

## Taconic Plastics Remedial Investigation – Progress Update

Site Number: 442047

Site Location: 136 Coonbrook Road, Petersburgh, NY

## **Agenda**

- 1. Introduction
- 2. Superfund
  - History
  - Process
  - Goals
- 3. Site Location and Description

- 4. Site History
- 5. RI Phase I Data Summary
- 6. RI Phase 2a Workplan
- 7. MCLs and POET reassessment
- 8. Q & A



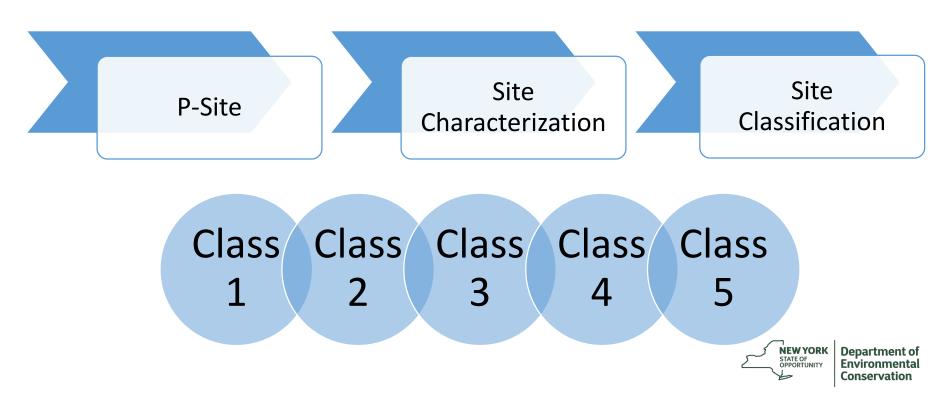
## **State Superfund**



### **History**

- NYSDEC was created in April 1970 (on Earth day)
- State Superfund (SSF) was created in 1979 Title 13 of Article 27 of the Environmental Conservation Law (ECL).
- Mission
  - Identify and characterized suspected inactive hazardous waste disposal sites
  - Investigate and remediate sites that pose significant threat to public health and/or the environment.

Investigations are performed according to the regulations set forth in Title 6 of NYCRR part 375.


And the technical guidance used to conduct investigations and remediation are described in DER-10 DEC Program Policy.

### **Terminology:**

- Investigation: Systematic Inquiry
- ☐ Site History
- Structures and potential sources of contamination
- Sample soil, groundwater, surface water, sediment, and soil vapor
- Remediation: The act or process of remedying
- Removal of contamination,
- Containment of contamination (physical barriers)
- Treatment of contamination (ISCO, pump and treat, etc.)
- Monitored natural attenuation



## Superfund



## Site Characterization (SC)

- SC is initial investigation of potentially contaminated site ("P" site) – generally 1-2 years
  - Records search; field program
- Goal -- Determine if:
  - Hazardous waste disposed, and
  - Does it pose a significant threat?
- SC determines whether to list site on Registry and how to classify it

## **Significant Threat**

Created by current or reasonably foreseeable:

- Exposure pathways that result in significant adverse impacts to public health as determined by the NYS DOH
- Significant adverse impacts to biota as determined by the NYSDEC
- Significant environmental damage

Characteristics and impacts of the contamination must be reviewed together.

#### **Site Classification**

- Sites are classified according to their threat to public health and the environment
- DEC's investigation and remediation efforts focus on Class 2 sites
   Class 2 sites are a significant threat to public health/environment; action required
- The number of sites on the Registry changes throughout the year as sites are added, reclassified or delisted
- Currently 440 Class 2 sites on the Registry
- Class 4 sites (434 on the Registry) are remediated but require ongoing site management





#### **Taconic Plastics**

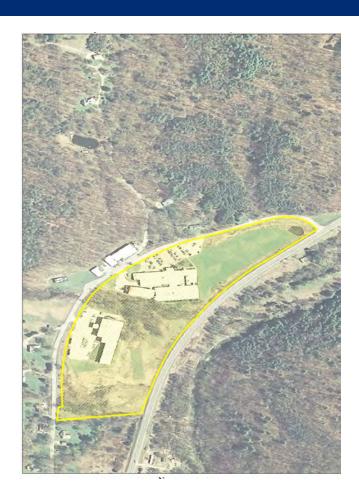


### **Project Type and Status**

#### **Current Status:**

- Class 2 Site
- Order on Consent signed with Tonoga (dba Taconic) on November 11, 2016.
- Remedial investigation is underway (began in 2018)
- Remedial Investigation: PFAS identified both onsite and offsite
- PFOA identified in the overburden groundwater on- and off-site at concentrations exceeding USEPA Health Advisory and NYS MCL for PFOA in drinking water.
- PFOA identified in the bedrock aquifer via sampling of local residential wells, town water supply wells, and of the onsite production wells.




## **Objective of Project Update**

- 1) Review Data from Phase 1
- 2) Review upcoming plans for Phase 2



# Site Location and Description





#### Location:

- Location: 136 Coonbrook Road
- Size: 23.54 acres
- Eastern Rensselaer County, about 4.5 miles west of the VT and MA boarder.
- In the Taconic Mountain Range "middle taconics"
- Within the river valley of the Little Hoosic River
- 1 mile south of Petersburgh and 5 miles north of Berlin.



## **Site History**

#### Ownership:

- Founded in 1961 by Lester Russell
- Acquisition of current 23.54 acres occurred between 1969 and 1993.
- Currently Tonoga Inc.

#### **Historic Operations**

Taconic began operations in 1961.





#### Land Use:

- Manufacturing facility where PTFE coating of fiberglass fabric is performed
- 11 onsite building. 1 to 2 stories each.
- The Little Hoosic River is located to the East of the site, on the east side of Route 22, and flows to the north and into the Hoosic River.
- An unnamed tributary of the Little Hoosic River flows through the center of the site, another is located just south of the site.
- The nearest business is located in Petersburgh, just under a mile North of the site
- The site is surrounded by residential properties, many of which have been purchased by Taconic and are used as residential rental properties, or as additional storage.



#### LEACH FIELD (APPROXIMATE) FORMER FORMER OUTFALL 001 DRY WELL FORMER OUTFALL 004 (APPROXIMATE) FORMER OUTFALL 003 (APPROXIMATE) LEACH FIELD (OUTFALL 002) (APPROXIMATE) SEPTIC TANK (TO OUTFALL 002) 97-1-64.1 WASTEWATER USTS SEPTIC TANKS (ONE ACTIVE, ONE FORMER) (TO OUTFALL 002) LEACH FIELD (OUTFALL 005) (APPROXIMATE) BARN WAREHOUSE 103-2-1.28 Tax parcels for Taconic-owned properties urce: Esri, DigitalGlobe, GeoEye, Earthstar Geograph IES/Afrous DS, USDA, USGS, AEX, Getmapping, Aer Building numbers shown on buildings. "WWTP" designates wastewater treatment plant swisstopo, and the GIS 'UST' designates underground storage tank.

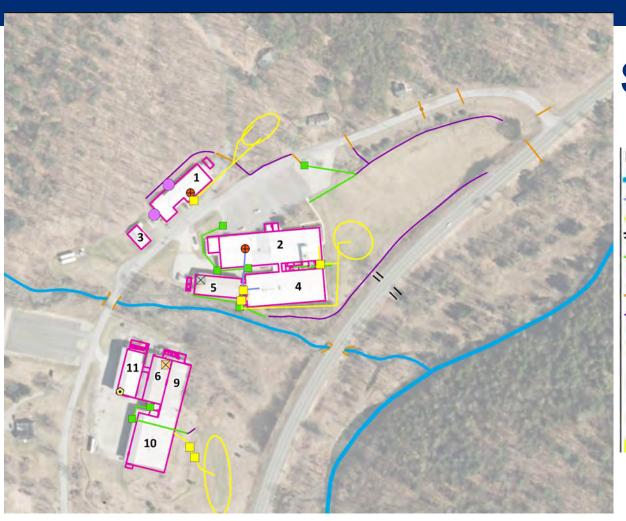
#### Site Plan

#### LEGEND

Site Outline

Stream (Dashed where Intermittent)

Pond


Production Well

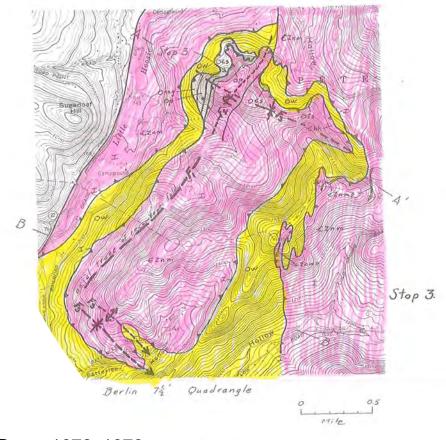
Surface Water Sample Location (Sampled 12/9/16)

Existing Overburden Monitoring Well

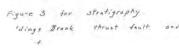
Abandoned Overburden Monitoring Well



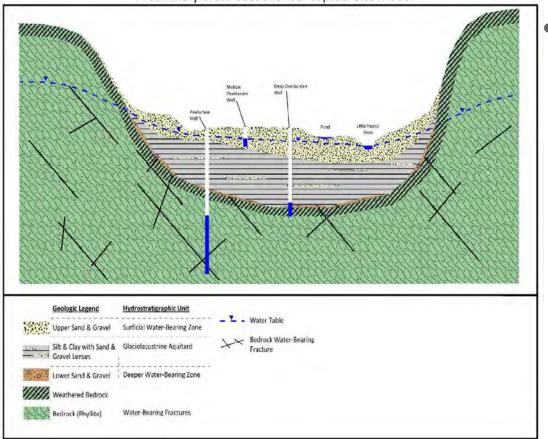



#### **Site Plan**



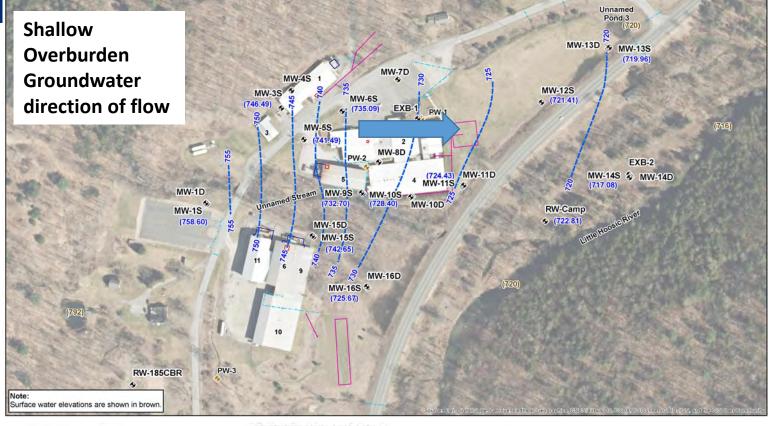

NEW YORK STATE OF OPPORTUNITY Department of Environmental Conservation

## **Geology and Hydrogeology**


- Bedrock is phyllite. The phyllite in the region is highly deformed from the Taconic Orogeny (mountain building event).
- Bedrock is overlain by unconsolidated soils and sediment – this overburden can be thick in the valley
  - depth to bedrock at the site, in the valley, is between 20 and 110 feet below ground surface.
- Bedrock outcrops on both sides of the valley.
- The hillsides have very thin soil cover.



Potter, 1972, 1978



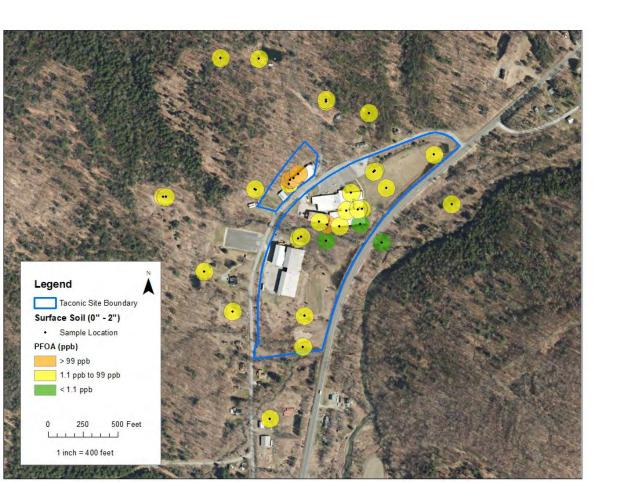

#### Preliminary Cross-Sectional Conceptual Site Model



- Overburden consists of three units:
  - Shallow overburden
     Sand and Gravel
     (~5-25 feet thick)
  - Silts and clay (~5 to 60 feet thick)
  - Sand and gravel (thin or non-existent)





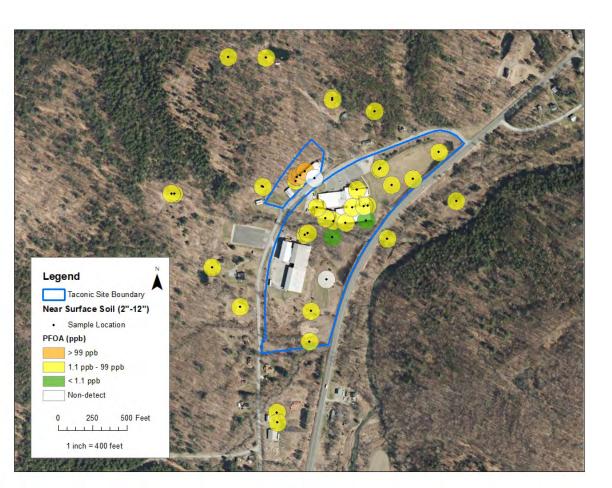



#### Remedial Investigation Phase 1 Summary and Results

#### Remedial Investigation Sampling

- 25 Surface water, and 15 sediment
- 40 discrete interval groundwater samples,
- 80 surface soil, and 40 subsurface soil,
- 15 monitoring well locations (6 with 2 intervals), 2
   Exploratory Boreholes
- waste water, and sludge samples.






## **Soil Sampling**

#### Range

- Maximum detection 310 ng/g
- Minimum detection 0.24 ng/g Sample depths
- "A" interval 0"-2"



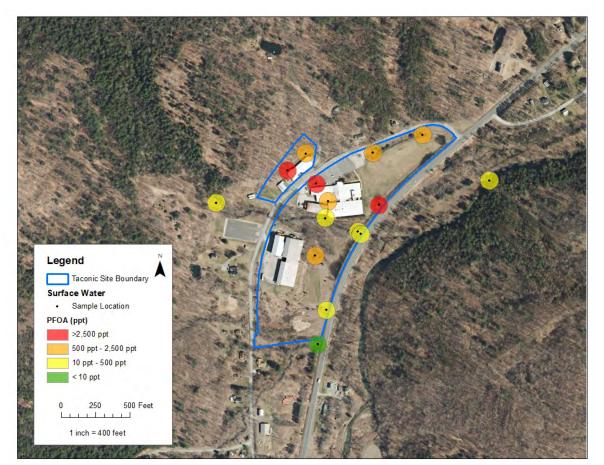



## **Soil Sampling**

#### Range

- Maximum detection 1100 ng/g
- Minimum detection 0.87 ng/g Sample depths
- "B" interval 2"-12"



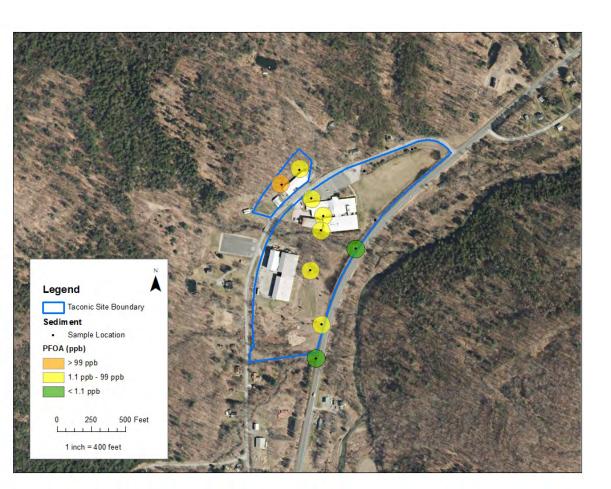



### **Soil Sampling**

#### Range

- Maximum detection 43000 ng/g
- Minimum detection 0.068 ng/g
- PFOS only present in "source location" soil samples, and not in every interval
   Sample depths
- > 12" below ground surface






## **Surface Water Sampling**

#### Surface Water

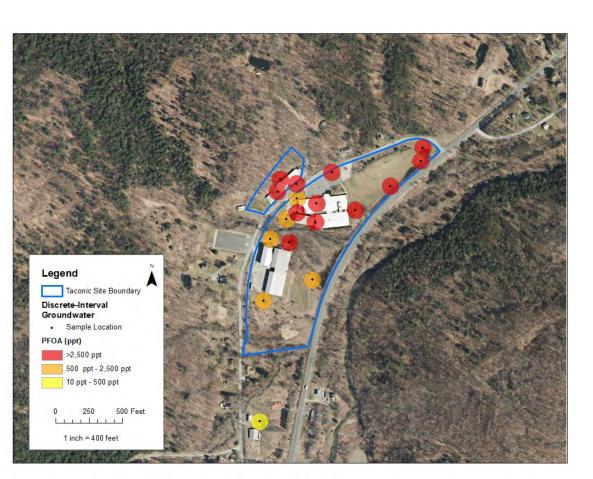
- Maximum detection 14 ug/L
- Minimum detection 0.015 ug/L
- PFOA detected in every sample
- PFOS inconsistently detected, detections range from 0.00039-0.0026 ug/L in surface water samples collected





## **Sediment Sampling**

- Maximum detection 610 ng/g
- Minimum detection 0.54 ng/g
- PFOA detected in every sample
- PFOS ND in sediment, except behind Building 1






## **Bedrock Groundwater**

Detections range from: 2.1 to 8.1 ug/L





## **Overburden Groundwater Sampling**

- PFOA detected in every sample
  - Range from 0.068 to 5600 ug/L
- PFOS detected inconsistently at lower concentration
  - Maximum detection 0.014 ug/L



### **Conceptual Site Model**

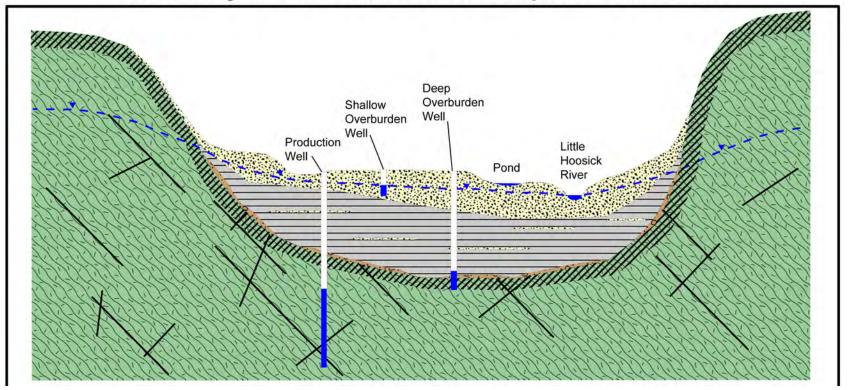
#### **Contaminants of Concern:**

PFAS

#### Source:

- Historical disposal of industrial waste via on-site drywells and outfalls
- Historical Aerial deposition

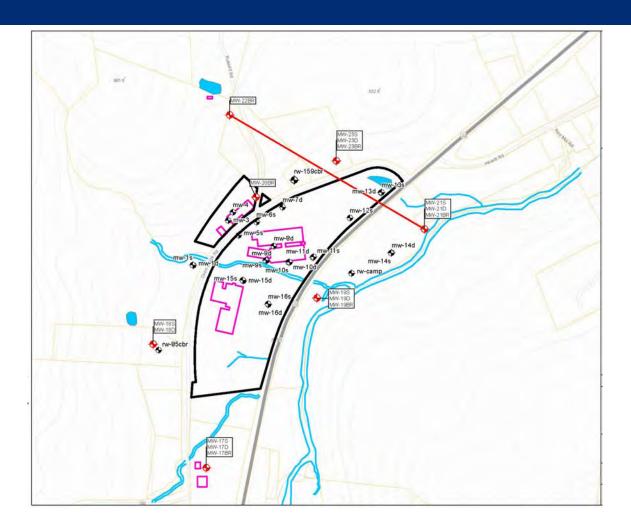
#### **Migration and Pathways:**


- Overburden groundwater aquifer (shallow and deep) on- and off-site
- Bedrock Aquifer
- Migration toward the Little Hoosic River

#### **Exposure Pathway**:

- Drinking water
- Surface soil
- Surface water

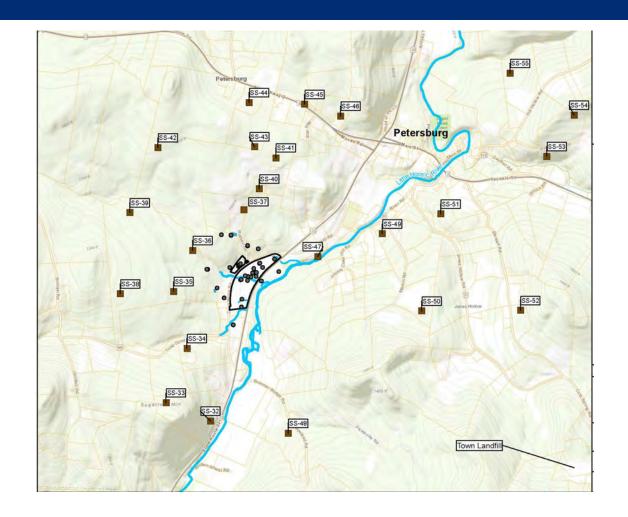



#### **Preliminary Cross-Sectional Conceptual Site Model**





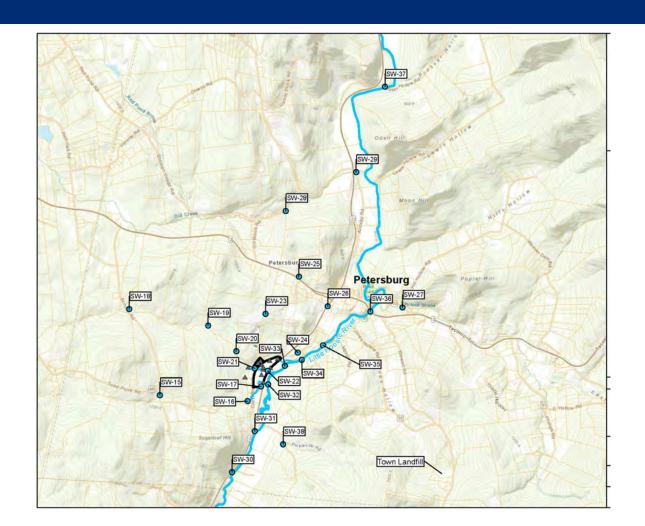
### Remedial Investigation Phase 2a


- The Phase 2a workplan was approved on September 8<sup>th</sup>.
  - Geophysical Transect across the northern end of the site
  - Bedrock investigation, coring, logging, and well installation and sampling
  - Additional offsite soil sampling to assess aerial deposition
  - Additional surface water evaluations, including two baseline sampling events, and the installation of staff gauges upstream and downstream of the facility in the Little Hoosic.



Geophysical Transect and Bedrock Investigation

- Multichannel analysis
- Resistivity






#### **Soil Sampling Locations**

- 0-2"
- 2-12"
- 12-24" (1/3 of locations)
- 5 locations will be tested for Replacement compounds





#### Surface Water and Sediment Sampling

- 2 rounds of samples, 4 months apart
- Second round will include some co-located sediment sampling.
- 5 locations to be tested for replacement compounds



## Maximum Contaminant Levels and POET Reassessments



#### **Maximum Contaminant Levels for PFAS**

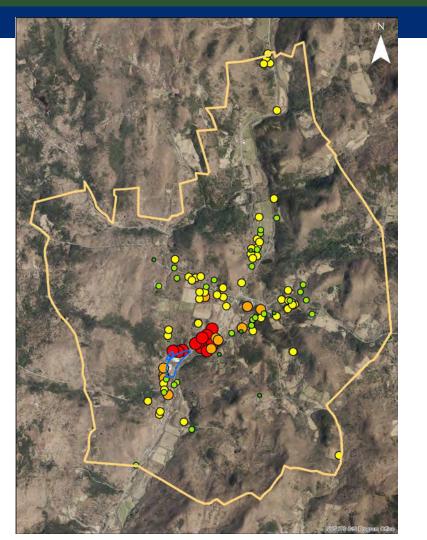
- Maximum Contaminant Levels (MCLs) adopted for PFOA & PFOS
  - 10 ppt for PFOA
  - 10 ppt for PFOS
- Public water systems are required to test for PFOA & PFOS
  - MCLs are set well below levels known or estimated to cause health effects
  - Exceedances indicate a need to reduce the levels to meet the MCLs
- MCLs also used to guide actions for private wells



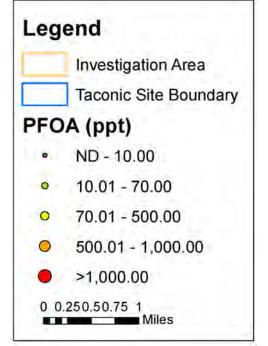


### **Private Wells: Water Quality Reassessment**

- Lower Screening Values (10 ppt) established
- Determine the need for mitigation, resampling, or other action (monitoring)
- Reach out to owners who previously declined treatment or an alternate water source
  - Communicate lower drinking water standards
  - Offer to retest well water or,
  - If past data indicate, offer treatment without retesting







#### Petersburgh Reassessment Program Priorities

- Previously-tested water supplies w/o a treatment system
- If a previous drinking water sample result was:
  - ≥ 20 ppt: Treatment be offered w/o resampling
  - ≥ 10 ppt and < 20: Resample well water
  - ≥ 5 ppt and < 10: Resample well water
  - < 5 ppt: No resampling necessary</li>
- Upon Receipt of data, DOH will provide a recommendation to the homeowner





# PFOA concentrations in Raw water and Pre-GAC drinking water samples





Department of Environmental Conservation

#### **Thank You**

NYS Department of Environmental Conservation NYS Department of Environmental Health

Barbara Firebaugh, P.G.

barbara.firebaugh@dec.ny.gov

Ian Beilby, P.E.

ian.beilby@dec.ny.gov

Justin Deming, P.G.

justin.deming@health.ny.gov

**Phone:** 518.402.7860

Phone: 518.402.9676

**TACONIC Documents and Information:** 

https://gisservices.dec.ny.gov/gis/dil/index.html?rs=442047

