.5 0.5
BVCA Reductase	Cells/mL	-	-	0.5	0.4	0.5	0.4	0.5	0.5
Vinyl Chloride Reductase	Cells/mL Cells/mL	-	-	0.5 5	6.3 1100	0.5 5	0.4 4	0.5 5	0.5 5
Dehalobacter spp. Functional Genes	Cells/ mL	-	-	3	1100	5	4	3	5
Soluble Methane Monooxygenase	Cells/mL	-	-	5	97.3	5	4	5	5
Phylogenetic Group Methane Oxidizing Bacteria	Cells/mL	-	_	436	567000	274	23.2	196	5
Dissolved Gases	•								
Ethane Ethene	μg/l μg/l	-	- "	7.5 U 7 U	7.5 U 7 U	7.5 U 7 U	7.5 U 7 U	7.5 U 7 U	7.5 U 7 U
Methane	μg/1 μg/l	-	-	4 U	2 J	4 U	4 U	4 U	4 U
Sulfate by D-516-90			250	05.5	210	E 11		F 11	F.1.1
Sulfate (As SO4) Nitrogen, Nitrate-Nitrite by USEPA Method 353.2	mg/l	-	250	95.5	218	5 U	6.6	5 U	5 U
Nitrogen, Nitrate (As N)	mg/l	-	10	1.1	0.2	0.88	2.9	0.58	0.58
Nitrogen, Nitrite Sulfide by SM4500-S2-F	mg/l	-	0.02	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Sulfide	μg/1	-	-	1 U	1 U	1 U	1 U	1 U	1 U
<i>Metals by USEPA Method 6010C</i> Iron, Dissolved	ma/1			0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Iron, Total	mg/l mg/l	-	0.3	0.05 U	4.2	0.058	0.05 U	0.05 U	0.05 U
Manganese, Dissolved	mg/l	-	-	0.003 U	1	0.003 U	0.003 U	0.003 U	0.003 U
Manganese, Total Perfluorinated Alkyl Compounds (PFAS) by USEPA Method 5	mg/l 37-1.1 modified	-	0.3	0.003 U	1	0.003 U	0.003 U	0.003 U	0.003 U
NEtFOSAA	ng/l	-	-	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U
NMeFOSAA Perfluorobutanesulfonic acid (PFBS)	ng/l ng/l	-	-	4.2 U 0.9 U	4.2 U 0.9 U	4.2 U 0.9 U	4.2 U 1.1 J	4.2 U 0.9 U	4.2 U 0.9 U
Perfluorobutanesulronic acid (FFBS) Perfluorobutanoic Acid	ng/1 ng/1	-	-	5.1 J	0.9 U 2.7 U	0.9 U 2.7 U	3.3 J	0.9 U 2.7 U	2.7 U
Perfluorodecane Sulfonic Acid	ng/l	-	-	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
Perfluorodecanoic acid (PFDA) Perfluorododecanoic acid (PFDoA)	ng/l ng/l	-	-	3.7 U 0.46 U	12 0.46 U	0.9 U 0.46 U	0.83 U 0.46 U	0.85 U 0.46 U	0.75 U 0.46 U
Perfluoroheptane Sulfonate (PFHPS)	ng/l	-	-	0.88 U	0.88 U	0.88 U	0.88 U	0.88 U	0.88 U
Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS)	ng/l ng/l	-	-	17 0.97 J	14 0.94 U	4.4 0.94 U	9.2 1.4 J	2.7 J 0.94 U	2.5 J 0.94 U
Perfluorohexanoic acid (PFHxA)	ng/l	-	-	11	11	2.5 J	7.4	1.1 J	1.1 J
Perfluorononanoic acid (PFNA)	ng/l	-	-	14	17	1.2 J	1.6 J	1 U	1.2 U
Perfluorooctane Sulfonamide (FOSA) Perfluorooctanesulfonic acid (PFOS)	ng/l ng/l	-	- -	0.35 U 4.1 J	0.35 U 3.1 J	0.35 U 1.3 J	0.35 U 4.3 J	0.35 U 1 U	0.35 U 1.6 J
Perfluorooctanoic acid (PFOA)	ng/l	-	-	3600	1800	110	410	82	80
Perfluoropentanoic Acid (PFPeA) Perfluorotetradecanoic acid (PFTA)	ng/l ng/l	-	-	3.6 J 1.2 U	3.1 J 1.2 U	1.1 U 1.2 U	1.3 J 1.2 U	1.1 U 1.2 U	1.1 U 1.2 U
Perfluorotridecanoic Acid (PFTriA)	ng/l	-	-	0.77 J	1.2 U	0.75 U	0.95 J	0.75 U	0.78 U
Perfluoroundecanoic Acid (PFUnA)	ng/l	-	-	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
SODIUM 1H,1H,2H,2H-PERFLUORODECANE SULFONAT SODIUM 1H,1H,2H,2H-PERFLUOROOCTANE SULFONAT	ng/l ng/l	-	-	0.65 U 1.2 U	0.65 U 1.2 U	0.65 U 1.2 U	0.65 U 1.2 U	0.65 U 1.2 U	0.65 U 1.2 U
Volatile Organic Compounds (VOCs) by USEPA Method 8260									
1,1,1-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane	μg/l μg/l	-	5 5	13 2 U	2 U 2 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
1,1,2-Trichloroethane	μg/1 μg/1	-	1	2 U	2 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	μg/l	-	5	1.5 J	2 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene 1,2,4-Trichlorobenzene	μg/l μg/l	-	5 5	2 U 2 U	2 U 2 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
1,2-Dibromo-3-Chloropropane	μg/l	-	0.04	2 U	2 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene	μg/l μg/l	-	0.0006 3	2 U 2 U	2 U 2 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
1,2-Dichloroethane	μg/1 μg/1	-	0.6	2 U	2 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	μg/l	-	1	2 U	2 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	μg/l μg/l	-	3 3	2 U 2 U	2 U 2 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
2-Butanone	μg/l	50	-	20 U	20 U	10 U	10 U	10 U	10 U
2-Hexanone	μg/1	50	-	10 U	10 U	5 U	5 U	5 U	5 U
4-Methyl-2-Pentanone Acetone	μg/l μg/l	50	-	10 U 20 U	10 U 20 U	5 U 7.2 J	5 U 10 UJ	5 U 10 UJ	5 U 10 UJ
Benzene	μg/l	-	1	2 U	2 U	1 U	1 U	1 U	1 U
Bromodichloromethane Bromoform	μg/l μg/l	- 50	5	2 U 2 U	2 U 2 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Bromonethane	μg/l	- -	- 5	2 U	2 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Carbon Disulfide	μg/l	60	-	2 U	2 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride Chlorobenzene	μg/l μg/l	-	5 5	2 U 2 U	2 U 2 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Chloroethane	μg/l	-	5	2 U	2 U	1 U	1 U	1 U	1 U
Chloroform Chloromethane	μg/l	-	7 5	2 U 2 U	2 U 2 U	1 U 1 U	1 U	1 U	1 U
Chloromethane Cis-1,2-Dichloroethylene	μg/l μg/l	-	5	8.8	2 U 2.1	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Cis-1,3-Dichloropropene	μg/l	-	0.4	2 U	2 U	1 U	1 U	1 U	1 U
Cyclohexane Dibromochloromethane	μg/l μg/l	- 50	-	2 U 2 U	2 U 2 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Dioromocnioromethane Dichlorodifluoromethane	μg/l	-	5	2 U	2 U	1 U	1 U	1 U	1 U
Ethylbenzene	μg/l	-	5	2 U	2 U	1 U	1 U	1 U	1 U
1,1,2-Trichloro-1,2,2-Trifluoroethane Isopropylbenzene (Cumene)	μg/l μg/l	-	5 5	2 U 2 U	2 U 2 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Methyl Acetate	μg/l	-	-	5 U	5 U	2.5 U	2.5 U	2.5 U	2.5 U
Methyl Tertiary Butyl Ether (MTBE)	μg/l	-	-	2 U	2 U	1 U	1 U	1 U	1 U
Methylcyclohexane Methylcyc Chlorida	μg/l μg/l	-	- 5	2 U 2 U	2 U 2.5 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Methylene Chloride	μg/l	-	5	2 U	2 U	1 U	1 U	1 U	1 U
Styrene	μg/l	-	5 5	0.78 J 2 U	2 U 2 U	0.38 J 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Styrene Tetrachloroethylene (PCE)		-		2 U	2 U	1 U	1 U	1 U	1 U
Styrene	μg/l μg/l	-	5						
Styrene Tetrachloroethylene (PCE) Toluene Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	μg/l μg/l μg/l	-	0.4	2 U	2 U	1 U	1 U	1 U	1 U
Styrene Tetrachloroethylene (PCE) Toluene Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene Trichloroethylene (TCE)	μg/l μg/l μg/l μg/l	: 1	0.4 5	120 J	12	1.9	1 U	1 U	1 U
Styrene Tetrachloroethylene (PCE) Toluene Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	μg/l μg/l μg/l μg/l μg/l μg/l		0.4						
Styrene Tetrachloroethylene (PCE) Toluene Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene Trichloroethylene (TCE) Trichlorofluoromethane Vinyl Chloride Xylenes, Total	μg/l μg/l μg/l μg/l		0.4 5 5	120 J 2 U	12 2 U	1.9 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Styrene Tetrachloroethylene (PCE) Toluene Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene Trichloroethylene (TCE) Trichlorofluoromethane Vinyl Chloride Xylenes, Total Total Organic Carbon by Lloyd Kahn Method	μg/l μg/l μg/l μg/l μg/l μg/l μg/l		0.4 5 5 2	120 J 2 U 2 U 4 U	12 2 U 2 U 4 U	1.9 1 U 1 U 2 U	1 U 1 U 1 U 2 U	1 U 1 U 1 U 2 U	1 U 1 U 1 U 2 U
Styrene Tetrachloroethylene (PCE) Toluene Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene Trichloroethylene (TCE) Trichlorofluoromethane Vinyl Chloride Xylenes, Total	μg/l μg/l μg/l μg/l μg/l μg/l	- - - - - -	0.4 5 5 2	120 J 2 U 2 U	12 2 U 2 U	1.9 1 U 1 U	1 U 1 U 1 U	1 U 1 U 1 U	1 U 1 U 1 U

ng/L - nanograms per liter µg/L - micrograms per liter mg/L - milligrams per liter mV - millivolts

U - Compound not detected

J - Estimated value
UJ - Estimated Non-Detect

N - Primary sample

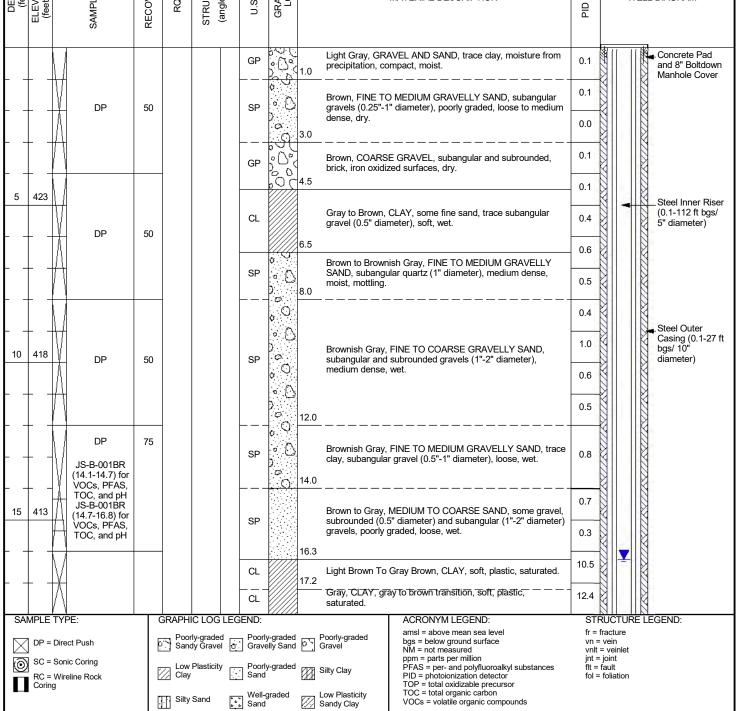
FD - Field duplicate sample

NYSDEC TOGS111 - Standards listed are the New York State Department of Environmental Conservation (NYSDEC)

Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 values for Class GA groundwater.

Exceedance of NYS GA Guidance

(NYS GA Guidance (NY


LIST OF APPENDICES

- A-1 Boring Logs
- A-2 Groundwater Sampling Logs
- A-3 PeroxyChem Report: Bench Scale Evaluation of ISCO Technologies for the Treatment of CVOCs in Groundwater and Soil from the Confidential Site

Appendix A-1 Boring Logs 105 Maxess Road; Suite 316

ERM

E	N RM	Melville, New Telephone:								TAGE TOT T
Clie	ent: _/	Arnold & Porter						Project Name: Hoosick		
Pro	ject N	umber: 037807	5					Project Location: Hoosick, New York		
DIR	ECT P	JSH CONTRACTOR	R: Par	ratt Wo	olff, Inc.		TO	TAL DEPTH: 137.1 feet bgs GROUND ELI	EVATIO	N: 428.10 feet amsl
DAT	E DIR	ECT PUSH COMPLI	ETED:	8/10/2	2016	_	DIA	METER: 1.25-6 inches TOC ELEVAT	ION:	427.62 feet amsl
SON	NIC CO	NTRACTOR: Case	cade Di	rilling			LO	GGED BY: C. Payne NORTHING:	14841	41.08
DAT	E SON	IIC COMPLETED:	5/21/2	018			СН	ECKED BY: H. Usle EASTING: 7	99436.	71
WIR	ELINE	CONTRACTOR: 0	Cascad	e Drillin	ıg		DA	TUM: NAD 1983 StatePlane New York East in US Survey Feet		
DAT	E MW	INSTALLED: 5/31	/2018				DR	ILLING METHODS: Hand Auger/ Direct Push/ Sonic Coring/ Wireli	ne Rocl	Coring
NOT	TES:	Lithologic details froi	m groui	nd surfa	ace to 79.5 f	eet bgs	and su	rface elevation derived from JS-B-001. Soil samples collected as part	of the	Clay Remedial Investigation.
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE	RECOVERY %	RQD %	STRUCTURE (angle\ type)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
						GP		Light Gray, GRAVEL AND SAND, trace clay, moisture from precipitation, compact, moist.	0.1	Concrete Pad and 8" Boltdown Manhole Cover
		VI					o o A	Brown, FINE TO MEDIUM GRAVELLY SAND, subangular	0.1	

ERM 105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

## A PATERIAL DESCRIPTION									
CL	(feet amsl) SAMPLE TYPE		STRUCTURE	U.S.C.S.	GRAPHIC LOG	,	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
DP 100 CL ML 21.0 Dark Gray, CLAY, interbedded very fine silty sand, soft, 0.9 0.2 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0	+ +	88		CL		saturated. <i>(conti</i>	y to brown transition, soft, plastic, nued)		
DP 100 CL Dark Gray To Gray, CLAY, soft to medium stiff, plastic, 0.5 casturated. DP 100 CL Gray, CLAY, interbedded very fine sity sand, gray color lightening down core, soft to medium stiff, plastic, saturated. CL Gray, CLAY, interbedded very fine sity sand, gray color lightening down core, soft to medium stiff, plastic, saturated. CL Gray, CLAY, soft, plastic, saturated. 32.0 CL Gray, CLAY, soft, plastic, saturated. CL Gray, CLAY, soft, plastic, saturated. CL Gray, CLAY, interbedded very fine sity sand, interbedded very fine sity sand, interbedded very fine-grained sity sands throughout, soft, plastic, saturated. CL ML Steel Outer Casing (27-112 it bags is saturated). CL Gray, CLAY, interbedded very fine sity sand, interbedded very fine sity sand, interbedded very fine-grained sity sands throughout, soft, plastic, saturated.	20 400 /					Dark Gray, CLA	/, interbedded very fine silty sand, soft,	0.9	
Dark Gray, CLAY, soft to medium stiff, plastic, saturated. DP 100 CL Steel Outer Casing (27-112 ft bys/8 ft diameter) CL Gray, CLAY, interbedded very fine silty sand, gray color lightening down core, soft to medium stiff, plastic, saturated. CL Gray, CLAY, soft, plastic, saturated. CL Gray, CLAY, soft, plastic, saturated. CL Gray, CLAY, interbedded very fine silty sand, interbedded very fine silty sand, interbedded very fine silty sand, interbedded very fine-silty sand, interbedded very fine-silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. CL ML Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. O.2 CL ML Steel Outer Casing (27-112 ft bys/8 ft diameter)	DP	100							
25 403 DP 100 DP 100 28.0 O.1 O.1 O.1 O.1 O.2 O.2 O.2 O.3 O.	_							0.2	
DP 100 28.0 0.1 0.1 0.1 0.3 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.3	25 403			CL			ay, CLAY, soft to medium stiff, plastic,	0.5	
28.0 28.0 28.0 CL- ML Gray, CLAY, interbedded very fine silty sand, gray color lightening down core, soft to medium stiff, plastic, saturated. CL Gray, CLAY, soft, plastic, saturated. CL Gray, CLAY, soft, plastic, saturated. CL Gray, CLAY, soft, plastic, saturated. Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. CL Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. O.2 CL Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. O.3 O.4 O.2 O.2 O.3 O.2 O.2 O.2 O.2 O.3 O.2 O.3 O.3	DP	100						0.2	
30 398 U DP 100 CL ML Gray, CLAY, interbedded very fine silty sand, gray color lightening down core, soft to medium stiff, plastic, saturated. 0.2 Steel Outer Casing (27-112 ft bgs/8" diameter) 32.0 CL Gray, CLAY, soft, plastic, saturated. 0.2 O.3 Steel Outer Casing (27-112 ft bgs/8" diameter) CL Gray, CLAY, soft, plastic, saturated. 0.2 O.2 O.2 O.3 Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. 0.3								0.1	
30 398 DP 100 CL-ML Gray, CLAY, interbedded very fine silty sand, gray color lightening down core, soft to medium stiff, plastic, saturated. CL Gray, CLAY, interbedded very fine silty sand, gray color lightening down core, soft to medium stiff, plastic, saturated. 0.2 CL Gray, CLAY, soft, plastic, saturated. 0.2 CL Gray, CLAY, soft, plastic, saturated. 0.2 CL Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. 0.2 CL Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. 0.2 CL ML Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated.						28.0		0.3	
30 398 DP 100 CL-ML Gray, CLAY, interbedded very fine silty sand, gray color lightening down core, soft to medium stiff, plastic, saturated. CL-ML Gray, CLAY, interbedded very fine silty sand, gray color lightening down core, soft to medium stiff, plastic, saturated. CL Gray, CLAY, soft, plastic, saturated. DP 100 CL Gray, CLAY, soft, plastic, saturated. CL Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. CL-ML Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. CL-ML Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated.								0.4	
Ilightening down core, soft to medium stiff, plastic, saturated. O.2 Casing (27-112 ft bgs/8" diameter) CL. Gray, CLAY, soft, plastic, saturated. O.2 Casing (27-112 ft bgs/8" diameter) O.2 Casing (27-112 ft bgs/8" diameter) O.2 CL. Gray, CLAY, soft, plastic, saturated. O.2 O.2 CL. Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. O.3 Casing (27-112 ft bgs/8" diameter)	30 398 V	100				Gray, CLAY, inte	erbedded very fine silty sand, gray color	0.2	Steel Outer
DP 100 CL Gray, CLAY, soft, plastic, saturated. 33.8 O.2 O.2 O.2 O.2 O.2 O.2 O.2 O				ML		lightening down o	core, soft to medium stiff, plastic, saturated.	0.2	Casing (27-112 ft bgs/ 8"
CL Gray, CLAY, soft, plastic, saturated. 33.8 O.2 O.2 O.2 CL-ML Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. O.2 O.3 O.3 O.3						32.0		0.3	
33.8 DP 100 33.8 CL- ML Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. 0.2 0.2 0.3				CL		Gray, CLAY, soft	t, plastic, saturated.	0.2	
35 393 CL-ML Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. 0.2 0.2 0.3		100				33.8		0.2	
CL- ML Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated.		100						0.2	
very fine-grained silty sands throughout, soft, plastic, 0.3 saturated.								0.2	
						very fine-grained		0.3	
		400						0.3	
DP 100 0.3	+ + + DP	100						0.3	
SAMPLE TYPE: GRAPHIC LOG LEGEND: ACRONYM LEGEND: STRUCTURE LEGEND:	SAMPLE TYPE:	G	RAPHIC I OG I	LEGEND.		ı	ACRONYM LEGEND:	ST	TOTAL SECTION STATES AND SECTION SECTI
DP = Direct Push DP = Direct Push Or Gravell Sandy Gravel Poorly-graded Gravelly Sand Or Gravell Description of Gravell Amsl = above mean sea level bgs = below ground surface NM = not measured NM = not measured NM = poorly-graded NM = not measured NM = poorly-graded NM = poorly-grad	DP = Direct Push SC = Sonic Coring	<u> </u>	Poorly-graded Sandy Gravel	Poorly Grave	elly Sand y-graded	Gravel	amsl = above mean sea level bgs = below ground surface NM = not measured ppm = parts per million PFAS = per- and polyfluoroalkyl substances	fr = vn = vnlt jnt = flt =	fracture = vein = veinlet = joint fault
RC = Wireline Rock Coring Clay Sand Well-graded Sand Silty Sand Well-graded Sand San	RC = Wireline Rock Coring			Well	araded	Low Placticity	TOP = total oxidizable precursor TOC = total organic carbon	fOI =	- iviiduori

JS-B/MW-001BR PAGE 3 OF 7

ERM 105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

	RECOVERY %	RQD % STRUCTURE	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION (Edd) Q Q WELL DIAGRAM	
40 388					0.2	
-			CL- ML		Gray, CLAY, interbedded very fine silty sand, interbedded very fine-grained silty sands throughout, soft, plastic, saturated. (continued)	
1 101	100				0.2	
JS-B-001BR (42.5-43.6) for VOCs, PFAS,					42.8	
TOC, and pH			SM		Dark Gray, VERY FINE SILTY SAND, loose, saturated. 0.3	
45 383			sw		Dark Gray, VERY FINE SAND, well graded, loose, saturated.	
_	50			0.00	1.0	
			SP	。)。	Grayish Brown, FINE TO COARSE SAND, with rounded fine gravel, (0.25" diameter), poorly graded, loose, saturated.	
				, O	48.0	
_			SP]) (Brownish Gray, COARSE SAND, and rounded gravel, (0.25" 0.7 diameter), loose, saturated.	
50 378 W	83			, O	50.0 1.0 1.0	
			SP		Brownish Gray, FINE TO MEDIUM SAND, loose, saturated. 0.3	
			GP	600	Gray, Red Brown, White, and Brown, FINE GRAVEL, trace subrounded coarse sand, loose, saturated.	
					0.4	
	62				0.4	
55 373	63				0.4	
			SP		Grayish Black, MEDIUM TO COARSE SAND, some gravel, well sorted, subrounded gravel (1"-2" diameter), subangular	
					near 60 ft bgs, loose, saturated.	
DP DP	62				0.7	
	63				0.9	
60 368					0.8	
	\dashv		CL	1////		
SAMPLE TYPE:	G	RAPHIC LOG		(//////	ACRONYM LEGEND: STRUCTURE LEGEND:	
DP = Direct Push	5	Poorly-graded Sandy Gravel	Poor Grav		d Poorly-graded d Gravel Amsl = above mean sea level fr = fracture bgs = below ground surface vn = vein NM = not measured vnlt = veinlet ppm = parts per million jnt = joint	
RC = Wireline Rock Coring		Low Plasticity Clay	Poor Sand	ly-graded d	d PFAS = per- and polyfluoroalkyl substances flt = fault PID = photoionization detector fol = foliation TOP = total oxidizable precursor	
	Well-graded Low Plasticity TOC = total orga				Low Plasticity Sandy Clay Sandy Clay Solution TOC = total organic carbon VOCs = volatile organic compounds	

JS-B/MW-001BRPAGE 4 OF 7

ERM 105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

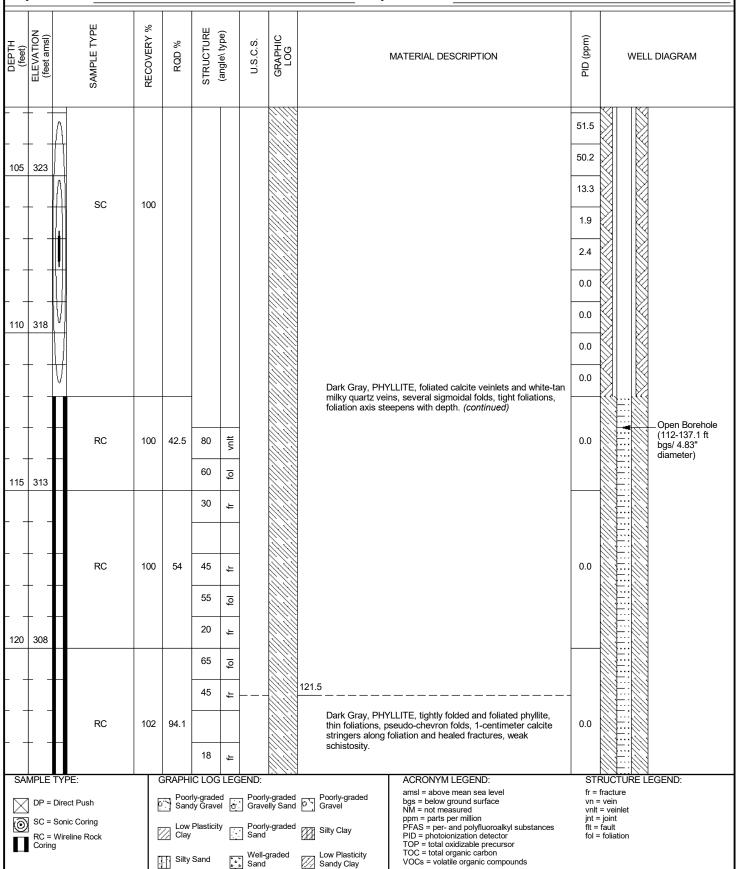
Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet) (feet ams) (feet ams)		RECOVERY %	RQD % STRUCTURE (angle) type)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	DP :	25		CL		Dark Gray, SANDY CLAY, trace subrounded gravel, grave (0.5" diameter), slight bluish hue, "organic-like odor", soft t medium stiff, saturated. (continued)	12.0	
65 363	DP :	75		SP		Dark Grayish - Black, MEDIUM TO COARSE GRAVELLY SAND, some sandy clay, subangular gravel (0.25"-0.5" diameter), poorly sorted, varying colors, loose, saturated.	5.0 3.8 2.1	
70 358 \	DP .	17		SP		Dark Gray, MEDIUM TO COARSE GRAVELLY SAND, tra clay, subangular gravel (3" diameter), medium dense, wet.	ce 1.4	
75 353	DP (63		SW		Gray To Dark Gray, MEDIUM TO COARSE SAND, with fir to medium gravel, rounded to subrounded, well graded, repeated upward fining units, varying colors, loose to medium dense, saturated. Gray To Dark Gray, FINE TO MEDIUM GRAVELLY SAND	0.8	
	DP !	57		SP SP SW		with subangular medium gravel, (1"-2" diameter), dense, saturated. Dark Gray To Black, FINE-SAND, interbedded white sand lenses "sticky", loose, saturated. Dark Gray, FINE TO MEDIUM SAND, trace rounded fine gravel, well graded, fining upward, loose, saturated. Dark Gray To Reddish-Brown, FINE GRAVEL, some rounded fine to medium sand, saturated. Dark Gray, FINE TO MEDIUM SAND, with subangular	1.0	
80 348 (I) SAMPLE TYPE:		GR	RAPHIC LOG LI	GP GC	000	gravel, black gravel (1"-2" diameter), saturated. Dark Gray, COARSE GRAVEL AND COBBLES, subrounded to subangular medium to coarse lithic sand matrix, saturated. Dark Gray, DIAMICT, with cobbles, dense, wet. ACRONYM LEGEND:		TRUCTURE LEGEND:
DP = Direct Push SC = Sonic Coring RC = Wireline Roc Coring			Low Plasticity Clay	Grave Poorly Sand	r-graded	Poorly-graded Gravel Silty Clay Silty Clay Low Plasticity Sandy Clay Sandy Clay Small = above mean sea level bgs = below ground surface NM = not measured ppm = parts per million PFAS = per- and polyfluoroalkyl substances PID = photoionization detector TOP = total oxidizable precursor TOC = total organic carbon VOCs = volatile organic compounds	vn vnl jnt flt =	= fracture = vein tt = veinlet = joint = fault = foliation

JS-B/MW-001BR PAGE 5 OF 7

ERM 105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick


DEPTH (feet) ELEVATION (feet amsl) SAMPLE TYPE	RECOVERY %	RQD %	STRUCTURE (angle\ type)	0 0	GRAPHIC	MATERIAL DESCRIPTION	N (mdd) Old	WELL DIAGRAM
- + 1/				G	c o	Dark Gray, DIAMICT, with cobbles, dense	wet. (continued)	
sc /	100						0.0	,
85 343					000		0.0	
					60		0.5	
					000		0.2	
							34.	3
					60		42. 73.	K/41 1K/4
90 338				G		Dark Gray, COARSE GRAVEL, subrounde medium to coarse lithic sand matrix, loose	ed to subangular 62.	5
30 330 1					000	·	87.	4
+ ##					000		5.9	, -
+ ##							72.	5
sc /	100				80		NN	
95 333							27.	4
95 333					000		81.	1
						96.5	46.	5
+ +				G	P % 0	Medium Gray, FINE TO MEDIUM GRAVE to subangular silt, coarse lithic gravel, loos 97.8	EL, trace rounded se, saturated.	5
				S		Dark Gray, LITHIC SAND, trace subround sorted.	led fine gravel, well	
100 328						99.8	31.	6
				G	501	Dark Gray, MEDIUM TO COARSE GRAVI medium to coarse lithic gravel, loose, satu	EL, subrounded 21.	8
						101.7 Dark Gray, PHYLLITE, foliated calcite veir		
SAMPLE TYPE:	T 6	GRAPHIC	21061	EGENII	D. (())	milky quartz veins, several sigmoidal folds foliation axis steepens with depth. ACRONYM LEGEND:	3.8	STRUCTURE LEGEND:
DP = Direct Push		Poorly Sandy	/-graded / Gravel	o Po	oorly-grade ravelly San	Poorly-graded Gravel amsl = above mean sea le bgs = below ground surfact NM = not measured ppm = parts per million	evel fr ce v v jr	= fracture n = vein nlt = veinlet nt = joint
SC = Sonic Coring RC = Wireline Rock Coring		Low P	Plasticity		oorly-grade and	Silty Clay PFAS = per- and polyfluor PID = photoionization dete TOP = total oxidizable pre	roalkyl substances fl ector fo ecursor	t = fault ol = foliation
		∏ Silty S	and	W Sa	ell-graded and	Low Plasticity Sandy Clay TOC = total organic carbo VOCs = volatile organic co		

ERM

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

JS-B/MW-001BRPAGE 7 OF 7

ERM 105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

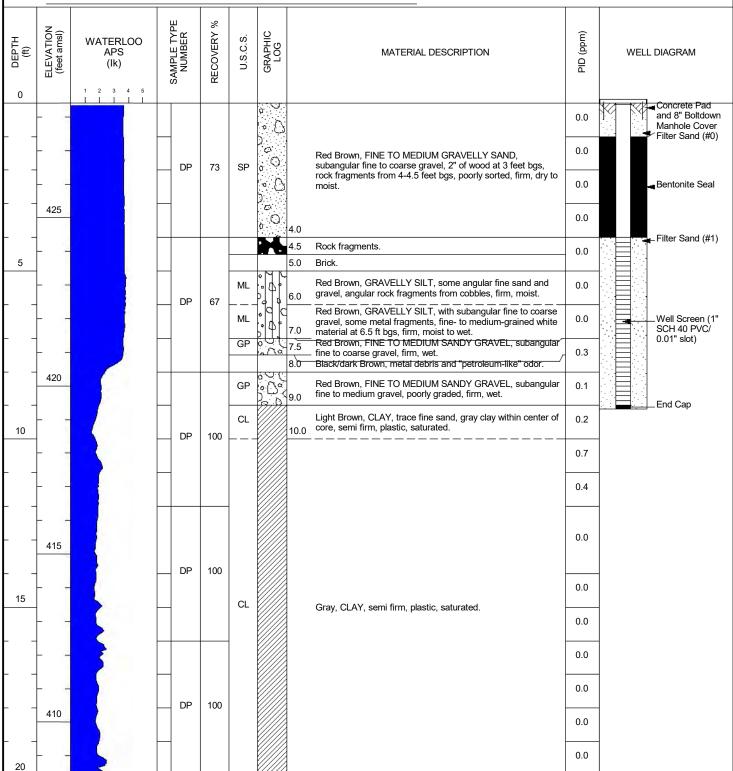
Pro	ject N	umber: 037807	5					Project Location: Hoosick, New York
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE	RECOVERY %	RQD %	STRUCTURE (angle\ type)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION (Ed) OC
125 130 135 	298	RC RC RC	104	92	55 F 18 = 60 p			Dark Gray, PHYLLITE, tightly folded and foliated phyllite, thin foliations, pseudo-chevron folds, 1-centimeter calcite stringers along foliation and healed fractures, weak schistosity. (continued) 0.0 0.0 0.0 0.0
140 145 SA	SC = 9 RC = 1	Direct Push Sonic Coring Wireline Rock		Poor Sand	_	Poorl Grave	aradad	ppm = parts per million jnt = joint

ERM 5788 Widewaters Parkway Syracuse, New York 13214 Telephone: (315) 445-2554

GROUND ELEVATION: 428.90 feet amsl

NOTES:

Client: Arnold & Porter Project Name: Hoosick


TOC ELEVATION: 428.42 feet amsl

Project Number: 0378075 APS CONTRACTOR: Cascade DRILLING METHOD: Hand Auger/ Direct Push DATE APS COMPLETED: 8/9/2016 TOTAL DEPTH: 83.9 feet bgs B/MW CONTRACTOR: Parratt Wolff, Inc. DIAMETER: 1.25-3.25 inches DATE B COMPLETED: 8/15/2016 LOGGED BY: T. Daniluk/ J. Reynolds DATE MW COMPLETED: 10/4/2016 CHECKED BY: H. Usle

APS = Waterloo Advanced Profiling System
MW = Monitoring Well B = Soil Boring
lk = Index of Hydraulic Conductivity
amsl = above mean sea level

ppm = parts per million HA = Hand Auger DP = Direct Push

ACRONYM LEGEND bgs = below ground surface PID = Photoionization Detector

JS-APS/B/MW-002A PAGE 2 OF 4

ERM 5788 Widewaters Parkway Syracuse, New York 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick

							Troject Zeoddienii - Troeslan, Tron		
DEPTH (#)	ELEVATION (feet amsl)	WATERLOO APS (Ik)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	- 3	7			CL		Gray, CLAY, semi firm, plastic, saturated. (continued) 21.5	0.0	
-			DP	100	CL		Grayish Brown, SANDY CLAY, fine-grained, semi firm, saturated.	0.0	
	405				SC- SM		Grayish Brown, CLAYEY SAND, fine-grained, firm, wet to saturated. 24.0	0.0	
25		7			CL		Grayish Brown, SANDY CLAY, soft to medium stiff, plastic, saturated.	0.0	
	- 4		DP	100	CL SC-		Grayish Brown, CLAY, soft, plastic, saturated.	0.0	
					SM		26.5 Grayish Brown, CLAYEY SAND, semi firm, saturated.	0.0	
	-				CL		Grayish Brown, SANDY CLAY, soft, plastic, saturated. 28.0	0.0	
-	400				CL		28.5 Brownish Gray, GRAVELLY CLAY, fine gravel, semi firm, saturated.	0.0	
30	- 9		DP	100				0.0	
	- 4			100				0.0	
-	-				CL		Grayish Brown, SANDY CLAY, with fine gravel and medium to fine sand, firm, wet to saturated.	0.0	
								0.0	
	395		DP	100			33.5	0.0	
35				100	SC- SM		Grayish Brown, CLAYEY SAND, fine-grained, semi firm, saturated. 35.0	0.0	
	-				CL		Grayish Brown, SANDY CLAY, fine-grained, soft, plastic, saturated.	0.0	
	-							0.0	
	-		L DP	100				0.0	
	390_							0.0	
40					SC- SM		Grayish Brown, CLAYEY SAND, fine-grained, semi firm, saturated.	0.0	
	-							0.0	
	_		DP	100				0.0	
	_			100				0.0	

JS-APS/B/MW-002A PAGE 3 OF 4

ERM 5788 Widewaters Parkway Syracuse, New York 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick

1.10,0									
DEPTH (ft)	ELEVATION (feet amsl)	WATERLOO APS (Ik)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	385				SP		Grayish Brown, FINE SAND, some clay, trace fine to medium gravel, firm, saturated.	0.0	
45	_ =				SP		Gray, FINE SAND, firm, saturated.	0.0	
			DP	58	SP		Gray, FINE TO MEDIUM SAND, some fine gravel, firm, saturated.	0.0	
				36	SP	. 0	Gray, FINE TO MEDIUM GRAVELLY SAND, subangular fine gravel, poorly sorted, firm, saturated.	0.0	
-					SP		Gray, FINE TO MEDIUM SAND, trace subangular fine gravel, firm, saturated.	0.4	
50	380		DP	0			No recovery. 52.0		
	375		DP	50	SP	0000	Gray, FINE TO COARSE GRAVELLY SAND, subangular fine gravel, firm, wet. 54.0	1.7	
55	- 1				GP		Gray, FINE TO COARSE SANDY GRAVEL, subrounded fine to medium gravel, poorly graded, semi firm, wet.	1.5	
	- 5				SP	0	Gray, FINE TO COARSE GRAVELLY SAND, subrounded fine to coarse gravel, poorly sorted, semi firm, wet.	1.7	
			DP	25				2.1	
 60	370				SP		Gray, FINE TO COARSE GRAVELLY SAND, subrounded fine to medium gravel, faint "organic-like" odor, large cobble at 57.5 feet bgs, poorly sorted, semi firm, wet to saturated.	3.1	
	- 13					。 。 ()		4.4	
	- 2		DP	50		PO	62.0	1.4	
	- #				GP	50°	Gray, FINE TO COARSE SANDY GRAVEL, subrounded fine	5.3	
	365					600 600	to coarse gravel, poorly graded, loose, wet.	4.8	
65					GP		Grayish Brown, FINE SAND, with subangular fine to medium	0.0	
	_ /-					°O (gravel, some rock fragments, poorly graded, loose, wet.	0.1	

JS-APS/B/MW-002A PAGE 4 OF 4

ERM 5788 Widewaters Parkway Syracuse, New York 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick

L .,.							Trojoti Zoddom Trodolok, Now York		
DEPTH (ft)	ELEVATION (feet amsl)	WATERLOO APS (Ik)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	-		DP	79	GP		Grayish Brown, FINE SAND, with subangular fine to medium gravel, some rock fragments, poorly graded, loose, wet. 67.0 (continued)	0.1	
						, O		0.9	
	360				SP	, O	Grayish Brown, FINE TO MEDIUM GRAVELLY SAND, subangular fine to coarse gravel, firm, wet.		
70	- 12					, O	70.0	0.3	
"			DP	56		0		0.0	
-			-		SP 	, O.	Red Brown, FINE TO MEDIUM SAND, with subangular fine to coarse gravel, poorly sorted, hard, wet.	0.3	
	- 10				GP		Grayish Brown, FINE TO COARSE SANDY GRAVEL, subrounded fine to coarse gravel, fine- to medium-grained sand, poorly graded, loose, wet.	0.1	
	-					ە <u>(</u>		0.4	
	355	-	DP	79		, O		0.3	
75					SP	0	Grayish Brown, FINE TO MEDIUM GRAVELLY SAND,	0.5	
	- 15				OI.	, O	subrounded fine- to medium-grained sand, fine to coarse gravel, cobbles and rock fragments, poorly graded, firm, wet. 0.2		
	- 1) <u> </u>		0.0	
	- 4		5	F0		0.	78.0	0.2	
-	350	-	DP	50			Grayish Brown, FINE TO MEDIUM SANDY GRAVEL, subrounded fine- to medium-grained sand, fine to coarse	0.1	
80	-				GP	, Ω, , Ω, (gravel, some subangular rock fragments, poorly graded, firm,	0.0	
	- 1				SP	6	Grayish Brown, FINE TO COARSE GRAVELLY SAND, trace silt, fine to coarse subangular gravel, some oxidation, poorly 81.0 sorted, hard, wet.	0.0	
† -					GP	000	81.5 Grayish Brown, FINE TO MEDIUM SANDY GRAVEL, - subrounded poorly graded, loose, saturated.	0.0	
ļ -			DP	34	SP	٥٠٠	82.0 Grayish Brown, FINE GRAVELLY SAND, subrounded fine to coarse gravel, hard, wet.		
	- 4								
-	345								
	-						Bottom of APS Boring @ 83.90 ft Bottom of Boring @ 82.00 ft		
	ļ -						DOMOITI OF DOTTING (W 02.00 IL		
	<u> </u>								
	L -								
	340								
	J-0	-							

GROUND ELEVATION: 430.70 feet amsl

TOC ELEVATION: 430.50 feet amsl

NORTHING: 1484032.02

PAGE 1 OF 12

ERM 105 Maxess Road; Suite 316 Melville, New York 11747

Telephone: (631) 756-8900 Client: Arnold & Porter Project Name: Hoosick

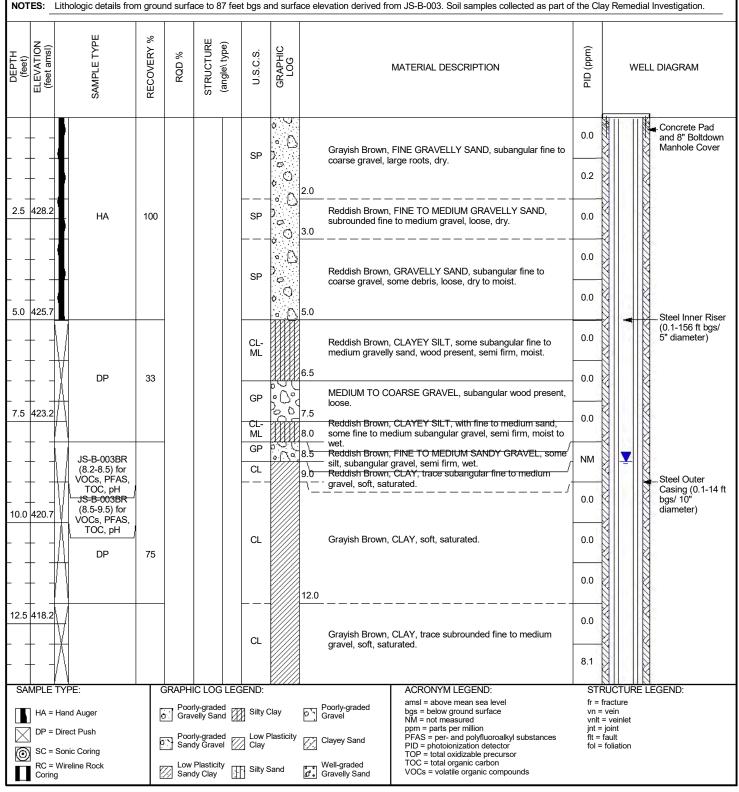
DIRECT PUSH CONTRACTOR: Parratt Wolff, Inc. DATE DIRECT PUSH COMPLETED: 8/4/2016

SONIC CONTRACTOR: Cascade Drilling DATE SONIC COMPLETED: 5/16/2018

Project Number: 0378075

WIRELINE CONTRACTOR: Cascade Drilling

DATE MW INSTALLED: 6/11/2018


Project Location: Hoosick, New York

TOTAL DEPTH: 181.5 feet bgs DIAMETER: 1.25-6 inches

LOGGED BY: C. Payne CHECKED BY: H. Usle

EASTING: 799375.88 DATUM: NAD 1983 StatePlane New York East in US Survey Feet

DRILLING METHODS: Hand Auger/ Direct Push/ Sonic Coring/ Wireline Rock Coring

JS-B/MW-003BR PAGE 2 OF 12

ERM 105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

(feet) ELEVATION (feet ams) SAMPLE TYPE	RECOVERY %		STRUCTURE (angle\ type)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
15.0 415.7 DP	10	00		CL		Grayish Brown, CLAY, trace subrounded fine to mediu gravel, soft, saturated. (continued)	52.9	
-						16.0	201.2	
- + -							188.9	· 📓 📗
17.5 413.2							123.3	Steel Outer Casing (14-156 ft bgs/ 8" diameter)
DP	10	00		CL		Grayish Brown, CLAY, soft, low plasticity, saturated.	61.2	
20.0 410.7						20.0	37.1	
							2.0	
+ +	4.0						0.0	
22.5 408.2 DP	10	00					0.0	
				CL		Grayish Brown, CLAY, soft to medium stiff, saturated.	0.0	
25.0 405.7							0.0	
DP	10	00					0.0	
+ -						27.0	0.0	
27.5 403.2				CL		Reddish Brown, CLAY, soft to medium stiff, saturated. 28.0	0.0	
				SC		Grayish Brown, CLAYEY SAND, fine-grained, semi fin saturated.	n, — — 0.0	
- + +				CL		Grayish Brown, CLAY, trace fine to medium sand, sen firm, saturated. 29.5		
30.0 400.7 DP	10	00		SC		Grayish Brown, CLAYEY SAND, fine-grained, soft to medium stiff, saturated.	0.0	
	.0			CL		Grayish Brown, CLAY, trace fine sand, semi firm, satu	ated.	
SAMPLE TYPE: HA = Hand Auger DP = Direct Push		Poo Gra	orly-graded avelly Sand	Silty		Poorly-graded Gravel ACRONYM LEGEND: amsl = above mean sea level bgs = below ground surface NM = not measured ppm = parts per million	fr = vn vnl jnt	RUCTURE LEGEND: fracture = vein t = veinlet = joint
SC = Sonic Coring		Por Sar	orly-graded ndy Gravel	Low F Clay	Plasticity	Clayey Sand PFAS = per- and polyfluoroalkyl substan PID = photoionization detector TOP = total oxidizable precursor	ces flt :	= fault = foliation
RC = Wireline Rock Coring			v Plasticity ndy Clay	Silty S	Sand	Well-graded TOC = total organic carbon VOCs = volatile organic compounds		

ERM

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet) ELEVATION (feet amsl) SAMPLE TYPE	RECOVERY %		STRUCTURE (angle\ type)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
				CL		Grayish Brown, CLAY, trace fine sand, semi firm, saturated. (continued)	0.4	
32.5 398.2							0.4	
- + - DP	10	0		CL		Grayish Brown, CLAY, trace fine sand, soft to medium stiff, plastic, saturated.	0.4	
35.0 395.7							0.2	
- + 1				SC SC		Grayish Brown, CLAYEY SAND, very fine sand, semi firm, saturated.	0.5	
37.5 393.2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10			CL		37.5 Grayish Brown, CLAY, soft, plastic, saturated.	0.3	
	10	0		sc		Grayish Brown, CLAYEY SAND, very fine sand, semi firm, saturated.	0.2	
40.0 390.7						40.0	0.1	
-				CL		Grayish Brown, SANDY CLAY, very fine sand, poorly sorted, semi firm, saturated.	0.0	
· + -				CL		41.5 Grayish Brown, CLAY, soft, plastic, saturated.	0.1	
DP 42.5 388.2	10	0		CL		Grayish Brown, SANDY CLAY, very fine sand, poorly sorted, semi firm, saturated.	0.2	
- + -						44.0	0.2	
45.0 385.7							0.1	
DP	10	0		sc		Grayish Brown, CLAYEY SAND, very fine sand, poorly sorted, soft, saturated.	0.1	
- + -						47.0	0.1	
SAMPLE TYPE: HA = Hand Auger			rly-graded velly Sand		Clay	Poorly-graded Gravel ACRONYM LEGEND: amsl = above mean sea level bgs = below ground surface NM = not measured ppm = parts per million	fr = vn = vnlt	RUCTURE LEGEND: fracture = vein = veinlet = joint
DP = Direct Push SC = Sonic Coring		Poo San	rly-graded dy Gravel	Low F	Plasticity	Clayey Sand PFAS = per- and polyfluoroalkyl substances PID = photoionization detector TOP = total oxidizable precursor	flt =	- joint fault - foliation
RC = Wireline Rock Coring		Low San	Plasticity dy Clay	Silty S	Sand	Well-graded Gravelly Sand Well-graded VOCs = volatile organic compounds		

JS-B/MW-003BR PAGE 4 OF 12

ERM 105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

1 Tojoot Humbon						Troject Zeoddienii		
DEPTH (feet) (feet amsi) (feet amsi)		KECOVERY %	RQD % STRUCTURE	(angle\ type) U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
47.5 383.2				CL		Grayish Brown, SANDY CLAY, trace subangular fine gravet, very fine-grained sand, semi firm, saturated. (continued) Reddish Brown, FINE TO MEDIUM SILTY SAND, trace clay, firm, wet.	0.1	
	-003BR				9	48.5	0.0	
VOC:	49.6) for s, PFAS, pC, pH	50					0.0	
+ -						De diffet Descript MEDIUM TO COADCE ODAYELLY CAND	0.0	
				SW		Reddish Brown, MEDIUM TO COARSE GRAVELLY SAND, subrounded fine to coarse gravel, subangular sand grains, poorly sorted, loose to medium dense, wet.	0.0	
52.5 378.2							2.0	
<u> </u>	DP 7	' 5				54.0	1.1	
55.0 375.7				GW		Grayish Brown, SANDY GRAVEL, subangular medium to coarse gravel, medium to coarse-grained sand, poorly		
						sorted, loose, wet.	0.5	
57.5 373.2	DP	3		SP		Grayish Brown, FINE TO COARSE GRAVELLY SAND, fine to coarse gravel, subrounded to subangular, coarse gravel in tip, dense, wet.	0.9	
62.5 368.2	DP §	96		sw		Grayish Brown, FINE TO MEDIUM SAND, trace coarse gravel, poorly sorted, dense, wet.	0.6	
+ +				SP	*****	63.0 Reddish Brown, FINE SAND, well sorted, dense, wet.		
SAMPLE TYPE: HA = Hand Auger DP = Direct Push SC = Sonic Coring RC = Wireline Ro Coring	g	GR	APHIC LOG Poorly-grade Gravelly San Poorly-grade Sandy Grave Low Plasticity Sandy Clay	Silty d Silty Clay		ACRONYM LEGEND: amsl = above mean sea level bgs = below ground surface NM = not measured ppm = parts per million PFAS = per- and polyfluoroalkyl substances PID = photoionization detector TOP = total oxidizable precursor TOC = total organic carbon VOCs = volatile organic compounds	fr = vn : vnlt jnt : flt =	fracture = vein t = veinlet = foliation

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet) ELEVATION (feet amsl)	SAMPLE TYPE	RECOVERY %	RQD %	STRUCTURE (angle\ type)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM																			
	\langle				SW		Reddish Brown, FINE TO MEDIUM SAND, poorly sorted, 64.0 dense, wet. (continued)	0.0																				
65.0 365.7	DP	58			GW		Gray, SANDY GRAVEL, medium to coarse gravel, fine- to coarse-grained sand, some rock fragments, fining upward sequence, poorly sorted, loose, wet.	0.1																				
	 						67.0	0.1																				
67.5 363.2	\dashv				GP		Grayish Brown, FINE TO COARSE SANDY GRAVEL, subrounded fine to coarse gravel, dense, wet. 68.0	0.0																				
					SP GP		Grayish Brown, FINE TO COARSE GRAVELLY SAND, ————————————————————————————————————	0.1																				
70.0 360.7	DP	75			SW SW	69.3 Gray, MEDIUM TO COARSE GRAVEL, subrounded dense, wet. Grayish Brown, FINE TO MEDIUM SAND, some subangular 70.0 fine to medium gravel, fining upward sequence, some	0.0																					
		-			GP		coarse-grained sand, well graded, loose, wet. FINE TO COARSE GRAVEL, trace subangular and subrounded coarse sand, loose, wet. 71.0	0.0																				
					SP	。 。)	Reddish Brown, FINE TO MEDIUM GRAVELLY SAND, some silt, fine to coarse subangular gravel, weathered bedrock fragments at base, wet.	0.0																				
72.5 358.2					SW		GrayIsh Brown, FINE TO COARSE GRAVELLY SAND, 72.5 subangular medium to coarse gravel, poorly sorted, dense, wet.	0.0																				
	DP	92			GW		Grayish Brown, FINE TO COARSE GRAVEL, trace subrounded coarse sand, poorly sorted, wet. 74.0	0.0																				
75.0 355.7		83	00																					SW		Grayish Brown, FINE TO MEDIUM GRAVELLY SAND, 44.5 angular fine to medium gravel, poorly sorted, semi firm, saturated. 75.0 Grayish Brown, MEDIUM TO COARSE GRAVEL, some	0.0	
- + -					GP GP		¬ ¬ - subrounded fine to medium sand, well sorted, wet. 75:5 ¬ Grayish Brown; FINE GRAVEL, some subrounded fine to ¬ ¬ ¬ medium sand, well sorted, wet. 76:0 ¬ Grayish Brown; SANDY GRAVEL, subrounded medium to ¬ ∫	0.0																				
					SP		coarse gravel, fine-grained sand, loose, wet. 76.5 Brown, FINE TO MEDIUM SAND, some fine gravel, well sorted, semi firm, wet.	0.1																				
77.5 353.2	DP	75			GW		Gray, FINE TO COARSE GRAVEL, subrounded poorly sorted, loose, wet. 78.0	0.1																				
					GW		Gray, FINE TO COARSE SANDY GRAVEL, subangular fine to coarse gravel, fine- to coarse-grained sand, poorly sorted, loose, wet.	0.2																				
├					SP		79.5 Reddish Brown, FINE TO MEDIUM GRAVELLY SAND,	0.0																				
SAMPLE T	YPE:		 GRAPH	C LOG LEG			80.0 ACRONYM LEGEND:	ST	RUCTURE LEGEND:																			
DP = 0	land Auger birect Push conic Coring	[Poor Sand	lly-graded velly Sand lly-graded dly Gravel lly-graded	Low P Clay	Plasticity	poorly-graded Gravel amsl = above mean sea level bgs = below ground surface NM = not measured ppm = parts per million Clayey Sand PFAS = per- and polyfluoroalkyl substances PID = photoionization detector TOP = total oxidizable precursor TOC = total organic carbon	vn = vnlt jnt = flt =	fracture = vein = veinlet = joint - fault = foliation																			
Coring	Vireline Rock		Sand	dy Clay	Silty S	Sand	VOCs = volatile organic compounds																					

ERM

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

	ROD %	STRUCTURE (angle\ type)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION (ଜିଣ୍ଡ ଓ) WELL DIAGRAM
			SP	o O	80.5 bgs, dense, wet. (continued)
. + 1/1			GP		Graysh Brown, FiNE-TO MEDIUM GRAVELLYSAND, — U.S subangular medium to coarse gravel, dense, wet. Gray, SANDY GRAVEL, subrounded fine to coarse gravel, fine- to medium-grained sand, shale fragments, loose, wet.
DP 8	88		GP		Gray, FINE TO COARSE GRAVEL, some subrounded fine
52.5 6 16.2				PO €	
+ +			GP		
85.0 345.7					5.0
DP 3	GW Subrounded fine	Grayish Brown, FINE TO COARSE SANDY GRAVEL, subrounded fine to coarse sand, fine to coarse subrounded and subangular rock fragments, poorly sorted, dense, wet.			
					87.0
87.5 343.2					0.0
					0.0
90.0 340.7					0.0
					0.0
			GP		Grayish Brown, FINE TO COARSE GRAVEL, with rounded to angular coarse sand, lithic gravel, loose, saturated.
92.5 338.2 SC 10	00				
+ -					0.0
95.0 335.7					0.0
SAMPLE TYPE:	GRAPHIC	LOG LEG	END:	60	ACRONYM LEGEND: STRUCTURE LEGEND:
HA = Hand Auger		graded lly Sand		Clay	Poorly-graded Gravel Poorly = above mean sea level bgs = below ground surface vn = vein NM = not measured ppm = parts per million jnt = joint
DP = Direct Push SC = Sonic Coring	Poorly Sandy	-graded Gravel	Low F Clay	Plasticity	Clayey Sand PFAS = per- and polyfluoroalkyl substances PID = photoionization detector TOP = total oxidizable precursor
RC = Wireline Rock Coring	Low P	lasticity Clay	Silty S	Sand	Well-graded VOCs = volatile organic compounds VOCS = volatil

JS-B/MW-003BR PAGE 7 OF 12

ERM 105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

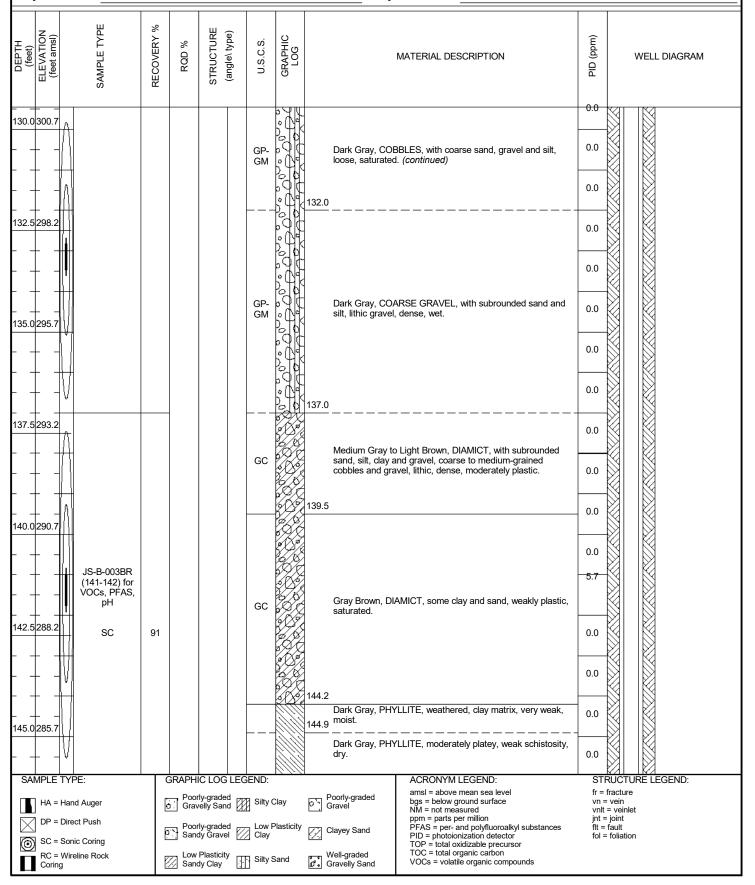
Client: Arnold & Porter Project Name: Hoosick

(feet) ELEVATION (feet amsl)	SAMPLE TYPE	RECOVERY %	RQD %	STRUCTURE (angle\ type)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM	
						000	· ·		0.0		
97.5 333.2						0°0°			0.0		
					GP	60°	Grayish Brown, to angular coars (continued)	FINE TO COARSE GRAVEL, with rounded se sand, lithic gravel, loose, saturated.	0.0		
100.0330.7							(Sommes)		0.0		
- +							101.1		0.0		
						6 U			0.0		
02.5328.2									0.0		
										0.0	
105.0325.7										0.0	
- + -							Black, MEDIUM S/ saturated.	մ SAND, lithic sands, well sorted, loose,	0.0		
	SC	95			SP				0.0		
07.5 323.2							saturated.		0.0		
+									0.0		
10.0320.7										0.0	
										0.0	
									0.0		
112.5318.2									0.0		
SAMPLE TYP	E:		ĠRAPHI	C LOG L	EGEND:			ACRONYM LEGEND:		RUCTURE LEGEND:	
HA = Han			Poor Grav	ly-graded elly Sand	Silty	Clay	Poorly-graded Gravel	amsl = above mean sea level bgs = below ground surface NM = not measured ppm = parts per million	vn = vnlt	fracture = vein = veinlet = joint	
DP = Direction SC = Soni			Poor Sand	ly-graded ly Gravel	Low I	Plasticity	Clayey Sand	PFAS = per- and polyfluoroalkyl substances PID = photoionization detector	flt =	fault fault foliation	
SC = Soni RC = Wire Coring			Low Sand	Plasticity dy Clay	Silty	Sand	Well-graded Gravelly Sand	TOP = total oxidizable precursor TOC = total organic carbon VOCs = volatile organic compounds			

JS-B/MW-003BR PAGE 8 OF 12

ERM 105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick


	RECOVERY %	STRUCTURE (angle\ type)	U.S.C.S.	GRAPHIC LOG	MATERIAL [DESCRIPTION	PID (ppm)	WELL DIAGRAM
				• O	<u>113.0</u> — — — — — —		0.0	
-			CD.	00.	Dark Gray To Black, MEDIUI	M TO COARSE SAND, with nd cobbles, lithic gravel, loose,	0.0	
- + -			SP	0.0	saturated.	id cobbies, littlic gravel, loose,	0.0	
· +				° 0 ° 0	447.0		0.0	
117.5313.2				, O	117.0		0.0	
- + +				0.0			0.0	
- + +				。 。 ()			0.0	
20.0 310.7			SP	° 0	Dark Gray To Black, MEDIUI subrounded coarse gravel ar saturated.	M TO COARSE SAND, with nd cobbles, lithic gravel, loose,	0.0	
				. O		0.0		
122.5308.2				, O			0.0	
<u> </u>				2.0 0	123.2		0.0	
T 111								
25.0 305.7					Dark Gray, COBBLES, with coarse sand, gravel and silt,		0.0	
			GP-				0.0	
sc 10	00		GM		loose, saturated.	, ,	0.0	
127.5303.2							0.0	
T							0.0	
				116.3				
SAMPLE TYPE:		IC LOG LECTLY-graded relly Sand		<u>L~ Ullk</u> Clav	Poorly-graded amsl = abo	M LEGEND: ove mean sea level w ground surface	fr =	RUCTURE LEGEND: fracture vein
HA = Hand Auger DP = Direct Push		velly Sand		Plasticity	Gravel Orange Sand Sand	neasured is per million er- and polyfluoroalkyl substances	vnlt jnt = flt =	= veinlet = joint fault
SC = Sonic Coring RC = Wireline Rock Coring	Low	Plasticity	∑ Clay ∏ Silty S	Sand	TOP = tota TOC = tota	coionization detector al oxidizable precursor al organic carbon olatile organic compounds	tol =	= foliation

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

JS-B/MW-003BRPAGE 10 OF 12

FRM

ERM 105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet) ELEVATION (feet amsl)	SAMPLE TYPE	RECOVERY %	RQD %	STRUCTURE	(angle\ type)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WEL	L DIAGRAM
147.5283.2									0.0		
150.0280.7									0.0		
								Dark Gray, PHYLLITE, moderately platey, weak schistosity dry. (continued)	0.0		
152.5 278.2	SC	49							0.0		
- + -									0.0		
155.0 275.7									0.0		
- + - V - + -								156.0	0.0		
·	RC	90	0					Dark Gray, PHYLLITE, milky quartz veins, possible structural zone, multiple strain indicators, quartz fill.	0.0		
157.5273.2	RC	167	62	45	vn				0.0		Open Borehole (156-181.5 ft bgs/ 4.83"
 160.0 270.7				29	fr			Dark Gray, PHYLLITE, thinly foliated with crenulation folding, calcite foliation parrallel, cross-cutting quartz, calcite, and pyrite veins, vein at 157.8 ft bgs.			diameter)
				4	Ψ						
-				77	fol						
SAMPLE TYP	E:	Т-	I GRAPHI	C LOG	LEG	END:	17. 11.7	ACRONYM LEGEND:		RUCTURE L	EGEND:
HA = Hand DP = Direct SC = Soni RC = Wirect Coring	ct Push		Poor Sand	ly-grade elly San ly-grade ly Grave Plasticity ly Clay	d /		Plasticity	Poorly-graded Gravel Amsl = above mean sea level bgs = below ground surface NM = not measured ppm = parts per million PFAS = per- and polyfluoroalkyl substances PID = photoionization detector TOP = total oxidizable precursor TOC = total organic carbon VOCs = volatile organic compounds	vn : vnlt jnt : flt =	fracture = vein t = veinlet = joint = fault = foliation	

JS-B/MW-003BRPAGE 11 OF 12

ERM 105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet) ELEVATION (feet ams)	SAMPLE TYPE	RECOVERY %	RQD %	STRUCTURE (angle) type)	U.S.C.S.	GRAPHIC LOG	MA	ATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	RC	98	67	40	0				0.0	
+ +				40	<u> </u>					
165.0 265.7							Dark Gray, PHYLL folding, calcite and pyrite a	ITE, thinly foliated with crenulation tion parrallel, cross-cutting quartz, reins, vein at 157.8 ft bgs. (continued)		
- + -				66	<u>ō</u>		calcite, and pyrite	reins, vein at 107.0 it bgs. (continued)		
167.5 263.2	RC	98	80	28	⊨		167.6		0.0	
+ +				62	<u>ō</u>					Open Borehole (156-181.5 ft
170.0260.7				27	5					bgs/ 4.83" diameter)
- + -				60	5					
				70	5					
172.5258.2	. RC	58	41						0.0	
							Dark Gray, PHYLL increased quartz a fracture at 167.6 ft	ITE, secondary foliation axis and nd calcite veining (shear zone), open bgs.		
-										
175.0 255.7										
<u> </u>										
177.5 253.2	RC	70	72	53	5				0.0	
SAMPLE TY	PE:	Τ,		C LOG L		1.\ \		ACRONYM LEGEND: amsl = above mean sea level		RUCTURE LEGEND: fracture
	and Auger rect Push			ly-graded elly Sand			Poorly-graded Gravel	bgs = below ground surface NM = not measured ppm = parts per million	vn : vnlt jnt :	= vein t = veinlet = joint
SC = Sc	onic Coring				Low Clay			PFAS = per- and polyfluoroalkyl substances PID = photoionization detector TOP = total oxidizable precursor	flt =	= fault = foliation
RC = W Coring	ireline Rock		Low Sand	Plasticity ly Clay	Silty	Sand	Well-graded Gravelly Sand	TOC = total organic carbon VOCs = volatile organic compounds	_	

Client: Arnold & Porter

ERM

105 Maxess Road; Suite 316 Melville, New York 11747

JS-B/MW-003BR PAGE 12 OF 12

Telephone: (631) 756-8900

Project Number: 0378075 Project Location: Hoosick, New York

Project Name: Hoosick

Project Number: 0378075					Project Location: Hoosick, New York		
DEPTH (feet) (feet amsi) (feet amsi)	RECOVERY %	STRUCTURE (angle\ type)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
180.0 250.7		ے 50			Dark Gray, PHYLLITE, secondary foliation axis and		
RC	0	60 5			Dark Gray, PHYLLITE, secondary foliation axis and increased quartz and calcite veining (shear zone), open fracture at 167.6 ft bgs. (continued) 181.5		
				111111			/// · ////
182.5 248.2					Bottom of Boring @ 181.50 feet bgs		
<u> </u>							
- + -							
185.0 245.7							
- + -							
187.5243.2							
- + - - + -							
190.0 240.7							
 							
192.5 238.2							
195.0235.7							
SAMPLE TYPE:	GRAPI	HIC LOG LE	GEND:	1	ACRONYM LEGEND:		RUCTURE LEGEND:
HA = Hand Auger	Po Gra	orly-graded avelly Sand	Silty	Clay	Poorly-graded Gravel amsl = above mean sea level bgs = below ground surface NM = not measured	vn =	fracture = vein = veinlet

DP = Direct Push

SC = Sonic Coring RC = Wireline Rock Coring

Low Plasticity Sandy Clay Silty Sand

Poorly-graded Low Plasticity Clay

Clayey Sand

Well-graded Gravelly Sand

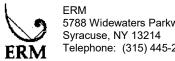
bgs = below ground surface

NM = not measured

ppm = parts per million

PFAS = per- and polyfluoroalkyl substances

PID = photoionization detector


TOP = total oxidizable precursor

TOC = total organic carbon

VOCs = volatile organic compounds

vnlt = veinlet jnt = joint flt = fault fol = foliation

0.0

12.5

15.0

417.5

5788 Widewaters Parkway Telephone: (315) 445-2554 Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York APS CONTRACTOR: Cascade ACRONYM LEGEND DRILLING METHOD: Hand Auger/ Direct Push APS = Waterloo Advanced Profiling System
MW = Monitoring Well TOTAL DEPTH: 111.5 feet bgs DATE APS COMPLETED: 8/9/2016 B = Soil Boring
lk = Index of Hydraulic Conductivity
amsl = above mean sea level DIAMETER: 1.25-3.25 inches B/MW CONTRACTOR: Parratt Wolff, Inc. LOGGED BY: J. Reynolds/ H. Usle DATE B COMPLETED: 8/23/2016 bgs = below ground surface CHECKED BY: J. Fox DATE MW COMPLETED: 10/4/2016 PID = Photoionization Detector ppm = parts per million HA = Hand Auger DP = Direct Push GROUND ELEVATION: 432.10 feet amsl TOC ELEVATION: 431.73 feet amsl NOTES: SAMPLE TYPE ELEVATION (feet amsl) GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) **WATERLOO APS** MATERIAL DESCRIPTION (lk) 0.0 Reddish Brown, GRAVELLY SILT, trace fine to medium ML 0.5 sand, subrounded gravel, organics, loose, dry to moist. Reddish Brown, GRAVELLY SILT, trace fine sand, fine to ML coarse gravel, some organics, loose, dry to moist. □2.0 430.0 2.5 100 HA SANDY SILT, some fine to coarse gravel, subangular, fine- to MLmedium-grained sand, loose, dry. 427.5 5.0 5.0 Dark Brown To Gray Brown, FINE SAND, some silt, trace SP subangular gravel (1" diameter), brick fragments, medium dense, moist, Brown Orange, MEDIUM SAND, some subangular gravel, SP 6.5 medium dense, dry. DP 70 425.0 Gray Brown, FINE TO MEDIUM GRAVELLY SAND, SP 7.5 subangular (1"-2" diameter), medium dense, dry. 0 0 8.0 0 (Brown, MEDIUM TO COARSE GRAVELLY SAND, SP subangular (0.5"-3" diameter), trace clay, loose to medium dense, saturated. 422.5 'n. 10.0 DP 63 CL Brownish Gray, CLAY, soft, plastic, saturated. 420.0

Gray, CLAY, soft, plastic, saturated.

CI

DP

100

JS-APS/B/MW-004APAGE 2 OF 7

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick

Project Location: Hoosick, New York Project Number: 0378075

							Trojoti Zoddom Trocolok, New York		
DEPTH (ft) (12.0	ELEVATION (feet amsl)	WATERLOO APS (Ik)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	_ 1							0.0	
	415.0							0.0	
17.5			DP	100	CL		Gray, CLAY, soft, plastic, saturated. (continued)	0.0	
	3	N)						0.0	
20.0	412.5						20.0	0.0	
								0.0	
	410.0		DP	100				0.0	
22.5	 							0.0	
	 				CL		Gray, CLAY, trace silt, soft, plastic, wet to saturated.	0.0	
25.0	407.5							0.0	
			DP	100				0.0	
27.5	405.0	8						0.0	
	 						28.0	0.0	
								0.0	
30.0	402.5		DP	100	CL		Gray To Dark Gray, CLAY, trace silt, interbedded, soft to medium stiff, plastic, wet to saturated.	0.0	
	_							0.0	
-	400.0							0.0	

JS-APS/B/MW-004A PAGE 3 OF 7

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick

Project Location: Hoosick, New York Project Number: 0378075

<u> </u>								- Trojoc Boodson Processon, Non Fork	
DEPTH (ft)	ELEVATION (feet amsl)	WATERLOO APS (Ik)		SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION (Eq. d)	
32.5						CL		Gray To Dark Gray, CLAY, trace silt, interbedded, soft to medium stiff, plastic, wet to saturated. (continued) 0.0 0.0 34.0	
35.0	 397.5			DP	100	ML		Dark Gray, SILT, trace fine sand and clay, soft, saturated. 34.8	
	- <u>-</u>					CL- ML		Dark Gray, SILTY CLAY, some very fine sand, interbedded, soft to medium stiff, saturated. 0.0	
-	 395.0					CL- ML		Dark Gray, SILTY CLAY, interbedded, soft to medium stiff, saturated.	
37.5				DP	100	SP- SM		Dark Gray, SANDY SILT, very fine sand, soft, saturated.	
-				DP	100	CL-		0.0 Dark Gray, SILTY CLAY, some fine sand, soft to medium	
40.0	392.5	į.				ML		Dark Gray, SILTY CLAY, some fine sand, soft to medium stiff, saturated. 0.0 40.0	
-								0.0	
	 390.0			DP	100			0.0	
42.5								0.0	
-	_ =					CL		Dark Gray, CLAY, some silt, interbedded, non laminar, silt content decreasing with depth, soft, plastic, saturated.	
 45.0	387.5							content decreasing with depth, soft, plastic, saturated. 0.0	
-				. DP	100			0.0	
-	385.0							0.0	
47.5								48.0	
-						ML		Gray To Dark Gray, SILT AND CLAY, interbedded, soft to medium stiff, plastic, saturated.	
			_						

JS-APS/B/MW-004APAGE 4 OF 7

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 $\textbf{Project Location:} \ \ \underline{ \ \ } \ \ \text{Hoosick, New York}$

rioje	Ct Nullik	<u> </u>					FIOJECT LOCATION		
DEPTH (ft)	ELEVATION (feet amsl)	WATERLOO APS (lk)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
50.0 –	382.5		. DP	100	N/1		Gray To Dark Gray, SILT AND CLAY, interbedded, soft to	0.0	
-	380.0		_		ML		medium stiff, plastic, saturated. (continued)	0.0	
52.5	360.0				CL		Dark Gray, CLAY, some silt, medium stiff, cohesive, saturated.	0.0	
-	- 			400	ML CL		Dark Gray, SILT, some clay, soft, saturated. 53.5 Dark Gray, CLAY, some silt, medium stiff, cohesive, saturated.	0.0	
- - 55.0	377.5		. DP	100	ML		Dark Gray, SILT, soft, saturated. 55.0	0.0	
_					CL		Dark Gray, CLAY, some silt, medium stiff, cohesive, saturated.	0.0	
_	375.0				CL- ML		Dark Gray, SILTY CLAY, medium stiff, cohesive, saturated.	0.0	
57.5	_		DP	100	CL- ML		Dark Gray, CLAYEY SILT, soft, saturated. 58.0	0.0	
-	-			100	CL- ML		Dark Gray, CLAY, stiff, saturated. Dark Gray, CLAYEY SILT, soft, saturated.	0.0	
60.0	372.5				ML		59.5 Dark Gray, SILT, trace clay layers and fine sands, trace rounded gravel (0.5" diameter), stiff, wet.	0.0	
_								0.2	
_	370.0		DP	95	SP- SM		Dark Gray, VERY FINE SILTY SAND, loose, saturated.	0.2	
62.5	_							0.3	
_						0	63.5	0.2	
65.0	367.5				SP	, () , ()	Dark Gray To Black, MEDIUM TO COARSE GRAVELLY SAND, subangular to subrounded, (0.25"-1" diameter), loose,	0.0	
_	- (=		DP	63		。() o	wet to saturated.	0.0	
_]	-		, O			

JS-APS/B/MW-004APAGE 5 OF 7

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter

Project Name: Hoosick

DEPTH (ft)	ELEVATION (feet amsl)	WATERLOO APS (Ik)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
67.5	365.0	1 2 3 4 5			SP		67.0	0.0	
-	362.5				SC- SM		Light Gray, CLAYEY COARSE SAND, some subangular gravel, (0.5" diameter), some silt, medium dense to dense,	0.0	
0.0			DP	50			saturated.	0.1	
2.5	360.0					o	72.0	0.0	
-	 				ľ			0.0	
5.0	357.5		DP	25	SP		Light Gray, COARSE GRAVELLY COARSE TO FINE SAND, some clay, subangular (1" diameter), loose, saturated.	0.0	
_			4		Ц	0	76.0	0.0	
7.5	355.0		ď			X		0.0	
_			DP	50	GW		Dark Gray, GRAVEL, some medium to coarse sand, subrounded (0.25"-1" diameter), fining upward sequence, well graded, loose, saturated.	0.0	
0.0	 352.5 						80.0	0.0	
-					SW		Gray, Red and White, COARSE SAND, rounded, fining upward sequence, well graded, loose, saturated. 81.0	0.0	
2.5	350.0		DP	75	GP	00000	Dark Gray, Green and White, GRAVEL, subangular to subrounded, (0.5"-2" diameter), saturated.	0.0	
-					SP	000	83.0 Dark Gray, COARSE GRAVELLY COARSE TO FINE SAND, subangular (0.5" diameter), loose, saturated.		

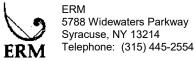
JS-APS/B/MW-004APAGE 6 OF 7

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick

Project Location: Hoosick, New York Project Number: 0378075

<u> </u>							Troject Lecture in the colon, them form		
DEPTH (ft)	ELEVATION (feet amsl)	WATERLOO APS (Ik)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	(mdd) Old	WELL DIAGRAM
					SP	σ	84.0	0.0	
85.0	347.5								
 87.5	345.0		DP	6	SP		Gray, COARSE SAND AND GRAVEL, some clay, subrounded to subangular (0.5"-1" diameter), poorly sorted,	0.0	
-) _ O	dense, saturated.	0.0	
90.0	342.5		DP	25				0.1	
). O		0.0	
-	340.0					, O	92.0	0.0	
92.5					SP		Dark Gray, MEDIUM TO COARSE SAND, trace rounded fine gravel, loose, saturated.	0.0	
			DP	85			93.5 Dark Gray To Black, GRAVEL, some coarse sand,	0.0	
	207.5]		"		subrounded to subangular (0.5"-1" diameter), loose, saturated.	2 -	
95.0	337.5				SP		Dark Gray To Black, COARSE SAND, rounded well sorted, loose, saturated.	0.0	
-					SP	o ○ o ○	Dark Bluish-Gray, COARSE GRAVELLY COARSE TO FINE SAND, subrounded (0.5" diameter), loose, wet.	0.0	
	335.0				SP		Dark Gray To Black, MEDIUM TO COARSE SAND, well	0.0	
97.5		100	DP	45			sorted, loose, saturated. 98.0	0.0	
	 				GP		Dark Gray To Black, FINE GRAVEL, some coarse sand, subrounded to subangular (0.5" diameter), loose, saturated.	0.0	
100.0	332.5				SP		Gray, MEDIUM TO COARSE SAND, some clay and gravel, subangular, loose, saturated.	0.0	
<u> </u>					SW		Dark Bluish-Gray, MEDIUM TO COARSE SAND, grading to gravelly coarse sand, subangular and subrounded (0.5"-1"	0.0	


JS-APS/B/MW-004A PAGE 7 OF 7

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick

Projec	ct Num	oer: 03/80/5					Project Location: Hoosick, New York		
DEPTH (ft)	ELEVATION (feet amsl)	WATERLOO APS (Ik)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
							diameter), well graded, loose, saturated.	0.0	
102.5	330.0		DP	33	SW		Dark Bluish-Gray, MEDIUM TO COARSE SAND, grading to gravelly coarse sand, subangular and subrounded (0.5"-1" diameter), well graded, loose, saturated. (continued)	0.0	
							104.0	0.1	
105.0	327.5				SP		Dark Gray, FINE TO COARSE SAND, well sorted, loose,	0.0	
			DP	50			saturated.	0.0	
	325.0				SP	。 () ()	Dark Gray, COARSE GRAVELLY COARSE TO FINE SAND, subrounded and subangular (1"-2" diameter), loose,	0.0	
107.5						; ; ; ;	saturated.	0.0	
						0.0		0.1	
110.0	322.5		DP	8	SP		Grayish Blue, COARSE GRAVELLY COARSE TO FINE SAND, subangular (0.5"-1" diameter), laminar toward base with light-brown and greenish layering, green/blue shale fragments at base, dense.	0.1	
						. O	111.2	0.1	
	-						111.2	0.1	
							Bottom of APS Boring @ 111.50 ft		
							Bottom of Boring @ 111.20 ft		

EK		old & Porter	313)4	40-200	14			Project Na	me: Hoosick		
		ber: 0378075	 5						cation: Hoosick, New York		
•		CTOR: Cascad			DR	ILLING	METH	OD: Hand Auger/ Direct Push	ACRONYM LEGEND		RAPHIC LOG LEGEND
B/MW (DATE I DATE I	CONTRA B COMP MW COM ND ELEV	MPLETED: 8/4 ACTOR: Parrat PLETED: 8/25/2 MPLETED: 10/4 VATION: 433.3	2016 4/2016		DIA LOC	METE GGED ECKE	R: 1.2 BY: H	112.2 feet bgs 15-3.25 inches 1. Usle/ B. Lynch J. Reynolds 1: 433.00 feet amsl	APS = Waterloo Advanced Profiling System MW = Monitoring Well B = Soil Boring Ik = Index of Hydraulic Conductivity amsl = above mean sea level bgs = below ground surface PID = Photoionization Detector ppm = parts per million HA = Hand Auger DP = Direct Push		Topsoil USCS Silty Sand USCS Poorly-graded USCS Silt Sand with Sand USCS Sand Sand
O DEPTH	ELEVATION (feet amsl)	WATERLO APS (lk)	O 5	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERI	AL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	432.5					ОН	<u> </u>	Dark Brown, TOPSOIL, v gravelly sand, 1" diamete	with subangular fine to medium or quartz gravel, medium dense, dry.	0.0	Concrete Pad and 8" Boltdown Manhole Cover Filter Sand (#1)
	- 4		V	HA	75	SM		1.5 Black, VERY FINE SILTY	SAND, loose, dry.	0.1	
2.5	- 9		Λ			SP- SC			NE TO MEDIUM SAND, some clay ravel (0.5" diameter), dense, moist.	0.0	Bentonite Grout Seal
	430.0					ML		3.5 Grayish Brown, SILT, sor diameter), medium stiff to	me fine gravelly sand, gravel (0.25" o stiff, dry to moist.	0.0	
5.0	- 8					SP- SC		Grayish Brown, FINE TO medium dense, dry to mo 5.0	COARSE SAND, some clay, pist, trace mottling.	0.1	- Bentonite Seal
	427.5			DP	80	ML			ANDY SILT, some subrounded fine hale fragments, soft to medium stiff,	0.1	
	- 1					SP — — - SM		Brownish Gray, SILTY SA	ARSE SAND, loose, dry to moist. AND, some subangular gravel,	0.1	
7.5	- 4						100	7.5 fragments and oxidation,	ARSE GRAVEL, some rounded	0.1	
	425.0					SP- SM SP		Brown To Dark Brown, Fl 8.5 and gravel, subangular g	INE TO MEDIUM SAND, some silt ravel (0.25" diameter), loose, moist. ARSE SAND, some subangular	0.1	Filter Cond (#4)
 10.0	- 10			DP	63	GP		Light Brown, FINE GRAV	/EL, some fine to medium sand,	0.1	Filter Sand (#1) Well Screen (1"
	422.5				03	Gr		subangular gravel (0.5"-1 trace clay, loose, saturate	.5" diameter), shale fragments, ed.	0.1	SCH 40 PVC/ 0.01" slot)
	- 1					CL		Brownish Gray, CLAY, so	oft, plastic, saturated.	0.1	
12.5										0.1	End Cap
	420.0			DP	80	CL		Gray, CLAY, soft, plastic,	saturated.	0.1	
 15.0]						0.1	

JS-APS/B/MW-005A PAGE 2 OF 7

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick

Proje	ct Numi	oer: 0378075					Project Location: Hoosick, New York		
DEPTH (#)	ELEVATION (feet amsl)	WATERLOO APS (lk)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	417.5							0.1	
								0.0	
17.5	415.0		DP	56				0.0	
 	413.0							0.0	
20.0								0.0	
	412.5	•						0.0	
 22.5			DP	38				0.0	
	410.0				CL			0.0	
					0_		Gray, CLAY, soft, plastic, saturated. (continued)	0.0	
25.0	407.5							0.0	
			DP	38				0.0	
27.5		i.						0.0	
 	405.0							0.0	
30.0			DP	50				0.0	
- 	402.5							0.0	
- -								0.0	

JS-APS/B/MW-005A PAGE 3 OF 7

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 $\textbf{Project Location:} \ \ \underline{ \ \ } \ \ \text{Hoosick, New York}$

1.10,0		Jei. 0376073					Project Location. Hoosick, New York		
DEPTH (ft)	ELEVATION (feet amsl)	WATERLOO APS (Ik)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
32.5	400.0							0.0	
35.0			DP	25	CL		Gray, CLAY, soft, plastic, saturated. (continued)	0.0	
	397.5						36.0	0.0	
37.5	395.0		DP	0					
 40.0									
	392.5						No Recovery.		
42.5			DP	0					
-	390.0						44.0	0.0	
45.0	387.5		DP	63	CL			0.0	
 47.5			טר	03	, CL		Gray, CLAY, tight, plastic, saturated.	0.0	
-	385.0				CL- ML		Gray To Dark Gray, SILT, interbedded clay, cohesive, plastic, soft to stiff, saturated.	0.0	
<u></u>	Ì	<u></u>							

JS-APS/B/MW-005A PAGE 4 OF 7

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick

Project Location: Hoosick, New York Project Number: 0378075

<u> </u>								Troject Zeodalom Treeslerk, New York		
DEPTH (ft)	ELEVATION (feet amsl)	WATERLOO APS (Ik)	SAMDI E TVDE	SAMPLE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
50.0	382.5			DP	83	CL- ML		Gray To Dark Gray, SILT, interbedded clay, cohesive, plastic, soft to stiff, saturated. <i>(continued)</i>	0.0	
								52.0	0.0	
52.5	380.0					SM SP		Gray, FINE SILTY SAND, some clay, saturated. 53.0 Cray, MEDIUM TO COARSE SAND, poturated.		
-								53.5 Gray, MEDIUM TO COARSE SAND, saturated.	0.0	
 55.0				DP	63	ML		Gray, SILT, interbedded clay, medium stiff, saturated.	0.0	
-	377.5					SP		Gray, MEDIUM TO COARSE SAND, with fine to medium gravel, subangular and subrounded, saturated.	0.0	
 57.5	 			DP	100	SM		Gray, FINE SILTY SAND, little rounded fine gravel, saturated 58.0		
 	375.0				100	CL- ML		Gray, SILT, interbedded clay, soft, saturated.		
60.0	372.5			DP	50	SP		Gray, MEDIUM TO COARSE SAND, with rounded fine to medium gravel, saturated. 64.0	0.0	
 65.0 	367.5			DP	25	GP		Gray, MEDIUM SANDY GRAVEL AND SILT, little subrounded clay, saturated.	0.0	

JS-APS/B/MW-005APAGE 5 OF 7

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 $\textbf{Project Location:} \ \ \underline{ \ \ } \ \ \text{Hoosick, New York}$

1.10,00		US/760/5					Project Location. Hoosick, New York		
DЕРТН (ft)	ELEVATION (feet amsl)	WATERLOO APS (Ik)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
67.5					GP		Gray, MEDIUM SANDY GRAVEL AND SILT, little subrounded clay, saturated. (continued)		
-	365.0							0.0	
70.0	- A		DP	13	GP		Gray, FINE TO MEDIUM GRAVEL, with coarse sand and silt,	0.0	
	362.5						subangular, saturated.	0.0	
	 - =						72.0	0.0	
72.5	 360.0							0.0	
			. DP	38	GP		Gray, MEDIUM SANDY GRAVEL, some silt, medium- to coarse-grained sand, well sorted, saturated.	0.0	
 75.0	- 5							0.0	
	357.5						76.0	0.0	
								0.0	
77.5	 355.0		. DP	50	GP		Gray, FINE TO COARSE SANDY GRAVEL, little silt, well sorted, saturated.	0.0	
								0.0	
80.0						90 20 20 30 30 40 50 50 50 50 50 50 50 50 50 50 50 50 50	80.0	0.0	
	352.5				SP		Gray, MEDIUM TO COARSE SAND, little silt, saturated.	0.0	
 82.5	- =		. DP	50		6 V C	82.0	0.0	
	350.0				GP		Gray, FINE TO COARSE SANDY GRAVEL, some silt, saturated.	0.0	
<u> </u>						5 2			

JS-APS/B/MW-005APAGE 6 OF 7

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick

Projec	ect Number: 0378075					Project Location: Hoosick, New York							
DEPTH (ft)	ELEVATION (feet amsl)	WATERLOO APS (Ik)		SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM			
			ш			GP	900	04.0	0.0				
 85.0									0.0				
	347.5			DP	50				0.0				
87.5									0.0				
								 88.0					
	345.0								0.0				
90.0				DP	31			Dark Gray, FINE TO COARSE SANDY GRAVEL, some silt, subangular gravel, well sorted, saturated.	0.0				
_	342.5							04.0	0.0				
						SP	o ()		0.0				
92.5	340.0												
95.0	337.5							Samples for description not available below drilling refusal depth.					
97.5	335.0												
100.0	- 1												

JS-APS/B/MW-005APAGE 7 OF 7

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick

rioje	Ct Nulli	Jei. 0376073					Floject Location. Hoosick, New York		
DEPTH (ft)	ELEVATION (feet amsl)	WATERLOO APS (Ik)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
102.5 105.0 110.0	330.0						Samples for description not available below drilling refusal depth. (continued)		
							Bottom of APS Boring @ 112.20 ft Bottom of Boring @ 92.00 ft		

412.5

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York ACRONYM LEGEND DRILLING METHOD: Hand Auger/ Direct Push APS CONTRACTOR: Not Applicable GRAPHIC LOG LEGEND ACRONT M LEGEND
APS = Waterloo Advanced Profiling System
MW = Monitoring Well
B = Soil Boring
Ik = Index of Hydraulic Conductivity
amsl = above mean sea level TOTAL DEPTH: 24 feet bgs USCS DATE APS COMPLETED: Not Applicable Poorly-graded Poorly-graded Sand with Silt B/MW CONTRACTOR: Parratt Wolff, Inc. DIAMETER: 1.25 inches USCS USCS Low DATE B COMPLETED: 11/28/2016 LOGGED BY: R. Holt Poorly-graded Plasticity Silty Clay bgs = below ground surface PID = Photoionization Detector DATE MW COMPLETED: Not Applicable CHECKED BY: H. Usle ppm = parts per million HA = Hand Auger DP = Direct Push USCS Low Plasticity Clay **GROUND ELEVATION:** 427.50 feet amsl TOC ELEVATION: Not Applicable NOTES: SAMPLE TYPE ELEVATION (feet amsl) GRAPHIC LOG RECOVERY (mdd) U.S.C.S. DEPTH (ft) **WATERLOO APS** MATERIAL DESCRIPTION WELL DIAGRAM (lk) 딢 0.0 427.5 0.1 0.1 2.5 425.0 100 HA 0.1 Dark Brown, FINE TO COARSE SAND, some subangular SP gravel, trace cobbles, brick fragments at 4 feet bgs, black 0.3 fine- to medium-grained sand at 4.5 feet bgs, loose, dry to 5.8 422.5 5.0 0.3 DP 50 0.3 Brown, FINE TO MEDIUM SAND, with silt, moist. SM 7.5 420.0 0.0 0 Ó 0.0 0 0.3 ò 10.0 417.5 Light Gray, FINE TO COARSE SAND, and angular gravel, gravel layer at 8.5 feet bgs (0.25" thick), red fine- to coarse-grained sand at 10 feet bgs (0.25" thick), moist. 0 DP 50 SP a. 0.2 o 0 0.5 0 1 Ó 12.5 415.0 0 0.0 13.0 0.0 DP SP 31 Brown, FINE TO COARSE SAND, very moist. 0.0

15.0

Client: Arnold & Porter Project Name: Hoosick

Fioje	Ct Nulli	<u> </u>					Floject Location. Housick, New York		
DEPTH (#)	5.5 (feet amsl)	WATERLOO APS (Ik)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
					SP	· 0	Light Brown, FINE TO COARSE SAND, and angular gravel, wet.	0.0	
 17.5	410.0		-		CL- ML		16.5 Light Brown, CLAYEY SILT, semi firm, wet to saturated.	31.8	-
 			. DP	100	CL- ML		Light Brown, SILTY CLAY, soft, saturated.	52.0	
20.0	407.5	-				11111		14.2	
 	 		-		CL		Grayish Brown, CLAY, trace silt, soft, saturated.	0.2	
22.5	405.0		. DP	100				0.0	
							24.0	0.0	
							Bottom of Boring @ 24.00 ft		

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York APS CONTRACTOR: Not Applicable ACRONYM LEGEND DRILLING METHOD: Hand Auger/ Direct Push GRAPHIC LOG LEGEND APS = Waterloo Advanced Profiling System
MW = Monitoring Well TOTAL DEPTH: 24 feet bgs USCS DATE APS COMPLETED: Not Applicable Poorly-graded Poorly-graded Gravelly Sand B = Soil Boring
lk = Index of Hydraulic Conductivity
amsl = above mean sea level B/MW CONTRACTOR: Parratt Wolff, Inc. DIAMETER: 1.25 inches USCS USCS **DATE B COMPLETED:** 11/30/2016 LOGGED BY: R. Holt Poorly-graded Sand with Silt Poorly-graded bgs = below ground surface PID = Photoionization Detector DATE MW COMPLETED: Not Applicable CHECKED BY: H. Usle Sand USCS USCS Low Plasticity Clay ppm = parts per million HA = Hand Auger DP = Direct Push **GROUND ELEVATION:** 427.90 feet amsl TOC ELEVATION: Not Applicable Poorly-graded Sand with NOTES: Clay SAMPLE TYPE ELEVATION (feet amsl) GRAPHIC LOG RECOVERY (mdd) U.S.C.S. DEPTH (ft) **WATERLOO APS** MATERIAL DESCRIPTION WELL DIAGRAM (lk) 品 0.0 GP 427.5 Gray, GRAVEL. 0.0 Gray, SAND AND GRAVEL, trace clay, no odor, loose, dry to SP 0.0 0 2.0 НА 2.5 0.1 425.0 Brown, COARSE SAND, some rounded gravel, no odor, SP loose, dry to moist. 0.1 200 0.5 o () 5.0 Brown To Black, FINE TO COARSE SAND, and subrounded SP 'n gravel, loose, moist. 422.5 1.5 N 60 DP 1.7 SP. SILTY FINE SAND, trace clay, oxide stringers, medium SM dense, moist. 7.5 1.3 420.0 SF FINE TO COARSE SAND, and subrounded gravel, loose, 8.0 moist. a. 0.7 Ó 0 SP Grayish Brown To Blackish Orange, FINE TO COARSE 0.7 a. SAND, and gravel, medium dense, moist. 10.0 DP 50 417.5 0 0.7 SF Grayish Brown To Blackish Orange, FINE TO COARSE SC SAND AND GRAVEL, and clay, medium dense, saturated. 0.1 CL 12.0 Gray, CLAY, firm, low plasticity, saturated, mottling. 12.5 1.0 415.0 CL 0.3 Gray, CLAY, plastic, saturated. DP 100 0.5

Client: Arnold & Porter Project Name: Hoosick

Projec	oject Number: 0378075							Project Location: Hoosick, New York		
DEPTH (ft)	ELEVATION (feet amsl)	WATERLOO APS (Ik)		SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	412.5	-							0.5	
	 								0.5	
17.5	410.0	-		DP	100	CL		Gray, CLAY, plastic, saturated. (continued)	0.4	
-	 								0.2	
20.0	 							19.7	0.4	
-	407.5	-				CL- ML		Black To Gray, CLAY, with fine silty sand, saturated.	0.4	
-	 			DP	100	CL		Gray, CLAY, plastic, saturated.	0.3	
22.5	405.0	-				 CL-		22.7	0.3	
	 					ML — — - CL		Gray To Dark Gray, SILT AND CLAY, medium plasticity, saturated. 23.5 Gray, CLAY, plastic, saturated.	0.3	
								Bottom of Boring @ 24.00 ft		

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York APS CONTRACTOR: Not Applicable ACRONYM LEGEND DRILLING METHOD: Hand Auger/ Direct Push GRAPHIC LOG LEGEND APS = Waterloo Advanced Profiling System
MW = Monitoring Well TOTAL DEPTH: 24 feet bgs USCS DATE APS COMPLETED: Not Applicable Poorly-graded Poorly-graded Gravelly Sand B = Soil Boring
lk = Index of Hydraulic Conductivity
amsl = above mean sea level DIAMETER: 1.25 inches B/MW CONTRACTOR: Parratt Wolff, Inc. USCS USCS DATE B COMPLETED: 12/1/2016 LOGGED BY: R. Holt Poorly-graded Poorly-graded Sand with Silt Sand bgs = below ground surface PID = Photoionization Detector DATE MW COMPLETED: Not Applicable CHECKED BY: H. Usle ppm = parts per million HA = Hand Auger DP = Direct Push USCS Low Plasticity Clay **GROUND ELEVATION:** 428.10 feet amsl TOC ELEVATION: Not Applicable NOTES: SAMPLE TYPE ELEVATION (feet amsl) GRAPHIC LOG RECOVERY (mdd) U.S.C.S. DEPTH (ft) **WATERLOO APS** MATERIAL DESCRIPTION WELL DIAGRAM (lk) 딢 0.0 GP Gray, GRAVEL, moist. 427.5 0.4 0 () 0.3 0 DP 63 2.5 Brown, FINE TO COARSE SAND, and subangular gravel, SP 0.4 orange debris at 3.5 feet bgs, loose, moist. ϕ 425.0 0.4 'n. o 1.7 Black, SANDY SILT, trace clay, soft, low plasticity, wet. SM 5.0 422.5 2.5 DP 56 0 Brown, FINE TO COARSE SAND, and subangular gravel, SP 2.0 orange and black debris at 6.5 and 7 feet bgs. 7.5 0 1.4 ₀ ⊜|8.0 420.0 1.0 0 o. 1.0 Brown, FINE TO COARSE SAND, and subangular and SP subrounded gravel, loose, moist to wet. 10.0 0 DP 56 417.5 σ. 8.0 11.3 1.1 Brown To Black, FINE TO MEDIUM SAND, coarsening SP downward, wet. 12.5 12.5 0.8 415.0 Light Brown, CLAY, trace silt and fine sand, soft, plastic, CL 0.7 saturated DP 50 14.5 0.9 CL Light Gray, CLAY, soft, plastic, saturated.

Client: Arnold & Porter Project Name: Hoosick

Fioje	Ct Nulli	<u>0070073</u>							
DEPTH (#)	ELEVATION (feet amsl)	WATERLOO APS (Ik)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
 	412.5	-						0.8	
 17.5	- - 							0.6	
	410.0		DP	100	CL		Light Gray, CLAY, soft, plastic, saturated. (continued)	0.6	
 								0.5	
20.0	 -						20.0	0.5	
	407.5	-						0.1	
	 		DP	100	SP- SM		Gray To Black, FINE SAND AND SILT, with clay, soft, low plasticity, saturated.	0.7	
22.5	405.0						23.0	0.3	
		-			CL		Light Gray, CLAY, soft, plastic, saturated.	0.4	
							Bottom of Boring @ 24.00 ft		
1									

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick Project Location: Hoosick, New York Project Number: 0378075 ACRONYM LEGEND DRILLING METHOD: Hand Auger/ Direct Push APS CONTRACTOR: Not Applicable GRAPHIC LOG LEGEND ACRONY IN LEGEND
APS = Waterloo Advanced Profiling System
MW = Monitoring Well
B = Soil Boring
Ik = Index of Hydraulic Conductivity
amsl = above mean sea level USCS TOTAL DEPTH: 24 feet bgs DATE APS COMPLETED: Not Applicable Poorly-graded Poorly-graded Gravelly Sand B/MW CONTRACTOR: Parratt Wolff, Inc. DIAMETER: 1.25 inches USCS LOGGED BY: R. Holt **DATE B COMPLETED:** 11/30/2016 USCS Low USCS Low Poorly-graded Sand bgs = below ground surface PID = Photoionization Detector DATE MW COMPLETED: Not Applicable CHECKED BY: H. Usle ppm = parts per million HA = Hand Auger DP = Direct Push **GROUND ELEVATION:** 429.80 feet amsl TOC ELEVATION: Not Applicable NOTES: SAMPLE TYPE ELEVATION (feet amsl) GRAPHIC LOG (mdd) RECOVERY U.S.C.S. WATERLOO **APS** MATERIAL DESCRIPTION WELL DIAGRAM (lk) 문 0.0 GP Light Gray, GRAVEL, angular loose, dry. 0.2 o () 0.3 \bigcirc 427.5 2.5 100 HA 0.1 ϕ 0 0.2 o () Gray To Brown, FINE TO COARSE SAND, and gravel, crushed rock fragments, loose, moist. 0 0 0.1 425.0 5.0 o () ø 1.0 0 DP 25 1.1 Ó 7.0 0 422.5 7.5 1.0 Brown, FINE TO COARSE SAND, and gravel, loose, SP saturated. 0. 8.5 1.3 4 1 420.0 10.0 DP 75 1.6 6.1 CL Gray, CLAY, medium plasticity, medium stiffness, saturated. 417.5 12.5 1.0 0.1 DP 100 0.3 415.0

Client: Arnold & Porter Project Name: Hoosick

Fiojec	Jt Nullii	oer: 0378075					Project Location: Hoosick, New York
DEPTH (ft)	ELEVATION (feet amsl)	WATERLOO APS (Ik)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION (E) (A) (D) (D) (D) (D) (D) (D) (D
							0.5
	 						0.5
17.5	412.5	-	DP	100			0.4
	 				CL		Gray, CLAY, medium plasticity, medium stiffness, saturated. (continued)
20.0	410.0	-					0.2
							0.6
 22.5	 407.5	_	DP	100			22.3
	 				SP		Black To Gray, FINE SAND, with silt, well sorted, dense, saturated. 0.5 0.1
							24.0
							Bottom of Boring @ 24.00 ft

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York ACRONYM LEGEND DRILLING METHOD: Hand Auger/ Direct Push APS CONTRACTOR: Not Applicable GRAPHIC LOG LEGEND ACRONY IN LEGEND
APS = Waterloo Advanced Profiling System
MW = Monitoring Well
B = Soil Boring
Ik = Index of Hydraulic Conductivity
amsl = above mean sea level TOTAL DEPTH: 24 feet bgs DATE APS COMPLETED: Not Applicable Concrete Poorly-graded B/MW CONTRACTOR: Parratt Wolff, Inc. DIAMETER: 1.25 inches Sand LOGGED BY: R. Holt **DATE B COMPLETED:** 11/28/2016 USCS Low Plasticity Clay bgs = below ground surface PID = Photoionization Detector DATE MW COMPLETED: Not Applicable CHECKED BY: H. Usle ppm = parts per million HA = Hand Auger DP = Direct Push **GROUND ELEVATION:** 431.50 feet amsl TOC ELEVATION: Not Applicable NOTES: SAMPLE TYPE ELEVATION (feet amsl) GRAPHIC LOG (mdd) RECOVERY U.S.C.S. DEPTH (ft) WATERLOO **APS** MATERIAL DESCRIPTION WELL DIAGRAM (lk) 문 0.0 0.3 CONCRETE. Dark Brown, FINE TO COARSE SAND, some subangular SP 0.3 gravel, dry. 1.0 430.0 0.1 2.5 100 HA 0.2 Dark Brown, FINE TO COARSE SAND, trace subangular SP gravel, trace cobbles at 3.5 feet bgs, dry. 0.1 427.5 0.1 5.0 5.0 425.0 DP 17 SP Brown, FINE TO COARSE SAND, and gravel, moist to wet. 7.5 422.5 9.5 10.0 DP 88 0.0 420.0 0.5 CL Gray, CLAY, plastic, medium stiff, wet. 12.5 0.0 0.0 417.5 DP 100 0.0

Client: Arnold & Porter Project Name: Hoosick

Fiojec	Ct Number: 03/80/5						Project Location: Hoosick, New York						
DEPTH (ft)	ELEVATION (feet amsl)	WATERLOO APS (Ik)		SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (mdd)	WELL DIAGRAM			
						CL		Gray, CLAY, plastic, medium stiff, wet. (continued)	0.0				
	415.0								0.0				
17.5	 			. DP	100				0.0				
	412.5								0.0				
20.0	 					CL		Gray, CLAY, soft, saturated.	0.0				
-									0.0				
 22.5	410.0	-		. DP	100				0.0				
									0.0				
	407.5							24.0	0.0				
								Bottom of Boring @ 24.00 ft					

15.0

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick Project Location: Hoosick, New York Project Number: 0378075 ACRONYM LEGEND DRILLING METHOD: Hand Auger/ Direct Push APS CONTRACTOR: Not Applicable GRAPHIC LOG LEGEND ACRONYM LEGEND

APS = Waterloo Advanced Profiling System
MW = Monitoring Well
B = Soil Boring
Ik = Index of Hydraulic Conductivity
amsl = above mean sea level
bgs = below ground surface
PID = Photoionization Detector USCS TOTAL DEPTH: 24 feet bgs DATE APS COMPLETED: Not Applicable Poorly-graded Poorly-graded Gravelly Sand B/MW CONTRACTOR: Parratt Wolff, Inc. DIAMETER: 1.25 inches LOGGED BY: R. Holt DATE B COMPLETED: 11/28/2016 USCS Low Plasticity Clay DATE MW COMPLETED: Not Applicable CHECKED BY: H. Usle ppm = parts per million HA = Hand Auger DP = Direct Push **GROUND ELEVATION:** 431.40 feet amsl TOC ELEVATION: Not Applicable NOTES: SAMPLE TYPE ELEVATION (feet amsl) GRAPHIC LOG (mdd) RECOVERY U.S.C.S. DEPTH (ft) WATERLOO **APS** MATERIAL DESCRIPTION WELL DIAGRAM (lk) 문 0.0 0.1 0.1 Ò 430.0 0 SP Dark Brown To Black, FINE TO COARSE SAND, and 0.3 subangular gravel, dry. u. 2.5 100 0.3 HA 0 3.0 0.3 427.5 Dark Brown To Black, FINE TO COARSE SAND, trace to SP 0.5 some gravel, some orange fine- to coarse-grained sand at 3.5 feet bgs, dry to moist. 0.0 5.0 5.0 Dark Brown To Gray, FINE TO COARSE SAND, with gravel, SP 0.0 6.0 O 425 0 0 DP 50 0.0 0 7.5 ø Brown, FINE TO COARSE SAND, and gravel, brick at 6.25 SP 0.0 0 feet bgs, wet at 7.5 feet bgs, moist to wet. o (0.0 422.5 9.0 CL 0.0 Brown, CLAY, plastic, wet. 10.0 10.0 DP 75 0.0 420.0 0.0 12.5 CL 0.0 Gray, CLAY, plastic, wet. 0.0 417.5 DP 100

Client: Arnold & Porter Project Name: Hoosick

Pro	ject Nun	ber: 0378075				Project Location: Hoosick, New York				
DEPTH		WATERLOO APS (lk)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM	
ŀ	-	-						0.0		
-	415.0							0.0		
17.	5	-	DP	100				0.0		
F	412.5	_		100				0.0		
20.	0	-			CL		Gray, CLAY, plastic, wet. (continued)	0.0		
		-						0.0		
ŀ	410.0	-	DP	100				0.0		
22.	5	_						0.0		
_	407.5						24.0	0.0		
							Bottom of Boring @ 24.00 ft			

415.0

ERM 5788 Widewaters Parkway Syracuse, NY 13214 Telephone: (315) 445-2554

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York ACRONYM LEGEND DRILLING METHOD: Hand Auger/ Direct Push APS CONTRACTOR: Not Applicable GRAPHIC LOG LEGEND ACRONY IN LEGEND
APS = Waterloo Advanced Profiling System
MW = Monitoring Well
B = Soil Boring
Ik = Index of Hydraulic Conductivity
amsl = above mean sea level TOTAL DEPTH: 24 feet bgs USCS DATE APS COMPLETED: Not Applicable Poorly-graded Poorly-graded Gravelly Sand B/MW CONTRACTOR: Parratt Wolff, Inc. DIAMETER: 1.25 inches USCS Low **DATE B COMPLETED:** 11/30/2016 2:30:00 PM LOGGED BY: R. Holt USCS Low USCS Low Plasticity Silty Clay bgs = below ground surface PID = Photoionization Detector DATE MW COMPLETED: Not Applicable CHECKED BY: H. Usle ppm = parts per million HA = Hand Auger DP = Direct Push **GROUND ELEVATION:** 430.00 feet amsl TOC ELEVATION: Not Applicable NOTES: SAMPLE TYPE ELEVATION (feet amsl) GRAPHIC LOG (mdd) RECOVERY U.S.C.S. DEPTH (ft) WATERLOO **APS** MATERIAL DESCRIPTION WELL DIAGRAM (lk) 문 0.0 430.0 GP Brown To Light Gray, FINE TO COARSE GRAVEL, grass. 0.0 o () 0.0 \bigcirc 427.5 2.5 100 HA 0.0 Dark Brown To Black, FINE TO COARSE SAND, and SP ϕ subangular gravel, brick fragments, dry. 0 0.0 o. 0 0 0.0 425.0 5.0 5.0 o () O 0.2 0 Dark Brown To Black, FINE TO COARSE SAND, and DP 17 SP 0.2 subangular gravel, glass fragments, dry. ò 0 7.5 422.5 0.2 8.0 o 0 Brown, FINE TO COARSE SAND, and subangular gravel, SP 0.3 loose to medium dense, wet. o 0|9.0 0.9 10.0 420.0 DP 75 0.2 8.0 Gray, CLAY, mottling present from 9 to 10 feet bgs, medium CL plasticity, medium stiffness, saturated. 12.5 417.5 0.7 0.9 DP 100 0.3

Client: Arnold & Porter Project Name: Hoosick

Fioje	Ct Nulli	<u>0370073</u>					Froject Location. 1005lck, New York		
15.0	ELEVATION (feet amsl)	WATERLOO APS (lk)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
								0.6	
 	 		_					0.4	
17.5	412.5	_	DP	100				0.3	
 	 				CL		Gray, CLAY, mottling present from 9 to 10 feet bgs, medium plasticity, medium stiffness, saturated. (continued)	0.5	
 20.0	410.0						plasticity, medium sumiess, saturated. (<i>commued)</i>	0.4	
								0.2	
-			DP	100				0.2	
22.5	407.5						23.0	0.3	
 -					CL- ML		Gray, CLAY, with silt, medium plasticity, medium stiffness, saturated. 24.0	0.3	
							Bottom of Boring @ 24.00 ft		

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

JS-B-013 PAGE 1 OF 2

Project Name: Hoosick Client: Arnold & Porter

Project Locatio Project Number: 0378075

DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 428.00 feet amsl DATE BORING COMPLETED: 4/10/2018 11:00:00 AM **NORTHING**: 1484141.21

EASTING: 799447.02 LOGGED BY: H. Usle CHECKED BY: J. Redden TOTAL DEPTH: 20 feet bgs

DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches DATUM: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Interim Remedial Measure.

Н.	OOSICK		
on:	Hoosick, New York		
	SAMPLE TYPE:	GRAPHIC LOG	LEGEND
	HA = Hand Auger	Poorly-graded Gravel	Clayey and Silty Sand
	DP = Direct Push	Poorly-graded Sand	Silty Sand
		Silt	Silty Gravel

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
					GP		Gray, GRAVEL, angular (0.5-1" diameter), loose, dry.	0.1
		L HA	24	100	SC- SM		Gray To Olive Gray, FINE TO MEDIUM CLAYEY SAND, some angular gravel, (0.5-1" diameter), loose, moist, brown mottling.	
_					SP		Brown, MEDIUM TO COARSE SAND, some subangular gravel, loose to medium dense, moist.	0.1
	405.5				SM		.2 Dark Brown, SiLTY SAND, some gravel, subangular (1" diameter), organic-rich, moist.	
2.5	425.5	DP	11	46			NO RECOVERY.	0.0
		\mathbb{A}						0.0
5.0	423.0				SM		Dark Brown, SILTY SAND, trace rounded fine gravel, (<0.25" diameter), glass fragments, moist.	0.0
	- 1	 				000		0.0
	- +	DP	22	46	GP		Gray, GRAVEL, subangular (0.5-1" diameter), medium dense, dry.	0.0
7.5	420.5	-			ML		Gray Brown to Olive Brown, SILT, some fine sand, soft, low plasticity, moist, orange mottling.	0.2
		DP	28	58	SP		Grayish Brown, FINE TO MEDIUM SAND, some subangular gravel, laminar shale gravel fragments	0.1
	418.0						(0.5 st diameter), loose to medium dense, dry to moist.	0.0

ERM 105 Maxess Road; Suite 316

Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-013** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

ļ.,							Trojon 255415III Processi, Non York	
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	28	58	SP		Brownish Gray, FINE SAND, fining downward sequence, loose, saturated, orange-brown mottling. (continued)	0.0
					GP- GM		Brown, SILTY GRAVEL, trace clay, subangular gravel (1" diameter), loose to medium dense, saturated. 12.0	0.0
12.5	415.5				CL- ML		Light Brown, CLAY WITH SILT, soft to medium stiff, medium plasticity, wet. 12.5	- 0.0
		DP	36	75				0.0
15.0	413.0				CL- ML		Gray Brown, SILT AND CLAY, interbedded, soft to medium stiff, low plasticity, wet.	0.0
	 						16.0	0.0
	- - 							0.0
17.5	410.5	DP	36	75	CL- ML		Gray, SILT AND CLAY, interbedded, soft to medium stiff, low plasticity, wet.	0.0
	- - 							0.0
20.0	408.0						20.0	0.0
- -	- - -						Bottom of Boring @ 20.00 feet bgs	
<u></u>								

Clayey and Silty Sand

Poorly-graded Gravelly Sand

GRAPHIC LOG LEGEND

Poorly-graded Gravel

Poorly-graded Sand

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

TOTAL DEPTH: 20 feet bgs

DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 428.00 feet amsl SAMPLE TYPE:

NORTHING: 1484132.95 DATE BORING COMPLETED: 4/5/2018 4:20:00 PM HA = Hand Auger LOGGED BY: H. Usle **EASTING:** 799442.53 DP = Direct Push CHECKED BY: J. Redden

DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches

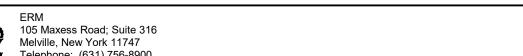
NOTES: Soil samples collected as part of the Interim Remedial Measure.

Low Plasticity
Clay Poorly-graded Sand with Silt DATUM: NAD 1983 StatePlane New York East in US Survey Feet

INOT	-3.	samples collected	as part	. OI LITE I	intenin	Remeu	al iviedsure.	
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
					GP		Gray, GRAVEL, angular (0.5-1" diameter), loose, dry. 0.5	0.2
	+ +). HA	24	100	SC- SM		Gray To Olive Gray, FINE TO MEDIUM CLAYEY SAND, some gravel, angular (0.5-1" diameter), loose, moist.	0.1
		P			SP		Brown, MEDIUM TO COARSE SAND, some subrounded gravel, loose, moist.	
2.5	425.5	-			SP	。 。)	Brown, FINE TO MEDIUM GRAVELLY SAND, subangular (0.25-0.5" diameter), dry.	0.0
	+ +	DP	19	79	SP		Black, FINE TO MEDIUM SAND, trace subangular gravel, (0.25" diameter), wood fragments, dry.	0.0
	+ +				CL		Dark Brown, CLAY, trace fine sand, white flecks throughout, trace black flecks, low plasticity, moist. 4.8	0.0
5.0	423.0			50	SP- SM		Dark Brown, SANDY SILT, interbedded gravel, laminar gray gravel layers, moist.	0.0
		JS-B-015 (5.5-7.5) for	28	58	SP		6.5	0.0
7.5	420.5	PFAS, TOC, pH					Gray Brown, FINE TO MEDIUM SAND, trace silt and gravel, subangular (0.5" diameter), loose to medium dense, moist to wet, orange and brown mottling.	0.0
 	-	DP	27	56	SP	, 0	8.0 Light Brown, FINE TO MEDIUM GRAVELLY SAND, laminar and subangular gravel (1" diameter), medium dense, dry.	0.0
10.0	418.0				 GP	000	9.5 Light Brown, GRAVEL, some coarse sand, subangular, trace clay, red-brown oxidized surface at 9.5 feet bgs, loose, saturated.	0.0
10.0	418.0				GF.	P. C.	reet bgs, 100se, saturated.	

ACRONYM LEGEND:

amsl = above mean sea level; bgs = below ground surface; NM = not measured; ppm = parts per million; PID = photoionization detector PFAS = per- and polyfluoroalkyl substances; TOP = total oxidizable precursor; TOC = total organic carbon; VOCs = volatile organic compounds



ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-014** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

-								
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	27	56	GP		Light Brown, GRAVEL, some coarse sand, subangular, trace clay, red-brown oxidized surface at 9.5 feet bgs, loose, saturated. <i>(continued)</i>	0.0
12.5	415.5	JS-B-014 (12-13) for VOCs, PFAS, TOC, pH			ML		11.9 Light Brown, SILT, some clay, soft, semi plastic, saturated.	0.0
		DP	36	75				0.0
15.0	413.0							0.0
					CL- ML		Gray, CLAY, some silt, soft, low plasticity, saturated.	0.0
17.5	410.5	DP	24	50				0.0
20.0	408.0						20.0	0.0
							Bottom of Boring @ 20.00 feet bgs	

JS-B-015 PAGE 1 OF 2

Telephone: (631) 756-8900 Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 428.20 feet amsl SAMPLE TYPE: GRAPHIC LOG LEGEND **NORTHING:** 1484145.17 DATE BORING COMPLETED: 4/10/2018 10:15:00 AM Clayey and Silty Sand Poorly-graded Gravel HA = Hand Auger LOGGED BY: H. Usle **EASTING:** 799438.97 DP = Direct Push Poorly-graded Sand Low Plasticity Clay CHECKED BY: J. Redden TOTAL DEPTH: 20 feet bgs DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches Poorly-graded Gravelly Sand Silty Clay DATUM: NAD 1983 StatePlane New York East in US Survey Feet NOTES: Soil samples collected as part of the Interim Remedial Measure. TYPE/ ER NOI (Ism ERY S) RY %

DEPTH (feet)	ELEVATION (feet ams	SAMPLE T NUMBE	RECOVE (inches	RECOVER	U.S.C.S	GRAPHI	MATERIAL DESCRIPTION	PID (ppr
		}			GP		Gray, GRAVEL, angular (0.5-1" diameter), loose, dry. 0.5	0.0
		HA	24	100	SC- SM		Gray, FINE TO MEDIUM CLAYEY SAND, some subangular gravel, (0.25-0.5" diameter), loose to medium dense, moist. 1.2	
		}			SP		Light Yellow Brown, FINE TO MEDIUM SAND, some subangular quartz fragments (0.25" diameter).	0.0
2.5	425.7	DP	13	54				0.0
					SP		Light Brown, FINE TO MEDIUM SAND, some subangular gravel, (0.5" diameter), loose, dry.	0.0
						77777	4.5	0.9
5.0	423.2				CL		Dark Brown, CLAY, some silt, medium plasticity, wet, orange mottling.	
-		DP	27	56		ó. ()	5.5	. 1.0
		JS-B-015 (6-7) for VOCs				, O		27.3
7.5	420.7	-			SP	, O	Brown, FINE TO MEDIUM GRAVELLY SAND, subangular (1-2" diameter), black "coal-like" layer at 7 feet bgs, loose to medium dense.	1.8
 		DP	22	46		0 0 0		1.0
 	 -	\setminus				。 。 ()		1.1

ACRONYM LEGEND:

10.0 418.2

Client: Arnold & Porter

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Project Name: Hoosick

JS-B-015 PAGE 2 OF 2

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	22	46		· 0	Light Brown To Yellow, FINE TO MEDIUM GRAVELLY SAND, subangular (0.5-1" diameter), trace clay, loose to medium dense, wet. <i>(continued)</i>	0.5
						. () . ()		0.2
12.5	415.7	-						0.0
		DP	36	75	SP		Grayish Brown, FINE TO COARSE SAND, coarsening downward sequence, well rounded, well graded, saturated.	0.0
15.0	413.2		_				15.0	0.0
 		JS-B-015 (15-17) for VOCs, PFAS,			CL- ML		Light Grayish Brown, SILTY CLAY, low plasticity, wet.	0.1
		TOC, pH						0.0
17.5	410.7	DP	38	79	CL- ML		Gray To Dark Gray, CLAY AND SILT, interbedded wet.	0.0
-								0.0
20.0	408.2						20.0	0.0
							Bottom of Boring @ 20.00 feet bgs	
	_							

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 427.90 feet amsl SAMPLE TYPE: GRAPHIC LOG LEGEND DATE BORING COMPLETED: 4/5/2018 11:40:00 AM **NORTHING:** 1484136.14 Poorly-graded Gravel HA = Hand Auger LOGGED BY: H. Usle **EASTING**: 799434.99 DP = Direct Push Poorly-graded Sand CHECKED BY: J. Redden TOTAL DEPTH: 20 feet bgs Brick DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches

JS-B-016

PAGE 1 OF 2

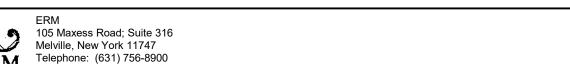
Silty Clay

Poorly-graded Gravelly Sand

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Interim Remedial Measure.

NOIE	J	samples collected	as part	OI THE I	·	Ttorriouic		
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
_	()			GP		Gray, GRAVEL, angular (0.5-1" diameter), loose, dry.	0.9
-	- 	L HA	24	100	SC- SM		Gray, FINE TO MEDIUM CLAYEY SAND, some subangular gravel, (0.5" diameter), brick fragment from 1.5-1.6 feet bgs, loose to medium dense, moist.	0.1
	_				SP		Brown, FINE TO MEDIUM SAND, subrounded gravel (0.5-1" diameter), moist. .0 .2 BRICK.	
2.5	425.4				SP	0	Light Yellow Brown, FINE TO MEDIUM GRAVELLY SAND, (0.25-0.5" diameter), moist.	0.0
-	 	DP	8	33			NO RECOVERY.	0.0
5.0	422.9				CL- ML		Brown, SILT AND CLAY, some organics, shell hash, green flecks, wet.	0.1
-		DP	28	58				0.0
_					SP		Brown, FINE TO MEDIUM GRAVELLY SAND, subangular (0.5-1" diameter), poorly graded, medium	0.
7.5	5 420.4						dense, dry.	0.
							.0	0.0
-	417.9	DP	19	40			Light Brown, GRAVEL, some fine sand and clay, (0.5-1" diameter), loose, saturated.	0.


ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-016** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
-		DP	19	40	GP		Light Brown, GRAVEL, some fine sand and clay, (0.5-1" diameter), loose, saturated. <i>(continued)</i> 12.0	0.0
- 2.5 - -	415.4	DP	8	17	SP		Light Brown, COARSE SAND, some subrounded gravel, well rounded, trace clay, loose, saturated.	0.0
5.0 –	412.9				SP- SC		Light Gray To Brown, FINE SAND, some clay, gray and orange mottling, soft, wet to saturated. NO RECOVERY.	- 0.0 NM
- - 7.5	410.4	JS-B-016 (16-18) for VOCs, PFAS, TOC, pH	. 36	75	CL		Gray, CLAY, some silt, low plasticity, saturated.	0.
- - 0.0	407.9	DP					20.0	0.0
<u>-</u>							Bottom of Boring @ 20.00 feet bgs	

Client: Arnold & Porter Project Name: Hoosick

 Project Number:
 0378075

 Project Location:
 Hoosick, New York

DRILLING CONTRACTOR: Parratt Wolff, Inc.

DATE BORING COMPLETED: 4/5/2018 4:45:00 PM

NORTHING: 1484127.71

SAMPLE TYPE:
NORTHING: 1484127.71

LOGGED BY: H. Usle

EASTING: 799430.78

CHECKED BY: J. Redden

TOTAL DEPTH: 20 feet bgs

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

2.25 inches
2.25 inches

NOTES: Soil samples collected as part of the Interim Remedial Measure.

HA = Hand Auger

Poorly-graded Gravel

Clayey and Silty
Sand

Poorly-graded
Sand

Poorly-graded
Gravelly Sand

Silt Low Plasticity Clay

GRAPHIC LOG LEGEND

JS-B-017

PAGE 1 OF 2

									_
DEPTH (feet)	ELEVATION (feet amsl)		SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		J				GP	000	0.3 Gray, GRAVEL, angular (0.5-1" diameter), loose, dry.	
		1	HA	24	100	SC- SM		Gray, FINE TO MEDIUM CLAYEY SAND, some angular gravel, (0.25" diameter), loose to medium dense, moist.	0.1
-		1				SP		Brown, MEDIUM TO COARSE SAND, some subangular and subrounded gravel, (0.25-1" diameter), loose, dry.	0.1
2.5	425.6	$\sqrt{}$				SP	。)) p	Brown, FINE TO MEDIUM GRAVELLY SAND, subangular (0.25-0.5" diameter), dry.	0.0
	<u> </u>	\bigwedge	DP	19	79	SP		Black, FINE TO MEDIUM SAND, trace subangular gravel, wood fragments, (0.25" diameter), dry.	0.0
	† -					ML		Dark brown, SILT, some fine sand, moist to wet, orange and brown mottling.	
5.0	423.1					GP	60°	Quartz GRAVEL, subangular (1" diameter).	0.0
	420.1		DP	26	54			1	0.5
			_			SP		Dark brown, FINE TO MEDIUM GRAVELLY SAND, subangular (0.5-1" diameter), slight black and orange oxidized surfaces, medium dense, dry.	0.1
7.5	420.6						, O	orango oznazeu sunaces, medium dense, dry.	0.2
		$\sqrt{}$	DP	24	50			9.0	0.0
10.0	418.1					GP		Light Brown, GRAVEL, some fine sand, subangular and subrounded (0.5-2" diameter), trace clay, saturated.	0.0

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-017** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

-								
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	24	50	GP		Light Brown, GRAVEL, some fine sand, subangular and subrounded (0.5-2" diameter), trace clay, saturated. (continued)	0.0
-		$\langle \cdot \rangle$			SP	500	11.7 12.0 Grayish Brown, MEDIUM TO COARSE SAND, rounded loose, saturated.	0.0
12.5	415.6				SP		Grayish Brown, FINE TO COARSE SAND, well rounded coarsening downwards sequence, loose, saturated.	0.0
		DP	35	73			13.8	0.0
			33	73	ML — — -		Light Brown, SILT, some clay, soft to medium stiff, wet. 14.5	0.0
15.0	413.1							0.0
								0.0
17.5	410.6	DP	48	100	CL		Gray, CLAY, some silt, soft to medium stiff, low plasticity, saturated.	0.0
				100				0.0
20.0	408.1						20.0	0.0
 -							Bottom of Boring @ 20.00 feet bgs	

JS-B/TMW-018 PAGE 1 OF 3

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York SAMPLE TYPE:

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 4/4/2018 3:00:00 PM

DATE WELL INSTALLED: 4/4/2018 5:30:00 PM **DRILLING METHOD(S):** Hand Auger/ Direct Push

LOGGED BY: H. Usle CHECKED BY: J. Redden GROUND ELEVATION: 427.90 feet amsl TOC ELEVATION: 427.60 feet amsl **NORTHING:** 1484 150.5 **EASTING:** 799430.85

TOTAL DEPTH: 24 feet bgs **DIAMETER:** 3.25 inches

HA = Hand Auger

DP = Direct Push

Poorly-graded Sand

Low Plasticity Sandy Clay Poorly-graded Gravelly Sand

Clayey and Silty Sand

Poorly-graded Sandy Gravel

GRAPHIC LOG LEGEND

Poorly-graded Gravel

		Soil samples collect	ted as pa	art of th	e Interi		ial Measure. Datum is NAD 1983 StatePlane New York East in US Survey F		Galluy Glavel <u>y .</u> Glavelly Gallu
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
					GP	وكار	.3 Gray, GRAVEL, angular (0.5-1" diameter), loose, dry.		Concrete Pad
-					SC- SM		Gray, FINE TO MEDIUM CLAYEY SAND, some subrounded gravel, (0.25" diameter), some root mass, loose to medium dense, moist.	0.1	and 8" Boltdown Manhole Cover
		HA	24	100	SP		Brown, MEDIUM TO COARSE SAND, some rounded gravel, (1-2" diameter), dry to moist.	0.1	
2.5	425.4	DP	11	46	SP		Dark Brown, FINE TO MEDIUM SAND, some clay and gravel, subangular gravel (1-2" diameter), brick and coal fragments, loose, wet.	0.2	
					CL		Brown, FINE SANDY CLAY, trace shell hash, soft, wet.	0.1	
5.0	422.9				CL		Brown, FINE SANDY CLAY, trace coarse sand, soft, wet.	0.9	
-	_						.5	0.6	
	- - - -	DP	20	42	GP		Dark Brown, COARSE SAND AND GRAVEL, subrounded quartz and shale gravels (2" diameter), loose to medium dense, dry to moist.	1.4	
7.5	420.4						.0	0.8	
		DP	26	54	GP		Brown, MEDIUM TO COARSE SAND AND GRAVEL, some clay, subangular strictly, and red layer at 10	0.5	₄ Bentonite Seal
10.0	417.9						feet bgs (1" thick).	0.4	

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-018**PAGE 2 OF 3

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
		DP	26	54	GP		Brown, MEDIUM TO COARSE SAND AND GRAVEL, some clay, subangular gravel, orange oxidation, mottled gray and red layer at 10	0.3	
							feet bgs (1" thick). (continued)	0.5	¥
12.5	415.4							0.2	
		DP	27	56	SP	0,000	Brown To Gray, MEDIUM TO COARSE GRAVELLY SAND, subangular (0.5-1" diameter), poorly graded, loose, saturated.	0.1	
15.0	 412.9							0.0	
							16.0	0.1	
 					GP		Brown To Gray, FINE GRAVEL, some rounded coarse sand, (0.25-1" diameter), loose, saturated.	0.6	Filter Sand (#1)
17.5	410.4	DP	45	94	ML		Light Brown, SILT, some clay, soft, wet to saturated. 17.8	10.4	
 	- - 	JS-B-018 (19-20) for VOCs, PFAS, TOC, pH			CL		Gray, CLAY, some silt, soft, wet.	5.1	Well Screen
20.0	 407.9				CL		Gray, CLAY, soft, plastic, wet to saturated.	17.3	(17.2-21.2 feet bgs) (1" SCH 40 PVC/ 0.01" slot)
	 	DP	48	100	, <u> </u>			3.7	End Cap
<u> </u>		<u> </u>				<i>V/////</i>			

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-018**PAGE 3 OF 3

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DEPTH (feet) ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	DP	48	100				0.7	
22.5 405.4				CL		Gray, CLAY, soft, plastic, wet to saturated. (continued)	0.3	
						24.0	0.1	
						Bottom of Boring @ 24.00 feet bgs		
25.0 402.9	_							
- + -								
- + -								
27.5 400.4	_							
- + -								
- + -								
- + -								
30.0 397.9	_							
+ +								
32.5 395.4								
	_							
					1	1		

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-019** PAGE 1 OF 3

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DRILLING CONTRACTOR: Parratt Wolff, Inc.

DATE BORING COMPLETED: 4/4/2018 2:55:00 PM

DATE BORING COMPLETED: 4/4/2018 2:55:00 PM LOGGED BY: H. Usle

CHECKED BY: J. Redden

DRILLING METHOD(S): Hand Auger/ Direct Push

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Interim Remedial Measure.

NORTHING: 1484155.46

EASTING: 799421.99

TOTAL DEPTH: 24 feet bgs

GROUND ELEVATION: 427.60 feet amsl

DIAMETER: 2.25 inches

DP = Direct Push

R: 2.25 inches

SAMPLE TYPE: GRAPHIC LOG LEGEND

HA = Hand Auger

Poorly-graded Gravel Clayey and Silty Sand

Poorly-graded Sand

Poorly-graded Gravelly Sand Sandy Gravel

		ii samples collected	ao part	01 1110 1	THOTHIT	Ttorriou	ui indudui o.	
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		1			GP SC- SM		Gray, GRAVEL, angular (0.5-1" diameter), loose, dry. 0.5 Gray, FINE TO MEDIUM CLAYEY SAND, some subrounded gravel, (0.5" diameter), loose, moist.	0.0
		HA	24	100	SP		Brown, MEDIUM TO COARSE SAND, some subrounded gravel, (1" diameter), loose, dry to moist.	0.0
2.5	425.1	DP	10	42	GP		Gray, GRAVEL, some medium sand, subangular gravel (1-2" diameter), trace clay, wet due to precipitation, sand is orange brown in color, wet.	0.0
					ML		3.5 Brown, SILT, some clay, soft, wet. 4.0	. 0.0
5.0	422.6		24					0.0
		DP	21	44	SP	· () ; ; ()	Brown, FINE TO MEDIUM SAND AND GRAVEL, little clay, subangular (1-2" diameter), gravel layer at 5.5 feet bgs, orange and oxidized coloration, laminar quartz and shale gravel, medium dense, dry to	0.0
7.5	420.1						wet.	0.0
		np.	29	60				0.0
10.0	417.6	DP				, O	10.0	0.0

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-019** PAGE 2 OF 3

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	29	60	SP		Grayish Brown, VERY FINE TO FINE SAND, trace silt, well graded, medium dense, wet, orange mottling. (continued)	- 0.0
_			23	00	SP		Grayish Brown, MEDIUM TO COARSE SAND, fining upwards sequence, well graded, loose, wet. 12.0	0.0
2.5	415.1							0.0
-		DP	26	54	GP		Grayish Brown, GRAVEL, some coarse sand, subrounded (1-2" diameter), poorly graded, loose to medium dense, wet.	0.
5.0	412.6						15.0	0.
_					SP		Grayish Brown, COARSE SAND, some rounded gravel, (0.5-1" diameter), poorly graded, loose, wet.	0.
-		JS-B-019 (16-16.5) for VOCs and			ML		Light Brown, SILT, some clay, soft, saturated. 16.5	0.
_		JS-B-019 (16-17) for PFAS, TOP Assay PFAS,						
.5	410.1	TOC, pH	48	100				0.
-	 				CL- ML		Gray, CLAY, some silt, very fine silty sand lenses from 20-21 feet bgs, soft, plastic, saturated.	0.
1.0	407.6				IVIL			0.
-								0.
								0.

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-019** PAGE 3 OF 3

Client: Arnold & Porter Project Name: Hoosick

	•				
DEPTH (feet) (feet amsl) (feet amsl) SAMPLE TYPE/ NUMBER	RECOVERY (inches) RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
DP 22.5 405.1	48 100	CL- ML	2	Gray, CLAY, some silt, very fine silty sand lenses from 20-21 feet bgs, soft, plastic, saturated. (continued)	0.0
25.0 402.6 25.0 402.6 27.5 400.1 27.5 400.1 30.0 397.6				Bottom of Boring @ 24.00 feet bgs	

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

JS-B-020 PAGE 1 OF 3

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

NORTHING: 1484145.44

TOTAL DEPTH: 24 feet bgs

EASTING: 799415.94

DIAMETER: 2.25 inches

GROUND ELEVATION: 427.80 feet amsl

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 4/4/2018 12:05:00 PM

LOGGED BY: H. Usle

CHECKED BY: J. Redden

DRILLING METHOD(S): Hand Auger/ Direct Push

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Interim Remedial Measure.

SAMPLE TYPE: GRAPHIC LOG LEGEND

HA = Hand Auger

DP = Direct Push

Poorly-graded Gravelly Sand

Low Plasticity Sandy Clay

Poorly-graded Gravel

Poorly-graded Sandy Gravel

Poorly-graded Sand

NOTE	E S : So	il samples collected	as part	of the I	Interim	Remed	al Measure.	
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
					GP	900	Gray, GRAVEL, angular (0.5" diameter), loose, dry. 0.5	0.1
		HA	24	100	SP		Gray, FINE TO MEDIUM SAND, trace clay and gravel, subangular (0.5-1" diameter), loose, moist.	
					SP		Brown, MEDIUM TO COARSE SAND AND GRAVEL, subrounded, loose, moist.	0.1
2.5	425.3	DP	15	63	SP	0 0	Dark Brown, MEDIUM TO COARSE GRAVELLY SAND, trace clay, subrounded (1" diameter), loose, moist.	0.0
					ML		Brown, SILT, some clay, trace shell hash and black oxidized surfaces, soft, wet. 4.0	0.0
5.0	422.8							0.0
		DP	23	48	SP		Brown, MEDIUM TO COARSE SAND, some silt, clay and gravel, subangular (1-2" diameter), slight mottled surface at 6.5 feet bgs, white shell fragments at 4.5 feet bgs, loose to medium dense, wet.	0.0
							motiled surface at 0.3 feet bys, white shell fragments at 4.3 feet bys, loose to medium dense, wer.	0.0
7.5	420.3						8.0	0.0
		DP	23	48	CL		Brown, SANDY CLAY, trace gravel, (1" diameter), soft, wet.	0.0
10.0	417.8				GP		Brown, GRAVEL AND COARSE SAND, trace silt and clay, angular gravel, shale laminations (1-2" diameter), trace orange coarse sand seam at 10 feet bgs, loose to medium dense, wet.	0.0

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-020** PAGE 2 OF 3

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY	(inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DF	2	3	48	GP		Brown, GRAVEL AND COARSE SAND, trace silt and clay, angular gravel, shale laminations (1-2" diameter), trace orange coarse sand seam at 10 feet bgs, loose to medium dense, wet. <i>(continued)</i>	0.0
									0.0
12.5	415.3					SP 	o 🖰	Orange Brown, COARSE SAND, trace silt, rounded, loose, saturated. 12.5	0.0
 		DF		0	42	SP		Light Yellow Brown, GRAVELLY SAND, subangular (1" diameter), loose to medium dense, saturated.	0.0
15.0	412.8			0	42	SP		Greenish Gray, MEDIUM TO COARSE SAND, some gravel, subangular (0.5" diameter), darker surfaces around gravels, medium dense. 15.0	0.0
						SP	· ()	Light Yellow Brown, GRAVELLY SAND, subangular (1" diameter), loose to medium dense, saturated. 16.0	0.0
									0.0
17.5	410.3	DF		2	67	CL- ML		Gray, CLAY, some silt, soft, plastic, saturated.	0.0
					07	ML		Oray, OLAT, Some siit, sort, plastic, saturated.	0.0
20.0	407.8							20.0	0.0
 		\bigvee							
	_	FOEND							

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-020** PAGE 3 OF 3

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet) ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
22.5 405.3	DP	0	0				NM
						Bottom of Boring @ 24.00 feet bgs	
25.0 402.8	_						
27.5 400.3	_						
30.0 397.8	_						
32.5 395.3	_						

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

JS-B-021 PAGE 1 OF 2

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

EASTING: 799411.5

TOTAL DEPTH: 20 feet bgs

DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 427.90 feet amsl DATE BORING COMPLETED: 4/4/2018 10:15:00 AM **NORTHING**: 1484136.24

LOGGED BY: H. Usle CHECKED BY: J. Redden

DRILLING METHOD(S): Hand Auger/ Direct Push

DIAMETER: 2.25 inches DATUM: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Interim Remedial Measure.

SAMPLE TYPE: GRAPHIC LOG LEGEND Poorly-graded Gravel

HA = Hand Auger

DP = Direct Push

Poorly-graded Sand

Poorly-graded Gravelly Sand

Silty Clay

Poorly-graded Sand with Clay

		i samples collected	uo pui t	0					
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)
			24	100	GP SP- SC		0.5	Gray, GRAVEL, angular (0.5-1" diameter), loose, dry. Gray, CLAYEY SAND, some angular gravel, (0.5" diameter), brick fragments throughout, loose, moist.	0.0
-		HA	24	100	SP		2.0	Grayish Brown, MEDIUM TO COARSE SAND, mixed with subangular gravel, (0.5" diameter), brick fragments throughout, loose, dry.	0.0
2.5	425.4	DP	16	67	SP		3.0	Brown, FINE TO MEDIUM SAND, trace gravel, coal ash, coal fragments, brick, trace laminar gravel (1" diameter), loose, dry.	0.0
									0.0
5.0	422.9				ML			Light Olive Brown, SILT, some clay, shell hash present, rounded quartz gravel at 6 feet bgs (2" diameter), soft, wet to saturated.	0.0
		DP	25	52			6.0		0.0
									0.0
7.5	420.4	-	27		SP	· () • ()		Brown To Yellow, FINE TO MEDIUM GRAVELLY SAND, trace silt and clay, rounded chert and quartz gravels (1-2" diameter), laminar shale fragments (1" diameter), slight mottled surface at 7 feet bgs,	0.0
		DP		56		。()) , ()		water table at 6.5 feet bgs, loose to medium dense, wet to saturated.	0.0
10.0	417.9			56		, C			0.0

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-021** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

<u> </u>								
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	27	56				0.0
					SP	. O	Brown To Yellow, FINE TO MEDIUM GRAVELLY SAND, trace silt and clay, rounded chert and quartz gravels (1-2" diameter), laminar shale fragments (1" diameter), slight mottled surface at 7 feet bgs, water table at 6.5 feet bgs, loose to medium dense, wet to saturated. (continued)	0.0
12.5	415.4						water table at 0.5 feet bgs, loose to medium dense, wet to saturated. (continued)	0.0
 		DP	30	63		. O	14.0	0.0
15.0	412.9				CL- ML		Light Brown, CLAY, some silt, soft, wet to saturated.	0.0
							15.5	. 0.0
								0.0
17.5	410.4	DP	48	100	CL		Light Gray, CLAY, trace silt, soft to medium stiff, wet to saturated.	0.0
		<u>.</u>	75	100				0.0
20.0	407.9						20.0	0.0
							Bottom of Boring @ 20.00 feet bgs	

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 428.10 feet amsl SAMPLE TYPE: GRAPHIC LOG LEGEND DATE BORING COMPLETED: 4/6/2018 3:15:00 PM NORTHING: 1484127.05 Poorly-graded Gravel HA = Hand Auger LOGGED BY: H. Usle **EASTING:** 799406.43 DP = Direct Push CHECKED BY: J. Redden Poorly-graded TOTAL DEPTH: 20 feet bgs Sand DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches Silty Clay Brick DATUM: NAD 1983 StatePlane New York East in US Survey Feet NOTES: Soil samples collected as part of the Interim Remedial Measure. SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG (mdd) RECOVERY U.S.C.S. MATERIAL DESCRIPTION B GP Gray, GRAVEL, angular (0.5-1" diameter), loose, dry. \bigcirc ₫0.5 0.0 Gray, FINE TO MEDIUM CLAYEY SAND, some subangular gravel, (0.25-0.5" diameter), loose to SC-HA 24 100 SM medium dense, moist. 0.0 Brown To Reddish Brown, MEDIUM TO COARSE SAND, some gravel, (1" diameter), laminar, loose SP to medium dense, moist.

2.5 425.6 NO RECOVERY. DP 0 0 NM 4.0 Dark Yellow Brown, FINE TO MEDIUM SAND, some silt, trace subangular gravel, loose to medium SP 0.0 dense, wet, trace yellow mottling. 5.0 423.1 5.0 MI Dark Brown, SILT, trace rounded gravel, (0.25" diameter), soft, medium plasticity. 0.0 6.0 DP 26 54 SP Dark Brown, MEDIUM SAND, some silt and gravel, subrounded gravel (0.5" diameter), moist. 6.5 0.0 Quartz GRAVEL, subangular (0.5-1.5" diameter), dry. GP 0, 7.0 7.5 420.6 0.0 Dark Yellow Brown, FINE TO MEDIUM SAND, some silt and gravel, (0.5" diameter), medium dense, SP dry to moist. 0.0 9.0 30 63 DP Gray Brown, FINE TO MEDIUM SAND, some subrounded gravel, (0.5-1" diameter), well graded, SP 0.2 loose, saturated. 10.0 418.1


ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-022** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet) ELEVATION (feet ams!)	(1001 011)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
+		DP	30	63	SP SP		Gray Brown, FINE TO MEDIUM SAND, some subrounded gravel, (0.5-1" diameter), well graded, loose, saturated. (continued) 11.0 Light Brown To Reddish Brown, FINE SAND, some clay and gravel, subrounded (0.5" diameter), medium dense, saturated.	0.0
12.5 415.6	6				SP		Gray Brown, MEDIUM TO COARSE SAND, some angular quartz gravel present from 13.5-14.7 feet bgs, loose to medium dense, wet to saturated.	0.0
5.0 413.	-\\\ -\\\ -\\\ -\\\\ 1\\\	. DP	29	60	ML		14.7 15.0 Light Brown, SILT, some clay, low plasticity, wet.	0.1
		JS-B-022 (14.7-16.7) for VOCs, PFAS, TOC, pH						0.0
7.5 410.6	6	DP	33	69	CL- ML		Gray, SILT AND CLAY, low plasticity, wet.	0.0
			33	03				0.0
0.0 408.	1						20.0 Bottom of Boring @ 20.00 feet bgs	

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

EASTING: 799415.29

TOTAL DEPTH: 20 feet bgs

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 4/6/2018 10:40:00 AM **NORTHING:** 1484122.78

LOGGED BY: H. Usle

CHECKED BY: J. Redden DRILLING METHOD(S): Hand Auger/ Direct Push

DIAMETER: 2.25 inches DATUM: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Interim Remedial Measure.

GROUND ELEVATION: 428.00 feet amsl SAMPLE TYPE:

HA = Hand Auger

DP = Direct Push

Poorly-graded Sand

Boulders and Cobbles

Poorly-graded Gravelly Sand

Poorly-graded Gravel

GRAPHIC LOG LEGEND

Low Plasticity Clay

Clayey and Silty Sand

JS-B-023

PAGE 1 OF 2

1		ii samples collected	uo puit	01 1110 1		Ttorrioui	an indudui o.	
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		HA HA	24	100	GP SC- SM		Gray, GRAVEL, angular (0.5-1" diameter), loose, dry. 0.5 Gray, MEDIUM TO COARSE CLAYEY SAND, subangular gravel, (0.5" diameter), medium dense, moist.	. 0.3
			24	100	SP		Brown, MEDIUM TO COARSE SAND, some rounded to subangular gravel, (0.5-1" diameter), medium dense, moist.	0.0
2.5	425.5	+			SP	1	2.3 Brown, FINE TO MEDIUM SAND, subangular gravel, (0.5" diameter), moist.	0.0
 		DP	3	13			Quartzite ROCK stuck in drilling shoe, (1-2" diameter).	NM
5.0	423.0							0.0
		DP	14	20	SP	, O	Dark Brown, FINE TO MEDIUM GRAVELLY SAND, trace clay, subangular (0.5-1" diameter), black	0.1
			14	29	52		fragments, shell hash near 4.5 feet bgs, orange and black oxidation, medium dense, moist.	0.1
7.5	420.5					0000	8.0	0.0
		DP	22	46	SP		Light Brown, FINE TO COARSE GRAVELLY SAND, trace clay, subangular to rounded (0.25-0.5" diameter), loose, saturated.	0.1
10.0	418.0				51		ulameterj, ioose, saturateu.	0.0

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-023** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
· -		DP	22	46			Light Brown, FINE TO COARSE GRAVELLY SAND, trace clay, subangular to rounded (0.25-0.5" diameter), loose, saturated. (continued) 12.0	0.1
12.5	415.5							0.0
- 15.0 -	413.0	DP	10	21	SP		Gray Brown, MEDIUM TO COARSE SAND, trace rounded gravel, (0.5" diameter), well sorted, loose, saturated.	0.0
- - 17.5	410.5	JS-B-023 (16-18) for VOCs, PFAS, TOC, pH	27	56	CL		Gray, CLAY, some silt, soft, saturated.	0.1
- - - 20.0	408.0	DP	21	- 9 0	, GL		20.0	0.1
		1					Bottom of Boring @ 20.00 feet bgs	

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York GROUND ELEVATION: 428.20 feet amsl

NORTHING: 1484118.46

TOTAL DEPTH: 20 feet bgs

DIAMETER: 2.25 inches

EASTING: 799425.7

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 4/5/2018 3:00:00 PM

LOGGED BY: H. Usle

CHECKED BY: J. Redden DRILLING METHOD(S): Hand Auger/ Direct Push

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

SAMPLE TYPE:

HA = Hand Auger

DP = Direct Push

Poorly-graded Sand

Poorly-graded Gravelly Sand

GRAPHIC LOG LEGEND

Boulders and Cobbles

Poorly-graded Gravel

Sandy Silt

Clayey Sand

		samples collected	· ·					1
(feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
					GP	000	Gray, GRAVEL, (0.5-1" diameter), loose, dry.	0.0
		L HA	24	100	sc		Gray, FINE TO MEDIUM CLAYEY SAND, some subrounded gravel, (0.5" diameter), dry.	
					SP		Brown, MEDIUM TO COARSE SAND, subangular gravel (1" diameter), dry.	0.0
.5	425.7	DP	7	29	SP	· 0	Dark Brown, FINE TO MEDIUM GRAVELLY SAND, subangular shale gravel (0.5" diameter), dry.	0.
	-		,	20	Gi	, O	4.0	0.
1	- 1						4.1 Gray, pulverized ROCK (1" thick), dry.	-
5.0	423.2				ML		Dark Brown, FINE SANDY SILT, with gravel, subangular (1" diameter), moist to wet.	0.
_		DP	27	56		· 0		0.
_	 				SP	°О,	Dark Brown, FINE TO MEDIUM GRAVELLY SAND, white quartzite gravel (0.5-1" diameter) at 7 feet bgs, dry to moist.	0.
.5	420.7	-				, O	3.0	0.
		DP	29	60	SP- SC		Light Brown, FINE SAND, some clay, gravel (0.25-0.5" diameter), greenish gray fine-grained sand layer (2" thick) at 10.5 feet bgs, saturated.	0
	418.2	\			30		, (,	0.

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-024** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

DEРТН (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	29	60	SP- SC		Light Brown, FINE SAND, some clay, gravel (0.25-0.5" diameter), greenish gray fine-grained sand layer (2" thick) at 10.5 feet bgs, saturated. (continued)	0.0
12.5	415.7				ML		Light Brown, SILT, soft, wet to saturated.	0.0
15.0	 413.2	DP	48	100				0.0
- 17.5 -	410.7	DP	48	100	CL		Gray, CLAY, soft to medium stiff, low plasticity, saturated.	0.0
- 20.0 -	408.2						20.0 Bottom of Boring @ 20.00 feet bgs	0.0
 	 						Bottom of Boring @ 20.00 feet bgs	

Silty Clay

Poorly-graded Sand with Clay

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 428.20 feet amsl SAMPLE TYPE: GRAPHIC LOG LEGEND DATE BORING COMPLETED: 4/6/2018 1:45:00 PM **NORTHING**: 1484114.7 Poorly-graded Gravel HA = Hand Auger Clayey Sand LOGGED BY: H. Usle **EASTING:** 799435.03 DP = Direct Push Poorly-graded Gravelly Sand CHECKED BY: J. Redden Low Plasticity TOTAL DEPTH: 20 feet bgs Sandy Clay DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches

NOTES: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Interim Remedial Measure.

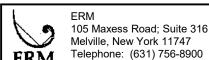
SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG (mdd) RECOVERY U.S.C.S. MATERIAL DESCRIPTION B GP \bigcirc Gray, GRAVEL, angular (0.5-1" diameter), loose, dry. ₽0.5 0.1 SC Gray, FINE TO MEDIUM CLAYEY SAND, some angular gravel, (1" diameter), moist. HA 24 100 0.1 Brown, MEDIUM TO COARSE SAND, some subrounded gravel, (1" diameter), loose, dry to moist. SP 2.0 Ø 0 425.7 Dark Brown, MEDIUM TO COARSE GRAVELLY SAND, subangular (0.5-1" diameter), slight 2.5 SP 0.0 o () reddish-brown, loose, dry. ø DP 58 14 0 o [] 0.0 Ø 0 Brown, FINE TO MEDIUM GRAVELLY SAND, subrounded quartz gravels (0.5-1.5" diameter), some SP 0.0 wet silty clay, loose to medium dense, dry. 0 5.0 423.2 O o () 0.0 ø 0 6.0 DP 24 50 CL Gray Brown, SANDY CLAY, some subangular gravel, (0.5" diameter), non-plastic, wet. 0.2 7 0 JS-B-025 (6-8) for VOCs, PFAS, TOC, pH 7.5 420.7 0.3 Dark Brown, MEDIUM TO COARSE SAND, some clay and gravel, subangular (0.5" diameter), SP-SC orange oxidized surfaces, loose, saturated. 8.5 0.0 CL-Light Brown, SILT AND CLAY, wet. ML 9.0 30 63 DP CL-Gray, CLAY, some silt, low plasticity, wet. 0.0 ML 10.0 418.2

ACRONYM LEGEND:

Client: Arnold & Porter

ERM 105 Maxess Road; Suite 316

Melville, New York 11747 Telephone: (631) 756-8900


Project Name: Hoosick

JS-B-025 PAGE 2 OF 2

Project Number: 0378075 Project Location: Hoosick, New York

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	30	63				0.1
-								0.1
12.5	415.7				CL-		Gray, CLAY, some silt, low plasticity, wet. <i>(continued)</i>	0.0
					CL- ML		Gray, GEAT, Some Silt, low plasticity, wet. (Continued)	0.0
		DP	48	100				0.0
15.0	413.2						16.0	0.0
								0.0
17.5	410.7	1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			CI			0.0
		DP	46	96	CL- ML		Gray To Brown, SILTY CLAY, soft, saturated.	0.0
20.0	408.2						20.0	0.0
		•	•			- KKKK	Bottom of Boring @ 20.00 feet bgs	

ACRONYM LEGEND:

JS-B-026 PAGE 1 OF 2

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

EASTING: 799410.95

TOTAL DEPTH: 20 feet bgs

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 4/6/2018 9:45:00 AM **NORTHING:** 1484113.27

LOGGED BY: H. Usle

CHECKED BY: J. Redden DRILLING METHOD(S): Hand Auger/ Direct Push

DIAMETER: 2.25 inches

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

GROUND ELEVATION: 428.10 feet amsl SAMPLE TYPE:

HA = Hand Auger

DP = Direct Push

Silty Sand

Poorly-graded
Sand with Clay Poorly-graded Sand

Low Plasticity Gravelly Clay

Poorly-graded Gravelly Sand

GRAPHIC LOG LEGEND

Poorly-graded Sandy Gravel

NOTI	ES: Soi	samples collected	as part	of the I	Interim	Remed	al Measure.	
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		. на	24	100			Soils not logged from 0-2 feet bgs.	NM
2.5	425.6	DP	5	21	SP		Dark Brown, FINE TO MEDIUM SAND, some subangular gravel, (1" diameter), trace clay, white flecks, loose, wet.	0.1
					SP- SC		Dark Brown, MEDIUM TO COARSE SAND, some clay, angular gravel (1" diameter), moist. 4.5	0.1
5.0	423.1	DP	6	13			NO RECOVERY, quartzite rock stuck in drilling shoe.	NM
		DP	31	65	SM		Gray Brown, FINE SILTY SAND, medium dense, moist to wet, orange and gray mottling.	0.1
10.0	418.1				SP		Brown To Reddish Brown, FINE TO MEDIUM SAND, some angular gravel, (0.5-1" diameter), black and red oxidized surfaces, medium dense, moist.	

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-026** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (mam)
-		DP	31	65	SP	0 0	Grayish Brown, FINE SAND, some angular gravel, well sorted, loose, wet. (continued) 10.5 10.8 Light Brown, GRAVELLY CLAY, subangular gravel (0.5" diameter), well sorted, soft, saturated.	0.:
-					GP SP		Light Brown, GRAVEL, some medium sand, subangular (0.5-1" diameter), trace clay, well graded, loose, saturated. 11.7 Grayish Brown, MEDIUM TO COARSE SAND, well rounded, loose, saturated.	0.
2.5	415.6				SP		Grayish Brown, FINE TO MEDIUM SAND, coarsening upwards sequence, loose, saturated.	0.
5.0	413.1	DP DP	41	85	CL- ML		Light Brown, SILTY CLAY, soft, saturated.	0
_		JS-B-026 (14-16) for VOCs, PFAS, TOC, pH			CL- ML		Dark Gray, SILT, some clay, soft, saturated.	0
 	410.6				CL-			0
-		DP	32	67	ML		Gray, CLAY, some silt, soft, low plasticity, saturated.	0
.0	408.1						20.0	0
-							Bottom of Boring @ 20.00 feet bgs	

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 428.40 feet amsl SAMPLE TYPE: GRAPHIC LOG LEGEND DATE BORING COMPLETED: 4/6/2018 12:35:00 PM NORTHING: 1484100.75 Poorly-graded Gravel HA = Hand Auger LOGGED BY: H. Usle **EASTING:** 799417.07 DP = Direct Push Poorly-graded Gravelly Sand Poorly-graded Sandy Gravel CHECKED BY: J. Redden TOTAL DEPTH: 20 feet bgs DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches Silty Clay DATUM: NAD 1983 StatePlane New York East in US Survey Feet NOTES: Soil samples collected as part of the Interim Remedial Measure. SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG (mdd) RECOVERY U.S.C.S. MATERIAL DESCRIPTION B ₹Q0.3 Gray, GRAVEL, subangular (0.5" diameter), loose, dry. \wedge Gray Brown, FINE TO MEDIUM SAND, (0.5" diameter), loose, dry. SP 0.5 0.0 • (<u>)</u> HA 24 100 O 0 0.0 0 Ø Brown, FINE TO MEDIUM SAND, some subrounded gravel, (0.5" diameter), loose, dry to moist. 0 2.5 425.9 0.0 DP 17 71 D 0.0 o ø 0 0.0 JS-B-027 (4-6) 5.0 423.4 Brown, FINE TO MEDIUM SAND, some gravel, subangular to angular (0.5-1" diameter), trace clay, D SP for VOCs. gravel content increasing with depth, loose to medium dense, moist. 0 PFAS, TOC, pH 0 0.1 O ^ເ6 ດ DP 24 50 26 GΡ Brown, GRAVEL, some medium sand, subangular (1-2" diameter), medium dense, dry. 0.2 00 60 00 100 7.5 420.9 0.2 Light Brown, SANDY GRAVEL, trace clay, subangular, medium to coarse-grained sands, higher silt GP and clay content (~35%) from 8-8.5 ft bgs, loose, saturated. 0 8.5 0.1 Light Brown, SILT AND CLAY, soft, saturated. ML 31 65 9.0 DP CL-Gray, CLAY, some silt, soft, low plasticity, wet to saturated. 0.2 ML 10.0 418.4

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-027** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

<u> </u>								
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	31	65				0.3
								0.3
12.5	415.9							0.0
		DP	24	50				0.1
15.0	413.4				CL- ML		Gray, CLAY, some silt, soft, low plasticity, wet to saturated. <i>(continued)</i>	0.1
								0.1
								0.2
17.5	410.9	DP	48	100				0.1
 								0.1
20.0	408.4						20.0	0.1
							Bottom of Boring @ 20.00 feet bgs	

ERM 105 Maxess Road; Suite 316 Melville, New York 11747

Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 428.00 feet amsl SAMPLE TYPE:

 DATE BORING COMPLETED:
 4/10/2018 2:00:00 PM
 NORTHING:
 1484118.98

 LOGGED BY:
 H. Usle
 EASTING:
 799443.28

 CHECKED BY:
 J. Redden
 TOTAL DEPTH:
 20 feet bgs

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

DIAMETER: 2.25 inches

NOTES: Soil samples collected as part of the Interim Remedial Measure.

SAMPLE TYPE: GRAPHIC LOG LEGEND

| HA = Hand Auger | Poorly-graded Gravel | Sand

HA = Hand Auger

Gravel

Sand

Poorty-graded
Gravelly Sand

Sand with Silt

Low Plasticity
Clay

SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG (mdd) RECOVERY U.S.C.S. MATERIAL DESCRIPTION B GP \bigcirc Gray, GRAVEL, angular (0.5" diameter), loose, dry. ₫0.5 0.0 Dark Gray, FINE TO MEDIUM SAND, subangular gravel (1-2" diameter), loose to medium dense, SP moist. 1.0 Dark Brown, MEDIUM SAND, some subangular and subrounded gravel, (2" diameter), brick SP 0.0 fragments, medium dense, dry to moist. ø 2.0 HA 48 100 2.5 425.5 SP-Dark Brown, MEDIUM TO COARSE SAND, some silt and clay, trace subrounded gravel (1-2" 0.0 SM diameter), trace white flecks, moist to wet. 0.0 SP-Dark Gray, MEDIUM SAND, some silt, trace rounded gravel (0.5" diameter), wet, trace yellow SM mottling 0.0 5.0 423.0 5.0 0.0 SP-Brown To Gray, FINE SAND, some silt, moist to wet, orange and brown mottling. 20 42 SM JS-B-028 (5-7) for VOCs. 0.0 PFAS, TOC, pH 7.0 7.5 420.5 SP-Reddish Brown, FINE TO COARSE SAND, some silt, little subrounded gravel (0.5" diameter), moist 0.0 SM to wet. 8.0 0 0.0 Brown, GRAVEL, some clay, subangular and subrounded (0.5-1" diameter), medium dense, 7 15 GP DP 0 0.0 10.0 418.0

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-028** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

-		Trojon Location Trojon Location Trojon Tolk																
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)										
		DP	7	15			NO RECOVERY. (continued) 12.0	NM										
12.5	415.5							0.0										
 	413.0	DP	38	79				0.0										
					CL		Gray, CLAY, slight silt bedding present from 14-15 feet bgs, soft to medium stiff, low plasticity, wet.	0.0										
 17.5	410.5			63				0.0										
 		DP	30		63	63	63	63	63	63	63	63	63	63	63			
20.0	408.0						20.0 Bottom of Boring @ 20.00 feet bgs	0.0										

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 427.90 feet amsl SAMPLE TYPE: GRAPHIC LOG LEGEND DATE BORING COMPLETED: 4/10/2018 3:40:00 PM **NORTHING:** 1484131.09 Poorly-graded Gravel Poorly-graded Sand HA = Hand Auger LOGGED BY: H. Usle **EASTING:** 799420.37 DP = Direct Push Poorly-graded Gravelly Sand CHECKED BY: J. Redden TOTAL DEPTH: 20 feet bgs DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches Poorly-graded Sand with Silt Silty Clay DATUM: NAD 1983 StatePlane New York East in US Survey Feet NOTES: Soil samples collected as part of the Interim Remedial Measure. SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG (mdd) RECOVERY U.S.C.S. MATERIAL DESCRIPTION B GP $[\circ \bigcirc \circ]$ Gray, GRAVEL, angular (0.5" diameter), loose, dry. 10.5 0.0 HA 24 100 Brown, MEDIUM TO COARSE SAND, trace gravel, gray subangular gravels (1-2" diameter), large SP shale fragments (5-6" diameter), dry to moist. 0.0 2.0 Dark Brown, FINE TO MEDIUM SAND, subangular gravel, (1" diameter), reddish gravel fragments, SP 0.0 loose to medium dense, dry to moist. 425.4 2.5 DP 6 25 No Recovery; quartz gravel stuck in drilling shoe. NM 4.0 Dark Brown, FINE TO MEDIUM SAND, subangular gravel, (1" diameter), reddish gravel fragments, 0 SP 0.0 loose to medium dense, dry to moist. D 5.0 422.9 5.0 MI Dark Brown, SILT, trace fine sand, soft, medium plasticity, moist to wet. 0.2 6.0 DP 29 60 0. 0.5 D Yellowish Brown, FINE TO MEDIUM SAND, some gravel, subangular (1" diameter) of reddish, white 0 SP and yellow coloration, medium dense, dry to moist. ø. 7.5 420.4 0.4 ø 0 8.0 0.0 Olive Brown, FINE SAND, some silt and gravel, subrounded (0.5" diameter), slight brown oxidized SP-SM surface, medium dense, moist to wet. 67 32 DP 9.5 0.0 Brown, FINE TO MEDIUM SAND, trace silt, subangular, laminar shale gravel fragments (1' diameter), medium dense, wet. 10.0 417.9

ACRONYM LEGEND:

Client: Arnold & Porter

ERM 105 Maxess Road; Suite 316

Melville, New York 11747 Telephone: (631) 756-8900

Project Name: Hoosick

JS-B-029 PAGE 2 OF 2

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)		
		DP	32	67	SP	° ()	Brown, FINE TO MEDIUM SAND, trace silt, subangular, laminar shale gravel fragments (1" diameter), medium dense, wet. (continued)	- 0.0		
					SP		Gray Brown, FINE TO MEDIUM SAND, loose, wet.	0.0		
12.5	415.4	-						0.1		
		DP	14	29	SP		Gray Brown, MEDIUM TO COARSE SAND, well rounded, well sorted, loose, saturated.	0.0		
15.0	412.9							NM		
							16.0	0.0		
17.5	410.4	JS-B-029 (16-18) for VOCs, PFAS, TOC, pH						0.0		
		DP	38	79	CL- ML		Gray, CLAY, some silt, soft, low plasticity, wet.	0.0		
-	 							0.0		
20.0	407.9	1					20.0 Bottom of Boring @ 20.00 feet bgs			

JS-B/TMW-030 **ERM** 105 Maxess Road; Suite 316 Melville, New York 11747

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York SAMPLE TYPE:

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 4/11/2018 9:30:00 AM **DATE WELL INSTALLED:** 4/13/2018 11:50:00 AM

Telephone: (631) 756-8900

DRILLING METHOD(S): Hand Auger/ Direct Push

LOGGED BY: H. Usle CHECKED BY: J. Redden GROUND ELEVATION: 431.20 feet amsl TOC ELEVATION: 431.03 feet amsl **NORTHING:** 1484022.82

EASTING: 799371.49 TOTAL DEPTH: 32 feet bgs **DIAMETER:** 3.25 inches

HA = Hand Auger

Poorly-graded Gravel DP = Direct Push

Poorly-graded Sand

Silty Clay Silt

GRAPHIC LOG LEGEND

NOTES: Soil samples collected as part of the Interim Remedial Measure. Datum is NAD 1983 StatePlane New York East in US Survey Feet SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG PID (ppm) RECOVERY U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM 핍 Gray, GRAVEL, subangular (0.5" diameter), loose, dry. <u>\</u>0.3 Concrete Pad and 8" Boltdown 0.6 Manhole Cover Dark Brown To Black, FINE TO MEDIUM SAND, some subangular HA 24 100 gravel, (1-2" diameter), trace white flecks, some coal and brick fragments, loose, dry to moist. SP 1.0 2.0 2.5 428.7 0.1 Dark Brown, FINE TO MEDIUM SAND, some subangular gravel, subangular slate fragments at 4 feet bgs (1-2" diameter), black and DP 16 67 SP orange oxidized surfaces, medium dense, dry to moist. 0.5 4.0 0.0 5.0 426.2 0.1 Dark Brown, FINE TO MEDIUM SAND, some subangular gravel, DP 26 54 SP pulverized coal fragments at 6 and 7.5 feet bgs, loose, moist. Bentonite Seal 0.2 7.5 423.7 0.1 8.0 V 0.0 Brown To Red Brown, GRAVEL, some coarse sand and silt, subangular (0.5" diameter), red brown coloration from brick fragments at 9.8-10 feet bgs, loose, saturated. DP 26 54 GP 0.1 0 10.0 421.2

ACRONYM LEGEND:

9 10

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-030**PAGE 2 OF 3

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
		DP	26	54	CL- ML		Brown, CLAY, some silt, soft, plastic, saturated. (continued) 11.0	0.2	
								0.2	
12.5	418.7							0.0	Filter Sand (#1)
	 	DP	38	79				1.7	
15.0	416.2							20.5	
	 							74.5	
	 				CL- ML		Gray, CLAY, interbedded with silt, "musty and sweet-like" odor noted at 17 and 25 feet bgs (based on olfactory), low plasticity, saturated.	382.7	
17.5	413.7	DP JS-B-030	46	96				236.2	
	 	(16-18) for VOCs, PFAS, TOC, pH						193.6	
20.0	411.2							166.3	Well Screen (13-27 feet bas)
-	 	M						13.2	(13-27 feet bgs) (1" SCH 40 PVC/ 0.01" slot)
<u></u>		/ \							

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-030**PAGE 3 OF 3

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DEPTH (feet) ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM											
22.5 408.7	. DP	38	79		-		0.8	End Cap											
						Gray, CLAY, interbedded with silt, "musty and sweet-like" odor noted at 17 and 25 feet bgs (based on olfactory), low plasticity, saturated. (continued)	128.8												
25.0 406.2	DP	34	71	CL- ML			22.2												
27.5 403.7							1.4												
			71	71	71	71	71	71	71	71						_		0.7	
30.0 401.2	. DP	34									71	71							
				ML		Gray To Dark Gray, SILT, some clay, soft to medium stiff, saturated. 32.0	0.3												
32.5 398.7						Bottom of Boring @ 32.00 feet bgs													

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

NAD 1983 StatePlane New York East in US Survey Feet
 NOTES: Soil samples collected as part of the Interim Remedial Measure.

JS-B-031 PAGE 1 OF 2

Silty Clay

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 430.30 feet amsl SAMPLE TYPE: GRAPHIC LOG LEGEND **DATE BORING COMPLETED:** 4/11/2018 9:15:00 AM NORTHING: 1484033.87 Poorly-graded Gravel Poorly-graded Sand HA = Hand Auger **EASTING**: 799376.57 LOGGED BY: H. Usle DP = Direct Push Poorly-graded Gravelly Sand CHECKED BY: J. Redden TOTAL DEPTH: 20 feet bgs DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches

SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG (mdd) RECOVERY U.S.C.S. MATERIAL DESCRIPTION B ♥ Q_{0.3} Gray, GRAVEL, subangular (0.5" diameter), loose, dry. 0.0 HA 24 100 Dark Brown, FINE TO MEDIUM SAND, trace subangular gravel, (1-2" diameter), trace brick SP fragments and some concrete fragments, loose, dry to moist. 0.2 2.0 2.5 427.8 o (_, 0.0 Ø Dark Brown To Black, MEDIUM TO COARSE SAND, with subangular gravel, (1-1.5" diameter), 0 "ash-like" layer of alternating black and white deposits, trace brick fragments (more prevalent from DP 18 75 SP 2-3 feet bgs), loose, dry to moist. · () 0.3 ø 0 4.0 Brown, MEDIUM TO COARSE SAND, with subangular gravel, (1-1.5" diameter), medium dense, SP 0.0 b 0 5.0 425.3 5.0 [• (\)° 0.2 0 DP 22 46 0 Gray To White, GRAVEL, subangular (1-2" diameter), medium dense, dry. GP 0.0 0 7.5 422.8 Ō 0.3 Light Brown, GRAVEL, some silt and fine sand, angular and rounded (0.5" diameter), loose, (O saturated. 8.0 0.0 0 48 100 Light Brown, GRAVEL, some clay, subangular to subrounded (0.5" diameter), coarsening downward DΡ GP sequence, loose, saturated. 0 0.0 10.0 420.3

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-031** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

<u> </u>								
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	48	100	ML		Light Brown, SILT, some clay, low plasticity, wet. (continued) 10.5	0.2
								0.0
12.5	417.8	_						0.0
		DP	24	50				0.0
15.0	415.3						Gray, CLAY, some silt, low plasticity, wet.	0.0
-		.IS-R-031			CL- ML			0.0
		JS-B-031 (15-17) for VOCs, PFAS, TOC, pH						0.0
17.5	412.8	DP	30	63				0.0
								0.0
20.0	410.3						20.0	0.0
-							Bottom of Boring @ 20.00 feet bgs	

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick Project Location: Hoosick, New York

Project Number: 0378075 DRILLING CONTRACTOR: Parratt Wolff, Inc.

DATE BORING COMPLETED: 4/11/2018 9:40:00 AM

LOGGED BY: H. Usle CHECKED BY: J. Redden

DRILLING METHOD(S): Hand Auger/ Direct Push

DATUM: NAD 1983 StatePlane New York East in US Survey Feet NOTES: Soil samples collected as part of the Interim Remedial Measure.

GROUND ELEVATION: 429.90 feet amsl **NORTHING:** 1484043.41 **EASTING:** 799380.66 TOTAL DEPTH: 20 feet bgs

DIAMETER: 2.25 inches

HA = Hand Auger DP = Direct Push

SAMPLE TYPE:

GRAPHIC LOG LEGEND

Poorly-graded Gravel

Poorly-graded Gravelly Sand

Boulders and Cobbles

Silt

Silty Clay

	Our samples concered as part of the interim remedial weasard.											
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)				
					GP SP		 Gray, GRAVEL, subangular (0.5" diameter), loose, dry. Gray Brown, FINE TO MEDIUM SAND, some subangular gravel, (0.5-1" diameter), brick fragments, loose, moist. 	4.6				
		.L HA	24	100	SP	000	Gray, MEDIUM TO COARSE SAND, some subangular gravel, (0.5-1" diameter), loose, moist.	0.3				
2.5	427.4	DP	16	67	SP		Dark Brown To Black, MEDIUM TO COARSE SAND, some gravel, (1" diameter), "ash-like" layers, coal fragments, reddish brown sands and brick fragments from 3-4 feet bgs, trace clay from 2-3 feet	1.3				
						. (bgs, loose.	1.3				
5.0	424.9				SP	. () () ()	Dark Brown, MEDIUM TO COARSE SAND, some gravel, dark gray shale and quartz gravel (1" diameter), light brown sand seams, loose, dry to moist.	0.7				
		DP	23	48		. () . ()	6.0	1.3				
							Gray, ROCK FRAGMENTS, (1-2" diameter), dry.	1.0				
7.5	422.4	-			GP		Light Brown, GRAVEL, trace subangular coarse sand, (1-2" diameter), loose, dry.	0.3				
					ML CL- ML		Light Brown, SILT, little gravel, soft, wet. 8.5 Brown To Gray, SILT AND CLAY, soft, wet. 9.0	_ 0.5				
10.0	419.9	JS-B-032 (9-11) for VOCs, PFAS, TOC, pH		92	CL- ML		Gray, SILT AND CLAY, low plasticity, wet.	2.8				

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-032** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

—							
DEPTH (feet) ELEVATION (feet ams!)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
- +	DP	44	92				3.9
	-//						2.8
12.5 417.4	1						0.0
- +	DP	35	73				0.0
15.0 414.9				CL- ML		Gray, SILT AND CLAY, low plasticity, wet. (continued)	0.0
- + - +							0.0
 - - -							0.0
17.5 412.4	DP	28	58				0.0
 - -							0.1
20.0 409.9						20.0	0.1
+ +	_					Bottom of Boring @ 20.00 feet bgs	

JS-B/TMW-033

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Hoosick, New York SAMPLE TYPE:

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 4/11/2018 10:30:00 AM

DATE WELL INSTALLED: 4/13/2018 10:30:00 AM DRILLING METHOD(S): Hand Auger/ Direct Push

LOGGED BY: H. Usle CHECKED BY: J. Redden GROUND ELEVATION: 430.10 feet amsl TOC ELEVATION: 429.87 feet amsl

NORTHING: 1484039.22 **EASTING:** 799389.29 TOTAL DEPTH: 32 feet bgs

DIAMETER: 3.25 inches

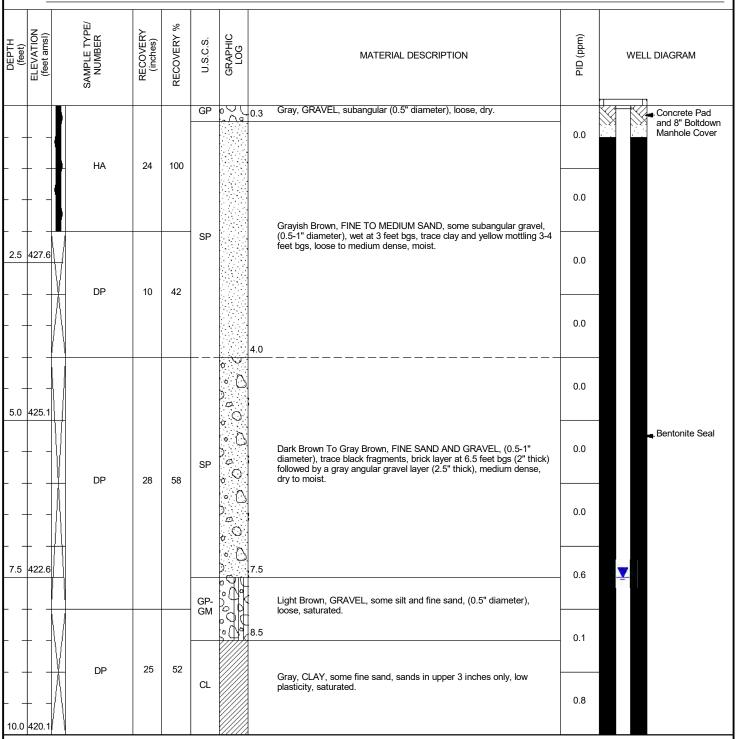
Project Location:

HA = Hand Auger

DP = Direct Push

Poorly-graded Gravelly Sand

Poorly-graded Gravel with Silt


Poorly-graded Sand

GRAPHIC LOG LEGEND

Low Plasticity Clay

Poorly-graded Gravel

NOTES: Soil samples collected as part of the Interim Remedial Measure. Datum is NAD 1983 StatePlane New York East in US Survey Feet

ACRONYM LEGEND:

JS-B/TMW-033PAGE 2 OF 3

ERM 105 Maxess Road; Suite 316

Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL	DIAGRAM
		DP	25	52	CL		Gray, CLAY, some fine sand, sands in upper 3 inches only, low plasticity, saturated. <i>(continued)</i>	2.4		-Filter Sand (#1)
 							12.0	5.1		
12.5	417.6							56.3		
 		DP	30	63				316.0		
15.0	 415.1	JS-B-033 (14-16) for PFAS, TOC, pH	 - -					239.8		
	 	JS-B-033 (15-16) for VOCs						440.0		Well Screen (11-20 feet bgs) (1" SCH 40 PVC/ 0.01" slot)
 17.5	412.6				CL		Gray, CLAY, possible fall through from 24-28 feet bgs (little recovery), low plasticity, saturated.	116.5		
		DP	40	83				39.5		
 	 							2.0		
20.0	410.1									End Cap
		DP	10	21				7.1		

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-033**PAGE 3 OF 3

Client: Arnold & Porter Project Name: Hoosick

(feet) ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
22.5 407.6	DP	10	21				7.1	
25.0 405.1 27.5 402.6	DP	6	13	CL		Gray, CLAY, possible fall through from 24-28 feet bgs (little recovery), low plasticity, saturated. (continued)	NM	
30.0 400.1	_ DP	48	100				0.3	
32.5 397.6	-					32.0 Bottom of Boring @ 32.00 feet bgs	-	

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-034** PAGE 1 OF 2

 Client:
 Arnold & Porter
 Project Name:
 Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DIAMETER: 2.25 inches

DRILLING CONTRACTOR: Parratt Wolff, Inc. GRO
DATE BORING COMPLETED: 4/11/2018 11:00:00 AM NOR

DATE BORING COMPLETED: 4/11/2018 11:00:00 AM
LOGGED BY: H. Usle
CHECKED BY: J. Redden

DRILLING METHOD(S): Hand Auger/ Direct Push

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

| GROUND ELEVATION: 430.50 feet ams| | NORTHING: 1484026.87 | EASTING: 799362.18 | TOTAL DEPTH: 20 feet bgs

SAMPLE TYPE:

HA = Hand Auger

DP = Direct Push

Brick
Low Plas

Silty Clay

Poorly-graded Sand

GRAPHIC LOG LEGEND

Low Plasticity Clay

Poorly-graded Gravel

NOTE	ES: Soi	l samples collected	as part	of the I	Interim	Remed	al Measure.	
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		Ы			GP	000	0.3 Gray, GRAVEL, subangular (0.5" diameter), loose, dry.	
		HA	24	100	SP		Dark Brown, MEDIUM TO COARSE SAND, trace gravel, (0.5-1.5" diameter), loose, dry.	0.0
2.5	428.0	DP	19	79				0.2
 5.0 	425.5	DP	33	69	SP		Dark Brown, FINE TO MEDIUM SAND, some gravel, quartz gravels (0.5" diameter), brick fragments at 7 feet bgs, trace black oxidation, loose, dry to moist.	0.3
-	† 1						BRICK.	0.3
7.5	423.0	-						1.6
		DP	DP 18	38	GP		Light Brown, GRAVEL, some coarse sand, (0.5" diameter), trace silt, loose, saturated.	0.2
10.0	420.5							0.1

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-034** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	18	38	GP		Light Brown, GRAVEL, some coarse sand, (0.5" diameter), trace silt, loose, saturated. <i>(continued)</i>	0.1
12.5	418.0				CL- ML		Dark gray to gray, SILTY CLAY, low plasticity, soft to medium stiff, saturated.	0.1
		DP	34	71				0.2
15.0	415.5	JS-B-034 (14-16) for VOCs, PFAS, TOC, pH						0.1
					CL		Gray, CLAY, low plasticity, soft to medium stiff, saturated.	0.1
17.5	413.0	DP	38	79				0.1
	 							0.1
20.0	410.5						20.0 Bottom of Boring @ 20.00 feet bgs	0.1

JS-B/TMW-035

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

 Project Number:
 0378075
 Project Location:
 Hoosick, New York

 DRILLING CONTRACTOR:
 Parratt Wolff, Inc.
 GROUND ELEVATION:
 431.20 feet amsl
 SAMPLE TYPE:

DATE BORING COMPLETED: 4/12/2018 11:15:00 AM

DATE WELL INSTALLED: 4/26/2018 2:00:00 PM
DRILLING METHOD(S): Hand Auger/ Direct Push

LOGGED BY: H. Usle
CHECKED BY: J. Redden

 GROUND ELEVATION:
 431.20 feet amsl

 TOC ELEVATION:
 430.83 feet amsl

 NORTHING:
 1484012.53

 EASTING:
 799366.89

SAMPLE TYPE:

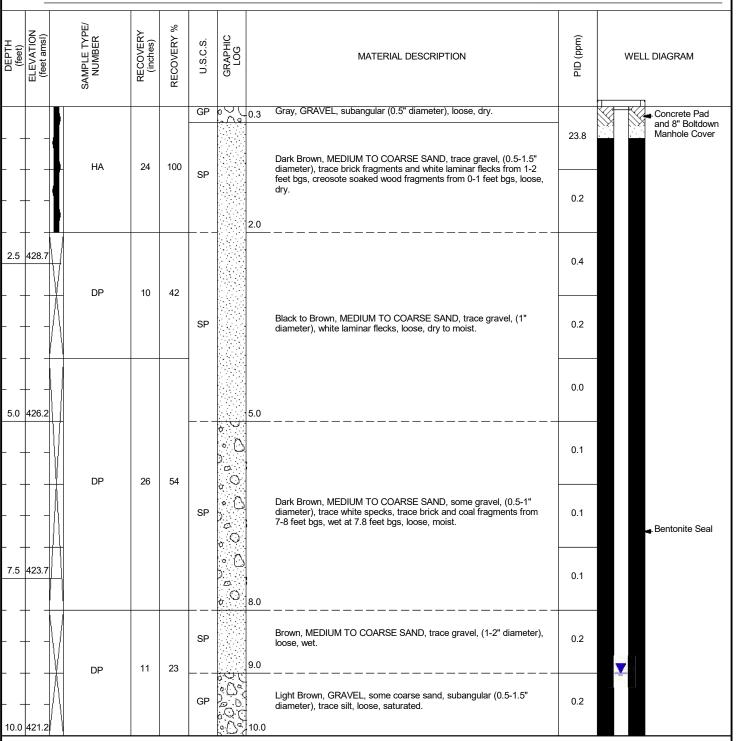
HA = Hand Auger

DP = Direct Push

Poorly-graded Gravelly Sand Poorly-graded Sandy Gravel

Poorly-graded Sand

GRAPHIC LOG LEGEND


Low Plasticity Clay

Poorly-graded Gravel

CHECKED BY: J. Redden DIAMETER: 3.25 inches

NOTES: Soil samples collected as part of the Interim Remedial Measure. Datum is NAD 1983 StatePlane New York East in US Survey Feet.

TOTAL DEPTH: 24 feet bgs

ACRONYM LEGEND:

ERM 105 N

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-035**PAGE 2 OF 3

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
		DP	11	23			NO RECOVERY, rock lodged in drilling shoe. (continued) 12.0	NM	
12.5	418.7							0.2	
	 	DP	38	79				0.0	Filter Sand (#1)
15.0	416.2							1.2	
	 							20.4	
	 				CL		Gray, CLAY, soft, low plasticity, saturated.	91.8	
17.5	413.7	DP	34	71				120.6	Well Screen (14-21 feet bgs) (1" SCH 40 PVC/ 0.01" slot)
	 	JS-B-035 (16-18) for VOCs, PFAS, TOC, pH						85.7	
20.0	411.2							74.7	
		\bigvee						4.2	End Cap
-	<u> </u>	1				<i>Y/////</i>			l

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-035**PAGE 3 OF 3

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DEPTH (feet) ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
							0.6	
22.5 408.7	DP	38	79	CL		Gray, CLAY, soft, low plasticity, saturated. (continued)	0.3	
						24.0	0.2	
						Bottom of Boring @ 24.00 feet bgs		
25.0 406.2								
20.0 400.2								
+ + +								
- + -								
_								
27.5 403.7								
- + -								
30.0 401.2								
+ + +								
32.5 398.7								

ACRONYM LEGEND:

JS-B/TMW-036

GRAPHIC LOG LEGEND

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York GROUND ELEVATION: 431.40 feet amsl SAMPLE TYPE:

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 4/12/2018 11:30:00 AM

DATE WELL INSTALLED: 4/26/2018 1:30:00 PM DRILLING METHOD(S): Hand Auger/ Direct Push

LOGGED BY: H. Usle CHECKED BY: J. Redden TOC ELEVATION: 431.11 feet amsl NORTHING: 1484008.66 **EASTING:** 799375.07

TOTAL DEPTH: 24 feet bgs **DIAMETER:** 3.25 inches NOTES: Soil samples collected as part of the Interim Remedial Measure. Datum is NAD 1983 StatePlane New York East in US Survey Feet

HA = Hand Auger

DP = Direct Push

Poorly-graded Sandy Gravel

Brick

Poorly-graded Gravel

Poorly-graded Gravelly Sand

Poorly-graded Sand

Silty Clay

SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) PID (ppm) GRAPHIC LOG RECOVERY DEPTH (feet) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM 핍 Gray, GRAVEL, subangular (0.5" diameter), loose, dry. 0.3 Concrete Pad and 8" Boltdown 0.1 Manhole Cover Dark Brown, MEDIUM TO COARSE SAND, trace gravel, (0.5-1.5" HA 24 100 SP diameter), coarser from 1-2 feet bgs with trace gravels (2" diameter), loose, dry. 0.1 2.0 2.5 428.9 0.3 Dark Brown To Gray Brown, FINE TO MEDIUM SAND, trace gravel, SP (0.5" diameter), loose, moist. DP 50 12 0.2 BRICK. 3.8 Black To Brown, MEDIUM SAND, white flecks throughout, orange SP 4.0 staining, coal fragments, loose, moist. ø, 0.1 D 5.0 426.4 0. 0.2 0 Dark Brown, FINE TO MEDIUM SAND, some gravel, (0.5-1" 0 diameter), coal and brick fragments near 5.5 feet bgs, gray laminar DP 24 SP 50 gravel at 5 feet bgs, brick fragments at 7.8 feet bgs, trace white flecks, loose, dry to moist. 0.0 \Box Bentonite Seal 7.5 423.9 0.2 D. , O 8.0 V o (∑a Light Brown, GRAVEL, some coarse sand, (0.5-1.5" diameter), loose, GP .b 0.0 (9.0 32 67 DΡ Light Brown, CLAY AND SILT, low plasticity, soft, saturated. 0.0 ML 10.0 10.0 421.

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

JS-B/TMW-036PAGE 2 OF 3

Client: Arnold & Porter Project Name: Hoosick

Project Location: Hoosick, New York Project Number: 0378075

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
		DP	32	67	CL-		Gray, CLAY AND SILT, low plasticity, soft, wet to saturated. (continued)	0.0	
	 				ML		12.0	0.0	
12.5	418.9							0.0	
		DP	34	71	CL- ML		Gray, CLAY, some silt, low plasticity, soft, wet to saturated.	0.0	Filter Sand (#1)
15.0	416.4	JS-B-036 (14-15) for VOCs, PFAS,			ML			1.3	
	 						16.0	24.5	
	 							67.6	
17.5	413.9	JS-B-036 (17-19) for PFAS	40	83	CL- ML		Gray, CLAY, little silt, "musty-like odor" (based on olfactory), soft to medium stiff, low plasticity, wet.	107.2	Well Screen (14-21 feet bgs) (1" SCH 40 PVC/ 0.01" slot)
	 	JS-B-036 (18-19) for VOCs, TOC, pH						153.7	
20.0	411.4	JS-B-036 (19-20) for VOCs and PFAS					20.0	46.9	
	 	DP	32	67	CL- ML		Gray, CLAY, interbedded silt, soft to medium stiff, wet.	0.2	End Cap
<u> </u>	_	/ \							

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-036**PAGE 3 OF 3

Client: Arnold & Porter Project Name: Hoosick

-								
DEPTH (feet) ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
22.5 408.9	DP	32	67	CL- ML		Gray, CLAY, interbedded silt, soft to medium stiff, wet. (continued)	0.1	
- + -						24.0	0.0	
-						Bottom of Boring @ 24.00 feet bgs		
25.0 406.4	_							
+ +								
+ +								
27.5 403.9	_							
.								
-								
+ +								
30.0 401.4								
	_							
+ +								
+ +								
32.5 398.9	_							
_								

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

JS-B/TMW-037

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 4/16/2018 1:45:00 PM

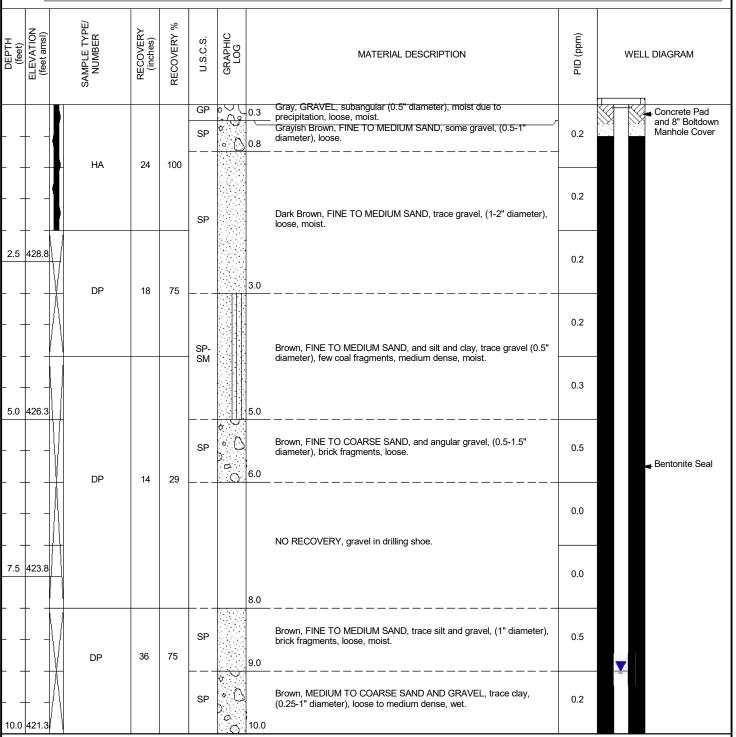
DATE WELL INSTALLED: 4/26/2018 11:15:00 AM DRILLING METHOD(S): Hand Auger/ Direct Push

LOGGED BY: H. Usle CHECKED BY: J. Redden GROUND ELEVATION: 431.30 feet amsl TOC ELEVATION: 431.07 feet amsl **NORTHING:** 1484017.31 **EASTING:** 799391.11

TOTAL DEPTH: 32 feet bgs **DIAMETER:** 3.25 inches

SAMPLE TYPE: GRAPHIC LOG LEGEND Poorly-graded Gravelly Sand

HA = Hand Auger


DP = Direct Push

Poorly-graded Gravel

Poorly-graded Sand with Silt Poorly-graded

Low Plasticity Clay

NOTES: Soil samples collected as part of the Interim Remedial Measure. Datum is NAD 1983 StatePlane New York East in US Survey Feet

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

JS-B/TMW-037PAGE 2 OF 3

Client: Arnold & Porter Project Name: Hoosick

Project Location: Hoosick, New York Project Number: 0378075

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
		DP	36	75				0.7	
								0.8	Filter Sand (#1)
12.5	418.8							1.6	
		DP	36	75				7.8	
15.0	 416.3	JS-B-037						28.3	
	_	(15-16) for VOCs JS-B-037 (15-17) for PFAS, TOC, pH			CL		Gray, CLAY, low plasticity, soft, wet. (continued)	74.7	
								51.2	Well Screen
17.5	413.8	DP	36	75				72.4	Well Screen (12-22 feet bgs) (1" SCH 40 PVC/ 0.01" slot)
	 							43.4	
20.0	411.3							27.0	
 	 	DP	30	63				11.7	

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-037**PAGE 3 OF 3

Client: Arnold & Porter Project Name: Hoosick

(feet) ELEVATION	(leet afrist) SAMPLE TYPE/ NIIMBER		RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
22.5 408.	.8)	Р	30	63	CL		Gray, CLAY, low plasticity, soft, wet. <i>(continued)</i>	0.3	End Cap
- + - + - +							24.0	0.3	
25.0 406.	.3								
27.5 403.	_ D	P	0	0			NO RECOVERY, CLAY too soft to enable capture in liner.	NM	
- +							NO NEOVENT, SEAT too soft to enable capture in liner.		
30.0 401.	3 D	P	0	0			32.0	NM	
32.5 398.	.8						Bottom of Boring @ 32.00 feet bgs		

ACRONYM LEGEND:

JS-B/TMW-038
PAGE 1 OF 3

ERM

ERM 105 Maxess R

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DRILLING CONTRACTOR: Parratt Wolff, Inc.

DATE BORING COMPLETED: 4/16/2018 1:45:00 PM

DATE WELL INSTALLED: 4/25/2018 1:30:00 PM
DRILLING METHOD(S): Hand Auger/ Direct Push

LOGGED BY: H. Usle
CHECKED BY: J. Redden

 GROUND ELEVATION:
 430.60 feet amsl

 TOC ELEVATION:
 430.29 feet amsl

 NORTHING:
 1484026.06

 EASTING:
 799393.79

TOTAL DEPTH: 28 feet bgs
DIAMETER: 3.25 inches

msl SAMPLE TYPE:

HA = Hand Auger

DP = Direct Push

GRAPHIC LOG LEGEND

Poorly-graded
Gravel

Poorly-graded
Sand with Clay

Low Plasticity Sandy Clay

Silty Clay

NOTES: Soil samples collected as part of the Interim Remedial Measure. Datum is NAD 1983 StatePlane New York East in US Survey Feet. SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG PID (ppm) RECOVERY U.S.C.S. DEPTH (feet) MATERIAL DESCRIPTION WELL DIAGRAM 핍 Gray, GRAVEL, sub-angular (0.5" diameter), moist due to ₹₫0.3 Concrete Pad precipitation, loose, moist. and 8" Boltdown 0.1 Manhole Cover HA 24 100 SP-Grayish Brown, FINE TO MEDIUM SAND, some clay and gravel, SC (0.5-1" diameter), loose, wet. 0.4 0.1 2.5 428.1 DP 6 25 NO RECOVERY. NM 4.0 Brown To Gray, FINE TO MEDIUM SAND, some clay and gravel, SP-0.3 SC (0.5-1" diameter), loose, moist. 5.0 425.6 Bentonite Seal DP 7 15 NO RECOVERY. NM 7.5 423.1 8.0 0 0 DΡ NO RECOVERY. NM 10.0 420.6

ACRONYM LEGEND:

JS-B/TMW-038xess Road; Suite 316

PAGE 2 OF 3

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

ERM

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM													
		DP	0	0			NO RECOVERY. (continued) 12.0	NM	Filter Sand (#1)													
12.5	418.1							113.6														
-		DP	42	88	CL		Gray, CLAY, some sand, sand in upper 3 inches only, soft, low plasticity, wet.	161.4														
15.0	415.6	JS-B-038 (14-15) for VOCs					placetory, not.	1396.0														
-		JS-B-038 (14-16) for PFAS, TOC, pH					16.0	308.1	Well Screen													
								193.8	Well Screen (11-21 feet bgs) (1" SCH 40 PVC/ 0.01" slot)													
17.5	413.1	DP	27	56																	254.9	
	 			7 56	CL- ML		Gray, CLAY, some silt from 19 to 20 feet bgs, soft, low plasticity, wet.	92.6														
20.0	410.6							74.2														
	- - 	DP	30	63				67.8	End Cap													
		/ \																				

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-038**PAGE 3 OF 3

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet) ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
22.5 408.1	DP	30	63				0.2	
							0.2	
25.0 405.6				CL- ML		Gray, CLAY, some silt from 19 to 20 feet bgs, soft, low plasticity, wet. (continued)	0.1	
- + -	DP	17	35				0.0	
27.5 403.1							0.0	
27.5 405.1						28.0 Bottom of Boring @ 28.00 feet bgs	0.0	
30.0 400.6								
- + -								
32.5 398.1								

ACRONYM LEGEND:

JS-B/TMW-039

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 4/16/2018 2:15:00 PM

DATE WELL INSTALLED: 4/20/2018 1:30:00 PM DRILLING METHOD(S): Hand Auger/ Direct Push

LOGGED BY: H. Usle CHECKED BY: J. Redden GROUND ELEVATION: 430.20 feet amsl TOC ELEVATION: 430.09 feet amsl NORTHING: 1484034.86

TOTAL DEPTH: 32 feet bgs

EASTING: 799398.06

DIAMETER: 3.25 inches

SAMPLE TYPE: GRAPHIC LOG LEGEND Poorly-graded Gravelly Sand

DP = Direct Push

Poorly-graded Gravel HA = Hand Auger

Poorly-graded Gravel with Silt

Concrete Silty Clay

NOTES: Soil samples collected as part of the Interim Remedial Measure. Datum is NAD 1983 StatePlane New York East in US Survey Feet SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) PID (ppm) GRAPHIC LOG RECOVERY DEPTH (feet) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM 핍 Gray, GRAVEL, subangular (0.5" diameter), moist from precipitation, GP 0.3 Concrete Pad loose, moist. and 8" Boltdown 0.0 Manhole Cover HA 24 100 Grayish Brown, MEDIUM TO COARSE SAND AND GRAVEL, little D. SP clay, (0.25-0.5" diameter), loose, wet. O. 0.0 ٥. 0 Brown, MEDIUM GRAVELLY SAND, (1" diameter), loose, dry. SP 2.2 2.5 427.7 0.5 DP 21 88 Gray, pulverized CONCRETE fragments, black coarse-grained material at 3 ft bgs (2" thick), "organic-like" odor, dense, dry. 4.0 8.0 0.3 0 5.0 425.2 Bentonite Seal 0.0 ٥ Gray, GRAVEL, rock dust, (0.5-1" diameter), olive brown medium GP 67 dense silty sand layers at 5.5 and 6.5 feet bgs, dense, dry to moist. 32 0.2 7.5 422.7 0.6 ٥ V 0.3 Brown To Light Brown, GRAVEL, some coarse sand and silt, loose to GPmedium dense, saturated. 0.2 10.0 420.2

ACRONYM LEGEND:

Suite 316

JS-B/TMW-039
PAGE 2 OF 3

ERM 105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

							Troject 2004.0111 Trocolor, Ton Tonk													
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM											
		DP	19	40				16.9	Filter Sand (#1)											
12.5	417.7	JS-B-039 (12-13) for VOCs, PFAS, TOC, pH	,				> 2,000													
-		JS-B-039 (13-14) for VOCs																		
15.0	 415.2	JS-B-039 (13-15) for PFAS, TOP Assay PFAS, TOC, pH , Flash Point, Metals,	44	92				455.7												
	 	TOC, pH , Flash Point, Metals, Mercury, and Cyanide			CL- ML		Gray, CLAY AND SILT, silt parting with some resistance during cross-cut at 13.8 feet bgs, strong "musty-like" odor, slight visual of bedding planes 24-28 feet bgs, appreciable silts near 27 feet bgs, very soft drilling results in little recovery, soft, low plasticity, saturated. (continued)	486.7												
	 																	(continued)	408.3	Well Screen (11-22 feet bgs) (1" SCH 40 PVC/ 0.01" slot)
17.5	412.7	DP	46	96																
-								193.0												
20.0	 410.2	JS-B-039 (19-20) for VOCs, PFAS, TOC, pH						91.1												
								64.8												

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-039**PAGE 3 OF 3

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 **Project Location:** Hoosick, New York

DEPTH (feet) (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
22.5 407.7	DP	42	88				7.9 4.8	End Cap
							8.6	
25.0 405.2				CL- ML		Gray, CLAY AND SILT, silt parting with some resistance during cross-cut at 13.8 feet bgs, strong "musty-like" odor, slight visual of bedding planes 24-28 feet bgs, appreciable silts near 27 feet bgs, very soft drilling results in little recovery, soft, low plasticity, saturated. (continued)	301.3	
	DP	34	71			(continue)	54.5	
							12.1	
27.5 402.7						28.0	1.7	
							0.5	
30.0 400.2	_ DP	36	75	CL- ML		Gray, CLAY AND SILT, soft to medium stiff, low plasticity, saturated.	0.2	
							0.0	
						32.0	0.7	
32.5 397.7	-					Bottom of Boring @ 32.00 feet bgs		

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

JS-B-040 PAGE 1 OF 1

Poorly-graded Gravelly Sand

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

EASTING: 799398.97

TOTAL DEPTH: 7 feet bgs

DIAMETER: 2.25 inches

DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 429.90 feet amsl DATE BORING COMPLETED: 4/16/2018 2:35:00 PM **NORTHING**: 1484039.48

LOGGED BY: H. Usle

CHECKED BY: J. Redden

DRILLING METHOD(S): Hand Auger/ Direct Push

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

nles collected as part of the Interim Remedial Measure

SAMPLE TYPE:

HA = Hand Auger

DP = Direct Push

Poorly-graded Gravel

GRAPHIC LOG LEGEND

Poorly-graded Sand

NOTE	Soil	samples collected	l as part	of the I	nterim	Remedi	al Measure.	
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
					GP		0.3 Gray, GRAVEL, subangular (0.5" diameter), moist from precipitation, loose, moist.	
_		<u>н</u>	24	100	SP		Grayish Brown, MEDIUM TO COARSE SAND, and gravel, (0.25-0.5" diameter), loose.	0.0
2.5	427.4					° 0	2.5	0.1
	 	DP	14	58	SP		Brown To Red Brown, FINE TO MEDIUM SAND, trace gravel, trace coal fragments, loose, moist.	0.8
5.0	424.9				SP		Gray, MEDIUM TO COARSE SAND AND GRAVEL, (0.5" diameter), loose, wet.	0.2
 	.0 424.9	DP	21	58	SP		Gray Brown, FINE TO COARSE SAND, trace gravel, (0.5-1" diameter). Refusal at 7 feet bgs, medium dense, moist.	0.9
7.5	422.4					, 0	7.0 Bottom of Boring @ 7.00 feet bgs	
10.0	419.9							

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 **Project Location:** Hoosick, New York DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 430.30 feet amsl SAMPLE TYPE: GRAPHIC LOG LEGEND **DATE BORING COMPLETED:** 4/16/2018 3:15:00 PM NORTHING: 1484009.42 Poorly-graded Gravel Poorly-graded Gravelly Sand HA = Hand Auger LOGGED BY: H. Usle **EASTING:** 799354.39 DP = Direct Push Poorly-graded Sand with Silt CHECKED BY: J. Redden Poorly-graded TOTAL DEPTH: 20 feet bgs DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches Silty Clay DATUM: NAD 1983 StatePlane New York East in US Survey Feet NOTES: Soil samples collected as part of the Interim Remedial Measure. SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG (mdd) RECOVERY DEPTH (feet) U.S.C.S. MATERIAL DESCRIPTION E Gray, GRAVEL, subangular (0.5" diameter), moist from precipitation, loose, moist. GP <u>\</u>0.3 0.0 Grayish Brown, MEDIUM TO COARSE SAND AND GRAVEL, litte clay, (0.25-0.5" diameter), loose, SP 1.0 HA 24 100 Brown, FINE TO COARSE SAND, little clay and gravel, (0.5-1" diameter), loose, wet. SP 0.1 2.0 427.8 Light Grayish Brown, FINE TO COARSE SAND, some gravel, (0.5" diameter), saturated due to 2.5 SP Ο. 0.0 precipitation, loose, saturated. D 0 DP 22 92 Dark Brown, FINE TO MEDIUM SAND, some gravel, (0.5-1" diameter), dark brown to black interval 6. from 3-3.2 feet bgs with white plastic fragments, gray laminar gravel layer (2" thick) at 4.5 feet bgs, SP 0.1 loose, dry to moist. ø 0 4.0 SP Gray Brown, COARSE SAND, some fine sand, saturated due to precipitation, loose, saturated. 0.0 5.0 425.3 5.0 SP-Olive Brown, SILT, some fine sand, soft, moist to wet. 0.0 SM 6.0 DP 30 63 0. 0.0 D 0 Brown, FINE TO MEDIUM SAND, some gravel, reddish brown gravel from 7.5-7.6 feet bgs, white SP quartz gravel from 7.6-7.8 feet bgs (1" diameter), medium dense, dry to moist. ø. 7.5 422.8 0.0 ø 0 Ο. 8.5 0.0 Light Brown, CLAY AND SILT, low plasticity, soft, wet. MI 9.2 27 56 DP 0.0 Gray, CLAY AND SILT, non-plastic from 12-20 feet bgs, soft to medium stiff, low plasticity, wet. ML 10.0 420.3

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-041**PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

<u> </u>								
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	27	56				0.0
-		$\backslash\!\!\backslash$						0.0
12.5	417.8							0.0
 	 	DP	4	8				0.0
15.0	415.3				CL- ML		Gray, CLAY AND SILT, non-plastic from 12-20 feet bgs, soft to medium stiff, low plasticity, wet. (continued)	0.0
-								0.0
								0.0
17.5	412.8	DP	22	46				0.0
		JS-B-041 (16-18) for VOCs, PFAS, TOC, pH						0.0
20.0	410.3						20.0	0.0
-							Bottom of Boring @ 20.00 feet bgs	
-								

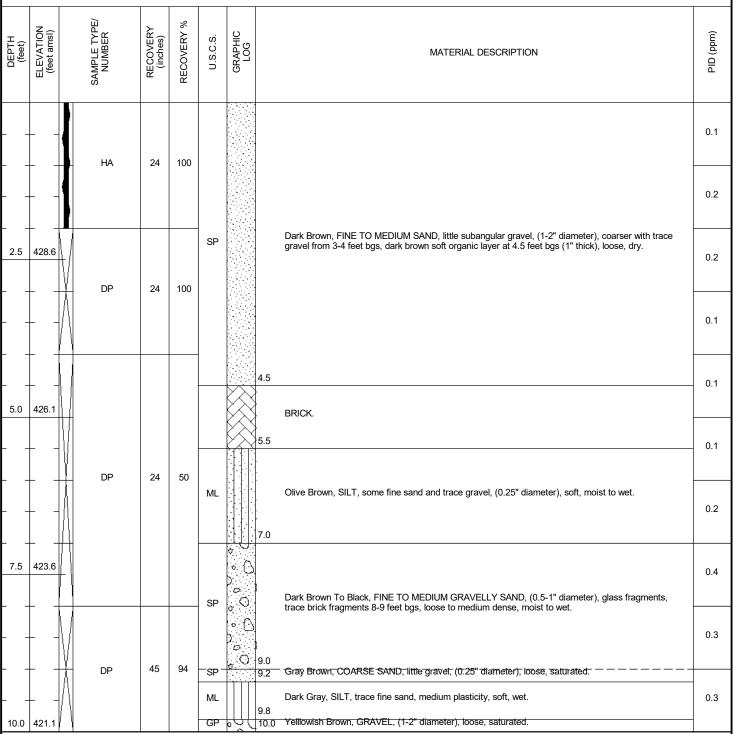
105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 431.00 feet amsl SAMPLE TYPE: GRAPHIC LOG LEGEND DATE BORING COMPLETED: 4/16/2018 3:50:00 PM NORTHING: 1483991.55 Poorly-graded Gravel HA = Hand Auger **EASTING**: 799364.4 LOGGED BY: H. Usle DP = Direct Push Poorly-graded Sand with Silt Poorly-graded Gravelly Sand CHECKED BY: J. Redden TOTAL DEPTH: 20 feet bgs DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches Poorly-graded Gravel with Silt Silt DATUM: NAD 1983 StatePlane New York East in US Survey Feet NOTES: Soil samples collected as part of the Interim Remedial Measure. SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG (mdd) RECOVERY DEPTH (feet) U.S.C.S. MATERIAL DESCRIPTION E Gray, GRAVEL, subangular (0.5" diameter), moist from precipitation, loose, moist. GP 0.0 SP Brown, FINE TO COARSE SAND, little clay and gravel, (0.5-1" diameter), loose. 1.0 HA 24 100 0.3 Gray Brown, FINE TO COARSE SAND, little clay and gravel, (0.25-0.5" diameter), loose to medium SP 2.5 428.5 0.2 3.0 DP 24 100 Brown To Dark Brown, FINE TO MEDIUM SAND, trace rock fragments, angular, glass and black flaky SP 0.9 solids, medium dense, moist. 4.0 0.1 Brown To Dark Brown, MEDIUM TO COARSE SAND, trace gravel, (0.25-0.5" diameter). SP 5.0 426.0 0.4 SP-DP 30 Brown, FINE SAND AND SILT, medium dense, wet. 63 SM 6.5 0.1 0 Brown, FINE TO COARSE SAND, and gravel, (0.5-1" diameter), oxidized rock. SP D 7.5 423.5 O 0.4 • () 8.0 0.2 Dark Brown, MEDIUM TO COARSE SAND, trace gravel, (0.25-0.5" diameter), coarsening SP downwards, loose, wet. 36 75 DP 9.5 0.3 GP-Brown, SAND, GRAVEL, AND SILT, (1-1.5" diameter), loose, wet. GM 10.0 421.0

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-042** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York


<u> </u>									
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	
		DP	36	75	ML		Brown, SILT, soft, wet. <i>(continued)</i> 10.8	0.2	
	 -							0.2	
12.5	418.5							0.1	
		DP	36	75				0.2	
15.0	- – 416.0				-				0.2
	 				CL		Gray, CLAY, soft, wet.	0.0	
								0.1	
17.5	413.5	DP	23	48				0.2	
 - - -								0.1	
20.0	411.0						20.0	0.1	
 - - -	 						Bottom of Boring @ 20.00 feet bgs		

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

JS-B-043

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 431.10 feet amsl SAMPLE TYPE: GRAPHIC LOG LEGEND DATE BORING COMPLETED: 4/18/2018 1:30:00 PM NORTHING: 1484001.25 Poorly-graded Sand HA = Hand Auger LOGGED BY: H. Usle **EASTING:** 799388.63 DP = Direct Push Poorly-graded Gravelly Sand CHECKED BY: J. Redden TOTAL DEPTH: 20 feet bgs Sandy Silt DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches Poorly-graded Silt DATUM: NAD 1983 StatePlane New York East in US Survey Feet NOTES: Soil samples collected as part of the Interim Remedial Measure.

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-043** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

⊢								
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		JS-B-043 (10-12) for	45	94				0.4
		(10-12) for VOCs, PFAS, TOC, pH						0.5
12.5	418.6				CL- ML		Gray, CLAY AND SILT, soft, low plasticity, wet. <i>(continued)</i>	0.1
		DP	48	100				0.0
15.0	416.1	_ DP	10	100				0.0
							16.0	0.0
								0.0
17.5	413.6	DP	14	29	CL		Gray, CLAY, soft, saturated.	0.0
-			17	20	, JL			0.0
20.0	411.1						20.0	0.0
							Bottom of Boring @ 20.00 feet bgs	
-								

JS-B/TMW-044

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York SAMPLE TYPE:

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 4/19/2018 8:30:00 AM

DATE WELL INSTALLED: 4/27/2018 9:40:00 AM DRILLING METHOD(S): Hand Auger/ Direct Push

LOGGED BY: H. Usle CHECKED BY: J. Redden GROUND ELEVATION: 428.00 feet amsl TOC ELEVATION: 427.73 feet amsl NORTHING: 1484159.83 **EASTING:** 799436.89

TOTAL DEPTH: 24 feet bgs **DIAMETER:** 3.25 inches

NOTES: Soil samples collected as part of the Interim Remedial Measure. Datum is NAD 1983 StatePlane New York East in US Survey Feet.

DP = Direct Push

HA = Hand Auger

GRAPHIC LOG LEGEND

Poorly-graded Gravelly Sand

Poorly-graded Gravel

Silty Clay

SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) PID (ppm) GRAPHIC LOG RECOVERY DEPTH (feet) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM 핍 Concrete Pad and 8" Boltdown o. 0.0 Manhole Cover Brown, FINE TO MEDIUM SAND, some gravel, (1-2" diameter), brick O HA 24 100 SP fragments, white flecks, medium dense, dry to moist. ο. 0.0 0 0 2.0 2.5 425.5 Gray Brown, FINE TO MEDIUM SAND AND GRAVEL, some silt, (1" SP ø 0.2 diameter), medium dense, moist to wet. O DP 16 67 3.3 NO RECOVERY. NM 4.0 Brown To Olive Brown, SILT, some fine sand, laminar gray gravel layer (2" thick) at 4.9 feet bgs, trace subangular gravels (0.5" $\,$ 0.3 ML diameter), medium stiff, moist to wet. 5.0 423.0 5.3 1.0 DP 48 100 GP Gray, GRAVEL, trace fine sand, (0.5-1" diameter), dense, dry. ø 8.0 7.5 420.5 6 0.9 Bentonite Seal Brown, FINE TO MEDIUM SAND, with gravel, quartz gravels (0.5-1" SP D. diameter), medium dense to dense, dry. 0 · 🔾 8.5 1.1 36 75 GP 60 Gray, GRAVEL, (0.25-0.5" diameter), pulverized rock, dense, dry. ŊΟ̈́ 1.4 Brown, MEDIUM SAND, some gravel, (0.5" diameter), trace brick and coal fragments (0.25" diameter), medium dense, moist. 10.0 418.0

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-044**PAGE 2 OF 3

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

							Π			
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
		DP	36	75	SP	。)) D	- 1	Brown, MEDIUM SAND, some gravel, (0.5" diameter), trace brick and coal fragments (0.25" diameter), medium dense, moist. (continued)	0.3	¥
	- + _/	<u> </u>			SP	, O		Yellowish Light Brown, FINE TO MEDIUM SAND, some gravel and trace silt, (0.5-1" diameter), saturated at 11.8 feet bgs, medium dense, wet.	0.6	
12.5	415.5				SP	. O	12.0	Light Brown, FINE SAND AND GRAVEL, sand (3"thick), subangular quartz gravel (1-1.5" diameter) (2" thick), followed by rock lodged in drilling shoe, loose, wet.	0.3	
 15.0	413.0	DP	6	13				NO RECOVERY.	NM	Filter Sand (#1)
					ML -		16.0	Light Brown, SILT, some coarse sand, soft, saturated.	12	
17.5	410.5	JS-B-044 (17-19) for PFAS, TOP Assay PFAS, TOC, pH	40	00	CL- ML		18.0	Brownish Gray, CLAY AND SILT, soft, low plasticity, saturated.	9.1	Well Screen (15-20 feet bgs) (1" SCH 40 PVC/ 0.01" slot)
	 	JS-B-044 (18-19) for VOCs, Metals, Mercury, Cyanide, pH	42	88					20.3	
20.0	408.0	Syamoo, pir			CL- ML			Gray, CLAY, some silt, soft to medium stiff, low plasticity, saturated.	5.0	End Cap
 	 - +	DP	45	94					0.0	
		<u> </u>								

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-044**PAGE 3 OF 3

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet) ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
22.5 405.5	DP	45	94	CL- ML		Gray, CLAY, some silt, soft to medium stiff, low plasticity, saturated. (continued)	0.0	
- + -	 			ML		(continued)	0.0	
						Bottom of Boring @ 24.00 feet bgs		
25.0 403.0	_							
+								
+ -								
27.5 400.5	_							
- 📙 🚽								
. 🕂 🚽								
+ +								
30.0 398.0	_							
. 📙 🚽								
. 🕇 🚽								
. + +								
32.5 395.5	_							

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-045** PAGE 1 OF 1

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York GROUND ELEVATION: 428.30 feet amsl DRILLING CONTRACTOR: Parratt Wolff, Inc. SAMPLE TYPE: GRAPHIC LOG LEGEND DATE BORING COMPLETED: 4/19/2018 9:15:00 AM NORTHING: 1484156.06 Organic Silt or Clay Poorly-graded Sand HA = Hand Auger LOGGED BY: H. Usle **EASTING:** 799446.77 Poorly-graded Gravelly Sand CHECKED BY: J. Redden TOTAL DEPTH: 2.5 feet bgs DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches DATUM: NAD 1983 StatePlane New York East in US Survey Feet NOTES: Soil samples collected as part of the Interim Remedial Measure. SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG RECOVERY U.S.C.S. PID (ppm) MATERIAL DESCRIPTION OL Dark Brown, TOPSOIL. 0.3 0.0 Black To Brown, FINE TO MEDIUM SAND, trace subrounded brick fragments (1" diameter), trace SP coal fragments (0.25" diameter), white laminar flecks, loose, dry. НА 18 60 。 (<u>)</u> 0.0 Olive Brown, MEDIUM SAND AND GRAVEL, trace silt, (0.5-1" diameter), black oxidized surfaces SP Ø around gravels. Refusal at 2.5 feet bgs, loose, moist to wet. O 0.0 · 0|2.5 2.5 425.8 Bottom of Boring @ 2.50 feet bgs 5.0 423.3 7.5 420.8 10.0 418.3

GRAPHIC LOG LEGEND

ERM 105 Maxess Ro

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

NORTHING: 1484057.02

DIAMETER: 2.25 inches

TOTAL DEPTH: 20 feet bgs

EASTING: 799376.24

DRILLING CONTRACTOR: Parratt Wolff, Inc.

DATE BORING COMPLETED: 4/19/2018 1:10:00 PM

DATE BORING COMPLETED: 4/19/2018 1:10:00 PM LOGGED BY: H. Usle

CHECKED BY: J. Redden

DRILLING METHOD(S): Hand Auger/ Direct Push

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Interim Remedial Measure.

GROUND ELEVATION: 429.10 feet amsl SAMPLE TYPE:

HA = Hand Auger

DP = Direct Push

Boulders and Cobbles

Poorly-graded Gravel

Sandy Silt

Poorly-graded Gravelly Sand

Silty Clay

LINOTI		samples collected	as part	OI THE I	THE THIT	remeu	ar Medasure.	
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
					GP		0.3 Gray, GRAVEL, subangular (0.5" diameter), loose, dry.	
		L HA	24	100	SP	。) [Gray, MEDIUM TO COARSE SAND, some gravel, (0.5-1" diameter), loose, moist. 1.0	0.2
	_				SP	, O	Dark Brown To Black, MEDIUM TO COARSE SAND, some gravel, (1-3" diameter), loose, moist.	5.6
2.5	426.6	DP	13	54		, O		1.0
				0.	SP		Dark Brown, FINE TO MEDIUM SAND AND GRAVEL, trace brick fragments (1" diameter), black oxidized surfaces, loose, dry to moist.	0.5
 5.0	424.1					· 0	4.8	1.1
							Gray, GRAVEL, crushed rock fragments, dense, dry.	1.5
	+ +	L DP	30	63	ML -		6.0 Brown To Olive Brown, SILT, some fine sand and gravel, medium stiff, moist to wet.	
- -						. O		0.3
7.5	421.6				SP	, O	Dark Brown, FINE TO MEDIUM SAND, and gravel, (0.5" diameter), medium dense, dry to moist.	0.6
		DP	12	25	SP	, O	Light Brown, GRAVELLY SAND, trace silt, (0.5-1" diameter), oxidized surfaces on gravel, loose,	0.2
10.0	419.1		12	25			saturated.	0.4

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-046** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	12	25			NO RECOVERY, CLAY and SILT fell out of core upon retraction. (continued) 12.0	NM
12.5	416.6							0.2
	 	DP JS-B-046	37	77				0.1
15.0	414.1	JS-B-046 (12-14) for VOCs, PFAS, TOC, pH						0.0
					CL- ML		Gray, CLAY AND SILT, soft to medium stiff, low plasticity, saturated.	0.0
-								0.0
17.5	411.6	DP	30	63				0.0
								0.0
20.0	409.1						20.0	0.0
							Bottom of Boring @ 20.00 feet bgs	
	_							

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

JS-B-047 PAGE 1 OF 2

Client: Arnold & Porter Project Name: Hoosick

Project Location: Hoosick, New York Project Number: 0378075

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 4/19/2018 1:30:00 PM

LOGGED BY: H. Usle

CHECKED BY: J. Redden DRILLING METHOD(S): Hand Auger/ Direct Push

DATUM: NAD 1983 StatePlane New York East in US Survey Feet NOTES: Soil samples collected as part of the Interim Remedial Measure

GROUND ELEVATION: 429.20 feet amsl SAMPLE TYPE: **NORTHING:** 1484060.46 HA = Hand Auger **EASTING**: 799388.25

DIAMETER: 2.25 inches

TOTAL DEPTH: 20 feet bgs

DP = Direct Push

Poorly-graded Gravel Poorly-graded Sand

GRAPHIC LOG LEGEND

Poorly-graded Gravelly Sand Poorly-graded Sandy Gravel

Silty Clay

NOTES: Soil samples collected as part of the Interim Remedial Measure.								
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
					GP	000	0.3 Gray, GRAVEL, subangular (0.5" diameter), loose, dry.	
- - 		. НА	24	100	SP		Gray, MEDIUM TO COARSE SAND, some gravel, (0.5-1" diameter), loose, moist.	0.0
2.5	426.7	DP	15	63	SP	0 0	Light Gray, FINE TO MEDIUM SAND, some gravel and silt, (0.25-0.5" diameter), medium dense, wet.	0.0
		^\			SP		Yellowish Brown, FINE SAND, little gravel, (0.25" diameter), loose, moist.	0.2
 5.0	424.2	JS-B-047 (4-6) for VOCs, PFAS, TOP			SP	° 0	Light Gray, FINE TO MEDIUM SAND, some gravel and silt, (0.25-0.5" diameter), medium dense, wet.	3.2
	_	Assay PFAS, TOC, pH			SP		Dark Brown, FINE TO MEDIUM SAND, some gravel, (0.5-1" diameter), black oxidation, medium dense, dry to moist.	2.9
		DP	15	31	GP		Gray, GRAVEL, (0.5-1" diameter), laminar, pulverized, dense, dry.	0.5
					SP	0 0	Dark Brown, FINE TO MEDIUM SAND, with gravel, (0.5-1" diameter), pink angular gravels, loose to medium dense, dry to moist.	0.5
7.5	421.7	-			GP		Light Brown, GRAVEL, some coarse sand, (0.5-2" diameter), loose, saturated.	0.0
 		DP	22	46	SP		Light Brown, GRAVELLY SAND, trace silt, (0.5-1" diameter), loose, saturated.	0.3
10.0	419.2	$\left\langle \cdot \right\rangle$					1 10.0	0.4

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-047** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP JS-B-047 (10-12) for	22	46	CL- ML		Light Brown, CLAY AND SILT, soft, low plasticity, saturated. (continued) 10.5	0.7
	 	(10-12) for VOCs, PFAS, TOC, pH						0.6
12.5	416.7	-						0.1
		DP	42	88				0.0
 15.0	414.2							0.1
					CL- ML		Gray, CLAY AND SILT, appreciable silts near 14 feet bgs, soft, low plasticity, saturated.	0.0
	_							0.0
17.5	411.7	DP	23	48				0.0
								0.0
20.0	409.2						20.0	0.0
		•				* * * * * * * * *	Bottom of Boring @ 20.00 feet bgs	

ERM 105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 429.60 feet amsl

NORTHING: 1484050.77 DATE BORING COMPLETED: 4/19/2018 1:45:00 PM LOGGED BY: H. Usle **EASTING**: 799397.25 CHECKED BY: J. Redden TOTAL DEPTH: 20 feet bgs

DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches DATUM: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Interim Remedial Measure.

SAMPLE TYPE: GRAPHIC LOG LEGEND Poorly-graded Gravel Poorly-graded Gravelly Sand HA = Hand Auger DP = Direct Push Poorly-graded Sand Poorly-graded Sand with Clay Silty Clay

DEРТН (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
					GP		0.3 Gray, GRAVEL, subangular (0.5" diameter), loose, dry.	
 	 	L HA	24	100	SP		Gray, MEDIUM TO COARSE SAND, some gravel, (0.5-1" diameter), loose, moist.	0.0
	- +				SP-		 3" Light Gray, CLAYEY SAND; medium-grained, subrounded gravets throughout (0.5" diameter); — — loose, wet. 	0.0
2.5	427.1	\mathcal{H}			SC 	1//	2.5 2" Gray, GRAVEL, (1" diameter), laminar, medium dense, dry. — 1" Gray Brown, MEDIUM SAND, loose, dry.	
		DP	6	25			NO RECOVERY.	NM
5.0	424.6				SP	· ()	Brown, MEDIUM SAND, some gravel, (0.5" diameter), silty sand layer with trace brick from 4.8-5 feet bgs, loose, dry to wet.	0.4
		DP	24	50	GP		Gray, GRAVEL, (0.5" diameter), pulverized rock, dense, dry.	0.4
					GP		Gray, GRAVEL, (0.5-1" diameter), trace brown sand and brick fragments, dense, dry.	0.0
7.5	422.1	_			SP		Brown And Gray, MEDIUM SAND, subangular gravel fragments (0.25-0.5" diameter), shale fragments, dry to moist.	2.1
		DP	45	94	GP		Dark Gray, GRAVEL, trace coarse sand, (0.25-1.5" diameter), with light brown silt and clay, poorly graded, loose, saturated.	0.5
10.0	419.6				CL- ML		Gray, CLAY, some silt, soft, low plasticity, saturated.	0.6

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-048** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

⊢								
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP JS-B-048 (10-11) for VOCs	45	94	CL- ML		Gray, CLAY, some silt, soft, low plasticity, saturated. (continued)	2.6
	- - -	JS-B-048 (10-12) for PFAS, TOC, pH					12.0	1.9
12.5	417.1							0.0
		DP	40	83				0.1
15.0	414.6							0.1
-					CL- ML		Gray, CLAY AND SILT, silt layers at 12.5 feet bgs and from 15-15.2 feet bgs, soft, saturated.	0.2
	_				ML			0.2
17.5	412.1	DP	27	56				0.0
								0.1
20.0	409.6						20.0	0.0
			•			* * * * * * * * *	Bottom of Boring @ 20.00 feet bgs	

JS-B/TMW-049

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 4/23/2018 1:45:00 PM

DATE WELL INSTALLED: 4/25/2018 2:30:00 PM DRILLING METHOD(S): Hand Auger/ Direct Push

LOGGED BY: H. Usle

CHECKED BY: J. Redden

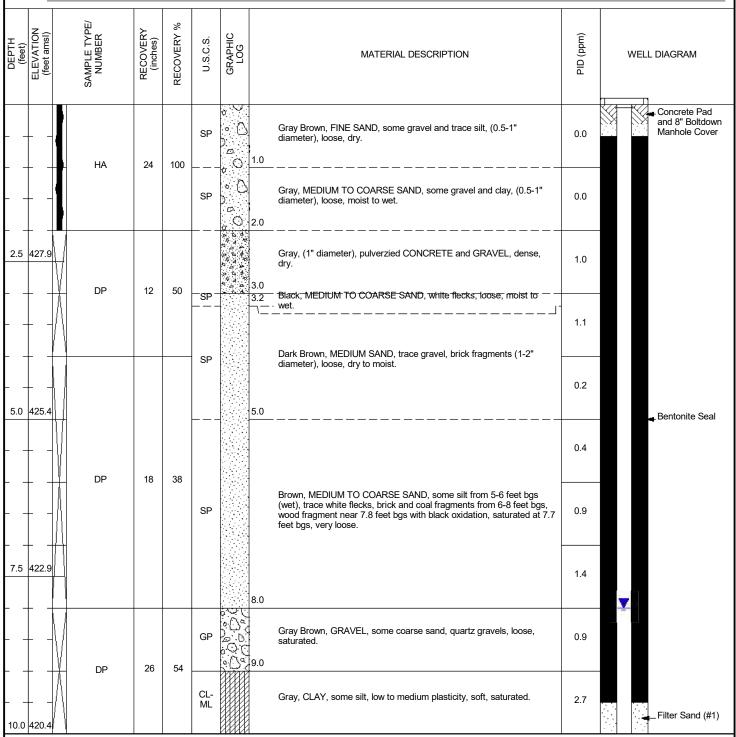
GROUND ELEVATION: 430.40 feet amsl TOC ELEVATION: 430.14 feet amsl **NORTHING:** 1484028.44 **EASTING:** 799403.89

TOTAL DEPTH: 32 feet bgs **DIAMETER:** 3.25 inches

SAMPLE TYPE:

HA = Hand Auger

DP = Direct Push


Poorly-graded Sandy Gravel Poorly-graded

Poorly-graded Gravelly Sand

GRAPHIC LOG LEGEND

Silty Clay

NOTES: Soil samples collected as part of the Interim Remedial Measure. Datum is NAD 1983 StatePlane New York East in US Survey Feet.

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-049**PAGE 2 OF 3

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL	DIAGRAM	
		DP	26	54				12.9			
					_				40.4		
12.5	417.9				CL- ML		Gray, CLAY, some silt, low to medium plasticity, soft, saturated. (continued)	33.4			
		DP	18	38				40.2			
15.0	415.4	JS-B-049 (14-16) for PFAS, TOC, pH	-					92.5		_Well Screen	
		JS-B-049 (15-16) for VOCs					16.0	101.5		(10-20 feet bgs) (1" SCH 40 PVC/ 0.01" slot)	
								71.1			
17.5	412.9	DP	46	96	CL- ML		Gray, CLAY AND SILT, low plasticity, slight angled bedding planes visible during material removal from 19-20 feet bgs, soft, saturated to wet.	44.7			
							wet.	32.5			
20.0	410.4						20.0	4.0		_End Cap	
 		DP	0	0			NO RECOVERY, formation is very soft and not allowing material to be captured in liner.	NM			

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-049**PAGE 3 OF 3

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 **Project Location:** Hoosick, New York

(feet) ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
22.5 407.9	DP	0	0				NM	
25.0 405.4	DP	0	0			NO RECOVERY, formation is very soft and not allowing material to be captured in liner. (continued)	NM	
30.0 400.4	_ DP	39	81	CL- ML		Gray To Dark Gray, CLAY AND SILT, soft to medium stiff, low plasticity, saturated.	28.6	
						32.0	0.4	
32.5 397.9						Bottom of Boring @ 32.00 feet bgs		

ACRONYM LEGEND:

JS-B/TMW-050 **ERM** 105 Maxess Road; Suite 316 Melville, New York 11747

GRAPHIC LOG LEGEND

Poorly-graded Gravelly Sand

Poorly-graded Sandy Gravel

Poorly-graded Sand

Poorly-graded Gravel

Concrete

Brick

DP = Direct Push

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York SAMPLE TYPE:

DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 430.10 feet amsl DATE BORING COMPLETED: 4/24/2018 8:10:00 AM TOC ELEVATION: 429.87 feet amsl HA = Hand Auger

DRILLING METHOD(S): Hand Auger/ Direct Push **EASTING:** 799409.36 LOGGED BY: H. Usle TOTAL DEPTH: 40 feet bgs

Telephone: (631) 756-8900

DATE WELL INSTALLED: 4/25/2018 3:30:00 PM

CHECKED BY: J. Redden

DIAMETER: 3.25 inches NOTES: Soil samples collected as part of the Interim Remedial Measure. Datum is NAD 1983 StatePlane New York East in US Survey Feet

NORTHING: 1484036.63

SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) PID (ppm) GRAPHIC LOG RECOVERY DEPTH (feet) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM 핍 Gray, GRAVEL, loose, dry. 0.3 Concrete Pad ()9 and 8" Boltdown 0.0 Manhole Cover HA 24 100 Gray, FINE TO MEDIUM SAND, some gravel and trace silt, (0.5-1" D. SP O. diameter), loose, dry. 0.0 • C 2.0 0 Gray, (0.5" diameter), pulverzied CONCRETE and GRAVEL, dry. 2.5 427.6 0.0 SP Black, MEDIUM SAND, loose, dry. 3.0 DP 16 67 Red, BRICK. 0.6 3.7 Brown, MEDIUM SAND, white fibrous-like flecks, trace black SP 4.0 fragments (<0.25" diameter), loose, dry. Bentonite Seal 5.0 425.1 0 Gray, GRAVEL, trace medium sand, (1-2" diameter), brick fragments, GP 8.0 loose, dry. DP 18 38 Por 6.5 0. Brown, FINE TO MEDIUM SAND, some gravel and trace silt, (0.5" SP 0.5 Ø diameter), loose, wet. 7.5 422.6 0 $|\Box|_{8.0}$ V D) 0.5 Brown, FINE GRAVEL, some coarse sand, little silt, loose, saturated. GP 24 50 ○ ○ 9.2 Filter Sand (#1) Gray, CLAY, some silt, trace fine sand from 9.2-10.2 feet bgs, silt 8.6 layer from 23.25-23.5 feet bgs, low to medium plasticity, soft, ML saturated 10.0 420.1

ACRONYM LEGEND:

JS-B/TMW-050PAGE 2 OF 4

ERM 105 Maxess Road; Suite 316

Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

		111 Der. 037607					Project Location. Thousier, New York																										
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM																								
		DP	24	50				26.0																									
								18.0																									
12.5	417.6		_						97.0																								
	\ \ \	JS-B-050 (13-14) for VOCs, PFAS, TOC, pH					211.6																										
15.0	415.1	DP	48	100	CL- ML	CL- ML			186.5	Well Screen (9.5-19.5 feet bgs) (1" SCH 40 PVC/ 0.01" slot)																							
	-							Gray, CLAY, some silt, trace fine sand from 9.2-10.2 feet bgs, silt layer from 23.25-23.5 feet bgs, low to medium plasticity, soft, saturated. <i>(continued)</i>	111.6																								
	-											18.1	18.1																				
17.5	412.6	_ DP	44	92	92	92	92	92	92	92	92	92	92	92	92	92	92	92	92	92	92	92										21.7	
	 											7.9																					
20.0	410.1				-			0.1	End Cap																								
	-	DP	38	79				45.6																									
		1																															

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

JS-B/TMW-050PAGE 3 OF 4

Client: Arnold & Porter Project Name: Hoosick

Project Location: Hoosick, New York Project Number: 0378075

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
22.5	407.6	DP	38	79				35.7 9.0	
 	 				CL- ML		Gray, CLAY, some silt, trace fine sand from 9.2-10.2 feet bgs, silt layer from 23.25-23.5 feet bgs, low to medium plasticity, soft, saturated. (continued)	5.4	
25.0	405.1						25.3	25.7	
	 	DP	45	94	CL- ML		Dark Gray, SILT, some clay, soft to medium stiff, saturated.	4.7	
-								0.6	
27.5	402.6							0.5	
					CL- ML		Gray To Dark Gray, CLAY AND SILT, soft to medium stiff, low plasticity, saturated.	45.1	
30.0	400.1	DP	48	100	IVIL			26.2	
								1.1	
							32.0	2.0	
32.5	397.6				CL- ML		Gray To Dark Gray, CLAY AND SILT, interbedded soft, saturated.	3.6	

ACRONYM LEGEND:


105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-050**PAGE 4 OF 4

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 **Project Location:** Hoosick, New York

(feet) ELEVATION (feet ams!)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM					
	DP	48	100				1.1						
35.0 395.1				CL- ML		Gray To Dark Gray, CLAY AND SILT, interbedded soft, saturated. (continued)	1.1						
				ML		(continuea)	1.6						
						37.0	12.2						
37.5 392.6	DP	48	100				2.9						
· + - - + -									ML		Dark Gray, SANDY SILT, sands very fine-grained, medium stiff, saturated.	0.9	
40.0 390.1						40.0	2.9						
						Bottom of Boring @ 40.00 feet bgs							
42.5 387.6													
_													

ACRONYM LEGEND:

Client: Arnold & Porter Project Name: Hoosick Project Location: Hoosick, New York Project Number: 0378075 DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 430.80 feet amsl SAMPLE TYPE: GRAPHIC LOG LEGEND DATE BORING COMPLETED: 4/24/2018 8:20:00 AM **NORTHING:** 1483999.21 Poorly-graded Gravel Poorly-graded Gravelly Sand HA = Hand Auger LOGGED BY: H. Usle **EASTING:** 799358.16 DP = Direct Push Poorly-graded Sand CHECKED BY: J. Redden Silty Clay TOTAL DEPTH: 20 feet bgs DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches DATUM: NAD 1983 StatePlane New York East in US Survey Feet NOTES: Soil samples collected as part of the Interim Remedial Measure.

JS-B-051

PAGE 1 OF 2

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		ł			GP		Gray, GRAVEL, subangular loose, dry.	0.0
)L HA	24	100	SP		Dark Brown, FINE TO MEDIUM SAND, some subangular gravel, (0.5-1" diameter), trace subrounded cobbles from 1-2 feet bgs (3" diameter), trace red flecks, loose, dry.	0.3
2.5	428.3	-			SP	D	Light Brown, FINE TO MEDIUM SAND, some subrounded gravel, (0.5" diameter), trace clay, wet due to precipitation, loose, wet.	- 0.3
		DP	24	100	SP		Dark Brown To Black, FINE SAND, little subrounded gravel, (1" diameter), trace clay, organic rich layers, white and black "ash-like" material, loose, dry.	
-					SP		3.6 Yellowish Brown, FINE TO MEDIUM SAND, trace silt and gravel, subrounded gravel (0.5" diameter), loose, dry to moist.	0.2
5.0	425.8				SP		Light Grayish Brown, GRAVELLY SAND, trace subangular clay, (1" diameter), saturated due to precipitation, loose, saturated.	0.1
		DP	26	E4	GP		Gray, GRAVEL, (1-2" diameter), loose, dry.	0.0
			26	54	SP		Olive Brown, FINE TO MEDIUM SAND, coarsening downward sequence, subangular gravels present	0.1
7.5	423.3	_					7-8 feet bgs (0.5" diameter), orange mottling 6-7 feet bgs, saturated at 7 feet bgs, loose.	0.1
	420.8	DP	33	69	SP		Light Brown, GRAVELLY SAND, subrounded (0.5-1" diameter), sands well rounded, loose, saturated.	0.1

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-051** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

<u> </u>	,							
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	33	69	CL- ML		Light Brown, SILT AND CLAY, soft, low plasticity, saturated. (continued) 10.6	0.2
	<u> </u>				CL- ML		Gray, SILTY CLAY, soft, low plasticity, saturated. 12.0	0.1
12.5	418.3							0.1
-	- - -	DP	48	100				0.1
15.0	415.8							0.0
-	- - 				CL- ML		Gray Brown, SILTY CLAY, soft, plastic, saturated.	0.1
17.5	413.3	DP	15	31				0.1
- 20.0	410.8						20.0	0.1
-	410.8		<u> </u>				Bottom of Boring @ 20.00 feet bgs	
-								

JS-B-052 PAGE 1 OF 2

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 430.40 feet amsl SAMPLE TYPE: GRAPHIC LOG LEGEND DATE BORING COMPLETED: 4/24/2018 8:50:00 AM NORTHING: 1484018.21 Poorly-graded Gravel Poorly-graded Gravelly Sand HA = Hand Auger **EASTING**: 799358.46 LOGGED BY: H. Usle DP = Direct Push CHECKED BY: J. Redden Poorly-graded Silty Sand TOTAL DEPTH: 20 feet bgs DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches Silty Clay DATUM: NAD 1983 StatePlane New York East in US Survey Feet NOTES: Soil samples collected as part of the Interim Remedial Measure. SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG (mdd) RECOVERY U.S.C.S. MATERIAL DESCRIPTION E GP Gray, GRAVEL, subangular loose, dry. $[\circ \bigcirc \circ]$ ₫0.5 0.7 SP Brown, FINE TO MEDIUM SAND, some subrounded gravel, (1-1.5" diameter), loose, dry. 1.0 6. HA 24 100 Black/brown, FINE TO MEDIUM SAND, little subangular gravel, (0.5-1" diameter), brick and glass SP 0.1 fragments (3" diameter), trace white flecks, loose, dry. Light Brown, FINE TO MEDIUM SAND, some subangular gravel, (0.5" diameter), trace red flecks, SP 0.2 wet due to precipitation, loose, wet. 2.5 427.9 DP 17 4 NO RECOVERY, rock lodged in drilling shoe. NM 4.0 0 0.3 D 5.0 425.4 0 0 () 0.3 ø Olive Brown, FINE TO MEDIUM SAND, some subangular gravel, (0.5" diameter), trace clay, laminar 0 DP SP shale fragments near 5.5 feet bgs, orange oxidation from 4-4.5 feet bgs, black oxidation from 6-6.5 15 31 feet bgs, trace white flecks from 7-8 feet bgs, loose, moist to wet. o. 0.3 Ø O o, 7.5 422.9 0.4 O 0 8.0 JS-B-052 (8-9) 43.7 for VOCs Dark Brown To Dark Gray, SILTY SAND, little subrounded gravel, (0.5" diameter), oxidized surfaces, orange fragment near 8 feet bgs with "creosote-like" odor, saturated at 9 feet bgs, loose, wet to saturated. SM 26 54 JS-B-052 (8-10) 2.3 for PFAS, TOC, 10.0 420.4 10.0

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-052** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

F-'																		
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)										
		DP JS-B-052	26	54	CL- ML		Light Brown, SILT AND CLAY, soft, low plasticity, saturated. (continued)	- 0.7										
		JS-B-052 (10-12) for VOCs, PFAS, TOC, pH			CL- ML		Gray, SILTY CLAY, soft, low plasticity, saturated.	0.5										
12.5	417.9							0.2										
		DP	27	56				0.2										
15.0	415.4										-							0.2
					CL- ML		Gray Brown, SILTY CLAY, soft, plastic, saturated.	0.1										
	 							0.0										
17.5	412.9	DP	29	60				0.0										
- ·	- - -							0.0										
20.0	410.4						20.0	0.0										
							Bottom of Boring @ 20.00 feet bgs											
<u> </u>	<u> </u>																	

JS-B/TMW-053

GRAPHIC LOG LEGEND

ERM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Hoosick, New York SAMPLE TYPE:

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 4/24/2018 2:30:00 PM

DATE WELL INSTALLED: 4/26/2018 10:00:00 AM DRILLING METHOD(S): Hand Auger/ Direct Push

LOGGED BY: H. Usle CHECKED BY: J. Redden GROUND ELEVATION: 429.80 feet amsl TOC ELEVATION: 429.52 feet amsl NORTHING: 1484052.02 **EASTING:** 799412.36

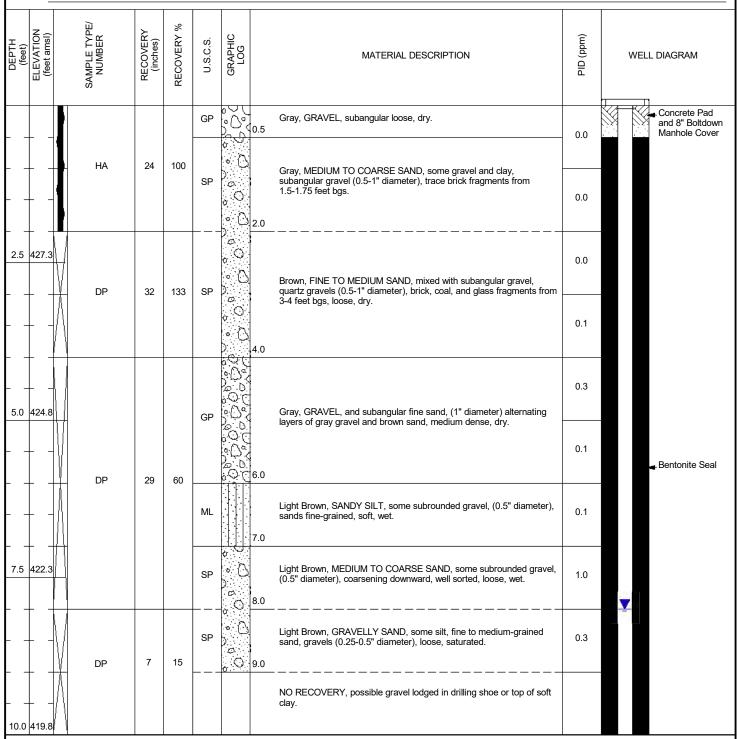
TOTAL DEPTH: 20 feet bgs **DIAMETER:** 3.25 inches

Project Location:

HA = Hand Auger

DP = Direct Push

Poorly-graded Sandy Gravel


Poorly-graded Gravel

Sandy Silt

Poorly-graded Gravelly Sand

Silty Clay

NOTES: Soil samples collected as part of the Interim Remedial Measure. Datum is NAD 1983 StatePlane New York East in US Survey Feet.

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B/TMW-053**PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
		DP	7	15			NO RECOVERY, possible gravel lodged in drilling shoe or top of soft clay. (continued) 12.0	NM	Filter Sand (#1)
12.5	417.3							65.7	
-		JS-B-053 (13-14) for VOCs, PFAS, TOC, pH			CL- ML		Gray, SILTY CLAY, soft, plastic, saturated.	123	Well Screen
 15.0	 414.8	DP	38	79	IVIL			81.6	(11.5-16.5 feet bgs) (1" SCH 40 PVC/ 0.01" slot)
							16.0	51.9	
								1.0	End Cap
17.5	412.3	DP	48	100	CL- ML		Gray To Dark Gray, SILTY CLAY, higher silt content than remaining locations, soft to medium stiff, low plasticity, saturated.	0.3	
	 				IVIL			0.0	
20.0	409.8						20.0	0.0	
	 						Bottom of Boring @ 20.00 feet bgs		

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

JS-B-054 PAGE 1 OF 2

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York GROUND ELEVATION: 429.40 feet amsl

NORTHING: 1484060.57

DIAMETER: 2.25 inches

TOTAL DEPTH: 20 feet bgs

EASTING: 799416.15

DRILLING CONTRACTOR: Parratt Wolff, Inc.

DATE BORING COMPLETED: 4/25/2018 8:50:00 AM LOGGED BY: H. Usle

CHECKED BY: J. Redden

DRILLING METHOD(S): Hand Auger/ Direct Push

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Interim Remedial Measure.

SAMPLE TYPE:

HA = Hand Auger

DP = Direct Push

Poorly-graded Gravel

Poorly-graded Gravelly Sand

Sandy Silt Silty Clay

GRAPHIC LOG LEGEND

DEPTH (feet)	ELEVATION (feet amsl)		SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
-		}				GP		Gray, GRAVEL, subangular loose, dry. 0.5	0.0
		1	НА	36	100	SP	. O	Gray, MEDIUM TO COARSE SAND, some gravel and clay, subangular gravel (0.5-1" diameter), less gravel from 1-2 feet bgs, wet from precipitation, wet.	0.0
2.5	426.9					SP	, O	Dark Brown, FINE TO MEDIUM SAND, some subangular gravel, (0.5-1" diameter), trace brick fragments, loose, dry.	0.0
		\bigvee	DP	0	0			NO RECOVERY. 4.0	NM
5.0	424.4						· \		0.0
	 		DP	31	65	SP	· 0	Light Brown, FINE TO COARSE SAND, some subangular and subrounded gravel, (0.5-2" diameter), trace clay, black surfaces at 5.5 feet bgs, loose to medium dense, wet.	0.0
-						ML		6.5 Light Brown, SANDY SILT, fine-grained sand, gravel layer at 7 feet bgs (2" thick), soft, wet. 7.0	0.1
7.5	421.9	-				SP	, ()) , ()	Light Brown, MEDIUM TO COARSE SAND, some subrounded gravel, (0.5" diameter), well sorted, loose, wet.	0.3
-		\bigvee	DP	48	100	SP		Light Brown, GRAVELLY SAND, fine to medium sand, gravels (0.25-0.5" diameter), some silts near	0.1
10.0	419.4		2.				, O	9.8 feet bgs, fining downward sequence, loose, saturated.	0.1

ERM 105 Maxess Road; Suite 316 Melville, New York 11747

Telephone: (631) 756-8900

JS-B-054 PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

-								
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	48	100	CL- ML CL-		10.2 Light Brown, SILT AND CLAY, soft, low plasticity, saturated. (continued)	0.3
		JS-B-054 (11-12) for VOCs			ML		Gray, CLAY AND SILT, soft, medium plasticity, saturated. 12.0	1.7
12.5	416.9	JS-B-054 (10-12) for PFAS, TOC, pH	 -					0.0
 		DP	32	67	CL- ML		Gray To Dark Gray, CLAY, some silt, soft, medium plasticity, saturated.	0.0
15.0	414.4							0.0
							16.0	0.0
17.5 	411.9	DP	0	0			NO RECOVERY, CLAY fell out of liner during retraction.	NM
20.0	409.4						20.0	
-							Bottom of Boring @ 20.00 feet bgs	

ERM 105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 **Project Location:** Hoosick, New York DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 428.50 feet amsl SAMPLE TYPE: GRAPHIC LOG LEGEND **NORTHING:** 1484105.63 DATE BORING COMPLETED: 5/1/2018 9:00:00 AM Poorly-graded Gravel Poorly-graded Gravelly Sand HA = Hand Auger **EASTING:** 799430.66 LOGGED BY: H. Usle DP = Direct Push Poorly-graded Sandy Gravel CHECKED BY: J. Redden TOTAL DEPTH: 20 feet bgs Sandy Silt DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches Silty Clay DATUM: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Interim Remedial Measure. SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG (mdd) RECOVERY U.S.C.S. MATERIAL DESCRIPTION E GP $[\circ \bigcirc]$ Gray, GRAVEL, subangular (0.5" diameter), loose, dry. ₫0.5 0.0 SP Light Gray, FINE SAND AND GRAVEL, trace subangular clay, (0.5" diameter), loose, moist. 1.0 ø. HA 24 100 O 0 0.0 0 Ø 2.5 426.0 0 0.1 Brown, FINE TO MEDIUM SAND, some subrounded gravel, (1-2" diameter), loose, dry to moist. SP DP 13 54 D 0 0.5 o ø \circ 0.4 5.0 423.5 5.0 Brown To Olive Brown, SANDY SILT, some subangular gravel, (1-2" diameter), sands predominantly JS-B-055 (5-7) 18 38 ML0.2 fine-grained, trace coarse-grained sands, black oxidation near grayels, soft, wet, orange mottling. for VOCs, PFAS, TOP Assay PFAS, DP 7.0 7.5 421.0 Gray Brown, SANDY GRAVEL, little clay, subangular gravel (0.5-1" diameter), sands coarse-grained, GP 0.0 trace white flecks, loose, saturated. ه (۲۵) 8.0 · () Light Brown, COARSE SAND, some subrounded gravel, (0.5" diameter), loose, saturated. SP 0.0 ø 9.0 71 DP 34 Light Brown, CLAY AND SILT, soft, low plasticity, saturated. 9.3 ML 0.1 CL-Gray, CLAY, some silt, low to medium plasticity, soft, saturated. ML

ACRONYM LEGEND:

418.5

10.0

Client: Arnold & Porter

ERM 105 Maxess Road; Suite 316

Melville, New York 11747 Telephone: (631) 756-8900

Project Name: Hoosick

JS-B-055 PAGE 2 OF 2

Project Number: 0378075 Project Location: Hoosick, New York

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	34	71	CL- ML		Gray, CLAY, some silt, low to medium plasticity, soft, saturated. (continued)	0.2
12.5	416.0	-				_	12.0	0.1
	 	DP	48	100	CL- ML		Gray, SILTY CLAY, low plasticity, soft, low plasticity, saturated.	0.1
15.0	413.5							0.0
	 						16.0	0.0
17.5	411.0	DP	23	48	CL- ML		Gray, CLAY, some silt, soft, plastic, saturated.	0.0
- +								0.0
20.0	408.5						20.0 Bottom of Boring @ 20.00 feet bgs	0.0

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

JS-B-056 PAGE 1 OF 2

GRAPHIC LOG LEGEND

Silt

Poorly-graded Sand

Silty Clay

SAMPLE TYPE:

DP = Direct Push

Client: Arnold & Porter Project Name: Hoosick

Project Location: Hoosick, New York Project Number: 0378075

DRILLING CONTRACTOR: Parratt Wolff, Inc.

DATE BORING COMPLETED: 5/1/2018 1:20:00 PM LOGGED BY: H. Usle

CHECKED BY: J. Redden

DRILLING METHOD(S): Direct Push

GROUND ELEVATION: 428.93 feet amsl **NORTHING:** 1484082.4

EASTING: 799409.5395 TOTAL DEPTH: 48 feet bgs

DIAMETER: 2.25 inches

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Clay Remedial Investigation.

		·						
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
 5	424	DP	0	0			Direct-push closed piston drilling to 8 feet bgs; soils not logged.	NM
-	† †				SP		8.5 Light Brown, COARSE SAND, some silt, well rounded, saturated.	0.0
10	419	DP DP	44	92	ML		Light Brown, SILT, some clay, trace fine-grained sand, soft to medium stiff, wet. 10.0	0.0
		\mathbb{A}			CL- ML		Gray, SILTY CLAY, soft, low plasticity, saturated. 12.0	0.0 NM
	414	DP	0	0			Direct-push closed piston drilling from 12 to 44 feet bgs; soils not logged.	NM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-056** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
25	399	DP	0	0			Direct-push closed piston drilling from 12 to 44 feet bgs; soils not logged. (continued)	NM
 40	389	DP	0	0				NM
		DP	0	0			44.0	NM
45 	384	DP	48	100	SP		44.5 Gray, SILT AND CLAY, soft to medium stiff, low plasticity, saturated. Dark Gray, FINE SAND, trace silt, well sorted, loose, saturated.	0.1
50	379						Bottom of Boring @ 48.00 feet bgs	

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 **Project Location:** Hoosick, New York GROUND ELEVATION: 431.01 feet amsl SAMPLE TYPE:

NOTES: Soil descriptions and details from 0-20 ft bgs from adjacent JS-B-051 boring. Soil samples collected as part of the Clay Remedial Investigation.

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 5/1/2018 3:40:00 PM

LOGGED BY: H. Usle

CHECKED BY: J. Redden

DRILLING METHOD(S): Hand Auger/ Direct Push

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

DIAMETER: 2.25 inches

NORTHING: 1484000.103 HA = Hand Auger **EASTING:** 799358.1088 TOTAL DEPTH: 44 feet bgs

DP = Direct Push

GRAPHIC LOG LEGEND

Poorly-graded Gravel Poorly-graded Gravelly Sand

Poorly-graded Silty Clay

SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG (mdd) RECOVERY U.S.C.S. MATERIAL DESCRIPTION B GP Gray, GRAVEL, subangular loose, dry. 105 0.0 HA 24 100 Dark Brown, FINE TO MEDIUM SAND, some subangular gravel, (0.5-1" diameter), trace subrounded SP ø. cobbles from 1-2 feet bgs (3" diameter), trace red flecks, loose, dry. 0.3 20 tight Brown, FINE TO MEDIUM SAND, some subrounded gravet, (0.5" diameter), trace clay, wet due SP 0 2.5 0.3 to precipitation, loose, Dark Brown To Black, FINE SAND, little subrounded gravet, (1" diameter), trace clay, organic rich DP 24 100 SP layers, white and black "ash-like" material, loose, dry. 3 6 0.2 Yellowish Brown, FINE TO MEDIUM SAND, trace silt and gravel, subrounded gravel (0.5" diameter), SP 40 loose, dry to moist. Light Grayish Brown, GRAVELLY SAND, trace clay, subangular gravel (1" diameter), saturated due SP 0.1 426 5.0 to precipitation, loose. GP Gray, GRAVEL, subangular (1-2" diameter), loose, dry. 0.0 (O 6.0 DΡ 26 54 0.1 Olive Brown, FINE TO MEDIUM SAND, coarsening downward sequence, subangular gravels present SP 7-8 ft bgs (0.5" diameter), orange mottling 6-7 ft bgs, saturated at 7 ft bgs, loose. 0.1 ø 8.0 0 SP 6 Light Brown, GRAVELLY SAND, subrounded (0.5-1" diameter), sands well rounded, loose, saturated. 0.1 Ø 10 421 10 0 DP 33 69 Light Brown, SILT AND CLAY, soft, low plasticity, saturated. 0.2 10.6 ML 0.3 CL-Gray, SILTY CLAY, soft, low plasticity, saturated. ML0.3 12.0 0.1 0.1 DP 48 100 0.0 15 416 0.1 CL-Gray Brown, SILTY CLAY, soft, plastic, saturated. ML 0.1 DP 15 31 0.1 20 411 20.0 DP n n Direct-push closed piston drilling from 20 to 40 feet bgs; soils not logged. NM

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-057** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

<u> </u>							Trojost zooddoni Trocolot, Hon Folk	
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
 25	406							
30	401	DP	0	0			Direct-push closed piston drilling from 20 to 40 feet bgs; soils not logged. (continued)	NM
35	396							
40	391						40.0	
		DP	46	96	CL- ML		Dark Gray, SILTY CLAY, little fine sand, soft, saturated. 44.0	NM
45	386	-					Bottom of Boring @ 44.00 feet bgs	

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-058** PAGE 1 OF 2

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

DRILLING CONTRACTOR: Parratt Wolff, Inc.

DATE BORING COMPLETED: 5/2/2018 10:20:00 AM LOGGED BY: H. Usle

CHECKED BY: J. Redden

DRILLING METHOD(S): Direct Push

GROUND ELEVATION: 431.92 feet amsl **NORTHING:** 1483940.493

EASTING: 799319.3333 **TOTAL DEPTH:** 52 feet bgs

DIAMETER: 2.25 inches

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Clay Remedial Investigation.

SAMPLE TYPE: GRAPHIC LOG LEGEND

DP = Direct Push

Poorly-graded Sand

Silty Clay

Low Plasticity

Low Plasticity
Clay

NOTE	:S: SOII	samples collected	as part	of the	Clay Re	emediai	nvestigation.	
(feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
- - - 5	427	DP	0	0			Direct-push closed piston drilling to 8 feet bgs; soils not logged.	NM
- 10 -	422	DP	28	58	SP CL- ML CL- ML		Brown, COARSE SAND, some subangular gravel, (1" diameter), some clay, loose, saturated. 10.0 10.3 Light Brown, SILT AND CLAY, soft, low plasticity, wet. Gray, SILTY CLAY, soft to medium stiff, medium plasticity, wet. 12.0	NN 0.6
- 115 - - - 20 - - - -	417	DP	0	0			Direct-push closed piston drilling from 12 to 40 feet bgs; soils not logged.	NN

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-058** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

<u> </u>									
DEPTH (feet)	ELEVATION (feet amsl)	i i	SAMPLE 17 PE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
30	402	+	DP	0	0			Direct-push closed piston drilling from 12 to 40 feet bgs; soils not logged. <i>(continued)</i>	NM
35	397	+							
40	392	$\sqrt{}$						40.0	
-		$\backslash\!\!\!\backslash$	DP	0	0	CL		Croy CLAY 9 inches of material fell out of core havel, coff, caturated	NM
- 45 	387		DP	8	17			Gray, CLAY, 8-inches of material fell out of core barrel, soft, saturated. 48.0	NM 0.4
50	382	$\sqrt{}$	DP	0	0			NO RECOVERY.	NM
		1							
								Bottom of Boring @ 52.00 feet bgs	
55	377	_							
							1		

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

JS-B-059 PAGE 1 OF 2

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

NORTHING: 1484064.76

TOTAL DEPTH: 20 feet bgs

EASTING: 799401.07

DRILLING CONTRACTOR: Parratt Wolff, Inc.

DATE BORING COMPLETED: 5/2/2018 10:50:00 AM LOGGED BY: H. Usle

CHECKED BY: J. Redden

DRILLING METHOD(S): Hand Auger/ Direct Push

DIAMETER: 2.25 inches DATUM: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Interim Remedial Measure.

GROUND ELEVATION: 429.20 feet amsl SAMPLE TYPE:

DP = Direct Push

GRAPHIC LOG LEGEND

Poorly-graded Gravel Poorly-graded Gravel with Clay

Poorly-graded Gravelly Sand

Silty Clay

		ii sampies collected	ao part	0				
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
					GP- GC		Gray, GRAVEL, subangular (0.5" diameter), loose, dry. 1.0 Light Gray, CLAYEY GRAVEL, some fine to medium sand, subangular gravel (0.25-0.5" diameter), loose, moist.	. 0.8
- ·		DP	26	54		· 0		0.5
2.5	426.7				SP	, 0 , 0	Gray Brown, FINE TO MEDIUM SAND, some subangular gravel, (0.5" diameter), loose, dry.	0.5
 					GP- GC		3.5 Light Gray, CLAYEY GRAVEL, some fine to medium sand, subangular gravel (0.5" diameter), loose, wet.	0.7
					-GP	0)(4.3 4.5 Gray/white, GRAVEL, subangular loose, dry.	0.7
5.0	424.2	JS-B-059 (4-6) for VOCs, PFAS, TOC, pH	29	60			Decora To Deck Decora FINE TO MEDIUM ODANELLY CAND on beautiles (0.5.4.5% discontact) block	0.7
- ·					SP		Brown To Dark Brown, FINE TO MEDIUM GRAVELLY SAND, subangular (0.5-1.5" diameter), black oxidized surfaces, orange oxidation, loose, dry to moist.	0.8
7.5	421.7	-				° 0	7.8	1.0
<u> </u>	_				SP	00	Yelllowish Brown, COARSE SAND, and subangular gravel, (0.5" diameter), some clay, overlain by white fine gravel (0.5" thick), loose, saturated. 8.5	0.5
		DP	5	10			No Recovery.	NM
10.0	419.2							

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-059** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
-		DP	5	10			No Recovery. (continued) 12.0	NM
-	416.7	DP	48	100	CL-		Gray, SILTY CLAY, soft, medium plasticity, saturated.	0.5
-	411.7	DP	29	60	ML		20.0	0.6
20.0	<u>-</u> -						Bottom of Boring @ 20.00 feet bgs	

JS-B-060 PAGE 1 OF 2

Silty Clay

Poorly-graded Sand with Clay

Client: Arnold & Porter Project Name: Hoosick Project Number: 0378075 Project Location: Hoosick, New York DRILLING CONTRACTOR: Parratt Wolff, Inc. GROUND ELEVATION: 429.00 feet amsl SAMPLE TYPE: GRAPHIC LOG LEGEND DATE BORING COMPLETED: 5/2/2018 2:00:00 PM NORTHING: 1484071.78 Poorly-graded Gravel Poorly-graded Gravel with Clay DP = Direct Push LOGGED BY: H. Usle **EASTING:** 799409.03 Poorly-graded Gravelly Sand CHECKED BY: J. Redden Sandy Silt TOTAL DEPTH: 20 feet bgs

DRILLING METHOD(S): Hand Auger/ Direct Push DIAMETER: 2.25 inches

DATUM: NAD 1983 StatePlane New York East in US Survey Feet

NOTES: Soil samples collected as part of the Interim Remedial Measure.

SAMPLE TYPE/ NUMBER ELEVATION (feet amsl) RECOVERY (inches) GRAPHIC LOG (mdd) RECOVERY U.S.C.S. MATERIAL DESCRIPTION B GP Gray, GRAVEL, subangular (0.5" diameter), loose, dry. \bigcirc 10.5 0.9 Light Gray, CLAYEY GRAVEL, some fine to medium sand, subangular gravel (0.25-0.5" diameter), (° (D) GC loose, moist. 0 0.9 ø Light Brown, FINE SAND, some subrounded gravel, (0.25" diameter), loose, dry. 0 DΡ 13 27 SP o. () 426.5 2.5 0.4 D 1.1 ø 0 Brown, FINE TO MEDIUM SAND, subangular gravel, (0.5-1" diameter), mauve-colored gravel, black SP oxidation, white quartz from 3.8-4 feet bgs, loose, moist to wet. 0 1.2 Ø O 5.0 424.0 5.0 Olive Brown, SANDY SILT, orange and black oxidized surfaces, trace white flecks, "ash-like" layers, MI 1.6 soft, wet. 6.0 DP 18 38 0. 0.8 Brown To Dark Brown, FINE TO MEDIUM GRAVELLY SAND, subangular (0.5-1.5" diameter), black D 0 oxidized surfaces, orange oxidation, trace quartz fragments, wet to saturated at 7.8 feet bgs, loose. ø. 7.5 421.5 1.6 ø 7.8 Light Brown, COARSE SAND AND GRAVEL, some clay, subangular (0.5" diameter), fining SPdownwards sequence 7.8-8 feet bgs, fining upwards sequence 8-9 feet bgs, loose, saturated. SC 8.0 9.0 34 71 DF Brown, SILT AND CLAY, soft to medium stiff, low plasticity, wet. 9.3 ML 1.1 CL-Gray, SILTY CLAY, soft, medium plasticity, saturated. ML 10.0 419.0

ACRONYM LEGEND:

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-060** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

DEPTH (feet) ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
	JS-B-060 (10-12) for VOCs, PFAS, TOC, pH	34	71	CL- ML		Gray, SILTY CLAY, soft, medium plasticity, saturated. <i>(continued)</i> 12.0	1.2
12.5 416.5				CL- ML		Gray Brown, CLAY, some silt, soft, medium plasticity, saturated.	0.9
- + - - + -	DP	48	100				1.0
15.0 414.0							0.4
- + - - + -							0.9
 				CL- ML		Gray, SILTY CLAY, soft, medium plasticity, saturated.	0.9
17.5 411.5	DP	23	48				0.7
- + -							0.7
20.0 409.0						20.0	0.7
						Bottom of Boring @ 20.00 feet bgs	
<u> </u>							

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900

JS-B-061 PAGE 1 OF 2

Client: Arnold & Porter Project Name: Hoosick

Project Number: 0378075 Project Location: Hoosick, New York

NORTHING: 1484068.54

DIAMETER: 2.25 inches

TOTAL DEPTH: 20 feet bgs

EASTING: 799420.44

DRILLING CONTRACTOR: Parratt Wolff, Inc. DATE BORING COMPLETED: 5/2/2018 1:05:00 PM

LOGGED BY: H. Usle

CHECKED BY: J. Redden

DRILLING METHOD(S): Hand Auger/ Direct Push

DATUM: NAD 1983 StatePlane New York East in US Survey Feet NOTES: Soil samples collected as part of the Interim Remedial Measure.

GROUND ELEVATION: 429.30 feet amsl SAMPLE TYPE:

DP = Direct Push

GRAPHIC LOG LEGEND Poorly-graded Gravel with Clay

Poorly-graded Gravel

Poorly-graded Gravelly Sand Sandy Silt

Silty Clay

GP 0 0 0 0.5 Gray, GRAVEL, subangular (0.5" diameter), loose, dry. Light Gray, CLAYEY GRAVEL, some fine to medium sand, subangular gravel (0.25-0.5" diameter), loose, moist. SP 0 0 0 0.5 Light Gray, CLAYEY GRAVEL, some fine to medium sand, subangular gravel (0.25-0.5" diameter), loose, moist. Light Brown, FINE SAND, some subrounded gravel, (0.25" diameter), black oxidized surfaces, loose, dry. SP 0 0 0 0.5 Erom, FINE TO MEDIUM SAND, subangular gravel, (0.5-1" diameter), brick fragments near 3.5 feet bgs, black oxidation, trace white flecks, loose, moist.				•					
GP 0.5 Gray, GRAVEL, subangular (0.5" diameter), loose, dry. Light Gray, CLAYEY GRAVEL, some fine to medium sand, subangular gravel (0.25-0.5" diameter), loose, moist. SP 2.5 426.8 Brown, FINE TO MEDIUM SAND, subangular gravel, (0.5-1" diameter), brick fragments near 3.5 feet bgs, black oxidation, trace white flecks, loose, moist.	DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
Light Brown, FINE SAND, some subrounded gravel, (0.25" diameter), black oxidized surfaces, loose, dry. 2.5 426.8 SP Brown, FINE TO MEDIUM SAND, subangular gravel, (0.5-1" diameter), brick fragments near 3.5 feet bgs, black oxidation, trace white flecks, loose, moist.						GP-	100	0.5 Light Gray, CLAYEY GRAVEL, some fine to medium sand, subangular gravel (0.25-0.5" diameter), loose moist	- 0.8
SP Brown, FINE TO MEDIUM SAND, subangular gravel, (0.5-1" diameter), brick fragments near 3.5 feet bgs, black oxidation, trace white flecks, loose, moist.			DP	33	69	SP	。 ()); Ø	dry.	1.0
bgs, black oxidation, trace white flecks, loose, moist.	2.5	426.8) 0		1.0
						SP	ू ्०	Brown, FINE TO MEDIUM SAND, subangular gravel, (0.5-1" diameter), brick tragments near 3.5 feet bgs, black oxidation, trace white flecks, loose, moist.	1.0
5.0 424.3	5.0	424.3						4.5	- 1.5
Olive Brown, SANDY SILT, orange and black oxidized surfaces, trace white flecks, "ash-like" layers, soft, wet.			DP	27	56	ML		soft, wet.	0.8
Brown To Dark Brown, FINE TO MEDIUM GRAVELLY SAND, trace brick fragments, (0.5-1.5"						SP	0	Brown To Dark Brown, FINE TO MEDIUM GRAVELLY SAND, trace brick fragments, (0.5-1.5"	1.2
7.5 421.8	7.5	421.8	-				. A		1.0
DP 12 25 SP Light Brown, COARSE SAND AND GRAVEL, some clay, subangular gravel (0.5" diameter), fining downwards sequence, loose, saturated.			DP	12	25	SP);	Light Brown, COARSE SAND AND GRAVEL, some clay, subangular gravel (0.5" diameter), fining	1.2
	10.0	419.3	$\left\langle \right\rangle$) Ø		1.0

105 Maxess Road; Suite 316 Melville, New York 11747 Telephone: (631) 756-8900 **JS-B-061** PAGE 2 OF 2

Client: Arnold & Porter Project Name: Hoosick

-								
DEPTH (feet)	ELEVATION (feet amsl)	SAMPLE TYPE/ NUMBER	RECOVERY (inches)	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
		DP	12	25			NO RECOVERY, CLAY too soft to allow penetration into liner. (continued) 12.0	NM
12.5	416.8	JS-B-061 (12-14) for VOCs, PFAS, TOC, pH			CL- ML		Gray Brown, CLAY, some silt, soft, medium plasticity, saturated.	0.6
		DP	48	100				0.8
15.0	414.3							0.8
								1.0
					CL- ML		Gray, SILTY CLAY, soft, medium plasticity, saturated.	0.4
17.5	411.8	DP	30	63				0.8
								0.9
20.0	409.3						20.0	0.9
							Bottom of Boring @ 20.00 feet bgs	

Appendix A-2 Groundwater Sampling Logs

Low-Flow Groundwater Sampling Form

Site Name: At?
Project No.: 0378075

^

Monitoring Well: JS-MW-00/A 22 Area: Sampling Device: Peri Pump Date: 5/1/2018 Sampling Personnel: Weather Conditions: 75°F
Time: 4466 1500 Junny Total Depth (TD)¹: /7.09
Depth to Water (DTW): //.70
Total Volume Purged: 3.5 94 Screen Length: Well Diameter: Casing Type: PVC Purge Rate: 200 PID Headspace (ppm): C.4 Measuring Point: TOL Tubing Type: HDP6 Pump Intake (feet below MP): Odor: NONE Color: Clear

unip make (i	eet below wii	1.4.0 10.0		COIOI. C	et cu		Odor. N		
Time:	DTW:		Temp	SpC	DO	pH	Turb NTU	ORP mV	Uflow
(min) Stabilization	(feet)	Comments:	(°C)	(uS/cm³)	(mg/L)	(std units) +/-	+/-	+/-	(mL/mir
Criteria ²			+/- 3%	+/- 3%	+/- 10%	0.1 unit	10%3	10 mV	100-40
FO5	11-71		4.0	822	10.05	6.97	11.67	-6.8	150
1510			7.0	706		6.00	11.64	11.5	150
	11.72		8.7	795	8.89	6.89	0		150
515	11.72		8.5	710	8,71	6.90		7.2	200
520	//.71		8.5	795	8.89	6.92	6	3.3	
525	11.72		8.5	795	9.02	6.92		-0.3	200
530 535 540	11.72	£	8.4	795	9.12	6.93	0	-3.9	200
535	11.72		8.5	793	8.98	6.92	0	-3.9	700
546	11.72		8.3	791	9.01	6.93	0	-2.8	200
(E)							3		
11/									
							Tanganton en		
	-								
			7//		7				
		1.0	1//2	-	57-				1
			6	1				1000 PM	+
			1						+
		(94	5/01/	2018		1			
				2010	-				
			·	-					
		Se	emphe	(e)	100				
					1550			14172	
			,		1000		:		
			5						110
			13.7 22.7 22.7						MI
								1	くしつ

Sampling Time: 1550

Sample ID:

JS-MW-0014(05012018)

Additional Field Measurements

JS-MW-0014(05012018)MSD JJ-MW-001A(05012018MS Analysis Requested:

NOC. TOL, PFAS-21 Motals ETH, Meth, Filtered Y/N:

N

Preservative:
HU HNU3

Nall

1 = Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

 2 = Stabilization criteria based on three most recent consecutive measurements.

 3 = Plus or minus 10-percent when turbidity is over 10 NTUs.

Blother @

Low-Flow Groundwater Sampling Form

Site Name:

Project No.:

0378075

Monitoring We	il: ゴン・ML	1-002k		Area:	W 35						
Date: 5/2/2	O18		Sampling Device: Peci Pump								
Sampling Personnel: MF											
Weather Conditions: 70°F Sunny											
Time: 0820											
Total Depth (TI	D)1: 8.59	**************************************	Screen Length: 6								
Depth to Water	(DTW): 5.2	26	Well Diameter: / "								
Total Volume P			Casing Type: PVC								
Purge Rate: 2	⇔			PID Headspace (ppm): 6.0 Measuring Point: 760							
Tubing Type:	HOPE	4.5 8.00									
Pump Intake (fo	eet below MP):	45 8.00		Color: Clear Odor: NONE							
Time:	DTW:		Temp	SpC	DO	pН	Turb	ORP	Flow		
(min) Stabilization	(feet)	Comments:	(°C)	(uS/cm³)	(mg/L)	(std units)	NTU	mV	(mL/min)		
Criteria ²			+/- 3%	+/- 3%	+/- 10%	+/- 0.1 unit	+/- 10% ³	+/- 10 mV	100-400		
825	5.39		7.4	1103	3.30	6.48	36.32	-9,9	200		
830	3.41		7.4	1052	3.27	6.59	7.32	-8.5	200		
835	5.42		7.3	1015	2.77	6.66	6.18	-7.4	200		
840	5.44 5.45		7.4	986	2.56	6.66 6.70	Ø	-6.2	200		
835 840 845	5.45		7.3	975	2.40	6.71	0	-5.5	200		
850 855	5.45		7.3	960	2.20	6.74	0	-4.4	200		
0.55	5.4C		7.4	946	1.96	6.76	O	-2.8	200		
900	5.46	4.44.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	7.4	939	1.84	6.78	0	-2.2	20c		
905	5.46	6 16	7.5	772	1.76	6.78	0	-0.9	200		
MEZ		Sample @	<u> </u>								
		OII									
		All. All. All. All. All. All. All. All.									
3		WALLE TAXABLE				**************************************					
A STATE OF THE STA											
***************************************			-71								
		100/0 70	7(
		1 - 1									
		05/02/20	8								
and distributed and an artist of the second											
	1	VVIIII V						***************************************			
	and the state of t										
	Ì										
								112)		
								LIVIZ			

Sampling Time:

Sample ID: 55 - MW-002A(05022018)

Additional Field Measurements

Biofilter

Analysis Requested: JBC, TOC, FFAS-21 Metals Eth, Meth

Preservative: HNO3

Notes:

1 = Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

² = Stabilization criteria based on three most recent consecutive measurements.

 $^{^{3}}$ = Plus or minus 10-percent when turbidity is over 10 NTUs.

Low-Flow Groundwater Sampling Form

Site Name:

Project No.: 0378075

Monitoring We	II: 33-1	MW-OCTA	Area: 13 - Hoosiek							
Date: 5/2/2 6	018			Area: 3 - Hoosick Sampling Device: Peri Rump						
Sampling Perso	nnel: MF						V			
Weather Condi	tions: Servi	= Sugar				TANKA MILITARIA DE LA CANTA DEL CANTA DE LA CANTA DEL CANTA DE LA				
Time: 1025		0-4111/				V				
Total Depth (TI			Screen Length: 5'							
Depth to Water		45	Well Diameter: 1 1							
Total Volume P				Casing Type: PVC PID Headspace (ppm): O, S Measuring Point: TOC Color: Clear Odor: NONE						
	200									
Tubing Type:	blode	ME								
Pump Intake (fe	eet below MP)	8.00								
Time:	DTW:		Temp	SpC	DO	pН	Turb	ORP	Flow	
(min)	(feet)	Comments:	(°C)	(uS/cm³)	(mg/L)	(std units)	NTU	mV	(mL/min)	
Stabilization			+/- 3%	+/-	+/-	+/-	+/-	+/-	100 100	
Criteria ²			Name and the second sec	3%	10%	0.1 unit	10%3	10 mV	100-400	
1036	7.55 7.56		7.6	311.2	9.43		28.78 12.42	58.1	200	
			6.8	302.2	8.51	7. 25				
1640	7.59 7.58		6.6		8.39 8.35 8.47	7.21	0	49.5 39.2	200	
1045	7.58		6.8	304.1	8.37	7.21	0	45.4	200	
1050	7.59		6.7	304.8	8.31	7.17	0	53.7	200	
1100	7.59		6.7	304.3	8.44	7.15	0	58.1	500	
1105	7.59		6.9	303.8	8.45	7.18	0	59.9	200	
	1.7	Sample @	6.1	303.8		7		7,.,	200	
MF		1115							<u> </u>	
		114								
					** ** ***	AMARIAN MANAGEMENT AND		***************************************		
			/			.,			THE PARTY OF THE P	
			/ s							
			•//							
		1/2//.	4	52						
		11/1/	<u> </u>							
		/ // ·								
	- Antonia	()5/02	12010							
	, 40 page 1990 p	00/02	هاند إ							
			*							
		4								
	***************************************			-				<u> </u>	1700	
									\ /	

Sampling Time: 1115

Sample ID:

JS-MW-003A(05022018)

Additional Field Measurements

Analysis Requested: VGC, TOC, PFAS-21 Metals, HL, Meth

BioFiter

Notes:

1 = Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

² = Stabilization criteria based on three most recent consecutive measurements.

 $^{^3}$ = Plus or minus 10-percent when turbidity is over 10 NTUs.

Site Name: A1P Project No.: 0378075

Monitoring We		N - 009 R		Area: 🛴	3.5				
Date: 5/1/20	018			Sampling	Device:	Peri Pu	mβ		
Sampling Perso	onnel: MF						Ī		
Weather Condi	itions: 70° F	Partly Cloudy							
Time: 1305									
Total Depth (T	D) ¹ : 9.5 0	5		Screen Ler	noth: 5'				PI
Depth to Water				Well Diam	eter: / /t			1144	
Total Volume I	Purged: 3.	Sael			pe: PVC				
Purge Rate: 2	-00	<i>3</i> '		PID Heads	space (ppm): 0.1			
Tubing Type:			***************************************	Measuring	Point: Te	œ '			
Pump Intake (f	eet below MP): 8.50		Color: 4	leau		Odor: 🔥	IONG	
Time:	DTW:		Temp	SpC	DO	pН	Turb	ORP	Flow
(min)	(feet)	Comments:	(°C)	(uS/cm³)	(mg/L)	(std units)	NTU	mV	(mL/min)
Stabilization		Comments	+/-	+/-	+/-	+/-	+/-	+/-	400.400
Criteria ²	(00		3%	1080	10%	0.1 unit フ・31	10%³ ⋜3. <i>⊘5</i>	10 mV	100-400 200
/310	6.80		8.6	793	10.17		0	61.6	Z00
/315 /320	6.81		7.5	786	10.16		6	61.0	300
1325	6.87		7.4	760	9.84	7.14	Ö	58.6	300
1330	6.82		5.4	745.1	9.43	7.14	0	56.4	300
1335	6.83		7.3	744.0	9.52		00	55.5	300
1340	6.83		7.3	741.9	9.05	7.16	0	52.9	300
1345									
MATE		Sample @ 1350							

		71/							
		111/1	100	, ,		•	dakik		
		action!	.10						
		05/02/21	אוכ						

Sampling Time: 1350

Sample ID:

JS-MW-004A(05022018)

Additional Field Measurements

Analysis Requested:
10CS, PFAG-21
TOC Netals
Meth, Eth

Preservative: HVO3 NaOH

Notes:

1 = Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

 $^{^{2} = \}mbox{Stabilization criteria}$ based on three most recent consecutive measurements,

 $^{^3}$ = Plus or minus 10-percent when turbidity is over 10 NTUs.

Site Name:

Project No.: 0378075

Monitoring We	ell: JS-N	IW-005A		Area: J	δ				
Date: 5/2/2	2018			Sampling	Device: 🤉	eci Pum	D		
Sampling Perso	onnel: MF	The state of the s					1		
Weather Condi		Sugar			· · · · · · · · · · · · · · · · · · ·	The second secon	· · · · · · · · · · · · · · · · · · ·		
Time: 1455									
Total Depth (Tl	D) ¹ : 11.9	7		Screen Ler	noth: 5				
Depth to Water				Well Diam			***************************************	THE PROPERTY OF THE PARTY OF TH	Marie Comment and the Comment of the
Total Volume F			· · · · · · · · · · · · · · · · · · ·		pe: PVC	***************************************			
Purge Rate:				PID Heads	space (ppm	a): 0.0			
Tubing Type:			*****	Measuring	Point: 7			· · · · · · · · · · · · · · · · · · ·	***************************************
Pump Intake (f		: 11.00		Color: C			Odor: 🔥	ING	
<u> </u>		1							T = 1
Time:	DTW:		lomn	l Sant	1 1 1 1 1				
	1		Temp	SpC	DO	pН	Turb	ORP	Flow
(min)	(feet)	Comments:	(°C)	(uS/cm³)	(mg/L)	(std units)	NTU	mV	(mL/min)
(min) Stabilization	1	Comments:	(°C) +/-	(uS/cm³) +/-	(mg/L) +/-	(std units) +/-	NTU +/-	mV +/-	(mL/min)
(min) Stabilization Criteria ²	(feet)	Comments:	(°C) +/- 3%	(uS/cm³) +/- 3%	(mg/L) +/- 10%	(std units) +/- 0.1 unit	NTU +/- 10% ³	mV +/- 10 mV	(mL/min) 100-400
(min) Stabilization Criteria ² 1500	(feet) 8.24	Comments:	(°C) +/- 3%	(uS/cm³) +/- 3% 291.4	(mg/L) +/- 10% 7.91	(std units) +/- 0.1 unit	NTU +/- 10% ³	mV +/- 10 mV	(mL/min)
(min) Stabilization Criteria ² 1560	(feet) 8.24 8.24	Comments:	(°C) +/- 3%	(uS/cm³) +/- 3% 291.4 286.8	(mg/L) +/- 10% 7.91 7.20	(std units) +/- 0.1 unit 7.60 7.35	NTU +/- 10% ³ O	mV +/- 10 mV 68.3 58.9	(mL/min) 100-400 300
(min) Stabilization Criteria ² 1560	(feet) 8.24 8.24 8.25 8.25	Comments:	(°C) +/- 3% 8.9 8.7 8.4	(us/cm³) +/- 3% 291.4 286.8 285.1	(mg/L) +/- 10% 7.91 7.20	(std units) +/- 0.1 unit 7.60 7.35 7.27	NTU +/- 10% ³	mV +/- 10 mV 68.3 58.9	(mL/min) 100-400 300 300
(min) Stabilization Criteria ² 1560 P505 [510	(feet) 8.24 8.24 8.25 8.25 8.25	Comments:	(°C) +/- 3% 8.9 8.7 8.4 8.5	(uS/cm³) +/- 3% 291.4 286.8 285.1 286.4	(mg/L) +/- 10% 7.91 7.20 6.73 6.38	(std units) +/- 0.1 unit 7.60 7.35 7.27	NTU +/- 10% ³ 0 0	mV +/- 10 mV 68.3 58.9	(mL/min) 100-400 300
(min) Stabilization Criteria ² 1560	(feet) 8.24 8.24 8.25 8.25 8.25	Comments:	(°C) +/- 3% 8.9 8.7 8.4 8.5	(uS/cm³) +/- 3% 291.4 286.8 285.1 286.4 286.1	(mg/L) +/- 10% 7.91 7.20 6.73 6.38	(std units) +/- 0.1 unit 7.60 7.35 7.27 7.29 7.26	NTU +/- 10%³ O O O	mV +/- 10 mV 68.3 58.9 56.1 55.8 54.6	(mL/min) 100-400 300 300 300
(min) Stabilization Criteria ² 1560 P505 /510 /515 /520 /525	(feet) 8.24 8.24 8.25 8.25 8.25 8.25	Comments:	% 4 3% 8.9 8.7 8.4 8.5 8.5 8.5	(uS/cm³) +/- 3% 291.4 286.8 285.1 286.4 286.1 286.4	(mg/L) +/- 10% 7.91 7.20 6.73 6.38 6.22 6./9	(std units) +/- 0.1 unit 7.60 7.35 7.27 7.29 7.29 7.25	NTU +/- 10%³ O O O	mV +/- 10 mV 68.3 58.9 56.1 55.8 54.6	(mL/min) 100-400 300 300 300 300
(min) Stabilization Criteria ² 1560 1565 1515 1520 1525 1530 (535	(feet) 8.24 8.24 8.25 8.25 8.25 8.25	Comments:	% 4 3% 8.9 8.7 8.4 8.5 8.5 8.5	(uS/cm³) +/- 3% 291.4 286.8 285.1 286.4 286.4 286.1 285.9	(mg/L) +/- 10% 7.91 7.20 6.73 6.22 6.19 5.34	(std units) +/- 0.1 unit 7.60 7.35 7.27 7.29 7.26 7.23 7.23	NTU +/- 10%³ O O O	mV +/- 10 mV 68.3 58.9 56.1 55.8 54.6	(mL/min) 100-400 300 300 300 300 300 300
(min) Stabilization Criteria ² 1560 P505 [510	(feet) 8.24 8.24 8.25 8.25 8.25	Comments:	(°C) +/- 3% 8.9 8.7 8.4 8.5	(uS/cm³) +/- 3% 291.4 286.8 285.1 286.4 286.1 286.4	(mg/L) +/- 10% 7.91 7.20 6.73 6.38 6.22 6./9	(std units) +/- 0.1 unit 7.60 7.35 7.27 7.29 7.29 7.25	NTU +/- 10%³ O O O O O O O O O O O O O	mV +/- 10 mV 68.3 58.9 56.1 55.8 54.6 54.6	(mL/min) 100-400 300 300 300 300 300 300 300

Sampling Time: 15\$50

Filtered Y/N:

Preservative: HC1, HNO3 NaOH

Sample ID:

TS-Mw-0054 (05022018) WC6, PFAS-21

Additional Field Measurements

DUP (05022018) 1200 GHL, Meth

Notes: 35-MW-005A(050220B) M8/M8D For PFA5-21 Compound

1 = Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

² = Stabilization criteria based on three most recent consecutive measurements.

 $^{^{3}}$ = Plus or minus 10-percent when turbidity is over 10 NTUs.

Site Name: Project No.:

A+P 0378075

Monitoring We Date: 3/15/2	II: JS-TM	W-018		Area: Sampling	JS Davica:		Porista	ltic Pump	
Sampling Perso	nnel u F	r		Samping	Device.		i erista	inc i mitp	
Weather Condi	tions: 60F	Overcost							
Total Depth (TI Depth to Water Fotal Volume F Purge Rate: [C Fubing Type:	D) ¹ : 70.3 (DTW): 10. Purged: 1.06 DDPE	84 901		PID Head:	pe: PVC space (ppm	1): 214.	•		
^p ump Intake (f	eet below MP)	:		Color:	stery -	Black	Odor: 🔏	4	
Time: (min) Stabilization	DTW: (feet)	Comments:	Temp	SpC (uS/cm³)	DO (mg/L)	pH (std units) +/-	Turb NIU +/-	ORP mV +/-	Flow (mL/mi
Criteria ²			+/- 3%	+/- 3%	+/- 10%	0.1 unit	10%3	10 mV	100-40
1545 1656 1665 1300	17.65 51.07 17.81	1. ged purged	14.2	656 627.6	3.17	8.59	84	99.8	100
1230 1330 430	17.81 17.80 17.80 17.80		12.3	630.8	3.91	7.88	ar	13.7	100
			The	700					
			5/16/	2018		\			
					1			\ \	(A)E

Sampling Time: 1500

Sample ID: 35-TMW-018 (05162018)

Additional Field Measurements

Analysis Requested:

Filtered Y/N:

Preservative: HCL

^{1 =} Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

² = Stabilization criteria based on three most recent consecutive measurements.

>= Plus or minus 10-percent when turbidity is over 10 NI'Us.

Site Name: Project No.:

A+P 0378075

Monitoring Well: 35 -TMW-030	Area: 35	
Monitoring Well: 35 -TMW-030 Date: 5/16/2019 Sampling Personnel: M. Fox	Sampling Device:	Peristaltic Pump
Sampling Personnel: M. Fox		
Weather Conditions: 75°F Sunny Time: 1545		

Total Depth (TD)¹: 26.39 Depth to Water (DTW): 9.77 Total Volume Purged: 1.25 34 Screen Length: 5 Well Diameter: / Casing Type: DUC Purge Rate: 100
Tubing Type: HOPE
Pump Intake (feet below MP): 25. PO PID Headspace (ppm): Z6.3 Measuring Point: TOC Color: Dary /= Kay

Time: (min) Stabilization Criteria ²	DTW: (feet)	Comments:	Temp (°9) +/- 3%	SpC (uS/cm³) +/- 3%	DO (mg/L) +/- 10%	pH (std units) +/- 0.1 unit 7 - 88	Turb NTU +/- 10% ³	ORP mV +/- 10 mV	Flow (mL/min 100-400
Criteria ² 1550 1655 1605	18.02 20.09 Vell DR 9.83	LY	13.8	325.5	0.76	7.85		75.3	100
PS _	9.83		13.0,	310.1	0.95	7.80	OL	10.1	100
					M				
		14	1	700					
		5	24/2	018	r				
								-0	WF

Sampling Time:	0800
----------------	------

Filtered Y/N:

Preservative:

Notes:

^{1 =} Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

 $^{^2 \}approx$ Stabilization criteria based on three most recent consecutive measurements.

^{3 =} Plus or minus 10-percent when turbidity is over 10 NTUs.

Site Name: Project No.:

A+P 0378075

Monitoring We	Ionitoring Well: JS-TMW-033			Area: Sampling Device: Peristaltic Pump						
Date: 5/16 Sampling Perso	2018 onnel: M.F	DX Partly cloudy		Sampling	Device:		Peristal	tic Pump		
1 me: 1540		A CONTRACTOR OF THE CONTRACTOR								
Total Depth (T Depth to Water Total Volume I Purge Rate:	D) ¹ : 19.5 r (DTW): 7 . Purged: .5	95 90l		Screen Length: 5 Well Diameter: 1 Casing Type: PUC PID Headspace (ppm): 746.4						
Tubing Type:	Tubing Type: KDPE Pump Intake (feet below MP):			Measuring	Point:			ganic-l	ike	
Time: DTW: (min) (feet) Comments:			Temp (°C) +/-	SpC (uS/cm ³) +/-	DO (mg/L) +/-	pH (std units) +/-	Turb NTU +/-	ORP mV +/-	Flow (mL/min)	
Criteria ² 1945 1550	10.03 Low Flo to M. F	on stopped due	12.1	1193	0.80	0.1 unit 7.94	10%3 OR	94.6	100-400	
	1100 4									
							6			

Sample ID:

Sampling Time: 1620

Analysis Requested:

Filtered Y/N:

Preservative:

Additional Field Measurements

probe used. No measureable detections Notes:

1 ** Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

² = Stabilization criteria based on three most recent consecutive measurements.

3 = Plus or minus 10-percent when turbidity is over 10 NTUs.

Site Name: Project No.: A+P 0378075

Monitoring We Date: 6 23 Sampling Perso Weather Condi Time: 1515	II: 35 - TMI 20 18 nunel: M . F tions: 75° F	W-035 -OX Sunay		Area: JS Sampling Device: Peristaltic Pump							
Total Depth (TI Depth to Water Total Volume F Purge Rate: [C Tubing Type: Pump Intake (fo	HDPE			Screen Len Well Diam Casing Typ PID Heads Measuring Color: Da	pace (ppm Point: 70	C	Odor:				
Time: (min) Stabilization Criteria ²	DTW: (feet)	Comments:	Temp (°C) +/- 3%	SpC (uS/cm³) +/- 3%	DO (mg/L) +/- 10%	pH (std units) +/- 0.1 unit	Turb NIU +/- 10% ³	ORP mV +/- 10 mV	Flow (mL/min) 100-400		
1530 15.35 1546 0830	9.69 18.71 19.44 10.21	well Dry	13.4 15.3 14.3	328.3 296.5 322.3	1.46	7.35 7.25 7.51	000	67.0 45.7 33.0	150		
							4				

Sampling Time:	0900

JS-TMW-035 (05 2018)

Additional Field Measurements

Analysis Requested:

TOC VOC PH PFAS

Filtered Y/N:

Preservative:

Notes:

1 = Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

² ~ Stabilization criteria based on three most recent consecutive measurements.

² = Plus or minus 10-percent when turbidity is over 10 NTUs.

Site Name: Project No .:

A+P 0378075

Monitoring We Date: 5/16 Sampling Perso Weather Condi	III: JS-TM 2018 onnel: M.F. itions: 65°F	partly clou	dy	Area: Sampling l	JS Device:		Peristal	tic Pump	
Total Depth (TD) ¹ : 20.60 Depth to Water (DTW): 9.10 Total Volume Purged: 1.5 gal Purge Rate: 100 Tubing Type: HDPE Pump Intake (feet below MP): 20.00		Screen Length: 5 Well Diameter: 1" Casing Type: PVC PID Headspace (ppm): 7/3.6 Measuring Point: TOC Color: Dock Grow Odor: Organic - Like							
Time: (min) Stabilization	DTW: (feet)	Comments:	Temp	SpC (uS/cm³) +/-	DO (mg/L) +/-	pH (std units) +/-	Turb NTU +/-	ORP mV +/- 10 mV	Flow (mL/min) 100-400
Criteria ² /005 /010 /010 /015 /020 /023 /500	1451 16.62 17.73 1991 DRY 9.68		3% 10.9 11.9 12.1 12.2 12.8 10.9	3% 339.3 331.7 321.4 294.0 286.3	10% 4.96 4.69 3.12 1.67 1.1/ 3.11	0.1 unit 7.55 7.81 8.01 8.00 7.91	1000000 m	109.3 24.1 2.1 -20.6 -15.1	100
		J		1					
		5	17	2018					
							\	4	MF

Sampling Time: 1510 JS-TMW-036 (0517 2018) TOC

Additional Field Measurements

Preservative:

Notes:

1 = Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

¹ = Stabilization criteria based on three most recent consecutive measurements.

⁵ = Plus or minus 10-percent when turbidity is over 10 NTUs.

Site Name: Project No.: A+P 0378075

Monitoring Well: 35-TMW-03 Date: 5/15/2018 Sampling Personnel: 60°F Cloudy Calm M. Fox Sampling Device: Peristaltic Pump Weather Conditions: Time: 1215 Total Depth (TD)¹: 21.22 Depth to Water (DTW): **8.6**(Total Volume Purged: 1.25 Screen Length: Well Diameter: Casing Type: PVC PID Headspace (ppm): 95.4 Purge Rate: 100 Measuring Point: 700 Tubing Type: HDP4 Pump Intake (feet below MP): 20.80 Color: Black - 4500 NONE Odor: Time: DTW: Temp SpC Turb ORP Flow (min) (std units) NTU (uS/cm3) (mg/L) (mL/min) Comments: Stabilization +/-+/-+/-1210 100 206.6

Sampling Time: 0830

Sample ID:

Analysis Requested:

Filtered Y/N:

Preservative:

HUL

JS-TMW-037(05162018)
Additional Field Measurements

PH PFAS

Notes

a Do not measure depth to bottom of well until after purging and sampling to reduce resuspending lines that may be resting on the well buttom.

² = Stabilization criteria based on three most recent consecutive measurements.

^{3 =} Plus or minus 10-percent when turbidity is over 10 NTUs.

Site Name: Project No.:

A+P - 0378075

Monitoring Well: 35 - TMW - 038

Date: 6/15/208

Sampling Personnel: M. For Area: Sampling Device: Peristaltic Pump Weather Conditions: 65°F Rain
Time: 1050 Total Depth (TD): 20.16
Depth to Water (DTW): 8.67
Total Volume Purged: 1.5 Screen Length: Well Diameter: Casing Type: PVC Purge Rate: 200 Tubing Type: H\$16 PID Headspace (ppm): / 20 Measuring Point: TOC Odor: Organic - Tike Pump Intake (feet below MP): Color: Geray - Dack Time: DTW: ORP Temp SpC DO pH Turb (min) (std units) (mg/L) NTU (feet) mV (uS/cm3) (mL/min) Comments: Stabilization +/-10%3 10% 0.1 unit 100-400 10_mV 4.88 19.67 10.77 1055 5 200 200 1100 200 1105 200 11.01 200 200 OR 9.44 7.84 12.6

Sampling Time: 0930

Sample ID:

JS-TMW-038 (05162018) VOCS

Filtered Y/N:

reservative

Additional Field Measurements

Notes:

1 = Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

² Stabilization criteria based on three most recent consecutive measurements.

3 = Plus or minus 10-percent when turbidity is over 10 NTUs.

Site Name: Project No.:

A+P 0378075

Time: 092	onnel: M , Fi itions: 66°F	sunny Colm		Sampling				tic Pump	
Fotal Depth (T Depth to Water Fotal Volume I Purge Rate: /C Fubing Type: Pump Intake (f	r (DTW): 6. Purged: 1.5 NOK	99		Casing Ty	pe: PyC space (ppm Point: 7): <u>1</u> 394	Odor: S	trong c	Lea.
Time: (min) Stabilization Criteria ²	DTW: (feet)	Comments:	Temp (°C) +/- 3%	SpC (uS/cm³) +/- 3%	DO (mg/L) +/- 10%	pH (std units) +/- 0.1 unit	Turb NTU +/- 10% ³	ORP mV +/- 10 mV	Flow (mL/min) 100-400
0935 0935 0945	9.64 9.87 9.87	sheen-Red water PNPL found pled due to PNPL	13.1	353.6 317.7 18.9 16.0	7.37 3.13 2.88 9.03	10.71 10.71 10.52 10.19	743	-78.6 -30.6 -14.7 18.3	100
		1		8	2				
		5/	15/20	218					
		-						X	10

Sampling Time: 1000

DUP(05152018) 1200

Analysis Requested:

Piltered Y/N:

Preservative:

Notes:

1 = Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

² = Stabilization criteria based on three most recent consecutive measurements.

³ = Plus or minus 10-percent when turbidity is over 10 NTUs.

Static DTW: 6.99'
DAN aff. wound 7.21'

Site Name: Project No.:

A+P 0378075

Monitoring We Date: 5 (5) Sampling Perso Weather Condit Time: 1305		Area: Sampling Device: Peristaltic Pump								
Total Depth (TD) ¹ : /9.35 Depth to Water (DTW): /2.19 Total Volume Purged: /.25 gal Purge Rate: (OO Tubing Type: +10PE Pump Intake (feet below MP): /900				Screen Length: 5 Well Diameter: Casing Type: DUC PID Headspace (ppm): Measuring Point: TOC Color: Took 4564 Odor: NONG						
Time: (min) Stabilization	DTW: (feet)	Comments:	Temp (°C) +/-	SpC (uS/cm³) +/-	DO (mg/L) +/-	pH (std units) +/-	Turb NIU +/-	ORP mV +/-	Flow (mL/min)	
Criteria ² [315 [325 [335 [335 [450	14.91 13.5 17.19 19.01 Well DR	Y 1.25gal purge	3% 14.7 12.7 12.7 12.4 d	834 854 840 807 830	5.92 5.92 5.01 3.55 5.56	7.94 7.79 7.79 7.67 7.67	10% 3 KI 1649 OR	7.6 6.8 7.7 0.4	100-400 1000 1000 1000 1000 1000	
					2					
		5/1	15/2	018	71	/				
									MF	

Sampling Time: 1455

Filtered Y/N:

Preservative:

Sample ID:

SS-TMW-044(05152018) VBC TOC

Additional Field Measurements

PH PFAS

PTAS

PTAS

Notes:

1 = Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom. Stabilization criteria based on three most recent consecutive measurements.

Plus or minus 10-percent when turbidity is over 10 NTUs.

Site Name: Project No.:

A+P 0378075

JS-TMW-049 Area: 22 Monitoring Well: Date: 5/14/2018 Sampling Personnel: M. Fox Sampling Device: Peristaltic Pump Weather Conditions: 75° F Sunny Calm Time: 1525 Total Depth (TD)1: 19.33 Screen Length: Depth to Water (DTW): 7.03
Total Volume Purged: 2.23 Well Diameter: Casing Type: Measuring Point: 700 Purge Rate: 100 Tubing Type: FIPE 18.50' Color: Garay NONE Pump Intake (feet below MP): Odor: Time: DTW: DO ORP Flow Temp SpC pH Turb (min) mV (feet) (uS/cm3) (mg/L) (std units) NTU (mL/min) Comments: Stabilization +/-+/-+/-10%3 10% 10 mV 100-400 100 OR 1535 OL OR 2 gal punged A15/208 78.9 14.0 776 5.76 7.57 OR 100

Sampling Time: 0900

JS -TMW-050(05152018)

Additional Field Measurements

Filtered Y/N:

Do not measure depth to boitom of well until after purging and sampling to reduce resuspending fines that may be resting on the well buitom.

^{2 -} Stabilization criteria based on three most recent consecutive measurements.

⁵ = Plus or minus 10-percent when turbidity is over 10 NTUs.

Site Name: Project No.: A+P 0378075

Total Volume Purged: 3.6 gal Purge Rate: 200 Tubing Type: HDP6 Pump Intake (feet below MP): Time: (min) (feet) Stabilization Criteria	Monitoring Well: J5-TMW-C Date: \$\frac{14}{2018}\$ Sampling Personnel: M. FOX Weather Conditions: 75°F Time: 1660 Total Depth (TD)\(^1\): \(\frac{1}{8}\). \(\frac{5}{2}\) Depth to Water (DTW): 6.82			Screen Ler Well Dian	ngth: 5	•	Peristal	tic Pump	
(min) (feet) Comments: (°C) (us/cm²) (mg/L) (std units) NTU mV (mL/min) Stabilization +/-	Tubing Type: HPP6 Pump Intake (feet below MP):		Town	PID Head: Measuring Color:	space (ppm g Point: 📆): 2.7 E	Odor:	OPP	Flour
1610 6.95 1616 6.96 1620 6.96 1625 6.96 1625 6.96 1626 9.7 1078 2.77 7.22 36.3 -48.7 200 1625 6.96	(min) (feet) Stabilization Critoria ²	Comments:	10	(uS/cm³) +/- 3%	(mg/L) +/- 10%	(std units) +/- 0.1 unit	NTU +/- 10% ³	mV +/- 10 mV	(mL/min)
	1610 6.95 1615 6.96 1620 6.96		3.87	1075 1074 1078 1077	2.40 2.54 2.74 2.77 2.73 2.75 2.74	7.32 7.23 7.22 7.21 7.20	08.7 60.4 36.3	-39. 2 -42.6 -48.7 -51. 4	200

Sampling Time: 1645

Sample ID:

JS-TUW-050(05142018)

MS/MSD

Additional Field Measurements

Analysis Requested:

Filtered Y/N:

Preservative:

- Notes:

 1 a Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

 2 a Stabilization criteria based on three most recent consecutive measurements.

^{3 =} Plus or minus 10-percent when turbidity is over 10 NTUs.

Site Name: Project No.: A+P 0378075

Monitoring Well: 75 - TMW- 063 Area: JS Date: 5/14/2019 Sampling Device: Peristaltic Pump Sampling Personnel: M. Fox
Weather Conditions: 75°F Sunny CalM 1440 Total Depth (TD)1: Screen Length: 🗲 Depth to Water (DTW): 7.8 Total Volume Purged: 15 54 Well Diameter: 1" Casing Type: PVC PID Headspace (ppm): 180.1 Purge Rate: 100 Tubing Type: HDPE
Pump Intake (feet below MP): 15.00 Measuring Point: 100 Color: Gray / Black Odor: NONE Time: DTW: DO ORP Temp SpC pH Turb Flow (min) (feet) (uS/cm³) (mg/L)(std units) NTU mV (mL/min) Comments: Stabilization +/-10% +/-10%³ +/-10 mV 0.1 unil 100-400 617.Z -78.5 11.6 120 1500 0800 14.0 641 DRY . 5 gal purged Sample @ 08100 5/15/2018 12.8 OR 265.6 100

Sampling Time: 0810

Sample ID:

35-TMW-053 (05152015)

Additional Field Measurements

Notes:

Analysis Requested:

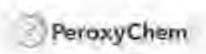
TOC

PFAS

Filtered Y/N:

N N:

Preservative:


Do not measure depth to bottom of well until after purging and sampling to reduce resuspending fines that may be resting on the well bottom.

² = Stabilization criteria based on three most recent consecutive measurements.

3 = Plus or minus 10-percent when turbidity is over 10 NTUs.

Appendix A-3

PeroxyChem Report: Bench Scale Evaluation of ISCO Technologies for the Treatment of CVOCs in Groundwater and Soil from the Confidential NY Site

BENCH SCALE EVALUATION OF ISCO TECHNOLOGIES FOR THE TREATMENT OF CVOCS IN GROUNDWATER AND SOIL FROM THE CONFIDENTAL SITE

FINAL REPORT

Prepared for:

ERM 15 Park Row West Suite 104 T: 401-415-9600

Submitted by: PeroxyChem Project No.: PC 20831B

December 2018

TABLE OF CONTENTS

BENC	H SCALE EVALUATION OF ISCO TECHNOLOGIES FOR THE TREATMENT OF CVOCS	
Decen	nber 2018	
1.	INTRODUCTION	. 3
1.1	Project Background	. 3
2.	PROJECT OBJECTIVES	
3.	METHOD BLANK – TEST 1	. 3
3.1	Method Blank Set Up	. 3
3.2	Method Blank Results	. 4
4	BASELINE	. 6
4.1	Baseline Sampling	. 6
4.2	Baseline Results	. 7
5	PERSULFATE SOIL OXIDANT DEMAND TEST	. 8
5.1	Method	. 8
5.2	Results	. 8
•	Sand & Gravel Soil	. 8
6.	BASE BUFFERING CAPACITY (BBC)	. 8
6.1	Method	. 8
6.2	Results	. 8
•	Clay & Silt Calculated NaOH demand - 1.64 g 25% NaOH/kg dry soil	. 8
7	PERMANGANATE SOIL OXIDANT DEMAND TEST	. 9
7.1	Method	. 9
7.2	Results	. 9
8.	SAND & GRAVEL ISCO TREATABILITY STUDY – TEST 2A	. 9
8.1	Test 2A: Methods	. 9
8.2	Results	10
Table	7: Test 2A Sand & Gravel Day 3 Groundwater Results	11
Table	8: Test 2A Sand & Gravel Day 7 Groundwater Results	12
Table	9: Test 2A Sand & Gravel Day 22 Groundwater Results	13
Table	10: Test 2A Sand & Gravel Day 22 Soil Results	13
9.	CLAY & SILT ISCO TREATABILITY STUDY – TEST 2B	14
9.1	Study Set up	14

9.2	Results	1 5
10.	POTENTIAL EVOLUTION OF PFAS – TEST 3	19
10.1	Study Handling and PFAS Baseline Sampling	19
10.2	PFAS Baseline Results	19
10.3	Study Set Up	20
10.4	Results	21

1. INTRODUCTION

1.1 Project Background

A bench study was completed at the PeroxyChem laboratory in Tonawanda, NY, USA for the treatment of soil and groundwater impacted with chlorinated volatile organic compounds (cVOCs) collected from two separate locations a confidential New York site. The primary contaminants of concern (COC) included trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA) and the bench scale test also evaluated the potential evolution of certain per- and poly-fluoroalkyl substances (PFAS) as a result of the treatment process. The study was designed to evaluate the efficacy of sodium persulfate (SP) and sodium permanganate in a batch study to emulate treatment of the source zone for two soil types. This report was prepared for ERM and presents the results and data bench-scale studies completed between April 2018 and September 2018.

2. PROJECT OBJECTIVES

The aim of this bench-scale study was to assess In-Situ Chemical Oxidation for the treatment of cVOCs. Specific objectives included:

- Determination for each soil type provided of
 - soil oxidant demand (SOD) for persulfate;
 - base buffering capacity (BBC) of the soil;
 - o soil oxidant demand (SOD) for permanganate;
 - the efficiency of ISCO treatments at treating site contaminants in a series of batch reactors; and,
 - o the potential evolution of perfluorinated alkyl acids
- Provision of a document containing the test results.

METHOD BLANK – TEST 1

3.1 Method Blank Set Up

A Method Blank Study was set up on April 17th, 2018 to assess the potential contamination of test samples by per- and poly-fluoroalkyl substances (PFAS) due to the materials to be used during the study. The intent of the study was to evaluate the potential introduction of PFAS compounds from materials and equipment used during the bench study. Materials that are not expected to contain PFAS such as such as HDPE and polypropylene were used whenever possible. Other materials were thoroughly rinsed before use with the water provided by TestAmerica labeled as PFAS-free. Teflon materials were not used during the method blank study.

The Method Blank Study evaluated a 50 grams per liter (g/L) dose of alkaline activated persulfate (AAP) and a 20 g/L dose of potassium permanganate. For the set up the potassium permanganate used was from Sigma-Aldrich, ACS reagent, ≥99.0%. Alkaline activated persulfate consisted of PeroxyChem's Klozur SP persulfate source (SP) and a 25% sodium hydroxide (NaOH) solution using NaOH pellets (VWR ACS grade).

The study was set up in 1L PFAS-free certified containers provided by TestAmerica. All lab work was done in a cleaned fume hood, dedicated for the method blank study. No other work was done in the fume hood

for the duration of the study. The water used for setup was provided by TestAmerica and labeled as PFAS-free water, this water was also used to prepare the 25% NaOH solution.

Powderless nitrile gloves (VWR Nitrile Examination Gloves) were used at all points during the study. Also used as required; lab tissues (VWR Light-Duty Tissue Wipers), disposable polypropylene spatulas (VWR Disposable Spatulas), disposable weigh boats (VWR Weigh Boat 85c85x24mm PS, Medium, White, Anti-Static), and polystyrene disposable serological pipets (VWR 50mL Serological Pipet).

Triplicate sacrificial reactors for each condition were set up, all were sacrificially sampled for PFAS after 7 days reaction time. Samples were sent to TestAmerica Buffalo on ice via courier. A summary of the Method Blank Study set up is in **Table 1**.

Table 1: Method Blank Study set up

Treatment	Sodium Persulfate (g)	25% NaOH (g)	Potassium Permanganate (g)	PFAS-free Water (g)
Control				1172.40
Alkali-activated persulfate	58.62	79.72		1082.77
Potassium Permanganate			23.45	1162.27

3.2 Method Blank Results

The summary of results from the Method Blank Study are shown below in Table 2.

Table 2: Test 1: PFAS Method Blank Results

Parameter										
	Control A	Control B	Control C	50 g/L SP AAP A	50 g/L SP AAP B	50 g/L SP AAP C	20 g/L KMnO4 A	20 g/L KMnO4 B	20 g/L KMnO4 C	Units
Perfluorobutanoic acid (PFBA)	0.89 J	0.58 J	0.47 J	1.2 J	1.5	3.1	32	20	69	ng/L
Perfluoropentanoic acid (PFPeA)	ND (0.40)	ND (0.40)	ND (0.39)	0.57 J	0.44 J	0.46 J	ND (1.2)	ND (1.2)	ND (1.2)	ng/L
Perfluoroheptanoic acid (PFHpA)	0.35 J	ND (0.21)	ND (0.20)	0.31 J	0.30 J	0.25 J	ND (0.63)	ND (0.63)	1.2 J	ng/L
Perfluorooctanoic acid (PFOA)	0.71 UJ	0.71 UJ	0.72 UJ	0.71 UJ	0.69 UJ	0.69 UJ	2.2 J	2.1 UJ	2.1 UJ	ng/L
Perfluorononanoic acid (PFNA)	ND (0.22)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.68)	ND (0.68)	1.9 J	ng/L
Perfluorodecanoic acid (PFDA)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.24)	0.29 J	ND (0.24)	ND (0.78)	ND (0.78)	ND (0.78)	ng/L
Perfluorobutanesulfonic acid (PFBS)	ND (0.16)	ND (0.16)	ND (0.16)	ND (0.16)	ND (0.15)	ND (0.15)	0.70 J	ND (0.50 J)	2.4 J	ng/L
Perfluorohexanesulfonic acid (PFHxS)	ND (0.24)	ND (0.20)	ND (0.24)	ND (0.24)	ND (0.26)	ND (0.22)	ND (5)	ND (0.43)	ND (3.0)	ng/L
Perfluoroheptanesulfonic Acid (PFHpS)	ND (0.15)	ND (0.16)	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.48)	ND (0.48)	0.50 J	ng/L
Perfluorooctanesulfonic acid (PFOS)	ND (0.44)	ND (0.44)	ND (0.43)	ND (0.42)	ND (0.41)	ND (0.41)	ND (1.4)	ND (1.4)	13	ng/L
6.2 FTS	ND (19)	ND (19)	ND (19)	ND (19)	ND (20)	ND (17)	ND (170)	ND (150)	ND (210)	ng/L
Total PFAS =	1.24	0.58	0.47	2.08	2.53	3.81	34.9	20.0	88.0	ng/L
Average Total PFAS =	0.76			2.8			48			ng/L

UJ = The analyte was analyzed for but was not detected. The reported quantitation limits are approximate and may be inaccurate or imprecise.

J = The analyte is an estimated quantity. The associated numerical value is an approximate quantitation of the analyte in the sample.

4 BASELINE

4.1 Baseline Sampling

On April 27th, 2018, coolers containing soil samples, approximately 20.6 kilograms (kg) and 13.9 kg, were received. The samples received from the site consisted of two bags of site soil with the following sample identification numbers:

- · Silt and Clay
 - o JS-B-033(9-14)(16-19)(24-25)
 - o JS-B-037 (14-20)
 - o JS-B-038(12-21)
 - o JS-B-044(18-20)
 - o JS-B-036(15-20)
 - o JS-B-039(10-11)(14-16)(17-19)(20-22)
 - o JS-B-050(9-16)
 - o JS-B-053(12-13)(14-16)
- Sand & Gravel
 - o JS-B-044(7-13)
 - o JS-B-046(6-10)
 - o JS-B-047(7-10)
 - o JS-B-043(8-10)
 - o JS-B-042(4-5)(7-9)
 - JS-B-036(8-10)
 - o JS-B-037(2-3)
 - o JS-B-041(7-9)
 - o JS-B-039(7-10)
 - o JS-B-049(7-9)
 - o JS-B-048(8-9)
 - o JS-B-050(7-9)
 - JS-B-053(6-9)

The soil samples were put into a walk-in cooler kept at 4°C until the start of the study.

On May 4, 2018, coolers of groundwater samples were received. The samples consisted of 28L of site groundwater with the following sample identification numbers:

- JS-MW-001A(05012018)
- JS-MW-002A(05022018)
- JS-MW-003A(05022018)
- JS-MW-004A(05052018)
- JS-MW-005A(05022018)

The groundwater samples were put into the 4°C walk-in cooler until the start of the study.

On June 12th, 2018, the two soil samples were homogenized separately. Some soil was left in the original shipping container and was untouched to be used for the Potential Evolution of PFAS – Test 3 to minimize transfer of potential laboratory PFAS contamination. The soil homogenization was done by quickly transferring the soil to a bag with the headspace removed and homogenized well by kneading the bag. The homogenized sand & gravel soil was a tan brown color, the homogenized clay & silt soil was gray/black. Each homogenized soil was sampled in duplicate for VOCs (Method 8260) and pH.

On June 12th, 2018, a composite of half of the groundwater of all the samples provided was prepared by pumping groundwater from the shipping containers into zero-headspace Tedlar bags. Approximately 14L of

groundwater was reserved in the original shipping containers to be used for other testing. The homogenized groundwater was sampled for VOCs (Method 8260), pH and oxidation reduction potential (ORP).

All samples for cVOC analyses were submitted to TestAmerica Buffalo on ice via courier and under standard chain of custody. The pH and ORP were measured in-house by PeroxyChem.

4.2 Baseline Results

The summary of results from the baseline sampling are shown below in **Table 3 –5**.

Table 3: Baseline Clay & Silt Soil Results

Analysis	Parameter	Test 2B Composite Soil	Test 2B Composite Soil Dup.	Units
VOCs	1,1,1-Trichloroethane	ND (600)	ND (3,100)	μg/Kg
	1,1-Dichloroethane	ND (600)	ND (3,100)	μg/Kg
	cis-1,2-Dichloroethene	380 J	ND (3,100)	μg/Kg
	Tetrachloroethene	ND (600)	ND (3,100)	μg/Kg
	Trichloroethene	75,000	83,000	μg/Kg
	Total cVOCs =	75,380	83,000	μg/Kg
	Average cVOCs =	79	,190	μg/Kg
Lab Parameters	pH (Slurry method)	8	SI Units	

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Table 4: Baseline Sand & Gravel Soil Results

Analysis	Parameter	Test 2A Composite Soil	Test 2A Composite Soil Dup.	Units
VOCs	1,1,1-Trichloroethane	220	170	μg/Kg
	1,1-Dichloroethane	ND (120)	ND (120)	μg/Kg
	cis-1,2-Dichloroethene	ND (120)	ND (120)	μg/Kg
	Tetrachloroethene	130	110 J	μg/Kg
	Trichloroethene	3,100	3,500	μg/Kg
	Total cVOCs =	3,450	3,780	μg/Kg
	Average cVOCs =	3	,615	μg/Kg
Lab Parameter	pH (Slurry method)	(9.11	SI Units

Table 5: Baseline Groundwater Results

Analysis	Parameter	Composite GW	Units
VOCs	1,1,1-Trichloroethane	4.4	μg/L
	1,1-Dichloroethane	0.52 J	μg/L
	cis-1,2-Dichloroethene	3.3	μg/L
	Tetrachloroethene	ND (1.0)	μg/L
	Trichloroethene	19	μg/L
	Total cVOCs =	27	μg/L
Lab Parameters	pH	7.02	SI Units
	ORP	381	mV

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

5 PERSULFATE SOIL OXIDANT DEMAND TEST

5.1 Method

The persulfate demand test measures the loss of persulfate in the presence of uncontaminated or lightly contaminated soil, groundwater and activator over a period of 48 and 168 hours.

A SOD for persulfate was set up for each soil type separately.

Handling Procedures

- The tubes were prepared according to the PeroxyChem Tonawanda persulfate demand test protocol
 using the soil and groundwater provided. 10g of soil and 30g of water composites were added to each
 tube. Tubes were dosed at 15g of sodium persulfate / kg soil. Sodium hydroxide is added to each tube
 to bring the pH above 10.5.
- The experimental samples were stored at room temperature and each sample was inverted several times once per day.
- On day 2 and day 7 tubes are sacrificed, and residual persulfate is measured using a ceric sulfate and ferrous ammonium sulfate titration on a Radiometer Analytical auto-titration unit.

5.2 Results

- Clay & Silt Soil
 - A value of 9.4 g sodium persulfate/kg dry soil was found after 48 hours. An SOD value of 14.95g sodium persulfate/kg dry soil was found after 168 hours.
- Sand & Gravel Soil
 - A value of 3.92 g sodium persulfate/kg dry soil was found after 48 hours. An SOD value of 5.72 g sodium persulfate/kg dry soil was found after 168 hours.

6. BASE BUFFERING CAPACITY (BBC)

6.1 Method

The goal of a BBC test is to determine the amount of sodium hydroxide (NaOH) needed to raise the pH of a soil to pH 10.5, which is necessary for persulfate activation by alkali. The base buffering capacity test was set up using the composite soil and groundwater provided. The pH of a soil and groundwater slurry and of groundwater was measured using an in-house probe and the amount of sodium hydroxide is recorded. A separate BBC was set up for each soil type. Duplicate reactors are set up for each soil type, 30 g of site soil and 30 g of site groundwater was added to each reactor. Sodium hydroxide is added to each reactor until a pH greater than 10.5 is reached. Reactors were checked 3hr after setup, 1, 2, 5 & 7 days after setup. Additional sodium hydroxide is added at each point if the pH of the reactor drops below 10.5.

6.2 Results

The base buffering for each area was calculated using the pH titration details and finding the amount of NaOH that would have been used to reach and maintain a pH of 10.5 for 7 days.

- Clay & Silt Calculated NaOH demand 1.64 g 25% NaOH/kg dry soil
- Sand & Gravel Calculated NaOH demand 1.09 g 25% NaOH/kg dry soil

7 PERMANGANATE SOIL OXIDANT DEMAND TEST

7.1 Method

The site specific "natural oxidant demand" (NOD) was determined in-house by conducting a batch test with specified concentrations of potassium permanganate. The ASTM D 7262-07 method was followed for the tests. This test was run separately on the Clay & Silt and the Sand & Gravel soils.

7.2 Results

- Clay & Silt NOD 7.43 g KMnO₄/kg dry soil
- Sand & Gravel NOD 4.36 g KMnO₄/kg dry soil

8. SAND & GRAVEL ISCO TREATABILITY STUDY - TEST 2A

8.1 Test 2A: Methods

On August 13th, 2018, a batch test was set up as outlined below (**Table 6**). One control, two alkaline activated sodium persulfate treatments, two potassium permanganate treatments, one high dose alkaline activated sodium persulfate method blank and one high dose potassium permanganate method blank were evaluated.

Sacrificial jars (500mL borosilicate glass jars with Teflon lined lids) were set up for the control and treatments. Three jars for each control & oxidant treatment and one jar for each method blank were set up to allow for sampling of one jar at each sampling event.

Table 6: Sand & Gravel E	Batch test summarv
--------------------------	--------------------

Treatment	Dose (g/L)	Soil or Clean Sand (g)	SP (g)	25% NaOH (g)	Potassium Permanganate (g)	Activator	Sampling Events
Control	-	250	-	-	-	None	3, 7, 22
High AAP	50	250	18.67	25.63	-	NaOH	3, 7, 22
Low AAP	15	250	5.6	7.86	-	NaOH	3, 7, 22
High Permanganate	32.43	250	-	-	12.11	None	3, 7, 22
Low Permanganate	19.46	250	-	-	7.27	None	3, 7, 22
High AAP Method Blank	50	250	18.67	25.63	-	AAP	22
High Permanganate Method Blank	32.43	250	-	-	12.11	None	22

The control and treatment jars were set up with 250 g of site soil and the control jars had an average of 373.5 g of groundwater, giving the reactors a 1:1.5 soil to groundwater ratio. Clean sand and DI water was used to set up the method blank jars. The jars were stored at room temperature and in the dark. Each jar was inverted twice per week for the duration of the study.

Ascorbic acid was added to the cVOC sample vials to quench remaining oxidant. Some samples were diluted 2x to minimize the amount of ascorbic acid needed to quench remaining oxidant. At each sample

point, the amount of ascorbic acid needed to quench the residual oxidant was added to all of the VOC sample vials.

Geochemical parameters such as ORP, pH and residual persulfate were monitored in the groundwater by PeroxyChem. The samples for cVOC analyses were submitted to TestAmerica Buffalo on ice via courier under standard chain of custody.

ERM's Quality Assurance Officer carried out a preliminary review of the data packages that were received from TestAmerica. The data received from TestAmerica were validated by an independent third party, Environmental Data Services, Inc. (EDS), located in Newport News, Virginia.

8.2 Results

Results of cVOCs, residual persulfate and pH/ORP can be found in **Tables 7-10.** Only detected cVOCs are reported in the tables. The data tabulated was provided by TestAmerica, validated by ERM and provided to PeroxyChem in validated data summaries for tabulation in this report.

Table 7: Test 2A Sand & Gravel Day 3 Groundwater Results

Analysis	Parameter	Control	50 g/L SP	15 g/L SP AAP	32.4 g/L Permanganate	19.5 g/L Permanganate	Units
VOCs	1,1,1-Trichloroethane	3.3	2.5	6.3	3.8	4.2	μg/L
	Benzene	ND (0.50)	ND (0.50)	0.92	ND (0.50)	ND (0.50)	μg/L
	cis-1,2-Dichloroethene	2.3	ND (1.0)	0.54 J	ND (1.0)	ND (1.0)	μg/L
	Naphthalene	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	1.4	μg/L
	Tetrachloroethene	0.83 J	0.87 J	1.1	ND (1.0)	ND (1.0)	μg/L
	Trichloroethene	87	3.4	30	ND (0.50)	ND (0.50)	μg/L
	2-Butanone (MEK)	ND (5.0)	ND (5.0)	15	54	52	μg/L
	Acetone	ND (5.0)	37	250	650	590	μg/L
	Total VOCs =	93	43.8	304	707.8	647.6	μg/L
Lab	pН	8.41	12.98	12.58	7.57	7.69	SI Units
Parameters	ORP	181	193	113	609	600	mV
	Initial Oxidant	NA	50.00	15.00	32.43	19.46	g/L
	Oxidant (Day 3)	NA	34.97	11.11	23.29	14.98	g/L
	% Oxidant Consumption =		30.1%	25.9%	28.2%	23.0%	

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Table 8: Test 2A Sand & Gravel Day 7 Groundwater Results

Analysis	Parameter	Control	50 g/L SP AAP	15 g/L SP AAP	32.4 g/L Permanganat	19.5 g/L Permanganate	Units
VOCs	1,1,1-Trichloroethane	4.2	6.7	7.1	5.3	11	μg/L
	Benzene	ND (2.0)	ND (1.0)	1.3	ND (4.0)	ND (4.0)	μg/L
	cis-1,2-Dichloroethene	2.7	ND (1.0)	ND (1.0)	ND (4.0)	ND (4.0)	μg/L
	Methyl Acetate	ND (5.0)	ND (2.5)	ND (2.5)	5.4 J	8.9 J	μg/L
	Tetrachloroethene	1.2 J	2.8	1.0	ND (4.0)	ND (4.0)	μg/L
	Trichloroethene	120	8.6	17	ND (4.0)	ND (4.0)	μg/L
	2-Butanone (MEK)	ND (20)	2.1 J	14	13 J	43	μg/L
	Acetone	ND (20)	60	160	830	1,300	μg/L
	Total VOCs =	128	78.1	200.4	840.7	1,362.9	μg/L
Lab	рН	8.51	13.16	12.65	7.72	7.62	SI Units
Parameters	ORP	320	220	146	621	626	mV
	Initial Oxidant	NA	50.00	15.00	32.43	19.46	g/L
	Oxidant (Day 7)	NA	30.66	9.10	24.75	13.38	g/L
	% Oxidant Consumption		38.7%	39.4%	23.7%	31.3%	

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Table 9: Test 2A Sand & Gravel Day 22 Groundwater Results

Analysis	Parameter	Control	50 g/L SP AAP	15 g/L SP AAP	32.4 g/L KMnO4	19.5 g/L KMnO4	50 g/L SP AAP - Method Blank	32.4 g/L KMnO4 - Method Blank	Units
VOCs	Trichloroethene	190	47 J	88 J	ND (100)	ND (100)	ND (100)	ND (100)	μg/L
	Acetone	ND (1,000)	ND (1,000)	540 J	3,500	2,600	ND (1,000)	ND (1,000)	μg/L
	Total VOCs =	190	47	628	3,500	2,600	0.0	0.0	μg/L
Lab									SI
Parameters	pН	8.52	12.84	10.76	8.23	7.84	13.15	10.08	Units
	ORP	460	312	296	599	611	244	573	mV
	Initial Oxidant	NA	50.00	15.00	32.43	19.46	50.00	32.43	g/L
	Oxidant (Day 22)	NA	21.42	5.46	16.38	10.89	46.13	30.65	g/L
	% Oxidant Consumption =		57.2%	63.6%	49.5%	44.0%	7.7%	5.5%	

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Table 10: Test 2A Sand & Gravel Day 22 Soil Results

Analysis	Parameter	Control	50 g/L SP AAP	15 g/L SP AAP	32.4 g/L KMnO4	19.5 g/L KMnO4	50 g/L SP AAP - Method Blank	32.4 g/L KMnO4 - Method Blank	Units
VOCs	Trichloroethene	9,600 J	ND (11,000)	ND (13,000)	ND (12,000)	ND (11,000)	ND (12,000)	ND (13,000)	μg/Kg
	Total VOCs =	9,600	0.0	0.0	0.0	0.0	0.0	0.0	μg/Kg

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

9. CLAY & SILT ISCO TREATABILITY STUDY - TEST 2B

9.1 Study Set up

On August 14th, 2018, a batch test was set up as outlined below (**Table 11**). One control, two alkaline activated (Portland cement) sodium persulfate (SP) treatments, two alkaline activated (hydrated lime) potassium persulfate (KP), two potassium permanganate treatments, one high dose alkaline activated sodium persulfate method blank, one high dose alkaline activated potassium persulfate method blank and one high dose potassium permanganate method blank were evaluated.

Sacrificial bags (7"x6" Teflon bags) were set up for the control and treatments. Three bags for each control & oxidant treatments, and one bag for each method blank were set up to allow for sampling of one bag at each sampling event.

Table 11: Clay & Silt Batch Test Summary

Table 11. Glay & Oilt Batch Test Guniniary										
Treatment	Dose (g/kg)	Activator	Soil or Clean Sand (g)	SP or KP (g)	Portland cement or Hydrated Lime (g)	Potassium Permanganate (g)	Groundwater or DI water (mL)	Sampling Events (days)		
Control	-	None	300	-	-	-	25	3, 7, 21		
High SP AAP	46	Portland Cement	300	13.8	15.01	-	35	3, 7, 21		
Low SP AAP	23	Portland Cement	300	6.9	7.51	-	33	3, 7, 21		
High KP AAP	52	Hydrated Lime	300	15.66	4.67	-	60	3, 7, 21		
Low KP AAP	26	Hydrated Lime	300	7.83	2.34	-	35	3, 7, 21		
High Permanganate	23	None	300	-	-	6.77	30	3, 7, 21		
Low Permanganate	4.50	None	300	-	-	1.35	27	3, 7, 21		
High SP Method Blank	46	Portland Cement	300	13.8	15.01	-	70	21		
High KP Method Blank	52	Hydrated Lime	300	15.66	4.67	-	70	21		
High Permanganate Method Blank	23	None	300	-	-	6.77	70	21		

The control and treatment bags were set up with 300g of site soil, enough groundwater was added to each bag to reach 90% moisture content. Clean sand and DI water was used to set up the method blank bags. A saturated stock solution of 1,1,1-Tricloroethane (1,1,1-TCA) was prepared (Ultra Scientific, 1,1,1-Trichloroethane Neat) and 4.6mL of stock solution was added to each control and treatment bag. No 1,1,1-TCA was added to the method blank bags. After the bags were set up, they were kneaded by hand to mix all of the components. The bags were stored at room temperature and in the dark.

Geochemical parameters such as ORP, pH and residual persulfate were monitored in the groundwater. The VOC samples were submitted to TestAmerica Buffalo on ice via courier under standard chain of custody.

9.2 Results

Results of VOCs, residual oxidant and pH/ORP can be found in Tables 12-15.

Table 12: Test 2B Clay & Silt Day 3 Soil Results

Analysis	Parameter	Control	46 g/Kg SP AAP - Portland Cement	23 g/Kg SP AAP - Portland Cement	52 g/Kg KP AAP - Hydrated Lime	26 g/Kg KP AAP - Hydrated Lime	23 g/Kg Permanganate	4.5 g/Kg Permanganate	Units
Lab	Trichloroethene	40,000	14,000 J	16,000	16,000 J	15,000 J	11,000 J	14,000 J	μg/Kg
	1,1,1- Trichloroethane	ND (16,000)	ND (17,000)	4,300 J	4,600 J	5,500 J	ND (16,000)	ND (17,000)	μg/Kg
	Total VOCs =	40,000	14,000	20,300	20,600	20,500	11,000	14,000	μg/Kg
Lab Parameters	pН	6.93	10.98	10.53	10.29	8.68	7.72	7.75	SI Units
	ORP	215	440	444	512	598	721	665	mV
	Initial Oxidant	NA	46.00	23.00	52.18	26.09	22.57	4.51	g/Kg
	Oxidant (Day 3)	NA	14.70	4.85	17.89	7.63	9.64	0.28	g/Kg
	% Oxidant Consumption =		68.0%	78.9%	65.7%	70.8%	57.3%	93.8%	

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

B = Compound was found in the blank and sample.

Table 13: Test 2B Clay & Silt Day 7 Soil Results

Analysis	Parameter	Control	46 g/Kg SP AAP - Portland Cement	23 g/Kg SP AAP - Portland Cement	52 g/Kg KP AAP - Hydrated Lime	26 g/Kg KP AAP - Hydrated Lime	23 g/Kg Permanganate	4.5 g/Kg Permanganate	Units
VOCs	Trichloroethene	47,000	12,000 J	17,000	14,000 J	18,000	ND (17,000)	20,000	μg/Kg
	1,1,1- Trichloroethane	5,500 J	ND (18,000)	ND (15,000)	ND (20,000)	ND (18,000)	5,400 J	ND (18,000)	μg/Kg
	Total VOCs =	52,500	12,000	17,000	14,000	18,000	5,400	20,000	μg/Kg
Lab Parameters	рН	6.65	10.67	10.48	9.65	7.70	7.88	7.86	SI Units
	ORP	283	442	501	586	617	689	602	mV
	Initial Oxidant	NA	46.00	23.00	52.18	26.09	22.57	4.51	g/Kg
	Oxidant (Day 7)	NA	14.27	3.76	17.41	6.56	9.73	0.00	g/Kg
	% Oxidant Consumption =		69.0%	83.7%	66.6%	74.8%	56.9%	100%	

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

B = Compound was found in the blank and

sample.

Table 14: Test 2B Clay & Silt Day 21 Soil Results

Analysis	Parameter	Control	46 g/Kg SP AAP - Portland Cement	23 g/Kg SP AAP - Portland Cement	52 g/Kg KP AAP - Hydrated Lime	26 g/Kg KP AAP - Hydrated Lime	23 g/Kg Permanganate	4.5 g/Kg Permanganate	Units
VOCs	Trichloroethene	46,000	5,600 J	16,000 J	6,000 J	11,000 J	ND (18,000)	29,000	μg/Kg
	Total VOCs =	46,000	5,600	16,000	6,000	11,000	0.0	29,000	μg/Kg
	% Removal of VOCs =		87.8%	65.2%	87.0%	76.1%	100%	37.0%	
Lab Parameters	рН	8.39	9.57	9.85	8.92	8.30	8.53	8.46	SI Units
	ORP	559	429	440	528	515	686	488	mV
	Initial Oxidant	NA	46.00	23.00	52.18	26.09	22.57	4.51	g/Kg
	Oxidant (Day 21)	NA	6.81	0.77	15.03	1.62	8.37	0.00	g/Kg
	% Oxidant Consumption =		85.2%	96.7%	71.2%	93.8%	62.9%	100%	

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Table 15: Test 2B Clay & Silt Day 21 Method Blank Results

Analysis	Parameter	46 g/Kg SP AAP - Portland Cement Method Blank	52 g/Kg KP AAP - Hydrated Lime Method Blank	23 g/Kg Permanganate Method Blank	Units
VOCs	Trichloroethene	ND (13,000)	ND (13,000)	ND (13,000)	μg/Kg
	Total VOCs =	0.0	0.0	0.0	μg/Kg
	% Removal of VOCs =	100%	100%	100%	
Lab	pH	10.89	11.46	9.44	SI Units
Parameters	ORP	394	395	553	mV
	Initial Oxidant	46.00	52.18	22.57	g/Kg
	Oxidant (Day 21)	26.31	28.57	13.61	g/Kg
	% Oxidant Consumption =	42.8%	45.3%	39.7%	

10. POTENTIAL EVOLUTION OF PFAS - TEST 3

10.1 Study Handling and PFAS Baseline Sampling

For the Potential Evolution of PFAS (Test 3) the same procedures were followed as outlined in the Method Blank Study (Test 1). Materials that do not contain PFAS such as such as HDPE and polypropylene were used whenever possible. Other materials were thoroughly rinsed before use. Teflon materials were not used during the method blank study. The same dedicated cleaned fume hood, handling procedures and equipment were used during set up as were used in Test 1 – Method Blank.

The previously untouched soil was sent for baseline PFAS analysis. Each were homogenized prior to being sampled. The previously untouched groundwater was homogenized by pouring it into the empty, PFAS-free certified DI H2O water container that had been received from TestAmerica Buffalo. The baseline samples were sent to TestAmerica Buffalo, on ice, via courier under standard chain of custody.

10.2 PFAS Baseline Results

The summary of results from the baseline PFAS sampling are shown below in **Table 16 –17**.

Table 16: Baseline Groundwater PFAS Results

Analysis	Parameter	Composite GW	Units
PFAS	Perfluorobutanoic acid (PFBA)	2.9	ng/L
	Perfluoropentanoic acid (PFPeA)	3.3	ng/L
	Perfluorohexanoic acid (PFHxA)	6.4	ng/L
	Perfluoroheptanoic acid (PFHpA)	12	ng/L
	Perfluorooctanoic acid (PFOA)	1,600	ng/L
	Perfluorononanoic acid (PFNA)	5.2	ng/L
	Perfluorodecanoic acid (PFDA)	2.1	ng/L
	Perfluorobutanesulfonic acid (PFBS)	1.0 J	ng/L
	Perfluorohexanesulfonic acid (PFHxS)	ND (0.72)	ng/L
	Perfluorooctanesulfonic acid (PFOS)	2.6	ng/L
	Total PFAS =	1,636	ng/L

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Table 17: Baseline Soil PFAS Results

Analysis	Parameter	Homogenized Test 2A Sand	Homogenized Test 2B Silt	Units
PFAS	Perfluorobutanoic acid (PFBA)	0.063 J	0.047 J	μg/Kg
	Perfluoropentanoic acid (PFPeA)	ND (0.096)	ND (0.11)	μg/Kg
	Perfluorohexanoic acid (PFHxA)	ND (0.052)	ND (0.060)	μg/Kg
	Perfluoroheptanoic acid (PFHpA)	ND (0.036)	ND (0.041)	μg/Kg
	Perfluorooctanoic acid (PFOA)	2.5	0.38	μg/Kg
	Perfluorononanoic acid (PFNA)	ND (0.045)	ND (0.051)	μg/Kg
	Perfluorodecanoic acid (PFDA)	0.015 J	ND (0.031)	μg/Kg
	Perfluorobutanesulfonic acid (PFBS)	ND (0.031)	ND (0.036)	μg/Kg
	Perfluorohexanesulfonic acid (PFHxS)	ND (0.039)	ND (0.044)	μg/Kg
	Perfluorooctanesulfonic acid (PFOS)	ND (0.25)	ND (0.29)	μg/Kg
	Total PFAS =	2.5	0.42	μg/Kg
	Average Total PFAS =	1	μg/Kg	

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

10.3 Study Set Up

On August 15th, 2018, a batch test was set up as outlined below (**Table 18**). Test conditions included a control, a NaOH control system (no persulfate), an alkaline activated sodium persulfate system and a potassium permanganate system were evaluated.

The study was set up in 1L PFAS-free certified containers provided by TestAmerica. All lab work was done in a cleaned fume hood, dedicated for the method blank study. No other work was done in the fume hood for the duration of the study. The PFAS-free water provided by TestAmerica was used to prepare the 25% NaOH solution used.

Table 18: Batch test summary

Treatment	Clay & Silt Site Soil (g)	Sand & Gravel Site Soil (g)	SP (g)	25% NaOH (g)	Potassium Permanganat e (g)	Samplin g Events (days)
Control	500	500	-	-	-	21
Control+NaOH	500	500	-	44.65	-	21
SP AAP	500	500	44.65	32.47	-	21
Permanganate	500	500	-	-	12.11	21

The control and treatment bottles were set up with 500 g of a 50:50 mix of clay & silt site soil and sand & gravel site soil. All bottles had 750 g of site groundwater added.

The reaction jars were sampled by pouring off the groundwater into 2x250 mL PFAS free certified bottles provided by TestAmerica Buffalo. The soil samples were submitted in the same 1L bottle that the study was set up in. The PFAS samples were submitted to TestAmerica Buffalo on ice via courier under standard chain of custody.

10.4 Results

Data of PFAS results are below in **Tables 19 – 20**.

 Table 19: Test 3 Day 21 Groundwater Results

Analysis	Parameter	Control A	Control B	Control C	NaOH Control A	NaOH Control B	NaOH Control C	SP AAP A	SP AAP B	SP AAP C	KMnO4 A	KMnO4 B	KMnO4 C	Units
PFAS	Perfluorobutanoic acid	7.1												
	(PFBA)	7.1	6.9	7.4	ND (2.9)	0.31 U J	0.28 U J	15 J	8.9	12	R	R	R	ng/L
	Perfluoropentanoic acid													1
	(PFPeA)	5.1	5.1	4.8	6.9	5.3	6.8	6.5	5.6	5.9	13 J	19 J	2.5 U J	ng/L
	Perfluorohexanoic acid													1
	(PFHxA)	11	11	11	10	10	11	14	13	12	14	12	16	ng/L
	Perfluoroheptanoic acid													(
	(PFHpA)	17	16	17	18	19	20	23	21	22	23	21	24	ng/L
	Perfluorooctanoic acid	4 400 1	4 000 1	4.500.1	4 000 1	4 700 1	4 000 1	0.400.1	4 000 1	0.000 1	4.000	4.700	4.000	
	(PFOA)	1,400 J	1,600 J	1,500 J	1,900 J	1,700 J	1,900 J	2,100 J	1,900 J	2,000 J	1,900	1,700	1,900	ng/L
	Perfluorononanoic acid										l			
	(PFNA)	5.3	5.8	5.3	12	11	11	12	13	12	11	12	12	ng/L
	Perfluorodecanoic acid		4 = 1	4.0.1	0 -	0.7				7.0			40	
	(PFDA)	1.7	1.5 J	1.3 J	6.7	6.7	6.4	6.6	7.6	7.2	8.2 J	8.7 J	10	ng/L
	Perfluoroundecanoic acid	ND (0.90)	ND (0.88)	ND (0.92)	0.00	0.00111	401	ND (0.00)	441	ND (0.00)	ND (5.5)	ND (5.5)	ND (5.5)	
	(PFUnA)	ND (0.90)	(0.00) עווו	ND (0.92)	0.99 J	0.98 U J	1.0 J	ND (0.89)	1.1 J	ND (0.86)	140 (5.5)	ND (3.3)	ND (5.5)	ng/L
	Perfluorododecanoic acid	ND (0.45)	ND (0.44)	ND (0.46)	ND (0.40)	0.50.1	ND (0.45)	ND (0.44)	ND (0.45)	ND (0.40)	ND (2.8)	ND (2.8)	ND (2.8)	
	(PFDoA) Perfluorotetradecanoic acid	ND (0.43)	ND (0.44)	ND (0.40)	ND (0.46)	0.50 J	ND (0.45)	ND (0.44)	ND (0.45)	ND (0.43)	ND (2.0)	ND (2.0)	ND (2.0)	ng/L
	(PFTeA)	ND (0.24)	ND (0.23)	ND (0.24)	ND (0.24)	ND (0.26)	ND (0.24)	ND (0.23)	ND (0.24)	ND (0.23)	ND (1.5)	1.8 J	ND (1.5)	ng/L
	Perfluorobutanesulfonic acid	ND (0.24)	140 (0.20)	110 (0.24)	ND (0.24)	ND (0.20)	ND (0.24)	ND (0.23)	ND (0.24)	ND (0.23)	140 (1.0)	1.0 J	140 (1.5)	IIQ/∟
	(PFBS)	0.90 J	0.96 J	0.87 J	1.1 J	1.0 J	1.2 J	1.2 J	1.2 J	1.3 J	1.4 J	1.3 J	1.7 J	ng/L
	Perfluoroheptanesulfonic acid	0.90 0	0.90 3	0.07 3	1.1 J	1.0 0	1.2 J	1.2 J	1.2 J	1.5 J	1.4 J	1.5 0	1.7 J	IIg/∟
	(PFHpS)	ND (0.16)	ND (0.15)	ND (0.16)	ND (0.16)	ND (0.17)	ND (0.15)	0.16 J	ND (0.15)	0.19 J	ND (0.95)	ND (0.95)	ND (0.95)	ng/L
	Perfluorooctanesulfonic acid	112 (0110)	(01.0)	(0.10)	140 (0.10)	140 (0.17)	110 (0.10)	0.100	110 (0.10)	0.100	112 (0.00)	(0.00)	112 (0.00)	IIG/L
	(PFOS)	3.6	3.4	3.4	16	17	16	17	17	18	18	17	20	ng/L
	Perfluorooctane	0.0	0.1	0.1		.,			.,		"	.,		
	Sulfonamide (FOSA)													(
		ND (0.29)	ND (0.28)	ND (0.29)	0.63 J	0.64 J	0.53 J	0.95 J	1.0 J	1.0 J	ND (1.8)	ND (1.8)	ND (1.8)	ng/L
	Total PFAS =	1,452	1,651	1,551	1,972	1,772	1,975	2,196	1,989	2,092	1,989	1,793	1,984	ng/L

U J = The analyte was analyzed for but was not detected. The reported quantitation limits are approximate and may be inaccurate or imprecise.

Table 20: Test 3 Day 21 Soil Results

Analysis	Parameter	Control A	Control B	Control C	NaOH Control A	NaOH Control B	NaOH Control C	SP AAP A	SP AAP B	SP AAP C	KMnO4 A	KMnO4 B	KMnO4 C	Units
PFAS	Perfluorooctanoic acid (PFOA)	4.3	4.5	3.9	3.4	3.9	2.9	3.0	2.4	2.8	2.9	2.3	2.1	μg/Kg
	Total PFAS =	4.3	4.5	3.9	3.4	3.9	2.9	3.0	2.4	2.8	2.9	2.3	2.1	μg/Kg
Average Total PFAS =			4.2	•		3.4			2.7	•		2.4		μg/Kg

J = The analyte is an estimated quantity. The associated numerical value is an approximate quantitation of the analyte in the sample.

R = The data is unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.

ERM has over 140 offices Across the following countries worldwide

Argentina The Netherlands Australia **New Zealand** Belgium Panama Brazil Peru Canada Poland China **Portugal** Colombia **Puerto Rico** France Romania Germany Russia Hong Kong Singapore **South Africa** Hungary India Spain Indonesia Sweden Ireland Taiwan Italy Thailand **United Arab** Japan **Emirates**

Kazakhstan UK Korea USA Malaysia Vietnam

Mexico

ERM's Melville Office

105 Maxess Road - Suite 316 Melville, New York 11747-3857 T: +1 631-756-8900

www.erm.com/US

ERM has over 140 offices Across the following countries worldwide

Argentina The Netherlands Australia **New Zealand** Belgium Panama Brazil Peru Canada **Poland** China **Portugal** Colombia **Puerto Rico** France Romania Germany Russia Hong Kong Singapore **South Africa** Hungary Spain India Indonesia Sweden Ireland Taiwan Italy Thailand **United Arab** Japan **Emirates**

Kazakhstan UK Korea USA Malaysia Vietnam

Mexico

ERM's Melville Office

105 Maxess Road – Suite 316 Melville, New York 11747-3857 T: +1 631-756-8900

www.erm.com/US