

February 27, 2018

New York Department of Environmental Conservation Division of Materials Management Bureau of Permitting & Planning 625 Broadway Albany, New York 12233-7260

Rapp Road Waste Management Facility, Permit No. 4-0101-00171-00011 RE: **Active Landfill Annual Report 2017** CHA Project No. 33862.1000.32000

Dear Sir or Madam:

As required by 6 NYCRR Part 360, CHA is submitting the 2017 NYSDEC Active Landfill Annual Report Form with attachments on behalf of the City of Albany.

We trust the attached information satisfies the applicable regulatory requirements for the facility. Should you have any questions or require additional information regarding this matter, please feel free to contact me at (518) 453-2860.

Sincerely,

Sumf M. Thy David M. Foley, P.E.

Section Manager – Solid Waste

/dmf

Attachments

cc: V. Schmitt, P.E., NYSDEC (w/attachments)

J. Giebelhaus, City of Albany (w/attachments)

J. Gorman, CHA

V:\Projects\ANY\K4\33862\Phase 1000 - 2018 Operational Assistance\Corres\2017 Annual Report Transmittal.docx

2017 ACTIVE SOLID WASTE LANDFILL ANNUAL REPORT

For

RAPP ROAD WASTE MANAGEMENT FACILITY ALBANY, NEW YORK

Prepared for:

City of Albany One Connors Boulevard Albany, NY 12204

February 2018

CHA Project No. 33862.1000.32000

Prepared by:

CHA III Winners Circle Albany, New York 12205

TABLE OF ATTACHMENTS

- Attachment A Active Landfill Annual Report
- Attachment B Primary Leachate Collection System Cleaning Logs and Observation Reports April and September 2017 Cleaning Events
- Attachment C 2017 Financial Assurance Estimate dated January 17, 2018
- Attachment D Albany Interim Landfill Environmental Monitoring Report Third Quarter 2017 dated January 18, 2018

_

ATTACHMENT A ACTIVE LANDFILL ANNUAL REPORT

MSW, INDUSTRIAL OR ASH LANDFILL ANNUAL/QUARTERLY REPORT

Submit the Annual Report no later than March 1, 2018.

- A. This annual/quarterly report is for the year of operation from January 01. 2017 to December 31.2017
- B. Quarterly Report for: Quarter 1 Quarter 2 Quarter 3 Quarter 4

SECTION 1 – FACILITY INFORMATION

			INFORMATION			
FACILITY NAME: Rapp Road Waste Management Fa	acility					
FACILITY LOCATION ADDRESS: 525 Rapp Road	FACI Albar		CITY:		STATE: NY	ZIP CODE12205
FACILITY TOWN:	FACI Albar		COUNTY:		ITY PHON 69-3651	NE NUMBER:
FACILITY NYS PLANNING UNIT: this report). CRSWMP	(A list of NYS Pla	annin	g Units can be found at	the end		SDEC GION #: 4
360 PERMIT #: 4-0101-00171-00011	DATE ISSUED: June 25, 2009		DATE EXPIRES: June 24, 2019			ITY CODE OR NUMBER:
FACILITY CONTACT: Mr. Joseph Giebelhaus	■pul □priv		CONTACT PHONE NUMBER: 518-869-365		CONTACT 18-869-68	FAX NUMBER: 25
CONTACT EMAIL ADDRESS: jgie	ebelhaus@albany	yny.g	ov			
7	OW	NER	INFORMATION			
OWNER NAME: City of Albany Dept. of General Ser			HONE NUMBER: 651		ER FAX NU 69-6825	JMBER:
OWNER ADDRESS: One Connors Blvd.	OWN Albar		ITY:		STATE: NY	ZIP CODE : 12204
OWNER CONTACT: Mr. Joseph Giebelhaus		_	ONTACT EMAIL ADDRE @albanyny.gov	SS:		
DE CONTRACTOR DE	OPER	ATO	R INFORMATION			
OPERATOR NAME: san	ne as owner			J	■public ⊏private	
<i>†</i>			FERENCES			
Preferred address to receive corres Other (provide):	spondence:	■ Fá	acility location address	□ Ow	ner addres	S
Preferred email address: ☐ Other (provide):		■ Fa	acility Contact	□ Ои	ner Contac	ot
Preferred individual to receive corre	espondence:	■ Fa	acility Contact	□ Ow	ner Contac	ct
_	s; Complete this for		Sections 1 and 22. If you	ı no lon	ger plan to	operate and wish to
relinquish your permit/registration a						

Waste Management Facility or Activity Notification Form" located at: http://www.dec.ny.gov/chemical/52706.html .

SECTION 2 - SITE LIFE

1.	Lan	dfill Capacity Utilized Last Year (reporting year).	
	a.	What is the estimated landfill capacity that was utilized during the r	eporting year?
		124,087	_ Cubic Yards of Airspace
	h	What is the actimated in city waste density for the reporting year?	Please do not repunits as pounds punits as pounds punits as pounds.
	b.	What is the estimated in-situ waste density for the reporting year?	Tana/Cubia Vard
		1.74	Tons/Cubic Yard
2.	Ren	naining Constructed Capacity	
	a.	What is the remaining capacity of the landfill that is already constru	cted?
		906,533	_ Cubic Yards of Airspace
	b.	What is the estimated remaining life of the constructed capacity?	
	Ö.	3 Years 2 Months	
		at <u>330,000</u> Tons/Year.*	
		*Please note that this tonnage rate must include all materials place	ed in the landfill, i.e., waste, soil,
		cover, alternative daily covers, etc.	
	C.	The tonnage rate reported under 2.b. is based on (select one):	
		The amount of materials placed in the landfill in the rep	orting year
		X Estimated future disposal	
		Permit limit	
		Other (explain):	
3.	Peri	mitted Capacity Still to be Constructed	
	a.	What is the remaining but not yet constructed landfill capacity that is	s authorized by a Part 360
		permit?	
		0 Cubic Yards of Airspace	
	b.	What is the projected life of capacity reported in 3.a?	
		N/A Years N/A Months	
		at <u>N/A</u> Tons/Year.*	
		* Please note that this tonnage rate must include all materials dispos	sed in the landfill, i.e., waste, and
		soil and alternative daily covers.	
	C.	The tonnage rate reported under 3.b. is based on (select one):	
		The amount of materials placed in the landfill in the rep	orting year
		Estimated future disposal	
		Permit limit	
		Other (explain): N/A	

4.	Capacity Proposed in a Part 360	Permit Application
		nsion proposed in a Part 360 permit application that has t but not authorized by a permit as of the end of the
	N/A	Cubic Yards of Airspace
5.	Estimated Potential Future Capac	city Not Permitted or in an Application (optional)
		any potential future expansion at the facility that is not posed in a Part 360 permit application that has been
	N/A	Cubic Yards of Airspace
	SECTION 3	- PRIMARY LEACHATE
Name	of off-site leachate treatment facility	y(s) utilized: Albany County Sewer System
Does tl	ne landfill have a constructed liner	and a leachate collection system?YesNo
treatme (Note:	ent, and recirculated each month, a	t was collected, removed for on-site and off-site and the corresponding Acreage, by Cell: d not include the volume of leachate ion and removal systems.)
		For each cell, please report the acreage and the primary leachate amount.

	P	RIMARY L	EACHATE C	OLLECTED	(GALLONS)		PRIMARY LEACHATE TREATED OFF SITE (GALLONS)							
	Total Facility 56.94 Acres	Cell 2Acres	Cell 3Acres	Cell 4Acres	Cell 5Acres	Cell 6Acres	Total Facility 56.94 Acres	Cell 2Acres	Cell 3Acres	Cell 4Acres	Cell 5Acres	Cell 6Acres		
January	1,258,751	N/A	N/A	N/A	N/A	N/A	1,258,751	N/A	N/A	N/A	N/A	N/A		
February	1,393,948	N/A	N/A	N/A	N/A	N/A	1,393,948	N/A	N/A	N/A	N/A	N/A		
March	1,487,472	N/A	N/A	N/A	N/A	N/A	1,487,472	N/A	N/A	N/A	N/A	N/A		
April	1,773,253	N/A	N/A	N/A	N/A	N/A	1,773,253	N/A	N/A	N/A	N/A	N/A		
May	1,777,587	N/A	N/A	N/A	N/A	N/A	1,777,587	N/A	N/A	N/A	N/A	N/A		
June	1,643,366	N/A	N/A	N/A	N/A	N/A	1,643,366	N/A	N/A	N/A	N/A	N/A		
July	1,618,928	N/A	N/A	N/A	N/A	N/A	1,618,928	N/A	N/A	N/A	N/A	N/A		
August	1,098,156	N/A	N/A	N/A	N/A	N/A	1,098,156	N/A	N/A	N/A	N/A	N/A		
September	583,437	N/A	N/A	N/A	N/A	N/A	583,437	N/A	N/A	N/A	N/A	N/A		
October	645,466	N/A	N/A	N/A	N/A	N/A	645,466	N/A	N/A	N/A	N/A	N/A		
November	713,381	N/A	N/A	N/A	N/A	N/A	713,381	N/A	N/A	N/A	N/A	N/A		
December	705,290	N/A	N/A	N/A	N/A	N/A	705,290	N/A	N/A	N/A	N/A	N/A		
ANNUAL	14,699,033	N/A	N/A	N/A	N/A	N/A	14,699,033	N/A	N/A	N/A	N/A	N/A		

	PR	IMARY LEA	CHATE RE	CIRCULATE	D (GALLONS	3)	PRIMARY LEACHATE TREATED ON SITE (GALLONS)							
	Total Facility 56.94 Acres	Cell 2Acres	Cell 3Acres	Cell 4Acres	Cell 5Acres	Cell 6Acres	Total Facility 56.94 Acres	Cell 2Acres	Cell 3Acres	Cell 4Acres	Cell 5Acres	Cell 6Acres		
January	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
February	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
March	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
April	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
May	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
June	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
July	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
August	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
September	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
October	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
November	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
December	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
ANNUAL	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		

Submit (attached to this form) a copy of the maintenance logs which document compliance with the Operation and Maintenance Manual's schedule for the routine annual flushing and inspection of the primary leachate collection and removal system. List required submissions that have been attached to this form or the reason for not attaching a required piece of information:
Leachate system cleaning logs and observation reports for cleaning events completed in April and September 2017
are included in Appendix B of this report.
Submit (attached to this form) a tabulated compilation of the semi-annual primary leachate quality data collected throughout the year including a summary comparing this year's data with the previous year's data and a summary discussion of results. This list should identify sample location(s) and method of analysis. List required submissions that have been attached to this form or the reason for not attaching a required piece of information:
Reference the Albany Interim Landfill, Environmental Monitoring Report, Third Quarter 2017, prepared by CHA
included in Appendix D.
SECTION 4 - SECONDARY LEACHATE Does landfill have a double liner system with a secondary leachate collection and removal system?
Please report total cost for the year, not cost/gal.
Leachate Cost: (including transportation if appropriate) during the calendar year for leachate treatment: \$ 0 Total quantity treated: 14,699,033 gal
Enter the quantity of secondary leachate that was collected, removed for on-site and off-site treatment, and recirculated each month, and the corresponding Acreage, by Cell: For each cell, please report the acreage and the secondary

				SECOND	ARY LEACH	HATE COLLE	CTED AND	TREATED (OFF SITE (G	ALLONS)			
	Cell 1 3 Ac	Cell 2 3 Ac	Cell 3 3 Ac	Cell 4 3 Ac	Cell 5 3 Ac	Cell 6 8.54 Ac	Cell 7 3.4 Ac	Cell 8 4.4 Ac	Cell 9 3.7 Ac	Cell 10 4 Ac	Cell 11 3.6 Ac	Cell 12A 10.9 Ac	Cell 12B 3.4 Ac
January	584	168	652	1,055	183	3,268	924	65	1,760	297	310	803	434
February	569	115	609	1,118	146	2,795	837	63	130	230	249	711	338
March	975	132	772	1,182	173	3,097	792	81	558	230	248	953	388
April	1,352	170	1,498	1,416	148	6,158	1,614	48	255	250	259	752	354
Мау	1,623	193	1,200	1,530	176	3,863	1,142	197	299	254	252	726	399
June	1,214	322	416	1,429	188	1,758	879	200	249	278	222	1,812	339
July	1,099	391	402	1,081	149	1,029	116	131	142	520	437	1,067	420
August	849	400	967	657	149	649	0	128	409	682	2,105	752	377
September	693	778	907	392	181	611	0	78	68	243	270	583	322
October	650	357	1,004	374	171	506	0	102	11	1,287	270	739	366
November	562	251	888	312	140	609	45	54	9	204	215	549	368
December	360	235	884	398	83	676	8	143	270	279	229	684	354
ANNUAL	10,528	3,511	10,198	10,943	1,887	25,016	6,356	1,290	4,160	4,753	5,063	10,130	4,459

				SECOND	ARY LEACH	IATE RECIR	CULATED O	R TREATED	ON SITE (G	ALLONS)			
	Cell 1 3 Ac	Cell 2 3 Ac	Cell 3 3 Ac	Cell 4 3 Ac	Cell 5 3 Ac	Cell 6 8.54 Ac	Cell 7 3.4 Ac	Cell 8 4.4 Ac	Cell 9 3.7 Ac	Cell 10 4 Ac	Cell 11 3.6 Ac	Cell 12A 10.9 Ac	Cell 12B 3.4 Ac
January	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
February	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
March	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
April	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Мау	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
June	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
July	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
August	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
September	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
October	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
November	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
December	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ANNUAL	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

¹⁾ Leachate quantities highlighted in yellow have been corrected to exclude primary leachate flow that entered the seconday pumping systems during a pumpstation flooding

29) **Leachate** **Quality** **Leachate** **Leachate**

SECTION 5 – BENEFICIAL USE DETERMINATION MATERIALS

For each type of waste material that the Department has approved for use as alternative daily cover, intermediate cover, or other landfill material, provide the annual weight in tons, use (i.e., daily cover, intermediate cover, etc.), and source of material. (If material is from a solid waste facility also provide facility name, address, NYS Planning Unit, County/ Province, and State/Country.) Refer to the list of NYS Planning Units that can be found at the end of this report.

Type of Solid Waste	Weight (tons/year)	Use	NYS Planning Unit (See Attached List of NYS Planning Units)	County or Province	State or Countr	Source (Facility and Address)
Aggregate/Concrete						
Contaminated Soil	4,533.62	Cover		Albany	NY	Various
	70.94	Cover		Clinton	NY	Various
	143.05	Cover		Columbia	NY	Various
	224.34	Cover		Dutchess	NY	Various
	106.17	Cover		Greene	NY	Various
	173.95	Cover		Montgomery	NY	Various
	91.57	Cover		Putnam	NY	Various
	1,418.29	Cover		Rensselaer	NY	Various
	8.46	Cover		Saratoga	NY	Various
	2,187.39	Cover		Schenectady	NY	Various
	15.99	Cover		Schoharie	NY	Various
	36.31	Cover		Sullivan	NY	Various
	510.34	Cover		Ulster	NY	Various
	74.23	Cover		Westchester	NY	Various
Foundry Sand						
Glass	427.03	Gas Trenches		Dutchess	NY	Various
Industrial Waste (specify)						
MSW/Wood Ash						

Paper Mill Sludge					-	
Processed C&D						
Shredder Fluff						
Tire Chips						
Wood/Wood Chips						
Other (specify)					10	
ncinerated Sewer Sludge	7,261.63	Cover	CRSWMP	Albany	NY	Albany County WWTP
Total ADC	16,856.28					
Total Beneficial Use Determination Materials	17,283.31					

Percent Alternative Daily Cover (ADC) Calculation

ADC Calculations: Total Tons ADC/Total Tons Waste Disposed x 100 = __13%

Please note the calculation is: Tons ADC (from table above)/Tons Solid Waste (from table in Section 6) x 100 and Not: Tons ADC / (Tons Solid Waste + ADC) x 100

SECTION 6 - SOLID WASTE DISPOSED

Provide the tonnages of solid waste disposed. Exclude Beneficial Use Material amounts reported in Section 5 and Recyclable Material amounts reported in Section 8. Specify the methods used to measure the quantities disposed and the percentages measured by each method:

₁₀₀ % Scale Weight	
% Truck Count	% Other (Specify:)

Type of Solid Waste	January (tons)	February (tons)	March (tons)	April (tons)	May (tons)	June (tons)	July (tons)
Asbestos	1,940.76	2,313.41	1,956.80	1,692.46	2,393.34	3,684.75	2,556.57
Ash (Coal)							
Ash (MSW Energy Recovery)							
Construction & Demolition Debris (mixed)	914.47	862.31	857.77	1,137.67	1,933.94	1,792.13	2,203.57
Industrial Waste (Including Industrial Process Sludges)	95.21	97.38	111.23	81.84	79.40	107.59	536.31
Mixed Municipal Solid Waste (Residential, Institutional & Commercial)	6,693.21	5,954.18	7,197.42	8,243.79	11,660.41	10,523.76	9,378.45
Oil/Gas Drilling Waste							
Petroleum Contaminated Soil							
Sewage Treatment Plant Sludge	450.17	368.02	463.20	442.68	598.03	569.68	385.51
Treated Regulated Medical Waste							
Emergency Authorization Waste (Storm Debris)							
Other (specify)							
Total Tons Disposed	10,093.82	9,595.30	10,586.42	11,598.44	16,665.12	16,677.91	15,060.41

SECTION 6 - SOLID WASTE DISPOSED (continued)

Type of Solid Waste	Tip Fee (\$/Ton)	August (tons)	September (tons)	October (tons)	November (tons)	December (tons)	Total Year (tons)	Daily Avg. (tons)
Asbestos		1,696.55	1,040.08	299.00	76.57	107.57	19,757.86	54.13
Ash (Coal)								
Ash (MSW Energy Recovery)								
Construction & Demolition Debris (mixed)		717.62	764.08	430.60	498.81	320.45	12,433.42	34.06
Industrial Waste (Including Industrial Process Sludges)		424.51	98.44	56.39	106.94	49.22	1,844.46	5.05
Mixed Municipal Solid Waste (Residential, Institutional & Commercial)		7,164.65	6,468.89	6,181.83	5,914.58	5,110.58	90,491.75	247.92
Oil/Gas Drilling Waste								
Petroleum Contaminated Soil								
Sewage Treatment Plant Sludge		418.51	355.85	343.21	279.37	384.00	5,058.23	13.86
Treated Regulated Medical Waste								
Emergency Authorization Waste (Storm Debris)								
Other (specify)								
Total Tons Dispo	sed	10,421.84	8,727.34	7,311.03	6,876.27	5,971.82	129,585.72	355.03

SECTION 7 – SERVICE AREA OF SOLID WASTE RECEIVED

Identify the service area of the waste. The Total Tons Received reported below should equal the Total Tons Disposed in Section 6 (Solid Waste Disposed). DO NOT REPORT IN CUBIC YARDS!

- 1) <u>Direct hauled from the generator of the waste</u>. In the case where the waste is hauled to your facility from the generator (i.e. hauled from residences, commercial establishments, etc.), "Direct Haul" is the appropriate response in Column 2 under "Service Area." Please report the tonnage by waste type and identify the state, county and planning unit where it was generated; or
- 2) <u>Sent to your facility from another solid waste management facility</u>. Waste may be sent to your transfer station from another solid waste management facility. In this case, please report the tonnage by waste type from each sending solid waste management facility, as well as the sending facility's name, address, county, and the planning unit where the sending facility is located.

Specify transport method	and percentages of total was	te transported by each:		
100% Road	% Rail	% Water	% Other (specify:)
Explain which waste type	es and service areas below are	e included in these transpor	t methods_	_

SERVICE AREA OF SOLID WASTE RECEIVED						
TYPE OF SOLID WASTE	SOLID WASTE MANAGEMENT FACILITY FROM WHICH IT WAS RECEIVED (Name & Address) OR "Direct Haul"	SERVICE AREA STATE OR COUNTRY	SERVICE AREA COUNTY OR PROVINCE	SERVICE AREA NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECEIVED	
	Direct Haul	NY	Albany	Non-Members	293.31	
Asbestos	Direct Haul	NY	Franklin	CFSWMA	4.24	
	Direct Haul	NY	Clinton	Clinton County	223.15	
	Direct Haul	NY	Albany	Colonie	905.21	
	Direct Haul	NY	Columbia	Columbia County	3.00	
	Direct Haul	NY	Various	CRSWMP	12,097.07	
	Direct Haul	NY	Dutchess	Dutchess County	4.74	
	Direct Haul	NY	Various	ERSWMA	226.71	
	Direct Haul	NY	Essex	Essex County	0.79	
	Direct Haul	NY	Fulton	Fulton County	52.34	
	Direct Haul	NY	Greene	Greene County	407.85	
	Direct Haul	СТ	Greenwitch		4.24	
	Direct Haul	NY	Hamilton	Hamilton County	10.97	
	Direct Haul	NY	Montgomery	Montgomery County	713.46	

	Direct Haul	NY	Oneida	OSHWA	0.61
	Direct Haul	NY	Onondaga	Onondaga County	1.27
	Direct Haul	NY	Orange	Orange County	79.53
	Direct Haul	NY	Otsego	Otsego County	5.77
	Direct Haul	NY	Rockland	RCSWMA	0.08
	Direct Haul	NY	Rensselaer	Non-Members	937.05
	Direct Haul	NY	Saratoga	Saratoga County	2,685.55
	Direct Haul	NY	Schenectady	Schenectady County	666.88
	Direct Haul	NY	Schoharie	Schoharie County	1.91
	Direct Haul	NY	Sullivan	Sullivan County	181.96
	Direct Haul	NY	Various	UCRRA	230.90
	Direct Haul	VT	Vermont		0.07
	Direct Haul	NY	Warren	Warren County	19.20
Ash (Coal)					
Ash (MSW Energy Recovery)					
	Direct Haul	NY	Albany	Non-Members	31.22
	Direct Haul	NY	Clinton	Clinton County	94.50
Construction &	Direct Haul	NY	Various	Colonie	1,207.33
Demolition Debris (mixed)	Direct Haul				78.34
		NY	Columbia	Columbia County	
	Direct Haul	NY	Various	CRSWMP	7,400.05
	Direct Haul	СТ	Connecticut		251.55
	Direct Haul	NY	Dutchess	Dutchess County	225.37
	Direct Haul	NY	Various	ERCSWMA	84.24

	SERVICE AREA OF SOLID WASTE RECEIVED					
TYPE OF SOLID WASTE	SOLID WASTE MANAGEMENT FACILITY FROM WHICH IT WAS RECEIVED (Name & Address) OR "Direct Haul"	SERVICE AREA STATE OR COUNTRY	SERVICE AREA COUNTY OR PROVINCE	SERVICE AREA NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECEIVED	
	Direct Haul	NY	Essex	Essex County	0.79	
	Direct Haul	NY	Fulton	Fulton County	47.19	
	Direct Haul	NY	Greene	Greene County	235.66	
	Direct Haul	MA	Massachusetts		13.29	
	Direct Haul	NY	Montgomery	Montgomery County	135.94	
	Direct Haul	NY	Oneida	OHSWA	1.86	
	Direct Haul	NY	Orange	Orange County	30.84	
	Direct Haul	NY	Otsego	Otsego County	32.27	
	Direct Haul	NY	Rensselaer	Non-Members	220.66	
	Direct Haul	NY	Saratoga	Saratoga County	342.15	
	Direct Haul	NY	Schenectady	Schenectady County	1,816.63	
	Direct Haul	NY	Schoharie	Schoharie County	9.94	
	Direct Haul	NY	Sullivan	Sullivan County	6.05	
	Direct Haul	NY	Various	UCRRA	41.32	
	Direct Haul	NY	Warren	Warren County	50.24	
	Direct Haul	NY	Washington	Washington County	76.00	
Industrial Waste	Direct Haul	NY	Albany	Non-Members	62.56	
(Including Industrial Process Sludges)	Direct Haul	NY	Various	Colonie	92.66	
	Direct Haul	NY	Various	CRSWMP	1,294.51	
	Direct Haul	NY	Dutchess	Dutchess County	355.66	
	Direct Haul	NY	Saratoga	Saratoga County	13.95	
	Direct Haul	NY	Various	UCRRA	25.12	

	Direct Haul	NY	Albany	Non-Members	13.15
Mixed Municipal	Direct Haul	NY	Various	Colonie	2,312.29
Solid Waste (Residential,	Direct Haul	NY	Columbia	Columbia County	0.73
Institutional & Commercial)	Direct Haul	NY	Various	CRSWMP	87,583.70
,	Direct Haul	NY	Various	ERCSWMA	397.37
	Direct Haul	NY	Fulton	Fulton County	0.39
	Direct Haul	NY	Greene	Greene County	5.71
	Direct Haul	NY	Montgomery	Montgomery County	0.50
	Direct Haul	NY	Herkimer	OHSWA	1.58
	Direct Haul	NY	Rensselaer	Non-Members	1.10
	Direct Haul	NY	Saratoga	Saratoga County	2.02
	Direct Haul	NY	Schenectady	Schenectady County	171.73
	Direct Haul	NY	Warren	Warren County	1.48
Oil/Gas Drilling Waste					
Petroleum Contaminated Soil					
Sewage Treatment	Direct Haul	NY	Various	CRSWMP	4,150.77
Plant Sludge	Direct Haul	NY	Greene	Greene County	8.33
	Direct Haul	NY	Various	New York City	10.43
			_	Orango County	767.49
	Direct Haul	NY	Orange	Orange County	707.43
	Direct Haul Direct Haul	NY NY	Various	UCRRA	121.21
			_		
Medical Waste			_		
Treated Regulated Medical Waste (TRMW)* Emergency Authorization Waste			_		

SECTION 8 -LANDFILL RECYCLABLE & RECOVERED MATERIALS

Is your facility also a permitted or registered Recyclables Handling & Recovery Facility?
Yes; Complete Section 9 for material recovered from the mixed solid waste stream. Complete a Recyclables Handling & Recovery Facility (RHRF) form for aterial received as source separated. The RHRF form is located at: http://www.dec.ny.gov/chemical/52706.html .
■ No; Complete Section 9 for material recovered from the mixed solid waste stream and for material received as source separated.

A. Service Area of Recyclable Material Received

Identify the service area of the material. DO NOT REPORT IN CUBIC YARDS!

- 1) <u>Direct hauled from the generator of the recyclables</u>. In the case where the recyclables are hauled to your facility from the generator (i.e. hauled from residences, commercial establishments, etc.), "<u>Direct Haul</u>" would be the appropriate response in Column 2 under "Service Area". Please report the tonnage by material type and identify the state, county and planning unit where it was generated; or
- 2) Sent to your facility from another solid waste management facility. Recyclables may be sent to your facility from another solid waste management facility. In this case, please report the tonnage by material type from each sending solid waste management facility, as well as the sending facility's name, address, county, and the planning unit where the sending facility is located.

Explain which materials and service areas below are included in these transport methods_____________

	SERVICE AREA OF RECYCLAR	BLE MATERIAL	RECEIVED		
MATERIAL	SOLID WASTE MANAGEMENT FACILITY FROM WHICH IT WAS RECEIVED (Name & Address) OR "Direct Haul"	SERVICE AREA STATE OR COUNTRY	SERVICE AREA COUNTY OR PROVINCE	SERVICE AREA NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECEIVED
Commingle d Containers					
Commingled Paper (all grades)					
Single Stream (total)					
Brush, Branches, Trees, & Stumps					
Food Scraps					
Yard Waste (curbside)					
Other (specify)					
			TOTAL	RECEIVED (tons): N	I/A

SECTION 8 – LANDFILL RECYCLABLE & RECOVERED MATERIALS

B. Material Recovered

Identify the name of the destination facility to which the material was sent from your facility, the corresponding State/Country, the County/Province, the NYS Planning Unit, and the amount of material transported. **Refer to the list of NYS Planning Units that can be found at the end of this report.**DO NOT REPORT IN CUBIC YARDS!

Specify transport method	d and percentages of	total material transported l	by each:	
% Road	% Rail	% Water		
Explain which materials	and destinations belo	w are included in these tra	ransport methods	

	PAPER RECOVERED							
RECOVERED MATERIAL	DESTINATION (Name & Address)	DESTINATION STATE OR COUNTRY	DESTINATION COUNTY OR PROVINCE	DESTINATION NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECOVERED (out of facility)			
Commingled Paper (all grades)								
Corrugate								
Junk Mail -								
Magazines								
Newspaper								
Office Paper								
Paperboard / Boxboard								
Other Paper (specify)								
			TOTAL PAPER	RECOVERED (tons):	Ν/Δ			

SECTION 8 – LANDFILL RECYCLABLE & RECOVERED MATERIALS (continued) B. Material Recovered

	GL	ASS RECOVERED			
RECOVERED MATERIAL	DESTINATION (Name & Address)	DESTINATION STATE OR COUNTRY	DESTINATION COUNTY OR PROVINCE	DESTINATION NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECOVERED (out of facility)
Container Glass					
Industrial Scrap Glass					
Other Glass (specify)					
			TOTAL GLASS R	ECOVERED (tons): N/F	
	ME	TAL RECOVERED			
RECOVERED MATERIAL	DESTINATION (Name & Address)	DESTINATION STATE OR COUNTRY	DESTINATION COUNTY OR PROVINCE	DESTINATION NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECOVERED (out of facility)
Aluminum Foil / Trays					_
Bulk Metal (from MSW)					
Bulk Metal (from CD debris)					
Enameled Appliances / White Goods					
Industrial Scrap Metal					
Tin & Aluminum Containers					
Other Metal (specify)					
			TOTAL METAL F	RECOVERED (tons): N/	A

SECTION 8 – LANDFILL RECYCLABLE & RECOVERED MATERIALS (continued) B. Material Recovered

	PLASTIC RECOVERED							
RECOVERED MATERIAL	DESTINATION (Name & Address)	DESTINATION STATE OR COUNTRY	DESTINATION COUNTY OR PROVINCE	DESTINATION NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECOVERED (out of facility)			
Mixed Plastic (#1 - #7)								
PET (plastic #1)								
HDPE (plastic #2)								
Other Rigid Plastics (#3 - #7)								
Industrial Scrap Plastic								
Plastic Film & Bags								
Other Plastics (specify)				-				
		T	OTAL PLASTIC R	ECOVERED (tons): N	/A			

SECTION 8 - LANDFILL RECYCLABLE & RECOVERED MATERIALS (continued)

B. Material Recovered

	MIXED MATERIA	L RECOVERED			
RECOVERED MATERIAL	DESTINATION (Name & Address)	DESTINATION STATE OR COUNTRY	DESTINATION COUNTY OR PROVINCE	DESTINATION NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECOVERED (out of facility)
CommingId Containers (metal, glass, plastic)					
Commingled Paper & Containers					
Single Stream (total)					
Other (specify)					
		TOTAL	MIXED MATERIA	L RECOVERED (tons	s): <u>N/A</u>

SECTION 8 - LANDFILL RECYCLABLE & RECOVERED MATERIALS (continued)

B. Material Recovered

DESTINATION (Name & Address)	DESTINATION STATE OR COUNTRY	DESTINATION COUNTY OR PROVINCE	DESTINATION NYS PLANNING UNIT (See Attached List of NYS Planning Units)	TONS RECOVERED (out of facility)
	DESTINATION	DESTINATION STATE OR	DESTINATION STATE OR COUNTY OR	DESTINATION DESTINATION DESTINATION OF COUNTY OR DESTINATION COUNTY OR COUNTY OR DESTINATION UNIT (See Attached List of

VOLUME TO WEIGHT CONVERSION FACTORS

			TOLOME TO WEIG					
MATERIAL	EQUIVA	LENT	MATERIAL	EQUIVAL	LENT	MATERIAL EQUIVALI		LENT
GLASS – whole bottles	1 cubic yard	0.35 tons	GLASS - crushed mechanically	1 cubic yard	0.88 tons	ALUMINUM - cans - whole	1 cubic yard	0.03 tons
GLASS - semi crushed	1 cubic yard	0.70 tons	GLASS - uncrushed manually	55 gallon drum	0.16 tons	ALUMINUM – cans – flattened	1 cubic yard	0.125 tons
PAPER - high grade loose	1 cubic yard	0.18 tons	PLASTIC - PET - whole	1 cubic yard	0.015 tons			
PAPER - high grade baled	1 cubic yard	0.36 tons	PLASTIC – PET – flattened	1 cubic yard	0.04 tons			
PAPER - mixed loose	1 cubic yard	0.15 tons	PLASTIC - PET - baled	1 cubic yard	0.38 tons	WHITE GOODS - uncompacted	1 cubic yard	0.10 tons
NEWSPRINT - loose	1 cubic yard	0.29 tons	PLASTIC - styrofoam	1 cubic yard	0.02 tons	WHITE GOODS - compacted	1 cubic yard	0.5 tons
NEWSPRINT - compacted	1 cubic yard	0.43 tons	PLASTIC - HDPE - whole	1 cubic yard	0.012 tons			
CORRUGATED - loose	1 cubic yard	0.015 tons	PLASTIC - HDPE - flattened 1	1 cubic yard	0.03 tons			
CORRUGATED - baled	1 cubic yard	0.55 tons	PLASTIC - HDPE - baled	1 cubic yard	0.38 tons	FERROUS METAL - cans whole	1 cubic yard	0.08 tons
			PLASTIC – mixed (grocery bags)	45 gallon bag	0.01 tons	FERROUS METAL - cans	1 cubic yard	0.43 tons

SECTION 9 – UNAUTHORIZED SOLID WASTE

Has unauthorized solid waste been received at the facility during the reporting period?

☐ Yes	□ No	If yes, give information below for each incident (attach additional sheets if necessary):
-------	------	---

Date Received	Type Received	Date Disposed	Disposal Method & Location
1/18/17	White Goods (1)	N/A	N/A
3/9/17	White Goods (3)	N/A	N/A
3/21/17	Tires (5)	N/A	N/A
3/28/17	White Goods (2)	N/A	N/A
4/14/17	Tires (4)	N/A	N/A
4/20/17	White Goods (2)	N/A	N/A
4/20/17	Tires (1)	N/A	N/A

Radiation Monitoring

Does your facility use a fixed radiation monitor?	YesX_ No		
Identify Manufacturer _N/A	and Model	N/A	of fixed unit.
Does your facility use a portable radiation monitor?	Yes _ <u>X</u> No		
Identify Manufacturer _N/A	and Model	N/A	of portable unit
If the radiation monitors have been triggered give inform	mation below for each	incident:	

Incidet	Received				Truck	Reading	Disposa	Rem	oved
Number	Date	Time	Hauler	Origin	Number	reduing	l Status	Date	Time

SECTION 10 - WASTE IN PLACE

Summary by Waste Type and Year

Include all active and inactive sections of the landfill. Report waste disposed annually by type, if known, in tons per year. Report total waste disposed, if breakdown of types is not available. In the case where more than one landfill section operated in a given year identify each separately, if known. If the annual amount is not available, report the quantities for a range of years. If you include amounts from old, closed landfills then clearly identify them on the table and explain below. In each row, report quantities disposed each year (or group of years if individual years unknown) for each waste type. Report cumulative WIP at bottom (sum of annual quantities disposed). Add additional sheets as necessary.

Year	MSW (tons)	Asbestos Waste (tons)	Ash (tons)	C&D Debris (tons)	Industrial Waste (tons)	Petroleum Contaminated Soil (tons)	Sewage Treatment Plant Sludge (tons)	Other (tons)	Year(s) Total (tons)	Identify Landfill Section(s) Used
1969-1994	3,550,000								3,550,000	GAL
1991	20,609								20,609	AIL
1992	68,179								68,179	AIL
1993	99,972								99,972	AIL
1994	226,512								226,512	AIL
1995	147,140								147,140	AIL
1996	144,779								144,779	AIL
1997	75,426					45,050	2,046		122,522	AIL/Wedge
1998	119,268					52,363	2,194		173,825	AIL/Wedge
1999	183,226					17,292	1,238		201,756	AIL/Wedge
2000	234,277			1,863		38,648	1,542		276,330	AIL/Wedge
2001	274,477			8,184		45,737	1,879		330,277	P4
2002	263,671			8,520		63,904	1,997		338,092	P4
2003	243,149			5,368		61,153	2,250		311,920	P4
2004	222,856			8,323		60,452	1,451		293,082	P4
2005	228,159			6,107		68,444	1,866		304,576	P4
2006	258,600			8,090		72,209	1,410		340,309	P4
2007	242,063			5,595		55,950	1,566		305,174	P4
2008	232,919			5,247		49,806	1,619		289,591	P4
2009	226,641			4,497		50,115	1,522		282,775	P4
2010	231,207			3,782		34,070	1,690		270,749	Eastern
2011	233,832			3,196		21,484	1,941		260,453	Eastern
2012	214,091			10,117		25,181	1,690		251,079	Eastern
2013	196,362	889		28,112		31,623	2,569	3,765	263,320	Eastern
2014	205,924	12786		28,146		22,031	3,058	6,340	278,285	Eastern
2015	186,564	21,934		26,069	3,423	57,502	4,745	5,795	306,032	Eastern
2016	137,285	20,509		31,751	13,562	34,815	8,154	4,208	250,284	Eastern
2017	90,492	19,758		12,433	1,844	9,595	5,058	7,689	146,869	Eastern
WIP Cumulative Total	8,557,680	75,876		205,401	18,829	917,424	51,485	27,797	9,854,492	

Overall in place volume	N/A	cubic yards	
Method for determining wa	aste composition,	if known	
Explain if closed landfills a	re included above	GAL Closed, Portions of AIL, AIL/Wedge and P4 Closed_	

Waste Summary by Landfill Section

Provide waste in place information for all landfill sections.	
Number of landfill sections:	
Original* section used (years) from 1969 to 1994 (GAL)	Next* section used (years) from1991 to _1996 (AIL)
Section Footprint 60 acres	Section Footprint <u>15</u> acres
Capped with approved final cover system YesX No	Capped with approved final cover system Yes XNo
Percent capped _100	capped _ <u>33</u>
Waste in Place: 3,550,000 Tons Cubic Yards, if known	Waste in Place:707,191 Tons Cubic Yards, if known
Next* section used (years) from _1997 to _2000 (AIL Wedge)	Next* section used (years) from2001 to _2009 P4 (7-11)
Section Footprint <u>8.54</u> acres	Section Footprint19.1 acres
Capped with approved final cover system Yes NoX	Capped with approved final cover system YesX No
Percent capped <u>N/A</u>	capped <u>25</u>
Waste in Place: Tons Cubic Yards, if known	Waste in Place:2,795,796 Tons Cubic Yards, if known
Next* section used (years) from _2010 toPresent (Eastern)	
Section Footprint14.4 acres	
Capped with approved final cover system Yes NoX	
Percent cappedN/A	
Waste in Place: 2,027,072 Tons Cubic Yards, if kno	own
Percent	
* If there are additional landfill sections, phases or cells, please provide the same wast	e in place information on additional sheets and attach to form.

Percent

SECTION 11 - LANDFILL GAS

Does the landfill have a landfill gas collection & control system? Yes <u>x</u> No Passive _
Number of gas wells:103
Total landfill footprint acreage 57 acres lined, approximately 60 acres unlined
Total landfill acreage from which gas is collected <u>Approximately 118.3 acres</u>
Landfill sections from which gas is collected All
Landfill acreage from which gas is collected for energy recovery Approximately 118.3 acres
Measured Methane Generation Rate*, k 0.04
Measured Potential Methane Generation Capacity*, Lo 100 m³/Mg
NMOC Concentration* 280 ppmv as hexane
Does the landfill require a Title V Permit? Yes_x_ No
Name of Landfill Gas Recovery (gas to energy or other use) Facility: Fortistar Methane Group, MM Albany Energy LLC

* Note: If Concentration NMOC, Lo and k are not known or included, default values will be used to calculate the NMOCs emissions from the Landfill.

<u>Flare</u>

Open and Enclosed Flares located at the Landfill and the Landfill Gas Recovery Facility:
Number of Flares: <u>2</u> Type of Flare: Opened Flare <u>1</u> Enclosed Flare <u>1</u>
Quantity of Gas Collected and Flared Annually150,913,893 cubic feet Flare Hours of Operation per Year <u>8760</u> hours/year Methane Percentage in Landfill Gas before flaring 48 % Methane Destruction efficiency <u>98</u> %
Candlestick Flares: Number of Candlestick Flares 0 Estimate of Gas Flared Candlestick Flare 0 cubic feet
Gas To Energy
Number of Internal Combustion Engines: 5_
Quantity of Gas collected for Internal Combustion Engine Annually 543,650,283 cubic fe Methane Destruction efficiency _>98 % Methane Percentage in Landfill Gas before combustion 48 % Utility Company Receiving Electricity NYISO
Gas Processed for Use (Other than gas to electricity)
Quantity of Gas Collected for Processing <u>0</u> cubic feet Methane Percentage in Landfill Gas before processing NA_ % On-site or Off-site User of Gas NA_
Landfill Gas Recovery Facility/Landfill Data
Facility Contact _Suparna Chakladar Phone # (951) 883-4153
Contact e-mail address schakladar@fortistar.com Fax # (866) 683-9459
Operation and maintenance cost for calendar year: \$
Does the LGRF experience shut downs:x_YesNo
If yes, indicate reasons for shut downs. List required submissions that have been attached to this formothe reasons for not attaching a required piece of information: Power Outages, Mechanical Issues, Gas Quality Issues, Maintenance
Year landfill opened: 1969 Anticipated landfill closuredate: 2021
Reprinted (12/17)

Results of Condensate Sampling

condensates	sampling. List s	ubmissions (reg g a required pi		ng results accompl ection) that have bon:		
Provide the f	ollowing inform			Energy Recovery ered for energy. DC	NOT INCLUDI	E THEGAS
	Landfill Gas Collected for Energy Recovery (Cubic Feet)	Steam* Generated (Cubic Feet)	Total Electricity* Generated for onsite and offsite use (K.W.H.)	Total Gas Processed for use other than electricity generation (Cubic Feet)	Condensate Generated (Gallons)	Facility Operatio n (Hours)
January	51,417,723		2,736,832			2,740
February	37,467,230		2,409,246			2,154
March	37,571,986		2,577,932			2,298
April	42,938,150		2,433,969			2,096
Мау	35,097,369		2,702,133			2,262
June	47,113,399		2,526,866			2,309
July	57,707,667		2,514,061			2,231
August	59,197,605		1,441,657			1,598
September	3,630,227		2,194,916			2,390
October	49,019,646		2,937,092			2,415
November	60,020,679		2,896,491			2,370
December	58,559,567		2,789,378			2,374
ANNUAL TOTAL	543,650,283		28,614,047			27,233
Normal Wee Electricity Ge Electricity Ge Gas Process Gas Process Describe the	ere applicable. kdays of Opera enerated and us enerated and us ed and used/m ed and used or collection, stora	sed/marketed of sed onsite arketed offsite asite	offsite 2,789 133, 2 0 0 t and disposal te	cubic feetcubic feet chniques used in m	I nanaging the co	ndensate:
Condensate	is managed in	tne primary lea	acnate collection	and removal syste	<u>m</u>	

SECTION 12 - COST ESTIMATES AND FINANCIAL ASSURANCE DOCUMENTS
Are there required cost estimates and financial assurance documents for closure and post-closure care?
■ Yes □ No If yes, attach additional sheets reflecting annual adjustments for inflation and any changes to the Closure Plan?
SECTION 13 – PROBLEMS Were any problems encountered during the reporting period (e.g., specific occurrences which have led to changes in facility procedures)?
☐ Yes ■ No If yes, attach additional sheets identifying each problem and the methods for resolution of the problem.
SECTION 14 – CHANGES Were there any changes from approved reports, plans, specifications, and permit conditions?
□Yes ■ No If yes, attach additional sheets identifying changes with a justification for each change.
SECTION 15 - ANALYTICAL RESULTS
Submit (attached to this form) tables showing the sample collection date, the analytical results [including all peaks even if below the Method Detection Limits (MDL)], designation of upgradient wells and location number for each environmental monitoring point sampled, applicable water quality standards, and groundwater protection standards if established, MDL's, and Chemical Abstracts Service (CAS) numbers on all parameters. List submissions (required by this section) that have been attached to this form or the reasons for not attaching a required piece of information:
Reference the Albany Interim Landfill, Environmental Monitoring Report, Third Quarter 2017,
prepared by CHA included in Appendix D.
SECTION 16 - COMPARING DATA
Submit (attached to this form) tables or graphical representations comparing current water quality with existing water quality and with upgradient water quality. These comparisons may include Piper diagrams, Stiff diagrams, tables, or other analyses. List submissions (required by this section) that have been attached to this form or the reasons for not attaching a required piece of information:
Reference the Albany Interim Landfill, Environmental Monitoring Report, Third Quarter 2017,
prepared by CHA included in Appendix D

SECTION 17 - DISCUSSION OF RESULTS

significant increases in concentrations above existing water quality, any exceedances of groundwater protection standards, and discussion of results, and any proposed modifications to the sampling and analysis schedule necessary to meet the Existing, Operational and Contingency water quality monitoring requirements. List submissions (required by this section) that have been attached to this form or the reasons for not attaching a required piece of information:
Reference the Albany Interim Landfill, Environmental Monitoring Report, Third Quarter 2017,
prepared by CHA included in Appendix D.
SECTION 18 - DATA QUALITY ASSESSMENT
Submit (attached to this form) any required data quality assessment reports. List submissions (required by this section) that have been attached to this form or the reasons for not attaching a required piece of information:
Reference the Albany Interim Landfill, Environmental Monitoring Report, Third Quarter 2017,
prepared by CHA included in Appendix D.
SECTION 19 - SUMMARIES OF MONITORING DATA
Submit (attached to this form) a summary of the water quality information presented in Sections 16 and 17 for the year of operation for which the Annual Report is made, noting any changes in water quality which have occurred throughout the year. List submissions (required by this section) that have been attached to this form or the reasons for not attaching a required piece of information:
Reference the Albany Interim Landfill, Environmental Monitoring Report, Third Quarter 2017,
prepared by CHA included in Appendix D.
SECTION 20 - SURFACE IMPOUNDMENTS Does this landfill have a surface impoundment?
☐ Yes ■ No If yes, repeat Sections 15 through 18 above for Quarterly Reports and Section 19 above for Annual report. Attach additional submissions required by this section.
<u>L</u>
SECTION 21 - PERMIT/CONSENT ORDER REPORTING REQUIREMENTS Are there any additional permit/consent order reporting requirements not covered by the previous sections of this form?
☐ Yes ■ No If yes, attach additional sheets identifying the reporting requirements with their respective responses.

SECTION 22 - SIGNATURE AND DATE BY OWNER OR OPERATOR

Owner or Operator must sign, date and submit the completed form by email or mail to the appropriate Regional Office (See attachment for Regional Office email & mailing addresses and Solid Waste Contacts.)

The Owner or Operator must also submit one copy by email, fax or mail to:

New York State Department of Environmental Conservation
Division of Materials Management
Bureau of Permitting and Planning
625 Broadway
Albany, New York 12233-7260
Fax 518-402-9041

Email address: SWMFannualreport@dec.ny.gov

I hereby affirm under penalty of perjury that information provided on this form and attached statements and exhibits was prepared by me or under my supervision and direction and is true to the best of my knowledge and belief, and that I have the authority to sign this report form pursuant to 6 NYCRR Part 360. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to Section 210.45 of the Penal Law.

	2/26/18
Signature	Date
Joseph Giebelhaus Name (Print or Type)	Solid Waste Manager Title (Print or Type)
jgiebelhaus@albanyny.gov _ Email (Print	or Type)
525 Rapp Road Address	<u>Albany</u> City
NY 12205 State and Zip	(<u>518</u>) <u>869</u> - <u>3651</u> Phone Number
ATTACHMENTS: YES NO (Please check appropriate line)	

ATTACHMENT B PRIMARY LEACHATE COLLECTION SYSTEM CLEANING LOGS AND OBSERVATION REPORTS – APRIL AND SEPTEMBER 2017 CLEANING EVENTS

Line Cleaning/Task Log

Leachate Line Cleaning

City of Albany Landfill Rapp Road, Albany, NY

Name:	PATRICK	RAHM	
Company:	AHA	CONCUTING	

Contractor:

NATIONAL VACOUM

Contractor Foreman:

JAMES IZWIN

Equipment Utilized:

2100 VACTOR FLYSHER TRUCK / H20 TRUCK 1" 13 PHAMMA SEWER HOSE (1200')

1 F/GR JET NOTELL OF GR JET LUBELLE

Task			Length	Date	Cleaned		
No.	Line Origin	Line End	(ft)	Cleaned	Length	Gal. Used	Comments
MM	LVS12	Cell 7 Collection Line	175	uliolia	1751	2w zne	RASY CLEEN (ND) CHAN
wen	LVS11	Cell 7 Collection Line	125	4/10/17	125	100 gae	
3	LVS3	AIL 1 - 6 Main [*] Line	725			J.	BLUMAGE -S SKIP!
4	LVS4	AIL 1 - 6 Main Line	700				BLUCKAGE - Ship!
MECH.	LVS5	AIL 1 - 6 Main Line	400	ulioliz	4w'	цω	Exis ciry (NO)
Wew	LVS10	LCMH7	725	4/11/17	725	8co gal	EASY GOING, 1500 psi
ill 7v	LVS9	Cell8CO1	825	4/1-/17	825	1800 gal	FAST CLEAR (ND)
WEN	J LVS2	AIL 1 - 6 Main Line	500	4/11/17	500°	700 gel	EAST GOING, (SW PSI
Wh		AIL 1 - 6 Main Line	850	4/11/17	850'	1200 gal	EARY GOING (SED PS;
Mp/V	LIMH5CO5	AIL 1 - 6 Main Line	800	4/11/17	કૃહ્યું	sw gal	EAST GOING 15W PS;
11	LIMH5CO4	AIL 1 - 6 Main Line	800				BUDGAGE S SKIP!
12	LIMH5CO3	AIL 1 - 6 Main Line	800				Bruchar - B ship .
13	LIMH5CO2	AIL 1 - 6 Main Line	800				Grockhar -p ship.
UM	LIMH5CO1	AIL 1 - 6 Main Line	800	4/11/17	800'	sw gal	EAST GOING 1500 ps;
19 (1)	Cell12CO24	N/A	300	4/12/17	300 [′]	400 gal	GASY GOING, ISON PS
NAN	Cell12CO23	N/A	80	4/12/17	80 °	100 gal	
MA	Cell12CO22	N/A	110	4/12/12	110'	120 gal	KASY GOING, LOW ps;
MIN	Cell12CO21	N/A	240	Maln	240'	350 gal	EALY GOING, los ps,
MAN	Cell12CO20	N/A	280	4(12/17	260'	375 gol	EASY GUING, LOUN PS.
N3ON	Cell12CO19	N/A	290	4 Inlin	290'	375 gd	
WZW	Cell12CO18	N/A	380	4/12/17	380'	450gal	' I
NEW	Cell12CO17	N/A	300	ulizlin	300'	l "	EASY GUING LOW 25.
NEW	Cell12CO16	N/A	100	ulizlo	(00)	150 gal	EAST 601HG, 145 ps;
NAM	Cell12CO15	N/A	320	ulalin	320'	4w gal	EASY GOING ION PS;
NEW	Cell12CO14	N/A	100	ulizla	100'	150 gd	EUR COINE IMP SCI

Line Cleaning/Task Log

Leachate Line Cleaning

City of Albany Landfill Rapp Road, Albany, NY

Name:	PATRICK	RAHM	
Company:	CILA	CONSULTING	

Contractor:

NATIONAL MACUUM

Contractor Foreman:

JAME(IRWIN

Equipment Utilized:

2100 ACTOR PLUS FLUSHER TRACK

120 Truch (zwogal)

1200' PIRAMMA SEWER CLEANING HOSE (ZEOPS.)

OF/GR JET MEZLE

Task No.	Line Origin	Line End	Length (ft)	Date Cleaned	Cleaned Length	Gal. Used	OF (GL JE7 M ZZLE Comments
1236]	Cell12CO12	N/A	280	4/13/17	280'	350 20	RASY GOING I LUND PS;
N/W	Cell12CO13	N/A	620	4/12/17	62U'	Swal	
089 W	Cell12CO11	N/A	520	4/13/17	520'	650 gal	EASY GOING LOW PS:
(AE1)	Cell12CO10	N/A	370	4/13/17	3 7a'	450 zcl	' ' ' I
reg	Cell12CO9	N/A	510	4/13/17	510'	650 gal	RASY GOING, 1000 ps;
130)	Cell12CO8	N/A	320	4/13/17	320	4w gal	·
17881	Cell12CO7	N/A	160%	4/13/17	(60′	w gal	la contrata de la contrata del contrata del contrata de la contrata del contrata del contrata de la contrata del contrata del contrata de la contrata de la contrata de la contrata del contrata del contrata de la contrata del contrata de
17.33	Cell12CO6	N/A	32506	ulista	325'	4w gal	DUTANCE CHAMGE " RASY GOING TURO, 5;
CARELL	Cell12CO5	N/A	ian/200	4/13/17	(w'	200 gal	DISTANCE CHANGE! FLAST GOING, lawps;
Jest 1	Cell12CO4	N/A	325	4/13/17	325'	4w gal	EASY COINT, 1000 ps;
nzej	Cell12CO3	N/A	325	धाउदा	325'		EASY GRAFF, jue ps:
CKEL	Cell12CO2	N/A	325	4/14/17	325'		RAST GOING, 1000 50
Bells	Cell12CO1	N/A	550	4/14/17	550'	iso gal	
MBB	Cell9CO1	N/A	1000	4/14/17	1,000	200 fel	Scow MEVING & 640' in 1000'
WAY	Cell12PS2CO1	EL-2P	700	4/17/17	700		RASY GOING ZOW PS:
MAYV	Cell12PS1CO1	Landfill	70	4/17/17	10'	100 gal	
ME	Cell1-6PS1CO1	Landfill	1000	4/17/17	1000	1000 gal	
128h	Cell11PS1CO2	Landfill	970	4/18/17	970'	1500	lasy claning (ND)
MARY	Cell10PS1CO1	Landfill	920	4/18/17	920'	1500	2000 psi. easy cleaning. (no)
145)	Cell11PS1CO1	Cell11PS1CO2	80	4/20/17	80'	100	cony dean (from yesterday (no)
NARN	PS1	Cell1-6PS1CO1	40	4/21/17	40'	100	easy dear (ND)
VATI	PS1	Cell11PS1CO1	70	4/21/17	70'	100	(00)
18EN	PS1	Cell10PS1CO1	80	4/21/17	80'	100	(00)
ragi	PS1	Cell12PS1CO1	50	4/21/17	50'	100	looopsi easy dearing, (ro)
U500 Clean PS1		PS1	900 SF	4/21/17	900SF		easy cleaning. (MD)

Leachate Line Cleaning

City of Albany Landfill Rapp Road, Albany, NY

Name:	PATR	W	RAHM	
Company:	CHA	Care	SUTING	

Contractor:

NATIONAL VACUUM

Contractor Foreman:

JAMES IRWIN

Equipment Utilized:

2100 VALTUR PLUS FLUSHER TRICK

1120 Teach (300 gal)

12W' PIRAMAM SEWER CLEANING HUSE (25WPS)

OF/GR JET NORTE

Task			Length	Date	Cleaned	l	OF GR JET NURLY
No.	Line Origin	Line End	(ft)	Cleaned	Length	Gal. Used	Comments
Ser 1	PS1FMCO2	PS1	400	4/20/17	400'	700 gal	RASY GOING 12W ps;
132N	PS1FMCO2	PS1FMCO1	1000	4/20/17	1000	l .	EAST GOING, 120 ps;
193N	Clear	PS1	900 SF	4/21/17	900 SF		Clean if necessary (co)
user	PS1FMCO1	VMH1	860	4/20/17	860,	1000 gal	RAST 60me, (200 ps.
135N	EL-2P	Landfill	160	4/20/17	160'	w sil	
Colle	LCMH7	PS2	150	4/26/17	150'	250 gd	RASY (LEW (2015)
lite	Leachate Interceptor Manhole	PS2	150	14/26/17	150'	250 gel	Ensy went in ps;
MAG	PS2	Cell89PS2CO1	140	4/14/17	140'	200 gol	CASY GOING, 100ps.
~59 h	PS2	Cell12PS2CO1 (exterior)	40	4/14/17	40	100 gal.	" (~)
Coo	PS2	VMH2 - tank check valve	-	4/26/17	_	100 gal	CLEARES OUT LANT
Wen	Clear	n PS2	600 SF	4/26/17	600 SF	1000 gal	FLURS & SUMP CLEANED & PRESSURE
M,88J	Tank #1	•	375,000 gal	4/19/17	-	Ogd	Took observed to be occur and no sediment
Ngal	Tank #2	-	425,000 gal	4/19/17	_	, •	Took observed to be class, no septement or rust observed.
Her	VHM2	All Directions	-	4/26/17	_	لا عدو	CLANDED VALLUMES UT HALLT
195)	VHM2 Tank Feed Line	Tank #2	60	4/26/17	60'	iw gal	EASY CLEAN, 1000 PSI
wee)	VHM1	All Directions	-	4/26/17	Mining.	o sal	LACLUMOS ON WALLY
lsole	Metering Manhole	-	-	4/20/17	-	O gal	vacunes com 4/20
686	Catch Basin #4	Culvert Pipe at Outbound Scale	100	4/18/17	100'	150	easy cloen. (40)
UBN	Inbound/Outbou nd Scales	Jet and Clean Scales Top and Bottom	_	4/19/17	_	2500 gol	SCALLS ARE SEDIMENT & OIL FREE APTER CLEANIN L
WED	Inbound Scale Scale Pit Drain	Catch Basin #3	85116	4/19/17	85	150 gal	EASY GUNG, 100 psi
WW	Catch Basin #3	Scale Swale	60	4/19/17	60	To gal	TASY GUIND, LUBOS:
W28W	Scale Ditch	Parking Lot Manhole #2	170	4/18/17	170'	300 gal	Cleaned live, fasy dean (0)
rser	Man Hole - Scalehouse	Metering Man Hole	500	4/21/17	500'	750 gal.	easy clean (ND)
-14E	Parking Lot Manhole #2	Discharge Point Outfall 003	140	4/18/17	140'	300	Cleaned area around manhole & hole itself.

Leachate Line Cleaning

City of Albany Landfill Rapp Road, Albany, NY

Name:	PATRICK	RAHM	
Company:	CHA	CONSULTING.	

Contractor:

MATICNAL LACCIM

Contractor Foreman:

JAMES IRWIN

Equipment Utilized: 2100 LACTUR FLUSHER TRUE / 42: TRUE

1" 1.0. PIRAMAN SQUEE CLEAMANT HOSE (1200')

09162 787 NO 22 LE

Task No.	Line Origin	Line End	Length (ft)	Date Cleaned	Cleaned Length	Gal. Used	Comments
Eli	Parking Lot Manhole #1	Parking Lot Manhole #2	110	4/18/17	110	200	Fary clean. Cleaned manhole. (M)
750	Storm Water Trench #1 (exterior)	Sanitary Manhole #1	60	4/18/17	60'	200	Clean french. Eary clean. (ND)
	Storm Water Trench #2 (exterior)	Sanitary Manhole #1	70	1		uggenne _n ,	Filled w/ Stone per Andy J. (M)
W78.1	Sanitary Manhole #1	Corner Admin Manhole	160	4/21/17	155'	200 gal	easy dean. (no)
M	Culvert at North End of Fortistar Plant	Parking Lot Manhole #2	80	4/18/17	80'	100	Casy clean.
Sal	Corner Admin Manhole	Manhole - Admin Bldg (closest)	40	4/26/17	90	60 gal	EASY CLEAN, 1000 ph
WBW)	Man Hole - Admin Building	Manhole - Admin Bldg (closest)	20	ulrely	90	36 gd	EASY CLEAN, (NO 8 5;
17,83	Man Hole - Admin Building	Man Hole - Scalehouse	500	4/26/17	Sw'	6w gal	FASY CLEAN, 1000 psi
17gB)	Man Hole - Admin Building	Man Hole - Polish	450	11/26/17	500'	550 gel	EASY (CEAN, /w ps/
4882	Man Hole - Polish	Man Hole - Admin Building	600	4/27/17	600'	7w gal	جمرح ددیمی اعم وی
108pm	Man Hole Polish Community	Man Hole - 2nd Polish	240	4/27/17	240'	300 gel	EASY CLEARS, IZNO PS;
(186W	Man Hole - 2nd Polish	Man Hole - Daughters of	240	4/27/17	240'	3w gol	EAST (CEAM, 12W ps.
Wor	Man Hole - Daughters of Sarah	-	-	4/27/17	-	-	ettectes muttole, sewer runne well
M867	Garage	-	2	4/19/17	2	zu gal	EASY CLEAN, SW psi
NégN	(interior)	Collection Pit	70	4/19/17	70	100 gal	RASY CLEAN, 1800 PS.
wer	(IIILETIOI)	Collection Pit	70	4 (19 /17	70	iw bal	RASY CLEAN, INO PS
NEN	Gas Collection Sumps	12 x 36" sumps	_	4/19/17		ew sal	EASY CURAN & MAC
hoon	Leachate Collection Tubs	-	-	4/21/4/26	900 SF 600 SF	TOTAL = 15 CO gal	751 & PSZ SUMPS LUEANED

REPORT NO.	1	
PAGE NO. 1	OF	
DATE: 4/10/	117	

WEATHER	TEMPERATURE			
	HIGH 75°			
Clear	LOW 47°			

PROJECT Rapp Rd Leachaste Line Cleaning.

LOCATION Rapp Rd / Albany Landfill

PROJECT# 3 2 5 9 6 1 0 00 3 2 0 0 6

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION
DESCRIPTION OF WORK PERFORMED AND OBSERVED
8:00" : CHA onside Andy says National Vac onside by LVS12. Move to LVS12 location.
Natil Vac needs to measure have length in preparation for the day's deaning.
8:30a: Hose length long-enough to clean out first set of lines. Nat'l Vac begins to cut plastic
corrugated pipe tor dearing.
8:45ª: Move vac truck to fill up w/ water. Mobe to LVS 12 to begin cleaning. Complete LVS12
@ 9:20° Mare to LVS II next.
9:30° Begin LVS 11. complete. Move to LVS3. Call Andy e 10:059. Confirm we will not be clearing
any lines w/ reported blockages. Slaip LVS3 and LVS4. Move to LVS5.
10:20°: Start to drain area around LVSS of water. Clean + Complete LVSS @ 10:45°.
10:50a-11:45a: Nat'l vac storts to unroll extra hose to put on to existing roll. (Existing roll ~790'
Need 825 at least to complete LVS9). Nat'l vac takes lunch: 12-12:30P.
12:40P - Begin LVS 9 438' stap to get water (1:15P-1:45R) Fill up vactor 1:45-1:5P
then resume cleaning & LVS-9. Complete @ 2:30P. Begin to pump water.
then resume cleaning E LVS-9. Complete @ 2:30P. Begin to pump water. 2:40P: Nat'l vac needs to fill up vactor w/ Diesal, finish filling at 2:45 pm
3:00P: CHA offsite affer leaving copies of observation report + Line Cleaning form w/ Analy.
· ·
THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY: OBSERVER'S SIGNATURE
TIME CHARGED TO PROJECT: 7.5
MILEAGE CHARGED TO PROJECT: ADDITIONAL SHEETS USED CHECK INITIALS

Leachate Line Cleaning City of Albany Landfill

City of Albany Landfill Rapp Road, Albany, NY

.ame:	Nicholas DeFlorio	
Company:	CHA Consulting.	

Contractor:

Contractor Foreman: Equipment Utilized: National Vacuum, corp.

William Wells

Jan Flusher Truck

1" 10 Huse

Task No.	Line Origin	Line End	Length (ft)	Date Cleaned	Cleaned Length	Gal. Used	Comments
Myn	LVS12	Cell 7 Collection Line	175	4/10/17	175'	200	Easy Cleaning, 1000 psi
WEW	LVS11	Cell 7 Collection Line	125	4/10/17	125'	100	Easy Cleaning, 1000 psiSMP
3	LVS3	AIL 1 - 6 Main Line	725	, ,	-	-	-ZKAD
4	LVS4	AIL 1 - 6 Main Line	700	7	-		ZKIB-
CHE	LVS5	AIL 1 - 6 Main Line	400	4/10/17	400'	400	Easy cleaning, 1000 psi.
6	LVS10	LCMH7	725				, , ,
ww	LVS9	Cell8CO1	825	4/10/17	825'	1000'	Easy Cleaning, 1000-2000 psi
8	LVS2	AIL 1 - 6 Main Line	500				
9	LVS1	AIL 1 - 6 Main Line	850				
10	LIMH5CO5	AIL 1 - 6 Main Line	800				
11	LIMH5CO4	AIL 1 - 6 Main Line	800	3	_	÷	-2KIB
12	LIMH5CO3	AIL 1 - 6 Main Line	800	_	J	_	-SKIP- _
13	LIMH5CO2	AIL 1 - 6 Main Line	800	•)	_	-skip-
14	LIMH5CO1	AIL 1 - 6 Main Line	800				
15	Cell12CO24	N/A	30 0				**************************************
16	Cell12CO23	N/A	80				
17	Cell12CO22	N/A	110				
18	Cell12CO21	N/A	240				
19	Cell12CO20	N/A	280				
20	Cell12CO19	N/A	290				
21	Cell12CO18	N/A	380				
22	Cell12CO17	N/A	300				
23	Cell12CO16	N/A	100				
24	Cell12CO15	N/A	320				
25	Cell12CO14	N/A	100				

bek bek

York Del.

PROJECT Albany Rapp Rd Landfill Leachate Clean

REPORT NO.	2
PAGE NO. 1	OF 1
DATE: 4/11/2	017

WEATHER	TEMPERATURE			
	HIGH 87			
Sunny/Clear	LOW 58			

PROJECT# 3 2 5 9 6 1 0 0 0 3 2 0 0 0

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED

- National Vacuum Corporation on site at 7:00am (2 man crew)
- -Begin LVS10 at 7:30am

LOCATION Albany, NY

- Line finished at 8:30am, 725 feet accomplished, 800 gal of water used during cleaning.
- Flusher truck filled with water from water truck at 8:45am.
- Call Mike K.at 9:00am to shut down Cells 1-6 to proceed with cleaning procedures.
- Begin LVS2 at 9:15am
 - Line finished at 9:50am, 500 feet accomplished, 700 gal of water used during cleaning.
- Begin LVS1 at 10:00am
 - Line finished at 11:15am, 850 feet accomplished, 1,200 gal of water used during cleaning.
- Fill up water truck at 11:30am
- -Lunch 12:00pm 12:30pm
- Begin LIMHCO5 at 12:45pm
 - Line finished at 1:40pm, 800 feet accomplished, 800 gal of water used during cleaning.
- Fill flusher truck with water from water truck at 1:45pm.
- Begin LIMHCO1 at 2:00pm
 - Line finished at 3:05pm, 800 feet accomplished, 800 gal of water used during cleaning.
- National Vacuum begins to pack up equipment, brings tool up to trailer.
- Call Mike K. to open up Cells 1-6 at 3:15pm.

Off Site:

National Vaccum: 3:30pm

CHA: 3:30 PM

NUMBER OF WORKERS & EQUIPMENT USED	ITEM NO.	QUANTITIES PLACED TODAY	
2100 Vactor Series Plus Flusher Truc			
Water truck (Max capacity: 3,000 gallons) Approximately 1,200 feet of Piranna sewer cleaning hose with 1.0 inch I.D. (Max capacity: 2,500 psi)			
0 F/ 6 R Jet Nozzle Head			

THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY:

OBSERVER'S SIGNATURE

TIME CHARGED TO PROJECT:
MILEAGE CHARGED TO PROJECT

8	 	
0		
•		

Additional sheets used check initials 73

Leachate Line Cleaning

City of Albany Landfill Rapp Road, Albany, NY

ame:	PATRICK	RAHM	
Company	: CHA	CONSULTING	

Contractor:

NATIONAL VACOUM

Contractor Foreman:

JAMES IZWIN

Equipment Utilized: 2100 VACTOR FLIGHER TRUCK / 11-0 TRUCK

1" 13 PICAMMA LEWER HOSE (1200')

Task No.	Line Origin	Line End	Length (ft)	Date Cleaned	Cleaned Length	Gal. Used	Comments
1	LVS12	Cell 7 Collection Line	175				
2	LVS11	Cell 7 Collection Line	125				
3	LVS3	AIL 1 - 6 Main	725				
4	· LVS4	AIL 1 - 6 Main Line	700				
5	LVS5	AIL 1 - 6 Main Line	. 400				
went	LVS10	LCMH7	725	4/11/17	725	800 gal	EAST GOING, ISOD psi
7	LVS9	Cell8CO1	825				
NEW	J LVS2	AIL 1 - 6 Main Line	500	4/11/17	500'	700 gd	EASY GOING, (SW PS;
Wh		AIL 1 - 6 Main Line	850	4/11/17	850'	1200 gal	EALY GOING (SOO PS;
, 4np√	LIMH5CO5	AIL 1 - 6 Main Line	800	4/11/17	క్రబ '	SU gal	(29 GOING 15W 92)
11	LIMH5CO4	AIL 1 - 6 Main Line	800				
12	LIMH5CO3	AIL 1 - 6 Main Line	800				·
13	LIMH5CO2	AIL 1 - 6 Main Line	800				
634/1	LIMH5CO1	AIL 1 - 6 Main Line	800	4/11/17	800'	ew zal	EAST GOING 1500 ps;
15	Cell12CO24	N/A	300				•
16	Cell12CO23	N/A	80				
17	Cell12CO22	N/A	110				
18	Cell12CO21	N/A	240				
19	Cell12CO20	N/A	280	-			
20	Cell12CO19	N/A	290				
21	Cell12CO18	N/A	380				
22	Cell12CO17	N/A	300				
23	Cell12CO16	N/A	100				
24	Cell12CO15	N/A	320				
5	Cell12CO14	N/A	100				

PROJECT Albany Rapp Rd Landfill Leachate Clean

LOCATION Albany, NY

REPORT NO. 3

PAGE NO. 1 OF 1

DATE: 4/12/2017

WEATHER	TEMPERATURE	
	HIGH 61	
Rain/Wind	LOW 47	

	J. Ja									4.1				1
PROJECT#	3	2	5	9	6	1	0	0	0	3	2	0	0	0

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED

- National Vacuum Corporation on site at 7:00am (2 man crew)
- Call Mike K. to shut down Cell12 cleanouts to begin cleaning procedures.
- -Begin CELL12CO24 at 7:30am
 - Heavy rains stop work until 7:45am
 - Line finished at 8:20am, 300 feet accomplished, 400 gal of water used during cleaning.
- Fill up flusher truck with water from water truck at 8:30am.
- Begin CELL12CO23 at 8:45am
 - Line finished at 9:05am, 80 feet accomplished, 100 gal of water used during cleaning.
- Begin CELL12CO22 at 9:10am
 - Line finished at 9:20am, 110 feet accomplished, 120 gal of water used during cleaning.
- Begin CELL12CO21 at 9:30am
 - Line finished at 9:50am, 240 feet accomplished, 350 gal of water used during cleaning.
- Begin CELL12CO20 at 10:00am
- Line finished at 10:25pm, 280 feet accomplished, 375 gal of water used during cleaning.
- Begin CELL12CO19 at 10:35am
 - Line finished at 11:00am, 290 feet accomplished, 375 gal of water used during cleaning.
- Begin CELL12CO18 at 11:15am
- Line finished at 11:45am, 380 feet accomplished, 450 gal of water used during cleaning. -Begin CELL12CO17 at 11:50pm
- Line finished at 12:15pm, 300 feet accomplished, 400 gal of water used during cleaning.
- Lunch 12:15pm 12:45pm
- Begin CELL12CO16 at 12:50pm.
 - Line finished at 1:00pm, 100 feet accomplished, 150 gal of water used during cleaning.
- Fluser truck empty, fill up with water from water truck at 1:05pm
- Begin CELL12CO15 at 1:20pm
 - Line finished at 1:50pm, 320 feet accomplished, 400 gal of water used during cleaning.
- Begin CELL12CO14 at 2:00pm
- Line finished at 2:15pm, 100 feet accomplished, 150 gal of water used during cleaning.
- Begin CELL12CO13 at 2:25pm
 - Line finished at 3:00pm, 620 feet accomplished, 800 gal of water used during cleaning.
- Flusher tank is full, brought to top of landfill to dump at 3:05pm.
- National Vacuum begins to pack up equipment, brings tool up to trailer.
- Call Mike K. to open up Cell12 clean outs.

Off Site:

National Vaccum: 3:30pm

CHA: 3:30 PM

NUMBER OF WORKERS & EQUIPMENT USED	ITEM NO.	QUANTITIES PLACED TODAY
2100 Vactor Series Plus Flusher Truc		
Water truck (Max capacity: 3,000 gallons)		
Approximately 1,200 feet of Piranna sewer cleaning hose with 1.0 inch I.D. (Max capacity: 2,500 psi)		
0 F/ 6 R Jet Nozzle Head		

THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY:	PATILA JA MANO DESERVER'S SIGNATURE
TIME CHARGED TO PROJECT: 8 MILEAGE CHARGED TO PROJECT: 0	ADDITIONAL SHEETS USED CHECK INITIALS 72
	FORM #1

Leachate Line Cleaning

City of Albany Landfill Rapp Road, Albany, NY

. ne: _	PATRICK	RAHM	
Company	CHA	CONCULTING	

Contractor:

NATIONAL VACOUM

Contractor Foreman:

JAMES IZWIN

Equipment Utilized:

2100 VACTOR FLYSHER TRUCK 1" 13 PIKAMMA SEURR HOSE

OF GF JET WEZLE 1F/GR JET NOTELL

Task No.	Line Origin	Line End	Length (ft)	Date Cleaned	Cleaned Length	Gal. Used	Comments
1	LVS12	Cell 7 Collection Line	175				
2	LVS11	Cell 7 Collection Line	125				
3	LVS3	AlL 1 - 6 Main Line	725				
4	LVS4	AlL 1 - 6 Main Line	700				
5	LVS5	AlL 1 - 6 Main Line	400			•	
WeW	LVS10	LCMH7	725	4/11/17	725	800 gal	EASY GOING, ISOU psi
7	LVS9	Cell8CO1	825	•			
NEW	J LVS2	AIL 1 - 6 Main Line	500	4/11/17	500	7co gal	EASY GOING, (SW PS;
Wh	LVS1	AlL 1 - 6 Main Line	850	4/11/11	850'	·	EARY GOING (SOO PS;
$\mathbb{A}^{\mathcal{N}}$	LIMH5CO5	AIL 1 - 6 Main Line	800	4/11/17	gos'.		(29 CO)~ (5 CO) \$243
1	LIMH5CO4	AIL 1 - 6 Main Line	800	•			,
12	LIMH5CO3	AIL 1 - 6 Main Line	800				
13	LIMH5CO2	AIL 1 - 6 Main Line	800				
13411	LIMH5CO1	AIL 1 - 6 Main Line	800	4/4/12	800'	ew zal	EAST GOING ISOUPS;
19 PS1	Cell12CO24	N/A	300	4/12/17	300°	1 1	GASY GOING, ISON PS:
NA	Cell12CO23	N/A	80	ulizlia	89 °	100 gal	
12AB	Cell12CO22	N/A	110	4/12/12	110'	_	KASY GOING, LOUD p.s;
W16V	Cell12CO21	N/A	240	1/12/17	240'		EACY GOING, low ps;
MAN	Cell12CO20	N/A	280	4/12/17	280'	1	EASY GOING, LOUD PS.
NSON	Cell12CO19	N/A	290	ululu	190°	37 € jd	
MEN	Cell12CO18	N/A	380	4/12/17	3 &o´	450gal	RACY GOING , LOW ps.
NEW	Cell12CO17	N/A	300	ulızlı	300'	4w sal	' '
NEW	Cell12CO16	N/A	100	Hlielm	(00)	150 gal	EAST GOING, 140 ps;
NAM	Cell12CO15	N/A	320	ulaln	320'	4w sal	EASY GOING ION PS;
(p. 5)	Cell12CO14	N/A	100	4 lizla	100'	150 gcl	EUR POINCE IMP SCI

Leachate Line Cleaning

City of Albany Landfill Rapp Road, Albany, NY

ле:	Contractor:	
Company:	Contractor Foreman:	
	Equipment Utilized:	

			Date	Cleaned		
Line Origin	Line End	Length (ft)	Cleaned	Length	Gal. Used	Comments .
Cell12CO12	N/A	280				
Cell12CO13	N/A	620	4/12/17	6W	Swgal	EASY GOING, low psi
Cell12CO11	N/A	520				
Cell12CO10	N/A	370				
Cell12CO9	N/A	510	•			
Cell12CO8	N/A	320				
Cell12CO7	N/A	325				
Cell12CO6	N/A	100				
Cell12CO5	N/A	160				
Cell12CO4	N/A	325				
Cell12CO3	N/A	325				
Cell12CO2	N/A	325				
Cell12CO1	N/A	550				
Cell9CO1	N/A	1000				
Cell12PS2CO1	EL-2P	700				
Cell12PS1CO1	Landfill	70				
Cell1-6PS1CO1	Landfill	1000				
Cell11PS1CO2	Landfill	970				
Cell10PS1CO1	Landfill	920				
Cell11PS1CO1	Cell11PS1CO2	80	W. A. J.			
PS1	Cell1-6PS1CO1	40				
PS1	Cell11PS1CO1	70				140
PS1	Cell10PS1CO1	80				
PS1	Cell12PS1CO1	50				
Clean	PS1	900 SF	····			
- ()	Cell12CO13 Cell12CO10 Cell12CO9 Cell12CO8 Cell12CO6 Cell12CO5 Cell12CO4 Cell12CO3 Cell12CO2 Cell12CO1 Cell12CO1 Cell12CO1 Cell12PS1CO1 Cell12PS1CO1 Cell11PS1CO2 Cell11PS1CO2 Cell11PS1CO1 PS1 PS1 PS1 PS1 PS1	Cell12CO13 N/A Cell12CO11 N/A Cell12CO10 N/A Cell12CO9 N/A Cell12CO8 N/A Cell12CO7 N/A Cell12CO6 N/A Cell12CO5 N/A Cell12CO4 N/A Cell12CO3 N/A Cell12CO2 N/A Cell12CO1 N/A Cell12CO2 N/A Cell12CO1 N/A Cell12PS2CO1 EL-2P Cell12PS1CO1 Landfill Cell1-6PS1CO1 Landfill Cell11PS1CO2 Landfill Cell11PS1CO1 Cell11PS1CO2 PS1 Cell11-6PS1CO1 PS1 Cell11PS1CO1	Cell12CO13 N/A 620 Cell12CO11 N/A 520 Cell12CO10 N/A 370 Cell12CO9 N/A 510 Cell12CO8 N/A 320 Cell12CO7 N/A 325 Cell12CO6 N/A 100 Cell12CO5 N/A 160 Cell12CO4 N/A 325 Cell12CO3 N/A 325 Cell12CO2 N/A 325 Cell12CO1 N/A 550 Cell9CO1 N/A 1000 Cell12PS2CO1 EL-2P 700 Cell12PS1CO1 Landfill 70 Cell11-6PS1CO1 Landfill 970 Cell11PS1CO2 Landfill 920 Cell11PS1CO1 Cell11PS1CO2 80 PS1 Cell1-6PS1CO1 40 PS1 Cell10PS1CO1 80 PS1 Cell10PS1CO1 50	Cell12CO13 N/A 620 4\(\) 12\(\)(17\) Cell12CO11 N/A 520 Cell12CO10 N/A 370 Cell12CO9 N/A 510 Cell12CO8 N/A 320 Cell12CO7 N/A 325 Cell12CO6 N/A 100 Cell12CO5 N/A 160 Cell12CO4 N/A 325 Cell12CO3 N/A 325 Cell12CO1 N/A 325 Cell12CO1 N/A 550 Cell12CO1 N/A 1000 Cell12PS2CO1 EL-2P 700 Cell12PS1CO1 Landfill 70 Cell1-6PS1CO1 Landfill 970 Cell11PS1CO2 Landfill 920 Cell11PS1CO1 Cell1-6PS1CO1 40 PS1 Cell1-6PS1CO1 70 PS1 Cell10PS1CO1 80 PS1 Cell10PS1CO1 80 PS1 Cell10PS1CO1 50	Cell12CO13 N/A 620 4 (12 (17	Cell12CO13

Albany Rapp Rd Landfill Leachate Clean

PAGE NO. 1 OF 1

DATE: 4/13/2017

WEATHER	TEMPERATURE
Cloudy/	HIGH 60
Wind	LOW 40

LOCATION Albany, NY

PROJECT#	3	2	5	9	6	1	0	0	0	3	2	0	0	0
)		

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED

- National Vacuum Corporation on site at 7:00am (2 man crew)
- National Vacuum notices leaking water from flusher truck reel containing hose due to a loose coupling. Coupling is fixed from 7:15am-8:30am.
- Call Paul K. to shut down Cell12 cleanouts to resume cleaning procedures.
- -Begin CELL12CO12 at 8:45am

PROJECT

- Line finished at 9:15am, 280 feet accomplished, 350 gal of water used during cleaning.
- Begin CELL12CO11 at 9:20am
 - Line finished at 9:45am, 520 feet accomplished, 650 gal of water used during cleaning.
- Begin CELL12CO10 at 9:50am
 - Line finished at 10:10am, 370 feet accomplished, 450 gal of water used during cleaning.
- Begin CELL12C09 at 10:20am
 - Line finished at 10:50am, 510 feet accomplished, 650 gal of water used during cleaning.
- Flusher truck out of water at 11:00am. Water truck filled from 11:10am-11:35am, flusher truck then filled by water truck from 11:40am-11:50am.
- Begin CELL12C08 at 11:55am
 - Line finished at 12:15pm, 320 feet accomplished, 400 gal of water used during cleaning.
- Lunch 12:15pm 12:45pm
- Begin CELL12CO7 at 12:50pm
- List on file denotes this line to be approximately 325 feet long, hose came to a dead stop at 160 feet with multiple tries and no known blockages have been recorded previously. Assuming that this might be a typo, we mobilze to next location to see if distance matches. Approx 200 gal of water used during cleaning, end at 1:25pm.
- Begin CELL12CO6 at 1:30pm
- List on file denotes this line to be approximately 100 feet long, hose made it to 325 feet confirming that the distances written on the sheet need to be edited. Approximately 400 gal of water used during cleaning, end at 1:55pm
- -Begin CELL12CO5 at 2:00pm
- List on file denotes this line is approximately 160 feet long, hose came to dead stop at 100 feet confirming that these three lines (7,6,5) need their distances to be switched. This was also confirmed by measuring the lines on the scaled map we have on site. Distances are changed on field list and will be edited for future use. Approx 200 gal os water used, end at 2:15pm.
- Begin CELL12CO4 at 2:20pm.
- Line finished at 2:40pm, 325 feet accomplished, 400 gal of water used during cleaning.
- Begin CELL12C03 at 2:45pm
- Line finished at 3:10pm, 325 feet accomplished, 400 gal of water used during cleaning.
- Fill water truck 3:10pm 3:30pm.
- National Vacuum begins to pack up equipment, brings tool up to trailer.
- Call Mike K. to open up Cell12 clean outs.

Off Site:

National Vaccum: 3:40pm

CHA: 3:40 PM

NUMBER OF WORKERS & EQUIPMENT USED	ITEM NO.	QUANTITIES PLACED TODAY
2100 Vactor Series Plus Flusher Truc		
Water truck (Max capacity: 3,000 gallons)		
Approximately 1,200 feet of Piranna sewer cleaning hose		

Leachate Line Cleaning City of Albany Landfill Rapp Road, Albany, NY

Name: PATRICK RAHM	Contractor:	NATIONAL NAKOUM
Company: CHA CONSULTING	Contractor Foreman:	JAME(IRWIN
	Equipment Utilized:	2100 VACTUR PLUS FLUSHER TRUNK

1200 PERANNA SEWER CLEANING HOSE (ZEOPS:)

OF/GR TET MEZZLE

						OF GR JET MEZLE
Line Origin	Line End	Length (ft)	Date Cleaned	Cleaned Length	Gal. Used	Comments
Cell12CO12	N/A	280	4 /13/m	280'	350 20	RASY GOING IND OS;
Cell12CO13	N/A	620	4/12/17	ഗ്രധ'	Swart	
Cell12CO11	N/A	520	4/13/17	520'	650 gal	EASY GONG, LUS PSi
Cell12CO10	N/A	370	4/13/17	3 76'	450 gcl	EASY GOING (UN) PJ.
Cell12CO9	N/A	510	4/13/17	510'	650 gcl	RASY GOING 1000 ps;
Cell12CO8	N/A	320	ઘ <i>ીાઢી(1</i>	3201	4w gal	DISTANCE CHANGE ' GASY COINT, 1000psi
Cell12CO7	N/A		4/13/17	l જ ે	ew gal	DISTANCE CHANGE GASY COINT, 1000psi
Cell12CO6	N/A	/		325'	4w gol	1 (231~1/2)~0/51
Cell12CO5	N/A	iव्योक्	ulista	lw'	200 gal	DISTANCE CHANGE ! FLASH GOIND, loss ps;
Cell12CO4	N/A	325	4/13/17	328'	4w gal	EAGU COINT, 1000 ps;
Cell12CO3	N/A	325	धीउदा	325'	i	EASY GRAF, 100 ps;
Cell12CO2	N/A	325				
Cell12CO1	N/A	550				
Cell9CO1	N/A	1000				
Cell12PS2CO1	EL-2P	700				
Cell12PS1CO1	Landfill	70				
Cell1-6PS1CO1	Landfill	1000				
Cell11PS1CO2	Landfill	970				
Cell10PS1CO1	Landfill	920		4-1		Ç (S)
Cell11PS1CO1	Cell11PS1CO2	80				
PS1	Cell1-6PS1CO1	40				
PS1	Cell11PS1CO1	70		***************************************		
PS1	Cell10PS1CO1	80				
PS1	Cell12PS1CO1	50				
Clear	n PS1	900 SF		***************************************		
	Cell12CO12 Cell12CO13 Cell12CO10 Cell12CO9 Cell12CO8 Cell12CO6 Cell12CO5 Cell12CO4 Cell12CO3 Cell12CO2 Cell12CO1 Cell12CO1 Cell12CO1 Cell12CO1 Cell12PS1CO1 Cell12PS1CO1 Cell11PS1CO2 Cell11PS1CO2 Cell11PS1CO1 Cell11PS1CO1 PS1 PS1 PS1 PS1	Cell12CO12 N/A Cell12CO13 N/A Cell12CO10 N/A Cell12CO9 N/A Cell12CO8 N/A Cell12CO7 N/A Cell12CO6 N/A Cell12CO5 N/A Cell12CO4 N/A Cell12CO3 N/A Cell12CO2 N/A Cell12CO1 N/A Cell9CO1 N/A Cell12PS2CO1 EL-2P Cell12PS1CO1 Landfill Cell1-6PS1CO1 Landfill Cell11PS1CO2 Landfill Cell11PS1CO1 Cell11PS1CO2 PS1 Cell1-6PS1CO1 PS1 Cell11PS1CO1 Cell11PS1CO1 Cell11PS1CO1	Celi12CO12 N/A 280 Celi12CO13 N/A 620 Celi12CO11 N/A 520 Celi12CO10 N/A 370 Celi12CO9 N/A 510 Celi12CO8 N/A 320 Celi12CO7 N/A 325 Celi12CO6 N/A 325 Celi12CO5 N/A 325 Celi12CO4 N/A 325 Celi12CO3 N/A 325 Celi12CO2 N/A 325 Celi12CO1 N/A 550 Celi9CO1 N/A 1000 Celi12PS2CO1 EL-2P 700 Cell12PS1CO1 Landfill 70 Cell1-6PS1CO1 Landfill 970 Cell11PS1CO2 Landfill 970 Cell11PS1CO1 Cell11PS1CO2 80 PS1 Cell1-6PS1CO1 40 PS1 Cell11PS1CO1 80 PS1 Cell10PS1CO1 80 PS1 Cell11PS1CO1 <td> Line Origin Line End (ft) Cleaned </td> <td> Line Origin Line End (ft) Cleaned Length </td> <td> Line Origin Line End (ft) Cleaned Length Gal. Used </td>	Line Origin Line End (ft) Cleaned	Line Origin Line End (ft) Cleaned Length	Line Origin Line End (ft) Cleaned Length Gal. Used

Albany Rapp Rd Landfill Leachate Clean

REPORT NO. 5
PAGE NO. 1 OF 1
DATE: 4/14/2017

WEATHER	TEMPERATURE
Sunny/Clear	HIGH 64
	LOW 33

LOCATION Albany, NY
PROJECT

PROJECT# 3 2 5 9 6 1 0 0 0 3 2 0 0 0

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION
DESCRIPTION OF WORK PERFORMED AND OBSERVED

- National Vacuum Corporation on site at 7:00am (2 man crew)
- -Begin CELL12CO2 at 7:20am

PROJECT

- Line finished at 7:50am, 325 feet accomplished, 400 gal of water used during cleaning.
- Flusher truck filled with water from water truck at 8:00am.
- Begin CELL12CO1 at 9:15am
 - Line finished at 9:50am, 550 feet accomplished, 700 gal of water used during cleaning.
- Begin CELL9CO1 at 10:00am
 - Hose went smoothly to approximately 640 feet where pulsing began.
 - Refill flusher truck with water from water truck 10:40am
- Hose pulsing to approximately 850 feet (slow moving but progressing), refill flusher truck with water from water truck at 11:10am
- Hose pulsing to end of 1,000 feet
- Line finished at 11:45am, 1,000 feet accomplished, 2,000 gal of water used during cleaning.
- Lunch 12:00pm 12:30pm
- Fill flusher truck with water from water trruck 12:30-12:50pm
- Begin CELL89PS2CO1 at 1:00pm
 - Line finished at 1:25pm, 140 feet accomplished, 200 gal of water used during cleaning.
- Attempted to clean 40-foot line from CELL12PS2CO1 to PS2 from CELL12PS2CO1 stick up but could not snake hose into pipe. Pulled hose out of stick up at 2:00pm
- National Vacuum dumps flusher truck as well as releases any remaining water in water truck to ensure no liquid of any type is left in both trucks over weekend (2:00pm-3:00pm)
- Go over footage for day/week with National Vacuum, speak with Andy J. about next week's plan for cleaning.

Off Site:

National Vaccum: 3:30pm

CHA: 3:30 PM

NUMBER OF WORKERS & EQUIPMENT USED	ITEM NO.	QUANTITIES PLACED TODAY
2100 Vactor Series Plus Flusher Truck		
Water truck (Max capacity: 3,000 gallons) Approximately 1,200 feet of Piranna sewer cleaning hose with 1.0 inch I.D. (Max capacity: 2,500 psi)		
0 F/ 6 R Jet Nozzle Head		

THE ABOV	E DESCRIBED	WORK WAS	INCORPORATED
INTO THE I	PROJECT & W	AS OBSERVI	ED BY:

TIME CHARGED TO PROJECT:

MILEAGE CHARGED TO PROJECT:

0

Patrick J. K. BSERVER'S SIGNATURE

ADDITIONAL SHEETS USED CHECK INITIALS PZ

Leachate Line Cleaning City of Albany Landfill Rapp Road, Albany, NY

ne: PATRICK RAHM	Contractor:	NATIONAL VACUUM
Company: CHA CONSULTING	Contractor Foreman:	JAME(IRWIN
	Equipment Utilized:	2100 MOTUR PLUS FLUS HEL TRUIL
		Myso Truck (2000 gal)
		120 Truch (zwo sal)

1200' PIRAMNA SEWER CLEAMING HOSE (ZEOPS:)

Task Length Date Cleaned Line Origin Line End (ft) Cleaned Length Gal. Used No. Comments 17,286 Cell12CO12 280 N/A 4/13/17 280 350 201 RASY GOING 1000 PS; Cell12CO13 N/A 620 4/12/17 6W gu gal EASY GOING, low psi Ostin Cell12CO11 N/A 520 4/13/17 520' 650 sal EASY GOWG, IUNIPSI *પ*ર્ક્ષ્મ) 370 4/13/17 Cell12CO10 N/A 450 gcl 370' EASY GOING (UN) V2807 Cell12CO9 N/A 510 4/13/17 510' 650 gcl KASY GOING 1000 psi logu 4/13/17 Cell12CO8 N/A 320 3201 4w gal EASY COING <u> عم سم/</u> DISTANCE CHANGE אשעני Cell12CO7 N/A 4/13/17 200 gal 160 EASY COINT, 1420psi 1233 DUTANCE CHANGE Cell12CO6 N/A 4/13/17 325° لمو تعه RASY GOING TUNOPSI DISTANCE CHANGE! i caled N3A7 w Cell12CO5 N/A 4/13/17 200 gol FLASY GOING, lawps; ॐ Cell12CO4 325 N/A 4/13/17 3251 400 gel EASU WING, 1000 ps; Cell12CO3 325 N/A 4/13/17 325 4w gd EASY EVENT, 100ps; UKELL <u>325 (</u> Cell12CO2 N/A 325 4/14/17 بالله عالم RASY GOING, 10005) BELL Cell12CO1 N/A 550 4/14/17 550 iso gal KASY GOING 1200 ps: SCOW MEVING & GYO' in force NBaJ Cell9CO1 N/A 1000 4/14/17 100 100 1500 ns Cell12PS2CO1 .40 EL-2P 700 Cell12PS1CO1 70 41 Landfill 42 Cell1-6PS1CO1 1000 Landfill 970 43 Cell11PS1CO2 Landfill Cell10PS1CO1 920 44 Landfill Cell11PS1CO1 Cell11PS1CO2 45 80 46 PS₁ Cell1-6PS1CO1 40 47 PS₁ Cell11PS1CO1 70 48 PS₁ Cell10PS1CO1 80 49 PS₁ Cell12PS1CO1 50 Clean PS1 900 SF ٥ر

Leachate Line Cleaning City of Albany Landfill Rapp Road, Albany, NY

ne:	Contractor:	
Company:	Contractor Foreman:	
	Equipment Utilized:	
•		

Task			Length	Date	Cleaned	<u> </u>	
No.	Line Origin	Line End	(ft)	Cleaned	Length	Gal. Used	Comments
51	PS1FMCO2	PS1FMCO1	400				
52	PS1FMCO2	PS1FMCO1	1000				
53	Clear	PS1	900 SF			•	Clean if necessary
54	PS1FMCO1	VMH1	860				
55	EL-2P	Landfill	160				·
56	LCMH7	PS2	150				
57	Leachate Interceptor Manhole	PS2	150				
MAG	PS2	Cell89PS2CO1	140	4/14/0	140'	2w gol	EASY GOING 100 ps.
59	PS2	Cell12PS2CO1 (exterior)	40				
J. J	PS2	VMH2 - tank check valve	-				
61	Clear	1 PS2	600 SF				
62	Tank #1		375,000 gal				
63	Tank #2	-	425,000 gal				
64	VHM2	All Directions	-				
65	VHM2 Tank Feed Line	Tank #2	60				
66	VHM1 .	All Directions	-				
67	Metering Manhole	-	-		100		
68	Catch Basin #4	Culvert Pipe at Outbound Scale	100				
69	Inbound/Outbou nd Scales	Jet and Clean Scales Top and Bottom	-				
70	Inbound Scale Scale Pit Drain	Catch Basin #3	110			,	
71	Catch Basin #3	Scale Swale	60				
72	Scale Ditch	Parking Lot Manhole #2	170				
3	Man Hole - Scalehouse	Metering Man Hole	500		-11		
74	Parking Lot Manhole #2	Discharge Point Outfall 003	140				`

PROJECT Albany Rapp Rd Landfill Leachate Clean

REPORT NO. 6	
PAGE NO. 1 OF 1	
DATE: 4/17/2017	

WEATHER	TEMPERATURE
Partly	HIGH 63
Sunny/Wind	LOW 38

PROJECT # 3 2 5 9 6 1 0 0 0 3 2 0 0 0

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED

- National Vacuum Corporation on site at 7:00am (2 man crew)
- Fill up water truck and flusher truck at on-site hydrant first thing (7:15am-7:50am).
- Begin CELL12PS2CO1 at 8:00am

LOCATION Albany, NY

- Line finished at 8:40am, 700 feet accomplished, 850 gal of water used during cleaning.
- Flusher truck filled with water from water truck at 8:50am.
- Begin CELL1-6PS1CO1 at 9:15am
 - Line finished at 10:00am, 1,000 feet accomplished, 1,000 gal of water used during cleaning.
- Begin CELL12PS1CO1 at 10:05am
 - Line finished at 10:15am, 70 feet accomplished, 100 gal of water used during cleaning.
- Andy J. approaches National Vacuum with an issue that they could possibly fix. Mobilize flusher truck to GC10 location to use vacuum to clear possible slug of water that is assumed to be located in a dip within the pipe underground. National Vacuum works with landfill crew until 11:15am.
- Andy J. has National Vacuum hold operations until problem is resolved.
- -Work resumes at 11:45am
- Fill flusher truck with water from water truck 11:50am-12:10pm
- Lunch 12:15pm 12:45pm
- Take off cap on Cell10PS1CO1 and observed a lot of vacuum. Call Andy to make sure only the well valve needs to be closed in order to proceed with cleaning operations.
- Andy calls and asks for National Vacuum to stand by on cleaning operations due to flare shutdown.
- National Vacuum on stand by 1:00pm 3:15pm
- CHA and National Vacuum see Andy in office at 3:30pm, flare back up and running and should be able to resume cleaning operations tomorrow morning.

Off Site:

National Vaccum: 3:30pm

CHA: 3:30 PM

NUMBER OF WORKERS & EQUIPMENT USED	ITEM NO.	QUANTITIES PLACED TODAY
2100 Vactor Series Plus Flusher Truck		
Water truck (Max capacity: 3,000 gallons) Approximately 1,200 feet of Piranna sewer cleaning hose with 1.0 inch I.D. (Max capacity: 2,500 psi)		
0 F/ 6 R Jet Nozzle Head		

THE ABOVE DESCRIBED WORK W. INTO THE PROJECT & WAS OBSER		Patrick J. R.S. ODSERVER'S SIGNATURE	_
TIME CHARGED TO PROJECT: MILEAGE CHARGED TO PROJECT:	8		_
MILEAGE CHARGED TO PROJECT:	0	ADDITIONAL SHEETS USED CHECK INITIALS	ے'ر

REPORT NO.	7
PAGE NO. 1	of 1
DATE: 4/18/17	

PROJECT	Albany Rapp Rd Landfill Leachate Clean	

LOCATION Albany, M

WEATHER	TEMPERATURE
Partha	HIGH 65°
Partly Cloudy.	LOW 40°

PROJECT # 3 2 5 9 6 1 0 0 0 3 2 0 0

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION
DESCRIPTION OF WORK PERFORMED AND OBSERVED
- 7:00°: National Vacuum Corporation on site. Waiting for word to begin deaning.
- 7:15 Mike from LF informs NV that lines which require shutting off gas should not be completed.
- 7:30° Move to tanks to start lines in that vicinity. NV moves to get flusher truck.
-7:45a: Begin shoveling gravel out of catch Basin #4 cover. Finish cleaning catch Basin 4 @ 80m.
-8:05 " Move to scale Ditch to begin cleaning completed & 8:30".
-8:45° (complete Outfail 3(140'), Parking lot mallhole (110') and fortistar Whert (80') by 9:30° - NV empties vactor. Returns to site at 9:45°. Cleangrea around Parking lot manhole cover #2.
- All empties vactor. Returns to site at 9:459. Cleangrea around Parting lot manhole cover #2.
- 10:30° Cleaned trench outside of shop. Moved to Mahhole #1 to clean out hole.
- 10:50 a: N moves yactor to fill up water. Vactor back and filled water, vactor dumped b/c full.
-12:00: Lunch taken to 12:30P. (Nat'l Vacreturns)
-Move to Cell 10 after getting confirmation from Andy about proceeding to 900' lives. Says to
do the garage lines in the morning. Mike from LF turns IFF gas supply at Cell 10.
do the garage lines in the morning. Mike from LF turns Iff gas supply at Cell 10. -1:20 P. Complete Cell 10. Mike restores gas to like. Will move onto complete Cell 11.
-1:30P: Mike shorts off gas supply to cell 11. Complete cell II cleaning@ 2:00P. Mike
restores gas supply to tell 11. Mike goes offishe.
- 2:15P: Start moving vactor to dump all debris.
-2:40Pm: Will back to NV trailer w/ vactor inspect bottom of tank to determine cause of leaking
tanks. Need to have tanks filled w/ water. Will checks if value loose on tank.
-3:101: Return to office to find Analy. Not in Office
-3:15P: CHA+N offerte
THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY:
TIME CHARGED TO PROJECT: OBSERVER's SIGNATURE
NAME OF THE PROPERTY OF THE PR
MILEAGE CHARGED TO PROJECT: ADDITIONAL SHEETS USED CHECK INITIALS

PROJECT Albany Rapp Rd Landfill Leachate Clean

LOCATION Albany, NY

REPORT NO. 8
PAGE NO. 1 OF 1
DATE: 4/19/2017

WEATHER	TEMPERATURE	
Cloudy/	HIGH	
Wind&Rain	LOW 38	l

PROJECT#	3	2	5	9	6	1	0	0	0	3	2	0	0	0
	1			1		l						1		

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED

- National Vacuum Corporation on site at 11:00am (2 man crew)
- Fill up water truck and flusher truck at on-site hydrant (11:10am-11:25am).
- New policy for National Vacuum, they must document and summarize footage and work completed each day. Paperwork from the start of the project until now was retraced, recorded, and confirmed for National Vacuum until 12:00pm.
- Garage open for flusher entry at 12:15pm for cleaning operations.
- National Vacuum cleans garage floor drain #1 to collection pit 12:30pm-12:50pm, vacuum out collection pit and replace grates at 12:55pm. 70 feet acommplished, 100 gal of water used during cleaning.
- Begin cleaning garage floor drain #2 to cllection pit 1:00pm-1:15pm, vacuum out collection put and replace grates at 1:20pm. 70 feet accomplished, 100 gal of water used during cleaning.
- Collection pit floor covers are left open for landfill operators to close, space is taped off with caution tape and cones to alert foot traffic nearby.
- National Vacuum mobilizes flusher truck to Leachate Tanks #1 & #2 at 1:30pm.
- National Vacuum unbolts both access doors (interior and exterior) with wrenches (did not have impact with them, unblotingand bolting back up took time) to look inside tanks. Both tanks were observed to be clear, rust free, and debris free. Tanks were bolted closed at 2:30pm, 0 gallons fo water was used.
- Lunch taken 2:45pm-3:15pm.
- Begin cleaning Catch Basin #3 to inbound scale pit drain at 3:20pm
- End at 3:35pm, 85 feet accomplished, 150 gal of water used during cleaning. The list available provides a distance reading 110 feet, this was confirmed to be only 85 feet during last cleaning session (September 2016).
- Basin vacuumed clean and pressure washed 3:35pm-3:45pm.
- Begin cleaning Catch Basin #3 to scale ditch at 3:50pm.
- End at 4:00pm, 60 feet accomplished, 70 gal of water used during cleaning.
- National Vacuum mobilized flusher truck to inbound scale, pops both manholes on scale, places vacuum with alluminum cylinder into north manhole and one laborer enters scale pit drain with lance in southern manhole to begin cleaning. Laborer shovels all sediment and debris toward vacuum and pressure washed all sides of pit drain.
 - End cleaning at 5:15pm.
- National Vacuum fills up water flusher truck with water from water truck 5:15pm-5:30pm.
- Mobilize flusher truck to outbound scale, and begins pressure washing scale surface, sides of scale, and under scale. Observed to be clean at 6:00pm.
- National Vacuum picks up equipment until 6:15pm.

Off Site:

National Vaccum: 6:15pm

CHA: 6:15 PM

NUMBER OF WORKERS & EQUIPMENT USED	ITEM NO.	QUANTITIES PLACED TODAY
2100 Vactor Series Plus Flusher Truck		
Water truck (Max capacity: 3,000 gallons) Approximately 1,200 feet of Piranna sewer cleaning hose with 1.0 inch I.D. (Max capacity: 2,500 psi)		
0 F/ 6 R Jet Nozzle Head		

THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY:	Patris of As
TIME CHARGED TO PROJECT: 8 MILEAGE CHARGED TO PROJECT: 0	Additional sheets used check initials ??

FORM #1

Leachate Line Cleaning City of Albany Landfill

Rapp Road, Albany, NY

ле:	PATRICK RAHM	Contractor:	NATIONAL VACUUM
Company:	CHA CONSUTING	Contractor Foreman:	JAMES IRWIN
		Equipment Utilized:	2100 vactur plus flusher truch
	•		47.0 Terch (300 Jack)
			12.11 PIENTER SELER CLEANING HUSE (25 MICE)

							OF I GR JET NUZZLE
Task No.	Line Origin	Line End	Length (ft)	Date Cleaned	Cleaned Length	Gal. Used	Comments
51	PS1FMCO2	PS1FMCO1	400	Marie & Marie San Landson Commission Commiss	THE RESERVE AND ASSESSMENT OF THE PERSON NAMED IN		
52	PS1FMCO2	PS1FMCO1	1000				
53	Clear	PS1	900 SF				Clean if necessary
54	PS1FMCO1	VMH1	860	Walter and the Control of the Contro			
55	EL-2P	Landfill	160				
56	LCMH7	PS2	150	٠			
57	Leachate Interceptor Manhole	PS2	150				
UBB,	PS2	Cell89PS2CO1	140	4/14/17	140'	2w gol	CASY GOING 1 WO ps.
. 39/2	PS2	Cell12PS2CO1 (exterior)	40	4/14/17	40	100 gal.	,,
50	PS2	VMH2 - tank check valve	-				
61	Clear	PS2	600 SF				
M,85J	Tank #1	-	375,000 gal	4/19/17	-	Ogd	Tank observed to be also and no sedione or
Ngal	Tank #2	-	425,000 gal	4/19/17	_	Ogal	Took discoved to be clam no scaliment or rust observed See
64	VHM2	All Directions	-				
65	VHM2 Tank Feed Line	Tank #2	60				
66	VHM1 .	All Directions	-	·	,		
67	Metering Manhole		_				
C862	Catch Basin #4	Culvert Pipe at Outbound Scale	100	4/18/17	100'	150	sto psi easy clean.
1687	Inbound/Outbou nd Scales	Jet and Clean Scales Top and Bottom	-	4/19/17	. –	2500 gol	SCALES ARE SEDIMENT & OIL PREE APERL CRANIN L
(PSU)	Inbound Scale Scale Pit Drain	Catch Basin #3	85116	4/19/17	85	150 gal	EASY GUNG, IUN PEN
was	Catch Basin #3	Scale Swale	60	4/19/17	60	1	1
W25W	Scale Ditch	Parking Lot Manhole #2	170	4/18/17	170'	300	Cleaned life, fasy dean
73	Man Hole - Scalehouse	Metering Man Hole	500				
34	Parking Lot Manhole #2	Discharge Point Outfall 003	140	4/18/17	140'	300	Cleaned area around manhole 2 hole itself.

Leachate Line Cleaning City of Albany Landfill Rapp Road, Albany, NY

ne:	Contractor:	
Company:	Contractor Foreman:	
	Equipment Utilized:	

Task			Length	Date	Cleaned		
No.	Line Origin	Line End	(ft)	Cleaned	Length	Gal. Used	Comments
_3/5J	Parking Lot	Parking Lot	110	4/18/17	110	200	Fary clean. Chaned manhole.
~,	Manhole #1	Manhole #2	- 10		110	LEO	
J.S.	Storm Water	Sanitary	60	4/18/17	60'	ods	Clean trench. Early clean.
76	Trench #1 (exterior)	Manhole #1	60	1 10/14	00	200	-
	Storm Water			****	***************************************		
77	Trench #2	Sanitary	70	_			Filled of Stone per Andy J.
	(exterior)	Manhole #1					1 0
78	Sanitary	. Corner Admin	160				
	Manhole #1	Manhole	*****				()
(39)	Culvert at North End of Fortistar	Parking Lot	80	4/18/17	80'	100	Gasy dean.
ا يني	Plant	Manhole #2	35	.110/11		100	
	Corner Admin	Manhole -			***************************************		
80	Manhole	Admin Bldg	40				
	- Wallion	(closest)					
.81	Man Hole -	Manhole - Admin Bldg	20				
J 1	Admin Building	(closest)	20				
	Man Hole -	Man Hole -	500				**************************************
92	Admin Building	Scalehouse	500				
83	Man Hole -	Man Hole -	450				
	Admin Building	Polish					
84	Man Hole - Polish	Man Hole - Admin Building	600				
	Man Hole Polish	Man Hole - 2nd	040				
85	Community	Polish	240				
86	Man Hole - 2nd	Man Hole -	240				
	Polish	Daughters of					
87	Man Hole - Daughters of	_	_				
07	Sarah	-	_				•
N887				11/1		-	
Mos	Garage	•	2	4/4/11	2	w gal	EASY CLEAN, SW PS:
(22)	Garage Floor	0 11 11 151	70	1 1			
Créss	Drain #1	Collection Pit	70	4/19/17	70	W gal	RASY CLEAN LAND TO
	(interior) Garage Floor			-, ,	***************************************	7	RASY CLEW 1000 PS:
(VOBEL!)	Drain #2	Collection Pit	70	116.10			
1200	(interior)	Joneston 1 R	, ,	4(19/17	70	wood	BASY CLEAN , WO PS:
1 50		12 x 36" sumps	_				1
NEV		12 X 30 Sumps	-			2w Sal	EASY CLEAN I MAC
92	Leachate		_				
	Collection Tubs					ļ	L.

Albany Rapp Rd Landfill Leachate Clean

LOCATION Albany, NY

PROJECT

REPORT NO. 9
PAGE NO. 1 OF 1
DATE: 4/20/2017

WEATHER	TEMPERATURE		
Cloudy/	HIGH 62		
Wind&Rain	LOW 48		

PROJECT#	3	2	5	9	6	1	0	0	0	3	2	0	0	0

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED

- National Vacuum Corporation on site at 7:00am (3 man crew)
- National Vacuum takes off extra 400 feet of hose off reel at 7:25am, it is not needed since the remaining lines are under 900 feet long.
- National Vacuum dumps flusher truck on top of landfill at 7:45am.
- National Vacuum gets confined space equipment prepared and mobilizes flusher truck, water truck, and equipment to beginning location PS1FMCO2 AT 8:00am.
- Call Mike K. to closes valves in PS1 to proceed with cleaning operations.
- Open PS1FMCO2 vault, observed vault filled with leachate up to the forcemain. Vacuum out all leachate in vault until empty from 8:15am-8:35am.
- National Vacuum closes second valvue and drops main valve in forcemain to begin cleaning toward PS1.
- Begin cleaning from PS1FMCO2 to PS1 at 8:45am
- End at 9:00am, 400 feet accomplished, 700 gal of water used during cleaning.
- Begin cleaning from PS1FMCO2 to PS1FMCO1 at 9:05am.
 - End at 9:20am, 550 feet accomplished, 600 gal of water used.
- Vault is pressure washed with fire hose from 9:20am 9:45am.
- National Vacuum dumps flusher truck on top of landfill at 10:00am
- Mobilize equipment and flusher truck to PS1FMCO1 at 10:30am.
- Open PS1FMCO1 vault and observed vault filled with leachate to forcemain. Vacuum out all leachate in vault until empty from 10:40am-11:00am.
- Begin cleaning from PS1FMCO1 to PS1FMCO2 (to complete 1,000 foot line) at 11:10am.
 - End at 11:30am, 450 feet reached (to complete a total of 1,000 feet), 600 gal of water used during cleaning.
- Begin cleaning from PS1FMCO1 to VMH1 at 11:35am.
 - End at 12:00pm, 860 feet accomplished, 1,000 gal of water used during cleaning.
- PS1FMCO1 vault is pressure washed with fire hose from 12:00pm-12:15pm.
- Lunch 12:20pm-12:50pm.
- During lunch, Mike K. noticed the pump in PS1 was not operating correctly. Assumption is that one of the valves in one of the vaults are still closed not allowing flow from the pump station to the forcemain. National Vacuum back on site at 12:45pm. Problem located in PS1FMCO2 where one of the valves was indeed closed, valve opened back up and PS1 operating normally at 1:00pm.
- National Vacuum takes break from 1:00-1:10pm.
- Mobilize equiupment and flusher truck to EL-2P manhole. Manhole is popped and observed leachate in manhole. Vacuum out all leachate until empty from 1:30pm-1:45pm.
- Begin cleaning from EL-2P to the landfill at 1:50pm.
 - End at 2:20pm, 160 feet accomplished, 200 gal of water used during cleaning.
- Manhole pressure washed and cleaned at 2:30pm.
- Mobilize flusher truck to Scalehouse manhole at 2:45pm. Popped manhole cover and observed leachate in manhole. Vacuum out all leachate until empty 2:50pm- 3:10pm.
- Due to the line being 500 feet and also having to unbolt covers inside manhole, this line will be cleaned first thing tomorrow morning. Manhole is closed at 3:15pm.
- National Vacuum travels up to trailer to pack up confined space equipment.

Off Site:

National Vaccum: 3:30pm

CHA: 3:30 PM

NUMBER OF WORKERS & EQUIPMENT USED	ITEM NO.	QUANTITIES PLACED TODAY
2100 Vactor Series Plus Flusher Truck		
Water truck (Max capacity: 3,000 gallons) Approximately 1,200 feet of Piranna sewer cleaning hose with 1.0 inch I.D. (Max capacity: 2,500 psi)		
0 F/ 6 R Jet Nozzle Head		
Confined Space Rescue equipment & trailer		
THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY:	Patrict J. M. OBSERV	ER's SIGNATURE
TIME CHARGED TO PROJECT: 8		
MILEAGE CHARGED TO PROJECT: 0	✓ ADDITIONAL SHEETS	SUSED CHECK INITIALS 32
		FORM #1

Leachate Line Cleaning City of Albany Landfill Rapp Road, Albany, NY

Name:	PATRICK RAHM	Contractor:	NATIONAL VACUUM				
Company:	CHA CONSUTING	Contractor Foreman:	JAMES IRWIN				
		Equipment Utilized:	2100 valtur plus flusher trich				
	•		420 Tevel (300 sal)				

120 PIRAMA SEVER CLEANING HUSE (2500ps)

							OF/GR JET WERK
Task No.	Line Origin	Line End	Length	Date Cleaned	Cleaned	Gal. Used	i .
			(ft)		Length	Gai. Useu	Comments
51	PS1FMCO2	PS1	400	4/20/17	400 '	700 gal	EASY GOING, 12W ps;
52	PS1FMCO2	PS1FMCO1	1000	4/20/17	louol	1200 gal	(8/34 601mb, 120 ps;
53	Clear	n PS1	900 SF	.			Clean if necessary
54	PS1FMCO1	VMH1	860	4/20/17	860'	1000 gol	£037 60mb, 1200ps:
55	EL-2P	Landfill	160	4/20/17	160'	200 gil	RAST GOING (US PS.
56	LCMH7	PS2	150			-	
57	Leachate Interceptor Manhole	PS2	150				
WAST .	PS2	Cell89PS2CO1	140	4/14/17	140'	2w gol	EASY GOING 1 WO ps.
39/2	PS2	Cell12PS2CO1 (exterior)	40	4/14/17	40	100 gal.	<i>n</i> . , , , , , , , , , , , , , , , , , ,
ر ۲۵	PS2	VMH2 - tank check valve	_			•	
61	Clear	n PS2	600 SF				·
M,&8J	Tank #1	•	375,000 gal	4/19/17	+	Ogd	Tank observed to be occur and no sediment or
Ngal	Tank #2	••	425,000 gal	4/19/17			Took discoved to be claim, no saddings (US- or rust observed, See
64	VHM2	All Directions	-	-			3~2
65	VHM2 Tank Feed Line	Tank #2	60				
66	VHM1	All Directions	-				·
67	Metering Manhole	-	-				
C86,	Catch Basin #4	Culvert Pipe at Outbound Scale	100	4/18/17	100'	150	isto psi easy clean.
N89	Inbound/Outbou nd Scales	Jet and Clean Scales Top and Bottom	<u>.</u>	4/19/17		2500 god	SCALLS ARE SEDIMENT I OIL FREE APTER CLEAMIN L
11/09	Inbound Scale Scale Pit Drain		85116	4/19/17	85	150 gal	FASY GUNG, 100 PSI
WW	Catch Basin #3	Scale Swale	60	4/19/17	60	To gal	l l
1.72/	Scale Ditch	Parking Lot Manhole #2	170	4/18/17	170'	300	Cleaned life, fasy down
/3	Man Hole - Scalehouse	Metering Man Hole	500				VACUARY MARHUE 4/20
JAKE.	Parking Lot Manhole #2	Discharge Point Outfall 003	140	4/18/17	140'	300	Cleaned area accurate mathbole 2 hole itself:

TIME CHARGED TO PROJECT: MILEAGE CHARGED TO PROJECT:

REPORT NO. 0 PAGE NO. OF 1 DATE: CONSTRUCTION OBSERVATION REPORT WEATHER **TEMPERATURE** Rapp Rd Landfill Loachate Clean. PROJECT Overcust/ LOCATION Albany, NY 3 2 5 9 PROJECT# 0 3 2 SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED 7:00. CHA ansite. Nat'l vac called to confirm arrival time. 7:15a: Nat'I vac onsite w/dump truck. Call Mike from Albany Landfill to see if any gas in metering manhole needed to be shut off. Mike comes to see cleaners. Says to call him When we move to late house 7:30a: Move to Scalehouse Manhole to begin cleaning. Tim gets into properwork gear to enter, 9:10 ": Nat'l vac starts to reel hose after completing scalehouse manhole. Move to Pump Station 1 9:15a: Completed clean @ line 1-12 in Pumphouse. Call Mike to get live 1-12 turned off. 930°: (oke from Albanus F turnson 1-12 and turns off 1-6to be cleaned. 9:55ª Finished cleaning 1-6 call Mike to turn on 1-6 and to turn off 1-10211. 10:300: Complete cleaning at 1-10211. Begin to have down pump howe floor Start to clean catch basin in Pumphova #1. Vactor full. 11:05 a: Will move vactor to go empty. Return @ 11:40 a. Mike takes notice of panel on outside of pump horse not returning readings (all to get fire switched out, crew will return to repair. 12:151-12:451: Lunch. 12:45": Continue to clean floor in pump station. Complete cleaning. Waiting for Mike to fun everythingon 1:40%: Move vactor and vehicles to sanitary manhole #1. to begin cleaning. Complete by 2:10% 2:151. More truck to trailer. Dumped vactor. Move to get water truck to mobilite up to trailer. 2:50P: Parked vehicles. NV to get dump truck and move of fishe. 3:00P: Go to main building to make copies and leave for A. Jensen. NV says cannot work Minday and Tuesday, Will tell P. Rahm. 3:151: Wand EHA offinite. THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY: **OBSERVER'S SIGNATURE**

☐ ADDITIONAL SHEETS USED CHECK INITIALS

Leachate Line Cleaning

City of Albany Landfill Rapp Road, Albany, NY

.ame:	Contractor:	
Company:	Contractor Foreman:	
	Equipment Utilized:	

Task			Length	Date	Cleaned	l	
No.	Line Origin	Line End	(ft)	Cleaned	Length	Gal. Used	Comments
250	Parking Lot Manhole #1	Parking Lot Manhole #2	110	4/18/17	110	200	Fary clean. Cleaned manhole.
her her	Storm Water Trench #1 (exterior)	Sanitary Manhole #1	60	4/18/17	60,	200	Clean French. Fery clean.
77	Storm Water Trench #2 (exterior)	Sanitary Manhole #1	70	,			Filled wif Stone per Andy J.
NJ8801	Sanitary Manhole #1	Corner Admin Manhole	160	4/21/17	155'	200 gal	easyclean.
m	Culvert at North End of Fortistar Plant	Parking Lot Manhole #2	80	4/18/17	80'	100	Gasy clean.
80	Corner Admin Manhole	Manhole - Admin Bldg (closest)	40				
. 81	Man Hole - Admin Building	Manhole - Admin Bldg (closest)	20				
82	Man Hole - Admin Building	Man Hole - Scalehouse	500				
83	Man Hole - Admin Building	Man Hole - Polish	450				
84	Man Hole - Polish	Man Hole - Admin Building	600				
85	Man Hole Polish Community	Man Hole - 2nd Polish	240				
86	Man Hole - 2nd Polish	Man Hole - Daughters of	240				
87	Man Hole - Daughters of Sarah	-	-				
1887	Garage	-	2	4/4/11	2	w gal	EASY CLEAN, SW psi
NEBL)	(interior)	Collection Pit	70	4(19/17	70	100 gal	RASY CLEAN 1800 05.
wer:	Garage Floor Drain #2 (interior)	Collection Pit	70	4 (19 /17	70	iw sal	BASY CLEAN (WO PS.)
NEN	Gas Collection Sumps	12 x 36" sumps	-			w Sal	EASY CLEAN I VAC
92	Leachate Collection Tubs	-					

PAGE NO. 1 OF 1

DATE: 4/26/2017

REPORT NO. 11

PROJECT Albany Rapp Rd Landfill Leachate Clean

WEATHER TEMPERATURE

Cloudy/ Wind&Rain

LOCATION Albany, NY

WEATHER TEMPERATURE

LOW 50

PROJECT# 3 2 5 9 6 1 0 0 0 3 2 0 0 0

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED

- National Vacuum on site at 7:00am (2 man crew)
- National Vacuum fills up flusher truck with water from on site hydrant 7:15am-7:30am
- Mobilize flusher truck to PS2 at 7:45am
- National Vacuum pops open the cover to LCMH7 vault at 8:00am
 - Observed approximatley 8"-10" of stormwater at the bottom of the vault.
 - Mobilize vacuum truck along side stone piles and bring vacuum to vault
 - Vacuum out vault until empty 8:15am-8:30am
 - Close appropriate valves to begin cleaning line to PS2
 - End cleaning at 8:50am, 150 feet accomplished, 250 gal of water used during cleaning.
 - National Vacuum cleans any spillage from line cleaning, pressure wash vault and close cover at 9:30am.
- National Vacuum pops open cover to Leachate Interceptor Manhole at 9:40am.
- Observed approximately 8"-10" of stormwater at the bottom of manhole
- Vacuum out manhole until empty 9:45am-10:00am.
- Close appropriate valves to begin cleaning line to PS2
- End cleaning at 10:20am, 150 feet accomplished, 250 gal used during cleaning.
- National Vacuum cleans any spillage from line cleaning, pressure washed manhole, closes cover at 10:50am.
- Mobilized flusher truck to VMH2-tank check valve location and observed storm water in vault. National Vacuum vacuums vault clean and pressure washes vault. Cleans tank feed line, 60 feet accomplished, 100 gal of water used during cleaning.
 - End cleaning at 11:15am, approximately 100 gal used during cleaning
- Mobilize flusher truck to PS2, add vacuum hose to reach PS2 floor and sump.
 - Mike K. closes appropriate valves and shuts off PS2 pumps for cleaning.
- Begin cleaning sump at 11:30am, pressure washes sump once empty, scrapes debris off sump floor and vac, pressure wash pump house floors and vacuums all liquid off floors.
 - End cleaning at 12:30pm, approximately 600sf cleaned, 1,000 gal of water used during cleaning
- National Vacuum fills sump with water enough to begin pumping operations at 12:45pm, PS2 up and running at 1:00pm.
- Lunch 1:00pm-1:30pm
- Mobilize flusher behind landfill administration building to locate appropriate manholes at 1:45pm.
- Begin cleaning Corner Admin manhole to closest Admin Building Manhole at 1:50pm.
 - End cleaning at 2:00pm, 40 feet accomplished, 60 gal of water used during cleaning.
- Begin cleaning Admin Building Manhole to closest Admin Building Manhole at 2:05pm.
 - End cleaning at 2:10pm, 20 feet accomplished, 30 gal of water used during cleaning.
- Begin cleaning Admin Building Manhole to Scalehouse Manhole at 2:25pm.
- End cleaning at 2:50pm, 500 feet accomplished, 600 gal of water used during cleaning.
- Begin cleaning Admin Building Manhole to Polish CC Manhole at 3:00pm.
- End cleaning at 3:20pm, 500 feet accomplished, 550 gal of water used during cleaning.
- All manholes covered and mobilized out from behind administration building at 3:30pm.
- National Vacuum mobilizes trucks uptop landfill at 3:40pm.

Off Site:

National Vaccum: 3:45pm

CHA: 3:45 PM

Leachate Line Cleaning City of Albany Landfill Rapp Road, Albany, NY

Name: PATRICK RAHM	Contra

CHA CONSULTING

Company:

actor:

NATIONAL VACUUM JAMES IZWIN

Contractor Foreman: **Equipment Utilized:**

2100 LACTUR PLUS FLUSHER TRUCK

420 Tenu (30W gal)

1221 PIRAMM STUER CLEANING WSF (25WPS)

, , , , , , , , , , , , , , , , , , , ,							OF/GR JET NORTH
No.	Line Origin	Line End	Length (ft)	Date Cleaned	Cleaned Length	Gal. Used	Comments
1537	PS1FMCO2	PS1	400	4/20/17	400'	700 gal	EASY GOING 1200 ps;
132N	PS1FMCO2	PS1FMCO1	1000	4/20/17	louo ⁱ	1200 gal	(60,5% 60,000, 1200 ps;
193W		PS1	900 SF	4/21/17	900 SF	500 gal	Clean if necessary
NEW	PS1FMCO1	VMH1	860	4/20/17	860,	1000 gal	RAST 60mb, (200 ps;
735N	EL-2P	Landfill	160	4/20/17	160'	200 get	RAST GOING (US P);
1390	LCMH7	PS2	150	4/26/17	150'	250 gd	FCASY CCFAN (J.D) {S;
Life	Leachate Interceptor Manhole	PS2	150	14/26/17	(50'	250 gil	Ensy clera (w) ps;
MAR	PS2	Cell89PS2CO1	140	4/14/17	140'	2w gol	EASY GOING 1 WO ps.
39	PS2	Cell12PS2CO1 (exterior)	40	4/14/17	40.	100 god.	,,
Ser	PS2	VMH2 - tank check valve	-	4/26/17		100 gal	CLEARES ONT LAVIT
MAN	Clean PS2		600 SF	4/26/17	600 SF	1000 gal	FLURS & SUMP CLEANED & PRESSURF
M,857	Tank #1	-	375,000 gal	4/19/17	+	Ogd	Tank observed to be occur and no sediment
Ngal	Tank #2	-	425,000 gal	4/19/17	_		Took discovered to be claim, no szotrmut or rust observed.
NEW	VHM2	All Directions	-	4/26/17	-	ا عدو	CHIO WILLIAMS WIT MILIT
195)	VHM2 Tank Feed Line	Tank #2	60	4(26/17	60 '	w gal	EASY CLEAN, 1000 psi
NEED	VHM1	All Directions	_	4/26/17	_	O gal	LACLUMOS OUT WALLT
trale	Metering Manhole	-	-	4/20/17	-	U gal	vacunes com ullo
C86,	Catch Basin #4	Culvert Pipe at Outbound Scale	100	4/18/17	100'	150	easy clean.
	Inbound/Outbou nd Scales	Jet and Clean Scales Top and Bottom	-	4/19/17	_	2500 gol	SCARES ARE SEDIMENT & OIL FREE APTER CLEANING
PSU:	Inbound Scale Scale Pit Drain	Catch Basin #3	85116	4/19/17	85	150 gal	FASY GUING, ILLE PSI
WW	Catch Basin #3	Scale Swale	60	4/19/17	60	To gal	GASY GUING, LUBPS;
V.72V	Scale Ditch	Parking Lot Manhole #2	170	4/18/17	170'	300 gal	Cleaned Me, tasy dean.
186	Man Hole - Scalehouse	Metering Man Hole	500	4/21/17	500,	750 gnl.	easy clean
-34°	Parking Lot Manhole #2	Discharge Point Outfall 003	140	4/18/17	140'	300	Cleaned area around mathole 2 hole itself Early clean.

4/7/2017

Leachate Line Cleaning

City of Albany Landfill Rapp Road, Albany, NY

Name: PATRICK RAHM	Contractor:	MATILNAL VACULM
Company: CHA CONSULTING.	Contractor Foreman:	JAMES IRWIN
	Equipment Utilized:	2100 LACTUR FLUSHER TRUCK / Hz: TRUCK
		1" 1.0. PIRAMUN SQUEE CLEAMANT HOSE (1200'

09162 367 NO23LE

Task N <u>o</u> .	Line Origin	Line End	Length (ft)	Date Cleaned	Cleaned Length	Gal. Used	Comments
-375 ¹	Parking Lot Manhole #1	Parking Lot Manhole #2	110	4/18/17	110	200	Enry clean. Cleaned manhole.
12 July 1	Storm Water Trench #1 (exterior)	Sanitary Manhole #1	60	4/18/17	60'	200	Clean French. Eary clean.
WE STATE	Storm Water Trench #2 (exterior)	Sanitary Manhole #1	70	1			Filled W/ Stone per Andy J.
VJ78,01	Sanitary Manhole #1	Corner Admin Manhole	160	4/21/17	155'	200 gal	easy dean.
Pr.	Culvert at North End of Fortistar Plant	Parking Lot Manhole #2	80	4/18/17	80'	100	Gasy clean.
301	Corner Admin Manhole	Manhole - Admin Bldg (closest)	40	4/26/17	90	60	EASY CRAM, 1020 / 31:
17.89 BM)	Man Hole - Admin Building	Manhole - Admin Bldg (closest)	20	4/26/17	90	36	چهور درجمهم (۱۳۰۰)
17,83	Man Hole - Admin Building	Man Hole - Scalehouse	500	4/126/17	5ω'	6w gal	FASY (CEAN, (CUO) DS.
17/3/89)	Man Hole - Admin Building	Man Hole - Polish	450	4/26/17	500'	550 gel	
84	Man Hole - Polish	Man Hole - Admin Building	600				
85	Man Hole Polish Community	Man Hole - 2nd Polish	240				
86	Man Hole - 2nd Polish	Man Hole - Daughters of	240				
87	Man Hole - Daughters of Sarah	-	-				
1887	Garage	-	2	4/4/17	2	w gal	EASY CLEAN, SW ps:
Créss	Garage Floor Drain #1 (interior)	Collection Pit	70	4/19/17	70	low gal	8ASY CLEAN 1800 05:
(VOEW.	(interior)	Collection Pit	70	4 (19 /17	70	iwoal	RASY CLEAN, WO PS
NEV	Gas Collection Sumps	12 x 36" sumps	-			w sel	EASY CLEAN I VAC
92	Leachate Collection Tubs	-	-				

REPORT NO. 12 PAGE NO. 1 OF 1 DATE: 4/27/2017

PROJECT	Albany Rapp Rd Landfill Leachate Clean	WEATHER	TEMPERATURE
		Cloudy/	HIGH 76
LOCATION	Albany, NY		LOW 58

PROJECT #

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED

- National Vacuum on site at 7:00am (2 man crew)
- National Vacuum fills flusher truck with water from on site hydrant at 7:15am.
- Mobilize flusher truck to Polish CC parking lot at 7:45am.
- National Vaccum pops Polish CC Manhole at 7:55am, observed strong flow.
- Begin cleaning Polish CC Manhole to Admin Building Manhole at 8:00am.
 - Hose came to hard stop at approximately 250 feet, able to push through and continue cleaning.
 - End cleaning at 9:00am, 600 feet accomplished, 700 gal of water used during cleaning.
- Begin cleaning line from Polish CC Manhole to 2nd Polish CC Manhole at 9:15am.
 - Observed nozzle head come out of line through 2nd Polish CC Manhole (indicating line went to destination) at 9:40am.
- End cleaning at 9:50am, 240 feet accomplished, 300 gal of water used during cleaning.
- Mobilize flusher truck to 2nd Polish CC Manhole
- Begin cleaning line from 2nd Polish CC Manhole to Daughter or Sarah Manhole at 10:15am.
- End cleaning at 11:00am, 240 feet accomplished, 300 gal of water used during cleaning.
- All manholes covered in Polish CC parking lot and area observed to be clear and clean at 11:10am.
- Drive over to Daughter of Sarah Manhole at 11:15am. pop manhole cover to observe strong flow (no cleaning necessary).
- Mobilize back to landfill to dump flulsher truck at 11:30pm.
- Flusher emptied and cleaned out at 11:45am.
- National Vacuum drives around landfill to pick up any vac hose that was left during operations and dumps hoses collected in dump zone on landfill at 12:00pm.
- National Vacuum checks in with Andy J. at 12:15pm.
- No chemical cleaning has been scheduled for the blocked lines that were not cleaned as of yet.

Off Site:

National Vaccum: 12:30pm

CHA: 12:30 PM

NUMBER OF WORKERS & EQUIPMENT USED	ITEM NO.	QUANTITIES PLACED TODAY
2100 Vactor Series Plus Flusher Truck		
Water truck (Max capacity: 3,000 gallons)		
Approximately 1,200 feet of Piranna sewer cleaning hose with 1.0 inch I.D. (Max capacity: 2,500 psi)		
0 F/ 6 R Jet Nozzle Head		

THE A	ABOVE	DESCRI	BED W	ORK V	WAS IN	ICORPO	DRATEI
INTO	THE P	ROJECT	& WAS	OBSE	ERVED	BY:	

TIME CHARGED TO PROJECT:

MILEAGE CHARGED TO PROJECT:

ADDITIONAL SHEETS USED CHECK INITIALS TR

Leachate Line Cleaning City of Albany Landfill

Rapp Road, Albany, NY

Name:	PATRICK	RAHM	
Company:	ርጥራ	CANCULTIONS	

Contractor:

MATICNAL LACLUM

Contractor Foreman:

JAMES IRWIN

Equipment Utilized: 2100 VACTUR FLUSHER TEVEL

1" 1.0. PIRAMA SQUER CLEAMINH HUSE (1200')

06165 251 NO 251E

Task			Length	Date	Cleaned		
No.	Line Origin	Line End	(ft)	Cleaned	Length	Gal. Used	Comments
~J.27	Parking Lot Manhole #1	Parking Lot Manhole #2	110	4/18/17	110	200	Ensy clean. Cleaned manhole. (M)
18%	Storm Water Trench #1 (exterior)	Sanitary Manhole #1	60	4/18/17	90,	200	Clean french. Eary clean. (No)
	Storm Water Trench #2 (exterior)	Sanitary Manhole #1	70	1	_		Filled W Stone for Andy J. (AN)
VJ78.01	Sanitary Manhole #1	Corner Admin Manhole	160	4/21/17	155'	200 gal	easyclean. (no)
m	Culvert at North End of Fortistar Plant	Parking Lot Manhole #2	80	4/18/17	80'	100	Gasy clean.
300	Corner Admin Manhole	Manhole - Admin Bldg (closest)	40	4/26/17	90	60 gal	ENSY CLEM, I LAN / 31.
[Bay	Man Hole - Admin Building	Manhole - Admin Bldg (closest)	20	4 (zóli)	90	36 gel	corte de anti-
17,83	Man Hole - Admin Building	Man Hole - Scalehouse	500	4/26/17	5ω'	GW gal	ENSY (CEON (CUO OS;
1788)	Man Hole - Admin Building	Man Hole - Polish	450	4/26/17	500'	550 gel	EASY ((TA on / ww ps;
letin	Man Hole - Polish	Man Hole - Admin Building	600	4/29/17	600'	7w gal	FAST CLEAN, 1200 p.S.
المهلا	Man Hole Polish Community	Man Hole - 2nd Polish	240	4/27/17	240'	300 get	EASY CLEARS, 1200 PS;
WBW	Man Hole - 2nd Polish	Man Hole - Daughters of	240	4/27/17	240'	3w gol	EAST (CEAM), IZOU PS.
Way	Man Hole - Daughters of Sarah	-		4(27/17	-	-	ettection manifole, sewer e-nount well
N887	Garage		2	4/4/17	2	w gal	FASY CLEAN, 500 psi
Crésu	(Interior)	Collection Pit	70	4(19/17	70	100 gal	ENSY CLEAN 1800 PS:
(VOGV.	(IIIICIIOI)	Collection Pit	70	4(4/17	70	iwsal	BASY CLEAN INO PS:
NEW	Oumps	12 x 36" sumps	••	4 (19/17		w sel	EASY CLEAN & VAC
Week	Leachate Collection Tubs	-	-	4/21/4/26	500 SE 600 G	1500 gal	751 d PSZ Sumps WEARED

Leachate Line Cleaning City of Albany Landfill Rapp Road, Albany, NY

Name: Vicholas Deflorio
Company: CHA Consulting, Inc.

Contractor:
Contractor Foreman:

Equipment Utilized:

National Vacuum

James Irwin, Will Wells.

- VacTruck Plus 2100

- N.V. Ackup + Trailer.

- Water Truck

Ī	Task No.	Line Origin	Line End	Length (ft)	Date Cleaned	Cleaned Length	Gal. Used	Comments
W	2	LVS12	Cell 7 Collection Line	175	9/11/17	175'	200	Easy Clean
Va	<u>ي</u> 2	LVS11	Cell 7 Collection Line	125	9/11/17	125'	150	Easy Clean KNeeds new cover to Observed direct tope on current one.
	3	LVS3	AlL 1 - 6 Main Line	725	· · · · · · · · · · · · · · · · · · ·	,see	_amind	Skip due to tear in line
WY	J 4	LVS4	AIL 1 - 6 Main Line	700	10/3/17	700'	1500	600' - Increased resistance. Easy Clean, Pipe needs to be repaired.
M	5	LVS5	AIL 1 - 6 Main Line	400	9/11/17	400'	350	Easy Clean
NW	<i>j</i> 6	LVS10	LCMH7	725	9/12/17	725'	1000	Easy Clean
Va) 7	LVS9	Cell8CO1	825	9/11/17	620/656	800(412)	Stop 6620' after suction pressure is too great to advance. Hard stop 6 ~650'C\$12.
vv	8	LVS2	AIL 1 - 6 Main Line	500	9/15/17	500	700	1 ' I
5/4	6 /	LVS1	AlL 1 - 6 Main Line	850	9/18/17	850'	1500	Essy Clean. Slowe 650? Stock at 650 for -2 hrs. caupler may be stuck an joint in line. Advance \$6 850?
NW	10	LIMH5CO5	AIL 1 - 6 Main Line	800	9/19/17	800'	1000	Easy Clean.
WW	11	LIMH5CO4	AIL 1 - 6 Main Line	800	9/19/17	422 425	600	Fany Clean.
WW	12	LIMH5CO3	AIL 1 - 6 Main Line	800	4/9/14	475 485	600	Lots of liquid coming out of like head before drawing starts. Clean all leach ste, easy clean after.
WL) 13	LIMH5CO2	AIL 1 - 6 Main Line	800	9/19/17	500	600	Easy Uean. Dead stop @ 500?
Ule	14	LIMH5CO1	AIL 1 - 6 Main Line	800	9/19/17	sor'	1000	Easy Clean. Hard stop @ 795!
CUR	15	Cell12CO24 **	N/A	300	9/12/17	3001	350	Easy Clean
ww	16	Cell12CO23	N/A	80	9/12/17	80'	300	Fasy Clean
wu	17	Cell12CO22	N/A	110	9/12/17	110'	150	Easy Clean.
$\nu_{\mathcal{C}_{\ell}}$	18	Cell12CO21	N/A	240	9/12/17	240'	375	Easy Clean.
WW	19	Cell12CO20	N/A	280	9/13/17	280'	300	Heavy amount of store and gravel being vacuated out once landing is complete.
4 m	20	Cell12CO19	N/A	290	9/13/17	290'	300	Easy Clean/Store tgravel conung until Hoo
NN	21	Cell12CO18	N/A	380	9/13/17	380'	400	Hearstinel gravel convery out during vaccuring.
NN	22	Cell12CO17	N/A	300	9/13/17	300'	320	Easy Clean. Stone topravel conving of w/ HzD
Vu	23	Cell12CO16	N/A	100	9/13/17	100'	150	Storelgravel coming out wil H2O.
Nu	24	Cell12CO15	N/A	320	9/13/17	320'	370	Stone + gravel coming at set/Hzo
W	N 25	Cell12CO14	N/A	100	9/13/17	100	150	₩

Leachate Line Cleaning City of Albany Landfill

Rapp Road, Albany, NY

Name:	Micholas De Florio	
Company:	CHA consulting Inc.	

National Vacuum Contractor:

Contractor Foreman:

James Irwin, will wells. - VacTrick Plus 2100

Equipment Utilized:

- WaterTruck - NV Pickup.

	Task			Length	Date	Cleaned	0-1-111	
	No.	Line Origin	Line End	(ft)	Cleaned	Length	Gal. Used	Comments
M	26	Cell12CO12	N/A	280	9/13/17	280'	300	Gravel + Stone coming out withwater, fary clean
1	~2 7	Cell12CO13	N/A	620	9/13/17	620	700	<i>n n n</i>
14	J 28	Cell12CO11	N/A	520	9/13/17	520'	570	Grave 1+ Stone coming out w/ water. Easy clein.
11	29	Cell12CO10	N/A	370	9/13/17	90/	1000	Block at 90. Lots of stone and gravel being vacuumed out at this depth. Deadstop @ 90. even w/ cutter. Still was still commot advance lance past 90. Heavy suction.
٧) 30	Cell12CO9	N/A	510	9/14/17	510	1500	Fasy clean.
۲۷	131	Cell12CO8	N/A	320	9/14/17	320'	400	Fasy Clean
Ü	J32	Cell12CO7	N/A 75	¹ 325	9/14/17	160'*	1200	KHI pipe is 8" line of X DISTANCE Popped hole in COS cover. K DISTANCE CHANGE &
j	733	Cell12CO6	N/A 32	5° 1890	9/14/17	325'	406	* BISTANCE CHANGE * Fasy Clean. *8" PIPE *
3	£34	Cell12CO5	N/A 75	1860	9/14/17	*	V	#8" PIPE * Cleaned when CO7 was cleaned.
V	(35)	Cell12CO4	N/A	325	9/14/17	325'	400	Fasy Clean
5	36)	Cell12CO3	N/A	325	9/14/17	325'	400	tosy Clean
S	137	Cell12CO2	N/A	325	9/14/17	325'	400	Easy Clean
J~	38	Cell12CO1	N/A	550	9/15/17	550'	700	Easy Clean
ノ 〜	J 39	Cell9CO1	N/A	1000	9/15/17	1000'	2000	Resistance increased at ~640 slow moving to end.
),),	40	Cell12PS2CO1	EL-2P	700	9/21/17	700'	900	Pesistance increased at 400'. Fasy Clean,
7/	N 41	Cell12PS1CO1	Landfill	70	9/21/17	70'	100	Easy Clean.
5	J) 42	Cella-6PS1CO1	Landfill	1000	9/21/17	1000'	2000.	Easy Clean Eash ranitance e~700'.
VC) 43	Cell11PS1CO2	Landfill	970	9/22/17	970'	2 6 00	Lot of stone and sand in line.
N	JA4	Cell10PS1CO1	Landfill	920	9/21/17	. 920'	1500	Easy clean. From 500-700'a lot of stone coming p
1 v	45 د	Cell11PS1CO1	Cell11PS1CO2	80	9/22/17	80′	120	Easy Clean
ú	J 46	PS1	Cell1-6PS1CO1	40	9/22/17	40'	100	Fary Clean.
	N 47	PS1	Cell11PS1CO1	70	9/22/17	70'	110	Eary Clean
	148/	PS1	Cell10PS1CO1	80	9/22/17	80'	120	fasy Clean.
V) 49)	PS1	Cell12PS1CO1	50	9/22/17	50'	100	Easy Clean. Leachage Tank cleaned. ~2'Slvoge at bottom
V.	\50	Clear	n PS1	900 SF	9/25/17	900 SF	1000	Leachage Tank cleaned. ~2'Slvolge at bottom

Leachate Line Cleaning City of Albany Landfill

Rapp Road, Albany, NY

Name:	Michalas DeFlorro	
Company:	CHA (only Hing	

National Vacum Contractor:

Will Wells, James hush **Contractor Foreman:** Vac Truck Plus 2100 **Equipment Utilized:**

Water Trick

6.	Task No.	Line Origin	Line End	Length (ft)	Date Cleaned	Cleaned Length	Gal. Used	Comments
W	٦١ ا	PS1FMCO2	PS1FMCO1	400	9/29/17	400'	550	(C.S.) Easy Clean ~2' of water + leochate in munhule.
23	VJ52	PS1FMCO2	PS1FMCO1	1000	9/29/17/19/2	600/4001	709/500	(CS) Collar of pipe fracticed fary clean during alvance.
5	53	Clear	PS1	900 SF	/	1.	1	pleantine see like 50.
3	N 54	PS1FMCO1	VMH1	860	10/2/17	860'	1000	(CS) Easy Clear
£.	√)55	EL-2P	Landfill	160	10/2/17	160'	200	(C.S.) Easy Clean.
<i>5</i> 2) 56	LCMH7	. PS2	150	10/2/17	150'	200	(C.S.) Easy (lean Little bit of sand, Lot of leache
s,	<u>)</u> 57	Leachate Interceptor Manhole	- PS2	150	10/2/17	150'	200	(C.S.) Eary Clean.
W	58	PS2	Cell89PS2CO1	140	9/21/17	140'	200	Easy Clean.
NW	59	PS2	Cell12PS2CO1 (exterior)	40	9/21/17	40'	100	Easy Clean
	60	PS2	VMH2 - tank check valve	-	_			_
S	لۇپ	Clear	PS2	600 SF	9/25/17	600 SF	1000	Eary Clean, ~2' sludge.
	62	Tank #1	-	375,000 gal	1660148	social .	No.	Vena.
	-63	Tank #2	-	425,000 gal		ws	****isse	- Land
ω^{\vee}	J 64	VHM2	All Directions	-	9/15/17	and the second s	500	Vac out the on first. Took out ~3600 gal.
VW) ₆₅	VHM2 Tank Feed Line	Tank #2	60	9/27/17	60'	150	Early Clean.
NW) 66	VHM1	All Directions	_	9/26/17	Notage	500	Vacunud about 2,5' of water.
WW) 67	Metering Manhole	-	-	10/3/17	ngga pangangan		Meterny Manhole Clean. Wo need to
Nu) 68	Catch Basin #4	Culvert Pipe at Outbound Scale	100	9/26/17	100'	200	Lot of stonet debn's in pipe.
M	\ 69	Inbound/Outbou nd Scales	Jet and Clean Scales Top and Bottom	_	9/28/17	Galac-of-		Cleaned both scaleseasily.
wl	√ 70	Inbound Scale Scale Pit Drain	Catch Basin #3	85 110	9/28/17	85'	150	Lots of dirt built up
	J 71	Catch Basin #3	Scale Swale	60	9/28/17	60'	100	Easy Clean
'(u	W72	Scale Ditch	Parking Lot Manhole #2	170	9/26/17	70/100*	100/150	*Willensia Edsyclear
W	V 73	Man Hole - Scalehouse	Metering Man Hole	500	10/3/17	500'	700	
w	JZA	Parking Lot Manhole #2	Discharge Point Outfall 003	140	9/26/17	140'	200	Cary Clean.

Leachate Line Cleaning City of Albany Landfill

Rapp Road, Albany, NY

Name:	Michalas DeFlorio
Company:	CHA Consulting Inc.

National Vacuum Contractor:

James Irwin, Will Wells Contractor Foreman:

- Vac Truck Plus 2100 **Equipment Utilized:**

- Water Truck.

- NV Pickup.

	Task No.	Line Origin	Line End	Length (ft)	Date Cleaned	Cleaned Length	Gal. Used	Comments
10.	√ 1/ 5	Parking Lot Manhole #1	Parking Lot Manhole #2	110	9/26/17	110'	150	Easy Clean.
N,	V76	Storm Water Trench #1 (exterior)	Sanitary Manhole #1	60	9/27/17	60'	150	Easy Clean
\)	I	Storm Water Trench #2 (exterior)	Sanitary Manhole #1	70 ·		_	Absorption	MA covered. Paved over.
Ú	√)78	Sanitary Manhole #1	Corner Admin Manhole	160	9/27/17	160'	200	Easy Clean.
1:	₹\$	Culvert at North End of Fortistar Plant	Parking Lot Manhole #2	80	9/26/17	80,	300	Wood coming out with return water. Stop too past65°. Left of sediment at culvert end of like.
10	N 80	Corner Admin Manhole	Manhole - Admin Bldg (closest)	40	9/27/17	40'	50	Easy Clean,
W	181	Man Hole - Admin Building	Manhole - Admin Bldg (closest)	20	9/27/17	20'	50	Easy Clean.
V) 82 ⁾	Man Hole - Admin Building	Man Hole - Scalehouse	500	9/27/17	510'	2000	tasy clean. Lance went against Flowduring
	V 83V	Man Hole - Admin Building	Man Hole - Polish	450	9/27/17	390'	2000	Deadstop @ 390. Will continue from opposite en
א נ	84	Man Hole - Polish	Man Hole - Admin Building	600	10/3/17	660'	800	Eary Clean.
) <i>N</i>	85	Man Hole Polish Community	Man Hole - 2nd Polish	240	10/3/17	240'	300	Easy Clean
ω'	√86	Man Hole - 2nd Polish	Man Hole - Daughters of	240	10/3/17	240'	300	Eary Clean.
	V8)	Man Hole - Daughters of Sarah	-	-	19/3/17	_	_	Clear.
'lu	N^{88}	Garage		2	9/28/17		10	Easy Clean
"lu	J 89	Garage Floor Drain #1 (interior)	Collection Pit	70	9/28/17	7	100	Eary Clean
N	Mo	Garage Floor Drain #2 (interior)	Collection Pit	70	9/28/17		100	Easy Clean
w	1 91	Gas Collection Sumps	12 x 36" sumps	-	9/28/17	quitegs.	50	Easy Clean.
W	W92	Leachate Collection Tubs	. 4.	-	9/25/17	*-took	3000	Easy Cleanon both pump stations.

		STATE STATE
PROJECT	2017 Rapp Road Landfill Cleaning	CONTRACTOR
LOCATION	Albany, New York	THE CONTRACTORS AND

REPORT NO. PAGE NO. 1 of 1 DATE: 9/11/17

WEATHER	TEMPERATURE						
	HIGH 79°						
Clear	LOW 52°						

		PROJECT #	3	2 5	9	6	1	0 0	0 3	2	00	0
	L											
SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED												
	,					/						
-8:00 ": CALA onsite. Meet with Andy to discuss p												
-8:05a: Meet w/ National Vac (2 personnel) who	are	e prepping vac	tor	. Mov	ne d	lown	to	wat	er hyd	lvan	of at	8:109
- 8:35°a: Speak w/ Andy again to discuss which li	hes	to skip/cont	inu	e. Cor	fin	ms th	a	t LV	53 an	di	LV54	are
being skipped, and that all the LIM lines	alt	to be attemp	tec	t.								
- 8:53° Vactor completely filled with water Mo	ve	Vactor and p	ck	up two	cks	to	1	1512.				
- 9:05a: Start LV512 after speaking W/ Dave Foley	to	get caughty	pt	d speed	d.							
- 9:15°: Speak W/ Nike Kellogg at Albany Landfi	1/1	to inform of	pla	n for	th	e dai	10	and c	antirn	1 +1	nat L	.Vsš do
not need any values shut off prior to clean the												
- 9:20a: Complete LVSIZ. Move anto LVSII.												
-9:35 a Complete LVSII. Move to top of Will and st	art	to scape out o	1100	arou	nd	W.	55	5. Nes	ed to l	lac e	aroun	a LWS
because it is submorged. Once cleaned out, begg	h L	NS5.										
-10:10a: Complete cleaning at LVSS. Take break from	10	1:15-10:309.1	404	e Vact	for 1	back	t0	NV	traile	rb a	add lo	nger
hose for LVS 9 and LVS10. Complete hore affect												
-Scope out locations that we to be scrapped (LVB384)	LV	NCH 11:50a -	12:	50P.								
-1:00P: Start LVS 9.												
-1:25P-1:40P: Get water, Complete advancement	at	LVS9 once v	ac	toris	ref	G/led	<u>. </u>					
- 1:509: OGS Worker arrives to thim down weeds G	9 [VSIO locati	on									
-2:10P: Too much suction at LVS9, call M. Kellog												
needs to be shut off but he's at the scalehouse o		cannot turn	of	fvaly	e. J	Said	th	iat U	1510	can	beu	ioNred
on instead. Terminate LVS9 for 9/11 € ~620	<i>'</i>											
-3:00P: CHA+ N.V. offsite after scoping all other cle	an	inglocations						Equ	ipme	rt		
									ct 21			
						~	Ν	V Pick	up+	Trai	ler.	
												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
THE ABOVE DESCRIBED WORK WAS INCORPORATED			1	7_		2				Mana.		
INTO THE PROJECT & WAS OBSERVED BY:	-		ØF	BSERV	ER	's SIC	GN	IATUI	RE			
TIME CHARGED TO PROJECT:												
MILEAGE CHARGED TO PROJECT:		ADDITIONA	L S	HEET	S U	SED	(CHEC	K INI	TIA	LS _	

MILEAGE CHARGED TO PROJECT:

2 REPORT NO. PAGE NO. 1 OF 1 9/12/17 DATE: CONSTRUCTION OBSERVATION REPORT WEATHER TEMPERATURE **PROJECT** 2017 Rapp Road Landfill Cleaning 800 HIGH Clear LOW 52% LOCATION Albany, New York PROJECT# SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED 7:000 : CHA onsite. Speak w/ M. Kellogg regarding lines that will be cleaned. Confirm that LV59 and LVS1+2+ LIM lines will need to be shut off prior to cleaning. Suggests NV starts at LVS10 Ast. 7:30 a. NV onsite. Begin to prep water truck prior to starting LVSTO. Once water truck setup is complete, move buto OSIO for cleaning. (2 NV personnel 8:15a: Start LVS10. At 705' refill vactor with water. Contact M. Kellogg to short off valve for LW9 cleanup. Resume cleaning & 9:10. Informed that all LIM's are being worked on and to start on the lines on the north corner of the site first. 9:35a: Start LVS9 again. NV observes that there is no suction pressure from the vactor and inspect hase for any toors. Will thinks vadormay be full and that gauge reding may not be accurate. NV goes to empty vactor. Jim goes to refill water truck (9:50°). 10:30a: NV back at LVS9. Refill vactor and prep to go past the 300 previously cleaned. Will says vactor was full and that gauge was plugged. Resume cleaning @ 10:509 11:00 a: Footage wheel bends out of place and NV stops to fix wheel. Will sustains slight injury to index finger but resumes work. Have for vactor gets too disorganized. NV uncoils have to recoil neatly. 11:15 a: Encounter hard stop ~650' into LVS9. Terminate further advancement, some vacuum prossure. 11:300: M. Kellogg armes to decide which liber to attempt after lunch 12:00 - 1:000: LUNCH. 1:000 P: Resume cleaning. Go to Cell 120024. Complete 300'@1:45P. 1:509-2:008: Cell 120023 cleaning. 2:001-2:109: cell 12:022 cleaning. -> 2:109-2:259: Cell 12:021 cleaning. Parition vactor off moun road. NV preps to leave. 3:00P: CHA+NV offsite THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY: OBSERVER'S SIGNATURE TIME CHARGED TO PROJECT:

LOCATION Albany, New York

RATURE
800

5 000 2 3 00 PROJECT#

LOW 638

REPORT NO.

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION
DESCRIPTION OF WORK PERFORMED AND OBSERVED
7:05° CHA onsite. Meet w/ Mike Kellogg to discuss which lines to continue w/ cleaning, Confirm that
lines LVS2/1 + LIM lines are able to beworked on. Andy arrives at admin building.
7:30": Heet w/ National Vac. Jim driving water truck toward vactor and Will driving pickup. M. Kellogs
arrives to confirm what lines NV intends to complete, will resume at Cell 12CO 20. NV refills vactor w/
water. Move vactor to Calle CO20.
7:45 a: Start cleaning out Celliz CO20. Once lancing is complete, hear gravel and stone being vacuumed out.
8:05a: gravel and stone being vacuumed out ends. Perture well cap position and leave closed.
8:10° Clean Cel/120019. Complete 8:20°.
8:20° Clean Cell 120018. Hear stone and gravel coming outduring vacuuming. Complete at 8:457
8:45°: Start Cell/2017. Consplete by 9:00°.
9:00°: Start Cell 12016. Complete by 9:10° Complete Cell 12015, more onto CO14.
10:32": Start Cell 120013, Complete by 11:00". Fillup vactor w/ water.
11:30-12:30: LUNCH.
12:30P: Start at Cell12012. Complete cleaning at 12:50P -> Complete Cell120011.
12:55P: Start Cell12coll. Dead stop at 90'. Attempt to lance again part that depth. Hear rocks and
stone being Vacuumed out of line@90'. Afterswitching lance head and advancing again, dead
Stop @90: Vacuum picking up store and gravel (heavy amounts of stone) Will from NV thinks
line may be plugged completely or collapsed. At 1:30%, turn jet onto see if lance will cut through
1:45-2:10" NV empties vactor. Return and attemp for fifth time advancement in Cell 12010, Stops
at same spot (90'). Vacuum heavy w/stone +s and / gravel and water. Complete at 2:45 P. Observed a lot
of suction out of line head. Terminate vacuum and move water truck to side of road. (Set 20 Minutes
W/3000 psi, no advancement).
3:00 P: CHA throffsite.
THE ABOVE DESCRIBED WORK WAS INCORPORATED
INTO THE PROJECT & WAS OBSERVED BY: OBSERVER'S SIGNATURE
TIME CHARGED TO BROJECT.

MILEAGE CHARGED TO PROJECT:

CONST	RUCTION OBSERVATION REPORT
PROJECT	2017 Rapp Road Landfill Cleaning
LOCATION	Albany, New York
	PROJECT# 3

REPORT N	O.	4
PAGE NO.	1	OF
DATE:	9/14	1/17

WEATHER	TEMPERATURE
Overcast	HIGH 76
	LOW 61

PROJECT # 3 2 5 9 6 1 0 0 0 3 2 0 0 0

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION
DESCRIPTION OF WORK PERFORMED AND OBSERVED
7:15° : CHA onsite. A. Jensen meeting w/maintenance waters. Here to meet cleaners by Pump Station #2.
7:40": Start cleaning at Cel 1/2009 like . End cleaning @ 8:30".
8:35ª: Attempt again @ Cell12 co 10 to see if lance could be advanced past 90. Unsuccessful Lot
of water and sand being vacuumed out of line. M. Kellogamires @ 9:40° to get updated on
progress. Soys he will see if another valve needs to be shut off.
10:00° Clean Cell 12008. Move on to Cell 12007. Univerwhich diameter pipe to complete. M. Kellog
back to impect which like to complete. Clean out 8"pipe and pop through cell 2005. (160' into
like). Cleanout sheet needs to be updated to show 75' for both cell 12007 and Cell 12008 like
10:45 a: Clean Cel1/2006. > Advance 325 into line. Sheet needs updating.
11:05a: NV goes to empty vactor and fill up water truck. More all equipment to cell 12001 to bogin
cleaning after lunch
11:45 -12:45 P: LUNCH
12:50P: Clean Cell 12:004.
1:20 P: Chan Cell 12CO3
1:45P: Clean Cell 12COZ. Fillup Vactor W/Water. NV going to dump outvactor.
2:50P: Will returns w/empty vactor. Sign paperwork
3:00p: CHA+NV offinite
THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY: TIME CHARGED TO PROJECT: OBSERVER'S SIGNATURE
MILEAGE CHARGED TO PROJECT: ADDITIONAL SHEETS USED CHECK INITIALS
Inditional distance of the little

MILEAGE CHARGED TO PROJECT:

REPORT NO. 5 1 OF 1 PAGE NO. 9/15/17 DATE: CONSTRUCTION OBSERVATION REPORT WEATHER **TEMPERATURE PROJECT** 2017 Rapp Road Landfill Cleaning 72° HIGH Overcast 60° LOW LOCATION Albany, New York PROJECT # |3|2|5|9 003 SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED 7:00 a: CHA onsite. Speak w/ M. Kellogg about starting at Cell 12COI (550') then moving to Cell 9COI.
7:10 a: NV ansite. Start to clear path to access both lines. Start cleaning Cell 12COI once confirmation of pipe shutoff has been given. 8:20°: Start Cell9 Col. Gain resistance at ~520' into like. Will says there's a lot of water being vacuumed out of line, Pause to fill up vactor w/water. 8:30° Fill up vactor w/ HzO. Complete Cell9 COI at 9:15° Move onto VHM 1+2 basins after. 9:30° Complete VHMZ basin and more water trick and vactor to LVS2. VHMI needs to be completed but the p:ssa: Confirmed that value is dut off for LVSZ. NV weed whacked area around like for access. 11:05 a: Setupat LVS2 and clean entire line. 12:00P-1:00P: LUNCH 1:10 P: NV goes around landfill to collect hose. Return and move Vactor and water tank to be emptted 2:30P: NVoffsite CHA offsite THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY: OBSERVER's SIGNATURE TIME CHARGED TO PROJECT:

MILEAGE CHARGED TO PROJECT:

CHA		REPORT NO.		
	I	PAGE NO. 1		
CONSTRUCTION OBSERVATION REPORT	I	DATE:	9/18/17	
PROJECT 2017 Rapp Road Landfill Cleaning		WEATHER	TEMPERATURE	
1 ROJECT 2017 Rapp Road Eandrin Creaming		Overcast	HIGH 80°	
LOCATION Albany, New York	<u> </u>	Overcust	LOW 62°	
		9610	0 0 3 2 0 0 0	
SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONDESCRIPTION OF WORK PERFORMED AND OBSERVED	A LOW MARKET STREET, SALES	Section of the control of the section of the sectio	And the control of th	
7:00° CHA +NV ensite Speak W/ Andy +Mite about plan for +	hed	au . All 900	ed tostartw/LVS1	
7:20 ": Get call from Jim informing that he is off loading water to	vck.	U Ju	, , , , , , , , , , , , , , , , , , , ,	
			Control of the contro	
7:45° Will goes to fill up vactor w/water. Back at 8:30°. 9:00°: Jim arrives on site w/water truck. Fills twice and move	to L	VSI Incatio	n. Wood what k gove	d line
10:15a: Start cleaning LVSI live. Refill water invactor @ 11:45				
12:30P-1:30P: LUNCH.		*******	_	
2:00P: Uncoil length of hore ~250' to recoil and organize (5th 2:15P: Complete cleaning at LVSI. Jim clears off LIMHS	ick C	~6501 for ~1	2 hours)	
2:15P: Complete cleaning at LVSI. Jan clears off LIMH5	arca	in preparation	for fomorrows de	eanh
2:31P: Informed that NV will not be on site Wednesday %20 or	Then	sday 9/21.		
2:50p: Move vactor off of main road. Sign paper wall				
3:00 P: CHA offsite/M offsite.				
		15-10A-T-7-AMA-T-7-111-1-T-		
			and the second of the second o	
				_

		· · · · · · · · · · · · · · · · · · ·		
		×-100.00		_
				_
				_
THE ABOVE DESCRIBED WORK WAS INCORPORATED				
INTO THE PROJECT & WAS OBSERVED BY: OF	BSER	VER's SIGNAT	URE	
TIME OUT DOED TO DECIF.				- 1

		REPORT NO.	· +
		PAGE NO.	1 OF
	DEBORE	DATE:	1/19/17
CONSTRUCTION OBSERVATION	REPORT		
PROJECT 2017 Rapp Road Landfill Cleaning		WEATHER	TEMPERATURE
2017 Rapp Road Sandin Cleaning		Clear	HIGH 79°
OCATION Albany, New York			LOW 60°
	Tal		
	PROJECT # 3 2	59610	0032000
SPECIFY: LOCATION, NATURE OF WORK BY CONTRAC DESCRIPTION OF WORK PERFORMED AND OBSERVED	TOR & SUB-CONTR	ACTOR FOR E	ACH OPERATION
7:10° CHA onsite. Heet w/ Andy to discuss likes	obe worked on toda	y. Hove tow	ater truck location.
7:20° Heet w/ Jim who had just finished weed whack			
	ing in tollowing in	Car and Him	. , 15 011 100001 . , 140
and will be amking on site in less than an hour.			
813591 A. Jensen onsite. Speaks W/ Jim from NV.	wilecos I i	/ 1 /2-	
9:00° Will onsite u/ Vactor. Cleans out. Arrives at 1	11973COS To begin	cleaning live	-
9:30": Complete clean at LIMH5COS.	7/ / liel-un lesse	+ 1/2/2/21	(/)
10.000: Start UNHSCOY. Plan to take hose past 42	2 journance lunce g	of stuckin last	Kar).
10:50a: Complete LIMHSCO3.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
11:15ª: Set up at LIMH5 CO2. 11:30ª-12:30Y: LUNCH		,,,	
	La Cill and Indian	D I IMUSCAT	
1:15 P: Clean LIMH 5002. Jimgetswater truck	ro Till up METOY &	E CHIMOLOL	
2:25P: Complete LIMACOI. Empty vactor. 3:00P: CHA+NV offsite.			3-1
STOOL OHALLYON DIESTIC.			
			213414
		,	

THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY:

OBSERVER'S SIGNATURE

TIME CHARGED TO PROJECT:

MILEAGE CHARGED TO PROJECT:

MILEAGE CHARGED TO PROJECT:

		REPORT NO		-	
	4	PAGE NO.	1 OF		
CONSTRUCTION OBSERVA	TION REPORT		DATE:	9/21/17	
			\$ 134 to 1		
PROJECT 2017 Rapp Road Landfill Cleaning	ALFONSON AND AND AND AND AND AND AND AND AND AN		WEATHER	TEMPERATUR	t. • . [
		÷,,	dear	HIGH 82°	
LOCATION Albany, NY		_]		LOW 62'	
		1 2	5 9 6 1 0	0 0 3 2 0 0	<u> </u>
	PROJECT #				
SPECIFY: LOCATION, NATURE OF WORK BY	CONTRACTOR & SUR CO			ACH OPERATION	,
DESCRIPTION OF WORK PERFORMED AND OBSERVE		VIA	ACTON FOR E	ACH OF EKATION	
7:00 a: CHA +NV onsite. Talk W/ A. Fenser	about stading at 052 71	a) [i	a Call MKe	Man to timaff l	no .
7:15a: NV fills up water truck and brings	C down to Rum n Station 2.	Pac	itson + Fill 110)	lactor will water	
					60
8:15° Start Cell 12PS2CO1. Slow clearing PS2CO1 and begin to unscrew cap.	past 400 Pirush Dean	ing	c 1.30 . (<i>W</i>	re 1/aive for cent	07_
9:50°: Move to Cell 12PSICOI. Clean an	1 fill up mactor w/ mater	מעו כנ	2 line is carned	240	
10:30ª: Clean Cell 1-6PSICOI.	a mility vacion of vacion	<i>()</i>	e men cor fu	210.	
12:00° A. Jensen onsite to inspect pro	gress.				
12:159-1:151 : LUNCH	<i>)</i>		of Man		
1:201: NV refills water truck well cap	for celliopsicol	Put	in closed pas	ition Wait ~5	minute
for pressure to be reliated from line.					
2:00P: Start cleaning Cell 10PSICOI.	. Complete & 2:50P.				
3:00 P: CHA+NV offsite.				N#10	
	- Water				
*			1.		
1 MARIE	300				

	-		-		
AND THE RESERVE OF THE PROPERTY OF THE PROPERT			-144		
THE ABOVE DESCRIBED WORK WAS INCORPOR INTO THE PROJECT & WAS OBSERVED BY:	ATED	1	1		
TIME CHARCER TO BROKECT.	-/0	BSE	RVER's SIGNAT	TURE	_

TIME CHARGED TO PROJECT:
MILEAGE CHARGED TO PROJECT:

U. 2 .			PAGE NO.	1 OF	
CONSTRUCTION OBSERVATION	I REPORT		DATE:	9/22/17	
CONSTRUCTION OBSERVATION	I ILLI VIXI	4			
PROJECT 2017 Rapp Road Landfill Cleaning			WEATHER	TEMPERATURE	
LOCATION Albany, NY		clair	HIGH 78°		
LOCATION Albaily, N1					
	PROJECT#	3 2	5 9 6 1 0	0 0 3 2 0 0 0	
8		1			1.76 L 1.27 L
SPECIFY: LOCATION, NATURE OF WORK BY CONTRADESCRIPTION OF WORK PERFORMED AND OBSERVED	CTOR & SUB-CO	ONTR	ACTOR FOR E	ACH OPERATION	
7:00°: CHA+ Nonsite. Speak W/ M. Kellogg about	starting at Cel	111	sous to tum of	f cell lo also prior :	10
start cleaning at 11).	ý ·				
7:30 a: NV positions water truck and refills vactor	with water. Bac	k up	vactor to Cell.	l once refilling is con-	plete.
8:00° : Clean Cell 11 PS1 CO2, Stop €~400'.				7,400.1	
8:30° NV needs to dump Vactor. Lesume clean	e Gel 11.				
9:45°: Complete Cell 11 PSI CO2. More to	Oump Station I	. Cal	1 M. Kellogg +	b see what needs to	0
be shut off to continue cleaning.					
10:15a: 60 back up to main road to clean 8	0' line (Cell11	19510	101 to cell 11 P.	S1co2)	
11:00a: Move to Pump Station I again and set up	for deaning to	o rest	ime after lunc	h	
11:30 = 12:30P: LUNCH. NV on site. Loosen like	es that are to be	clean	ed near pump.		
12:30 P-2:20P: Clean Y lines in Pump Statio					
2:40P: Pact up and leave vactor by PSI builde	hg.			ANNIA A	
3:00p: CHA+NV offsik.	<i>O</i>	******			
				A STATE OF THE STA	
					_

		·			_
	· · · · · · · · · · · · · · · · · · ·			•	_
					_
				11.1	_
					_
THE ABOVE DESCRIBED WORK WAS INCORPORATED		2	1		
INTO THE PROJECT & WAS OBSERVED BY:		OBSE	DVFD's SIGNAT	TIDE	

REPORT NO.

INTO THE PROJECT & WAS OBSERVED BY:

TIME CHARGED TO PROJECT: MILEAGE CHARGED TO PROJECT:

10 PAGE NO. 7 9/25/17 DATE: **CONSTRUCTION OBSERVATION REPORT** WEATHER **TEMPERATURE PROJECT** 2017 Rapp Road Landfill Cleaning HIGH Sunny/ Clear LOW 600 LOCATION Albany, NY 2 5 9 6 1 0 0 0 3 2 0 0 PROJECT# SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED 7:00° CHA onsite. 7:30 a: NV onsite. Hove to Pump Station I and NV fills vactor w/ water. 8:00a: Mike Kellogg onsite. Review plan for the day and vactor returns filled W/ water. 8:30°: Begindbaning PSI floor. 9:45a: Complete Clean of PSI floor and tank. NV refilling tank w/water. M Kellogg anives@ PSI
to turn on valves and enrire PSI operating properly.

10:00a: More to PS2 to prepare tank cleaning. Vactor needs to get refilled w/water. NV preps hoses for cleaning at PSZ. 11:15": Begin cleaning PSZ tank. 11:30" Vactor full. need to go dump 12:45P: Complete cleaning at PSZ. 12:45P: LUNCH 1:45 P: N back onsite. Move vactor to two tanks. Prep to vacum at voults 2:10 P: Vactor reeds to be emptied. 2145P: Complete VHM2. BIOOP: CHA+NV office. THE ABOVE DESCRIBED WORK WAS INCORPORATED

REPORT NO.

PAGE NO. 1 OF 9/26/17 DATE: CONSTRUCTION OBSERVATION REPORT WEATHER **TEMPERATURE PROJECT** 2017 Rapp Road Landfill Cleaning 890 HIGH Clear LOW 62° LOCATION Albany, NY 2 5 6 1 0 0 3 2 0 0 0 PROJECT# SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED 7:10° : CHA onsite. Speak w/ Andy Fersen for plan of the day. Move to the tanks and meet w/NV and M. Kellogg to discuss cleaning of VHM1 vallts. 7:30%: Turn on vactor and prep for cleaning. Stort to clean VHMI 8:15 a Empty full vactor. Will returns wil amply vactor @ 9:15 a. Resume cleaning 9:500: Complete cleaning at VHM1 and vac VHM2 again. (Roughly 3" of water within vauH) 10:050: Start cleaning Catch Basin #4. NV gets more hose to start line from scale ditch to parking lot manhole #2. 10:50° NV starts to weed wack around the scale disch opening to preptor cleaning.
11:15° Complete cleaning 170' line. Will goes to fill up the Vactor W/ water. Complete mobe to Manhole #2 and setup. 12:00P-1:00P: LUNCH. 1:008: Start Culvert to MHZ like. Complete Parking lot MH#1 to Parking Lot MH#2 likes, and MH#Z to Discharge Point. 2: 20%: NV to empty vactor. Need to refill in the morning. 3:00P: N+ CHA offsite

THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY:

OBSERVER'S SIGNATURE

REPORT NO.

TIME CHARGED TO PROJECT:

MILEAGE CHARGED TO PROJECT:

MILEAGE CHARGED TO PROJECT:

U 1 L 1						PAGE NO. \mathcal{I} OF \mathcal{I}										
CONCT		DATE: 9/27/17														
CONST	RUCTION OBS	ERVATIO	NKEF	'UKI		·										
PROJECT	2017 Rapp Road Landfill	Cleaning				WEATH	ER	TEM	1PER	ATUI	RE					
						Clear		HIG	Н	88°						
LOCATION	Albany, NY					CRU		LOV								
					T _											
			PROJ	JECT# 3	2	5 9 6	1 0	0 0	3 2	0 0	0 0					
			L					4-5								
	OCATION, NATURE OF V OF WORK PERFORMED AN		RACTOR &	E SUB-CON	VTR	ACTOR FO	OR E	ACH (OPER	ATIO.	N					
				4			Λ.									
	CHA onsite NV onsite @	4	es vactor	to water	r s	tation to	<u> 1:11</u>	up.Pl	an is	tomo	ve back					
	marhole #2 and complet	, ,														
	Complete final 100° at				ove o	onto clear	n M	<i>H H 1</i>	1							
	Finish Stormwater Trend															
	M. Kellogg arnives to help						ton	ord S	cole	house	`					
	Complete Sanitory Me		orner Ad	mih Kanh	de	. •										
	-10:15a: Refill vactori	1				4.1										
	: Complete Corner Adm				vila	ling. Also	com	plebe	Mai	hole-	-Admin					
	Building to Manhole A	a had														
	Start Manhole Admi															
	· Pause cleaning. Need			ter. Jim g	gets	water true	ck to	5611 i	lacte	Y.						
	1:15P: LUNCH . Resume de	;														
	Encounter dead stop dur						ing 1	to Poli	sh co	mmur	uly cerbe					
	It lance ~390'/500'.									<u>a/ -</u>						
	Empty out water two	k. NV to return	water t	nick back	c+.	oshop. Du	scuss	plan	tor	<u> 1/28.</u>						
3:00P?	CHA+NV offsite.															
							·									
										······································						

						· · · · · · · · · · · · · · · · · · ·										
				ww												
									10-A-1							
, , , , , , , , , , , , , , , , , , ,																
	DESCRIBED WORK WAS I			11				latioum								
INTO THE PR	OJECT & WAS OBSERVEI	BY:		OI	BŠE	RVER's SIC	GNAT	TURE								
TIME CHARGE	ED TO PROJECT:															

REPORT NO.

 \square ADDITIONAL SHEETS USED CHECK INITIALS $_$

13 REPORT NO. PAGE NO. 1 OF 1 CONSTRUCTION OBSERVATION REPORT 9/28/17 DATE: WEATHER **TEMPERATURE** PROJECT 2017 Rapp Road Landfill Cleaning HIGH 69° Clear

LOCATION Albany, New York										L	O	<i>N</i>	5	93		
		(A. 1	8					4		1 %				4		
		PROJECT#	3	2	5	9	6	1	0	0	0	3	2	0	0	o
	1112				·, • ;					,		4.0				
SPECIFY: LOCATION, NATURE OF WORK BY CONT	RAC	TOR & SUB-C	ON	TR	AC	TC	OR I	FO	R E	AC	H	<u>OP</u> l	ER/	<u>4<i>TI</i></u>	ON	I_
DESCRIPTION OF WORK PERFORMED AND OBSERVED																

DESCRIPTION OF WORK PERFORMED AND OBSERVED
11:00°: CHA +NV onsite. (2 personnel) Will moves vactor to water station to fill up. 11:40°: Start cleaning garage after Landfill personnel move grates to allow access. 12:15°: Complete garage cleaning. Andy replaces lids and grates to holes that were cleaned. 12:20°: Complete cleaning at Catch Basin#3 and scale swale. 1:30°:NV offereto buy supplies to proceed wil scale cleaning.
2:00-3:00 P: LUNCH. 3:00 P: LUNCH. 3:00 P: Lunch. 3:10 P: Move to inbound scale to begin cleaning. Complete cleaning of inboundscale @~4:15. 4:15 P: Clean outbound scale.
5:20°: Damped truck and packup for day. 6:00°: CHA+NV offsite.
THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY: TIME CHARGED TO PROJECT: MILEAGE CHARGED TO PROJECT: ADDITIONAL SHEETS USED CHECK INITIALS

2017 Rapp Road Landfill Cleaning

PROJECT

LOCATION Albany, New York

CONSTRUCTION OBSERVATION REPORT

REPORT NO. OF 1 PAGE NO. 1 9/29/17 DATE:

WEATHER	TEMPERATURE
01	HIGH 65°
Clear	LOW 456

3259 PROJECT #

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED
7:00 a: CHA + NV onsife, Move to Scape out PSIFMCOZ to PSIFMCOI line. (3 personnel from NV onsife)
7:10a: Will filler vactor w/ water. Jim opens up confined space. Observes ~2' of water w/leachate
in it prior to cleaning. M. Kelloggamves at cleaning location. Needs to shut off values to start cleaning.
8:45° : Complete Cleaning @ PSIFHCOZ to COI like . Begin 600' at apposite like.
9:30a: After advancement to 600', pipe observed to be broken. W reels in hose and continues to vac within line.
Outer 8" of pipe was broken. M. Kellogg on site. Says that there may be a piece in the shop that can
replace broken portion of pipe.
9:50° Will empties vac truck. Once return, continue vacuuming like.
10:450: Andy + 2 other LF personnel arrive at location to inspect fractived pipe. Need to find new collar
and segment of pipe to replace old. NV packs up from this boation.
11:10a: Mareto PSIFMCOI to advance lance 400' north to complete 1000' line. M. Kellogg calls and says
that confined space person (James Irwin) Hust come back to first manhole to assist w/repair.
12:30 P: Complete part of report PSIFMCO2 to PSIFMCO2. M. Kellogg confirmed that line's gasket theeds to get
replaced before line is restored fully.
12:45-1:45 P: WNCH. M. Kellogy turns on valves at Pump Station, Will from NY confirms that everything is
that and cap is not off at next location.
2:00P: Another break at COI/COZ location. Pipe was leaking from before.
2:34P Finish at forceman line. Will needs to go dump vactor.
3100PiCHA+NV offsile
THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY: OBSERVER'S SIGNATURE
TIME CHARGED TO PROJECT:
MILEAGE CHARGED TO PROJECT: ADDITIONAL SHEETS USED CHECK INITIALS

		V (= 0)		DATE: /	0/2/17	
CONSTRUCTION OBSER	EVATION I	REPORT	Γ	DATE.	0/2/17	
PROJECT 2017 Rapp Road Las	notfill Cleani	ng		WEATHER	TEMP	ERATURE 65°
LOCATION Albany, NY				Clear	LOW	40.
		PROJECT#	32	59610	003	2000
SPECIFY: LOCATION, NATURE OF WORK	K BY CONTRACT	TOR & SUB-C	ONTR	RACTOR FOR I	EACH OP.	ERATION
DESCRIPTION OF WORK PERFORMED AND OBS						
7:00°: CHA onvite. Meet W/ A. Fe	nten around 7.	10a to cliscu	ss pla	en for the day	•	
7:300: NVonsite already filling u	p vactorw/ wa	ter. More to	s FM	col and cont	act M.Ke	llogg to shut
off line. After 3 attempts to	call Mike con	tact A. Jens	en t	Andy will sho	t off val	ve.
off line. After 3 attempts to 8:10° : Valve shut off. NV begins o	leaning line (a	dvance 860	'). N	V needs 4' pi	De Wench	h. Shopable
to provide wrench.	_					
9:20a: Complete cleaning 860' 9:30a: Prep oxygen for advanced	Line to VHMI an	d remainin	9 400	o' at co1 to	CO2 (on t	forcemain like).
9:30a: Prep oxygen for advance	ng cleaning at	MH#EL-	2p to	Landfill (16	o'lite).	
10:30° Complete cleaning af p	<i>(H#6L-2P.</i>					
M:000 : A. Fensen onsite at 2 mo	enholes to shu	toff whes	inpu	impstation.		
11:30 a Start cleaning Leachate 1					}	
12:30P-1:15P:LUNUA						
1:151: Proptoclean LCHH7 to	PSZ. Complete	@ 2:00R.		٠		
2:10P: Go to empty vactor and disp	pase of convigas	sed pipe. N	V need	ds to patin fue	1 into ya	cotor.
3:00P: CHA TNV offsite.	-					
	WHY .					
					A CONTRACTOR OF CO.	
			-			
		- *** *** *** *** *** *** *** *** *** *				·.
	.,,,					

	Control of the Contro					
		111	,	201		
THE ABOVE DESCRIBED WORK WAS INCOI INTO THE PROJECT & WAS OBSERVED BY:		14		1/2/		·
TIME CHARGED TO PROJECT:			OBSE	ERVER's SIGNA	TURE	
MILEAGE CHARGED TO PROJECT:		ADDITIONA	i che	erencen ci	IECK INIT	TIAI C

CONSTRUC

PROJECT

LOCATION Albany, NY

PI I A						
	10.0	REPORT NO.	. 16			
The state of the s		PAGE NO.	0 of 1			
		DATE: /	0/3/17			
TION OBSERVATION REPORT						
17 Rapp Road Landfill Cleaning		WEATHER	TEMPERATURE			
the second secon	- 5					

全部产品 医普鲁氏线 经	. 44			11.7	a 30 1	20			ž i	<u></u>	of the	100	La	. 4
PROJECT#	3	2	5	9	б	1	0	O	0	3	2	0	ø	Q

Clear

SPECIFY: LOCATION, NATURE OF WORK BY CONTRACTOR & SUB-CONTRACTOR FOR EACH OPERATION DESCRIPTION OF WORK PERFORMED AND OBSERVED 7:000: CHA ansite. NV fueling vactor. M. Kellogg arrives ansite to turn off values for LVSY. 8:000: Get confirmation that eventhing is shot off for LVS-4 line. NV starts cleaning 8:30a: Upon vacuuming. Tim observed dirt getting sucked into hose from a gap i at rearby trench excavation. Call M. Kellogg to inspect tear in line. mends gap using duck tape and resumes cleaning. 9:50a: Complete cleaning at LVS4. NV moves vactor to refill w/ Water. munhale to start cleaning. 10:30 a: After vacuuming out ~4-5" of standing water in manhole, lance head gets stoc ~15 numbers to free up. Cleaning completed @ 11:5a. 11:20 a: NV goes to fill up vactor W/ water. Move to Polish Community center 12-1P: LUNCH 1:001: Start cleaning @ Manholes @ Polish Center. Comprete cleaning @ all and cheek : NV goes to empty vactor and clean out truck. 3:00°: CHA+NV offisite. THE ABOVE DESCRIBED WORK WAS INCORPORATED INTO THE PROJECT & WAS OBSERVED BY: OBSERVER'S SIGNATURE TIME CHARGED TO PROJECT: MILEAGE CHARGED TO PROJECT: ☐ ADDITIONAL SHEETS USED CHECK INITIALS

ATTACHMENT C 2017 FINANCIAL ASSURANCE ESTIMATE DATED JANUARY 17, 2018

2017 Financial Assurance Estimate

City of Albany Rapp Road Solid Waste Management Facility

CHA Project Number: 33862.1000.32000

Prepared for: The City of Albany, New York

Prepared by:

CHA

III Winners Circle Albany, New York 12205 (518) 453-4500

January 17, 2018

This financial assurance cost estimate is presented in two parts. The first part is the closure cost associated with closing the existing un-capped landfill area which is regulated under the current facility permit. The second part is for the cost of monitoring and maintenance associated with the existing landfill regulated under the current facility permit over the 30 year post-closure monitoring period. Each of these costs is presented, as follows.

The total existing landfill area at the Rapp Road Solid Waste Management Facility which is regulated under the current facility permit is approximately 108 acres. Approximately 64 acres have been closed with a final cover in accordance with applicable 6 NYCRR Part 360 regulations; therefore approximately 44 acres remain to be closed in the future. Closure of the remaining open area will be performed in accordance with the current facility permit and applicable 6 NYCRR Part 360. The cost for completing the closure construction is estimated to be approximately \$8,532,000. This cost assumes that the entire closure will be completed by an independent contractor. Reference Table 1 for a summary of the closure cost estimate.

Post-closure environmental monitoring costs over the 30 year post-closure period for the existing landfill regulated under the current facility permit were estimated considering the monitoring requirements set forth in the current Environmental Monitoring Plan appended to the current Hydrogeologic Report. Post-closure maintenance costs were estimated for tasks typical for closed municipal landfills, including gas and leachate collection systems operation and maintenance, leachate treatment, cover soil repairs, and mowing. The total cost associated with monitoring and maintenance over the 30 year post-closure period is estimated to be approximately \$2,869,000. Table 2 provides a summary of post-closure monitoring and maintenance costs.

In summary, the total cost associated with closure construction and post-closure monitoring and maintenance to be used for establishing financial assurance documents for the existing landfill area at the Rapp Road Solid Waste Management Facility which is regulated under the current facility permit is \$11,401,000. This figure includes a 20% contingency as required by the current facility permit.

At the time this report was prepared the Rapp Road Solid Waste Management Facility had a remaining permitted capacity of 906,533 cubic yards and an estimated site life through February 2021 based on the maximum permitted disposal rate of 1,250 tons per day.

TABLE 1

Rapp Road Solid Waste Management Facility
Active Landfill Closure Cost Estimate (44 acres)

January 17, 2018

Item	Unit Price		Quantity		Cost
Mobilization/Demobilization	\$67,043.40	l.s	100	%	\$67,043.40
Health & Safety Plan	\$2,100.00	l.s	100	%	\$2,100.00
Non-Woven Geotextile	\$0.12	/s.f.	30,000	s.f.	\$3,600.00
Cushion Soil Layer	\$10.25	/c.y.	70,987	c.y.	\$727,613.33
40 Mil Textured LLDPE	\$0.47	/s.f.	1,916,640	s.f.	\$900,820.80
Composite Drainage Netting	\$0.56	/s.f.	1,437,480	s.f.	\$804,988.80
Barrier Protection Fill	\$10.50	/c.y.	141,973	c.y.	\$1,490,720.00
Topsoil	\$12.50	/c.y.	35,493	c.y.	\$443,666.67
Establish Vegetation	\$1,225.00	/ac.	44.00	ac.	\$53,900.00
Soil Barrier Layer	\$13.00	/c.y.	141,973.33	c.y.	\$1,845,653.33
Stormwater Controls	\$44,880.00	l.s	100	%	\$44,880.00
Fine Stone Fill	\$12.00	/l.f.	2,500	l.f.	\$30,000.00
Crusher Run	\$15.50	/c.y.	1,400	c.y.	\$21,700.00
Silt Fence	\$2.75	/l.f.	2,500	l.f.	\$6,875.00
Mulching Blanket	\$0.15	/s.f.	1,437,480	s.f.	\$215,622.00
Site Grading	\$112,200.00	l.s	100	%	\$112,200.00

Subtotal:			\$6,771,383.33
Construction Observation	\$270,855.33 l.s	100.00 %	\$270,855.33
Construction Administration	\$135,427.67 l.s	100.00 %	\$135,427.67
20 % Const. Contingency	\$1,354,276.67 l.s	100.00 %	\$1,354,276.67
Total Cost:			\$8,531,943.00

Notes:

- 1. Estimate in 2017 dollars.
- 2. Estimate based on landfill area that has not be closed, to date 13 acres has been closed.

TABLE 2

Rapp Road Solid Waste Management Facility

Post-Closure Monitoring & Maintenance Cost Estimate

January 17, 2018

Item	Unit Price	Quantity	Cost			
Environmental Monitoring						
Quarterly Monitoring	\$64,000.00 /yr.	30.00 yrs.	\$1,920,000.00			
	Landfill Inspect	ions				
Quarterly Inspections	\$3,000.00 /yr.	5.00 yrs.	\$15,000.00			
Semi-Annual Inspections	\$1,500.00 /yr.	25.00 yrs.	\$37,500.00			
	Site Maintenar	nce				
Cover System Mowing	\$2,750.00 /yr.	0.00 yrs.	\$0.00			
Erosion Repairs/Re-seeding	\$2,750.00 /yr.	30.00 yrs.	\$82,500.00			
Gas/Leachate Systems O&M	\$11,200.00 /yr.	30.00 yrs.	\$336,000.00			
Subtotal:			\$2,391,000.00			
20 % Const. Contingency	\$478,200.00 l.s	100.00 %	\$478,200.00			

Notes:

Total Cost:

- 1. Estimates in all categories include reporting.
- 2. Cover system mowing will not be required since site will be restored to native habitat.

\$2,869,200.00

ATTACHMENT D ALBANY INTERIM LANDFILL ENVIRONMENTAL MONITORING REPORT THIRD QUARTER 2017 DATED JANUARY 18, 2018

Albany Interim Landfill Environmental Monitoring Report Third Quarter 2017

CHA Project Number: 32596.1007.44200

Prepared for:
The City of Albany
Department of General Services
One Conners Boulevard
Albany, New York

Prepared by:

III Winners Circle Albany, New York 12205 Phone: (518) 453-4500

January 18, 2018

This report has been prepared and reviewed by the following qualified personnel employed by CHA.

Report Prepared By:

Joseph Saulsbery
Engineer I

Report Reviewed By:

John L. Favreau Senior Scientist V

TABLE OF CONTENTS

1.0	INTI	RODUCTION	1			
2.0	Dag	WODOLIND.	1			
2.0		KGROUND				
	2.1	General				
	2.2	Discussion of Groundwater Monitoring Network				
	2.3	Discussion of the Surface Water Monitoring Network				
	2.4	Existing Water Quality Values	3			
3.0	FIEL	D SAMPLING ACTIVITIES	4			
	3.1	Groundwater Sampling Activities	5			
	3.2	Surface Water Sampling Activites				
	3.3	Leachate Sampling Activities				
	3.4	Combustible Gas Monitoring				
	3.5	Evaluation of Water Quality Analytical Results				
4.0	RESULTS					
	4.1	Water Level Monitoring	7			
	4.2	Data Validation				
		4.2.1 Field Duplicate Sample Comparison				
		4.2.2 Data Usability Summary Report				
	4.3	Groundwater Analytical Results				
	4.4	Surface Water Sampling Results				
	4.5	Leachate System Sampling Results				
	4.6	Combustible Gas Monitoring Results				
5.0	Con	CLUSIONS	17			
	5.1	Groundwater Flow	17			
	5.2	Groundwater Results				
	5.3	Surface Water				
	5.4	Combustible Gas Monitoring				
6.0	Furi	TRE ACTIVITIES	18			

LIST OF FIGURES

Figure 1 Figure 2	Site Location Map Site Plan
Figure 3	Groundwater Contour Map: Shallow Groundwater Flow Regime
Figure 4	Groundwater Contour Map: Intermediate Groundwater Flow Regime
Figure 5	Groundwater Contour Map: Deep Groundwater Flow Regime

LIST OF TABLES

Table 1	Groundwater Elevation Data
Table 2	Groundwater Monitoring Analytical Results
Table 3	Groundwater Parameters Exhibiting Significant Detections
Table 4	Surface Water Sampling Analytical Results
Table 5	Leachate Analytical Results
Table 6	Combustible Gas Monitoring Results

LIST OF APPENDICES

Appendix A	Field Data Summary Tables
Appendix B	Laboratory Analytical Results
Appendix C	Data Usability Summary Report

1.0 INTRODUCTION

In accordance with the 6 NYCRR Part 360 regulations, CHA has prepared this Environmental Monitoring Report to summarize the environmental monitoring activities conducted during the third quarter of 2017 at the Albany Interim Landfill (AIL), in Albany, New York. Specifically, the results summarized in this Environmental Monitoring Report include those from combustible gas monitoring activities, and the analytical results of samples collected from the groundwater monitoring well clusters MW-1, MW-2, MW-9, MW-10, MW-14, MW-15 and MW-18; and surface water sampling locations SW-1, SW-2A, and SW-5. The primary and secondary leachate collection systems were also sampled during this monitoring event. The field activities associated with this monitoring event were conducted by CHA personnel during the period of September 7th to 12th, 2017.

2.0 BACKGROUND

2.1 GENERAL

The Albany Interim Landfill (AIL) is located at the Rapp Road Solid Waste Management Facility on Rapp Road on the north side of Interstate I-90, just west of the Exit 24/I-87 interchange. The landfill is adjacent to the closed Greater Albany Landfill (GAL). Monitoring of that landfill is the subject of a separate submission. The AIL site location is depicted by Figure 1 – Site Location. A site plan, including the location of the closed GAL is included as Figure 2 – Site Plan.

Quarterly monitoring for the AIL has been conducted in accordance with the Revised Environmental Monitoring Plan (EMP) in conjunction with Part 360 Permit for the Albany Interim Landfill (Facility #01-502-I; DEC Permit #4-0101-00171/00011) dated June 25, 2009. This quarterly groundwater monitoring report has been prepared to satisfy the requirements of the Revised Environmental Monitoring Plan and Site Analytical Plan which are part of the approved Permit to Operate the Albany Interim Landfill and associated Eastern Expansion. In accordance with a New York State Department of Environmental Conservation (NYSDEC) approval letter dated August 25, 2010, monitoring frequency was reduced from four quarters to three quarters per year, omitting the fourth quarter monitoring event.

2.2 DISCUSSION OF GROUNDWATER MONITORING NETWORK

The current Operational Water Quality Monitoring program consists of 21 wells located around the perimeter of the AIL (Figure 2). The wells are located in seven well clusters: MW-1, MW-2, MW-9, MW-10, MW-14, MW-15 and MW-18. Each cluster consists of a shallow ("S"),

intermediate ("I"), and deep ("D") monitoring well. The shallow wells monitor water quality within the water bearing sand unit; the intermediate wells monitor water quality within the silty sand/sandy silt unit; and the deep wells monitor water quality within the silty clay/sand and silt unit.

The current groundwater monitoring well network consists of up-gradient, cross-gradient and down-gradient monitoring well clusters. The MW-1 cluster provides up-gradient water quality data for the landfill. The MW-2 and MW-15 well clusters are located in a cross-gradient position relative to the landfill. The MW-9, MW-10, MW-14 and MW-18 well clusters are positioned down-gradient of the landfill.

Due to the construction of various phases of the AIL landfill expansion (Figure 2), a number of monitoring well clusters have been both added to the monitoring network or abandoned in accordance with 6 NYCRR Part 360 and the facility's permitting conditions. During 1998-2000, groundwater monitoring well clusters MW-9, MW-10, MW-11 and MW-12 were installed. Since that time, monitoring well cluster MW-11 was abandoned in accordance with Part 360 regulations associated with the construction of Cell 10, and the MW-12 cluster was abandoned during 2009 as part of the construction of the Eastern Landfill Expansion.

In preparation for the Eastern Expansion of the AIL, the MW-14 and MW-15 well clusters were added to the monitoring network in 2007 to replace the MW-7 and MW-12 well clusters that were abandoned due to construction of the Eastern Expansion. The monitoring wells were installed just outside the limits of the proposed landfill footprint and were used to establish pre-operational water quality for the expansion area. The new well clusters remained in place during construction of the expansion and will provide monitoring locations during operation of the expansion facility. It should be noted that the MW-15 cluster was struck by construction equipment during August of 2011 and was repaired in January of 2012.

A new down-gradient monitoring well cluster, MW-18, was installed during the summer of 2009 to meet the down-gradient well spacing requirements for the Eastern Expansion, as required by the Part 360 regulations. It should be noted that due to excessive siltation in the screened portion of the well, MW-18I was abandoned during September of 2010 by over-drilling and grouting. Previous attempts to redevelop the well and eliminate the siltation problem were unsuccessful. The replacement well, MW-18IR, was installed on September 7, 2010 adjacent to MW-18I and was screened at the same depth as the original well.

2.3 DISCUSSION OF THE SURFACE WATER MONITORING NETWORK

Surface water samples are collected at three locations from a small stream that flows around the northern and eastern sides of the landfill. Surface water sampling location SW-1 is collected upgradient of the landfill before the stream reaches the site. Sampling location SW-2A is located where the stream bends southward at the northeast corner of the landfill, and is in a cross-gradient position relative to the landfill. SW-5 is located to the east of the landfill in a downgradient location.

As a result of the Eastern Expansion, the stream that had previously bordered the north and east perimeters of the landfill was relocated to the north and east to accommodate the expansion. As a pre-cursor to relocating the stream, water quality values of the surface water were established to evaluate pre- versus post-stream relocation water quality. Surface water samples SW-1, SW-2A, and SW-5 (Figure 2) were collected during four previous quarterly monitoring events to develop the pre-relocation water quality data set. Surface water sample collection will be continued as part of the monitoring program in order to evaluate the post-relocation water quality.

2.4 EXISTING WATER QUALITY VALUES

Existing Water Quality Values (EWQVs), as per Special Conditions 23(b) and 23(c) for Article 27, Title: 6 NYCRR 360, were previously established for the AIL well clusters. The EWQVs represent the statistical comparison of intra-well data based on past baseline sampling results for each well rather than inter-well comparison of similar groundwater flow regimes. Results from the operational monitoring events are compared to EWQVs to determine whether or not there is a significant increase over existing background water quality.

It is CHA's understanding that the EWQVs were historically calculated for the MW-1 and MW-2 well clusters by Smith & Mahoney, P.C. using eight baseline analyses performed between December 1990 and June 1997. The first two rounds of analyses were conducted prior to operation of the AIL. The remaining six events were conducted after operation of the AIL began. It should be noted that some of the eight rounds of baseline data used the baseline parameter listing from the 1988 regulations in accordance with the initial Part 360 permit in effect at the time of sampling.

The EWQVs for the MW-9 and MW-10 well clusters were calculated based on four preoperational rounds of sampling for the P-4 Project, which consisted of the construction of five cells (cells 7 through 11) constructed in two phases and completed in the fall of 2003. The sampling rounds consisted of one expanded parameter sampling event and three baseline parameter sampling events pursuant to the Part 360, 1993 Regulations.

CHA

Well clusters MW-14 and MW-15 were analyzed on a quarterly basis to develop Existing Water Quality Values. Eight quarters of pre-operational water quality data were collected from wells MW-14 and MW-15. The first samples were analyzed for expanded parameters and the following seven sampling events were analyzed for baseline parameters. Baseline, pre-operational sampling was continued through the 2008 monitoring year to supplement the initial four quarters of water quality data and to further refine the EWQVs for these wells.

Well cluster MW-18 was analyzed on a quarterly basis for four quarters to develop EWQVs for the well cluster. The first quarter samples were analyzed for expanded parameters and the remaining four quarters were analyzed for baseline parameters in order to develop the EWQVs.

According to the historical monitoring reports prepared by Smith & Mahoney, P.C., the data used to establish each of the sets of existing water quality values for those wells within the current AIL monitoring network includes the following:

- Analytical results for each parameter for the baseline sampling events between December 1990 and June 1997, and the MW-9 and MW-10 well cluster pre-operational rounds.
- Standards based on Federal and State regulations and guidance values (GVs) for each parameter.
- The arithmetic mean for each parameter for the sampling events.

Although some of the samples were historically analyzed for 1988 Part 360 baseline parameters, the parameter list shown for all tables included in this report is the 1993 Part 360 baseline parameter listing to be consistent with the requirements of the Permit Renewal.

Similar to the historical EWQV calculations, the EWQVs for well cluster MW-18 were calculated using 75% of the reporting limit for parameters that were not detected above reporting limits during all four of the pre-operational monitoring rounds.

3.0 FIELD SAMPLING ACTIVITIES

The following sections describe the groundwater sampling procedures, field parameter measurements, combustible gas monitoring activities, and the methods used in evaluating the groundwater quality at the AIL.

3.1 GROUNDWATER SAMPLING ACTIVITIES

During this sampling event, CHA personnel collected groundwater samples from each of the monitoring wells within the monitoring well network. Field sampling activities were conducted in general accordance with the NYSDEC-approved Revised Environmental Monitoring Plan and Site Analytical Plan of the approved Permit to Operate the AIL.

Prior to conducting well purging and sampling activities, water level measurements were collected from each of the monitoring wells. The water level measurements were referenced to fixed datum points surveyed to a United States Geological Survey (USGS) benchmark to calculate groundwater elevations.

Purging and sampling activities were conducted using dedicated submersible bladder pumps and low-flow techniques. At each well, the field parameters conductivity, dissolved oxygen, oxidation-reduction potential, pH, temperature, and turbidity were measured to evaluate stabilization of groundwater conditions within the well. Once the groundwater conditions were found to be stable, according to EPA criteria, the monitoring wells were immediately sampled using the dedicated submersible bladder pumps. A summary of the purge records and field parameter measurements is included in Appendix A.

Immediately following sample collection using laboratory-supplied containers, the groundwater samples were placed on ice in a rigid cooler and chilled to a temperature approaching 4° Celsius. At the end of each day, the samples were delivered to the TestAmerica's Buffalo, New York laboratory via the TestAmerica Service Center in Albany, New York, for analysis. TestAmerica is currently certified under the New York State Department of Health's Environmental Laboratory Approval Program (ELAP). All groundwater samples submitted during this monitoring event were analyzed for NYSDEC routine scan parameters, pursuant to the 1993 version of Part 360-2.11.

For quality assurance/quality control (QA/QC) purposes, an additional sample volume was collected from well MW-9S and submitted to the laboratory as a blind duplicate sample, designated CHA-1. Additionally for QA/QC purposes, a matrix spike/matrix spike duplicate sample set was collected from MW-9I and submitted to the laboratory for analysis.

3.2 SURFACE WATER SAMPLING ACTIVITES

During this sampling event, surface water samples were collected from surface water sampling locations SW-1, SW-2A and SW-5. At the time of sample collection, the field parameters conductivity, dissolved oxygen, oxidation-reduction potential, pH, temperature and turbidity were

measured. Surface water samples were collected in new, disposable plastic beakers and immediately transferred into the appropriate laboratory supplied sample containers. A summary of field parameter measurements is included in Appendix A of this report.

Immediately following sample collection, each surface water sample was placed on ice in a rigid cooler and chilled to a temperature approaching 4° Celsius. At the end of each day, the samples were delivered to the TestAmerica's Buffalo, New York laboratory via the TestAmerica Service Center in Albany, New York for analysis. All surface water samples submitted during this monitoring event were analyzed for NYSDEC routine scan parameters, pursuant to the 1993 version of Part 360-2.11.

3.3 LEACHATE SAMPLING ACTIVITIES

Leachate samples are collected on a semiannual basis, during the first and third quarters of the year. Leachate samples were collected from both the primary and secondary leachate systems during this sampling event. The primary leachate sample is collected from the leachate collection tank located in Pump Station #2. The secondary leachate sample is collected from the secondary leachate collection tank for Cell #1 located in Pump Station #1.

At the time of sample collection, the field parameters conductivity, dissolved oxygen, oxidation-reduction potential, pH, temperature and turbidity were measured. Leachate samples were collected with dedicated bailers and immediately transferred into the appropriate laboratory supplied sample containers. A summary of field parameter measurements is included as Appendix A of this report.

Immediately following sample collection, each leachate sample was placed on ice in a rigid cooler and chilled to a temperature approaching 4° Celsius. At the end of each day, the samples were delivered to the TestAmerica's Buffalo, New York laboratory via the TestAmerica Service Center in Albany, New York for analysis. All leachate samples submitted during this monitoring event were analyzed for NYSDEC expanded scan parameters, pursuant to the 1993 version of Part 360-2.11.

3.4 COMBUSTIBLE GAS MONITORING

Prior to any purging activities or groundwater sample collection, the headspace in each monitoring well was screened for the presence of combustible gas. Gas monitoring was conducted using a RAE Industries, VRAE Multi-gas Monitor; model PGM-7800. The meter was calibrated on site prior to use with both a 2.5% methane gas in air (50% LEL) canister and on site fresh air. The gas readings were collected by opening the well casing cover, removing the polyvinyl chloride (PVC)

cap which seals the well riser, and then immediately inserting the probe from the gas meter into the well's PVC casing. Head space gases at each well location were drawn through the meter until detectable readings stabilized. All combustible gas measurements (if detected) were recorded as the absolute percentage of combustible gas in air by volume.

3.5 EVALUATION OF WATER QUALITY ANALYTICAL RESULTS

The water quality results for each sampling round are evaluated by comparing the results from the monitoring points to the EWQVs. In accordance with Part 360-2.11(c) and Special Conditions for Article 27, Title: 6 NYCRR 360, the EWQV is the mean of the pre-operational results. The arithmetic mean has been calculated for each parameter in each monitoring well based on the pre-operational water quality monitoring data.

The analytical results obtained during this monitoring event were compared to the EWQVs and regulatory guidance values to determine if any significant detections have occurred. Specifically, a significant increase is defined by Part 360 regulations as a parameter concentration which exceeds the EWQV by three standard deviations or exceeds both the EWQV and regulatory guidance value for that parameter. It should be noted that parameter concentrations that exceed the EWQV alone are not considered significant as the EWQV is a calculated average and concentrations are expected to exceed the EWQV on occasion.

Regulatory guidance values (GVs) for the protection of groundwater are called maximum contaminant levels (MCLs) and are established by the Safe Drinking Water Act under 40 CFR Part 141 or guidance values as established pursuant to 6 NYCRR Parts 701, 702, 703, and Division of Water Technical and Operational Guidance Series 1.1.1., June 1998 (TOGS 1.1.1).

4.0 RESULTS

4.1 WATER LEVEL MONITORING

As discussed in Section 3.0, groundwater depths were measured at each groundwater monitoring well with an electronic water level indicator prior to purging. These levels were then converted to groundwater elevations, using the surveyed elevation of reference points atop the groundwater monitoring well risers. Groundwater elevations for each groundwater monitoring well gauged during this monitoring event are presented in Table 1.

Groundwater monitoring well cluster MW-1 is considered an upgradient well cluster based on current and historical groundwater elevation data. The MW-2 and MW-15 monitoring well clusters are considered to be cross-gradient well clusters. Monitoring well clusters MW-9, MW-10, MW-

14 and MW-18 are downgradient of the AIL. Monitoring well cluster MW-9 is also located downgradient to cross-gradient of the Greater Albany Landfill (GAL).

Groundwater contours for each flow regime are shown on Figures 3, 4, and 5. The shallow, intermediate and deep groundwater contour maps indicate that groundwater generally flows in a southeasterly direction for all regimes. The groundwater flow direction observed during this monitoring event is consistent with the historical direction of groundwater flow. During this monitoring event, all measured groundwater elevations were within historic ranges.

4.2 DATA VALIDATION

4.2.1 Field Duplicate Sample Comparison

A blind field duplicate sample, CHA-1, was collected by CHA during this monitoring event at monitoring well MW-9S. A relative percent difference (RPD) of less than 20% for reported concentrations of parameters between the original sample and the duplicate sample is considered acceptable. Results of the duplicate analysis for this monitoring event indicate that the RPD for the parameters chemical oxygen demand, nickel, color, and copper were above the 20% limit. The analytical results for this monitoring period are considered acceptable with those associated with the higher RPD having a higher degree of uncertainty.

4.2.2 Data Usability Summary Report

A Data Usability Summary Report (DUSR) was prepared by Alpha Geoscience for this sampling event. The mercury data were listed as rejected and unusable. There were also some minor issues that were flagged which are summarized below:

- The positive volatile results for acetone were flagged as "not detected" (U) for samples SW-5 and SW-1 because the levels reported in the samples were not significantly greater than (more than 10 times) the highest associated blank level.
- The positive volatile result for methylene chloride was flagged as "not detected" (U) for sample MW-1S because the level reported in the samples was not significantly greater than (more than 10 times) the highest associated blank level.
- The positive volatile result for 1,1-dichloroethane was flagged as "estimated, biased high" (J+) for sample MW-9I because one of the percent recoveries for 1,1-dichloroethane was above the QC limits in the associated MS/MSD sample.

- The "not detected" metal results for mercury were qualified as "rejected, unusable" (R) in all 3 surface water and all 21 ground water samples, as well as the field duplicate, because both percent recoveries for mercury were below control limits and below 30% in the associated aqueous matrix spike sample.
- The positive classical chemistry results for ammonia were flagged as "estimated, biased low" (J-) in several samples, listed below, because the percent recoveries were below the laboratory's quality control limits, but not below 30% in the associated MS/MSD samples.

SW-5	SW-1	MW-9I	MW-9S	MW-10S	MW-10I
MW-10D	CHA-1	MW-18S	MW-18IR	MW-18D	MW-15S
MW-15I	MW-15D	MW-2S	MW-2D	MW-1S	MW-1D
MW-14S	MW-14I	MW-14D			

- The "not detected" classical chemistry results for ammonia were flagged as "estimated"
 (UJ) in samples SW-2A, MW-9D, MW-2I, and MW-1I because the percent recoveries for
 ammonia were below laboratory QC limits, but not below 30% in the associated MS/MSD
 samples.
- The positive classical chemistry results for Chemical Oxygen Demand were flagged as "estimated, biased high" (J+) in samples MW-9S, MW-9D, MW-10S, MW-10D, and CHA-1 because the percent recovery for COD was above QC limits in the associated aqueous spike sample.
- The positive classical chemistry result for cyanide in sample MW-10D was flagged as "estimated, biased high" (J+) because the percent recovery for COD was above QC limits, but not above 150% in the associated aqueous LCS.
- The positive classical chemistry results for hexavalent chromium were qualified as "estimated, biased low" (J-) in samples MW-14S and MW-14I because the percent recovery for hexavalent chromium was below QC limits, but not below 30% in the associated aqueous spike sample.
- The positive classical chemistry results for total recoverable phenolics were flagged as
 "estimated" (J-) in samples MW-1D, MW-14S, and MW-14I because percent recovery for
 total recoverable phenolics was below QC limits, but not below 30% in the associated
 aqueous spike sample.

- The "not detected" classical chemistry results for hexavalent chromium were flagged as "estimated" (UJ) in samples MW-1S, MW-1I, MW-1D, and MW-14D because percent recovery for hexavalent chromium was below QC limits, but not below 30% in the associated spike sample.
- The "not detected" classical chemistry results for total recoverable phenolics were flagged as "estimated" (UJ) in samples MW-1S, MW-1I, and MW-14D because percent recovery for total recoverable phenolics was below QC limits, but not below 30% in the associated aqueous spike sample.
- The positive classical chemistry results for color were flagged as "estimated" (J) in samples MW-9S and CHA-1 because the relative percent difference for color was above the allowable maximum in field duplicate pair MW-9S/CHA-1.

All data that are not flagged unusable, rejected (R) are considered usable with estimated (J, J-, J+) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

4.3 GROUNDWATER ANALYTICAL RESULTS

The groundwater monitoring results are summarized in Table 2. In addition to this quarter's monitoring results, the previous twelve quarters' results are also shown in Table 2. Monitoring results from prior sampling events can be found in previously submitted reports. Note that all historical data are incorporated in the data evaluation. All parameters, unless otherwise noted, are reported in milligrams per liter (mg/l) or micrograms per liter ($\mu g/l$).

The laboratory results for the monitoring wells were compared to both the appropriate EWQVs and the New York State Ambient Water Quality Standards and Guidance Values (TOGS 1.1.1) in Table 2 to determine if a significant increase has occurred. Significant detections are determined by one of the following two methods described in Part 360-2.11(c). A significant increase occurs when the quarterly result for a particular parameter is either:

- Greater than the trigger value (EWQV plus three (3) standard deviations from the mean) OR
- Greater than the EWQV <u>and</u> the TOGS 1.1.1 guidance value or regulatory standard.

Significant detections are highlighted in Table 2. Concentrations exceeding only the EWQV are not considered to be statistically significant, as it is inevitable that some detected parameters will be greater than the average parameter concentration value.

Monitoring Well Cluster MW-1

Significant detections for monitoring well MW-1S include chloride, total dissolved solids (TDS), boron, manganese, and potassium. Five of these parameters (boron, potassium, sodium, chloride and TDS) were detected at concentrations exceeding trigger values. Potassium, sodium and chloride have a history of trigger value exceedances. Results from recent sampling events do not indicate increasing trends in the concentrations of these parameters in this well. Two parameters, manganese and sodium, were detected in exceedance of both the TOGS 1.1.1 standards and EWQVs. Potassium, boron, methylene chloride and total alkalinity were detected at historically high concentrations.

At monitoring well MW-1I, only the parameter chloride was detected in exceedance of a trigger value. This parameter has a history of trigger value exceedance. Results of recent sampling events do not indicate an increasing trend in the concentration of chloride in this well. The result for the parameter color exceeded the EWQV and the TOGS 1.1.1 standard. All parameters were detected at concentrations within historical ranges.

At monitoring well MW-1D, the parameter total phenols was detected at an estimated concentration exceeding the TOGS 1.1.1 standard and the EWQV, but was below the trigger value. All parameters were detected at concentrations within historical ranges.

Monitoring Well Cluster MW-2

At monitoring well MW-2S, the parameters detected at concentrations exceeding the trigger values include chloride, total alkalinity, TDS, nickel and sodium. All but nickel have a history of exceedances. Results from recent sampling events do not indicate increasing trends in the concentrations of these parameters. All parameter concentrations were within historical ranges.

At monitoring well MW-2I, the parameters detected at concentrations exceeding the trigger values include chloride, alkalinity, TDS, hardness, barium and calcium. All but barium and calcium have a history of exceedances. Detected concentrations were similar to the results from recent sampling events. The parameters total phenols and color were detected in exceedance of both the EWQVs and the TOGS 1.1.1 standards, but were below the trigger values. Additionally, total organic carbon (TOC) and barium were detected at historically high concentrations.

At monitoring well MW-2D, the parameters total phenols and sodium were detected in exceedance of both the EWQVs and the TOGS 1.1.1 standards, but were within their historical concentration ranges and were below the trigger values.

Monitoring Well Cluster MW-9

At monitoring well MW-9S, the parameters sulfate, total alkalinity and total phenols were detected at concentrations exceeding the trigger values. Sulfate and alkalinity have a history of exceedances and the detected concentrations of these parameters are similar to the results during the past several sampling events. The parameter total phenols was detected at a concentration slightly above the trigger value and qualified as an "estimated value" as it was above the method detection limit, but below the laboratory reporting limit. The parameter manganese was detected at a concentration exceeding the EWQV and the TOGS 1.1.1 standard, but below the trigger value. All parameters except for acetone were detected at concentrations within historical ranges.

At monitoring well MW-9I, the parameters hardness, total phenols and calcium slightly exceeded the trigger values. It should be noted that the detected concentration of total phenols was qualified as an "estimated value" as it was above the method detection limit, but below the laboratory reporting limit. The parameters arsenic, magnesium and nickel were detected at concentrations exceeding both the EWQV and the TOGS 1.1.1 standards. Detected concentrations of these parameters were similar to the results from recent sampling events. All parameters were detected at concentrations within historical ranges.

At monitoring well MW-9D, the parameter total phenols was detected at a concentration exceeding the trigger value. Results from recent sampling events do not indicate an increasing trend in the concentration of total phenols in this well. All parameter concentrations were within historical ranges and no other parameters were detected at concentrations exceeding EWQVs and TOGS 1.1.1 standards or trigger values.

Monitoring Well Cluster MW-10

At monitoring well MW-10S, the parameters chloride, alkalinity, TDS, TOC, total phenols and sodium were detected at concentrations exceeding their respective trigger values. All but total phenols have a history of exceedances, and the detected concentrations of these parameters were similar to the results from the past several sampling events. The parameter total phenols was detected at a concentration qualified as an "estimated value" as it was above the method detection limit, but below the laboratory reporting limit. The parameter manganese was detected at a concentration exceeding both the EWQV and the TOGS 1.1.1 standard, and it was above its historical maximum.

At monitoring well MW-10I, the parameter total phenols was detected at a concentration exceeding the trigger value; however the detected concentration was qualified as an "estimated

value" as it was above the method detection limit, but below the laboratory reporting limit. The VOC 1,2-Dichloroethane was detected at an estimated concentration slightly above the TOGS 1.1.1 standard. All parameters were detected at concentrations within their historical ranges with the exception of 1,2-Dichloroethane.

At monitoring well MW-10D, no parameters were detected at concentrations exceeding the EWQVs and TOGS 1.1.1 standards or trigger values. All parameters were detected at concentrations within their historical ranges.

Monitoring Well Cluster MW-14

At monitoring well MW-14S, the parameters chloride, alkalinity, total phenols, manganese and sodium were detected at concentrations exceeding their trigger values. Chloride, alkalinity and sodium have a history of exceedances in this well and detected concentrations were similar to the results from the last several sampling events. The parameter total phenols was detected at a concentration qualified as an "estimated value" as it was above the method detection limit, but below the laboratory reporting limit. Manganese was detected at a historically high level. All other parameters were detected at concentrations within their historical ranges.

At monitoring well MW-14I, the parameters total phenols and sodium were detected at concentrations exceeding the trigger values. Sodium has a history of exceedances in this well and the detected concentration was similar to the results from the last several sampling events. The parameter total phenols was detected at a concentration qualified as an "estimated value" as it was above the method detection limit, but below the laboratory reporting limit. All parameter concentrations were within historical ranges.

At monitoring well MW-14D, no parameters were detected at concentrations exceeding the EWQVs and TOGS 1.1.1 standards or trigger values. All parameters were detected at concentrations within their historical ranges.

Monitoring Well Cluster MW-15

At monitoring well MW-15S, the parameters alkalinity, total phenols and manganese were detected at concentrations exceeding the trigger values. Alkalinity and manganese have a history of exceedances in this well and the detected concentrations were similar to the results from the last several sampling events. The parameter iron was detected at a concentration exceeding the EWQV and the TOGS 1.1.1 standard, but below the trigger value and similar to the results from the last several sampling events. The detected concentration of total phenols was above its historical

maximum. All other parameters were detected at concentrations within their historical ranges.

At monitoring well MW-15I, the parameter sulfate slightly exceeded its trigger value. Results from recent sampling events indicate a gradually increasing trend in the concentration of sulfate in this well. Future results will be closely evaluated. The detected concentrations of chloride and sulfate were slightly above their previous historical maximums. All other parameters were detected at concentrations within their historical ranges.

At monitoring well MW-15D, the parameter sulfate was detected at a concentration slightly exceeding its trigger value and similar to results from recent sampling events. The parameter TDS was also detected at a concentration exceeding its trigger value and above its previous historical maximum. Results from recent sampling events indicate a gradually increasing trend in the concentration of sulfate in this well. Future results will be closely evaluated. All other parameters were detected at concentrations within historical ranges.

Monitoring Well Cluster MW-18

At monitoring well MW-18S, the parameters chloride, TDS and sodium were detected at concentrations exceeding their trigger values. TDS and sodium also exceeded their respective TOGS 1.1.1 standards. These parameters have a history of exceedances and the detected concentrations were similar to the results from the last several sampling events. No increasing trends were noted. The concentration of manganese exceeded both the EWQV and the TOGS 1.1.1 standard, but was below the trigger value. All parameter concentrations were within their historical ranges.

At monitoring well MW-18IR, the parameters sulfate, arsenic and sodium were detected at concentrations slightly exceeding their trigger values and similar to the results from the last several sampling events. No increasing trends were noted. All parameter concentrations were within historical ranges.

At monitoring well MW-18D, the parameters BOD, total phenols, barium, boron, lead and vanadium were detected at concentrations slightly exceeding their trigger values. The parameter TDS was also detected at a concentrations exceeding its trigger value. The parameters aluminum, arsenic, cobalt, iron, magnesium, manganese and nickel were detected at concentrations exceeding their EWQVs and the TOGS 1.1.1 standards, but were similar to the results from the last several sampling events. No increasing trends were noted. All parameters were detected at concentrations within historical ranges except for total phenols. The VOC acetone was detected at a low concentration, below the TOGS 1.1.1 standard, and is suspected of being a lab artifact.

Summary

During this quarterly monitoring event, most wells exhibited parameter concentrations consistent with the historical ranges of data, as noted in Table 2. The monitoring wells exhibiting historically high concentrations of one or more parameters were MW-1S, MW-1D, MW-2I, MW-2D, MW-9S, MW-9I, MW-10S, MW-10I, MW-14S, MW-14D, MW-15S, MW-15I, MW-15D, and MW-18D. Those parameters noted to have been detected at historically high concentrations were generally only slightly higher than previous high concentrations.

Significant detections were generally more prevalent in the shallow monitoring wells of each well cluster, with the exception of MW-18D, which had the highest number of significant detections. Each shallow well had at least five significant detections, with MW-10S having the highest number. Each intermediate monitoring well had at least one significant detection, with MW-2I exhibiting the highest number. The deep wells had two or fewer significant detections except for MW-18D and MW-15D, which exhibited higher numbers of significant detections.

Significant detections were noted in the upgradient monitoring well cluster as well as cross-gradient and downgradient monitoring well clusters. The MW-18 cluster had the highest number of significant detections, followed by the MW-2 cluster. While significant detections were noted in all monitoring well clusters, they were more common in the cross-gradient and downgradient monitoring wells.

The parameters noted to exhibit significant detections varied across the monitoring wells, but several parameters had repeated significant detections. The parameter that exhibited the most significant detections was total phenols; however, it should be noted that in several samples, the detected concentrations were qualified as "estimated values", above the method detection limit, but below the laboratory reporting limit. Sixteen other parameters exhibited significant detections in multiple monitoring wells, with total alkalinity, chloride, TDS, manganese and sodium exhibiting more frequent significant detections than other parameters. These findings are consistent with significant detections during previous monitoring events.

4.4 SURFACE WATER SAMPLING RESULTS

Surface water samples were collected from surface water sampling locations SW-1, SW-2A and SW-5 during this monitoring event and the analytical results are presented in Table 4.

Surface Water Sample SW-1

At this location, the parameters iron and aluminum were detected at concentrations above the

CHA

TOGS 1.1.1 surface water guidance values. The parameters COD, total kjeldahl nitrogen, and acetone were detected at concentrations above their previous historical maximums.

Surface Water Sample SW-2A

At this location, the parameter total phenols was detected at a concentration above the TOGS 1.1.1 surface water guidance value and above its previous historical maximum. No other parameters were detected at concentrations exceeding the TOGS 1.1.1 surface water guidance values, and all other parameters were detected at concentrations within their historical ranges.

Surface Water Sample SW-5

At this location, the parameters ammonia-nitrogen, total phenols, iron, manganese and sodium were detected at concentrations above the TOGS 1.1.1 surface water guidance values. All detected parameters were at concentrations within their historical ranges and no increasing trends were noted.

4.5 LEACHATE SYSTEM SAMPLING RESULTS

Leachate samples were collected from both the primary and secondary leachate collection systems. Parameter concentrations in the sample from the primary leachate collection system were generally within historic concentration ranges. The parameters sulfate, pH and Endosulfan I were detected at concentrations higher than their previous historical maximums. Two volatile organic compounds (VOCs), two semivolatile organic compounds (SVOCs) and one pesticide were detected in the primary leachate sample during this sampling event. No PCBs were detected.

Parameter concentrations in the sample from the secondary leachate collection system were generally comparable to historic parameter concentrations. The parameters total phenols and aluminum were detected at concentrations above their previous historical maximums. No VOCs, SVOCs, PCBs or pesticides/herbicides were detected in the secondary leachate collection system.

Parameter concentrations were generally much lower in the secondary leachate sample when compared to the primary leachate sample, with the exception of sulfate and magnesium, which were both higher in the secondary leachate sample. These results are consistent with historical results.

Overall, the significant reduction in parameter concentrations in the secondary leachate collection system as compared to the primary leachate collection system, as well as the absence of VOCs and

SVOCs, which were detected in the primary leachate collection system, indicates the continued effectiveness of the primary leachate collection system.

4.6 COMBUSTIBLE GAS MONITORING RESULTS

The combustible gas monitoring results for this monitoring event are presented in Table 5. Combustible gas was not detected in any monitoring wells during this monitoring event.

5.0 CONCLUSIONS

5.1 GROUNDWATER FLOW

Groundwater elevations during the third quarterly monitoring event of 2017 were generally comparable to previous monitoring events. In each of the shallow, intermediate and deep groundwater flow regimes, groundwater generally flows northwest to southeast across the site. The groundwater flow direction was determined to be generally consistent with the observed historical direction of groundwater flow.

5.2 GROUNDWATER RESULTS

Significant detections (as previously defined in this report) of one or more parameters were noted in all monitoring wells, based on analysis of the groundwater samples collected during the third quarter 2017 monitoring event. The parameters chloride, sodium and TDS had the greatest number of significant detections during this monitoring event, though no increasing trends were noted. Monitoring well clusters MW-18, MW-2, and MW-9, located cross- and downgradient of the landfill, had a higher number of significant detections. Monitoring well clusters MW-15, MW-14 and MW-10 generally had higher parameter concentrations than the upgradient monitoring wells. For most well clusters, the highest number of significant detections was found in either the shallow or intermediate well, except for cluster MW-18, in which the deep well had the most significant detections.

Historically high concentrations of at least one parameter were exhibited in 14 of the 21 monitoring wells on site, though only marginally higher than previous historically high detections.

Based on the variability of the parameters exhibiting significant detections and their geographic distribution across the site, it does not appear that the noted significant detections are necessarily associated with a particular source or event. The significant detections noted could be associated with one or more of the following factors:

- Impacts from the unlined, closed, adjacent GAL landfill, especially relative to the MW-9 monitoring well cluster.
- Effects from the construction of the expansion cells and wetland reconstruction activities. While these are not recent developments, the EWQVs were established prior to these activities which had the potential to affect groundwater chemistry (e.g. altering drainage/recharge patterns).
- Impacts from other site activities not necessarily related to liner integrity.

5.3 SURFACE WATER

The surface water sample collected from the downstream sampling location, SW-5, exhibited a higher number of parameters exceeding the TOGS 1.1.1 surface water standards than upstream sampling location SW-1. Additionally, sample SW-5 exhibited higher concentrations of the following parameters than sample SW-1: chloride, total alkalinity, TDS, ammonia-nitrogen, hardness, sulfate, potassium and sodium.

The sampling results suggest a change in surface water chemistry between the upstream and downstream sampling points. However, all detected parameters at the downstream location were at concentrations within their historical ranges and no increasing trends were noted.

5.4 COMBUSTIBLE GAS MONITORING

Combustible gas was not detected in the headspace of any of the monitoring wells at the facility during the third quarter 2017 monitoring event.

6.0 FUTURE ACTIVITIES

The next quarterly water quality and combustible gas monitoring event is scheduled for March 2018. Specifically, the groundwater monitoring wells and the surface water sampling locations will be sampled and analyzed for 6 NYCRR Part 360 routine scan parameters (1993 version).

FIGURES

ALBANY

STATE OF NEW YORK

FIGURE 1

III Winners Circle, PO Box 5269 - Alberry, NY 12205-0269

Main: (516) 453-4500 · www.cloughhurbour.co

SCALE: 1'' = 300'

TABLE 1 Water Table Elevations (Feet above MSL) Albany Interim Landfill Albany, New York CHA Project No.: 32596

Well ID	MW-1S	MW-1I	MW-1D	MW-2S	MW-2I	MW-2D	MW-9S	MW-9I	MW-9D	MW-10S	MW-10I	MW-10D	MW-14S	MW-14I	MW-14D	MW-15S	MW-15I	MW-15D	MW-18S	MW-18IR	MW-18D
TOC Elevations (ft. asl)	310.34	310.07	310.26	316.62	314.79	315.50	302.41	302.57	302.90	319.12	319.15	319.38	294.75	294.26	294.23	303.73	303.73	303.85	292.62	293.17	293.07
12/10/08	300.46	300.48	300.39	297.39	297.47	297.68	290.41	290.14	290.66	289.78	289.71	290.66	290.39	290.39	291.18	293.30	293.35	293.68	NI	NI	NI
03/23/09	300.86	300.88	300.64	297.56	297.81	297.87	290.82	290.37	290.80	289.89	289.81	290.45	290.55	290.51	291.46	293.58	293.65	293.95	NI	NI	NI
06/16/09	298.24	298.18	298.05	294.95	295.08	297.48	288.33	290.07	288.40	290.50	290.24	288.25	290.55	290.46	290.93	293.34	293.40	293.50	NI	NI	NI
09/16/09	300.48	300.51	300.39	297.21	297.23	294.90	289.98	289.73	290.25	NM	NM	NM	289.00	289.08	290.48	292.19	292.39	292.90	NI	NI	NI
12/21/09	300.87	300.98	300.84	297.45	294.76	294.90	290.50	290.19	290.65	NM	NM	NM	290.07	290.06	291.20	293.11	292.39	293.60	289.65	NI	291.33
03/16/10	301.03	301.00	300.82	297.72	297.80	298.04	291.01	290.57	291.06	NM	NM	NM	291.26	291.20	291.69	294.12	294.16	294.36	290.72	NI	289.92
06/16/10	300.69	300.68	300.59	297.37	297.45	297.67	290.20	289.97	290.49	288.65	288.61	289.18	289.77	289.80	291.02	292.96	293.06	293.48	289.42	NI	291.20
09/20/10	299.58	299.59	299.39	296.63	296.72	296.87	288.96	288.76	289.30	287.77	287.71	288.18	287.84	287.91	289.36	291.03	291.22	291.78	287.86	NI	289.66
03/21/11	302.04	301.98	301.69	298.41	298.46	298.66	291.82	291.22	291.57	289.65	289.50	290.13	291.45	291.36	291.78	294.29	294.38	294.68	291.02	291.08	292.04
06/27/11	301.52	301.53	301.37	297.86	297.88	298.12	290.86	290.51	291.03	289.22	289.17	289.74	290.72	290.70	291.65	293.73	293.83	294.20	290.23	290.47	291.84
08/22/11	301.26	301.02	301.24	297.64	297.72	297.86	290.09	289.80	290.27	288.81	288.70	289.26	289.70	289.96	291.04	293.30	293.34	293.61	289.45	289.78	291.16
03/06/12	301.18	300.99	301.09	297.98	297.93	298.11	290.41	290.14	290.60	289.07	288.92	289.46	289.84	289.96	291.18	291.99	292.11	292.13	289.47	289.78	291.30
06/19/12	301.18	301.00	301.26	297.78	296.94	297.72	290.41	290.01	290.50	NM	NM	NM	289.66	288.66	291.05	292.93	292.88	293.43	289.50	289.55	291.32
09/17/12	300.09	299.92	300.11	297.47	297.56	297.59	289.14	288.92	289.49	288.06	288.02	288.48	288.77	288.72	289.81	292.21	292.21	283.54	288.49	288.73	290.03
03/18/13	300.18	300.77	300.91	298.06	298.15	298.23	290.43	290.05	290.57	289.07	288.92	289.42	290.02	290.11	291.03	293.25	293.35	293.74	289.69	289.94	291.18
06/10/13	300.45	300.98	301.15	298.21	298.29	298.35	290.63	289.97	290.75	288.97	288.85	289.38	290.14	290.14	291.21	292.82	293.41	293.83	289.71	289.89	291.26
09/16/13	300.15*	300.61	300.92	298.10	298.19	298.28	289.93	289.67	290.22	288.62	288.56	289.12	289.80	289.83	290.85	293.07	293.12	293.50	289.36	289.57	290.96
03/18/13	300.81*	300.53	300.74	298.10	297.58	298.93	290.37	289.93	290.42	288.87	288.83	289.28	290.20	290.22	291.08	293.20	293.28	293.71	289.70	289.92	291.07
06/23/14	300.54*	300.49	300.81	298.10	298.17	298.27	290.13	289.79	290.27	288.97	288.60	289.10	289.67	289.61	290.71	293.01	292.98	293.36	289.17	289.46	290.84
09/02/14	300.21*	300.18	300.53	297.92	298.02	298.01	289.60	289.37	289.88	288.37	288.28	288.75	289.44	289.36	290.29	292.91	292.81	293.05	288.92	289.22	290.50
02/24/15	300.88*	300.12	300.44	298.06	298.05	298.10	289.71	289.53	289.99	288.70	288.61	289.03	289.84	289.81	290.48	292.93	292.95	293.41	289.29	289.47	290.74
06/09/15	300.56*	300.22	300.52	298.04	298.11	298.16	289.70	289.53	290.02	288.61	288.53	288.97	289.91	289.83	290.47	293.09	293.05	293.30	289.44	289.61	290.53
08/24/15	299.91	299.72	300.05	298.52	297.79	297.83	289.42	289.04	289.58	288.33	288.17	288.53	288.94	289.13	289.96	292.63	292.60	292.80	288.68	288.92	290.17
03/21/16	300.54	300.32	300.60	298.20	298.25	298.31	290.07	289.80	290.22	288.87	289.11	289.46	290.03	289.97	290.68	293.23	293.24	293.57	289.56	289.75	290.82
05/31/16	300.13	299.87	300.17	297.84	297.95	297.97	289.52	289.24	289.75	288.58	288.38	288.80	289.66	289.59	290.31	292.89	292.87	293.10	289.04	289.37	290.53
09/26/16	299.57	299.32	299.65	297.39	297.49	297.45	288.91	288.70	289.20	287.89	287.83	288.16	288.29	288.42	289.37	291.75	291.76	292.13	288.21	288.42	289.65
03/06/17	300.42	300.18	300.41	298.22	298.34	298.27	290.21	289.80	290.28	288.89	288.74	289.22	290.15	290.05	290.55	293.30	293.31	293.50	289.58	289.81	290.67
06/06/17	301.78	301.32	301.35	298.70	298.83	298.87	290.94	290.49	290.94	289.17	289.25	289.76	290.87	290.95	291.29	293.81	293.93	294.29	290.44	290.56	291.37
09/07/17	300.40	300.19	300.48	298.13	298.25	298.24	290.01	289.51	289.99	288.75	288.67	289.09	289.85	289.83	290.61	293.20	293.12	293.36	289.40	289.56	290.58
lotes:																					

Notes:

TOC = Elevation of the reference point, the top of the PVC casing, in feet above mean sea level (MSL).

NI = Data not available. Well not yet installed.

NA = Information not available.

NM = No measurement collected for this date.

MW-18I was abandoned September 2010 and replaced with MW-18IR

AB = Well has been abandoned due to expansion of the landfill

For wells with multiple TOC values listed, the top elevation is most recent. Changes are due to construction activities related to the landfill expansion.

^{* =} Elevations are estimated. The pump installed in the well precludes actual measurement of water level. Value is the average groundwater elevation at this well observed during the monitoring events of the same month over the past 10 years.

MW-1S Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	EWQV	EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	Onit	Value	EWQV	Dev.	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
FIELD PARAMETERS																		
Conductivity	μS/cm	NS	592.13	3372.89	1285	667	563	678	451	635	600	515	363	517	430	481	613	790
Dissolved Oxygen	mg/l	NS			1.73	2.15	0.78	0.55	5.07	1.31	0.43	3.87	1.56	0.64	2.38	1.79	1.98	0.35
Eh	mV	NS	155	458.46	-68.9	-49.2	74.9	217.1	214.1	97.9	-51.7	32.7	85.9	163.9	12.6	245.6	90.6	-15.7
pH	SU	6.5-8.5	7.21	7.79	7.65	6.99	7.25	6.95	6.94	7.11	6.90	6.41	6.68	6.71	6.99	7.07	6.71	7.14
Temperature	C°	NS			14.66	19.24	-0.99	10.38	13.21	3.45	12.07	17.28	3.92	9.86	17.92	4.9	12.9	18.7
Turbidity	N.T.U	5	322.75	943.18	3.09	2.39	0.30	1.35	1.70	2.11	0.50	44.50	4.03	18.50	1.32	5.80	4.67	8.18
EACHATE INDICATORS																		
Ammonia Nitrogen	mg/l	2	0.16	0.7	J 0.0095	0.043	0.2	0.1	J 0.031	0.12	0.19	0.13	0.21 J	0.19	B 0.2	0.21	0.17	J- 0.25
Biological Oxygen Demand	mg/l	NS	1.5	1.5	< 2	< 2	< 2	< 2	< 2	< 2	< 2	b 2.5	< 2 <	< 2	< 2	< 2	< 2	< 2
Bromide	mg/l	2	0.41	1.84	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.37	< 0.2	< 0.2 J	0.15	< 0.2	< 0.073	J 0.082	< 0.073
Chloride	mg/l	250	3.51	10.93	61	37.1	38.6	45.4	JB 18.7	B 40.8	66.5	36.8	20.7	32.2	19.8	23.3	31.4	20.4
Chemical Oxygen Demand	mg/l	NS	50.03	408.54	31.7	11.5	B 16.7	24.3	J 7.1	JB 28	< 5	< 10	15.5	15.7	B 10.4	J 9.1	< 5	B 15.8
Color	P.C.U.	15	7.5	20.31	10				10	H 10				15				10
Nitrate	mg/l	10	0.06	0.29	7	0.7	1.4	0.47	0.73	2.6	0.21	0.65	1.6	0.33	0.16	0.13	0.092	0.066
Sulfate	mg/l	250	13.39	24.57	B 54.2	31.8	48.6	29.1	J 22.3	73.3	38.7	B 23.8	15.6 E	3 23	16.5	33.3	17.7	9.8
Total Alkalinity	mg/l	NS	224.63	796.17	B 248	332	177	276	203	234	195	189	F1B 139	В 264	198	В 193	В 268	B 381
Total Cyanide	mg/l	0.1	0.01	0.01	< 0.01	E	1 10		< 0.01	J< 0.01			J	< 0.01				< 0.005
Total Dissolved Solids	mg/l	500	144.19	322.24	557	399	283	399	J 209	J 338	339	292	210	312	B 225	255	347	414
Total Hardness	mg/l	NS	352.55	1154.99	250	256	188	252	182	J 276	176	160	120	200	176	204	196	284
Total Kjeldahl Nitrogen	mg/l	NS	0.78	1.64	0.86	0.63	0.41	0.48	J 0.37	J 0.58	0.41	B 0.95	0.85	0.86	0.43	0.53	0.77	0.98
Total Organic Carbon	mg/l	500	1.93	7.07	8.9	5.1	5.7	6.1	2.7	5.1	4.9	3.3	3.7	4.7	2.5	B 5.6	B 5.9	5.5
Total Phenols	mg/l	0.001	0.01	0.04	J 0.0092	< 0.01	< 0.01	< 0.01	J< 0.01	J 0.009	J 0.0062	< 0.01	< 0.01 J	< 0.01	< 0.01	< 0.005		UJ < 0.005
NORGANIC PARAMETERS	1116/1	0.001	0.01	0.04	3 0.0032	<u> </u>	0.01	0.01	J. 0.01	3 0.005	0.0002	0.01	<u> </u>	0.01	0.01	0.003	0.024	03 (0.003
Aluminum	mg/l	0.1	8.15	64.13	< 0.2				J 0.12	< 0.2			L	< 0.2				< 0.06
Antimony	mg/l	0.003	0.95	8.18	< 0.2				< 0.02	< 0.02				< 0.2				< 0.0068
Arsenic	mg/l	0.003	0.93	0.01	< 0.02				< 0.02	< 0.02				< 0.02				< 0.0056
Barium	<u> </u>	1	0.12	0.68	0.031				0.016	0.019				0.015				0.026
	mg/l	0.003	0.12	0.06	< 0.002				< 0.016	< 0.002				< 0.013				< 0.0003
Beryllium	mg/l	0.003	0.01	0.06	B 0.61	1			8 0.25	0.002				0.002	-			0.0003
Boron	mg/l		0.003	0.28		0.001	4 0.003	< 0.005	< 0.001	< 0.001	< 0.0005	4 0.002	< 0.002 <	< 0.001	< 0.002	< 0.0005	4 0.0005	A
Cadmium	mg/l	0.01			< 0.001	< 0.001	< 0.002					< 0.002					< 0.0005	< 0.0005
Calcium	mg/l	NS NS	83.75	340.07	78.9	84.8	53.1	75	58.1	80.3	40.2	В 55.9	32.8	57.7	48.8	52.3	B 62.3	91.9
Chromium	mg/l	NS 0.05	7.96	75.29	< 0.004				J 0.0028	< 0.004			J	0.0016				< 0.001
Hexavalent Chromium	mg/l	0.05	0.01	0.02	< 0.01				< 0.01	J 0.013			J	0.0065				UJ < 0.005
Cobalt	mg/l	0.005	0.03	0.08	< 0.004				< 0.004	< 0.004				< 0.004				J 0.00065
Copper	mg/l	0.2	0.08	0.35	J 0.0034				J 0.0021	J 0.002			J	0.0026				J 0.0033
Iron	mg/l	0.3	35.96	222.94	< 0.05	J 0.019	< 0.05	< 0.05	0.21	J^ 0.049	J 0.033	1.9	< 0.5 J	0.023	J 0.036	J 0.034	0.057	J 0.03
Lead	mg/l	0.025	3.59	23.51	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005	< 0.005	< 0.003	< 0.01	< 0.01	< 0.005	< 0.01	J 0.0039	< 0.003	< 0.003
Magnesium	mg/l	35	15.72	56.87	15.3	12.8	13	15	10	14.6	9.7	8.8	7.8	11.1	9.3	11	9.7	13.1
Manganese	mg/l	0.3	2.81	15.33	B 0.0089	0.067	0.13	0.28	0.049	0.41	B 0.93	1.3	B 0.87	3 1.3	B 0.34	1.8	1.8	B 4.6
Mercury	mg/l	0.002	0.09	0.81	< 0.0002				J< 0.0002	R< 0.0002			<	0.0002				R < 0.00012
Nickel	mg/l	0.007	0.06	0.21	J 0.0053	- 4			J 0.0094	0.016	-			0.015		-		0.026
Potassium	mg/l	NS	1.91	0.03	B 18.4	10.9	10.8	12.4	9	10.9	14.9	10	14.7	13.8	11.1	15.8	17.1	23.5
Selenium	mg/l	0.01	0.004	0.005	< 0.015				< 0.015	< 0.015				< 0.015		-		< 0.0087
Silver	mg/l	0.05	0.01	0.03	< 0.003				< 0.003	< 0.003				< 0.003			- /	< 0.0017
Sodium	mg/l	20	1.83	5.45	62	48.1	30	45.3	19.7	28.3	40.5	32.6	21.2	38.7	19.2	18.6	45.6	36.1
Thallium	mg/l	0.004	0.01	0.01	< 0.02		111		< 0.02	< 0.02	7		•	< 0.02				< 0.01
Vanadium	mg/l	0.014	0.03	0.08	< 0.005				< 0.005	< 0.005			•	< 0.005				< 0.0015
Zinc	mg/l	0.3	0.65	1.75	J 0.0058				J 0.0047	J 0.002			J	0.0033				JB 0.0036
OLATILE ORGANIC COMPOUNDS					< MDL	NA	NA	NA	< MDL	< MDL	NA	NA	NA	< MDL	NA	NA	NA	NA
Methylene Chloride	μg/l	5			J 0.0058				J 0.0047	J 0.002			T)	0.0033				JB 0.51

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J-" indicates parameter estimate is biased low
- 7. "UJ" indicates the parameter is not detected and the quantitation limit may be inaccurate or imprecise
- 8. "*" indicates a result flagged as estimated by the DUSR report
- 9. "R" indicates a result reject by the DUSR report
- 10. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- 11. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- 12. Bolded concentrations represent historically high concentrations.

MW-1I Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	EWQV	EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	J. III.	Value	2 ٠	Dev.	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
FIELD PARAMETERS		-																
Conductivity	μS/cm	NS	406.88	2115.14	371	254	268	253	258	273	281	295	272	523	480	276	264	284
Dissolved Oxygen	mg/l	NS			0.12	0.31	0.14	0.2	0.23	0.59	0.25	0.28	0.19	0.65	0.57	0.23	0.42	0.26
Eh	mV	NS	188.71	502.68	-88.3	-90.2	-156.5	-123.1	-100.5	37.5	-41.7	-3.7	68.9	172.6	-58.1	-130.8	-145.9	-175.7
pH	SU	6.5-8.5	7.46	8.95	8.09	7.39	7.95	7.62	7.38	7.83	7.55	7.56	7.36	6.64	6.53	7.8	7.52	7.9
Temperature	C°	NS			9.97	12.14	5.61	6.42	6.73	8.52	9.70	10.99	8.93	9.81	11.13	9.30	10.40	11.50
Turbidity	N.T.U	5	16.47	57.27	6.04	2.34	0.44	1.11	2.54	1.09	0.62	0.28	4.55	18.4	9.23	4.95	10.3	3.4
LEACHATE INDICATORS												I						
Ammonia Nitrogen	mg/l	2	0.09	0.23	0.22	0.087	< 0.02	J 0.018	J 0.018	0.02	0.04	J 0.018	< 0.02	J< 0.02	< 0.02	<f 0.009<="" td=""><td>< 0.009</td><td>UJ < 0.009</td></f>	< 0.009	UJ < 0.009
Biological Oxygen Demand	mg/l	NS	1.5	1.5	< 2	< 2	< 2	< 2	< 2 <	: 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Bromide	mg/l	2	0.41	1.84	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	< 0.15	< 0.2	< 0.2	< 0.2	< 0.2	< 0.32	< 0.073	< 0.073
Chloride	mg/l	250	1.8	4.07	6	6.6	5.5	5.7	6.3 E	3 1.5	B 13	13.2	9.7	9.9	11	9.4	7.8	11.6
Chemical Oxygen Demand	mg/l	NS	12.53	87.04 J	5.2	J 7.7	JB 5.3	< 10	3 0.1	В 5.3	< 5	< 10	< 10	< 10	< 10		< 5	JB 7.6
Color	P.C.U.	15	7.68	20.01	20				25	1 5				25				20
Nitrate	mg/l	10	0.03	0.07	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 <	< 0.05	J 0.027	< 0.05	< 0.05	< 0.05	J 0.024	< 0.02	< 0.02	< 0.02
Sulfate	mg/l	250	21.28	33.34	3 25.8	29.4	32.1	28.7	J 27.9 <	5	28.9	B 29.8	20.8	B 22.4	22.4	23.5	22.4	23.4
Total Alkalinity	mg/l	NS	94.31	210.85	3 107	110	105	99.5	94.9	92	110	98.3	B 107	B 103	113	101	B 102	B 108
Total Cyanide	mg/l	0.1	0.01	0.01	< 0.01				< 0.01 J	< 0.01				J< 0.01				< 0.005
Total Dissolved Solids	mg/l	500	137.71	179.2	170	135	150	141	J 143 J	67	158	170	158	141	B 163	147	147	151
Total Hardness	mg/l	NS	157.38	245.34	125	136	132	130	132 J	60	144	140	250	160	152	148	120	132
Total Kjeldahl Nitrogen	mg/l	NS	0.72	0.96	0.29	< 0.2	< 0.2	< 0.2	< 0.2 J	< 0.2	< 0.15	B 0.45	< 0.2	J 0.18	< 0.2	< 0.15	J 0.19	< 0.15
Total Organic Carbon	mg/l	500	2.29	6.82	< 1	< 1 .	J 0.68	J 0.85	< 1 <	: 1	< 0.43	J 0.43	< 1	< 1	< 1	JB 0.77	< 0.43	J 0.81
Total Phenols	mg/l	0.001	0.004	0.016 J	0.008	< 0.01	< 0.01	< 0.01	J< 0.01 <	0.01	J 0.0066	J 0.0094	< 0.01	J 0.0053	< 0.01	< 0.005	< 0.005	UJ < 0.005
INORGANIC PARAMETERS														-				
Aluminum	mg/l	0.1	1.42	8.76	< 0.2				< 0.2 J	0.12				< 0.2				< 0.06
Antimony	mg/l	0.003	0.04	0.07	< 0.02				< 0.02 <	< 0.02				< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.01	0.02	< 0.01				< 0.01 J	0.0062				J 0.0066				< 0.0056
Barium	mg/l	1	0.03	0.08	0.021				0.024	0.016				0.026				0.023
Beryllium	mg/l	0.003	0.003	0.007	< 0.002				< 0.002 <	0.002				< 0.002				< 0.0003
Boron	mg/l	1	0.05	0.17 J	в 0.011				JB 0.0049	0.027				J 0.0069				J 0.008
Cadmium	mg/l	0.01	0.003	0.006	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001 <	0.001	< 0.0005	< 0.002	< 0.002	< 0.001	< 0.002	< 0.0005	< 0.0005	< 0.0005
Calcium	mg/l	NS	50.56	80.51	40.7	40.2	38.6	37.7	36.1	17.3	31.2	B 45.3	39.4	40.7	41.6	38.4	B 38.4	39
Chromium	mg/l	NS	0.01	0.03	< 0.01				< 0.004 <	0.004				< 0.004				< 0.001
Hexavalent Chromium	mg/l	0.05	0.01	0.02	< 0.01				< 0.01 <	< 0.01				< 0.01				UJ < 0.005
Cobalt	mg/l	0.005	0.02	0.09	< 0.004				< 0.004 <	0.004				< 0.004				< 0.00063
Copper	mg/l	0.2	0.03	0.07	< 0.01				< 0.01 <	< 0.01				< 0.01				< 0.0016
Iron	mg/l	0.3	3.09	18.7	0.51	0.59	0.57	0.52	0.54	0.12	0.48	0.64	0.57	0.6	0.67	0.54	0.46	0.55
Lead	mg/l	0.025	0.01	0.02	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005 <	0.005	< 0.0003	< 0.01	< 0.01	< 0.005	< 0.01	< 0.003	< 0.003	< 0.003
Magnesium	mg/l	35	16.51	97.21	7.8	7.5	6.8	6.8	7.1	3.2	7	8.2	7.9	7.5	8	7.7	7.6	7.4
Manganese	mg/l	0.3	0.22	0.5	3 0.14	0.15	0.13	0.14	0.14	0.012	B 0.13	0.16	B 0.15	B 0.15	B 0.16	0.14	0.12	B 0.14
Mercury	mg/l	0.002	0.0003	0.0005	< 0.0002				J< 0.0002 R	< 0.0002				< 0.0002				R < 0.00012
Nickel	mg/l	0.007	0.03	0.06	< 0.01				< 0.01	0.01				< 0.01				< 0.0013
Potassium	mg/l	NS	1.32	4.31 E	3 0.5	J 0.4 .	J 0.38	J 0.38	J 0.41 J	0.46	J 0.33	J 0.41	J 0.4	J 0.36	J 0.39	J 0.45	J 0.38	J 0.38
Selenium	mg/l	0.01	0.004	0.005	< 0.015				< 0.015 <	0.015				< 0.015				< 0.0087
Silver	mg/l	0.05	1.29	12.09	< 0.003				< 0.003 <	0.003				< 0.003				< 0.0017
Sodium	mg/l	20	3.16	9.36	1.9	2	1.8	2	2.1	16.4	1.7	2.2	2.1	2	2.2	2	2	2
Thallium	mg/l	0.004	0.01	0.01	< 0.02				< 0.02 <	0.02				< 0.02				< 0.01
Vanadium	mg/l	0.014	0.02	0.09	< 0.01				< 0.005 <	0.005				< 0.005				< 0.0015
Zinc	mg/l	0.3	0.05	0.18 J	0.0017				J 0.0033 <	0.01				< 0.01				JB 0.0025
VOLATILE ORGANIC COMPOUNDS					< MDL	NA	NA	NA	< MDL	< MDL	NA	NA	NA	< MDL		NA	NA	NA

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "UJ" indicates the parameter is not detected and the quantitation limit may be inaccurate or imprecise
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "R" indicates a result reject by the DUSR report
- 9. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- $10. \ \ \text{Outlined concentrations represent an exceedance of the EWQV and the TOGS} \ 1.1.1 \ \text{guidance value}.$
- ${\bf 11.}\ {\bf Bolded}\ concentrations\ represent\ historically\ high\ concentrations.$

MW-1D Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	EWQV	EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	Onic	Value	Z.WQV	Dev.	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
FIELD PARAMETERS				-														
Conductivity	μS/cm	NS	365.25	1932.98	273	168	184	174	175	207	127	131	192	180	186	311	307	313
Dissolved Oxygen	mg/l	NS			0.18	0.22	0.22	0.41	0.23	0.87	0.36	0.60	0.46	0.30	0.45	0.39	1.60	3.56
Eh	mV	NS	167.33	534.26	-85.7	-59.7	20.2	175.1	74.1	227.7	159.1	209.6	50.1	-11.0	38.4	41.9	-265.2	258.2
рН	SU	6.5-8.5	8.21	9.9	8.33	7.96	8.51	8.03	7.98	7.71	7.18	7.78	8.17	8.06	7.43	8.05	7.70	5.93
Temperature	C°	NS			11.36	15.27	3.82	8.29	10.4	4.53	7.39	9.61	8.36	11.71	13.41	9.09	11.55	15.29
Turbidity	N.T.U	5	48.3	93.92	7.87	6.95	18.8	8.56	9.85	8.32	8.05	8.49	10.3	24.1	7.88	11.9	12.2	6.77
LEACHATE INDICATORS																		
Ammonia Nitrogen	mg/l	2	0.15	0.5	0.052	0.13	< 0.02	0.082	0.12 <	0.02	J 0.012	J 0.012	< 0.02	J 0.011	< 0.02	< 0.009	0.038	J- 0.022
Biological Oxygen Demand	mg/l	NS	1.5	1.5	< 2	< 2	< 2	< 2	< 2 <	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Bromide	mg/l	2	0.41	1.84	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 <	0.2	< 0.15	< 0.2	< 0.2	< 0.2	< 0.2	< 0.073	< 0.073	< 0.073
Chloride	mg/l	250	1.33	4.78	1.5	J 0.8	J 0.5	J 0.91	1.1 B	12.5	B 1.5	1.3	0.78	0.76	0.74	0.87	0.69	0.79
Chemical Oxygen Demand	mg/l	NS	12.75	79.36	J 8.1	< 10	B 11.6	J 7.7	< 10 J	10	< 5	< 10	< 10	< 10	< 10	< 5	< 5	< 5
Color	P.C.U.	15	8.28	26.86	5				5 F					10				5
Nitrate	mg/l	10	0.03	0.13	< 0.05	J 0.022	< 0.05	J 0.04	< 0.05 <	0.05	J 0.031	J 0.034	< 0.05	< 0.05	J 0.047	< 0.02	< 0.02	< 0.02
Sulfate	mg/l	250	6.05	33.99	< 5	< 5	< 5	J 1.8	< 5	27.4	10.9	JB 2.5	6.8	4.8	5.9	7.6	5.5	6.3
Total Alkalinity	mg/l	NS	114.28	214.67	B 91.6	93	94.4	98.4	86	102	84.7	91.8	F1B 99	93.9	95.8	99.8	В 94.3	B 102
Total Cyanide	mg/l	0.1	0.01	0.01	< 0.01				< 0.01 J<	0.01				J< 0.01				< 0.005
Total Dissolved Solids	mg/l	500	107.07	172.57	116	103	120	89	J 83 J	123	92	97	112	92	B 110	92	100	100
Total Hardness	mg/l	NS	114.45	279.49	64	60	56	52	56 J	144	76	50	110	60	92	92	84	88
Total Kjeldahl Nitrogen	mg/l	NS	0.97	2.61	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 J	0.2	< 0.15	B 0.52	< 0.2	0.23	< 0.2	< 0.15	< 0.15	< 0.15
Total Organic Carbon	mg/l	500	1.54	5.14	< 1	< 1	J 0.79	J 0.95	J 0.46 <	1	J 0.63	J 0.61	< 10	< 1	< 1	JB 0.71	< 0.43	J 0.84
Total Phenols	mg/l	0.001	0	0.01	J 0.0059	< 0.01	< 0.01	< 0.01	J< 0.01 <	0.01	J 0.0065	J 0.0089	< 0.01	J< 0.01	< 0.01	J 0.0055	J 0.007	J- 0.0074
INORGANIC PARAMETERS																		
Aluminum	mg/l	0.1	3.35	20.68	0.23				0.44 <	0.2				0.4				0.29
Antimony	mg/l	0.003	0.04	0.07	< 0.02				< 0.02 <	0.02				< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.01	0.02	J 0.0058				< 0.01 <	0.01				0.011				J 0.009
Barium	mg/l	1	0.04	0.16	0.019				0.16	0.04				0.023				0.025
Beryllium	mg/l	0.003	0	0.01	< 0.002				< 0.002 <	0.002				< 0.002				< 0.0003
Boron	mg/l	1	0.06	0.19	B 0.03				B 0.032 J	0.005				J 0.018				J 0.013
Cadmium	mg/l	0.01	0	0.01	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001 <	0.001	< 0.0005	< 0.002	< 0.002	< 0.001	< 0.002	< 0.005	< 0.0005	< 0.0005
Calcium	mg/l	NS	35.5	85.43	21.2	16.3	16	16.4	15.6	40.3	16.9	B 20.5	26.6	25.1	25.2	28.3	B 27.4	25.4
Chromium	mg/l	NS	0.01	0.03	< 0.004				< 0.004 <	0.004				< 0.004				< 0.001
Hexavalent Chromium	mg/l	0.05	0.01	0.02	< 0.01				< 0.01 <	0.01				J 0.0075				UJ < 0.005
Cobalt	mg/l	0.005	0.03	0.07	< 0.004				< 0.004 <	0.004				< 0.004				< 0.00063
Copper	mg/l	0.2	0.03	0.08	< 0.01				< 0.01 <	0.01				< 0.01				< 0.0016
Iron	mg/l	0.3	6.45	41.84	0.21	0.23	0.4	0.13	0.51	0.61	0.22	0.56	0.31	0.44	0.4	0.31	0.26	0.3
Lead	mg/l	0.025	0.01	0.08	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005 <	0.005	J 0.003	< 0.01	< 0.01	< 0.005	< 0.01	< 0.003	< 0.01	< 0.003
Magnesium	mg/l	35	5.61	17.43	3.7	3.1	3	3.1	3.4	7.4	3.5	3.6	4.5	4.1	4.4	4.6	4.3	4
Manganese	mg/l	0.3	0.18	0.93	B 0.034	0.032	0.013	0.013	0.019	0.15	B 0.018	0.017	B 0.027	B 0.021	B 0.021	0.023	0.03	B 0.031
Mercury	mg/l	0.002	0	0	< 0.0002				J< 0.0002 R<	0.0002				< 0.0002				R < 0.00012
Nickel	mg/l	0.007	0.03	0.06	< 0.01				< 0.01 <	0.01				< 0.01				< 0.0013
Potassium	mg/l	NS	1.86	8.76	B 0.57	J 0.47	J 0.45	J 0.42	0.54 J	0.38	J 0.46	0.56	0.54	0.57	0.62	0.57	J 0.43	J 0.49
Selenium	mg/l	0.01	0	0.01	< 0.015				< 0.015 <	0.015				< 0.015				< 0.0087
Silver	mg/l	0.05	0.01	0.02	< 0.003				< 0.003 <	0.003				< 0.003				< 0.0017
Sodium	mg/l	20	16.53	45.8	14.1	19.5	18.3	19.4	17.9	1.9	8.6	16.3	6.9	10.1	9.4	6.3	6.7	7.4
Thallium	mg/l	0.004	0.01	0.01	< 0.02				< 0.02 <	0.02				< 0.02				< 0.01
Vanadium	mg/l	0.014	0.03	0.07	< 0.005				< 0.005 <	0.005				< 0.005				< 0.0015
Zinc	mg/l	0.3	0.04	0.18	J 0.0048				J 0.0029 <	0.01				< 0.01				JB 0.0033
VOLATILE ORGANIC COMPOUNDS	0/.	0.0		0.20	< MDL	NA	NA	NA	< MDL	< MDL	NA	NA	NA	< MDL	NA	NA	NA	NA NA

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "UJ" indicates the parameter is not detected and the quantitation limit may be inaccurate or imprecise
- 7. "J-" indicates the estimated parameter is biased low
- 8. "*" indicates a result flagged as estimated by the DUSR report
- 9. "R" indicates a result reject by the DUSR report
- 10. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- 11. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- 12. Bolded concentrations represent historically high concentrations.

MW-2S Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	9	TOGS Guidance		EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	Unit	Value	EWQV	Dev.	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
FIELD PARAMETERS		value		DCV.	Busenne	Houtine	noutine	Noutine	Buschine	Buschine	Noutine	Noutine	Noutine	Buscinic	noutine	noutine	Noutine	Dascillic
Conductivity	μS/cm	NS	450.63	1512.75	930	915	804	1082	1393	2266	1771	1207	1916	1355	1169	1819	1770	1060
Dissolved Oxygen	mg/l	NS			0.24	0.86	0.17	0.22	0.67	1.09	0.87	0.75	1.18	1.34	5.38	1.62	2.33	1.3
Eh	mV	NS	192.67	521.16	-81.5	-57	79.9	43.3	-76.1	-207.6	-17.3	-21.2	73.7	103.5	-70.2	76.1	71.9	-5.1
pH	SU	6.5-8.5	7.07	7.92	7.15	6.18	6.74	6.42	7.31	6.45	6.50	6.54	6.30	6.34	5.62	6.48	6.64	6.96
Temperature	C°	NS			11.13	13.11	7.64	7.45	12.14	10.00	9.85	11.73	11.18	18.90	13.44	12.27	11.70	13.60
Turbidity	N.T.U	5	540	1302.1	2.24	3.18	16.9	7.66	7.31	23.1	16.4	0.75	64.5	51.4	13.7	23.3	32.6	28.7
LEACHATE INDICATORS	14.11.0		340	1302.1	2.24	3.10	10.5	7.00	7.51	23.1	10.4	0.73	04.5	31.4	15.7	25.5	32.0	20.7
Ammonia Nitrogen	mg/l	2	0.45	2.72	< 0.02	0.05	0.021	< 0.02	< 0.02	< 0.02	< 0.009	0.047	0.12	0.19	0.23	< 0.009	J 0.018	J- 0.048
Biological Oxygen Demand	mg/l	NS	3.19	11.01	< 0.02	< 2	< 2	< 2	< 2	< 0.02	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Bromide	mg/l	2	0.41	1.84	J 0.11	0.22	< 0.2	0.41	< 0.2	0.26	< 1.5	< 0.2	0.23	J 0.57	J 0.075	< 0.073	J 0.16	< 0.37
		250	6.8	24.26	41.6	137	72.9	147	J 242	B 474	359	192	322	186	53	91.3	169	63.7
Chloride	mg/l	NS	33.48	199.68	J 9.7		72.9 B 10.7	14.9				10.8					< 5	< 5
Chemical Oxygen Demand	mg/l					12.7	В 10.7	14.9	18.1	JB 22.9	16.9	10.8	16.7	J 8.2	B 16.8	J 6.9	< 5	
Color	P.C.U.	15	11.25	40.05	< 5			45.0	10	H 15				20	2.6		100	15
Nitrate	mg/l	10	3.43	14.52	4.5	8.9	2.6	15.6	25.6	9.9	6.1	5.4	6.8	4.4	2.6	4.1	10.0	5.6
Sulfate	mg/l	250	48.19	111.61	42.5	44.2	24.5	40.2	J 51.6	63	73.2	B 59.1	66.6	В 56.8	30.1	50	98.4	50.7
Total Alkalinity	mg/l	NS	119.75	269.56	198	207	276	241	236	314	295	248	367	292	255	337	B 576	В 390
Total Cyanide	mg/l	0.1	0.01	0.01	< 0.01				< 0.01	< 0.01				J 0.0052				< 0.005
Total Dissolved Solids	mg/l	500	215.75	386.74	402	755	412	867	J 919	J 1240	1070	645	1010	705	396	607	1050	661
Total Hardness	mg/l	NS	198.09	385.9	280	372	300	388	476	J 680	500	312	440	300	176	224	308	152
Total Kjeldahl Nitrogen	mg/l	NS	1.23	4.02	< 0.2	< 0.2	J 0.15	< 0.2	< 0.2	J< 0.2	0.2	В 0.83	0.51	0.55	0.5	F1 0.45	0.94	0.59
Total Organic Carbon	mg/l	500	3.44	10	2	1.8	3.8	4.0	4.1	4.8	4.1	3.5	4.9	4.0	B 3.5	4.1	8.7	5.7
Total Phenols	mg/l	0.001	0.003	0.012	J 0.0083	< 0.01	< 0.01	< 0.01	J< 0.01	< 0.01	J 0.0081	J 0.0053	< 0.01	J 0.006	0.011	< 0.005	F1 0.012	JB 0.0065
INORGANIC PARAMETERS																7		
Aluminum	mg/l	0.1	2.56	14.8	< 0.2				< 0.2	< 0.2				< 0.2				< 0.06
Antimony	mg/l	0.003	0.47	3.86	< 0.02				< 0.02	< 0.02				< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.01	0.01	< 0.01				< 0.01	< 0.01				< 0.01				< 0.0056
Barium	mg/l	1	0.04	0.13	0.032				0.065	0.11				0.063				0.042
Beryllium	mg/l	0.003	0.01	0.04	< 0.002				< 0.002	< 0.002				< 0.002				< 0.0003
Boron	mg/l	1	0.1	0.27	В 0.08				B 0.88	0.49				0.2				0.14
Cadmium	mg/l	0.01	0.003	0.006	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	< 0.002	< 0.001	< 0.002	< 0.0005	< 0.0005	< 0.0005
Calcium	mg/l	NS	52.62	139.46	88.8	113	94.5	122	141	201	148	В 96.3	118	96.5	B 54.8	70.1	103	49
Chromium	mg/l	NS	7.27	68.77	J 0.0039				0.051	0.24				0.1				B 0.083
Hexavalent Chromium	mg/l	0.05	0.01	0.02	< 0.01				J< 0.01	l< 0.01				< 0.01				< 0.005
Cobalt	mg/l	0.005	0.02	0.07	< 0.004				J 0.001	J 0.0014				J 0.0016				< 0.00063
Copper	mg/l	0.2	0.05	0.17	< 0.01				J 0.0051	J 0.0077				0.011				J 0.0066
Iron	mg/l	0.3	50.18	418.01	0.069	0.16	1.3	0.49	0.52	^ 1.9	2.5	1.2	6	3.6	8.8	2.6	3.6	В 3.2
Lead	mg/l	0.025	8.73	75.56	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005	< 0.005	< 0.003	< 0.01	< 0.01	< 0.005	< 0.01	J 0.0076	< 0.003	< 0.003
Magnesium	mg/l	35	9.29	23.04	16	20.5	14.9	19.5	24.2	32.3	22.7	14.8	19.5	14.9	8.3	10.7	15.2	7.5
Manganese	mg/l	0.3	1.07	8.58	B 0.0057	0.02	0.11	0.019	0.024	0.024	B 0.027	0.073	B 0.026	0.053	0.068	0.0094	B 0.0088	B 0.019
Mercury	mg/l	0.002	0.01	0.1	< 0.0002	0.02	0.11	0.013	< 0.0002	₹< 0.0002	0.027	0.073	5 0.020	< 0.0002	0.000	0.0034	2 0.0000	R < 0.00012
Nickel	mg/l	0.002	0.01	0.06	0.0002				0.0002	0.0002		1	-	0.0002		+	-	0.064
Potassium	mg/l	0.007 NS	2.53	11.23	B 7.8	8.9	0.6	6.8	7.8	10.4	9.4	7.4	10.8	7.7	5.3	6.9	8.8	4.8
	<u> </u>	0.01	0.004	0.009	< 0.015	8.9	0.0	0.8	< 0.015	< 0.015	9.4	/.4	10.8	< 0.015	5.5	0.9	8.8	< 0.0087
Selenium	mg/l																	
Silver	mg/l	0.05	0.01	0.03	< 0.003	27.2	24.4	507	< 0.003	< 0.003	100	445	400	< 0.003	77.0	120	270	< 0.0017
Sodium	mg/l	20	8.56	25.85	15.3	27.2	34.1	50.7	89.3	158	162	115	190	137	77.9	136	278	161
Thallium	mg/l	0.004	0.92	8.68	< 0.02				< 0.02	< 0.02				< 0.02		1		0.01
Vanadium	mg/l	0.014	0.03	0.07	< 0.005				< 0.005	< 0.005				< 0.005				0.0015
Zinc	mg/l	0.3	0.12	0.76	J 0.0019				0.029	J 0.0016				< 0.01				JB 0.002
VOLATILE ORGANIC COMPOUNDS					< MDL	NA	NA	NA	< MDL	< MDL	NA	NA	NA	< MDL	NA	NA	NA	NA

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J-" indicates parameter estimate is biased low
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "R" indicates a result reject by the DUSR report
- 9. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- $10. \ \ Outlined \ concentrations \ represent \ an \ exceedance \ of the \ EWQV \ and \ the \ TOGS \ 1.1.1 \ guidance \ value.$
- ${\bf 11.}\ {\bf Bolded}\ concentrations\ represent\ historically\ high\ concentrations.$

MW-2I Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	FWOV.	EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	Unit	Value	EWQV	Dev.	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
FIELD PARAMETERS		-																
Conductivity	μS/cm	NS	468	2764.67	341	224	246	240	230	282	165	241	227	291	343	342	357	348
Dissolved Oxygen	mg/l	NS			0.14	0.19	0.18	0.21	0.56	0.71	0.16	0.26	0.15	0.18	0.16	0.22	0.31	0.19
Eh	mV	NS	161.57	518.21	-94.4	-91.1	-162.2	-150.3	-70.4	237.4	-50.0	-23.7	-129.4	-164.5	-125.6	-159.2	-148.9	-176.5
На	SU	6.5-8.5	7.6	8.22	8.10	7.48	7.97	7.71	7.72	7.75	6.81	7.62	7.90	7.65	7.43	7.77	7.53	7.88
Temperature	C°	NS			11.74	12.25	7.22	8.71	13.41	5.82	7.50	13.08	11.61	13.13	12.81	11.90	12.80	13.60
Turbidity	N.T.U	5	14.05	48.45	8.70	4.14	0.70	1.94	3.01	5.70	1.32	0.26	4.55	16.80	9.09	3.81	7.42	4.68
LEACHATE INDICATORS													-					
Ammonia Nitrogen	mg/l	2	0.1	0.29	0.03	0.058	< 0.020	0.021	J 0.029	< 0.020	< 0.009	0.027	< 0.020	< 0.020	< 0.020	< 0.009	< 0.009	UJ < 0.009
Biological Oxygen Demand	mg/l	NS	2.07	5.12	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Bromide	mg/l	2	0.38	1.95	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.15	< 0.2	< 0.2	< 0.2	< 0.2	< 0.073	< 0.073	< 0.073
Chloride	mg/l	250	1.52	3.12	3.6	3.3	2.8	2.7	J 2.7	B 3.3	2.5	4.1	5.4	11.8	9.4	7.1	7.2	7.4
Chemical Oxygen Demand	mg/l	NS NS	7.07	24.67	J 5.8	J 7.7	IB 6.2	< 10	J 6.4	JB 7.2	< 5	< 10	< 10	< 10	JB 6.1	< 5	< 5	J 7.6
Color	P.C.U.	15	11.25	38.72	20	7.7	- 0.2	10	20	5	, ,	1 10	, 10	25	0.1	, ,	, ,	20
Nitrate	mg/l	10	0.04	0.09	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	J 0.034	< 0.050	< 0.050	J 0.028	< 0.020	< 0.020	< 0.020
Sulfate	mg/l	250	17.46	41.35	B 24.9	26.8	28.5	26.1	J 27.2	26.8	26.7	B 25.7	15.9	B 31.8	26.8	19.6	1.7	13.2
Total Alkalinity	mg/l	NS NS	97.25	119.57	101	102	100	104	103	97.6	96.3	96.2	96.2	102.0	144.0	152.0	B 157.0	B 157.0
Total Cyanide	mg/l	0.1	0.01	0.01	< 0.01	102	100	104	< 0.01	< 0.01	30.3	30.2	30.2	J< 0.01	144.0	132.0	D 137.0	< 0.01
Total Dissolved Solids	mg/l	500	131.88	184.24	157	128	141	148	J 134	JB 113	145	150	119	164	230	197	205	190
Total Hardness	mg/l	NS NS	118.23	143.28	108	120	124	116	122	128	120	116	112	148	190	164	164	164
Total Kjeldahl Nitrogen	mg/l	NS	0.67	1.52	< 0.2	J 0.18	< 0.20	< 0.20	< 0.20	J< 0.20	< 0.15	F1E 0.27	< 0.20	< 0.20	< 0.20	0.26	J 0.15	< 0.15
Total Organic Carbon	mg/l	500	2.71	10.75	J 0.44	< 1	J 0.67	J 0.88	< 1	/ 0.20 / 1	J 0.6	J 0.44	< 1	< 1	R 1	J 0.9	1.2	1.7
Total Phenols	mg/l	0.001	0.003	0.007	J 0.01	< 0.0100	< 0.01	< 0.01	J< 0.01	< 0.01	0.011	< 0.010	< 0.010	J< 0.010	JB 0.008	< 0.005	J 0.008	JB 0.0057
INORGANIC PARAMETERS	IIIg/I	0.001	0.003	0.007	J 0.01	0.0100	\ 0.01	₹ 0.01	J. 0.01	0.01	0.011	0.010	0.010	0.010	JB 0.008	V 0.003	3 0.008	JB 0.0037
Aluminum	mg/l	0.1	0.3	1.43	< 0.20				< 0.20	< 0.20				< 0.20				< 0.06
Antimony	mg/l	0.003	0.04	0.07	< 0.20				< 0.20	< 0.20				< 0.20				< 0.0068
Arsenic	mg/l	0.005	0.04	0.07	< 0.02				< 0.02	< 0.02				< 0.02				J 0.0058
Barium	mg/l	0.025	0.05	0.01	0.06				0.053	^ 0.054		-	10	0.066				0.0038
	mg/l	0.003	0.003	0.007	< 0.00				< 0.002	< 0.002				< 0.002	<u></u>			< 0.0003
Beryllium Boron	O:	0.005	0.005	0.007	JB 0.01				< 0.002	J 0.0051				J 0.0050				J 0.0077
Cadmium	mg/l	0.01	0.03	0.02	< 0.001	< 0.001	< 0.002	< 0.005	< 0.02	< 0.0031	< 0.0005	< 0.002	< 0.002	< 0.0030	< 0.002	< 0.0005	< 0.0005	< 0.0077
Calcium	mg/l mg/l	NS	39.33	48.39	37.8	37.7	37.1	37.7	36.1	J 37.7	38.3	B 37.5	34.6	48.5	B 55.6	52.4	58.1	53.2
Chromium	mg/l	NS NS	0.01	0.02	< 0.00	37.7	37.1	37.7	< 0.004	< 0.004	36.3	Б 37.3	34.0	< 0.004	Б 33.0	52.4	30.1	< 0.001
Hexavalent Chromium	U,	0.05	0.000694	0.02	< 0.00				< 0.004	< 0.004				JB 0.01				< 0.001
Cobalt	mg/l mg/l	0.005	0.00	0.02	< 0.004				< 0.01	< 0.01				< 0.004				< 0.00063
		0.003	0.02	0.09	< 0.004				< 0.004	< 0.004				< 0.004				< 0.00063
Copper Iron	mg/l	0.2	0.83	3.51	0.76	0.63	0.59	0.65	0.60	^ 0.87	0.60	0.56	0.64	0.69	0.77	0.85	0.87	B 0.78
	mg/l	0.025	0.83	0.02	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005	< 0.005	< 0.003	< 0.01	< 0.01	< 0.005	< 0.77	< 0.003	< 0.003	< 0.003
Lead	mg/l	35	3.51	9.34	5.4		5.0	5.2	6.0	5.5	5.2	5.2	5.2	6.7		7.2	8.0	7.4
Magnesium	mg/l		0.15	0.23	B 0.18	5.4		0.16	0.18	2.80			B 0.16	0.19	7.4	0.24	B 0.25	B 0.21
Manganese	mg/l	0.3 0.002	0.0003	0.23	< 0.00	0.18	0.16	0.16	< 0.0002	< 0.0002	B 0.16	0.15	В 0.16	< 0.0002	0.22	0.24	В 0.25	R < 0.00012
Mercury	mg/l																	
Nickel	mg/l	0.007	0.03	0.06	< 0.01	1 0.30	. 0.44	1 0.43	< 0.01	< 0.01	0.44	1 044	1 045	< 0.01	1 0 40	0.63	0.00	< 0.0013
Potassium	mg/l	NS 0.01	1.2	3.56	B 0.52	J 0.38	J 0.41	J 0.43	J 0.46	J 0.43	J 0.44	J 0.41	J 0.45	J 0.48	J 0.48	0.63	0.60	0.58
Selenium	mg/l	0.01	0.004	0.005	< 0.02				< 0.015	< 0.015				< 0.015				< 0.0087
Silver	mg/l	0.05	0.01	0.03	< 0.00	4.0	4.6	4.0	< 0.003	< 0.003	4.0	1.0	4.0	< 0.003	2.4		- 7	< 0.0017
Sodium	mg/l	20	2.75	7.25	1.9	1.9	1.6	1.8	2.0	1.8	1.8	1.8	1.8	2.0	2.4	6.6	5.7	5.0
Thallium	mg/l	0.004	0.01	0.01	< 0.02				< 0.02	< 0.02				< 0.02				< 0.01
Vanadium	mg/l	0.014	0.02	0.09	< 0.01				< 0.005	< 0.005				< 0.005.				< 0.0015
Zinc	mg/l	0.3	0.06	0.24	J 0.00				J 0.0053	J 0.0065				JB 0.0081				JB 0.0027
VOLATILE ORGANIC COMPOUNDS					< MDL	NA	NA	NA	< MDL	< MDL	NA	NA	NA	< MDL	NA	NA	NA	NA

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "UJ" indicates parameter not detected and quantitation limit may be inaccurate or imprecise
- 6. "J" indicates parameter concentration is an estimated value
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "R" indicates a result reject by the DUSR report
- 9. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- $10. \ \ \text{Outlined concentrations represent an exceedance of the EWQV and the TOGS} \ 1.1.1 \ guidance \ value.$
- ${\bf 11.}\ {\bf Bolded}\ concentrations\ represent\ historically\ high\ concentrations.$

MW-2D Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	EWQV	EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	Office	Value	ZWQ,	Dev.	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
FIELD PARAMETERS																		
Conductivity	μS/cm	NS	334.88	1695.31	325	176	191	182	179	208	129	140	182	169	184	186	295	303
Dissolved Oxygen	mg/l	NS			1.64	0.33	0.28	0.29	1.31	1.47	0.38	0.48	0.38	0.48	0.79	0.75	0.63	1.66
Eh	mV	NS	127.75	494.8	-91.1	-57.6	-70.9	-8	-59.7	264.2	262.8	143.4	-12.4	103.0	23.8	155.0	-404.9	231.8
рН	SU	6.5-8.5	8	9.57	8.45	8.03	8.68	8.40	8.06	8.10	7.22	7.77	8.53	8.27	8.50	8.49	8.50	8.11
Temperature	C°	NS			18.23	13.94	6.48	11.49	22.47	3.71	8.40	11.33	11.75	19.43	16.97	9.10	13.40	16.91
Turbidity	N.T.U	5	577.5	1046.99	14.5	11.2	15.3	12.4	4.84	88.7	8.89	8.45	9.33	29.0	14.0	5.0	12.0	9.82
LEACHATE INDICATORS																		
Ammonia Nitrogen	mg/l	2	0.17	0.53	0.1	0.18	0.08	0.12	J 0.11	J 0.094	0.093	0.11	0.078	0.09	0.094	0.075	0.11	J- 0.07
Biological Oxygen Demand	mg/l	NS	1.94	3.97	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Bromide	mg/l	2	0.41	1.84	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 ·	< 0.2	< 0.15	< 0.2	< 0.2	< 0.2	< 0.2	< 0.073	< 0.073	< 0.073
Chloride	mg/l	250	1.51	4.28	J 0.69	1	J 0.81	1	JB 1.1 E	3 2.4	J 0.61	J 0.94	0.87	0.74	0.61	0.71	0.62	0.71
Chemical Oxygen Demand	mg/l	NS	31.09	173.27	J 8.1	J 7.1	JB 7.8	J 6.7	J 7.1 J	B 9.1	< 5	< 10	< 10	< 10	JB 9.5	< 5	< 5	< 5
Color	P.C.U.	15	10.31	36.96	10				10	5				10				10
Nitrate	mg/l	10	0.12	0.68	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	J 0.033	0.05	< 0.05	< 0.05	J 0.027	< 0.005	< 0.02	< 0.02
Sulfate	mg/l	250	3.24	12.41	< 5	< 5	< 5	J 2.5	< 5	< 5	< 1.5	JB 1.9	2.1	B 2.6	2.6	2.8	2.5	2.5
Total Alkalinity	mg/l	NS	159.13	446.65	95.8	93.8	95	96.4	98.8	67	88.6	90.2	B 96.5	97.4	100	88.8	B 94.4	95.2
Total Cyanide	mg/l	0.1	0.01	0.01	< 0.01				< 0.01	< 0.01				J< 0.01				< 0.005
Total Dissolved Solids	mg/l	500	157.5	342.79	107	85	104	106	J 94 J	H 117	103	119	89	100	75	131	99	109
Total Hardness	mg/l	NS	341.21	1326.38	40.0	44.0	44.0	52.0	40.0	40.0	40.0	40.0	52	60	44	40	40	40
Total Kjeldahl Nitrogen	mg/l	NS	0.9	2.47	< 0.2	0.25	< 0.2	< 0.2	< 0.2	J 0.25	< 0.15	B 0.42	<f1 0.2<="" td=""><td>0.22</td><td>0.23</td><td>0.28</td><td>0.22</td><td>< 0.15</td></f1>	0.22	0.23	0.28	0.22	< 0.15
Total Organic Carbon	mg/l	500	4.14	14.18	J 0.57	J 0.74	J 0.99	1.1	J 0.55	J 0.51	J 0.81	J 0.73	J 0.66	< 1	JB 0.65	< 0.02	J 0.55	1.1
Total Phenols	mg/l	0.001	0.003	0.008	J 0.0089	< 0.01	< 0.01	< 0.01	J< 0.01 <	0.01	J 0.008	< 0.01	< 0.01	J< 0.01	J 0.0081	< 0.005	J 0.0052	JB 0.005
INORGANIC PARAMETERS	6/	0.001	0.003	0.000	3 0.0003	1 0.01	. 0.01	, 0.01	0.01	0.01	5 0.000	1 0.01	0.01	3. 0.01	0.0001	0.003	0.0032	3B 0.003
Aluminum	mg/l	0.1	16.65	95.97	0.37				0.22	1				0.26				J 0.18
Antimony	mg/l	0.003	0.04	0.07	< 0.02				< 0.02	< 0.02				< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.01	0.03	0.012				0.013	J 0.0099				0.011				0.013
Barium	mg/l	1	0.16	0.76	0.013				0.011	0.017				0.01				0.0095
Beryllium	mg/l	0.003	0.003	0.007	< 0.002				< 0.002	< 0.002				< 0.002				< 0.0003
Boron	mg/l	1	0.08	0.3	B 0.062				B 0.055	0.056				0.051				0.053
Cadmium	mg/l	0.01	0.005	0.011	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	< 0.002	< 0.001	< 0.002	< 0.0005	< 0.0005	< 0.0005
Calcium	mg/l	NS NS	101.48	418.22	13.7	12.9	12.6	12.4	12	J 13.8	12.1	B 12.3	11.6	12	B 12	12.3	13.4	11.7
Chromium	mg/l	NS NS	0.03	0.16	< 0.004	12.5	12.0	12.4	J 0.0012	< 0.004	12.1	D 12.3	11.0	< 0.004	D 12	12.5	13.4	< 0.001
Hexavalent Chromium	mg/l	0.05	0.03	0.02	< 0.004				< 0.0012	< 0.004				B 0.011				< 0.001
Cobalt	mg/l	0.005	0.01	0.02	< 0.01				< 0.0082	< 0.01				< 0.004				< 0.0063
Copper	mg/l	0.2	0.03	0.4	< 0.004				J 0.0016	< 0.004				< 0.004				< 0.00003
Iron		0.3	37.92	235.45	0.38	0.61	0.53	0.13	0.21	^ 0.88	0.13	0.33	0.25	0.25	0.13	0.12	0.36	B 0.15
	mg/l	0.025	0.02	0.11	< 0.005	< 0.005	< 0.01	< 0.13	< 0.005	< 0.005	< 0.003	< 0.01	< 0.01	< 0.005	< 0.13	< 0.003	< 0.003	< 0.003
Lead	mg/l	35	17.96	81.59	2.9	2.8	2.5	2.5	2.7	3.2	2.4	2.5	2.6	2.5	2.5	2.6	2.8	2.4
Magnesium	mg/l						_											
Manganese	mg/l	0.3	1.22	6.13	B 0.033	0.037	0.03	0.028	0.032	0.041	B 0.011	0.013	В 0.028	0.027	0.032	0.027	B 0.029	B 0.02
Mercury	mg/l	0.002	0.0003	0.0009	< 0.0002				< 0.0002	< 0.0002				< 0.0002				R < 0.00012
Nickel	mg/l	0.007	0.06	0.23	< 0.01	0 -			< 0.01	< 0.01				< 0.01				< 0.0013
Potassium	mg/l	NS 0.04	3.2	15.1	B 0.54	0.5	J 0.45	J 0.35	J 0.46	0.71	J 0.37	J 0.45	J 0.44	J 0.38	J 0.28	J 0.45	J 0.47	J 0.41
Selenium	mg/l	0.01	0.01	0.01	< 0.015				< 0.015	< 0.015				< 0.015				< 0.0087
Silver	mg/l	0.05	0.01	0.03	< 0.003	4.5	0.15		< 0.003	< 0.003				< 0.003				< 0.0017
Sodium	mg/l	20	25	55.19	27.2	26.7	24.7	26.4	25	25.4	25.9	25.6	26	24.7	25.4	27	26.2	25.1
Thallium	mg/l	0.004	0.01	0.01	< 0.02				< 0.02	< 0.02				< 0.02				< 0.01
Vanadium	mg/l	0.014	0.03	0.07	< 0.005				< 0.005	J 0.0017				< 0.005				< 0.0015
Zinc	mg/l	0.3	0.15	0.83	J 0.0037				J 0.0088	J 0.0045				JB 0.002				< 0.0015
VOLATILE ORGANIC COMPOUNDS					< MDL	NA	NA	NA	< MDL	< MDL	NA	NA	NA	< MDL	NA	NA	NA	NA

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J-" indicates parameter estimate is biased low
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "R" indicates a result reject by the DUSR report
- 9. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- $10. \ \ Outlined \ concentrations \ represent \ an \ exceedance \ of the \ EWQV \ and \ the \ TOGS \ 1.1.1 \ guidance \ value.$
- ${\bf 11.}\ {\bf Bolded}\ concentrations\ represent\ historically\ high\ concentrations.$

MW-9S Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	EWQV	EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-
(mg/l unless otherwise noted)	3	Value	=:, <,	Dev.	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Basei
IELD PARAMETERS	- 4																	
Conductivity	μS/cm	NS	938.75	1987.78	4815	2405	2524	2732	2768	2470	2164	2522	1643	1599	3178	1970	800	159
Dissolved Oxygen	mg/l	NS			0.15	0.28	0.17	0.2	0.15	0.45	0.21	0.20	0.36	0.23	0.18	0.16	0.16	0.2
Eh	mV	NS	-44.75	23.28	-94.5	-31.2	106.0	68.9	68.0	-103.8	41.1	-13.1	35.4	143.0	53.3	127.7	94.9	165
рН	SU	6.5-8.5	7.73	8.85	7.17	6.3	6.56	6.29	6.14	6.42	6.31	6.33	6.28	6.02	6.38	6.54	6.4	6.4
Temperature	C°	NS	15.13	29.39	18.47	20.82	12.42	15.38	18.11	16.81	17.86	20.66	16.64	13.07	21.67	17.40	17.10	20.3
Turbidity	N.T.U	5	405.2	1253.24	0.66	2.62	2.69	0.69	2.70	6.85	0.57	0.20	4.52	14.9	9.8	3.4	3.2	2.3
EACHATE INDICATORS												7						
Ammonia Nitrogen	mg/l	2	1.05	2.32	0.26	0.43	B 3.6	10.9	J 14.4	8.8	6.9	8.9	4.4	J 3.9	7.6	4.1	1.3	F1 J- 0.3
Biological Oxygen Demand	mg/l	NS	3	9.36	< 2	< 2	< 2	Hb 6.1	< 2	< 2	< 2	b 2.8	< 2	< 2	< 2	< 2	< 2	< 2
Bromide	mg/l	2	0.45	1.49	* 0.36	0.75	< 0.2	0.72	J 0.38	0.39	< 1.5	1.1	0.37	0.55	J 1.4	0.48	< 0.073	< 0.3
Chloride	mg/l	250	236	439.07	531	419	390	561	JB 594	B 496	B 374	452	245	258	656	316	63.3	45.
Chemical Oxygen Demand	mg/l	NS	79.5	208.06	48	92.5	76.6	75	60	J 68.3	54.3	69.5	50.9	52.3	68.5	53.1	< 5	B J+ 31.
Color	P.C.U.	15	63.5	218.78	20				25	H 30				20				J 20
Nitrate	mg/l	10	0.52	10	0.12	0.52	0.31	0.1	0.28	0.22	0.84	0.069	0.59	2	0.71	3.6	7.7	1.4
Sulfate	mg/l	250	83.38	120.82	198	200	236	B 180	J 165	179	171	B 144	91.4	87	129	82.2	144	83
Total Alkalinity	mg/l	NS	147	352.84	B 444	603	625	533	517	583	577	606	B 481	B 597	624	B 523	B 281	B 35
Total Cyanide	mg/l	0.1	0.01	0.01	< 0.01				< 0.01	J< 0.01				J< 0.01				< 0.00
Total Dissolved Solids	mg/l	500	702.25	1219.44	1670	1500	1480	1640	J 1710	J 1540	1210	1460	B 906	998	1890	1330	474	57
Total Hardness	mg/l	NS	220.13	732.51	680	604	610	640	800	J 660	600	680	620	590	920	484	280	38
Total Kjeldahl Nitrogen	mg/l	NS	2.77	7.24	1.2	2.5	4.1	10	B 16.5	J 9.6	6	B 9.8	12.4	6.1	9.3	5.8	2.2	1.3
Total Organic Carbon	mg/l	500	19.1	47.92	17.2	29.5	23.3	22.5	17.4	23.3	20	23.5	17.2	16.5	23.2	18.6	B 8.3	11.
Total Phenols	mg/l	0.001	0.004	0.004	J 0.0074	J 0.0078	< 0.01	< 0.01	J< 0.01	< 0.01	0.016	J 0.0076	JB 0.0065	J 0.0075	< 0.01	J 0.0054	JB 0.0082	J 0.00
NORGANIC PARAMETERS	<u> </u>																_	
Aluminum	mg/l	0.1	12.28	39.86	< 0.2				< 0.2	< 0.2				< 0.2				< 0.0
Antimony	mg/l	0.003	0.03	0.09	< 0.02				< 0.02	< 0.02				< 0.02				< 0.00
Arsenic	mg/l	0.025	0.03	0.07	< 0.01				< 0.01	< 0.01				< 0.01				< 0.00
Barium	mg/l	1	0.18	0.5	0.18				0.33	0.26				0.17				0.08
Beryllium	mg/l	0.003	0.01	0.02	< 0.002				< 0.002	< 0.002				< 0.002				< 0.00
Boron	mg/l	1	0.14	0.33	0.98				B 1.2	1				0.93				B 0.7
Cadmium	mg/l	0.01	0.01	0.01	J 0.00058	< 0.001	< 0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	< 0.002	< 0.001	< 0.002	< 0.0005	< 0.0005	< 0.00
Calcium	mg/l	NS NS	78.33	174.4	220	193	202	205	244	209	183	B 227	161	174	242	153	B 89.5	11
Chromium	mg/l	NS	0.04	0.12	J 0.0013	133	202	203	J 0.0016	< 0.004	103	<i>D E E T</i>	101	< 0.004	2-12	133	5 03.3	< 0.00
Hexavalent Chromium	mg/l	0.05	0.01	0.01	< 0.01				J< 0.01	J< 0.01				< 0.004				< 0.00
Cobalt	mg/l	0.005	0.03	0.06	J 0.0014				J 0.0012	J 0.0011				J 0.00086				< 0.000
Copper	mg/l	0.2	0.04	0.14	J 0.0058				J 0.0061	J 0.0083				J 0.0051				J 0.00
Iron	mg/l	0.3	76.1	177.35	0.18	0.92	0.12	0.23	0.46	0.11	0.075	0.38	B 0.051	J 0.04	0.35	J 0.019	< 0.019	J 0.03
Lead	mg/l	0.025	0.01	0.07	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005	< 0.005	< 0.003	< 0.01	< 0.01	< 0.005	< 0.01	0.012	0.003	< 0.00
Magnesium	mg/l	35	13.96	31.61	31.1	27.3	25.6	27	34.1	30.7	26	34.1	22.9	26	37	23.9	13.5	16.
Manganese	mg/l	0.3	1.15	2.5	0.46	0.6	0.72	0.82	34.1	1.5	B 1.1	1.6	B 1.4	B 1.6	B 2.1	2.2	1.3	1.3
Mercury	mg/l	0.002	0.0002	0.0003	R< 0.0002	0.0	0.72	0.62	< 0.0002	R< 0.0002	U 1.1	1.0	J 1.4	< 0.0002	2.1	۷.۷	1.5	R < 0.00
Nickel	mg/l	0.002	0.0002	0.0003	J 0.0027				J 0.0037	J 0.003				J 0.0033				J 0.00
Potassium	mg/l	0.007 NS	16.98	36.1	8.2	6.8	9.1	18	13.4	16	13.5	17.8	B 13.5	13.6	22.6	17.1	9.2	10.00
Selenium	mg/l	0.01	4	0.004	< 0.015	0.0	9.1	10	< 0.015	< 0.015	15.5	17.0	ב.כב ט	< 0.015	22.0	1/.1	9.2	< 0.00
Silver	U,	0.01	0.01	0.004	< 0.013				< 0.013	< 0.013				< 0.013				< 0.00
	mg/l					220	244	220			246	202	172		224	222	F1 0	
Sodium	mg/l	20	98.53	176.36	325	320	341	339	235	309	246	282	173	168	334	232	51.8	63.
Thallium	mg/l	0.004	0.01	0.01	< 0.02				< 0.02	< 0.02				< 0.02				< 0.0
Vanadium	mg/l	0.014	0.11	0.28	J 0.0026				< 0.005	J 0.0021				J 0.0021				0.00
Zinc OLATILE ORGANIC COMPOUNDS	mg/l	0.3	0.11	0.37	J 0.0029		***		J 0.0036	J 0.0016	***	• • •		J 0.0045				JB 0.00
					< MDL	NA	NA	NA	< MDL	< MDL	NA	NA	NA	< MDL	NA	NA	NA	N/

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- $6. \ "J+" \ indicates \ parameter \ estimate \ is \ biased \ high; \ "J-" \ indicates \ parameter \ estimate \ is \ biased \ low$
- 7. "F1" indicates MS and/or MSD recovery is outside acceptance limits
- 8. "*" indicates a result flagged as estimated by the DUSR report
- 9. "R" indicates a result reject by the DUSR report
- 10. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- 11. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- 12. Bolded concentrations represent historically high concentrations.

MW-9I Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	EWQV	EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)		Value		Dev.	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
FIELD PARAMETERS				-								,						
Conductivity	μS/cm	NS	426.8	1825.46	2594	1310	1586	2364	1375	2032	1103	1113	1754	1775	1728	2746	1430	2818
Dissolved Oxygen	mg/l	NS			0.1	0.22	0.16	0.21	0.14	0.82	0.21	0.4	0.48	0.42	0.24	0.13	0.25	0.3
Eh	mV	NS	-10.25	96.11	-94.8	-98.2	-129.6	-145.7	121.9	57.5	-121.0	-151.2	-13.4	127.1	-128.8	-116.5	-120.9	144.9
pH	SU	6.5-8.5	7.51	8.3	7.91	7.13	7.34	7.15	6.97	7.47	6.88	7.28	7.16	6.83	7.23	6.96	7.03	7.88
Temperature	C°	NS	14.73	26.31	23.1	21.83	17.12	19.67	20.49	17.48	19.23	19.85	21.89	22.96	24.12	23.20	22.40	23.70
Turbidity	N.T.U	5	118.4	469.35	18.70	4.82	1.27	1.02	2.41	5.95	0.60	0.82	6.02	14.3	11.4	7.3	3.8	2.73
LEACHATE INDICATORS																		
Ammonia Nitrogen	mg/l	2	57.37	158.96	26.9	27.3	25.4	18.5	J 17.6	15.8	16.7	F1 15	21.6	J 23.6	22	18.9	20.8	J- 20.8
Biological Oxygen Demand	mg/l	NS	7.34	23.46	< 2	3.6	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	F1F 2	< 2
Bromide	mg/l	2	1.5	6.2	* 0.96	0.96	< 0.2	1.3	< 0.2	1	J 1.4	1	1.7	2.4	1.7	1.6	1.3	1.3
Chloride	mg/l	250	479.75	766.17	169	148	201	187	JB 173	B 168	B 157	147	264	257	194	193	171	219
Chemical Oxygen Demand	mg/l	NS	147.5	212.88	67.9	44.6	63.7	54.2	45.1	J 77	35.9	40.3	61	64.4	59.6	48.6	F1 25.5	B 49.4
Color	P.C.U.	15	97	323.02	100				25	H 10				200				15
Nitrate	mg/l	10	0.26	0.65	< 0.05	J 0.035	J 0.027	J 0.022	< 0.05	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.2	< 0.02
Sulfate	mg/l	250	2.94	8.15	< 5	< 5	< 5	JB 1.6	< 5	< 5	< 1.5	JB 1.6	< 2	< 2	J 0.53	J 3.1	< 0.35	< 1.7
Total Alkalinity	mg/l	NS NS	683.25	955.39	427	485	510	445	521	377	400	398	B 584	B 785	626	545	B 470	B 589
Total Cyanide	mg/l	0.1	0.01	0.01	< 0.01	.05	310		< 0.01	J< 0.01		330	5 50.	J< 0.01	020	7.5	.,,	< 0.005
Total Dissolved Solids	mg/l	500	1210	1607.24	714	674	736	735	J 679	J 593	599	608	B 873	1020	907	894	373	899
Total Hardness		NS NS	303.5	477.23	290	300	384	330	340	J 393	292	300	540	528	430	500	368	500
	mg/l mg/l	NS NS	50.86	159.79	20.1	21.3	22	16.5	18.4	J 18.6	7.5	B 14.5	57.1	26.5	23.5	18.1	18.8	21.2
Total Kjeldahl Nitrogen																		
Total Organic Carbon	mg/l	500	48.03	65.62	16.7	14.5	16.1	15.2	13.7	13.9	12.4	11.4	15.1	19.4	18.3	15.6	B 14	17.7
Total Phenols	mg/l	0.001	0.004	0.004	< 0.01	< 0.01	< 0.01	< 0.01	J< 0.01	< 0.01	< 0.005	J 0.0068	B 0.012	J 0.0095	< 0.01	< 0.005	JF: 0.0081	J 0.006
INORGANIC PARAMETERS	1 .																	_
Aluminum	mg/l	0.1	4.3	13.09	< 0.2				< 0.2	< 0.2				< 0.2				< 0.06
Antimony	mg/l	0.003	0.03	0.09	< 0.02				< 0.02	< 0.02				< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.09	0.11	0.11				0.099	0.091			Ш	0.11				0.1
Barium	mg/l	1	0.26	0.53	0.062				0.058	0.052			<u>.</u>	0.099				0.084
Beryllium	mg/l	0.003	0.003	0.006	< 0.002				< 0.002	< 0.002				< 0.002	11			< 0.0003
Boron	mg/l	1	1.12	1.47	0.35				B 0.34	0.27				0.3				B 0.3
Cadmium	mg/l	0.01	0.004	0.004	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	J^ 0.00055	< 0.001	< 0.002	< 0.0005	< 0.0005	< 0.0005
Calcium	mg/l	NS	53	102.96	66.1	63	87.6	71.8	72.6	64	61.5	B 64.2	130	130	98.5	116	B 87.8	116
Chromium	mg/l	NS	0.07	0.43	J 0.001				< 0.004	J 0.0015		-	- 1	< 0.004				< 0.001
Hexavalent Chromium	mg/l	0.05	0.01	0.01	< 0.05				J< 0.01	J< 0.01				< 0.01				< 0.005
Cobalt	mg/l	0.005	0.03	0.07	J 0.0037				J 0.0029	J 0.0021				0.0051				0.0046
Copper	mg/l	0.2	0.03	0.08	< 0.01				< 0.01	< 0.01				< 0.01				< 0.0016
Iron	mg/l	0.3	16.07	41.68	3.2	3	3.9	3.1	3.3	^ 3	2.6	2.9	B 5.7	5.9	4.4	5.2	3.6	4.7
Lead	mg/l	0.025	0.01	0.06	< 0.005	J 0.0039	< 0.04	< 0.01	0.0061	< 0.005	< 0.003	< 0.01	< 0.01	< 0.005	< 0.01	J 0.005	J 0.0032	J 0.0035
Magnesium	mg/l	35	39.35	58.86	34.1	32.5	38.1	31.6	33.6	31.7	30.6	32.5	61.2	59.2	41.7	52.5	38.4	53.5
Manganese	mg/l	0.3	0.25	0.74	0.038	0.041	0.048	0.04	0.046	0.041	B 0.038	0.041	B 0.073	B 0.069	В 0.05	0.053	0.041	0.054
Mercury	mg/l	0.002	0.0002	0.0003	R< 0.0002	0.041	0.040	0.04	< 0.0002	R< 0.0002	D 0.030	0.041	B 0.073	< 0.0002	B 0.03	0.055	0.041	F1 R < 0.00012
Nickel	mg/l	0.002	0.002	0.0003	0.0002				0.0002	0.0002				0.0002		 	 	0.016
Potassium		0.007 NS	97.68	131.63	15.5	16.4	17.1	18.7	15.3	12.6	11.1	10.7	B 18.2	18.8	15.4	15.5	13.6	15.3
Selenium	mg/l	0.01	0.004	0.004	< 0.015	10.4	1/.1	18.7	< 0.015	< 0.015	11.1	10.7	D 18.2	< 0.015	15.4	15.5	13.0	< 0.0087
	mg/l													< 0.015		-	-	
Silver	mg/l	0.05	0.01	0.01	< 0.003	125	1.17	141	< 0.003	< 0.003	112	115	122		161	120	117	< 0.0017
Sodium	mg/l	20	290	451.68	137	135	147	141	129	117	113	115	132	163	161	128	117	138
Thallium	mg/l	0.004	0.01	0.03	< 0.02			ļ	< 0.02	< 0.02				< 0.02			-	< 0.01
Vanadium	mg/l	0.014	0.03	0.06	< 0.005				< 0.005	< 0.005				< 0.005				< 0.0015
Zinc	mg/l	0.3	0.06	0.22	J 0.0064				J 0.0018	J 0.0021				J 0.0038				< 0.0015
VOLATILE ORGANIC COMPOUNDS						NA	NA	NA	< MDL		NA	NA	NA		NA	NA	NA	
1,1,1-Trichloroethane	μg/I	5																F1 < 0.82
1,1-Dichloroethane	μg/I	5			J 0.73					J 0.47				J 0.56				J+ F1 0.52
1,2-Dichloropropane	μg/l	1																F1 < 0.72
Benzene	μg/l	1																F2 < 0.41
Bromodichloromethane	μg/l	50																F1 < 0.39
Bromomethane	μg/l	5																F2 < 0.69
Carbon disulfide	μg/I	NS																F2 < 0.19
Styrene	μg/I	5		1				i										F1 < 0.73
Tetrachloroethene	μg/I	5																F1 < 0.36
															1	i		
Trichloroethene	μg/I	5																F1 < 0.46

- Notes:

 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.

 2. Blanks indicate no analysis performed

 3. "<" indicates not detected at the specified method detection limit (MDL)

 4. "B" indicates parameter detected in associated laboratory blank

- 5. "J" indicates parameter concentration is an estimated value 6."J+" indicates parameter estimate is biased high; "J-" indicates parameter estimate is biased low
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "R" indicates a result reject by the DUSR report
- 9. "F1" indicates that MS and/or MSD recovery is outside acceptance limits
- 10. "F2" indicates that MS/MSD RPD exceeds control limits
- $\dot{\text{11.}}$ Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- 12. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- 13. Bolded concentrations represent historically high concentrations.

MW-9D Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	FMOV	EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	Unit	Value	EWQV	Dev.	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
FIELD PARAMETERS												_				_		
Conductivity	μS/cm	NS	322.43	818.92	409	209	225	215	207	313	184	193	219	210	374	359	359	378
Dissolved Oxygen	mg/l	NS			0.21	0.27	0.15	0.19	0.21	0.81	0.33	0.36	0.35	0.30	13.79	0.26	1.33	0.66
Eh	mV	NS	-32	262.44	-74.7	-92.5	-182.2	-162.6	-95.6	347.3	-108.0	-44.1	87.4	-18.4	-17.9	-35.4	-329.3	158.6
рН	SU	6.5-8.5	8.81	9.89	8.25	7.59	8.09	7.76	8.04	8.14	7.29	7.85	8.00	7.84	7.84	8.49	8.02	8.40
Temperature	C°	NS	15.5	32.62	21.45	20.68	14.05	18.60	23.71	12.79	17.07	18.79	16.56	21.79	22.46	9.10	20.52	21.69
Turbidity	N.T.U	5	1656.98	8509.34	20.2	4.63	25.2	21.3	69.1	40.6	71.6	47.5	11.4	47.1	20.7	31.9	40.6	4.1
LEACHATE INDICATORS		7																
Ammonia Nitrogen	mg/l	2	0.62	1.63	В 0.097	0.2	0.084	0.12	J 0.14	0.13	0.12	0.11	JF1 0.0095	J 0.066	0.089	0.041	0.03	UJ < 0.009
Biological Oxygen Demand	mg/l	NS	2.25	4.85	< 2	< 2	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Bromide	mg/l	2	0.45	1.49	*< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 1.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.073	< 0.073	< 0.073
Chloride	mg/l	250	3.74	16.59	3	2.8	2.8	2.7	J 3.1	B 4.5	В 3.6	3.4	5.8	3.5	4.6	3.8	3.7	7.4
Chemical Oxygen Demand	mg/l	NS	19.26	53.11	J 5.8	< 10	19.5	< 10	< 10	JB 74.4	< 5	< 10	10.9	11.4	J 6.7	< 5	< 5	J+ B 6
Color	P.C.U.	15	44.88	256.7	20				< 5	Н 5				< 5				< 5
Nitrate	mg/l	10	0.26	0.65	< 0.05	< 0.05	J 0.045	J 0.02	< 0.05	< 0.05	J 0.024	< 0.05	J 0.032	< 0.05	< 0.05	< 0.02	< 0.02	< 0.02
Sulfate	mg/l	250	3.96	10		< 5	< 5	B 9	< 5	< 5	< 1.5	JB 2.2	J 4	B 3.1	2.8	4.1	2.9	3.4
Total Alkalinity	mg/l	NS NS	129.25	310.87	89.4	110	112	98.2	99.9	104	77.4	89.5	В 36.5	B 118	70.2	95.6	B 97.4	B 104
Total Cyanide	mg/l	0.1	0.01	0.01	< 0.01	110	112	30.2	< 0.01	J< 0.01	77	03.3	5 30.5	J< 0.01	70.2	33.0	37.4	< 0.005
Total Dissolved Solids	mg/l	500	161.5	225.82	130	127	102	138	J 154	J 122	110	125	B 92	126	128	B 112	134	126
Total Hardness	mg/l	NS	817	2890.68	80	80	84	76	82	J 80	100	76	90	96	84	80	72	76
Total Kjeldahl Nitrogen	mg/l	NS	0.92	2.23	< 0.2	< 0.2	< 0.2	< 0.2	0.2	J< 0.2	0.43	В 0.6	2.6	J 0.18	J 0.19	J 0.18	0.21	< 0.15
Total Organic Carbon	mg/l	500	2.04	6.17	J 0.46	J 0.82	1.7	· 0.2	< 1	< 1	J 0.8	J 0.65	< 1	<i>s</i> 0.10	<i>y</i> 0.13	< 0.43	JB 0.45	J 0.52
Total Phenols	mg/l	0.001	0.004	0.004	J 0.0083	< 0.01	< 0.01	< 0.01	J< 0.01	< 0.01	J 0.0058	< 0.01	JB 0.0053	J< 0.01	< 0.01	< 0.005	< 0.005	0.025
INORGANIC PARAMETERS	6/.	0.001	0.004	0.004	3 0.0003	0.01	. 0.01	, 0.01	0.01	, 0.01	0.0030	1 0.01	35 0.0033	3. 0.01	, 0.01	. 0.003	1 0.003	0.025
Aluminum	mg/l	0.1	61.19	247.67	3.6				2.6	1.5				1.7				J 0.1
Antimony	mg/l	0.003	0.03	0.09	< 0.02				< 0.02	< 0.02				< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.05	0.2	0.018				0.03	0.027				0.018				0.015
Barium	mg/l	1	0.47	2.01	0.018				0.076	0.066				0.062				0.057
Beryllium	mg/l	0.003	4	0.009	< 0.002				< 0.002	< 0.002				< 0.002				< 0.0003
Boron	mg/l	1	0.22	0.72	0.045				B 0.041	0.04				0.043				B 0.045
Cadmium	mg/l	0.01	0.004	0.004	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	<^ 0.002	< 0.001	< 0.002	< 0.0005	< 0.0005	< 0.0005
Calcium	mg/l	NS	731.83	3357.48	24.9	22	23.2	21.9	23.5	22.9	22.7	B 23.7	24.3	22.7	22	23.2	B 22.3	23.8
Chromium	mg/l	NS NS	6.14	0.38	0.004	22	23.2	21.5	J 0.0032	J 0.0026	22.7	B 23.7	24.5	J 0.0023		25.2	D 22.5	< 0.001
Hexavalent Chromium	mg/l	0.05	0.01	0.01	< 0.01				J< 0.01	J< 0.01				< 0.01				< 0.005
Cobalt	mg/l	0.005	0.06	0.22	J 0.0011				J 0.001	< 0.004		†		< 0.004				< 0.00063
Copper	mg/l	0.2	0.2	0.83	J 0.0066				J 0.0054	J 0.0026				< 0.004				< 0.0016
Iron	mg/l	0.3	220.18	962.31	3.3	0.28	2.3	0.86	3.3	^ 2.2	3.2	2.4	B 0.14	< 0.05	0.82	^ 2.1	1.2	0.081
Lead	mg/l	0.025	0.07	0.27	< 0.005	< 0.005	< 0.01	< 0.01	0.0067	< 0.005	< 0.003	< 0.01	< 0.01	< 0.005	< 0.01	< 0.003	< 0.003	< 0.003
Magnesium	mg/l	35	115.45	476.78	5.2	4.5	4.4	4	5.4	4.7	4.7	4.8	4.4	4.5	4.3	4.7	4.5	4.4
Manganese	mg/l	0.3	5.25	21.91	0.17	0.093	0.098	0.076	0.12	0.11	B 0.13	0.092	B 0.032	< 0.056	B 0.048	^ 0.16	0.049	0.0072
Mercury	mg/l	0.002	0.0002	0.0003	R< 0.0002	0.055	5.050	5.070	< 0.0002	R< 0.0002	0.13	0.032	5 5.052	< 0.0002	2 0.040	0.10	3.043	R < 0.00012
Nickel	mg/l	0.002	0.16	6.49	J 0.0025				J 0.0029	< 0.0002	+	+	 	J 0.0015		+		< 0.0012
Potassium	mg/l	NS	12.51	40.06	1.9	0.72	1.2	J 0.69	1.6	1.2	1.6	1.3	B 0.75	< 1.3	0.97	1.3	1	0.79
Selenium	mg/l	0.01	0.01	0.02	< 0.015	0.72	1.2	3 0.09	< 0.015	< 0.015	1.0	1.3	5 0.75	< 0.015	0.57	1.3		< 0.0087
Silver	mg/l	0.01	0.01	0.02	< 0.013				< 0.013	< 0.013				< 0.013				< 0.0087
Sodium	mg/l	20	23.1	35.92	19.3	18.4	17	17.5	17.9	18.1	18.2	19.5	18.5	< 18.9	18	19.9	18.6	19.4
Thallium	mg/l	0.004	0.01	0.01	< 0.02	10.4	1/	17.5	< 0.02	< 0.02	16.2	15.5	10.3	< 0.02	10	19.9	10.0	< 0.01
Vanadium	mg/l	0.004	0.01	0.01	0.0058				J 0.0043	J 0.0033	1	+	 	J 0.0023		1		< 0.001
Zinc	mg/l	0.014	0.39	1.27	0.0038				J 0.0043	J 0.0033				J 0.0023				JB 0.002
VOLATILE ORGANIC COMPOUNDS	IIIg/I	0.3	0.39	1.27	0.015 < MDL	NA	NA	NA NA	0.0097 < MDL	< MDL	NA NA	NA NA	NA	, 0.0051 < MDL	NA	NA NA	NA	NA 0.002
VOLATILL ORGANIC CONIPOUNDS					\ IVIDL	IVA	IVA	IVA	\ IVIDL	\ IVIDE	IVA	IVA	IVA	\ IVIDL	IVA	IVA	IVA	IVA

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- $6. \ "UJ" \ indicates \ the \ parameter \ was \ not \ detected \ and \ quantitation \ limit \ may \ be \ inaccurate \ or \ imprecise$
- 7. "J+" indicates the parameter estimate is biased high
- 8. "*" indicates a result flagged as estimated by the DUSR report
- 9. "R" indicates a result reject by the DUSR report
- 10. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- 11. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- 12. Bolded concentrations represent historically high concentrations.

MW-10S Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	EWQV	EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	Gime	Value	21141	Dev.	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
FIELD PARAMETERS	- 4																	
Conductivity	μS/cm	NS	591.75	1279.13	2752	1420	1507	1410	1547	2035	1155	1261	1.299	972	1708	950	1608	1330
Dissolved Oxygen	mg/l	NS													10.20	0.09	0.20	0.16
Eh	mV	NS	4	190.82	-32.3	-53.9	-9.2	41.3	-48.7	241.1	152.9	196.1	-29.9	-17.0	-2.0	-65.8	-338.8	-197.3
pH	SU	6.5-8.5	8.33	10.45	7.31	6.60	6.65	6.69	6.88	7.49	6.45	6.32	6.83	6.65	5.45	6.45	6.44	6.70
Temperature	C°	NS	13.23	27.53	22.45	23.15	19.12	19.85	23.78	18.42	20.42	20.44	22.86	25.69	25.25	24.9	25.77	24.9
Turbidity	N.T.U	5	511.75	1397.39	1910	1000	1000	1000	NM	1000	1000	203	1000	1000	13.4	22.4	31.3	1000
LEACHATE INDICATORS												-						
Ammonia Nitrogen	mg/l	2	0.21	0.79	0.083	0.1	0.1	0.21	J 0.14	2.5	0.091	0.14	0.16	0.082	0.11	0.028	0.078	J- 0.056
Biological Oxygen Demand	mg/l	NS	2.25	4.85	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Bromide	mg/l	2	0.45	1.49	J 0.12	0.3	< 0.2	0.43	0.41	0.41	< 0.73	0.45	0.43	J 0.26	J 0.19	0.23	0.25	0.38
Chloride	mg/l	250	19.4	34.24	169	182	154	142	193	JB 111	92.5	B 144	102	56.4	70.7	54.2	65.3	97.1
Chemical Oxygen Demand	mg/l	NS	15.46	62.99	15.4	10.2	B 17.6	18.8	10.3	B 139	J 8.5	J 6.9	39.3	24.5	B 17.7	< 5	< 5	B J+ 12
Color	P.C.U.	15	10.19	24.46	60				< 5	< 5				10				< 5
Nitrate	mg/l	10	1.28	2.52	J 0.025	J 0.024	< 0.05	J 0.03	J 0.029	< 0.05	J 0.039	J 0.024	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.02
Sulfate	mg/l	250	26.48	74.75	120	132	144	B 130	J 149	119	105	B 114	88.5	B 66.4	75.3	60.3	63.2	63.4
Total Alkalinity	mg/l	NS	198.75	300.79	327	396	422	337	397	B 383	415	450	506	В 390	353	366	В 376	B 423
Total Cyanide	mg/l	0.1	0.01	0.01	< 0.01				< 0.01	< 0.01				< 0.01				< 0.005
Total Dissolved Solids	mg/l	500	285	484.37	813	845	822	735	913	JB 730	722	768	729	B 605	613	501	572	666
Total Hardness	mg/l	NS	342.25	968.64	335	384	350	480	416	412	364	416	388	344	328	320	344	430
Total Kjeldahl Nitrogen	mg/l	NS	1.8	6.79	1	1.7	0.88	2	J 0.61	J 2.5	0.34	F1 0.99	0.96	J 0.6	0.25	J 0.18	0.32	0.52
Total Organic Carbon	mg/l	500	1.65	3.05	3.8	2.4	4.7	3.9	3.3	3.3	3.1	B 3.6	B 4.3	3	B 2.9	2.4	В 3.3	5.1
Total Phenols	mg/l	0.001	0.004	0.004	< 0.01	< 0.01	< 0.01	< 0.01	J< 0.01	< 0.01	0.014	< 0.01	< 0.01	J 0.0097	J 0.0077	< 0.005	J 0.0057	J 0.0099
INORGANIC PARAMETERS						100												
Aluminum	mg/l	0.1	44.15	150.45	12.9				5.7	65.3				3.7				6.6
Antimony	mg/l	0.003	0.03	0.09	< 0.02				< 0.02	J 0.014				< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.03	0.16	< 0.01				< 0.01	0.022			1	< 0.01	-			< 0.0056
Barium	mg/l	1	0.19	0.62	0.15				0.12	0.58				0.063	7			0.097
Beryllium	mg/l	0.003	0.01	0.02	J 0.00083				< 0.002	0.0038				< 0.002				< 0.0003
Boron	mg/l	1	0.11	0.24	B 0.18				0.15	0.21				0.15				В 0.16
Cadmium	mg/l	0.01	0.005	0.012	J 0.00065	0.0017	J 0.0012	< 0.005	< 0.001	0.0023	< 0.0005	< 0.002	J 0.00083	< 0.001	< 0.002	< 0.0005	< 0.0005	< 0.0005
Calcium	mg/l	NS	97.33	280.63	122	119	117	136	126	205	B 118	B 136	139	116	B 110	104	107	128
Chromium	mg/l	NS	0.13	0.24	0.09				0.039	0.44	-			0.021	-	-		0.018
Hexavalent Chromium	mg/l	0.05	0.01	0.01	< 0.01				J 0.0065	J< 0.05				< 0.01				< 0.005
Cobalt	mg/l	0.005	0.04	0.1	0.0073				0.0044	0.037				J 0.0014				J 0.0032
Copper	mg/l	0.2	0.13	0.41	0.03				0.014	0.15				J 0.0075				0.013
Iron	mg/l	0.3	90.73	259.86	16.7	25.1	28.7	13.5	8	78.7	7.3	6.4	13.7	3.7	0.48	1.3	1.7	7.1
Lead	mg/l	0.025	0.05	0.19	0.014	0.038	0.033	0.055	0.020	0.180	0.031	0.011	0.036	0.010	< 0.010	J 0.004	J 0.003	0.019
Magnesium	mg/l	35	22.2	67.44	19	20.3	20.1	16.4	19.3	34.1	13.5	16.6	18.7	13	11.8	13	14.2	18.5
Manganese	mg/l	0.3	2.77	8.21	0.6	0.91	0.97	1.6	1.2	2.5	1.5	2.1	2.2	2.4	2.2	2.8	4.4	5.9
Mercury	mg/l	0.002	0.0002	0.0003	< 0.0002	0.51	0.57	1.0	J< 0.0002	J 0.00014	1.5			< 0.0002	2.2	2.0	7.7	R < 0.00012
Nickel	mg/l	0.002	0.08	0.2	0.026				0.016	0.11				J 0.0076				J 0.0094
Potassium	mg/l	NS	6.78	12.46	B* 32.2	В 33	30.6	22.3	B 25.8	33.2	19.4	20	21.1	14.1	11.2	9.9	9	11.4
Selenium	mg/l	0.01	0.004	0.008	< 0.015	5 33	30.0	22.3	< 0.015	< 0.015	13.4	20	21.1	< 0.015	11.2	9.9	1	< 0.0087
Silver	mg/l	0.01	0.004		< 0.013					< 0.003				< 0.013				< 0.0087
Sodium	mg/l	20	26.1	41.28	156	159	177		B 158	120	106	117	139	78.7	71.4	66.7	70.2	107
Thallium	mg/l	0.004	0.01	0.01	< 0.02	135	1//	110	< 0.02	< 0.02	100	11/	133	< 0.02	/1.4	00.7	70.2	< 0.01
Vanadium	<u> </u>	0.004	0.01	0.01	0.022				0.0099	0.02				0.0071				0.01
	mg/l mg/l	0.014	0.12	0.88	0.022				0.0099	B 0.12				B 0.036				B 0.04
Zinc /OLATILE ORGANIC COMPOUNDS	-	0.5	0.23	0.00	< MDL	NA NA	NA	NA.	0.071	D 0.07	NA	NA	NA NA	0.030	NA NA	NA	NA	NA
		E0 1			< IVIDE	INA I	INA	NA	F 0		INA	INA	I NA	1 45	I NA	INA	INA	
Acetone Corbon Distribute	μg/l	50							5.8	0.35				15				13
Carbon Disulfide	μg/l	NS							J 0.34	J 0.25								

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J+" indicates parameter estimate is biased high; "J-" indicates parameter estimate is biased low
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "R" indicates a result reject by the DUSR report
- 9. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations
- 10. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- 11. Bolded concentrations represent historically high concentrations.

MW-10I Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

Conductivity μS/cm NS 846 1809.27 1926 900 982 858 821 1181 691 637 625 590	TEST PARAMETER		TOGS Guidance		EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
## PARTICIPATION 15/5m 15/		Unit		EWQV								1	-			Routine	Routine	Routine	Baseline
Conductivity Month			value		5011	Busenine	Houtine	noutine	Noutine	Busenne	Busenne	поисте	Noutine	Houtine	Busenne	Houtine	Houtine	Noutine	Busenne
Discovery Congress mg/1		uS/cm	NS	846	1809.27	1926	900	982	858	821	1181	691	637	625	590	933	744	431	412
Ph	· · · · · · · · · · · · · · · · · · ·				_	2020	300	302	050	022	1101	031	057	023	330	0.41	0.1	0.1	0.12
PI	,,,	-			221.7	-36.1	-47.9	-8.8	71.0	-53.4	270.2	58.5	175.1	-42.5	34.6	-19.1	-62.2	-80.7	-203.8
Femperature																6.23	7.12	7.04	7.44
Turbidity		_														24.40	23.72	24.60	25.20
																293	61.7	104	83.4
Ammons Nirogen may mg 2	,					7											V=		
Biological Oxygen Demand mg/l MS 2.25 4.88 8.2.6 b 2.25 < 2 < 4.4 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <		mg/l	2	1.44	9.18	6.3	5.9	4.8	4.1	J 3.9	3.1	3.2	2.5	1.8	2	1.8	1.6	1.6	J- 1.1
Bromde mg/l 2			NS	2.25		B 2.6	b 2.2	< 2	4.4	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Chieffed mg/l 250 49.23 194.49 40.1 31.6 28.1 19.5 16 8 13.9 14.9 9 9.6 7.7		-						< 0.2	< 0.2	< 0.2	J 0.095	< 0.37	< 0.2	< 0.2	< 0.2	< 0.2	< 0.073	< 0.073	< 0.073
Chemical Oxygen Demand mg/l NS 24.4 \$33.5 12.2 0.0 8 12.6 0.0 5																4	5 4.9	4.4	4.3
Note		-	NS		53.35			B 12.6				12.2	J 6.2	< 10		JB 6.4	< 5	< 5	< 5
Suffate mg/l 250 36 52.14 155 156 158 8 130 1 112 8 53 8 23 8 73.9 48.4 8 64.2 Total Alaiminy mg/l 0.1 0.01 0		_		192.19	1268.01	20					< 5				5				< 5
Suffate mg/l 250 36 52.14 155 156 158 8 130 1 112 8 53 8 23 8 73.9 48.4 8 64.2 Total Alaiminy mg/l 0.1 0.01 0		_					< 0.05	< 0.05	< 0.05	J 0.049	< 0.05	J 0.047	< 0.05	0.096	J 0.041	J 0.031	< 0.02	< 0.02	< 0.02
Total Algority		-														28.3	26	21.2	19
Total Cyanide														_		276	210	В 208	B 197
Total Dissolved Solids		-					,		1				1						< 0.005
Total Airchean mg/l NS \$26.5 \$99.91 \$49.0 \$44.0 \$44.4 \$41.0 \$316 \$36.0 \$368 \$34.0 \$276 \$27.5 \$104 \$104 \$104 \$104 \$104 \$106 \$368 \$34.0 \$276 \$27.5 \$104 \$		-		644.5		677	589	571	551			453	406	319		325	237	234	255
Total Organic Carbon mg/l NS 0.8 2.26 5.6 4.8 4.4 4.1 1.3.9 1.3.4 2.6 3.6 2.5 12.5 Total Organic Carbon mg/l 0.001 0.004 0.004 0.004 0.008 0.01 0.0082 0.01 0.01 0.01 0.01 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.				326.5	990.91	490	440			316			340			264	216	444	196
Total Phenols mg/l 500 7.26 11.08 3.3 2.2 3.2 2.7 1.8 1.7 2.1 8 2.1 8 2.5 2.2 8 2.5 70 10 10 10 10 10 10 10	Total Kieldahl Nitrogen		NS	0.8	2.26	5.6	4.8	4.4	4.1	J 3.9	J 3.4	2.6	3.6	2.5	JF1 2.5	2.4	F1 1.8	1.7	1.5
Total Phenols		-	500					3.2		-			B 2.1			B 1.6	1.5	B 2.2	1.6
NORGANIC PARAMETERS		-														J 0.0087	0.005	< 0.005	J 0.0073
Antimony mg/l 0.003 0.03 0.09 J 0.0075		, U			_														
Antimony	Aluminum	mg/l	0.1	6.98	32.07	18.5				2.6	3				3.2				2.6
Barium mg/l 1 182.54 1277.46 0.23	Antimony		0.003	0.03	0.09	J 0.0075					< 0.02								< 0.0068
Beryllium mg/l 0.003 9.75 68.25 J 0.00091	Arsenic	mg/l	0.025	1.76	12.24	J 0.007				< 0.01	< 0.01				< 0.01				< 0.0056
Boron mg/l 1 10.14 67.86 B 0.3 0.25 0.25 0.32 0.32 0.32 0.32 0.32 0.32 0.33 0.001 0.001 0.001 0.001 0.0005 0.001 0.0005 0.001 0.0005 0.001 0.0005 0.001 0.0005 0.001 0.0005 0.001 0.0005 0.001 0.0001 0.001	Barium	mg/l	1	182.54	1277.46	0.23				0.059	0.052				0.051				0.035
Cadmium mg/l 0.01 142.5 997.5 < 0.001 J 0.00055 < 0.002 < 0.005 < 0.001 < 0.001 < 0.0005 < 0.002 < 0.002 < 0.001 < 0.001 < 0.005 < 0.002 < 0.002 < 0.001 < 0.001 < 0.002 < 0.002 < 0.002 < 0.001 < 0.001 < 0.001 < 0.002 < 0.002 < 0.001 < 0.001 < 0.001 < 0.002 < 0.002 < 0.002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.005 < 0.004 < 0.004 < 0.005 < 0.004 < 0.005 < 0.004 < 0.005 < 0.004 < 0.005 < 0.004 < 0.005 < 0.004 < 0.005 < 0.004 < 0.005 < 0.004 < 0.005 < 0.004 < 0.005 < 0.004 < 0.005 < 0.004 < 0.005 < 0.004 < 0.005 < 0.004 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 <	Beryllium	mg/l	0.003	9.75	68.25	J 0.00091				< 0.002	< 0.002				< 0.002				< 0.0003
Calcium mg/l	Boron	mg/l	1	10.14	67.86	В 0.3				0.26	0.25				0.32				B 0.15
Chromium mg/l NS 0.02 0.08 0.021	Cadmium	mg/l	0.01	142.5	997.5	< 0.001	J 0.00055	< 0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	< 0.002	< 0.001	< 0.002	< 0.00005	< 0.0005	< 0.0005
Hexavalent Chromium mg/l 0.05 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	Calcium	mg/l	NS	135.78	293.6	137	118	120	106	104	93.4	B 99.3	B 95.9	79.5	72.7	B 70.4	55.9	56.5	52.9
Cobalt mg/l 0.005 0.03 0.06 0.013 J 0.0023 J 0.018 J 0.0023 J 0.0018 J 0.0012 J 0.0012 J 0.0012 J 0.0017 J 0.0077 J 0.0074 J 0.005 J 0.0077 J 0.0077 J 0.0077 J 0.0077 J 0.0077 J 0.0077 J 0.0074 J 0.005 J 0.0077 2.6 3.4 .	Chromium	mg/l	NS	0.02	0.08	0.021				0.0047	0.004				0.0044				J 0.0037
Copper mg/l 0.2 0.04 0.17 0.038 Image: Copper of the control of the control of the copper of the copp	Hexavalent Chromium	mg/l	0.05	0.01	0.01	< 0.01				< 0.01	J 0.011				< 0.01				< 0.005
Iron mg/l 0.3 15.55 79.87 25.2 11.7 6.8 1.8 4.1 3 8.3 7 2.6 3.4	Cobalt	mg/l	0.005	0.03	0.06	0.013				J 0.0023	J 0.0018				J 0.0012				J 0.0013
Lead mg/l 0.025 0.01 0.03 0.022 0.015 0.01 J 0.0039 0.015 0.0065 0.036 0.017 J 0.0081 0.011 Magnesium mg/l 35 36.75 67.38 41.5 34.2 35.9 31 31.3 28.7 27.6 26.9 23.6 21.3 Manganese mg/l 0.3 0.97 2.78 1.7 1.1 1 0.89 0.92 0.82 0.89 0.87 0.69 0.66 Mercury mg/l 0.002 0.0002 0.0003 < 0.0002	Copper	mg/l	0.2	0.04	0.17	0.038				J 0.0074	J 0.005				J 0.0077				J 0.0055
Magnesium mg/l 35 36.75 67.38 41.5 34.2 35.9 31 31.3 28.7 27.6 26.9 23.6 21.3 Manganese mg/l 0.3 0.97 2.78 1.7 1.1 1 0.89 0.92 0.82 0.89 0.87 0.69 0.66 Mercury mg/l 0.002 0.0002 0.0003 < 0.0002	Iron	mg/l	0.3	15.55	79.87	25.2	11.7	6.8	1.8	4.1	3	8.3	. 7	2.6	3.4	5.5	2.2	4	2.7
Manganese mg/l 0.3 0.97 2.78 1.7 1.1 1 0.89 0.92 0.82 0.89 0.87 0.69 0.66 Mercury mg/l 0.002 0.0005 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0015 <	Lead	mg/l	0.025	0.01	0.03	0.022	0.015	0.01	J 0.0039	0.015	0.0065	0.036	0.017	J 0.0081	0.011	0.014	J 0.0085	0.012	0.0093
Mercury mg/l 0.002 0.0002 0.0003 < 0.0002 J 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0015 < 0.0015 < 0.0015 < 0.0015 < 0.0015 < 0.0015 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003	Magnesium	mg/l	35	36.75	67.38	41.5	34.2	35.9	31	31.3	28.7	27.6	26.9	23.6	21.3	19.8	16.3	16.9	15.6
Nickel mg/l 0.007 0.08 0.38 0.031 Image: control of the contr	Manganese	mg/l	0.3	0.97	2.78	1.7	1.1	1	0.89	0.92	0.82	0.89	0.87	0.69	0.66	0.67	0.5	0.56	0.49
Potassium mg/l NS 3.48 8.92 B* 17.7 B 14.5 12.3 11.2 B 10.2 10 11.7 10.7 9.9 9 Selenium mg/l 0.01 0.004 0.004 < 0.015	Mercury	mg/l	0.002	0.0002	0.0003	< 0.0002				J< 0.0002	< 0.0002				< 0.0002				R < 0.00012
Selenium mg/l 0.01 0.004 0.004 < 0.015 < 0.015 < 0.015 < 0.015 Silver mg/l 0.05 0.01 0.01 < 0.003	Nickel	mg/l	0.007	0.08	0.38	0.031		- 4	1-1	J 0.0095	J 0.0067		-	F 1	J 0.0058	E.			J 0.0029
Silver mg/l 0.05 0.01 0.01 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 Sodium mg/l 20 107.33 186.21 58.2 37.7 37.3 29.5 B 27.3 22.4 22.6 20.7 28.3 23.9 Thallium mg/l 0.004 0.01 0.01 < 0.02	Potassium	mg/l	NS	3.48	8.92	B* 17.7	B 14.5	12.3	11.2	B 10.2	10	11.7	10.7	9.9	9	8.5	7.4	7.5	6.7
Sodium mg/l 20 107.33 186.21 58.2 37.7 37.3 29.5 B 27.3 22.4 22.6 20.7 28.3 23.9 Thallium mg/l 0.004 0.01 0.01 < 0.02	Selenium	mg/l	0.01	0.004	0.004	< 0.015				< 0.015	< 0.015		-		< 0.015				< 0.0087
Thallium mg/l 0.004 0.01 0.01 < 0.02	Silver	mg/l	0.05	0.01	0.01	< 0.003				< 0.003	< 0.003				< 0.003				< 0.0017
	Sodium	mg/l	20	107.33	186.21	58.2	37.7	37.3	29.5	B 27.3	22.4	22.6	20.7	28.3	23.9	18.8	10.7	9.5	7.6
Vanadium mg/l 0.014 0.03 0.06 0.03 J 0.0043 J 0.0045 0.006	Thallium	mg/l	0.004	0.01		< 0.02				< 0.02	< 0.02				< 0.02				< 0.01
	Vanadium	mg/l	0.014	0.03	0.06	0.03				J 0.0043	J 0.0045				0.006				0.005
Zinc mg/l 0.3 0.07 0.3 0.19 0.076 B 0.045 B 0.045	Zinc	mg/l	0.3	0.07	0.3	0.19				0.076	B 0.045				B 0.039				B 0.027
VOLATILE ORGANIC COMPOUNDS NA NA NA NA NA NA NA NA	DLATILE ORGANIC COMPOUNDS						NA	NA	NA			NA	NA	NA		NA	NA	NA	NA
Acetone μg/l 50 8.1	Acetone	μg/l	50			-									8.1				
1,2-Dichloroethane μg/l 0.6 J 0.32 J 0.29 J 0.36 J 0.45	1,2-Dichloroethane	μg/l	0.6			J 0.32				J 0.29	J 0.36				J 0.45				J 0.66

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J-" indicates the estimated parameter is biased low
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "R" indicates a result reject by the DUSR report
- 9. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations
- 10. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- 11. Bolded concentrations represent historically high concentrations.

MW-10D Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	EWQV	EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17		Sep-17
(mg/l unless otherwise noted)	Unit	Value	EVVQV	Dev.	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine		Baseline
IELD PARAMETERS																			
Conductivity	μS/cm	NS	203.28	240.59	693	225	203	198	183	275	159	162	188	211	201	316	196		320
Dissolved Oxygen	mg/l	NS		- 1					9		(a)		la .		0.4	0.17	0.21		0.23
Eh	mV	NS	-87	17.47	-3.1	-53.8	-13.7	41.2	-70.2	278.4	235.2	218.5	-19.8	28.5	30.8	-48.3	-131.6		150.6
pH	SU	6.5-8.5	8.9	9.8	8.45	8.27	8.74	8.15	7.47	6.93	7.43	7.93	8.07	7.34	8.23	7.92	7.88		7.46
Temperature	C°	NS	13.48	24.56	16.9	17.66	11.25	13.82	18.03	11.05	14.94	15.79	17.01	19.37	24.42	20.89	23.10		24.17
Turbidity	N.T.U	5	4373.5	18289.51	625	1000	1000	1000	1000	1000	1000	1000	> 1000	658	182	154	63.5		4.36
EACHATE INDICATORS																			
Ammonia Nitrogen	mg/l	2	0.35	0.5	0.18	0.14	0.13	0.2	J 0.22	0.18	0.19	0.24	0.18	0.16	0.12	0.19	0.19	J-	0.14
Biological Oxygen Demand	mg/l	NS	2.93	6.27	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	<	2
Bromide	mg/l	2	0.45	1.49	< 0.2	< 0.2	J 0.14	< 0.4	< 0.2	< 0.2	< 0.073	< 0.2	< 0.2	< 0.2	< 0.2	< 0.073	J 0.086	<	0.073
Chloride	mg/l	250	2.88	10.63	6.77	15	2.7	4.3	7.1	JB 2.3	2	1.3	0.87	8	1.9	0.96	0.84		0.88
Chemical Oxygen Demand	mg/l	NS	17.83	52.72	< 10	10.8	B 12.6	< 10	< 10	< 10	25.9	16.6	23.4	34.7	< 10	< 5	< 5	B J+	13.6
Color	P.C.U.	15	15.88	62.22	1750				5	5				15				<	5
Nitrate	mg/l	10	0.26	0.65	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	J 0.026	< 0.02	< 0.02	<	0.02
Sulfate	mg/l	250	3.05	6.24	J 2.3	< 5	< 5	JB 3.4	< 5	< 5	< 1.5	JB 2.4	3.6	B 5.2	4.2	3.4	2.9		2.8
Total Alkalinity	mg/l	NS	325.28	1694.73	96.7	90.2	94.3	99.3	96.2	В 97.9	95.7	92.2	B 112	B 108	84.6	106	B 91.4	В	103
Total Cyanide	mg/l	0.1	0.01	0.01	< 0.01				< 0.01	< 0.01				< 0.01				J+	0.0067
Total Dissolved Solids	mg/l	500	281.5	519.88	295	236	294	267	J 175	JB 242	183	218	170	B 155	139	142	117		107
Total Hardness	mg/l	NS	1379.75	5637.92	1550	1800	1020	980	1020	970	900	1400	190	320	80	80	52		56
Total Kjeldahl Nitrogen	mg/l	NS	0.93	3.31	2.5	1.9	2.5	1.7	J 1.2	J 1.8	0.83	3.9	4.1	J 1.1	0.2	0.45	0.4		0.23
Total Organic Carbon	mg/l	500	1.61	2.99	J 0.83	J 0.95	1.1	1.6	J 0.64	< 1	J 0.98	JB 0.89	JB 0.71	< 1	JB 0.61	< 0.43	JB 0.78	, J	0.56
Total Phenols	mg/l	0.001	0.004	0.004	< 0.01	< 0.01	< 0.01	< 0.01	J< 0.01	< 0.01	J 0.0072	< 0.01	< 0.01	< 0.1	J 0.0052	< 0.005	0.013	<	0.005
NORGANIC PARAMETERS																			
Aluminum	mg/l	0.1	81.84	377.58	70.6				25.3	49.1				18.7					0.2
Antimony	mg/l	0.003	0.03	0.08	< 0.02				< 0.02	< 0.02				< 0.02				<	0.0068
Arsenic	mg/l	0.025	0.06	0.26	0.047				0.027	0.041				0.021					0.013
Barium	mg/l	1	0.89	3.84	0.64				0.33	0.41				0.2					0.038
Beryllium	mg/l	0.003	0.01	0.02	0.0043				J 0.0015	0.0029				J 0.00095				<	0.0003
Boron	mg/l	1	0.24	0.89	B 0.11				0.067	0.088				0.07				В	0.054
Cadmium	mg/l	0.01	0.004	0.004	0.0014	0.0012	J 0.0013	< 0.005	J 0.00064	0.0011	< 0.0005	J 0.00091	< 0.002	< 0.001	< 0.002	< 0.0005	< 0.0005	<	0.0005
Calcium	mg/l	NS	630.98	3046.51	473	393	395	383	282	316	194	B 370	73.1	61.5	B 17.4	17.3	14.7		14.7
Chromium	mg/l	NS	0.12	0.47	0.081				0.026	0.06				0.019				<	0.001
Hexavalent Chromium	mg/l	0.05	0.01	0.01	< 0.01				< 0.01	J< 0.05				< 0.01				<	0.005
Cobalt	mg/l	0.005	0.08	0.39	0.059				0.023	0.042				0.0099				<	0.00063
Copper	mg/l	0.2	0.42	1.41	0.16				0.049	0.098				0.035				<	0.0016
Iron	mg/l	0.3	210.43	1025.67	131	77.7	103	17.4	46	90.6	32.2	64	16.9	26	4.7	5.9	1.9		0.19
Lead	mg/l	0.025	0.11	0.52	0.06	0.05	0.048	0.012	0.038	0.037	0.012	0.03	0.011	0.018	J 0.0045	J 0.0072	J 0.0033	<	0.003
Magnesium	mg/l	35	137.17	703.67	116	47.9	67.9	49.7	57.7	72.3	44.8	47.2	15.6	16.4	4.2	4.8	3.5		3.1
Manganese	mg/l	0.3	6.42	31.55	5	3.6	3.7	2.9	2.7	3.1	B 1.8	3.1	0.65	0.72	0.13	0.13	0.059		0.035
Mercury	mg/l	0.002	0.0003	0.0009	< 0.0002				J< 0.0002	< 0.0002				< 0.0002				R	< 0.00012
Nickel	mg/l	0.007	0.18	0.83	0.12				0.044	0.083				0.021				<	0.0013
Potassium	mg/l	NS	16.68	54.75	B* 16.9	B 13.3	14.6	2.6	В 7.3	12.5	6.8	10.1	4.5	6.5	2.3	2.7	1.4		0.57
Selenium	mg/l	0.01	0.01	0.02	J 0.0094				< 0.015	< 0.015				< 0.015				<	0.0087
Silver	mg/l	0.05	0.01	0.02	< 0.003				< 0.003	< 0.003				< 0.003				<	0.0017
Sodium	mg/l	20	85.63	430.65	77.1	39.6	33	32.2	B 27.8	26.3	26.7	26.2	29.1	29.8	25.4	24.9	23.2		23.7
Thallium	mg/l	0.004	0.01	0.03	< 0.02				< 0.02	< 0.02	-			< 0.02				<	0.01
Vanadium	mg/l	0.014	0.2	0.96	0.14				0.052	0.11				0.033				<	0.0015
Zinc	mg/l	0.3	0.51	2.36	0.35				0.14	B 0.23				В 0.078				JB	0.0027
OLATILE ORGANIC COMPOUNDS	.01 .	- -			< MDL	NA	NA	NA	< MDL	< MDL	NA	NA	NA	< MDL	NA	NA	NA		

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J+" indicates parameter estimate is biased high; "J-" indicates parameter estimate is biased low
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "R" indicates a result reject by the DUSR report
- 9. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- $10. \ \, \text{Outlined concentrations represent an exceedance of the EWQV and the TOGS} \ 1.1.1 \ guidance \ value.$
- 11. Bolded concentrations represent historically high concentrations.

MW-14S Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	200	TOGS Guidance		EWQV Plus 3 Std.	Sep-08	Dec-08	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	Unit	Value	EWQV	Dev.	Baseline	Baseline	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
FIELD PARAMETERS				-														
Conductivity	μS/cm	NS	281.143	409.144	173	302	345	705	854	987	789	520	946	916	980	661	541	810
Dissolved Oxygen	mg/l	NS					0.24	0.14	0.11	0.71	0.21	0.23	0.08	0.05	0.13	0.22	0.21	0.08
Eh	mV	NS	-26.714	86.349	-131.2	4.9	-48.5	4.1	20.4	228.4	-14.7	-4.7	-61.2	-51.0	-134.1	-77.2	-93.8	-141.4
На	SU	6.5-8.5	6.723	7.082	7.24	7.17	6.78	6.13	6.14	6.32	6.42	6.39	6.74	6.11	6.18	7.71	6.81	6.87
Temperature	C°	NS	7.643	17.640	14.45	7.53	1.49	8.72	12.06	3.51	22.80	11.61	8.27	11.34	14.75	9.76	11.20	16.0
Turbidity	N.T.U	5	289.200	1417.536	19.5	17.0	7.56	1.39	2.85	4.22	1.31	5.59	4.30	18.50	1.57	14.30	5.10	6.82
LEACHATE INDICATORS	- 4				_													
Ammonia Nitrogen	mg/l	2	0.570	0.964	0.41	0.35	0.11	0.26	J 0.34	0.26	0.33	0.36	0.45	J 0.44	0.9	0.61	1	J- 0.41
Biological Oxygen Demand	mg/l	NS	9.857	53.758	< 4	< 2	< 2	b 4	< 2	3.3	b 2	b 2.1	b 3.5	2.3	< 2	< 2	< 2	3.6
Bromide	mg/l	2	35.157	254.793	< 0.1	< 1	< 0.2	< 2	0.31	0.49	< 0.37	J 0.18	0.27	0.18	J 0.096	J 0.082	< 0.073	< 0.15
Chloride	mg/l	250	6.267	12.453	4.5	3.1	10.8	80.2	79.2	B 108	65.8	52.8	102	116	36.2	38.7	30	61.4
Chemical Oxygen Demand	mg/l	NS	43.429	224.151	21	19.2	20.8	26.2	27.5	49.5	34	28.9	34.4	29.4	B 22.2	18.9	< 5	22.8
Color	P.C.U.	15	132.000	538.940	200	60			150	125				250				25
Nitrate	mg/l	10	0.189	0.310	< 0.1	< 0.02	0.65	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.2	< 0.02
Sulfate	mg/l	250	16.176	48.028	8.1	15.4	J 2.1	J 4.6	J 1.6	< 5	J 2.8	JB 3.1	30.5	22	7.7	B 19.7	15.1	13.3
Total Alkalinity	mg/l	NS	119.143	191.712	72	125	B 132	190	287	B 247	315	276	B 311	284	271	B 291	B 233	B 310
Total Cvanide	mg/l	0.1	0.010	0.010	0.006	< 0.010	102		< 0.010	< 0.010				J< 0.010				< 0.005
Total Dissolved Solids	mg/l	500	223.571	534.675	160	250	184	404	J 495	J 502	487	B 393	539	504	329	392	314	476
Total Hardness	mg/l	NS	155.000	330.682	77	143	112	236	290	300	280	224	376	340	224	260	220	280
Total Kjeldahl Nitrogen	mg/l	NS	0.857	2.421	0.94	< 1	0.94	0.54	J 0.9	J 1.1	1.1	1.2	1.3	1.1	1.2	1.1	1.4	1.2
Total Organic Carbon	mg/l	500	14.586	40.031	11	10.3	6.3	12.8	13.9	11.9	13.2	11.3	10.9	9.8	7	B 7.8	B 7	9.9
Total Phenols	mg/l	0.001	0.005	0.008	0.0050	< 0.0020	< 0.01	< 0.01	J< 0.01	< 0.01	0.014	< 0.010	B 0.013	JF1 0.010	< 0.010	< 0.005	<* 0.005	J- 0.009
INORGANIC PARAMETERS	6/.	0.001	0.005	0.000	0.0050	0.0020	. 0.01	0.02	0.01	0.01	0.021	0.020	5 0.015	0.010	0.020	1 0.000	1 0.000	0.003
Aluminum	mg/l	0.1	10.707	55.494	3	0.593			J 0.061	J 0.062				J 0.092				< 0.06
Antimony	mg/l	0.003	0.014	0.020	< 0.002	< 0.0051			< 0.02	< 0.02				< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.013	0.028	< 0.0076	< 0.0022			J 0.007	J 0.0092				J 0.0095				J 0.0062
Barium	mg/l	1	0.125	0.369	0.0259	0.03			0.1	0.083				0.092				0.071
Beryllium	mg/l	0.003	0.004	0.013	0.0002	< 0.0002			< 0.0020	< 0.0020				< 0.0020				< 0.0003
Boron	mg/l	1	0.500	0.500	0.033	0.00037			0.061	0.07				0.14				0.1
Cadmium	mg/l	0.01	0.008	0.024	< 0.00017	< 0.00031	< 0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	< 0.002	< 0.001	< 0.002	< 0.0005	< 0.0005	< 0.0005
Calcium	mg/l	NS	44.400	89.503	22.841	43	32	67.7	80.8	82.1	B 79.1	B 62.6	102	89.7	65.3	72.5	68.2	85.9
Chromium	mg/l	NS	0.019	0.077	0.0025	< 0.0052		• • • • • • • • • • • • • • • • • • • •	J 0.001	J 0.0014				J 0.0016				< 0.001
Hexavalent Chromium	mg/l	0.05	0.015	0.052	< 0.01	< 0.02			< 0.01	< 0.01				< 0.01				J- 0.0058
Cobalt	mg/l	0.005	0.023	0.075	0.0055	0.0059			0.0065	0.0078				0.0051				J 0.0031
Copper	mg/l	0.2	0.049	0.218	< 0.0	< 0.0			< 0.0	< 0.0				< 0.0				< 0.0016
Iron	mg/l	0.3	19.830	80.896	5.136	6.06	1.9	6.5	8.8	8.3	7.3	5.5	14	10.7	6	7.1	3.8	9.7
Lead	mg/l	0.025	0.014	0.066	0.0024	< 0.0014	< 0.01	< 0.01	< 0.005	< 0.005	< 0.003	< 0.01	< 0.01	< 0.005	< 0.01	J 0.0052	< 0.003	< 0.003
Magnesium	mg/l	35	10.771	26.215	4.806	8.62	5	13.7	17.1	21.2	18.9	15	24	22	B 15	16.5	13.3	18.9
Manganese	mg/l	0.3	0.427	1.079	0.148	0.274	0.15	0.51	0.52	0.46	0.43	^ 0.37	0.87	B 1.4	B 0.65	B 0.92	0.34	B 1.5
Mercury	mg/l	0.002	0.000	0.000	< 0.000047	< 0.00002	3.23	3.51	J< 0.0002	< 0.0002	30	3.37	3,0,	< 0.0002	3.00	3.32	5.5.	R < 0.00012
Nickel	mg/l	0.002	0.074	0.310	0.009	0.005			0.013	0.010				J 0.007				J 0.0035
Potassium	mg/l	NS	1.951	6.366	1.182	0.937	1.2	2.5	B 1.8	1.1	1.4	1.1	1.3	1.2	1.3	1.3	1.7	1.1
Selenium	mg/l	0.01	0.006	0.015	R 0.0318	< 0.0023		2.5	< 0.015	< 0.015	4.7	1.1	1.5	< 0.015	1.5	1.5	1.7	< 0.0087
Silver	mg/l	0.05	0.010	0.010	< 0.00056	< 0.0023			< 0.013	< 0.013				< 0.013				< 0.0087
Sodium	mg/l	20	4.107	7.827	2.715	2.69	31.1	56.9	B 68.9	58.7	65.1	55.9	61.2	65.2	34.9	36.9	26.6	44.5
Thallium	mg/l	0.004	0.011	0.016	< 0.0048	0.0084	31.1	30.3	< 0.02	< 0.02	03.1	33.3	01.2	< 0.02	57.5	30.3	20.0	< 0.01
Vanadium	mg/l	0.014	0.011	0.101	0.0048	< 0.0084			J 0.0029	J 0.0021				J 0.0026				J 0.0025
Zinc	mg/l	0.3	0.106	0.374	R 0.0177	0.0557			0.021	B 0.02				0.02				JB 0.0061
VOLATILE ORGANIC COMPOUNDS	0.	0.5	0.100	0.574	<mdl< td=""><td><mdl< td=""><td>NA</td><td>NA</td><td>< MDL</td><td>< MDL</td><td>NA</td><td>NA NA</td><td>NA</td><td>< MDL</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<></td></mdl<>	<mdl< td=""><td>NA</td><td>NA</td><td>< MDL</td><td>< MDL</td><td>NA</td><td>NA NA</td><td>NA</td><td>< MDL</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	NA	NA	< MDL	< MDL	NA	NA NA	NA	< MDL	NA	NA	NA	NA

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J-" indicates the estimated parameter is biased low
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "R" indicates a result reject by the DUSR report
- 9. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- 10. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- ${\bf 11.}\ Bolded\ concentrations\ represent\ historically\ high\ concentrations.$

MW-14I Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

(mg/l unless otherwise noted) FIELD PARAMETERS Conductivity	NS NS NS NS 6.5-8.5 NS 5 2 NS 2 NS 2 250 NS 15 10 250 NS 0.1 500 NS NS 0.1 500 0.001	329.42955.914 7.634 9.313 85.631 0.433 4.000 3.529 16.750 17.857 59.667 0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	Dev. 591.111 17.676 9.208 15.500 514.839 0.966 4.000 25.471 36.284 34.866 398.434 0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	316	Saseline 387	Routine 405 0.14 -164.3 8.04 5.65 35.0	Routine 372 0.16 -154 7.73 8.07 73.0 0.085 < 2 < 0.2 22.9 < 10 < 0.05 46.7 118 248 200 0.3 J 0.51 < 0.01	416 0.15 -101.2 7.25 8.72 53.4	310 1.83 -93.1 7.33 6.26 32.7 0.059 < 2 < 0.2 B 32.9 12.2 5 < 0.05 61.9 B 142 < 0.01 310 236 J 0.23 J 0.99 J 0.0055	Routine 395 0.23 -20.7 7.84 12.01 30.1 0.036 < 2 < 0.37 B 27.4 < 5 J 0.028 50.4 134 269 192 J 0.17 1.3	Routine 256 0.23 -89.3 7.24 8.68 64.5 0.094 < 2 < 0.2 21.8 J 8.5 J 0.027 B 40.8 B 55.9 B 249 188 0.31 J 0.97	< 0.05 46.8 B 140	387 0.29 81.9 7.47 11.56 33.1	S87 1.72 1.72 1.72 1.72 1.8 63.2	Routine 669 0.2 -77.20 7.71 9.8 22.4 0.052 < 2 < 0.073 25 < 5 < 0.02 B 43.5 B 147 277 196 J 0.19 JB 0.54	Routine 376 0.2 -164.10 7.75 11.9 28.6	F1 J- 0.039 < 2 < 0.073 < 2 0.073 < 0.073 < 0.073 < 0.073 < 0.002 43.2 B 128 < 0.005 239 180 0.22 1.5
Conductivity Dissolved Oxygen Eh my pH SU Temperature Turbidity EACHATE INDICATORS Ammonia Nitrogen Biological Oxygen Demand Bromide Chemical Oxygen Demand Color Nitrate Sulfate Total Alkalinity Total Cyanide Total Dissolved Solids Total Hardness Total Kjeldahl Nitrogen Total Organic Carbon Total Phenols NORGANIC PARAMETERS Aluminum Antimony Arsenic Biological Oxygen Demand Mg/I Mg/I Mg/I Mg/I Mg/I Mg/I Mg/I Mg/I	NS NS NS 6.5-8.5 NS 5 2 NS 2 NS 2 250 NS 15 10 250 NS 0.1 500 NS NS NS 0.1 500 O.1 5000 O.001	55.914 7.634 9.313 85.631 0.433 4.000 3.529 16.750 17.857 59.667 0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	17.676 9.208 15.500 514.839 0.966 4.000 25.471 36.284 34.866 398.434 0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	-154 7.65 10.89 3.04 0.061 < 4 < 0.1 13 < 5 < 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	6.6 7.42 7.83 2.10 < 0.1 < 2 < 1 20 < 5 5 < 0.02 41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002	0.14 -164.3 8.04 5.65 35.0 0.022 < 2 < 0.2 25.1 J 6.9 J 0.048 53.7 B 143 87 188 0.27 1.5	0.16 -154 7.73 8.07 73.0 0.085 < 2 < 0.2 22.9 < 10 < 0.05 46.7 118 248 200 0.3 J 0.51	0.15 -101.2 7.25 8.72 53.4 J 0.088 < 2 < 0.2 26.1 J 5.1 < 5 < 0.05 J 56.1 134 < 0.01 J 271 212 < 0.2 1.1	1.83 -93.1 7.33 6.26 32.7 0.059 < 2 < 0.2 B 32.9 12.2 5 < 0.05 61.9 B 142 < 0.01 310 236 J 0.23 J 0.99	0.23 -20.7 7.84 12.01 30.1 0.036 < 2 < 0.37 B 27.4 < 5 J 0.028 50.4 134 269 192 J 0.17 1.3	0.23 -89.3 7.24 8.68 64.5 0.094 < 2 < 0.2 21.8 J 8.5 J 0.027 B 40.8 B 55.9 B 249 188 0.31	0.38 29.2 7.80 10.83 26.1 0.047 < 2 < 0.2 28.4 J 6.9 < 0.05 46.8 B 140 262 200 0.28	0.29 81.9 7.47 11.56 33.1 0.064 < 2 < 0.2 28.7 B 47.2 < 5 < 0.05 B 47.2 134 J< 0.01 263 208 0.32	1.72 -126.7 7.26 11.8 63.2 0.074 < 2 < 0.2 20.4 JB 5.2 < 0.05 31.7 110 201 216 J 0.18	0.2 -77.20 7.71 9.8 22.4 0.052 < 2 < 0.073 25 < 5 < 0.02 B 43.5 B 147 277 196 J 0.19	0.2 -164.10 7.75 11.9 28.6 0.082 < 2 < 0.073 22.3 < 5 < 0.02 37.6 B 124 227 168 0.29	0.3 -184.40 8.01 13.2 3.82 F1 J- 0.039 < 2 < 0.073 26.5 < 5 10 < 0.02 43.2 B 128 < 0.005 239 180 0.22
Dissolved Oxygen mg/l Eh mV pH SU Temperature C° Turbidity N.T.U EACHATE INDICATORS Ammonia Nitrogen mg/l Biological Oxygen Demand mg/l Chloride mg/l Chemical Oxygen Demand mg/l Sulfate mg/l Total Alkalinity mg/l Total Cyanide mg/l Total Dissolved Solids mg/l Total Hardness mg/l Total Organic Carbon mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Beryllium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l Hexavalent Chromium mg/l I	NS NS NS 6.5-8.5 NS 5 2 NS 2 NS 2 250 NS 15 10 250 NS 0.1 500 NS NS NS 0.1 500 O.1 5000 O.001	55.914 7.634 9.313 85.631 0.433 4.000 3.529 16.750 17.857 59.667 0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	17.676 9.208 15.500 514.839 0.966 4.000 25.471 36.284 34.866 398.434 0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	-154 7.65 10.89 3.04 0.061 < 4 < 0.1 13 < 5 < 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	6.6 7.42 7.83 2.10 < 0.1 < 2 < 1 20 < 5 5 < 0.02 41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002	0.14 -164.3 8.04 5.65 35.0 0.022 < 2 < 0.2 25.1 J 6.9 J 0.048 53.7 B 143 87 188 0.27 1.5	0.16 -154 7.73 8.07 73.0 0.085 < 2 < 0.2 22.9 < 10 < 0.05 46.7 118 248 200 0.3 J 0.51	0.15 -101.2 7.25 8.72 53.4 J 0.088 < 2 < 0.2 26.1 J 5.1 < 5 < 0.05 J 56.1 134 < 0.01 J 271 212 < 0.2 1.1	1.83 -93.1 7.33 6.26 32.7 0.059 < 2 < 0.2 B 32.9 12.2 5 < 0.05 61.9 B 142 < 0.01 310 236 J 0.23 J 0.99	0.23 -20.7 7.84 12.01 30.1 0.036 < 2 < 0.37 B 27.4 < 5 J 0.028 50.4 134 269 192 J 0.17 1.3	0.23 -89.3 7.24 8.68 64.5 0.094 < 2 < 0.2 21.8 J 8.5 J 0.027 B 40.8 B 55.9 B 249 188 0.31	0.38 29.2 7.80 10.83 26.1 0.047 < 2 < 0.2 28.4 J 6.9 < 0.05 46.8 B 140 262 200 0.28	0.29 81.9 7.47 11.56 33.1 0.064 < 2 < 0.2 28.7 B 47.2 < 5 < 0.05 B 47.2 134 J< 0.01 263 208 0.32	1.72 -126.7 7.26 11.8 63.2 0.074 < 2 < 0.2 20.4 JB 5.2 < 0.05 31.7 110 201 216 J 0.18	0.2 -77.20 7.71 9.8 22.4 0.052 < 2 < 0.073 25 < 5 < 0.02 B 43.5 B 147 277 196 J 0.19	0.2 -164.10 7.75 11.9 28.6 0.082 < 2 < 0.073 22.3 < 5 < 0.02 37.6 B 124 227 168 0.29	0.3 -184.40 8.01 13.2 3.82 F1 J- 0.039 < 2 < 0.073 26.5 < 5 10 < 0.02 43.2 B 128 < 0.005 239 180 0.22
Eh mV pH SU Temperature C° Turbidity N.T.U EACHATE INDICATORS Ammonia Nitrogen mg/l Biological Oxygen Demand mg/l Chloride mg/l Chemical Oxygen Demand mg/l Color P.C.U. Nitrate mg/l Sulfate mg/l Total Alkalinity mg/l Total Cyanide mg/l Total Dissolved Solids mg/l Total Hardness mg/l Total Nitrogen mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Beryllium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l Hexavalent Chromium mg/l I	NS 6.5-8.5 NS 5 2 NS 2 NS 2 250 NS 15 10 250 NS 0.1 500 NS NS NS 500 0.001	-55.914 7.634 9.313 85.631 0.433 4.000 3.529 16.750 17.857 59.667 0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	17.676 9.208 15.500 514.839 0.966 4.000 25.471 36.284 34.866 398.434 0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	7.65 10.89 3.04 0.061 < 4 < 0.1 13 < 5 5 < 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	7.42 7.83 2.10 < 0.1 < 2 < 1 20 < 5 5 < 0.02 41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002	-164.3 8.04 5.65 35.0 0.022 < 2 < 0.2 25.1 J 6.9 J 0.048 53.7 B 143 87 188 0.27 1.5	-154 7.73 8.07 73.0 0.085 < 2 < 0.2 22.9 < 10 < 0.05 46.7 118 248 200 0.3 J 0.51	J 0.088 < 2 < 0.2 26.1 J 5.1 < 5 < 0.05 J 56.1 134 < 0.01 J 271 212 < 0.2 1.1	-93.1 7.33 6.26 32.7 0.059 < 2 < 0.2 B 32.9 12.2 5 < 0.05 61.9 B 142 < 0.01 310 236 J 0.23 J 0.99	-20.7 7.84 12.01 30.1 0.036 < 2 < 0.37 B 27.4 < 5 J 0.028 50.4 134 269 192 J 0.17 1.3	-89.3 7.24 8.68 64.5 0.094 < 2 < 0.2 21.8 J 8.5 J 0.027 B 40.8 B 55.9 B 249 188 0.31	29.2 7.80 10.83 26.1 0.047 < 2 < 0.2 28.4 J 6.9 < 0.05 46.8 B 140 262 200 0.28	81.9 7.47 11.56 33.1 0.064 < 2 < 0.2 28.7 B 47.2 < 5 < 0.05 B 47.2 134 J< 0.01 263 208 0.32	-126.7 7.26 11.8 63.2 0.074 < 2 < 0.2 20.4 JB 5.2 < 0.05 31.7 110 201 216 J 0.18	-77.20 7.71 9.8 22.4 0.052 < 2 < 0.073 25 < 5 < 0.02 B 43.5 B 147 277 196 J 0.19	-164.10 7.75 11.9 28.6 0.082 < 2 < 0.073 22.3 < 5 < 0.02 37.6 B 124 227 168 0.29	-184.40 8.01 13.2 3.82 F1 J- 0.039 < 2 < 0.073 26.5 < 5 10 < 0.02 43.2 B 128 < 0.005 239 180 0.22
pH SU Temperature C° Turbidity N.T.U EACHATE INDICATORS Ammonia Nitrogen mg/l Biological Oxygen Demand mg/l Chloride mg/l Chloride mg/l Color P.C.U. Nitrate mg/l Sulfate mg/l Total Alkalinity mg/l Total Cyanide mg/l Total Dissolved Solids mg/l Total Hardness mg/l Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Beryllium mg/l Beryllium mg/l Boron mg/l Calcium mg/l Calcium mg/l Chromium mg/l Chromium mg/l Chromium mg/l Chromium mg/l Chromium mg/l Chromium mg/l Hexavalent Chromium mg/l Hexavalent Chromium mg/l INT.U C° Tog/l	6.5-8.5 NS 5 2 NS 2 250 NS 15 10 250 NS 0.1 500 NS NS 500 0.001	7.634 9.313 85.631 0.433 4.000 3.529 16.750 17.857 59.667 0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	9.208 15.500 514.839 0.966 4.000 25.471 36.284 34.866 398.434 0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	7.65 10.89 3.04 0.061 < 4 < 0.1 13 < 5 5 < 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	7.42 7.83 2.10 < 0.1 < 2 < 1 20 < 5 5 < 0.02 41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002	8.04 5.65 35.0 0.022 < 2 < 0.2 25.1 J 6.9 J 0.048 53.7 B 143 87 188 0.27 1.5	7.73 8.07 73.0 0.085 < 2 < 0.2 22.9 < 10 < 0.05 46.7 118 248 200 0.3 J 0.51	7.25 8.72 53.4 J 0.088 < 2 < 0.2 26.1 J 5.1 < 5 < 0.05 J 56.1 134 < 0.01 J 271 212 < 0.2 1.1	7.33 6.26 32.7 0.059 < 2 < 0.2 B 32.9 12.2 5 < 0.05 61.9 B 142 < 0.01 310 236 J 0.23 J 0.99	7.84 12.01 30.1 0.036 < 2 < 0.37 B 27.4 < 5 J 0.028 50.4 134 269 192 J 0.17 1.3	7.24 8.68 64.5 0.094 < 2 < 0.2 21.8 J 8.5 J 0.027 B 40.8 B 55.9 B 249 188 0.31	7.80 10.83 26.1 0.047 < 2 < 0.2 28.4 J 6.9 < 0.05 46.8 B 140 262 200 0.28	7.47 11.56 33.1 0.064 < 2 < 0.2 28.7 B 47.2 < 5 < 0.05 B 47.2 134 J< 0.01 263 208 0.32	7.26 11.8 63.2 0.074 < 2 < 0.2 20.4 JB 5.2 < 0.05 31.7 110 201 216 J 0.18	7.71 9.8 22.4 0.052 < 2 < 0.073 25 < 5 < 0.02 B 43.5 B 147 277 196 J 0.19	7.75 11.9 28.6 0.082 < 2 < 0.073 22.3 < 5 < 0.02 37.6 B 124 227 168 0.29	8.01 13.2 3.82 F1 J- 0.039 < 2 < 0.073 26.5 < 5 10 < 0.02 43.2 B 128 < 0.005 239 180 0.22
Temperature C° Turbidity N.T.U LEACHATE INDICATORS Ammonia Nitrogen mg/l Biological Oxygen Demand mg/l Bromide mg/l Chloride mg/l Chemical Oxygen Demand mg/l Color P.C.U. Nitrate mg/l Sulfate mg/l Total Alkalinity mg/l Total Cyanide mg/l Total Dissolved Solids mg/l Total Hardness mg/l Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Arsenic mg/l Barium mg/l Beryllium mg/l Boron mg/l Calcium mg/l Chromium mg/l Chromium mg/l Chromium mg/l Hexavalent Chromium mg/l Hexavalent Chromium mg/l Hexavalent Chromium mg/l I Colcium mg/l Hexavalent Chromium mg/l I Colcium mg/l Hexavalent Chromium mg/l I I MILDICATOR I MRJ/l I M.T.U I MRJ/l I M	NS 5 2 NS 2 250 NS 15 10 250 NS 0.1 500 NS NS NS 500 0.001	9.313 85.631 0.433 4.000 3.529 16.750 17.857 59.667 0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	15.500 514.839 0.966 4.000 25.471 36.284 34.866 398.434 0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	10.89 3.04 0.061 < 4 < 0.1 13 < 5 5 < 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	7.83 2.10 < 0.1 < 2 < 1 20 < 5 5 < 0.02 41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002	5.65 35.0 0.022 < 2 < 0.2 25.1 J 6.9 J 0.048 53.7 B 143 87 188 0.27 1.5	8.07 73.0 0.085 < 2 < 0.2 22.9 < 10 < 0.05 46.7 118 248 200 0.3 J 0.51	8.72 53.4 J 0.088 < 2 < 0.2 26.1 J 5.1 < 5 < 0.05 J 56.1 134 < 0.01 J 271 212 < 0.2 1.1	6.26 32.7 0.059 < 2 < 0.2 B 32.9 12.2 5 < 0.05 61.9 B 142 < 0.01 310 236 J 0.23 J 0.99	12.01 30.1 0.036 < 2 < 0.37 B 27.4 < 5 J 0.028 50.4 134 269 192 J 0.17 1.3	8.68 64.5 0.094 < 2 < 0.2 21.8 J 8.5 J 0.027 B 40.8 B 55.9 B 249 188 0.31	10.83 26.1 0.047 < 2 < 0.2 28.4 J 6.9 < 0.05 46.8 B 140 262 200 0.28	11.56 33.1 0.064 < 2 < 0.2 28.7 B 47.2 < 5 < 0.05 B 47.2 134 J< 0.01 263 208 0.32	11.8 63.2 0.074 < 2 < 0.2 20.4 JB 5.2 < 0.05 31.7 110 201 216 J 0.18	9.8 22.4 0.052 < 2 < 0.073 25 < 5 < 0.02 B 43.5 B 147 277 196 J 0.19	11.9 28.6 0.082 < 2 < 0.073 22.3 < 5 < 0.02 37.6 B 124 227 168 0.29	F1 J- 0.039 < 2 < 0.073 26.5 < 5 10 < 0.002 43.2 B 128 < 0.005 239 180 0.22
Turbidity N.T.U LEACHATE INDICATORS Ammonia Nitrogen mg/l Biological Oxygen Demand mg/l Bromide mg/l Chloride mg/l Chemical Oxygen Demand mg/l Color P.C.U. Nitrate mg/l Sulfate mg/l Total Alkalinity mg/l Total Cyanide mg/l Total Dissolved Solids mg/l Total Hardness mg/l Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Arsenic mg/l Barium mg/l Beryllium mg/l Boron mg/l Calcium mg/l Chromium mg/l Chromium mg/l Chromium mg/l Hexavalent Chromium mg/l Hexavalent Chromium mg/l I mg/l I mg/l Hexavalent Chromium mg/l I mg/l	5 2 NS 2 250 NS 15 10 250 NS 0.1 500 NS NS 500 0.001	85.631 0.433 4.000 3.529 16.750 17.857 59.667 0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	514.839 0.966 4.000 25.471 36.284 34.866 398.434 0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	3.04 0.061 4 0.1 13 5 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	 2.10 < 0.1 < 2 < 1 20 < 5 < 0.02 41.6 120 < 0.01 242 185 < 1.6 < 0.002 	35.0 0.022 2 0.02 25.1 J 6.9 J 0.048 53.7 B 143 87 188 0.27 1.5	73.0 0.085 2 0.2 22.9 10 0.05 46.7 118 248 200 0.3 J 0.51	53.4 J 0.088 < 2 < 0.2 26.1 J 5.1 < 5 < 0.05 J 56.1 134 < 0.01 J 271 212 < 0.2 1.1	32.7 0.059 < 2 < 0.2 B 32.9 12.2 5 < 0.05 61.9 B 142 < 0.01 310 236 J 0.23 J 0.99	30.1 0.036 2 0.037 8 27.4 5 0.028 50.4 134 269 192 J 0.17 1.3	0.094 < 2 < 0.2 21.8 J 8.5 J 0.027 B 40.8 B 55.9 B 249 188 0.31	26.1 0.047 2 0.02 28.4 J 6.9 0.05 46.8 B 140 262 200 0.28	33.1 0.064 2 0.02 28.7 B 47.2 5 0.05 B 47.2 134 J< 0.01 263 208 0.32	63.2 0.074 2 0.2 20.4 JB 5.2 0.05 31.7 110 201 216 J 0.18	22.4 0.052 0.073 5 0.002 4 0.002 8 43.5 8 147 277 196 J 0.19	28.6 0.082 < 2 < 0.073 22.3 < 5 < 0.02 37.6 B 124 227 168 0.29	3.82 F1 J- 0.039 < 2 < 0.073 26.5 < 5 10 < 0.02 43.2 B 128 < 0.005 239 180 0.22
Ammonia Nitrogen mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	2 NS 2 250 NS 15 10 250 NS 0.1 500 NS 0.1 500 NS	0.433 4.000 3.529 16.750 17.857 59.667 0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	0.966 4.000 25.471 36.284 34.866 398.434 0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	0.061 < 4 < 0.1 13 < 5 5 < 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	< 0.1 < 2 < 1 20 < 5 5 < 0.02 41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002	0.022 < 2 < 0.2 25.1 J 6.9 J 0.048 53.7 B 143 87 188 0.27 1.5	0.085 < 2 < 0.2 22.9 < 10 < 0.05 46.7 118 248 200 0.3 J 0.51	J 0.088 < 2 < 0.2 26.1 J 5.1 < 5 < 0.05 J 56.1 134 < 0.01 J 271 212 < 0.2 1.1	0.059 < 2 < 0.2 B 32.9 12.2 5 < 0.05 61.9 B 142 < 0.01 310 236 J 0.23 J 0.99	0.036 < 2 < 0.37 B 27.4 < 5 J 0.028 50.4 134 269 192 J 0.17 1.3	0.094 2 2 21.8 J 8.5 J 0.027 B 40.8 B 55.9 B 249 188 0.31	0.047 < 2 < 0.2 28.4 J 6.9 < 0.05 46.8 B 140 262 200 0.28	0.064 < 2 < 0.2 28.7 B 47.2 < 5 < 0.05 B 47.2 134 J< 0.01 263 208 0.32	0.074 < 2 < 0.2 20.4 JB 5.2 < 0.05 31.7 110 201 216 J 0.18	0.052 2 2 2 5 5 5 5 6 147 196 J 0.19	0.082 < 2 < 0.073 22.3 < 5 < 0.02 37.6 B 124 227 168 0.29	F1 J- 0.039 < 2 < 0.073 26.5 < 5 10 < 0.02 43.2 B 128 < 0.005 239 180 0.22
Ammonia Nitrogen mg/l Biological Oxygen Demand mg/l Bromide mg/l Chloride mg/l Chemical Oxygen Demand mg/l Color P.C.U. Nitrate mg/l Sulfate mg/l Total Alkalinity mg/l Total Cyanide mg/l Total Hardness mg/l Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Beryllium mg/l Beryllium mg/l Boron mg/l Calcium mg/l Chromium mg/l Chromium mg/l Chromium mg/l Hexavalent Chromium mg/l Mg/l Hexavalent Chromium mg/l Mg/l Mg/l Mg/l Mg/l Mg/l Mg/l Mg/l M	NS 2 2 250 NS 15 10 250 NS 0.1 500 NS NS 500 0.001	4.000 3.529 16.750 17.857 59.667 0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	4.000 25.471 36.284 34.866 398.434 0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	< 4 < 0.1 13 < 5 5 < 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	< 2 < 1 20 < 5 5 < 0.02 41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002	< 2 < 0.2 25.1 J 6.9 J 0.048 53.7 B 143 87 188 0.27 1.5	< 2 < 0.2 22.9 < 10 < 0.05 46.7 118 248 200 0.3 J 0.51	 2 0.2 26.1 J 5.1 5 0.05 J 56.1 134 0.01 J 271 212 0.2 1.1 	< 2 < 0.2 B 32.9 12.2 5 < 0.05 61.9 B 142 < 0.01 310 236 J 0.23 J 0.99	 2 0.37 27.4 5 30.028 50.4 134 269 192 J 0.17 1.3 	< 2 < 0.2 21.8 J 8.5 J 0.027 B 40.8 B 55.9 B 249 188 0.31	< 2 < 0.2 28.4 J 6.9 < 0.05 46.8 B 140 262 200 0.28	< 2 < 0.2 28.7 B 47.2 < 5 < 0.05 B 47.2 134 J< 0.01 263 208 0.32	< 2 < 0.2 20.4 JB 5.2 < 0.05 31.7 110 201 216 J 0.18	< 2 < 0.073 25 < 5 < 0.02 B 43.5 B 147 277 196 J 0.19	< 2 < 0.073 22.3 < 5 < 0.02 37.6 B 124 227 168 0.29	 < 2 < 0.073 26.5 < 5 10 < 0.02 43.2 B 128 < 0.005 239 180 0.22
Biological Oxygen Demand mg/l Bromide mg/l Chloride mg/l Chemical Oxygen Demand mg/l Color P.C.U. Nitrate mg/l Sulfate mg/l Total Alkalinity mg/l Total Cyanide mg/l Total Dissolved Solids mg/l Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Chromium mg/l Hexavalent Chromium mg/l	NS 2 2 250 NS 15 10 250 NS 0.1 500 NS NS 500 0.001	4.000 3.529 16.750 17.857 59.667 0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	4.000 25.471 36.284 34.866 398.434 0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	< 4 < 0.1 13 < 5 5 < 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	< 2 < 1 20 < 5 5 < 0.02 41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002	< 2 < 0.2 25.1 J 6.9 J 0.048 53.7 B 143 87 188 0.27 1.5	< 2 < 0.2 22.9 < 10 < 0.05 46.7 118 248 200 0.3 J 0.51	 2 0.2 26.1 J 5.1 5 0.05 J 56.1 134 0.01 J 271 212 0.2 1.1 	< 2 < 0.2 B 32.9 12.2 5 < 0.05 61.9 B 142 < 0.01 310 236 J 0.23 J 0.99	 2 0.37 27.4 5 30.028 50.4 134 269 192 J 0.17 1.3 	< 2 < 0.2 21.8 J 8.5 J 0.027 B 40.8 B 55.9 B 249 188 0.31	< 2 < 0.2 28.4 J 6.9 < 0.05 46.8 B 140 262 200 0.28	< 2 < 0.2 28.7 B 47.2 < 5 < 0.05 B 47.2 134 J< 0.01 263 208 0.32	< 2 < 0.2 20.4 JB 5.2 < 0.05 31.7 110 201 216 J 0.18	< 2 < 0.073 25 < 5 < 0.02 B 43.5 B 147 277 196 J 0.19	< 2 < 0.073 22.3 < 5 < 0.02 37.6 B 124 227 168 0.29	 < 2 < 0.073 26.5 < 5 10 < 0.02 43.2 B 128 < 0.005 239 180 0.22
Bromide mg/l Chloride mg/l Chemical Oxygen Demand mg/l Color P.C.U. Nitrate mg/l Sulfate mg/l Total Alkalinity mg/l Total Cyanide mg/l Total Dissolved Solids mg/l Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Beryllium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l Hexavalent Chromium mg/l	2 250 NS 15 10 250 NS 0.1 500 NS NS S 500 0.001	3.529 16.750 17.857 59.667 0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	25.471 36.284 34.866 398.434 0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	13 < 5 5 < 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	<pre> 1 20 < 5 5 < 0.02 41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002 </pre>	Graph Street,	< 0.2 22.9 < 10 < 0.05 46.7 118 248 200 0.3 J 0.51	 0.2 26.1 J 5.1 5 0.05 J 56.1 134 0.01 J 271 212 0.2 1.1 	 0.2 B 32.9 12.2 5 0.05 61.9 B 142 0.01 310 236 J 0.23 J 0.99 	J 0.028 50.4 134 269 192 J 0.17 1.3	V 0.2 21.8 J 8.5 J 0.027 B 40.8 B 55.9 B 249 188 0.31	< 0.2 28.4 J 6.9 < 0.05 46.8 B 140 262 200 0.28	 0.2 28.7 B 47.2 5 0.05 B 47.2 134 J 0.01 263 208 0.32 	< 0.2 20.4 JB 5.2 < 0.05 31.7 110 201 216 J 0.18	 0.073 25 5 0.02 43.5 147 277 196 J 0.19 	 0.073 22.3 5 0.02 37.6 124 227 168 0.29 	 < 0.073 26.5 < 5 10 < 0.02 43.2 B 128 < 0.005 239 180 0.22
Chloride mg/l Chemical Oxygen Demand mg/l Color P.C.U. Nitrate mg/l Sulfate mg/l Total Alkalinity mg/l Total Cyanide mg/l Total Dissolved Solids mg/l Total Hardness mg/l Total Organic Carbon mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Beryllium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Chromium mg/l Hexavalent Chromium mg/l	250 NS 15 10 250 NS 0.1 500 NS NS S 0.0 0.001	16.750 17.857 59.667 0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	36.284 34.866 398.434 0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	13 < 5 5 < 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	20 < 5 5 < 0.02 41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002	25.1 J 6.9 J 0.048 53.7 B 143 87 188 0.27 1.5	22.9 < 10 < 0.05 46.7 118 248 200 0.3 J 0.51	26.1 J 5.1 < 5 < 0.05 J 56.1 134 < 0.01 J 271 212 < 0.2 1.1	B 32.9 12.2 5 < 0.05 61.9 B 142 < 0.01 310 236 J 0.23 J 0.99	B 27.4 < 5 J 0.028 50.4 134 269 192 J 0.17 1.3	J 0.027 B 40.8 B 55.9 B 249 188 0.31	28.4 J 6.9 < 0.05 46.8 B 140 262 200 0.28	28.7 B 47.2 < 5 < 0.05 B 47.2 134 J< 0.01 263 208 0.32	20.4 JB 5.2 < 0.05 31.7 110 201 216 J 0.18	25 < 5 < 0.02 B 43.5 B 147 277 196 J 0.19	22.3 < 5 < 0.02 37.6 B 124 227 168 0.29	26.5 < 5 10 < 0.02 43.2 B 128 < 0.005 239 180 0.22
Chemical Oxygen Demand mg/l Color P.C.U. Nitrate mg/l Sulfate mg/l Total Alkalinity mg/l Total Cyanide mg/l Total Dissolved Solids mg/l Total Hardness mg/l Total Organic Carbon mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Beryllium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	NS 15 10 250 NS 0.1 500 NS NS 500 0.001	17.857 59.667 0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	34.866 398.434 0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	< 5 5 < 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	< 5 5 < 0.02 41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002	J 6.9 J 0.048 53.7 B 143 87 188 0.27 1.5	< 10 < 0.05 46.7 118 248 200 0.3 J 0.51	J 5.1 < 5 < 0.05 J 56.1 134 < 0.01 J 271 212 < 0.2 1.1	12.2 5 < 0.05 61.9 B 142 < 0.01 310 236 J 0.23 J 0.99	< 5 J 0.028 50.4 134 269 192 J 0.17 1.3	J 8.5 J 0.027 B 40.8 B 55.9 B 249 188 0.31	J 6.9 < 0.05 46.8 B 140 262 200 0.28	B 47.2 < 5 < 0.05 B 47.2 134 J< 0.01 263 208 0.32	JB 5.2 < 0.05 31.7 110 201 216 J 0.18	< 5 < 0.02 B 43.5 B 147 277 196 J 0.19	< 5 < 0.02 37.6 B 124 227 168 0.29	< 5 10 < 0.02 43.2 B 128 < 0.005 239 180 0.22
Color P.C.U. Nitrate mg/l Sulfate mg/l Total Alkalinity mg/l Total Cyanide mg/l Total Dissolved Solids mg/l Total Hardness mg/l Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Arsenic mg/l Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l Hexavalent Chromium mg/l	15 10 250 NS 0.1 500 NS NS 500 0.001	59.667 0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	398.434 0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	5 < 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	5 < 0.02 41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002	J 0.048 53.7 B 143 87 188 0.27 1.5	< 0.05 46.7 118 248 200 0.3 J 0.51	< 5 < 0.05 J 56.1 134 < 0.01 J 271 212 < 0.2 1.1	5 < 0.05 61.9 B 142 < 0.01 310 236 J 0.23 J 0.99	J 0.028 50.4 134 269 192 J 0.17 1.3	J 0.027 B 40.8 B 55.9 B 249 188 0.31	< 0.05 46.8 B 140 262 200 0.28	< 5 < 0.05 B 47.2 134 J< 0.01 263 208 0.32	< 0.05 31.7 110 201 216 J 0.18	 0.02 B 43.5 B 147 277 196 J 0.19 	< 0.02 37.6 B 124 227 168 0.29	10 < 0.02 43.2 B 128 < 0.005 239 180 0.22
Color P.C.U. Nitrate mg/l Sulfate mg/l Total Alkalinity mg/l Total Cyanide mg/l Total Dissolved Solids mg/l Total Hardness mg/l Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Beryllium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	10 250 NS 0.1 500 NS NS 500 0.001	0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	< 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	< 0.02 41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002	53.7 B 143 87 188 0.27 1.5	46.7 118 248 200 0.3 J 0.51	< 0.05 J 56.1 134 < 0.01 J 271 212 < 0.2 1.1	< 0.05 61.9 B 142 < 0.01 310 236 J 0.23 J 0.99	50.4 134 269 192 J 0.17 1.3	B 40.8 B 55.9 B 249 188 0.31	46.8 B 140 262 200 0.28	< 0.05 B 47.2 134 J< 0.01 263 208 0.32	31.7 110 201 216 J 0.18	 0.02 B 43.5 B 147 277 196 J 0.19 	37.6 B 124 227 168 0.29	< 0.02 43.2 B 128 < 0.005 239 180 0.22
Nitrate mg/l Sulfate mg/l Total Alkalinity mg/l Total Cyanide mg/l Total Dissolved Solids mg/l Total Hardness mg/l Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Arsenic mg/l Barium mg/l Beryllium mg/l Beryllium mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	10 250 NS 0.1 500 NS NS 500 0.001	0.193 37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	0.250 73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	< 0.1 26 120 0.004 190 170 0.12 1.1 0.0055	41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002	53.7 B 143 87 188 0.27 1.5	46.7 118 248 200 0.3 J 0.51	< 0.05 J 56.1 134 < 0.01 J 271 212 < 0.2 1.1	B 142 < 0.01 310 236 J 0.23 J 0.99	50.4 134 269 192 J 0.17 1.3	B 40.8 B 55.9 B 249 188 0.31	46.8 B 140 262 200 0.28	B 47.2 134 J< 0.01 263 208 0.32	31.7 110 201 216 J 0.18	B 43.5 B 147 277 196 J 0.19	37.6 B 124 227 168 0.29	< 0.02 43.2 B 128 < 0.005 239 180 0.22
Sulfate mg/l Total Alkalinity mg/l Total Cyanide mg/l Total Dissolved Solids mg/l Total Hardness mg/l Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Arsenic mg/l Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	250 NS 0.1 500 NS NS S 0.0 0.001	37.014 125.714 0.010 264.571 185.857 0.584 2.771 0.005	73.449 182.786 0.010 510.790 250.836 1.831 4.586 0.007	26 120 0.004 190 170 0.12 1.1 0.0055	41.6 120 < 0.01 242 185 < 1 < 1.6 < 0.002	53.7 B 143 87 188 0.27 1.5	46.7 118 248 200 0.3 J 0.51	J 56.1 134 < 0.01 J 271 212 < 0.2 1.1	B 142 < 0.01 310 236 J 0.23 J 0.99	50.4 134 269 192 J 0.17 1.3	B 40.8 B 55.9 B 249 188 0.31	46.8 B 140 262 200 0.28	B 47.2 134 J< 0.01 263 208 0.32	31.7 110 201 216 J 0.18	B 43.5 B 147 277 196 J 0.19	37.6 B 124 227 168 0.29	43.2 B 128 < 0.005 239 180 0.22
Total Alkalinity mg/l Total Cyanide mg/l Total Cyanide mg/l Total Dissolved Solids mg/l Total Hardness mg/l Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Arsenic mg/l Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	NS 0.1 500 NS NS 500 0.001	125.714 0.010 264.571 185.857 0.584 2.771 0.005	182.786 0.010 510.790 250.836 1.831 4.586 0.007	120 0.004 190 170 0.12 1.1 0.0055	120 < 0.01 242 185 < 1 < 1.6 < 0.002	87 188 0.27 1.5	248 200 0.3 J 0.51	134 < 0.01 J 271 212 < 0.2 1.1	B 142 < 0.01 310 236 J 0.23 J 0.99	134 269 192 J 0.17 1.3	B 55.9 B 249 188 0.31	B 140 262 200 0.28	134 J< 0.01 263 208 0.32	201 216 J 0.18	B 147 277 196 J 0.19	B 124 227 168 0.29	B 128 < 0.005 239 180 0.22
Total Cyanide mg/l Total Dissolved Solids mg/l Total Hardness mg/l Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Arsenic mg/l Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	0.1 500 NS NS 500 0.001	0.010 264.571 185.857 0.584 2.771 0.005	0.010 510.790 250.836 1.831 4.586 0.007	0.004 190 170 0.12 1.1 0.0055	< 0.01 242 185 < 1 < 1.6 < 0.002	87 188 0.27 1.5	248 200 0.3 J 0.51	< 0.01 J 271 212 < 0.2 1.1	< 0.01 310 236 J 0.23 J 0.99	269 192 J 0.17 1.3	B 249 188 0.31	262 200 0.28	J< 0.01 263 208 0.32	201 216 J 0.18	277 196 J 0.19	227 168 0.29	< 0.005 239 180 0.22
Total Dissolved Solids mg/l Total Hardness mg/l Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Arsenic mg/l Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	500 NS NS S00 0.001	264.571 185.857 0.584 2.771 0.005	510.790 250.836 1.831 4.586 0.007	190 170 0.12 1.1 0.0055	242 185 < 1 < 1.6 < 0.002	188 0.27 1.5	200 0.3 J 0.51	J 271 212 < 0.2 1.1	310 236 J 0.23 J 0.99	192 J 0.17 1.3	188 0.31	262 200 0.28	263 208 0.32	216 J 0.18	196 J 0.19	168 0.29	239 180 0.22
Total Hardness mg/l Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	NS NS 500 0.001	185.857 0.584 2.771 0.005	250.836 1.831 4.586 0.007	170 0.12 1.1 0.0055	185 < 1 < 1.6 < 0.002	188 0.27 1.5	200 0.3 J 0.51	212 < 0.2 1.1	236 J 0.23 J 0.99	192 J 0.17 1.3	188 0.31	200 0.28	208 0.32	216 J 0.18	196 J 0.19	168 0.29	180 0.22
Total Kjeldahl Nitrogen mg/l Total Organic Carbon mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	500 0.001	0.584 2.771 0.005	1.831 4.586 0.007	1.1 0.0055	< 1.6 < 0.002	0.27 1.5	0.3 J 0.51	< 0.2 1.1	J 0.99	J 0.17 1.3	0.31	0.28	0.32	J 0.18	J 0.19	0.29	0.22
Total Organic Carbon mg/l Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Arsenic mg/l Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	500 0.001	2.771 0.005 1.210	4.586 0.007 6.304	1.1 0.0055	< 0.002	1.5	J 0.51	1.1	J 0.99	1.3					-		
Total Phenols mg/l NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Arsenic mg/l Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	0.001	0.005	6.304	0.0055	< 0.002								3 ()//		HK 054	10 13 1	
NORGANIC PARAMETERS Aluminum mg/l Antimony mg/l Arsenic mg/l Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	0.1	1.210	6.304			. 0.01	0.01	0.02		J 0.0072	< 0.01	B 0.011	J 0.0064	< 0.01	< 0.005	<* 0.005	J- 0.0086
Aluminum mg/l Antimony mg/l Arsenic mg/l Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l				0.0303	c 0.0141			_	0.0000	0.0072	9	5 0.011	3.000.	. 0.01	- 0.003	- 0.000	0.0000
Antimony mg/l Arsenic mg/l Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l				0.0000			_	2.7	1.5				1.9				0.43
Arsenic mg/l Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l		0.014	0.020	< 0.0023	< 0.0051			< 0.02	< 0.02				< 0.02				< 0.0068
Barium mg/l Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	0.025	0.026	0.135	< 0.0076	< 0.0022			J 0.0099	0.011				J 0.0094				J 0.0099
Beryllium mg/l Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	1	0.100	0.256	0.0661	0.0612			0.091	0.098				0.095				0.08
Boron mg/l Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	0.003	0.004	0.013	< 0.00013	< 0.00024			< 0.002	< 0.002				< 0.002				< 0.0003
Cadmium mg/l Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	1	0.500	0.500	< 0.0121	< 0.00037			J 0.01	J 0.0076				J 0.0094				J 0.011
Calcium mg/l Chromium mg/l Hexavalent Chromium mg/l	0.01	0.006	0.011	< 0.00017	< 0.00031	< 0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	< 0.002	< 0.001	< 0.002	< 0.0005	< 0.0005	< 0.0005
Chromium mg/l Hexavalent Chromium mg/l	NS	60.171	79.812	57.695	61.4	61.3	60.7	62.3	71.9	B 62	B 57.5	62.3	68.6	56.5	60.6	55.5	57.8
Hexavalent Chromium mg/l	NS	0.006	0.012	< 0.0007	< 0.0052	01.5	00.7	0.0056	J 0.0015	D 02	5 37.5		J 0.0022	30.3	00.0	33.3	< 0.001
G,	0.05	0.010	0.010	< 0.0007	< 0.02			< 0.01	< 0.01				< 0.01				J- F1 0.0067
Cobalt mg/l	0.005	0.018	0.031	< 0.000333	< 0.00049			J 0.0012	< 0.004				< 0.004				< 0.00063
Copper mg/l	0.2	0.013	0.026	< 0.001	< 0.0025			J 0.0044	JB 0.0036		-		J 0.0033				< 0.0016
Iron mg/l	0.3	2.591	12.632	0.372	0.46	2.6	1.8	3.6	2	1.7	3.1	1.1	2.6	2.8	2	1.9	0.82
Lead mg/l	0.025	0.005	0.015	0.0046	< 0.0014	J 0.0036	< 0.01	0.0075	< 0.005	J 0.0066	< 0.01	< 0.01	J 0.0033	J 0.0046	J 0.0036	J 0.0041	< 0.003
Magnesium mg/l	35	8.379	12.459	6.722	7.59	8.8	8	10.2	11	9	8	8.4	9.6	B 7.9	8.6	7.8	7.6
Manganese mg/l	0.3	0.173	0.346	0.103	0.128	0.17	0.17	0.22	0.2	0.15	^ 0.16	0.14	0.19	B 0.17	B 0.15	0.14	B 0.13
Mercury mg/l	0.002	0.000	0.000	< 0.047	< 0.00002	0.17	0.17	J< 0.0002	< 0.0002	0.15	0.10	0.17	< 0.0002	0.17	0.13	0.17	R < 0.00012
Nickel mg/l	0.002	0.007	0.051	< 0.047	< 0.00066			J 0.0026	< 0.0002				J 0.002				J 0.0017
Potassium mg/l	NS	1.053	1.370	0.427	0.378	1.1	J 0.58	B 1.4	1.1	0.98	1.3	0.62	1.2	1.2	1.3	0.99	0.67
Selenium mg/l	0.01	0.006	0.016	R 0.0493	< 0.0023	1.1	3 0.36	< 0.015	< 0.015	0.36	1.3	0.02	< 0.015	1.2	1.3	0.33	< 0.0087
Silver mg/l	0.01	0.006	0.016	< 0.0056	< 0.0023			< 0.013	< 0.003				< 0.013				< 0.0087
Sodium mg/l	20	4.626	7.160	5.504	4.47	6.2	6.2	B 6.3	7.4	7.3	7	8.5	9.5	7.6	9.5	7.4	8.6
G,	0.004	0.012	0.028	< 0.0048	0.0048	0.2	0.2	< 0.02	< 0.02	7.5		6.3	< 0.02	7.0	9.5	7.4	< 0.01
Thallium mg/l	[][][][]	0.012	0.028	< 0.0048	< 0.0048			J 0.004	J 0.0031				J 0.0033				< 0.01
Vanadium mg/l		0.027															
Zinc mg/l mg/l // /OLATILE ORGANIC COMPOUNDS	0.004 0.014 0.3		0.090	R 0.0063	0.0054 <mdl< td=""><td>NA</td><td>NA</td><td>0.016 < MDL</td><td>JB 0.0088 < MDL</td><td></td><td></td><td>NA NA</td><td>B 0.047 < MDL</td><td>NA</td><td>NA NA</td><td>NA</td><td>JB 0.0072 NA</td></mdl<>	NA	NA	0.016 < MDL	JB 0.0088 < MDL			NA NA	B 0.047 < MDL	NA	NA NA	NA	JB 0.0072 NA

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "*" indicates a result flagged as estimated by the DUSR report
- 7. "J-" indicates the estimated parameter is biased low
- 8. "F1" indicates that MS and/or MSD Recovery is outside of acceptance limits
- 9. "R" indicates a result reject by the DUSR report
- 10. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- 11. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- 11. Bolded concentrations represent historically high concentrations.

MW-14D Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	EWQV	EWQV Plus 3 Std.	Sep-08	Dec-08	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-1
(mg/l unless otherwise noted)	Offic	Value	LWQV	Dev.	Baseline	Baseline	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baselin
IELD PARAMETERS																	p.	
Conductivity	μS/cm	NS	190.43	210.84	202	212	210	200	202	237	142	205	201	194	200	326	322	328
Dissolved Oxygen	mg/l	NS					0.15	0.18	0.14	0.60	0.18	0.25	0.32	0.16	0.15	0.23	0.25	2.45
Eh	mV	NS	-35.90	54.29	-159.4	7.0	-146.5	-126.6	-110.7	233.7	80.5	-12.6	34.9	-104.0	6.5	48.7	-341.5	152.3
рН	SU	6.5-8.5	7.64	10.09	7.49	7.15	8.41	8.16	7.85	7.57	7.23	7.97	8.33	7.31	7.88	8.12	7.92	7.84
Temperature	C°	NS	9.34	14.80	11.06	7.50	4.33	9.84	10.83	5.19	8.58	14.62	10.28	12.49	13.59	8.79	11.98	12.94
Turbidity	N.T.U	5	57.83	269.10	2.9	6.19	30.7	8.86	9.89	16.5	30.4	7.27	32.4	35.8	14.3	10.3	29.5	13.4
EACHATE INDICATORS	-			7														
Ammonia Nitrogen	mg/l	2	0.44	0.94	0.13	< 0.1	0.089	0.13	J 0.14	0.093	0.11	0.14	0.1	0.11	0.12	0.092	0.12	J- 0.083
Biological Oxygen Demand	mg/l	NS	4.00	4.00	< 4	< 2 <	: 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 3	< 2	< 2
Bromide	mg/l	2	3.31	25.48	< 0.1	< 1 <	0.2	< 0.2	< 0.2	< 0.2	< 0.073	< 0.2	< 0.2	< 0.2	< 0.2	< 0.073	< 0.073	< 0.073
Chloride	mg/l	250	2.89	9.81	2.6	1.2	1.3	1.7	1.3	B 2.2	B 1.7	1.7	1.2	1.1	1.1	1.1	1.1	1.1
Chemical Oxygen Demand	mg/l	NS	22.14	62.63	< 5	< 5	15.4	< 10	< 10	< 10	< 5	J 9.5	< 10	< 10	JB 7	< 5	< 5	< 5
Color	P.C.U.	15	11.33	27.28	5	< 5			5	< 5				20		1		10
Nitrate	mg/l	10	0.19	0.30	< 0.1	< 0.02 .	0.035	< 0.05	< 0.05	< 0.05	J 0.025	< 0.05	< 0.05	< 0.05	J 0.039	< 0.02	< 0.02	< 0.02
Sulfate	mg/l	250	4.59	7.87	2.3	< 1 .	1.5	J 1.6	< 5	< 5	< 1.5	JB 1.9	J 0.92	JB 1.2	J 0.94	В 24.7	J 0.84	J 0.72
Total Alkalinity	mg/l	NS	108.57	129.27	130	105 E	3 114	96.3	101	B 92.4	104	B 98.4	B 97.7	99.6	103	114	B 92.8	B 97.5
Total Cyanide	mg/l	0.1	0.010	0.010	0.006	< 0.01		,	< 0.01	< 0.01		, , , ,		J< 0.01		1	1	< 0.005
Total Dissolved Solids	mg/l	500	153.86	493.24	110	150	125	106	J 127	J 133	133	B 126	126	106	100	171	110	122
Total Hardness	mg/l	NS	83.06	151.57	70	69	76	68	64	80	72	72	104	72	76	68	68	64
Total Kjeldahl Nitrogen	mg/l	NS	0.80	3.54	0.16	< 1	0.22	J 0.19	JB 0.24	J 0.29	J 0.19	F1 0.34	J 0.15	0.29	J 0.15	kF1 0.15	0.34	J 0.19
Total Organic Carbon	mg/l	500	2.73	4.88	< 1	1.5	1.2	< 1	J 0.76	J 0.56	1	J 0.92	J 0.71	J 0.56	< 1	< 0.43	B 1.7	1.2
Total Phenols	mg/l	0.001	0.005	0.008	0.0069	< 0.002 <	0.01	< 0.01	J< 0.01	< 0.01	J 0.0085	< 0.01	JB 0.0064	J< 0.01	< 0.01	< 0.005		F1 UJ < 0.00
NORGANIC PARAMETERS	1116/1	0.001	0.003	0.000	0.0003	0.002	0.01	0.01	71 0.01	. 0.01	. 0.0005	. 0.01	35 0.0004	3. 0.01	0.01	1 0.003	0.003	1103 (0.00
Aluminum	mg/l	0.1	1.180	5.798	0.0255	0.126			0.82	1.8				0.72		1		0.49
Antimony	mg/l	0.003	0.014	0.020	< 0.0023	< 0.0051			< 0.02	< 0.02				< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.011	0.014	< 0.0076	< 0.0022			J 0.008	J 0.0058				< 0.01				J 0.008
Barium	mg/l	1	0.081	0.258	0.0135	0.0138			0.019	0.025				0.019				0.017
Beryllium	mg/l	0.003	0.004	0.013	< 0.00013	< 0.00024			< 0.002	< 0.002				< 0.002				< 0.0003
Boron	mg/l	1	0.50	0.50	0.0207	0.0062			0.027	0.026				0.026		+		0.028
Cadmium	mg/l	0.01	0.006	0.011	< 0.00017	< 0.00031 <	0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	< 0.002	< 0.001	< 0.002	< 0.0005	< 0.0005	< 0.0005
Calcium	mg/l	NS NS	24.929	44.369	21.57	21.7	22.2	21.3	19.9	21.5	B 21.4	B 21.5	22.7	22.2	21.7	20.5	21.3	20.9
Chromium	mg/l	NS NS	0.006	0.012	< 0.0007	< 0.0052	22.2	21.5	< 0.004	J 0.0013	D 21.4	D 21.3	22.7	< 0.004	21.7	20.5	21.5	< 0.001
Hexavalent Chromium	mg/l	0.05	0.010	0.012	< 0.0007	< 0.0032			< 0.004	< 0.0013				< 0.0073				< 0.001
Cobalt	mg/l	0.005	0.018	0.031	< 0.00033	< 0.00049			< 0.004	< 0.004				< 0.0073				UJ < 0.000
Copper	mg/l	0.2	0.012	0.025	< 0.001	< 0.0025			< 0.004	< 0.004				< 0.004				< 0.001
Iron	mg/l	0.3	1.998	10.456	0.090	0.304	1.1	0.3	0.6	1.3	0.94	0.54	1.30	0.63	0.35	0.27	0.66	0.39
Lead	mg/l	0.025	0.004	0.012	0.0017	< 0.0014 <	0.01	< 0.01	< 0.005	< 0.005	J 0.0053	< 0.01	< 0.01	< 0.005	< 0.01	< 0.003	< 0.003	< 0.003
Magnesium	mg/l	35	5.024	9.782	3.830	3.670	4.1	3.7	4.0	4.4	4.2	3.8	4.1	4.0	B 3.7	3.7	3.9	3.6
Manganese	mg/l	0.3	0.081	0.323	0.0168	0.0249	0.031	0.021	0.025	0.033	0.028	0.022	0.032	0.025	B 0.021	B 0.018	0.025	B 0.02
Mercury	mg/l	0.002	0.0002	0.0002	< 0.0168	< 0.00002	0.031	0.021	J< 0.0002	< 0.0002	0.020	0.022	0.032	< 0.0002	0.021	5 0.016	0.023	R < 0.000
Nickel	mg/l	0.002	0.002	0.0002	< 0.047	< 0.00066			< 0.0002	< 0.0002				< 0.0002				< 0.000
Potassium	mg/l	0.007 NS	1.054	1.337	0.001	0.42	0.8	J 0.46	8 0.77	1.1	0.99	0.66	1	0.01	0.54	0.87	0.72	0.62
Selenium	mg/l	0.01	0.006	0.015	0.435	< 0.0023	0.6	J 0.40	< 0.015	< 0.015	0.33	0.00	1	< 0.015	0.54	0.67	0.72	< 0.008
Silver	mg/l	0.01	0.006	0.015	< 0.00056	0.0023			< 0.013	< 0.013				< 0.013		+	-	< 0.008
		20	15.943	20.328	18.238	14.5	17.5	17.4	B 16.2	16.4	17.6	17.5	18	17.3	18	18	17.6	17.3
Sodium	mg/l						17.5	17.4			1/.6	17.5	18		18	18	17.6	
Thallium	mg/l	0.004 0.014	0.010 0.027	0.010 0.051	< 0.0048 < 0.00051	0.0035 < 0.0086			< 0.02 < 0.005	< 0.02 J 0.0032				< 0.02 < 0.005				, 0.01
Vanadium Zinc	mg/l															+	 	< 0.001
7 III (mg/l	0.3	0.029	0.091	R 0.006	0.0092			J 0.0026	JB 0.0096				JB 0.0049				JB 0.0028

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J-" indicates the estimated value is biased low
- 7. "UJ" indicates the quantitation limit may be inaccurate or imprecise
- 8. "*" indicates a result flagged as estimated by the DUSR report
- 9. "F1" indicates MS/MSD recovery outside acceptance limits
- 10. "R" indicates a result reject by the DUSR report
- 11. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- 12. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- 13. Bolded concentrations represent historically high concentrations.

MW-15S Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	EWQV	EWQV Plus 3 Std.	Sep-08	Dec-08	Mar-14	Jun-14	Sep-14	Mar-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	Offic	Value	LWQV	Dev.	Baseline	Baseline	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
FIELD PARAMETERS																		
Conductivity	μS/cm	NS	587.00	705.83	566	505	1228	1850	1411	723	938	674	959	776	1488	1468	750	700
Dissolved Oxygen	mg/l	NS					0.13	0.17	0.11	1.58	0.16	0.12	0.14	0.10	0.14	0.04	0.13	0.08
Eh	mV	NS	-60.79	39.87	-128.4	6.5	-129.0	-121.2	-110.3	-47.1	-16.4	-90.8	-94.8	125.9	-59.2	-104.2	-140.8	-186.0
pH	SU	6.5-8.5	6.97	8.27	7.16	7.13	7.13	6.87	6.72	6.17	6.85	6.60	7.01	6.54	5.60	6.76	6.96	7.12
Temperature	C°	NS	9.41	15.37	12.18	9.08	4.95	7.73	11.12	4.87	9.07	9.49	8.72	8.74	14.61	8.5	9.1	14.2
Turbidity	N.T.U	5	123.48	697.75	3.42	3.87	65.3	5.95	5.19	22.6	4.38	5.47	13.2	11.8	1.6	18.3	59.7	14.5
LEACHATE INDICATORS						Es Es												-
Ammonia Nitrogen	mg/l	2	1.75	2.96	1.3	1.15	3	3.6	J 8.8	36.4	27.2	10	4.7	3	B 3.9	3.4	2.7	J- 1.5
Biological Oxygen Demand	mg/l	NS	4.43	6.79	< 4	< 2	b 2.2	6.3	4.8	b 2.6	< 2	b 2.9	7.1	b 2.4	b 4.6	b 6.5	< 2	b 3.4
Bromide	mg/l	2	63.44	344.42	< 0.1	< 1	< 0.2	1.7	0.63	J 0.098	< 0.73	0.3	0.2	0.25	0.24	J 0.17	< 0.15	< 0.15
Chloride	mg/l	250	73.97	145.92	52	25.4	68.7	244	128	B 42.6	B 47.5	40	B 34.8	35.6	37.3	26	25.5	21.5
Chemical Oxygen Demand	mg/l	NS	25.29	43.35	< 5	< 5	64	142	124	53.4	40.9	55.5	39.3	55	B 66	51.2	22.6	30.1
Color	P.C.U.	15	155.83	431.51	150	65			150	40			1.1	30				25
Nitrate	mg/l	10	0.19	0.25	< 0.1	< 0.02	< 0.05	J 0.028	< 0.05	0.37	J 0.029	J 0.024	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.02
Sulfate	mg/l	250	44.94	68.44	54	53.5	J 3.4	< 5	< 5	< 5	< 1.5	JB 1.6	3.8	2	< 2	В 9	11.7	< 0.7
Total Alkalinity	mg/l	NS	155.71	210.09	170	160	B 480	654	526	B 554	366	418	372	356	406	403	B 290	B 302
Total Cyanide	mg/l	0.1	0.010	0.010	< 0.005	< 0.01			< 0.01	< 0.01	-	11-	7	J< 0.01		16		< 0.005
Total Dissolved Solids	mg/l	500	385.57	794.10	320	450	611	1070	J 788	J 454	478	496	462	421	B 468	472	373	359
Total Hardness	mg/l	NS	256.71	653.54	170	146	416	620	440	360	280	290	340	288	308	308	304	236
Total Kjeldahl Nitrogen	mg/l	NS	2.20	4.29	1.5	< 1	3.7	6	JB 11.1	J 40.4	15.4	B 10	6.1	J 4.4	4.6	5.3	3.1	2.4
Total Organic Carbon	mg/l	500	9.74	31.60	5.7	5.9	19.9	51.3	41.6	20.3	18.4	19.3	19.8	19.6	21.7	B 18.3	B 16.2	B 12.5
Total Phenols	mg/l	0.001	0.005	0.008	0.0069	< 0.002	< 0.01	< 0.01	J< 0.01	J 0.0071	< 0.005	< 0.01	J 0.0072	J 0.0093	< 0.01	< 0.005	< 0.005	0.028
INORGANIC PARAMETERS									4			*	7			-		
Aluminum	mg/l	0.1	5.899	32.798	0.0219	0.0186			J 0.15	0.29				< 0.2				J 0.071
Antimony	mg/l	0.003	0.014	0.020	< 0.0023	< 0.0051			< 0.02	< 0.02				< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.016	0.051	< 0.0076	< 0.0022			0.013	0.011				J 0.0094				0.011
Barium	mg/l	1	0.114	0.285	0.056	0.0427			0.22	0.22				0.14				0.082
Beryllium	mg/l	0.003	0.004	0.013	< 0.00013	< 0.00024			< 0.002	< 0.002				< 0.002				< 0.0003
Boron	mg/l	1	0.34	1.10	0.0845	0.0197			0.68	0.42				B 0.086				0.078
Cadmium	mg/l	0.01	0.007	0.014	< 0.00017	< 0.00031	< 0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	< 0.002	< 0.001	< 0.002	< 0.0005	< 0.0005	< 0.0005
Calcium	mg/l	NS	76.171	205.133	48.161	41.8	123	177	116	83.2	B 75.2	B 87.2	87.6	B 0.086	87.2	93.2	81	72.9
Chromium	mg/l	NS	0.014	0.052	0.0016	< 0.0052			0.0082	J 0.0026				J 0.0013				< 0.001
Hexavalent Chromium	mg/l	0.05	0.012	0.024	< 0.01	<0.020			< 0.01	< 0.01				< 0.01				< 0.005
Cobalt	mg/l	0.005	0.020	0.038	< 0.00033	< 0.00049			J 0.0025	J 0.0012				< 0.004				< 0.00063
Copper	mg/l	0.2	0.056	0.265	< 0.001	< 0.0025			J 0.0017	JB 0.0019				< 0.01				< 0.0016
Iron	mg/l	0.3	25.586	113.257	9.004	7.21	31.4	38.2	29.6	23.6	20.1	20.4	31.3	28.1	31.6	34.7	28.3	B 26.9
Lead	mg/l	0.025	0.017	0.083	0.0021	< 0.0014	J 0.0032	< 0.01	< 0.005	< 0.005	J 0.0052	< 0.01	< 0.01	J 0.0032	< 0.01	< 0.003	J 0.0031	< 0.003
Magnesium	mg/l	35	12.779	32.957	12.470	10.2	26.9	37.8	25.2	17.3	13.8	15.3	18.6	17.6	16.0	17.2	14.5	10.9
Manganese	mg/l	0.3	0.815	1.706	0.642	0.511	4.1	4.9	3.7	2.6	2.2	2.3	В 3.9	3.9	В 3.9	В 3.7	4	В 3.3
Mercury	mg/l	0.002	0.0002	0.0002	< 0.047	< 0.00002			J< 0.0002	JB 0.00015				< 0.0002			1	R < 0.00012
Nickel	mg/l	0.007	0.034	0.083	0.0017	< 0.00066			J 0.006	< 0.01				J 0.0013				< 0.0013
Potassium	mg/l	NS NS	3.876	7.657	3.608	2.71	11.1	19.5	B 16.7	20	23.3	20	8.6	7.7	8.2	6.7	4.8	3.9
Selenium	mg/l	0.01	0.006	0.013	R 0.0448	< 0.0023			< 0.015	< 0.015	1		1	< 0.015	1			< 0.0087
Silver	mg/l	0.05	0.010	0.010	< 0.00056	< 0.0014			< 0.003	< 0.003		-		< 0.003				< 0.0017
Sodium	mg/l	20	45.486	65.226	40.368	30.1	61	142	B 112	59.6	42.8	47.2	47.4	40.5	47.3	45.7	37.4	32
Thallium	mg/l	0.004	0.011	0.021	< 0.0048	0.0077	<u> </u>		< 0.02	< 0.02	12.0	17.2	17.1	< 0.02	17.5	13.7	1 3,	< 0.01
Vanadium	mg/l	0.014	0.043	0.129	0.0048	< 0.0077			0.027	0.0095				J 0.0041				J 0.0039
Zinc	mg/l	0.3	0.043	0.262	R 0.0079	0.0103			J 0.003	JB 0.0034				JB 0.0058				JB 0.0015
LIIIL	1118/1	0.3	0.004	0.202	<mdl< td=""><td>0.0103</td><td></td><td></td><td>. 0.003</td><td>0.0034</td><td></td><td>1</td><td></td><td>JD 0.0036</td><td></td><td>I .</td><td>1</td><td>NA 0.0015</td></mdl<>	0.0103			. 0.003	0.0034		1		JD 0.0036		I .	1	NA 0.0015

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J-" indicates parameter estimate is biased low
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "b" indicates the result was detected in the unseeded control blank
- 9. "R" indicates a result reject by the DUSR report
- $10. \, \text{Shaded concentrations represent an exceedance of the EWQV plus three standard deviations}.$
- 11. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- 12. Bolded concentrations represent historically high concentrations.

MW-15I Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER		TOGS Guidance		EWQV Plus 3 Std.	Sep-08	Dec-08	Mar-14	Jun-14	Sep-15	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	Unit	Value	EWQV	Dev.	Baseline	Baseline	Routine	Routine	Routine	Routine	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
IELD PARAMETERS																		
Conductivity	μS/cm	NS	411.43	466.96	437	449	423	399	399	504	414	442	444	446	777	769	783	496
Dissolved Oxygen	mg/l	NS				-	0.19	0.23	0.22	0.72	0.27	0.15	0.32	0.20	1.48	0.23	0.53	0.23
Eh	mV	NS	-76.09	59.20	-141.9	6.7	-156.9	-143.2	-103.6	230.7	-22.5	-24.3	-70.4	-150.2	-104.7	-74.7	-315.3	-186.6
pH	SU	6.5-8.5	7.76	9.59	7.68	7.51	8.00	7.73	7.32	7.81	7.78	7.71	7.48	7.65	6.95	7.65	6.83	7.99
Temperature	C°	NS	10.06	17.41	11.08	8.30	6.45	8.35	9.45	5.93	11.05	12.09	9.72	11.41	11.87	9.81	11.08	12.40
Turbidity	N.T.U	5	21.19	64.80	2.23	2.17	15.7	15.8	19.8	38.5	25.8	15.4	12.0	13.6	7.1	23.2	14.1	14.2
EACHATE INDICATORS	-																	
Ammonia Nitrogen	mg/l	2	0.43	0.97	0.037 <	0.01	< 0.02	0.039	J 0.058	J 0.022	J 0.014	0.069	0.029	0.034	B 0.031	J 0.017	0.036	J- 0.062
Biological Oxygen Demand	mg/l	NS	4.57	7.97	< 4 <	2	< 2	< 2	< 2	b 3.4	< 2	< 2	< 2	< 2	< 2		< 2	< 2
Bromide	mg/l	2	3.79	25.41	< 0.1 <	1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.37	< 0.2	< 0.2	< 0.2	< 0.2		< 0.073	< 0.15
Chloride	mg/l	250	28.31	39.90	28	28.3	26.9	26.7	26.1	B 28.8	30.2	30.8	B 31.5	32.1	33.8	33.4	35.1	38.4
Chemical Oxygen Demand	mg/l	NS	17.86	34.87	< 5 <	5	J 8.8	J 9.3	< 10	< 10	13.1	J 6.2	< 10	J 7.2	JB 5.5		< 5	< 5
Color	P.C.U.	15	24.00	71.13	20 <	5			< 5	5				15				10
Nitrate	mg/l	10	0.19	0.25	< 0.1 <	0.02	< 0.05	< 0.05	J 0.026	< 0.05	J 0.025	J 0.028	< 0.05	< 0.05	J 0.021	8	< 0.02	< 0.02
Sulfate	mg/l	250	40.46	57.66	47	48.6	56.3	51.3	J 47.4	53.6	54.1	В 56.9	48.8	51	54	B 57.2	60.6	63.6
Total Alkalinity	mg/l	NS	134.29	157.89	140	140	B 155	122	129	114	129	123	134	131	139	B 148	B 139	B 137
Total Cyanide	mg/l	0.1	0.010	0.010	< 0.01 <	0.01			< 0.01	< 0.01				J< 0.01				< 0.005
Total Dissolved Solids	mg/l	500	262.71	469.55	270	280	258	248	J 233	J 217	264	255	265	277	273	280	303	322
Total Hardness	mg/l	NS	220.00	365.79	210	203	240	244	232	248	272	250	208	450	252	212	228	232
Total Kjeldahl Nitrogen	mg/l	NS	0.69	2.30	0.15 <	1	J 0.15	< 0.2	< 0.2	J< 0.2	< 0.15	В 0.55	< 0.2	0.28	J 0.17	J 0.19	0.38	0.23
Total Organic Carbon	mg/l	500	2.77	4.59	1.4	2.2	2.1	J 0.81	1.1	J 0.79	1.4	1.2	1.0	J 0.8	J 0.6	JB 0.5	B 1.5	1.6
Total Phenols	mg/l	0.001	0.005	0.007	0.0065 <	0.002	< 0.01	< 0.01	J< 0.01	< 0.01	J 0.0064	< 0.01	< 0.01	J 0.0063	< 0.01		< 0.005	< 0.005
NORGANIC PARAMETERS											-				1			
Aluminum	mg/l	0.1	2.170	10.884	0.021 <	0.0141			2.8	3.1				1.6				0.65
Antimony	mg/l	0.003	0.014	0.020	< 0.0023 <	0.0051			< 0.02	< 0.02				< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.010	0.010	< 0.0076 <	0.0022			J 0.0063	< 0.01				< 0.01				< 0.0056
Barium	mg/l	1	0.146	0.234	0.128	0.125			0.12	^ 0.14				0.14				0.13
Beryllium	mg/l	0.003	0.004	0.013	< 0.00013 <	0.00024			< 0.002	J 0.00031				< 0.002				< 0.004
Boron	mg/l	1	0.50	0.50	< 0.0121 <	0.00037			J 0.011	J 0.012				JB 0.0082				J 0.0092
Cadmium	mg/l	0.01	0.006	0.011	< 0.00017 <	0.00031	< 0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	< 0.002	< 0.001	< 0.002		< 0.0005	< 0.0005
Calcium	mg/l	NS	70.157	108.448	69.634	67.6	78.2	69.2	65.9	J 79.3	B 78.9	В 79.8	64.8	В 77.5	77	71.9	73.3	71.6
Chromium	mg/l	NS	0.007	0.013	< 0.0007 <	0.0052			0.0044	J 0.0037				J 0.0016				JB 0.0014
Hexavalent Chromium	mg/l	0.05	0.010	0.010	< 0.01 <	0.02			< 0.01	< 0.01			71	< 0.01	Ti .			< 0.005
Cobalt	mg/l	0.005	0.018	0.031	< 0.00033 <	0.00049			J 0.0016	J 0.0017				J 0.001				< 0.00063
Copper	mg/l	0.2	0.012	0.021	< 0.001 <	0.0025			J 0.0057	0.01				< 0.01				< 0.0016
Iron	mg/l	0.3	4.616	22.789	0.618	0.604	5.2	1.7	5	^ 5.8	5.9	5	1.4	3.2	3.4	1.7	1.9	B 1.4
Lead	mg/l	0.025	0.005	0.013	0.0037 <	0.0014	J 0.0032	< 0.01	0.0063	< 0.005	J 0.0083	< 0.01	< 0.05	J 0.0042	< 0.01	0.036	J 0.0034	J 0.0032
Magnesium	mg/l	35	10.910	23.044	8.504	8.27	12.1	9.5	11.1	12.9	12	11.8	9.5	11.4	11.4	9.9	10.2	9.3
Manganese	mg/l	0.3	0.289	0.829	0.165	0.165	0.33	0.24	0.3	0.37	0.34	0.32	B 0.21	0.28	B 0.28	B 2.1	0.23	В 0.2
Mercury	mg/l	0.002	0.0002	0.0002	< 0.047 <	0.00002			J< 0.0002	< 0.0002				< 0.0002				R < 0.0001
Nickel	mg/l	0.007	0.027	0.052	< 0.001 <	0.0006			J 0.0036	J 0.004				J 0.0024				< 0.0013
Potassium	mg/l	NS	1.173	2.059	0.578	0.524	1.4	J 0.6	B 1.4	1.5	1.6	1.5	0.76	1	1.1	1	0.88	0.74
Selenium	mg/l	0.01	0.007	0.016	R 0.0586 <	0.0023			< 0.015	0.015				< 0.015				< 0.0087
Silver	mg/l	0.05	0.010	0.010	< 0.00056	0.0023			< 0.003	0.003				< 0.003				< 0.0017
Sodium	mg/l	20	9.134	12.294	9.941	8.87	8.8	8.7	B 8.1	8.7	8.5	8.8	9.0	8.9	9.3	9.8	9.8	9.8
Thallium	mg/l	0.004	0.012	0.028	0.0055	0.0032			< 0.02	0.02				< 0.02				< 0.01
Vanadium	mg/l	0.014	0.027	0.051	< 0.00051 <	0.0086			0.0061	0.0065				J 0.004				< 0.0015
Zinc	mg/l	0.3	0.066	0.319	R 0.0074	0.0143			0.018	0.018				JB 0.0092				JB 0.0036
OLATILE ORGANIC COMPOUNDS					<mdl< td=""><td><mdl< td=""><td>NA</td><td>NA</td><td>< MDL</td><td>< MDL</td><td>NA</td><td>NA</td><td>NA</td><td>< MDL</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<></td></mdl<>	<mdl< td=""><td>NA</td><td>NA</td><td>< MDL</td><td>< MDL</td><td>NA</td><td>NA</td><td>NA</td><td>< MDL</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	NA	NA	< MDL	< MDL	NA	NA	NA	< MDL	NA	NA	NA	NA

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J-" indicates parameter estimate is biased low
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "R" indicates a result reject by the DUSR report
- 9. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- 10. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- 11. Bolded concentrations represent historically high concentrations.

MW-15D Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	200	TOGS Guidance	514/61/	EWQV Plus 3 Std.	Sep-08	Dec-08	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	Unit	Value	EWQV	Dev.	Baseline	Baseline	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
FIELD PARAMETERS																		
Conductivity	μS/cm	NS	206.57	230.18	214	226	221	212	214	247	149	216	211	205	210	213	341	348
Dissolved Oxygen	mg/l	NS					0.16	0.21	0.25	1.00	0.25	0.21	0.28	0.35	0.22	0.19	0.40	0.68
Eh	mV	NS	-34.76	124.21	-172.4	7.4	-144.6	-90.3	-55.6	247.5	147.9	-21	87.7	57.7	5.7	-4.1	-293.2	184.4
pH	SU	6.5-8.5	7.74	9.95	7.54	7.53	8.18	7.84	7.41	7.88	7.02	7.70	7.43	7.22	7.92	8.06	7.01	7.65
Temperature	C°	NS	9.86	13.98	11.33	9.20	5.87	9.21	10.74	4.49	8.16	12.92	9.61	12.65	14.52	9.70	11.01	13.19
Turbidity	N.T.U	5	335.09	1887.48	2.93	2.09	616	1000	1000	681	992	910	506	645	692	1000	1000	958
LEACHATE INDICATORS					7							-				-		
Ammonia Nitrogen	mg/l	2	0.44	0.94	0.11	< 0.1	0.0084	0.13	0.13	J 0.089	0.094	0.083	0.13	0.056	B 0.038	0.056	0.13	F1 J- 0.04
Biological Oxygen Demand	mg/l	NS	4.29	6.55	< 4	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Bromide	mg/l	2	3.54	25.47	< 0.1	< 1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.15	< 0.2	< 0.2	< 0.2	< 0.2	< 0.073	J 0.073	< 0.073
Chloride	mg/l	250	3.30	7.13	3.3	2	2.5	2.5	2.7	B 5.9	B 3.2	3.2	B 2.6	2.8	2.8	2.6	2.9	3.1
Chemical Oxygen Demand	mg/l	NS NS	17.86	34.87	< 5	< 5	J 6.9	JB 5.1	< 10	< 10	< 5	< 10	J 8.1	J 9.8	JB 7	< 5	< 5	J 5.7
Color	P.C.U.	15	43.67	199.74	< 5	5			5	5				5				5
Nitrate	mg/l	10	0.19	0.30	< 0.1	< 0.02	< 0.05	J 0.028	< 0.05	< 0.05	J 0.029	J 0.031	0.052	< 0.05	J 0.029	< 0.02	J 0.02	< 0.02
Sulfate	mg/l	250	5.09	5.77	5.7	4.8	J 1.7	J 1.7	< 5	< 5	< 1.5	JB 2	5.0	B 5.7	5.7	B 6.8	6.4	6.6
Total Alkalinity	mg/l	NS NS	110.00	127.32	110	105	B 112	107	103	107	В 93.7	96.8	B 82.4	103	102	B 114	B 88.5	B 104
Total Cyanide	mg/l	0.1	0.010	0.010	< 0.007	< 0.01		107	< 0.01	< 0.01	30.7	30.0		J< 0.01	102		5 00.5	< 0.005
Total Dissolved Solids	mg/l	500	148.57	271.44	100	150	199	155	J 154	J 100	170	171	163	132	149	185	224	418
Total Hardness	mg/l	NS	1157.46	7082.59	85	77	164	252	260	156	220	270	184	260	196	610	572	200
Total Kjeldahl Nitrogen	mg/l	NS	0.46	0.80	0.14	< 1	0.6	0.67	J 0.71	J 0.42	1	B 1.1	0.32	1 1	0.36	1.2	1.3	0.68
Total Organic Carbon	mg/l	500	9.94	43.69	< 1	1.8	1.2	1.4	J 0.76	J 0.52	1.1	J 0.94	J 0.74	J 0.52	< 1	< 0.43	B 1.1	1.4
Total Phenols	mg/l	0.001	0.005	0.007	0.0061	< 0.002	< 0.01	< 0.01	J< 0.01	< 0.01	B 0.011	< 0.01		< 0.01	< 0.01	< 0.005	< 0.005	JB 0.0072
INORGANIC PARAMETERS	6/	0.001	0.005	0.007	0.0001	. 0.002	. 0.01	. 0.01	0.02	0.02	5 0.022	0.02	- 0.02	. 0.01	. 0.02	1 0.005	1 0.000	12 0.0072
Aluminum	mg/l	0.1	41.232	226.189	0.0965	< 0.0141			22.4	20.1				13.6				20.3
Antimony	mg/l	0.003	0.014	0.020	< 0.0023	< 0.0051			< 0.02	< 0.02				< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.036	0.138	< 0.0076	0.0043			0.024	0.023				0.024				0.025
Barium	mg/l	1	0.363	1.596	0.0525	0.0441			0.24	^ 0.2				0.19				0.22
Beryllium	mg/l	0.003	0.005	0.014	0.00064	< 0.00024			J 0.0013	J 0.00098				J 0.00071				J 0.001
Boron	mg/l	1	0.50	0.50	0.031	< 0.00037			0.031	0.037				B 0.028				0.039
Cadmium	mg/l	0.01	0.015	0.063	< 0.00017	< 0.00031	< 0.002	< 0.005	< 0.001	J 0.00088	< 0.0005	< 0.002	< 0.002	< 0.001	< 0.002	J 0.00088	J 0.00077	< 0.0005
Calcium	mg/l	NS	325.029	1965.978	27.376	25.2	52	71.6	75.5	J 53.1	B 72.7	B 87.7	48.6	B 68.5	52	160	161	55.7
Chromium	mg/l	NS	0.056	0.285	0.00087	< 0.0052		1 - 1 - 1	0.025	0.021				0.014				B 0.022
Hexavalent Chromium	mg/l	0.05	0.010	0.010	< 0.01	< 0.02			< 0.01	< 0.01				J 0.0089				< 0.005
Cobalt	mg/l	0.005	0.052	0.216	< 0.00033	< 0.00049			0.014	0.0074				0.0072				0.0096
Copper	mg/l	0.2	0.126	0.665	< 0.001	< 0.0025			0.041	0.028		(////		0.022				0.025
Iron	mg/l	0.3	77.924	461.133	0.148	0.0951	24.7	6.8	30.1	^ 21.7	26.6	35.4	13.2	17.6	17.8	62.2	34.5	B 24.4
Lead	mg/l	0.025	0.029	0.158	0.0038	0.0015	0.013	0.01	0.031	< 0.005	0.041	0.01	0.11	0.015	J 0.008	0.032	0.029	0.016
Magnesium	mg/l	35	62.841	358.139	4.081	3.44	12.4	11.8	19.5	13.5	16.7	21.2	10.8	14.4	11.9	38.2	36.2	13.4
Manganese	mg/l	0.3	2.476	14.414	0.0484	0.0418	0.52	0.59	0.82	0.51	0.7	0.88	B 0.41	0.57	B 0.44	B 1.7	1.7	B 0.52
Mercury	mg/l	0.002	0.0002	0.0002	< 0.047	< 0.00002	3.32	3.00	J< 0.0002	< 0.0002	· · · · ·	0.00	32	< 0.0002	J			R < 0.00012
Nickel	mg/l	0.007	0.097	0.439	< 0.001	< 0.00066			0.029	0.017				0.019				0.02
Potassium	mg/l	NS NS	6.717	28.551	0.468	0.348	6.3	1	B 7	6.9	8	7.3	4.6	4.9	5.3	12.8	7.6	7.3
Selenium	mg/l	0.01	0.007	0.020	R 0.0248	< 0.0023	0.0		< 0.015	< 0.015		7.5		< 0.015	5.5		7.0	< 0.0087
Silver	mg/l	0.05	0.010	0.010	< 0.00056	< 0.0023			< 0.013	< 0.003				< 0.013				< 0.0007
Sodium	mg/l	20	12.871	16.129	12.255	11.8	13.8	13	B 13.3	13.6	14	13.5	13.9	13.5	13.9	15.4	13.9	13.9
Thallium	mg/l	0.004	0.012	0.029	< 0.0048	0.003	15.0	15	< 0.02	< 0.02	17	13.5	15.5	< 0.02	13.3	15.4	15.5	< 0.01
Vanadium	mg/l	0.014	0.099	0.454	0.00084	< 0.003			0.041	0.034				0.023				0.037
Zinc	mg/l	0.3	0.276	1.372	R 0.0068	0.0105			0.094	0.059				B 0.05				B 0.064
EIII€	1118/1	0.5	0.270	1.3/2	<mdl< td=""><td><mdl< td=""><td>NA</td><td>NA NA</td><td>< MDL</td><td>< MDL</td><td>NA</td><td>NA NA</td><td>NA NA</td><td>в 0.03 < MDL</td><td></td><td>1</td><td></td><td>N/A</td></mdl<></td></mdl<>	<mdl< td=""><td>NA</td><td>NA NA</td><td>< MDL</td><td>< MDL</td><td>NA</td><td>NA NA</td><td>NA NA</td><td>в 0.03 < MDL</td><td></td><td>1</td><td></td><td>N/A</td></mdl<>	NA	NA NA	< MDL	< MDL	NA	NA NA	NA NA	в 0.03 < MDL		1		N/A

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J-" indicates parameter estimate is biased low
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "F1" indicates MS and/or MSD recovery is outside acceptance limits
 9. "R" indicates a result reject by the DUSR report
- $10. \, \text{Shaded concentrations represent an exceedance of the EWQV plus three standard deviations}.$
- 11. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- 12. Bolded concentrations represent historically high concentrations.

MW-18S Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	EWQV	EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)		Value		Dev.	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
IELD PARAMETERS																		
Conductivity	μS/cm	NS	546.25	650.39	1081	916	835	825	773	937	878	983	1004	748	1212	1629	940	1130
Dissolved Oxygen	mg/l	NS			0.13	0.12	0.12	0.16	0.29	0.48	0.13	0.26	0.10	0.02	0.14	0.03	0.15	0.15
Eh	mV	NS	-29.88	98.85	-69.4	-71.6	-6.3	-31.1	-93.7	270.9	-62.0	-15.1	-3.0	34.8	-49.5	-2.0	-22.2	-122.2
рН	SU	6.5-8.5	6.91	8.57	7.67	6.59	6.98	6.72	7.43	6.93	6.61	6.45	6.79	4.92	6.71	6.6	6.74	7.03
Temperature	C°	NS	9.54	20.56	11.99	14.94	3.90	8.38	14.16	3.71	11.66	14.17	7.74	11.38	12.24	7.77	12.00	14.20
Turbidity	N.T.U	5	385.28	1575.98	3.3	0.88	3.69	2.7	2.94	4.81	0.47	1.13	7.16	1.54	3.16	6.30	11.30	8.59
EACHATE INDICATORS																		
Ammonia Nitrogen	mg/l	2	1.10	6.16	0.24	0.250	0.190	0.260	0.26	J 0.12	0.078	0.13	0.062	0.069	0.089	0.120	0.170	J- 0.058
Biological Oxygen Demand	mg/l	NS	9.03	54.18	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Bromide	mg/l	2	0.32	1.19	J 0.18	0.29	< 0.2	0.31	J 0.13	0.24	< 0.73	< 1	0.21	J 0.27	0.2	0.2	J 0.11	< 0.37
Chloride	mg/l	250	17.15	27.38	38.3	68.1	36.4	54.3	54.4	B 47.7	63.9	86.3	96.6	56.4	174	98.5	92.1	130
Chemical Oxygen Demand	mg/l	NS	36.10	126.51	14.8	31.7	B 31.5	24	30.1	B 12.6	13.8	19.5	29.2	27.5	B 29.8	17	< 5	13.3
Color	P.C.U.	15	81.25	270.34	60				5	25				80				25
Nitrate	mg/l	10	0.03	0.07	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.02
Sulfate	mg/l	250	11.29	37.53	*< 5	< 5	< 5	J 1.7	< 5	< 5	< 1.5	JB 2.3	20.9	B 15.4	23.6	B 39.8	32.3	30.1
Total Alkalinity	mg/l	NS	287.25	443.56	364	419	372	319	363	B 350	385	374	427	J 318	B 343	359	В 335	B 356
Total Cyanide	mg/l	0.1	0.0075	0.0075	< 0.01				< 0.01	< 0.01				< 0.01				< 0.005
Total Dissolved Solids	mg/l	500	351.50	418.60	463	628	453	547	J 535	J 490	550	B 588	620	447	733	595	557	710
Total Hardness	mg/l	NS	361.00	511.32	356	460	404	410	396	396	470	460	580	320	524	430	400	490
Total Kjeldahl Nitrogen	mg/l	NS	2.02	8.53	0.73	0.72	0.45	0.44	J 0.7	J 0.81	0.56	0.63	0.62	J 0.78	0.56	0.66	0.67	0.6
Total Organic Carbon	mg/l	500	11.53	47.94	8.5	11.7	10.9	9.2	8	8.5	10.6	9.1	8.9	7.7	8.7	B 8.4	6.5	В 9
Total Phenols	mg/l	0.001	0.01	0.03	J 0.0086	< 0.01	< 0.01	< 0.01	J< 0.01	< 0.01	J 0.0055	< 0.01	B 0.01	J 0.0063	< 0.01	< 0.005	J 0.0087	JB 0.0069
NORGANIC PARAMETERS																		
Aluminum	mg/l	0.1	4.91	13.54	< 0.2				< 0.2	< 0.2				< 0.2				< 0.06
Antimony	mg/l	0.003	0.02	0.03	< 0.02				< 0.02	< 0.02				< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.01	0.02	< 0.01				< 0.02	< 0.01				< 0.01				< 0.0056
Barium	mg/l	1	0.03	0.06	0.0056				0.006	0.0053				0.0052				0.007
Beryllium	mg/l	0.003	0.0004	0.0016	< 0.002				< 0.002	< 0.002				< 0.002				< 0.0003
Boron	mg/l	1	0.02	0.07	0.041				0.037	0.03				B 0.038				0.054
Cadmium	mg/l	0.01	0.0007	0.0014	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	J 0.00057	< 0.001	< 0.002	< 0.005	< 0.0005	< 0.0005
Calcium	mg/l	NS	72.28	216.83	114	148	129	119	124	123	116	B 138	136	B 101	161	129	131	145
Chromium	mg/l	NS	0.01	0.02	J 0.0019	2.0	123	113	< 0.004	< 0.004	110	3 100	100	< 0.004		123	101	< 0.001
Hexavalent Chromium	mg/l	0.05	0.01	0.03	< 0.01				< 0.01	< 0.01				< 0.01				< 0.005
Cobalt	mg/l	0.005	0.01	0.02	J 0.0026				J 0.0021	J 0.003				J 0.003				J 0.0032
Copper	mg/l	0.2	0.01	0.04	J 0.0033				< 0.01	J 0.0018				< 0.01				< 0.0016
Iron	mg/l	0.3	10.52	34.76	1.3	1.6	1.2	1.8	1.9	2.7	5.1	3.4	1.7	2.4	5.2	1.2	0.61	B 4
Lead	mg/l	0.025	0.004	0.013	< 0.005	J 0.0036	< 0.01	< 0.01	0.0051	< 0.005	J 0.0078	< 0.01	< 0.01	< 0.005	J 0.0038	J 0.0079	< 0.003	< 0.003
Magnesium	mg/l	35	12.03	36.29	17.6	23.4	21.2	18	20.4	21.8	21.3	21.5	23.5	18.4	B 27.8	22.5	22.5	23.3
Manganese	mg/l	0.3	3.83	21.67	3	4.2	3.2	3.4	3.7	3.7	B 3.1	3.9	4.7		B 4.9	B 4.8	B 4.6	B 4.5
Mercury	mg/l	0.002	0.00015	0.00015	R< 0.0002	7.2	J.2	J7	J< 0.0002	< 0.0002	5 5.1	3.5	7.7	< 0.0002	3 4.5	5 1.0	1	R < 0.00012
Nickel	mg/l	0.002	0.0013	0.0013	J 0.0041				J 0.0045	J 0.0044				J 0.0055				J 0.0061
Potassium	mg/l	NS	6.50	32.28	0.69	0.86	2.3	1.7	B 1.5	1.1	1.7	1.2	0.84	0.94	0.83	0.63	0.79	0.78
Selenium	mg/l	0.01	0.009	0.023	< 0.015	0.00	2.3	1./	< 0.015	< 0.015	1./	1.2	0.04	< 0.015	0.03	0.03	0.79	< 0.0087
Silver	mg/l	0.05	0.003	0.004	< 0.013				< 0.013	< 0.013				< 0.013				< 0.0087
Sodium	mg/l	20	8.75	30.16	16	21.2	16.1	16.1	B 15.3	18.6	25.6	26.8	33.3	29.5	46.3	46.1	33.2	41.8
Thallium	mg/l	0.004	0.013	0.026	< 0.02	21.2	10.1	10.1	< 0.02	< 0.02	25.0	20.0	33.3	< 0.02	40.3	40.1	33.2	< 0.01
		0.004	0.013	0.026	< 0.02				< 0.02	< 0.02				< 0.02				< 0.01
Vanadium	mg/l																	
Zinc OLATILE ORGANIC COMPOUNDS	mg/l	0.3	0.04	0.10	J 0.0042	212	***	L	J 0.0074	JB 0.0032	212			JB 0.0038	***			JB 0.0024
THATTE ORGANIC COMBOUNDS					< MDL	NA	NA	NA	< MDL	< MDL	NA	NA	NA	< MDL	NA	NA	l NA	

Notes

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J-" indicates parameter estimate is biased low
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "R" indicates a result reject by the DUSR report
- 9. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- $10. \ \ Outlined\ concentrations\ represent\ an\ exceedance\ of\ the\ EWQV\ and\ the\ TOGS\ 1.1.1\ guidance\ value.$
- 11. Bolded concentrations represent historically high concentrations.

MW-18IR Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	EWQV	EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	1	Value		Dev.	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baselin
IELD PARAMETERS	-														_			
Conductivity	μS/cm	NS	368.25	477.45	487	316	354	343	330	430	349	367	364	335	369	380	384	385
Dissolved Oxygen	mg/l	NS			0.19	0.31	0.18	0.38	1.35	0.77	0.27	0.3	0.17	0.47	0.35	0.3	0.23	0.36
Eh	mV	NS	-135.28	444.41	-80.0	-89.9	-128.2	-83.5	-79.1	241.7	-24.8	-11.1	-143.6	134.8	-52.5	-94.1	-150.4	-159.0
рН	SU	6.5-8.5	7.46	9.91	8.24	7.71	8.27	7.94	8.12	7.62	7.98	7.81	8.20	7.55	7.56	8.08	7.91	8.29
Temperature	C°	NS	9.18	18.74	11.75	13.41	6.09	9.28	13.28	5.50	11.42	12.23	9.85	12.51	12.26	9.70	12.10	12.90
Turbidity	N.T.U	5	240.90	742.52	5.3	1.66	2.03	5.85	4.00	4.19	3.28	2.16	4.22	16.7	1.0	11.8	12.7	4.99
EACHATE INDICATORS																		
Ammonia Nitrogen	mg/l	2	0.09	0.19	0.09	0.15	0.054	0.091	0.11	J 0.071	0.1	0.15	F1 0.07	0.087	0.095	0.073	0.096	0.053
Biological Oxygen Demand	mg/l	NS	1.50	1.50	< 2 <	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Bromide	mg/l	2	0.30	1.20	*< 0.2 <	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.37	< 0.4	< 0.2	< 0.2	< 0.2	< 0.073	< 0.073	< 0.073
Chloride	mg/l	250	20.60	34.56	15.4	14.5	15.7	16.5	17.1	B 18.7	B 19.2	B 18.9	20.3	18.7	18.9	18.7	19	20.3
Chemical Oxygen Demand	mg/l	NS	10.98	30.26	< 10 <	10	JB 9.1	< 10	< 10	< 10	< 5	< 10	< 10	< 10	< 10	< 5	< 5	< 5
Color	P.C.U.	15	11.56	59.33	10				10	10				5				5
Nitrate	mg/l	10	0.03	0.07	< 0.05 <	0.05	< 0.05	< 0.05	J 0.026	< 0.05	J 0.031	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02
Sulfate	mg/l	250	47.15	54.47	* 47.2	45.1	52.9	B 49	J 50.9	49.4	54.4	B 49.5	56.7	B 52.2	52.1	B 54.3	54.7	55.7
Total Alkalinity	mg/l	NS	128.50	147.86	125	110	110	92.2	109	B 102	113	114	BF1 122	105	108	В 111	В 114	B J- 113
Total Cyanide	mg/l	0.1	0.01	0.02	< 0.01				< 0.01	< 0.01			j.	<f: 0.01<="" td=""><td></td><td></td><td></td><td>< 0.005</td></f:>				< 0.005
Total Dissolved Solids	mg/l	500	244.00	352.83	212	211	184	223	J 211	J 226	199	B 225	230	195	215	206	233	242
Total Hardness	mg/l	NS	331.25	736.41	156	152	156	156	156	168	172	140	176	168	184	164	168	172
Total Kjeldahl Nitrogen	mg/l	NS	0.39	1.27	< 0.2 <	0.2	< 0.2	< 0.2	< 0.2	J 0.25	< 0.15	0.26	<f1 0.2<="" td=""><td>J 0.18</td><td>< 0.2</td><td>0.28</td><td>0.22</td><td>J 0.15</td></f1>	J 0.18	< 0.2	0.28	0.22	J 0.15
Total Organic Carbon	mg/l	500	0.88	1.44	J 0.6 J	0.99	1.1	1.2	J 0.61	J 0.48	J 0.58	J 0.8	J 0.57	< 0.1	< 1	< 0.43	J 0.78	B 1.3
Total Phenols	mg/l	0.001	0.007	0.018	J 0.0068 <	0.01	< 0.01	< 0.01	J< 0.01	< 0.01	0.011	< 0.01	B 0.012	J 0.0063	< 0.01	J 0.0079	< 0.005	< 0.005
NORGANIC PARAMETERS		· ·																
Aluminum	mg/l	0.1	6.16	9.29	0.25				< 0.2	J 0.16				J 0.094				< 0.06
Antimony	mg/l	0.003	0.012	0.029	< 0.02				< 0.02	< 0.02			- 1	< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.01	0.01	0.016				0.015	0.019			Ī	0.018			j	0.017
Barium	mg/l	1	0.18	0.27	0.12				0.11	0.12				0.12	n'			0.12
Beryllium	mg/l	0.003	0.001	0.002	< 0.002				< 0.002	< 0.002				< 0.002				< 0.0003
Boron	mg/l	1	0.009	0.029	J 0.016				J 0.014	J 0.013				JB 0.013				J 0.014
Cadmium	mg/l	0.01	0.0006	0.0012	< 0.001 <	0.001	< 0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	< 0.002	< 0.001	< 0.002	< 0.0005	< 0.0005	< 0.0005
Calcium	mg/l	NS	91.85	152.56	48.8	48.9	52.7	48.3	48.2	50.9	38.4	B 53	54.3	B 53.6	53.4	54.7	57.4	52.3
Chromium	mg/l	NS	0.01	0.02	J 0.001				< 0.004	< 0.004				< 0.004				< 0.001
Hexavalent Chromium	mg/l	0.05	0.026	0.12	< 0.01				< 0.01	< 0.01				< 0.01				< 0.005
Cobalt	mg/l	0.005	0.00	0.01	< 0.004				< 0.004	< 0.004				< 0.004				< 0.0006
Copper	mg/l	0.2	0.02	0.06	< 0.01				< 0.01	< 0.01				< 0.004				< 0.0016
Iron	mg/l	0.3	12.13	28.79	0.25	0.15	0.18	0.12	0.13	0.18	0.14	0.14	0.14	0.14	0.11	0.11	0.16	B 0.099
Lead	mg/l	0.025	0.01	0.03	< 0.005 <	0.005	< 0.01	< 0.01	< 0.005	< 0.005	J 0.0032	< 0.01	< 0.01	< 0.005	< 0.01	0.012	< 0.003	< 0.003
Magnesium	mg/l	35	15.00	31.26	7	7.4	7.4	6.9	7.6	8	6.5	7.5	7.8	7.9	8	7.9	8.3	7.5
Manganese	mg/l	0.3	0.55	1.04	0.06	0.06	0.06	0.06	0.066	0.07	B 0.054	^ 0.063	0.062	0.064	В 0.065	В 0.067	B 0.07	B 0.061
Mercury	mg/l	0.002	0.0001	0.0003	R< 0.0002				J< 0.0002	< 0.0002				< 0.0002				R < 0.000
Nickel	mg/l	0.007	0.01	0.02	< 0.01				< 0.01	< 0.01				< 0.01				< 0.0013
Potassium	mg/l	NS	2.57	4.36	0.52	0.46	0.5	J 0.44	JB 0.49		J 0.42	J 0.47	J 0.49	J 0.43	0.58	0.45	0.52	J 0.38
Selenium	mg/l	0.01	0.009	0.023	< 0.015				< 0.015	< 0.015				< 0.015				< 0.008
Silver	mg/l	0.05	0.002	0.004	< 0.003	- 11			< 0.003	< 0.003				< 0.003	1			< 0.001
Sodium	mg/l	20	5.32	6.53	8.7	8.6	9.1	8.2	B 8.3	8.3	6.8	8.7	8.6	8.6	8.7	9	8.6	8.2
Thallium	mg/l	0.004	0.013	0.02	< 0.02	0.0	J.1	0.2	< 0.02	< 0.02	0.0	0.7	0.0	< 0.02	0.7		0.0	< 0.01
Vanadium	mg/l	0.004	0.013	0.02	< 0.02				< 0.005	< 0.02		 		< 0.005		+		< 0.001
		0.014	0.01	0.02	J 0.0083				J 0.0016	JB 0.0032				JB 0.0021				JB 0.0016
Zinc	mg/l	0.5	0.00	0.21	< MDL	NA	NA		1 0.0010	טנ 0.0052	NA	NA		< MDL				0.0010 פנ

otes:

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank $\,$
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J-" indicates parameter estimate is biased low
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "R" indicates a result reject by the DUSR report
- 9. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- 10. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- 11. Bolded concentrations represent historically high concentrations.

MW-18D Groundwater Analytical Data

Albany Interim Landfill CHA Project No.: 31146

TEST PARAMETER	Unit	TOGS Guidance	EWQV	EWQV Plus 3 Std.	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-16	Jun-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	Onic	Value	LWQV	Dev.	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
TELD PARAMETERS																		
Conductivity	μS/cm	NS	188.25	233.77	285	181	197	184	198	163	124	133	185	73	283	187	132	150
Dissolved Oxygen	mg/l	NS			0.19	0.13	0.07	0.16	1.04	0.39	0.09	0.23	0.16	0.09	4.91	2.9	0.17	0.3
Eh	mV	NS	-122.93	393.29	-70.5	-78.2	-76.7	63.2	-76.0	261.0	109.4	103.7	39.4	150.1	-99.0	178.2	-347.6	174.2
pH	SU	6.5-8.5	7.69	10.46	8.1	7.74	8.45	8.19	7.84	7.74	7.39	7.77	8.46	7.49	7.84	7.96	7.97	8.27
Temperature	C°	NS	9.03	14.70	12.48	13.63	5.43	10.04	18.59	4.00	7.81	9.84	8.72	12.17	12.02	9.00	12.51	12.81
Turbidity (after purging well)	N.T.U	5	316.05	1712.27	1000	1000	1000	1000	966	1000	1000	1000	1000	1000	1000	1000	1000	1000
EACHATE INDICATORS					7							_	-					
Ammonia Nitrogen	mg/l	2	0.16	0.29	0.16	0.23	0.16	0.24	0.19	J 0.14	0.14	0.22	0.15	0.22	0.15	0.17	0.22	J- 0.13
Biological Oxygen Demand	mg/l	NS	1.50	1.50	< 2	< 2	< 2	2.1	< 2	4.7	< 2	< 2	< 2	< 2	< 2		< 2	2.6
Bromide	mg/l	2	0.30	1.20	*< 0.2	< 0.2	J 0.13	< 0.2	< 0.2	< 0.2	< 0.15	< 0.2	< 0.2	< 0.2	< 0.2	< 0.073	< 0.073	< 0.073
Chloride	mg/l	250	0.98	1.94	1.3	J 0.84	J 0.84	J 0.89	B 1.4	B 1.1	B 2	B 1.2	0.69	0.65	0.6	0.65	0.51	0.59
Chemical Oxygen Demand	mg/l	NS	60.23	387.80	< 10	< 10	B 12.2	< 10	10	20.3	22.5	149	129	142	B 11.6	<f1 5<="" td=""><td>J 5.6</td><td>J 6</td></f1>	J 5.6	J 6
Color	P.C.U.	15	9.69	42.72	40		, in the second second	·	< 5	5				< 5				< 5
Nitrate	mg/l	10	0.032	0.066	3	J 0.026	0.056	< 0.05	< 0.05	< 0.05	J 0.03	< 0.05	0.057	< 0.05	0.076	< 0.02	< 0.02	< 0.02
Sulfate	mg/l	250	3.48	7.37	*< 5	< 5	< 5	J 4	< 5	< 5	< 1.5	JB 4.4	3.9	B 2.7	3.7	В 3.9	4.1	3.4
Total Alkalinity	mg/l	NS	104.30	180.95	119	101	108	87.5	99.9	B 97.3	99.5	100	B 104	99.2	B 99.1	B 102	B 96.1	93.3
Total Cyanide	mg/l	0.1	0.0075	0.008	< 0.01				< 0.01	< 0.01				< 0.01				< 0.005
Total Dissolved Solids	mg/l	500	124.00	444.96	159	184	290	159	J 151	JE 13100	122	B 242	B 277	206	111	697	210	1030
Total Hardness	mg/l	NS	499.65	2684.76	150	400	1420	1020	132	1440	1760	1600	850	1650	1400	1000	660	420
Total Kjeldahl Nitrogen	mg/l	NS	1.96	7.90	0.57	1.4	3.2	1.8	J 0.99	J 4.1	0.48	6.6	4.1	J 5.5	3.7	10.7	1.2	2.7
Total Organic Carbon	mg/l	500	0.81	2.25	J 0.5	J 0.93	1.2	< 1	J 0.44	J 0.56	J 0.92	J 0.75	J 0.81	1.4	J 0.78	< 0.43	1.1	B 1.3
Total Phenols	mg/l	0.001	0.0061	0.0154	J 0.0058	< 0.01	< 0.01	< 0.01	J< 0.01	< 0.01	J 0.0055	J 0.0054	JB 0.0056	J 0.0057	< 0.01	< 0.005	< 0.005	0.017
NORGANIC PARAMETERS														$\overline{}$				
Aluminum	mg/l	0.1	12.71	62.53	21.1				19.8	84.5				15.2				39.3
Antimony	mg/l	0.003	0.012	0.029	< 0.02				< 0.02	< 0.02				< 0.02				< 0.0068
Arsenic	mg/l	0.025	0.02	0.05	0.024				0.021	0.082				0.022				0.036
Barium	mg/l	1	0.18	0.81	0.25				0.24	0.94				0.74				0.86
Beryllium	mg/l	0.003	0.0013	0.0031	J 0.0011				J 0.0013	0.0052				J 0.0011				0.0024
Boron	mg/l	1	0.04	0.06	0.047				0.037	0.08				B 0.042				0.066
Cadmium	mg/l	0.01	0.0006	0.0014	< 0.001	< 0.001	J 0.0015	< 0.005	< 0.001	0.0022	J 0.0015	J 0.0014	J 0.00089	J 0.00097	J 0.001	J 0.0012	J 0.0013	J 0.0008
Calcium	mg/l	NS	160.10	829.64	51.7	119	422	329	102	665	487	B 519	316	B 473	396	378	355	545
Chromium	mg/l	NS	0.02	0.08	0.024				0.024	0.12				0.018				B 0.048
Hexavalent Chromium	mg/l	0.05	0.011	0.022	< 0.02				< 0.01	< 0.25				< 0.01				< 0.005
Cobalt	mg/l	0.005	0.013	0.066	0.011				0.014	0.098				0.0087				0.028
Copper	mg/l	0.2	0.049	0.256	0.054				0.053	0.26				0.036				0.095
Iron	mg/l	0.3	35.32	199.71	28.7	77.1	156	21.5	29.9	183	72.4	61	66	23.7	34.6	137	82.3	B 62.9
Lead	mg/l	0.025	0.010	0.037	0.0091	0.041	0.075	0.018	0.03	0.097	0.071	0.032	0.014	0.022	0.025	0.092	0.046	0.048
Magnesium	mg/l	35	30.82	146.98	14.4	35	76.5	62.5	25.5	124	42.7	35.5	39.2	21.3	B 23.8	87	72.2	37.6
Manganese	mg/l	0.3	1.22	6.58	0.6	1.8	4.3	3.1	1.1	6.6	4.5	^ 4.3	2.8		B 3.1	B 4.2	В 3.6	B 4.3
Mercury	mg/l	0.002	0.00014	0.00023	R< 0.0002				J< 0.0002	< 0.0002				< 0.0002				R < 0.00012
Nickel	mg/l	0.007	0.024	0.121	0.023				0.028	0.19				0.019				0.057
Potassium	mg/l	NS	3.88	17.19	* 6.9	11.4	20.5	3.3	B 6.3	16.6	11.1	10.6	11.2	5.5	7.5	15.7	13.6	12.4
Selenium	mg/l	0.01	0.009	0.023	< 0.015				< 0.015	< 0.015				< 0.015				< 0.0087
Silver	mg/l	0.05	0.0020	0.0038	< 0.003				< 0.003	< 0.003				< 0.003				< 0.0017
Sodium	mg/l	20	18.90	25.67	1	17.5	20.4	17.5	B 16.8	15.7	18.3	17.8	17.8	17.4	18.2	17.3	16.8	17
Thallium	mg/l	0.004	0.018	0.034	< 0.02				< 0.02	< 0.02				< 0.02				< 0.01
Vanadium	mg/l	0.014	0.019	0.076	0.005				0.038	0.2				0.03				0.087
Zinc	mg/l	0.3	0.08	0.45	0.01				0.11	B 0.45				В 0.086				В 0.18
					<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>< MDL</td><td>< MDL</td><td>NA</td><td>NA</td><td>NA</td><td>< MDL</td><td>NA</td><td>NA</td><td>NA</td><td></td></mdl<>	NA	NA	NA	< MDL	< MDL	NA	NA	NA	< MDL	NA	NA	NA	

Note

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J-" indicates parameter estimate is biased low
- 7. "*" indicates a result flagged as estimated by the DUSR report
- 8. "R" indicates a result reject by the DUSR report
- 9. Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
- 10. Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
- 11. Bolded concentrations represent historically high concentrations.

Significant Parameter Concentration Dectections

Albany Interim Landfill Albany, New York CHA Project No.: 31146

TEST PARAMETER		TOGS Guidance	Upe	gradient Well Clu	ster	Cross	gradient Well Cl	uster							Down	gradient Well C	lusters						_
(man/leasthannian materi)	Unit	Value	MW-1S		MW-1D		_	MW-2D	MW-9S	MW-9I	MW-9D	MW-10S	MW-10I	MW-10D	MW-14S		MW-14D	MW-15S	MW-15I	MW-15D	MW-18S	MW-18IR	MW-18D
(mg/l unless otherwise noted) FIELD PARAMETERS			IVIVV-13	MW-1I	IVIVV-1D	MW-2S	MW-2I	IVIVV-2D	IVIVV-95	10100-91	IVIVV-9D	IVIVV-103	IVIVV-10I	INIAA-TOD	IVIVV-143	MW-14I	IVIVV-14D	IVIVV-155	IVIVV-15I	IVIVV-15D	IVIVV-183	IVIVV-18IR	INIAN-19D
Conductivity	μS/cm	NS	790	284	313	1060	348	303	1591	2818	378	1330	412	320	810	403	328	700	496	348	1130	385	150
Dissolved Oxygen	mg/L	NS	0.35	0.26	3.56	1.3	0.19	1.66	0.28	0.3	0.66	0.16	0.12	0.23	0.08	0.3	2.45	0.08	0.23	0.68	0.15	0.36	0.3
Fh	mV	NS	-15.7	-175.7	258.2	-5.1	-176.5	231.8	165.3	144.9	158.6	-197.3	-203.8	150.6	-141.4	-184.40	152.3	-186.0	-186.6	184.4	-122.2	-159.0	174.2
pH	SU	6.5 - 8.5	7.14	7.9	5.93	6.96	7.88	8.11	6.47	7.88	8.40	6.70	7.44	7.46	6.87	8.01	7.84	7.12	7.99	7.65	7.03	8.29	8.27
Temperature	° C	NS	18.7	11.50	15.29	13.60	13.60	16.91	20.13	23.70	21.69	24.9	25.20	24.17	16.0	13.2	12.94	14.2	12.40	13.19	14.20	12.90	12.81
Turbidity (after purging well)	N.T.U	5	8.18	3.4	6.77	28.7	4.68	9.82	2.34	2.73	4.1	1000	83.4	4.36	6.82	3.82	13.4	14.5	14.2	958	8.59	4.99	1000
LEACHATE INDICATORS:	-		0																				
Ammonia Nitrogen	mg/l	2	J- 0.25	UJ < 0.009	J- 0.022	J- 0.048	UJ < 0.009	J- 0.07	1 J 0.37	J- 20.8	UJ < 0.009	J- 0.056	J- 1.1	J- 0.14	J- 0.41	1 J 0.039	J- 0.083	J- 1.5	J- 0.062	1 J 0.04	J- 0.058	0.053	J- 0.13
BOD 5	mg/l	NS	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	3.6	< 2	< 2	b 3.4	< 2	< 2	< 2	< 2	2.6
Bromide	mg/l	2	< 0.073	< 0.073	< 0.073	< 0.37	< 0.073	< 0.073	< 0.37	1.3	< 0.073	0.38	< 0.073	< 0.073	< 0.15	< 0.073	< 0.073	< 0.15	< 0.15	< 0.073	< 0.37	< 0.073	< 0.073
Chloride	mg/l	250	20.4	11.6	0.79	63.7	7.4	0.71	45.7	219	7.4	97.1	4.3	0.88	61.4	26.5	1.1	21.5	38.4	3.1	130	20.3	0.59
Chemical Oxygen Demand	mg/l	NS	B 15.8	JB 7.6	< 5	< 5	J 7.6	< 5	31.3	B 49.4	I+ B 6	3 J+ 12	< 5	3 J+ 13.6	22.8	< 5	< 5	30.1	< 5	J 5.7	13.3	< 5	J 6
Color	P.C.U.	15	10	20	5	15	20	10	J 20	15	< 5	< 5	< 5	< 5	25	10	10	25	10	5	25	5	< 5
Nitrate	mg/l	10	0.066	< 0.02	< 0.02	5.6	< 0.020	< 0.02	1.4	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Sulfate	mg/l	250	9.8	23.4	6.3	50.7	13.2	2.5	83	< 1.7	3.4	63.4	19	2.8	13.3	43.2	J 0.72	< 0.7	63.6	6.6	30.1	55.7	3.4
Total Alkalinity	mg/l	NS	В 381	B 108	B 102	B 390	B 157.0	95.2	B 359	B 589	B 104	B 423	B 197	B 103	B 310	B 128	B 97.5	B 302	B 137	B 104	B 356	B J- 113	93.3
Total Cyanide	mg/l	0.1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	J+ 0.0067	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Total Dissolved Solids	mg/l	500	414	151	100	661	190	109	575	899	126	666	255	107	476	239	122	359	322	418	710	242	1030
Total Hardness	mg/l	NS	284	132	88	152	164	40	380	500	76	430	196	56	280	180	64	236	232	200	490	172	420
Total Kjeldahl Nitrogen	mg/l	NS	0.98	< 0.15	< 0.15	0.59	< 0.15	< 0.15	1.1	21.2	< 0.15	0.52	1.5	0.23	1.2	0.22	J 0.19	2.4	0.23	0.68	0.6	J 0.15	2.7
Total Organic Carbon	mg/l	500	5.5	J 0.81	J 0.84	5.7	1.7	1.1	11.6	17.7	J 0.52	5.1	1.6	J 0.56	9.9	1.5	1.2	B 12.5	1.6	1.4	B 9	B 1.3	B 1.3
Total Phenols	mg/l	0.001	UJ < 0.005	UJ < 0.005	J- 0.0074	JB 0.0065	JB 0.0057	JB 0.005	J 0.0072	J 0.006	0.025	J 0.0099	J 0.0073	< 0.005	J- 0.009	J- 0.0086	1 U < 0.005	0.028	< 0.005	JB 0.0072	JB 0.0069	< 0.005	0.017
INORGANIC PARAMETERS:			0			-																	y*
Aluminum	mg/l	0.1	< 0.06	< 0.06	0.29	< 0.06	< 0.06	J 0.18	< 0.06	< 0.06	J 0.1	6.6	2.6	0.2	< 0.06	0.43	0.49	J 0.071	0.65	20.3	< 0.06	< 0.06	39.3
Antimony	mg/l	0.003	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068	< 0.0068
Arsenic	mg/l	0.025	< 0.0056	< 0.0056	J 0.009	< 0.0056	J 0.0058	0.013	< 0.0056	0.1	0.015	< 0.0056	< 0.0056	0.013	J 0.0062	J 0.0099	J 0.0085	0.011	< 0.0056	0.025	< 0.0056	0.017	0.036
Barium	mg/l	1	0.026	0.023	0.025	0.042	0.077	0.0095	0.089	0.084	0.057	0.097	0.035	0.038	0.071	0.08	0.017	0.082	0.13	0.22	0.007	0.12	0.86
Beryllium	mg/l	0.003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.004	J 0.001	< 0.0003	< 0.0003	0.0024
Boron	mg/l	1	0.62	J 0.008	J 0.013	0.14	J 0.0077	0.053	B 0.77	B 0.3	B 0.045	B 0.16	B 0.15	B 0.054	0.1	J 0.011	0.028	0.078	J 0.0092	0.039	0.054	J 0.014	0.066
Cadmium	mg/l	0.01	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	J 0.0008
Calcium	mg/l	NS	91.9	39	25.4	49	53.2	11.7	119	116	23.8	128	52.9	14.7	85.9	57.8	20.9	72.9	71.6	55.7	145	52.3	545
Chromium	mg/l	NS	< 0.001	< 0.001	< 0.001	B 0.083	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.018	J 0.0037	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	JB 0.0014	B 0.022	< 0.001	< 0.001	B 0.048
Hexavalent Chromium	mg/l	0.05	UJ < 0.005	UJ < 0.005	UJ < 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	J- 0.0058	- F1 0.0067	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Cobalt	mg/l	0.005	J 0.00065	< 0.00063	< 0.00063	< 0.00063	< 0.00063	< 0.00063	< 0.00063	0.0046	< 0.00063	J 0.0032	J 0.0013	< 0.00063	J 0.0031	< 0.00063	UJ < 0.00063	< 0.00063	< 0.00063	0.0096	J 0.0032	< 0.00063	0.028
Copper	mg/l	0.2	J 0.0033	< 0.0016	< 0.0016	J 0.0066	< 0.0016	< 0.0016	J 0.006	< 0.0016	< 0.0016	0.013	J 0.0055	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	0.025	< 0.0016	< 0.0016	0.095
Iron	mg/l	0.3	J 0.03	0.55	0.3	B 3.2	B 0.78	B 0.15	J 0.019	4.7	0.081	7.1	2.7	0.19	9.7	0.82	0.39	B 26.9	B 1.4	B 24.4	B 4	В 0.099	B 62.9
Lead	mg/l	0.025	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	J 0.0035	< 0.003	0.019	0.0093	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	J 0.0032	0.016	< 0.003	< 0.003	0.048
Magnesium	mg/l	35	13.1	7.4	4	7.5	7.4	2.4	16.1	53.5	4.4	18.5	15.6	3.1	18.9	7.6	3.6	10.9	9.3	13.4	23.3	7.5	37.6
Manganese	mg/l	0.3	B 4.6	B 0.14	B 0.031	B 0.019	B 0.21	B 0.02	1.3	0.054	0.0072	5.9	0.49	0.035	B 1.5	B 0.13	B 0.02	B 3.3	B 0.2	B 0.52	B 4.5	B 0.061	B 4.3
Mercury	mg/l	0.002	R < 0.00012	R < 0.00012	R < 0.00012	R < 0.00012	R < 0.00012	R < 0.00012	R < 0.00012	F1 F < 0.00012	R < 0.00012	R < 0.00012	R < 0.00012	R < 0.00012	R < 0.00012	R < 0.00012	R < 0.00012	R < 0.00012					
Nickel	mg/l	0.007	0.026	< 0.0013	< 0.0013	0.064	< 0.0013	< 0.0013	J 0.0054	0.016	< 0.0013	J 0.0094	J 0.0029	< 0.0013	J 0.0035	J 0.0017	< 0.0013	< 0.0013	< 0.0013	0.02	J 0.0061	< 0.0013	0.057
Potassium	mg/l	NS 0.01	23.5	J 0.38	J 0.49	4.8	0.58	J 0.41	10.2	15.3	0.79	11.4	6.7	0.57	1.1	0.67	0.62	3.9	0.74	7.3	0.78	J 0.38	12.4
Selenium	mg/l	0.01	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087
Silver	mg/l	0.05	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017
Sodium	mg/l	20	36.1	2	7.4	161	5.0	25.1	63.4	138	19.4	107	7.6	23.7	44.5	8.6	17.3	32	9.8	13.9	41.8	8.2	17 < 0.01
Thallium	mg/l	0.004	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Vanadium	mg/l	0.014	< 0.0015	< 0.0015	< 0.0015	0.0015	< 0.0015	< 0.0015	0.0054	< 0.0015	< 0.0015	0.011	0.005	< 0.0015	J 0.0025	< 0.0015	< 0.0015	J 0.0039	< 0.0015	0.037	< 0.0015	< 0.0015	0.087
Zinc	mg/l	0.3	JB 0.0036	JB 0.0025	JB 0.0033	JB 0.002	JB 0.0027	< 0.0015	JB 0.0031	< 0.0015	JB 0.002	В 0.04	B 0.027	JB 0.0027	JB 0.0061	JB 0.0072	JB 0.0028	JB 0.0015	JB 0.0036	B 0.064	JB 0.0024	JB 0.0016	B 0.18
VOLATILE ORGANIC COMPOUNDS	e./i	60		1					1		1						1						
Carbon Disulfide	μg/l	60																					
1,1-Dichloroethane 1,2-Dichloroethane	μg/l μg/l	5 0.6											J 0.66										
1,2-Dictiloroethalie	μg/1	0.0		<u> </u>					l		<u> </u>	ı	. 0.00	<u> </u>	I	l	L	<u> </u>					

⁻Shaded concentrations represent an exceedance of the EWQV plus three standard deviations.
-Outlined concentrations represent an exceedance of the EWQV and the TOGS 1.1.1 guidance value.
-Bolded concentrations represent historically high concentrations

SW-1 Surface Water Analytical Monitoring Data

Albany Interim Landfill CHA Project No.: 32596

TEST PARAMETER	Unit	TOGS Guidance	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-15	May-16	Sep-16	Mar-17	Jun-17	Sep-1
(mg/l unless otherwise noted)	Offic	Value	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseli
ELD PARAMETERS														_		
Conductivity	μS/cm	NS	547	429	327	295	311	304	246	273	310	314	326	515	832	565
Dissolved Oxygen	mg/l	NS	NM	2.38	9.56	8.26	6.19	13.82	11.29	12.78	13.2	8.29	8.92	12.5	6.44	9.2
Eh	mV	NS	-53.4	-32.4	-24.3	272.2	-67.9	224.5	265.2	227.1	39.1	176.1	252.9	176.6	-400.4	120.
pH	SU	6.5-8.5	8.13	7.28	7.91	6.73	8.26	7.42	6.50	7.18	8.23	6.84	4.97	7.69	8.90	10.4
Temperature	C°	NS	16.93	15.07	4.50	15.96	25.60	-1.10	14.51	18.39	10.97	21.35	10.52	7.10	13.88	15.5
Turbidity	N.T.U	5	5.47	11.4	4.77	3.01	14.6	2.81	2.29	11.3	8.74	33.7	13.5	4.84	8.87	732
ACHATE INDICATORS			Q*********	_	-											
Ammonia Nitrogen	mg/l	2	0.02	0.1	< 0.02	< 0.02	J 0.017	< 0.02	< 0.009	0.022	F1< 0.02	< 0.2	J 0.0094	< 0.009	< 0.009	J- 0.05
BOD 5	mg/l	NS	< 2	< 2	< 2	< 2	b 2.4	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Bromide	mg/l	2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.073	< 0.2	< 0.2	< 0.2	< 0.2	< 0.073	< 0.073	< 0.07
Chloride	mg/l	250	8.6	B 6.4	7.6	7.3	7.4	JB 8.0	В 7.4	6.9	7.1	7.1	8.7	6.6	2.8	3.6
COD	mg/l	NS	21.8	14.9	B 15.1	21.7	11	< 10	< 5	< 10	14.6	10.8	J 6.4	< 5	< 5	22.
Color	P.C.U.	15	40		\ \ \		25	20				25				10
Nitrate	mg/l	10	0.065	< 0.05	< 0.05	J 0.021	< 0.05	J 0.044	J 0.021	< 0.05	< 0.05	< 0.05	J 0.027	J 0.023	< 0.02	< 0.02
Sulfate	mg/l	250	< 5	< 5	J 4	J 3	< 5	< 5	< 1.5	JB 2.2	19.2	B 14.1	14.7	B 19.3	5.8	8.7
Total Alkalinity	mg/l	NS.	B 109	148	137	120	141	B 129	138	135	B 153	B 153	145	B 149	B 182	B 172
Total Cyanide	mg/l	0.1	< 0.01				J< 0.01	< 0.01				< 0.01		1	1	< 0.00
Total Dissolved Solids	mg/l	500	205	188	216	185	176	JB 200	156	176	182	B 189	183	185	200	195
Total Hardness	mg/l	NS	135	156	168	148	164	160	148	148	168	156	160	164	184	168
Total Kjeldahl Nitrogen	mg/l	NS	0.35	0.87	0.22	< 0.2	J 0.67	J 0.15	0.76	1.3	< 0.2	J 0.33	0.43	< 0.15	0.71	3.9
Total Organic Carbon	mg/l	500	4.7	3.2	2.5	2	2.6	1.5	2.6	B 2.8	B 2.9	2.3	1.3	B 1.4	4.5	4.2
Total Phenols	mg/l	0.001	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.005	J 0.0059	< 0.00
IORGANIC PARAMETERS	6/	0.001	0.02	. 0.01	. 0.01	. 0.01	. 0.02	. 0.01	0.02	. 0.02	. 0.01	. 0.01	. 0.02			
Aluminum	mg/l	0.1	J 0.098				J 0.12	< 0.2				< 0.2		1	-	J 0.17
Antimony	mg/l	0.003	< 0.02				< 0.02	< 0.02				< 0.02				< 0.000
Arsenic	mg/l	0.025	< 0.01				< 0.01	< 0.01				< 0.01				< 0.005
Barium	mg/l	1	0.0074				0.022	0.012				0.016				0.01
Beryllium	mg/l	0.003	< 0.002				< 0.002	< 0.002				< 0.002			1	< 0.000
Boron	mg/l	1	В 0.079				J 0.014	J 0.013				J 0.0093				J 0.01
Cadmium	mg/l	0.01	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	< 0.002	< 0.0033	< 0.002	< 0.0005	< 0.0005	< 0.000
Calcium	mg/l	NS	44.2	51.2	52.6	47.6	48.5	49.6	46.1	B 47.2	52.9	50.3	51.1	50.3	59.4	52.7
Chromium	mg/l	NS	< 0.004	31.2	32.0	47.0	J 0.0012	< 0.004	40.1	D 47.2	32.3	< 0.004	31.1	30.3	33.4	< 0.00
Cobalt	mg/l	0.005	< 0.004				< 0.0012	< 0.004				< 0.004				< 0.000
Copper	mg/l	0.003	< 0.004				< 0.004	< 0.004				< 0.004				< 0.000
		0.05	< 0.01				< 0.01	J< 0.01				< 0.01				< 0.00
Hexavalent Chromium Iron	mg/l mg/l	0.05	0.61	2.3	0.74	0.58	0.75	0.42	0.36	0.34	0.49	0.64	0.34	0.55	0.53	6.1
Lead	mg/l	0.025	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005	< 0.005	< 0.003	< 0.01	V.49	< 0.005	< 0.01	< 0.003	T< 0.003	I < 0.00
	-	35			7.40		7.80	7.40			7.70	7.20	7.60	7.2	7	< 0.00
Magnesium	mg/l	0.3	6.60 B 0.095	7.10 B 0.04	0.16	6.70 0.11	0.29	0.16	6.50 B 0.12	6.90	0.069	0.16	7.60 B 0.086	B 0.14	B 0.069	0.13
Manganese	mg/l			D U.U4	0.10	0.11			D U.12	0.028	0.069		D U.U86	U.14	ט.009	R < 0.00
Mercury	mg/l	0.002	< 0.0002				J< 0.0002	< 0.0002				< 0.0002				< 0.00°
Nickel	mg/l	0.007	< 0.01	4	0.63	1 0.33	< 0.01	< 0.01	1 0.46	1 0 47	0.50	< 0.01	0.54	0.55	B 0.61	0.00
Potassium	mg/l	NS 0.01	B 1.3	1	0.63	J 0.33	0.7	0.65	J 0.46	J 0.47	0.59	0.66	0.54	0.55	U.01	
Selenium	mg/l	0.01	< 0.015				< 0.015	< 0.015				< 0.015				
Silver	mg/l	0.05	< 0.003				< 0.003	< 0.003				0.003		1.0		< 0.00
Sodium	mg/l	20	5.8	4	5.1	4.3	4.4	4.9	4.1	4.5	5.3	5.8	5.3	4.8	2.7	2.3
Thallium	mg/l	0.004	< 0.02				< 0.02	< 0.02				< 0.02				< 0.0
Vanadium	mg/l	0.014	< 0.005				< 0.005	< 0.005				< 0.005				< 0.00
Zinc	mg/l	0.3	J 0.0054				0.016	JB 0.0032				< 0.01				J 0.006
DLATILE ORGANIC COMPOUNDS			<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>< MDL</td><td>< MDL</td><td>NA</td><td>NA</td><td>NA</td><td><mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<></td></mdl<>	NA	NA	NA	< MDL	< MDL	NA	NA	NA	<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	NA	NA	NA	NA
Acetone	μg/l	50														JU 3.4

Notes

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "U" indicates that the parameter is not detected. The value of this compound found to be higher in the trip blank.
- 7. "*" indicates result flagged as estimated by DUSR report
- 8. "R" indicates a result rejected by the DUSR report
- 9. Outlined concentrations represent an exceedance of the TOGS 1.1.1 guidance value.
- 10. Bolded concentrations represent historically high concentrations.

SW-2A Surface Water Analytical Monitoring Data

Albany Interim Landfill CHA Project No.: 32596

TEST PARAMETER	Unit	TOGS Guidance	Jun-13	Sep-13	Mar-14	Jun-14	Sep-14	Feb-15	Jun-15	Aug-15	Mar-15	May-16	Sep-16	Mar-17	Jun-17		Sep-17
(mg/l unless otherwise noted)	Offic	Value	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine		Baseline
IELD PARAMETERS			-														
Conductivity	μS/cm	NS	404	302	305	270.000	293		246	297	318	271		562	569		484
Dissolved Oxygen	mg/l	NS	9.52	8.67	15.41	7.26	5.50	Surface	12.5	5.7	13.81	9.91	Surface	14.5	9.4		31.53
Eh	mV	NS	-17.6	-17.50	82.30	257.2	-61.1	Water	269.2	232.7	35.2	179.7	Water	180.30	-411.80		157.00
pH	SU	6.5-8.5	8.10	7.74	7.30	7.33	7.47	Location	6.57	7.84	8.20	7.60	Location	6.93	8.21		12.13
Temperature	C°	NS	17.25	18.25	-2.93	18.66	25.88	Frozen	18.10	21.00	7.03	23.05	Dry	0.4	15.9		16.56
Turbidity	N.T.U	5	6.96	4.65	3.18	3.20	14.2		2.75	3.82	12.0	12.5		14.7	17.3		7.6
EACHATE INDICATORS											79	-					
Ammonia Nitrogen	mg/l	2	0.28	0.097	< 0.02	< 0.02	J 0.027		< 0.009	J 0.014	< 0.02	< 0.02		< 0.009	< 0.009	F1 UJ	< 0.009
BOD 5	mg/l	NS	< 2	< 2	< 2	< 2	< 2	No	< 2	< 2	< 2	< 2	No	< 2	< 2	<	2
Bromide	mg/l	2	J 0.077	< 0.2	< 0.2	< 0.02	< 0.2	Sample	< 0.073	< 0.2	< 0.2	< 0.2	Sample	< 0.073	< 0.073	<	0.073
Chloride	mg/l	250	12.8	B 6.5	15	6.6	7	Collected	B 7.4	7.8	7.8	< 7.3	Collected	6.5	8.9		7.7
COD	mg/l	NS	14.1	11.2	B 18.2	19.7	< 10		< 5	J 9.8	15.5	14.4		J 5.2	< 10		12.3
Color	P.C.U.	15	50			- 7	20				- 1	25					15
Nitrate	mg/l	10	0.21	< 0.05	0.28	< 0.05	< 0.05		< 0.02	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	<	0.02
Sulfate	mg/l	250	*< 5	< 5	< 5	JB 2.5	< 5		< 1.5	JB 1.9	15.6	B 9.1		B 17.7	9.8		13.1
Total Alkalinity	mg/l	NS	142	153	123	110	141		124	142	B 155	B 133		B 145	B 132	В	124
Total Cyanide	mg/l	0.1	< 0.01				J< 0.01					J 0.0064				<	0.005
Total Dissolved Solids	mg/l	500	208	190	187	169	201		138	186	183	B 168		192	198		187
Total Hardness	mg/l	NS	160	164	140	140	150		136	148	164	136		164	128		140
Total Kjeldahl Nitrogen	mg/l	NS	0.67	0.25	0.5	< 0.2	J 0.21		0.3	2.2	0.2	J 0.29		0.26	0.52		0.18
Total Organic Carbon	mg/l	500	6.3	3.2	4.5	3	2.2		3.8	B 3.9	В 3.9	3.5		B 2.4	5.4	-	3.6
Total Phenols	mg/l		J 0.0091	< 0.01	< 0.01	< 0.01	< 0.01		J 0.0058	< 0.01	J 0.0056	< 0.01		< 0.005	J 0.0099	_	0.017
NORGANIC PARAMETERS	1116/1	0.001	3 0.0031	0.01	· 0.01	V 0.01	0.01	-	0.0030	0.01	3 0.0050	0.01		0.003	3 0.0033		0.017
Aluminum	mg/l	0.1	0.24			7	0.29					J 0.07				<	0.06
Antimony	mg/l	0.003	< 0.02				< 0.02					< 0.02				<	0.0068
Arsenic	mg/l	0.025	< 0.01				< 0.02					< 0.02				<	0.0056
Barium	mg/l	1	0.014				0.018					0.011				<u> </u>	0.0030
Beryllium	mg/l	0.003	< 0.002				< 0.002					< 0.002				<	0.0003
Boron	mg/l	1	0.19				J 0.012					J 0.0098				<u> </u>	0.0003
Cadmium	mg/l	0.01	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001		< 0.0005	< 0.002	< 0.002	< 0.0038		< 0.0005	< 0.0005	<	0.0005
Calcium	mg/l	NS	49.8	52.2	41.6	39.2	47.3		41.8	B 47.3	55.6	41.4		54.5	39.5	<u> </u>	45.3
	mg/l	NS	J 0.0015	32.2	41.0	33.2	J 0.0014		41.0	Б 47.3	33.0	< 0.004		34.3	33.3	<	0.001
Chromium		0.005	< 0.0013				< 0.0014					< 0.004				<	0.0001
Cobalt	mg/l	0.005	J 0.0017				< 0.004					< 0.004				<	0.00063
Copper	mg/l															<	
Hexavalent Chromium	mg/l	0.05	< 0.01	0.20	0.22	0.22	< 0.01		0.25	0.32	0.16	. 0.01		0.0	0.7	<	0.005
Iron	mg/l	0.3	1.2	0.28	0.23	0.33	0.58		0.25		0.16	0.42		0.8	0.7		0.069
Lead	mg/l	0.025	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005		< 0.003	< 0.01	< 0.01	< 0.005		J 0.0034	< 0.003	<	0.003
Magnesium	mg/l	35	7.4	7.1	6.0	6.9	7.6		6.9	7.5	8.2	7.5		7.5	7.4		7.5
Manganese	mg/l	0.3	0.120	B 0.017	В 0.00063	0.02700	0.025		B 0.013	0.021	0.005	0.022		B 0.010	B 0.041		0.0032
Mercury	mg/l	0.002	R< 0.0002				J< 0.0002					< 0.0002					< 0.0001
Nickel	mg/l	0.007	< 0.01				< 0.01				2.06	< 0.01				<	0.0013
Potassium	mg/l	NS	2.9	0.86	2.5	J 0.12	0.6		J 0.35	1.3	0.88	J 0.44		0.97	B 1.1		1.1
Selenium	mg/l	0.01	< 0.015				< 0.015				ļ	< 0.015				<	0.0087
Silver	mg/l	0.05	< 0.003				< 0.003			ļ	ļ	< 0.003				<	0.0017
Sodium	mg/l	20	12.8	4.1	6.5	3.9	4.3		4.1	4.4	5.2	4.8		4.8	13.5		4.6
Thallium	mg/l	0.004	< 0.02				< 0.02					< 0.02				<	0.01
Vanadium	mg/l	0.014	< 0.005				< 0.005					< 0.005				<	0.0015
Zinc	mg/l	0.3	J 0.0026				J 0.0045					JB 0.0036				<	0.0015
OLATILE ORGANIC COMPOUNDS	2		<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>< MDL</td><td></td><td>NA</td><td>NA</td><td>NA</td><td><mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td></td><td>NA</td></mdl<></td></mdl<>	NA	NA	NA	< MDL		NA	NA	NA	<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td></td><td>NA</td></mdl<>	NA	NA	NA		NA

Notes:

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "UJ" indicates the parameter is not detected and the quantitation limit may be inaccurate or imprecise
- 7. "*" indicates result flagged as estimated by DUSR report
- 8. "F1" indicates that the MS and/or MSD recovery is outside acceptance limits
- 9. "R" indicates a result rejected by the DUSR report
- 10. Outlined concentrations represent an exceedance of the TOGS 1.1.1 guidance value.
- 11. Bolded concentrations represent historically high concentrations.

SW-5 Surface Water Analytical Monitoring Data

Albany Interim Landfill CHA Project No.: 32596

TEST PARAMETER	Unit	TOGS Guidance	Jun-13	Sep-13	Mar-14	Mar-14	Sep-14	Sep-14	Jun-15	Aug-15	Mar-15	May-16	Sep-16	Mar-17	Jun-17	Sep-17
(mg/l unless otherwise noted)	Offic	Value	Baseline	Routine	Routine	Routine	Baseline	Baseline	Routine	Routine	Routine	Baseline	Routine	Routine	Routine	Baseline
TELD PARAMETERS							-							_		
Conductivity	μS/cm	NS	981	684	327	657	962	897	573	1065	698	708	1100	1234	734	838
Dissolved Oxygen	mg/l	NS	6.53	7.05	9.56	5.33	5.05	13.58	8.22	7.87	8.31	5.06	3.00	9.62	9.28	5.14
Eh	mV	NS	55.3	-23.5	-24.3	-20.2	-59.3	170.5	181.9	120.4	-63.7	-52.8	-25.3	164.5	-407.3	133.6
рН	SU	6.5-8.5	8	7.25	7.91	6.91	7.76	8.59	6.42	7.70	7.52	7.04	7.30	8.10	7.83	7.54
Temperature	C°	NS	18.16	17.50	4.50	16.00	21.55	2.61	17.41	17.81	12.51	20.75	17.20	8.96	15.37	18.35
Turbidity	N.T.U	5	27.8	8.63	4.77	6.04	16.5	3.82	9.69	22.2	8.31	15.5	21.3	5.45	15.5	18.6
EACHATE INDICATORS			-													-
Ammonia Nitrogen	mg/l	2	5.9	9.7	8.8	9.3	J 15.6	9.7	7.6	22.8	7.7	9.4	22.4	9.6	3.2	J- 12.8
BOD 5	mg/l	NS	b 5	b 5.5	b 6.3	< 2	b 11.6	< 2	b 5.6	27.1	6.5	b 7.7	b 3.8	b 4.2	b 5.8	b 7.6
Bromide	mg/l	2	< 0.2	0.22	0.41	0.38	0.36	0.4	J 0.41	0.55	0.29	0.28	0.52	0.27	< 0.073	J 0.14
Chloride	mg/l	250	41.4	B 50.4	49.3	53.1	74.6	JB 75.6	B 45.2	86.6	45.2	49.2	79.9	46.5	20.3	35.5
COD	mg/l	NS	23.7	16.5	B 22.7	24.6	20.7	23.8	13.8	27	28.6	16	27.4	17.3	< 5	14.9
Color	P.C.U.	15	120			- 0	60	60				40				15
Nitrate	mg/l	10	0.26	0.21	0.49	0.34	0.31	0.37	0.24	0.28	0.46	0.29	0.38	0.39	0.14	0.24
Sulfate	mg/l	250	< 5	5.1	24	B 12.1	J 1.6	9.4	< 1.5	B 5.3	25.4	B 19.8	27.2	B 28.4	19.4	20.9
Total Alkalinity	mg/l	NS	201	285	280	264	400	B 302	253	492	B 295	B 293	486	296	B 169	B 262
Total Cyanide	mg/l	0.1	< 0.01				J< 0.01	< 0.01				< 0.01				< 0.005
Total Dissolved Solids	mg/l	500	310	392	405	391	J 515	JB 452	310	623	366	B 382	575	395	29	364
Total Hardness	mg/l	NS	185	240	216	240	296	264	220	340	236	224	332	248	172	208
Total Kjeldahl Nitrogen	mg/l	NS	4.9	7.5	7.8	9.1	JB 14.1	B 11.6	5.8	24	8.3	J 11.7	23.7	10.8	3.2	12.7
Total Organic Carbon	mg/l	500	7.6	6.4	8.2	6.6	7.7	6.4	6.2	B 10.4	B 7.4	6.4	7.5	B 5.9	6	7
Total Phenols	mg/l	0.001	J 0.0053	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.012	< 0.01	< 0.01	< 0.01	< 0.01	J 0.007	< 0.005	J 0.0055
NORGANIC PARAMETERS																
Aluminum	mg/l	0.1	0.5				< 0.2	< 0.2				J 0.077				< 0.06
Antimony	mg/l	0.003	< 0.02				< 0.02	< 0.02				< 0.02				< 0.0068
Arsenic	mg/l	0.025	< 0.01				< 0.01	J 0.0059				< 0.01				< 0.0056
Barium	mg/l	1	0.045				0.11	0.064				0.066				0.051
Beryllium	mg/l	0.003	< 0.002				< 0.002	J 0.00032				< 0.002				< 0.0003
Boron	mg/l	1	B 0.18				0.34	0.24				0.22				0.23
Cadmium	mg/l	0.01	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001	< 0.001	< 0.0005	< 0.002	< 0.002	< 0.001	< 0.002	< 0.0005	< 0.0005	< 0.0005
Calcium	mg/l	NS	58.8	70.5	67.0	62.5	83.8	J 73.0	61.8	B 91.5	73.7	65.1	84.0	70.4	50.4	58.9
Chromium	mg/l	NS	J 0.0013				J 0.0012	J 0.0013				J 0.0014				< 0.001
Cobalt	mg/l	0.005	J 0.001				J 0.0016	J 0.00077				< 0.004				J 0.00074
Copper	mg/l	0.2	J 0.002				< 0.01	< 0.01				< 0.01				< 0.0016
Hexavalent Chromium	mg/l	0.05	< 0.01			-	< 0.01	J< 0.01				< 0.01				< 0.005
Iron	mg/l	0.3	5.3	1.3	2.3	3	2.3	1.5	2.5	2.3	1.2	2.5	1.1	1.1	1.3	2.7
Lead	mg/l	0.025	< 0.005	< 0.005	< 0.01	< 0.01	< 0.005	< 0.005	< 0.003	< 0.01	< 0.01	< 0.005	< 0.01	J 0.0064	< 0.003	< 0.003
Magnesium	mg/l	35	12.60	14.7	15.0	15.1	21.6	18.1	14.1	25.1	17.1	16.4	23.8	16.60	9.30	13.10
Manganese	mg/l	0.3	0.44	B 0.45	0.43	0.52	0.83	0.57	B 0.43	1.1	0.45	0.58	B 1.1	B 0.47	B 0.23	0.54
Mercury	mg/l	0.002	< 0.0002			- 4	J< 0.0002	< 0.0002				< 0.0002				R < 0.0001
Nickel	mg/l	0.007	J 0.004				J 0.0084	J 0.0055				J 0.004				J 0.0037
Potassium	mg/l	NS	В 7.9	11.4	11.9	12.5	20.8	14.1	10.1	28.4	12.4	12.6	28.9	12.9	B 4.4	B 17.5
Selenium	mg/l	0.01	< 0.015				< 0.015	< 0.015				< 0.015				< 0.0087
Silver	mg/l	0.05	< 0.003				< 0.003	< 0.003				< 0.003				< 0.0017
Sodium	mg/l	20	37.5	45.3	45.8	43.7	68.6	47.7	36.8	83.5	43.9	41.4	72.4	42.7	18.8	34.3
Thallium	mg/l	0.004	< 0.02				< 0.02	< 0.02				< 0.02				< 0.01
Vanadium	mg/l	0.014	J 0.0025				< 0.005	< 0.005				< 0.005				< 0.0015
Zinc	mg/l	0.3	J 0.0062				J 0.0023	JB 0.0037				JB 0.0041	†			< 0.0015
OLATILE ORGANIC COMPOUNDS	8/ '	0.0	<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>< MDL</td><td>< MDL</td><td>NA</td><td>NA</td><td></td><td>3.5571</td><td>NA NA</td><td>NA</td><td>NA</td><td>NA NA</td></mdl<>	NA	NA	NA	< MDL	< MDL	NA	NA		3.5571	NA NA	NA	NA	NA NA
Acetone	μg/l	50	TI	III	I IVA	T IVA	TITIOL	T	I	I I	T		T 1	T I	IVA	JU 3.7

- 1. Parameters listed are Part 360 Baseline or Routine Parameters Effective 1993.
- 2. Blanks indicate no analysis performed
- 3. "<" indicates not detected at the specified method detection limit (MDL)
- 4. "B" indicates parameter detected in associated laboratory blank
- 5. "J" indicates parameter concentration is an estimated value
- 6. "J-" indicates estimated parameter is biased low
- 7. "U" indicates parameter not detected. Value found to be higher in trip blank.
 8. "*" indicates result flagged as estimated by DUSR report
- 9. "R" indicates a result rejected by the DUSR report
- 10. "b" indicates result detected in the unseeded control blank.
- 11. Outlined concentrations represent an exceedance of the TOGS 1.1.1 guidance value.
- 12. Bolded concentrations represent historically high concentrations.

TABLE 5 Pump Station #2 - Primary Leachate Analytical Monitoring Data Albany Interim Landfill CHA Project No.: 32596

TEST PARAMETER		Sep-09	Mar-10	Sep-10	Mar-11	Sep-11	Mar-12	Sep-12	Mar-13	Sep-13	Mar-14	Sep-14	Feb-15	Aug-15	Mar-16	Sep-16	Mar-17	Sep-17
(mg/l unless otherwise noted)	Unit	Expanded	Expanded	Expanded	Expanded	Expanded	Baseline	Expanded	Expanded	Expanded	Expanded	Expanded	Expanded	Expanded	Expanded	Expanded	Expanded	Expanded
FIELD PARAMETERS																		
Conductivity	uS	18372	9337	9468	10.7	108	13735	9497	10250	10610	14540	16230	27300	12500	16400	18320	2613	18890
Eh	mV	-239.1	-102.9	-312	-34.3	76.8	-77.0	63.2	-85.7	-139.0	-219.5	-168.7	325.4	123.8	-123.9	-60.1	-66.8	139.3
pH	SU	7.9	7.65	7.74	7.86	7.82	7.30	8.38	5.87	7.55	7.06	7.77	6.32	7.31	7.33	7.59	6.83	8.89
Temperature	C°	28.62	18.45	19.78	19.52	26.55	22.92	21.51	10.04	25.03	14.85	25.59	15.12	21.32	20.01	24.99	19.15	25.44
Turbidity	N.T.U	260	187	NM	136	87.4	65.3	511	187	446	> 1000	> 1000	113	262	59.7	64.6	58.5	94.6
LEACHATE INDICATORS:											,	, ,						
Ammonia Nitrogen	mg/l	1230	923	1660	450	683	877	594	693	945	906	917	1150	1690	900	B 1090	B 810	J 4.9
BOD 5	mg/l	1800	387	662	717	422	386	431	b 549	b 1000	b 1260	b 2970	Hb 990	1530	671	b 559	В 328	b 204
Bromide	mg/l	12.0	< 1	17.5	6.5	14.9	6.1	6	7.8	7.3	< 2	9.5	10.7	10.5	9	13.3	7.5	J 4.9
Chloride COD	mg/l mg/l	2440 5940	1970 4240	3050 3690	1660 1330	1880 2990	2160 2900	1510 2000	B 1840 2680	1670 2920	2500 B 3060	2570 6820	B 3180 4340	B 2440 3430	2520 2940	2530 2910	2170 2160	1710 2450
Color	P.C.U. >	70	0.0389	4000	2000	2800	3000	2500	2000	3500	3000	2500	3500	1600	4000	4000	2100	2000
Nitrate	mg/l	0.51	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	J 0.026	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	J 0.041	< 0.05	< 0.02
Sulfate	mg/l	26.0	67.2	39.4	13.3	11.4	16.1	2.8	J 2.6	14	9.1	20.1	1 0.03	B 7.2	B 19.9	44.5	88.2	117
Sulfide	mg/l	76	42.6	0.54	0.1	< 2.5	< 0.1	< 0.5	< 0.1	< 0.5	< 2.5	< 0.5	< 0.1	< 0.5	< 0.1	J 1.6	J 0.8	28
Total Alkalinity	mg/l	7400	2.53	6250	66.8	4890	3940	3550	4640	4390	6970	8100	1150	5840	B 5260	7300	B 5240	B 3950
Total Cyanide	mg/l	0.02	0.0623	< 0.01	0.025	0.019	0.026	0.027	0.016	0.015	0.014	0.028	J 0.009	0.025	B 0.056	0.015	0.011	JB 0.0098
Total Dissolved Solids	mg/l	10400	5700	6140	6170	7940	5900	5920	6080	6790	7860	6800	H 9640	7370	10100	8160	11500	5490
Total Hardness	mg/l	368	7240	594	1190	677	1000	700	900	1050	1450	2300	1500	1200	1200	950	950	800
Total Kjeldahl Nitrogen	mg/l	1510	850	1170	454	78.5	675	549	627	902	844	B 1160	B 1210	1520	1160	1260	1030	730
Total Organic Carbon	mg/l	1970	1830	1310	870	634	921	706	713	1130	1470	1840	1530	B 1090	B 1010	996	B 785	B 533
Total Phenols	mg/l	4.74	1480	0.581	0.89	0.65	1.1	0.67	1.5	2.5	0.68	1.2	0.81	0.63	B 0.67	0.72	0.41	0.32
INORGANIC PARAMETERS:																		
Aluminum	mg/l	1.04	1.28	1.08	0.76	0.94	0.71	1.1	2.3	3.7	20.4	350	1.2	0.96	1.1	1.4	0.63	2.7
Antimony	mg/l <	0.06	0.033	0.0539	0.022	0.023	0.026	0.022	0.04	0.025	J 0.14	0.057	0.023	0.024	0.021	0.032	0.026	0.039
Arsenic	mg/l	0.361	0.354	0.354	0.2	0.25	0.23	0.22	0.23	0.26	0.31	0.57	0.35	0.2	0.33	0.33	0.25	0.24
Barium	mg/l	1.74	1.66	2.54	1.9	2.1	1.4	1.3	0.94	1.4	1.9	16.8	2.3	2.2	1.8	1.9	1.5	0.97
Beryllium	mg/l <	0.005	0.0006	< 0.002	< 0.002	0.0004	< 0.002	< 0.002	J 0.0007	< 0.002	J 0.00092	0.017	J 0.00047	< 0.002	< 0.002	< 0.002	< 0.002	< 0.0003
Boron	mg/l	34.5	2000	29.2	21.1	23.1	23	19.5	18.3	22.1	21.9	22.1	24.5	B 18.5	^ 23.3	25.9	22.7	^ 17.3
Calaium	mg/l <	0.005	0.0006	0.0014	0.0012	0.00067	< 0.001	0.00087	0.0027	< 0.001	0.0024	0.012	J 0.00082	< 0.001	< 0.005	< 0.001	< 0.001	< 0.0005
Calcium	mg/l	58.9	163	115	261 0.33	154	97.8 0.37	151	188 0.32	107	275	618	283 0.56	B 263	176	113	114 0.34	149
Chromium Heyayalent Chromium	mg/l	0.408	0.469 < 0.05	0.508	< 0.33	0.42 < 0.01	< 0.05	0.29 0.24	< 0.32	0.37	0.46 < 0.25	1.4	< 0.56	0.39	0.54 < 0.1	0.56 < 0.001	< 0.001	0.29
Hexavalent Chromium	mg/l <	0.05	< 0.05 0.0401	< 0.05 0.0508	< 0.25 0.029	0.01		0.24	0.033	< 0.05 0.047	0.062	< 0.2 1.1	< 0.05 0.045	< 0.02 0.041	< 0.1 0.044	< 0.001 0.046	0.001	< 0.01 0.031
Copper	mg/l <	0.066	0.0401	0.0358	0.029	0.029	0.033 0.021	0.042	0.033	0.047	0.062	4.2	0.045	0.041	0.044	0.046	B 0.013	0.031
Copper Iron	mg/l mg/l	5.02	10.3	11.5	6.5	5.5	5.6	8	8.3	12.7	44.9	1450	17	23.5	5.6	7.1	B 4.7	22
Lead	mg/l	0.016	0.018	0.0192	0.0053	0.01	0.0036	0.0091	0.022	0.02	0.17	3.5	0.0083	0.0087	0.0096	B 0.012	B 0.0041	0.054
Magnesium	mg/l	53.6	101	94.2	115	101	72.3	75	B 115	82.1	93.5	B 372	114	109	107	90.9	81.3	62.7
Manganese	mg/l	0.401	1.04	1.81	5.7	2.7	1.2	2.7	1.7	B 2	12.4	B 1.1	20.6	^ 15.7	B 6.1	B 3.2	B 1.8	3
Mercury	mg/l	0.0004	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.002	< 0.0002	< 0.001	< 0.0002	< 0.0002	< 0.0002	0.00052
Nickel	mg/l	0.184	0.188	0.232	0.14	0.15	0.14	0.15	0.14	0.16	0.19	1.5	0.21	0.18	0.2	0.21	0.15	0.12
Potassium	mg/l	391	688	753	428	454	425	391	432	398	476	626	544	464	B^ 576	612	B 452	402
Selenium	mg/l <	0.005	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.075	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	J 0.0088
Silver	mg/l <	0.01	< 0.003	< 0.003	< 0.003	< 0.003	0.0017	< 0.003	< 0.003	< 0.003	0.004	0.087	< 0.003	< 0.003	< 0.003	0.0036	< 0.003	< 0.0017
Sodium	mg/l	1590	2210	2660	1560	1550	1400	1330	B 1520	1430	1760	1300	2090	1800	B 2090	2040	1750	1490
Thallium	mg/l <	0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01
Tin	mg/l							J 0.053	J 0.04	J 0.059	J 0.073	J 0.51	J 0.075	J 0.05	J 0.072	J 0.082	J 0.06	J 0.058
Vanadium	mg/l	0.114	0.112	0.16	0.11	0.091	0.093	0.11	0.086	0.095	0.14	0.66	0.15	0.12	0.11	0.15	0.095	0.083
Zinc	mg/l	0.144	0.149	0.129	0.19	0.098	0.08	0.068	0.14	0.091	0.58	6.4	B 0.094	B 0.11	B 0.1	0.11	0.043	0.059
VOLATILE ORGANIC COMPOUNDS:																		
1,2-Dichloroethane	ug/l	****	1500	2000	30	23	J 11	222	4400	4800	200	1100		J 8.2	1000		740	1 100
2-Butanone	ug/l	4900	1500	2000	3600	1700	2700	830	1100	1700	3700	4100	7000	4500	1900		740	J 160
4-Methyl-2-pentanone	ug/l	3300	J 66	1400	130 2400	64J 1300	J 84 2400	940	1100	1600	J 120	2400	J 170	J 96 3300	1400		550	J 170
Acetone Carbon Disulfide	ug/l	3300	1000	1400	2400	1300	∠400	940	1100	1600	1500 J 11	∠400	4600	J 4.2	1400		220	J 1/0
Ethyl benzene	ug/l ug/l		38	19	28	29	26				J 30			J 4.2				
Isobutyl Alcohol	ug/I		36	19	20	29	20				, 30		J 650					
Methylene Chloride	ug/I	+		15	63	34				 	68		J 33	22	J 35			
Naphthalene	ug/l	-	J 30	18	16	J 14	10		5.7 / ND ^	J 35	J 18		J 26	J 12	. 55			l
Toluene	ug/l	100	89	48	200	130	96	50	< MDL	J 27	110	55	82	28	J 44		J 41	
Xylenes (totals)	ug/l		75	49	84	79	67	39			J 55		J 46		J 59		J 45	
SEMI-VOLATILE ORGANIC COMPOUNDS:	-																	
2,4-Dimethylphenol	ug/l			21	14	13J	14	12	< MDL	< MDL	J 86	< 37						
2-Methylphenol	ug/l		J 23	24		J 17	18	11	ND / 17 J ^	J 24	< 250	25	J 48		J 30			
3-Methylphenol (m-cresol)	ug/l				900	380	260	260	370 E/350 ^	1100	730		840	950	540			J 150
4-Methylphenol (p-cresol)	ug/l	1900	660	330			280	260	370 E/350 ^	1100	730		840	950	540			J 150
Acetophenone	ug/l			25		J 16	26	24	ND / 19 J ^	< MDL		< 19	J 46		J 29			
Diethyl phthalate	ug/l				4						J 25	< 19						
Phenol	ug/l	2500	470	120	210		220	120	220 E/210 ^	1100	J 220	< 460	J 200	J 140	J 120		J 100	
ORGANOCHLORINE PESTICIDES:	ue h	< MDL			<mdl< td=""><td></td><td>< MDL</td><td>< MDL</td><td>< MDL</td><td></td><td></td><td></td><td>1 0.53</td><td></td><td>45' 053</td><td></td><td></td><td></td></mdl<>		< MDL	< MDL	< MDL				1 0.53		45' 053			
4,4'-DDD	ug/l			0.019						0.99	< 2.6	< 0.49	J 0.53		1F: 0.53	J 0.3		
4,4'-DDT alpha-BHC	ug/l		0.030J	0.019		0.28J							JB 0.47		J 0.092	J 0.5		
ырпа-внс beta-внс	ug/l ug/l	-	0.030J			U.28J				J 0.41	< 2.6	< 0.49	JD 0.47		J U.U92			-
delta-BHC	ug/I			0.024						J. J.41	JB 0.6	< 0.49		J 0.49	JB 0.36			
Dieldrin	ug/I			0.024						 	0.0	. 0.45			J 0.29			
Endosulfan I	ug/I											J 0.11			J 0.29			0.3
gamma-BHC (Lindane)	ug/l		J 0.026	0.013		J 0.21				J 0.30	< 2.60	< 0.49	J 0.42		JB 0.16			
POLYCHLORINATED BIPHENYLS (PCBs):	-01		< MDL	3.013	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL		3.10	< MDL	< MDL	< MDL
Aroclor 1242	ug/l	0.54		0.18						1	1				J 0.2			
Aroclor 1232	ug/l									İ	İ			0.63	-			
HERBICIDES:		< MDL		<mdl< td=""><td><mdl< td=""><td>< MDL</td><td></td><td>< MDL</td><td></td><td>< MDL</td><td></td><td></td><td>< MDL</td><td>< MDL</td><td>< MDL</td><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td>< MDL</td><td></td><td>< MDL</td><td></td><td>< MDL</td><td></td><td></td><td>< MDL</td><td>< MDL</td><td>< MDL</td><td></td><td></td><td></td></mdl<>	< MDL		< MDL		< MDL			< MDL	< MDL	< MDL			
2,4,5-T	ug/l								1.5			< 0.98						
			1.5J				0.33J				J 0.39	1.9				J 3.7		
2,4-D	ug/l																	
	ug/l	< MDL	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA

- Notes:

 1. Parameters listed are Part 360 Baseline or Expanded Parameters Effective 1993.

 2. Blanks indicate no detection

 3. "<" indicates not detected at the specified method detection limit (MDL)

 4. "B" indicates parameter detected in associated laboratory blank

 5. "b" indicates that the result was detected in the unseeded control blank

 6. "J" indicates that the result was detected in the unseeded control blank

 7. For VOCs, SVOCs, Pesticides, PCBs, and Herbicides only parameters with detected concentrations in the past are listed, other parameters which were analyzed for but not detected are not listed.

 8. NA Parameter not analyzed for.

 9. Bolded concentrations represent historically high concentrations.

 10. "Chromatographically, para- and meta- methylphenol co-clute. The reported values may represent either of these compounds or a combination thereof.

 11. "E" indicates the result exceeded the calibration range of the instrument

 12. **Obue to exceedences of the calibration range, sample was re-run for SVOC parameters. Both results are indicated (1st result / 2nd result)

AIL Tables_Q3.xlsxPump Station #2 - Primary Page 1 of 2

TABLE 5 Cell #1 - Secondary Leachate Analytical Monitoring Data Albany Interim Landfill CHA Project No.: 32596

TEST PARAMETER	Unit	Sep-09	Mar-10	Sep-10	Mar-11	Sep-11	Mar-12	Sep-12	Mar-13	Sep-13	Mar-14	Sep-14	Feb-15	Aug-15	Mar-16	Sep-16	Mar-17	Sep-17
(mg/l unless otherwise noted)	Unit	Expanded	Expanded	Expanded	Expanded	Expanded	Baseline	Expanded	Expanded	Expanded	Expanded	Expanded	Expanded	Expanded	Expanded	Expanded	Expanded	Expanded
IELD PARAMETERS																		
Conductivity	uS	1818	817	2198	1722	135	1868	2070	1846	1906	2037	1667	2565	1630	2.096	2036	3580	3161
Eh	mV	8.3	1.3	-233	19.4	-332.6	0.7	54.5	-46	-8.8	100.9	-52.8	220.6	241.1	74.1	124.3	44	172
pH	SU	7.09	7.09	8.06	7.23	7.96	6.36	8.12	5.68	8.52	7.96	7.88	6.03	8.05	7.70	6.80	7.33	8.57
Temperature	C°	23.84	16.11	19.5	11.5	21.11	11.88	12.43	12.94	21.44	9.23	19.19	4.74	15.59	14.45	12.16	8.51	16.16
Turbidity	N.T.U	21.8	44.6	NM	13.8	17.4	2.91	217	1.8	7.78	2.35	7.00	6.06	2.87	14.3	24.2	28.5	127.0
LEACHATE INDICATORS:	1 0 1			0.00	. 0.00		0.00	0.070	0.2	0.022	0.00	L 0.02 L	0.24	0.045		0.022	0.046	0.000
Ammonia Nitrogen	mg/l	< 0.1	< 0.02	0.03	< 0.02	< 0.2	< 0.02	0.078	0.3	0.033	< 0.02	< 0.02	0.24 Hb 3	JF1 0.015 < 2	J 0.13	0.023	0.046	< 0.009
BOD 5	mg/l	< 2	< 2	< 2 0.41	< 2 0.39	< 2 2.7	< 2 0.94	< 2 < 0.4	< 2 0.54	< 2 0.73	b 2.2 0.93	< 2 i		< 0.4	< 2 0.65	< 2 0.69	J 2.2	< 2 J 0.38
Bromide Chloride	mg/l mg/l	< 1 94	119	137	134	125	121	135	B 145	234	202	174	J 1.1 B 176	153	B 145	155	143	121
COD	mg/l	< 5	J 8.3	7.3	6	6.7	7.9	16.4	J 6.6	16.8	B 12.2	J 8.7	32.5	J 9.8	17.6	J 7.3	143	J 5.1
Color	P.C.U.	`	ND	7.5	< 0.01	5	5	10.4	< 5	5	< 5	< 5	< 5	5 5.8	< 5	< 5		5 5
Nitrate	mg/l	0.99	0.125	0.833	1.8	1.8	4.2	7.3	2.6	3.2	4	7.3	10.9	6.4	4.7	6.9	6.1	4.3
Sulfate	mg/l	426	457	494	466	511	479	593	549	489	581	644	712	B 635	B 748	752	834	725
Sulfide	mg/l	.20	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	F1< 0.1	< 1	< 0.1	< 0.67
Total Alkalinity	mg/l		590	531	453	654	530	610	475	263	297	142	B 346	172	B 243	201	287	B 180
Total Cyanide	mg/l -	< 0.01	< 0.01	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	F1< 0.01	< 0.01		< 0.005
Total Dissolved Solids	mg/l		1420	1390	1260	1660	1370	1670	1350	1380	1460	1330	B 1960	1490	1550	1640	1740	1550
Total Hardness	mg/l		1150	1080	1460	1330	1100	1320	970	1200	1200	850	1300	900	1150	920	1120	900
Total Kjeldahl Nitrogen	mg/l		1.9	< 0.2	0.44	0.5	< 0.2	0.67	0.3	0.8	< 0.2	< 0.2	J 41.7	< 0.2	F1 0.44	0.28	< 0.2	0.4
Total Organic Carbon	mg/l		1.4	1.4	3.7	2.7	2.9	3.3	2.6	4.9	3.8	2.4	2.7	3F1 2.9	B 4.1	2.7	B 2.2	3.2
Total Phenols	mg/l		< 0.01	< 0.01	< 0.01	0.0052	0.0079	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	J 0.0057	JB 0.0093	< 0.01	< 0.01	0.013
INORGANIC PARAMETERS:																		
Aluminum	mg/l	< 0.1	< 0.2	< 0.2	0.061	0.087	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	J 0.12	< 0.2	< 0.2	J 0.11	< 0.2	0.43
Antimony	mg/l	< 0.06	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.0068
Arsenic	mg/l	< 0.005	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0056
Barium	mg/l	0.033	0.036	0.0384	0.032	0.046	0.034	0.038	0.033	0.028	0.03	0.023	0.037	0.026	0.026	0.023	0.024	0.032
Beryllium	mg/l	< 0.005	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.0003
Boron	mg/l	< 0.005	0.0893 < 0.001	0.092 0.0003	0.066 0.00053	0.089 0.00064	0.22 0.0005	0.26 0.00051	0.11 J 0.00074	0.29 J 0.00051	0.21 < 0.001	0.17 < 0.001	0.23 J 0.00061	B 0.16 < 0.001	0.2 < 0.001	0.25 < 0.001	0.25 < 0.001	^ 0.34 J 0.0007
Cadmium Calcium	mg/l mg/l	341	267	247	238	290	252	257	224	166	185	152	257	B 178	217	208	237	183
Chromium	mg/l	< 0.005	< 0.004	0.0012	< 0.004	0.0011	0.0015	< 0.004	J 0.0016	< 0.004	< 0.004	< 0.004	J 0.0017	J 0.0015	< 0.004	< 0.004	< 0.004	< 0.001
Hexavalent Chromium	mg/l	< 0.003	< 0.004	< 0.0012	< 0.004	< 0.011	0.0015	< 0.004	< 0.01	< 0.004	< 0.004	< 0.004	< 0.0017	< 0.0013	< 0.004	< 0.004	< 0.004	< 0.001
Cobalt	mg/l	< 0.05	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.00063
Copper	mg/l	< 0.05	< 0.01	0.0021	0.0023	0.002	0.0042	0.0021	< 0.01	J 0.002	J 0.0036	< 0.01	< 0.01	< 0.01	J 0.0019	< 0.01	< 0.01	< 0.0016
Iron	mg/l ·	< 0.05	< 0.05	< 0.05	0.055	< 0.05	< 0.05	0.06	J 0.02	J 0.037	J 0.033	< 0.05	0.23	0.064	0.099	0.059	B 0.079	0.55
Lead	mg/l	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	J 0.0041	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	J 0.004	0.0066
Magnesium	mg/l	92.5	105	109	100	114	105	106	B 108	120	121	108	122	111	125	116	128	115
Manganese	mg/l	< 0.02	0.0168	0.0243	0.022	0.0056	0.0004	0.0024	< 0.003	B 0.0031	J 0.00075	J 0.0013	0.02	0.0073	B 0.0035	B 0.0033	JB 0.0019	0.044
Mercury	mg/l -	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.00012
Nickel	mg/l ·	< 0.02	J 0.0052	0.0082	0.012	0.012	0.0095	0.0067	J 0.0099	0.01	0.01	J 0.0091	0.012	J 0.0072	J 0.0081	J 0.0066	J 0.0091	J 0.007
Potassium	mg/l	5.75	3.21	3.19	3.1	3.5	3.4	3.9	3.8	3.2	3.3	2.8	3.5	2.9	B 2.8	3.1	B 3.3	3.2
Selenium	mg/l	< 0.005	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.0087
Silver	mg/l	< 0.01	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.0017
Sodium	mg/l	92.9	55.8	66.9	65.5	77.3	75.2	79.2	B 78.1	91.8	91.6	85.6	98.3	85.8	B 95.5	86.3	97.4	94.1
Thallium	mg/l	0.066	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01
Tin	mg/l							<	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 0.0051
Vanadium	mg/l	< 0.02	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0015
Zinc	mg/l	< 0.01	J 0.0031	0.0049	0.0045	< 0.01	0.0049	0.0089	J 0.0017	J 0.0081	J 0.0043	J 0.0076	B 0.016	B 0.014	JB 0.0074	J 0.0083	J 0.0078	0.014
VOLATILE ORGANIC COMPOUNDS:	/1	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	1 02	< MDL	< MDL		< MDL
Carbon Disulfide SEMI-VOLATILE ORGANIC COMPOUNDS:	ug/l	< MDL			< MDL	< MDL	< MDL	< MDL						J 0.3	< MDL			< MDL
Benzo(a)pyrene	ug/l	\ IVIDL			\ IVIDE	\ VIDE	\ NIDL	\ IVIDE					J 0.49		VIVIDE			IVIDE
Benzo(b)fluoranthene	ug/I ug/I			l			-					 	J 0.49					1
Benzo(g,h,i)perylene	ug/I			l		 	 						J 0.36		 	l		
Benzyl alcohol	ug/I			 		 	 				JB 3.5	< 5	JB 0.47		 	 		
Bis(2-ethylhexyl)phthalate	ug/I								J 3.7	< MDL	J.J	B 12	J 4.1					
Di-n-butyl phthalate	ug/l			0.46					J 2.8	< 4.8	J 0.37	B 1.1	J 1.2	J 0.51		J 0.49		
Di-n-octyl phthalate	ug/l					l	1						J 1		l	· · · · ·	J 0.49	
Indeno(1,2,3-cd)pyrene	ug/l												J 2.4			i		1
Phenol	ug/l									J 0.55	< 4.8	< 1						
ORGANOCHLORINE PESTICIDES:		< MDL		< MDL	< MDL	< MDL	< MDL	< MDL			< MDL			< MDL				< MDL
4,4'-DDE	ug/l												J 0.013		J 0.021			
alpha-BHC	ug/l												JB 0.026		J 0.022			
delta-BHC	ug/l											J 0.01	JB 0.015		JB 0.023	J 0.012	J 0.013	
Dieldrin	ug/l														0.057			
Endrine Aldehyde	ug/l												B 0.14					
gamma-BHC (Lindane)	ug/l								J 0.042	J 0.0055		< 0.048	J 0.0088		JB 0.009			
POLYCHLORINATED BIPHENYLS (PCBs):		< MDL		< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< M DL	< M DL	< M DL
, ,																		
HERBICIDES: DIOXINS & FURANS:		< MDL	NA	< MDL NA	< MDL NA	< MDL NA	< MDL NA	< MDL NA	< MDL NA	< MDL NA	< MDL NA	< MDL NA	< MDL NA	< MDL NA	< MDL NA	< M DL NA	< M DL NA	< M DL NA

- Notes:

 1. Parameters listed are Part 360 Baseline or Expanded Parameters Effective 1993.

 2. Blanks indicate no detection

 3. "<" indicates not detected at the specified method detection limit (MDL)

 4. "B" indicates parameter detected in associated laboratory blank

 5. "J" indicates parameter concentration is an estimated value

 6. For VOCs, SVOCs, Pesticides, PCBs, and Herbicides only parameters with detected concentrations in the past are listed, other parameters which were analyzed for but not detected are not listed.

 7. NA Parameter not analyzed for.

 8. Bolded concentrations represent historically high concentrations.

AIL Tables_Q3.xlsxCell #1 - Secondary Page 2 of 2

Gas Survey Results

Albany Interim Landfill Albany, New York CHA Project No.: 31146

	9/17/2012	3/18/2013	6/10/2013	9/16/2013	3/17/2014	6/23/2014	9/2/2014	2/24/2015	6/9/2015	8/24/2015	3/21/2016	5/31/2016	9/26/2016	3/6/2017	6/6/2017	9/7/2017
Sampling	% Gas	% Gas	% Gas	% Gas	% Gas	% Gas	% Gas	% Gas	% Gas	% Gas	% Gas	% Gas	% Gas	% Gas	% Gas	% Gas
Point #	Reading Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading							
MW-1S	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-1I	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-1D	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-2S	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-2I	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-2D	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-9S	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-9I	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-9D	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-10S	0	< 0.1	< 0.1	< 0.1	28	< 0.1	< 0.1	1	< 0.1	< 0.1	4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-10I	0	< 0.1	< 0.1	< 0.1	72	< 0.1	< 0.1	3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-10D	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-14S	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-14I	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-14D	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-15S	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-15I	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-15D	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-18S	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-18I	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-18D	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

NM - Not Measured

X - Well No Longer Used/Has Been Removed NI - Well No Installed

APPENDIX A FIELD DATA SUMMARY TABLES

	Measuring	Measurement	Depth to	
Well ID	Point	Time	Water	Comments
GW-4S			0	
GW-4D			0	
SW-1			0	
SW5			0	
Pump Station #2 - Primary Leachate			0	
Cell #1 - Secondary Leachate			0	
MW-10S		14:35	30.37	
MW-10I		14:34	30.48	
MW-9S		14:25	12.4	
MW-9I		14:24	13.06	
MW-9D		14:24	12.91	
MW-10D		14:33	30.29	
GW-2D			0	
SW-2A			0	
MW-2S		14:53	18.49	
MW-2I		14:51	16.54	
MW-15S		15:07	10.53	
MW-15I		15:08	10.61	
MW-18S		15:49	3.22	
MW-18IR		15:46	3.61	
MW-2D		14:52	17.26	
MW-15D		15:10	10.49	
MW-18D		15:52	2.49	
MW-1S		14:14	9.94	
MW-1I		14:18	9.88	
MW-14S		15:30	4.9	
MW-14I		15:24	4.43	
MW-1D		14:17	9.78	
MW-14D		15:23	3.62	

	Sampling	Sampling	Sample	Number of		QA/QC	QA/QC Sample
Well ID	Method	Time	Analyses	Bottles	QA/QC	Sample ID	Time
GW-4S				0			
GW-4D				0			
SW-1				0			
SW5				0			
Pump Station #2 - Primary Leachate	Bailer	11:30		28	no		
Cell #1 - Secondary Leachate	Bailer	13:15		28	no		
MW-10S	Bailer	14:00		17	no		
MW-10I	Bailer	15:14		17	no		
MW-9S	Bladder pump	10:58		17	yes	CHA-1	10:30
MW-9I	Bladder pump	09:52		51	yes		
MW-9D	Bladder pump	12:00		17	no		
MW-10D	Waterra tubing	14:55		17	no		
GW-2D				0			
SW-2A				0			
MW-2S	Bladder pump	15:17		17	no		
MW-2I	Bladder pump	16:17		17	no		
MW-15S	Bladder pump	13:00		17	no		
MW-15I	Bladder pump	13:49		17	no		
MW-18S	Bladder pump	09:55		17	no		
MW-18IR	Bladder pump	10:55		17	no		
MW-2D	Bladder pump	15:30		17	no		
MW-15D	Bladder pump	13:19		17	no		
MW-18D	Bladder pump	11:02		17	no		
MW-1S	Bladder pump	12:58		17	no		
MW-1I	Bladder pump	14:02		17	no		
MW-14S	Bladder pump	10:06		17	no		
MW-14I	Bladder pump	11:16		17	no		
MW-1D	Bladder pump	14:14		17	no		
MW-14D	Bladder pump	10:37		17	no		

				Volume						Dissolved			
	Method of		One Well	•		ORP/Eh		Conductivity	-	, 0	Temperature		
Well ID	Purging	Water	Volume	(gal.)	Time		pH		(NTU)	(mg/L)	(°C)	(ft.)	Description
Pump Station #2 - Primary Leachate		0				139.3		18.89	0	1.6	25.44	0	
Cell #1 - Secondary Leachate	5.11	0			13:44			3.161	0	6.74	16.16	0	
	Bailer	0	0			-196.1		1.48	0	0.18	24.5	30.71	
A N. V. 4.05						-196.6	6.7		0	1.41	24.6	30.71	
MW-10S						-196.6		1.38	0	0.23	24.7	30.71	
					13:55				0	0.18	24.8	30.71	
						-197.3		1.33	0	0.16	24.9	30.71	
	Bailer	0	0		14:57			0.414	0	0.16	25.3	30.73	
						-203.6		0.413	0	0.14	25.3	30.75	
MW-10I						-204.5		0.413	0	0.14	25.3	30.75	
						-204.3		0.413	0	0.14	25.2	30.75	
						-203.8		0.412	0	0.12	25.2	30.75	
	Bladder pump	0	0			183.1		1.595	0	0.48	20.14	12.98	
						175.5		1.583	0	0.38	20.19	12.98	
MW-9S						170.8		1.59	0	0.37	20.18	12.98	
						166.2		1.597	0	0.31	20.18	12.98	
						165.3		1.591	0	0.28	20.13	12.98	
	Bladder pump	0	0		09:25		7.96	2.634	0	0.59	23.13	13.25	
					09:29	147	7.7	2.798	0	0.48	23.37	13.24	
					09:32	145.4	7.58	2.811	0	0.41	23.55	13.24	
					09:35	145.1	7.53	2.812	0	0.48	23.65	13.3	
MW-9I					09:38	144.5	7.58	2.814	0	0.34	23.65	13.25	
					09:41	144.8	7.55	2.816	0	0.33	23.65	13.3	
					09:44	144.3	7.94	2.816	0	0.32	23.66	13.22	
					09:47	144.2	7.91	2.817	0	0.304	23.68	13.26	
					09:50	144.9	7.88	2.818	0	0.3	23.7	13.25	
	Bladder pump	0	0		11:24	198.1	8.42	0.374	0	2.29	20.66	13.3	
					11:27	196.8	8.45	0.372	0	2.03	20.56	13.25	
					11:31	188.7	8.48	0.371	0	1.61	20.77	13.28	
					11:34	180.7	8.58	0.373	0	1.36	20.99	13.28	
					11:37	177.1	8.49	0.374	0	1.21	21.06	13.28	
MW-9D					11:40	171	8.73	0.376	0	1.05	21.15	13.29	
IVIVV-3D					11:43	167.5	8.63	0.376	0	0.89	21.42	13.22	
					11:46	164.4	8.68	0.377	0	0.86	21.48	13.28	
					11:49	161	8.6	0.378	0	0.78	21.27	13.26	
					11:52	162.8	8.49	0.378	0	0.74	21.29	13.29	
					11:55	160.5	8.45	0.378	0	0.69	21.5	13.28	
					11:58	158.6	8.4	0.378	0	0.66	21.69	13.3	
	Waterra tubing	0	0		13:50	215.9	6.25	0.347	0	2.21	21.91	30.5	
	_				13:53	223.4	5.85	0.335	0	1.26	21.79	30.52	
						225.2		0.333	0	1.08	21.78	30.58	
						226.2		0.331	0	0.93	21.58	30.59	
					14:03	226.8		0.33	0	0.86	21.91	30.59	

				14:08 222.8	5.69 0.328	0	0.75	22.01	30.61	
				14:11 221	5.75 0.327	0	0.68	22.07	30.6	
				14:14 216.4	5.85 0.325	0	0.72	22.17	30.63	
				14:17 212.9	5.95 0.324	0	0.61	22.29	30.66	
				14:20 208.9	6.05 0.322	0	0.55	22.5	30.69	
MW-10D				14:23 204.4	6.15 0.32	0	0.47	22.85	30.73	
1V1VV-10D				14:26 197.6	6.27 0.32		0.41	23.1	30.75	
						0				
				14:30 186.2	6.51 0.319	0	0.37	23.45	30.8	
				14:33 177.7	6.75 0.319	0	0.32	23.79	30.8	
				14:36 171	6.89 0.319	0	0.3	23.93	30.81	
				14:39 163.4	7.04 0.319	0	0.28	24.01	30.82	
				14:42 158.8	7.18 0.318	0	0.26	24.1	30.82	
				14:45 155.7	7.28 0.319	0	0.26	24.09	30.82	
				14:48 152.8	7.36 0.319	0	0.25	24.05	30.82	
				14:51 151.8	7.4 0.319	0	0.24	24.13	30.82	
				14:54 150.6	7.46 0.32	0	0.23	24.17	30.83	
	Bladder pump	0	0	14:50 -11	6.99 1.35	0	1.63	13.6	18.59	
	C - P			14:56 -2.3	6.98 1.24	0	1.51	13.6	18.59	
				15:00 -8.3	7 1.19	0	1.42	13.7	18.59	
				15:05 -7.9	6.99 1.15	0	1.76	13.7	18.59	
MW-2S				15:08 -7.8	6.95 1.12	0	1.46	13.7	18.59	
						_				
				15:11 -7.5	7 1.09	0	1.38	13.7	18.59	
				15:14 -4.9	6.96 1.07	0	1.31	13.7	18.59	
				15:17 -5.1	6.96 1.06	0	1.3	13.6	18.59	
	Bladder pump	0	0	15:48 -154.5	7.73 0.348	0	0.59	13.9	16.71	
				15:55 -171.9	7.81 0.349	0	0.28	13.7	16.71	
				15:59 -160.5	7.49 0.349	0	0.23	13.7	16.71	
NAVA / 21				16:04 -147.7	7.25 0.349	0	0.21	13.6	16.71	
MW-2I				16:08 -141.7	7.11 0.348	0	0.2	13.6	16.71	
				16:11 -172.5	7.87 0.348	0	0.25	13.6	16.71	
				16:14 -176.1		0	0.19	13.6	16.71	
				16:17 -176.5		0	0.19	13.6	16.71	
	Bladder pump	0	0	12:34 -170.2		0	1.18	14.3	10.66	
	bidder pamp	Ü	U	12:40 -176.6		0	0.19	14.3	10.66	
				12:46 -144.1		0				
MW-15S						0	0.12	14.3	10.66	
				12:50 -180.8	7.16 0.71	U	0.1	14.2	10.66	
				12:54 -181.6	7.13 0.7	U	0.08	14.2	10.66	
				12:59 -186	7.12 0.7	0	0.08	14.2	10.66	
	Bladder pump	0	0	13:33 -174.1	7.96 0.508	0	0.54	12.5	10.87	
MW-15I				13:38 -178.2	7.99 0.497	0	0.33	12.5	10.87	
INIAA-TOI				13:43 -177.1	8 0.492	0	0.26	12.4	10.87	
				13:48 -186.6	7.99 0.496	0	0.23	12.4	10.87	
	Bladder pump	0	0	09:46 -116.3	7.03 1.13	0	0.21	14.2	3.5	
MW-18S	2.222. pap	J	•	09:50 -119.3	7.03 1.13	0	0.17	14.2	3.5	
				09:54 -122.2	7.03 1.13	0	0.15	14.2	3.5	
	Dladdornuma	0	0							
	Bladder pump	0	0	10:38 -143.6	8.24 U.38/	0	0.51	12.7	4.32	

MANA/ 10ID				10:43 -149.9	8.26 0.386	0	0.46	12.7	4.32	
MW-18IR				10:48 -154.4	8.27 0.386	0	0.4	12.8	4.32	
				10:53 -159	8.29 0.385	0	0.36	12.9	4.32	
	Bladder pump	0	0	14:59 255.1	8.67 0.305	0	3.86	17.6	18.3	
				15:03 256.3	8.46 0.306	0	3.26	17.42	18.6	
				15:08 248.8	8.37 0.306	0	2.17	16.96	18.85	
MW-2D				15:12 243.6	8.23 0.304	0	1.79	16.96	18.91	
				15:17 239	8.16 0.304	0	1.64	17.01	18.9	
				15:22 234.9	8.08 0.303	0	1.62	17.03	18.9	
				15:26 231.8	8.11 0.303	0	1.66	16.91	18.91	
	Bladder pump	0	0	12:39 215.6	7.47 0.347	0	1.06	13	10.99	
				12:43 211.2	7.43 0.348	0	0.88	12.97	11.2	
				12:48 193.4	7.59 0.347	0	0.79	14.1	11.01	
MW-15D				12:53 184.8	7.75 0.348	0	0.84	13.76	11.11	
				12:58 185.5	7.64 0.348	0	0.7	13.21	11.05	
				13:03 185.3	7.63 0.348	0	0.7	13.2	11.1	
				13:08 184.4	7.65 0.348	0	0.68	13.19	11.12	
	Bladder pump	0	0	09:46 205.2	8.05 0.368	0	1.05	12.8	4.26	
	·			09:50 200.1	7.87 0.359	0	0.88	12.75	4.36	
				09:54 196.6	8.07 0.338	0	0.71	12.8	4.4	
				09:58 192.6	7.94 0.324	0	0.61	12.75	4.43	
				10:02 191	7.79 0.314	0	0.56	12.72	4.48	
				10:07 184.9	7.81 0.305	0	0.5	12.66	4.53	
				10:11 184	8.01 0.305	0	0.46	12.67	4.53	
				10:15 182.8	8.67 0.306	0	0.48	12.71	4.53	
				10:19 181.6	8.75 0.304	0	0.43	12.73	4.53	
MW-18D				10:23 180.9	8.33 0.3	0	0.4	12.75	4.53	
				10:27 179.7	9.07 0.258	0	0.41	12.75	4.53	
				10:31 179.2	8.24 0.256	0	0.37	12.74	4.53	
				10:35 178.9	8.34 0.238	0	0.33	12.73	4.53	
				10:39 178.3	8.34 0.186	0	0.35	12.75	4.53	
				10:44 178.3	8.39 0.177	0	0.32	12.77	4.53	
				10:49 176.2	8.05 0.149	0	0.32	12.78	4.53	
				10:53 175.2	8.17 0.149	0	0.31	12.8	4.53	
				10:57 174.7	8.19 0.15	0	0.32	12.81	4.53	
				11:01 174.2	8.27 0.15	0	0.3	12.81	4.53	
	Bladder pump	0	0	12:42 -7.8	7.12 0.78	0	0.23	18.5	10.02	
101/46				12:49 -24.4	7.14 0.77	0	0.39	18.7	10.02	
MW-1S				12:53 -15.9	7.14 0.76	0	0.34	18.8	10.02	
				12:57 -15.7	7.14 0.79	0	0.35	18.7	10.02	
	Bladder pump	0	0	13:48 -174.5	7.89 0.285	0	0.44	11.8	10.04	ı
NAVA / 41				13:51 -175.2	7.89 0.285	0	0.35	11.8	10.04	
MW-1I				13:55 -175.3	7.91 0.285	0	0.32	11.8	10.04	
				14:00 -175.7	7.9 0.284	0	0.26	11.5	10.04	
	Bladder pump	0	0	09:55 -137.3	6.87 0.82	0	0.12	15	5.12	
MW-14S				10:00 -139.2	6.87 0.81	0	0.11	15	5.12	

				10:05 -141.4	6.87 0.81	0	0.08	16	5.12	
	Bladder pump	0	0	10:56 -151.8	7.94 0.377	0	1.69	15	4.68	
				11:01 -170.8	7.98 0.387	0	0.56	13.3	4.71	
MW-14I				11:07 -179.1	7.97 0.395	0	0.38	13.2	4.71	
				11:11 -181.9	7.99 0.4	0	0.33	13.2	4.71	
				11:15 -184.4	8.01 0.403	0	0.3	13.2	4.71	
	Bladder pump	0	0	12:53 258.6	7.53 0.315	0	12.71	20.26	10.41	
				12:58 275.6	8.01 0.317	0	10.34	19.85	10.45	
				13:03 293.1	6.8 0.315	0	7.61	19.59	10.42	
				13:08 296.9	6.78 0.315	0	6.63	18.4	10.62	
				13:13 298.8	7.87 0.311	0	5.81	16.31	10.85	
				13:18 319.7	6.17 0.312	0	4.42	16.57	10.85	
				13:23 326.1	6.1 0.312	0	3.96	17.42	10.79	
				13:28 311.1	6.6 0.314	0	3.88	17.47	10.75	
				13:33 294.6	6.37 0.314	0	4.12	16.61	10.84	
				13:37 287.3	5.67 0.311	0	4.07	16.2	10.87	
MW-1D				13:42 285.1	6.64 0.311	0	3.97	16.16	10.95	
				13:45 281.4	6.81 0.309	0	3.84	16.31	10.97	
				13:48 276.6	7.15 0.31	0	3.74	16.25	10.85	
				13:52 270.1	7.05 0.311	0	3.62	16.22	10.83	
				13:55 265.7	7.08 0.313	0	3.74	15.75	10.99	
				13:58 263.3	6.96 0.312	0	3.74	15.03	11.18	
				14:01 265.7	6.94 0.31	0	3.61	15.18	11.15	
				14:04 267.2	6.32 0.311	0	3.55	15.42	11.15	
				14:07 264.7	5.93 0.313	0	3.52	15.37	11.16	
				14:10 261	5.89 0.31	0	3.5	15.36	11.14	
				14:13 258.2	5.93 0.313	0	3.56	15.29	11.14	
	Bladder pump	0	0	09:58 170.9	7.86 0.325	0	2.86	13.03	4.15	
				10:03 165.7	7.85 0.325	0	2.76	13.02	4.11	
				10:08 161	7.85 0.327	0	2.68	12.97	4.14	
				10:13 159.1	7.84 0.328	0	2.65	12.95	4.19	
MW-14D				10:17 156.4	7.85 0.329	0	2.59	12.97	4.22	
				10:20 155	7.86 0.326	0	2.56	12.94	4.16	
				10:25 153.8	7.84 0.326	0	2.45	12.92	4.17	
				10:29 153	7.84 0.327	0	2.44	12.91	4.16	
				10:33 152.3	7.84 0.328	0	2.45	12.94	4.16	

APPENDIX B LABORATORY ANALYTICAL REPORTS

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-123779-1

Client Project/Site: Albany Interim Landfill - Expanded

Sampling Event: Albany Interim - Expanded

For:

CHA Inc 111 Winners Circle PO BOX 5269 Albany, New York 12205-0269

Attn: Mr. John Favreau

Authorized for release by: 9/20/2017 11:30:30 AM

Judy Stone, Senior Project Manager (484)685-0868

judy.stone@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: Albany Interim Landfill - Expanded

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	8
Surrogate Summary	22
QC Sample Results	24
QC Association Summary	44
Lab Chronicle	50
Certification Summary	52
Method Summary	53
Sample Summary	54
Detection Limit Exceptions Summary	55
Chain of Custody	56
Receipt Checklists	58

6

8

9

11

12

14

15

16

Definitions/Glossary

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Descriptio	n
-----------	----------------------	---

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier Description	
Χ	Surrogate is outside control limits	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
E	Result exceeded calibration range.	

Metals

Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.	

General Chemistry

Qualifier	Qualifier Description
b	Result Detected in the Unseeded Control blank (USB).
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

RPD

TEF

TEQ

These commonly used abbreviations may or may not be present in this report.
Listed under the "D" column to designate that the result is reported on a dry weight basis
Percent Recovery
Contains Free Liquid
Contains No Free Liquid
Duplicate Error Ratio (normalized absolute difference)
Dilution Factor
Detection Limit (DoD/DOE)
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
Decision Level Concentration (Radiochemistry)
Estimated Detection Limit (Dioxin)
Limit of Detection (DoD/DOE)
Limit of Quantitation (DoD/DOE)
Minimum Detectable Activity (Radiochemistry)
Minimum Detectable Concentration (Radiochemistry)
Method Detection Limit
Minimum Level (Dioxin)
Not Calculated
Not Detected at the reporting limit (or MDL or EDL if shown)
Practical Quantitation Limit
Quality Control
Relative Error Ratio (Radiochemistry)
Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

Job ID: 480-123779-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-123779-1

Receipt

The samples were received on 9/8/2017 1:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.8° C and 0.9° C.

GC/MS VOA

Method(s) 8260C: The following sample was collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: Primary Leachate (Pump Station #2) (480-123779-1). The sample was analyzed within 7 days per EPA recommendation.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-376058 recovered above the upper control limit for Pentachloroethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: Primary Leachate (Pump Station #2) (480-123779-1).

Method(s) 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: Primary Leachate (Pump Station #2) (480-123779-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: Due to an increase in the spiking concentration required for other analytes of interest, the following compound has been elevated to a level at the upper range of the initial calibration: 3,3'-Dichlorobenzidine. The laboratory control sample (LCS 480-375804/2-A) recovered within acceptable limits for the analyte and has been qualified with an "E" flag.

Method(s) 8270D: The following sample was diluted due to the nature of the sample matrix: Primary Leachate (Pump Station #2) (480-123779-1). Elevated reporting limits (RLs) are provided. Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-377406 recovered above the upper control limit for 1,3,5-Trinitrobenzene, 3-Nitroaniline and 4-Nitroaniline. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: Primary Leachate (Pump Station #2) (480-123779-1) and Secondary Leachate (Cell #1) (480-123779-2).

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-377406 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

IC

Method(s) 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: Primary Leachate (Pump Station #2) (480-123779-1) and Secondary Leachate (Cell #1) (480-123779-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8081B: The following sample was copper treated for 15 minutes as stated in method 3660B (Sulfur Removal Using Activated Copper Precipitation) and sulfur still remained in the sample. Primary Leachate (Pump Station #2) (480-123779-1)

Method(s) 8151A: The continuing calibration verification (CCV) associated with batch 480-376652 recovered above the upper control limit for multiple analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been

TestAmerica Buffalo 9/20/2017

TestAmerica Job ID: 480-123779-1

Case Narrative

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Job ID: 480-123779-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

reported. The following samples are impacted: Primary Leachate (Pump Station #2) (480-123779-1) and Secondary Leachate (Cell #1) (480-123779-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The Low Level Continuing Calibration Verification (CCVL 480-376513/53) contained Total Boron outside the control limits. All reported samples associated with this CCVL were either below the laboratory's standard reporting limit for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples was not performed. Primary Leachate (Pump Station #2) (480-123779-1) and Secondary Leachate (Cell #1) (480-123779-2)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) SM 2120B: The following samples were filtered prior to analysis, therefore the analytical results are being reported as "True Color": Primary Leachate (Pump Station #2) (480-123779-1), Secondary Leachate (Cell #1) (480-123779-2) and (480-123779-K-2 DU)

Method(s) SM 2540C: Due to the matrix, the initial volume(s) used for the following sample deviated from the standard procedure: Primary Leachate (Pump Station #2) (480-123779-1). The reporting limits (RLs) have been adjusted proportionately.

Method(s) 351.2: Due to the matrix, the initial volume(s) used for the following sample deviated from the standard procedure: Primary Leachate (Pump Station #2) (480-123779-1). The reporting limits (RLs) have been adjusted proportionately.

Method(s) 353.2: The following samples were filtered prior to analysis. Primary Leachate (Pump Station #2) (480-123779-1) and Secondary Leachate (Cell #1) (480-123779-2)

Method(s) 7196A: The following sample was diluted due to dark color and high blank absorbance. Primary Leachate (Pump Station #2) (480-123779-1). Elevated reporting limits (RL) are provided.

Method(s) 9012B: The method blank for preparation batch 480-376442 contained Cyanide above the reporting limit (RL). None of the samples associated with this method blank contained the target compound; therefore, re-extraction and/or re-analysis of samples were not performed. Primary Leachate (Pump Station #2) (480-123779-1) and Secondary Leachate (Cell #1) (480-123779-2)

Method(s) SM 4500 S2 F: The results reported for the following sample do not concur with results previously reported for this site: Primary Leachate (Pump Station #2) (480-123779-1). Reanalysis was performed, and the result(s) confirmed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3510C: Due to the matrix, the initial volume(s) used for the following sample deviated from the standard procedure: Primary Leachate (Pump Station #2) (480-123779-1). The reporting limits (RLs) have been adjusted proportionately.

Method(s) 3510C: Due to the matrix, the initial volume(s) used for the following sample deviated from the standard procedure: Primary Leachate (Pump Station #2) (480-123779-1). The reporting limits (RLs) have been adjusted proportionately.

Method(s) 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 480-376392.

Method(s) 8151A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-376060.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TestAmerica Job ID: 480-123779-1

Client: CHA Inc Project/Site: Albany Interim Landfill - Expanded

Client Sample ID: Primary Leachate (Pump Station #2)

l ah	Sample	ID: 480	123779-1
Lau	Samue	1D. 40U-	123/13-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
2-Butanone (MEK)	160	J	500	66	ug/L	50	8260C	Total/NA
Acetone	170	J	500	150	ug/L	50	8260C	Total/NA
3-Methylphenol	150	J	1000	40	ug/L	20	8270D	Total/NA
4-Methylphenol	150	J	1000	36	ug/L	20	8270D	Total/NA
Endosulfan I	0.30		0.25	0.055	ug/L	1	8081B	Total/NA
Aluminum	2.7		0.20	0.060	mg/L	1	6010C	Total/NA
Antimony	0.039		0.020	0.0068	mg/L	1	6010C	Total/NA
Arsenic	0.24		0.010	0.0056	mg/L	1	6010C	Total/NA
Barium	0.97		0.0020	0.00070	mg/L	1	6010C	Total/NA
Boron	17.3	٨	0.020	0.0040	mg/L	1	6010C	Total/NA
Calcium	149		0.50	0.10	mg/L	1	6010C	Total/NA
Chromium	0.29		0.0040	0.0010	mg/L	1	6010C	Total/NA
Cobalt	0.031		0.0040	0.00063	mg/L	1	6010C	Total/NA
Copper	0.016		0.010	0.0016	mg/L	1	6010C	Total/NA
Iron	22.0		0.050	0.019	mg/L	1	6010C	Total/NA
Lead	0.054		0.0050	0.0030	mg/L	1	6010C	Total/NA
Magnesium	62.7		0.20	0.043	mg/L	1	6010C	Total/NA
Manganese	3.0		0.0030	0.00040	mg/L	1	6010C	Total/NA
Nickel	0.12		0.010	0.0013	mg/L	1	6010C	Total/NA
Potassium	402		0.50	0.10	mg/L	1	6010C	Total/NA
Selenium	0.0088	J	0.015	0.0087	mg/L	1	6010C	Total/NA
Sodium	1490		1.0		mg/L	1	6010C	Total/NA
Tin	0.058	J	10.0	0.0051	-	1	6010C	Total/NA
Vanadium	0.083		0.0050	0.0015	-	1	6010C	Total/NA
Zinc	0.059		0.010		-	1	6010C	Total/NA
Mercury	0.00052		0.00020	0.00012	-	1	7470A	Total/NA
Bromide	4.9	J	10.0		mg/L	50	300.0	Total/NA
Chloride	1710		25.0	14.1	ū	50	300.0	Total/NA
Sulfate	117		100	17.5	mg/L	50	300.0	Total/NA
Alkalinity, Total	3950	В	400	160	mg/L	40	310.2	Total/NA
Ammonia as N	785		10.0		mg/L	500	350.1	Total/NA
Total Kjeldahl Nitrogen	730		50.0		mg/L	5	351.2	Total/NA
Chemical Oxygen Demand	2450		200		mg/L	20	410.4	Total/NA
Phenolics, Total Recoverable	0.32		0.020	0.010	mg/L	1	420.1	Total/NA
Cyanide, Total	0.0098	JB	0.010	0.0050	mg/L	1	9012B	Total/NA
Total Organic Carbon	533		10.0		mg/L	10	9060A	Total/NA
Total Hardness	800		50.0	13.1	•	1	SM 2340C	Total/NA
Total Dissolved Solids	5490		100	40.0	mg/L	1	SM 2540C	Total/NA
Sulfide	28.0		10.0	6.7	mg/L	1	SM 4500 S2 F	Total/NA
Biochemical Oxygen Demand	20.0	b	120	120	mg/L	10	SM 5210B	Total/NA
,,		Qualifier	RL	RL	Unit	Dil Fac D		
Analyte Color	2000	Qualifier	500	500	Color Units	100	SM 2120B	Prep Type Total/NA

Client Sample ID: Secondary Leachate (Cell #1)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.43		0.20	0.060	mg/L	1	-	6010C	Total/NA
Barium	0.032		0.0020	0.00070	mg/L	1		6010C	Total/NA
Boron	0.34	٨	0.020	0.0040	mg/L	1		6010C	Total/NA
Cadmium	0.00070	J	0.0010	0.00050	mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Lab Sample ID: 480-123779-2

Page 6 of 58

Detection Summary

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

Client Sample ID: Secondary Leachate (Cell #1) (Continued)

TestAmerica Job ID: 480-123779-1

Lab Sample ID: 480-123779-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Calcium	183	_	0.50	0.10	mg/L	1	6010C	Total/NA
Iron	0.55		0.050	0.019	mg/L	1	6010C	Total/NA
Lead	0.0066		0.0050	0.0030	mg/L	1	6010C	Total/NA
Magnesium	115		0.20	0.043	mg/L	1	6010C	Total/NA
Manganese	0.044		0.0030	0.00040	mg/L	1	6010C	Total/NA
Nickel	0.0070	J	0.010	0.0013	mg/L	1	6010C	Total/NA
Potassium	3.2		0.50	0.10	mg/L	1	6010C	Total/NA
Sodium	94.1		1.0	0.32	mg/L	1	6010C	Total/NA
Zinc	0.014		0.010	0.0015	mg/L	1	6010C	Total/NA
Bromide	0.38	J	1.0	0.37	mg/L	5	300.0	Total/NA
Chloride	121		2.5	1.4	mg/L	5	300.0	Total/NA
Sulfate	725		40.0	7.0	mg/L	20	300.0	Total/NA
Alkalinity, Total	180	В	40.0	16.0	mg/L	4	310.2	Total/NA
Total Kjeldahl Nitrogen	0.40		0.20	0.15	mg/L	1	351.2	Total/NA
Nitrate	4.3		0.050	0.020	mg/L as N	1	353.2	Total/NA
Chemical Oxygen Demand	5.1	J	10.0	5.0	mg/L	1	410.4	Total/NA
Phenolics, Total Recoverable	0.013		0.010	0.0050	mg/L	1	420.1	Total/NA
Total Organic Carbon	3.2		1.0	0.43	mg/L	1	9060A	Total/NA
Total Hardness	900		50.0	13.1	mg/L	1	SM 2340C	Total/NA
Total Dissolved Solids	1550		10.0	4.0	mg/L	1	SM 2540C	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	Method	Prep Type
Color	5.00		5.00	5.00	Color Units	1	SM 2120B	Total/NA

Client Sample ID: Trip Blank

Lab Sample ID: 480-123779-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	3.3	J	10	3.0	ug/L	1		8260C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 7 of 58

Client: CHA Inc

Date Collected: 09/07/17 11:30

Date Received: 09/08/17 01:45

Project/Site: Albany Interim Landfill - Expanded

Client Sample ID: Primary Leachate (Pump Station #2)

TestAmerica Job ID: 480-123779-1

Lab Sample ID: 480-123779-1

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	50	18	ug/L			09/11/17 15:53	5
1,1,1-Trichloroethane	ND	50	41	ug/L			09/11/17 15:53	5
1,1,2,2-Tetrachloroethane	ND	50	11	ug/L			09/11/17 15:53	5
1,1,2-Trichloroethane	ND	50	12	ug/L			09/11/17 15:53	5
1,1-Dichloroethane	ND	50		ug/L			09/11/17 15:53	5
1,1-Dichloroethene	ND	50		ug/L			09/11/17 15:53	5
1,1-Dichloropropene	ND	50		ug/L			09/11/17 15:53	5
1,2,3-Trichloropropane	ND	50		ug/L			09/11/17 15:53	5
1,2,4-Trichlorobenzene	ND	50		ug/L			09/11/17 15:53	5
1,2-Dibromo-3-Chloropropane	ND	50		ug/L			09/11/17 15:53	5
1,2-Dibromoethane	ND	50		ug/L			09/11/17 15:53	5
1,2-Dishornoetriane 1,2-Dichlorobenzene	ND	50		ug/L			09/11/17 15:53	5
1,2-Dichloroethane	ND	50		_			09/11/17 15:53	5
•				ug/L				
1,2-Dichloropropane	ND ND	50 50		ug/L			09/11/17 15:53	5
1,3-Dichlorobenzene	ND	50		ug/L			09/11/17 15:53	5
1,3-Dichloropropane	ND	50		ug/L			09/11/17 15:53	5
1,4-Dichlorobenzene	ND	50		ug/L			09/11/17 15:53	5
2,2-Dichloropropane	ND	50		ug/L			09/11/17 15:53	5
2-Hexanone	ND	250		ug/L			09/11/17 15:53	5
2-Butanone (MEK)	160 J	500	66	ug/L			09/11/17 15:53	5
4-Methyl-2-pentanone (MIBK)	ND	250		ug/L			09/11/17 15:53	5
Acetone	170 J	500	150	ug/L			09/11/17 15:53	5
Acetonitrile	ND	750	250	ug/L			09/11/17 15:53	5
Acrolein	ND	1000	46	ug/L			09/11/17 15:53	5
Acrylonitrile	ND	250	42	ug/L			09/11/17 15:53	5
Allyl chloride	ND	50	22	ug/L			09/11/17 15:53	5
Benzene	ND	50	21	ug/L			09/11/17 15:53	5
Bromochloromethane	ND	50	44	ug/L			09/11/17 15:53	5
Bromodichloromethane	ND	50	20	ug/L			09/11/17 15:53	5
Bromoform	ND	50	13	ug/L			09/11/17 15:53	5
Bromomethane	ND	50	35	ug/L			09/11/17 15:53	5
Carbon disulfide	ND	50		ug/L			09/11/17 15:53	5
Carbon tetrachloride	ND	50		ug/L			09/11/17 15:53	5
Chlorobenzene	ND	50		ug/L			09/11/17 15:53	5
Dibromochloromethane	ND	50		ug/L			09/11/17 15:53	5
Chloroethane	ND	50		ug/L			09/11/17 15:53	5
Chloroform	ND	50		ug/L			09/11/17 15:53	5
Chloromethane	ND	50		ug/L			09/11/17 15:53	5
Chloroprene	ND ND	50 50		ug/L ug/L			09/11/17 15:53	5
cis-1,2-Dichloroethene	ND	50					09/11/17 15:53	· 5
				ug/L				
cis-1,3-Dichloropropene	ND ND	50 50		ug/L			09/11/17 15:53	5
Dibromomethane	ND	50		ug/L			09/11/17 15:53	- 5
Dichlorodifluoromethane	ND	50		ug/L			09/11/17 15:53	5
Ethyl methacrylate	ND	50		ug/L			09/11/17 15:53	5
Ethylbenzene	ND	50		ug/L			09/11/17 15:53	
Hexachlorobutadiene	ND	50		ug/L			09/11/17 15:53	5
odomethane	ND	50		ug/L			09/11/17 15:53	5
sobutyl alcohol	ND	1300		ug/L			09/11/17 15:53	Ę
Methacrylonitrile	ND	250	35	ug/L			09/11/17 15:53	Ę

TestAmerica Buffalo

Page 8 of 58 9/20/2017

Client: CHA Inc Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Client Sample ID: Primary Leachate (Pump Station #2) Lab Sample ID: 480-123779-1

Date Collected: 09/07/17 11:30 **Matrix: Water** Date Received: 09/08/17 01:45

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl methacrylate	ND		50	31	ug/L			09/11/17 15:53	50
Methylene Chloride	ND		50	22	ug/L			09/11/17 15:53	50
Naphthalene	ND		50	22	ug/L			09/11/17 15:53	50
Pentachloroethane	ND		50	17	ug/L			09/11/17 15:53	50
Propionitrile	ND		500	290	ug/L			09/11/17 15:53	50
Styrene	ND		50	37	ug/L			09/11/17 15:53	50
Tetrachloroethene	ND		50	18	ug/L			09/11/17 15:53	50
Toluene	ND		50	26	ug/L			09/11/17 15:53	50
trans-1,2-Dichloroethene	ND		50	45	ug/L			09/11/17 15:53	50
trans-1,3-Dichloropropene	ND		50	19	ug/L			09/11/17 15:53	50
trans-1,4-Dichloro-2-butene	ND		50	11	ug/L			09/11/17 15:53	50
Trichloroethene	ND		50	23	ug/L			09/11/17 15:53	50
Trichlorofluoromethane	ND		50	44	ug/L			09/11/17 15:53	50
Vinyl acetate	ND		250	43	ug/L			09/11/17 15:53	50
Vinyl chloride	ND		50	45	ug/L			09/11/17 15:53	50
Xylenes, Total	ND		100	33	ug/L			09/11/17 15:53	50
m,p-Xylene	ND		100	33	ug/L			09/11/17 15:53	50
o-Xylene	ND		50	38	ug/L			09/11/17 15:53	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		77 - 120					09/11/17 15:53	50
Toluene-d8 (Surr)	98		80 - 120					09/11/17 15:53	50

Dibromofluoromethane (Surr)	97	75 - 123
4-Bromofluorobenzene (Surr)	96	73 - 120

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND	500	58	ug/L		09/08/17 07:55	09/19/17 12:58	20
1,2,4-Trichlorobenzene	ND	1000	44	ug/L		09/08/17 07:55	09/19/17 12:58	20
1,2-Dichlorobenzene	ND	1000	40	ug/L		09/08/17 07:55	09/19/17 12:58	20
1,3,5-Trinitrobenzene	ND	1000	250	ug/L		09/08/17 07:55	09/19/17 12:58	20
1,3-Dichlorobenzene	ND	1000	48	ug/L		09/08/17 07:55	09/19/17 12:58	20
1,3-Dinitrobenzene	ND	2000	82	ug/L		09/08/17 07:55	09/19/17 12:58	20
1,4-Dichlorobenzene	ND	1000	46	ug/L		09/08/17 07:55	09/19/17 12:58	20
1,4-Naphthoquinone	ND	1000	24	ug/L		09/08/17 07:55	09/19/17 12:58	20
1-Naphthylamine	ND	1000	130	ug/L		09/08/17 07:55	09/19/17 12:58	20
2,3,4,6-Tetrachlorophenol	ND	500	32	ug/L		09/08/17 07:55	09/19/17 12:58	20
2,4,5-Trichlorophenol	ND	500	48	ug/L		09/08/17 07:55	09/19/17 12:58	20
2,4,6-Trichlorophenol	ND	500	61	ug/L		09/08/17 07:55	09/19/17 12:58	20
2,4-Dichlorophenol	ND	500	51	ug/L		09/08/17 07:55	09/19/17 12:58	20
2,4-Dimethylphenol	ND	500	50	ug/L		09/08/17 07:55	09/19/17 12:58	20
2,4-Dinitrophenol	ND	1000	220	ug/L		09/08/17 07:55	09/19/17 12:58	20
2,4-Dinitrotoluene	ND	500	45	ug/L		09/08/17 07:55	09/19/17 12:58	20
2,6-Dichlorophenol	ND	1000	46	ug/L		09/08/17 07:55	09/19/17 12:58	20
2,6-Dinitrotoluene	ND	500	40	ug/L		09/08/17 07:55	09/19/17 12:58	20
2-Acetylaminofluorene	ND	1000		ug/L		09/08/17 07:55	09/19/17 12:58	20
2-Chloronaphthalene	ND	500	46	ug/L		09/08/17 07:55	09/19/17 12:58	20
2-Chlorophenol	ND	500	53	ug/L		09/08/17 07:55	09/19/17 12:58	20
2-Methylnaphthalene	ND	500	60	ug/L		09/08/17 07:55	09/19/17 12:58	20
2-Methylphenol	ND	500	40	ug/L		09/08/17 07:55	09/19/17 12:58	20

TestAmerica Buffalo

Page 9 of 58 9/20/2017

09/11/17 15:53 09/11/17 15:53

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Client Sample ID: Primary Leachate (Pump Station #2)

Lab Sample ID: 480-123779-1

Date Collected: 09/07/17 11:30 Matrix: Water Date Received: 09/08/17 01:45

Method: 8270D - Semivolatile Analyte	Result Qualifier	ŔĹ	MDL	Unit	D Prepared	Analyzed	Dil Fac
2-Naphthylamine	ND	1000		ug/L	09/08/17 07:55	09/19/17 12:58	20
2-Nitroaniline	ND	1000		ug/L	09/08/17 07:55	09/19/17 12:58	20
2-Nitrophenol	ND	500	48	ug/L	09/08/17 07:55	09/19/17 12:58	20
2-Toluidine	ND	1000	150	ug/L	09/08/17 07:55	09/19/17 12:58	20
3,3'-Dichlorobenzidine	ND	500	40	ug/L	09/08/17 07:55	09/19/17 12:58	20
3,3'-Dimethylbenzidine	ND	4000	250	ug/L	09/08/17 07:55	09/19/17 12:58	20
3-Methylcholanthrene	ND	1000	250	ug/L	09/08/17 07:55	09/19/17 12:58	20
3-Nitroaniline	ND	1000	48	ug/L	09/08/17 07:55	09/19/17 12:58	20
4,6-Dinitro-2-methylphenol	ND	1000	220	ug/L	09/08/17 07:55	09/19/17 12:58	20
4-Aminobiphenyl	ND	1000	81	ug/L	09/08/17 07:55	09/19/17 12:58	20
4-Bromophenyl phenyl ether	ND	500	45	ug/L	09/08/17 07:55	09/19/17 12:58	20
4-Chloro-3-methylphenol	ND	500	45	ug/L	09/08/17 07:55	09/19/17 12:58	20
4-Chloroaniline	ND	500	59	ug/L	09/08/17 07:55	09/19/17 12:58	20
4-Chlorophenyl phenyl ether	ND	500	35	ug/L	09/08/17 07:55	09/19/17 12:58	20
4-Nitroaniline	ND	1000	25	ug/L	09/08/17 07:55	09/19/17 12:58	20
4-Nitrophenol	ND	1000	150	ug/L	09/08/17 07:55	09/19/17 12:58	20
7,12-Dimethylbenz(a)anthracene	ND	1000	62	ug/L	09/08/17 07:55	09/19/17 12:58	20
Acenaphthene	ND	500	41	ug/L	09/08/17 07:55	09/19/17 12:58	20
Acenaphthylene	ND	500	38	ug/L	09/08/17 07:55	09/19/17 12:58	20
3-Methylphenol	150 J	1000			09/08/17 07:55	09/19/17 12:58	20
Acetophenone	ND	500	54	•	09/08/17 07:55	09/19/17 12:58	20
Anthracene	ND	500	28	ug/L	09/08/17 07:55	09/19/17 12:58	20
Benzo(a)anthracene	ND	500		ug/L	09/08/17 07:55	09/19/17 12:58	20
Benzo(a)pyrene	ND	500		ug/L	09/08/17 07:55	09/19/17 12:58	20
Benzo(b)fluoranthene	ND	500		ug/L	09/08/17 07:55	09/19/17 12:58	20
Benzo(g,h,i)perylene	ND	500		ug/L	09/08/17 07:55	09/19/17 12:58	20
Benzo(k)fluoranthene	ND	500		ug/L		09/19/17 12:58	20
Benzyl alcohol	ND	2000		ug/L		09/19/17 12:58	20
Bis(2-chloroethoxy)methane	ND	500	35	_		09/19/17 12:58	20
Bis(2-chloroethyl)ether	ND	500	40	•	09/08/17 07:55		20
4-Methylphenol	150 J	1000	36	-	09/08/17 07:55		20
bis (2-chloroisopropyl) ether	ND	500		ug/L		09/19/17 12:58	20
Bis(2-ethylhexyl) phthalate	ND	500		ug/L		09/19/17 12:58	20
Butyl benzyl phthalate	ND	500		ug/L		09/19/17 12:58	20
Chrysene	ND	500		ug/L		09/19/17 12:58	20
Diallate	ND	1000		ug/L		09/19/17 12:58	20
Dibenz(a,h)anthracene	ND	500		ug/L		09/19/17 12:58	20
Dibenzofuran	ND	1000		ug/L		09/19/17 12:58	20
Diethyl phthalate	ND	500		ug/L		09/19/17 12:58	20
Dimethoate	ND	1000		ug/L		09/19/17 12:58	20
Dimethyl phthalate	ND	500		ug/L ug/L		09/19/17 12:58	20
Di-n-butyl phthalate	ND ND	500		ug/L ug/L		09/19/17 12:58	20
, ,	ND ND	500		ug/L ug/L		09/19/17 12:58	20
Di-n-octyl phthalate				_			
Diphenylamine Disulfator	ND ND	1000		ug/L		09/19/17 12:58	20
Disulfoton	ND ND	1000		ug/L		09/19/17 12:58	20
Ethyl methanesulfonate	ND ND	1000		ug/L		09/19/17 12:58	20
Famphur	ND	4000		ug/L		09/19/17 12:58	20
Fluoranthene	ND	500	40	ug/L	09/08/17 07:55	09/19/17 12:58	20

TestAmerica Buffalo

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

Client Sample ID: Primary Leachate (Pump Station #2)

Lab Sample ID: 480-123779-1

Date Collected: 09/07/17 11:30

Matrix: Water

Date Received: 09/08/17 01:45

2-Fluorophenol

2,4,6-Tribromophenol

Method: 8270D - Semivolati Analyte	Result Qualifier	ŔĹ	MDL		D	Prepared	Analyzed	Dil Fac
Hexachlorobenzene	ND	500	51	ug/L		09/08/17 07:55	09/19/17 12:58	20
Hexachlorobutadiene	ND	500	68	ug/L		09/08/17 07:55	09/19/17 12:58	2
Hexachlorocyclopentadiene	ND	500	59	ug/L		09/08/17 07:55	09/19/17 12:58	20
Hexachloroethane	ND	500	59	ug/L		09/08/17 07:55	09/19/17 12:58	20
Hexachloropropene	ND	1000	250	ug/L		09/08/17 07:55	09/19/17 12:58	20
Indeno(1,2,3-cd)pyrene	ND	500	47	ug/L		09/08/17 07:55	09/19/17 12:58	20
Isodrin	ND	1000	18	ug/L		09/08/17 07:55	09/19/17 12:58	20
Isophorone	ND	500	43	ug/L		09/08/17 07:55	09/19/17 12:58	20
Isosafrole	ND	1000	58	ug/L		09/08/17 07:55	09/19/17 12:58	20
Kepone	ND	5000	180	ug/L		09/08/17 07:55	09/19/17 12:58	20
Methapyrilene	ND	5000	180	ug/L		09/08/17 07:55	09/19/17 12:58	20
Methyl methanesulfonate	ND	1000	250	ug/L		09/08/17 07:55	09/19/17 12:58	20
Safrole	ND	1000	46	ug/L		09/08/17 07:55	09/19/17 12:58	20
Thionazin	ND	1000		ug/L		09/08/17 07:55	09/19/17 12:58	20
Naphthalene	ND	500	76	ug/L		09/08/17 07:55	09/19/17 12:58	20
Nitrobenzene	ND	500	29	ug/L		09/08/17 07:55	09/19/17 12:58	20
N-Nitro-o-toluidine	ND	1000	66	ug/L		09/08/17 07:55	09/19/17 12:58	20
N-Nitrosodiethylamine	ND	1000		ug/L		09/08/17 07:55	09/19/17 12:58	20
N-Nitrosodimethylamine	ND	1000		ug/L		09/08/17 07:55	09/19/17 12:58	20
N-Nitrosodi-n-butylamine	ND	1000		ug/L		09/08/17 07:55	09/19/17 12:58	20
N-Nitrosodi-n-propylamine	ND	500		ug/L		09/08/17 07:55	09/19/17 12:58	20
N-Nitrosodiphenylamine	ND	500		ug/L		09/08/17 07:55	09/19/17 12:58	20
N-Nitrosomethylethylamine	ND	1000	250	ug/L		09/08/17 07:55	09/19/17 12:58	20
N-Nitrosopiperidine	ND	1000		ug/L		09/08/17 07:55	09/19/17 12:58	20
Chlorobenzilate	ND	2000		ug/L		09/08/17 07:55	09/19/17 12:58	20
N-Nitrosopyrrolidine	ND	1000		ug/L		09/08/17 07:55	09/19/17 12:58	20
o,o',o"-Triethylphosphorothioate	ND	1000		ug/L		09/08/17 07:55	09/19/17 12:58	20
Parathion ethyl	ND	1000	64	ug/L		09/08/17 07:55	09/19/17 12:58	20
Parathion-methyl	ND	1000	37	ug/L		09/08/17 07:55	09/19/17 12:58	20
p-Dimethylamino azobenzene	ND	1000	75	ug/L		09/08/17 07:55	09/19/17 12:58	20
Pentachlorobenzene	ND	1000	53	ug/L		09/08/17 07:55	09/19/17 12:58	20
Pentachloronitrobenzene	ND	1000		ug/L		09/08/17 07:55	09/19/17 12:58	20
Pentachlorophenol	ND	1000		ug/L		09/08/17 07:55	09/19/17 12:58	20
Phenacetin	ND	1000		ug/L		09/08/17 07:55	09/19/17 12:58	20
Phenanthrene	ND	500	44	ug/L		09/08/17 07:55	09/19/17 12:58	20
Phenol	ND	500	39	ug/L		09/08/17 07:55	09/19/17 12:58	20
Phorate	ND	1000	50	ug/L			09/19/17 12:58	20
p-Phenylene diamine	ND	80000	20000	ug/L		09/08/17 07:55	09/19/17 12:58	20
Pronamide	ND	1000		ug/L		09/08/17 07:55	09/19/17 12:58	20
Pyrene	ND	500		ug/L		09/08/17 07:55	09/19/17 12:58	20
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	114	46 - 120				09/08/17 07:55	09/19/17 12:58	20
2-Fluorobiphenyl	112	48 - 120				09/08/17 07:55	09/19/17 12:58	20
p-Terphenyl-d14	97	59 - 136				09/08/17 07:55	09/19/17 12:58	20
Phenol-d5	67	22 - 120				09/08/17 07:55	09/19/17 12:58	20
2 Elveranhanel	90	25 420				00/00/47 07.55	00/40/47 40:50	2/

TestAmerica Buffalo

09/08/17 07:55 09/19/17 12:58

09/08/17 07:55 09/19/17 12:58

35 - 120

41 - 120

80

135 X

2

TestAmerica Job ID: 480-123779-1

3

5

7

9

10

12

14

15

16

20

20

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Lab Sample ID: 480-123779-1

Matrix: Water

Client Sample ID: Primary Leachate (Pump Station #2) Date Collected: 09/07/17 11:30

Date Received: 09/08/17 01:45

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND	0.25	0.046	ug/L		09/12/17 14:30	09/13/17 13:19	1
4,4'-DDE	ND	0.25	0.058	ug/L		09/12/17 14:30	09/13/17 13:19	1
4,4'-DDT	ND	0.25	0.055	ug/L		09/12/17 14:30	09/13/17 13:19	1
Aldrin	ND	0.25	0.041	ug/L		09/12/17 14:30	09/13/17 13:19	1
alpha-BHC	ND	0.25	0.039	ug/L		09/12/17 14:30	09/13/17 13:19	1
beta-BHC	ND	0.25	0.12	ug/L		09/12/17 14:30	09/13/17 13:19	1
Chlordane (technical)	ND	2.5	1.5	ug/L		09/12/17 14:30	09/13/17 13:19	1
delta-BHC	ND	0.25	0.050	ug/L		09/12/17 14:30	09/13/17 13:19	1
alpha-Chlordane	ND	0.25	0.074	ug/L		09/12/17 14:30	09/13/17 13:19	1
Dieldrin	ND	0.25	0.049	ug/L		09/12/17 14:30	09/13/17 13:19	1
Endosulfan I	0.30	0.25	0.055	ug/L		09/12/17 14:30	09/13/17 13:19	1
Endosulfan II	ND	0.25	0.060	ug/L		09/12/17 14:30	09/13/17 13:19	1
Endosulfan sulfate	ND	0.25	0.079	ug/L		09/12/17 14:30	09/13/17 13:19	1
Endrin	ND	0.25	0.069	ug/L		09/12/17 14:30	09/13/17 13:19	1
Endrin aldehyde	ND	0.25	0.082	ug/L		09/12/17 14:30	09/13/17 13:19	1
gamma-BHC (Lindane)	ND	0.25	0.040	ug/L		09/12/17 14:30	09/13/17 13:19	1
Heptachlor	ND	0.25	0.043	ug/L		09/12/17 14:30	09/13/17 13:19	1
Heptachlor epoxide	ND	0.25	0.037	ug/L		09/12/17 14:30	09/13/17 13:19	1
Methoxychlor	ND	0.25	0.071	ug/L		09/12/17 14:30	09/13/17 13:19	1
Toxaphene	ND	2.5	0.60	ug/L		09/12/17 14:30	09/13/17 13:19	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	87	44 - 120				09/12/17 14:30	09/13/17 13:19	1
DCB Decachlorobiphenyl	25	20 - 120				09/12/17 14:30	09/13/17 13:19	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		2.5	0.88	ug/L		09/13/17 07:26	09/13/17 19:44	1
PCB-1221	ND		2.5	0.88	ug/L		09/13/17 07:26	09/13/17 19:44	1
PCB-1232	ND		2.5	0.88	ug/L		09/13/17 07:26	09/13/17 19:44	1
PCB-1242	ND		2.5	0.88	ug/L		09/13/17 07:26	09/13/17 19:44	1
PCB-1248	ND		2.5	0.88	ug/L		09/13/17 07:26	09/13/17 19:44	1
PCB-1254	ND		2.5	1.3	ug/L		09/13/17 07:26	09/13/17 19:44	1
PCB-1260	ND		2.5	1.3	ug/L		09/13/17 07:26	09/13/17 19:44	1
PCB-1262	ND		2.5	1.3	ug/L		09/13/17 07:26	09/13/17 19:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	27		19 - 120				09/13/17 07:26	09/13/17 19:44	1
Tetrachloro-m-xylene	60		39 - 121				09/13/17 07:26	09/13/17 19:44	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND		0.50	0.068	ug/L		09/11/17 08:08	09/13/17 20:09	1
2,4-D	ND		0.50	0.17	ug/L		09/11/17 08:08	09/13/17 20:09	1
Dinoseb	ND		0.50	0.14	ug/L		09/11/17 08:08	09/13/17 20:09	1
Silvex (2,4,5-TP)	ND		0.50	0.050	ug/L		09/11/17 08:08	09/13/17 20:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	86		48 - 132				09/11/17 08:08	09/13/17 20:09	1

TestAmerica Buffalo

Client: CHA Inc Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Client Sample ID: Primary Leachate (Pump Station #2)

Lab Sample ID: 480-123779-1

Date Collected: 09/07/17 11:30 Matrix: Water Date Received: 09/08/17 01:45

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	2.7	Qualifier	0.20	0.060			·	09/11/17 22:08	Diria
Antimony	0.039		0.020	0.0068	-			09/11/17 22:08	
Arsenic	0.24		0.010	0.0056	-			09/11/17 22:08	
Barium	0.27		0.0020	0.00070	ū			09/11/17 22:08	
Beryllium	ND		0.0020	0.00070	ū			09/11/17 22:08	
Boron	17.3	^	0.020	0.0040	J			09/12/17 11:05	
Cadmium	ND		0.020	0.00050	ū			09/11/17 11:03	
Calcium	149		0.50		mg/L			09/11/17 22:08	
Chromium	0.29		0.0040	0.0010	ū			09/11/17 22:08	
			0.0040	0.0010	ū			09/12/17 11:03	
Cobalt	0.031				J				
Copper	0.016		0.010	0.0016	ū			09/12/17 11:05	•
lron 	22.0		0.050	0.019	J			09/11/17 22:08	•
Lead	0.054		0.0050	0.0030	ū			09/11/17 22:08	•
Magnesium 	62.7		0.20	0.043	ū			09/11/17 22:08	•
Manganese	3.0		0.0030	0.00040	ū			09/11/17 22:08	•
Nickel	0.12		0.010	0.0013	-			09/11/17 22:08	•
Potassium	402		0.50		mg/L			09/11/17 22:08	•
Selenium	0.0088	J	0.015	0.0087	ū			09/11/17 22:08	•
Silver	ND		0.0030	0.0017	ū			09/11/17 22:08	•
Sodium	1490		1.0	0.32	mg/L		09/11/17 09:30	09/11/17 22:08	•
Thallium	ND		0.020	0.010	-		09/11/17 09:30	09/11/17 22:08	•
Tin	0.058	J	10.0	0.0051	mg/L		09/11/17 09:30	09/11/17 22:08	•
Vanadium	0.083		0.0050	0.0015	mg/L		09/11/17 09:30	09/11/17 22:08	•
Zinc	0.059		0.010	0.0015	mg/L		09/11/17 09:30	09/11/17 22:08	•
Method: 7470A - Mercury (CVAA	۸)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.00052		0.00020	0.00012	mg/L		09/08/17 11:20	09/08/17 14:48	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Bromide	4.9	J	10.0		mg/L			09/13/17 17:49	50
Chloride	1710		25.0	14.1	mg/L			09/13/17 17:49	50
Sulfate	117		100	17.5	mg/L			09/13/17 17:49	50
Alkalinity, Total	3950	В	400	160	mg/L			09/08/17 17:50	40
Ammonia as N	785		10.0	4.5	mg/L			09/08/17 13:26	500
Total Kjeldahl Nitrogen	730		50.0	37.5	mg/L		09/11/17 18:10	09/12/17 12:39	į
Nitrate	ND		0.050	0.020	mg/L as N			09/08/17 10:05	
Chemical Oxygen Demand	2450		200	100	mg/L			09/11/17 20:09	20
Phenolics, Total Recoverable	0.32		0.020	0.010	mg/L		09/11/17 19:45	09/12/17 02:00	
Cr (VI)	ND		0.020	0.010	mg/L			09/08/17 06:02	2
Cyanide, Total	0.0098	JB	0.010	0.0050	mg/L		09/12/17 18:23	09/13/17 11:40	
Total Organic Carbon	533		10.0		mg/L			09/13/17 00:47	10
Total Hardness	800		50.0		mg/L			09/12/17 10:11	
Total Dissolved Solids	5490		100		mg/L			09/11/17 08:10	
Sulfide	28.0		10.0		mg/L			09/14/17 14:30	
Biochemical Oxygen Demand	204	b	120		mg/L			09/08/17 14:36	10
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
•					-	_		. ,	

9/20/2017

Page 13 of 58

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Client Sample ID: Secondary Leachate (Cell #1)

Lab Sample ID: 480-123779-2

Date Collected: 09/07/17 13:15 Date Received: 09/08/17 01:45

Matrix: Water

Method: 8260C - Volatile Org Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND ND	1.0	0.35	ug/L			09/11/17 16:16	
1,1,1-Trichloroethane	ND	1.0		ug/L			09/11/17 16:16	
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			09/11/17 16:16	
1,1,2-Trichloroethane	ND	1.0		ug/L			09/11/17 16:16	
1,1-Dichloroethane	ND	1.0		ug/L			09/11/17 16:16	
1,1-Dichloroethene	ND	1.0		ug/L			09/11/17 16:16	
1,1-Dichloropropene	ND	1.0		ug/L			09/11/17 16:16	
1,2,3-Trichloropropane	ND	1.0		ug/L			09/11/17 16:16	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			09/11/17 16:16	
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			09/11/17 16:16	
1,2-Dibromoethane	ND	1.0		ug/L			09/11/17 16:16	
1,2-Dichlorobenzene	ND	1.0		ug/L			09/11/17 16:16	
1,2-Dichloroethane	ND	1.0		ug/L			09/11/17 16:16	
1,2-Dichloropropane	ND	1.0		ug/L			09/11/17 16:16	
1,3-Dichlorobenzene	ND	1.0		ug/L			09/11/17 16:16	
1,3-Dichloropropane	ND ND	1.0		ug/L			09/11/17 16:16	
1,4-Dichlorobenzene	ND	1.0		ug/L			09/11/17 16:16	
2,2-Dichloropropane	ND	1.0		ug/L			09/11/17 16:16	
2-Hexanone	ND	5.0		ug/L			09/11/17 16:16	
2-Butanone (MEK)	ND	10		ug/L ug/L			09/11/17 16:16	
4-Methyl-2-pentanone (MIBK)	ND	5.0		-			09/11/17 16:16	
Acetone	ND ND	10		ug/L			09/11/17 16:16	
Acetonitrile	ND	15		-			09/11/17 16:16	
Acrolein	ND ND	20		ug/L			09/11/17 16:16	
				ug/L				
Acrylonitrile	ND	5.0		ug/L			09/11/17 16:16	
Allyl chloride	ND	1.0		ug/L			09/11/17 16:16	
Benzene	ND	1.0		ug/L			09/11/17 16:16	
Bromochloromethane	ND	1.0		ug/L			09/11/17 16:16	
Bromodichloromethane	ND	1.0		ug/L			09/11/17 16:16	
Bromoform	ND	1.0		ug/L			09/11/17 16:16	
Bromomethane	ND	1.0		ug/L			09/11/17 16:16	
Carbon disulfide	ND	1.0		ug/L			09/11/17 16:16	
Carbon tetrachloride	ND	1.0		ug/L			09/11/17 16:16	
Chlorobenzene	ND	1.0		ug/L			09/11/17 16:16	
Dibromochloromethane	ND	1.0		ug/L			09/11/17 16:16	
Chloroethane	ND	1.0		ug/L			09/11/17 16:16	
Chloroform	ND	1.0		ug/L			09/11/17 16:16	
Chloromethane	ND	1.0		ug/L			09/11/17 16:16	
Chloroprene	ND	1.0		ug/L			09/11/17 16:16	
cis-1,2-Dichloroethene	ND	1.0		ug/L			09/11/17 16:16	
cis-1,3-Dichloropropene	ND	1.0		ug/L			09/11/17 16:16	
Dibromomethane	ND	1.0		ug/L			09/11/17 16:16	
Dichlorodifluoromethane	ND	1.0		ug/L			09/11/17 16:16	
Ethyl methacrylate	ND	1.0		ug/L			09/11/17 16:16	
Ethylbenzene	ND	1.0	0.74	ug/L			09/11/17 16:16	
Hexachlorobutadiene	ND	1.0	0.28	ug/L			09/11/17 16:16	
lodomethane	ND	1.0	0.30	ug/L			09/11/17 16:16	
Isobutyl alcohol	ND	25	4.8	ug/L			09/11/17 16:16	
Methacrylonitrile	ND	5.0	0.69	ug/L			09/11/17 16:16	

TestAmerica Buffalo

Client: CHA Inc Project/Site: Albany Interim Landfill - Expanded

Client Sample ID: Secondary Leachate (Cell #1)

Lab Sample ID: 480-123779-2

Date Collected: 09/07/17 13:15

Matrix: Water

TestAmerica Job ID: 480-123779-1

Date Received: 09/08/17 01:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl methacrylate	ND		1.0	0.61	ug/L			09/11/17 16:16	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/11/17 16:16	1
Naphthalene	ND		1.0	0.43	ug/L			09/11/17 16:16	1
Pentachloroethane	ND		1.0	0.34	ug/L			09/11/17 16:16	1
Propionitrile	ND		10	5.8	ug/L			09/11/17 16:16	1
Styrene	ND		1.0	0.73	ug/L			09/11/17 16:16	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/11/17 16:16	1
Toluene	ND		1.0	0.51	ug/L			09/11/17 16:16	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/11/17 16:16	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/11/17 16:16	1
trans-1,4-Dichloro-2-butene	ND		1.0	0.22	ug/L			09/11/17 16:16	1
Trichloroethene	ND		1.0	0.46	ug/L			09/11/17 16:16	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/11/17 16:16	1
Vinyl acetate	ND		5.0	0.85	ug/L			09/11/17 16:16	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/11/17 16:16	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/11/17 16:16	1
m,p-Xylene	ND		2.0	0.66	ug/L			09/11/17 16:16	1
o-Xylene	ND		1.0	0.76	ug/L			09/11/17 16:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		77 - 120			-		09/11/17 16:16	1
Toluene-d8 (Surr)	96		80 - 120					09/11/17 16:16	1
4-Bromofluorobenzene (Surr)	95		73 - 120					09/11/17 16:16	1
Dibromofluoromethane (Surr)	94		75 - 123					09/11/17 16:16	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND	5.0	0.58	ug/L		09/08/17 07:55	09/19/17 13:27	1
1,2,4-Trichlorobenzene	ND	10	0.44	ug/L		09/08/17 07:55	09/19/17 13:27	1
1,2-Dichlorobenzene	ND	10	0.40	ug/L		09/08/17 07:55	09/19/17 13:27	1
1,3,5-Trinitrobenzene	ND	10	2.5	ug/L		09/08/17 07:55	09/19/17 13:27	1
1,3-Dichlorobenzene	ND	10	0.48	ug/L		09/08/17 07:55	09/19/17 13:27	1
1,3-Dinitrobenzene	ND	20	0.82	ug/L		09/08/17 07:55	09/19/17 13:27	1
1,4-Dichlorobenzene	ND	10	0.46	ug/L		09/08/17 07:55	09/19/17 13:27	1
1,4-Naphthoquinone	ND	10	0.24	ug/L		09/08/17 07:55	09/19/17 13:27	1
1-Naphthylamine	ND	10	1.3	ug/L		09/08/17 07:55	09/19/17 13:27	1
2,3,4,6-Tetrachlorophenol	ND	5.0	0.32	ug/L		09/08/17 07:55	09/19/17 13:27	1
2,4,5-Trichlorophenol	ND	5.0	0.48	ug/L		09/08/17 07:55	09/19/17 13:27	1
2,4,6-Trichlorophenol	ND	5.0	0.61	ug/L		09/08/17 07:55	09/19/17 13:27	1
2,4-Dichlorophenol	ND	5.0	0.51	ug/L		09/08/17 07:55	09/19/17 13:27	1
2,4-Dimethylphenol	ND	5.0	0.50	ug/L		09/08/17 07:55	09/19/17 13:27	1
2,4-Dinitrophenol	ND	10	2.2	ug/L		09/08/17 07:55	09/19/17 13:27	1
2,4-Dinitrotoluene	ND	5.0	0.45	ug/L		09/08/17 07:55	09/19/17 13:27	1
2,6-Dichlorophenol	ND	10	0.46	ug/L		09/08/17 07:55	09/19/17 13:27	1
2,6-Dinitrotoluene	ND	5.0	0.40	ug/L		09/08/17 07:55	09/19/17 13:27	1
2-Acetylaminofluorene	ND	10	2.3	ug/L		09/08/17 07:55	09/19/17 13:27	1
2-Chloronaphthalene	ND	5.0	0.46	ug/L		09/08/17 07:55	09/19/17 13:27	1
2-Chlorophenol	ND	5.0	0.53	ug/L		09/08/17 07:55	09/19/17 13:27	1
2-Methylnaphthalene	ND	5.0	0.60	ug/L		09/08/17 07:55	09/19/17 13:27	1
2-Methylphenol	ND	5.0	0.40	ug/L		09/08/17 07:55	09/19/17 13:27	1

TestAmerica Buffalo

Page 15 of 58

2

3

6

46

12

14

15

16

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Client Sample ID: Secondary Leachate (Cell #1)

Lah Sample ID: 480-123779-2 Date Collected: 09/07/17 13:15

Date Received: 09/08/17 01:45

Lab Sample	יטו.	400-1	231	19-2
		Mat	riv· \	Nator

Method: 8270D - Semivolatil Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
2-Naphthylamine	ND		10	2.5	ug/L		09/08/17 07:55	09/19/17 13:27	-
2-Nitroaniline	ND		10	0.42			09/08/17 07:55	09/19/17 13:27	
2-Nitrophenol	ND		5.0	0.48	ug/L		09/08/17 07:55	09/19/17 13:27	
2-Toluidine	ND		10	1.5	ug/L		09/08/17 07:55	09/19/17 13:27	
3,3'-Dichlorobenzidine	ND		5.0	0.40			09/08/17 07:55	09/19/17 13:27	
3,3'-Dimethylbenzidine	ND		40	2.5	ug/L		09/08/17 07:55	09/19/17 13:27	
3-Methylcholanthrene	ND		10		ug/L		09/08/17 07:55	09/19/17 13:27	
3-Nitroaniline	ND		10	0.48			09/08/17 07:55	09/19/17 13:27	
1,6-Dinitro-2-methylphenol	ND		10		ug/L		09/08/17 07:55	09/19/17 13:27	
4-Aminobiphenyl	ND		10	0.81	-		09/08/17 07:55	09/19/17 13:27	
4-Bromophenyl phenyl ether	ND		5.0	0.45	_		09/08/17 07:55	09/19/17 13:27	- 11111
4-Chloro-3-methylphenol	ND		5.0	0.45	-			09/19/17 13:27	
4-Chloroaniline	ND		5.0	0.59				09/19/17 13:27	
4-Chlorophenyl phenyl ether	ND		5.0	0.35				09/19/17 13:27	
4-Nitroaniline	ND		10	0.25	•			09/19/17 13:27	
4-Nitrophenol	ND		10		ug/L			09/19/17 13:27	
7,12-Dimethylbenz(a)anthracene	ND		10	0.62	_			09/19/17 13:27	
Acenaphthene	ND		5.0	0.41	-			09/19/17 13:27	
Acenaphthylene	ND		5.0	0.38	•			09/19/17 13:27	
3-Methylphenol	ND		10	0.40				09/19/17 13:27	
Acetophenone	ND		5.0	0.54	•			09/19/17 13:27	
Anthracene	ND		5.0	0.28	ū			09/19/17 13:27	
Benzo(a)anthracene	ND		5.0	0.36	_			09/19/17 13:27	
Benzo(a)pyrene	ND		5.0	0.47	-			09/19/17 13:27	
Benzo(b)fluoranthene	ND		5.0	0.34	_			09/19/17 13:27	
Benzo(g,h,i)perylene	ND		5.0	0.35				09/19/17 13:27	
Benzo(k)fluoranthene	ND ND		5.0	0.73	-			09/19/17 13:27	
Benzyl alcohol	ND ND		20		ug/L			09/19/17 13:27	
Bis(2-chloroethoxy)methane	ND		5.0	0.35	-			09/19/17 13:27	
Bis(2-chloroethyl)ether	ND ND		5.0	0.40	_			09/19/17 13:27	
• •	ND ND		10		•			09/19/17 13:27	
4-Methylphenol pis (2-chloroisopropyl) ether	ND		5.0	0.36				09/19/17 13:27	-
, , , , ,	ND ND		5.0	0.52				09/19/17 13:27	
Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	ND ND		5.0 5.0		ug/L			09/19/17 13:27	
					ug/L				
Chrysene	ND		5.0	0.33	•		09/08/17 07:55		
Diallate	ND		10		ug/L			09/19/17 13:27	
Dibenz(a,h)anthracene	ND		5.0	0.42	_			09/19/17 13:27	
Dibenzofuran	ND		10	0.51	-			09/19/17 13:27	
Diethyl phthalate	ND		5.0	0.22	-			09/19/17 13:27	•
Dimethoate	ND		10	0.54				09/19/17 13:27	
Dimethyl phthalate	ND		5.0	0.36				09/19/17 13:27	
Di-n-butyl phthalate	ND		5.0	0.31	_			09/19/17 13:27	
Di-n-octyl phthalate	ND		5.0	0.47	-			09/19/17 13:27	
Diphenylamine	ND		10	0.82				09/19/17 13:27	
Disulfoton	ND		10	0.42	•			09/19/17 13:27	
Ethyl methanesulfonate	ND		10	0.39	_			09/19/17 13:27	
-amphur	ND		40		ug/L			09/19/17 13:27	•
Fluoranthene	ND		5.0	0.40	ug/L		09/08/17 07:55	09/19/17 13:27	•

TestAmerica Buffalo

Client: CHA Inc

2,4,6-Tribromophenol

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Client Sample ID: Secondary Leachate (Cell #1) Lab Sample ID: 480-123779-2

Date Collected: 09/07/17 13:15 **Matrix: Water** Date Received: 09/08/17 01:45

Method: 8270D - Semivolati Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorobenzene	ND	5.0	0.51	ug/L		09/08/17 07:55	09/19/17 13:27	1
Hexachlorobutadiene	ND	5.0	0.68	ug/L		09/08/17 07:55	09/19/17 13:27	1
Hexachlorocyclopentadiene	ND	5.0	0.59	ug/L		09/08/17 07:55	09/19/17 13:27	1
Hexachloroethane	ND	5.0	0.59	ug/L		09/08/17 07:55	09/19/17 13:27	1
Hexachloropropene	ND	10	2.5	ug/L		09/08/17 07:55	09/19/17 13:27	1
Indeno(1,2,3-cd)pyrene	ND	5.0	0.47	ug/L		09/08/17 07:55	09/19/17 13:27	1
Isodrin	ND	10	0.18	ug/L		09/08/17 07:55	09/19/17 13:27	1
Isophorone	ND	5.0	0.43	ug/L		09/08/17 07:55	09/19/17 13:27	1
Isosafrole	ND	10	0.58	ug/L		09/08/17 07:55	09/19/17 13:27	1
Kepone	ND	50	1.8	ug/L		09/08/17 07:55	09/19/17 13:27	1
Methapyrilene	ND	50	1.8	ug/L		09/08/17 07:55	09/19/17 13:27	1
Methyl methanesulfonate	ND	10	2.5	ug/L		09/08/17 07:55	09/19/17 13:27	1
Safrole	ND	10	0.46	ug/L		09/08/17 07:55	09/19/17 13:27	1
Thionazin	ND	10		ug/L		09/08/17 07:55	09/19/17 13:27	1
Naphthalene	ND	5.0		ug/L		09/08/17 07:55	09/19/17 13:27	1
Nitrobenzene	ND	5.0		ug/L		09/08/17 07:55	09/19/17 13:27	1
N-Nitro-o-toluidine	ND	10		ug/L		09/08/17 07:55	09/19/17 13:27	1
N-Nitrosodiethylamine	ND	10		ug/L			09/19/17 13:27	1
N-Nitrosodimethylamine	ND	10		ug/L		09/08/17 07:55	09/19/17 13:27	1
N-Nitrosodi-n-butylamine	ND	10		ug/L		09/08/17 07:55	09/19/17 13:27	1
N-Nitrosodi-n-propylamine	ND	5.0		ug/L			09/19/17 13:27	1
N-Nitrosodiphenylamine	ND	5.0		ug/L			09/19/17 13:27	1
N-Nitrosomethylethylamine	ND	10		ug/L			09/19/17 13:27	1
N-Nitrosopiperidine	ND	10		ug/L			09/19/17 13:27	1
Chlorobenzilate	ND	20		ug/L			09/19/17 13:27	1
N-Nitrosopyrrolidine	ND	10		ug/L			09/19/17 13:27	1
o,o',o"-Triethylphosphorothioate	ND	10		ug/L			09/19/17 13:27	1
Parathion ethyl	ND	10		ug/L			09/19/17 13:27	1
Parathion-methyl	ND	10		ug/L			09/19/17 13:27	1
p-Dimethylamino azobenzene	ND	10		ug/L			09/19/17 13:27	1
	ND ND			_			09/19/17 13:27	
Pentachlorobenzene	ND ND	10 10		ug/L ug/L			09/19/17 13:27	1
Pentachloronitrobenzene Pentachloronitrobenzene				_				1
Pentachlorophenol	ND	10		ug/L			09/19/17 13:27	1
Phenacetin	ND	10		ug/L			09/19/17 13:27	1
Phenanthrene	ND	5.0		ug/L			09/19/17 13:27	1
Phenol	ND	5.0		ug/L			09/19/17 13:27	1
Phorate	ND	10		ug/L			09/19/17 13:27	1
p-Phenylene diamine	ND	800		ug/L			09/19/17 13:27	1
Pronamide	ND	10		ug/L			09/19/17 13:27	1
Pyrene	ND	5.0	0.34	ug/L		09/08/17 07:55	09/19/17 13:27	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	100	46 - 120				09/08/17 07:55	09/19/17 13:27	1
2-Fluorobiphenyl	94	48 - 120				09/08/17 07:55	09/19/17 13:27	1
p-Terphenyl-d14	96	59 - 136				09/08/17 07:55	09/19/17 13:27	1
Phenol-d5	51	22 - 120				09/08/17 07:55	09/19/17 13:27	1
2-Fluorophenol	69	35 - 120					09/19/17 13:27	1
•	**							

TestAmerica Buffalo

09/08/17 07:55 09/19/17 13:27

41 - 120

85

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Lab Sample ID: 480-123779-2

Metric Water

Matrix: Water

Client Sample ID: Secondary Leachate (Cell #1)
Date Collected: 09/07/17 13:15

Date Received: 09/08/17 01:45

Method: 8081B - Organo Analyte	chlorine Pesticides (Result Qua		MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND	0.050	0.0092	ug/L		09/12/17 14:30	09/13/17 13:38	1
4,4'-DDE	ND	0.050	0.012	ug/L		09/12/17 14:30	09/13/17 13:38	1
4,4'-DDT	ND	0.050	0.011	ug/L		09/12/17 14:30	09/13/17 13:38	1
Aldrin	ND	0.050	0.0081	ug/L		09/12/17 14:30	09/13/17 13:38	1
alpha-BHC	ND	0.050	0.0077	ug/L		09/12/17 14:30	09/13/17 13:38	1
beta-BHC	ND	0.050	0.025	ug/L		09/12/17 14:30	09/13/17 13:38	1
Chlordane (technical)	ND	0.50	0.29	ug/L		09/12/17 14:30	09/13/17 13:38	1
delta-BHC	ND	0.050	0.010	ug/L		09/12/17 14:30	09/13/17 13:38	1
alpha-Chlordane	ND	0.050	0.015	ug/L		09/12/17 14:30	09/13/17 13:38	1
Dieldrin	ND	0.050	0.0098	ug/L		09/12/17 14:30	09/13/17 13:38	1
Endosulfan I	ND	0.050	0.011	ug/L		09/12/17 14:30	09/13/17 13:38	1
Endosulfan II	ND	0.050	0.012	ug/L		09/12/17 14:30	09/13/17 13:38	1
Endosulfan sulfate	ND	0.050	0.016	ug/L		09/12/17 14:30	09/13/17 13:38	1
Endrin	ND	0.050	0.014	ug/L		09/12/17 14:30	09/13/17 13:38	1
Endrin aldehyde	ND	0.050	0.016	ug/L		09/12/17 14:30	09/13/17 13:38	1
gamma-BHC (Lindane)	ND	0.050	0.0080	ug/L		09/12/17 14:30	09/13/17 13:38	1
Heptachlor	ND	0.050	0.0085	ug/L		09/12/17 14:30	09/13/17 13:38	1
Heptachlor epoxide	ND	0.050	0.0074	ug/L		09/12/17 14:30	09/13/17 13:38	1
Methoxychlor	ND	0.050	0.014	ug/L		09/12/17 14:30	09/13/17 13:38	1
Toxaphene	ND	0.50	0.12	ug/L		09/12/17 14:30	09/13/17 13:38	1
Surrogate	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	79	44 - 120				09/12/17 14:30	09/13/17 13:38	1
DCB Decachlorobiphenyl	60	20 - 120				09/12/17 14:30	09/13/17 13:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		09/13/17 07:26	09/13/17 20:00	1
PCB-1221	ND		0.50	0.18	ug/L		09/13/17 07:26	09/13/17 20:00	1
PCB-1232	ND		0.50	0.18	ug/L		09/13/17 07:26	09/13/17 20:00	1
PCB-1242	ND		0.50	0.18	ug/L		09/13/17 07:26	09/13/17 20:00	1
PCB-1248	ND		0.50	0.18	ug/L		09/13/17 07:26	09/13/17 20:00	1
PCB-1254	ND		0.50	0.25	ug/L		09/13/17 07:26	09/13/17 20:00	1
PCB-1260	ND		0.50	0.25	ug/L		09/13/17 07:26	09/13/17 20:00	1
PCB-1262	ND		0.50	0.25	ug/L		09/13/17 07:26	09/13/17 20:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	73		19 - 120				09/13/17 07:26	09/13/17 20:00	1
Tetrachloro-m-xylene	77		39 - 121				09/13/17 07:26	09/13/17 20:00	1

Method: 8151A - Herbicides	s (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND		0.50	0.068	ug/L		09/11/17 08:08	09/13/17 20:38	1
2,4-D	ND		0.50	0.17	ug/L		09/11/17 08:08	09/13/17 20:38	1
Dinoseb	ND		0.50	0.14	ug/L		09/11/17 08:08	09/13/17 20:38	1
Silvex (2,4,5-TP)	ND		0.50	0.050	ug/L		09/11/17 08:08	09/13/17 20:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	74		48 - 132				09/11/17 08:08	09/13/17 20:38	1

TestAmerica Buffalo

3

5

7

q

10

12

14

15

Client Sample Results

Client: CHA Inc

TestAmerica Job ID: 480-123779-1

Project/Site: Albany Interim Landfill - Expanded

Client Sample ID: Secondary Leachate (Cell #1) Lab Sample ID: 480-123779-2

Date Collected: 09/07/17 13:15 **Matrix: Water**

Date Received: 09/08/17 01:45

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.43		0.20	0.060	mg/L		09/11/17 09:30	09/11/17 22:05	1
Antimony	ND		0.020	0.0068	mg/L		09/11/17 09:30	09/11/17 22:05	1
Arsenic	ND		0.010	0.0056	mg/L		09/11/17 09:30	09/11/17 22:05	1
Barium	0.032		0.0020	0.00070	mg/L		09/11/17 09:30	09/11/17 22:05	1
Beryllium	ND		0.0020	0.00030	mg/L		09/11/17 09:30	09/11/17 22:05	1
Boron	0.34	^	0.020	0.0040	mg/L		09/11/17 09:30	09/12/17 11:01	1
Cadmium	0.00070	J	0.0010	0.00050	mg/L		09/11/17 09:30	09/11/17 22:05	1
Calcium	183		0.50	0.10	mg/L		09/11/17 09:30	09/11/17 22:05	1
Chromium	ND		0.0040	0.0010	mg/L		09/11/17 09:30	09/12/17 11:01	1
Cobalt	ND		0.0040	0.00063	mg/L		09/11/17 09:30	09/11/17 22:05	1
Copper	ND		0.010	0.0016	mg/L		09/11/17 09:30	09/12/17 11:01	1
Iron	0.55		0.050	0.019	mg/L		09/11/17 09:30	09/11/17 22:05	1
Lead	0.0066		0.0050	0.0030	mg/L		09/11/17 09:30	09/11/17 22:05	1
Magnesium	115		0.20	0.043	mg/L		09/11/17 09:30	09/11/17 22:05	1
Manganese	0.044		0.0030	0.00040	mg/L		09/11/17 09:30	09/11/17 22:05	1
Nickel	0.0070	J	0.010	0.0013	mg/L		09/11/17 09:30	09/11/17 22:05	1
Potassium	3.2		0.50	0.10	mg/L		09/11/17 09:30	09/11/17 22:05	1
Selenium	ND		0.015	0.0087	mg/L		09/11/17 09:30	09/11/17 22:05	1
Silver	ND		0.0030	0.0017	mg/L		09/11/17 09:30	09/11/17 22:05	1
Sodium	94.1		1.0	0.32	mg/L		09/11/17 09:30	09/11/17 22:05	1
Thallium	ND		0.020	0.010	mg/L		09/11/17 09:30	09/11/17 22:05	1
Tin	ND		10.0	0.0051	mg/L		09/11/17 09:30	09/11/17 22:05	1
Vanadium	ND		0.0050	0.0015	mg/L		09/11/17 09:30	09/11/17 22:05	1
Zinc	0.014		0.010	0.0015	mg/L		09/11/17 09:30	09/11/17 22:05	1
Method: 7470A - Mercury (CVA)	A)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/08/17 11:20	09/08/17 14:50	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.38	J	1.0	0.37	mg/L			09/13/17 18:03	5
Chloride	121		2.5	1.4	mg/L			09/13/17 18:03	5
Sulfate	725		40.0	7.0	mg/L			09/14/17 20:19	20
Alkalinity, Total	180	В	40.0	16.0	mg/L			09/08/17 17:50	4
Ammonia as N	ND		0.020	0.0090	mg/L			09/08/17 12:55	1
Total Kjeldahl Nitrogen	0.40		0.20	0.15	mg/L		09/11/17 18:10	09/12/17 09:48	1
Nitrate	4.3		0.050	0.020	mg/L as N			09/08/17 11:12	1
Chemical Oxygen Demand	5.1	J	10.0	5.0	mg/L			09/11/17 20:09	1
Phenolics, Total Recoverable	0.013		0.010	0.0050	mg/L		09/11/17 19:45	09/12/17 02:00	1
Cr (VI)	ND		0.010	0.0050	mg/L			09/08/17 06:02	1
Cyanide, Total	ND		0.010	0.0050	mg/L		09/12/17 18:23	09/13/17 11:42	1
Total Organic Carbon	3.2		1.0	0.43	mg/L			09/10/17 16:07	1
Total Hardness	900		50.0	13.1	mg/L			09/12/17 10:11	1
Total Dissolved Solids	1550		10.0	4.0	mg/L			09/11/17 08:10	1
Sulfide	ND		1.0	0.67	mg/L			09/13/17 15:30	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/08/17 14:36	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	5.00		5.00	5.00	Color Units			09/08/17 15:06	1

Client Sample Results

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Client Sample ID: Trip Blank

Lab Sample ID: 480-123779-3 Date Collected: 09/07/17 00:00

Matrix: Water

Date Received: 09/08/17 01:45

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/11/17 16:39	
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/11/17 16:39	
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			09/11/17 16:39	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/11/17 16:39	
1,1-Dichloroethane	ND	1.0		ug/L			09/11/17 16:39	
1,1-Dichloroethene	ND	1.0		ug/L			09/11/17 16:39	
1,1-Dichloropropene	ND	1.0		ug/L			09/11/17 16:39	
1,2,3-Trichloropropane	ND	1.0		ug/L			09/11/17 16:39	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			09/11/17 16:39	
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			09/11/17 16:39	
1,2-Dibromoethane	ND	1.0		ug/L			09/11/17 16:39	
1,2-Dichlorobenzene	ND	1.0		ug/L			09/11/17 16:39	
1,2-Dichloroethane	ND	1.0		ug/L			09/11/17 16:39	
1,2-Dichloropropane	ND	1.0		ug/L			09/11/17 16:39	
1,3-Dichlorobenzene	ND	1.0		ug/L			09/11/17 16:39	
1,3-Dichloropropane	ND ND	1.0		ug/L			09/11/17 16:39	
1,4-Dichlorobenzene	ND	1.0		ug/L			09/11/17 16:39	
2,2-Dichloropropane	ND	1.0		ug/L			09/11/17 16:39	
2-Hexanone	ND	5.0		ug/L ug/L			09/11/17 16:39	
	ND ND	10					09/11/17 16:39	
2-Butanone (MEK)	ND ND			ug/L				
4-Methyl-2-pentanone (MIBK)		5.0	2.1	Ū			09/11/17 16:39	
Acetone	3.3 J	10	3.0	•			09/11/17 16:39	
Acetonitrile	ND	15		ug/L			09/11/17 16:39	
Acrolein	ND	20		ug/L			09/11/17 16:39	
Acrylonitrile	ND	5.0		ug/L			09/11/17 16:39	
Allyl chloride	ND	1.0		ug/L			09/11/17 16:39	
Benzene	ND	1.0		ug/L			09/11/17 16:39	
Bromochloromethane	ND	1.0		ug/L			09/11/17 16:39	
Bromodichloromethane	ND	1.0		ug/L			09/11/17 16:39	
Bromoform	ND	1.0		ug/L			09/11/17 16:39	
Bromomethane	ND	1.0		ug/L			09/11/17 16:39	
Carbon disulfide	ND	1.0		ug/L			09/11/17 16:39	
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/11/17 16:39	
Chlorobenzene	ND	1.0		ug/L			09/11/17 16:39	
Dibromochloromethane	ND	1.0	0.32	ug/L			09/11/17 16:39	
Chloroethane	ND	1.0	0.32	ug/L			09/11/17 16:39	
Chloroform	ND	1.0	0.34	ug/L			09/11/17 16:39	
Chloromethane	ND	1.0	0.35	ug/L			09/11/17 16:39	
Chloroprene	ND	1.0	0.49	ug/L			09/11/17 16:39	
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/11/17 16:39	
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/11/17 16:39	
Dibromomethane	ND	1.0	0.41	ug/L			09/11/17 16:39	
Dichlorodifluoromethane	ND	1.0		ug/L			09/11/17 16:39	
Ethyl methacrylate	ND	1.0		ug/L			09/11/17 16:39	
Ethylbenzene	ND	1.0		ug/L			09/11/17 16:39	
Hexachlorobutadiene	ND	1.0		ug/L			09/11/17 16:39	
odomethane	ND	1.0		ug/L			09/11/17 16:39	
sobutyl alcohol	ND	25		ug/L			09/11/17 16:39	
Methacrylonitrile	ND	5.0		ug/L			09/11/17 16:39	

TestAmerica Buffalo

Page 20 of 58

Client Sample Results

Client: CHA Inc

TestAmerica Job ID: 480-123779-1

Project/Site: Albany Interim Landfill - Expanded

Client Sample ID: Trip Blank

Lab Sample ID: 480-123779-3 Date Collected: 09/07/17 00:00

Matrix: Water

Date Received: 09/08/17 01:45

Analyte	Result Qual	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl methacrylate	ND	1.0	0.61	ug/L			09/11/17 16:39	1
Methylene Chloride	ND	1.0	0.44	ug/L			09/11/17 16:39	1
Naphthalene	ND	1.0	0.43	ug/L			09/11/17 16:39	1
Pentachloroethane	ND	1.0	0.34	ug/L			09/11/17 16:39	1
Propionitrile	ND	10	5.8	ug/L			09/11/17 16:39	1
Styrene	ND	1.0	0.73	ug/L			09/11/17 16:39	1
Tetrachloroethene	ND	1.0	0.36	ug/L			09/11/17 16:39	1
Toluene	ND	1.0	0.51	ug/L			09/11/17 16:39	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			09/11/17 16:39	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			09/11/17 16:39	1
trans-1,4-Dichloro-2-butene	ND	1.0	0.22	ug/L			09/11/17 16:39	1
Trichloroethene	ND	1.0	0.46	ug/L			09/11/17 16:39	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			09/11/17 16:39	1
Vinyl acetate	ND	5.0	0.85	ug/L			09/11/17 16:39	1
Vinyl chloride	ND	1.0	0.90	ug/L			09/11/17 16:39	1
Xylenes, Total	ND	2.0	0.66	ug/L			09/11/17 16:39	1
m,p-Xylene	ND	2.0	0.66	ug/L			09/11/17 16:39	1
o-Xylene	ND	1.0	0.76	ug/L			09/11/17 16:39	1
Surrogate	%Recovery Qual	lifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	77 - 120			-		09/11/17 16:39	1
Toluene-d8 (Surr)	98	80 - 120					09/11/17 16:39	1
4-Bromofluorobenzene (Surr)	96	73 - 120					09/11/17 16:39	1
Dibromofluoromethane (Surr)	97	75 ₋ 123					09/11/17 16:39	1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		12DCE	TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	(77-120)	(80-120)	(73-120)	(75-123)
480-123779-1	Primary Leachate (Pump Station	96	98	96	97
480-123779-2	Secondary Leachate (Cell #1)	94	96	95	94
480-123779-3	Trip Blank	97	98	96	97
LCS 480-376058/4	Lab Control Sample	93	98	96	97
MB 480-376058/6	Method Blank	99	98	96	99

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		NBZ	FBP	TPH	PHL	2FP	TBP		
Lab Sample ID	Client Sample ID	(46-120)	(48-120)	(59-136)	(22-120)	(35-120)	(41-120)		
480-123779-1	Primary Leachate (Pump Station	114	112	97	67	80	135 X		
480-123779-2	Secondary Leachate (Cell #1)	100	94	96	51	69	85		
LCS 480-375804/2-A	Lab Control Sample	88	85	95	59	71	93		
MB 480-375804/1-A	Method Blank	97	93	105	59	76	73		

Surrogate Legend

NBZ = Nitrobenzene-d5

FBP = 2-Fluorobiphenyl

TPH = p-Terphenyl-d14

PHL = Phenol-d5

2FP = 2-Fluorophenol

TBP = 2,4,6-Tribromophenol

DCB = DCB Decachlorobiphenyl

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Water Prep Type: Total/NA

			Percent	t Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	TCX1 (44-120)	DCB1 (20-120)	
480-123779-1	Primary Leachate (Pump Station	87	25	
480-123779-2	Secondary Leachate (Cell #1)	79	60	
LCS 480-376392/2-A	Lab Control Sample	76	60	
LCSD 480-376392/3-A	Lab Control Sample Dup	70	51	
MB 480-376392/1-A	Method Blank	77	62	
Surrogate Legend				

Surrogate Summary

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

				ent Surrogate Recovery (Acceptance Limits)
		DCB2	TCX2	
Lab Sample ID	Client Sample ID	(19-120)	(39-121)	
480-123779-1	Primary Leachate (Pump Station	27	60	
480-123779-2	Secondary Leachate (Cell #1)	73	77	
LCS 480-376481/2-A	Lab Control Sample	53	75	
MB 480-376481/1-A	Method Blank	60	81	
Surrogate Legend				
DCB = DCB Decachlo	robiphenyl			
TCX = Tetrachloro-m-x	xylene			

Method: 8151A - Herbicides (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits
		DCPA1	
Lab Sample ID	Client Sample ID	(48-132)	
480-123779-1	Primary Leachate (Pump Station	86	
480-123779-2	Secondary Leachate (Cell #1)	74	
LCS 480-376060/2-A	Lab Control Sample	51	
LCSD 480-376060/3-A	Lab Control Sample Dup	48	
MB 480-376060/1-A	Method Blank	62	
Surrogate Legend			

7

0

10

12

14

15

Client: CHA Inc Project/Site: Albany Interim Landfill - Expanded TestAmerica Job ID: 480-123779-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-376058/6

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 376058	MB	мв							
Analyte	Result		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	0.35	ug/L		•	09/11/17 10:15	1
1,1,1-Trichloroethane	ND		1.0		ug/L			09/11/17 10:15	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			09/11/17 10:15	1
1,1,2-Trichloroethane	ND		1.0		ug/L			09/11/17 10:15	1
1,1-Dichloroethane	ND		1.0		ug/L			09/11/17 10:15	1
1,1-Dichloroethene	ND		1.0		ug/L			09/11/17 10:15	1
1,1-Dichloropropene	ND		1.0		ug/L			09/11/17 10:15	1
1,2,3-Trichloropropane	ND		1.0		ug/L			09/11/17 10:15	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			09/11/17 10:15	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			09/11/17 10:15	1
1,2-Dibromoethane	ND		1.0		ug/L			09/11/17 10:15	1
1,2-Dichlorobenzene	ND		1.0		ug/L			09/11/17 10:15	1
1,2-Dichloroethane	ND		1.0		ug/L			09/11/17 10:15	1
1,2-Dichloropropane	ND		1.0		ug/L			09/11/17 10:15	1
1,3-Dichlorobenzene	ND		1.0		ug/L			09/11/17 10:15	1
1,3-Dichloropropane	ND		1.0		ug/L			09/11/17 10:15	1
1,4-Dichlorobenzene	ND		1.0		ug/L			09/11/17 10:15	1
2,2-Dichloropropane	ND		1.0		ug/L			09/11/17 10:15	1
2-Hexanone	ND		5.0		ug/L			09/11/17 10:15	1
2-Butanone (MEK)	ND		10		ug/L			09/11/17 10:15	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			09/11/17 10:16	1
Acetone	ND		10		ug/L			09/11/17 10:15	- ' 1
Acetonitrile	ND		15		ug/L			09/11/17 10:15	1
Acrolein	ND		20		ug/L			09/11/17 10:15	1
Acrylonitrile	ND		5.0		ug/L			09/11/17 10:15	1
Allyl chloride	ND		1.0		ug/L			09/11/17 10:15	1
Benzene	ND		1.0		ug/L			09/11/17 10:15	1
Bromochloromethane	ND		1.0		ug/L			09/11/17 10:15	' 1
Bromodichloromethane	ND ND		1.0		ug/L			09/11/17 10:15	1
Bromoform	ND		1.0		ug/L			09/11/17 10:15	1
Bromomethane	ND		1.0		ug/L			09/11/17 10:15	1
Carbon disulfide	ND ND		1.0		ug/L			09/11/17 10:15	1
Carbon tetrachloride	ND ND		1.0		ug/L ug/L			09/11/17 10:15	1
Chlorobenzene	ND		1.0		ug/L ug/L			09/11/17 10:15	- ' 1
	ND ND		1.0	0.75				09/11/17 10:15	1
Dibromochloromethane Chloroethane	ND ND		1.0		•			09/11/17 10:15	1
Chloroform					ug/L				1
Chloromethane	ND		1.0		ug/L			09/11/17 10:15	1
	ND ND		1.0		ug/L			09/11/17 10:15 09/11/17 10:15	1
Chloroprene	ND		1.0		ug/L				1
cis-1,2-Dichloroethene	ND		1.0		ug/L			09/11/17 10:15	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			09/11/17 10:15	1
Dibromomethane	ND		1.0		ug/L			09/11/17 10:15	_ 1
Dichlorodifluoromethane	ND		1.0		ug/L			09/11/17 10:15	1
Ethyl methacrylate	ND		1.0		ug/L			09/11/17 10:15	1
Ethylbenzene	ND		1.0		ug/L			09/11/17 10:15	1
Hexachlorobutadiene	ND		1.0		ug/L			09/11/17 10:15	1
lodomethane	ND		1.0		ug/L			09/11/17 10:15	1
Isobutyl alcohol	ND		25	4.8	ug/L			09/11/17 10:15	1

TestAmerica Buffalo

9/20/2017

Page 24 of 58

Client: CHA Inc Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-376058/6

Matrix: Water

Analysis Batch: 376058

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methacrylonitrile	ND	5.0	0.69	ug/L			09/11/17 10:15	1
Methyl methacrylate	ND	1.0	0.61	ug/L			09/11/17 10:15	1
Methylene Chloride	ND	1.0	0.44	ug/L			09/11/17 10:15	1
Naphthalene	ND	1.0	0.43	ug/L			09/11/17 10:15	1
Pentachloroethane	ND	1.0	0.34	ug/L			09/11/17 10:15	1
Propionitrile	ND	10	5.8	ug/L			09/11/17 10:15	1
Styrene	ND	1.0	0.73	ug/L			09/11/17 10:15	1
Tetrachloroethene	ND	1.0	0.36	ug/L			09/11/17 10:15	1
Toluene	ND	1.0	0.51	ug/L			09/11/17 10:15	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			09/11/17 10:15	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			09/11/17 10:15	1
trans-1,4-Dichloro-2-butene	ND	1.0	0.22	ug/L			09/11/17 10:15	1
Trichloroethene	ND	1.0	0.46	ug/L			09/11/17 10:15	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			09/11/17 10:15	1
Vinyl acetate	ND	5.0	0.85	ug/L			09/11/17 10:15	1
Vinyl chloride	ND	1.0	0.90	ug/L			09/11/17 10:15	1
Xylenes, Total	ND	2.0	0.66	ug/L			09/11/17 10:15	1
m,p-Xylene	ND	2.0	0.66	ug/L			09/11/17 10:15	1
o-Xylene	ND	1.0	0.76	ug/L			09/11/17 10:15	1

мв мв

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	77 - 120	09/11/17 10:15	1
Toluene-d8 (Surr)	98	80 - 120	09/11/17 10:15	1
4-Bromofluorobenzene (Surr)	96	73 - 120	09/11/17 10:15	1
Dibromofluoromethane (Surr)	99	75 ₋ 123	09/11/17 10:15	1

Lab Sample ID: LCS 480-376058/4

Matrix: Water

Analysis Batch: 376058

Allalysis Batch. 370030	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	25.0	26.7		ug/L		107	80 - 120
1,1,1-Trichloroethane	25.0	26.1		ug/L		104	73 - 126
1,1,2,2-Tetrachloroethane	25.0	23.2		ug/L		93	76 - 120
1,1,2-Trichloroethane	25.0	24.1		ug/L		96	76 - 122
1,1-Dichloroethane	25.0	24.8		ug/L		99	77 - 120
1,1-Dichloroethene	25.0	24.7		ug/L		99	66 - 127
1,1-Dichloropropene	25.0	26.1		ug/L		105	72 - 122
1,2,3-Trichloropropane	25.0	22.9		ug/L		91	68 - 122
1,2,4-Trichlorobenzene	25.0	26.7		ug/L		107	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	22.9		ug/L		91	56 - 134
1,2-Dibromoethane	25.0	24.0		ug/L		96	77 - 120
1,2-Dichlorobenzene	25.0	26.0		ug/L		104	80 - 124
1,2-Dichloroethane	25.0	24.7		ug/L		99	75 - 120
1,2-Dichloropropane	25.0	24.3		ug/L		97	76 - 120
1,3-Dichlorobenzene	25.0	26.4		ug/L		106	77 - 120
1,3-Dichloropropane	25.0	24.8		ug/L		99	75 - 120
1,4-Dichlorobenzene	25.0	25.9		ug/L		104	80 - 120

TestAmerica Buffalo

Page 25 of 58

Client: CHA Inc

TestAmerica Job ID: 480-123779-1

Project/Site: Albany Interim Landfill - Expanded

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-376058/4

Matrix: Water

Analysis Batch: 376058

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analyte Added Result Qualifier Unit D %Rec Limits 2,2-Dichloropropane 25.0 26.1 ug/L 112 65.136 2-E-butanone 125 109 ug/L 86 67.140 2-E-butanone (MIBK) 125 110 ug/L 86 67.140 4-Methyl-2-pentanone (MIBK) 125 115 ug/L 90 56.142 Acetone 125 115 ug/L 81 52.143 Acrylonfirle 220 224 ug/L 100 63.125 Allyl chloride 25.0 25.1 ug/L 100 60.140 Benzene 25.0 25.1 ug/L 100 80.140 Bromodichloromethane 25.0 25.1 ug/L 100 72.130 Bromodichloromethane 25.0 25.0 ug/L 100 80.142 Bromomethane 25.0 25.0 29.9 ug/L 101 61.132 Carbon disulfide 25.0	Analysis Batch: 376058	Spike	LCS	LCS				%Rec.	
2-Hexanone 125 109	Analyte				Unit	D	%Rec		
2-Butanone (MEK) 125 108 ug/L 86 57. 140 4-Methryl-2-pentanone (MIBK) 125 110 ug/L 88 77. 140 4-Methryl-2-pentanone (MIBK) 125 110 ug/L 81 52. 143 Acrolen 125 111 ug/L 81 52. 143 Acrolen 125 101 ug/L 100 60. 140 Benzene 125 25.0 25.1 ug/L 100 72. 130 Benzene 125 25.0 25.1 ug/L 100 72. 130 Bromodichloromethane 125 25.0 25.1 ug/L 100 72. 130 Bromodichloromethane 125 25.0 25.0 ug/L 100 80. 122 Bromomethane 125 25.0 25.0 ug/L 104 61. 132 Bromomethane 125 25.0 25.0 ug/L 93 55. 144 Carbon disulfide 125 25.0 25.0 ug/L 97 59. 134 Carbon disulfide 125 25.0 25.0 ug/L 97 59. 134 Carbon disulfide 125 25.0 25.0 ug/L 97 59. 134 Carbon disulfide 125 25.0 25.0 ug/L 97 59. 134 Carbon disulfide 125 25.0 25.0 ug/L 97 59. 134 Chlorobenzene 125 25.0 25.8 ug/L 103 80. 120 Dibromochloromethane 125 25.0 25.0 ug/L 101 69. 136 Chlorofotm 125 25.0 25.0 ug/L 101 69. 136 Chlorofotm 125 25.0 25.0 ug/L 101 69. 136 Chlorofothane 125 25.0 25.0 ug/L 101 69. 136 Chlorofothane 125 25.0 25.0 ug/L 101 69. 136 Chlorofothane 125 25.0 25.0 ug/L 101 69. 136 Chlorofothane 125 25.0 25.0 ug/L 101 69. 136 Chlorofothane 125 25.0 25.0 ug/L 101 69. 136 Chlorofothane 125 25.0 25.0 ug/L 101 69. 136 Chlorofothane 125 25.0 25.0 ug/L 101 69. 136 Chlorofothane 125 25.0 25.0 ug/L 101 69. 136 Chlorofothane 125 25.0 25.0 ug/L 101 69. 136 Chlorofothane 125 25.0 25.0 ug/L 101 69. 136 Chlorofothane 125 25.0 25.0 ug/L 101 69. 136 Chlorofothane 125 25.0 25.0 ug/L 101 69. 136 Chlorofothane 125 25.0 25.0 ug/L 101 69. 136 Chlorofothane 125 25 25 ug/L 101 67. 124 Chlorofothane 125 25 25 ug/L 101 67. 124 Chlorofothane 125 25 25 ug/L 101 67. 124 Chlorofothane 125 25 25 ug/L 101 75. 127 Chlorofothane 125 25 25 ug/L 101 75. 127 Chlorofothane 125 25 25 ug/L 101 75. 127 Chlorofothane 125 25 25 ug/L 101 75. 127 Chlorofothane 125 25 25 ug/L 101 75. 127 Chlorofothan	2,2-Dichloropropane	25.0	28.1		ug/L		112	63 - 136	
4-Methyl-2-pentanone (MIBK) 125 110 ug/L 88 71-125 Acetone 125 115 ug/L 92 56.142 Acetone 125 115 ug/L 81 52-143 Acrolein 126 101 ug/L 81 52-143 Acrylonitrile 250 224 ug/L 90 63.125 Allyl chloride 25.0 25.1 ug/L 100 60.140 Benzene 25.0 25.1 ug/L 101 71-124 Bromochloromethane 25.0 25.1 ug/L 100 72-130 Bromochloromethane 25.0 25.1 ug/L 100 80.122 Bromochloromethane 25.0 25.9 ug/L 104 61.132 Bromochloromethane 25.0 27.3 ug/L 93 55-144 Carbon disuifide 25.0 27.3 ug/L 109 72-134 Carbon disuifide 25.0 27.3 ug/L 109 72-134 Carbon disuifide 25.0 27.3 ug/L 109 72-134 Chloromethane 25.0 25.9 ug/L 101 69-136 Chlorochloromethane 25.0 25.0 ug/L 100 38 01-120 Dibromochloromethane 25.0 25.2 ug/L 101 69-136 Chlorochloromethane 25.0 25.2 ug/L 101 69-136 Chlorochloromethane 25.0 25.2 ug/L 101 73-127 Chloromethane 25.0 25.0 ug/L 100 73-127 Chloromethane 25.0 25.0 ug/L 100 73-127 Chloromethane 25.0 25.0 ug/L 100 73-127 Chloromethane 25.0 24.9 ug/L 99 68-124 cis-1,3-Dichloropropene 25.0 24.9 ug/L 99 76-127 Dibromethane 25.0 24.9 ug/L 99 77-123 Dibromomethane 25.0 24.9 ug/L 99 77-123 Libry membranylate 25.0 24.2 ug/L 97 76-127 Dibromomethane 25.0 24.2 ug/L 97 76-127 Dibromomethane 25.0 25.3 ug/L 101 74-124 Dibromomethane 25.0 25.0 24.2 ug/L 97 77-123 Hexachlorobutadiene 25.0 25.0 28.2 ug/L 103 68-131 lodomethane 25.0 25.0 28.2 ug/L 103 68-131 lodomethane 25.0 25.0 28.2 ug/L 107 74-122 Thylhenzene 25.0 25.0 25.1 ug/L 96 66-125 Styrene 25.0 25.1 ug/L 96 66-125 Styrene 25.0 25.1 ug/L 107 74-122 Toluene 25.0 25.3 ug/L 107 74-122 Toluene 25.0 25.3 ug/L 107 74-122 Toluene 25.0 25.3 ug/L 107 74-122 Toluene	2-Hexanone	125	109		ug/L		87	65 - 127	
Acetolne 125 115 Ug/L 92 56 - 142 Acrolentine 125 101 Ug/L 81 52 - 143 Acrolentine 125 101 Ug/L 81 52 - 143 Acrolentine 250 224 Ug/L 90 63 - 125 Allyl chloride 250 251 Ug/L 100 60 - 140 Benzene 250 25.2 Ug/L 101 71 - 124 Bromochloromethane 250 25.0 Ug/L 100 72 - 130 Bromodichloromethane 250 25.0 Ug/L 100 72 - 130 Bromodichloromethane 250 25.0 Ug/L 100 80 - 122 Bromomethane 250 25.0 Ug/L 104 61 - 132 Bromomethane 250 25.0 Ug/L 104 61 - 132 Bromomethane 250 25.0 Ug/L 109 72 - 134 Carbon disulfide 250 27.3 Ug/L 109 72 - 134 Chlorobenzene 250 25.8 Ug/L 109 72 - 134 Chlorobenzene 250 25.8 Ug/L 101 69 - 136 Chloromethane 250 27.9 Ug/L 112 75 - 125 Chloromethane 250 25.0 Ug/L 101 69 - 136 Chloromethane 250 25.0 Ug/L 101 69 - 136 Chloromethane 250 25.0 Ug/L 101 69 - 136 Chloromethane 250 25.0 Ug/L 101 69 - 136 Chloromethane 250 25.0 Ug/L 101 69 - 136 Chloromethane 250 25.0 Ug/L 101 74 - 124 Ug/L 99 68 - 124 Ug/L 98 74 - 124 Ug/L 99 68 - 124 Ug/L 98 74 - 124 Ug/L 99 77 61 - 127 Dichlorodifluoromethane 250 24.2 Ug/L 97 76 - 127 Dichlorodifluoromethane 250 24.2 Ug/L 97 77 - 123 Dichlorodifluoromethane 250 25.0 Ug/L 101 74 - 124 Dichlorodifluoromethane 250 25.0 Ug/L 102 77 - 123 Dichlorodifluoromethane 250 25.0 Ug/L 102 77 - 123 Dichlorodifluoromethane 250 25.0 Ug/L 102 77 - 123 Dichlorodifluoromethane 250 25.0 Ug/L 102 77 - 123 Dichlorodifluoromethane 250 25.0 Ug/L 102 77 - 123 Dichlorodifluoromethane 250 25.0 Ug/L 102 77 - 123 Dichlorodifluoromethane 250 25.0 Ug/L 103 78 - 123 Sobutyl alcohol 625 501 Ug/L 80 51 - 150 Methylene Chloride 250 25.1 Ug/L 107 74 - 122 Titylbenzene 250 25.1 Ug/L 107 74 - 122 Titylbenzene 250 25.1 Ug/L 107 74 - 122 Titylbenzene 250 25.1 Ug/L 107 74 - 122 Tolulore 250 25.1 Ug/L 107 74 - 122 Toluloromethane 250	2-Butanone (MEK)	125	108		ug/L		86	57 ₋ 140	
Acrolenin	4-Methyl-2-pentanone (MIBK)	125	110		ug/L		88	71 - 125	
Acrylonitrile 250 224 ug/L 90 63 - 125 Allyl chloride 25.0 25.1 ug/L 100 60 - 140 Benzene 25.0 25.2 ug/L 100 71 - 124 Bromochloromethane 25.0 25.1 ug/L 100 72 - 130 Bromoform 25.0 25.9 ug/L 104 61 - 132 Bromomethane 25.0 25.9 ug/L 104 61 - 132 Bromomethane 25.0 23.3 ug/L 109 72 - 134 Carbon disulfde 25.0 24.3 ug/L 109 72 - 134 Carbon tetrachloride 25.0 25.8 ug/L 103 80 - 120 Dibromochloromethane 25.0 25.8 ug/L 101 69 - 136 Chloroform 25.0 25.2 ug/L 101 69 - 136 Chloroform 25.0 25.0 25.1 ug/L 101 69 - 127 Chloroform 25.0	Acetone	125	115		ug/L		92	56 - 142	
Acrylontirile 250 224 ug/L 90 63 125 Ally chloride 25.0 25.1 ug/L 100 60 .140 Benzchen 25.0 25.2 ug/L 101 71 · 124 Bromochloromethane 25.0 25.0 ug/L 100 72 · 130 Bromodichloromethane 25.0 25.9 ug/L 104 61 · 132 Bromomethane 25.0 25.9 ug/L 104 61 · 132 Bromomethane 25.0 23.3 ug/L 109 72 · 134 Carbon disulfide 25.0 24.3 ug/L 109 72 · 134 Carbon disulfide 25.0 25.8 ug/L 109 72 · 134 Carbon disulfide 25.0 25.8 ug/L 109 72 · 134 Carbon disulfide 25.0 25.8 ug/L 109 72 · 134 Carbon disulfide 25.0 25.0 25.8 ug/L 109 80 86 · 120 Chiorobetha	Acrolein	125	101				81	52 - 143	
Allyl chloride	Acrylonitrile	250	224		_		90	63 - 125	
Benzene 25.0 25.2 ug/L 101 71.124 Bromochloromethane 25.0 25.1 ug/L 100 72.130 Bromochloromethane 25.0 25.0 ug/L 104 61.132 Bromomethane 25.0 25.9 ug/L 104 61.132 Bromomethane 25.0 23.3 ug/L 104 61.132 Carbon disulfide 25.0 24.3 ug/L 109 72.134 Carbon tetrachloride 25.0 25.8 ug/L 103 80.120 Dibromochloromethane 25.0 25.8 ug/L 101 69.136 Chloroform 25.0 25.2 ug/L 101 69.136 Chloroform 25.0 25.0 25.2 ug/L 101 69.136 Chloropethane 25.0 25.0 25.0 ug/L 100 73.127 Chloropethane 25.0 24.9 ug/L 198 74.124 cis-1,2-Dichloropethene	Allyl chloride	25.0	25.1		_		100	60 - 140	
Bromochloromethane 25.0 25.1 ug/L 100 72 - 130 Bromocloricormethane 25.0 25.9 ug/L 104 80 - 122 Bromoferm 25.0 25.9 ug/L 104 81 - 132 Bromomethane 25.0 25.9 ug/L 93 55 - 144 Carbon tetrachloride 25.0 27.3 ug/L 109 72 - 134 Chlorobenzene 25.0 25.8 ug/L 103 80 - 120 Dibromochloromethane 25.0 25.8 ug/L 101 69 - 136 Chloroform 25.0 25.0 25.2 ug/L 101 69 - 136 Chloroform 25.0 25.0 25.0 ug/L 90 73 - 127 Chlorodethane 25.0 25.0 25.0 ug/L 99 68 - 124 Chlorodethane 25.0 25.0 24.6 ug/L 99 74 - 124 Cis-1,-2-Dichloropropene 25.0 25.3 ug/L 101 74	•	25.0	25.2		_		101	71 - 124	
Bromodichloromethane 25.0 25.0 ug/L 100 80 - 122 Bromoform 25.0 25.9 ug/L 104 61 - 132 Bromomethane 25.0 23.3 ug/L 93 55 - 144 Carbon disulfide 25.0 24.3 ug/L 109 72 - 134 Carbon tetrachloride 25.0 25.8 ug/L 109 72 - 134 Chloroberace 25.0 25.8 ug/L 109 72 - 134 Chloroform 25.0 25.0 27.9 ug/L 112 75 - 125 Chloroform 25.0 25.0 25.0 ug/L 101 69 - 136 Chloroform 25.0 25.0 25.0 ug/L 199 68 - 124 Chloroform 25.0 25.0 24.9 ug/L 99 68 - 124 Chloroform 25.0 25.0 24.9 ug/L 99 68 - 124 Chloroform 25.0 25.0 24.6 ug/L 101	Bromochloromethane	25.0	25.1		_		100	72 ₋ 130	
Bromoform 25.0 25.9 ug/L 104 61.132 Bromomethane 25.0 23.3 ug/L 93 55.144 Carbon disulfide 25.0 24.3 ug/L 97 59.134 Carbon tetrachloride 25.0 27.3 ug/L 109 72.134 Chlorobenzene 25.0 25.8 ug/L 103 80.120 Dibromochloromethane 25.0 25.2 ug/L 101 69.136 Chloroform 25.0 25.0 25.0 ug/L 100 73.127 Chloromethane 25.0 25.0 24.9 ug/L 190 73.127 Chloromethane 25.0 24.9 ug/L 190 73.127 Chloromethane 25.0 24.9 ug/L 198 74.124 cis-1,3-Dichloropropene 25.0 24.2 ug/L 101 74.124 cis-1,3-Dichloropropene 25.0 24.2 ug/L 197 76.127 Dichoromethane	Bromodichloromethane	25.0	25.0		_		100	80 - 122	
Bromomethane 25.0 23.3 ug/L 93 55.144 Carbon disulfide 25.0 24.3 ug/L 199 72.134 Carbon tetrachloride 25.0 27.3 ug/L 109 72.134 Chlorobenzene 25.0 25.8 ug/L 103 80.120 Dibromochloromethane 25.0 25.2 ug/L 101 69.136 Chlorothane 25.0 25.0 25.0 ug/L 100 73.127 Chloromethane 25.0 25.0 24.9 ug/L 99 68.124 cis-1,2-Dichlorosthene 25.0 24.9 ug/L 98 74.124 cis-1,3-Dichloropropene 25.0 25.3 ug/L 101 74.124 cis-1,3-Dichloropropene 25.0 24.2 ug/L 97 76.127 Dichlorodifluoromethane 25.0 24.2 ug/L 97 74.120 Ethyl methacrylate 25.0 24.2 ug/L 97 74.120	Bromoform	25.0			_		104	61 - 132	
Carbon disulfide 25.0 24.3 ug/L 97 59.134 Carbon tetrachloride 25.0 27.3 ug/L 109 72.134 Chlorobenzene 25.0 25.8 ug/L 103 80.120 Dibromochloromethane 25.0 27.9 ug/L 101 69.136 Chloroethane 25.0 25.0 25.0 ug/L 100 73.127 Chloromethane 25.0 25.0 ug/L 99 68.124 cis-1,2-Dichloroethene 25.0 24.8 ug/L 98 74.124 cis-1,3-Dichloropropene 25.0 25.3 ug/L 101 74.124 cis-1,3-Dichloropropene 25.0 25.3 ug/L 101 74.124 cis-1,2-Dichloroethane 25.0 25.0 24.2 ug/L 97 76.127 Dichorodifluoromethane 25.0 25.3 ug/L 101 74.124 cis-1,2-Dichloropropene 25.0 26.9 ug/L 108 59.135	Bromomethane	25.0	23.3		-		93	55 ₋ 144	
Carbon tetrachloride 25.0 27.3 ug/L 109 72.134 Chlorobenzene 25.0 25.8 ug/L 103 80.120 Dibromochloromethane 25.0 27.9 ug/L 112 75.125 Chloroethane 25.0 25.0 ug/L 101 69.136 Chloroform 25.0 25.0 ug/L 99 68.124 Chloromethane 25.0 24.9 ug/L 99 68.124 cis-1,2-Dichloropropene 25.0 24.6 ug/L 98 74.124 cis-1,3-Dichloropropene 25.0 24.2 ug/L 97 76.127 Dichlorodifluoromethane 25.0 24.2 ug/L 97 76.127 Dichlorodifluoromethane 25.0 25.0 24.2 ug/L 97 74.120 Ethyl methacrylate 25.0 25.0 24.2 ug/L 97 74.120 Ethyl methacrylate 25.0 25.0 25.0 ug/L 102 77.123									
Chlorobenzene 25.0 25.8 ug/L 103 80 - 120 Dibromochloromethane 25.0 27.9 ug/L 112 75 - 125 Chloroethane 25.0 25.2 ug/L 101 69 - 136 Chlorofform 25.0 25.0 ug/L 100 73 - 127 Chloromethane 25.0 24.9 ug/L 99 68 - 124 cis-1,2-Dichloroptopene 25.0 24.9 ug/L 98 74 - 124 cis-1,3-Dichloroptopopene 25.0 25.3 ug/L 197 76 - 127 Dichlorodifluoromethane 25.0 24.2 ug/L 197 76 - 127 Dichlorodifluoromethane 25.0 24.2 ug/L 108 59 - 135 Ethyl methacrylate 25.0 26.9 ug/L 108 59 - 135 Ethyl methacrylate 25.0 26.9 ug/L 108 59 - 135 Ethyl methacrylate 25.0 26.9 ug/L 108 59 - 135 Ethyl me					_				
Dibromochloromethane 25.0 27.9 ug/L 112 75-125 Chloroethane 25.0 25.2 ug/L 101 69-136 Chloroform 25.0 25.0 ug/L 100 73-127 Chloromethane 25.0 24.9 ug/L 199 68-124 cis-1,2-Dichloroethene 25.0 24.6 ug/L 198 74-124 cis-1,2-Dichloroethene 25.0 25.3 ug/L 101 74-124 Dibromomethane 25.0 25.3 ug/L 101 74-124 Dibromomethane 25.0 26.9 ug/L 97 76-127 Dichorodifluoromethane 25.0 26.9 ug/L 101 74-124 Ethyl methacrylate 25.0 26.6 ug/L 97 74-120 Ethylbenzene 25.0 26.6 ug/L 102 77-123 Hexachlorobutadiene 25.0 25.6 ug/L 113 68-131 lodomethane 25.0					_				
Chloroethane 25.0 25.2 ug/L 101 69 - 136 Chloroform 25.0 25.0 ug/L 100 73 - 127 Chloromethane 25.0 25.0 ug/L 99 68 - 124 cis-1,2-Dichloroethene 25.0 24.6 ug/L 98 74 - 124 cis-1,3-Dichloropropene 25.0 25.3 ug/L 101 74 - 124 Dibromomethane 25.0 24.2 ug/L 97 76 - 127 Dichlorodifluoromethane 25.0 24.2 ug/L 108 59 - 135 Ethyl methacrylate 25.0 24.2 ug/L 108 59 - 135 Ethyl methacrylate 25.0 25.6 ug/L 102 77 - 123 Ethyl methacrylate 25.0 25.6 ug/L 102 77 - 123 Ethyl methacrylate 25.0 25.6 ug/L 102 77 - 123 Ethyl methacrylate 25.0 25.6 ug/L 102 77 - 123 Ethyl methacrylate<									
Chloroform 25.0 25.0 ug/L 100 73-127 Chloromethane 25.0 24.9 ug/L 99 68-124 cis-1,2-Dichloroethene 25.0 24.6 ug/L 98 74-124 cis-1,3-Dichloropropene 25.0 25.3 ug/L 101 74-124 Dibromomethane 25.0 26.9 ug/L 97 76-127 Dichlorodifluoromethane 25.0 26.9 ug/L 108 59-135 Ethyl methacrylate 25.0 24.2 ug/L 102 77-123 Hexachlorobutadiene 25.0 25.6 ug/L 102 77-123 Hexachlorobutadiene 25.0 25.8 ug/L 103 78-123 Methylene Chloride					_				
Chloromethane 25.0 24.9 ug/L 99 68 - 124 cis-1,2-Dichloroethene 25.0 24.6 ug/L 98 74 - 124 cis-1,2-Dichloropropene 25.0 25.3 ug/L 101 74 - 124 Dibromomethane 25.0 25.0 24.2 ug/L 97 76 - 127 Dichlorodifluoromethane 25.0 26.9 ug/L 108 59 - 135 Ethyl methacrylate 25.0 24.2 ug/L 97 74 - 120 Ethyl methacrylate 25.0 25.6 ug/L 102 77 - 123 Hexachlorobutadiene 25.0 25.6 ug/L 102 77 - 123 Hexachlorobutadiene 25.0 28.2 ug/L 103 78 - 123 Isobutyl alcohol 625 501 ug/L 80 51 - 150 Methylene Chloride 25.0 23.0 ug/L 80 51 - 150 Methylene Chloride 25.0 23.0 ug/L 96 66 - 125					_				
cis-1,2-Dichloroethene 25.0 24.6 ug/L 98 74 · 124 cis-1,3-Dichloropropene 25.0 25.3 ug/L 101 74 · 124 Dibromomethane 25.0 25.0 24.2 ug/L 97 76 · 127 Dichlorodifluoromethane 25.0 26.9 ug/L 108 59 · 135 Ethyl methacrylate 25.0 26.9 ug/L 102 77 · 123 Ethylbenzene 25.0 25.6 ug/L 102 77 · 123 Hexachlorobutadiene 25.0 28.2 ug/L 113 68 · 131 lodomethane 25.0 25.8 ug/L 103 78 · 123 Isobutyl alcohol 625 501 ug/L 80 51 · 150 Methylene Chloride 25.0 23.0 ug/L 80 51 · 150 Methylene Chloride 25.0 23.0 ug/L 96 66 · 125 Styrene 25.0 25.5 ug/L 102 80 · 120 Tetrach					-				
cis-1,3-Dichloropropene 25.0 25.3 ug/L 101 74 - 124 Dibromomethane 25.0 24.2 ug/L 97 76 - 127 Dichlorodifluoromethane 25.0 26.9 ug/L 108 59 - 135 Ethyl methacrylate 25.0 26.9 ug/L 197 74 - 120 Ethylbenzene 25.0 25.6 ug/L 102 77 - 123 Hexachlorobutadiene 25.0 28.2 ug/L 113 68 . 131 lodomethane 25.0 25.8 ug/L 103 78 - 123 Isobutyl alcohol 625 501 ug/L 80 51 - 150 Methylene Chloride 25.0 23.0 ug/L 92 75 - 124 Naphthalene 25.0 23.0 ug/L 92 75 - 124 Naphthalene 25.0 25.5 ug/L 102 80 - 120 Tetrachloroethene 25.0 25.5 ug/L 102 80 - 120 Tetrachloroethene 25.0 25.4 ug/L 101 73 - 127 trans-1,3-Dichlor									
Dibromomethane 25.0 24.2 ug/L 97 76 - 127 Dichlorodifluoromethane 25.0 26.9 ug/L 108 59 - 135 Ethyl methacrylate 25.0 24.2 ug/L 97 74 - 120 Ethylbenzene 25.0 25.6 ug/L 102 77 - 123 Hexachlorobutadiene 25.0 28.2 ug/L 113 68 - 131 lodomethane 25.0 25.8 ug/L 103 78 - 123 lodomethane 25.0 25.8 ug/L 80 51 - 150 Methylachol 625 501 ug/L 80 51 - 150 Methylene Chloride 25.0 23.0 ug/L 80 51 - 150 Methylene Chloride 25.0 23.0 ug/L 92 75 - 124 Naphthalene 25.0 25.5 ug/L 102 80 - 120 Tetrachlorothene 25.0 25.5 ug/L 107 74 - 122 Toluene 25.0 25.4 ug/L 101 73 - 127 trans-1,2-Dichlorothene 2	·				-				
Dichlorodifluoromethane 25.0 26.9 ug/L 108 59 - 135 Ethyl methacrylate 25.0 24.2 ug/L 97 74 - 120 Ethylbenzene 25.0 25.6 ug/L 102 77 - 123 Hexachlorobutadiene 25.0 28.2 ug/L 113 68 - 131 lodomethane 25.0 25.8 ug/L 103 78 - 123 Isobutyl alcohol 625 501 ug/L 80 51 - 150 Methylene Chloride 25.0 23.0 ug/L 92 75 - 124 Naphthalene 25.0 23.0 ug/L 92 75 - 124 Naphthalene 25.0 25.5 ug/L 96 66 - 125 Styrene 25.0 25.5 ug/L 102 80 - 120 Tetrachloroethene 25.0 25.4 ug/L 107 74 - 122 Toluene 25.0 25.4 ug/L 101 73 - 127 trans-1,2-Dichloropthene 25.0 25.1 ug/L 101 73 - 127 trans-1,3-Dichlorop-2-butene					-				
Ethyl methacrylate 25.0 24.2 ug/L 97 74 - 120 Ethylbenzene 25.0 25.6 ug/L 102 77 - 123 Hexachlorobutadiene 25.0 28.2 ug/L 113 68 - 131 Iodomethane 25.0 25.8 ug/L 103 78 - 123 Isobutyl alcohol 625 501 ug/L 80 51 - 150 Methylene Chloride 25.0 23.0 ug/L 92 75 - 124 Naphthalene 25.0 24.1 ug/L 96 66 - 125 Styrene 25.0 25.5 ug/L 102 80 - 120 Tetrachloroethene 25.0 25.4 ug/L 107 74 - 122 Toluene 25.0 25.4 ug/L 107 74 - 122 Toluene 25.0 25.1 ug/L 101 73 - 127 trans-1,2-Dichloroethene 25.0 25.1 ug/L 101 73 - 127 trans-1,4-Dichloro-2-butene 25.0 25.0 25.3 ug/L 101 74 - 123 Trichlorofluo									
Ethylbenzene 25.0 25.6 ug/L 102 77 - 123 Hexachlorobutadiene 25.0 28.2 ug/L 113 68 - 131 Iodomethane 25.0 25.8 ug/L 103 78 - 123 Isobutyl alcohol 625 501 ug/L 80 51 - 150 Methylene Chloride 25.0 23.0 ug/L 92 75 - 124 Naphthalene 25.0 24.1 ug/L 96 66 - 125 Styrene 25.0 25.5 ug/L 102 80 - 120 Tetrachloroethene 25.0 26.8 ug/L 107 74 - 122 Toluene 25.0 25.4 ug/L 102 80 - 122 trans-1,2-Dichloroethene 25.0 25.1 ug/L 101 73 - 127 trans-1,3-Dichloropropene 25.0 26.2 ug/L 105 80 - 120 trans-1,4-Dichloro-2-butene 25.0 25.3 ug/L 101 74 - 123 Trichlorofluoromethane 25.0 25.3 ug/L 104 62 - 150 Vinyl acet									
Hexachlorobutadiene 25.0 28.2 ug/L 113 68 - 131 Iodomethane 25.0 25.8 ug/L 103 78 - 123 Isobutyl alcohol 625 501 ug/L 80 51 - 150 Methylene Chloride 25.0 23.0 ug/L 92 75 - 124 Naphthalene 25.0 24.1 ug/L 96 66 - 125 Styrene 25.0 25.5 ug/L 102 80 - 120 Tetrachloroethene 25.0 25.4 ug/L 107 74 - 122 Toluene 25.0 25.4 ug/L 101 73 - 127 trans-1,2-Dichloroethene 25.0 25.1 ug/L 101 73 - 127 trans-1,3-Dichloropropene 25.0 26.2 ug/L 105 80 - 120 trans-1,4-Dichloro-2-butene 25.0 25.3 ug/L 101 74 - 123 Trichloroethene 25.0 25.3 ug/L 101 74 - 123 Trichlorofluoromethane 25.0 25.3 ug/L 104 62 - 150 Vinyl a									
Iodomethane 25.0 25.8 ug/L 103 78 - 123 Isobutyl alcohol 625 501 ug/L 80 51 - 150 Methylene Chloride 25.0 23.0 ug/L 92 75 - 124 Naphthalene 25.0 24.1 ug/L 96 66 - 125 Styrene 25.0 25.5 ug/L 102 80 - 120 Tetrachloroethene 25.0 26.8 ug/L 107 74 - 122 Toluene 25.0 25.4 ug/L 102 80 - 120 trans-1,2-Dichloroethene 25.0 25.1 ug/L 101 73 - 127 trans-1,3-Dichloropropene 25.0 26.2 ug/L 105 80 - 120 trans-1,4-Dichloro-2-butene 25.0 23.6 ug/L 94 41 - 131 Trichloroethene 25.0 25.3 ug/L 101 74 - 123 Trichlorofluoromethane 25.0 25.0 26.1 ug/L 104 62 - 150 Vinyl a	·								
Isobutyl alcohol 625 501 ug/L 80 51 - 150 Methylene Chloride 25.0 23.0 ug/L 92 75 - 124 Naphthalene 25.0 24.1 ug/L 96 66 - 125 Styrene 25.0 25.5 ug/L 102 80 - 120 Tetrachloroethene 25.0 26.8 ug/L 107 74 - 122 Toluene 25.0 25.4 ug/L 102 80 - 122 trans-1,2-Dichloroethene 25.0 25.1 ug/L 101 73 - 127 trans-1,3-Dichloropropene 25.0 26.2 ug/L 105 80 - 120 trans-1,4-Dichloro-2-butene 25.0 25.3 ug/L 101 74 - 123 Trichloroethene 25.0 25.3 ug/L 101 74 - 123 Trichlorofluoromethane 25.0 26.1 ug/L 104 62 - 150 Vinyl acetate 50.0 51.0 ug/L 102 50 - 144 Vinyl chloride 25.0 25.3 ug/L 101 76 - 122 o-Xylene 25.0 25.8 ug/L 103 76 - 122 Trichlorosthene 25.0 25.8 ug/L 101 76 - 122 Trichlorosthene 25.0 25.8 ug/L 103 76 - 122 Trichlorosthene 25.0 25.8 ug/L 25.0 Trichlorosthene 25.0 25.8 ug/L 25.0 Trichlorosthene 25.0 25.8 ug/L 25.0 Trichlorosthene 25.0 25.0 25.8 ug/L 25.0 Trichlorosthene 25.0 25.0 25.8 ug/L 25.0 Trichlorosthene 25.0 25.0 25.0 25.0 Trichlorosthene 25.0 25.0 25.0 25.0 25.0									
Methylene Chloride 25.0 23.0 ug/L 92 75.124 Naphthalene 25.0 24.1 ug/L 96 66.125 Styrene 25.0 25.5 ug/L 102 80.120 Tetrachloroethene 25.0 26.8 ug/L 107 74.122 Toluene 25.0 25.4 ug/L 102 80.122 trans-1,2-Dichloroethene 25.0 25.1 ug/L 101 73.127 trans-1,3-Dichloropropene 25.0 26.2 ug/L 105 80.120 trans-1,4-Dichloro-2-butene 25.0 26.2 ug/L 105 80.120 trichloroethene 25.0 26.3 ug/L 101 74.123 Trichlorofluoromethane 25.0 25.3 ug/L 101 74.123 Vinyl acetate 50.0 51.0 ug/L 102 50.144 Vinyl chloride 25.0 25.3 ug/L 101 76.122 o-Xylene 25.0 25.3 ug/L 101 76.122									
Naphthalene 25.0 24.1 ug/L 96 66 - 125 Styrene 25.0 25.5 ug/L 102 80 - 120 Tetrachloroethene 25.0 26.8 ug/L 107 74 - 122 Toluene 25.0 25.4 ug/L 102 80 - 122 trans-1,2-Dichloroethene 25.0 25.1 ug/L 101 73 - 127 trans-1,3-Dichloropropene 25.0 26.2 ug/L 105 80 - 120 trans-1,4-Dichloro-2-butene 25.0 23.6 ug/L 94 41 - 131 Trichloroethene 25.0 25.3 ug/L 101 74 - 123 Trichlorofluoromethane 25.0 25.3 ug/L 104 62 - 150 Vinyl acetate 50.0 51.0 ug/L 102 50 - 144 Vinyl chloride 25.0 25.3 ug/L 101 76 - 122 o-Xylene 25.0 25.8 ug/L 103 76 - 122	•								
Styrene 25.0 25.5 ug/L 102 80 - 120 Tetrachloroethene 25.0 26.8 ug/L 107 74 - 122 Toluene 25.0 25.4 ug/L 102 80 - 122 trans-1,2-Dichloroethene 25.0 25.1 ug/L 101 73 - 127 trans-1,3-Dichloropropene 25.0 26.2 ug/L 105 80 - 120 trans-1,4-Dichloro-2-butene 25.0 23.6 ug/L 94 41 - 131 Trichloroethene 25.0 25.3 ug/L 101 74 - 123 Trichlorofluoromethane 25.0 26.1 ug/L 104 62 - 150 Vinyl acetate 50.0 51.0 ug/L 102 50 - 144 Vinyl chloride 25.0 25.3 ug/L 101 65 - 133 m,p-Xylene 25.0 25.3 ug/L 101 76 - 122 o-Xylene 25.0 25.8 ug/L 103 76 - 122	-				-				
Tetrachloroethene 25.0 26.8 ug/L 107 74 - 122 Toluene 25.0 25.4 ug/L 102 80 - 122 trans-1,2-Dichloroethene 25.0 25.1 ug/L 101 73 - 127 trans-1,3-Dichloropropene 25.0 26.2 ug/L 105 80 - 120 trans-1,4-Dichloro-2-butene 25.0 23.6 ug/L 94 41 - 131 Trichloroethene 25.0 25.3 ug/L 101 74 - 123 Trichlorofluoromethane 25.0 26.1 ug/L 104 62 - 150 Vinyl acetate 50.0 51.0 ug/L 102 50 - 144 Vinyl chloride 25.0 25.3 ug/L 101 65 - 133 m,p-Xylene 25.0 25.3 ug/L 101 76 - 122 o-Xylene 25.0 25.8 ug/L 103 76 - 122					_				
Toluene 25.0 25.4 ug/L 102 80 - 122 trans-1,2-Dichloroethene 25.0 25.1 ug/L 101 73 - 127 trans-1,3-Dichloropropene 25.0 26.2 ug/L 105 80 - 120 trans-1,4-Dichloro-2-butene 25.0 23.6 ug/L 94 41 - 131 Trichloroethene 25.0 25.3 ug/L 101 74 - 123 Trichlorofluoromethane 25.0 26.1 ug/L 104 62 - 150 Vinyl acetate 50.0 51.0 ug/L 102 50 - 144 Vinyl chloride 25.0 25.3 ug/L 101 65 - 133 m,p-Xylene 25.0 25.3 ug/L 101 76 - 122 o-Xylene 25.0 25.8 ug/L 103 76 - 122					-				
trans-1,2-Dichloroethene 25.0 25.1 ug/L 101 73 - 127 trans-1,3-Dichloropropene 25.0 26.2 ug/L 105 80 - 120 trans-1,4-Dichloro-2-butene 25.0 23.6 ug/L 94 41 - 131 Trichloroethene 25.0 25.3 ug/L 101 74 - 123 Trichlorofluoromethane 25.0 26.1 ug/L 104 62 - 150 Vinyl acetate 50.0 51.0 ug/L 102 50 - 144 Vinyl chloride 25.0 25.3 ug/L 101 65 - 133 m,p-Xylene 25.0 25.3 ug/L 101 76 - 122 o-Xylene 25.0 25.8 ug/L 103 76 - 122									
trans-1,3-Dichloropropene 25.0 26.2 ug/L 105 80 - 120 trans-1,4-Dichloro-2-butene 25.0 23.6 ug/L 94 41 - 131 Trichloroethene 25.0 25.3 ug/L 101 74 - 123 Trichlorofluoromethane 25.0 26.1 ug/L 104 62 - 150 Vinyl acetate 50.0 51.0 ug/L 102 50 - 144 Vinyl chloride 25.0 25.3 ug/L 101 65 - 133 m,p-Xylene 25.0 25.3 ug/L 101 76 - 122 o-Xylene 25.0 25.8 ug/L 103 76 - 122									
trans-1,4-Dichloro-2-butene 25.0 23.6 ug/L 94 41 - 131 Trichloroethene 25.0 25.3 ug/L 101 74 - 123 Trichlorofluoromethane 25.0 26.1 ug/L 104 62 - 150 Vinyl acetate 50.0 51.0 ug/L 102 50 - 144 Vinyl chloride 25.0 25.3 ug/L 101 65 - 133 m,p-Xylene 25.0 25.3 ug/L 101 76 - 122 o-Xylene 25.0 25.8 ug/L 103 76 - 122	•								
Trichloroethene 25.0 25.3 ug/L 101 74 - 123 Trichlorofluoromethane 25.0 26.1 ug/L 104 62 - 150 Vinyl acetate 50.0 51.0 ug/L 102 50 - 144 Vinyl chloride 25.0 25.3 ug/L 101 65 - 133 m,p-Xylene 25.0 25.3 ug/L 101 76 - 122 o-Xylene 25.0 25.8 ug/L 103 76 - 122									
Trichlorofluoromethane 25.0 26.1 ug/L 104 62 - 150 Vinyl acetate 50.0 51.0 ug/L 102 50 - 144 Vinyl chloride 25.0 25.3 ug/L 101 65 - 133 m,p-Xylene 25.0 25.3 ug/L 101 76 - 122 o-Xylene 25.0 25.8 ug/L 103 76 - 122									
Vinyl acetate 50.0 51.0 ug/L 102 50 - 144 Vinyl chloride 25.0 25.3 ug/L 101 65 - 133 m,p-Xylene 25.0 25.3 ug/L 101 76 - 122 o-Xylene 25.0 25.8 ug/L 103 76 - 122									
Vinyl chloride 25.0 25.3 ug/L 101 65 - 133 m,p-Xylene 25.0 25.3 ug/L 101 76 - 122 o-Xylene 25.0 25.8 ug/L 103 76 - 122									
m,p-Xylene 25.0 25.3 ug/L 101 76 - 122 o-Xylene 25.0 25.8 ug/L 103 76 - 122	Vinyl acetate		51.0		ug/L		102		
o-Xylene 25.0 25.8 ug/L 103 76 - 122	Vinyl chloride						101		
	m,p-Xylene	25.0					101		
100 100	o-Xylene	25.0	25.8		ug/L		103	76 - 122	
	100 100								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		77 - 120
Toluene-d8 (Surr)	98		80 - 120
4-Bromofluorobenzene (Surr)	96		73 - 120

TestAmerica Buffalo

Page 26 of 58

2

3

7

Q

10

12

14

10

16

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-376058/4

Matrix: Water

Analysis Batch: 376058

LCS LCS

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 75 - 123 97

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-375804/1-A

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water			Prep Type: Total/NA Prep Batch: 375804						
Analysis Batch: 376854	MR	МВ						Prep Batch:	3/5004
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		5.0	0.58	ug/L		09/08/17 07:55	09/15/17 09:13	1
1,2,4-Trichlorobenzene	ND		10	0.44	ug/L		09/08/17 07:55	09/15/17 09:13	1
1,2-Dichlorobenzene	ND		10	0.40	ug/L		09/08/17 07:55	09/15/17 09:13	1
1,3,5-Trinitrobenzene	ND		10	2.5	ug/L		09/08/17 07:55	09/15/17 09:13	1
1,3-Dichlorobenzene	ND		10	0.48	ug/L		09/08/17 07:55	09/15/17 09:13	1
1,3-Dinitrobenzene	ND		20	0.82	ug/L		09/08/17 07:55	09/15/17 09:13	1
1,4-Dichlorobenzene	ND		10	0.46	ug/L		09/08/17 07:55	09/15/17 09:13	1
1,4-Naphthoquinone	ND		10	0.24	ug/L		09/08/17 07:55	09/15/17 09:13	1
1-Naphthylamine	ND		10	1.3	ug/L		09/08/17 07:55	09/15/17 09:13	1
2,3,4,6-Tetrachlorophenol	ND		5.0	0.32	ug/L		09/08/17 07:55	09/15/17 09:13	1
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		09/08/17 07:55	09/15/17 09:13	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		09/08/17 07:55	09/15/17 09:13	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		09/08/17 07:55	09/15/17 09:13	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		09/08/17 07:55	09/15/17 09:13	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		09/08/17 07:55	09/15/17 09:13	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		09/08/17 07:55	09/15/17 09:13	1
2,6-Dichlorophenol	ND		10	0.46	ug/L		09/08/17 07:55	09/15/17 09:13	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		09/08/17 07:55	09/15/17 09:13	1
2-Acetylaminofluorene	ND		10	2.3	ug/L		09/08/17 07:55	09/15/17 09:13	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		09/08/17 07:55	09/15/17 09:13	1
2-Chlorophenol	ND		5.0	0.53	ug/L		09/08/17 07:55	09/15/17 09:13	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		09/08/17 07:55	09/15/17 09:13	1
2-Methylphenol	ND		5.0	0.40	ug/L		09/08/17 07:55	09/15/17 09:13	1
2-Naphthylamine	ND		10	2.5	ug/L		09/08/17 07:55	09/15/17 09:13	1
2-Nitroaniline	ND		10	0.42	ug/L		09/08/17 07:55	09/15/17 09:13	1
2-Nitrophenol	ND		5.0	0.48	ug/L		09/08/17 07:55	09/15/17 09:13	1
2-Toluidine	ND		10	1.5	ug/L		09/08/17 07:55	09/15/17 09:13	1
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		09/08/17 07:55	09/15/17 09:13	1
3,3'-Dimethylbenzidine	ND		40	2.5	ug/L		09/08/17 07:55	09/15/17 09:13	1
3-Methylcholanthrene	ND		10	2.5	ug/L		09/08/17 07:55	09/15/17 09:13	1
3-Nitroaniline	ND		10	0.48	ug/L		09/08/17 07:55	09/15/17 09:13	1
4,6-Dinitro-2-methylphenol	ND		10	2.2	ug/L		09/08/17 07:55	09/15/17 09:13	1
4-Aminobiphenyl	ND		10	0.81	ug/L		09/08/17 07:55	09/15/17 09:13	1
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L		09/08/17 07:55	09/15/17 09:13	1
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L		09/08/17 07:55	09/15/17 09:13	1
4-Chloroaniline	ND		5.0	0.59			09/08/17 07:55	09/15/17 09:13	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35	ug/L		09/08/17 07:55	09/15/17 09:13	1
4-Nitroaniline	ND		10	0.25	ug/L		09/08/17 07:55	09/15/17 09:13	1
4-Nitrophenol	ND		10	1.5	ug/L		09/08/17 07:55	09/15/17 09:13	1

TestAmerica Buffalo

Page 27 of 58 9/20/2017

Client: CHA Inc Project/Site: Albany Interim Landfill - Expanded TestAmerica Job ID: 480-123779-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-375804/1-A

Matrix: Water

Analysis Batch: 376854

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 375804

Analysis Batch: 376854	MB MB						Prep Batch:	37580 4
Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
7,12-Dimethylbenz(a)anthracene	ND Quali	10	0.62			09/08/17 07:55		1
Acenaphthene	ND	5.0	0.41				09/15/17 09:13	
Acenaphthylene	ND	5.0	0.38	•		09/08/17 07:55		1
3-Methylphenol	ND	10	0.40			09/08/17 07:55		1
Acetophenone	ND	5.0	0.54	_		09/08/17 07:55		
Anthracene	ND	5.0	0.28	-		09/08/17 07:55		
Benzo(a)anthracene	ND	5.0	0.36	_			09/15/17 09:13	-
Benzo(a)pyrene	ND	5.0	0.47	•			09/15/17 09:13	
Benzo(b)fluoranthene	ND	5.0	0.47	•		09/08/17 07:55		
Benzo(g,h,i)perylene	ND	5.0	0.35	-		09/08/17 07:55		
Benzo(k)fluoranthene	ND	5.0	0.53	ug/L		09/08/17 07:55		
• ,	ND ND	20		•		09/08/17 07:55		
Benzyl alcohol			2.0	ug/L				
Bis(2-chloroethoxy)methane	ND	5.0	0.35	-		09/08/17 07:55		,
Bis(2-chloroethyl)ether	ND	5.0		ug/L		09/08/17 07:55		
4-Methylphenol	ND	10	0.36	_			09/15/17 09:13	
bis (2-chloroisopropyl) ether	ND	5.0	0.52	-			09/15/17 09:13	,
Bis(2-ethylhexyl) phthalate	ND	5.0		ug/L			09/15/17 09:13	•
Butyl benzyl phthalate	ND	5.0		ug/L			09/15/17 09:13	
Chrysene	ND	5.0	0.33	-			09/15/17 09:13	•
Diallate	ND	10		ug/L		09/08/17 07:55	09/15/17 09:13	•
Dibenz(a,h)anthracene	ND	5.0	0.42	-		09/08/17 07:55	09/15/17 09:13	•
Dibenzofuran	ND	10	0.51	ug/L		09/08/17 07:55	09/15/17 09:13	•
Diethyl phthalate	ND	5.0	0.22	-		09/08/17 07:55	09/15/17 09:13	•
Dimethoate	ND	10	0.54	-		09/08/17 07:55	09/15/17 09:13	•
Dimethyl phthalate	ND	5.0	0.36	ug/L		09/08/17 07:55	09/15/17 09:13	•
Di-n-butyl phthalate	ND	5.0	0.31	ug/L		09/08/17 07:55	09/15/17 09:13	
Di-n-octyl phthalate	ND	5.0	0.47	ug/L		09/08/17 07:55	09/15/17 09:13	
Diphenylamine	ND	10	0.82	ug/L		09/08/17 07:55	09/15/17 09:13	
Disulfoton	ND	10	0.42	ug/L		09/08/17 07:55	09/15/17 09:13	•
Ethyl methanesulfonate	ND	10	0.39	ug/L		09/08/17 07:55	09/15/17 09:13	•
Famphur	ND	40	1.9	ug/L		09/08/17 07:55	09/15/17 09:13	•
Fluoranthene	ND	5.0	0.40	ug/L		09/08/17 07:55	09/15/17 09:13	•
Fluorene	ND	5.0	0.36	ug/L		09/08/17 07:55	09/15/17 09:13	
Hexachlorobenzene	ND	5.0	0.51	ug/L		09/08/17 07:55	09/15/17 09:13	
Hexachlorobutadiene	ND	5.0	0.68	ug/L		09/08/17 07:55	09/15/17 09:13	
Hexachlorocyclopentadiene	ND	5.0	0.59	-		09/08/17 07:55	09/15/17 09:13	
Hexachloroethane	ND	5.0	0.59			09/08/17 07:55	09/15/17 09:13	
Hexachloropropene	ND	10		ug/L			09/15/17 09:13	
Indeno(1,2,3-cd)pyrene	ND	5.0	0.47			09/08/17 07:55	09/15/17 09:13	
Isodrin	ND	10	0.18	-			09/15/17 09:13	
Isophorone	ND	5.0	0.43				09/15/17 09:13	
Isosafrole	ND	10	0.58	-			09/15/17 09:13	
Kepone	ND	50		ug/L			09/15/17 09:13	•
Methapyrilene	ND	50		ug/L			09/15/17 09:13	
Methyl methanesulfonate	ND	10		ug/L			09/15/17 09:13	
Safrole	ND	10	0.46				09/15/17 09:13	-
Thionazin	ND ND	10	0.40	-			09/15/17 09:13	
Naphthalene	ND ND	5.0	0.36	-			09/15/17 09:13	

TestAmerica Buffalo

Page 28 of 58

TestAmerica Job ID: 480-123779-1

Project/Site: Albany Interim Landfill - Expanded

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 480-375804/1-A

Matrix: Water

Client: CHA Inc

Analysis Batch: 376854

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 375804

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrobenzene	ND		5.0	0.29	ug/L		09/08/17 07:55	09/15/17 09:13	1
N-Nitro-o-toluidine	ND		10	0.66	ug/L		09/08/17 07:55	09/15/17 09:13	1
N-Nitrosodiethylamine	ND		10	0.36	ug/L		09/08/17 07:55	09/15/17 09:13	1
N-Nitrosodimethylamine	ND		10	2.2	ug/L		09/08/17 07:55	09/15/17 09:13	1
N-Nitrosodi-n-butylamine	ND		10	0.60	ug/L		09/08/17 07:55	09/15/17 09:13	1
N-Nitrosodi-n-propylamine	ND		5.0	0.54	ug/L		09/08/17 07:55	09/15/17 09:13	1
N-Nitrosodiphenylamine	ND		5.0	0.51	ug/L		09/08/17 07:55	09/15/17 09:13	1
N-Nitrosomethylethylamine	ND		10	2.5	ug/L		09/08/17 07:55	09/15/17 09:13	1
N-Nitrosopiperidine	ND		10	2.5	ug/L		09/08/17 07:55	09/15/17 09:13	1
Chlorobenzilate	ND		20	0.67	ug/L		09/08/17 07:55	09/15/17 09:13	1
N-Nitrosopyrrolidine	ND		10	2.5	ug/L		09/08/17 07:55	09/15/17 09:13	1
o,o',o"-Triethylphosphorothioate	ND		10	0.43	ug/L		09/08/17 07:55	09/15/17 09:13	1
Parathion ethyl	ND		10	0.64	ug/L		09/08/17 07:55	09/15/17 09:13	1
Parathion-methyl	ND		10	0.37	ug/L		09/08/17 07:55	09/15/17 09:13	1
p-Dimethylamino azobenzene	ND		10	0.75	ug/L		09/08/17 07:55	09/15/17 09:13	1
Pentachlorobenzene	ND		10	0.53	ug/L		09/08/17 07:55	09/15/17 09:13	1
Pentachloronitrobenzene	ND		10	2.5	ug/L		09/08/17 07:55	09/15/17 09:13	1
Pentachlorophenol	ND		10	2.2	ug/L		09/08/17 07:55	09/15/17 09:13	1
Phenacetin	ND		10	0.61	ug/L		09/08/17 07:55	09/15/17 09:13	1
Phenanthrene	ND		5.0	0.44	ug/L		09/08/17 07:55	09/15/17 09:13	1
Phenol	ND		5.0	0.39	ug/L		09/08/17 07:55	09/15/17 09:13	1
Phorate	ND		10	0.50	ug/L		09/08/17 07:55	09/15/17 09:13	1
p-Phenylene diamine	ND		800	200	ug/L		09/08/17 07:55	09/15/17 09:13	1
Pronamide	ND		10	2.5	ug/L		09/08/17 07:55	09/15/17 09:13	1
Pyrene	ND		5.0	0.34	ug/L		09/08/17 07:55	09/15/17 09:13	1
					-				

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	97		46 - 120	09/08/17 07:55	09/15/17 09:13	1
2-Fluorobiphenyl	93		48 - 120	09/08/17 07:55	09/15/17 09:13	1
p-Terphenyl-d14	105		59 - 136	09/08/17 07:55	09/15/17 09:13	1
Phenol-d5	59		22 - 120	09/08/17 07:55	09/15/17 09:13	1
2-Fluorophenol	76		35 - 120	09/08/17 07:55	09/15/17 09:13	1
2,4,6-Tribromophenol	73		41 - 120	09/08/17 07:55	09/15/17 09:13	1

Lab Sample ID: LCS 480-375804/2-A

Matrix: Water

Analysis Batch: 376854

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 375804

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,4,5-Tetrachlorobenzene	32.0	24.4		ug/L		76	53 - 120	
1,2,4-Trichlorobenzene	32.0	24.7		ug/L		77	40 - 120	
1,2-Dichlorobenzene	32.0	24.1		ug/L		75	49 - 120	
1,3-Dichlorobenzene	32.0	23.7		ug/L		74	50 - 120	
1,3-Dinitrobenzene	32.0	31.2		ug/L		97	68 - 131	
1,4-Dichlorobenzene	32.0	24.2		ug/L		75	51 - 120	
2,3,4,6-Tetrachlorophenol	32.0	28.0		ug/L		88	63 - 120	
2,4,5-Trichlorophenol	32.0	31.3		ug/L		98	65 - 126	
2,4,6-Trichlorophenol	32.0	29.1		ug/L		91	64 - 120	

TestAmerica Buffalo

Page 29 of 58

2

3

-

7

9

10

12

14

15

16

Client: CHA Inc Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-375804/2-A

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 375804

Analysis Batch: 376854	Spike	LCS	LCS				Prep Batch: 37580 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4-Dichlorophenol	32.0	28.9		ug/L		90	63 - 120
2,4-Dimethylphenol	32.0	28.4		ug/L		89	47 - 120
2,4-Dinitrophenol	64.0	54.7		ug/L		86	31 - 137
2,4-Dinitrotoluene	32.0	30.4		ug/L		95	69 - 120
2,6-Dichlorophenol	32.0	28.5		ug/L		89	62 - 120
2,6-Dinitrotoluene	32.0	31.0		ug/L		97	68 - 120
2-Chloronaphthalene	32.0	26.2		ug/L		82	58 - 120
2-Chlorophenol	32.0	26.8		ug/L		84	48 - 120
2-Methylnaphthalene	32.0	26.2		ug/L		82	59 - 120
2-Methylphenol	32.0	26.9		ug/L		84	39 - 120
2-Nitroaniline	32.0	28.9		ug/L		90	54 - 127
2-Nitrophenol	32.0	28.0		ug/L		87	52 - 125
3,3'-Dichlorobenzidine	64.0	73.7	E	ug/L		115	49 - 135
3-Nitroaniline	32.0	35.5		ug/L		111	51 ₋ 120
4,6-Dinitro-2-methylphenol	64.0	58.9		ug/L		92	46 - 136
4-Bromophenyl phenyl ether	32.0	28.5		ug/L		89	65 - 120
4-Chloro-3-methylphenol	32.0	30.0		ug/L		94	61 - 123
4-Chloroaniline	32.0	21.4		ug/L		67	30 - 120
4-Chlorophenyl phenyl ether	32.0	27.4		ug/L		86	62 - 120
4-Nitroaniline	32.0	36.0		ug/L		112	65 - 120
4-Nitrophenol	64.0	49.8		ug/L		78	45 - 120
Acenaphthene	32.0	26.9		ug/L		84	60 - 120
Acenaphthylene	32.0	27.3		ug/L		85	63 - 120
Acetophenone	32.0	27.9		ug/L ug/L		87	45 - 120
Anthracene	32.0	29.2		ug/L		91	67 - 120
Benzo(a)anthracene	32.0	30.3		ug/L ug/L		95	70 - 121
Benzo(a)pyrene	32.0	30.5		ug/L ug/L		95 95	60 - 123
Benzo(b)fluoranthene	32.0	31.1		ug/L		97	66 - 126
• •	32.0	31.0				97	66 ₋ 150
Benzo(g,h,i)perylene	32.0	29.4		ug/L		92	65 ₋ 124
Benzo(k)fluoranthene				ug/L			
Benzyl alcohol	32.0	27.8		ug/L		87 97	41 - 126
Bis(2-chloroethoxy)methane	32.0	27.8		ug/L		87	50 ₋ 128
Bis(2-chloroethyl)ether	32.0	26.6		ug/L		83	44 - 120
4-Methylphenol	32.0	26.3		ug/L		82	29 - 131
bis (2-chloroisopropyl) ether	32.0	26.1		ug/L		81	21 - 136
Bis(2-ethylhexyl) phthalate	32.0	29.4		ug/L		92	63 - 139
Butyl benzyl phthalate	32.0	29.8		ug/L		93	70 - 129
Chrysene	32.0	29.3		ug/L		92	69 - 120
Dibenz(a,h)anthracene	32.0	31.0		ug/L		97	65 ₋ 135
Dibenzofuran	32.0	27.2		ug/L		85	66 - 120
Diethyl phthalate	32.0	30.3		ug/L		95	59 - 127
Dimethyl phthalate	32.0	32.1		ug/L		100	68 - 120
Di-n-butyl phthalate	32.0	30.5		ug/L		95	69 - 131
Di-n-octyl phthalate	32.0	29.4		ug/L		92	63 - 140
Diphenylamine	27.4	25.4		ug/L		93	61 - 120
Fluoranthene	32.0	30.2		ug/L		94	69 - 126
Fluorene	32.0	27.9		ug/L		87	66 - 120
Hexachlorobenzene	32.0	28.0		ug/L		87	61 - 120

TestAmerica Buffalo

Page 30 of 58

Client: CHA Inc Project/Site: Albany Interim Landfill - Expanded TestAmerica Job ID: 480-123779-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-375804/2-A

Matrix: Water

Analysis Batch: 376854

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 375804

Analysis Baton: 070004	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Hexachlorobutadiene	32.0	22.0		ug/L		69	35 - 120
Hexachlorocyclopentadiene	32.0	13.9		ug/L		44	31 - 120
Hexachloroethane	32.0	22.3		ug/L		70	43 - 120
Indeno(1,2,3-cd)pyrene	32.0	30.8		ug/L		96	69 - 146
Isophorone	32.0	29.0		ug/L		91	55 - 120
Naphthalene	32.0	26.0		ug/L		81	57 - 120
Nitrobenzene	32.0	27.7		ug/L		87	53 - 123
N-Nitrosodimethylamine	32.0	21.1		ug/L		66	10 - 120
N-Nitrosodi-n-propylamine	32.0	28.2		ug/L		88	32 - 140
N-Nitrosodiphenylamine	32.0	29.7		ug/L		93	61 - 120
Pentachlorophenol	64.0	53.8		ug/L		84	29 - 136
Phenanthrene	32.0	28.5		ug/L		89	68 - 120
Phenol	32.0	19.1		ug/L		60	17 - 120
Pyrene	32.0	30.1		ug/L		94	70 - 125

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	88		46 - 120
2-Fluorobiphenyl	85		48 - 120
p-Terphenyl-d14	95		59 - 136
Phenol-d5	59		22 - 120
2-Fluorophenol	71		35 - 120
2,4,6-Tribromophenol	93		41 - 120

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 480-376392/1-A

Matrix: Water

Analysis Batch: 376487

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 376392

Allalysis Batch. 370407	МВ	МВ						riep batcii.	370332
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.050	0.0092	ug/L		09/12/17 14:30	09/13/17 11:41	1
4,4'-DDE	ND		0.050	0.012	ug/L		09/12/17 14:30	09/13/17 11:41	1
4,4'-DDT	ND		0.050	0.011	ug/L		09/12/17 14:30	09/13/17 11:41	1
Aldrin	ND		0.050	0.0081	ug/L		09/12/17 14:30	09/13/17 11:41	1
alpha-BHC	ND		0.050	0.0077	ug/L		09/12/17 14:30	09/13/17 11:41	1
beta-BHC	ND		0.050	0.025	ug/L		09/12/17 14:30	09/13/17 11:41	1
Chlordane (technical)	ND		0.50	0.29	ug/L		09/12/17 14:30	09/13/17 11:41	1
delta-BHC	ND		0.050	0.010	ug/L		09/12/17 14:30	09/13/17 11:41	1
alpha-Chlordane	ND		0.050	0.015	ug/L		09/12/17 14:30	09/13/17 11:41	1
Dieldrin	ND		0.050	0.0098	ug/L		09/12/17 14:30	09/13/17 11:41	1
Endosulfan I	ND		0.050	0.011	ug/L		09/12/17 14:30	09/13/17 11:41	1
Endosulfan II	ND		0.050	0.012	ug/L		09/12/17 14:30	09/13/17 11:41	1
Endosulfan sulfate	ND		0.050	0.016	ug/L		09/12/17 14:30	09/13/17 11:41	1
Endrin	ND		0.050	0.014	ug/L		09/12/17 14:30	09/13/17 11:41	1
Endrin aldehyde	ND		0.050	0.016	ug/L		09/12/17 14:30	09/13/17 11:41	1
gamma-BHC (Lindane)	ND		0.050	0.0080	ug/L		09/12/17 14:30	09/13/17 11:41	1
Heptachlor	ND		0.050	0.0085	ug/L		09/12/17 14:30	09/13/17 11:41	1
Heptachlor epoxide	ND		0.050	0.0074	ug/L		09/12/17 14:30	09/13/17 11:41	1

TestAmerica Buffalo

Page 31 of 58

9

3

0

9

11

13

15

16

9/20/2017

Client: CHA Inc Project/Site: Albany Interim Landfill - Expanded TestAmerica Job ID: 480-123779-1

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 480-376392/1-A

Matrix: Water

Analysis Batch: 376487

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 376392

,	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methoxychlor	ND		0.050	0.014	ug/L		09/12/17 14:30	09/13/17 11:41	1
Toxaphene	ND		0.50	0.12	ug/L		09/12/17 14:30	09/13/17 11:41	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	77		44 - 120	09/12/17 14:30	09/13/17 11:41	1
DCB Decachlorobiphenyl	62		20 - 120	09/12/17 14:30	09/13/17 11:41	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Lab Sample ID: LCS 480-376392/2-A **Matrix: Water**

Analysis Batch: 376487	Spike	LCS	LCS				Prep Batch: 37639 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	0.400	0.383		ug/L		96	64 - 129
4,4'-DDE	0.400	0.345		ug/L		86	50 - 120
4,4'-DDT	0.400	0.415		ug/L		104	59 - 120
Aldrin	0.400	0.239		ug/L		60	40 - 125
alpha-BHC	0.400	0.300		ug/L		75	52 - 125
beta-BHC	0.400	0.367		ug/L		92	51 - 120
delta-BHC	0.400	0.339		ug/L		85	51 - 120
alpha-Chlordane	0.400	0.335		ug/L		84	52 - 120
Dieldrin	0.400	0.355		ug/L		89	66 - 128

0.350 ug/L 0.400 0.464 ug/L 116 66 - 136 0.400 0.396 ug/L 99 65 - 135 0.400 75 0.299 ug/L 61 - 1340.400 0.345 ug/L 86 56 - 120

0.351

0.329

ug/L

ug/L

Heptachlor epoxide 0.400 0.375 94 65 - 125 ug/L Methoxychlor 0.400 0.404 ug/L 101 50 - 150 LCS LCS

0.400

0.400

0.400

Limits Surrogate %Recovery Qualifier 44 - 120 Tetrachloro-m-xylene 76 DCB Decachlorobiphenyl 20 - 120 60

Lab Sample ID: LCSD 480-376392/3-A

Matrix: Water

Endosulfan I

Endosulfan II

Endrin

Endosulfan sulfate

Endrin aldehyde

Heptachlor

gamma-BHC (Lindane)

Analysis Batch: 376487

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

82

87

88

57 - 120

66 - 131

58 - 120

Prep Batch: 376392

Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.400	0.381		ug/L		95	64 - 129	0	23
0.400	0.341		ug/L		85	50 - 120	1	22
0.400	0.409		ug/L		102	59 - 120	1	24
0.400	0.236		ug/L		59	40 - 125	1	25
0.400	0.296		ug/L		74	52 - 125	1	24
0.400	0.358		ug/L		89	51 - 120	3	24
0.400	0.344		ug/L		86	51 - 120	2	24
0.400	0.330		ug/L		83	52 - 120	1	23
	Added 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400	Added Result 0.400 0.381 0.400 0.341 0.400 0.409 0.400 0.236 0.400 0.296 0.400 0.358 0.400 0.344	Added Result Qualifier 0.400 0.381 0.400 0.341 0.400 0.409 0.400 0.236 0.400 0.296 0.400 0.358 0.400 0.344	Added Result Qualifier Unit 0.400 0.381 ug/L 0.400 0.341 ug/L 0.400 0.409 ug/L 0.400 0.236 ug/L 0.400 0.296 ug/L 0.400 0.358 ug/L 0.400 0.344 ug/L	Added Result Qualifier Unit D 0.400 0.381 ug/L 0.400 0.341 ug/L 0.400 0.409 ug/L 0.400 0.236 ug/L 0.400 0.296 ug/L 0.400 0.358 ug/L 0.400 0.344 ug/L	Added Result Qualifier Unit D %Rec 0.400 0.381 ug/L 95 0.400 0.341 ug/L 85 0.400 0.409 ug/L 102 0.400 0.236 ug/L 59 0.400 0.296 ug/L 74 0.400 0.358 ug/L 89 0.400 0.344 ug/L 86	Added Result Qualifier Unit D %Rec Limits 0.400 0.381 ug/L 95 64 - 129 0.400 0.341 ug/L 85 50 - 120 0.400 0.409 ug/L 102 59 - 120 0.400 0.236 ug/L 59 40 - 125 0.400 0.296 ug/L 74 52 - 125 0.400 0.358 ug/L 89 51 - 120 0.400 0.344 ug/L 86 51 - 120	Added Result Qualifier Unit D %Rec Limits RPD 0.400 0.381 ug/L 95 64 - 129 0 0.400 0.341 ug/L 85 50 - 120 1 0.400 0.409 ug/L 102 59 - 120 1 0.400 0.236 ug/L 59 40 - 125 1 0.400 0.296 ug/L 74 52 - 125 1 0.400 0.358 ug/L 89 51 - 120 3 0.400 0.344 ug/L 86 51 - 120 2

TestAmerica Buffalo

Page 32 of 58

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 480-376392/3-A

Matrix: Water

Analysis Batch: 376487

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Prep Batch: 376392

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dieldrin	0.400	0.353		ug/L		88	66 - 128	1	24
Endosulfan I	0.400	0.330		ug/L		82	57 - 120	0	30
Endosulfan II	0.400	0.350		ug/L		87	66 - 131	0	40
Endosulfan sulfate	0.400	0.463		ug/L		116	66 - 136	0	24
Endrin	0.400	0.394		ug/L		99	65 - 135	0	24
Endrin aldehyde	0.400	0.315		ug/L		79	61 - 134	5	28
gamma-BHC (Lindane)	0.400	0.338		ug/L		85	56 - 120	2	24
Heptachlor	0.400	0.340		ug/L		85	58 - 120	3	25
Heptachlor epoxide	0.400	0.370		ug/L		92	65 - 125	1	23
Methoxychlor	0.400	0.400		ug/L		100	50 - 150	1	26

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	70		44 - 120
DCB Decachlorobiphenyl	51		20 - 120

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-376481/1-A

Matrix: Water

Analysis Batch: 376649

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 376481

_	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		09/13/17 07:26	09/13/17 18:09	1
PCB-1221	ND		0.50	0.18	ug/L		09/13/17 07:26	09/13/17 18:09	1
PCB-1232	ND		0.50	0.18	ug/L		09/13/17 07:26	09/13/17 18:09	1
PCB-1242	ND		0.50	0.18	ug/L		09/13/17 07:26	09/13/17 18:09	1
PCB-1248	ND		0.50	0.18	ug/L		09/13/17 07:26	09/13/17 18:09	1
PCB-1254	ND		0.50	0.25	ug/L		09/13/17 07:26	09/13/17 18:09	1
PCB-1260	ND		0.50	0.25	ug/L		09/13/17 07:26	09/13/17 18:09	1
PCB-1262	ND		0.50	0.25	ug/L		09/13/17 07:26	09/13/17 18:09	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	60	19 - 120	09/13/17 07:26	09/13/17 18:09	1
Tetrachloro-m-xylene	81	39 - 121	09/13/17 07:26	09/13/17 18:09	1

LCS LCS

Lab Sample ID: LCS 480-376481/2-A

Matrix: Water

Analysis Batch: 376649

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 376481 %Rec.

							,
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	4.00	3.91		ug/L		98	62 - 130
PCB-1260	4.00	3.83		ug/L		96	56 - 123

Spike

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	53		19 - 120
Tetrachloro-m-xylene	75		39 - 121

TestAmerica Job ID: 480-123779-1

Client: CHA Inc Project/Site: Albany Interim Landfill - Expanded

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 480-376060/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 376652	Prep Batch: 376060
MB MB	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND		0.50	0.068	ug/L		09/11/17 08:08	09/13/17 17:39	1
2,4-D	ND		0.50	0.17	ug/L		09/11/17 08:08	09/13/17 17:39	1
Dinoseb	ND		0.50	0.14	ug/L		09/11/17 08:08	09/13/17 17:39	1
Silvex (2,4,5-TP)	ND		0.50	0.050	ug/L		09/11/17 08:08	09/13/17 17:39	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

2,4-Dichlorophenylacetic acid	62	48 - 132	09/11/17 08:08 09/13/17 17:39 1
	0/0 4		

Lab Sample ID: LCS 480-376060/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 376652 Prep Batch: 376060** 109 109 %Rec. Snika

	Spike	LUJ	LUJ				/oixec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4,5-T	2.00	1.43		ug/L		71	41 - 150	
2,4-D	2.00	2.44		ug/L		122	36 - 150	
Dinoseb	2.00	1.06		ug/L		53	21 - 120	
Silvex (2,4,5-TP)	2.00	1.41		ug/L		71	49 - 150	
	100 100							

	LCS				
Surrogate	%Recovery	Qualifier	Limits		
2,4-Dichlorophenylacetic acid	51		48 - 132		

Lab Sample ID: LCSD 480-376060/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Water Prep Type: Total/NA **Analysis Batch: 376652 Prep Batch: 376060**

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4,5-T	2.00	1.47		ug/L		73	41 - 150	3	50
2,4-D	2.00	1.95		ug/L		97	36 - 150	23	50
Dinoseb	2.00	1.16		ug/L		58	21 - 120	9	50
Silvex (2,4,5-TP)	2.00	1.47		ug/L		73	49 - 150	4	50

Dinoseb Silvex (2,4,5-TP)			2.00 2.00	1.16 1.47	ug/L ug/L	58 73	21 ₋ 120 49 ₋ 150	9 4	50 50
Surrogate	LCSD %Recovery	LCSD Qualifier	Limits						

Method: 6010C - Metals (ICP)

2,4-Dichlorophenylacetic acid

Lab Sample ID: MB 480-376039/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 376299 Prep Batch: 376039** MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		09/11/17 09:30	09/11/17 20:16	1
Antimony	ND		0.020	0.0068	mg/L		09/11/17 09:30	09/11/17 20:16	1
Arsenic	ND		0.010	0.0056	mg/L		09/11/17 09:30	09/11/17 20:16	1
Barium	ND		0.0020	0.00070	mg/L		09/11/17 09:30	09/11/17 20:16	1
Beryllium	ND		0.0020	0.00030	mg/L		09/11/17 09:30	09/11/17 20:16	1
Boron	ND		0.020	0.0040	mg/L		09/11/17 09:30	09/11/17 20:16	1

TestAmerica Buffalo

9/20/2017

Page 34 of 58

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-376039/1-A

Matrix: Water

Analysis Batch: 376299

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 376039

	MR	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0010	0.00050	mg/L		09/11/17 09:30	09/11/17 20:16	1
Calcium	ND		0.50	0.10	mg/L		09/11/17 09:30	09/11/17 20:16	1
Cobalt	ND		0.0040	0.00063	mg/L		09/11/17 09:30	09/11/17 20:16	1
Iron	ND		0.050	0.019	mg/L		09/11/17 09:30	09/11/17 20:16	1
Lead	ND		0.0050	0.0030	mg/L		09/11/17 09:30	09/11/17 20:16	1
Magnesium	ND		0.20	0.043	mg/L		09/11/17 09:30	09/11/17 20:16	1
Manganese	ND		0.0030	0.00040	mg/L		09/11/17 09:30	09/11/17 20:16	1
Nickel	ND		0.010	0.0013	mg/L		09/11/17 09:30	09/11/17 20:16	1
Potassium	ND		0.50	0.10	mg/L		09/11/17 09:30	09/11/17 20:16	1
Selenium	ND		0.015	0.0087	mg/L		09/11/17 09:30	09/11/17 20:16	1
Silver	ND		0.0030	0.0017	mg/L		09/11/17 09:30	09/11/17 20:16	1
Sodium	ND		1.0	0.32	mg/L		09/11/17 09:30	09/11/17 20:16	1
Thallium	ND		0.020	0.010	mg/L		09/11/17 09:30	09/11/17 20:16	1
Tin	ND		10.0	0.0051	mg/L		09/11/17 09:30	09/11/17 20:16	1
Vanadium	ND		0.0050	0.0015	mg/L		09/11/17 09:30	09/11/17 20:16	1
Zinc	ND		0.010	0.0015	mg/L		09/11/17 09:30	09/11/17 20:16	1

Lab Sample ID: MB 480-376039/1-A

Matrix: Water

Analysis Batch: 376513

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 376039

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chromium 0.0040 0.0010 mg/L 09/11/17 09:30 09/12/17 09:04 ND Copper ND 0.010 0.0016 mg/L 09/11/17 09:30 09/12/17 09:04 1

MB MB

Lab Sample ID: LCS 480-376039/2-A

Matrix: Water

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 376039

Analysis Batch: 376299	Snika		LCS				Prep Batch: 376039
	Spike				_	0/ 5	%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Aluminum	10.0	9.62		mg/L		96	80 - 120
Antimony	0.200	0.197		mg/L		98	80 - 120
Arsenic	0.200	0.195		mg/L		98	80 - 120
Barium	0.200	0.214		mg/L		107	80 - 120
Beryllium	0.200	0.201		mg/L		101	80 - 120
Boron	0.200	0.204		mg/L		102	80 - 120
Cadmium	0.200	0.203		mg/L		101	80 - 120
Calcium	10.0	9.54		mg/L		95	80 - 120
Cobalt	0.200	0.188		mg/L		94	80 - 120
Iron	10.0	9.87		mg/L		99	80 - 120
Lead	0.200	0.197		mg/L		99	80 - 120
Magnesium	10.0	10.33		mg/L		103	80 - 120
Manganese	0.200	0.212		mg/L		106	80 - 120
Nickel	0.200	0.194		mg/L		97	80 - 120
Potassium	10.0	10.20		mg/L		102	80 - 120
Selenium	0.200	0.192		mg/L		96	80 - 120
Silver	0.0500	0.0476		mg/L		95	80 - 120
Sodium	10.0	9.88		mg/L		99	80 - 120
Thallium	0.200	0.192		mg/L		96	80 - 120

Client: CHA Inc TestAmerica Job ID: 480-123779-1

Project/Site: Albany Interim Landfill - Expanded

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-376039/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Prep Batch: 376039 Analysis Batch: 376299** LCS LCS Spike %Rec.

Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	
Tin	0.200	0.194 J	mg/L		97	80 - 120	
Vanadium	0.200	0.193	mg/L		96	80 - 120	
Zinc	0.200	0.194	mg/L		97	80 - 120	

Lab Sample ID: LCS 480-376039/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 376513 Prep Batch: 376039

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium	0.200	0.198		mg/L		99	80 - 120	
Copper	0.200	0.192		mg/L		96	80 - 120	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-375862/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 375939

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed 09/08/17 11:20 09/08/17 14:24 Mercury ND 0.00020 0.00012 mg/L

Lab Sample ID: LCS 480-375862/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 375939

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 0.00667 Mercury 0.00625 mg/L 94 80 - 120

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-376541/4 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 376541

	IVIB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20	0.073	mg/L			09/13/17 13:19	1
Chloride	ND		0.50	0.28	mg/L			09/13/17 13:19	1
Sulfate	ND		2.0	0.35	mg/L			09/13/17 13:19	1

Lab Sample ID: LCS 480-376541/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 376541

LCS LCS Spike %Rec. Analyte Result Qualifier Limits Added Unit D %Rec Bromide 5.00 4.80 mg/L 96 90 - 110 Chloride 50.0 50.78 90 - 110 mg/L 102 Sulfate 50.0 50.56 mg/L 101 90 - 110

TestAmerica Buffalo

9/20/2017

Page 36 of 58

Prep Type: Total/NA

Prep Batch: 375862

Prep Batch: 375862

TestAmerica Job ID: 480-123779-1

Project/Site: Albany Interim Landfill - Expanded

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 480-376943/4	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 376943	

	MB	MR							
Δ	nalyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C	hloride ND		0.50	0.28	mg/L	_		09/14/17 19:47	1
S	ulfate ND		2.0	0.35	mg/L			09/14/17 19:47	1

Lab Sample ID: LCS 480-376943/3 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 376943

Client: CHA Inc

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	50.21		mg/L		100	90 - 110	
Sulfate	50.0	47.00		mg/L		94	90 - 110	

Method: 310.2 - Alkalinity

Lab Sample ID: MB 480-375973/131	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Detaly 275072	

Analysis Batch: 375973

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	4.77	J	10.0	4.0	mg/L			09/08/17 17:45	1

Lab Sample ID: MB 480-375973/142 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 375973

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	6.23	J	10.0	4.0	mg/L			09/08/17 17:48	1

Lab Sample ID: MB 480-375973/79 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 375973

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	5.96	J	10.0	4.0	mg/L			09/08/17 16:56	1

Lab Sample ID: LCS 480-375973/132 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 375973

	Spike	LCS I	LCS			%Rec.	
Analyte	Added	Result (Qualifier Unit	D	%Rec	Limits	
Alkalinity, Total	50.0	51.39	mg/L		103	90 - 110	

Lab Sample ID: LCS 480-375973/143 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 375973

7 maryolo Batom or coro	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity, Total	50.0	52.75		mg/L		105	90 - 110	

TestAmerica Buffalo

9/20/2017

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Method: 310.2 - Alkalinity (Continued)

Lab Sample ID: LCS 480-375973/80 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 375973

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 50.0 Alkalinity, Total 53.76 mg/L 108 90 - 110

Method: 350.1 - Nitrogen, Ammonia

Client Sample ID: Method Blank Lab Sample ID: MB 480-375911/51 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 375911

MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Ammonia as N ND 0.020 0.0090 mg/L 09/08/17 12:38

Lab Sample ID: MB 480-375911/75 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 375911

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.020 09/08/17 12:59 Ammonia as N ND 0.0090 mg/L

Lab Sample ID: MB 480-375911/99 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 375911

MB MB Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared Ammonia as N ND 0.020 0.0090 mg/L 09/08/17 13:20

Lab Sample ID: LCS 480-375911/100 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 375911

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Analyte 1.00 1.00 100 90 - 110 Ammonia as N mg/L

Lab Sample ID: LCS 480-375911/52 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 375911

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit D %Rec Limits Ammonia as N 1.00 1.01 mg/L 101 90 - 110

Lab Sample ID: LCS 480-375911/76 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 375911

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Ammonia as N 1.00 0.975 mg/L 98 90 - 110

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 376223

Prep Type: Total/NA

Prep Batch: 376223

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: MB 480-376223/1-A

Matrix: Water

Analysis Batch: 376377

MB MB

Result Qualifier RL MDL Unit D Analyzed Dil Fac Analyte Prepared 0.20 09/11/17 18:10 09/12/17 08:53 Total Kjeldahl Nitrogen ND 0.15 mg/L

Lab Sample ID: LCS 480-376223/2-A

Matrix: Water

Total Kjeldahl Nitrogen

Analyte

Analysis Batch: 376377

Spike Added

2.50

LCS LCS

2.54

Result Qualifier

Unit mg/L D %Rec 90 - 110

102

Client Sample ID: Lab Control Sample

%Rec.

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Limits

Method: 410.4 - COD

Lab Sample ID: MB 480-376235/27

Matrix: Water

Analysis Batch: 376235

MB MB

Analyte

Chemical Oxygen Demand ND

Result Qualifier

RL 10.0

MDL Unit 5.0 mg/L Prepared

Analyzed 09/11/17 20:09

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

Lab Sample ID: MB 480-376235/3

Matrix: Water

Analysis Batch: 376235

MB MB

Analyte

Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed Chemical Oxygen Demand ND 10.0 5.0 mg/L 09/11/17 20:09

Lab Sample ID: LCS 480-376235/28

Matrix: Water

Analysis Batch: 376235

Analyte

Chemical Oxygen Demand

Spike Added 25.0

LCS LCS Result Qualifier 23.43

Unit mg/L

D

%Rec 94 90 - 110

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

%Rec. Limits

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: LCS 480-376235/4

Matrix: Water

Analyte

Analyte

Analysis Batch: 376235

Chemical Oxygen Demand

Spike Added 25.0

LCS LCS Result Qualifier 23.43

Unit mg/L

%Rec D 94 %Rec. Limits

90 - 110

Client Sample ID: Method Blank

Method: 420.1 - Phenolics, Total Recoverable

Lab Sample ID: MB 480-376229/1-A

Matrix: Water

Analysis Batch: 376237

Phenolics, Total Recoverable

MB MB

ND

Result Qualifier

RL 0.010

MDL Unit 0.0050 mg/L D **Prepared** **Prep Batch: 376229** Analyzed

Dil Fac 09/11/17 19:45 09/12/17 01:10

TestAmerica Buffalo

Prep Type: Total/NA

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Method: 420.1 - Phenolics, Total Recoverable (Continued)

Lab Sample ID: LCS 480-376229/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 376237 **Prep Batch: 376229** Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Phenolics, Total Recoverable 0.100 0.0986 99 90 - 110 mg/L

Method: 7196A - Chromium, Hexavalent

Client Sample ID: Method Blank Lab Sample ID: MB 480-375783/3 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 375783

MB MB

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Cr (VI) ND 0.010 0.0050 mg/L 09/08/17 06:02

Lab Sample ID: LCS 480-375783/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 375783

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Cr (VI) 0.0500 0.0463 mg/L 93 85 - 115

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-376442/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 376590 Prep Batch: 376442**

MB MB

RL **MDL** Unit Analyte Result Qualifier Prepared Analyzed Dil Fac 0.010 09/12/17 18:23 09/13/17 11:13 Cyanide, Total 0.0391 0.0050 mg/L

Lab Sample ID: LCS 480-376442/2-A

Matrix: Water

Analysis Batch: 376590 **Prep Batch: 376442** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Cyanide, Total 0.250 0.263 90 - 110 mg/L 105

Method: 9060A - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-376250/4 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 376250

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac **Total Organic Carbon** ND 1.0 0.43 mg/L 09/10/17 13:52

TestAmerica Buffalo

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Method: 9060A - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: LCS 480-376250/5

Matrix: Water

Analysis Batch: 376250

Analyte **Total Organic Carbon**

60.0

Spike LCS LCS Added

Result Qualifier 60.87

Unit mg/L D %Rec

Limits 101

Client Sample ID: Lab Control Sample

90 - 110

Client Sample ID: Method Blank

%Rec.

Lab Sample ID: MB 480-376727/4

Matrix: Water

Analysis Batch: 376727

MB MB

Analyte Result Qualifier **Total Organic Carbon**

0.647 J

RL 1.0

MDL Unit 0.43 mg/L Prepared

09/12/17 23:48

Dil Fac

Analyzed

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Lab Sample ID: LCS 480-376727/5

Matrix: Water

Analysis Batch: 376727

Analyte Total Organic Carbon

Spike Added 60.0

LCS LCS Result Qualifier 57.98

Unit mg/L D %Rec 97

%Rec. Limits

Client Sample ID: Method Blank

Method: SM 2120B - Color, Colorimetric

Lab Sample ID: MB 480-375957/3

Matrix: Water

Analysis Batch: 375957

MB MB

Analyte

Result Qualifier

ND

RL 5.00

RL Unit 5.00 Color Units

Prepared

Dil Fac Analyzed

Prep Type: Total/NA

Prep Type: Total/NA

09/08/17 15:06

Lab Sample ID: LCS 480-375957/4

Matrix: Water

Color

Color

Color

Analysis Batch: 375957

Analyte

Spike Added 30.0

LCS LCS Result Qualifier 30.00

Unit Color Units

%Rec 100

D

Client Sample ID: Secondary Leachate (Cell #1)

%Rec. Limits 90 - 110

Client Sample ID: Lab Control Sample

Lab Sample ID: 480-123779-2 DU

Matrix: Water

Analysis Batch: 375957

Analyte

Result Qualifier 5.00

Sample Sample

DU DU Result Qualifier 5.000

Unit Color Units Prep Type: Total/NA

RPD RPD Limit 20

Method: SM 2340C - Hardness, Total (mg/l as CaC03)

Lab Sample ID: MB 480-376405/3

Matrix: Water

Analysis Batch: 376405

Analyte

Result Qualifier **Total Hardness** ND

MB MB

RL 2.0 MDL Unit 0.53 mg/L D

Prepared

Analyzed 09/12/17 10:11

Client Sample ID: Method Blank

Prep Type: Total/NA

TestAmerica Buffalo

Dil Fac

TestAmerica Job ID: 480-123779-1 Project/Site: Albany Interim Landfill - Expanded

Method: SM 2340C - Hardness, Total (mg/l as CaC03) (Continued)

Lab Sample ID: LCS 480-376405/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 376405

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits **Total Hardness** 213 204.0 96 90 - 110 mg/L

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-376061/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 376061

MB MB Result Qualifier RL **MDL** Unit Analyte D Prepared Analyzed Dil Fac **Total Dissolved Solids** 10.0 4.0 mg/L 09/11/17 08:10 ND

Lab Sample ID: LCS 480-376061/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 376061

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits **Total Dissolved Solids** 513 528.0 mg/L 103 85 - 115

MR MR

Method: SM 4500 S2 F - Sulfide, Total

Lab Sample ID: MB 480-376858/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 376858

RL **MDL** Unit Analyte Result Qualifier Prepared Analyzed Dil Fac Sulfide 1.0 0.67 mg/L 09/13/17 15:30 ND

Lab Sample ID: LCS 480-376858/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 376858

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 8.20 8.40 90 - 110 Sulfide mg/L 102

Lab Sample ID: MB 480-376939/3 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 376939

MB MB RL Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac Sulfide ND 1.0 0.67 mg/L 09/14/17 14:30

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-376939/4 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 376939

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Sulfide 8.20 8.40 mg/L 102 90 - 110

TestAmerica Buffalo

9/20/2017

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Method: SM 4500 S2 F - Sulfide, Total (Continued)

Lab Sample ID: 480-123779-1 MS

Matrix: Water

Analysis Batch: 376939

Client Sample ID: Primary Leachate (Pump Station #2)

Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Sulfide 26.0 20.0 36.00 mg/L 50 40 - 150

Lab Sample ID: 480-123779-1 DU

Matrix: Water

Analyte

Sulfide

Analysis Batch: 376939

Client Sample ID: Primary Leachate (Pump Station #2) Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier D **RPD** Limit Unit 28.0 28.00 mg/L

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-375963/1

Matrix: Water

Analysis Batch: 375963

Client Sample ID: Method Blank Prep Type: Total/NA

USB USB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac ND 2.0 2.0 09/08/17 14:36 **Biochemical Oxygen Demand** mg/L

Lab Sample ID: LCS 480-375963/2

Matrix: Water

Analysis Batch: 375963

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Analyte Biochemical Oxygen Demand 198 194.9 98 85 - 115 mg/L

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

GC/MS VOA

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	8260C	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	8260C	
480-123779-3	Trip Blank	Total/NA	Water	8260C	
MB 480-376058/6	Method Blank	Total/NA	Water	8260C	
LCS 480-376058/4	Lab Control Sample	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 375804

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	3510C	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	3510C	
MB 480-375804/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-375804/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 376854

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-375804/1-A	Method Blank	Total/NA	Water	8270D	375804
LCS 480-375804/2-A	Lab Control Sample	Total/NA	Water	8270D	375804

Analysis Batch: 377406

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	8270D	375804
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	8270D	375804

GC Semi VOA

Prep Batch: 376060

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	8151A	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	8151A	
MB 480-376060/1-A	Method Blank	Total/NA	Water	8151A	
LCS 480-376060/2-A	Lab Control Sample	Total/NA	Water	8151A	
LCSD 480-376060/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	

Prep Batch: 376392

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	3510C	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	3510C	
MB 480-376392/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-376392/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-376392/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Prep Batch: 376481

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	3510C	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	3510C	
MB 480-376481/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-376481/2-A	Lab Control Sample	Total/NA	Water	3510C	

TestAmerica Buffalo

9/20/2017

Page 44 of 58

2

А

5

6

8

10

12

14

15

16

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

GC Semi VOA (Continued)

Analysis Batch: 376487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	8081B	376392
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	8081B	376392
MB 480-376392/1-A	Method Blank	Total/NA	Water	8081B	376392
LCS 480-376392/2-A	Lab Control Sample	Total/NA	Water	8081B	376392
LCSD 480-376392/3-A	Lab Control Sample Dup	Total/NA	Water	8081B	376392

Analysis Batch: 376649

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	8082A	376481
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	8082A	376481
MB 480-376481/1-A	Method Blank	Total/NA	Water	8082A	376481
LCS 480-376481/2-A	Lab Control Sample	Total/NA	Water	8082A	376481

Analysis Batch: 376652

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	8151A	376060
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	8151A	376060
MB 480-376060/1-A	Method Blank	Total/NA	Water	8151A	376060
LCS 480-376060/2-A	Lab Control Sample	Total/NA	Water	8151A	376060
LCSD 480-376060/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	376060

Metals

Prep Batch: 375862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	7470A	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	7470A	
MB 480-375862/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-375862/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 375939

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	7470A	375862
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	7470A	375862
MB 480-375862/1-A	Method Blank	Total/NA	Water	7470A	375862
LCS 480-375862/2-A	Lab Control Sample	Total/NA	Water	7470A	375862

Prep Batch: 376039

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	3005A	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	3005A	
MB 480-376039/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-376039/2-A	Lab Control Sample	Total/NA	Water	3005A	

Analysis Batch: 376299

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	6010C	376039
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	6010C	376039
MB 480-376039/1-A	Method Blank	Total/NA	Water	6010C	376039
LCS 480-376039/2-A	Lab Control Sample	Total/NA	Water	6010C	376039

TestAmerica Buffalo

Page 45 of 58 9/20/2017

5

6

9

10

12

14

15

16

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Metals (Continued)

Analysis Batch: 376513

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	6010C	376039
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	6010C	376039
MB 480-376039/1-A	Method Blank	Total/NA	Water	6010C	376039
LCS 480-376039/2-A	Lab Control Sample	Total/NA	Water	6010C	376039

General Chemistry

Analysis Batch: 375783

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	7196A	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	7196A	
MB 480-375783/3	Method Blank	Total/NA	Water	7196A	
LCS 480-375783/4	Lab Control Sample	Total/NA	Water	7196A	

Analysis Batch: 375911

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	350.1	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	350.1	
MB 480-375911/51	Method Blank	Total/NA	Water	350.1	
MB 480-375911/75	Method Blank	Total/NA	Water	350.1	
MB 480-375911/99	Method Blank	Total/NA	Water	350.1	
LCS 480-375911/100	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-375911/52	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-375911/76	Lab Control Sample	Total/NA	Water	350.1	

Analysis Batch: 375937

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	353.2	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	353.2	

Analysis Batch: 375957

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	SM 2120B	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	SM 2120B	
MB 480-375957/3	Method Blank	Total/NA	Water	SM 2120B	
LCS 480-375957/4	Lab Control Sample	Total/NA	Water	SM 2120B	
480-123779-2 DU	Secondary Leachate (Cell #1)	Total/NA	Water	SM 2120B	

Analysis Batch: 375963

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	SM 5210B	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	SM 5210B	
USB 480-375963/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-375963/2	Lab Control Sample	Total/NA	Water	SM 5210B	

Analysis Batch: 375973

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	310.2	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	310.2	
MB 480-375973/131	Method Blank	Total/NA	Water	310.2	

TestAmerica Buffalo

Page 46 of 58

2

3

4

6

7

9

11

13

14

15

-

nenea Danaio

9/20/2017

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

General Chemistry (Continued)

Analysi	Batch: 375973	(Continued)	
----------------	---------------	-------------	--

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-375973/142	Method Blank	Total/NA	Water	310.2	
MB 480-375973/79	Method Blank	Total/NA	Water	310.2	
LCS 480-375973/132	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-375973/143	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-375973/80	Lab Control Sample	Total/NA	Water	310.2	

Analysis Batch: 376061

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	SM 2540C	-
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	SM 2540C	
MB 480-376061/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-376061/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Prep Batch: 376223

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	351.2	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	351.2	
MB 480-376223/1-A	Method Blank	Total/NA	Water	351.2	
LCS 480-376223/2-A	Lab Control Sample	Total/NA	Water	351.2	

Prep Batch: 376229

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	Distill/Phenol	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	Distill/Phenol	
MB 480-376229/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
LCS 480-376229/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	

Analysis Batch: 376235

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	410.4	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	410.4	
MB 480-376235/27	Method Blank	Total/NA	Water	410.4	
MB 480-376235/3	Method Blank	Total/NA	Water	410.4	
LCS 480-376235/28	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-376235/4	Lab Control Sample	Total/NA	Water	410.4	

Analysis Batch: 376237

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	420.1	376229
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	420.1	376229
MB 480-376229/1-A	Method Blank	Total/NA	Water	420.1	376229
LCS 480-376229/2-A	Lab Control Sample	Total/NA	Water	420.1	376229

Analysis Batch: 376250

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	9060A	
MB 480-376250/4	Method Blank	Total/NA	Water	9060A	
LCS 480-376250/5	Lab Control Sample	Total/NA	Water	9060A	

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

General Chemistry (Continued)

Analysis Batch: 376377

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	351.2	376223
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	351.2	376223
MB 480-376223/1-A	Method Blank	Total/NA	Water	351.2	376223
LCS 480-376223/2-A	Lab Control Sample	Total/NA	Water	351.2	376223

Analysis Batch: 376405

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	SM 2340C	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	SM 2340C	
MB 480-376405/3	Method Blank	Total/NA	Water	SM 2340C	
LCS 480-376405/4	Lab Control Sample	Total/NA	Water	SM 2340C	

Prep Batch: 376442

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	9012B	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	9012B	
MB 480-376442/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-376442/2-A	Lab Control Sample	Total/NA	Water	9012B	

Analysis Batch: 376541

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	300.0	
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	300.0	
MB 480-376541/4	Method Blank	Total/NA	Water	300.0	
LCS 480-376541/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 376590

Lab Sample ID 480-123779-1	Client Sample ID Primary Leachate (Pump Station #2)	Prep Type Total/NA	Matrix Water	Method 9012B	Prep Batch 376442
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	9012B	376442
MB 480-376442/1-A	Method Blank	Total/NA	Water	9012B	376442
LCS 480-376442/2-A	Lab Control Sample	Total/NA	Water	9012B	376442

Analysis Batch: 376727

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	9060A	
MB 480-376727/4	Method Blank	Total/NA	Water	9060A	
LCS 480-376727/5	Lah Control Sample	Total/NA	Water	90604	

Analysis Batch: 376858

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	SM 4500 S2 F	
MB 480-376858/3	Method Blank	Total/NA	Water	SM 4500 S2 F	
LCS 480-376858/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 F	

Analysis Batch: 376939

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1	Primary Leachate (Pump Station #2)	Total/NA	Water	SM 4500 S2 F	
MB 480-376939/3	Method Blank	Total/NA	Water	SM 4500 S2 F	
LCS 480-376939/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 F	
480-123779-1 MS	Primary Leachate (Pump Station #2)	Total/NA	Water	SM 4500 S2 F	

TestAmerica Buffalo

TestAmerica Job ID: 480-123779-1

Page 48 of 58 9/20/2017

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

General Chemistry (Continued)

Analysis Batch: 376939 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-1 DU	Primary Leachate (Pump Station #2)	Total/NA	Water	SM 4500 S2 F	

Analysis Batch: 376943

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-123779-2	Secondary Leachate (Cell #1)	Total/NA	Water	300.0	
MB 480-376943/4	Method Blank	Total/NA	Water	300.0	
LCS 480-376943/3	Lab Control Sample	Total/NA	Water	300.0	

7

1

Client Sample ID: Primary Leachate (Pump Station #2)

Date Collected: 09/07/17 11:30

Date Received: 09/08/17 01:45

Lab Sample ID: 480-123779-1

Matrix: Water

	Batch	Batch	_	Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor 50	Number 376058	or Analyzed	Analyst	Lab TAL BUF
Total/NA	Analysis	8260C		50		09/11/17 15:53		
Total/NA	Prep	3510C		20	375804	09/08/17 07:55	JMP	TAL BUF
Total/NA	Analysis	8270D		20	377406		MKP	TAL BUF
Total/NA Total/NA	Prep Analysis	3510C 8081B		1	376392 376487	09/12/17 14:30 09/13/17 13:19	JMO	TAL BUF
	•			ı				
Total/NA Total/NA	Prep Analysis	3510C 8082A		1	376481 376649	09/13/17 07:26 09/13/17 19:44	JMP JMO	TAL BUF
Total/NA	•	8151A		'	376060		JMP	TAL BUF
Total/NA	Prep Analysis	8151A		1		09/11/17 08:08	JMO	TAL BUF
Total/NA	Prep	3005A		·	376039	09/11/17 09:30		TAL BUF
Total/NA	Analysis	6010C		1	376299			TAL BUF
Total/NA	Prep	3005A			376039	09/11/17 09:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1		09/12/17 11:05		TAL BUF
Total/NA	Prep	7470A			375862	09/08/17 11:20	BMB	TAL BUF
Total/NA	Analysis	7470A		1	375939			TAL BUF
Total/NA	Analysis	300.0		50	376541	09/13/17 17:49	RJS	TAL BUF
Γotal/NA	Analysis	310.2		40	375973	09/08/17 17:50	ALZ	TAL BUF
Total/NA	Analysis	350.1		500	375911	09/08/17 13:26	SSS	TAL BUF
Total/NA	Prep	351.2			376223	09/11/17 18:10	DCB	TAL BUF
Total/NA	Analysis	351.2		5	376377	09/12/17 12:39	CLT	TAL BUF
Total/NA	Analysis	353.2		1	375937	09/08/17 10:05	SSS	TAL BUF
Total/NA	Analysis	410.4		20	376235	09/11/17 20:09	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376229	09/11/17 19:45	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376237	09/12/17 02:00	KMB	TAL BUF
Total/NA	Analysis	7196A		2	375783	09/08/17 06:02	BEV	TAL BUF
Total/NA	Prep	9012B			376442	09/12/17 18:23	JCL	TAL BUF
Total/NA	Analysis	9012B		1	376590	09/13/17 11:40	MDL	TAL BUF
Total/NA	Analysis	9060A		10	376727	09/13/17 00:47	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		100	375957	09/08/17 15:06	KRT	TAL BUF
Total/NA	Analysis	SM 2340C		1	376405	09/12/17 10:11	KRT	TAL BUF
Total/NA	Analysis	SM 2540C		1	376061	09/11/17 08:10	EKB	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1		09/14/17 14:30		TAL BUF
Total/NA	Analysis	SM 5210B		10		09/08/17 14:36		TAL BUF

Client Sample ID: Secondary Leachate (Cell #1)

Date Collected: 09/07/17 13:15 Date Received: 09/08/17 01:45

Lab Sample ID: 480-123779-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	376058	09/11/17 16:16	KMN	TAL BUF
Total/NA	Prep	3510C			375804	09/08/17 07:55	JMP	TAL BUF
Total/NA	Analysis	8270D		1	377406	09/19/17 13:27	MKP	TAL BUF

Project/Site: Albany Interim Landfill - Expanded

Client Sample ID: Secondary Leachate (Cell #1)

Date Collected: 09/07/17 13:15 Date Received: 09/08/17 01:45 Lab Sample ID: 480-123779-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C				09/12/17 14:30		TAL BUF
Total/NA	Analysis	8081B		1	376487	09/13/17 13:38		TAL BUF
Total/NA	Prep	3510C			376481	09/13/17 07:26		TAL BUF
Total/NA	Analysis	8082A		1	376649			TAL BUF
Total/NA	Prep	8151A			376060	09/11/17 08:08		TAL BUF
Total/NA	Analysis	8151A		1		09/13/17 20:38		TAL BUF
Total/NA	Prep	3005A			376039	09/11/17 09:30		TAL BUF
Total/NA	Analysis	6010C		1		09/11/17 22:05		TAL BUF
Total/NA	Prep	3005A				09/11/17 09:30		TAL BUF
Total/NA	Analysis	6010C		1		09/12/17 11:01		TAL BUF
Total/NA	Prep	7470A		4		09/08/17 11:20		TAL BUF
Total/NA	Analysis	7470A		1	375939	09/08/17 14:50		TAL BUF
Total/NA	Analysis	300.0		5		09/13/17 18:03		TAL BUF
Total/NA	Analysis	300.0		20	376943	09/14/17 20:19	RJS	TAL BUF
Total/NA	Analysis	310.2		4	375973	09/08/17 17:50	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	375911	09/08/17 12:55	SSS	TAL BUF
Total/NA	Prep	351.2			376223	09/11/17 18:10	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376377	09/12/17 09:48	CLT	TAL BUF
Total/NA	Analysis	353.2		1	375937	09/08/17 11:12	SSS	TAL BUF
Total/NA	Analysis	410.4		1	376235	09/11/17 20:09	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376229	09/11/17 19:45	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376237	09/12/17 02:00	KMB	TAL BUF
Total/NA	Analysis	7196A		1	375783	09/08/17 06:02	BEV	TAL BUF
Total/NA	Prep	9012B			376442	09/12/17 18:23	JCL	TAL BUF
Total/NA	Analysis	9012B		1	376590	09/13/17 11:42	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376250	09/10/17 16:07	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	375957	09/08/17 15:06	KRT	TAL BUF
Total/NA	Analysis	SM 2340C		1		09/12/17 10:11		TAL BUF
Total/NA	Analysis	SM 2540C		1		09/11/17 08:10		TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1		09/13/17 15:30		TAL BUF
	•							
Total/NA	Analysis	SM 5210B		1	3/5963	09/08/17 14:36	CDC	TAL BUF

Client Sample ID: Trip Blank

Date Collected: 09/07/17 00:00

Date Received: 09/08/17 01:45

Lab Sample ID: 480-123779-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	376058	09/11/17 16:39	KMN	TAL BUF	

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

6

8

10

13

1*5*

Accreditation/Certification Summary

Client: CHA Inc TestAmerica Job ID: 480-123779-1

Project/Site: Albany Interim Landfill - Expanded

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	EPA Region	Identification Number	Expiration Date
lew York	NELAP	2	10026	03-31-18
	are included in this report, but accreditati	ion/certification is not off	ered by the governing auth	ority:
	are included in this report, but accreditati	ion/certification is not off	ered by the governing auth	ority:
The following analytes	• •		, ,	ority:
	are included in this report, but accreditati	ion/certification is not off Analyt	, ,	ority:

Method Summary

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8081B	Organochlorine Pesticides (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
8151A	Herbicides (GC)	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
310.2	Alkalinity	MCAWW	TAL BUF
350.1	Nitrogen, Ammonia	MCAWW	TAL BUF
351.2	Nitrogen, Total Kjeldahl	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
410.4	COD	MCAWW	TAL BUF
420.1	Phenolics, Total Recoverable	MCAWW	TAL BUF
7196A	Chromium, Hexavalent	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF
9060A	Organic Carbon, Total (TOC)	SW846	TAL BUF
SM 2120B	Color, Colorimetric	SM	TAL BUF
SM 2340C	Hardness, Total (mg/l as CaC03)	SM	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
SM 4500 S2 F	Sulfide, Total	SM	TAL BUF
SM 5210B	BOD, 5-Day	SM	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: CHA Inc

Project/Site: Albany Interim Landfill - Expanded

TestAmerica Job ID: 480-123779-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-123779-1	Primary Leachate (Pump Station #2)	Water	09/07/17 11:30 09/08/17 01:45
480-123779-2	Secondary Leachate (Cell #1)	Water	09/07/17 13:15 09/08/17 01:45
480-123779-3	Trip Blank	Water	09/07/17 00:00 09/08/17 01:45

Quantitation Limit Exceptions Summary

Client: CHA Inc TestAmerica Job ID: 480-123779-1

Project/Site: Albany Interim Landfill - Expanded

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Matrix	Analyte	Units	Client RL	Lab PQL
6010C	Water	Arsenic	mg/L	0.010	0.015
6010C	Water	Cadmium	mg/L	0.0010	0.002
6010C	Water	Lead	mg/L	0.0050	0.01
6010C	Water	Selenium	mg/L	0.015	0.025
6010C	Water	Silver	mg/L	0.0030	0.006

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

Chain of Custody Record

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTA TESTING

Client Information							ne, Judy L						Carr							COC No. 480-101345-19508.1	
Client Contact Mr. John Favreau	Phone 518 -	453-	450) E-M	lail v.sto	stone@testamericainc.com						480-123779 COC							Page Page 1 of 2		
Company CHA Inc				, , , ,	T						lveic	Por	11100	uested					_	Job #	
Address	Due Date Requeste	d:			+	Analysis Requ								uesteu						Preservation Codes:	
111 Winners Circle PO BOX 5269 City	TAT Requested (days):																			A - HCL B - NaOH	M - Hexane N - None
Albany	Standard						100	Se	atile											C - Zn Acetate	O - AsNaO2
State, Zip NY, 12205-0269	Star	Mone	71				Aroclor	Pesticides	nivolatiles				atiles				Ì	1		D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone 519 452 9705/Tol)	PO#	00			٦				d Ser				Expanded Volatiles		Expanded Herbicides	P	<u>o</u>			F - MeOH G - Amchior	R - Na2S2O3 S - H2SO4
518-453-8795(Tel) Email	29588.2000.440 WO#	00			٦Ž	2	Expanded	Expanded	360 Expanded				ande		Herb	этап	Solid			H - Ascorbic Acid I - Ice	T - TSP Dodecahydrate U - Acetone
jfavreau@chacompanies.com						Ž	EXP	Exp	EXP				Exp		ded	on D	pea		87.9	J - DI Water K - EDTA	V - MCAA W - pH 4-5
Project Name Albany Interim Landfill - Expanded	Project # 48003451				e S	98.0	Part 360	1 360	1 360	4		92	1 360		храп	Oxygen Demand	Total Dissolved Solids			L-EDA	Z - other (specify)
Site; New York	SSOW#				amp	000		Y Par		21, 304		dne	- (MOD) NY Part 360		360 E	mical	otal C	D - Sulfide		Other:	
New TOTA				Matrix	$\dashv_{\mathfrak{g}}^{\mathfrak{g}}$	S/MS	D) NY	D) NY		4	4	E. T.	O N		Part	hem	0		Der		
			Sample ' Type	(Wewater,	ilfe.	M	-(MOD)	- (MOD)	9	. USD	6010C, 7470A	- Total Hardness	₩.	- 700	·NY	Bioche	Calcd	SM4600_S2	Total Number of		
		Sample	(C=comp,	S=solid, O=waste/oil,	eld	Perfor	8082A	8081B	8270D	300.0 280	6010C,	2340C	8260C	9060A	8151A	6210B	2640C	M450	Ital		
Sample Identification	Sample Date	Time		BT=Tissue, A=A	-	*			N N	_		D	A		$\overline{}$			CB	Š	Special In	structions/Note:
6 rimary Leachate (Pump Station #2)	9.7.17	1120	-	Water	~	4	-	-	_	_	< X	4	+	X	V	X	×	X	\triangle		
	1 11	1130	6		+	+	7	1	7	1	11	1	1		1	^	1	7			
Specondary Leachate (Cell #1)	<u> </u>	1315	1	Water	\perp		7	1	1	11	V	1	1	1	1	+	1	4			
Trip Blank	9.7.17			_					-	+								_			
ω ,																					
_																					
			50				-											-			
			1	1	1	7		-	+	+	+	+	-				-				
			11		1			1		-	-	+	-	-							
							4	Y	7	_	•	\perp									
								4	7	-	1.	>									
					T								V	>							
					1												_				
Possible Hazard Identification						Sa	mple	Disp	osal	(A fe	e ma	y be	asse	ssed	if sa	mple	es a	re re	tain	ed longer than 1	1 month)
Non-Hazard Flammable Skin Irritant Pois	son B Unkni	own \square_F	Radiological			[To C					osal E			[nive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	-	-		_		Sp	ecial l	İnstru	ctions	s/QC	Requ	ireme	ents:								
Empty Kit Relinquished by:		Date:			T	ime:							_	Meth	od of	Shipm	ent	_			
Relinquished by Cladellog	Date/Time:	1/1100	111	Company	2		Rece	aga by	R-	La	ele,					Date/	Time	111	7	164	Company
Relinquished by	Date/Time:	1100	11	Company			Rece	Salby	0	11						Date	Time	-			
							1	110	M	A						/	0	11		0145	Compeny
Relinquished by	Date/Time			Company			Robbe	ived by	y							Date/	Time				Company
Belinquished by Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						/	Coole	er Tem	peratu	re(s) °	C and (Other F	Remark	ks:						0.9	7.0.8 #1
Δ Yes Δ No						,		_			_		_		-		_	_		0.	1000 11

TestAmerica Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298

Chain of Custody Record

THE LEADER IN RONMENTA

Phone (716) 691-2600 Fax (716) 691-7991																STUV
Client Information Client Contact	Sampler.			Lab PM Stone	ne, Judy L					Carri	er Tracking t	No(s)		COC No: 480-101345-19508.2		
Mr. John Favreau	Phone			E-Mail judy.s	tone@	gtesta	ameri	icainc	.com						Page Page 2 of 2	
Company CHA Inc					Analysis Reque						eques	uested			Job #	
Address 111 Winners Circle PO BOX 5269	Due Date Requested	:			- 10				T						Preservation Codes:	
Crty Albany	TAT Requested (days	s):		-											A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2	1
State, Zip. NY, 12205-0269															D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3	
Phone 518-453-8795(Tel)	PO# 29588.2000.4400	0			(OZ		Nitrate_Calo			99					G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecah	/drate
Email jfavreau@chacompanies.com	WO#						Nitrat			coverable				20	I - Ice U - Acetone J - DI Water V - MCAA	
Project Name Albany Interim Landfill - Expanded	Project # 48003451						Itrite,			al Rec				ntain	K - EDTA W - pH 4-5 L - EDA Z - other (specify)	
Site New York	SSOW#.				Samp ISD (B, Tota	53.2 N			ss, Total				of co	Other:	
Sample Identification	Sample Date	Sample Time	Туре		Field Filtered Sar	9012B - Cyanide,	Z 2120B, 363.2, 363.2_Nitrite,		310.2	420.1 - Phenolics,				Total Number of containers	Special Instructions/Not	e:
Primary Leachate (Pump Station #2)	9.7-17	1120	- 1	Vater	4	B	X	_	X S	X				28		
Secondary Leachate (Cell #1)		1315		Vater		1	1	Î	1	1				7		
Trip Blank	9.7.17			-		-		•	4	-				2		
	- (81.														
		1	5		1	2	2		2	7.	'>					
											7					
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify)	Poison B Unknow	wn □,	Radiological			$\square_{\scriptscriptstyle F}$	Return	TOC	Client		□ _{Disp}	ssed if sa		7	ned longer than 1 month) hive For Months	
Empty Kit Relinquished by:	Į.	Date:			Time							Method of	Shipment			
Relinquished by Relinquished by.	Date/Time:	7/1		Pany HA Ipany		Rec	Jod E	1	Sign	lec				17	1441 Company	
Relinquished by:	Date/Time			pany		18	eived b	M	1				Date/Time:	17	0145 Company	
	Date/Time		Con	ipariy		////							Dater Filme:		Company	7/
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No					/	Pool	ler Ter	mperati	ure(s)	°C and Oth	er Remar	ks:			0.9 0.8 9	#/

Login Sample Receipt Checklist

Client: CHA Inc Job Number: 480-123779-1

Login Number: 123779 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below ackground	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and he COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
/OA sample vials do not have headspace or bubble is <6mm (1/4") in liameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	CHA
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-123780-1

Client Project/Site: Albany Interim Landfill - Baseline Sampling Event: Albany Interim Landfill - Baseline Albany Interim Landfill - Routine

For:

CHA Inc 111 Winners Circle PO BOX 5269 Albany, New York 12205-0269

Attn: Mr. John Favreau

Authorized for release by: 9/27/2017 2:58:31 PM

Judy Stone, Senior Project Manager (484)685-0868

judy.stone@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: Albany Interim Landfill - Baseline

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	7
Lab Chronicle	67
Certification Summary	84
Method Summary	85
Sample Summary	86
Receipt Checklists	87
Chain of Custody	91

6

8

9

Definitions/Glossary

Client: CHA Inc

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
*	LCS or LCSD is outside acceptance limits.
В	Compound was found in the blank and sample.
Metals	

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
В	Compound was found in the blank and sample.

General Chemistry

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
b	Result Detected in the Unseeded Control blank (USB).
*	LCS or LCSD is outside acceptance limits.

Glossary

Abbreviation

¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

These commonly used abbreviations may or may not be present in this report.

Page 3 of 94

Case Narrative

Client: CHA Inc

Project/Site: Albany Interim Landfill - Baseline

Job ID: 480-123780-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-123780-1

Receipt

The samples were received on 9/8/2017 1:45 AM, 9/9/2017 1:45 AM, 9/12/2017 1:30 AM and 9/13/2017 2:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 9 coolers at receipt time were 0.1° C, 0.1° C, 0.2° C. 0.2° C. 0.2° C. 0.3° C. 0.3° C. 0.4° C and 0.7° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-375988 recovered outside acceptance criteria, low biased, for Chloromethane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following samples are impacted: SW-2A (480-123780-1), SW-5 (480-123780-2), SW-1 (480-123780-3) and Trip Blank (480-123780-4).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-376935 recovered outside acceptance criteria, low biased, for 1,1-Dichloroethene. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following samples are impacted: MW-10D (480-123848-6), CHA-1 (480-123848-7) and Trip Blank (480-123848-8).

Method(s) 8260C; Due to the coelution of Ethyl Acetate with 2-Butanone, n-butyl Acetate with 2-Hexanone, and 2-Chloro-1,3-butadiene with Vinyl acetate in the full spike solution, these analytes exceeded control limits in the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) associated with batch 480-376935. The following samples were affected: MW-10D (480-123848-6), CHA-1 (480-123848-7) and Trip Blank (480-123848-8).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-377005 recovered above the upper control limit for 2-Butanone (MEK), Carbon tetrachloride and Vinyl acetate. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MW-9I (480-123848-1), MW-9S (480-123848-2), MW-9D (480-123848-3), MW-10S (480-123848-4) and MW-10I (480-123848-5).

Method(s) 8260C: The following sample was collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: MW-18D (480-123947-3). The sample was analyzed within 7 days per EPA recommendation.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-377452 recovered outside acceptance criteria, low biased, for Vinyl chloride and Chloromethane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following samples are impacted: MW-1S (480-124024-1), MW-1I (480-124024-2), MW-1D (480-124024-3), MW-14S (480-124024-4), MW-14I (480-124024-5), MW-14D (480-124024-6) and TRIP BLANK (480-124024-7).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-377488 recovered above the upper control limit for Vinyl acetate. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MW-15I (480-123947-5), MW-15D (480-123947-6), MW-2S (480-123947-7), MW-2I (480-123947-8), MW-2D (480-123947-9) and Trip Blank (480-123947-10).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-377488 recovered above the upper control limit for 2-Hexanone. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MW-15I (480-123947-5), MW-15D (480-123947-6), MW-2S (480-123947-7), MW-2I (480-123947-8), MW-2D (480-123947-9) and Trip Blank (480-123947-10).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-377667 recovered above the upper control limit for 2-Hexanone and 4-Methyl-2-pentanone (MIBK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: MW-15S (480-123947-4).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-377667 recovered outside acceptance criteria,

TestAmerica Buffalo 9/27/2017

TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Job ID: 480-123780-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

low biased, for Vinyl Chloride, Chloromethane, and Methylene Chloride. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following sample is impacted: MW-15S (480-123947-4).

Method(s) 8260C: The laboratory control sample (LCS) for analytical batch 480-377667 recovered outside control limits for the following analyte: Acetone. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported. The following sample is impacted: MW-15S (480-123947-4)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

IC

Method(s) 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-9I (480-123848-1) and MW-18S (480-123947-1). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: The following samples were reported with elevated reporting limits for all analytes: MW-9S (480-123848-2), CHA-1 (480-123848-7), MW-15S (480-123947-4), MW-15I (480-123947-5), MW-2S (480-123947-7) and MW-14S (480-124024-4). The samples were analyzed at a dilution based on screening results.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The Low Level Continuing Calibration Verification, (CCVL 480-377065/20) associated with batch 480-377065, contained Total Iron above the upper quality control limit. The associated samples were either ND for the affected analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples (LCS 480-376635/2-A) and (MB 480-376635/1-A) was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) SM 2120B: The following samples were filtered prior to analysis, therefore the analytical results are being report as "True Color": SW-2A (480-123780-1), SW-5 (480-123780-2), SW-1 (480-123780-3), MW-9I (480-123848-1), MW-10S (480-123848-4), MW-10I (480-123848-5), MW-18S (480-123947-1), MW-18D (480-123947-3), MW-15S (480-123947-4), MW-15D (480-123947-6), (480-123947-1-1 DU) and MW-14S (480-124024-4).

Method(s) SM 2340C: The results reported for the following sample do not concur with results previously reported for this site: MW-18D (480-123947-3). Reanalysis was performed, and the result(s) confirmed.

Method(s) 310.2: The results reported for the following sample do not concur with results previously reported for this site: MW-1S (480-124024-1). Reanalysis was performed, and the result(s) confirmed.

Method(s) 350.1: The results reported for the following sample do not concur with results previously reported for this site: SW-5 (480-123780-2). Reanalysis was performed, and the result(s) confirmed.

Method(s) 351.2: Due to the matrix, the initial volume(s) used for the following samples deviated from the standard procedure: MW-9I (480-123848-1), MW-9I (480-123848-1[MS]) and MW-9I (480-123848-1[MSD]). The reporting limits (RLs) have been adjusted proportionately.

Method(s) 353.2: The results reported for the following samples do not concur with results previously reported for this site: SW-5 (480-123780-2), MW-9S (480-123848-2), CHA-1 (480-123848-7), MW-1S (480-124024-1). Reanalysis was performed, and the result(s) confirmed.

Method(s) 353.2: The following samples were filtered prior to analysis due to sample color. MW-9I (480-123848-1), MW-9I (480-123848-1[MSD]), MW-9S (480-123848-2), MW-10S (480-123848-4), MW-10I (480-123848-5) and CHA-1 (480-123848-7).

E

Case Narrative

Client: CHA Inc

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Job ID: 480-123780-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

Method(s) 353.2: The following samples were filtered prior to analysis. SW-5 (480-123780-2) and SW-1 (480-123780-3), MW-18S (480-123947-1), MW-18D (480-123947-3), MW-15S (480-123947-4), MW-15D (480-123947-6) and MW-2S (480-123947-7), MW-14S (480-124024-4)

Method(s) 420.1: The results reported for the following samples do not concur with results previously reported for this site: SW-2A (480-123780-1), MW-9D (480-123848-3), MW-18D (480-123947-3) and MW-15S (480-123947-4). Reanalysis was performed, and results greater than historically reported were confirmed.

Method(s) SM 5210B: Relative Percent Difference (RPD) between the highest and lowest results used in averaging the result exceeds 30% for samples SW-5 (480-123780-2), MW-18D (480-123947-3), MW-15S (480-123947-4) and MW-14S (480-124024-4).

Method(s) 9012B: The laboratory control sample (LCS) for preparation batch 480-376603 and analytical batch 480-376667 recovered outside control limits for the following analyte: Cyanide. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported. MW-10S (480-123848-4), MW-10D (480-123848-6), CHA-1 (480-123848-7), MW-18S (480-123947-1), MW-18IR (480-123947-2), MW-18D (480-123947-3), MW-15S (480-123947-4), MW-15I (480-123947-5), MW-15D (480-123947-6), MW-2S (480-123947-7), MW-2I (480-123947-8), MW-2D (480-123947-9) and (480-123848-G-4-B DU)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

F

7

Client Sample Results

Client: CHA Inc

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Lab Sample ID: 480-123780-1

Matrix: Water

Client Sample ID: SW-2A
Date Collected: 09/07/17 09:45

Date Received: 09/08/17 01:45

water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/09/17 16:27	
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/09/17 16:27	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/09/17 16:27	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/09/17 16:27	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/09/17 16:27	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/09/17 16:27	
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/09/17 16:27	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/09/17 16:27	
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/09/17 16:27	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/09/17 16:27	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/09/17 16:27	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/09/17 16:27	
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/09/17 16:27	
2-Hexanone	ND	5.0	1.2	ug/L			09/09/17 16:27	
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/09/17 16:27	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			09/09/17 16:27	
Acetone	ND	5.0	3.0	ug/L			09/09/17 16:27	
Acrylonitrile	ND	5.0		ug/L			09/09/17 16:27	
Benzene	ND	1.0	0.41	ug/L			09/09/17 16:27	
Bromochloromethane	ND	1.0	0.87	ug/L			09/09/17 16:27	
Bromodichloromethane	ND	1.0		ug/L			09/09/17 16:27	
Bromoform	ND	1.0		ug/L			09/09/17 16:27	
Bromomethane	ND	1.0		ug/L			09/09/17 16:27	
Carbon disulfide	ND	1.0		ug/L			09/09/17 16:27	
Carbon tetrachloride	ND	1.0		ug/L			09/09/17 16:27	
Chlorobenzene	ND	1.0		ug/L			09/09/17 16:27	
Chlorodibromomethane	ND	1.0		ug/L			09/09/17 16:27	
Chloroethane	ND	1.0		ug/L			09/09/17 16:27	
Chloroform	ND	1.0		ug/L			09/09/17 16:27	
Chloromethane	ND	1.0		ug/L			09/09/17 16:27	
cis-1,2-Dichloroethene	ND	1.0		ug/L			09/09/17 16:27	
cis-1,3-Dichloropropene	ND	1.0		ug/L			09/09/17 16:27	
Dibromomethane	ND	1.0		ug/L			09/09/17 16:27	
Ethylbenzene	ND	1.0		ug/L			09/09/17 16:27	
lodomethane	ND	1.0		ug/L			09/09/17 16:27	
Methylene Chloride	ND	1.0		ug/L			09/09/17 16:27	
Styrene	ND	1.0		ug/L			09/09/17 16:27	
Tetrachloroethene	ND	1.0		ug/L			09/09/17 16:27	
Toluene	ND	1.0					09/09/17 16:27	
	ND			ug/L				
trans-1,2-Dichloroethene		1.0		ug/L			09/09/17 16:27	
trans-1,3-Dichloropropene	ND ND	1.0		ug/L			09/09/17 16:27	
trans-1,4-Dichloro-2-butene	ND	5.0		ug/L			09/09/17 16:27	
Trichloroethene	ND ND	1.0		ug/L			09/09/17 16:27	
Trichlorofluoromethane	ND ND	1.0		ug/L			09/09/17 16:27	
Vinyl acetate	ND	5.0		ug/L			09/09/17 16:27	
Vinyl chloride	ND	1.0	0.90	ug/L			09/09/17 16:27 09/09/17 16:27	

Client: CHA Inc TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: SW-2A Lab Sample ID: 480-123780-1

Date Collected: 09/07/17 09:45

Date Received: 09/08/17 01:45

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		77 - 120		09/09/17 16:27	1
Toluene-d8 (Surr)	99		80 - 120		09/09/17 16:27	1
4-Bromofluorobenzene (Surr)	101		73 - 120		09/09/17 16:27	1
Dibromofluoromethane (Surr)	103		75 - 123		09/09/17 16:27	1
Dibromofluoromethane (Surr)	103		75 - 123		09/09/17 16:27	
Method: 6010C - Metals (ICP)						

Method: 6010C - Metals (ICP) Analyte	Posult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND	Quainiei	0.20	0.060	mg/L		09/11/17 09:30	09/11/17 21:06	1
Antimony	ND		0.020	0.0068	mg/L		09/11/17 09:30	09/11/17 21:06	1
Arsenic	ND ND		0.020	0.0056	mg/L		09/11/17 09:30	09/11/17 21:06	1
Barium	0.013		0.0020	0.0030	mg/L		09/11/17 09:30	09/11/17 21:06	1
	0.013 ND				•			09/11/17 21:06	1
Beryllium			0.0020	0.00030	mg/L		09/11/17 09:30		1
Boron	0.010	J	0.020	0.0040	J		09/11/17 09:30	09/11/17 21:06	1
Cadmium	ND		0.0010	0.00050	mg/L		09/11/17 09:30	09/11/17 21:06	1
Calcium	45.3		0.50	0.10	mg/L		09/11/17 09:30	09/11/17 21:06	1
Chromium	ND		0.0040	0.0010	mg/L		09/11/17 09:30	09/12/17 09:54	1
Cobalt	ND		0.0040	0.00063	mg/L		09/11/17 09:30	09/11/17 21:06	1
Copper	ND		0.010	0.0016	mg/L		09/11/17 09:30	09/12/17 09:54	1
Iron	0.069		0.050	0.019	mg/L		09/11/17 09:30	09/11/17 21:06	1
Lead	ND		0.0050	0.0030	mg/L		09/11/17 09:30	09/11/17 21:06	1
Magnesium	7.5		0.20	0.043	mg/L		09/11/17 09:30	09/11/17 21:06	1
Manganese	0.0032		0.0030	0.00040	mg/L		09/11/17 09:30	09/11/17 21:06	1
Nickel	ND		0.010	0.0013	mg/L		09/11/17 09:30	09/11/17 21:06	1
Potassium	1.1		0.50	0.10	mg/L		09/11/17 09:30	09/11/17 21:06	1
Selenium	ND		0.015	0.0087	mg/L		09/11/17 09:30	09/11/17 21:06	1
Silver	ND		0.0030	0.0017	mg/L		09/11/17 09:30	09/11/17 21:06	1
Sodium	4.6		1.0	0.32	mg/L		09/11/17 09:30	09/11/17 21:06	1
Thallium	ND		0.020	0.010	mg/L		09/11/17 09:30	09/11/17 21:06	1
Vanadium	ND		0.0050	0.0015	mg/L		09/11/17 09:30	09/11/17 21:06	1
Zinc	ND		0.010	0.0015	mg/L		09/11/17 09:30	09/11/17 21:06	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/08/17 11:20	09/08/17 14:52	1
General Chemistry									

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20	0.073	mg/L			09/13/17 18:18	1
Chloride	7.7		0.50	0.28	mg/L			09/13/17 18:18	1
Sulfate	13.1		2.0	0.35	mg/L			09/13/17 18:18	1
Alkalinity, Total	124	В	20.0	8.0	mg/L			09/08/17 17:35	2
Ammonia as N	ND	F1	0.020	0.0090	mg/L			09/08/17 12:56	1
Total Kjeldahl Nitrogen	0.18	J	0.20	0.15	mg/L		09/11/17 18:10	09/12/17 13:24	1
Nitrate	ND		0.050	0.020	mg/L as N			09/08/17 10:08	1
Chemical Oxygen Demand	12.3		10.0	5.0	mg/L			09/11/17 20:09	1
Phenolics, Total Recoverable	0.017		0.010	0.0050	mg/L		09/26/17 07:30	09/26/17 14:31	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/08/17 06:02	1
Cyanide	ND		0.010	0.0050	mg/L		09/12/17 18:23	09/13/17 11:43	1
Total Organic Carbon	3.6		1.0	0.43	mg/L			09/10/17 16:35	1
Hardness, as CaCO3	140		4.0	1.1	mg/L			09/12/17 10:11	1
Total Dissolved Solids	187		10.0	4.0	mg/L			09/11/17 08:10	1

TestAmerica Buffalo

9/27/2017

Page 8 of 94

_

3

5

7

Ö

Client Sample Results

Client: CHA Inc TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: SW-2A

Lab Sample ID: 480-123780-1

Matrix: Water

Date Collected: 09/07/17 09:45 Date Received: 09/08/17 01:45

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/08/17 14:36	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	15.0		5.00	5.00	Color Units			09/08/17 15:06	1

Client Sample ID: SW-5 Lab Sample ID: 480-123780-2

Date Collected: 09/07/17 10:45 Matrix: Water

Date Received: 09/08/17 01:45

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/09/17 16:54	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/09/17 16:54	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/09/17 16:54	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/09/17 16:54	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/09/17 16:54	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/09/17 16:54	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/09/17 16:54	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/09/17 16:54	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/09/17 16:54	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/09/17 16:54	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/09/17 16:54	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/09/17 16:54	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/09/17 16:54	1
2-Hexanone	ND	5.0	1.2	ug/L			09/09/17 16:54	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/09/17 16:54	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/09/17 16:54	1
Acetone	3.7 J	5.0	3.0	ug/L			09/09/17 16:54	1
Acrylonitrile	ND	5.0	0.83	ug/L			09/09/17 16:54	1
Benzene	ND	1.0	0.41	ug/L			09/09/17 16:54	1
Bromochloromethane	ND	1.0	0.87	ug/L			09/09/17 16:54	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/09/17 16:54	1
Bromoform	ND	1.0	0.26	ug/L			09/09/17 16:54	1
Bromomethane	ND	1.0	0.69	ug/L			09/09/17 16:54	1
Carbon disulfide	ND	1.0	0.19	_			09/09/17 16:54	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/09/17 16:54	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/09/17 16:54	1
Chlorodibromomethane	ND	1.0	0.32	_			09/09/17 16:54	1
Chloroethane	ND	1.0	0.32	_			09/09/17 16:54	1
Chloroform	ND	1.0	0.34	_			09/09/17 16:54	1
Chloromethane	ND	1.0	0.35	_			09/09/17 16:54	1
cis-1,2-Dichloroethene	ND	1.0	0.81	_			09/09/17 16:54	1
cis-1,3-Dichloropropene	ND	1.0	0.36	•			09/09/17 16:54	1
Dibromomethane	ND	1.0	0.41	_			09/09/17 16:54	1
Ethylbenzene	ND	1.0	0.74				09/09/17 16:54	1
lodomethane	ND	1.0	0.30	•			09/09/17 16:54	1
Methylene Chloride	ND	1.0	0.44	_			09/09/17 16:54	1
Styrene	ND	1.0	0.73	•			09/09/17 16:54	1
Tetrachloroethene	ND	1.0	0.36	-			09/09/17 16:54	1
Toluene	ND	1.0	0.51	_			09/09/17 16:54	1

TestAmerica Buffalo

Page 9 of 94

2

3

5

6

q

10

9

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: SW-5

Client: CHA Inc

Lab Sample ID: 480-123780-2

Matrix: Water

Date Collected: 09/07/17 10:45 Date Received: 09/08/17 01:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/09/17 16:54	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/09/17 16:54	1
trans-1,4-Dichloro-2-butene	ND		5.0	0.22	ug/L			09/09/17 16:54	1
Trichloroethene	ND		1.0	0.46	ug/L			09/09/17 16:54	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/09/17 16:54	1
Vinyl acetate	ND		5.0	0.85	ug/L			09/09/17 16:54	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/09/17 16:54	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/09/17 16:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120					09/09/17 16:54	1
Toluene-d8 (Surr)	99		80 - 120					09/09/17 16:54	1
4-Bromofluorobenzene (Surr)	100		73 - 120					09/09/17 16:54	1
Dibromofluoromethane (Surr)	103		75 ₋ 123					09/09/17 16:54	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060			09/11/17 09:30	09/11/17 21:10	1
Antimony	ND		0.020	0.0068	•		09/11/17 09:30	09/11/17 21:10	1
Arsenic	ND		0.010	0.0056	mg/L		09/11/17 09:30	09/11/17 21:10	1
Barium	0.051		0.0020	0.00070	mg/L		09/11/17 09:30	09/11/17 21:10	1
Beryllium	ND		0.0020	0.00030	mg/L		09/11/17 09:30	09/11/17 21:10	1
Boron	0.23		0.020	0.0040	mg/L		09/11/17 09:30	09/11/17 21:10	1
Cadmium	ND		0.0010	0.00050	mg/L		09/11/17 09:30	09/11/17 21:10	1
Calcium	58.9		0.50	0.10	mg/L		09/11/17 09:30	09/11/17 21:10	1
Chromium	ND		0.0040	0.0010	mg/L		09/11/17 09:30	09/12/17 09:58	1
Cobalt	0.00074	J	0.0040	0.00063	mg/L		09/11/17 09:30	09/11/17 21:10	1
Copper	ND		0.010	0.0016	mg/L		09/11/17 09:30	09/12/17 09:58	1
Iron	2.7		0.050	0.019	mg/L		09/11/17 09:30	09/11/17 21:10	1
Lead	ND		0.0050	0.0030	mg/L		09/11/17 09:30	09/11/17 21:10	1
Magnesium	13.1		0.20	0.043	mg/L		09/11/17 09:30	09/11/17 21:10	1
Manganese	0.54		0.0030	0.00040	mg/L		09/11/17 09:30	09/11/17 21:10	1
Nickel	0.0037	J	0.010	0.0013	mg/L		09/11/17 09:30	09/11/17 21:10	1
Potassium	17.5		0.50	0.10	mg/L		09/11/17 09:30	09/11/17 21:10	1
Selenium	ND		0.015	0.0087	mg/L		09/11/17 09:30	09/11/17 21:10	1
Silver	ND		0.0030	0.0017	mg/L		09/11/17 09:30	09/11/17 21:10	1
Sodium	34.3		1.0	0.32	mg/L		09/11/17 09:30	09/11/17 21:10	1
Thallium	ND		0.020	0.010	mg/L		09/11/17 09:30	09/11/17 21:10	1
Vanadium	ND		0.0050	0.0015	mg/L		09/11/17 09:30	09/11/17 21:10	1
Zinc	ND		0.010	0.0015	mg/L		09/11/17 09:30	09/11/17 21:10	1

Method: 7470A - Mercury (CVA	AA)								
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/08/17 11:20	09/08/17 14:54	1
General Chemistry									
Analyte	Result 0	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.14 J	J	0.20	0.073	mg/L			09/13/17 19:48	1
Chloride	35.5		0.50	0.28	mg/L			09/13/17 19:48	1
Sulfate	20.9		2.0	0.35	mg/L			09/13/17 19:48	1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: SW-5

Lab Sample ID: 480-123780-2

Matrix: Water

Date Collected: 09/07/17 10:45 Date Received: 09/08/17 01:45

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	262	В	40.0	16.0	mg/L			09/08/17 18:04	4
Ammonia as N	12.8		0.20	0.090	mg/L			09/13/17 15:12	10
Total Kjeldahl Nitrogen	12.7		1.0	0.75	mg/L		09/11/17 18:10	09/12/17 12:39	5
Nitrate	0.24		0.050	0.020	mg/L as N			09/08/17 11:13	1
Chemical Oxygen Demand	14.9		10.0	5.0	mg/L			09/11/17 20:09	1
Phenolics, Total Recoverable	0.0055	J	0.010	0.0050	mg/L		09/11/17 16:50	09/12/17 02:00	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/08/17 06:02	1
Cyanide	ND		0.010	0.0050	mg/L		09/13/17 04:15	09/13/17 13:37	1
Total Organic Carbon	7.0		1.0	0.43	mg/L			09/10/17 17:30	1
Hardness, as CaCO3	208		4.0	1.1	mg/L			09/12/17 10:11	1
Total Dissolved Solids	364		10.0	4.0	mg/L			09/11/17 08:10	1
Biochemical Oxygen Demand	7.6	b	2.0	2.0	mg/L			09/08/17 14:36	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	15.0		5.00	5.00	Color Units			09/08/17 15:06	1

Client Sample ID: SW-1 Lab Sample ID: 480-123780-3

Date Collected: 09/07/17 09:00 Matrix: Water

Date Received: 09/08/17 01:45

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/09/17 17:21	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/09/17 17:21	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/09/17 17:21	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/09/17 17:21	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/09/17 17:21	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/09/17 17:21	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/09/17 17:21	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/09/17 17:21	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/09/17 17:21	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/09/17 17:21	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/09/17 17:21	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/09/17 17:21	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/09/17 17:21	1
2-Hexanone	ND	5.0	1.2	ug/L			09/09/17 17:21	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/09/17 17:21	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/09/17 17:21	1
Acetone	3.4 J	5.0	3.0	ug/L			09/09/17 17:21	1
Acrylonitrile	ND	5.0	0.83	ug/L			09/09/17 17:21	1
Benzene	ND	1.0	0.41	ug/L			09/09/17 17:21	1
Bromochloromethane	ND	1.0	0.87	ug/L			09/09/17 17:21	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/09/17 17:21	1
Bromoform	ND	1.0	0.26	ug/L			09/09/17 17:21	1
Bromomethane	ND	1.0	0.69	ug/L			09/09/17 17:21	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/09/17 17:21	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/09/17 17:21	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/09/17 17:21	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/09/17 17:21	1
Chloroethane	ND	1.0	0.32	ug/L			09/09/17 17:21	1

TestAmerica Buffalo

2

3

5

7

9

10

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: SW-1

Lab Sample ID: 480-123780-3

Matrix: Water

Date Collected: 09/07/17 09:00 Date Received: 09/08/17 01:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	ND		1.0	0.34	ug/L			09/09/17 17:21	1
Chloromethane	ND		1.0	0.35	ug/L			09/09/17 17:21	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/09/17 17:21	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/09/17 17:21	1
Dibromomethane	ND		1.0	0.41	ug/L			09/09/17 17:21	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/09/17 17:21	1
Iodomethane	ND		1.0	0.30	ug/L			09/09/17 17:21	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/09/17 17:21	1
Styrene	ND		1.0	0.73	ug/L			09/09/17 17:21	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/09/17 17:21	1
Toluene	ND		1.0	0.51	ug/L			09/09/17 17:21	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/09/17 17:21	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/09/17 17:21	1
trans-1,4-Dichloro-2-butene	ND		5.0	0.22	ug/L			09/09/17 17:21	1
Trichloroethene	ND		1.0	0.46	ug/L			09/09/17 17:21	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/09/17 17:21	1
Vinyl acetate	ND		5.0	0.85	ug/L			09/09/17 17:21	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/09/17 17:21	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/09/17 17:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		77 - 120					09/09/17 17:21	1
Toluene-d8 (Surr)	100		80 - 120					09/09/17 17:21	1
4-Bromofluorobenzene (Surr)	103		73 - 120					09/09/17 17:21	1
Dibromofluoromethane (Surr)	108		75 - 123					09/09/17 17:21	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.17	J	0.20	0.060	mg/L		09/11/17 09:30	09/11/17 21:14	1
Antimony	ND		0.020	0.0068	mg/L		09/11/17 09:30	09/11/17 21:14	1
Arsenic	ND		0.010	0.0056	mg/L		09/11/17 09:30	09/11/17 21:14	1
Barium	0.016		0.0020	0.00070	mg/L		09/11/17 09:30	09/11/17 21:14	1
Beryllium	ND		0.0020	0.00030	mg/L		09/11/17 09:30	09/11/17 21:14	1
Boron	0.012	J	0.020	0.0040	mg/L		09/11/17 09:30	09/11/17 21:14	1
Cadmium	ND		0.0010	0.00050	mg/L		09/11/17 09:30	09/11/17 21:14	1
Calcium	52.7		0.50	0.10	mg/L		09/11/17 09:30	09/11/17 21:14	1
Chromium	ND		0.0040	0.0010	mg/L		09/11/17 09:30	09/12/17 10:01	1
Cobalt	ND		0.0040	0.00063	mg/L		09/11/17 09:30	09/11/17 21:14	1
Copper	ND		0.010	0.0016	mg/L		09/11/17 09:30	09/12/17 10:01	1
Iron	6.1		0.050	0.019	mg/L		09/11/17 09:30	09/11/17 21:14	1
Lead	ND		0.0050	0.0030	mg/L		09/11/17 09:30	09/11/17 21:14	1
Magnesium	8.0		0.20	0.043	mg/L		09/11/17 09:30	09/11/17 21:14	1
Manganese	0.13		0.0030	0.00040	mg/L		09/11/17 09:30	09/11/17 21:14	1
Nickel	ND		0.010	0.0013	mg/L		09/11/17 09:30	09/11/17 21:14	1
Potassium	0.96		0.50	0.10	mg/L		09/11/17 09:30	09/11/17 21:14	1
Selenium	ND		0.015	0.0087	mg/L		09/11/17 09:30	09/11/17 21:14	1
Silver	ND		0.0030	0.0017	mg/L		09/11/17 09:30	09/11/17 21:14	1
Sodium	2.3		1.0	0.32	mg/L		09/11/17 09:30	09/11/17 21:14	1
Thallium	ND		0.020	0.010	mg/L		09/11/17 09:30	09/11/17 21:14	1
Vanadium	ND		0.0050	0.0015	mg/L		09/11/17 09:30	09/11/17 21:14	1

Client Sample Results

Client: CHA Inc

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Lab Sample ID: 480-123780-3

Matrix: Water

Date Collected: 09/07/17 09:00 Date Received: 09/08/17 01:45

Client Sample ID: SW-1

Method: 6010C - Metals (ICP) (Contin Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc	0.0065	J	0.010	0.0015	mg/L		09/11/17 09:30	09/11/17 21:14	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/08/17 11:20	09/08/17 14:56	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20	0.073	mg/L			09/13/17 20:03	1
Chloride	3.6		0.50	0.28	mg/L			09/13/17 20:03	1
Sulfate	8.7		2.0	0.35	mg/L			09/13/17 20:03	1
Alkalinity, Total	172	В	50.0	20.0	mg/L			09/08/17 17:35	5
Ammonia as N	0.059		0.020	0.0090	mg/L			09/08/17 13:03	1
Total Kjeldahl Nitrogen	3.9		0.20	0.15	mg/L		09/11/17 18:10	09/12/17 09:48	1
Nitrate	ND		0.050	0.020	mg/L as N			09/08/17 10:10	•
Chemical Oxygen Demand	22.5		10.0	5.0	mg/L			09/11/17 20:09	1
Phenolics, Total Recoverable	ND		0.010	0.0050	mg/L		09/11/17 16:50	09/12/17 02:00	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/08/17 06:02	1
Cyanide	ND		0.010	0.0050	mg/L		09/13/17 04:15	09/13/17 13:38	1
Total Organic Carbon	4.2		1.0	0.43	mg/L			09/10/17 19:17	1
Hardness, as CaCO3	168		4.0	1.1	mg/L			09/13/17 10:16	1
Total Dissolved Solids	195		10.0	4.0	mg/L			09/11/17 08:10	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/08/17 14:36	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	10.0		5.00	5.00	Color Units			09/08/17 15:06	1

Client Sample ID: Trip Blank

Lab Sample ID: 480-123780-4

Date Collected: 09/07/17 00:00

Date Received: 09/08/17 01:45

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/09/17 17:48	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/09/17 17:48	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/09/17 17:48	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/09/17 17:48	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/09/17 17:48	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/09/17 17:48	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/09/17 17:48	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/09/17 17:48	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/09/17 17:48	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/09/17 17:48	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/09/17 17:48	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/09/17 17:48	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/09/17 17:48	1
2-Hexanone	ND	5.0	1.2	ug/L			09/09/17 17:48	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/09/17 17:48	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/09/17 17:48	1
Acetone	4.3 J	5.0	3.0	ug/L			09/09/17 17:48	1
Acrylonitrile	ND	5.0	0.83	ug/L			09/09/17 17:48	1

TestAmerica Buffalo

Page 13 of 94

5

7

9

10

1

Matrix: Water

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: Trip Blank

Lab Sample ID: 480-123780-4

Date Collected: 09/07/17 00:00 Matrix: Water Date Received: 09/08/17 01:45

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Result Qualifier D Dil Fac Analyte RL MDL Unit Prepared Analyzed Benzene ND 1.0 0.41 09/09/17 17:48 ug/L ND Bromochloromethane 1.0 0.87 ug/L 09/09/17 17:48 1 Bromodichloromethane ND 1.0 0.39 ug/L 09/09/17 17:48 Bromoform ND 1.0 0.26 ug/L 09/09/17 17:48 Bromomethane ND 1.0 0.69 ug/L 09/09/17 17:48 Carbon disulfide ND 1.0 0.19 ug/L 09/09/17 17:48 Carbon tetrachloride ND 1.0 0.27 ug/L 09/09/17 17:48 Chlorobenzene ND 1.0 0.75 ug/L 09/09/17 17:48 Chlorodibromomethane ND 1.0 0.32 ug/L 09/09/17 17:48 Chloroethane ND 1.0 0.32 ug/L 09/09/17 17:48 ND 0.34 ug/L Chloroform 1.0 09/09/17 17:48 ND 09/09/17 17:48 Chloromethane 1.0 0.35 ug/L cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 09/09/17 17:48 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 09/09/17 17:48 Dibromomethane ND 1.0 0.41 ug/L 09/09/17 17:48 1 Ethylbenzene ND 1.0 0.74 ug/L 09/09/17 17:48 ND 1.0 Iodomethane 0.30 ug/L 09/09/17 17:48 Methylene Chloride ND 1.0 0.44 ug/L 09/09/17 17:48 ND 1.0 0.73 ug/L 09/09/17 17:48 Styrene Tetrachloroethene ND 1.0 0.36 ug/L 09/09/17 17:48 Toluene ND 1.0 0.51 ug/L 09/09/17 17:48 ND 0.90 ug/L trans-1,2-Dichloroethene 1.0 09/09/17 17:48 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 09/09/17 17:48 trans-1,4-Dichloro-2-butene ND 5.0 0.22 ug/L 09/09/17 17:48 Trichloroethene ND 1.0 0.46 ug/L 09/09/17 17:48 Trichlorofluoromethane ND 1.0 0.88 ug/L 09/09/17 17:48 Vinyl acetate ND 5.0 0.85 09/09/17 17:48 ug/L Vinyl chloride NΠ 1.0 0.90 ug/L 09/09/17 17:48 Xylenes, Total ND 2.0 0.66 ug/L 09/09/17 17:48 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 102 77 - 120 09/09/17 17:48 102 80 - 120 Toluene-d8 (Surr) 09/09/17 17:48 103 73 - 120 09/09/17 17:48 4-Bromofluorobenzene (Surr) 104 75 - 123 Dibromofluoromethane (Surr) 09/09/17 17:48

Client Sample ID: MW-9I

Lab Sample ID: 480-123848-1 Date Collected: 09/08/17 09:52 Matrix: Water

Date Received: 09/09/17 01:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	0.35	ug/L			09/15/17 11:58	1
1,1,1-Trichloroethane	ND	F1	1.0	0.82	ug/L			09/15/17 11:58	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			09/15/17 11:58	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			09/15/17 11:58	1
1,1-Dichloroethane	0.52	J F1	1.0	0.38	ug/L			09/15/17 11:58	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			09/15/17 11:58	1
1,2,3-Trichloropropane	ND		1.0	0.89	ug/L			09/15/17 11:58	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			09/15/17 11:58	1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-9I

Lab Sample ID: 480-123848-1

Matrix: Water

Date Collected: 09/08/17 09:52 Date Received: 09/09/17 01:45

Method: 6010C - Metals (ICP)

Analyte

Aluminum

Antimony

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			09/15/17 11:58	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/15/17 11:58	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			09/15/17 11:58	1
1,2-Dichloropropane	ND	F1	1.0	0.72	ug/L			09/15/17 11:58	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/15/17 11:58	1
2-Hexanone	ND		5.0	1.2	ug/L			09/15/17 11:58	1
2-Butanone (MEK)	ND		5.0	1.3	ug/L			09/15/17 11:58	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/15/17 11:58	1
Acetone	ND		5.0	3.0	ug/L			09/15/17 11:58	1
Acrylonitrile	ND		5.0	0.83	ug/L			09/15/17 11:58	1
Benzene	ND	F2	1.0	0.41	ug/L			09/15/17 11:58	1
Bromochloromethane	ND		1.0	0.87	ug/L			09/15/17 11:58	1
Bromodichloromethane	ND	F1	1.0	0.39	ug/L			09/15/17 11:58	1
Bromoform	ND		1.0	0.26				09/15/17 11:58	1
Bromomethane	ND	F2	1.0	0.69	-			09/15/17 11:58	1
Carbon disulfide	ND	F2	1.0	0.19	-			09/15/17 11:58	1
Carbon tetrachloride	ND		1.0	0.27	-			09/15/17 11:58	1
Chlorobenzene	ND		1.0	0.75				09/15/17 11:58	1
Chlorodibromomethane	ND		1.0	0.32	-			09/15/17 11:58	1
Chloroethane	ND		1.0	0.32				09/15/17 11:58	1
Chloroform	ND		1.0	0.34				09/15/17 11:58	1
Chloromethane	ND		1.0	0.35	•			09/15/17 11:58	1
cis-1,2-Dichloroethene	ND		1.0	0.81				09/15/17 11:58	1
cis-1,3-Dichloropropene	ND		1.0	0.36	-			09/15/17 11:58	1
Dibromomethane	ND		1.0	0.41	-			09/15/17 11:58	1
Ethylbenzene	ND		1.0	0.74				09/15/17 11:58	1
odomethane	ND		1.0	0.30				09/15/17 11:58	1
Methylene Chloride	ND		1.0	0.44				09/15/17 11:58	1
Styrene		F1	1.0	0.73	_			09/15/17 11:58	1
Tetrachloroethene		F1	1.0	0.36				09/15/17 11:58	1
Toluene	ND		1.0	0.51				09/15/17 11:58	1
trans-1,2-Dichloroethene	ND		1.0	0.90	_			09/15/17 11:58	1
trans-1,3-Dichloropropene	ND		1.0	0.37	-			09/15/17 11:58	1
trans-1,4-Dichloro-2-butene	ND		5.0	0.22				09/15/17 11:58	1
Trichloroethene		F1	1.0	0.46				09/15/17 11:58	1
Trichlorofluoromethane	ND	' '	1.0	0.40	-			09/15/17 11:58	1
									1
Vinyl acetate Vinyl chloride	ND ND		5.0 1.0	0.90	ug/L			09/15/17 11:58	1
Xylenes, Total	ND ND		2.0	0.90				09/15/17 11:58 09/15/17 11:58	1
				0.00	ug/L				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		77 - 120					09/15/17 11:58	1
Toluene-d8 (Surr)	100		80 - 120					09/15/17 11:58	1
4-Bromofluorobenzene (Surr)	98		73 - 120					09/15/17 11:58	1
Dibromofluoromethane (Surr)	103		75 - 123					09/15/17 11:58	1

TestAmerica Buffalo

Analyzed

09/12/17 19:46

09/12/17 19:46

Prepared

09/12/17 08:30

09/12/17 08:30

RL

0.20

0.020

MDL Unit

0.060 mg/L

0.0068 mg/L

Result Qualifier

ND

ND

Dil Fac

5

-

9

Client Sample Results

Client: CHA Inc TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-9I

Lab Sample ID: 480-123848-1 Date Collected: 09/08/17 09:52 Matrix: Water

Date Received: 09/09/17 01:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.10		0.010	0.0056	mg/L		09/12/17 08:30	09/12/17 19:46	1
Barium	0.084		0.0020	0.00070	mg/L		09/12/17 08:30	09/12/17 19:46	1
Beryllium	ND		0.0020	0.00030	mg/L		09/12/17 08:30	09/12/17 19:46	1
Boron	0.30	В	0.020	0.0040	mg/L		09/12/17 08:30	09/12/17 19:46	1
Cadmium	ND		0.0010	0.00050	mg/L		09/12/17 08:30	09/12/17 19:46	1
Calcium	116		0.50	0.10	mg/L		09/12/17 08:30	09/12/17 19:46	1
Chromium	ND		0.0040	0.0010	mg/L		09/12/17 08:30	09/12/17 19:46	1
Cobalt	0.0046		0.0040	0.00063	mg/L		09/12/17 08:30	09/12/17 19:46	1
Copper	ND		0.010	0.0016	mg/L		09/12/17 08:30	09/12/17 19:46	1
Iron	4.7		0.050	0.019	mg/L		09/12/17 08:30	09/12/17 19:46	1
Lead	0.0035	J	0.0050	0.0030	mg/L		09/12/17 08:30	09/12/17 19:46	1
Magnesium	53.5		0.20	0.043	mg/L		09/12/17 08:30	09/12/17 19:46	1
Manganese	0.054		0.0030	0.00040	mg/L		09/12/17 08:30	09/12/17 19:46	1
Nickel	0.016		0.010	0.0013	mg/L		09/12/17 08:30	09/12/17 19:46	1
Potassium	15.3		0.50	0.10	mg/L		09/12/17 08:30	09/12/17 19:46	1
Selenium	ND		0.015	0.0087	mg/L		09/12/17 08:30	09/12/17 19:46	1
Silver	ND		0.0030	0.0017	mg/L		09/12/17 08:30	09/12/17 19:46	1
Sodium	138		1.0	0.32	mg/L		09/12/17 08:30	09/12/17 19:46	1
Thallium	ND		0.020	0.010	mg/L		09/12/17 08:30	09/12/17 19:46	1
Vanadium	ND		0.0050	0.0015	mg/L		09/12/17 08:30	09/12/17 19:46	1
Zinc	ND		0.010	0.0015	mg/L		09/12/17 08:30	09/12/17 19:46	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	F1	0.00020	0.00012	mg/L		09/11/17 12:00	09/11/17 16:51	1

General Chemistry Analyte	Rosult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	1.3	Quanner	1.0	0.37			Tropurcu	09/13/17 21:01	5
Chloride	219		2.5		mg/L			09/13/17 21:01	5
Sulfate	ND		10.0		_			09/13/17 21:01	5
Alkalinity, Total	589	В	70.0		mg/L			09/11/17 15:09	7
Ammonia as N	20.8		0.40		mg/L			09/12/17 12:04	20
Total Kjeldahl Nitrogen	21.2		2.0		mg/L		09/11/17 03:59	09/11/17 11:30	1
Nitrate	ND		0.050		mg/L as N			09/09/17 14:55	1
Chemical Oxygen Demand	49.4	В	10.0	5.0	mg/L			09/11/17 20:09	1
Phenolics, Total Recoverable	0.0060	J	0.010	0.0050	mg/L		09/11/17 16:50	09/12/17 01:54	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/09/17 09:10	1
Cyanide	ND		0.010	0.0050	mg/L		09/13/17 04:15	09/13/17 13:22	1
Total Organic Carbon	17.7		1.0	0.43	mg/L			09/10/17 21:32	1
Total Hardness	500		10.0	2.6	mg/L			09/12/17 10:11	1
Total Dissolved Solids	899		10.0	4.0	mg/L			09/12/17 09:43	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/09/17 10:10	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	15.0		5.00	5.00	Color Units	_		09/09/17 09:45	1

Client Sample Results

Client: CHA Inc

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Lab Sample ID: 480-123848-2

Client Sample ID: MW-9S Date Collected: 09/08/17 10:58 Date Received: 09/09/17 01:45

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L		09/15/17 12:24	
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L		09/15/17 12:24	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L		09/15/17 12:24	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L		09/15/17 12:24	
1,1-Dichloroethane	ND	1.0	0.38	ug/L		09/15/17 12:24	
1,1-Dichloroethene	ND	1.0	0.29	ug/L		09/15/17 12:24	
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L		09/15/17 12:24	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L		09/15/17 12:24	
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L		09/15/17 12:24	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L		09/15/17 12:24	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L		09/15/17 12:24	1
1,2-Dichloropropane	ND	1.0		ug/L		09/15/17 12:24	1
1,4-Dichlorobenzene	ND	1.0		ug/L		09/15/17 12:24	1
2-Hexanone	ND	5.0		ug/L		09/15/17 12:24	1
2-Butanone (MEK)	ND	5.0		ug/L		09/15/17 12:24	1
4-Methyl-2-pentanone (MIBK)	ND ND	5.0		ug/L		09/15/17 12:24	1
Acetone	3.2 J	5.0		ug/L		09/15/17 12:24	1
Acrylonitrile	ND	5.0		ug/L		09/15/17 12:24	1
Benzene	ND	1.0		ug/L		09/15/17 12:24	
Bromochloromethane	ND	1.0		ug/L		09/15/17 12:24	1
Bromodichloromethane	ND	1.0		ug/L ug/L		09/15/17 12:24	,
Bromoform	ND	1.0		ug/L ug/L		09/15/17 12:24	
Bromomethane	ND	1.0		ug/L ug/L		09/15/17 12:24	
Carbon disulfide	ND ND	1.0		ug/L ug/L		09/15/17 12:24	
							1
Carbon tetrachloride	ND ND	1.0		ug/L		09/15/17 12:24	
Chlorobenzene	ND ND	1.0		ug/L		09/15/17 12:24	•
Chlorodibromomethane	ND	1.0		ug/L		09/15/17 12:24	1
Chloroethane	ND	1.0		ug/L		09/15/17 12:24	1
Chloroform	ND	1.0		ug/L		09/15/17 12:24	1
Chloromethane	ND	1.0		ug/L		09/15/17 12:24	1
cis-1,2-Dichloroethene	ND	1.0		ug/L		09/15/17 12:24	1
cis-1,3-Dichloropropene	ND	1.0		ug/L		09/15/17 12:24	1
Dibromomethane	ND	1.0		ug/L		09/15/17 12:24	1
Ethylbenzene	ND	1.0		ug/L		09/15/17 12:24	•
lodomethane	ND	1.0		ug/L		09/15/17 12:24	•
Methylene Chloride	ND	1.0		ug/L		09/15/17 12:24	1
Styrene	ND	1.0	0.73	ug/L		09/15/17 12:24	1
Tetrachloroethene	ND	1.0		ug/L		09/15/17 12:24	1
Toluene	ND	1.0	0.51	ug/L		09/15/17 12:24	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L		09/15/17 12:24	
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L		09/15/17 12:24	•
trans-1,4-Dichloro-2-butene	ND	5.0	0.22	ug/L		09/15/17 12:24	1
Trichloroethene	ND	1.0	0.46	ug/L		09/15/17 12:24	•
Trichlorofluoromethane	ND	1.0	0.88	ug/L		09/15/17 12:24	1
Vinyl acetate	ND	5.0		ug/L		09/15/17 12:24	1
Vinyl chloride	ND	1.0		ug/L		09/15/17 12:24	1
Xylenes, Total	ND	2.0		ug/L		09/15/17 12:24	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	77 - 120			-	09/15/17 12:24	1

TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client: CHA Inc

Client Sample ID: MW-9S

Lab Sample ID: 480-123848-2

Date Collected: 09/08/17 10:58 Matrix: Water Date Received: 09/09/17 01:45

Method: 8260C - Vo	olatile Organic (Compounds by	GC/MS	(Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120		09/15/17 12:24	1
4-Bromofluorobenzene (Surr)	98		73 - 120		09/15/17 12:24	1
Dibromofluoromethane (Surr)	103		75 - 123		09/15/17 12:24	1

Method:	6010C -	Metals	(ICP)	
---------	---------	--------	-------	--

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		09/12/17 08:30	09/12/17 20:04	1
Antimony	ND		0.020	0.0068	mg/L		09/12/17 08:30	09/12/17 20:04	1
Arsenic	ND		0.010	0.0056	mg/L		09/12/17 08:30	09/12/17 20:04	1
Barium	0.089		0.0020	0.00070	mg/L		09/12/17 08:30	09/12/17 20:04	1
Beryllium	ND		0.0020	0.00030	mg/L		09/12/17 08:30	09/12/17 20:04	1
Boron	0.77	В	0.020	0.0040	mg/L		09/12/17 08:30	09/12/17 20:04	1
Cadmium	ND		0.0010	0.00050	mg/L		09/12/17 08:30	09/12/17 20:04	1
Calcium	119		0.50	0.10	mg/L		09/12/17 08:30	09/12/17 20:04	1
Chromium	ND		0.0040	0.0010	mg/L		09/12/17 08:30	09/12/17 20:04	1
Cobalt	ND		0.0040	0.00063	mg/L		09/12/17 08:30	09/12/17 20:04	1
Copper	0.0060	J	0.010	0.0016	mg/L		09/12/17 08:30	09/12/17 20:04	1
Iron	0.019	J	0.050	0.019	mg/L		09/12/17 08:30	09/12/17 20:04	1
Lead	ND		0.0050	0.0030	mg/L		09/12/17 08:30	09/12/17 20:04	1
Magnesium	16.1		0.20	0.043	mg/L		09/12/17 08:30	09/12/17 20:04	1
Manganese	1.3		0.0030	0.00040	mg/L		09/12/17 08:30	09/12/17 20:04	1
Nickel	0.0054	J	0.010	0.0013	mg/L		09/12/17 08:30	09/12/17 20:04	1
Potassium	10.2		0.50	0.10	mg/L		09/12/17 08:30	09/12/17 20:04	1
Selenium	ND		0.015	0.0087	mg/L		09/12/17 08:30	09/12/17 20:04	1
Silver	ND		0.0030	0.0017	mg/L		09/12/17 08:30	09/12/17 20:04	1
Sodium	63.4		1.0	0.32	mg/L		09/12/17 08:30	09/12/17 20:04	1
Thallium	ND		0.020	0.010	mg/L		09/12/17 08:30	09/12/17 20:04	1
Vanadium	0.0054		0.0050	0.0015	ma/L		09/12/17 08:30	09/12/17 20:04	1

Method: 7470A - Mercury (CVA	Α	٠)
------------------------------	---	----

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	ND		0.00020	0.00012	ma/l		09/11/17 12:00	09/11/17 17:01	1	

0.010

0.0015 mg/L

09/12/17 08:30

09/12/17 20:04

0.0031 JB

General Chemistry

Zinc

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		1.0	0.37	mg/L			09/13/17 20:17	5
Chloride	45.7		2.5	1.4	mg/L			09/13/17 20:17	5
Sulfate	83.0		10.0	1.7	mg/L			09/13/17 20:17	5
Alkalinity, Total	359	В	50.0	20.0	mg/L			09/11/17 15:06	5
Ammonia as N	0.37	F1	0.020	0.0090	mg/L			09/12/17 12:15	1
Total Kjeldahl Nitrogen	1.1		0.20	0.15	mg/L		09/11/17 03:59	09/11/17 11:30	1
Nitrate	1.4		0.050	0.020	mg/L as N			09/09/17 14:59	1
Chemical Oxygen Demand	31.3	В	10.0	5.0	mg/L			09/11/17 20:09	1
Phenolics, Total Recoverable	0.0072	J	0.010	0.0050	mg/L		09/11/17 16:50	09/12/17 01:54	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/09/17 09:10	1
Cyanide	ND		0.010	0.0050	mg/L		09/13/17 04:15	09/13/17 13:47	1
Total Organic Carbon	11.6		1.0	0.43	mg/L			09/10/17 22:51	1
Total Hardness	380		10.0	2.6	mg/L			09/13/17 10:16	1
Total Dissolved Solids	575		10.0	4.0	mg/L			09/12/17 09:43	1

Client Sample Results

Client: CHA Inc TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-9S

Lab Sample ID: 480-123848-2

Date Collected: 09/08/17 10:58 **Matrix: Water** Date Received: 09/09/17 01:45

General Chemistry (Continued) RL MDL Unit D Dil Fac Analyte Result Qualifier Prepared Analyzed Biochemical Oxygen Demand 2.0 09/09/17 10:10 ND 2.0 mg/L RL Analyte Result Qualifier **RL** Unit D Prepared Analyzed Dil Fac Color 20.0 5.00 5.00 Color Units 09/09/17 09:45

Lab Sample ID: 480-123848-3 Client Sample ID: MW-9D

Date Collected: 09/08/17 12:00 Matrix: Water Date Received: 09/09/17 01:45

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 1,1,1,2-Tetrachloroethane 1.0 0.35 ug/L 09/15/17 12:50 ND 09/15/17 12:50 1,1,1-Trichloroethane 1.0 0.82 ug/L 1 ND 1.1.2.2-Tetrachloroethane 1.0 0.21 ug/L 09/15/17 12:50 1,1,2-Trichloroethane ND 1.0 0.23 ug/L 09/15/17 12:50 ND 0.38 ug/L 09/15/17 12:50 1 1-Dichloroethane 10 1,1-Dichloroethene ND 1.0 0.29 09/15/17 12:50 ug/L 1,2,3-Trichloropropane ND 1.0 0.89 ug/L 09/15/17 12:50 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 09/15/17 12:50 ug/L 1,2-Dibromoethane (EDB) ND 0.73 09/15/17 12:50 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 09/15/17 12:50 09/15/17 12:50 1,2-Dichloroethane ND 1.0 0.21 ug/L 0.72 ug/L 1,2-Dichloropropane ND 1.0 09/15/17 12:50 1,4-Dichlorobenzene ND 1.0 0.84 ug/L 09/15/17 12:50 2-Hexanone ND 5.0 1.2 ug/L 09/15/17 12:50 2-Butanone (MEK) ND 5.0 1.3 ug/L 09/15/17 12:50 2.1 ug/L 4-Methyl-2-pentanone (MIBK) ND 5.0 09/15/17 12:50 3.0 09/15/17 12:50 ND 5.0 ug/L 09/15/17 12:50 Acrylonitrile ND 5.0 0.83 ug/L Benzene ND 1.0 0.41 ug/L 09/15/17 12:50 ND 0.87 09/15/17 12:50 Bromochloromethane 1.0 ug/L Bromodichloromethane ND 1.0 0.39 ug/L 09/15/17 12:50 ug/L Bromoform ND 1.0 0.26 09/15/17 12:50 Bromomethane ND 1.0 0.69 ug/L 09/15/17 12:50 Carbon disulfide ND 1.0 0.19 ug/L 09/15/17 12:50 Carbon tetrachloride ND 1.0 0.27 ug/L 09/15/17 12:50 Chlorobenzene ND 1.0 0.75 ug/L 09/15/17 12:50 Chlorodibromomethane ND 0.32 09/15/17 12:50 1.0 ug/L Chloroethane ND 1.0 0.32 ug/L 09/15/17 12:50 Chloroform ND 10 0.34 ug/L 09/15/17 12:50 ND 0.35 09/15/17 12:50 Chloromethane 1.0 ug/L ND 0.81 cis-1.2-Dichloroethene 1.0 ug/L 09/15/17 12:50 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 09/15/17 12:50 ND 1.0 Dibromomethane 0.41 ug/L 09/15/17 12:50 Ethylbenzene ND 1.0 0.74 ug/L 09/15/17 12:50 Iodomethane ND 1.0 0.30 ug/L 09/15/17 12:50 Methylene Chloride ND 1.0 0.44 ug/L 09/15/17 12:50 Styrene ND 1.0 0.73 ug/L 09/15/17 12:50 Tetrachloroethene ND 1.0 0.36 ug/L 09/15/17 12:50 Toluene 09/15/17 12:50 ND 1.0 0.51 ug/L

Client: CHA Inc Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-9D

Lab Sample ID: 480-123848-3

Matrix: Water

Date Collected: 09/08/17 12:00 Date Received: 09/09/17 01:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/15/17 12:50	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/15/17 12:50	1
trans-1,4-Dichloro-2-butene	ND		5.0	0.22	ug/L			09/15/17 12:50	1
Trichloroethene	ND		1.0	0.46	ug/L			09/15/17 12:50	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/15/17 12:50	1
Vinyl acetate	ND		5.0	0.85	ug/L			09/15/17 12:50	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/15/17 12:50	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/15/17 12:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		77 - 120			-		09/15/17 12:50	1
Toluene-d8 (Surr)	100		80 - 120					09/15/17 12:50	1
4-Bromofluorobenzene (Surr)	97		73 - 120					09/15/17 12:50	1
Dibromofluoromethane (Surr)	102		75 ₋ 123					09/15/17 12:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.10	J	0.20	0.060	mg/L		09/12/17 08:30	09/12/17 20:07	1
Antimony	ND		0.020	0.0068	mg/L		09/12/17 08:30	09/12/17 20:07	1
Arsenic	0.015		0.010	0.0056	mg/L		09/12/17 08:30	09/12/17 20:07	1
Barium	0.057		0.0020	0.00070	mg/L		09/12/17 08:30	09/12/17 20:07	1
Beryllium	ND		0.0020	0.00030	mg/L		09/12/17 08:30	09/12/17 20:07	1
Boron	0.045	В	0.020	0.0040	mg/L		09/12/17 08:30	09/12/17 20:07	1
Cadmium	ND		0.0010	0.00050	mg/L		09/12/17 08:30	09/12/17 20:07	1
Calcium	23.8		0.50	0.10	mg/L		09/12/17 08:30	09/12/17 20:07	1
Chromium	ND		0.0040	0.0010	mg/L		09/12/17 08:30	09/12/17 20:07	1
Cobalt	ND		0.0040	0.00063	mg/L		09/12/17 08:30	09/12/17 20:07	1
Copper	ND		0.010	0.0016	mg/L		09/12/17 08:30	09/12/17 20:07	1
Iron	0.081		0.050	0.019	mg/L		09/12/17 08:30	09/12/17 20:07	1
Lead	ND		0.0050	0.0030	mg/L		09/12/17 08:30	09/12/17 20:07	1
Magnesium	4.4		0.20	0.043	mg/L		09/12/17 08:30	09/12/17 20:07	1
Manganese	0.0072		0.0030	0.00040	mg/L		09/12/17 08:30	09/12/17 20:07	1
Nickel	ND		0.010	0.0013	mg/L		09/12/17 08:30	09/12/17 20:07	1
Potassium	0.79		0.50	0.10	mg/L		09/12/17 08:30	09/12/17 20:07	1
Selenium	ND		0.015	0.0087	mg/L		09/12/17 08:30	09/12/17 20:07	1
Silver	ND		0.0030	0.0017	mg/L		09/12/17 08:30	09/12/17 20:07	1
Sodium	19.4		1.0	0.32	mg/L		09/12/17 08:30	09/12/17 20:07	1
Thallium	ND		0.020	0.010	mg/L		09/12/17 08:30	09/12/17 20:07	1
Vanadium	ND		0.0050	0.0015	mg/L		09/12/17 08:30	09/12/17 20:07	1
Zinc	0.0020	JB	0.010	0.0015	mg/L		09/12/17 08:30	09/12/17 20:07	1

Method: 7470A - Mercury (CVAA	A)							
Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.00020	0.00012	mg/L		09/11/17 12:00	09/11/17 17:03	1
General Chemistry								
Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND	0.20	0.073	mg/L			09/13/17 20:32	1
Chloride	7.4	0.50	0.28	mg/L			09/13/17 20:32	1
Sulfate	3.4	2.0	0.35	mg/L			09/13/17 20:32	1

TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-9D

Date Received: 09/09/17 01:45

Lab Sample ID: 480-123848-3 Date Collected: 09/08/17 12:00

Matrix: Water

General Chemistry (Continued) Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Alkalinity, Total 20.0 8.0 mg/L 09/11/17 15:06 104 Ammonia as N ND 0.020 0.0090 mg/L 09/12/17 12:20 1 Total Kjeldahl Nitrogen ND 0.20 0.15 mg/L 09/11/17 03:59 09/11/17 11:30 Nitrate ND 0.050 0.020 mg/L as N 09/09/17 13:57 **Chemical Oxygen Demand** 6.0 JB 10.0 5.0 mg/L 09/11/17 20:09 0.010 0.0050 mg/L 09/26/17 07:30 09/26/17 14:31 Phenolics, Total Recoverable 0.025 Chromium, hexavalent ND 0.010 0.0050 mg/L 09/09/17 09:10 Cyanide ND 0.010 0.0050 mg/L 09/13/17 04:15 09/13/17 13:48 0.43 mg/L 09/10/17 23:17 **Total Organic Carbon** 0.52 J 1.0 1.1 mg/L 4.0 09/13/17 10:16 **Total Hardness** 76.0 10.0 4.0 mg/L 09/12/17 09:43 **Total Dissolved Solids** 126 Biochemical Oxygen Demand ND 2.0 2.0 mg/L 09/09/17 10:10 Result Qualifier RL RL Unit Dil Fac Analyte D Prepared Analyzed

Client Sample ID: MW-10S Lab Sample ID: 480-123848-4

5.00

5.00 Color Units

ND

Matrix: Water

09/09/17 09:45

Date Collected: 09/08/17 14:00 Date Received: 09/09/17 01:45

Color

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/15/17 13:14	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/15/17 13:14	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/15/17 13:14	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/15/17 13:14	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/15/17 13:14	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/15/17 13:14	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/15/17 13:14	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/15/17 13:14	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/15/17 13:14	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/15/17 13:14	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/15/17 13:14	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/15/17 13:14	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/15/17 13:14	1
2-Hexanone	ND	5.0	1.2	ug/L			09/15/17 13:14	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/15/17 13:14	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/15/17 13:14	1
Acetone	13	5.0	3.0	ug/L			09/15/17 13:14	1
Acrylonitrile	ND	5.0	0.83	ug/L			09/15/17 13:14	1
Benzene	ND	1.0	0.41	ug/L			09/15/17 13:14	1
Bromochloromethane	ND	1.0	0.87	ug/L			09/15/17 13:14	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/15/17 13:14	1
Bromoform	ND	1.0	0.26	ug/L			09/15/17 13:14	1
Bromomethane	ND	1.0	0.69	ug/L			09/15/17 13:14	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/15/17 13:14	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/15/17 13:14	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/15/17 13:14	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/15/17 13:14	1
Chloroethane	ND	1.0	0.32	ug/L			09/15/17 13:14	1

TestAmerica Buffalo

Client: CHA Inc Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-10S

Date Received: 09/09/17 01:45

Date Collected: 09/08/17 14:00

Lab Sample ID: 480-123848-4 Matrix: Water

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	ND	1.0	0.34	ug/L			09/15/17 13:14	1
Chloromethane	ND	1.0	0.35	ug/L			09/15/17 13:14	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/15/17 13:14	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/15/17 13:14	1
Dibromomethane	ND	1.0	0.41	ug/L			09/15/17 13:14	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/15/17 13:14	1
lodomethane	ND	1.0	0.30	ug/L			09/15/17 13:14	1
Methylene Chloride	ND	1.0	0.44	ug/L			09/15/17 13:14	1
Styrene	ND	1.0	0.73	ug/L			09/15/17 13:14	1
Tetrachloroethene	ND	1.0	0.36	ug/L			09/15/17 13:14	1
Toluene	ND	1.0	0.51	ug/L			09/15/17 13:14	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			09/15/17 13:14	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			09/15/17 13:14	1
trans-1,4-Dichloro-2-butene	ND	5.0	0.22	ug/L			09/15/17 13:14	1
Trichloroethene	ND	1.0	0.46	ug/L			09/15/17 13:14	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			09/15/17 13:14	1
Vinyl acetate	ND	5.0	0.85	ug/L			09/15/17 13:14	1
Vinyl chloride	ND	1.0	0.90	ug/L			09/15/17 13:14	1
Xylenes, Total	ND	2.0	0.66	ug/L			09/15/17 13:14	1
Surrogate	%Recovery Q	ualifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	77 - 120			-		09/15/17 13:14	1
Toluene-d8 (Surr)	101	80 - 120					09/15/17 13:14	1
4-Bromofluorobenzene (Surr)	100	73 - 120					09/15/17 13:14	1
Dibromofluoromethane (Surr)	105	75 ₋ 123					09/15/17 13:14	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	6.6		0.20	0.060	mg/L		09/12/17 08:30	09/12/17 20:11	1
Antimony	ND		0.020	0.0068	mg/L		09/12/17 08:30	09/12/17 20:11	1
Arsenic	ND		0.010	0.0056	mg/L		09/12/17 08:30	09/12/17 20:11	1
Barium	0.097		0.0020	0.00070	mg/L		09/12/17 08:30	09/12/17 20:11	1
Beryllium	ND		0.0020	0.00030	mg/L		09/12/17 08:30	09/12/17 20:11	1
Boron	0.16	В	0.020	0.0040	mg/L		09/12/17 08:30	09/12/17 20:11	1
Cadmium	ND		0.0010	0.00050	mg/L		09/12/17 08:30	09/12/17 20:11	1
Calcium	128		0.50	0.10	mg/L		09/12/17 08:30	09/12/17 20:11	1
Chromium	0.018		0.0040	0.0010	mg/L		09/12/17 08:30	09/12/17 20:11	1
Cobalt	0.0032	J	0.0040	0.00063	mg/L		09/12/17 08:30	09/12/17 20:11	1
Copper	0.013		0.010	0.0016	mg/L		09/12/17 08:30	09/12/17 20:11	1
Iron	7.1		0.050	0.019	mg/L		09/12/17 08:30	09/12/17 20:11	1
Lead	0.019		0.0050	0.0030	mg/L		09/12/17 08:30	09/12/17 20:11	1
Magnesium	18.5		0.20	0.043	mg/L		09/12/17 08:30	09/12/17 20:11	1
Manganese	5.9		0.0030	0.00040	mg/L		09/12/17 08:30	09/12/17 20:11	1
Nickel	0.0094	J	0.010	0.0013	mg/L		09/12/17 08:30	09/12/17 20:11	1
Potassium	11.4		0.50	0.10	mg/L		09/12/17 08:30	09/12/17 20:11	1
Selenium	ND		0.015	0.0087	mg/L		09/12/17 08:30	09/12/17 20:11	1
Silver	ND		0.0030	0.0017	mg/L		09/12/17 08:30	09/12/17 20:11	1
Sodium	107		1.0	0.32	mg/L		09/12/17 08:30	09/12/17 20:11	1
Thallium	ND		0.020	0.010	mg/L		09/12/17 08:30	09/12/17 20:11	1
Vanadium	0.011		0.0050	0.0015	mg/L		09/12/17 08:30	09/12/17 20:11	1

TestAmerica Buffalo

Page 22 of 94

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Client Sample ID: MW-10S

Lab Sample ID: 480-123848-4

Matrix: Water

Date Collected: 09/08/17 14:00

Date	Receiv	ed:	09/09/1	17	01:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc	0.040	В	0.010	0.0015	mg/L		09/12/17 08:30	09/12/17 20:11	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/11/17 12:00	09/11/17 17:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.38		0.20	0.073	mg/L			09/13/17 20:46	1
Chloride	97.1		0.50	0.28	mg/L			09/13/17 20:46	1
Sulfate	63.4		2.0	0.35	mg/L			09/13/17 20:46	1
Alkalinity, Total	423	В	50.0	20.0	mg/L			09/11/17 15:29	5
Ammonia as N	0.056		0.020	0.0090	mg/L			09/12/17 12:21	1
Total Kjeldahl Nitrogen	0.52		0.20	0.15	mg/L		09/11/17 03:59	09/11/17 11:30	1
Nitrate	ND		0.050	0.020	mg/L as N			09/09/17 13:59	1
Chemical Oxygen Demand	12.0	В	10.0	5.0	mg/L			09/11/17 20:09	1
Phenolics, Total Recoverable	0.0099	J	0.010	0.0050	mg/L		09/11/17 16:50	09/12/17 02:00	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/09/17 09:10	1
Cyanide	ND	*	0.010	0.0050	mg/L		09/13/17 08:10	09/13/17 14:52	1
Total Organic Carbon	5.1		1.0	0.43	mg/L			09/11/17 01:29	1
Total Hardness	430		10.0	2.6	mg/L			09/13/17 10:16	1
Total Dissolved Solids	666		10.0	4.0	mg/L			09/12/17 09:43	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/09/17 10:10	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	ND		5.00	5.00	Color Units			09/09/17 09:45	1

Client Sample ID: MW-10I

Date Collected: 09/08/17 15:14

Lab Sample ID: 480-123848-5

Matrix: Water

Date Collected: 09/08/17 15:14 Date Received: 09/09/17 01:45

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/15/17 13:40	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/15/17 13:40	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/15/17 13:40	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/15/17 13:40	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/15/17 13:40	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/15/17 13:40	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/15/17 13:40	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/15/17 13:40	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/15/17 13:40	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/15/17 13:40	1
1,2-Dichloroethane	0.66 J	1.0	0.21	ug/L			09/15/17 13:40	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/15/17 13:40	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/15/17 13:40	1
2-Hexanone	ND	5.0	1.2	ug/L			09/15/17 13:40	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/15/17 13:40	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/15/17 13:40	1
Acetone	ND	5.0	3.0	ug/L			09/15/17 13:40	1
Acrylonitrile	ND	5.0	0.83	ug/L			09/15/17 13:40	1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-10I

Client: CHA Inc

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Date Collected: 09/08/17 15:14 Date Received: 09/09/17 01:45 Lab Sample ID: 480-123848-5

Matrix: Water

Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	1.0	0.41	ug/L			09/15/17 13:40	1
Bromochloromethane	ND	1.0	0.87	ug/L			09/15/17 13:40	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/15/17 13:40	1
Bromoform	ND	1.0	0.26	ug/L			09/15/17 13:40	1
Bromomethane	ND	1.0	0.69	ug/L			09/15/17 13:40	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/15/17 13:40	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/15/17 13:40	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/15/17 13:40	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/15/17 13:40	1
Chloroethane	ND	1.0	0.32	ug/L			09/15/17 13:40	1
Chloroform	ND	1.0	0.34	ug/L			09/15/17 13:40	1
Chloromethane	ND	1.0	0.35	ug/L			09/15/17 13:40	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/15/17 13:40	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/15/17 13:40	1
Dibromomethane	ND	1.0	0.41	ug/L			09/15/17 13:40	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/15/17 13:40	1
lodomethane	ND	1.0	0.30	ug/L			09/15/17 13:40	1
Methylene Chloride	ND	1.0	0.44	ug/L			09/15/17 13:40	1
Styrene	ND	1.0	0.73	ug/L			09/15/17 13:40	1
Tetrachloroethene	ND	1.0	0.36	ug/L			09/15/17 13:40	1
Toluene	ND	1.0	0.51	ug/L			09/15/17 13:40	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			09/15/17 13:40	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			09/15/17 13:40	1
trans-1,4-Dichloro-2-butene	ND	5.0	0.22	ug/L			09/15/17 13:40	1
Trichloroethene	ND	1.0	0.46	ug/L			09/15/17 13:40	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			09/15/17 13:40	1
Vinyl acetate	ND	5.0	0.85	ug/L			09/15/17 13:40	1
Vinyl chloride	ND	1.0	0.90	ug/L			09/15/17 13:40	1
Xylenes, Total	ND	2.0	0.66	ug/L			09/15/17 13:40	1
Surrogate	%Recovery Qualifie	er Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	77 - 120					09/15/17 13:40	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2.6		0.20	0.060	mg/L		09/12/17 08:30	09/12/17 20:25	1
Antimony	ND		0.020	0.0068	mg/L		09/12/17 08:30	09/12/17 20:25	1
Arsenic	ND		0.010	0.0056	mg/L		09/12/17 08:30	09/12/17 20:25	1
Barium	0.035		0.0020	0.00070	mg/L		09/12/17 08:30	09/12/17 20:25	1
Beryllium	ND		0.0020	0.00030	mg/L		09/12/17 08:30	09/12/17 20:25	1
Boron	0.15	В	0.020	0.0040	mg/L		09/12/17 08:30	09/12/17 20:25	1
Cadmium	ND		0.0010	0.00050	mg/L		09/12/17 08:30	09/12/17 20:25	1
Calcium	52.9		0.50	0.10	mg/L		09/12/17 08:30	09/12/17 20:25	1
Chromium	0.0037	J	0.0040	0.0010	mg/L		09/12/17 08:30	09/12/17 20:25	1
Cobalt	0.0013	J	0.0040	0.00063	mg/L		09/12/17 08:30	09/12/17 20:25	1
Copper	0.0055	J	0.010	0.0016	mg/L		09/12/17 08:30	09/12/17 20:25	1
Iron	2.7		0.050	0.019	mg/L		09/12/17 08:30	09/12/17 20:25	1

80 - 120

73 - 120

75 - 123

100

97

102

TestAmerica Buffalo

09/15/17 13:40

09/15/17 13:40

09/15/17 13:40

Page 24 of 94

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Client Sample ID: MW-10I

Lab Sample ID: 480-123848-5

Matrix: Water

Date Collected: 09/08/17 15:14 Date Received: 09/09/17 01:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	0.0093		0.0050	0.0030	mg/L		09/12/17 08:30	09/12/17 20:25	1
Magnesium	15.6		0.20	0.043	mg/L		09/12/17 08:30	09/12/17 20:25	1
Manganese	0.49		0.0030	0.00040	mg/L		09/12/17 08:30	09/12/17 20:25	1
Nickel	0.0029	J	0.010	0.0013	mg/L		09/12/17 08:30	09/12/17 20:25	1
Potassium	6.7		0.50	0.10	mg/L		09/12/17 08:30	09/12/17 20:25	1
Selenium	ND		0.015	0.0087	mg/L		09/12/17 08:30	09/12/17 20:25	1
Silver	ND		0.0030	0.0017	mg/L		09/12/17 08:30	09/12/17 20:25	1
Sodium	7.6		1.0	0.32	mg/L		09/12/17 08:30	09/12/17 20:25	1
Thallium	ND		0.020	0.010	mg/L		09/12/17 08:30	09/12/17 20:25	1
Vanadium	0.0050		0.0050	0.0015	mg/L		09/12/17 08:30	09/12/17 20:25	1
Zinc	0.027	В	0.010	0.0015	mg/L		09/12/17 08:30	09/12/17 20:25	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/11/17 12:00	09/11/17 17:06	1

			0.00020	0.000.2	9/ =				
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20	0.073	mg/L			09/13/17 22:14	1
Chloride	4.3		0.50	0.28	mg/L			09/13/17 22:14	1
Sulfate	19.0		2.0	0.35	mg/L			09/13/17 22:14	1
Alkalinity, Total	197	В	20.0	8.0	mg/L			09/11/17 15:16	2
Ammonia as N	1.1		0.020	0.0090	mg/L			09/12/17 12:22	1
Total Kjeldahl Nitrogen	1.5		0.20	0.15	mg/L		09/11/17 03:59	09/11/17 11:30	1
Nitrate	ND		0.050	0.020	mg/L as N			09/09/17 14:00	1
Chemical Oxygen Demand	ND		10.0	5.0	mg/L			09/11/17 20:09	1
Phenolics, Total Recoverable	0.0073	J	0.010	0.0050	mg/L		09/11/17 16:50	09/12/17 02:00	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/09/17 09:10	1
Cyanide	ND		0.010	0.0050	mg/L		09/15/17 10:41	09/18/17 10:26	1
Total Organic Carbon	1.6		1.0	0.43	mg/L			09/11/17 02:22	1
Total Hardness	196		4.0	1.1	mg/L			09/13/17 10:16	1
Total Dissolved Solids	255		10.0	4.0	mg/L			09/12/17 09:43	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/09/17 10:10	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	ND		5.00	5.00	Color Units			09/09/17 09:45	1

Client Sample ID: MW-10D

Date Collected: 09/08/17 14:55

Date Received: 09/09/17 01:45

Lab Sample ID: 480-123848-6

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/15/17 03:35	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/15/17 03:35	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/15/17 03:35	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/15/17 03:35	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/15/17 03:35	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/15/17 03:35	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/15/17 03:35	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/15/17 03:35	1

TestAmerica Buffalo

Page 25 of 94

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-10D

Lab Sample ID: 480-123848-6

Matrix: Water

Date Collected: 09/08/17 14:55 Date Received: 09/09/17 01:45

Antimony

Method: 8260C - Volatile Organi Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			09/15/17 03:35	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/15/17 03:35	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			09/15/17 03:35	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			09/15/17 03:35	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/15/17 03:35	1
2-Hexanone	ND	*	5.0	1.2	ug/L			09/15/17 03:35	1
2-Butanone (MEK)	ND	*	5.0	1.3	ug/L			09/15/17 03:35	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/15/17 03:35	1
Acetone	ND		5.0	3.0	ug/L			09/15/17 03:35	1
Acrylonitrile	ND		5.0	0.83	ug/L			09/15/17 03:35	1
Benzene	ND		1.0	0.41	ug/L			09/15/17 03:35	1
Bromochloromethane	ND		1.0	0.87	ug/L			09/15/17 03:35	1
Bromodichloromethane	ND		1.0	0.39	ug/L			09/15/17 03:35	1
Bromoform	ND		1.0	0.26	ug/L			09/15/17 03:35	1
Bromomethane	ND		1.0	0.69				09/15/17 03:35	1
Carbon disulfide	ND		1.0	0.19	-			09/15/17 03:35	1
Carbon tetrachloride	ND		1.0	0.27				09/15/17 03:35	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/15/17 03:35	1
Chlorodibromomethane	ND		1.0	0.32				09/15/17 03:35	1
Chloroethane	ND		1.0	0.32				09/15/17 03:35	1
Chloroform	ND		1.0	0.34				09/15/17 03:35	1
Chloromethane	ND		1.0	0.35	ug/L			09/15/17 03:35	1
cis-1,2-Dichloroethene	ND		1.0	0.81				09/15/17 03:35	1
cis-1,3-Dichloropropene	ND		1.0	0.36				09/15/17 03:35	1
Dibromomethane	ND		1.0	0.41				09/15/17 03:35	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/15/17 03:35	1
Iodomethane	ND		1.0	0.30	ug/L			09/15/17 03:35	1
Methylene Chloride	ND		1.0	0.44				09/15/17 03:35	1
Styrene	ND		1.0	0.73	_			09/15/17 03:35	1
Tetrachloroethene	ND		1.0	0.36				09/15/17 03:35	1
Toluene	ND		1.0	0.51	-			09/15/17 03:35	1
trans-1,2-Dichloroethene	ND		1.0	0.90				09/15/17 03:35	1
trans-1,3-Dichloropropene	ND		1.0	0.37	_			09/15/17 03:35	1
trans-1,4-Dichloro-2-butene	ND		5.0	0.22	-			09/15/17 03:35	1
Trichloroethene	ND		1.0		ug/L			09/15/17 03:35	1
Trichlorofluoromethane	ND		1.0	0.88	-			09/15/17 03:35	1
Vinyl acetate	ND	*	5.0		ug/L			09/15/17 03:35	1
Vinyl chloride	ND		1.0		ug/L			09/15/17 03:35	1
Xylenes, Total	ND		2.0	0.66				09/15/17 03:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		77 - 120			-		09/15/17 03:35	1
Toluene-d8 (Surr)	100		80 - 120					09/15/17 03:35	1
4-Bromofluorobenzene (Surr)	99		73 - 120					09/15/17 03:35	1
Dibromofluoromethane (Surr)	103		75 - 123					09/15/17 03:35	1
Method: 6010C - Metals (ICP)									
metriod. 00 100 - metals (101)									
Analyte	Result	Qualifier	RL 0.20	MDL 0.060	Unit	D	Prepared	Analyzed	Dil Fac

TestAmerica Buffalo

09/12/17 20:29

09/12/17 08:30

0.020

ND

0.0068 mg/L

5

7

9

Lab Sample ID: 480-123848-6

TestAmerica Job ID: 480-123780-1

Matrix: Water

Client Sample ID: MW-10D Date Collected: 09/08/17 14:55

Date Received: 09/09/17 01:45

Method: 6010C - Metals (IC	P) (Continued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.013		0.010	0.0056	mg/L		09/12/17 08:30	09/12/17 20:29	1
Barium	0.038		0.0020	0.00070	mg/L		09/12/17 08:30	09/12/17 20:29	1
Beryllium	ND		0.0020	0.00030	mg/L		09/12/17 08:30	09/12/17 20:29	1
Boron	0.054	В	0.020	0.0040	mg/L		09/12/17 08:30	09/12/17 20:29	1
Cadmium	ND		0.0010	0.00050	mg/L		09/12/17 08:30	09/12/17 20:29	1
Calcium	14.7		0.50	0.10	mg/L		09/12/17 08:30	09/12/17 20:29	1
Chromium	ND		0.0040	0.0010	mg/L		09/12/17 08:30	09/12/17 20:29	1
Cobalt	ND		0.0040	0.00063	mg/L		09/12/17 08:30	09/12/17 20:29	1
Copper	ND		0.010	0.0016	mg/L		09/12/17 08:30	09/12/17 20:29	1
Iron	0.19		0.050	0.019	mg/L		09/12/17 08:30	09/12/17 20:29	1
Lead	ND		0.0050	0.0030	mg/L		09/12/17 08:30	09/12/17 20:29	1
Magnesium	3.1		0.20	0.043	mg/L		09/12/17 08:30	09/12/17 20:29	1
Manganese	0.035		0.0030	0.00040	mg/L		09/12/17 08:30	09/12/17 20:29	1
Nickel	ND		0.010	0.0013	mg/L		09/12/17 08:30	09/12/17 20:29	1
Potassium	0.57		0.50	0.10	mg/L		09/12/17 08:30	09/12/17 20:29	1
Selenium	ND		0.015	0.0087	mg/L		09/12/17 08:30	09/12/17 20:29	1
Silver	ND		0.0030	0.0017	mg/L		09/12/17 08:30	09/12/17 20:29	1
Sodium	23.7		1.0	0.32	mg/L		09/12/17 08:30	09/12/17 20:29	1
Thallium	ND		0.020	0.010	mg/L		09/12/17 08:30	09/12/17 20:29	1
Vanadium	ND		0.0050	0.0015	mg/L		09/12/17 08:30	09/12/17 20:29	1
Zinc	0.0027	JB	0.010	0.0015	mg/L		09/12/17 08:30	09/12/17 20:29	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	ma/l		09/11/17 12:00	09/11/17 17:07	1

General Chemistry Analyte	Pocult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND	Qualifier	0.20	0.073		_ =	riepaieu	09/13/17 22:29	1
Chloride	0.88		0.50		mg/L			09/13/17 22:29	1
Sulfate	2.8		2.0	0.35	mg/L			09/13/17 22:29	1
Alkalinity, Total	103	В	20.0	8.0	mg/L			09/11/17 15:16	2
Ammonia as N	0.14		0.020	0.0090	mg/L			09/12/17 12:23	1
Total Kjeldahl Nitrogen	0.23		0.20	0.15	mg/L		09/11/17 03:59	09/11/17 11:30	1
Nitrate	ND		0.050	0.020	mg/L as N			09/09/17 14:01	1
Chemical Oxygen Demand	13.6	В	10.0	5.0	mg/L			09/11/17 20:09	1
Phenolics, Total Recoverable	ND		0.010	0.0050	mg/L		09/11/17 16:50	09/12/17 02:00	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/09/17 09:10	1
Cyanide	0.0067	J *	0.010	0.0050	mg/L		09/13/17 08:10	09/13/17 14:57	1
Total Organic Carbon	0.56	J	1.0	0.43	mg/L			09/11/17 03:15	1
Total Hardness	56.0		4.0	1.1	mg/L			09/15/17 10:45	1
Total Dissolved Solids	107		10.0	4.0	mg/L			09/12/17 09:43	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/09/17 10:10	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	ND		5.00	5.00	Color Units			09/09/17 09:45	1

Client Sample ID: CHA-1

Lab Sample ID: 480-123848-7 Date Collected: 09/08/17 10:30

Matrix: Water

Date Received: 09/09/17 01:45

Method: 8260C - Volatile Organ Analyte	Result Qu		MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	1.0		ug/L		09/15/17 04:01	1
1,1,1-Trichloroethane	ND	1.0	0.82			09/15/17 04:01	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21			09/15/17 04:01	1
1,1,2-Trichloroethane	ND	1.0		ug/L		09/15/17 04:01	1
1,1-Dichloroethane	ND	1.0		ug/L		09/15/17 04:01	1
1,1-Dichloroethene	ND	1.0		ug/L		09/15/17 04:01	1
1,2,3-Trichloropropane	ND	1.0		ug/L		09/15/17 04:01	1
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L		09/15/17 04:01	1
1,2-Dibromoethane (EDB)	ND	1.0		ug/L		09/15/17 04:01	1
1,2-Dichlorobenzene	ND	1.0		ug/L		09/15/17 04:01	1
1,2-Dichloroethane	ND	1.0		ug/L		09/15/17 04:01	1
1,2-Dichloropropane	ND	1.0		ug/L		09/15/17 04:01	1
1,4-Dichlorobenzene	ND	1.0		ug/L		09/15/17 04:01	1
2-Hexanone	ND *	5.0		ug/L		09/15/17 04:01	1
2-Butanone (MEK)	ND *	5.0		ug/L		09/15/17 04:01	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1			09/15/17 04:01	1
Acetone (MIST)	ND	5.0		ug/L		09/15/17 04:01	1
Acrylonitrile	ND	5.0		ug/L		09/15/17 04:01	1
Benzene	ND	1.0		ug/L		09/15/17 04:01	1
Bromochloromethane	ND	1.0		ug/L		09/15/17 04:01	1
Bromodichloromethane	ND	1.0		ug/L		09/15/17 04:01	1
Bromoform	ND	1.0		ug/L		09/15/17 04:01	1
Bromomethane	ND	1.0		ug/L		09/15/17 04:01	1
Carbon disulfide	ND	1.0		ug/L		09/15/17 04:01	1
Carbon tetrachloride	ND	1.0		ug/L		09/15/17 04:01	1
Chlorobenzene	ND	1.0		ug/L		09/15/17 04:01	1
Chlorodibromomethane	ND	1.0		ug/L		09/15/17 04:01	1
Chloroethane	ND	1.0	0.32	_		09/15/17 04:01	1
Chloroform	ND	1.0	0.34			09/15/17 04:01	1
Chloromethane	ND	1.0		ug/L		09/15/17 04:01	1
cis-1,2-Dichloroethene	ND	1.0		ug/L		09/15/17 04:01	1
cis-1,3-Dichloropropene	ND	1.0		ug/L		09/15/17 04:01	1
Dibromomethane	ND	1.0		ug/L		09/15/17 04:01	1
Ethylbenzene	ND	1.0		ug/L		09/15/17 04:01	1
Iodomethane	ND	1.0		ug/L		09/15/17 04:01	1
Methylene Chloride	ND	1.0		ug/L		09/15/17 04:01	1
Styrene	ND	1.0		ug/L		09/15/17 04:01	1
Tetrachloroethene	ND	1.0		ug/L		09/15/17 04:01	1
Toluene	ND	1.0		ug/L		09/15/17 04:01	1
trans-1,2-Dichloroethene	ND	1.0		ug/L		09/15/17 04:01	1
trans-1,3-Dichloropropene	ND ND	1.0		ug/L ug/L		09/15/17 04:01	1
trans-1,4-Dichloro-2-butene	ND	5.0		ug/L		09/15/17 04:01	1
Trichloroethene	ND	1.0		ug/L		09/15/17 04:01	1
Trichlorofluoromethane	ND	1.0		ug/L		09/15/17 04:01	1
Vinyl acetate	ND *	5.0		ug/L ug/L		09/15/17 04:01	1
viiryi acciaic		1.0		ug/L ug/L		09/15/17 04:01	1
Vinyl chloride				uu/L		00/10/1/ U 1 .U1	
Vinyl chloride Xylenes, Total	ND ND	2.0		ug/L		09/15/17 04:01	1
•		2.0		_	Prepared		1 Dil Fac

TestAmerica Buffalo

Page 28 of 94

TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: CHA-1

Date Received: 09/09/17 01:45

Client: CHA Inc

Lab Sample ID: 480-123848-7 Date Collected: 09/08/17 10:30

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	80 - 120		09/15/17 04:01	1
4-Bromofluorobenzene (Surr)	97	73 - 120		09/15/17 04:01	1
Dibromofluoromethane (Surr)	105	75 - 123		09/15/17 04:01	1

Method: 6010C - Metals (ICP)							_		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		09/12/17 08:30	09/12/17 20:32	1
Antimony	ND		0.020	0.0068	mg/L		09/12/17 08:30	09/12/17 20:32	1
Arsenic	ND		0.010	0.0056	mg/L		09/12/17 08:30	09/12/17 20:32	1
Barium	0.086		0.0020	0.00070	mg/L		09/12/17 08:30	09/12/17 20:32	1
Beryllium	ND		0.0020	0.00030	mg/L		09/12/17 08:30	09/12/17 20:32	1
Boron	0.75	В	0.020	0.0040	mg/L		09/12/17 08:30	09/12/17 20:32	1
Cadmium	ND		0.0010	0.00050	mg/L		09/12/17 08:30	09/12/17 20:32	1
Calcium	117		0.50	0.10	mg/L		09/12/17 08:30	09/12/17 20:32	1
Chromium	ND		0.0040	0.0010	mg/L		09/12/17 08:30	09/12/17 20:32	1
Cobalt	ND		0.0040	0.00063	mg/L		09/12/17 08:30	09/12/17 20:32	1
Copper	0.0048	J	0.010	0.0016	mg/L		09/12/17 08:30	09/12/17 20:32	1
Iron	ND		0.050	0.019	mg/L		09/12/17 08:30	09/12/17 20:32	1
Lead	ND		0.0050	0.0030	mg/L		09/12/17 08:30	09/12/17 20:32	1
Magnesium	15.7		0.20	0.043	mg/L		09/12/17 08:30	09/12/17 20:32	1
Manganese	1.3		0.0030	0.00040	mg/L		09/12/17 08:30	09/12/17 20:32	1
Nickel	0.0025	J	0.010	0.0013	mg/L		09/12/17 08:30	09/12/17 20:32	1
Potassium	9.9		0.50	0.10	mg/L		09/12/17 08:30	09/12/17 20:32	1
Selenium	ND		0.015	0.0087	mg/L		09/12/17 08:30	09/12/17 20:32	1
Silver	ND		0.0030	0.0017	mg/L		09/12/17 08:30	09/12/17 20:32	1
Sodium	61.5		1.0	0.32	mg/L		09/12/17 08:30	09/12/17 20:32	1
Thallium	ND		0.020	0.010	mg/L		09/12/17 08:30	09/12/17 20:32	1
Vanadium	0.0054		0.0050	0.0015	mg/L		09/12/17 08:30	09/12/17 20:32	1
Zinc	0.0035	JB	0.010	0.0015	mg/L		09/12/17 08:30	09/12/17 20:32	1

Method: /4/UA - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	ma/l		09/11/17 12:00	09/11/17 17:10	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		1.0	0.37	mg/L			09/13/17 22:43	5
Chloride	45.4		2.5	1.4	mg/L			09/13/17 22:43	5
Sulfate	82.9		10.0	1.7	mg/L			09/13/17 22:43	5
Alkalinity, Total	388	В	40.0	16.0	mg/L			09/11/17 15:47	4
Ammonia as N	0.34		0.020	0.0090	mg/L			09/12/17 12:24	1
Total Kjeldahl Nitrogen	1.1		0.20	0.15	mg/L		09/11/17 03:59	09/11/17 11:30	1
Nitrate	1.5		0.050	0.020	mg/L as N			09/09/17 15:00	1
Chemical Oxygen Demand	11.1	F1 B	10.0	5.0	mg/L			09/11/17 20:09	1
Phenolics, Total Recoverable	0.0071	J	0.010	0.0050	mg/L		09/11/17 16:50	09/12/17 02:00	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/09/17 09:10	1
Cyanide	ND	*	0.010	0.0050	mg/L		09/13/17 08:10	09/13/17 14:59	1
Total Organic Carbon	11.6		1.0	0.43	mg/L			09/11/17 03:41	1
Total Hardness	368		4.0	1.1	mg/L			09/15/17 10:45	1
Total Dissolved Solids	555		10.0	4.0	mg/L			09/11/17 20:54	1

TestAmerica Buffalo

Client Sample Results

Client: CHA Inc TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: CHA-1

Lab Sample ID: 480-123848-7 Date Collected: 09/08/17 10:30

Matrix: Water

Date Received: 09/09/17 01:45

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/09/17 10:10	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	15.0		5.00	5.00	Color Units			09/09/17 09:45	1

Client Sample ID: Trip Blank Lab Sample ID: 480-123848-8

Date Collected: 09/08/17 00:00

Matrix: Water Date Received: 09/09/17 01:45

Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	0.35	ug/L		09/15/17 04:26	1
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L		09/15/17 04:26	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L		09/15/17 04:26	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L		09/15/17 04:26	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L		09/15/17 04:26	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L		09/15/17 04:26	1
1,2,3-Trichloropropane	ND		1.0	0.89	ug/L		09/15/17 04:26	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L		09/15/17 04:26	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L		09/15/17 04:26	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L		09/15/17 04:26	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L		09/15/17 04:26	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L		09/15/17 04:26	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L		09/15/17 04:26	1
2-Hexanone	ND	*	5.0	1.2	ug/L		09/15/17 04:26	1
2-Butanone (MEK)	ND	*	5.0	1.3	ug/L		09/15/17 04:26	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L		09/15/17 04:26	1
Acetone	ND		5.0	3.0	ug/L		09/15/17 04:26	1
Acrylonitrile	ND		5.0	0.83	ug/L		09/15/17 04:26	1
Benzene	ND		1.0	0.41	ug/L		09/15/17 04:26	1
Bromochloromethane	ND		1.0	0.87	ug/L		09/15/17 04:26	1
Bromodichloromethane	ND		1.0	0.39	ug/L		09/15/17 04:26	1
Bromoform	ND		1.0	0.26	ug/L		09/15/17 04:26	1
Bromomethane	ND		1.0	0.69	ug/L		09/15/17 04:26	•
Carbon disulfide	ND		1.0	0.19	ug/L		09/15/17 04:26	1
Carbon tetrachloride	ND		1.0	0.27	ug/L		09/15/17 04:26	1
Chlorobenzene	ND		1.0	0.75	ug/L		09/15/17 04:26	1
Chlorodibromomethane	ND		1.0	0.32	ug/L		09/15/17 04:26	1
Chloroethane	ND		1.0	0.32	ug/L		09/15/17 04:26	1
Chloroform	ND		1.0	0.34	ug/L		09/15/17 04:26	1
Chloromethane	ND		1.0	0.35	ug/L		09/15/17 04:26	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L		09/15/17 04:26	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L		09/15/17 04:26	1
Dibromomethane	ND		1.0	0.41	ug/L		09/15/17 04:26	1
Ethylbenzene	ND		1.0	0.74	ug/L		09/15/17 04:26	1
lodomethane	ND		1.0	0.30	ug/L		09/15/17 04:26	1
Methylene Chloride	ND		1.0	0.44	ug/L		09/15/17 04:26	1
Styrene	ND		1.0	0.73	ug/L		09/15/17 04:26	1
Tetrachloroethene	ND		1.0	0.36	ug/L		09/15/17 04:26	1
Toluene	ND		1.0	0.51	ug/L		09/15/17 04:26	1

TestAmerica Buffalo

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Client Sample ID: Trip Blank

Lab Sample ID: 480-123848-8 Date Collected: 09/08/17 00:00

Matrix: Water

Date Received: 09/09/17 01:45

Method: 8260C - Volatile Orga	nic Compounds by	GC/MS (Continued)						
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/15/17 04:26	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/15/17 04:26	1
trans-1,4-Dichloro-2-butene	ND		5.0	0.22	ug/L			09/15/17 04:26	1
Trichloroethene	ND		1.0	0.46	ug/L			09/15/17 04:26	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/15/17 04:26	1
Vinyl acetate	ND *	•	5.0	0.85	ug/L			09/15/17 04:26	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/15/17 04:26	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/15/17 04:26	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		77 - 120					09/15/17 04:26	1
Toluene-d8 (Surr)	100		80 - 120					09/15/17 04:26	1
4-Bromofluorobenzene (Surr)	97		73 - 120					09/15/17 04:26	1
Dibromofluoromethane (Surr)	105		75 - 123					09/15/17 04:26	1

Lab Sample ID: 480-123947-1 **Client Sample ID: MW-18S**

Date Collected: 09/11/17 09:55 **Matrix: Water**

Date Received: 09/12/17 01:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/17/17 15:22	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/17/17 15:22	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/17/17 15:22	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/17/17 15:22	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/17/17 15:22	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/17/17 15:22	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/17/17 15:22	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/17/17 15:22	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/17/17 15:22	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/17/17 15:22	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/17/17 15:22	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/17/17 15:22	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/17/17 15:22	1
2-Hexanone	ND	5.0	1.2	ug/L			09/17/17 15:22	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/17/17 15:22	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/17/17 15:22	1
Acetone	3.1 J	5.0	3.0	ug/L			09/17/17 15:22	1
Acrylonitrile	ND	5.0	0.83	ug/L			09/17/17 15:22	1
Benzene	ND	1.0	0.41	ug/L			09/17/17 15:22	1
Bromochloromethane	ND	1.0	0.87	ug/L			09/17/17 15:22	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/17/17 15:22	1
Bromoform	ND	1.0	0.26	ug/L			09/17/17 15:22	1
Bromomethane	ND	1.0	0.69	ug/L			09/17/17 15:22	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/17/17 15:22	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/17/17 15:22	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/17/17 15:22	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/17/17 15:22	1
Chloroethane	ND	1.0	0.32	ug/L			09/17/17 15:22	1
Chloroform	ND	1.0	0.34	ug/L			09/17/17 15:22	1

TestAmerica Buffalo

09/17/17 15:22

09/17/17 15:22

09/17/17 15:22

09/17/17 15:22

Client: CHA Inc

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-18S

Date Collected: 09/11/17 09:55 Date Received: 09/12/17 01:30

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 480-123947-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND		1.0	0.35	ug/L			09/17/17 15:22	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/17/17 15:22	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/17/17 15:22	1
Dibromomethane	ND		1.0	0.41	ug/L			09/17/17 15:22	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/17/17 15:22	1
lodomethane	ND		1.0	0.30	ug/L			09/17/17 15:22	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/17/17 15:22	1
Styrene	ND		1.0	0.73	ug/L			09/17/17 15:22	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/17/17 15:22	1
Toluene	ND		1.0	0.51	ug/L			09/17/17 15:22	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/17/17 15:22	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/17/17 15:22	1
trans-1,4-Dichloro-2-butene	ND		5.0	0.22	ug/L			09/17/17 15:22	1
Trichloroethene	ND		1.0	0.46	ug/L			09/17/17 15:22	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/17/17 15:22	1
Vinyl acetate	ND		5.0	0.85	ug/L			09/17/17 15:22	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/17/17 15:22	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/17/17 15:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

77 - 120

80 - 120

73 - 120

75 - 123

99

103

103

99

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		09/13/17 08:35	09/15/17 02:41	1
Antimony	ND		0.020	0.0068	mg/L		09/13/17 08:35	09/15/17 02:41	1
Arsenic	ND		0.010	0.0056	mg/L		09/13/17 08:35	09/15/17 02:41	1
Barium	0.0070		0.0020	0.00070	mg/L		09/13/17 08:35	09/15/17 02:41	1
Beryllium	ND		0.0020	0.00030	mg/L		09/13/17 08:35	09/15/17 02:41	1
Boron	0.054		0.020	0.0040	mg/L		09/13/17 08:35	09/15/17 02:41	1
Cadmium	ND		0.0010	0.00050	mg/L		09/13/17 08:35	09/15/17 02:41	1
Calcium	145		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 02:41	1
Chromium	ND		0.0040	0.0010	mg/L		09/13/17 08:35	09/15/17 02:41	1
Cobalt	0.0032	J	0.0040	0.00063	mg/L		09/13/17 08:35	09/15/17 02:41	1
Copper	ND		0.010	0.0016	mg/L		09/13/17 08:35	09/15/17 02:41	1
Iron	4.0	В	0.050	0.019	mg/L		09/13/17 08:35	09/15/17 02:41	1
Lead	ND		0.0050	0.0030	mg/L		09/13/17 08:35	09/15/17 02:41	1
Magnesium	23.3		0.20	0.043	mg/L		09/13/17 08:35	09/15/17 02:41	1
Manganese	4.5	В	0.0030	0.00040	mg/L		09/13/17 08:35	09/15/17 02:41	1
Nickel	0.0061	J	0.010	0.0013	mg/L		09/13/17 08:35	09/15/17 02:41	1
Potassium	0.78		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 02:41	1
Selenium	ND		0.015	0.0087	mg/L		09/13/17 08:35	09/15/17 02:41	1
Silver	ND		0.0030	0.0017	mg/L		09/13/17 08:35	09/15/17 02:41	1
Sodium	41.8		1.0	0.32	mg/L		09/13/17 08:35	09/15/17 02:41	1
Thallium	ND		0.020	0.010	mg/L		09/13/17 08:35	09/15/17 02:41	1
Vanadium	ND		0.0050	0.0015	mg/L		09/13/17 08:35	09/15/17 02:41	1
Zinc	0.0024	JB	0.010	0.0015	mg/L		09/13/17 08:35	09/15/17 02:41	1

TestAmerica Buffalo

Λ

5

7

10

Client: CHA Inc

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012			09/13/17 12:15	09/13/17 15:58	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		1.0	0.37	mg/L			09/13/17 23:27	5
Chloride	130		2.5	1.4	mg/L			09/13/17 23:27	5
Sulfate	30.1		10.0	1.7	mg/L			09/13/17 23:27	5
Alkalinity, Total	356	В	50.0	20.0	mg/L			09/12/17 15:45	5
Ammonia as N	0.058		0.020	0.0090	mg/L			09/12/17 13:13	1
Total Kjeldahl Nitrogen	0.60		0.20	0.15	mg/L		09/12/17 18:30	09/13/17 11:19	1
Nitrate	ND		0.050	0.020	mg/L as N			09/12/17 15:59	1
Chemical Oxygen Demand	13.3		10.0	5.0	mg/L			09/12/17 18:56	1
Phenolics, Total Recoverable	0.0069	JB	0.010	0.0050	mg/L		09/13/17 04:35	09/13/17 14:41	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/12/17 04:16	1
Cyanide	ND	*	0.010	0.0050	mg/L		09/13/17 08:10	09/13/17 15:00	1
Total Organic Carbon	9.0	В	1.0	0.43	mg/L			09/13/17 19:38	1
Total Hardness	490		10.0	2.6	mg/L			09/15/17 10:45	1
Total Dissolved Solids	710		10.0	4.0	mg/L			09/12/17 10:52	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/13/17 05:28	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	25.0		5.00	5.00	Color Units			09/12/17 17:20	1

Client Sample ID: MW-18IR Lab Sample ID: 480-123947-2 Date Collected: 09/11/17 10:55 **Matrix: Water**

Date Received: 09/12/17 01:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/17/17 15:46	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/17/17 15:46	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/17/17 15:46	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/17/17 15:46	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/17/17 15:46	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/17/17 15:46	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/17/17 15:46	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/17/17 15:46	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/17/17 15:46	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/17/17 15:46	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/17/17 15:46	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/17/17 15:46	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/17/17 15:46	1
2-Hexanone	ND	5.0	1.2	ug/L			09/17/17 15:46	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/17/17 15:46	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/17/17 15:46	1
Acetone	ND	5.0	3.0	ug/L			09/17/17 15:46	1
Acrylonitrile	ND	5.0	0.83	ug/L			09/17/17 15:46	1
Benzene	ND	1.0	0.41	ug/L			09/17/17 15:46	1
Bromochloromethane	ND	1.0	0.87	ug/L			09/17/17 15:46	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/17/17 15:46	1
Bromoform	ND	1.0	0.26	ug/L			09/17/17 15:46	1
Bromomethane	ND	1.0	0.69	ug/L			09/17/17 15:46	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/17/17 15:46	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/17/17 15:46	1

Client: CHA Inc

Vinyl chloride

Xylenes, Total

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Lab Sample ID: 480-123947-2

09/17/17 15:46

09/17/17 15:46

Matrix: Water

Client Sample ID: MW-18IR Date Collected: 09/11/17 10:55

Date Received: 09/12/17 01:30

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Dil Fac Analyte Result Qualifier MDL Unit D Prepared Analyzed Chlorobenzene ND 1.0 0.75 ug/L 09/17/17 15:46 Chlorodibromomethane ND 1.0 09/17/17 15:46 0.32 ug/L Chloroethane ND 1.0 0.32 ug/L 09/17/17 15:46 Chloroform ND 1.0 0.34 ug/L 09/17/17 15:46 Chloromethane ND 1.0 0.35 ug/L 09/17/17 15:46 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 09/17/17 15:46 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 09/17/17 15:46 Dibromomethane ND 1.0 0.41 ug/L 09/17/17 15:46 ND Ethylbenzene 1.0 0.74 ug/L 09/17/17 15:46 Iodomethane ND 09/17/17 15:46 1.0 0.30 ug/L Methylene Chloride ND 0.44 ug/L 09/17/17 15:46 1.0 ND 1.0 0.73 ug/L 09/17/17 15:46 Styrene ND Tetrachloroethene 1.0 0.36 ug/L 09/17/17 15:46 Toluene ND 1.0 0.51 ug/L 09/17/17 15:46 ND trans-1,2-Dichloroethene 10 0.90 ug/L 09/17/17 15:46 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 09/17/17 15:46 trans-1,4-Dichloro-2-butene ND 5.0 0.22 ug/L 09/17/17 15:46 Trichloroethene ND 1.0 0.46 ug/L 09/17/17 15:46 Trichlorofluoromethane ND 1.0 0.88 ug/L 09/17/17 15:46 Vinyl acetate ND 5.0 0.85 ug/L 09/17/17 15:46

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120		09/17/17 15:46	1
Toluene-d8 (Surr)	101		80 - 120		09/17/17 15:46	1
4-Bromofluorobenzene (Surr)	97		73 - 120		09/17/17 15:46	1
Dibromofluoromethane (Surr)	102		75 - 123		09/17/17 15:46	1

1.0

2.0

0.90 ug/L

0.66 ug/L

ND

ND

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		09/13/17 08:35	09/15/17 02:45	1
Antimony	ND		0.020	0.0068	mg/L		09/13/17 08:35	09/15/17 02:45	1
Arsenic	0.017		0.010	0.0056	mg/L		09/13/17 08:35	09/15/17 02:45	1
Barium	0.12		0.0020	0.00070	mg/L		09/13/17 08:35	09/15/17 02:45	1
Beryllium	ND		0.0020	0.00030	mg/L		09/13/17 08:35	09/15/17 02:45	1
Boron	0.014	J	0.020	0.0040	mg/L		09/13/17 08:35	09/15/17 02:45	1
Cadmium	ND		0.0010	0.00050	mg/L		09/13/17 08:35	09/15/17 02:45	1
Calcium	52.3		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 02:45	1
Chromium	ND		0.0040	0.0010	mg/L		09/13/17 08:35	09/15/17 02:45	1
Cobalt	ND		0.0040	0.00063	mg/L		09/13/17 08:35	09/15/17 02:45	1
Copper	ND		0.010	0.0016	mg/L		09/13/17 08:35	09/15/17 02:45	1
Iron	0.099	В	0.050	0.019	mg/L		09/13/17 08:35	09/15/17 02:45	1
Lead	ND		0.0050	0.0030	mg/L		09/13/17 08:35	09/15/17 02:45	1
Magnesium	7.5		0.20	0.043	mg/L		09/13/17 08:35	09/15/17 02:45	1
Manganese	0.061	В	0.0030	0.00040	mg/L		09/13/17 08:35	09/15/17 02:45	1
Nickel	ND		0.010	0.0013	mg/L		09/13/17 08:35	09/15/17 02:45	1
Potassium	0.38	J	0.50	0.10	mg/L		09/13/17 08:35	09/15/17 02:45	1
Selenium	ND		0.015	0.0087	mg/L		09/13/17 08:35	09/15/17 02:45	1
Silver	ND		0.0030	0.0017	mg/L		09/13/17 08:35	09/15/17 02:45	1

TestAmerica Buffalo

Page 34 of 94

1

1

1

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Client Sample ID: MW-18IR

Date Collected: 09/11/17 10:55

Date Received: 09/12/17 01:30

Lab Sample ID: 480-123947-2

Matrix: Water

Method: 6010C - Metals (ICP) (Continued) Result Qualifier Dil Fac Analyte RL MDL Unit D Prepared Analyzed 1.0 0.32 mg/L 09/13/17 08:35 09/15/17 02:45 Sodium 8.2 Thallium ND 0.020 09/13/17 08:35 09/15/17 02:45 0.010 mg/L Vanadium ND 0.0050 0.0015 mg/L 09/13/17 08:35 09/15/17 02:45 0.010 0.0015 mg/L 09/13/17 08:35 09/15/17 02:45 **Zinc** 0.0016 JB

Method: 7470A - Mercury (CVAA) Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac ND 0.00020 0.00012 mg/L 09/13/17 12:15 09/13/17 16:00 Mercury

General Chemistry Result Qualifier RLMDL Unit D Dil Fac Analyte Prepared Analyzed **Bromide** ND 0.20 0.073 mg/L 09/13/17 23:41 0.50 0.28 mg/L 09/13/17 23:41 Chloride 20.3 1 **Sulfate** 55.7 2.0 0.35 mg/L 09/13/17 23:41 **Alkalinity, Total** 113 B 20.0 8.0 mg/L 09/12/17 15:45 2 0.020 0.0090 mg/L 09/12/17 13:14 Ammonia as N 0.053 09/12/17 18:30 **Total Kjeldahl Nitrogen** 0.15 J 0.20 0.15 mg/L 09/13/17 11:19 Nitrate ND 0.050 0.020 mg/L as N 09/12/17 16:01 Chemical Oxygen Demand ND 10.0 5.0 mg/L 09/12/17 18:56 Phenolics, Total Recoverable ND 0.010 0.0050 mg/L 09/13/17 14:41 09/13/17 04:35 Chromium, hexavalent ND 0.010 0.0050 mg/L 09/12/17 04:16 Cyanide ND 0.010 0.0050 mg/L 09/13/17 08:10 09/13/17 15:05 1.0 0.43 mg/L 09/13/17 20:08 **Total Organic Carbon** 1.3 B **Total Hardness** 09/15/17 10:45 4 0 1.1 mg/L 172 **Total Dissolved Solids** 242 10.0 4.0 mg/L 09/12/17 21:38 Biochemical Oxygen Demand ND 2.0 2.0 mg/L 09/13/17 05:28 Analyte Result Qualifier RL **RL** Unit D Prepared Analyzed Dil Fac 5.00 5.00 Color Units 09/12/17 17:20 Color 5.00

Client Sample ID: MW-18D

Date Collected: 09/11/17 11:02

Date Received: 09/12/17 01:30

Lab Sample ID: 480-123947-3

Matrix: Water

Method: 8260C - Volatile Organi Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/17/17 16:09	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/17/17 16:09	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/17/17 16:09	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/17/17 16:09	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/17/17 16:09	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/17/17 16:09	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/17/17 16:09	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/17/17 16:09	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/17/17 16:09	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/17/17 16:09	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/17/17 16:09	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/17/17 16:09	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/17/17 16:09	1
2-Hexanone	ND	5.0	1.2	ug/L			09/17/17 16:09	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/17/17 16:09	1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-18D

Client: CHA Inc

Date Collected: 09/11/17 11:02 Date Received: 09/12/17 01:30 Lab Sample ID: 480-123947-3

Matrix: Water

Analyte	Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/17/17 16:09	1
Acetone	3.4 J	5.0	3.0	ug/L			09/17/17 16:09	1
Acrylonitrile	ND	5.0	0.83	ug/L			09/17/17 16:09	1
Benzene	ND	1.0	0.41	ug/L			09/17/17 16:09	1
Bromochloromethane	ND	1.0	0.87	ug/L			09/17/17 16:09	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/17/17 16:09	1
Bromoform	ND	1.0	0.26	ug/L			09/17/17 16:09	1
Bromomethane	ND	1.0	0.69	ug/L			09/17/17 16:09	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/17/17 16:09	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/17/17 16:09	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/17/17 16:09	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/17/17 16:09	1
Chloroethane	ND	1.0	0.32	ug/L			09/17/17 16:09	1
Chloroform	ND	1.0	0.34	ug/L			09/17/17 16:09	1
Chloromethane	ND	1.0	0.35	ug/L			09/17/17 16:09	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/17/17 16:09	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/17/17 16:09	1
Dibromomethane	ND	1.0	0.41	ug/L			09/17/17 16:09	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/17/17 16:09	1
lodomethane	ND	1.0	0.30	ug/L			09/17/17 16:09	1
Methylene Chloride	ND	1.0	0.44	ug/L			09/17/17 16:09	1
Styrene	ND	1.0	0.73	ug/L			09/17/17 16:09	1
Tetrachloroethene	ND	1.0	0.36	ug/L			09/17/17 16:09	1
Toluene	ND	1.0	0.51	ug/L			09/17/17 16:09	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			09/17/17 16:09	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			09/17/17 16:09	1
trans-1,4-Dichloro-2-butene	ND	5.0	0.22	ug/L			09/17/17 16:09	1
Trichloroethene	ND	1.0	0.46	ug/L			09/17/17 16:09	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			09/17/17 16:09	1
Vinyl acetate	ND	5.0	0.85	ug/L			09/17/17 16:09	1
Vinyl chloride	ND	1.0	0.90	ug/L			09/17/17 16:09	1
Xylenes, Total	ND	2.0	0.66	ug/L			09/17/17 16:09	1
Surrogate	%Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	77 - 120					09/17/17 16:09	1
Toluene-d8 (Surr)	103	80 - 120					09/17/17 16:09	1
4-Bromofluorobenzene (Surr)	102	73 - 120					09/17/17 16:09	1
Dibromofluoromethane (Surr)	95	75 - 123					09/17/17 16:09	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	39.3		0.20	0.060	mg/L		09/13/17 08:35	09/15/17 02:59	1
Antimony	ND		0.020	0.0068	mg/L		09/13/17 08:35	09/15/17 02:59	1
Arsenic	0.036		0.010	0.0056	mg/L		09/13/17 08:35	09/15/17 02:59	1
Barium	0.86		0.0020	0.00070	mg/L		09/13/17 08:35	09/15/17 02:59	1
Beryllium	0.0024		0.0020	0.00030	mg/L		09/13/17 08:35	09/15/17 02:59	1
Boron	0.066		0.020	0.0040	mg/L		09/13/17 08:35	09/15/17 02:59	1
Cadmium	0.00080	J	0.0010	0.00050	mg/L		09/13/17 08:35	09/15/17 02:59	1
Calcium	545		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 02:59	1
Chromium	0.048	В	0.0040	0.0010	mg/L		09/13/17 08:35	09/15/17 02:59	1

TestAmerica Buffalo

Page 36 of 94

TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-18D

Date Received: 09/12/17 01:30

Client: CHA Inc

Date Collected: 09/11/17 11:02

Lab Sample ID: 480-123947-3

Matrix: Water

ntinued)								
Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.028		0.0040	0.00063	mg/L		09/13/17 08:35	09/15/17 02:59	1
0.095		0.010	0.0016	mg/L		09/13/17 08:35	09/15/17 02:59	1
62.9 E	В	0.050	0.019	mg/L		09/13/17 08:35	09/15/17 02:59	1
0.048		0.0050	0.0030	mg/L		09/13/17 08:35	09/15/17 02:59	1
37.6		0.20	0.043	mg/L		09/13/17 08:35	09/15/17 02:59	1
4.3 E	В	0.0030	0.00040	mg/L		09/13/17 08:35	09/15/17 02:59	1
0.057		0.010	0.0013	mg/L		09/13/17 08:35	09/15/17 02:59	1
12.4		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 02:59	1
ND		0.015	0.0087	mg/L		09/13/17 08:35	09/15/17 02:59	1
ND		0.0030	0.0017	mg/L		09/13/17 08:35	09/15/17 02:59	1
17.0		1.0	0.32	mg/L		09/13/17 08:35	09/15/17 02:59	1
ND		0.020	0.010	mg/L		09/13/17 08:35	09/15/17 02:59	1
0.087		0.0050	0.0015	mg/L		09/13/17 08:35	09/15/17 02:59	1
0.18 E	В	0.010	0.0015	mg/L		09/13/17 08:35	09/15/17 02:59	1
	0.028 0.095 62.9 0.048 37.6 4.3 0.057 12.4 ND ND 17.0 ND	Result Qualifier 0.028 0.095 62.9 B 0.048 37.6 4.3 B 0.057 12.4 ND ND 17.0 ND	Result Qualifier RL 0.028 0.0040 0.095 0.010 62.9 B 0.050 0.048 0.0050 37.6 0.20 4.3 B 0.0030 0.057 0.010 12.4 0.50 ND 0.015 ND 0.0030 17.0 1.0 ND 0.020 0.087 0.0050	Result Qualifier RL MDL 0.028 0.0040 0.0063 0.095 0.010 0.0016 62.9 B 0.050 0.019 0.048 0.0050 0.0030 37.6 0.20 0.043 4.3 B 0.0030 0.00040 0.057 0.010 0.0013 12.4 0.50 0.10 ND 0.015 0.0087 ND 0.0030 0.0017 17.0 1.0 0.32 ND 0.020 0.010 0.087 0.0050 0.0015	Result Qualifier RL MDL Unit 0.028 0.0040 0.00063 mg/L 0.095 0.010 0.0016 mg/L 62.9 B 0.050 0.019 mg/L 0.048 0.0050 0.0030 mg/L 37.6 0.20 0.043 mg/L 4.3 B 0.0030 0.0040 mg/L 0.057 0.010 0.0013 mg/L ND 0.015 0.0087 mg/L ND 0.0030 0.0017 mg/L ND 0.020 0.010 mg/L ND 0.020 0.010 mg/L ND 0.020 0.010 mg/L 0.087 0.0050 0.0015 mg/L	Result Qualifier RL MDL Unit D 0.028 0.0040 0.0063 mg/L mg/L 0.095 0.010 0.0016 mg/L 62.9 B 0.050 0.019 mg/L 0.048 0.0050 0.0030 mg/L 37.6 0.20 0.043 mg/L 4.3 B 0.0030 0.0040 mg/L 0.057 0.010 0.0013 mg/L ND 0.015 0.0087 mg/L ND 0.0030 0.0017 mg/L 17.0 1.0 0.32 mg/L ND 0.020 0.010 mg/L ND 0.020 0.010 mg/L 0.087 0.0050 0.0015 mg/L	Result Qualifier RL MDL Unit D Prepared 0.028 0.0040 0.0063 mg/L 09/13/17 08:35 0.095 0.010 0.0016 mg/L 09/13/17 08:35 62.9 B 0.050 0.019 mg/L 09/13/17 08:35 0.048 0.0050 0.0030 mg/L 09/13/17 08:35 37.6 0.20 0.043 mg/L 09/13/17 08:35 4.3 B 0.0030 0.00040 mg/L 09/13/17 08:35 0.057 0.010 0.0013 mg/L 09/13/17 08:35 ND 0.015 0.0087 mg/L 09/13/17 08:35 ND 0.0030 0.0017 mg/L 09/13/17 08:35 17.0 1.0 0.32 mg/L 09/13/17 08:35 ND 0.020 0.010 mg/L 09/13/17 08:35 ND 0.020 0.010 mg/L 09/13/17 08:35 0.087 0.0050 0.0015 mg/L 09/13/17 08:35	Result Qualifier RL MDL Unit D Prepared Analyzed 0.028 0.0040 0.00063 mg/L 09/13/17 08:35 09/15/17 02:59 0.095 0.010 0.0016 mg/L 09/13/17 08:35 09/15/17 02:59 62.9 B 0.050 0.019 mg/L 09/13/17 08:35 09/15/17 02:59 0.048 0.0050 0.0030 mg/L 09/13/17 08:35 09/15/17 02:59 37.6 0.20 0.043 mg/L 09/13/17 08:35 09/15/17 02:59 4.3 B 0.0030 0.00040 mg/L 09/13/17 08:35 09/15/17 02:59 0.057 0.010 0.0013 mg/L 09/13/17 08:35 09/15/17 02:59 ND 0.015 0.0087 mg/L 09/13/17 08:35 09/15/17 02:59 ND 0.0030 0.0017 mg/L 09/13/17 08:35 09/15/17 02:59 17.0 1.0 0.32 mg/L 09/13/17 08:35 09/15/17 02:59 ND 0.020

Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/13/17 12:15	09/13/17 16:02	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20	0.073	mg/L			09/13/17 23:56	1
Chloride	0.59		0.50	0.28	mg/L			09/13/17 23:56	1
Sulfate	3.4		2.0	0.35	mg/L			09/13/17 23:56	1
Alkalinity, Total	93.3		20.0	8.0	mg/L			09/12/17 17:20	2
Ammonia as N	0.13		0.020	0.0090	mg/L			09/12/17 13:15	1
			0.00	0.45			00/40/47 40:00	00/40/47 44:40	4

Color	ND		5.00	5.00	Color Units			09/12/17 17:20	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Biochemical Oxygen Demand	2.6		2.0	2.0	mg/L			09/13/17 05:28	1
Total Dissolved Solids	1030		10.0	4.0	mg/L			09/12/17 21:38	1
Total Hardness	420		20.0	5.3	mg/L			09/18/17 14:30	1
Total Organic Carbon	1.3	В	1.0	0.43	mg/L			09/13/17 21:07	1
Cyanide	ND	*	0.010	0.0050	mg/L		09/13/17 08:10	09/13/17 15:06	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/12/17 04:16	1
Phenolics, Total Recoverable	0.017		0.010	0.0050	mg/L		09/26/17 07:30	09/26/17 12:45	1
Chemical Oxygen Demand	6.0	J	10.0	5.0	mg/L			09/12/17 18:56	1
Nitrate	ND		0.050	0.020	mg/L as N			09/12/17 16:02	1
Total Kjeldahl Nitrogen	2.7		0.20	0.15	mg/L		09/12/17 18:30	09/13/17 11:19	1
Ammonia as N	0.13		0.020	0.0090	mg/L			09/12/17 13:15	1
Alkalinity, Total	93.3		20.0	8.0	mg/L			09/12/17 17:20	2
Sulfate	3.4		2.0	0.35	mg/L			09/13/17 23:56	1
Chloride	0.59		0.50	0.20	mg/L			09/13/17 23.50	1

Client Sample ID: MW-15S Lab Sample ID: 480-123947-4

Date Collected: 09/11/17 13:00 Matrix: Water

Date Received: 09/12/17 01:30

Method: 8260C - Volatil	le Organic Compounds I	oy GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	0.35	ug/L			09/19/17 23:24	1
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			09/19/17 23:24	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			09/19/17 23:24	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			09/19/17 23:24	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			09/19/17 23:24	1

Client: CHA Inc

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Client Sample ID: MW-15S

Lab Sample ID: 480-123947-4

Matrix: Water

Date Collected: 09/11/17 13:00 Date Received: 09/12/17 01:30

Dibromofluoromethane (Surr)

Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fa
1,1-Dichloroethene	ND	1.0	0.29	ug/L		09/19/17 23:24	
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L		09/19/17 23:24	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L		09/19/17 23:24	
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L		09/19/17 23:24	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L		09/19/17 23:24	
1,2-Dichloroethane	ND	1.0	0.21	ug/L		09/19/17 23:24	
1,2-Dichloropropane	ND	1.0	0.72	ug/L		09/19/17 23:24	•
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L		09/19/17 23:24	
2-Hexanone	ND	5.0	1.2	ug/L		09/19/17 23:24	
2-Butanone (MEK)	ND	5.0	1.3	ug/L		09/19/17 23:24	
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L		09/19/17 23:24	- 111111
Acetone	ND *	5.0	3.0	ug/L		09/19/17 23:24	
Acrylonitrile	ND	5.0	0.83	ug/L		09/19/17 23:24	
Benzene	ND	1.0		ug/L		09/19/17 23:24	
Bromochloromethane	ND	1.0		ug/L		09/19/17 23:24	
Bromodichloromethane	ND	1.0		ug/L		09/19/17 23:24	
Bromoform	ND	1.0		ug/L		09/19/17 23:24	
Bromomethane	ND	1.0		ug/L		09/19/17 23:24	
Carbon disulfide	ND	1.0		ug/L		09/19/17 23:24	
Carbon tetrachloride	ND	1.0		ug/L		09/19/17 23:24	
Chlorobenzene	ND	1.0		ug/L		09/19/17 23:24	,
Chlorodibromomethane	ND	1.0		ug/L ug/L		09/19/17 23:24	,
Chloroethane	ND	1.0		ug/L		09/19/17 23:24	•
Chloroform	ND	1.0		ug/L		09/19/17 23:24	•
Chloromethane	ND	1.0		ug/L		09/19/17 23:24	
cis-1,2-Dichloroethene	ND	1.0		ug/L		09/19/17 23:24	
cis-1,3-Dichloropropene	ND	1.0		ug/L		09/19/17 23:24	•
Dibromomethane	ND	1.0		ug/L		09/19/17 23:24	
Ethylbenzene	ND	1.0		ug/L		09/19/17 23:24	•
lodomethane	ND	1.0		ug/L		09/19/17 23:24	•
Methylene Chloride	ND	1.0	0.44	ug/L		09/19/17 23:24	•
Styrene	ND	1.0	0.73	ug/L		09/19/17 23:24	•
Tetrachloroethene	ND	1.0	0.36	ug/L		09/19/17 23:24	•
Toluene	ND	1.0	0.51	ug/L		09/19/17 23:24	
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L		09/19/17 23:24	•
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L		09/19/17 23:24	•
trans-1,4-Dichloro-2-butene	ND	5.0	0.22	ug/L		09/19/17 23:24	
Trichloroethene	ND	1.0	0.46	ug/L		09/19/17 23:24	•
Trichlorofluoromethane	ND	1.0	0.88	ug/L		09/19/17 23:24	•
Vinyl acetate	ND	5.0	0.85	ug/L		09/19/17 23:24	•
Vinyl chloride	ND	1.0	0.90	ug/L		09/19/17 23:24	
Xylenes, Total	ND	2.0	0.66	ug/L		09/19/17 23:24	,
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	105	77 - 120				09/19/17 23:24	
Toluene-d8 (Surr)	100	80 - 120				09/19/17 23:24	
4-Bromofluorobenzene (Surr)	97	73 - 120				09/19/17 23:24	

TestAmerica Buffalo

09/19/17 23:24

75 - 123

104

4

Ω

9

Client: CHA Inc

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Client Sample ID: MW-15S

Lab Sample ID: 480-123947-4 Date Collected: 09/11/17 13:00

Matrix: Water

Date Received: 09/12/17 01:30

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.071	J	0.20	0.060	mg/L		09/13/17 08:35	09/15/17 03:03	1
Antimony	ND		0.020	0.0068	mg/L		09/13/17 08:35	09/15/17 03:03	1
Arsenic	0.011		0.010	0.0056	mg/L		09/13/17 08:35	09/15/17 03:03	1
Barium	0.082		0.0020	0.00070	mg/L		09/13/17 08:35	09/15/17 03:03	1
Beryllium	ND		0.0020	0.00030	mg/L		09/13/17 08:35	09/15/17 03:03	1
Boron	0.078		0.020	0.0040	mg/L		09/13/17 08:35	09/15/17 03:03	1
Cadmium	ND		0.0010	0.00050	mg/L		09/13/17 08:35	09/15/17 03:03	1
Calcium	72.9		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 03:03	1
Chromium	ND		0.0040	0.0010	mg/L		09/13/17 08:35	09/15/17 03:03	1
Cobalt	ND		0.0040	0.00063	mg/L		09/13/17 08:35	09/15/17 03:03	1
Copper	ND		0.010	0.0016	mg/L		09/13/17 08:35	09/15/17 03:03	1
Iron	26.9	В	0.050	0.019	mg/L		09/13/17 08:35	09/15/17 03:03	1
Lead	ND		0.0050	0.0030	mg/L		09/13/17 08:35	09/15/17 03:03	1
Magnesium	10.9		0.20	0.043	mg/L		09/13/17 08:35	09/15/17 03:03	1
Manganese	3.3	В	0.0030	0.00040	mg/L		09/13/17 08:35	09/15/17 03:03	1
Nickel	ND		0.010	0.0013	mg/L		09/13/17 08:35	09/15/17 03:03	1
Potassium	3.9		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 03:03	1
Selenium	ND		0.015	0.0087	mg/L		09/13/17 08:35	09/15/17 03:03	1
Silver	ND		0.0030	0.0017	mg/L		09/13/17 08:35	09/15/17 03:03	1
Sodium	32.0		1.0	0.32	mg/L		09/13/17 08:35	09/15/17 03:03	1
Thallium	ND		0.020	0.010	mg/L		09/13/17 08:35	09/15/17 03:03	1
Vanadium	0.0039	J	0.0050	0.0015	mg/L		09/13/17 08:35	09/15/17 03:03	1
Zinc	0.0015	JB	0.010	0.0015	mg/L		09/13/17 08:35	09/15/17 03:03	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/13/17 12:15	09/13/17 16:04	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.40	0.15	mg/L			09/14/17 00:11	2
Chloride	21.5		1.0	0.56	mg/L			09/14/17 00:11	2
Sulfate	ND		4.0	0.70	mg/L			09/14/17 00:11	2
Alkalinity, Total	302	В	40.0	16.0	mg/L			09/12/17 15:53	4
Ammonia as N	1.5		0.040	0.018	mg/L			09/12/17 13:16	2
Total Kjeldahl Nitrogen	2.4		0.20	0.15	mg/L		09/12/17 18:30	09/13/17 11:19	1
Nitrate	ND		0.050	0.020	mg/L as N			09/12/17 16:03	1
Chemical Oxygen Demand	30.1		10.0	5.0	mg/L			09/12/17 18:56	1
Phenolics, Total Recoverable	0.028		0.010	0.0050	mg/L		09/26/17 07:30	09/26/17 12:45	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/12/17 04:16	1
Cyanide	ND	*	0.010	0.0050	mg/L		09/13/17 08:10	09/13/17 15:07	1
Total Organic Carbon	12.5	В	1.0	0.43	mg/L			09/13/17 22:07	1
Total Hardness	236		4.0	1.1	mg/L			09/18/17 14:30	1
Total Dissolved Solids	359		10.0	4.0	mg/L			09/12/17 21:38	1
Biochemical Oxygen Demand	3.4	b	2.0	2.0	mg/L			09/13/17 12:18	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	25.0		5.00	5.00	Color Units			09/12/17 17:20	1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-15I Lab Sample ID: 480-123947-5 Date Collected: 09/11/17 13:49

Matrix: Water

Date Received: 09/12/17 01:30

Client: CHA Inc

1,1,1,2-Tetrachloroethane							
	ND	1.0	0.35	ug/L		09/19/17 11:56	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L		09/19/17 11:56	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L		09/19/17 11:56	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L		09/19/17 11:56	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L		09/19/17 11:56	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L		09/19/17 11:56	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L		09/19/17 11:56	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L		09/19/17 11:56	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L		09/19/17 11:56	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L		09/19/17 11:56	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L		09/19/17 11:56	1
1,2-Dichloropropane	ND	1.0	0.72	-		09/19/17 11:56	1
1,4-Dichlorobenzene	ND	1.0	0.84	_		09/19/17 11:56	1
2-Hexanone	ND	5.0		ug/L		09/19/17 11:56	1
2-Butanone (MEK)	ND	5.0		ug/L		09/19/17 11:56	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L		09/19/17 11:56	1
Acetone (WIBIX)	ND	5.0		ug/L		09/19/17 11:56	1
Acrylonitrile	ND	5.0	0.83	-		09/19/17 11:56	1
Benzene	ND	1.0	0.41			09/19/17 11:56	1
Bromochloromethane	ND	1.0	0.41			09/19/17 11:56	1
Bromodichloromethane	ND ND	1.0	0.39			09/19/17 11:56	1
Bromodicinoromethane	ND ND					09/19/17 11:56	1
		1.0	0.26	-			
Bromomethane	ND	1.0	0.69			09/19/17 11:56	1
Carbon disulfide	ND NB	1.0	0.19	_		09/19/17 11:56	1
Carbon tetrachloride	ND	1.0	0.27	-		09/19/17 11:56	1
Chlorobenzene	ND	1.0	0.75			09/19/17 11:56	1
Chlorodibromomethane	ND	1.0	0.32			09/19/17 11:56	1
Chloroethane	ND	1.0	0.32	-		09/19/17 11:56	1
Chloroform	ND	1.0	0.34			09/19/17 11:56	1
Chloromethane	ND	1.0	0.35			09/19/17 11:56	1
cis-1,2-Dichloroethene	ND	1.0	0.81	-		09/19/17 11:56	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L		09/19/17 11:56	1
Dibromomethane	ND	1.0	0.41	ug/L		09/19/17 11:56	1
Ethylbenzene	ND	1.0	0.74	ug/L		09/19/17 11:56	1
lodomethane	ND	1.0	0.30	ug/L		09/19/17 11:56	1
Methylene Chloride	ND	1.0	0.44	ug/L		09/19/17 11:56	1
Styrene	ND	1.0	0.73	ug/L		09/19/17 11:56	1
Tetrachloroethene	ND	1.0	0.36	ug/L		09/19/17 11:56	1
Toluene	ND	1.0	0.51	ug/L		09/19/17 11:56	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L		09/19/17 11:56	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L		09/19/17 11:56	1
trans-1,4-Dichloro-2-butene	ND	5.0	0.22	ug/L		09/19/17 11:56	1
Trichloroethene	ND	1.0	0.46	ug/L		09/19/17 11:56	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L		09/19/17 11:56	1
Vinyl acetate	ND	5.0	0.85			09/19/17 11:56	1
Vinyl chloride	ND	1.0	0.90	•		09/19/17 11:56	1
Xylenes, Total	ND	2.0	0.66	ug/L		09/19/17 11:56	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac

TestAmerica Buffalo

Page 40 of 94

Client: CHA Inc TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-15I Lab Sample ID: 480-123947-5

Date Collected: 09/11/17 13:49 Matrix: Water Date Received: 09/12/17 01:30

Method: 8260C - Volatile Organic Compounds by	by GC/MS (Continued)
---	----------------------

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120		09/19/17 11:56	1
4-Bromofluorobenzene (Surr)	95		73 - 120		09/19/17 11:56	1
Dibromofluoromethane (Surr)	103		75 - 123		09/19/17 11:56	1

Method: 6010C - Metals (ICF	2)
Analyte	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.65		0.20	0.060	mg/L		09/13/17 08:35	09/15/17 03:07	1
Antimony	ND		0.020	0.0068	mg/L		09/13/17 08:35	09/15/17 03:07	1
Arsenic	ND		0.010	0.0056	mg/L		09/13/17 08:35	09/15/17 03:07	1
Barium	0.13		0.0020	0.00070	mg/L		09/13/17 08:35	09/15/17 03:07	1
Beryllium	ND		0.0020	0.00030	mg/L		09/13/17 08:35	09/15/17 03:07	1
Boron	0.0092	J	0.020	0.0040	mg/L		09/13/17 08:35	09/15/17 03:07	1
Cadmium	ND		0.0010	0.00050	mg/L		09/13/17 08:35	09/15/17 03:07	1
Calcium	71.6		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 03:07	1
Chromium	0.0014	JB	0.0040	0.0010	mg/L		09/13/17 08:35	09/15/17 03:07	1
Cobalt	ND		0.0040	0.00063	mg/L		09/13/17 08:35	09/15/17 03:07	1
Copper	ND		0.010	0.0016	mg/L		09/13/17 08:35	09/15/17 03:07	1
Iron	1.4	В	0.050	0.019	mg/L		09/13/17 08:35	09/15/17 03:07	1
Lead	0.0032	J	0.0050	0.0030	mg/L		09/13/17 08:35	09/15/17 03:07	1
Magnesium	9.3		0.20	0.043	mg/L		09/13/17 08:35	09/15/17 03:07	1
Manganese	0.20	В	0.0030	0.00040	mg/L		09/13/17 08:35	09/15/17 03:07	1
Nickel	ND		0.010	0.0013	mg/L		09/13/17 08:35	09/15/17 03:07	1
Potassium	0.74		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 03:07	1
Selenium	ND		0.015	0.0087	mg/L		09/13/17 08:35	09/15/17 03:07	1
Silver	ND		0.0030	0.0017	mg/L		09/13/17 08:35	09/15/17 03:07	1
Sodium	9.8		1.0	0.32	mg/L		09/13/17 08:35	09/15/17 03:07	1
Thallium	ND		0.020	0.010	mg/L		09/13/17 08:35	09/15/17 03:07	1
Vanadium	ND		0.0050	0.0015	mg/L		09/13/17 08:35	09/15/17 03:07	1
Zinc	0.0036	JB	0.010	0.0015	mg/L		09/13/17 08:35	09/15/17 03:07	1

Method: 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	ND		0.00020	0.00012	ma/l		09/13/17 12:15	09/13/17 16:06	1	

General	Chemistry
---------	-----------

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.40	0.15	mg/L			09/14/17 18:31	2
Chloride	38.4		1.0	0.56	mg/L			09/14/17 18:31	2
Sulfate	63.6		4.0	0.70	mg/L			09/14/17 18:31	2
Alkalinity, Total	137	В	20.0	8.0	mg/L			09/12/17 15:53	2
Ammonia as N	0.062		0.020	0.0090	mg/L			09/12/17 13:17	1
Total Kjeldahl Nitrogen	0.23		0.20	0.15	mg/L		09/14/17 18:40	09/15/17 09:50	1
Nitrate	ND		0.050	0.020	mg/L as N			09/12/17 16:04	1
Chemical Oxygen Demand	ND		10.0	5.0	mg/L			09/12/17 18:56	1
Phenolics, Total Recoverable	ND		0.010	0.0050	mg/L		09/13/17 04:35	09/13/17 14:44	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/12/17 04:16	1
Cyanide	ND	*	0.010	0.0050	mg/L		09/13/17 08:10	09/13/17 15:09	1
Total Organic Carbon	1.6		1.0	0.43	mg/L			09/14/17 00:36	1
Total Hardness	232		4.0	1.1	mg/L			09/18/17 14:30	1
Total Dissolved Solids	322		10.0	4.0	mg/L			09/12/17 21:38	1

Client: CHA Inc TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-15I

Lab Sample ID: 480-123947-5 Date Collected: 09/11/17 13:49

Matrix: Water

Date Received: 09/12/17 01:30

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/13/17 12:18	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	10.0		5.00	5.00	Color Units			09/12/17 17:20	1

Client Sample ID: MW-15D Lab Sample ID: 480-123947-6

Date Collected: 09/11/17 13:19

Matrix: Water Date Received: 09/12/17 01:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/19/17 12:21	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/19/17 12:21	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/19/17 12:21	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/19/17 12:21	1
1,1-Dichloroethane	ND	1.0		ug/L			09/19/17 12:21	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/19/17 12:21	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/19/17 12:21	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/19/17 12:21	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/19/17 12:21	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/19/17 12:21	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/19/17 12:21	1
1,2-Dichloropropane	ND	1.0		ug/L			09/19/17 12:21	1
1,4-Dichlorobenzene	ND	1.0		ug/L			09/19/17 12:21	1
2-Hexanone	ND	5.0	1.2	ug/L			09/19/17 12:21	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/19/17 12:21	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/19/17 12:21	1
Acetone	ND	5.0	3.0	ug/L			09/19/17 12:21	1
Acrylonitrile	ND	5.0	0.83	ug/L			09/19/17 12:21	1
Benzene	ND	1.0	0.41	ug/L			09/19/17 12:21	1
Bromochloromethane	ND	1.0	0.87	ug/L			09/19/17 12:21	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/19/17 12:21	1
Bromoform	ND	1.0	0.26	ug/L			09/19/17 12:21	1
Bromomethane	ND	1.0	0.69	ug/L			09/19/17 12:21	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/19/17 12:21	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/19/17 12:21	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/19/17 12:21	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/19/17 12:21	1
Chloroethane	ND	1.0	0.32	ug/L			09/19/17 12:21	1
Chloroform	ND	1.0	0.34	ug/L			09/19/17 12:21	1
Chloromethane	ND	1.0	0.35	ug/L			09/19/17 12:21	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/19/17 12:21	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/19/17 12:21	1
Dibromomethane	ND	1.0	0.41	ug/L			09/19/17 12:21	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/19/17 12:21	1
lodomethane	ND	1.0	0.30	ug/L			09/19/17 12:21	1
Methylene Chloride	ND	1.0	0.44	ug/L			09/19/17 12:21	1
Styrene	ND	1.0	0.73	ug/L			09/19/17 12:21	1
Tetrachloroethene	ND	1.0	0.36	ug/L			09/19/17 12:21	1
Toluene	ND	1.0	0.51	ug/L			09/19/17 12:21	1

TestAmerica Buffalo

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-15D

Date Collected: 09/11/17 13:19 Date Received: 09/12/17 01:30 Lab Sample ID: 480-123947-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/19/17 12:21	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/19/17 12:21	1
trans-1,4-Dichloro-2-butene	ND		5.0	0.22	ug/L			09/19/17 12:21	1
Trichloroethene	ND		1.0	0.46	ug/L			09/19/17 12:21	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/19/17 12:21	1
Vinyl acetate	ND		5.0	0.85	ug/L			09/19/17 12:21	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/19/17 12:21	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/19/17 12:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		77 - 120					09/19/17 12:21	1
Toluene-d8 (Surr)	99		80 - 120					09/19/17 12:21	1
4-Bromofluorobenzene (Surr)	97		73 - 120					09/19/17 12:21	1
Dibromofluoromethane (Surr)	101		75 - 123					09/19/17 12:21	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	20.3		0.20	0.060	mg/L		09/13/17 08:35	09/15/17 03:10	1
Antimony	ND		0.020	0.0068	mg/L		09/13/17 08:35	09/15/17 03:10	1
Arsenic	0.025		0.010	0.0056	mg/L		09/13/17 08:35	09/15/17 03:10	1
Barium	0.22		0.0020	0.00070	mg/L		09/13/17 08:35	09/15/17 03:10	1
Beryllium	0.0010	J	0.0020	0.00030	mg/L		09/13/17 08:35	09/15/17 03:10	1
Boron	0.039		0.020	0.0040	mg/L		09/13/17 08:35	09/15/17 03:10	1
Cadmium	ND		0.0010	0.00050	mg/L		09/13/17 08:35	09/15/17 03:10	1
Calcium	55.7		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 03:10	1
Chromium	0.022	В	0.0040	0.0010	mg/L		09/13/17 08:35	09/15/17 03:10	1
Cobalt	0.0096		0.0040	0.00063	mg/L		09/13/17 08:35	09/15/17 03:10	1
Copper	0.025		0.010	0.0016	mg/L		09/13/17 08:35	09/15/17 03:10	1
Iron	24.4	В	0.050	0.019	mg/L		09/13/17 08:35	09/15/17 03:10	1
Lead	0.016		0.0050	0.0030	mg/L		09/13/17 08:35	09/15/17 03:10	1
Magnesium	13.4		0.20	0.043	mg/L		09/13/17 08:35	09/15/17 03:10	1
Manganese	0.52	В	0.0030	0.00040	mg/L		09/13/17 08:35	09/15/17 03:10	1
Nickel	0.020		0.010	0.0013	mg/L		09/13/17 08:35	09/15/17 03:10	1
Potassium	7.3		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 03:10	1
Selenium	ND		0.015	0.0087	mg/L		09/13/17 08:35	09/15/17 03:10	1
Silver	ND		0.0030	0.0017	mg/L		09/13/17 08:35	09/15/17 03:10	1
Sodium	13.9		1.0	0.32	mg/L		09/13/17 08:35	09/15/17 03:10	1
Thallium	ND		0.020	0.010	mg/L		09/13/17 08:35	09/15/17 03:10	1
Vanadium	0.037		0.0050	0.0015	mg/L		09/13/17 08:35	09/15/17 03:10	1
Zinc	0.064	В	0.010	0.0015	mg/L		09/13/17 08:35	09/15/17 03:10	1

Method: 7470A - Mercury (CVAA) Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/13/17 12:15	09/13/17 16:08	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20	0.073	mg/L			09/14/17 18:46	1
Chloride	3.1		0.50	0.28	mg/L			09/14/17 18:46	1
Sulfate	6.6		2.0	0.35	mg/L			09/14/17 18:46	1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-15D

Lab Sample ID: 480-123947-6 Date Collected: 09/11/17 13:19

Matrix: Water

Date Received: 09/12/17 01:30

General Chemistry (Continued)	Pagult	Qualifier	RL	MDL	l loit	D	Dranarad	Analyzad	Dil Fac
Analyte							Prepared	Analyzed	
Alkalinity, Total	104	В	20.0	8.0	mg/L			09/12/17 16:04	2
Ammonia as N	0.040	F1	0.020	0.0090	mg/L			09/12/17 13:18	1
Total Kjeldahl Nitrogen	0.68		0.20	0.15	mg/L		09/13/17 16:40	09/14/17 09:40	1
Nitrate	ND		0.050	0.020	mg/L as N			09/12/17 16:05	1
Chemical Oxygen Demand	5.7	J	10.0	5.0	mg/L			09/12/17 18:56	1
Phenolics, Total Recoverable	0.0072	JB	0.010	0.0050	mg/L		09/13/17 04:35	09/13/17 14:44	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/12/17 04:16	1
Cyanide	ND	*	0.010	0.0050	mg/L		09/13/17 08:10	09/13/17 15:12	1
Total Organic Carbon	1.4		1.0	0.43	mg/L			09/14/17 01:06	1
Total Hardness	200		10.0	2.6	mg/L			09/18/17 14:30	1
Total Dissolved Solids	418		10.0	4.0	mg/L			09/12/17 21:38	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/13/17 12:18	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	5.00		5.00	5.00	Color Units			09/12/17 17:20	1

Lab Sample ID: 480-123947-7 Client Sample ID: MW-2S Date Collected: 09/11/17 15:17

Matrix: Water

Date Received: 09/12/17 01:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/19/17 12:47	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/19/17 12:47	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/19/17 12:47	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/19/17 12:47	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/19/17 12:47	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/19/17 12:47	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/19/17 12:47	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/19/17 12:47	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/19/17 12:47	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/19/17 12:47	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/19/17 12:47	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/19/17 12:47	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/19/17 12:47	1
2-Hexanone	ND	5.0	1.2	ug/L			09/19/17 12:47	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/19/17 12:47	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/19/17 12:47	1
Acetone	ND	5.0	3.0	ug/L			09/19/17 12:47	1
Acrylonitrile	ND	5.0	0.83	ug/L			09/19/17 12:47	1
Benzene	ND	1.0	0.41	ug/L			09/19/17 12:47	1
Bromochloromethane	ND	1.0	0.87	ug/L			09/19/17 12:47	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/19/17 12:47	1
Bromoform	ND	1.0	0.26	ug/L			09/19/17 12:47	1
Bromomethane	ND	1.0	0.69	ug/L			09/19/17 12:47	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/19/17 12:47	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/19/17 12:47	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/19/17 12:47	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/19/17 12:47	1
Chloroethane	ND	1.0	0.32	ug/L			09/19/17 12:47	1

TestAmerica Buffalo

2

Client: CHA Inc

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-2S

Lab Sample ID: 480-123947-7

Matrix: Water

Date Collected: 09/11/17 15:17 Date Received: 09/12/17 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	ND		1.0	0.34	ug/L			09/19/17 12:47	1
Chloromethane	ND		1.0	0.35	ug/L			09/19/17 12:47	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/19/17 12:47	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/19/17 12:47	1
Dibromomethane	ND		1.0	0.41	ug/L			09/19/17 12:47	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/19/17 12:47	1
lodomethane	ND		1.0	0.30	ug/L			09/19/17 12:47	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/19/17 12:47	1
Styrene	ND		1.0	0.73	ug/L			09/19/17 12:47	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/19/17 12:47	1
Toluene	ND		1.0	0.51	ug/L			09/19/17 12:47	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/19/17 12:47	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/19/17 12:47	1
trans-1,4-Dichloro-2-butene	ND		5.0	0.22	ug/L			09/19/17 12:47	1
Trichloroethene	ND		1.0	0.46	ug/L			09/19/17 12:47	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/19/17 12:47	1
Vinyl acetate	ND		5.0	0.85	ug/L			09/19/17 12:47	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/19/17 12:47	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/19/17 12:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		77 - 120					09/19/17 12:47	1
Toluene-d8 (Surr)	99		80 - 120					09/19/17 12:47	1
4-Bromofluorobenzene (Surr)	96		73 - 120					09/19/17 12:47	1
Dibromofluoromethane (Surr)	100		75 ₋ 123					09/19/17 12:47	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		09/13/17 08:35	09/15/17 03:14	1
Antimony	ND		0.020	0.0068	mg/L		09/13/17 08:35	09/15/17 03:14	1
Arsenic	ND		0.010	0.0056	mg/L		09/13/17 08:35	09/15/17 03:14	1
Barium	0.042		0.0020	0.00070	mg/L		09/13/17 08:35	09/15/17 03:14	1
Beryllium	ND		0.0020	0.00030	mg/L		09/13/17 08:35	09/15/17 03:14	1
Boron	0.14		0.020	0.0040	mg/L		09/13/17 08:35	09/15/17 03:14	1
Cadmium	ND		0.0010	0.00050	mg/L		09/13/17 08:35	09/15/17 03:14	1
Calcium	49.0		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 03:14	1
Chromium	0.083	В	0.0040	0.0010	mg/L		09/13/17 08:35	09/15/17 03:14	1
Cobalt	ND		0.0040	0.00063	mg/L		09/13/17 08:35	09/15/17 03:14	1
Copper	0.0066	J	0.010	0.0016	mg/L		09/13/17 08:35	09/15/17 03:14	1
Iron	3.2	В	0.050	0.019	mg/L		09/13/17 08:35	09/15/17 03:14	1
Lead	ND		0.0050	0.0030	mg/L		09/13/17 08:35	09/15/17 03:14	1
Magnesium	7.5		0.20	0.043	mg/L		09/13/17 08:35	09/15/17 03:14	1
Manganese	0.019	В	0.0030	0.00040	mg/L		09/13/17 08:35	09/15/17 03:14	1
Nickel	0.064		0.010	0.0013	mg/L		09/13/17 08:35	09/15/17 03:14	1
Potassium	4.8		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 03:14	1
Selenium	ND		0.015	0.0087	mg/L		09/13/17 08:35	09/15/17 03:14	1
Silver	ND		0.0030	0.0017	mg/L		09/13/17 08:35	09/15/17 03:14	1
Sodium	161		1.0	0.32	mg/L		09/13/17 08:35	09/15/17 03:14	1
Thallium	ND		0.020	0.010	mg/L		09/13/17 08:35	09/15/17 03:14	1
Vanadium	ND		0.0050	0.0015	mg/L		09/13/17 08:35	09/15/17 03:14	1

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Client Sample ID: MW-2S

Date Collected: 09/11/17 15:17 Date Received: 09/12/17 01:30

Lab Sample ID: 480-123947-7

Matrix: Water

Method: 6010C - Metals (ICP) (Contin Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc	0.0020	JB	0.010	0.0015	mg/L		09/13/17 08:35	09/15/17 03:14	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/13/17 12:15	09/13/17 16:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		1.0	0.37	mg/L			09/14/17 19:00	5
Chloride	63.7		2.5	1.4	mg/L			09/14/17 19:00	5
Sulfate	50.7		10.0	1.7	mg/L			09/14/17 19:00	5
Alkalinity, Total	390	В	50.0	20.0	mg/L			09/12/17 15:53	5
Ammonia as N	0.048		0.020	0.0090	mg/L			09/12/17 13:23	1
Total Kjeldahl Nitrogen	0.59		0.20	0.15	mg/L		09/13/17 16:40	09/14/17 09:40	1
Nitrate	5.6		0.050	0.020	mg/L as N			09/12/17 18:42	1
Chemical Oxygen Demand	ND		10.0	5.0	mg/L			09/12/17 18:56	1
Phenolics, Total Recoverable	0.0065	JB	0.010	0.0050	mg/L		09/13/17 04:35	09/13/17 14:45	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/12/17 04:16	1
Cyanide	ND	*	0.010	0.0050	mg/L		09/13/17 08:10	09/13/17 15:13	1
Total Organic Carbon	5.7		1.0	0.43	mg/L			09/14/17 02:06	1
Total Hardness	152		4.0	1.1	mg/L			09/18/17 14:30	1
Total Dissolved Solids	661		10.0	4.0	mg/L			09/12/17 21:38	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/13/17 12:18	1

Client Sample ID: MW-2I

RL

5.00

RL Unit

5.00 Color Units

Result Qualifier

15.0

Date Collected: 09/11/17 16:17

Date Received: 09/12/17 01:30

Analyte

Color

aυ	Sample	: יטו	400-	12394	<i>i</i> -0
			Ma	trix: W	ater

Analyzed

09/12/17 17:20

Prepared

Dil Fac

Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L		09/19/17 13:12	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L		09/19/17 13:12	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L		09/19/17 13:12	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L		09/19/17 13:12	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L		09/19/17 13:12	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L		09/19/17 13:12	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L		09/19/17 13:12	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L		09/19/17 13:12	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L		09/19/17 13:12	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L		09/19/17 13:12	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L		09/19/17 13:12	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L		09/19/17 13:12	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L		09/19/17 13:12	1
2-Hexanone	ND	5.0	1.2	ug/L		09/19/17 13:12	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L		09/19/17 13:12	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L		09/19/17 13:12	1
Acetone	ND	5.0	3.0	ug/L		09/19/17 13:12	1
Acrylonitrile	ND	5.0	0.83	ug/L		09/19/17 13:12	1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-2I

Client: CHA Inc

Lab Sample ID: 480-123947-8

Matrix: Water

Date Collected: 09/11/17 16:17 Date Received: 09/12/17 01:30

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier F	RL MDL	. Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	1	.0 0.41	ug/L			09/19/17 13:12	1
Bromochloromethane	ND	1	.0 0.87	ug/L			09/19/17 13:12	1
Bromodichloromethane	ND	1	.0 0.39	ug/L			09/19/17 13:12	1
Bromoform	ND	1	.0 0.26	ug/L			09/19/17 13:12	1
Bromomethane	ND	1	.0 0.69	ug/L			09/19/17 13:12	1
Carbon disulfide	ND	1	.0 0.19	ug/L			09/19/17 13:12	1
Carbon tetrachloride	ND	1	.0 0.27	ug/L			09/19/17 13:12	1
Chlorobenzene	ND	1	.0 0.75	i ug/L			09/19/17 13:12	1
Chlorodibromomethane	ND	1	.0 0.32	2 ug/L			09/19/17 13:12	1
Chloroethane	ND	1	.0 0.32	2 ug/L			09/19/17 13:12	1
Chloroform	ND	1	.0 0.34	ug/L			09/19/17 13:12	1
Chloromethane	ND	1	.0 0.35	i ug/L			09/19/17 13:12	1
cis-1,2-Dichloroethene	ND	1	.0 0.81	ug/L			09/19/17 13:12	1
cis-1,3-Dichloropropene	ND	1	.0 0.36	ug/L			09/19/17 13:12	1
Dibromomethane	ND	1	.0 0.41	ug/L			09/19/17 13:12	1
Ethylbenzene	ND	1	.0 0.74	ug/L			09/19/17 13:12	1
lodomethane	ND	1	.0 0.30	ug/L			09/19/17 13:12	1
Methylene Chloride	ND	1	.0 0.44	ug/L			09/19/17 13:12	1
Styrene	ND	1	.0 0.73	B ug/L			09/19/17 13:12	1
Tetrachloroethene	ND	1	.0 0.36	ug/L			09/19/17 13:12	1
Toluene	ND	1	.0 0.51	ug/L			09/19/17 13:12	1
trans-1,2-Dichloroethene	ND	1	.0 0.90	ug/L			09/19/17 13:12	1
trans-1,3-Dichloropropene	ND	1	.0 0.37	ug/L			09/19/17 13:12	1
trans-1,4-Dichloro-2-butene	ND	5	.0 0.22	2 ug/L			09/19/17 13:12	1
Trichloroethene	ND	1	.0 0.46	ug/L			09/19/17 13:12	1
Trichlorofluoromethane	ND	1	.0 0.88	ug/L			09/19/17 13:12	1
Vinyl acetate	ND	5	.0 0.85	i ug/L			09/19/17 13:12	1
Vinyl chloride	ND	1	.0 0.90	ug/L			09/19/17 13:12	1
Xylenes, Total	ND	2	.0 0.66	g ug/L			09/19/17 13:12	1
Surrogate	%Recovery	Qualifier Limits				Prepared	Analyzed	Dil Fac

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		09/13/17 08:35	09/15/17 03:17	1
Antimony	ND		0.020	0.0068	mg/L		09/13/17 08:35	09/15/17 03:17	1
Arsenic	0.0058	J	0.010	0.0056	mg/L		09/13/17 08:35	09/15/17 03:17	1
Barium	0.077		0.0020	0.00070	mg/L		09/13/17 08:35	09/15/17 03:17	1
Beryllium	ND		0.0020	0.00030	mg/L		09/13/17 08:35	09/15/17 03:17	1
Boron	0.0077	J	0.020	0.0040	mg/L		09/13/17 08:35	09/15/17 03:17	1
Cadmium	ND		0.0010	0.00050	mg/L		09/13/17 08:35	09/15/17 03:17	1
Calcium	53.2		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 03:17	1
Chromium	ND		0.0040	0.0010	mg/L		09/13/17 08:35	09/15/17 03:17	1
Cobalt	ND		0.0040	0.00063	mg/L		09/13/17 08:35	09/15/17 03:17	1
Copper	ND		0.010	0.0016	mg/L		09/13/17 08:35	09/15/17 03:17	1
Iron	0.78	В	0.050	0.019	mg/L		09/13/17 08:35	09/15/17 03:17	1

77 - 120

80 - 120

73 - 120

75 - 123

106

100

98

102

TestAmerica Buffalo

Page 47 of 94

09/19/17 13:12

09/19/17 13:12

09/19/17 13:12

09/19/17 13:12

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Lab Sample ID: 480-123947-8 Client Sample ID: MW-2I

Matrix: Water

Date Collected: 09/11/17 16:17 Date Received: 09/12/17 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0050	0.0030	mg/L		09/13/17 08:35	09/15/17 03:17	1
Magnesium	7.4		0.20	0.043	mg/L		09/13/17 08:35	09/15/17 03:17	1
Manganese	0.21	В	0.0030	0.00040	mg/L		09/13/17 08:35	09/15/17 03:17	1
Nickel	ND		0.010	0.0013	mg/L		09/13/17 08:35	09/15/17 03:17	1
Potassium	0.58		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 03:17	1
Selenium	ND		0.015	0.0087	mg/L		09/13/17 08:35	09/15/17 03:17	1
Silver	ND		0.0030	0.0017	mg/L		09/13/17 08:35	09/15/17 03:17	1
Sodium	5.0		1.0	0.32	mg/L		09/13/17 08:35	09/15/17 03:17	1
Thallium	ND		0.020	0.010	mg/L		09/13/17 08:35	09/15/17 03:17	1
Vanadium	ND		0.0050	0.0015	mg/L		09/13/17 08:35	09/15/17 03:17	1
Zinc	0.0027	JB	0.010	0.0015	mg/L		09/13/17 08:35	09/15/17 03:17	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/13/17 12:15	09/13/17 16:14	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20	0.073	mg/L			09/14/17 19:15	1
Chloride	7.4		0.50	0.28	mg/L			09/14/17 19:15	1
Sulfate	13.2		2.0	0.35	mg/L			09/14/17 19:15	1
Alkalinity, Total	157	В	20.0	8.0	mg/L			09/12/17 16:06	2
Ammonia as N	ND		0.020	0.0090	mg/L			09/12/17 13:24	1
Total Kjeldahl Nitrogen	ND		0.20	0.15	mg/L		09/13/17 16:40	09/14/17 09:40	1
Nitrate	ND		0.050	0.020	mg/L as N			09/12/17 16:14	1
Chemical Oxygen Demand	7.6	J	10.0	5.0	mg/L			09/12/17 18:56	1
Phenolics, Total Recoverable	0.0057	JB	0.010	0.0050	mg/L		09/13/17 04:35	09/13/17 14:45	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/12/17 04:16	1
Cyanide	ND	*	0.010	0.0050	mg/L		09/13/17 08:10	09/13/17 15:15	1
Total Organic Carbon	1.7		1.0	0.43	mg/L			09/14/17 03:05	1
Total Hardness	164		4.0	1.1	mg/L			09/18/17 14:30	1
Total Dissolved Solids	190		10.0	4.0	mg/L			09/12/17 21:38	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/13/17 12:18	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	20.0		5.00	5.00	Color Units			09/12/17 17:20	1

Client Sample ID: MW-2D Lab Sample ID: 480-123947-9 Date Collected: 09/11/17 15:30

Date Received: 09/12/17 01:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/19/17 13:37	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/19/17 13:37	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/19/17 13:37	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/19/17 13:37	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/19/17 13:37	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/19/17 13:37	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/19/17 13:37	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/19/17 13:37	1

TestAmerica Buffalo

Page 48 of 94

Matrix: Water

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-2D

Lab Sample ID: 480-123947-9

Matrix: Water

Date Collected: 09/11/17 15:30 Date Received: 09/12/17 01:30

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L		09/19/17 13:37	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L		09/19/17 13:37	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L		09/19/17 13:37	1
1,2-Dichloropropane	ND	1.0	0.72			09/19/17 13:37	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L		09/19/17 13:37	1
2-Hexanone	ND	5.0	1.2	ug/L		09/19/17 13:37	1
2-Butanone (MEK)	ND	5.0		ug/L		09/19/17 13:37	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L		09/19/17 13:37	1
Acetone	ND	5.0	3.0	ug/L		09/19/17 13:37	1
Acrylonitrile	ND	5.0	0.83	ug/L		09/19/17 13:37	1
Benzene	ND	1.0	0.41	ug/L		09/19/17 13:37	1
Bromochloromethane	ND	1.0	0.87	ug/L		09/19/17 13:37	1
Bromodichloromethane	ND	1.0	0.39	ug/L		09/19/17 13:37	1
Bromoform	ND	1.0	0.26	ug/L		09/19/17 13:37	1
Bromomethane	ND	1.0	0.69	ug/L		09/19/17 13:37	1
Carbon disulfide	ND	1.0	0.19	ug/L		09/19/17 13:37	1
Carbon tetrachloride	ND	1.0	0.27	ug/L		09/19/17 13:37	1
Chlorobenzene	ND	1.0	0.75	ug/L		09/19/17 13:37	1
Chlorodibromomethane	ND	1.0	0.32	ug/L		09/19/17 13:37	1
Chloroethane	ND	1.0	0.32	ug/L		09/19/17 13:37	1
Chloroform	ND	1.0	0.34	ug/L		09/19/17 13:37	1
Chloromethane	ND	1.0	0.35	ug/L		09/19/17 13:37	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L		09/19/17 13:37	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L		09/19/17 13:37	1
Dibromomethane	ND	1.0	0.41	ug/L		09/19/17 13:37	1
Ethylbenzene	ND	1.0	0.74	ug/L		09/19/17 13:37	1
Iodomethane	ND	1.0	0.30	ug/L		09/19/17 13:37	1
Methylene Chloride	ND	1.0	0.44	ug/L		09/19/17 13:37	1
Styrene	ND	1.0	0.73	ug/L		09/19/17 13:37	1
Tetrachloroethene	ND	1.0	0.36	ug/L		09/19/17 13:37	1
Toluene	ND	1.0	0.51	ug/L		09/19/17 13:37	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L		09/19/17 13:37	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L		09/19/17 13:37	1
trans-1,4-Dichloro-2-butene	ND	5.0	0.22	ug/L		09/19/17 13:37	1
Trichloroethene	ND	1.0	0.46	ug/L		09/19/17 13:37	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L		09/19/17 13:37	1
Vinyl acetate	ND	5.0	0.85	ug/L		09/19/17 13:37	1
Vinyl chloride	ND	1.0	0.90			09/19/17 13:37	1
Xylenes, Total	ND	2.0	0.66			09/19/17 13:37	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	77 - 120				09/19/17 13:37	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	77 - 120		09/19/17 13:37	1
Toluene-d8 (Surr)	99	80 - 120		09/19/17 13:37	1
4-Bromofluorobenzene (Surr)	96	73 - 120		09/19/17 13:37	1
Dibromofluoromethane (Surr)	102	75 ₋ 123		09/19/17 13:37	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.18	J	0.20	0.060	mg/L		09/13/17 08:35	09/15/17 03:21	1
Antimony	ND		0.020	0.0068	mg/L		09/13/17 08:35	09/15/17 03:21	1

TestAmerica Buffalo

Client: CHA Inc TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-2D Lab Sample ID: 480-123947-9 Date Collected: 09/11/17 15:30

Matrix: Water

Date Received: 09/12/17 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.013		0.010	0.0056	mg/L		09/13/17 08:35	09/15/17 03:21	1
Barium	0.0095		0.0020	0.00070	mg/L		09/13/17 08:35	09/15/17 03:21	1
Beryllium	ND		0.0020	0.00030	mg/L		09/13/17 08:35	09/15/17 03:21	1
Boron	0.053		0.020	0.0040	mg/L		09/13/17 08:35	09/15/17 03:21	1
Cadmium	ND		0.0010	0.00050	mg/L		09/13/17 08:35	09/15/17 03:21	1
Calcium	11.7		0.50	0.10	mg/L		09/13/17 08:35	09/15/17 03:21	1
Chromium	ND		0.0040	0.0010	mg/L		09/13/17 08:35	09/15/17 03:21	1
Cobalt	ND		0.0040	0.00063	mg/L		09/13/17 08:35	09/15/17 03:21	1
Copper	ND		0.010	0.0016	mg/L		09/13/17 08:35	09/15/17 03:21	1
Iron	0.15	В	0.050	0.019	mg/L		09/13/17 08:35	09/15/17 03:21	1
Lead	ND		0.0050	0.0030	mg/L		09/13/17 08:35	09/15/17 03:21	1
Magnesium	2.4		0.20	0.043	mg/L		09/13/17 08:35	09/15/17 03:21	1
Manganese	0.020	В	0.0030	0.00040	mg/L		09/13/17 08:35	09/15/17 03:21	1
Nickel	ND		0.010	0.0013	mg/L		09/13/17 08:35	09/15/17 03:21	1
Potassium	0.41	J	0.50	0.10	mg/L		09/13/17 08:35	09/15/17 03:21	1
Selenium	ND		0.015	0.0087	mg/L		09/13/17 08:35	09/15/17 03:21	1
Silver	ND		0.0030	0.0017	mg/L		09/13/17 08:35	09/15/17 03:21	1
Sodium	25.1		1.0	0.32	mg/L		09/13/17 08:35	09/15/17 03:21	1
Thallium	ND		0.020	0.010	mg/L		09/13/17 08:35	09/15/17 03:21	1
Vanadium	ND		0.0050	0.0015	mg/L		09/13/17 08:35	09/15/17 03:21	1
Zinc	ND		0.010	0.0015	mg/L		09/13/17 08:35	09/15/17 03:21	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	ma/l		09/13/17 12:15	09/13/17 16:16	1

General Chemistry	- "	0 115	-			_			D.: E
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20	0.073	mg/L			09/14/17 19:30	1
Chloride	0.71		0.50	0.28	mg/L			09/14/17 19:30	1
Sulfate	2.5		2.0	0.35	mg/L			09/14/17 19:30	1
Alkalinity, Total	95.2		10.0	4.0	mg/L			09/12/17 17:01	1
Ammonia as N	0.070		0.020	0.0090	mg/L			09/12/17 13:25	1
Total Kjeldahl Nitrogen	ND		0.20	0.15	mg/L		09/13/17 16:40	09/14/17 09:40	1
Nitrate	ND		0.050	0.020	mg/L as N			09/12/17 16:15	1
Chemical Oxygen Demand	ND		10.0	5.0	mg/L			09/12/17 18:56	1
Phenolics, Total Recoverable	0.0050	JB	0.010	0.0050	mg/L		09/13/17 04:35	09/13/17 14:19	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/12/17 04:16	1
Cyanide	ND	*	0.010	0.0050	mg/L		09/13/17 08:10	09/13/17 15:16	1
Total Organic Carbon	1.1		1.0	0.43	mg/L			09/14/17 03:35	1
Total Hardness	40.0		4.0	1.1	mg/L			09/18/17 14:30	1
Total Dissolved Solids	109		10.0	4.0	mg/L			09/12/17 21:38	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/13/17 12:18	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	10.0		5.00	5.00	Color Units			09/12/17 17:20	1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: Trip Blank

Date Collected: 09/11/17 00:00 Date Received: 09/12/17 01:30 Lab Sample ID: 480-123947-10

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/19/17 14:02	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/19/17 14:02	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/19/17 14:02	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/19/17 14:02	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/19/17 14:02	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/19/17 14:02	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/19/17 14:02	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/19/17 14:02	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	_			09/19/17 14:02	1
1,2-Dichlorobenzene	ND	1.0	0.79				09/19/17 14:02	1
1,2-Dichloroethane	ND	1.0	0.21	-			09/19/17 14:02	1
1,2-Dichloropropane	ND	1.0	0.72	-			09/19/17 14:02	1
1,4-Dichlorobenzene	ND	1.0	0.84				09/19/17 14:02	1
2-Hexanone	ND	5.0		ug/L			09/19/17 14:02	1
2-Butanone (MEK)	ND	5.0		ug/L			09/19/17 14:02	. 1
. ,	ND ND	5.0		•			09/19/17 14:02	1
4-Methyl-2-pentanone (MIBK)	ND ND	5.0		ug/L				1
Acetone				ug/L			09/19/17 14:02	
Acrylonitrile	ND	5.0	0.83				09/19/17 14:02	1
Benzene	ND	1.0	0.41	-			09/19/17 14:02	1
Bromochloromethane	ND	1.0	0.87				09/19/17 14:02	1
Bromodichloromethane	ND	1.0	0.39				09/19/17 14:02	1
Bromoform	ND	1.0	0.26				09/19/17 14:02	1
Bromomethane	ND	1.0	0.69				09/19/17 14:02	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/19/17 14:02	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/19/17 14:02	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/19/17 14:02	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/19/17 14:02	1
Chloroethane	ND	1.0	0.32	ug/L			09/19/17 14:02	1
Chloroform	ND	1.0	0.34	ug/L			09/19/17 14:02	1
Chloromethane	ND	1.0	0.35	ug/L			09/19/17 14:02	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/19/17 14:02	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/19/17 14:02	1
Dibromomethane	ND	1.0	0.41	ug/L			09/19/17 14:02	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/19/17 14:02	1
lodomethane	ND	1.0	0.30	ug/L			09/19/17 14:02	1
Methylene Chloride	ND	1.0	0.44	ug/L			09/19/17 14:02	1
Styrene	ND	1.0	0.73	ug/L			09/19/17 14:02	1
Tetrachloroethene	ND	1.0	0.36				09/19/17 14:02	1
Toluene	ND	1.0	0.51	-			09/19/17 14:02	1
trans-1,2-Dichloroethene	ND	1.0	0.90	_			09/19/17 14:02	1
trans-1,3-Dichloropropene	ND	1.0	0.37	_			09/19/17 14:02	1
trans-1,4-Dichloro-2-butene	ND	5.0	0.22	-			09/19/17 14:02	1
Trichloroethene	ND	1.0	0.46	•			09/19/17 14:02	1
Trichlorofluoromethane	ND	1.0	0.48	-			09/19/17 14:02	1
Vinyl acetate	ND	5.0	0.85				09/19/17 14:02	1
Vinyl acetate Vinyl chloride	ND	1.0	0.90				09/19/17 14:02	1
•	ND ND	2.0	0.90	-				1
Xylenes, Total	NU	2.0	0.00	ug/L			09/19/17 14:02	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	77 ₋ 120			-	cparca	09/19/17 14:02	1

TestAmerica Buffalo

Page 51 of 94

9/27/2017

2

3

8

10

H

Client: CHA Inc

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: Trip Blank

Lab Sample ID: 480-123947-10 Date Collected: 09/11/17 00:00

Matrix: Water

TestAmerica Job ID: 480-123780-1

Date Received: 09/12/17 01:30

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98	80 - 120	09/	/19/17 14:02	1
4-Bromofluorobenzene (Surr)	94	73 - 120	09/	/19/17 14:02	1
Dibromofluoromethane (Surr)	106	75 - 123	09/	/19/17 14:02	1

Client Sample ID: MW-1S Lab Sample ID: 480-124024-1

Date Collected: 09/12/17 12:58 Matrix: Water

Date Received: 09/13/17 02:15

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/19/17 00:45	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/19/17 00:45	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/19/17 00:45	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/19/17 00:45	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/19/17 00:45	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/19/17 00:45	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/19/17 00:45	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/19/17 00:45	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/19/17 00:45	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/19/17 00:45	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/19/17 00:45	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/19/17 00:45	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/19/17 00:45	1
2-Hexanone	ND	5.0	1.2	ug/L			09/19/17 00:45	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/19/17 00:45	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/19/17 00:45	1
Acetone	ND	5.0	3.0	ug/L			09/19/17 00:45	1
Acrylonitrile	ND	5.0	0.83	ug/L			09/19/17 00:45	1
Benzene	ND	1.0	0.41	ug/L			09/19/17 00:45	1
Bromochloromethane	ND	1.0	0.87	ug/L			09/19/17 00:45	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/19/17 00:45	1
Bromoform	ND	1.0	0.26	ug/L			09/19/17 00:45	1
Bromomethane	ND	1.0	0.69	ug/L			09/19/17 00:45	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/19/17 00:45	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/19/17 00:45	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/19/17 00:45	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/19/17 00:45	1
Chloroethane	ND	1.0	0.32	ug/L			09/19/17 00:45	1
Chloroform	ND	1.0	0.34	ug/L			09/19/17 00:45	1
Chloromethane	ND	1.0	0.35	ug/L			09/19/17 00:45	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/19/17 00:45	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/19/17 00:45	1
Dibromomethane	ND	1.0	0.41	ug/L			09/19/17 00:45	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/19/17 00:45	1
lodomethane	ND	1.0	0.30	ug/L			09/19/17 00:45	1
Methylene Chloride	0.51 JB	1.0	0.44	ug/L			09/19/17 00:45	1
Styrene	ND	1.0	0.73	ug/L			09/19/17 00:45	1
Tetrachloroethene	ND	1.0	0.36	ug/L			09/19/17 00:45	1
Toluene	ND	1.0	0.51	ua/L			09/19/17 00:45	1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-1S

Date Collected: 09/12/17 12:58 Date Received: 09/13/17 02:15 Lab Sample ID: 480-124024-1

TestAmerica Job ID: 480-123780-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/19/17 00:45	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/19/17 00:45	1
trans-1,4-Dichloro-2-butene	ND		5.0	0.22	ug/L			09/19/17 00:45	1
Trichloroethene	ND		1.0	0.46	ug/L			09/19/17 00:45	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/19/17 00:45	1
Vinyl acetate	ND		5.0	0.85	ug/L			09/19/17 00:45	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/19/17 00:45	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/19/17 00:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120			-		09/19/17 00:45	1
Toluene-d8 (Surr)	100		80 - 120					09/19/17 00:45	1
4-Bromofluorobenzene (Surr)	106		73 - 120					09/19/17 00:45	1
Dibromofluoromethane (Surr)	102		75 ₋ 123					09/19/17 00:45	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		09/13/17 08:55	09/14/17 16:17	1
Antimony	ND		0.020	0.0068	•		09/13/17 08:55	09/14/17 16:17	1
Arsenic	ND		0.010	0.0056	mg/L		09/13/17 08:55	09/14/17 16:17	1
Barium	0.026		0.0020	0.00070	mg/L		09/13/17 08:55	09/14/17 16:17	1
Beryllium	ND		0.0020	0.00030	mg/L		09/13/17 08:55	09/14/17 16:17	1
Boron	0.62		0.020	0.0040	mg/L		09/13/17 08:55	09/14/17 16:17	1
Cadmium	ND		0.0010	0.00050	mg/L		09/13/17 08:55	09/14/17 16:17	1
Calcium	91.9		0.50	0.10	mg/L		09/13/17 08:55	09/14/17 16:17	1
Chromium	ND		0.0040	0.0010	mg/L		09/13/17 08:55	09/14/17 16:17	1
Cobalt	0.00065	J	0.0040	0.00063	mg/L		09/13/17 08:55	09/14/17 16:17	1
Copper	0.0033	J	0.010	0.0016	mg/L		09/13/17 08:55	09/14/17 16:17	1
Iron	0.030	J	0.050	0.019	mg/L		09/13/17 08:55	09/14/17 16:17	1
Lead	ND		0.0050	0.0030	mg/L		09/13/17 08:55	09/14/17 16:17	1
Magnesium	13.1		0.20	0.043	mg/L		09/13/17 08:55	09/14/17 16:17	1
Manganese	4.6	В	0.0030	0.00040	mg/L		09/13/17 08:55	09/14/17 16:17	1
Nickel	0.026		0.010	0.0013	mg/L		09/13/17 08:55	09/14/17 16:17	1
Potassium	23.5		0.50	0.10	mg/L		09/13/17 08:55	09/14/17 16:17	1
Selenium	ND		0.015	0.0087	mg/L		09/13/17 08:55	09/14/17 16:17	1
Silver	ND		0.0030	0.0017	mg/L		09/13/17 08:55	09/14/17 16:17	1
Sodium	36.1		1.0	0.32	mg/L		09/13/17 08:55	09/14/17 16:17	1
Thallium	ND		0.020	0.010	mg/L		09/13/17 08:55	09/14/17 16:17	1
Vanadium	ND		0.0050	0.0015	mg/L		09/13/17 08:55	09/14/17 16:17	1
Zinc	0.0036	JB	0.010	0.0015	mg/L		09/13/17 08:55	09/14/17 16:17	1

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.00020	0.00012	mg/L		09/14/17 12:00	09/14/17 15:00	1
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.20	0.073	mg/L			09/25/17 13:24	1
20.4		0.50	0.28	mg/L			09/25/17 13:24	1
9.8		2.0	0.35	mg/L			09/25/17 13:24	1
	Result ND 20.4	Result Qualifier ND 20.4	Result ND Qualifier RL ND 0.20 20.4 0.50	Result ND 0.00020 0.00012 Result ND RL MDL ND 0.20 0.073 20.4 0.50 0.28	ND 0.00020 0.00012 mg/L Result ND Qualifier RL MDL Unit ND 0.20 0.073 mg/L 20.4 0.50 0.28 mg/L	Result Qualifier RL MDL Unit D ND 0.20 0.073 mg/L 20.4 0.50 0.28 mg/L	Result Qualifier RL MDL Unit D Prepared ND 0.20 0.073 mg/L 20.4 0.50 0.28 mg/L	ND 0.00020 0.00012 mg/L 09/14/17 12:00 09/14/17 15:00 Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.20 0.073 mg/L 09/25/17 13:24 20.4 0.50 0.28 mg/L 09/25/17 13:24

TestAmerica Buffalo

Page 53 of 94

9/27/2017

3

5

7

8

10

11

Project/Site: Albany Interim Landfill - Baseline

Lab Sample ID: 480-124024-1

Matrix: Water

Client Sample ID: MW-1S Date Collected: 09/12/17 12:58 Date Received: 09/13/17 02:15

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	381	В	40.0	16.0	mg/L			09/14/17 17:53	4
Ammonia as N	0.25		0.020	0.0090	mg/L			09/13/17 14:48	1
Total Kjeldahl Nitrogen	0.98		0.20	0.15	mg/L		09/13/17 16:40	09/14/17 09:58	1
Nitrate	0.066		0.050	0.020	mg/L as N			09/13/17 17:25	1
Chemical Oxygen Demand	15.8	В	10.0	5.0	mg/L			09/14/17 19:30	1
Phenolics, Total Recoverable	ND		0.010	0.0050	mg/L		09/13/17 19:20	09/15/17 01:50	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/13/17 08:12	1
Cyanide	ND		0.010	0.0050	mg/L		09/13/17 12:30	09/13/17 15:43	1
Total Organic Carbon	5.5		1.0	0.43	mg/L			09/15/17 23:39	1
Total Hardness	284		4.0	1.1	mg/L			09/18/17 14:30	1
Total Dissolved Solids	414		10.0	4.0	mg/L			09/13/17 15:01	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/14/17 08:42	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	10.0		5.00	5.00	Color Units	_		09/13/17 09:00	1

Client Sample ID: MW-1I Lab Sample ID: 480-124024-2

Date Collected: 09/12/17 14:02 Matrix: Water

Date Received: 09/13/17 02:15

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/19/17 01:12	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/19/17 01:12	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/19/17 01:12	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/19/17 01:12	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/19/17 01:12	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/19/17 01:12	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/19/17 01:12	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/19/17 01:12	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/19/17 01:12	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/19/17 01:12	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/19/17 01:12	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/19/17 01:12	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/19/17 01:12	1
2-Hexanone	ND	5.0	1.2	ug/L			09/19/17 01:12	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/19/17 01:12	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/19/17 01:12	1
Acetone	ND	5.0	3.0	ug/L			09/19/17 01:12	1
Acrylonitrile	ND	5.0	0.83	ug/L			09/19/17 01:12	1
Benzene	ND	1.0	0.41	ug/L			09/19/17 01:12	1
Bromochloromethane	ND	1.0	0.87	ug/L			09/19/17 01:12	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/19/17 01:12	1
Bromoform	ND	1.0	0.26	ug/L			09/19/17 01:12	1
Bromomethane	ND	1.0	0.69	ug/L			09/19/17 01:12	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/19/17 01:12	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/19/17 01:12	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/19/17 01:12	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/19/17 01:12	1
Chloroethane	ND	1.0	0.32	ug/L			09/19/17 01:12	1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-1I

Lab Sample ID: 480-124024-2

Matrix: Water

Date Collected: 09/12/17 14:02 Date Received: 09/13/17 02:15

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	ND	1.0	0.34	ug/L			09/19/17 01:12	1
Chloromethane	ND	1.0	0.35	ug/L			09/19/17 01:12	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/19/17 01:12	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/19/17 01:12	1
Dibromomethane	ND	1.0	0.41	ug/L			09/19/17 01:12	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/19/17 01:12	1
Iodomethane	ND	1.0	0.30	ug/L			09/19/17 01:12	1
Methylene Chloride	ND	1.0	0.44	ug/L			09/19/17 01:12	1
Styrene	ND	1.0	0.73	ug/L			09/19/17 01:12	1
Tetrachloroethene	ND	1.0	0.36	ug/L			09/19/17 01:12	1
Toluene	ND	1.0	0.51	ug/L			09/19/17 01:12	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			09/19/17 01:12	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			09/19/17 01:12	1
trans-1,4-Dichloro-2-butene	ND	5.0	0.22	ug/L			09/19/17 01:12	1
Trichloroethene	ND	1.0	0.46	ug/L			09/19/17 01:12	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			09/19/17 01:12	1
Vinyl acetate	ND	5.0	0.85	ug/L			09/19/17 01:12	1
Vinyl chloride	ND	1.0	0.90	ug/L			09/19/17 01:12	1
Xylenes, Total	ND	2.0	0.66	ug/L			09/19/17 01:12	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	77 - 120					09/19/17 01:12	1
Toluene-d8 (Surr)	98	80 - 120					09/19/17 01:12	1
4-Bromofluorobenzene (Surr)	98	73 - 120					09/19/17 01:12	1
Dibromofluoromethane (Surr)	99	75 - 123					09/19/17 01:12	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		09/13/17 08:55	09/14/17 16:20	1
Antimony	ND		0.020	0.0068	mg/L		09/13/17 08:55	09/14/17 16:20	1
Arsenic	ND		0.010	0.0056	mg/L		09/13/17 08:55	09/14/17 16:20	1
Barium	0.023		0.0020	0.00070	mg/L		09/13/17 08:55	09/14/17 16:20	1
Beryllium	ND		0.0020	0.00030	mg/L		09/13/17 08:55	09/14/17 16:20	1
Boron	0.0080	J	0.020	0.0040	mg/L		09/13/17 08:55	09/14/17 16:20	1
Cadmium	ND		0.0010	0.00050	mg/L		09/13/17 08:55	09/14/17 16:20	1
Calcium	39.0		0.50	0.10	mg/L		09/13/17 08:55	09/14/17 16:20	1
Chromium	ND		0.0040	0.0010	mg/L		09/13/17 08:55	09/14/17 16:20	1
Cobalt	ND		0.0040	0.00063	mg/L		09/13/17 08:55	09/14/17 16:20	1
Copper	ND		0.010	0.0016	mg/L		09/13/17 08:55	09/14/17 16:20	1
Iron	0.55		0.050	0.019	mg/L		09/13/17 08:55	09/14/17 16:20	1
Lead	ND		0.0050	0.0030	mg/L		09/13/17 08:55	09/14/17 16:20	1
Magnesium	7.4		0.20	0.043	mg/L		09/13/17 08:55	09/14/17 16:20	1
Manganese	0.14	В	0.0030	0.00040	mg/L		09/13/17 08:55	09/14/17 16:20	1
Nickel	ND		0.010	0.0013	mg/L		09/13/17 08:55	09/14/17 16:20	1
Potassium	0.38	J	0.50	0.10	mg/L		09/13/17 08:55	09/14/17 16:20	1
Selenium	ND		0.015	0.0087	mg/L		09/13/17 08:55	09/14/17 16:20	1
Silver	ND		0.0030	0.0017	mg/L		09/13/17 08:55	09/14/17 16:20	1
Sodium	2.0		1.0	0.32	mg/L		09/13/17 08:55	09/14/17 16:20	1
Thallium	ND		0.020	0.010	mg/L		09/13/17 08:55	09/14/17 16:20	1
Vanadium	ND		0.0050	0.0015	mg/L		09/13/17 08:55	09/14/17 16:20	1

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Client Sample ID: MW-11

Date Collected: 09/12/17 14:02 Date Received: 09/13/17 02:15

Lab Sample ID: 480-124024-2

Matrix: Water

Method: 6010C - Metals (ICP) (Contin	rued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc	0.0025	JB	0.010	0.0015	mg/L		09/13/17 08:55	09/14/17 16:20	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/14/17 12:00	09/14/17 15:02	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20	0.073	mg/L			09/15/17 19:02	1
Chloride	11.6		0.50	0.28	mg/L			09/15/17 19:02	1
Sulfate	23.4		2.0	0.35	mg/L			09/15/17 19:02	1
Alkalinity, Total	108	В	20.0	8.0	mg/L			09/13/17 16:56	2
Ammonia as N	ND		0.020	0.0090	mg/L			09/13/17 14:49	1
Total Kjeldahl Nitrogen	ND		0.20	0.15	mg/L		09/13/17 16:40	09/14/17 09:58	1
Nitrate	ND		0.050	0.020	mg/L as N			09/13/17 15:55	1
Chemical Oxygen Demand	7.6	JB	10.0	5.0	mg/L			09/14/17 19:30	1
Phenolics, Total Recoverable	ND		0.010	0.0050	mg/L		09/13/17 19:20	09/15/17 01:50	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/13/17 08:12	1
Cyanide	ND		0.010	0.0050	mg/L		09/13/17 12:30	09/13/17 15:45	1
Total Organic Carbon	0.81	J	1.0	0.43	mg/L			09/16/17 00:09	1
Total Hardness	132		4.0	1.1	mg/L			09/18/17 14:30	1
Total Dissolved Solids	151		10.0	4.0	mg/L			09/13/17 20:25	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/14/17 08:42	1

Client Sample ID: MW-1D Lab Sample ID: 480-124024-3 Date Collected: 09/12/17 14:14

RL

5.00

RL Unit

5.00 Color Units

D

Prepared

Result Qualifier

20.0

Date Received: 09/13/17 02:15

Analyte

Color

Method: 8260C - Volatile Organic Compounds by GC/MS Result Qualifier MDL Dil Fac Analyte RL Unit D Prepared Analyzed ND 09/19/17 01:38 1,1,1,2-Tetrachloroethane 1.0 0.35 ug/L 1,1,1-Trichloroethane ND 1.0 0.82 ug/L 09/19/17 01:38 1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/L 09/19/17 01:38 1,1,2-Trichloroethane ND 1.0 0.23 ug/L 09/19/17 01:38 1,1-Dichloroethane ND 1.0 0.38 ug/L 09/19/17 01:38 1,1-Dichloroethene ND 1.0 0.29 ug/L 09/19/17 01:38 1,2,3-Trichloropropane ND 1.0 0.89 ug/L 09/19/17 01:38 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 ug/L 09/19/17 01:38 1,2-Dibromoethane (EDB) ND 1.0 0.73 ug/L 09/19/17 01:38 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 09/19/17 01:38 1,2-Dichloroethane ND 1.0 0.21 ug/L 09/19/17 01:38 ND 1.0 0.72 ug/L 09/19/17 01:38 1,2-Dichloropropane ND 1,4-Dichlorobenzene 1.0 0.84 ug/L 09/19/17 01:38 ND 5.0 2-Hexanone 1.2 ug/L 09/19/17 01:38 2-Butanone (MEK) ND 5.0 09/19/17 01:38 1.3 ug/L 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 09/19/17 01:38 Acetone ND 5.0 3.0 ug/L 09/19/17 01:38 0.83 ug/L Acrylonitrile ND 5.0 09/19/17 01:38

TestAmerica Buffalo

Page 56 of 94

Dil Fac

Analyzed

09/13/17 09:00

Matrix: Water

Client: CHA Inc Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-1D

Lab Sample ID: 480-124024-3

Matrix: Water

Date Collected: 09/12/17 14:14 Date Received: 09/13/17 02:15

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	1.0	0.41	ug/L			09/19/17 01:38	1
Bromochloromethane	ND	1.0	0.87	ug/L			09/19/17 01:38	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/19/17 01:38	1
Bromoform	ND	1.0	0.26	ug/L			09/19/17 01:38	1
Bromomethane	ND	1.0	0.69	ug/L			09/19/17 01:38	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/19/17 01:38	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/19/17 01:38	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/19/17 01:38	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/19/17 01:38	1
Chloroethane	ND	1.0	0.32	ug/L			09/19/17 01:38	1
Chloroform	ND	1.0	0.34	ug/L			09/19/17 01:38	1
Chloromethane	ND	1.0	0.35	ug/L			09/19/17 01:38	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/19/17 01:38	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/19/17 01:38	1
Dibromomethane	ND	1.0	0.41	ug/L			09/19/17 01:38	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/19/17 01:38	1
lodomethane	ND	1.0	0.30	ug/L			09/19/17 01:38	1
Methylene Chloride	ND	1.0	0.44	ug/L			09/19/17 01:38	1
Styrene	ND	1.0	0.73	ug/L			09/19/17 01:38	1
Tetrachloroethene	ND	1.0	0.36	ug/L			09/19/17 01:38	1
Toluene	ND	1.0	0.51	ug/L			09/19/17 01:38	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			09/19/17 01:38	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			09/19/17 01:38	1
trans-1,4-Dichloro-2-butene	ND	5.0	0.22	ug/L			09/19/17 01:38	1
Trichloroethene	ND	1.0	0.46	ug/L			09/19/17 01:38	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			09/19/17 01:38	1
Vinyl acetate	ND	5.0	0.85	ug/L			09/19/17 01:38	1
Vinyl chloride	ND	1.0	0.90	ug/L			09/19/17 01:38	1
Xylenes, Total	ND	2.0	0.66	ug/L			09/19/17 01:38	1
Surrogate	%Recovery Q	ualifier Limits				Prepared	Analyzed	Dil Fac

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1	1,2-Dichloroethane-d4 (Surr)	102		77 - 120		09/19/17 01:38	1
	Toluene-d8 (Surr)	102		80 - 120		09/19/17 01:38	1
	4-Bromofluorobenzene (Surr)	98		73 - 120		09/19/17 01:38	1
	Dibromofluoromethane (Surr)	102		75 - 123		09/19/17 01:38	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.29		0.20	0.060	mg/L		09/13/17 08:55	09/14/17 16:24	1
Antimony	ND		0.020	0.0068	mg/L		09/13/17 08:55	09/14/17 16:24	1
Arsenic	0.0090	J	0.010	0.0056	mg/L		09/13/17 08:55	09/14/17 16:24	1
Barium	0.025		0.0020	0.00070	mg/L		09/13/17 08:55	09/14/17 16:24	1
Beryllium	ND		0.0020	0.00030	mg/L		09/13/17 08:55	09/14/17 16:24	1
Boron	0.013	J	0.020	0.0040	mg/L		09/13/17 08:55	09/14/17 16:24	1
Cadmium	ND		0.0010	0.00050	mg/L		09/13/17 08:55	09/14/17 16:24	1
Calcium	25.4		0.50	0.10	mg/L		09/13/17 08:55	09/14/17 16:24	1
Chromium	ND		0.0040	0.0010	mg/L		09/13/17 08:55	09/14/17 16:24	1
Cobalt	ND		0.0040	0.00063	mg/L		09/13/17 08:55	09/14/17 16:24	1
Copper	ND		0.010	0.0016	mg/L		09/13/17 08:55	09/14/17 16:24	1
Iron	0.30		0.050	0.019	mg/L		09/13/17 08:55	09/14/17 16:24	1

TestAmerica Buffalo

Page 57 of 94

2

-

5

9

1(

11

Project/Site: Albany Interim Landfill - Baseline

Lab Sample ID: 480-124024-3

TestAmerica Job ID: 480-123780-1

Matrix: Water

Client Sample ID: MW-1D Date Collected: 09/12/17 14:14

Date Received: 09/13/17 02:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0050	0.0030	mg/L		09/13/17 08:55	09/14/17 16:24	1
Magnesium	4.0		0.20	0.043	mg/L		09/13/17 08:55	09/14/17 16:24	1
Manganese	0.031	В	0.0030	0.00040	mg/L		09/13/17 08:55	09/14/17 16:24	1
Nickel	ND		0.010	0.0013	mg/L		09/13/17 08:55	09/14/17 16:24	1
Potassium	0.49	J	0.50	0.10	mg/L		09/13/17 08:55	09/14/17 16:24	1
Selenium	ND		0.015	0.0087	mg/L		09/13/17 08:55	09/14/17 16:24	1
Silver	ND		0.0030	0.0017	mg/L		09/13/17 08:55	09/14/17 16:24	1
Sodium	7.4		1.0	0.32	mg/L		09/13/17 08:55	09/14/17 16:24	1
Thallium	ND		0.020	0.010	mg/L		09/13/17 08:55	09/14/17 16:24	1
Vanadium	ND		0.0050	0.0015	mg/L		09/13/17 08:55	09/14/17 16:24	1
Zinc	0.0033	J B	0.010	0.0015	mg/L		09/13/17 08:55	09/14/17 16:24	1

Method: /4/UA - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/14/17 12:00	09/14/17 15:03	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20	0.073	mg/L			09/15/17 19:16	1
Chloride	0.79		0.50	0.28	mg/L			09/15/17 19:16	1
Sulfate	6.3		2.0	0.35	mg/L			09/15/17 19:16	1
Alkalinity, Total	102	В	30.0	12.0	mg/L			09/13/17 16:56	3
Ammonia as N	0.022		0.020	0.0090	mg/L			09/13/17 14:50	1
Total Kjeldahl Nitrogen	ND		0.20	0.15	mg/L		09/13/17 16:40	09/14/17 09:58	1
Nitrate	ND		0.050	0.020	mg/L as N			09/13/17 15:56	1
Chemical Oxygen Demand	ND		10.0	5.0	mg/L			09/14/17 19:30	1
Phenolics, Total Recoverable	0.0074	J	0.010	0.0050	mg/L		09/13/17 19:20	09/15/17 01:50	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/13/17 08:12	1
Cyanide	ND		0.010	0.0050	mg/L		09/13/17 12:30	09/13/17 15:46	1
Total Organic Carbon	0.84	J	1.0	0.43	mg/L			09/16/17 00:39	1
Total Hardness	88.0		4.0	1.1	mg/L			09/18/17 14:30	1
Total Dissolved Solids	100		10.0	4.0	mg/L			09/13/17 20:25	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/14/17 08:42	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	5.00		5.00	5.00	Color Units			09/13/17 09:00	1

Client Sample ID: MW-14S Lab Sample ID: 480-124024-4 Date Collected: 09/12/17 10:06

Date Received: 09/13/17 02:15

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/19/17 02:05	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/19/17 02:05	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/19/17 02:05	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/19/17 02:05	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/19/17 02:05	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/19/17 02:05	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/19/17 02:05	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/19/17 02:05	1

TestAmerica Buffalo

Page 58 of 94

Matrix: Water

Analyte

Aluminum

Antimony

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-14S

Date Collected: 09/12/17 10:06 Date Received: 09/13/17 02:15 Lab Sample ID: 480-124024-4

Matrix: Water

Analyte	Result	Qualifier R	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND	1.	0 0.73	ug/L			09/19/17 02:05	1
,2-Dichlorobenzene	ND	1.	0 0.79	ug/L			09/19/17 02:05	1
,2-Dichloroethane	ND	1.	0 0.21	ug/L			09/19/17 02:05	1
,2-Dichloropropane	ND	1.	0 0.72	ug/L			09/19/17 02:05	1
,4-Dichlorobenzene	ND	1.	0 0.84	ug/L			09/19/17 02:05	1
2-Hexanone	ND	5.	0 1.2	ug/L			09/19/17 02:05	1
2-Butanone (MEK)	ND	5.	0 1.3	ug/L			09/19/17 02:05	1
4-Methyl-2-pentanone (MIBK)	ND	5.	0 2.1	ug/L			09/19/17 02:05	1
Acetone	ND	5.	0 3.0	ug/L			09/19/17 02:05	1
Acrylonitrile	ND	5.	0 0.83	ug/L			09/19/17 02:05	1
Benzene	ND	1.	0 0.41	ug/L			09/19/17 02:05	1
Bromochloromethane	ND	1.	0 0.87	ug/L			09/19/17 02:05	1
Bromodichloromethane	ND	1.	0 0.39	ug/L			09/19/17 02:05	1
Bromoform	ND	1.	0 0.26	ug/L			09/19/17 02:05	1
Bromomethane	ND	1.	0 0.69	ug/L			09/19/17 02:05	1
Carbon disulfide	ND	1.	0 0.19	ug/L			09/19/17 02:05	1
Carbon tetrachloride	ND	1.	0 0.27	ug/L			09/19/17 02:05	1
Chlorobenzene	ND	1.	0 0.75	ug/L			09/19/17 02:05	1
Chlorodibromomethane	ND	1.	0 0.32	ug/L			09/19/17 02:05	1
Chloroethane	ND	1.	0 0.32	ug/L			09/19/17 02:05	1
Chloroform	ND	1.		ug/L			09/19/17 02:05	
Chloromethane	ND	1.	0 0.35	ug/L			09/19/17 02:05	1
cis-1,2-Dichloroethene	ND	1.		ug/L			09/19/17 02:05	1
cis-1,3-Dichloropropene	ND	1.		ug/L			09/19/17 02:05	1
Dibromomethane	ND	1.	0 0.41	ug/L			09/19/17 02:05	1
Ethylbenzene	ND	1.		ug/L			09/19/17 02:05	1
lodomethane	ND	1.		ug/L			09/19/17 02:05	1
Methylene Chloride	ND	1.		ug/L			09/19/17 02:05	1
Styrene	ND	1.		ug/L			09/19/17 02:05	1
Tetrachloroethene	ND	1.		ug/L			09/19/17 02:05	1
Foluene	ND	1.		ug/L			09/19/17 02:05	1
rans-1,2-Dichloroethene	ND	1.		ug/L			09/19/17 02:05	1
rans-1,3-Dichloropropene	ND	1.		ug/L			09/19/17 02:05	
rans-1,4-Dichloro-2-butene	ND	5.		ug/L			09/19/17 02:05	1
Trichloroethene	ND	1.		ug/L			09/19/17 02:05	1
Trichlorofluoromethane	ND	 1.		ug/L			09/19/17 02:05	1
Vinyl acetate	ND	5.		ug/L			09/19/17 02:05	1
Vinyl chloride	ND	1.		ug/L			09/19/17 02:05	1
Xylenes, Total	ND	2.		ug/L			09/19/17 02:05	1
Surrogate	%Recovery	Qualifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	77 - 120	_		_		09/19/17 02:05	1
Toluene-d8 (Surr)	99	80 - 120					09/19/17 02:05	1
1-Bromofluorobenzene (Surr)	98	73 - 120					09/19/17 02:05	1
Dibromofluoromethane (Surr)	103	75 - 123					09/19/17 02:05	1

TestAmerica Buffalo

Analyzed

09/14/17 16:28

09/14/17 16:28

Prepared

09/13/17 08:55

09/13/17 08:55

RL

0.20

0.020

MDL Unit

0.060 mg/L

0.0068 mg/L

Result Qualifier

ND

ND

Dil Fac

3

_

0

8

10

Client: CHA Inc TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-14S

Lab Sample ID: 480-124024-4

Matrix: Water

Date Collected: 09/12/17 10:06 Date Received: 09/13/17 02:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0062	J	0.010	0.0056	mg/L		09/13/17 08:55	09/14/17 16:28	1
Barium	0.071		0.0020	0.00070	mg/L		09/13/17 08:55	09/14/17 16:28	1
Beryllium	ND		0.0020	0.00030	mg/L		09/13/17 08:55	09/14/17 16:28	1
Boron	0.10		0.020	0.0040	mg/L		09/13/17 08:55	09/14/17 16:28	1
Cadmium	ND		0.0010	0.00050	mg/L		09/13/17 08:55	09/14/17 16:28	1
Calcium	85.9		0.50	0.10	mg/L		09/13/17 08:55	09/14/17 16:28	1
Chromium	ND		0.0040	0.0010	mg/L		09/13/17 08:55	09/14/17 16:28	1
Cobalt	0.0031	J	0.0040	0.00063	mg/L		09/13/17 08:55	09/14/17 16:28	1
Copper	ND		0.010	0.0016	mg/L		09/13/17 08:55	09/14/17 16:28	1
Iron	9.7		0.050	0.019	mg/L		09/13/17 08:55	09/14/17 16:28	1
Lead	ND		0.0050	0.0030	mg/L		09/13/17 08:55	09/14/17 16:28	1
Magnesium	18.9		0.20	0.043	mg/L		09/13/17 08:55	09/14/17 16:28	1
Manganese	1.5	В	0.0030	0.00040	mg/L		09/13/17 08:55	09/14/17 16:28	1
Nickel	0.0035	J	0.010	0.0013	mg/L		09/13/17 08:55	09/14/17 16:28	1
Potassium	1.1		0.50	0.10	mg/L		09/13/17 08:55	09/14/17 16:28	1
Selenium	ND		0.015	0.0087	mg/L		09/13/17 08:55	09/14/17 16:28	1
Silver	ND		0.0030	0.0017	mg/L		09/13/17 08:55	09/14/17 16:28	1
Sodium	44.5		1.0	0.32	mg/L		09/13/17 08:55	09/14/17 16:28	1
Thallium	ND		0.020	0.010	mg/L		09/13/17 08:55	09/14/17 16:28	1
Vanadium	0.0025	J	0.0050	0.0015	mg/L		09/13/17 08:55	09/14/17 16:28	1
Zinc	0.0061	JB	0.010	0.0015	mg/L		09/13/17 08:55	09/14/17 16:28	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/14/17 12:00	09/14/17 15:05	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.40	0.15	mg/L			09/15/17 19:31	2
Chloride	61.4		1.0	0.56	mg/L			09/15/17 19:31	2
Sulfate	13.3		4.0	0.70	mg/L			09/15/17 19:31	2
Alkalinity, Total	310	В	40.0	16.0	mg/L			09/13/17 17:17	4
Ammonia as N	0.41		0.020	0.0090	mg/L			09/13/17 14:51	1
Total Kjeldahl Nitrogen	1.2		0.20	0.15	mg/L		09/13/17 16:40	09/14/17 10:06	1
Nitrate	ND		0.050	0.020	mg/L as N			09/13/17 15:57	1
Chemical Oxygen Demand	22.8		10.0	5.0	mg/L			09/14/17 19:30	1
Phenolics, Total Recoverable	0.0090	J	0.010	0.0050	mg/L		09/13/17 19:20	09/15/17 01:50	1
Chromium, hexavalent	0.0058	J	0.010	0.0050	mg/L			09/13/17 08:12	1
Cyanide	ND		0.010	0.0050	mg/L		09/13/17 12:30	09/13/17 15:48	1
Total Organic Carbon	9.9		1.0	0.43	mg/L			09/16/17 01:09	1
Total Hardness	280		4.0	1.1	mg/L			09/18/17 14:30	1
Total Dissolved Solids	476		10.0	4.0	mg/L			09/13/17 20:25	1
Biochemical Oxygen Demand	3.6		3.0	3.0	mg/L			09/13/17 17:43	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	25.0		5.00	5.00	Color Units			09/13/17 09:00	1

Client: CHA Inc

Trichlorofluoromethane

1,2-Dichloroethane-d4 (Surr)

Vinvl acetate

Vinyl chloride

Xylenes, Total

Surrogate

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Client Sample ID: MW-14I

Lab Sample ID: 480-124024-5

Matrix: Water

Date Collected: 09/12/17 11:16

Date Received: 09/13/17 02:15 Method: 8260C - Volatile Organic Compounds by GC/MS Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 1,1,1,2-Tetrachloroethane ND 1.0 09/19/17 02:32 0.35 ug/L 1,1,1-Trichloroethane ND 1.0 09/19/17 02:32 0.82 ug/L 1 1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/L 09/19/17 02:32 1.1.2-Trichloroethane ND 1.0 0.23 ug/L 09/19/17 02:32 1,1-Dichloroethane ND 1.0 0.38 ug/L 09/19/17 02:32 ND 09/19/17 02:32 1 1-Dichloroethene 10 0.29 ug/L 1,2,3-Trichloropropane ND 1.0 0.89 ug/L 09/19/17 02:32 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 09/19/17 02:32 ug/L 1,2-Dibromoethane (EDB) ND 1.0 0.73 ug/L 09/19/17 02:32 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 09/19/17 02:32 ND 1,2-Dichloroethane 1.0 0.21 ug/L 09/19/17 02:32 1,2-Dichloropropane ND 1.0 0.72 ug/L 09/19/17 02:32 0.84 ug/L 1,4-Dichlorobenzene ND 10 09/19/17 02:32 2-Hexanone ND 5.0 1.2 ug/L 09/19/17 02:32 2-Butanone (MEK) ND ug/L 09/19/17 02:32 5.0 1.3 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 09/19/17 02:32 ug/L ND 3.0 Acetone 5.0 ug/L 09/19/17 02:32 Acrylonitrile ND 5.0 0.83 09/19/17 02:32 ug/L ND 09/19/17 02:32 Benzene 1.0 0.41 ug/L Bromochloromethane ND 1.0 0.87 ug/L 09/19/17 02:32 Bromodichloromethane ND 1.0 0.39 ua/L 09/19/17 02:32 ND Bromoform 1.0 0.26 ug/L 09/19/17 02:32 Bromomethane ND 1.0 0.69 ug/L 09/19/17 02:32 Carbon disulfide ND 1.0 0.19 ug/L 09/19/17 02:32 Carbon tetrachloride ND 1.0 0.27 ug/L 09/19/17 02:32 ND Chlorobenzene 1.0 0.75 09/19/17 02:32 ug/L Chlorodibromomethane ND 09/19/17 02:32 1.0 0.32 ug/L Chloroethane ND 0.32 ug/L 09/19/17 02:32 1.0 Chloroform ND 1.0 0.34 ug/L 09/19/17 02:32 ND Chloromethane 1.0 0.35 ug/L 09/19/17 02:32 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 09/19/17 02:32 cis-1.3-Dichloropropene ND 1.0 0.36 ug/L 09/19/17 02:32 Dibromomethane ND 1.0 0.41 ug/L 09/19/17 02:32 ug/L Ethylbenzene ND 1.0 0.74 09/19/17 02:32 Iodomethane ND 1.0 0.30 ug/L 09/19/17 02:32 Methylene Chloride ND 1.0 0.44 ug/L 09/19/17 02:32 ND 0.73 09/19/17 02:32 Styrene 1.0 ug/L Tetrachloroethene ND 1.0 0.36 ug/L 09/19/17 02:32 Toluene ND 1.0 0.51 ug/L 09/19/17 02:32 09/19/17 02:32 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L ND trans-1.3-Dichloropropene 1.0 0.37 ug/L 09/19/17 02:32 trans-1,4-Dichloro-2-butene ND 5.0 0.22 ug/L 09/19/17 02:32 ND 09/19/17 02:32 Trichloroethene 1.0 0.46 ug/L

TactA	merica	Ruffalo

09/19/17 02:32

09/19/17 02:32

09/19/17 02:32

09/19/17 02:32

Analyzed

09/19/17 02:32

Prepared

1.0

5.0

1.0

2.0

Limits

77 - 120

88.0 ug/L

0.85 ug/L

0.90 ug/L

0.66 ug/L

ND

ND

ND

ND

101

%Recovery

Qualifier

Dil Fac

TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-14I

Client: CHA Inc

Date Collected: 09/12/17 11:16 Date Received: 09/13/17 02:15 Lab Sample ID: 480-124024-5

Matrix: Water

Method: 8260C -	· Volatile Organic C	Compounds by	GC/MS (Continued)
-----------------	----------------------	--------------	-------------------

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		80 - 120		09/19/17 02:32	1
4-Bromofluorobenzene (Surr)	96		73 - 120		09/19/17 02:32	1
Dibromofluoromethane (Surr)	108		75 - 123		09/19/17 02:32	1

Method: 60	10C - Meta	Is (ICP)
------------	------------	----------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.43		0.20	0.060	mg/L		09/13/17 08:55	09/14/17 16:31	1
Antimony	ND		0.020	0.0068	mg/L		09/13/17 08:55	09/14/17 16:31	1
Arsenic	0.0099	J	0.010	0.0056	mg/L		09/13/17 08:55	09/14/17 16:31	1
Barium	0.080		0.0020	0.00070	mg/L		09/13/17 08:55	09/14/17 16:31	1
Beryllium	ND		0.0020	0.00030	mg/L		09/13/17 08:55	09/14/17 16:31	1
Boron	0.011	J	0.020	0.0040	mg/L		09/13/17 08:55	09/14/17 16:31	1
Cadmium	ND		0.0010	0.00050	mg/L		09/13/17 08:55	09/14/17 16:31	1
Calcium	57.8		0.50	0.10	mg/L		09/13/17 08:55	09/14/17 16:31	1
Chromium	ND		0.0040	0.0010	mg/L		09/13/17 08:55	09/14/17 16:31	1
Cobalt	ND		0.0040	0.00063	mg/L		09/13/17 08:55	09/14/17 16:31	1
Copper	ND		0.010	0.0016	mg/L		09/13/17 08:55	09/14/17 16:31	1
Iron	0.82		0.050	0.019	mg/L		09/13/17 08:55	09/14/17 16:31	1
Lead	ND		0.0050	0.0030	mg/L		09/13/17 08:55	09/14/17 16:31	1
Magnesium	7.6		0.20	0.043	mg/L		09/13/17 08:55	09/14/17 16:31	1
Manganese	0.13	В	0.0030	0.00040	mg/L		09/13/17 08:55	09/14/17 16:31	1
Nickel	0.0017	J	0.010	0.0013	mg/L		09/13/17 08:55	09/14/17 16:31	1
Potassium	0.67		0.50	0.10	mg/L		09/13/17 08:55	09/14/17 16:31	1
Selenium	ND		0.015	0.0087	mg/L		09/13/17 08:55	09/14/17 16:31	1
Silver	ND		0.0030	0.0017	mg/L		09/13/17 08:55	09/14/17 16:31	1
Sodium	8.6		1.0	0.32	mg/L		09/13/17 08:55	09/14/17 16:31	1
Thallium	ND		0.020	0.010	mg/L		09/13/17 08:55	09/14/17 16:31	1
Vanadium	ND		0.0050	0.0015	mg/L		09/13/17 08:55	09/14/17 16:31	1

Method: 7470A - Mercury (CVAA))
--------------------------------	---

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	ND		0.00020	0.00012	ma/l		09/14/17 12:00	09/14/17 15:07	1	

0.010

0.0015 mg/L

09/13/17 08:55

09/14/17 16:31

0.0072 JB

General	l Chemi	istry
---------	---------	-------

Zinc

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20	0.073	mg/L			09/15/17 19:45	1
Chloride	26.5		0.50	0.28	mg/L			09/15/17 19:45	1
Sulfate	43.2		2.0	0.35	mg/L			09/15/17 19:45	1
Alkalinity, Total	128	В	20.0	8.0	mg/L			09/13/17 16:57	2
Ammonia as N	0.039	F1	0.020	0.0090	mg/L			09/13/17 14:51	1
Total Kjeldahl Nitrogen	0.22		0.20	0.15	mg/L		09/13/17 16:40	09/14/17 10:06	1
Nitrate	ND		0.050	0.020	mg/L as N			09/13/17 15:59	1
Chemical Oxygen Demand	ND		10.0	5.0	mg/L			09/14/17 19:30	1
Phenolics, Total Recoverable	0.0086	J	0.010	0.0050	mg/L		09/13/17 19:20	09/15/17 01:50	1
Chromium, hexavalent	0.0067	J F1	0.010	0.0050	mg/L			09/13/17 08:12	1
Cyanide	ND		0.010	0.0050	mg/L		09/13/17 12:30	09/13/17 15:49	1
Total Organic Carbon	1.5		1.0	0.43	mg/L			09/16/17 03:38	1
Total Hardness	180		4.0	1.1	mg/L			09/18/17 14:30	1
Total Dissolved Solids	239		10.0	4.0	mg/L			09/13/17 20:25	1

TestAmerica Buffalo

Page 62 of 94

Client: CHA Inc TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-14I

Lab Sample ID: 480-124024-5 Date Collected: 09/12/17 11:16

Matrix: Water

Date Received: 09/13/17 02:15

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/13/17 17:43	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	10.0		5.00	5.00	Color Units			09/13/17 09:00	1

Client Sample ID: MW-14D Lab Sample ID: 480-124024-6

Date Collected: 09/12/17 10:37 Matrix: Water

Date Received: 09/13/17 02:15

Method: 8260C - Volatile Organi Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L		•	09/19/17 02:59	1
1,1,1-Trichloroethane	ND	1.0	0.82				09/19/17 02:59	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/19/17 02:59	1
1,1,2-Trichloroethane	ND	1.0	0.23				09/19/17 02:59	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/19/17 02:59	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/19/17 02:59	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/19/17 02:59	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/19/17 02:59	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/19/17 02:59	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/19/17 02:59	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/19/17 02:59	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/19/17 02:59	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/19/17 02:59	1
2-Hexanone	ND	5.0	1.2	ug/L			09/19/17 02:59	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/19/17 02:59	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/19/17 02:59	1
Acetone	ND	5.0	3.0	ug/L			09/19/17 02:59	1
Acrylonitrile	ND	5.0	0.83	ug/L			09/19/17 02:59	1
Benzene	ND	1.0	0.41	ug/L			09/19/17 02:59	1
Bromochloromethane	ND	1.0	0.87	ug/L			09/19/17 02:59	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/19/17 02:59	1
Bromoform	ND	1.0	0.26	ug/L			09/19/17 02:59	1
Bromomethane	ND	1.0	0.69	ug/L			09/19/17 02:59	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/19/17 02:59	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/19/17 02:59	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/19/17 02:59	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/19/17 02:59	1
Chloroethane	ND	1.0	0.32	ug/L			09/19/17 02:59	1
Chloroform	ND	1.0	0.34	ug/L			09/19/17 02:59	1
Chloromethane	ND	1.0	0.35	ug/L			09/19/17 02:59	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/19/17 02:59	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/19/17 02:59	1
Dibromomethane	ND	1.0	0.41	ug/L			09/19/17 02:59	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/19/17 02:59	1
lodomethane	ND	1.0	0.30	ug/L			09/19/17 02:59	1
Methylene Chloride	ND	1.0	0.44	ug/L			09/19/17 02:59	1
Styrene	ND	1.0	0.73	_			09/19/17 02:59	1
Tetrachloroethene	ND	1.0	0.36	ug/L			09/19/17 02:59	1
Toluene	ND	1.0	0.51	_			09/19/17 02:59	1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-14D

Date Collected: 09/12/17 10:37 Date Received: 09/13/17 02:15 Lab Sample ID: 480-124024-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/19/17 02:59	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/19/17 02:59	1
trans-1,4-Dichloro-2-butene	ND		5.0	0.22	ug/L			09/19/17 02:59	1
Trichloroethene	ND		1.0	0.46	ug/L			09/19/17 02:59	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/19/17 02:59	1
Vinyl acetate	ND		5.0	0.85	ug/L			09/19/17 02:59	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/19/17 02:59	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/19/17 02:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		77 - 120			-		09/19/17 02:59	1
Toluene-d8 (Surr)	99		80 - 120					09/19/17 02:59	1
4-Bromofluorobenzene (Surr)	98		73 - 120					09/19/17 02:59	1
Dibromofluoromethane (Surr)	102		75 ₋ 123					09/19/17 02:59	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.49		0.20	0.060	mg/L		09/13/17 08:55	09/14/17 16:35	1
Antimony	ND		0.020	0.0068	mg/L		09/13/17 08:55	09/14/17 16:35	1
Arsenic	0.0085	J	0.010	0.0056	mg/L		09/13/17 08:55	09/14/17 16:35	1
Barium	0.017		0.0020	0.00070	mg/L		09/13/17 08:55	09/14/17 16:35	1
Beryllium	ND		0.0020	0.00030	mg/L		09/13/17 08:55	09/14/17 16:35	1
Boron	0.028		0.020	0.0040	mg/L		09/13/17 08:55	09/14/17 16:35	1
Cadmium	ND		0.0010	0.00050	mg/L		09/13/17 08:55	09/14/17 16:35	1
Calcium	20.9		0.50	0.10	mg/L		09/13/17 08:55	09/14/17 16:35	1
Chromium	ND		0.0040	0.0010	mg/L		09/13/17 08:55	09/14/17 16:35	1
Cobalt	ND		0.0040	0.00063	mg/L		09/13/17 08:55	09/14/17 16:35	1
Copper	ND		0.010	0.0016	mg/L		09/13/17 08:55	09/14/17 16:35	1
Iron	0.39		0.050	0.019	mg/L		09/13/17 08:55	09/14/17 16:35	1
Lead	ND		0.0050	0.0030	mg/L		09/13/17 08:55	09/14/17 16:35	1
Magnesium	3.6		0.20	0.043	mg/L		09/13/17 08:55	09/14/17 16:35	1
Manganese	0.020	В	0.0030	0.00040	mg/L		09/13/17 08:55	09/14/17 16:35	1
Nickel	ND		0.010	0.0013	mg/L		09/13/17 08:55	09/14/17 16:35	1
Potassium	0.62		0.50	0.10	mg/L		09/13/17 08:55	09/14/17 16:35	1
Selenium	ND		0.015	0.0087	mg/L		09/13/17 08:55	09/14/17 16:35	1
Silver	ND		0.0030	0.0017	mg/L		09/13/17 08:55	09/14/17 16:35	1
Sodium	17.3		1.0	0.32	mg/L		09/13/17 08:55	09/14/17 16:35	1
Thallium	ND		0.020	0.010	mg/L		09/13/17 08:55	09/14/17 16:35	1
Vanadium	ND		0.0050	0.0015	mg/L		09/13/17 08:55	09/14/17 16:35	1
Zinc	0.0028	JB	0.010	0.0015	mg/L		09/13/17 08:55	09/14/17 16:35	1

Method: 7470A - Mercury (CVAA) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/14/17 12:00	09/14/17 15:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20	0.073	mg/L			09/15/17 20:00	1
Chloride	1.1		0.50	0.28	mg/L			09/15/17 20:00	1
Sulfate	0.72	J	2.0	0.35	mg/L			09/15/17 20:00	1
II.									

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Client Sample ID: MW-14D

Lab Sample ID: 480-124024-6 Date Collected: 09/12/17 10:37

Matrix: Water

Date Received: 09/13/17 02:15

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	97.5	В	20.0	8.0	mg/L			09/13/17 17:10	2
Ammonia as N	0.083		0.020	0.0090	mg/L			09/13/17 14:58	1
Total Kjeldahl Nitrogen	0.19	J	0.20	0.15	mg/L		09/13/17 16:40	09/14/17 10:06	1
Nitrate	ND		0.050	0.020	mg/L as N			09/13/17 16:00	1
Chemical Oxygen Demand	ND		10.0	5.0	mg/L			09/14/17 19:30	1
Phenolics, Total Recoverable	ND	F1	0.010	0.0050	mg/L		09/14/17 16:45	09/15/17 01:57	1
Chromium, hexavalent	ND		0.010	0.0050	mg/L			09/13/17 08:12	1
Cyanide	ND		0.010	0.0050	mg/L		09/13/17 12:30	09/13/17 15:51	1
Total Organic Carbon	1.2		1.0	0.43	mg/L			09/16/17 04:08	1
Total Hardness	64.0		4.0	1.1	mg/L			09/18/17 14:30	1
Total Dissolved Solids	122		10.0	4.0	mg/L			09/13/17 20:25	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/13/17 17:43	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	10.0		5.00	5.00	Color Units	_		09/13/17 09:00	1

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-124024-7

Matrix: Water

Date Collected: 09/12/17 00:00 Date Received: 09/13/17 02:15

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	0.35	ug/L			09/19/17 03:26	1
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/19/17 03:26	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/19/17 03:26	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/19/17 03:26	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/19/17 03:26	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/19/17 03:26	1
1,2,3-Trichloropropane	ND	1.0	0.89	ug/L			09/19/17 03:26	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/19/17 03:26	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/19/17 03:26	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/19/17 03:26	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/19/17 03:26	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/19/17 03:26	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/19/17 03:26	1
2-Hexanone	ND	5.0	1.2	ug/L			09/19/17 03:26	1
2-Butanone (MEK)	ND	5.0	1.3	ug/L			09/19/17 03:26	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/19/17 03:26	1
Acetone	3.6 J	5.0	3.0	ug/L			09/19/17 03:26	1
Acrylonitrile	ND	5.0	0.83	ug/L			09/19/17 03:26	1
Benzene	ND	1.0	0.41	ug/L			09/19/17 03:26	1
Bromochloromethane	ND	1.0	0.87	ug/L			09/19/17 03:26	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/19/17 03:26	1
Bromoform	ND	1.0	0.26	ug/L			09/19/17 03:26	1
Bromomethane	ND	1.0	0.69	ug/L			09/19/17 03:26	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/19/17 03:26	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/19/17 03:26	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/19/17 03:26	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/19/17 03:26	1
Chloroethane	ND	1.0	0.32	ug/L			09/19/17 03:26	1

TestAmerica Buffalo

Page 65 of 94

Client: CHA Inc TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-124024-7

Date Collected: 09/12/17 00:00 Matrix: Water Date Received: 09/13/17 02:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	ND		1.0	0.34	ug/L			09/19/17 03:26	1
Chloromethane	ND		1.0	0.35	ug/L			09/19/17 03:26	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/19/17 03:26	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/19/17 03:26	1
Dibromomethane	ND		1.0	0.41	ug/L			09/19/17 03:26	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/19/17 03:26	1
Iodomethane	ND		1.0	0.30	ug/L			09/19/17 03:26	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/19/17 03:26	1
Styrene	ND		1.0	0.73	ug/L			09/19/17 03:26	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/19/17 03:26	1
Toluene	ND		1.0	0.51	ug/L			09/19/17 03:26	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/19/17 03:26	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/19/17 03:26	1
trans-1,4-Dichloro-2-butene	ND		5.0	0.22	ug/L			09/19/17 03:26	1
Trichloroethene	ND		1.0	0.46	ug/L			09/19/17 03:26	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/19/17 03:26	1
Vinyl acetate	ND		5.0	0.85	ug/L			09/19/17 03:26	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/19/17 03:26	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/19/17 03:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		77 - 120					09/19/17 03:26	1
Toluene-d8 (Surr)	100		80 - 120					09/19/17 03:26	1
4-Bromofluorobenzene (Surr)	98		73 - 120					09/19/17 03:26	1
Dibromofluoromethane (Surr)	105		75 - 123					09/19/17 03:26	1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: SW-2A
Date Collected: 09/07/17 09:45
Date Received: 09/08/17 01:45

Lab Sample ID: 480-123780-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	375988	09/09/17 16:27	NEA	TAL BUF
Total/NA	Prep	3005A			376039	09/11/17 09:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	376299	09/11/17 21:06	LMH	TAL BUF
Total/NA	Prep	3005A			376039	09/11/17 09:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	376513	09/12/17 09:54	LMH	TAL BUF
Total/NA	Prep	7470A			375862	09/08/17 11:20	BMB	TAL BUF
Total/NA	Analysis	7470A		1	375939	09/08/17 14:52	BMB	TAL BUF
Total/NA	Analysis	300.0		1	376541	09/13/17 18:18	RJS	TAL BUF
Total/NA	Analysis	310.2		2	375973	09/08/17 17:35	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	375911	09/08/17 12:56	SSS	TAL BUF
Total/NA	Prep	351.2			376223	09/11/17 18:10	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376377	09/12/17 13:24	CLT	TAL BUF
Total/NA	Analysis	353.2		1	375937	09/08/17 10:08	SSS	TAL BUF
Total/NA	Analysis	410.4		1	376235	09/11/17 20:09	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			378720	09/26/17 07:30	CLT	TAL BUF
Total/NA	Analysis	420.1		1	378843	09/26/17 14:31	LED	TAL BUF
Total/NA	Analysis	7196A		1	375783	09/08/17 06:02	BEV	TAL BUF
Total/NA	Prep	9012B			376442	09/12/17 18:23	JCL	TAL BUF
Total/NA	Analysis	9012B		1	376590	09/13/17 11:43	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376250	09/10/17 16:35	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	375957	09/08/17 15:06	KRT	TAL BUF
Total/NA	Analysis	SM 2340C		1	376405	09/12/17 10:11	KRT	TAL BUF
Total/NA	Analysis	SM 2540C		1	376061	09/11/17 08:10	EKB	TAL BUF
Total/NA	Analysis	SM 5210B		1	375963	09/08/17 14:36	CDC	TAL BUF

Client Sample ID: SW-5
Date Collected: 09/07/17 10:45
Date Received: 09/08/17 01:45

Lab Sample ID: 480-123780-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	375988	09/09/17 16:54	NEA	TAL BUF
Total/NA	Prep	3005A			376039	09/11/17 09:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	376299	09/11/17 21:10	LMH	TAL BUF
Total/NA	Prep	3005A			376039	09/11/17 09:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	376513	09/12/17 09:58	LMH	TAL BUF
Total/NA	Prep	7470A			375862	09/08/17 11:20	BMB	TAL BUF
Total/NA	Analysis	7470A		1	375939	09/08/17 14:54	BMB	TAL BUF
Total/NA	Analysis	300.0		1	376541	09/13/17 19:48	RJS	TAL BUF
Total/NA	Analysis	310.2		4	375973	09/08/17 18:04	ALZ	TAL BUF
Total/NA	Analysis	350.1		10	376645	09/13/17 15:12	SSS	TAL BUF
Total/NA	Prep	351.2			376223	09/11/17 18:10	DCB	TAL BUF
Total/NA	Analysis	351.2		5	376377	09/12/17 12:39	CLT	TAL BUF

TestAmerica Buffalo

2

4

7

9

1

Project/Site: Albany Interim Landfill - Baseline

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	353.2		1	375937	09/08/17 11:13	SSS	TAL BUF
Total/NA	Analysis	410.4		1	376235	09/11/17 20:09	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376225	09/11/17 16:50	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376237	09/12/17 02:00	KMB	TAL BUF
Total/NA	Analysis	7196A		1	375783	09/08/17 06:02	BEV	TAL BUF
Total/NA	Prep	9012B			376473	09/13/17 04:15	KMB	TAL BUF
Total/NA	Analysis	9012B		1	376623	09/13/17 13:37	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376250	09/10/17 17:30	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	375957	09/08/17 15:06	KRT	TAL BUF
Total/NA	Analysis	SM 2340C		1	376405	09/12/17 10:11	KRT	TAL BUF
Total/NA	Analysis	SM 2540C		1	376061	09/11/17 08:10	EKB	TAL BUF
Total/NA	Analysis	SM 5210B		1	375963	09/08/17 14:36	CDC	TAL BUF

Client Sample ID: SW-1

Lab Sample ID: 480-123780-3

Matrix: Water

Date Collected: 09/07/17 09:00 Date Received: 09/08/17 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	375988	09/09/17 17:21	NEA	TAL BUF
Total/NA	Prep	3005A			376039	09/11/17 09:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	376299	09/11/17 21:14	LMH	TAL BUF
Total/NA	Prep	3005A			376039	09/11/17 09:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	376513	09/12/17 10:01	LMH	TAL BUF
Total/NA	Prep	7470A			375862	09/08/17 11:20	BMB	TAL BUF
Total/NA	Analysis	7470A		1	375939	09/08/17 14:56	BMB	TAL BUF
Total/NA	Analysis	300.0		1	376541	09/13/17 20:03	RJS	TAL BUF
Total/NA	Analysis	310.2		5	375973	09/08/17 17:35	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	375911	09/08/17 13:03	SSS	TAL BUF
Total/NA	Prep	351.2			376223	09/11/17 18:10	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376377	09/12/17 09:48	CLT	TAL BUF
Total/NA	Analysis	353.2		1	375937	09/08/17 10:10	SSS	TAL BUF
Total/NA	Analysis	410.4		1	376235	09/11/17 20:09	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376225	09/11/17 16:50	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376237	09/12/17 02:00	KMB	TAL BUF
Total/NA	Analysis	7196A		1	375783	09/08/17 06:02	BEV	TAL BUF
Total/NA	Prep	9012B			376473	09/13/17 04:15	KMB	TAL BUF
Total/NA	Analysis	9012B		1	376623	09/13/17 13:38	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376250	09/10/17 19:17	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	375957	09/08/17 15:06	KRT	TAL BUF
Total/NA	Analysis	SM 2340C		1	376647	09/13/17 10:16	KRT	TAL BUF
Total/NA	Analysis	SM 2540C		1	376061	09/11/17 08:10	EKB	TAL BUF
Total/NA	Analysis	SM 5210B		1	375963	09/08/17 14:36	CDC	TAL BUF

TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client: CHA Inc

Date Received: 09/08/17 01:45

Client Sample ID: Trip Blank Lab Sample ID: 480-123780-4 Date Collected: 09/07/17 00:00 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	375988	09/09/17 17:48	NEA	TAL BUF

Client Sample ID: MW-9I

Date Collected: 09/08/17 09:52

Date Received: 09/09/17 01:45

Lab Sample ID: 480-123848-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377005	09/15/17 11:58	KMN	TAL BUF
Total/NA	Prep	3005A			376176	09/12/17 08:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	376516	09/12/17 19:46	LMH	TAL BUF
Total/NA	Prep	7470A			376121	09/11/17 12:00	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376216	09/11/17 16:51	BMB	TAL BUF
Total/NA	Analysis	300.0		5	376541	09/13/17 21:01	RJS	TAL BUF
Total/NA	Analysis	310.2		7	376228	09/11/17 15:09	LED	TAL BUF
Total/NA	Analysis	350.1		20	376403	09/12/17 12:04	SSS	TAL BUF
Total/NA	Prep	351.2			376030	09/11/17 03:59	LAW	TAL BUF
Total/NA	Analysis	351.2		1	376169	09/11/17 11:30	CLT	TAL BUF
Total/NA	Analysis	353.2		1	375996	09/09/17 14:55	KRT	TAL BUF
Total/NA	Analysis	410.4		1	376235	09/11/17 20:09	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376225	09/11/17 16:50	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376237	09/12/17 01:54	KMB	TAL BUF
Total/NA	Analysis	7196A		1	376000	09/09/17 09:10	SSS	TAL BUF
Total/NA	Prep	9012B			376473	09/13/17 04:15	KMB	TAL BUF
Total/NA	Analysis	9012B		1	376623	09/13/17 13:22	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376250	09/10/17 21:32	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	375999	09/09/17 09:45	SSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	376405	09/12/17 10:11	KRT	TAL BUF
Total/NA	Analysis	SM 2540C		1	376305	09/12/17 09:43	EKB	TAL BUF
Total/NA	Analysis	SM 5210B		1	375989	09/09/17 10:10	JCL	TAL BUF

Client Sample ID: MW-9S

Date Collected: 09/08/17 10:58 Date Received: 09/09/17 01:45 Lab Sample ID: 480-123848-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377005	09/15/17 12:24	KMN	TAL BUF
Total/NA	Prep	3005A			376176	09/12/17 08:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	376516	09/12/17 20:04	LMH	TAL BUF
Total/NA	Prep	7470A			376121	09/11/17 12:00	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376216	09/11/17 17:01	BMB	TAL BUF
Total/NA	Analysis	300.0		5	376541	09/13/17 20:17	RJS	TAL BUF
Total/NA	Analysis	310.2		5	376228	09/11/17 15:06	LED	TAL BUF

TestAmerica Buffalo

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	350.1		1	376403	09/12/17 12:15	SSS	TAL BUF
Total/NA	Prep	351.2			376030	09/11/17 03:59	LAW	TAL BUF
Total/NA	Analysis	351.2		1	376169	09/11/17 11:30	CLT	TAL BUF
Total/NA	Analysis	353.2		1	375996	09/09/17 14:59	KRT	TAL BUF
Total/NA	Analysis	410.4		1	376235	09/11/17 20:09	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376225	09/11/17 16:50	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376237	09/12/17 01:54	KMB	TAL BUF
Total/NA	Analysis	7196A		1	376000	09/09/17 09:10	SSS	TAL BUF
Total/NA	Prep	9012B			376473	09/13/17 04:15	KMB	TAL BUF
Total/NA	Analysis	9012B		1	376623	09/13/17 13:47	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376250	09/10/17 22:51	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	375999	09/09/17 09:45	SSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	376647	09/13/17 10:16	KRT	TAL BUF
Total/NA	Analysis	SM 2540C		1	376305	09/12/17 09:43	EKB	TAL BUF
Total/NA	Analysis	SM 5210B		1	375989	09/09/17 10:10	JCL	TAL BUF

Client Sample ID: MW-9D

Lab Sample ID: 480-123848-3

Matrix: Water

Date Collected: 09/08/17 12:00 Date Received: 09/09/17 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377005	09/15/17 12:50	KMN	TAL BUF
Total/NA	Prep	3005A			376176	09/12/17 08:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	376516	09/12/17 20:07	LMH	TAL BUF
Total/NA	Prep	7470A			376121	09/11/17 12:00	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376216	09/11/17 17:03	BMB	TAL BUF
Total/NA	Analysis	300.0		1	376541	09/13/17 20:32	RJS	TAL BUF
Total/NA	Analysis	310.2		2	376228	09/11/17 15:06	LED	TAL BUF
Total/NA	Analysis	350.1		1	376403	09/12/17 12:20	SSS	TAL BUF
Total/NA	Prep	351.2			376030	09/11/17 03:59	LAW	TAL BUF
Total/NA	Analysis	351.2		1	376169	09/11/17 11:30	CLT	TAL BUF
Total/NA	Analysis	353.2		1	375996	09/09/17 13:57	KRT	TAL BUI
Total/NA	Analysis	410.4		1	376235	09/11/17 20:09	CDC	TAL BUI
Total/NA	Prep	Distill/Phenol			378720	09/26/17 07:30	CLT	TAL BUF
Total/NA	Analysis	420.1		1	378843	09/26/17 14:31	LED	TAL BUF
Total/NA	Analysis	7196A		1	376000	09/09/17 09:10	SSS	TAL BUI
Total/NA	Prep	9012B			376473	09/13/17 04:15	KMB	TAL BU
Total/NA	Analysis	9012B		1	376623	09/13/17 13:48	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376250	09/10/17 23:17	EKB	TAL BUI
Total/NA	Analysis	SM 2120B		1	375999	09/09/17 09:45	SSS	TAL BUI
Total/NA	Analysis	SM 2340C		1	376647	09/13/17 10:16	KRT	TAL BUI
Total/NA	Analysis	SM 2540C		1	376305	09/12/17 09:43	EKB	TAL BUI
Total/NA	Analysis	SM 5210B		1	375989	09/09/17 10:10	JCL	TAL BUI

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-10S

Lab Sample ID: 480-123848-4

Matrix: Water

Date Collected: 09/08/17 14:00 Date Received: 09/09/17 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377005	09/15/17 13:14	KMN	TAL BUF
Total/NA	Prep	3005A			376176	09/12/17 08:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	376516	09/12/17 20:11	LMH	TAL BUF
Total/NA	Prep	7470A			376121	09/11/17 12:00	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376216	09/11/17 17:04	BMB	TAL BUF
Total/NA	Analysis	300.0		1	376541	09/13/17 20:46	RJS	TAL BUF
Total/NA	Analysis	310.2		5	376228	09/11/17 15:29	LED	TAL BUF
Total/NA	Analysis	350.1		1	376403	09/12/17 12:21	SSS	TAL BUF
Total/NA	Prep	351.2			376030	09/11/17 03:59	LAW	TAL BUF
Total/NA	Analysis	351.2		1	376169	09/11/17 11:30	CLT	TAL BUF
Total/NA	Analysis	353.2		1	375996	09/09/17 13:59	KRT	TAL BUF
Total/NA	Analysis	410.4		1	376235	09/11/17 20:09	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376225	09/11/17 16:50	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376237	09/12/17 02:00	KMB	TAL BUF
Total/NA	Analysis	7196A		1	376000	09/09/17 09:10	SSS	TAL BUF
Total/NA	Prep	9012B			376603	09/13/17 08:10	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 14:52	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376250	09/11/17 01:29	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	375999	09/09/17 09:45	SSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	376647	09/13/17 10:16	KRT	TAL BUF
Total/NA	Analysis	SM 2540C		1	376305	09/12/17 09:43	EKB	TAL BUF
Total/NA	Analysis	SM 5210B		1	375989	09/09/17 10:10	JCL	TAL BUF

Client Sample ID: MW-10I

Date Collected: 09/08/17 15:14

Date Received: 09/09/17 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377005	09/15/17 13:40	KMN	TAL BUF
Total/NA	Prep	3005A			376176	09/12/17 08:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	376516	09/12/17 20:25	LMH	TAL BUF
Total/NA	Prep	7470A			376121	09/11/17 12:00	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376216	09/11/17 17:06	BMB	TAL BUF
Total/NA	Analysis	300.0		1	376541	09/13/17 22:14	RJS	TAL BUF
Total/NA	Analysis	310.2		2	376228	09/11/17 15:16	LED	TAL BUF
Total/NA	Analysis	350.1		1	376403	09/12/17 12:22	SSS	TAL BUF
Total/NA	Prep	351.2			376030	09/11/17 03:59	LAW	TAL BUF
Total/NA	Analysis	351.2		1	376169	09/11/17 11:30	CLT	TAL BUF
Total/NA	Analysis	353.2		1	375996	09/09/17 14:00	KRT	TAL BUF
Total/NA	Analysis	410.4		1	376235	09/11/17 20:09	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376225	09/11/17 16:50	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376237	09/12/17 02:00	KMB	TAL BUF

TestAmerica Buffalo

Page 71 of 94

9/27/2017

4

9

1

Lab Sample ID: 480-123848-5

Matrix: Water

Project/Site: Albany Interim Landfill - Baseline

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7196A		1	376000	09/09/17 09:10	SSS	TAL BUF
Total/NA	Prep	9012B			377049	09/15/17 10:41	JCL	TAL BUF
Total/NA	Analysis	9012B		1	377357	09/18/17 10:26	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376250	09/11/17 02:22	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	375999	09/09/17 09:45	SSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	376647	09/13/17 10:16	KRT	TAL BUF
Total/NA	Analysis	SM 2540C		1	376305	09/12/17 09:43	EKB	TAL BUF
Total/NA	Analysis	SM 5210B		1	375989	09/09/17 10:10	JCL	TAL BUF

Client Sample ID: MW-10D Date Collected: 09/08/17 14:55

Lab Sample ID: 480-123848-6

TestAmerica Job ID: 480-123780-1

Matrix: Water

Date Received: 09/09/17 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	376935	09/15/17 03:35	RRS	TAL BUF
Total/NA	Prep	3005A			376176	09/12/17 08:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	376516	09/12/17 20:29	LMH	TAL BUF
Total/NA	Prep	7470A			376121	09/11/17 12:00	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376216	09/11/17 17:07	BMB	TAL BUF
Total/NA	Analysis	300.0		1	376541	09/13/17 22:29	RJS	TAL BUF
Total/NA	Analysis	310.2		2	376228	09/11/17 15:16	LED	TAL BUF
Total/NA	Analysis	350.1		1	376403	09/12/17 12:23	SSS	TAL BUF
Total/NA	Prep	351.2			376030	09/11/17 03:59	LAW	TAL BUF
Total/NA	Analysis	351.2		1	376169	09/11/17 11:30	CLT	TAL BUF
Total/NA	Analysis	353.2		1	375996	09/09/17 14:01	KRT	TAL BUF
Total/NA	Analysis	410.4		1	376235	09/11/17 20:09	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376225	09/11/17 16:50	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376237	09/12/17 02:00	KMB	TAL BUF
Total/NA	Analysis	7196A		1	376000	09/09/17 09:10	SSS	TAL BUF
Total/NA	Prep	9012B			376603	09/13/17 08:10	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 14:57	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376250	09/11/17 03:15	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	375999	09/09/17 09:45	SSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	377141	09/15/17 10:45	KRT	TAL BUF
Total/NA	Analysis	SM 2540C		1	376305	09/12/17 09:43	EKB	TAL BUF
Total/NA	Analysis	SM 5210B		1	375989	09/09/17 10:10	JCL	TAL BUF

Client Sample ID: CHA-1

Lab Sample ID: 480-123848-7

Matrix: Water

Date Collected: 09/08/17 10:30 Date Received: 09/09/17 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	376935	09/15/17 04:01	RRS	TAL BUF
Total/NA	Prep	3005A			376176	09/12/17 08:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	376516	09/12/17 20:32	LMH	TAL BUF

TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: CHA-1

Client: CHA Inc

Lab Sample ID: 480-123848-7

Matrix: Water

Date Collected: 09/08/17 10:30 Date Received: 09/09/17 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			376121	09/11/17 12:00	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376216	09/11/17 17:10	BMB	TAL BUF
Total/NA	Analysis	300.0		5	376541	09/13/17 22:43	RJS	TAL BUF
Total/NA	Analysis	310.2		4	376228	09/11/17 15:47	LED	TAL BUF
Total/NA	Analysis	350.1		1	376403	09/12/17 12:24	SSS	TAL BUF
Total/NA	Prep	351.2			376030	09/11/17 03:59	LAW	TAL BUF
Total/NA	Analysis	351.2		1	376169	09/11/17 11:30	CLT	TAL BUF
Total/NA	Analysis	353.2		1	375996	09/09/17 15:00	KRT	TAL BUF
Total/NA	Analysis	410.4		1	376235	09/11/17 20:09	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376225	09/11/17 16:50	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376237	09/12/17 02:00	KMB	TAL BUF
Total/NA	Analysis	7196A		1	376000	09/09/17 09:10	SSS	TAL BUF
Total/NA	Prep	9012B			376603	09/13/17 08:10	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 14:59	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376250	09/11/17 03:41	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	375999	09/09/17 09:45	SSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	377141	09/15/17 10:45	KRT	TAL BUF
Total/NA	Analysis	SM 2540C		1	376232	09/11/17 20:54	CDC	TAL BUF
Total/NA	Analysis	SM 5210B		1	375989	09/09/17 10:10	JCL	TAL BUF

Client Sample ID: Trip Blank

Lab Sample ID: 480-123848-8

Matrix: Water

Date Collected: 09/08/17 00:00 Date Received: 09/09/17 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	376935	09/15/17 04:26	RRS	TAL BUF

Client Sample ID: MW-18S

Lab Sample ID: 480-123947-1

Matrix: Water

Date Collected: 09/11/17 09:55 Date Received: 09/12/17 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377223	09/17/17 15:22	RRS	TAL BUF
Total/NA	Prep	3005A			376474	09/13/17 08:35	EMB	TAL BUF
Total/NA	Analysis	6010C		1	377067	09/15/17 02:41	LMH	TAL BUF
Total/NA	Prep	7470A			376549	09/13/17 12:15	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376699	09/13/17 15:58	BMB	TAL BUF
Total/NA	Analysis	300.0		5	376541	09/13/17 23:27	RJS	TAL BUF
Total/NA	Analysis	310.2		5	376445	09/12/17 15:45	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	376403	09/12/17 13:13	SSS	TAL BUF
Total/NA	Prep	351.2			376452	09/12/17 18:30	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376611	09/13/17 11:19	CLT	TAL BUF

TestAmerica Buffalo

4

6

8

TestAmerica Job ID: 480-123780-1

Client: CHA Inc Project/Site: Albany Interim Landfill - Baseline

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	353.2		1	376441	09/12/17 15:59	LED	TAL BUF
Total/NA	Analysis	410.4		1	376459	09/12/17 18:56	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376475	09/13/17 04:35	BEV	TAL BUF
Total/NA	Analysis	420.1		1	376646	09/13/17 14:41	LED	TAL BUF
Total/NA	Analysis	7196A		1	376246	09/12/17 04:16	KMB	TAL BUF
Total/NA	Prep	9012B			376603	09/13/17 08:10	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 15:00	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376727	09/13/17 19:38	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	376443	09/12/17 17:20	DSC	TAL BUF
Total/NA	Analysis	SM 2340C		1	377141	09/15/17 10:45	KRT	TAL BUF
Total/NA	Analysis	SM 2540C		1	376332	09/12/17 10:52	EKB	TAL BUF
Total/NA	Analysis	SM 5210B		1	376546	09/13/17 05:28	LAW	TAL BUF

Client Sample ID: MW-18IR

Date Received: 09/12/17 01:30

Lab Sample ID: 480-123947-2 Date Collected: 09/11/17 10:55

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377223	09/17/17 15:46	RRS	TAL BUF
Total/NA	Prep	3005A			376474	09/13/17 08:35	EMB	TAL BUF
Total/NA	Analysis	6010C		1	377067	09/15/17 02:45	LMH	TAL BUF
Total/NA	Prep	7470A			376549	09/13/17 12:15	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376699	09/13/17 16:00	BMB	TAL BUF
Total/NA	Analysis	300.0		1	376541	09/13/17 23:41	RJS	TAL BUF
Total/NA	Analysis	310.2		2	376445	09/12/17 15:45	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	376403	09/12/17 13:14	SSS	TAL BUF
Total/NA	Prep	351.2			376452	09/12/17 18:30	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376611	09/13/17 11:19	CLT	TAL BUF
Total/NA	Analysis	353.2		1	376441	09/12/17 16:01	LED	TAL BUF
Total/NA	Analysis	410.4		1	376459	09/12/17 18:56	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376475	09/13/17 04:35	BEV	TAL BUF
Total/NA	Analysis	420.1		1	376646	09/13/17 14:41	LED	TAL BUF
Total/NA	Analysis	7196A		1	376246	09/12/17 04:16	KMB	TAL BUF
Total/NA	Prep	9012B			376603	09/13/17 08:10	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 15:05	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376727	09/13/17 20:08	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	376443	09/12/17 17:20	DSC	TAL BUF
Total/NA	Analysis	SM 2340C		1	377141	09/15/17 10:45	KRT	TAL BUF
Total/NA	Analysis	SM 2540C		1	376467	09/12/17 21:38	CDC	TAL BUF
Total/NA	Analysis	SM 5210B		1	376546	09/13/17 05:28	LAW	TAL BUF

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-18D

Lab Sample ID: 480-123947-3

Matrix: Water

Date Collected: 09/11/17 11:02 Date Received: 09/12/17 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377223	09/17/17 16:09	RRS	TAL BUF
Total/NA	Prep	3005A			376474	09/13/17 08:35	EMB	TAL BUF
Total/NA	Analysis	6010C		1	377067	09/15/17 02:59	LMH	TAL BUF
Total/NA	Prep	7470A			376549	09/13/17 12:15	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376699	09/13/17 16:02	BMB	TAL BUF
Total/NA	Analysis	300.0		1	376541	09/13/17 23:56	RJS	TAL BUF
Total/NA	Analysis	310.2		2	376445	09/12/17 17:20	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	376403	09/12/17 13:15	SSS	TAL BUF
Total/NA	Prep	351.2			376452	09/12/17 18:30	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376611	09/13/17 11:19	CLT	TAL BUF
Total/NA	Analysis	353.2		1	376441	09/12/17 16:02	LED	TAL BUF
Total/NA	Analysis	410.4		1	376459	09/12/17 18:56	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			378720	09/26/17 07:30	CLT	TAL BUF
Total/NA	Analysis	420.1		1	378843	09/26/17 12:45	LED	TAL BUF
Total/NA	Analysis	7196A		1	376246	09/12/17 04:16	KMB	TAL BUF
Total/NA	Prep	9012B			376603	09/13/17 08:10	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 15:06	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376727	09/13/17 21:07	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	376443	09/12/17 17:20	DSC	TAL BUF
Total/NA	Analysis	SM 2340C		1	377456	09/18/17 14:30	ALZ	TAL BUF
Total/NA	Analysis	SM 2540C		1	376467	09/12/17 21:38	CDC	TAL BUF
Total/NA	Analysis	SM 5210B		1	376546	09/13/17 05:28	LAW	TAL BUF

Client Sample ID: MW-15S

Lab Sample ID: 480-123947-4

Date Collected: 09/11/17 13:00 Date Received: 09/12/17 01:30 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377667	09/19/17 23:24	RRS	TAL BUF
Total/NA	Prep	3005A			376474	09/13/17 08:35	EMB	TAL BUF
Total/NA	Analysis	6010C		1	377067	09/15/17 03:03	LMH	TAL BUF
Total/NA	Prep	7470A			376549	09/13/17 12:15	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376699	09/13/17 16:04	BMB	TAL BUF
Total/NA	Analysis	300.0		2	376541	09/14/17 00:11	RJS	TAL BUF
Total/NA	Analysis	310.2		4	376445	09/12/17 15:53	ALZ	TAL BUF
Total/NA	Analysis	350.1		2	376403	09/12/17 13:16	SSS	TAL BUF
Total/NA	Prep	351.2			376452	09/12/17 18:30	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376611	09/13/17 11:19	CLT	TAL BUF
Total/NA	Analysis	353.2		1	376441	09/12/17 16:03	LED	TAL BUF
Total/NA	Analysis	410.4		1	376459	09/12/17 18:56	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			378720	09/26/17 07:30	CLT	TAL BUF
Total/NA	Analysis	420.1		1	378843	09/26/17 12:45	LED	TAL BUF

TestAmerica Buffalo

5

6

TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client: CHA Inc

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7196A		1	376246	09/12/17 04:16	KMB	TAL BUF
Total/NA	Prep	9012B			376603	09/13/17 08:10	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 15:07	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376727	09/13/17 22:07	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	376443	09/12/17 17:20	DSC	TAL BUF
Total/NA	Analysis	SM 2340C		1	377456	09/18/17 14:30	ALZ	TAL BUF
Total/NA	Analysis	SM 2540C		1	376467	09/12/17 21:38	CDC	TAL BUF
Total/NA	Analysis	SM 5210B		1	376621	09/13/17 12:18	JCL	TAL BUF

Client Sample ID: MW-15I

Date Collected: 09/11/17 13:49 Date Received: 09/12/17 01:30 Lab Sample ID: 480-123947-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377488	09/19/17 11:56	KMN	TAL BUF
Total/NA	Prep	3005A			376474	09/13/17 08:35	EMB	TAL BUF
Total/NA	Analysis	6010C		1	377067	09/15/17 03:07	LMH	TAL BUF
Total/NA	Prep	7470A			376549	09/13/17 12:15	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376699	09/13/17 16:06	BMB	TAL BUF
Total/NA	Analysis	300.0		2	376863	09/14/17 18:31	RJS	TAL BUF
Total/NA	Analysis	310.2		2	376445	09/12/17 15:53	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	376403	09/12/17 13:17	SSS	TAL BUF
Total/NA	Prep	351.2			376967	09/14/17 18:40	DCB	TAL BUF
Total/NA	Analysis	351.2		1	377082	09/15/17 09:50	CLT	TAL BUF
Total/NA	Analysis	353.2		1	376441	09/12/17 16:04	LED	TAL BUF
Total/NA	Analysis	410.4		1	376459	09/12/17 18:56	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376475	09/13/17 04:35	BEV	TAL BUF
Total/NA	Analysis	420.1		1	376646	09/13/17 14:44	LED	TAL BUF
Total/NA	Analysis	7196A		1	376246	09/12/17 04:16	KMB	TAL BUF
Total/NA	Prep	9012B			376603	09/13/17 08:10	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 15:09	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376727	09/14/17 00:36	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	376443	09/12/17 17:20	DSC	TAL BUF
Total/NA	Analysis	SM 2340C		1	377456	09/18/17 14:30	ALZ	TAL BUF
Total/NA	Analysis	SM 2540C		1	376467	09/12/17 21:38	CDC	TAL BUF
Total/NA	Analysis	SM 5210B		1	376621	09/13/17 12:18	JCL	TAL BUF

Client Sample ID: MW-15D

Date Collected: 09/11/17 13:19 Date Received: 09/12/17 01:30

Lab Sample ID: 480-123947-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377488	09/19/17 12:21	KMN	TAL BUF
Total/NA	Prep	3005A			376474	09/13/17 08:35	EMB	TAL BUF
Total/NA	Analysis	6010C		1	377067	09/15/17 03:10	LMH	TAL BUF

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-15D

Lab Sample ID: 480-123947-6

Matrix: Water

Date Collected: 09/11/17 13:19 Date Received: 09/12/17 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			376549	09/13/17 12:15	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376699	09/13/17 16:08	BMB	TAL BUF
Total/NA	Analysis	300.0		1	376863	09/14/17 18:46	RJS	TAL BUF
Total/NA	Analysis	310.2		2	376445	09/12/17 16:04	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	376403	09/12/17 13:18	SSS	TAL BUF
Total/NA	Prep	351.2			376696	09/13/17 16:40	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376819	09/14/17 09:40	CLT	TAL BUF
Total/NA	Analysis	353.2		1	376441	09/12/17 16:05	LED	TAL BUF
Total/NA	Analysis	410.4		1	376459	09/12/17 18:56	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376475	09/13/17 04:35	BEV	TAL BUF
Total/NA	Analysis	420.1		1	376646	09/13/17 14:44	LED	TAL BUF
Total/NA	Analysis	7196A		1	376246	09/12/17 04:16	KMB	TAL BUF
Total/NA	Prep	9012B			376603	09/13/17 08:10	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 15:12	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376727	09/14/17 01:06	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	376443	09/12/17 17:20	DSC	TAL BUF
Total/NA	Analysis	SM 2340C		1	377456	09/18/17 14:30	ALZ	TAL BUF
Total/NA	Analysis	SM 2540C		1	376467	09/12/17 21:38	CDC	TAL BUF
Total/NA	Analysis	SM 5210B		1	376621	09/13/17 12:18	JCL	TAL BUF

Client Sample ID: MW-2S

Lab Sample ID: 480-123947-7

Matrix: Water

Date Collected: 09/11/17 15:17 Date Received: 09/12/17 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377488	09/19/17 12:47	KMN	TAL BUF
otal/NA	Prep	3005A			376474	09/13/17 08:35	EMB	TAL BUF
otal/NA	Analysis	6010C		1	377067	09/15/17 03:14	LMH	TAL BUF
otal/NA	Prep	7470A			376549	09/13/17 12:15	MVZ	TAL BUF
otal/NA	Analysis	7470A		1	376699	09/13/17 16:09	BMB	TAL BUF
otal/NA	Analysis	300.0		5	376863	09/14/17 19:00	RJS	TAL BUF
otal/NA	Analysis	310.2		5	376445	09/12/17 15:53	ALZ	TAL BUF
otal/NA	Analysis	350.1		1	376403	09/12/17 13:23	SSS	TAL BUF
otal/NA	Prep	351.2			376696	09/13/17 16:40	DCB	TAL BUF
otal/NA	Analysis	351.2		1	376819	09/14/17 09:40	CLT	TAL BUF
otal/NA	Analysis	353.2		1	376462	09/12/17 18:42	LED	TAL BUF
otal/NA	Analysis	410.4		1	376459	09/12/17 18:56	CDC	TAL BUF
otal/NA	Prep	Distill/Phenol			376475	09/13/17 04:35	BEV	TAL BUF
otal/NA	Analysis	420.1		1	376646	09/13/17 14:45	LED	TAL BUF
otal/NA	Analysis	7196A		1	376246	09/12/17 04:16	KMB	TAL BUF
otal/NA	Prep	9012B			376603	09/13/17 08:10	CLT	TAL BUF
otal/NA	Analysis	9012B		1	376667	09/13/17 15:13	MDL	TAL BUF

TestAmerica Buffalo

3

9

8

TestAmerica Job ID: 480-123780-1

Batch Batch Dilution Batch Prepared Prep Type Method Factor Number or Analyzed Type Run Analyst Lab Total/NA Analysis 9060A 376727 09/14/17 02:06 EKB TAL BUF Total/NA Analysis SM 2120B 376443 09/12/17 17:20 DSC TAL BUF 1 Total/NA Analysis SM 2340C 377456 09/18/17 14:30 ALZ TAL BUF Total/NA Analysis SM 2540C 376467 09/12/17 21:38 CDC TAL BUF Total/NA Analysis SM 5210B 376621 09/13/17 12:18 JCL TAL BUF 1

Client Sample ID: MW-2I

Lab Sample ID: 480-123947-8

Matrix: Water

Date Collected: 09/11/17 16:17 Date Received: 09/12/17 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377488	09/19/17 13:12	KMN	TAL BUF
Total/NA	Prep	3005A			376474	09/13/17 08:35	EMB	TAL BUF
Total/NA	Analysis	6010C		1	377067	09/15/17 03:17	LMH	TAL BUF
Total/NA	Prep	7470A			376549	09/13/17 12:15	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376699	09/13/17 16:14	BMB	TAL BUF
Total/NA	Analysis	300.0		1	376863	09/14/17 19:15	RJS	TAL BUF
Total/NA	Analysis	310.2		2	376445	09/12/17 16:06	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	376403	09/12/17 13:24	SSS	TAL BUF
Total/NA	Prep	351.2			376696	09/13/17 16:40	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376819	09/14/17 09:40	CLT	TAL BUF
Total/NA	Analysis	353.2		1	376441	09/12/17 16:14	LED	TAL BUF
Total/NA	Analysis	410.4		1	376459	09/12/17 18:56	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376475	09/13/17 04:35	BEV	TAL BUF
Total/NA	Analysis	420.1		1	376646	09/13/17 14:45	LED	TAL BUF
Total/NA	Analysis	7196A		1	376246	09/12/17 04:16	KMB	TAL BUF
Total/NA	Prep	9012B			376603	09/13/17 08:10	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 15:15	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376727	09/14/17 03:05	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	376443	09/12/17 17:20	DSC	TAL BUF
Total/NA	Analysis	SM 2340C		1	377456	09/18/17 14:30	ALZ	TAL BUF
Total/NA	Analysis	SM 2540C		1	376467	09/12/17 21:38	CDC	TAL BUF
Total/NA	Analysis	SM 5210B		1	376621	09/13/17 12:18	JCL	TAL BUF

Client Sample ID: MW-2D

Lab Sample ID: 480-123947-9

Matrix: Water

Date Collected: 09/11/17 15:30 Date Received: 09/12/17 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377488	09/19/17 13:37	KMN	TAL BUF
Total/NA	Prep	3005A			376474	09/13/17 08:35	EMB	TAL BUF
Total/NA	Analysis	6010C		1	377067	09/15/17 03:21	LMH	TAL BUF
Total/NA	Prep	7470A			376549	09/13/17 12:15	MVZ	TAL BUF
Total/NA	Analysis	7470A		1	376699	09/13/17 16:16	BMB	TAL BUF
Total/NA	Analysis	300.0		1	376863	09/14/17 19:30	RJS	TAL BUF

TestAmerica Buffalo

3

_

7

9

1 -

TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-2D
Date Collected: 09/11/17 15:30

Lab Sample ID: 480-123947-9

Matrix: Water

Date Collected: 09/11/17 15:30

Date Received: 09/12/17 01:30

Client: CHA Inc

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	310.2		1	376445	09/12/17 17:01	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	376403	09/12/17 13:25	SSS	TAL BUF
Total/NA	Prep	351.2			376696	09/13/17 16:40	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376819	09/14/17 09:40	CLT	TAL BUF
Total/NA	Analysis	353.2		1	376441	09/12/17 16:15	LED	TAL BUF
Total/NA	Analysis	410.4		1	376459	09/12/17 18:56	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376475	09/13/17 04:35	BEV	TAL BUF
Total/NA	Analysis	420.1		1	376646	09/13/17 14:19	LED	TAL BUF
Total/NA	Analysis	7196A		1	376246	09/12/17 04:16	KMB	TAL BUF
Total/NA	Prep	9012B			376603	09/13/17 08:10	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 15:16	MDL	TAL BUF
Total/NA	Analysis	9060A		1	376727	09/14/17 03:35	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	376443	09/12/17 17:20	DSC	TAL BUF
Total/NA	Analysis	SM 2340C		1	377456	09/18/17 14:30	ALZ	TAL BUF
Total/NA	Analysis	SM 2540C		1	376467	09/12/17 21:38	CDC	TAL BUF
Total/NA	Analysis	SM 5210B		1	376621	09/13/17 12:18	JCL	TAL BUF

Client Sample ID: Trip Blank

Date Collected: 09/11/17 00:00

Date Received: 09/12/17 01:30

Lab Sample	ID: 480-123947-10
------------	-------------------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377488	09/19/17 14:02	KMN	TAL BUF

Client Sample ID: MW-1S

Date Collected: 09/12/17 12:58

Date Received: 09/13/17 02:15

Lab Sample ID: 480-124024-	-1
----------------------------	----

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377452	09/19/17 00:45	NEA	TAL BUF
Total/NA	Prep	3005A			376635	09/13/17 08:55	EMB	TAL BUF
Total/NA	Analysis	6010C		1	377065	09/14/17 16:17	AMH	TAL BUF
Total/NA	Prep	7470A			376794	09/14/17 12:00	EMB	TAL BUF
Total/NA	Analysis	7470A		1	376942	09/14/17 15:00	BMB	TAL BUF
Total/NA	Analysis	300.0		1	378562	09/25/17 13:24	RJS	TAL BUF
Total/NA	Analysis	310.2		4	376956	09/14/17 17:53	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	376645	09/13/17 14:48	SSS	TAL BUF
Total/NA	Prep	351.2			376697	09/13/17 16:40	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376819	09/14/17 09:58	CLT	TAL BUF
Total/NA	Analysis	353.2		1	376708	09/13/17 17:25	LED	TAL BUF
Total/NA	Analysis	410.4		1	376983	09/14/17 19:30	CDC	TAL BUF

TestAmerica Buffalo

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-1S

Lab Sample ID: 480-124024-1

Matrix: Water

Date Collected: 09/12/17 12:58 Date Received: 09/13/17 02:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Distill/Phenol			376718	09/13/17 19:20	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376989	09/15/17 01:50	KMB	TAL BUF
Total/NA	Analysis	7196A		1	376589	09/13/17 08:12	EKB	TAL BUF
Total/NA	Prep	9012B			376605	09/13/17 12:30	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 15:43	MDL	TAL BUF
Total/NA	Analysis	9060A		1	377213	09/15/17 23:39	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	376679	09/13/17 09:00	SSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	377456	09/18/17 14:30	ALZ	TAL BUF
Total/NA	Analysis	SM 2540C		1	376637	09/13/17 15:01	EKB	TAL BUF
Total/NA	Analysis	SM 5210B		1	376821	09/14/17 08:42	JCL	TAL BUF

Client Sample ID: MW-1I

Lab Sample ID: 480-124024-2

Matrix: Water

Date Collected: 09/12/17 14:02
Date Received: 09/13/17 02:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377452	09/19/17 01:12	NEA	TAL BUF
Total/NA	Prep	3005A			376635	09/13/17 08:55	EMB	TAL BUF
Total/NA	Analysis	6010C		1	377065	09/14/17 16:20	AMH	TAL BUF
Total/NA	Prep	7470A			376794	09/14/17 12:00	EMB	TAL BUF
Total/NA	Analysis	7470A		1	376942	09/14/17 15:02	BMB	TAL BUF
Total/NA	Analysis	300.0		1	377146	09/15/17 19:02	RJS	TAL BUF
Total/NA	Analysis	310.2		2	376712	09/13/17 16:56	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	376645	09/13/17 14:49	SSS	TAL BUF
Total/NA	Prep	351.2			376697	09/13/17 16:40	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376819	09/14/17 09:58	CLT	TAL BUF
Total/NA	Analysis	353.2		1	376707	09/13/17 15:55	LED	TAL BUF
Total/NA	Analysis	410.4		1	376983	09/14/17 19:30	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376718	09/13/17 19:20	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376989	09/15/17 01:50	KMB	TAL BUF
Total/NA	Analysis	7196A		1	376589	09/13/17 08:12	EKB	TAL BUF
Total/NA	Prep	9012B			376605	09/13/17 12:30	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 15:45	MDL	TAL BUF
Total/NA	Analysis	9060A		1	377213	09/16/17 00:09	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	376679	09/13/17 09:00	SSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	377456	09/18/17 14:30	ALZ	TAL BUF
Total/NA	Analysis	SM 2540C		1	376713	09/13/17 20:25	CDC	TAL BUF
Total/NA	Analysis	SM 5210B		1	376821	09/14/17 08:42	JCL	TAL BUF

2

4

0

10

Project/Site: Albany Interim Landfill - Baseline

Client Sample ID: MW-1D Lab Sample ID: 480-124024-3 Date Collected: 09/12/17 14:14 Matrix: Water

Date Received: 09/13/17 02:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377452	09/19/17 01:38	NEA	TAL BUF
Total/NA	Prep	3005A			376635	09/13/17 08:55	EMB	TAL BUF
Total/NA	Analysis	6010C		1	377065	09/14/17 16:24	AMH	TAL BUF
Total/NA	Prep	7470A			376794	09/14/17 12:00	EMB	TAL BUF
Total/NA	Analysis	7470A		1	376942	09/14/17 15:03	BMB	TAL BUF
Total/NA	Analysis	300.0		1	377146	09/15/17 19:16	RJS	TAL BUF
Total/NA	Analysis	310.2		3	376712	09/13/17 16:56	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	376645	09/13/17 14:50	SSS	TAL BUF
Total/NA	Prep	351.2			376697	09/13/17 16:40	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376819	09/14/17 09:58	CLT	TAL BUF
Total/NA	Analysis	353.2		1	376707	09/13/17 15:56	LED	TAL BUF
Total/NA	Analysis	410.4		1	376983	09/14/17 19:30	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376718	09/13/17 19:20	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376989	09/15/17 01:50	KMB	TAL BUF
Total/NA	Analysis	7196A		1	376589	09/13/17 08:12	EKB	TAL BUF
Total/NA	Prep	9012B			376605	09/13/17 12:30	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 15:46	MDL	TAL BUF
Total/NA	Analysis	9060A		1	377213	09/16/17 00:39	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	376679	09/13/17 09:00	SSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	377456	09/18/17 14:30	ALZ	TAL BUF
Total/NA	Analysis	SM 2540C		1	376713	09/13/17 20:25	CDC	TAL BUF
Total/NA	Analysis	SM 5210B		1	376821	09/14/17 08:42	JCL	TAL BUF

Client Sample ID: MW-14S Lab Sample ID: 480-124024-4 Date Collected: 09/12/17 10:06

Date Received: 09/13/17 02:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377452	09/19/17 02:05	NEA	TAL BUF
Total/NA	Prep	3005A			376635	09/13/17 08:55	EMB	TAL BUF
Total/NA	Analysis	6010C		1	377065	09/14/17 16:28	AMH	TAL BUF
Total/NA	Prep	7470A			376794	09/14/17 12:00	EMB	TAL BUF
Total/NA	Analysis	7470A		1	376942	09/14/17 15:05	BMB	TAL BUF
Total/NA	Analysis	300.0		2	377146	09/15/17 19:31	RJS	TAL BUF
Total/NA	Analysis	310.2		4	376712	09/13/17 17:17	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	376645	09/13/17 14:51	SSS	TAL BUF
Total/NA	Prep	351.2			376697	09/13/17 16:40	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376819	09/14/17 10:06	CLT	TAL BUF
Total/NA	Analysis	353.2		1	376707	09/13/17 15:57	LED	TAL BUF
Total/NA	Analysis	410.4		1	376983	09/14/17 19:30	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376718	09/13/17 19:20	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376989	09/15/17 01:50	KMB	TAL BUF

TestAmerica Buffalo

Page 81 of 94

Matrix: Water

Project/Site: Albany Interim Landfill - Baseline

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7196A		1	376589	09/13/17 08:12	EKB	TAL BUF
Total/NA	Prep	9012B			376605	09/13/17 12:30	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 15:48	MDL	TAL BUF
Total/NA	Analysis	9060A		1	377213	09/16/17 01:09	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	376679	09/13/17 09:00	SSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	377456	09/18/17 14:30	ALZ	TAL BUF
Total/NA	Analysis	SM 2540C		1	376713	09/13/17 20:25	CDC	TAL BUF
Total/NA	Analysis	SM 5210B		1	376720	09/13/17 17:43	CDC	TAL BUF

Client Sample ID: MW-14I

Date Collected: 09/12/17 11:16

Date Received: 09/13/17 02:15

Lab Sample ID: 480-124024-5

TestAmerica Job ID: 480-123780-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377452	09/19/17 02:32	NEA	TAL BUF
Total/NA	Prep	3005A			376635	09/13/17 08:55	EMB	TAL BUF
Total/NA	Analysis	6010C		1	377065	09/14/17 16:31	AMH	TAL BUF
Total/NA	Prep	7470A			376794	09/14/17 12:00	EMB	TAL BUF
Total/NA	Analysis	7470A		1	376942	09/14/17 15:07	BMB	TAL BUF
Total/NA	Analysis	300.0		1	377146	09/15/17 19:45	RJS	TAL BUF
Total/NA	Analysis	310.2		2	376712	09/13/17 16:57	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	376645	09/13/17 14:51	SSS	TAL BUF
Total/NA	Prep	351.2			376697	09/13/17 16:40	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376819	09/14/17 10:06	CLT	TAL BUF
Total/NA	Analysis	353.2		1	376707	09/13/17 15:59	LED	TAL BUF
Total/NA	Analysis	410.4		1	376983	09/14/17 19:30	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376718	09/13/17 19:20	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376989	09/15/17 01:50	KMB	TAL BUF
Total/NA	Analysis	7196A		1	376589	09/13/17 08:12	EKB	TAL BUF
Total/NA	Prep	9012B			376605	09/13/17 12:30	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 15:49	MDL	TAL BUF
Total/NA	Analysis	9060A		1	377213	09/16/17 03:38	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	376679	09/13/17 09:00	SSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	377456	09/18/17 14:30	ALZ	TAL BUF
Total/NA	Analysis	SM 2540C		1	376713	09/13/17 20:25	CDC	TAL BUF
Total/NA	Analysis	SM 5210B		1	376720	09/13/17 17:43	CDC	TAL BUF

Client Sample ID: MW-14D

Date Collected: 09/12/17 10:37

Lab Sample ID: 480-124024-6

Matrix: Water

Date Received: 09/13/17 02:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377452	09/19/17 02:59	NEA	TAL BUF
Total/NA	Prep	3005A			376635	09/13/17 08:55	EMB	TAL BUF
Total/NA	Analysis	6010C		1	377065	09/14/17 16:35	AMH	TAL BUF

Project/Site: Albany Interim Landfill - Baseline

Lab Sample ID: 480-124024-6

TestAmerica Job ID: 480-123780-1

Matrix: Water

Date Collected: 09/12/17 10:37 Date Received: 09/13/17 02:15

Client Sample ID: MW-14D

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			376794	09/14/17 12:00	EMB	TAL BUF
Total/NA	Analysis	7470A		1	376942	09/14/17 15:09	BMB	TAL BUF
Total/NA	Analysis	300.0		1	377146	09/15/17 20:00	RJS	TAL BUF
Total/NA	Analysis	310.2		2	376712	09/13/17 17:10	ALZ	TAL BUF
Total/NA	Analysis	350.1		1	376645	09/13/17 14:58	SSS	TAL BUF
Total/NA	Prep	351.2			376697	09/13/17 16:40	DCB	TAL BUF
Total/NA	Analysis	351.2		1	376819	09/14/17 10:06	CLT	TAL BUF
Total/NA	Analysis	353.2		1	376707	09/13/17 16:00	LED	TAL BUF
Total/NA	Analysis	410.4		1	376983	09/14/17 19:30	CDC	TAL BUF
Total/NA	Prep	Distill/Phenol			376971	09/14/17 16:45	DCB	TAL BUF
Total/NA	Analysis	420.1		1	376989	09/15/17 01:57	KMB	TAL BUF
Total/NA	Analysis	7196A		1	376589	09/13/17 08:12	EKB	TAL BUF
Total/NA	Prep	9012B			376605	09/13/17 12:30	CLT	TAL BUF
Total/NA	Analysis	9012B		1	376667	09/13/17 15:51	MDL	TAL BUF
Total/NA	Analysis	9060A		1	377213	09/16/17 04:08	EKB	TAL BUF
Total/NA	Analysis	SM 2120B		1	376679	09/13/17 09:00	SSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	377456	09/18/17 14:30	ALZ	TAL BUF
Total/NA	Analysis	SM 2540C		1	376713	09/13/17 20:25	CDC	TAL BUF
Total/NA	Analysis	SM 5210B		1	376720	09/13/17 17:43	CDC	TAL BUF

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-124024-7

Date Collected: 09/12/17 00:00

Matrix: Water

Date Received: 09/13/17 02:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377452	09/19/17 03:26	NEA	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

4

6

9

10

Accreditation/Certification Summary

Client: CHA Inc TestAmerica Job ID: 480-123780-1

Project/Site: Albany Interim Landfill - Baseline

Laboratory: TestAmerica Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date		
New York	NELAP	2	10026	03-31-18		

Method Summary

Client: CHA Inc

Project/Site: Albany Interim Landfill - Baseline

TestAmerica Job ID: 480-123780-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
310.2	Alkalinity	MCAWW	TAL BUF
350.1	Nitrogen, Ammonia	MCAWW	TAL BUF
351.2	Nitrogen, Total Kjeldahl	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
410.4	COD	MCAWW	TAL BUF
420.1	Phenolics, Total Recoverable	MCAWW	TAL BUF
7196A	Chromium, Hexavalent	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF
9060A	Organic Carbon, Total (TOC)	SW846	TAL BUF
SM 2120B	Color, Colorimetric	SM	TAL BUF
SM 2340C	Hardness, Total (mg/l as CaC03)	SM	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
SM 5210B	BOD, 5-Day	SM	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

F

TestAmerica Job ID: 480-123780-1

09/12/17 11:16

09/12/17 10:37

09/12/17 00:00

09/13/17 02:15

09/13/17 02:15

09/13/17 02:15

Client: CHA Inc

480-124024-5

480-124024-6

480-124024-7

MW-14I

MW-14D

TRIP BLANK

Project/Site: Albany Interim Landfill - Baseline

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-123780-1	SW-2A	Water	09/07/17 09:45	09/08/17 01:45
480-123780-2	SW-5	Water	09/07/17 10:45	09/08/17 01:45
480-123780-3	SW-1	Water	09/07/17 09:00	09/08/17 01:45
480-123780-4	Trip Blank	Water	09/07/17 00:00	09/08/17 01:45
480-123848-1	MW-9I	Water	09/08/17 09:52	09/09/17 01:45
480-123848-2	MW-9S	Water	09/08/17 10:58	09/09/17 01:45
480-123848-3	MW-9D	Water	09/08/17 12:00	09/09/17 01:45
480-123848-4	MW-10S	Water	09/08/17 14:00	09/09/17 01:45
480-123848-5	MW-10I	Water	09/08/17 15:14	09/09/17 01:45
480-123848-6	MW-10D	Water	09/08/17 14:55	09/09/17 01:45
480-123848-7	CHA-1	Water	09/08/17 10:30	09/09/17 01:45
480-123848-8	Trip Blank	Water	09/08/17 00:00	09/09/17 01:45
480-123947-1	MW-18S	Water	09/11/17 09:55	09/12/17 01:30
480-123947-2	MW-18IR	Water	09/11/17 10:55	09/12/17 01:30
480-123947-3	MW-18D	Water	09/11/17 11:02	09/12/17 01:30
480-123947-4	MW-15S	Water	09/11/17 13:00	09/12/17 01:30
480-123947-5	MW-15I	Water	09/11/17 13:49	09/12/17 01:30
480-123947-6	MW-15D	Water	09/11/17 13:19	09/12/17 01:30
480-123947-7	MW-2S	Water	09/11/17 15:17	09/12/17 01:30
480-123947-8	MW-2I	Water	09/11/17 16:17	09/12/17 01:30
480-123947-9	MW-2D	Water	09/11/17 15:30	09/12/17 01:30
480-123947-10	Trip Blank	Water	09/11/17 00:00	09/12/17 01:30
480-124024-1	MW-1S	Water	09/12/17 12:58	09/13/17 02:15
480-124024-2	MW-1I	Water	09/12/17 14:02	09/13/17 02:15
480-124024-3	MW-1D	Water	09/12/17 14:14	09/13/17 02:15
480-124024-4	MW-14S	Water	09/12/17 10:06	09/13/17 02:15

Water

Water

Water

ı

Ш

Client: CHA Inc Job Number: 480-123780-1

Login Number: 123780 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and ne COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	CHA
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Client: CHA Inc Job Number: 480-123780-1

Login Number: 123848 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and ne COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	CHA
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Page 88 of 94

Client: CHA Inc Job Number: 480-123780-1

Login Number: 123947 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

estion	Answer	Comment
dioactivity either was not measured or, if measured, is at or below ckground	True	
e cooler's custody seal, if present, is intact.	True	
e cooler or samples do not appear to have been compromised or appered with.	True	
mples were received on ice.	True	
oler Temperature is acceptable.	True	
oler Temperature is recorded.	True	
C is present.	True	
C is filled out in ink and legible.	True	
C is filled out with all pertinent information.	True	
he Field Sampler's name present on COC?	True	
re are no discrepancies between the sample IDs on the containers and COC.	True	
mples are received within Holding Time (Excluding tests with immediate s)	True	
nple containers have legible labels.	True	
atainers are not broken or leaking.	True	
nple collection date/times are provided.	True	
ropriate sample containers are used.	True	
pple bottles are completely filled.	True	
nple Preservation Verified	True	
ere is sufficient vol. for all requested analyses, incl. any requested //MSDs	True	
A sample vials do not have headspace or bubble is <6mm (1/4") in meter.	True	
ecessary, staff have been informed of any short hold time or quick TAT	True	
Itiphasic samples are not present.	True	
nples do not require splitting or compositing.	True	
npling Company provided.	True	CHA
nples received within 48 hours of sampling.	True	
nples requiring field filtration have been filtered in the field.	N/A	
lorine Residual checked.	N/A	

7

Client: CHA Inc Job Number: 480-123780-1

Login Number: 124024 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and ne COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	CHA
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

Chain of Custody Record

<u>TestAmerica</u>

THE L A FR IN ENVIRONME T TEST NG

Client Information	Sampler Elizabeth Wo Stone, Judy L Phone 618-453-4560 E-Mail judy.stone@testamericainc.com										COC No. 480-101349-20505.3										
Client Contact: Mr. John Fayreau	Phone 518	453	-4500	E-Mail judy.	stone	e@testamericainc.com													Page Page 3 of 3		
Company CHA Inc										lveie	Rad	quested						_	Job#		
Address	Due Date Requeste	od:				Analysis Re							steu						Preservation Codes:		
111 Winners Circle PO BOX 5269 City Albany	TAT Requested (da																		A - HCL B - NaOH	M - Hexane N - None	
State, Zip. NY, 12205-0269		ndor	ολ 																C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH	0 - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3	
Phone 518-453-8795(Tel) Email	PO# 32596.1007.442 WO#	200			(oN				914	Sell sell		mand	spilos		Nitrate Calc				G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate	
jfavreau@chacompanies.com	VVO #				Yes or					Volatiles	5	8	S per		Nitra	ent		50	I - Ice J - DI Water	U - Acetone V - MCAA	
Project Name Albany Interim Landfill	Project # 48003451							SS	200	otal Rec	e Carbon	Oxygen	Dissolv		Nitrite,	nexavalent	ia i	ntai	K - EDTA W - pH 4-5 L - EDA Z - other (specify)		
Site New York	SSOW#				ered Sample (MS/MSD (Yes	Ö	4.0	ardne		Appe	rgani	mical	Total		363.2	um,	ty, Total	of c	Other:		
		Sample	Type (C=comp, o	Matrix (W=water, S=solid, N=waste/oil,	Field Filtered Perform MS/R	300.0_28D - BR,	350.1, 351.2, 410.4	6010C, 7470A	100000000000000000000000000000000000000	420.1 - Phenolics, Total Re 8260C - (MOD) Appendix II	9060A - Total Organic	5210B - Biochemical	2540C_Calcd - Total Dissolved Solids	9012B - Cyanide	2120B, 363.2, 3	7196A - Chrom	310.2 - Alkalinity,	Total Number of			
Sample Identification	Sample Date	Time	G=grab) BT=			N	S	D D	-	_	A	N	N	В		N	N	Ż	Special in	structions/Note:	
SW-2A	97.	945		Water	T	X	X		()	XX	1	()	X	X	X	X	X				
SW-5	1	1045	1	Water		1	1	1		11	1	1	1	1	1	1	1				
SW-1		900		Water		1	J	1.	1	11	1	4	1	J	1	1	1	4			
-MS-TripBlank	1	_	+	Water		-		-		-	-	-					_	2			
MED			-	Water		-				-	-	-		_							
			4	Ta	1	\Rightarrow	<	TA		1	+	-	-	_	-						
	1		4		H	+	-	0	J	0		2	5								
					\Box						1			X	7						
Possible Hazard Identification					S	ampl	e Dis	posal (Af	ee ma	y,bq	asse	essec	if s	ampl	es a	re re	tain	ned longer than	f month)	
Non-Hazard Flammable Skin Irritant Poi	son B Unkn	own D	Radiological										osal	By La	ab	[Arci	ned longer than thive For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)					S	реста	Instr	uctions	s/QC	Requ	irem	ents:									
Empty Kit Relinquished by:		Date:			Time								Meti	nod of	Shipn						
Relinquished by Relinquished by	Date/Time: 9-7-17/164/ Company				}		19		10	ole	_				9/17/17 1641 Company					11/	
Relinquished by	Date/Time: Company					Received by							Date	Time			0145	Company			
*	Date/Time. Company					Cooler Temperature(s) °C and Other Remarks:						Date	, 1 HITE			- •	- Company				
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Coc	oler Tei	mperatur	e(s)	'C and	Other	Rema	rks:						. 0	2 #1	

TestAmerica Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298

480501-Albany

Chain of Custody Record

THE LEADER I

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TEST NO

Client Information	Sampler Elizabeth WDS Stone, Judy L										Carri							COC No 480-101349-20505.2			
Client Contact Mr. John Favreau	Phone 518				stone	@testa	ameri	cainc.	.com	1			48	30-12	3848	COC			Page of 11		
Company CHA Inc									An	alysi	s Re	ane	- stec	1					Job#		
Address	Due Date Request	ed:			12														Preservation Cod	ies:	
111 Winners Circle PO BOX 5269 City	TAT Requested (d.	ays):			3.20 10			Ш	1										A - HCL B - NaOH	M - Hexane N - None	
Albany Slate, Zrp	Stan	tart																	C - Zn Acetate D - Nitnc Acid	0 - AsNa02 P - Na204S	
NY, 12205-0269		X			3.7	3													E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3	
Phone 518-453-8795(Tel)	PO # 32596 1007.442	200			9						,	pue	ids		Calc				G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate	
Email jfavreau@chacompanies.com	WO#				9				-	overable		Demand	d Sol		Itrate	=		ęs	I - Ice J - DI Water	U - Acetone V - MCAA	
Project Name	Project #				S S			SS		Fotal Recov		neny	solve		ite.	hexavalent		alners	K - EDTA	W - pH 4-5	
Albany Interim Landfill Site	48003451 SSOW#				age 2	SO4					O de	o le	Dis	1	N.		Total	contal	L - EDA Z - other (specify) Other:	Z - other (specify)	
New York			г		San		10.4		Hard	lies,	de la	emic	- Tota	9	353.2	nium,	Ity, T	6			
		Sample	Sample Type (C=comp,	Matrix (w=water, S=solid, O=waste/oil,	Field Filtered	6	.1, 361.2, 410.4	6010C, 7470A	oc - Total Hardness	420.1 - Phenolies, Total	Scool - (MOD) Appendix II votames	5210B - Biochemical Oxygen	2540C_Calcd - Total Dissolved Solids	2B - Cyanide	2120B, 353.2, 353.2_Nitrite, Nitrate_Calc	6A - Chromium,	310.2 - Alkalinity,	al Number			
Sample Identification	Sample Date	Time	G=grab) B	T≂Tissue, A≃Air		1	350.1,		-					9012B	212	7196A		Total	Special Ir	nstructions/Note:	
and Orders Land	0.0	000	Preservati		XX	N		DE		SA	A	N	N	В	N	N	N	X			
MW-91/MS/MSD	9.8.17		G	Water	11	X	X	X	X	* 1		7	X	X	X	X	X	51	<u> </u>		
MW-95	1	1058		Water	\sqcup	1		1	\parallel	11	11	Ш	1	\perp	1		1	רו			
MW-100 MW-9I/MS/MSD MVV-145 MW-9S MVV-141 MW-9D		1200		Water					1									\perp			
MW-105		1400		Water																	
MW-10I		1514		Water											1			I			
MW-151 MW-10D		1455		Water					1						1						
WW-15D CHA-1		1030	1	Water		1	J	J.	I	J.	U.	J,	1	1	9	4	1	I	,		
185 Trio Blank	1	-	-	Water	1	-		-	-	-	+	-	+	-				2			
IVIVV-18I			21	Water	1									1							
MW-18D		-	V/ al	Abjor	W	X		7.	8	v											
ew-1			4/	Water	11	+			7			1									
Possible Hazard Identification			L		S	ample	e Dis	posal	(A	fee m						les a	re re	tain	ned longer than	1 month)	
	Poison B Unkr	own L	Radiological		-			ToC	_	_			oosal	By L	ab			Arci	hive For	Months	
Deliverable Requested I, II, III, IV, Other (specify)					S	ipecial	Instr	uction	s/Q(CReq	uren	nents									
Empty Kit Relinquished by		Date:			Time	3:	_						Me	thed o							
Relinquished by Glabel WS	9-8-17/1615 Company)	Rec	gyed b	17	10	ch	_				1615 Company							
Relinquented by Sade	Pate/Time:	9/8/17 1800 TA				Received by							Date/Time: 0147 Company					Company			
Relinquished by	Date/Time	Date/Time Company				Seceived by:								Date	e/Time	a;			Company		
Custody Seals Intact: Custody Seal No.:		_			-/	Coo	ler Ter	nperatu	ıre(s)	°C and	Other	Rema	arks:			1	11	17	1	HI	
Δ Yes Δ No																U.	1,6	1.C	100	#1	

TestAmerica Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298

Chain of C

ustody Record	History.	TestAmerica
actour Hobbita	Market 8	THE DESCRIPTION OF THE PROPERTY OF THE PARTY
		THE LEADER IN ENVIRONMENTAL TESTING

Phone (716) 691-2600 Fax (716) 691-7991 Client Information	Sampler F1120064h WOS Stone, Judy L Phone 518-453-4500 E-Mail judy.stone@testamericainc.com								-		Carne	er Tr			T	COC No; 480-101349-20505.2					
Client Contact Mr. John Favreau	Phone 518-	453-	4500	E-Ma judy	stone@	gtesta	merio	cainc.c	om					480-123947 COC					Page 2 or 3		
Company CHA Inc								Δ	Anal	ysis	Rec	iues							Job#		
Address	Due Date Requeste	ed:		_	100		T	T		7010	1	-							Preservation Cod	les:	
111 Winners Circle PO BOX 5269 City	TAT Requested (da	ays):			200 m														A - HCL B - NaOH	M - Hexane N - None	
Albany State, Zip		ndos	d																C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S	
NY, 12205-0269 Phone	P0 #														0			- 1	E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3	
518-453-8795(Tel)	32596.1007.442	200			No.				90	88		Demand	olids		2				G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate	
Email jfavreau@chacompanies.com	WO #				Yes or		- 1		Recoverable	olati	5		ed Sc		Vitrat	ant			I - Ice J - DI Water	U - Acetone V - MCAA	
Project Name Albany Interim Landfill	Project # 48003451				e (Ye	4			R 80	- (MOD) Appendix II Volatiles	Sarbo	Oxygen	Ssofv		rite, I	hexavalent			K - EDTA L - EDA		
Site New York	SSOW#				ampl SD (Ye	CI, SO4	4	Hardness	420.1 - Phenolics, Total		Total Organic Carbon		2640C_Calcd - Total Dissolved Solids		353.2_Nitrite, Nitrate_Calc		. Total	of con	Other:		
New TOTA			Sample	Matrix	ered San	12	2, 410.4	AO ISI	nolics	DD) A	tal Org	- Biochemical	Dd - To	- Cyanide	2, 35	Chromium,	Alkalinity,	Total Number of			
			Type	(W=water, S≈solid,		28D		C. 7470A	- Phe	- (M		3 . Bic	Cal		3, 353.2,	*	- Alks	Nun			
Sample Identification	Sample Date	Sample Time	(C=comp, G=grab)	O=waste/oil, BT=Yissue, A=Air	Field Fill Perform	300.0	350.1,	6010C, 2340C	420.1	8260C	9060A	6210B	25400	9012B	2120B,	7196A	310.2-	Total	Special Ir	structions/Note:	
		><	Preserva	tion Code:	XX	N		D D	1	A	Α	N		В	N	N	N	X			
MW-10D- MW-18S	9-11-17	953	02	Water		X	X	XX	(X	X	X	X	X	X	X	X	X	17			
MW-145 MW-18IR		1055		Water			1	11		1	1	1	1		1	1	1	1			
MW-18D		1102		Water																	
MW-155		1300		Water																	
MW-15E MW-15I		1349		Water		П															
MW-15D		1319		Water								1									
VMM-15D MW-25		1517		Water						1											
MW-185 MW-ZI		1617		Water						П			1					1			
MW-101 MW-2D		1530	~	Water		J	1	J,	L	1	1	1	V	V	1	T	1	J			
MW-18D Trip Blank	1		_	Water	Π			-	-	+	-		-				-	2			
SW1				(Note		1	1	110		9	11	1.	7								
Possible Hazard Identification				000	Si	ample	Disp	osal (A fe	e ma	y be	asse	ssed	if sa	ampl	es a	re re	tain	ed longer than	1 month)	
	pison B Unkn	iown 🗀	Radiological		-			To Cli		D			osal E	By La	ab_	١		Arch	nive For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)							msut	ctions	700	Requi	reme										
Empty Kit Relinquished by:	Date/Tyme	Date:	417	Company 4	Time	l Dood	Don't be		_				Meth	od of						To	
Relinquished by Relinquished by Relinquished by	9-11-	17/1	113	Company	-)	Rece	19	1	OSE /	sh	•					711	117	>		Company	
Mal Joden	Date/Imp	7.1	800	Company		1	1/1	M							Day	7-	12-	-/	1 0/30		
Relinquished by	Date/Time			Company			ived b			•					Date	rime				Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Coole	er Terr	perature	e(s)°C	and C	ther R	Remark	KS:		A	1	1	1	MU	.1/	

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228-2298 480501-Albany

Chain of Custody Record

<u>TestAmerica</u>

THE L. ADER IN ENVIRONMENTAL TESTING

Phone (716) 691-2600 Fax (716) 691-7991															\mathbb{R}^{3}	95				THE L ADER IN ENVIR	RONMENTAL TESTING	
Client Information Client Contact	Phone 518-453-4500 Lab PM Stone, J												Carri	e Car						COC No 480-101349-20505.1		
Mr. John Favreau	Phone 518.	453-	4500) E-Ma		@tes	testamericainc.com						480-124024					С		Page Page 1 of		
Company CHA Inc									Ar	nalys	sis	Req	ues	sted						Job#		
Address 111 Winners Circle PO BOX 5269	Due Date Request	ed:	-																	Preservation Codes		
City	TAT Requested (d:				11															B - NaOH N	1 - Hexane I - None	
Albany State, Zip NY, 12205-0269	Sto	undou	ral																	D - Nitric Acid P E - NaHSO4 Q	0 - Asna02 0 - Na204S 0 - Na2S03 R - Na2S203	
Phone 518-453-8795(Tel)	PO # 32596.1007.44200				6								pu	80		Calc				G - Amchlor S	6 - H2SO4 7 - TSP Dodecahydrate	
Email jfavreau@chacompanies.com	W0#				S or N					coverable	Appendix II Volatiles	_	Biochemical Oxygen Demand	- Total Dissolved Solids		363.2 Nitrite, Nitrate Calc	ıı		2	1 - Ice U	J - Acetone / - MCAA	
Project Name Albany Interim Landfill	Project # 48003451		_		e (Ye					Reco	IX I	- Total Organic Carbon	arbo	ssolv		rite, N	hexavalent		containers	K - EDTA W - pH 4-5 L - EDA Z - other (specify)		
Site.	SSOW#_				amp d	CI, SO4	4		dness	Total	puede	anic	calO	tal Di		S.	n, he	Alkalinity, Total	fcon	Other:		
New York	-	1	0	Matrix	S pa	BR.	410.4	A	al Har	olles	D) Ap	o la	снеш	d. To	apin	2, 363	- Chromium,	linity,	bero			
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	(W=water, S=solid, O=waste/oil, BT=Fissuc, A=Ai	Field Filter	300.0 28D	360.1, 361.2,	6010C, 7470A	2340C - Total	420.1 - Phenolics	8260C - (MOD)	9060A - Tot	6210B - Blo	2540C_Calcd	9012B - Cyanide	2120B, 363.2,	7196A - Chr	310.2 - Alka	Total Number of	Special Inst	ructions/Note:	
		250	-	tion Code:	X	N	S	-	D	S	A	A	N	N	В	N	N	N	X			
MW-1S	9.12.17	1258	6	Water	11	X	X	X	X	X	X	X	X	X	X	X	X	X	V	4		
MA/VV-11	1	1402		Water	11	1		1	1	1	1	П	1	1	1	Ш	1		1			
MW-1D		1414		Water									П	П		Ш						
MW-26 MW-14S		1000	nı	Water																		
MW-14S MW-14P	11110	1000		Water											1							
MW-20 MW-14D		1037	1	Water		1	1	1	1	V	1	V	7	V	1	V	V	1	T			
Trip Blank	1	-		Water	II	-	+				-							+	2	4		
Mivv-91			-	Water																	•	
MW 9D		9	Kall	weiter	Vn	1		-														
MIVV-TUS-		9	1000	Water	4	10	8	17	1	2.	-											
MW-101		0		Water	11						7											
Rossible Hazard Identification			1		S	Samp	le Di	sposa	al (A	fee	may	be a	asse	sse	TIF's	amp	les a	re r	etai	ined longer than 1 n	nonth)	
Non-Hazard Flammable Skin Irritant Po	ison B Unkr	own F	Radiological		9		_	rn To	_	_		1	_	osal	By L	ab			Arc	chive For	Months	
		India			-		11113	ii delie	711370	2011	cquii	Terric	iiia.	Mai	had a	6 Chin	m ant		_			
Empty Kit Relinquished by: Relinquished by C 2/// 14) (0 -	Date(Time:	Date:	~~	Company	Time		979	by:	/	1		,	_	IVIE	hod o	_		e: 1	_		Company	
Saux VVX	9-12-1	7/15/		Company			N		1	10	er	h	_			9	12	2/1	7		Company	
Relinquished Hol Lolly	9/12/	17 1	1800	-			2	11	1							1		1	1)	0211	Company	
Relinquished by	Date/Time			Company		No.	ceived	by:	,							Dat	e/Tim	e:			Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No					/	Co	oler T	empera	ature(s	s) °C a	and O	ther R	temar	ks:						0,1,0.	2 #1	

APPENDIX C DATA USABILITY SUMMARY REPORT

Geology

Hydrology

Remediation

Water Supply

October 30, 2017

Mr. John L. Favreau CHA III Winners Circle P.O. Box 5269 Albany, New York 12205-0269

Albany Interim Landfill Re:

Data Validation Report

September 2017 Ground/Surface Water Sampling Events

6NYCRR Part 360 Baseline Parameters CHA Project No. 32596.7000.44200

Dear Mr. Favreau:

The data usability summary report (DUSR) and data validation reviews are attached to this letter for the Albany Interim Landfill, September 2017 ground/surface water sampling events. The data were mostly acceptable for TestAmerica Buffalo, job number 480-123780-1 with some issues that are identified and discussed in the validation summaries. There were mercury data that were qualified rejected, unusable (R) in the data pack. This was due to an unacceptably low spike recovery for mercury. The data is rejected based solely on the validation guidance criteria. The rejected data may be determined to be acceptable to the user based on additional information that is not contained in the data validation criteria.

A list of common data validation acronyms is attached to this letter to assist you interpreting the validation summaries. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist CHA.

Sincerely,

Alpha Geoscience

Donald Ame

Donald Anné Senior Chemist

DCA:dca attachments

Z:\projects\2006\06621-06640\06625-albany landfill\2017\albany lf-171.ltr.wpd

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

- U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.
- R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- J- = Analyte is present. Reported value may be biased low and associated with a higher level of uncertainty than is normally expected with the analytical method.
- J+ = Analyte is present. Reported value may be biased high and associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

Data Validation Acronyms

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation

Geology

Hydrology

Remediation

Water Supply

Data Usability Summary Report for TestAmerica Buffalo, Job Number: 480-123780-1

21 Ground Water Samples, 3 Surface Water Samples, 1 Field Duplicate, and 4 Trip Blanks Collected September 7-12, 2017

> Prepared by: Donald Anné October 27, 2017

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data packs contained the results for 21 ground water samples, 3 surface water samples, and 1 field duplicate analyzed for part 360 baseline volatile, metal, and classical chemistry analyses, and 4 trip blanks analyzed for part 360 baseline volatiles only.

The overall performances of the analyses are acceptable. TestAmerica Buffalo did fulfill the requirements of the laboratory referenced analytical methods.

The data are acceptable with some minor issues that are identified in the accompanying data validation reviews. The following data were flagged:

- Positive volatile result for acetone were qualified as "not detected" (U) for samples SW-5 and SW-1 because the level reported in the samples were not significantly greater than (more than 10 times) the highest associated blank level.
- Positive volatile result for methylene chloride were qualified as "not detected" (U) for sample MW-1S because the level reported in the samples were not significantly greater than (more than 10 times) the highest associated blank level.
- The positive volatile result for 1,1-dichloroethane were qualified as "estimated, biased high" (J+) in sample MW-9I because 1 of 2 percent recoveries for 1,1-dichloroethane was above OC limits in the MS/MSD sample MW-9I.
- The "not detected" metal results for mercury were qualified as "rejected, unusable" (R) in all 3 surface water and all 21 ground water samples, and the field duplicate because 2 of 2 percent recoveries for mercury were below control limits and below 30% in the associated aqueous MS/MSD sample.

Positive classical chemistry results for ammonia were qualified as "estimated, biased low"
 (J-) in the following samples because the percent recoveries for ammonia were below laboratory QC limits, but not below 30% in the associated aqueous matrix spike samples.

SW-5	SW-1	MW-9I	MW-9S	MW-10S	MW-10I
MW-10D	CHA-1	MW-18S	MW-18IR	MW-18D	MW-15S
MW-15I	MW-15D	MW-2S	MW-2D	MW-1S	MW-1D
MW-14S	MW-14I	MW-14D			

- The "not detected" classical chemistry result for ammonia was qualifed as "estimated" (UJ) in samples SW-2A, MW-9D, MW-2I, and MW-1I because the percent recoveries for ammonia were below laboratory QC limits, but not below 30% in the associated aqueous matrix spike samples.
- The positive classical chemistry results for COD were qualified as "estimated, biased high" (J+) in samples MW-9S, MW-9D, MW-10S, MW-10D, and CHA-1 because the percent recovery for COD was above QC limits in the associated aqueous spike sample.
- The positive classical chemistry result for cyanide was qualified as "estimated, biased high" (J+) in sample MW-10D because the percent recovery for COD was above QC limits, but not above 150% in the associated aqueous LCS.
- The positive classical chemistry results for hexavalent chromium were qualified as "estimated, biased low" (J-) in samples MW-14S and MW-14I because the percent recovery for hexavalent chromium was below QC limits, but not below 30% in the associated aqueous spike sample.
- The positive classical chemistry results for total recoverable phenolics were flagged as "estimated" (J-) in samples MW-1D, MW-14S, and MW-14I because percent recovery for total recoverable phenolics was below QC limits, but not below 30% in the associated aqueous spike sample.
- The "not detected" classical chemistry results for hexavalent chromium were flagged as "estimated" (UJ) in samples MW-1S, MW-1I, MW-1D, and MW-14D because percent recovery for hexavalent chromium was below QC limits, but not below 30% in the associated aqueous spike sample.

Job Number: 480-123780-1

• The "not detected" classical chemistry results for total recoverable phenolics were flagged as "estimated" (UJ) in samples MW-1S, MW-1I, and MW-14D because percent recovery for total recoverable phenolics was below QC limits, but not below 30% in the associated aqueous spike sample.

• The positive classical chemistry results for color were flagged as "estimated" (J) in samples MW-9S and CHA-1 because the relative percent difference for color was above the allowable maximum in field duplicate pair MW-9S/CHA-1.

All data that are not flagged unusable, rejected (R) are considered usable with estimated (J, J-, or J+) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8260C, Part 360 Baseline Volatiles Data for TestAmerica Buffalo, Job Number: 480-123780-1

21 Ground Water Samples, 3 Surface Water Samples, 1 Field Duplicate, and 4 Trip Blanks Collected September 7-12, 2017

Prepared by: Donald Anné October 27, 2017

Holding Times: The samples were analyzed within NYSDEC ASP holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The average RRFs for applicable compounds were above the method minimums and %RSDs were below the method maximum, as required.

The average RRFs for target compounds were above the allowable minimum (0.010) and %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The RRFs for applicable compounds were above the method minimums, as required. The %D for chloromethene was above the method maximum on 09-09-17 (N1912.D). The %D for 1.1-dichloroethene was above the method maximum on 09-14-17 (C7942.D). The %Ds for 2-butanone and carbon tetrachloride were above the method maximum on 09-15-17 (C7971.D). The %Ds for chloromethane and vinyl chloride were above the method maximum on 09-18-17 (N2298.D). The %D for 2-hexanone was above the method maximum on 09-19-17 (C8125.D). The %Ds for chloromethane, vinyl chloride, methylene chloride, 4-methyl-2-pentanone, and 2-hexanone were above the method maximum on 09-19-17 (C8153.D). No action is taken when fewer than 10% of the compounds per calibration do not meet %D or RRF criteria, provided RRFs are not less than 0.010.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %D for vinyl acetate was above the allowable maximum (25%) on 09-15-17 (C7971.D). The %Ds for chloromethane and chloroethane were above the allowable maximum (25%) on 09-18-16 (N2298.D). The %Ds for chloromethane, vinyl chloride, methylene chloride, and 2-hexanone were above the allowable maximum (25%) on 09-19-16 (C8153.D). Positive results for these compounds should be considered estimated (J) in associated samples.

- <u>Blanks</u>: Method blank MB 480-377452/9 contained a trace of methylene chloride (0.556 ug/L). The trip blank (9/7/17) contained a trace of acetone (4.3 ug/L). The trip blank (9/12/17) contained a trace of acetone (3.6 ug/L). Positive results for acetone and methylene chloride that are less than 10 times the highest blank level should be reported as not detected (U) in associated samples.
- <u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.
- <u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for the ground water samples, surface water samples, and trip blanks.
- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for 3 compounds (circled red on attached FORM III) were above the allowable maximums and 1 of 2 percent recoveries for 7 compounds (circled red on attached FORM III) were above QC limits for aqueous MS/MSD sample MW-9I. The positive result for 1,1-dichloroethane should be considered estimated, biased high (J+) in sample MW-9I.
- <u>Laboratory Control Sample</u>: The percent recoveries (%Rs) for spiked compounds were within QC limits for aqueous samples LCS 480-375988/5, LCS 480-377005/5, LCS 480-377223/4, and LCS 480-377488/5.
 - The relative percent differences for target compounds were below the allowable maximum; but 2 of 2 for 2-butanone, 2-hexanone, and vinyl acetate were above QC limits for aqueous samples LCS 480-376935/5 and LCSD 480-376935/6. The %R for acetone was above QC limits for aqueous sample LCS 480-377667/5. Positive results for these compounds should be considered estimated, biased high (J+) in associated aqueous samples.
- <u>Field Duplicates</u>: The analyses of field duplicate pair MW-9S/CHA-1 reported target compounds as either not detected or below the lowest standard; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.
- <u>Compound ID</u>: Checked compounds and surrogates were within GC/MS quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

FCRM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab	Name:	TestAmerica	Buffalo	Job	No.:	480-123780-1
SDG	No.:					

Matrix: Water Level: Low Lab File ID: C8155.D

Lab ID: LCS 480-377667/5 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	90	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	"
1,1,1,2-Tetrachloroethane	25.0	26.0	104		
1,1,1-Trichloroethane	25.0	26.4	106		
1,1,2,2-Tetrachloroethane	25.0	27.9	112	76-120	
1,1,2-Trichloroethane	25.0	26.0	104		
1,1-Dichloroethane	25.0	27.0	108	77-120	
1,1-Dichloroethene	25.0	23.5	94	66-127	
1,2,3-Trichloropropane	25.0	27.4	110	68-122	
1,2-Dibromo-3-Chloropropane	25.0	27.6	110		
1,2-Dibromoethane (EDB)	25.0	26.6	106		
1,2-Dichlorobenzene	25.0	26.7	107		
1,2-Dichloroethane	25.0	26.2	105		
1,2-Dichloropropane	25.0	26.6	107	76-120	
1,4-Dichlorobenzene	25.0	26.0	104		
2-Hexanone	125	155	124		
2-Butanone (MEK)	125	158	127	57-140	
4-Methyl-2-pentanone (MIBK)	125	147	117		
Acetone	125	180	(144)		*
Acrylonitrile	250	286	114	63-125	
Benzene	25.0	26.4	106		
Bromochloromethane	25.0	26.0	104		
Bromodichloromethane	25.0	26.9	108		
Bromoform	25.0	27.7	111		
Bromomethane	25.0	23.7	95	55-144	
Carbon disulfide	25.0	24.5	98	59-134	
Carbon tetrachloride	25.0	27.2	109		
Chlorobenzene	25.0	26.4	106		
Chlorodibromomethane	25.0	27.0	108		-
Chloroethane	25.0	26.0	104		
Chloroform	25.0	25.6	102		
Chloromethane	25.0	22.7	91		
cis-1,2-Dichloroethene	25.0	24.6	98		
cis-1,3-Dichloropropene	25.0	27.0	108		
Dibromomethane	25.0	25.8	103		
Ethylbenzene	25.0	26.6	106		
Iodomethane	25.0	24.9	99		
Methylene Chloride	25.0	23.3	93		
Styrene	25.0	26.5	106		
Tetrachloroethene	25.0	27.1	108		
Toluene	25.0	26.1	105		
trans-1,2-Dichloroethene	25.0	24.0	96		
trans-1,3-Dichloropropene	25.0	27.4	110		
trans-1,4-Dichloro-2-butene	25.0	28.0	112		

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Nam	e: <u>TestAmerica Buf</u>	falo	Job No.: 480-123780-1
SDG No.	•		
Matrix:	Water	Level: Low	Lab File ID: C8155.D
Lab ID:	LCS 480-377667/5		Client ID:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC	QC LIMITS REC	#
Trichloroethene	25.0	26.4	106	74-123	
Trichlorofluoromethane	25.0	25.9	103	62-150	
Vinyl acetate	50.0	61.0	122	50-144	
Vinyl chloride	25.0	17.3	69	65-133	
Xylenes, Total	50.0	53.1	106	76-122	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Name:	: TestAmerica Buffa	alo		Job	No.:	480-	-123780)-1	
SDG No.:									
Matrix: V	Vater	Level:	Low	Lab	File	ID:	C7944.	D	

Lab ID: LCS 480-376935/5 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	%	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
1,1,1,2-Tetrachloroethane	25.0	26.7	107	80-120	
1,1,1-Trichloroethane	25.0	25.3	101	73-126	
1,1,2,2-Tetrachloroethane	25.0	26.6	106	76-120	
1,1,2-Trichloroethane	25.0	25.8	103		
1,1-Dichloroethane	25.0	26.1	105	77-120	
1,1-Dichloroethene	25.0	21.0	84	66-127	
1,2,3-Trichloropropane	25.0	25.6	103	68-122	
1,2-Dibromo-3-Chloropropane	25.0	26.9	108		
1,2-Dibromoethane (EDB)	25.0	26.1	105	77-120	
1,2-Dichlorobenzene	25.0	26.4	105	80-124	
1,2-Dichloroethane	25.0	24.7	99		
1,2-Dichloropropane	25.0	26.6	106		
1,4-Dichlorobenzene	25.0	26.2	105		
2-Hexanone	125	(211)	169		*
2-Butanone (MEK)	125	(251)	201		*
4-Methyl-2-pentanone (MIBK)	125	135	108		
Acetone	125	152	121		
Acrylonitrile	250	257	103	,	
Benzene	25.0	25.4	101		
Bromochloromethane	25.0	25.4	102	72-130	
Bromodichloromethane	25.0	26.6	106		
Bromoform	25.0	27.1	108	I	
Bromomethane	25.0	23.9	96	I	
Carbon disulfide	25.0	21.6	87	59-134	
Carbon tetrachloride	25.0	26.0	104		
Chlorobenzene	25.0	26.6	106		
Chlorodibromomethane	25.0	26.7	107	· •	
Chloroethane	25.0	25.6	102	_	
Chloroform	25.0	24.9	100		
Chloromethane	25.0	22.2	89		
cis-1,2-Dichloroethene	25.0	24.2	97		
cis-1,3-Dichloropropene	25.0	26.7	107		
Dibromomethane	25.0	24.9	100		
Ethylbenzene	25.0	26.5	106		
Iodomethane	25.0	23.4	94		
Methylene Chloride	25.0	22.8	91	1	
Styrene	25.0	27.0	108	1 1	
Tetrachloroethene	25.0	29.4	118		
Toluene	25.0	26.7	107		
trans-1,2-Dichloroethene	25.0	23.3	93		
trans-1,3-Dichloropropene	25.0	26.9	108		
trans-1,4-Dichloro-2-butene	25.0	25.3	101	41-131	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Nam	e: TestAmerica Bufi	falo	Job No.: 480-123780-1
SDG No.	:		
Matrix:	Water	Level: Low	Lab File ID: C7944.D
Lab ID:	LCS 480-376935/5		Client ID:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC	QC LIMITS REC	#
Trichloroethene	25.0	26.6	106	74-123	
Trichlorofluoromethane	25.0	24.6	98	62-150	
Vinyl acetate	50.0	80.2	160	50-144	*
Vinyl chloride	25.0	22.4	90	65-133	
Xylenes, Total	50.0	54.3	109	76-122	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

FORM III GC/MS VOA LAB CONTROL SAMPLE DUPLICATE RECOVERY

Lab Nam	e: <u>TestAmerica</u> Buff	alo	Job No.: 480-123780-1	
SDG No.	?			
Matrix:	Water	Level: Low	Lab File ID: C7945.D	
Lab ID:	LCSD 480-376935/6		Client ID:	

	SPIKE ADDED	LCSD CONCENTRATION	LCSD	Olo Olo	QC LI	MITS	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	π
1,1,1,2-Tetrachloroethane	25.0	26.9	108	1	20	80-120	
1,1,1-Trichloroethane	25.0	24.4	98	4	15	73-126	
1,1,2,2-Tetrachloroethane	25.0	27.1	109	2	15	76-120	
1,1,2-Trichloroethane	25.0	26.7	107	4	15	76-122	
1,1-Dichloroethane	25.0	25.4	102	3	20	77-120	
1,1-Dichloroethene	25.0	20.3	81	4	16	66-127	
1,2,3-Trichloropropane	25.0	27.1	108	6	14	68-122	
1,2-Dibromo-3-Chloropropane	25.0	28.2	113	5	15	56-134	
1,2-Dibromoethane (EDB)	25.0	26.9	108	3	15	77-120	
1,2-Dichlorobenzene	25.0	25.7	103	3	20	80-124	
1,2-Dichloroethane	25.0	24.8	99	0	20	75-120	
1,2-Dichloropropane	25.0	25.6	103	4	20	76-120	
1,4-Dichlorobenzene	25.0	25.2	101	4	20	80-120	
2-Hexanone	125	227	181	7	15	65-127	*
2-Butanone (MEK)	125	264	(211	5	20	57-140	*
4-Methyl-2-pentanone (MIBK)	125	146	117	8	35	71-125	
Acetone	125	158	127	4	15	56-142	
Acrylonitrile	250	270	108	5	2 C	63-125	
Benzene	25.0	24.5	98	3	13	71-124	
Bromochloromethane	25.0	25.1	100	1	15	72-130	
Bromodichloromethane	25.0	26.4	106	1	15	80-122	
Bromoform	25.0	28.1	112	4	15	61-132	
Bromomethane	25.0	23.0	92	4	15	55-144	
Carbon disulfide	25.0	20.7	83	4	15	59-134	
Carbon tetrachloride	25.0	24.7	99	5	15	72-134	
Chlorobenzene	25.0	26.7	107	1	25	80-120	
Chlorodibromomethane	25.0	27.6	111	3	15	75-125	
Chloroethane	25.0	24.7	99	4	15	69-136	
Chloroform	25.0	24.2	97	3	20	73-127	
Chloromethane	25.0	21.2	85	5	15	68-124	
cis-1,2-Dichloroethene	25.0	23.6	94	3	15	74-124	
cis-1,3-Dichloropropene	25.0	26.6	106	0	15	74-124	
Dibromomethane	25.0	25.4	101	2	15	76-127	
Ethylbenzene	25.0	26.6	106	0	15	77-123	
Iodomethane	25.0	22.5	90	4	20	78-123	
Methylene Chloride	25.0	22.9	92	0	15	75-124	
Styrene	25.0	27.3	109	1	20	80-120	
Tetrachloroethene	25.0	29.3	117	1	20	74-122	
Toluene	25.0	26.6	106	0	15	80-122	
trans-1,2-Dichloroethene	25.0	22.1	88	6	20	73-127	
trans-1,3-Dichloropropene	25.0	27.7	111	3	15	80-120	
trans-1,4-Dichloro-2-butene	25.0	27.0	108	6	20	41-131	

[#] Column to be used to flag recovery and RPD values FORM III 8260C

FORM III GC/MS VOA LAB CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name	e: TestAmerica Buff	alo	Job No.: 48	0-123780-1
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID	: C7945.D
Lab ID:	LCSD 480-376935/6		Client ID:	

	SPIKE ADDED	LCSD CONCENTRATION	LCSD %	90	QC L	IMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
Trichloroethene	25.0	25.9	104	3	16	74-123	
Trichlorofluoromethane	25.0	23.6	95	4	20	62-150	
Vinyl acetate	50.0	81.3	163) 1	23	50-144	*
Vinyl chloride	25.0	21.7	87	3	15	65-133	
Xylenes, Total	50.0	53.8	108	1	16	76-122	

 $\mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab Nam	e: TestAmerica Buff	alo	Job No.: 480-123780-1
SDG No.	:		
Matrix:	Water	Level: Low	Lab File ID: C7993.D
Lab ID:	480-123848-1 MS		Client ID: MW-9I MS

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	ક	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
1,1,1,2-Tetrachloroethane	25.0	ND	29.7	119	80-120	
1,1,1-Trichloroethane	25.0	ND	32.0	(128	73-126	F1
1,1,2,2-Tetrachloroethane	25.0	ND	29.6	118	76-120	
1,1,2-Trichloroethane	25.0	ND	28.7	115	76-122	
1,1-Dichloroethane	25.0	0.52 J	32.8	129		F1
1,1-Dichloroethene	25.0	ND	29.9	120	66-127	
1,2,3-Trichloropropane	25.0	ND	28.1	112	68-122	
1,2-Dibromo-3-Chloropropane	25.0	ND	27.2	109	56-134	
1,2-Dibromoethane (EDB)	25.0	ND	29.0	116	77-120	-
1,2-Dichlorobenzene	25.0	ND	28.1	112	80-124	
1,2-Dichloroethane	25.0	ND	29.6	118	75-120	
1,2-Dichloropropane	25.0	ND	30.5	(122	76-120	F1
1,4-Dichlorobenzene	25.0	ND	28.1	112	78-124	
2-Hexanone	125	ND	154	123	65-127	
2-Butanone (MEK)	125	ND	153	122	57-140	
4-Methyl-2-pentanone (MIBK)	125	ND	155	124	71-125	
Acetone	125	ND	146	116	56-142	
Acrylonitrile	250	ND	307	123	63-125	
Benzene	25.0	ND	31.0	124	71-124	
Bromochloromethane	25.0	ND	29.7	119	72-130	
Bromodichloromethane	25.0	ND	30.7	123	80-122	F1
Bromoform	25.0	ND	29.7	119	61-132	
Bromomethane	25.0	ND	22.8	91	55-144	
Carbon disulfide	25.0	ND	31.9	128	59-134	
Carbon tetrachloride	25.0	ND	32.7	131	72-134	
Chlorobenzene	25.0	ND	29.7	119	80-120	
Chlorodibromomethane	25.0	ND	29.6	118	75-125	
Chloroethane	25.0	ND	25.6	102	69-136	
Chloroform	25.0	ND	29.7	119	73-127	
Chloromethane	25.0	ND	21.3	85	68-124	
cis-1,2-Dichloroethene	25.0	ND	29.0	116	74-124	
cis-1,3-Dichloropropene	25.0	ND	29.6	119	74-124	
Dibromomethane	25.0	ND	29.1	116	76-127	
Ethylbenzene	25.0	ND	29.9	119	77-123	
Iodomethane	25.0	ND	30.5	122	78-123	
Methylene Chloride	25.0	ND	27.9	112	75-124	
Styrene	25.0	ND	30.2	(121)	80-120	F1
Tetrachloroethene	25.0	ND	31.4	126	74-122	F1
Toluene	25.0	ND	29.9	1,20	80-122	
trans-1,2-Dichloroethene	25.0	ND	28.8	115		
trans-1,3-Dichloropropene	25.0	ND	29.4	117	80-120	
trans-1, 4-Dichloro-2-butene	25.0	ND	25.0	100		

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab	Name: TestAr	merica Buffalo	Job	No.:	: 480-123780-1		
SDG	No.:						
Matr	ix: Water	Level:	Low Lab	File	ID:	C7993.D	

Lab ID: 480-123848-1 MS Client ID: MW-9I MS

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	ŔĒĆ	REC	
Trichloroethene	25.0	ND	31.3	(125	74-123	F1
Trichlorofluoromethane	25.0	ND	23.9	96	62-150	
Vinyl acetate	50.0	ND	65.4	131	50-144	
Vinyl chloride	25.0	ND	22.1	88	65-133	
Xylenes, Total	50.0	ND	60.7	121	76-122	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name	e: TestAmerica Buff	alo	Job No.: 480-123780-1
SDG No.	:		
Matrix:	Water	Level: Low	Lab File ID: C7994.D
Lab ID:	480-123848-1 MSD		Client ID: MW-9I MSD

		SPIKE ADDED	MSD CONCENTRATION	MSD %	8	QC LI	MITS	#
	COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	π
1	1,1,1,2-Tetrachloroethane	25.0	25.4	102	16	20	80-120	
	1,1,1-Trichloroethane	25.0	27.9	112	14	15	73-126	
1	1,1,2,2-Tetrachloroethane	25.0	26.1	104	13	15	76-120	
ŀ	1,1,2-Trichloroethane	25.0	25.2	101	13	15	76-122	
Ì	1,1-Dichloroethane	25.0	28.7	113	13	20	77-120	
ŀ	1,1-Dichloroethene	25.0	25.6	102	16	16	66-127	
Ì	1,2,3-Trichloropropane	25.0	25.8	103	8	14	68-122	
ŀ	1,2-Dibromo-3-Chloropropane	25.0	25.8	103	5	15	56-134	
İ	1,2-Dibromoethane (EDB)	25.0	25.6	102	12	15	77-120	
Ì	1,2-Dichlorobenzene	25.0	25.6	103	9	20	80-124	
1	1,2-Dichloroethane	25.0	25.7	103	14	20	75-120	
1	1,2-Dichloropropane	25.0	26.6	106	14	20	76-120	
1	1,4-Dichlorobenzene	25.0	25.1	100	11	20	78-124	
1	2-Hexanone	125	137	109		15	65-127	
İ	2-Butanone (MEK)	125.	135	108	12	20	57-140	
Ì	4-Methyl-2-pentanone (MIBK)	125	137	110	12	35	71-125	
İ	Acetone	125	130	104	11	15	56-142	
Ì	Acrylonitrile	250	273	109	12	. 20	63-125	
Ì	Benzene	25.0	26.7	107	(15)	13	71-124	F2
1	Bromochloromethane	25.0	25.8	103	7.4	15	72-130	
ı	Bromodichloromethane	25.0	27.1	108	13	15	80-122	
Ī	Bromoform	25.0	25.9	104	7 4 1 4	15	61-132	
Ì	Bromomethane	25.0	18.7	75	20	15	55-144	F2
Ì	Carbon disulfide	25.0	25.7	103	(22	15	59-134	F2
Ī	Carbon tetrachloride	25.0	28.7	115		15	72-134	
	Chlorobenzene	25.0	26.0	104		25	80-120	
ľ	Chlorodibromomethane	25.0	25.8	103	14	15	75-125	
Ì	Chloroethane	25.0	24.7	99	1	15	69-136	
ľ	Chloroform	25.0	25.6	102		20	73-127	
	Chloromethane	25.0	20.5	82		15	68-124	
	cis-1,2-Dichloroethene	25.0	25.1	100		15	74-124	
ľ	cis-1,3-Dichloropropene	25.0	25.8	103		15	74-124	
	Dibromomethane	25.0	25.5	102	1	15	76-127	
	Ethylbenzene	25.0	26.5	106	1	15	77-123	
	Iodomethane	25.0	26.8	107		20	78-123	
-	Methylene Chloride	25.0	24.2	97	14	15	75-124	
	Styrene	25.0	26.2	105			80-120	
	Tetrachloroethene	25.0	27.5	110		20	74-122	
	Toluene	25.0	26.7	107		15	80-122	
	trans-1,2-Dichloroethene	25.0	25.9	103		20	73-127	
	trans-1,3-Dichloropropene	25.0	25.5	102	1	15	80-120	
	trans-1,4-Dichloro-2-butene	25.0	22.7	91	10	20	41-131	

[#] Column to be used to flag recovery and RPD values

FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name	e: TestAmerica Bufi	falo	Job No.: 480-123780-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: C7994.D	
Lab ID:	480-123848-1 MSD		Client ID: MW-9I MSD	

	SPIKE ADDED	MSD MSI CONCENTRATION %		90	QC LIMITS		#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
Trichloroethene	25.0	27.4	110	13	16	74-123	
Trichlorofluoromethane	25.0	23.5	94	2	20	62-150	
Vinyl acetate	50.0	58.1	116	12	23	50-144	
Vinyl chloride	25.0	21.6	86	2	15	65-133	
Xylenes, Total	50.0	53.1	106	13	16	76-122	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 8260C

Lab Name:	o Name: TestAmerica Buffalo		Job No.: 480-123780-1								
SDG No.: _											
Lab Sample	ID:	CCVIS 480-376935/3	Calibration Date:	09/14/2017	19:34						
Instrument	ID:	НР5973С	Calib Start Date:	09/08/2017	15:20						

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 09/08/2017 18:17

Lab File ID: C7942.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	2.349	1.644	0.1000	17.5	25.0	#/A30.0	50.0
Chloromethane	Ave	3.626	3.084	0.1000	21.3	25.0	-15.0	20.0
Vinyl chloride	Ave	2.732	2.313	0.1000	21.2	25.0	-15.3	20.0
Butadiene	Ave	2.844	2.397		21.1	25.0	-15.7	20.0
Bromomethane	Ave	1.974	1.765	0.1000	22.3	25.0	-10.6	50.0
Chloroethane	Ave	1.673	1.594	0.1000	23.8	25.0	-4.7	50.0
Dichlorofluoromethane	Ave	3.748	3.614		24.1	25.0	-3.6	20.0
Trichlorofluoromethane	Ave	3.289	2.991	0.1000	22.7	25.0	-9.1	20.0
Ethyl ether	Ave	1.894	1.850		24.4	25.0	-2.3	20.0
Acrolein	Ave	0.2734	0.2476		113	125	-9.4	50.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	1.803	1.599	0.1000	22.2	25.0	-11.3	20.0
1,1-Dichloroethene	Ave	2.011	1.572	0.1000	19.5	25.0	-21.9*	20.0
Acetone	Ave	0.6441	0.7958	0.1000	154	125	23.6	50.0
Iodomethane	Ave	3.714	3.300		22.2	25.0	-11.2	20.0
Carbon disulfide	Ave	7.449	6.188	0.1000	20.8	25.0	-16.9	20.0
Methyl acetate	Ave	1.654	1.670	0.1000	126	125	1.0	50.0
Allyl chloride	Ave	3.902	3.752		24.0	25.0	-3.8	20.0
Methylene Chloride	Linl		2.240	0.1000	22.6	25.0	-9.6	20.0
2-Methy1-2-propanol	Ave	0.2408	0.2508		260	250	4.1	50.0
Methyl tert-butyl ether	Ave	5.641	5.357	0.1000	23.7	25.0	-5.0	20.0
Acrylonitrile	Ave	0.8278	0.8457		255	250	2.2	20.0
trans-1,2-Dichloroethene	Ave	2.285	2.005	0.1000	21.9	25.0	-12.2	20.0
Hexane	Ave	3.003	2.650		22.1	25.0	-11.8	20.0
Vinyl acetate	Ave	4.485	4.902		54.6	50.0	9.3	20.0
1,1-Dichloroethane	Ave	3.802	3.798	0.2000	25.0	25.0	-0.1	20.0
2-Butanone (MEK)	Ave	1.044	1.139	0.1000	136	125	9.1	20.0
2,2-Dichloropropane	Ave	2.836	2.697		23.8	25.0	-4.9	20.0
cis-1,2-Dichloroethene	Ave	2.585	2.374	0.1000	23.0	25.0	-8.1	20.0
Bromochloromethane	Ave	1.298	1.287		24.8	25.0	-0.8	20.0
Chloroform	Ave	3.701	3.543	0.2000	23.9	25.0	-4.3	20.0
Tetrahydrofuran	Ave	0.7275	0.7110		48.9	50.0	-2.3	20.0
1,1,1-Trichloroethane	Ave	3.008	2.798	0.1000	23.3	25.0	-7.0	20.0
Cyclohexane	Ave	3.826	3.676	0.1000	24.0	25.0	-3.9	20.0
Isobutyl alcohol	Ave	0.1267	0.1342		662 -	625	5.9	50.0
1,1-Dichloropropene	Ave	2.579	2.516		24.4	25.0	-2.4	20.0
Carbon tetrachloride	Ave	2.701	2.551	0.1000	23.6	25.0	-5.6	20.0
Benzene	Ave	8.158	7.838	0.5000	24.0	25.0	-3.9	20.0
1,2-Dichloroethane	Ave	2.912	2.814	0.1000	24.2	25.0	-3.4	20.0
n-Heptane	Ave	2.801	2.775		24.8	25.0	-0.9	20.0
Trichloroethene	Ave	2.138	2.089	0.2000	24.4	25.0	-2.3	20.0

Lab Name: TestAmerica Buffalo Job No.: 480-123780-1

SDG No.:

Lab Sample ID: CCVIS 480-376935/3

Calibration Date: 09/14/2017 19:34

Instrument ID: HP5973C Calib Start Date: 09/08/2017 15:20

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 09/08/2017 18:17

Lab File ID: C7942.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	2.994	2.882	0.1000	24.1	25.0	-3.7	20.0
1,2-Dichloropropane	Ave	2.383	2.343	0.1000	24.6	25.0	-1.7	20.0
1,4-Dioxane	Ave	0.0096	0.0097		505	500	0.9	50.0
Dibromomethane	Ave	1.366	1.332	0.1000	24.4	25.0	-2.6	20.0
Bromodichloromethane	Ave	2.625	2.657	0.2000	25.3	25.0	1.2	20.0
2-Chloroethyl vinyl ether	Lin1		1.429		22.5	25.0	-10.0	20.0
cis-1,3-Dichloropropene	Ave	3.474	3.485	0.2000	25.1	25.0	0.3	20.0
4-Methyl-2-pentanone (MIBK)	Ave	1.008	1.017	0.1000	126	125	0.9	20.0
Toluene	Ave	2.437	2.307	0.4000	23.7	25.0	-5.3	20.0
Ethyl methacrylate	Ave	1.024	1.017		24.8	25.0	-0.7	20.0
trans-1,3-Dichloropropene	Ave	1.398	1.370	0.1000	24.5	25.0	-2.0	20.0
1,1,2-Trichloroethane	Ave	0.7238	0.6837	0.1000	23.6	25.0	-5.5	20.0
2-Hexanone	Ave	0.7077	0.7440	0.1000	131	125	5.1	20.0
Tetrachloroethene	Ave	1.035	0.9715	0.2000	23.5	25.0	-6.1	20.0
1,3-Dichloropropane	Ave	1.474	1.413		24.0	25.0	-4.1	20.0
Chlorodibromomethane	Ave	1.068	1.031	0.1000	24.1	25.0	-3.4	20.0
1,2-Dibromoethane (EDB)	Ave	0.8938	0.8607		24.1	25.0	-3.7	20.0
Chlorobenzene	Ave	2.942	2.787	0.5000	23.7	25.0	-5.3	20.0
Ethylbenzene	Ave	4.522	4.231	0.1000	23.4	25.0	-6.4	20.0
1,1,1,2-Tetrachloroethane	Ave	1.081	1.029	7000	23.8	25.0	-4.9	20.0
m,p-Xylene	Ave	1.815	1.751	0.1000	24.1	25.0	-3.5	20.0
o-Xylene	Ave	1.797	1.717	0.3000	23.9	25.0	-4.5	20.0
Styrene	Ave	2.988	2.903	0.3000	24.3	25.0	-2.9	20.0
Isopropylbenzene	Ave	4.272	4.068	0.1000	23.8	25.0	-4.8	20.0
Bromoform	Ave	0.6381	0.6155	0.1000	24.1	25.0	-3.5	50.0
1,1,2,2-Tetrachloroethane	Ave	1.018	0.9940	0.3000	24.4	25.0	-2.4	20.0
trans-1,4-Dichloro-2-butene	Lin1		0.3460		23.9	25.0	-4.4	50.0
1,2,3-Trichloropropane	Ave	0.3321	0.3183		24.0	25.0	-4.2	20.0
N-Propylbenzene	Ave	4.886	4.662		23.9	25.0	-4.6	20.0
Bromobenzene	Ave	1.220	1.155		23.7	25.0	-5.3	20.0
1,3,5-Trimethylbenzene	Ave	3.552	3.399		23.9	25.0	-4.3	20.0
2-Chlorotoluene	Ave	1.144	1.094		23.9	25.0	-4.4	20.0
4-Chlorotoluene	Ave	1.198	1.120		23.4	25.0	-6.5	20.0
tert-Butylbenzene	Ave	0.8313	0.7667		23.1	25.0	-7.8	20.0
1,2,4-Trimethylbenzene	Ave	3.713	3.588		24.2	25.0	-3.4	20.0
sec-Butylbenzene	Ave	4.379	4.185		23.9	25.0	-4.4	20.0
4-Isopropyltoluene	Ave	3.788	3.700		24.4	25.0	-2.3	20.0
1,3-Dichlorobenzene	Ave	2.346	2.197	0.6000	23.4	25.0	-6.4	20.0
1,4-Dichlorobenzene	Ave	2.427	2.260	0.5000	23.3	25.0	-6.8	20.0
n-Butylbenzene	Ave	3.249	3.054		23.5	25.0	-6.0	20.0
1,2-Dichlorobenzene	Ave	2.246	2.122	0.4000	23.6	25.0	-5.5	20.0

Lab Name: TestAmerica Buffalo

SDG No.:

Lab Sample ID: CCVIS 480-376935/3

Calibration Date: 09/14/2017 19:34

Instrument ID: HP5973C

Calib Start Date: 09/08/2017 15:20

GC Column: ZB-624 (60)

ID: 0.25(mm)

Calib End Date: 09/08/2017 18:17

Lab File ID: C7942.D

Conc. Units: ug/L

Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1877	0.1680	0.0500	22.4	25.0	-10.5	50.0
1,2,4-Trichlorobenzene	Ave	1.545	1.449	0.2000	23.4	25.0	-6.3	20.0
Hexachlorobutadiene	Ave	0.4930	0.4851		24.6	25.0	-1.6	20.0
Naphthalene	Ave	3.669	3.576		24.4	25.0	-2.5	20.0
1,2,3-Trichlorobenzene	Ave	1.360	1.304		24.0	25.0	-4.1	20.0
Dibromofluoromethane (Surr)	Ave	1.453	1.521		26.2	25.0	4.7	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.8012	0.8185		25.5	25.0	2.2	20.0
Toluene-d8 (Surr)	Ave	2.545	2.579		25.3	25.0	1.3	20.0
4-Bromofluorobenzene (Surr)	Ave	0.7992	0.7908		24.7	25.0	-1.1	20.0

Lab Name:	TestAmerica Buffalo	Job No.: 480-123780-1
SDG No.:		
Lab Sampl	e ID: CCVIS 480-377005/34	Calibration Date: 09/15/2017 09:39
Instrumen	t ID: HP5973C	Calib Start Date: 09/08/2017 15:20
GC Column	: ZB-624 (60) ID:	0.25(mm) Calib End Date: 09/08/2017 18:17

Lab File ID: $\underline{\text{C7971.D}}$ Conc. Units: $\underline{\text{ug/L}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	2.349	1.789	0.1000	19.0	25.0	-23.9	50.0
Chloromethane	Ave	3.626	3.237	0.1000	22.3	25.0	-10.7	20.0
Vinyl chloride	Ave	2.732	2.560	0.1000	23.4	25.0	-6.3	20.0
Butadiene	Ave	2.844	2.751		24.2	25.0	-3.3	20.0
Bromomethane	Ave	1.974	1.699	0.1000	21.5	25.0	-13.9	50.0
Chloroethane	Ave	1.673	1.756	0.1000	26.2	25.0	4.9	50.0
Dichlorofluoromethane	Ave	3.748	3.971		26.5	25.0	6.0	20.0
Trichlorofluoromethane	Ave	3.289	3.523	0.1000	26.8	25.0	7.1	20.0
Ethyl ether	Ave	1.894	2.237		29.5	25.0	18.1	20.0
Acrolein	Ave	0.2734	0.3012		138	125	10.2	50.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	1,803	2,294	0.1000	31.8		NA ^{2.7.3*}	20.0
1,1-Dichloroethene	Ave	2.011	2.233	0.1000	27.8	25.0	11.0	20.0
Acetone	Ave	0.6441	0.8478	0.1000	165	125	31.6	50.0
Iodomethane	Ave	3.714	4.263		28.7	25.0	14.8	20.0
Carbon disulfide	Ave	7.449	8.807	0.1000	29.6	25.0	18.2	20.0
Methyl acetate	Ave	1.654	1.937	0.1000	146	125	17.1	50.0
Allyl chloride	Ave	3.902	4.761		30.5	25.0	VA 2 2.0 *	20.0
Methylene Chloride	Lin1		2.519	0.1000	25.6	25.0	2.4	20.0
2-Methy1-2-propano1	Ave	0.2408	0.2830		294	250	17.5	50.0
Methyl tert-butyl ether	Ave	5.641	6.220	0.1000	27.6	25.0	10.3	20.0
Acrylonitrile	Ave	0.8278	0.9765		295	250	18.0	20.0
trans-1,2-Dichloroethene	Ave	2.285	2.446	0.1000	26.8	25.0	7.1	20.0
Hexane	Ave	3.003	3.971		33.1	25.0	W 32.2*	20.0
Vinyl acetate	Ave	4.485	5.820		64.9	50.0	29.8*	20.0
1,1-Dichloroethane	Ave	3.802	4.502	0.2000	29.6	25.0	18.4	20.0
2-Butanone (MEK)	Ave	1.044	1.302	0.1000	156	125	24.8*	20.0
2,2-Dichloropropane	Ave	2.836	3.412		30.1	25.0	20.3*	20.0
cis-1,2-Dichloroethene	Ave	2.585	2.782	0.1000	26.9	25.0	7.7	20.0
Bromochloromethane	Ave	1.298	1.498		28.8	25.0	15.4	20.0
Chloroform	Ave	3.701	4.149	0.2000	28.0	25.0	12.1	20.0
Tetrahydrofuran	Ave	0.7275	0.8053		55.4	50.0	10.7	20.0
1,1,1-Trichloroethane	Ave	3.008	3.544	0.1000	29.5	25.0	17.8	20.0
Cyclohexane	Ave	3.826	5.017	0.1000	32.8	25.0	31.1*	20.0
Isobutyl alcohol	Ave	0.1267	0.1557		768	625	2.2.9	50.0
1,1-Dichloropropene	Ave	2.579	3.184		30.9	25.0	23.5*	20.0
Carbon tetrachloride	Ave	2.701	3.299	0.1000	30.5	25.0	(22.2*	20.0
Benzene	Ave	8.158	9.315	0.5000	28.5	25.0	14 2	20 0
1,2-Dichloroethane	Ave	2.912	3.256	0.1000	27.9	25.0	11.8	20.0
n-Heptane	Ave	2.801	3.736		33.3	25.0	WA3 3.4*	20.0
Trichloroethene	Ave	2.138	2.468	0.2000	28.9	25.0	15.5	20.0

Lab Name: TestAmerica Buffalo Job No.: 480-123780-1

SDG No.:

Lab Sample ID: CCVIS 480-377005/34 Calibration Date: 09/15/2017 09:39

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 09/08/2017 18:17

Lab File ID: C7971.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	% D	MAX %D
Methylcyclohexane	Ave	2.994	3.859	0.1000	32.2	25.0	1/28.9*	20.0
1,2-Dichloropropane	Ave	2.383	2.737	0.1000	28.7	25.0	14.8	20.0
1,4-Dioxane	Ave	0.0096	0.0102		532	500	6.3	50.0
Dibromomethane	Ave	1.366	1.534	0.1000	28.1	25.0	12.2	20.0
Bromodichloromethane	Ave	2.625	3.025	0.2000	28.8	25.0	15.2	20.0
2-Chloroethyl vinyl ether	Linl		1.638		25.7	25.0	2.8	20.0
cis-1,3-Dichloropropene	Ave .	3.474	3.981	0.2000	28.6	25.0	14.6	20.0
4-Methyl-2-pentanone (MIBK)	Ave	1.008	1.149	0.1000	142	125	14.0	20.0
Toluene	Ave	2.437	2.677	0.4000	27.5	25.0	9.9	20.0
Ethyl methacrylate	Ave	1.024	1.144		27.9	25.0	11.7	20.0
trans-1,3-Dichloropropene	Ave	1.398	1.555	0.1000	27.8	25.0	11.3	20.0
1,1,2-Trichloroethane	Ave	0.7238	0.7559	0.1000	26.1	25.0	4.4	20.0
2-Hexanone	Ave	0.7077	0.8464	0.1000	149	125	19.6	20.0
Tetrachloroethene	Ave	1.035	1.190	0.2000	28.8	25.0	15.0	20.0
1,3-Dichloropropane	Ave	1.474	1.583		26.8	25.0	7.4	20.0
Chlorodibromomethane	Ave	1.068	1.175	0.1000	27.5	25.0	10.0	20.0
1,2-Dibromoethane (EDB)	Ave	0.8938	0.9665		27.0	25.0	8.1	20.0
Chlorobenzene	Ave	2.942	3.207	0.5000	27.2	25.0	9.0	20.0
Ethylbenzene	Ave	4.522	4.973	0.1000	27.5	25.0	10.0	20.0
1,1,1,2-Tetrachloroethane	Ave	1.081	1.190		27.5	25.0	10.1	20.0
m,p-Xylene	Ave	1.815	2.035	0.1000	28.0	25.0	12.1	20.0
o-Xylene	Ave	1.797	2.003	0.3000	27.9	25.0	11.5	20.0
Styrene	Ave	2.988	3.335	0.3000	27.9	25.0	11.6	20.0
Isopropylbenzene	Ave	4.272	4.713	0.1000	27.6	25.0	10.3	20.0
Bromoform	Ave	0.6381	0.7016	0.1000	27.5	25.0	10.0	50.0
1,1,2,2-Tetrachloroethane	Ave	1.018	1.094	0.3000	26.9	25.0	7.5	20.0
trans-1,4-Dichloro-2-butene	Lin1		0.3602		24.9	25.0	-0.5	50.0
1,2,3-Trichloropropane	Ave	0.3321	0.3524		26.5	25.0	6.1	20.0
N-Propylbenzene	Ave	4.886	5.408		27.7	25.0	10.7	20.0
Bromobenzene	Ave	1.220	1.274		26.1	25.0	4.5	20.0
1,3,5-Trimethylbenzene	Ave	3.552	3.903		27.5	25.0	9.9	20.0
2-Chlorotoluene	Ave	1.144	1.227		26.8	25.0	7.2	20.0
4-Chlorotoluene	Ave	1.198	1.279		26.7	25.0	6.7	20.0
tert-Butylbenzene	Ave	0.8313	0.8803		26.5	25.0	5.9	20.0
1,2,4-Trimethylbenzene	Ave	3.713	4.052		27.3	25.0	9.1	20.0
sec-Butylbenzene	Ave	4.379	4.935		28.2	25.0	12.7	20.0
4-Isopropyltoluene	Ave	3.788	4.264		28.1	25.0	12.6	20.0
1,3-Dichlorobenzene	Ave	2.346	2.487	0.6000	26.5	25.0	6.0	20.0
1,4-Dichlorobenzene	Ave	2.427	2.498	0.5000	25.7	25.0	3.0	20.0
n-Butylbenzene	Ave	3.249	3.571		27.5	25.0	9.9	20.0
1,2-Dichlorobenzene	Ave	2.246	2.366	0.4000	26.3	25.0	5.3	20.0

Lab Name: TestAmerica Buffalo Job No.: 480-123780-1

SDG No.: _____

Lab Sample ID: CCVIS 480-377005/34 Calibration Date: 09/15/2017 09:39

Instrument ID: HP5973C Calib Start Date: 09/08/2017 15:20

Lab File ID: $\underline{\text{C7971.D}}$ Conc. Units: $\underline{\text{ug/L}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1877	0.1833	0.0500	24.4	25.0	-2.3	50.0
1,2,4-Trichlorobenzene	Ave	1.545	1.626	0.2000	26.3	25.0	5.2	20.0
Hexachlorobutadiene	Ave	0.4930	0.5541		28.1	25.0	12.4	20.0
Naphthalene	Ave	3.669	3.931		26.8	25.0	7.1	20.0
1,2,3-Trichlorobenzene	Ave	1.360	1.449		26.6	25.0	6.5	20.0
Dibromofluoromethane (Surr)	Ave	1.453	1.571		27.0	25.0	8.1	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.8012	0.8523		26.6	25.0	6.4	20.0
Toluene-d8 (Surr)	Ave	2.545	2.558	···	25.1	25.0	0.5	20.0
4-Bromofluorobenzene (Surr)	Ave	0.7992	0.8114		25.4	25.0	1.5	20.0

Lab Name: TestAmerica Buffalo Job No.: 480-123780-1

SDG No.:

Lab Sample ID: CCVIS 480-377488/3 Calibration Date: 09/19/2017 09:11

Instrument ID: <u>HP5973C</u> Calib Start Date: <u>09/08/2017</u> 15:20

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 09/08/2017 18:17

Lab File ID: C8125.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX &D
Dichlorodifluoromethane	Ave	2.349	2.162	0.1000	23.0	25.0	-8.0	50.0
Chloromethane	Ave	3.626	3.528	0.1000	24.3	25.0	-2.7	20.0
Vinyl chloride	Ave	2.732	2.711	0.1000	24.8	25.0	-0.8	20.0
Butadiene	Ave	2.844	2.665		23.4	25.0	-6.3	20.0
Bromomethane	Ave	1.974	1.503	0.1000	19.0	25.0	-23.8	50.0
Chloroethane	Ave	1.673	1.359	0.1000	20.3	25.0	-18.8	50.0
Dichlorofluoromethane	Ave	3.748	3.093		20.6	25.0	-17.5	20.0
Trichlorofluoromethane	Ave	3.289	2.929	0.1000	22.3	25.0	-11.0	20.0
Ethyl ether	Ave	1.894	1.680		22.2	25.0	-11.3	20.0
Acrolein	Ave	0.2734	0.2159		98.7	125	-21.0	50.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	1.803	1.738	0.1000	24.1	25.0	-3.6	20.0
1,1-Dichloroethene	Ave	2.011	1.696	0.1000	21.1	25.0	-15.7	20.0
Acetone	Ave	0.6441	0.6492	0.1000	126	125	0.8	50.0
Iodomethane	Ave	3.714	3.808		25.6	25.0	2.5	20.0
Carbon disulfide	Ave	7.449	7.764	0.1000	26.1	25.0	4.2	20.0
Methyl acetate	Ave	1.654	1.903	0.1000	144	125	15.1	50.0
Allyl chloride	Ave	3.902	4.359		27.9	25.0	11.7	20.0
Methylene Chloride	Linl		2.311	0.1000	23.4	25.0	-6.5	20.0
2-Methyl-2-propanol	Ave	0.2408	0.2713		282	250	12.6	50.0
Methyl tert-butyl ether	Ave	5.641	5.792	0,1000	25.7	25.0	2.7	20.0
Acrylonitrile	Ave	0.8278	0.9470		286	250	14.4	20.0
trans-1,2-Dichloroethene	Ave	2.285	2.280	0.1000	24.9	25.0	-0.2	20.0
Hexane	Ave	3.003	3.439		28.6	25.0	14.5	20.0
Vinyl acetate	Ave	4.485	5.397		60.2	50.0	WA 20.3*	20.0
1,1-Dichloroethane	Ave	3.802	4.234	0.2000	27.8	25.0	11.4	20.0
2-Butanone (MEK)	Ave	1.044	1.215	0.1000	146	125	16.4	20.0
2,2-Dichloropropane	Ave	2.836	3.023		26.6	25.0	6.6	20.0
cis-1,2-Dichloroethene	Ave	2.585	2.581	0.1000	25.0	25.0	-0.1	20.0
Bromochloromethane	Ave	1.298	1.369		26.4	25.0	5.5	20.0
Chloroform	Ave	3.701	3.823	0.2000	25.8	25.0	3.3	20.0
Tetrahydrofuran	Ave	0.7275	0.8184		56.3	50.0	12.5	20.0
1,1,1-Trichloroethane	Ave	3.008	3.257	0.1000	27.1	25.0	8.3	20.0
Cyclohexane	Ave	3.826	4.599	0.1000	30.1	25.0	W/20.2*	20.0
Isobutyl alcohol	Ave	0.1267	0.1514		747	625	19.5	50.0
1,1-Dichloropropene	Ave	2.579	2.894		28.1	25.0	12.2	20.0
Carbon tetrachloride	Ave	2.701	3.033	0.1000	28.1	25.0	12.3	20.0
1,2-Dichloroethane	Ave	2.912	3.062	0.1000	26.3	25.0	5.1	20.0
Benzene	Ave	8.158	8.654	0.5000	26.5	25.0	6.1	20.0
n-Heptane	Ave	2.801	3.382		30.2	25.0	NA20.7*	20.0
Trichloroethene	Ave	2.138	2.295	0.2000	26.8	25.0	7.3	20.0

Lab Name: TestAmerica Buffalo Job No.: 480-123780-1

SDG No.:

Lab Sample ID: CCVIS 480-377488/3 Calibration Date: 09/19/2017 09:11

Instrument ID: HP5973C Calib Start Date: 09/08/2017 15:20

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 09/08/2017 18:17

Lab File ID: C8125.D Conc. Units: ug/L Heated Purge: (Y/N) N

cls-1,3-Dichloropropene Ave 3.474 3.678 0.2000 26.5 25.0 5.9 20.0 4-Methyl-2-pentanone (MIBK) Ave 1.008 1.169 0.1000 145 125 15.9 20.0 Toluene Ave 2.437 2.591 0.4000 26.6 25.0 6.3 20.0 Ethyl methacrylate Ave 1.024 1.149 28.0 25.0 12.2 20.0 1,1,2-Trichloroethane Ave 0.7238 0.7665 0.1000 27.4 25.0 9.6 20.0 2-Hexanone Ave 0.7077 0.8556 0.1000 25.5 5.2 9.2 20.0 1-1,2-Tertichloroethane Ave 1.035 1.146 0.2000 27.7 25.0 10.8 20.0 2-Hexanone Ave 1.035 1.146 0.2000 27.7 25.0 10.6 20.0 1-1,12-Tertichloroethane Ave 1.035 1.146 0.2000 26.2 25.0 6.6 <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th>				_					
1,2-Dichloropropane	ANALYTE		AVE RRF	RRF	MIN RRF		1 1	۶D	
1,2-Dichloropropane	Methylcyclohexane	Ave	2.994	3.497	0.1000	29.2	25.0	16.8	20.0
1,4-Dioxane					0.1000		25.0	9.1	20.0
Dibromomethane				0.0107		559	500	11.9	50.0
Bromodichloromethane			1.366	1.441	0.1000	26.4	25.0	5.5	20.0
2-Chloroethyl vinyl ether		Ave	2.625	2.825	0.2000	26.9	25.0	7.6	20.0
cis-1,3-Dichloropropene Ave 3.474 3.678 0.2000 26.5 25.0 5.9 20.0 4-Methyl-2-pentanone (MIBK) Ave 1.008 1.169 0.1000 145 125 15.9 20.0 Toluene Ave 2.437 2.591 0.4000 26.6 25.0 6.3 20.0 Ethyl methacrylate Ave 1.024 1.149 28.0 25.0 12.2 20.0 1,1,2-Trichlorocthane Ave 0.7238 0.7665 0.1000 25.0 5.9 20.0 1,1,2-Trichlorocthane Ave 0.7077 0.8596 0.1000 15.2 125.0 5.9 20.0 2-Rexanone Ave 1.035 1.146 0.2000 27.7 25.0 6.4 20.0 11,1-1,10000000000000000000000000000000		Lin1		1.563		24.6	25.0	-1.8	20.0
4-Methyl-2-pentanone (MIBK) Ave 1.008 1.169 0.1000 145 125 15.9 20.0 Toluene Ave 2.437 2.591 0.4000 26.6 25.0 6.3 20.0 Ethyl methacrylate Ave 1.024 1.149 28.0 25.0 12.2 20.0 trans-1,3-Dichloropropene Ave 1.398 1.532 0.1000 27.4 25.0 9.6 20.0 Z-Hexanone Ave 0.7238 0.7665 0.1000 152 125 20.0 Z-Hexanone Ave 0.0707 0.8596 0.1000 152 125 20.0 Tetrachloroethene Ave 1.035 1.146 0.2000 27.7 25.0 4.6 20.0 Thiolichloropropane Ave 1.068 1.136 0.100 26.6 25.0 4.6 20.0 Thiolichloropropane Ave 1.074 1.542 26.5 25.0 4.6 20.0 1,2-0ibromethane (EDB)		Ave	3.474	3.678	0.2000	26.5	25.0	5.9	20.0
Toluene		Ave	1.008	1.169	0.1000		125	15.9	20.0
Ethyl methacrylate		Ave	2.437	2.591	0.4000	26.6	25.0	6.3	20.0
trans-1,3-Dichloropropene Ave 1.398 1.532 0.1000 27.4 25.0 9.6 20.0 1,1,2-Trichloroethane Ave 0.7238 0.7665 0.1000 26.5 25.0 5.9 20.0 Z-Hexanone Ave 0.7077 0.8596 0.1000 152 125 20.0 Tetrachloroethene Ave 1.035 1.146 0.2000 27.7 25.0 1n.8 20.0 Chlorodibromoethane Ave 1.047 1.542 26.2 25.0 4.6 20.0 Chlorodibromoethane Ave 1.088 1.136 0.1000 26.5 25.0 6.4 20.0 Chlorodenzene Ave 0.8938 0.9469 26.5 25.0 6.2 20.0 Ethylbenzene Ave 4.522 4.784 0.1000 26.4 25.0 6.0 20.0 Ethylbenzene Ave 1.615 1.956 0.1000 27.0 25.0 4.7 20.0 Tyla		Ave	1.024	1.149		28.0	25.0	12.2	20.0
1,1,2-Trichloroethane	-				0.1000	27.4	25.0	9.6	20.0
2-Hexanone Ave 0.7077 0.8596 0.1000 152 125 (21.5 20.0 Tetrachloroethene Ave 1.035 1.146 0.2000 27.7 25.0 10.8 20.0 10-01chloropropane Ave 1.474 1.542 26.2 25.0 4.6 20.0 11-01chloropropane Ave 1.474 1.542 26.2 25.0 4.6 20.0 11-01chloropropane Ave 1.068 1.136 0.1000 26.6 25.0 6.4 20.0 11-01chloropropane Ave 0.8938 0.9489 26.5 25.0 6.2 20.0 11-01chloropropane Ave 2.942 3.120 0.5000 26.5 25.0 6.2 20.0 11-01chloropropane Ave 2.942 3.120 0.5000 26.5 25.0 6.2 20.0 11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				I			25.0	5.9	20.0
Tetrachloroethene		Ave	0.7077	0.8596	0.1000	152	125		20.0
Chlorodibromomethane		Ave		1.146	0.2000	27.7	25.0		20.0
Chlorodibromomethane Ave 1.068 1.136 0.1000 26.6 25.0 6.4 20.0 1,2-Dibromoethane (EDB) Ave 0.8938 0.9489 26.5 25.0 6.2 20.0 Chlorobenzene Ave 2.942 3.120 0.5000 26.5 25.0 6.0 20.0 Ehylbenzene Ave 4.522 4.784 0.1000 26.4 25.0 5.8 20.0 1,1,1,2-Tetrachloroethane Ave 1.081 1.132 26.2 25.0 4.7 20.0 m,p-Xylene Ave 1.797 1.920 0.3000 26.7 25.0 6.9 20.0 Styrene Ave 2.988 3.182 0.3000 26.6 25.0 6.9 20.0 Styrene Ave 4.272 4.590 0.1000 26.9 25.0 6.9 20.0 Styrene Ave 0.6381 0.6917 0.1000 27.1 25.0 6.9 20.0 1,1,2,2-T	1 N3-Dichloropropane	Ave	1.474	1.542		26.2	25.0	4.6	20.0
Chlorobenzene Ave 2.942 3.120 0.5000 26.5 25.0 6.0 20.0 Ethylbenzene Ave 4.522 4.784 0.1000 26.4 25.0 5.8 20.0 1,1,1,2-Tetrachloroethane Ave 1.081 1.132 26.2 25.0 4.7 20.0 m,p-Xylene Ave 1.815 1.956 0.1000 27.0 25.0 7.8 20.0 0-Xylene Ave 1.797 1.920 0.3000 26.7 25.0 6.9 20.0 Styrene Ave 2.988 3.182 0.3000 26.6 25.0 6.9 20.0 Isopropylbenzene Ave 2.988 3.182 0.3000 26.6 25.0 6.9 20.0 Isopropylbenzene Ave 0.6381 0.6917 0.1000 27.1 25.0 8.4 50.0 1,1,2,2-Tetrachloroethane Ave 1.018 1.107 0.3000 27.1 25.0 8.4 50.0 1,2,3-Trichloropz-butene Lini 0.3913 27.0 25.0 7.9 50.0 1,2,3-Trichloropzopane Ave 0.3321 0.3557 26.8 25.0 7.1 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.1 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 N-Propylbenzene Ave 4.886 26.0 26.0 25.0 3.9 20.0 N-Propylbenzene Ave 4.886 26.0 26.0 25.0 3.9 20.0 N-Propylbenzene Ave 4.886 26.0 26.0 25.0 3.9 20.0 N-Propylbenzene Ave 4.886 26.0 26.0 25.0 3.9 25.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26		Ave	1.068	1.136	0.1000	26.6	25.0	6.4	20.0
Chlorobenzene Ave 2.942 3.120 0.5000 26.5 25.0 6.0 20.0 Ethylbenzene Ave 4.522 4.784 0.1000 26.4 25.0 5.8 20.0 1,1,1,2-Tetrachloroethane Ave 1.081 1.132 26.2 25.0 4.7 20.0 m,p-Xylene Ave 1.815 1.956 0.1000 27.0 25.0 6.9 20.0 O-Xylene Ave 1.797 1.920 0.3000 26.7 25.0 6.9 20.0 Styrene Ave 2.988 3.182 0.3000 26.6 25.0 6.5 20.0 Isopropylbenzene Ave 4.272 4.590 0.1000 26.9 25.0 7.4 20.0 Bromoform Ave 1.018 1.107 0.3000 27.2 25.0 8.4 50.0 1,1,2,3-Tetrachlorocethane Ave 1.018 1.107 0.3000 27.2 25.0 8.8 20.0 <tr< td=""><td>1,2-Dibromoethane (EDB)</td><td>Ave</td><td>0.8938</td><td>0.9489</td><td></td><td>26.5</td><td>25.0</td><td>6.2</td><td>20.0</td></tr<>	1,2-Dibromoethane (EDB)	Ave	0.8938	0.9489		26.5	25.0	6.2	20.0
1,1,1,2=Tetrachloroethane Ave 1.081 1.132 26.2 25.0 4.7 20.0 m,p-Xylene Ave 1.815 1.956 0.1000 27.0 25.0 7.8 20.0 c-Xylene Ave 1.797 1.920 0.3000 26.7 25.0 6.9 20.0 Styrene Ave 2.988 3.182 0.3000 26.6 25.0 6.5 20.0 Bromoform Ave 4.272 4.590 0.1000 27.1 25.0 8.4 50.0 1,1,2,2-Tetrachloroethane Ave 0.6381 0.6917 0.1000 27.1 25.0 8.8 20.0 trans-1,4-Dichloro-2-butene Lin1 0.3913 27.0 25.0 7.9 50.0 1,2,3-Trichloropropane Ave 0.3321 0.3557 26.8 25.0 7.1 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 Bromobenzene Ave 1.		Ave	2.942	3.120	0.5000	26.5	25.0	6.0	20.0
1,1,1,2-Tetrachloroethane Ave 1.081 1.132 26.2 25.0 4.7 20.0 m,p-Xylene Ave 1.815 1.956 0.1000 27.0 25.0 7.8 20.0 o-Xylene Ave 1.797 1.920 0.3000 26.7 25.0 6.9 20.0 Styrene Ave 2.988 3.182 0.3000 26.6 25.0 6.5 20.0 Bromoform Ave 4.272 4.590 0.1000 26.9 25.0 7.4 20.0 Bromoform Ave 0.6381 0.6917 0.1000 27.1 25.0 8.4 50.0 1,1,2,2-Tetrachloroethane Ave 1.018 1.107 0.3000 27.2 25.0 8.4 50.0 trans-1,4-Dichloro-2-butene Lin1 0.3913 27.0 25.0 7.9 50.0 1,2,3-Trichloropropane Ave 0.3321 0.3557 26.8 25.0 7.1 20.0 Bromobenzene Ave </td <td>Ethylbenzene</td> <td>Ave</td> <td>4.522</td> <td>4.784</td> <td>0.1000</td> <td>26.4</td> <td>25.0</td> <td>5.8</td> <td>20.0</td>	Ethylbenzene	Ave	4.522	4.784	0.1000	26.4	25.0	5.8	20.0
O-Xylene		Ave	1.081	1.132		26.2	25.0	4.7	20.0
Styrene Ave 2.988 3.182 0.3000 26.6 25.0 6.5 20.0 Isopropylbenzene Ave 4.272 4.590 0.1000 26.9 25.0 7.4 20.0 Bromoform Ave 0.6381 0.6917 0.1000 27.1 25.0 8.4 50.0 1,1,2,2-Tetrachloroethane Ave 1.018 1.107 0.3000 27.2 25.0 8.8 20.0 trans-1,4-Dichloro-2-butene Lin1 0.3913 27.0 25.0 7.9 50.0 1,2,3-Trichloropropane Ave 0.3321 0.3557 26.8 25.0 7.1 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 Bromobenzene Ave 1.220 1.248 25.6 25.0 2.3 20.0 1,3,5-Trimethylbenzene Ave 3.552 3.792 26.7 25.0 6.8 20.0 2-Chlorotoluene Ave 1.144	m,p-Xylene	Ave	1.815	1.956	0.1000	27.0	25.0	7.8	20.0
Tsopropylbenzene	o-Xylene	Ave	1.797	1.920	0.3000	26.7	25.0	6.9	20.0
Recomposition Recompositio	Styrene	Ave	2.988	3.182	0.3000	26.6	25.0	6.5	20.0
Bromoform Ave 0.6381 0.6917 0.1000 27.1 25.0 8.4 50.0 1,1,2,2-Tetrachloroethane Ave 1.018 1.107 0.3000 27.2 25.0 8.8 20.0 trans-1,4-Dichloro-2-butene Lin1 0.3913 27.0 25.0 7.9 50.0 1,2,3-Trichloropropane Ave 0.3321 0.3557 26.8 25.0 7.1 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 Bromobenzene Ave 1.220 1.248 25.6 25.0 2.3 20.0 1,3,5-Trimethylbenzene Ave 3.552 3.792 26.7 25.0 6.8 20.0 2-Chlorotoluene Ave 1.144 1.189 26.0 25.0 3.9 20.0 4-Chlorotoluene Ave 1.198 1.255 26.2 25.0 4.8 20.0 tert-Butylbenzene Ave 0.8313 0.8617 25.9 <td>Isopropylbenzene</td> <td>Ave</td> <td>4.272</td> <td>4.590</td> <td>0.1000</td> <td>26.9</td> <td>25.0</td> <td>7.4</td> <td>20.0</td>	Isopropylbenzene	Ave	4.272	4.590	0.1000	26.9	25.0	7.4	20.0
trans-1,4-Dichloro-2-butene Lin1 0.3913 27.0 25.0 7.9 50.0 1,2,3-Trichloropropane Ave 0.3321 0.3557 26.8 25.0 7.1 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 Bromobenzene Ave 1.220 1.248 25.6 25.0 2.3 20.0 1,3,5-Trimethylbenzene Ave 3.552 3.792 26.7 25.0 6.8 20.0 2-Chlorotoluene Ave 1.144 1.189 26.0 25.0 25.0 3.9 20.0 4-Chlorotoluene Ave 1.198 1.255 26.2 25.0 4.8 20.0 tert-Butylbenzene Ave 0.8313 0.8617 25.9 25.0 3.7 20.0 1,2,4-Trimethylbenzene Ave 3.713 3.994 26.9 25.0 7.6 20.0 sec-Butylbenzene Ave 4.379 4.826 27.6 25.0 10.2 20.0 4-Isopropyltoluene Ave 3.788 4.155 27.4 25.0 9.7 20.0 1,3-Dichlorobenzene Ave 2.346 2.415 0.6000 25.7 25.0 2.9 20.0 1,4-Dichlorobenzene Ave 3.249 3.473 26.7 25.0 6.9 20.0		Ave	0.6381	0.6917	0.1000	27.1	25.0	8.4	50.0
1,2,3-Trichloropropane Ave 0.3321 0.3557 26.8 25.0 7.1 20.0 N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 Bromobenzene Ave 1.220 1.248 25.6 25.0 2.3 20.0 1,3,5-Trimethylbenzene Ave 3.552 3.792 26.7 25.0 6.8 20.0 2-Chlorotoluene Ave 1.144 1.189 26.0 25.0 3.9 20.0 4-Chlorotoluene Ave 1.198 1.255 26.2 25.0 4.8 20.0 tert-Butylbenzene Ave 0.8313 0.8617 25.9 25.0 3.7 20.0 1,2,4-Trimethylbenzene Ave 3.713 3.994 26.9 25.0 7.6 20.0 sec-Butylbenzene Ave 4.379 4.826 27.6 25.0 10.2 20.0 4-Isopropyltoluene Ave 3.788 4.155 27.4 25.0	1,1,2,2-Tetrachloroethane	Ave	1.018	1.107	0.3000	27.2	25.0	8.8	20.0
N-Propylbenzene Ave 4.886 5.263 26.9 25.0 7.7 20.0 Bromobenzene Ave 1.220 1.248 25.6 25.0 2.3 20.0 1,3,5-Trimethylbenzene Ave 3.552 3.792 26.7 25.0 6.8 20.0 2-Chlorotoluene Ave 1.144 1.189 26.0 25.0 3.9 20.0 4-Chlorotoluene Ave 1.198 1.255 26.2 25.0 4.8 20.0 tert-Butylbenzene Ave 0.8313 0.8617 25.9 25.0 3.7 20.0 1,2,4-Trimethylbenzene Ave 3.713 3.994 26.9 25.0 7.6 20.0 sec-Butylbenzene Ave 4.379 4.826 27.6 25.0 10.2 20.0 4-Isopropyltoluene Ave 3.788 4.155 27.4 25.0 9.7 20.0 1,3-Dichlorobenzene Ave 2.346 2.415 0.6000 25.7 <td< td=""><td>trans-1,4-Dichloro-2-butene</td><td>Linl</td><td></td><td>0.3913</td><td></td><td>27.0</td><td>25.0</td><td>7.9</td><td>50.0</td></td<>	trans-1,4-Dichloro-2-butene	Linl		0.3913		27.0	25.0	7.9	50.0
Ave 1.220 1.248 25.6 25.0 2.3 20.0	1,2,3-Trichloropropane	Ave	0.3321	0.3557		26.8	25.0	7.1	20.0
Bromobenzene Ave 1.220 1.248 25.6 25.0 2.3 20.0 1,3,5-Trimethylbenzene Ave 3.552 3.792 26.7 25.0 6.8 20.0 2-Chlorotoluene Ave 1.144 1.189 26.0 25.0 3.9 20.0 4-Chlorotoluene Ave 1.198 1.255 26.2 25.0 4.8 20.0 tert-Butylbenzene Ave 0.8313 0.8617 25.9 25.0 3.7 20.0 1,2,4-Trimethylbenzene Ave 3.713 3.994 26.9 25.0 7.6 20.0 sec-Butylbenzene Ave 4.379 4.826 27.6 25.0 10.2 20.0 4-Isopropyltoluene Ave 3.788 4.155 27.4 25.0 9.7 20.0 1,3-Dichlorobenzene Ave 2.346 2.415 0.6000 25.7 25.0 2.9 20.0 n-Butylbenzene Ave 3.249 3.473 26.7	N-Propylbenzene	Ave	4.886	5.263		26.9	25.0	7.7	20.0
2-Chlorotoluene Ave 1.144 1.189 26.0 25.0 3.9 20.0 4-Chlorotoluene Ave 1.198 1.255 26.2 25.0 4.8 20.0 tert-Butylbenzene Ave 0.8313 0.8617 25.9 25.0 3.7 20.0 1,2,4-Trimethylbenzene Ave 3.713 3.994 26.9 25.0 7.6 20.0 sec-Butylbenzene Ave 4.379 4.826 27.6 25.0 10.2 20.0 4-Tsopropyltoluene Ave 3.788 4.155 27.4 25.0 9.7 20.0 1,3-Dichlorobenzene Ave 2.346 2.415 0.6000 25.7 25.0 2.9 20.0 1,4-Dichlorobenzene Ave 2.427 2.444 0.5000 25.2 25.0 0.7 20.0 n-Butylbenzene Ave 3.249 3.473 26.7 25.0 6.9 20.0		Ave	1.220	1.248		25.6	25.0	2.3	20.0
4-Chlorotoluene Ave 1.198 1.255 26.2 25.0 4.8 20.0 tert-Butylbenzene Ave 0.8313 0.8617 25.9 25.0 3.7 20.0 1,2,4-Trimethylbenzene Ave 3.713 3.994 26.9 25.0 7.6 20.0 sec-Butylbenzene Ave 4.379 4.826 27.6 25.0 10.2 20.0 4-Isopropyltoluene Ave 3.788 4.155 27.4 25.0 9.7 20.0 1,3-Dichlorobenzene Ave 2.346 2.415 0.6000 25.7 25.0 2.9 20.0 1,4-Dichlorobenzene Ave 2.427 2.444 0.5000 25.2 25.0 0.7 20.0 n-Butylbenzene Ave 3.249 3.473 26.7 25.0 6.9 20.0	1,3,5-Trimethylbenzene	Ave	3.552	3.792		26.7	25.0	6.8	20.0
tert-Butylbenzene Ave 0.8313 0.8617 25.9 25.0 3.7 20.0 1,2,4-Trimethylbenzene Ave 3.713 3.994 26.9 25.0 7.6 20.0 sec-Butylbenzene Ave 4.379 4.826 27.6 25.0 10.2 20.0 4-Isopropyltoluene Ave 3.788 4.155 27.4 25.0 9.7 20.0 1,3-Dichlorobenzene Ave 2.346 2.415 0.6000 25.7 25.0 2.9 20.0 1,4-Dichlorobenzene Ave 2.427 2.444 0.5000 25.2 25.0 0.7 20.0 n-Butylbenzene Ave 3.249 3.473 26.7 25.0 6.9 20.0	2-Chlorotoluene	Ave	1.144	1.189		26.0	25.0	3.9	20.0
1,2,4-Trimethylbenzene Ave 3.713 3.994 26.9 25.0 7.6 20.0 sec-Butylbenzene Ave 4.379 4.826 27.6 25.0 10.2 20.0 4-Isopropyltoluene Ave 3.788 4.155 27.4 25.0 9.7 20.0 1,3-Dichlorobenzene Ave 2.346 2.415 0.6000 25.7 25.0 2.9 20.0 1,4-Dichlorobenzene Ave 2.427 2.444 0.5000 25.2 25.0 0.7 20.0 n-Butylbenzene Ave 3.249 3.473 26.7 25.0 6.9 20.0	4-Chlorotoluene	Ave	1.198	1.255		26.2	25.0	4.8	20.0
sec-Butylbenzene Ave 4.379 4.826 27.6 25.0 10.2 20.0 4-Isopropyltoluene Ave 3.788 4.155 27.4 25.0 9.7 20.0 1,3-Dichlorobenzene Ave 2.346 2.415 0.6000 25.7 25.0 2.9 20.0 1,4-Dichlorobenzene Ave 2.427 2.444 0.5000 25.2 25.0 0.7 20.0 n-Butylbenzene Ave 3.249 3.473 26.7 25.0 6.9 20.0	tert-Butylbenzene	Ave	0.8313	0.8617		25.9	25.0	3.7	20.0
sec-Butylbenzene Ave 4.379 4.826 27.6 25.0 10.2 20.0 4-Isopropyltoluene Ave 3.788 4.155 27.4 25.0 9.7 20.0 1,3-Dichlorobenzene Ave 2.346 2.415 0.6000 25.7 25.0 2.9 20.0 1,4-Dichlorobenzene Ave 2.427 2.444 0.5000 25.2 25.0 0.7 20.0 n-Butylbenzene Ave 3.249 3.473 26.7 25.0 6.9 20.0	1,2,4-Trimethylbenzene	Ave	3.713	3.994		26.9	25.0	7.6	20.0
1,3-Dichlorobenzene Ave 2.346 2.415 0.6000 25.7 25.0 2.9 20.0 1,4-Dichlorobenzene Ave 2.427 2.444 0.5000 25.2 25.0 0.7 20.0 n-Butylbenzene Ave 3.249 3.473 26.7 25.0 6.9 20.0	sec-Butylbenzene	Ave	4.379	4.826		27.6	25.0	10.2	20.0
1,4-Dichlorobenzene Ave 2.427 2.444 0.5000 25.2 25.0 0.7 20.0 n-Butylbenzene Ave 3.249 3.473 26.7 25.0 6.9 20.0	4-Isopropyltoluene	Ave	3.788	4.155		27.4	25.0	9.7	20.0
n-Butylbenzene Ave 3.249 3.473 26.7 25.0 6.9 20.0	1,3-Dichlorobenzene	Ave	2.346	2.415	0.6000	25.7	25.0	2.9	20.0
	1,4-Dichlorobenzene	Ave	2.427	2.444	0.5000	25.2	25.0	0.7	20.0
1,2-Dichlorobenzene Ave 2.246 2.304 0.4000 25.6 25.0 2.6 20.0	n-Butylbenzene	Ave	3.249	3.473		26.7	25.0	6.9	20.0
	1,2-Dichlorobenzene	Ave	2.246	2.304	0.4000	25.6	25.0	2.6	20.0

Job No.: 480-123780-1 Lab Name: TestAmerica Buffalo SDG No.: Lab Sample ID: CCVIS 480-377488/3 Calibration Date: 09/19/2017 09:11 Instrument ID: HP5973C Calib Start Date: 09/08/2017 15:20 GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 09/08/2017 18:17

Conc. Units: ug/L Heated Purge: (Y/N) N Lab File ID: C8125.D

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1877	0.1921	0.0500	25.6	25.0	2.3	50.0
1,2,4-Trichlorobenzene	Ave	1.545	1.569	0.2000	25.4	25.0	1.5	20.0
Hexachlorobutadiene	Ave	0.4930	0.5390		27.3	25.0	9.3	20.0
Naphthalene	Ave	3.669	3.992		27.2	25.0	8.8	20.0
1,2,3-Trichlorobenzene	Ave	1.360	1.425		26.2	25.0	4.8	20.0
Dibromofluoromethane (Surr)	Ave	1.453	1.468		25.3	25.0	1.1	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.8012	0.8348		26.0	25.0	4.2	20.0
Toluene-d8 (Surr)	Ave	2.545	2.507		24.6	25.0	-1.5	20.0
4-Bromofluorobenzene (Surr)	Ave	0.7992	0.7773		24.3	25.0	-2.7	20.0

 Lab Name:
 TestAmerica Buffalo
 Job No.: 480-123780-1

 SDG No.:
 Lab Sample ID: CCVIS 480-377667/3
 Calibration Date: 09/19/2017 20:22

 Instrument ID: HP5973C
 Calib Start Date: 09/08/2017 15:20

Lab File ID: C8153.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	2.349	1.538	0.1000	16.4	25.0	W-34.5	50.0
Chloromethane	Ave	3.626	2.381	0.1000	16.4	25.0	-34.3*	20.0
Vinyl chloride	Ave	2.732	1.760	0.1000	16.1	25.0	(-35.6*	20.0
Butadiene	Ave	2.844	1.888		16.6	25.0	// / 33.6*	20.0
Bromomethane	Ave	1.974	1.552	0.1000	19.7	25.0	21.4	50.0
Chloroethane	Ave	1.673	1.444	0.1000	21.6	25.0	-13.7	50.0
Dichlorofluoromethane	Ave	3.748	3.216		21.5	25.0	-14.2	20.0
Trichlorofluoromethane	Ave	3.289	2.986	0.1000	22.7	25.0	-9.2	20.0
Ethyl ether	Ave	1.894	1.706		22.5	25.0	-9.9	20.0
Acrolein	Ave	0.2734	0.2271		104	125	-16.9	50.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	1.803	1.659	0.1000	23.0	25.0	-8.0	20.0
1,1-Dichloroethene	Ave	2.011	1.622	0.1000	20.2	25.0	-19.3	20.0
Acetone	Ave	0.6441	0.7726	0.1000	150	125	20.0	50.0
Iodomethane	Ave	3.714	3.159		21.3	25.0	-14.9	20,0
Carbon disulfide	Ave	7.449	6.201	0.1000	20.8	25.0	-16.8	20.0
Methyl acetate	Ave	1.654	1.627	0.1000	123	125	-1.7	50.0
Allyl chloride	Ave	3.902	3.791		24.3	25.0	-2.8	20.0
Methylene Chloride	Lin1		1.871	0.1000	18.7	25.0	(-25.3*)	20.0
2-Methyl-2-propanol	Ave	0.2408	0.2344		243	250	-2.7	50.0
Methyl tert-butyl ether	Ave	5.641	4.751	0.1000	21.1	25.0	-15.8	20.0
Acrylonitrile	Ave	0.8278	0.8036		243	250	-2.9	20.0
trans-1,2-Dichloroethene	Ave	2.285	1.887	0.1000	20.7	25.0	-17.4	20.0
Hexane	Ave	3.003	2.850		23.7	25.0	-5.1	20.0
Vinyl acetate	Ave	4.485	4.739		52.8	50.0	5.7	20.0
1,1-Dichloroethane	Ave	3.802	3.563	0.2000	23.4	25.0	-6.3	20.0
2-Butanone (MEK)	Ave	1.044	1.155	0.1000	138	125	10.6	20.0
2,2-Dichloropropane	Ave	2.836	2.606		23.0	25.0	-8.1	20.0
cis-1,2-Dichloroethene	Ave	2.585	2.244	0.1000	21.7	25.0	-13.2	20.0
Bromochloromethane	Ave	1.298	1.225		23.6	25.0	-5.7	20.0
Chloroform	Ave	3.701	3.312	0.2000	22.4	25.0	-10.5	20.0
Tetrahydrofuran	Ave	0.7275	0.7257		49.9	50.0	-0.2	20.0
1,1,1-Trichloroethane	Ave	3.008	3.122	0.1000	25.9	25.0	3.8	20.0
Cyclohexane	Ave	3.826	4.486	0.1000	29.3	25.0	17.2	20.0
Isobutyl alcohol	Ave	0.1267	0.1572		775	625	24.0	50.0
1,1-Dichloropropene	Ave	2.579	2.833		27.5	25.0	9.9	20.0
Carbon tetrachloride	Ave	2.701	2.920	0.1000	27.0	25.0	8.1	20.0
Benzene	Ave	8.158	8.908	0.5000	27.3	25.0	9.2	20.0
1,2-Dichloroethane	Ave	2.912	3.142	0.1000	27.0	25.0	7.9	20.0
n-Heptane	Ave	2.801	3.548		31.7	25.0	6.7*	20.0
Trichloroethene	Ave	2.138	2.450	0.2000	28.6	25.0	14.6	20.0

Lab Name: TestAmerica Buffalo Job No.: 480-123780-1

SDG No.:

Lab Sample ID: CCVIS 480-377667/3 Calibration Date: 09/19/2017 20:22

Instrument ID: <u>HP5973C</u> Calib Start Date: 09/08/2017 15:20

Lab File ID: C8153.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	2.994	3.566	0.1000	29.8	25.0	19.1	20.0
1,2-Dichloropropane	Ave	2.383	2.686	0.1000	28.2	25.0	12.7	20.0
1,4-Dioxane	Ave	0.0096	0.0116		602	500	20.4	50.0
Dibromomethane	Ave	1.366	1.496	0.1000	27.4	25.0	9.5	20.0
Bromodichloromethane	Ave	2.625	3.026	0.2000	28.8	25.0	15.3	20.0
2-Chloroethyl vinyl ether	Lin1		1.605		25.2	25.0	0.8	20.0
cis-1,3-Dichloropropene	Ave	3.474	3.928	0.2000	28.3	25.0	13.1	20.0
4-Methyl-2-pentanone (MIBK)	Ave	1.008	1.232	0.1000	153	125	22.2*	20.0
Toluene	Ave	2.437	2.722	0.4000	27.9	25.0	11.7	20.0
Ethyl methacrylate	Ave	1.024	1.196		29.2	25.0	16.8	20.0
trans-1,3-Dichloropropene	Ave	1.398	1.600	0.1000	28.6	25.0	14.5	20.0
1,1,2-Trichloroethane	Ave	0.7238	0.8014	0.1000	27.7	25.0	10.7	20.0
2-Hexanone	Ave	0.7077	0.9228	0.1000	163	125	30.4*	20.0
Tetrachloroethene	Ave	1.035	1.210	0.2000	29.2	25.0	16.9	20.0
1,3-Dichloropropane	Ave	1.474	1.616		27.4	25.0	9.6	20.0
Chlorodibromomethane	Ave	1.068	1.207	0.1000	28.3	25.0	13.0	20.0
1,2-Dibromoethane (EDB)	Ave	0.8938	0.9948		27.8	25.0	11.3	20.0
Chlorobenzene	Ave	2.942	3.300	0.5000	28.0	25.0	12.2	20.0
Ethylbenzene	Ave	4.522	5.111	0.1000	28.3	25.0	13.0	20.0
1,1,1,2-Tetrachloroethane	Ave	1.081	1.200		27.7	25.0	10.9	20.0
m,p-Xylene	Ave	1.815	2.083	0.1000	28.7	25.0	14.8	20.0
o-Xylene	Ave	1.797	2.015	0.3000	28.0	25.0	12.1	20.0
Styrene	Ave	2.988	3.410	0.3000	28.5	25.0	14.1	20.0
Isopropylbenzene	Ave	4.272	4.653	0.1000	27.2	25.0	8.9	20.0
Bromoform	Ave	0.6381	0.6803	0.1000	26.7	25.0	6.6	50.0
1,1,2,2-Tetrachloroethane	Ave	1.018	1.096	0.3000	26.9	25.0	7.7	20.0
trans-1,4-Dichloro-2-butene	Lin1		0.3878		26.7	25.0	6.9	50.0
1,2,3-Trichloropropane	Ave	0.3321	0.3426		25.8	25.0	3.1	20.0
N-Propylbenzene	Ave	4.886	5.151		26.4	25.0	5.4	20.0
Bromobenzene	Ave	1.220	1.237		25.4	25.0	1.4	20.0
1,3,5-Trimethylbenzene	Ave	3.552	3.727		26.2	25.0	4.9	20.0
2-Chlorotoluene	Ave	1.144	1.197		26.2	25.0	4.6	20.0
4-Chlorotoluene	Ave	1.198	1.260		26.3	25.0	5.1	20.0
tert-Butylbenzene	Ave	0.8313	0.9257		27.8	25.0	11.4	20.0
1,2,4-Trimethylbenzene	Ave	3.713	4.278		28.8	25.0	15.2	20.0
sec-Butylbenzene	Ave	4.379	5.139		29.3	25.0	17.4	20.0
4-Isopropyltoluene	Ave	3.788	4.457		29.4	25.0	17.7	20.0
1,3-Dichlorobenzene	Ave	2.346	2.572	0.6000	27.4	25.0	9.6	20.0
1,4-Dichlorobenzene	Ave	2.427	2.594	0.5000	26.7	25.0.	6.9	20.0
n-Butylbenzene	Ave	3.249	3.752	-	28.9	25.0	15.5	20.0
1,2-Dichlorobenzene	Ave	2.246	2.471	0.4000	27.5	25.0	10.0	20.0

Lab Name: TestAmerica Buffalo Job No.: 480-123780-1

SDG No.:

Lab Sample ID: CCVIS 480-377667/3 Calibration Date: 09/19/2017 20:22

Instrument ID: <u>HP5973C</u> Calib Start Date: 09/08/2017 15:20

Lab File ID: C8153.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1877	0.2088	0.0500	27.8	25.0	11.2	50.0
1,2,4-Trichlorobenzene	Ave	1.545	1.678	0.2000	27.2	25.0	8.6	20.0
Hexachlorobutadiene	Ave	0.4930	0.5908		30.0	25.0	19.8	20.0
Naphthalene	Ave	3.669	4.235		28.9	25.0	15.4	20.0
1,2,3-Trichlorobenzene	Ave	1.360	1.514		27.8	25.0	11.3	20.0
Dibromofluoromethane (Surr)	Ave	1.453	1.326		22.8	25.0	-8.8	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.8012	0.7614		23.8	25.0	-5.0	20.0
Toluene-d8 (Surr)	Ave	2.545	2.568		25.2	25.0	0.9	20.0
4-Bromofluorobenzene (Surr)	Ave	0.7992	0.7332		22.9	25.0	-8.3	20.0

Lab Name: TestAmerica Buffalo Job No.: 480-123780-1

SDG No.:

Lab Sample ID: CCVIS 480-375988/2 Calibration Date: 09/09/2017 09:37

GC Column: ZB-624 (20) ID: 0.18(mm) Calib End Date: 09/06/2017 20:26

Lab File ID: N1912.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	1.310	0.9720	0.1000	18.5	25.0	25.8	50.0
Chloromethane	Ave	2.861	2.241	0.1000	19.6	25.0	(-21.7*	20.0
Butadiene	Ave	2.331	1.942		20.8	25.0	-16.7	20.0
Vinyl chloride	Ave	1.942	1.652	0.1000	21.3	25.0	-14.9	20.0
Bromomethane	Ave	0.7823	0.6527	0.1000	20.9	25.0	-16.6	50.0
Chloroethane	Ave	1.059	0.8523	0.1000	20.1	25.0	-19.5	50.0
Dichlorofluoromethane	Ave	2.207	1.906		21.6	25.0	-13.7	20.0
Trichlorofluoromethane	Ave	1.778	1.592	0.1000	22.4	25.0	-10.4	20.0
Ethyl ether	Ave	1.671	1.640		24.5	25.0	-1.8	20.0
Acrolein	Ave	0.3483	0.3422		123	125	-1.8	50.0
1,1-Dichloroethene	Ave	0.9819	0.8784	0.1000	22.4	25.0	-10.5	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.9934	0.9454	0.1000	23.8	25.0	-4.8	20.0
Acetone	Ave	0.7685	0.7957	0.1000	129	125	3.5	50.0
Iodomethane	Ave	1.815	1.797		24.8	25.0	-1.0	20.0
Carbon disulfide	Ave	3.364	3.052	0.1000	22.7	25.0	-9.3	20.0
Allyl chloride	Ave	3.461	3.310		23.9	25.0	-4.4	20.0
Methyl acetate	Ave	2.038	2.089	0.1000	128	125	2.5	50.0
Methylene Chloride	Ave	1.222	1.194	0.1000	24.4	25.0	-2.2	20.0
2-Methyl-2-propanol	Ave	0.3169	0.3660		289	250	15.5	50.0
Methyl tert-butyl ether	Ave	4.015	3.847	0.1000	24.0	25.0	-4.2	20.0
trans-1,2-Dichloroethene	Ave	1.171	1.116	0.1000	23.8	25.0	-4.7	20.0
Acrylonitrile	Ave	1.042	1.116		268	250	7.1	20.0
Hexane	Ave	2.649	2.669		25.2	25.0	0.7	20.0
1,1-Dichloroethane	Ave	2.880	2.786	0.2000	24.2	25.0	-3.3	20.0
Vinyl acetate	Ave	4.672	5.055		54.1	50.0	8.2	20.0
2,2-Dichloropropane	Ave	1.401	1.419		25.3	25.0	1.3	20.0
cis-1,2-Dichloroethene	Ave	1.326	1.265	0.1000	23.9	25.0	-4.6	20.0
2-Butanone (MEK)	Ave	1.262	1.304	0.1000	129	125	3.3	20.0
Bromochloromethane	Ave	0.6936	0.6604		23.8	25.0	-4.8	20.0
Tetrahydrofuran	Ave	0.8864	0.8847		49.9	50.0	-0.2	20.0
Chloroform	Ave	2.097	2.028	0.2000	24.2	25.0	-3.3	20.0
1,1,1-Trichloroethane	Ave	1.806	1.699	0.1000	23.5	25.0	-6.0	20.0
Cyclohexane	Ave	3.244	3.217	0.1000	24.8	25.0	-0.8	20.0
Carbon tetrachloride	Ave	1.652	1.635	0.1000	24.8	25.0	-1.0	20.0
1,1-Dichloropropene	Ave	1.607	1.518		23.6	25.0	-5.5	20.0
Isobutyl alcohol	Ave	0.1487	0.1677		705	625	12.8	50.0
Benzene	Ave	4.823	4.593	0.5000	23.8	25.0	-4.8	20.0
1,2-Dichloroethane	Ave	2.488	2.462	0.1000	24.7	25.0	-1.0	20.0
n-Heptane	Ave	2.761	2.933		26.6	25.0	6.2	20.0
Trichloroethene	Ave	1.171	1,145	0.2000	24.5	25.0	-2.2	20.0

Lab Name: TestAmerica Buffalo Job No.: 480-123780-1

SDG No.:

Lab Sample ID: <u>CCVIS 480-375988/2</u> Calibration Date: <u>09/09/2017 09:37</u>

GC Column: ZB-624 (20) ID: 0.18(mm) Calib End Date: 09/06/2017 20:26

Lab File ID: $\underline{\text{N1912.D}}$ Conc. Units: $\underline{\text{ug/L}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	1.891	1.907	0.1000	25.2	25.0	0.8	20.0
1,2-Dichloropropane	Ave	1.622	1.576	0.1000	24.3	25.0	-2.8	20.0
Dibromomethane	Ave	0.8055	0.8168	0.1000	25.4	25.0	1.4	20.0
1,4-Dioxane	Ave	0.0058	0.0061	-	529	500	5.9	50.0
Bromodichloromethane	Ave	1,542	1.518	0.2000	24.6	25.0	-1.5	20.0
2-Chloroethyl vinyl ether	Ave	1.231	1.214		24.7	25.0	-1.3	20.0
cis-1,3-Dichloropropene	Ave	2.052	1.957	0.2000	23.8	25.0	-4.6	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.2496	0.2672	0.1000	134	125	7.0	20.0
Toluene	Ave	0.8238	0.7981	0.4000	24.2	25.0	-3.1	20.0
trans-1,3-Dichloropropene	Ave	0.4837	0.5000	0.1000	25.8	25.0	3.4	20.0
Ethyl methacrylate	Ave	0.4674	0.4741		25.4	25.0	1.4	20.0
1,1,2-Trichloroethane	Ave	0.2461	0.2427	0.1000	24.7	25.0	-1.4	20.0
Tetrachloroethene	Ave	0.3595	0.3563	0.2000	24.8	25.0	-0.9	20.0
1,3-Dichloropropane	Ave	0.5121	0.5088		24.8	25.0	-0.6	20.0
2-Hexanone	Ave	0.4671	0.4815	0.1000	129	125	3.1	20.0
Chlorodibromomethane	Ave	0,3293	0.3363	0.1000	25.5	25.0	2.1	20.0
1,2-Dibromoethane (EDB)	Ave	0.3176	0.3174		25.0	25.0	-0.0	20.0
Chlorobenzene	Ave	0.9050	0.8815	0.5000	24.4	25.0	-2.6	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3370	0.3418		25.4	25.0	1.4	20.0
Ethylbenzene	Ave	1.557	1.501	0.1000	24.1	25.0	-3.6	20.0
m,p-Xylene	Ave	0.6181	0.6024	0.1000	24.4	25.0	-2.5	20.0
o-Xylene	Ave	0.6031	0.5948	0.3000	24.7	25.0	-1.4	20.0
Styrene	Ave	1.055	1.011	0.3000	24.0	25.0	-4.1	20.0
Bromoform	Ave	0.2239	0.2383	0.1000	26.6	25.0	6.4	50.0
Isopropylbenzene	Ave	3.201	3.146	0.1000	24.6	25.0	-1.7	20.0
Bromobenzene	Ave	0.7844	0.7891		25.1	25.0	0.6	20.0
1,1,2,2-Tetrachloroethane	Ave	0.8218	0.8355	0.3000	25.4	25.0	1.7	20.0
1,2,3-Trichloropropane	Ave	0.2872	0.2746		23.9	25.0	-4.4	20.0
trans-1,4-Dichloro-2-butene	Ave	0.4743	0.5041		26.6	25.0	6.3	50.0
N-Propylbenzene	Ave	3.608	3.641		25.2	25.0	0.9	20.0
2-Chlorotoluene	Ave	0.7269	0.6907		23.8	25.0	-5.0	20.0
1,3,5-Trimethylbenzene	Ave	2.630	2.647		25.2	25.0	0.6	20.0
4-Chlorotoluene	Ave	2.478	2.503		25.3	25.0	1.0	20.0
tert-Butylbenzene	Ave	0.5875	0.5988		25.5	25.0	1.9	20.0
1,2,4-Trimethylbenzene	Ave	2.702	2.761		25.5	25.0	2.2	20.0
sec-Butylbenzene	Ave	3.307	3.389		25.6	25.0	2.5	20.0
1,3-Dichlorobenzene	Ave	1.545	1.536	0.6000	24.9	25.0	-0.6	20.0
4-Isopropyltoluene	Ave	2.929	2.946		25.1	25.0	0.6	20.0
1,4-Dichlorobenzene	Ave	1.547	1.577	0.5000	25.5	25.0	2.0	20.0
n-Butylbenzene	Ave	2.532	2.526		24.9	25.0	-0.2	20.0
1,2-Dichlorobenzene	Ave	1.501	1.524	0.4000	25.4	25.0	1.6	20.0

Lab Name: TestAmerica Buffalo Job No.: 480-123780-1

SDG No.:

Lab Sample ID: CCVIS 480-375988/2 Calibration Date: 09/09/2017 09:37

GC Column: ZB-624 (20) ID: 0.18(mm) Calib End Date: 09/06/2017 20:26

Lab File ID: N1912.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1765	0.1776	0.0500	25.2	25.0	0.6	50.0
1,2,4-Trichlorobenzene	Ave	1.113	1.099	0.2000	24.7	25.0	-1.2	20.0
Hexachlorobutadiene	Ave	0.4841	0.4948		25.6	25.0	2.2	20.0
Naphthalene	Ave	2.904	2.890		24.9	25.0	-0.5	20.0
1,2,3-Trichlorobenzene	Ave	0.9762	0.9348		23.9	25.0	-4.2	20.0
Dibromofluoromethane (Surr)	Ave	1.129	1.159		25.7	25.0	2.7	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	1.751	1.822		26.0	25.0	4.1	20.0
Toluene-d8 (Surr)	Ave	1.149	1.215		26.4	25.0	5.8	20.0
4-Bromofluorobenzene (Surr)	Ave	0.4008	0.4180		26.1	25.0	4.3	20.0

Lab Name: TestAmerica Buffalo Job No.: 480-123780-1

SDG No.:

Lab Sample ID: CCVIS 480-377452/2 Calibration Date: 09/18/2017 22:22

Lab File ID: N2298.D Conc. Units: ug/L Heated Purge: (Y/N) N

Dichlorodifilioromethane Ave 1.310 0.7622 0.1000 14.5 25.0 1.91.9 50.0	ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Vinyl chloride	Dichlorodifluoromethane	Ave	1.310	0.7612	0.1000	14.5	25.0	-41.9	50.0
Butadiene	Chloromethane	Ave	2.861	1.886	0.1000	16.5	25.0	-34.1*	20.0
Promomethane Ave 0.7823 0.6140 0.1000 19.6 25.0 -21.5 50.0	Vinyl chloride	Ave	1.942	1.462	0.1000	18.8	25.0	(-24.7*	20.0
Promomethane Ave 0.7823 0.6140 0.1000 19.6 25.0 -21.5 50.0	Butadiene	Ave	2.331	1.807		19.4	25.0	14-22.5*	20.0
Trichlorofluoromethane	Bromomethane	Ave	0.7823	0.6140	0.1000	19.6	25.0	1-11	50.0
Dichlorofluoromethane	Chloroethane	Ave	1.059	0.7588	0.1000	17.9	25.0	(-28.4)	50.0
Ethyl ether	Trichlorofluoromethane	Ave	1.778	1.590	0.1000	22.4	25.0	-10.6	20.0
Acrolein Ave 0.3483 0.2314 83.1 125 -33.6 50.0 1,1-Dichloroethene Ave 0.9919 1.039 0.1000 26.4 25.0 5.8 20.0 1,1,2-Tichloro-1,2,2-triflu Ave 0.9934 1.057 0.1000 29.1 25.0 16.4 20.0 croethane Ave 0.7685 0.7248 0.1000 118 125 -5.7 50.0 Iodomethane Ave 1.815 1.498 20.6 25.0 25.0 -17.5 20.0 Carbon disulfide Ave 3.364 3.488 0.1000 25.9 25.0 3.7 20.0 Allyl chloride Ave 3.364 3.488 0.1000 25.9 25.0 5.6 20.0 Methyl acetate Ave 2.038 1.758 0.1000 108 125 -13.8 50.0 Methylacetate Ave 1.222 1.283 0.1000 26.3 25.0 5.0 20.0 Semblyl-2-propanol Ave 0.3169 0.2784 20.000 26.3 25.0 5.0 20.0 Methyl-2-propanol Ave 0.3169 0.2784 20.000 25.1 25.0 0.4 20.0 Methyl-2-pichlorethene Ave 1.171 1.220 0.1000 26.0 25.0 4.2 20.0 Acylonitrile Ave 1.042 0.9912 23.5 25.0 4.2 20.0 Rexame Ave 2.649 2.973 28.1 25.0 12.2 20.0 Rexame Ave 2.649 2.973 28.1 25.0 12.2 20.0 Vinyl acetate Ave 3.646 3.994 0.2000 25.5 25.0 12.2 20.0 Vinyl acetate Ave 1.042 0.9912 28.1 25.0 12.2 20.0 Vinyl acetate Ave 1.042 0.9912 28.1 25.0 12.2 20.0 Rexame Ave 2.649 2.973 28.1 25.0 12.2 20.0 Vinyl acetate Ave 1.042 0.9912 28.1 25.0 12.2 20.0 Vinyl acetate Ave 1.667 4.477 4.77 4.79 50.0 -4.2 20.0 Vinyl acetate Ave 1.607 4.477 4.79 50.0 -4.2 20.0 Vinyl acetate Ave 1.607 4.779 50.0 -4.2 20.0 Vinyl acetate Ave 1.607 4.779 50.0 -4.2 20.0 Vinyl acetate Ave 1.607 4.779 50.0 -4.2 20.0 Vinyl acetate Ave 1.607 4.779 50.0 -4.2 20.0 Vinyl acetate Ave 1.607 4.779 50.0 -4.2 20.0 Vinyl acetate Ave 1.607 6.789 50.0 50.0 26.8 25.0 7.4 20.0 Cis-1,2-Dichloroethene Ave 1.606 1.950 0.000 26.8 25.0 5.0 20.0 Permanyloroethene Ave 1.266 1.127 0.1000 111 125 0.0 0.0 Cis-1,1-Dichloroethene Ave 1.266 1.127 0.1000 26.8 25.0 7.4 20.0 Cestandoroethene Ave 1.607 0.728 50.0 0.000 26.4 25.0 5.6 20.0 Cyclohexane Ave 2.6936 0.7189 25.0 26.4 25.0 5.6 20.0 Cyclohexane Ave 3.244 3.521 0.1000 27.1 25.0 8.0 20.0 Cyclohexane Ave 3.244 3.521 0.1000 27.1 25.0 8.0 20.0 Cyclohexane Ave 1.607 1.723 0.86 26.1 25.0 4.2 20.0 Cabon tetrachloride Ave 1.607 1.723 0.86 26.1 25.0 4.2 20.0 Cy	Dichlorofluoromethane	Ave	2.207	1.721		19.5	25.0	/ J=22.0*	20.0
1,1-Dichloroethene	Ethyl ether	Ave	1.671	1.681		25.2	25.0	0.7	20.0
1,1,2-Trichloro-1,2,2-triflu order	Acrolein	Ave	0.3483	0.2314		83.1	125	-33.6	50.0
Acetone Ave 0.7685 0.0.7248 0.1000 118 125 5.7. 50.0 Iodomethane Ave 1.815 1.498 0.1000 25.6 25.0 -17.5 20.0 Carbon disulfide Ave 3.364 3.488 0.1000 25.9 25.0 3.7 20.0 Allyl chloride Ave 2.038 1.759 0.1000 108 125 -13.8 50.0 Methyl acetate Ave 1.222 1.283 0.1000 26.3 25.0 5.0 20.0 Methyl acetate Ave 0.3169 0.2784 20 250 -12.2 50.0 Methyl terr-butyl ether Ave 4.015 4.033 0.1000 26.0 25.0 4.2 20.0 trans-1,2-Dichloroethene Ave 1.042 0.9812 235 250 -5.9 20.0 Hexane Ave 1.042 0.9812 235 250 -5.9 20.0 Vinyl acetate	1,1-Dichloroethene	Ave	0.9819	1.039	0.1000	26.4	25.0	5.8	20.0
Todomethane		Ave	0.9934	1.157	0.1000	29.1	25.0	16.4	20.0
Carbon disulfide Ave 3.364 3.488 0.1000 25.9 25.0 3.7 20.0 Allyl chloride Ave 3.461 3.225 23.3 25.0 -6.8 20.0 Methyl acetate Ave 2.038 1.758 0.1000 108 125 -13.8 50.0 Methyl cercholide Ave 1.222 1.283 0.1000 26.3 25.0 50.0 20.0 Methyl tert-butyl ether Ave 0.3169 0.2784 220 250 -12.2 50.0 Methyl tert-butyl ether Ave 4.015 4.033 0.1000 25.1 25.0 0.4 20.0 Acrylonitrile Ave 1.042 0.9812 235 250 -5.9 20.0 Hexane Ave 2.649 2.973 28.1 25.0 12.2 20.0 Vinyl acetate Ave 4.672 4.477 47.9 50.0 -4.2 20.0 Vinyl acetate Ave 1.401	Acetone	Ave	0.7685	0.7248	0.1000	118	125	-5.7	50.0
Allyl chloride	Iodomethane	Ave	1.815	1.498		20.6	25.0	-17.5	20.0
Methyl acetate Ave 2.038 1.758 0.1000 108 125 -13.8 50.0 Methylene Chloride Ave 1.222 1.283 0.1000 26.3 25.0 5.0 20.0 2-Methyl-2-propanol Ave 0.3169 0.2784 220 250 -12.2 50.0 Methyl tert-butyl ether Ave 4.015 4.033 0.1000 25.1 25.0 0.4 20.0 Acrylonitrile Ave 1.042 0.9812 235 250 -5.9 20.0 Hexane Ave 1.042 0.9812 28.1 25.0 12.2 20.0 Hexane Ave 2.649 2.973 28.1 25.0 12.2 20.0 J.1-Dichloroethane Ave 2.880 2.944 0.2000 25.5 25.0 2.2 20.0 Vinyl acetate Ave 4.672 4.477 47.9 50.0 -4.2 20.0 Vinyl acetate Ave 1.326 <	Carbon disulfide	Ave	3.364	3.488	0.1000	25.9	25.0	3.7	20.0
Methylene Chloride Ave 1.222 1.283 0.1000 26.3 25.0 5.0 20.0 2-Methyl-2-propanol Ave 0.3169 0.2784 220 250 -12.2 50.0 Methyl tert-butyl ether Ave 4.015 4.033 0.1000 25.1 25.0 0.4 20.0 trans-1,2-Dichloroethene Ave 1.171 1.220 0.1000 26.0 25.0 4.2 20.0 Acrylonitrile Ave 1.042 0.9812 235 25.0 -5.9 20.0 Rexane Ave 2.649 2.973 28.1 25.0 12.2 20.0 1,1-Dichloroethane Ave 2.880 2.944 0.2000 25.5 25.0 2.2 20.0 Vinyl acetate Ave 4.672 4.477 47.9 50.0 -4.2 20.0 2,2-Dichloropropane Ave 1.401 1.462 26.1 25.0 4.4 20.0 2,2-Dichloroptopane Ave	Allyl chloride	Ave	3.461	3.225		23.3	25.0	-6.8	20.0
2-Methyl-2-propanol Ave 0.3169 0.2784 220 250 -12.2 50.0 Methyl tert-butyl ether Ave 4.015 4.033 0.1000 25.1 25.0 0.4 20.0 trans-1,2-Dichloroethene Ave 1.171 1.220 0.1000 26.0 25.0 4.2 20.0 Acrylonitrile Ave 1.042 0.9912 235 250 -5.9 20.0 Rexane Ave 2.649 2.973 28.1 25.0 12.2 20.0 Vinyl acetate Ave 4.672 4.477 47.9 50.0 -4.2 20.0 2,2-Dichloropropane Ave 1.401 1.462 26.1 25.0 4.4 20.0 2,2-Dichloroethene Ave 1.326 1.424 0.1000 26.8 25.0 7.4 20.0 2,2-Dichloroethene Ave 1.326 1.424 0.1000 26.8 25.0 7.4 20.0 2-Butanone (MEK) Ave	Methyl acetate	Ave	2.038	1.758	0.1000	108	125	-13.8	50.0
Methyl tert-butyl ether Ave 4.015 4.033 0.1000 25.1 25.0 0.4 20.0 trans-1,2-Dichloroethene Ave 1.171 1.220 0.1000 26.0 25.0 4.2 20.0 Acrylonitrile Ave 1.042 0.9812 235 250 -5.9 20.0 Rexane Ave 2.649 2.973 28.1 25.0 12.2 20.0 1,1-Dichloroethane Ave 2.880 2.944 0.2000 25.5 25.0 2.2 20.0 Vinyl acetate Ave 4.672 4.477 47.9 50.0 -4.2 20.0 2,2-Dichloroptopane Ave 1.401 1.462 26.1 25.0 4.4 20.0 2,2-Dichloroethene Ave 1.326 1.424 0.1000 26.8 25.0 7.4 20.0 2-Butanone (MEK) Ave 1.262 1.117 0.1000 111 125 -11.5 20.0 Bromochloromethane	Methylene Chloride	Ave	1.222	1.283	0.1000	26.3	25.0	5.0	20.0
trans-1,2-Dichloroethene Ave 1.171 1.220 0.1000 26.0 25.0 4.2 20.0 Acrylonitrile Ave 1.042 0.9812 235 250 -5.9 20.0 Rexane Ave 2.649 2.973 28.1 25.0 12.2 20.0 1,1-Dichloroethane Ave 2.880 2.944 0.2000 25.5 25.0 2.2 20.0 Vinyl acetate Ave 4.672 4.477 47.9 50.0 -4.2 20.0 2,2-Dichloropropane Ave 1.401 1.462 26.1 25.0 4.4 20.0 cis-1,2-Dichloroethane Ave 1.326 1.424 0.1000 26.8 25.0 7.4 20.0 Bromochloromethane Ave 1.262 1.117 0.1000 111 125 -11.5 20.0 Bromochloromethane Ave 0.6936 0.7189 25.9 25.0 3.6 20.0 Tetrahydrofuran Ave 0.8864 0.7628 43.0 50.0 -13.9 20.0 Chloroform Ave 2.097 2.215 0.2000 26.4 25.0 5.6 20.0 1,1,1-Trichloroethane Ave 1.806 1.950 0.1000 27.0 25.0 8.0 20.0 Cyclohexane Ave 3.244 3.521 0.1000 27.1 25.0 8.5 20.0 Cyclohexane Ave 1.652 1.887 0.1000 28.6 25.0 14.2 20.0 1,1-Dichloropropene Ave 1.652 1.887 0.1000 28.6 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.652 1.887 0.1000 28.6 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.667 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.667 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 1,2-Dichloroethane Ave 2.488 2.486 0.1000 25.0 25.0 25.0 -0.0 20.0 1,2-Dichloroethane Ave 2.488 2.486 0.1000 25.0 25.0 25.0 -0.0 20.0 1,2-Dichloroethane Ave 2.488 2.486 0.1000 25.0 25.0 12.4 20.0	2-Methyl-2-propanol	Ave	0.3169	0.2784		220	250	-12.2	50.0
Acrylonitrile Ave 1.042 0.9812 235 250 -5.9 20.0 Hexane Ave 2.649 2.973 28.1 25.0 12.2 20.0 1,1-Dichloroethane Ave 2.880 2.944 0.2000 25.5 25.0 2.2 20.0 Vinyl acetate Ave 4.672 4.477 47.9 50.0 -4.2 20.0 2,2-Dichloropropane Ave 1.401 1.462 26.1 25.0 4.4 20.0 2,2-Dichloroethane Ave 1.326 1.424 0.1000 26.8 25.0 7.4 20.0 2-Butanone (MEK) Ave 1.262 1.117 0.1000 111 125 -11.5 20.0 Bromochloromethane Ave 0.6936 0.7189 25.9 25.0 3.6 20.0 Tetrahydrofuran Ave 2.097 2.215 0.2000 26.4 25.0 5.6 20.0 Chloroform Ave 1.806	Methyl tert-butyl ether	Ave	4.015	4.033	0.1000	25.1	25.0	0.4	20.0
Rexane Ave 2.649 2.973 28.1 25.0 12.2 20.0 1,1-Dichloroethane Ave 2.880 2.944 0.2000 25.5 25.0 2.2 20.0 Vinyl acetate Ave 4.672 4.477 47.9 50.0 -4.2 20.0 2,2-Dichloropropane Ave 1.401 1.462 26.1 25.0 4.4 20.0 cis-1,2-Dichloroethene Ave 1.326 1.424 0.1000 26.8 25.0 7.4 20.0 2-Butanone (MEK) Ave 1.262 1.117 0.1000 111 125 -11.5 20.0 Bromochloromethane Ave 0.6936 0.7189 25.9 25.0 3.6 20.0 Tetrahydrofuran Ave 0.8864 0.7628 43.0 50.0 -13.9 20.0 Chloroform Ave 2.097 2.215 0.2000 26.4 25.0 5.6 20.0 1,1-Trichloroethane Ave 1.806	trans-1,2-Dichloroethene	Ave	1.171	1.220	0.1000	26.0	25.0	4.2	20.0
1,1-Dichloroethane	Acrylonitrile	Ave	1.042	0.9812		235	250	-5.9	20.0
Vinyl acetate Ave 4.672 4.477 47.9 50.0 -4.2 20.0 2,2-Dichloropropane Ave 1.401 1.462 26.1 25.0 4.4 20.0 cis-1,2-Dichloroethene Ave 1.326 1.424 0.1000 26.8 25.0 7.4 20.0 2-Butanone (MEK) Ave 1.262 1.117 0.1000 111 125 -11.5 20.0 Bromochloromethane Ave 0.6936 0.7189 25.9 25.0 3.6 20.0 Tetrahydrofuran Ave 0.8864 0.7628 43.0 50.0 -13.9 20.0 Chloroform Ave 2.097 2.215 0.2000 26.4 25.0 5.6 20.0 1,1,1-Trichloroethane Ave 1.806 1.950 0.1000 27.0 25.0 8.0 20.0 Carbon tetrachloride Ave 1.652 1.887 0.1000 27.1 25.0 8.5 20.0 1,1-Dichloropropene <td>Hexane</td> <td>Ave</td> <td>2.649</td> <td>2.973</td> <td></td> <td>28.1</td> <td>25.0</td> <td>12.2</td> <td>20.0</td>	Hexane	Ave	2.649	2.973		28.1	25.0	12.2	20.0
2,2-Dichloropropane Ave 1.401 1.462 26.1 25.0 4.4 20.0 cis-1,2-Dichloroethene Ave 1.326 1.424 0.1000 26.8 25.0 7.4 20.0 2-Butanone (MEK) Ave 1.262 1.117 0.1000 111 125 -11.5 20.0 Bromochloromethane Ave 0.6936 0.7189 25.9 25.0 3.6 20.0 Tetrahydrofuran Ave 0.8864 0.7628 43.0 50.0 -13.9 20.0 Chloroform Ave 2.097 2.215 0.2000 26.4 25.0 5.6 20.0 1,1,1-Trichloroethane Ave 1.806 1.950 0.1000 27.0 25.0 8.5 20.0 Cyclohexane Ave 3.244 3.521 0.1000 27.1 25.0 8.5 20.0 Carbon tetrachloride Ave 1.652 1.887 0.1000 28.6 25.0 14.2 20.0 1	1,1-Dichloroethane	Ave	2.880	2.944	0.2000	25.5	25.0	2.2	20.0
Cis-1,2-Dichloroethene Ave 1.326 1.424 0.1000 26.8 25.0 7.4 20.0 2-Butanone (MEK) Ave 1.262 1.117 0.1000 111 125 -11.5 20.0 Bromochloromethane Ave 0.6936 0.7189 25.9 25.0 3.6 20.0 Tetrahydrofuran Ave 0.8864 0.7628 43.0 50.0 -13.9 20.0 Chloroform Ave 2.097 2.215 0.2000 26.4 25.0 5.6 20.0 1,1,1-Trichloroethane Ave 1.806 1.950 0.1000 27.0 25.0 8.0 20.0 Cyclohexane Ave 3.244 3.521 0.1000 27.1 25.0 8.5 20.0 Carbon tetrachloride Ave 1.652 1.887 0.1000 28.6 25.0 14.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 B	Vinyl acetate	Ave	4.672	4.477		47.9	50.0	-4.2	20.0
Ave 1.262 1.117 0.1000 111 125 -11.5 20.0	2,2-Dichloropropane	Ave	1.401	1.462		26.1	25.0	4.4	20.0
Bromochloromethane Ave 0.6936 0.7189 25.9 25.0 3.6 20.0 Tetrahydrofuran Ave 0.8864 0.7628 43.0 50.0 -13.9 20.0 Chloroform Ave 2.097 2.215 0.2000 26.4 25.0 5.6 20.0 1,1,1-Trichloroethane Ave 1.806 1.950 0.1000 27.0 25.0 8.0 20.0 Cyclohexane Ave 3.244 3.521 0.1000 27.1 25.0 8.5 20.0 Carbon tetrachloride Ave 1.652 1.887 0.1000 27.1 25.0 8.5 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 Isobutyl alcohol Ave 0.1487 0.1244 523 625 -16.3 50.0 Benzene Ave 4.823 5.027 0.5000 26.1 25.0 4.2 20.0 1,2-Dichloroethane Ave	cis-1,2-Dichloroethene	Ave	1.326	1.424	0.1000	26.8	25.0	7.4	20.0
Tetrahydrofuran Ave 0.8864 0.7628 43.0 50.0 -13.9 20.0 Chloroform Ave 2.097 2.215 0.2000 26.4 25.0 5.6 20.0 1,1,1-Trichloroethane Ave 1.806 1.950 0.1000 27.0 25.0 8.0 20.0 Cyclohexane Ave 3.244 3.521 0.1000 27.1 25.0 8.5 20.0 Carbon tetrachloride Ave 1.652 1.887 0.1000 28.6 25.0 14.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 Isobutyl alcohol Ave 0.1487 0.1244 523 625 -16.3 50.0 Benzene Ave 4.823 5.027 0.5000 26.1 25.0 4.2 20.0 1,2-Dichloroethane Ave 2.488 2.486 0.1000 25.0 25.0 -0.0 20.0 n-Heptane	2-Butanone (MEK)	Ave	1.262	1.117	0.1000	111	125	-11.5	20.0
Chloroform Ave 2.097 2.215 0.2000 26.4 25.0 5.6 20.0 1,1,1-Trichloroethane Ave 1.806 1.950 0.1000 27.0 25.0 8.0 20.0 Cyclohexane Ave 3.244 3.521 0.1000 27.1 25.0 8.5 20.0 Carbon tetrachloride Ave 1.652 1.887 0.1000 28.6 25.0 14.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 Isobutyl alcohol Ave 0.1487 0.1244 523 625 -16.3 50.0 Benzene Ave 4.823 5.027 0.5000 26.1 25.0 4.2 20.0 1,2-Dichloroethane Ave 2.488 2.486 0.1000 25.0 25.0 -0.0 20.0 n-Heptane Ave 2.761 3.103 28.1 25.0 12.4 20.0	Bromochloromethane	Ave	0.6936	0.7189		25.9	25.0	3.6	20.0
1,1,1-Trichloroethane Ave 1.806 1.950 0.1000 27.0 25.0 8.0 20.0 Cyclohexane Ave 3.244 3.521 0.1000 27.1 25.0 8.5 20.0 Carbon tetrachloride Ave 1.652 1.887 0.1000 28.6 25.0 14.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 Isobutyl alcohol Ave 0.1487 0.1244 523 625 -16.3 50.0 Benzene Ave 4.823 5.027 0.5000 26.1 25.0 4.2 20.0 1,2-Dichloroethane Ave 2.488 2.486 0.1000 25.0 25.0 -0.0 20.0 n-Heptane Ave 2.761 3.103 28.1 25.0 12.4 20.0	Tetrahydrofuran	Ave	0.8864	0.7628		43.0	50.0	-13.9	20.0
Cyclohexane Ave 3.244 3.521 0.1000 27.1 25.0 8.5 20.0 Carbon tetrachloride Ave 1.652 1.887 0.1000 28.6 25.0 14.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 Isobutyl alcohol Ave 0.1487 0.1244 523 625 -16.3 50.0 Benzene Ave 4.823 5.027 0.5000 26.1 25.0 4.2 20.0 1,2-Dichloroethane Ave 2.488 2.486 0.1000 25.0 25.0 -0.0 20.0 n-Heptane Ave 2.761 3.103 28.1 25.0 12.4 20.0	Chloroform	Ave	2.097	2.215	0.2000	26.4	25.0	5.6	20.0
Carbon tetrachloride Ave 1.652 1.887 0.1000 28.6 25.0 14.2 20.0 1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 Isobutyl alcohol Ave 0.1487 0.1244 523 625 -16.3 50.0 Benzene Ave 4.823 5.027 0.5000 26.1 25.0 4.2 20.0 1,2-Dichloroethane Ave 2.488 2.486 0.1000 25.0 25.0 -0.0 20.0 n-Heptane Ave 2.761 3.103 28.1 25.0 12.4 20.0	1,1,1-Trichloroethane	Ave	1.806	1.950	0.1000	27.0	25.0	8.0	20.0
1,1-Dichloropropene Ave 1.607 1.723 26.8 25.0 7.2 20.0 Isobutyl alcohol Ave 0.1487 0.1244 523 625 -16.3 50.0 Benzene Ave 4.823 5.027 0.5000 26.1 25.0 4.2 20.0 1,2-Dichloroethane Ave 2.488 2.486 0.1000 25.0 25.0 -0.0 20.0 n-Heptane Ave 2.761 3.103 28.1 25.0 12.4 20.0	Cyclohexane	Ave	3.244	3.521	0.1000	27.1	25.0	8.5	20.0
Isobutyl alcohol Ave 0.1487 0.1244 523 625 -16.3 50.0 Benzene Ave 4.823 5.027 0.5000 26.1 25.0 4.2 20.0 1,2-Dichloroethane Ave 2.488 2.486 0.1000 25.0 25.0 -0.0 20.0 n-Heptane Ave 2.761 3.103 28.1 25.0 12.4 20.0	Carbon tetrachloride	Ave	1.652	1.887	0.1000	28.6	25.0	14.2	20.0
Benzene Ave 4.823 5.027 0.5000 26.1 25.0 4.2 20.0 1,2-Dichloroethane Ave 2.488 2.486 0.1000 25.0 25.0 -0.0 20.0 n-Heptane Ave 2.761 3.103 28.1 25.0 12.4 20.0	1,1-Dichloropropene	Ave	1.607	1.723		26.8	25.0	7.2	20.0
1,2-Dichloroethane Ave 2.488 2.486 0.1000 25.0 25.0 -0.0 20.0 n-Heptane Ave 2.761 3.103 28.1 25.0 12.4 20.0	Isobutyl alcohol	Ave	0.1487	0,1244	-	523	625	-16.3	50.0
n-Heptane Ave 2.761 3.103 28.1 25.0 12.4 20.0	Benzene	Ave	4.823	5.027	0.5000	26.1	25.0	4.2	20.0
	1,2-Dichloroethane	Ave	2.488	2.486	0.1000	25.0	25.0	-0.0	20.0
Trichloroethene Ave 1.171 1.334 0.2000 28.5 25.0 14.0 20.0	n-Heptane	Ave	2.761	3.103		28.1	25.0	12.4	20.0
	Trichloroethene	Ave	1.171	1.334	0.2000	28.5	25.0	14.0	20.0

Lab Name: TestAmerica Buffalo Job No.: 480-123780-1

SDG No.:

Lab Sample ID: CCVIS 480-377452/2 Calibration Date: 09/18/2017 22:22

Instrument ID: HP5973N Calib Start Date: 09/06/2017 17:16

Lab File ID: N2298.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	1.891	2.182	0.1000	28.8	25.0	15.4	20.0
1,2-Dichloropropane	Ave	1.622	1.781	0.1000	27.5	25.0	9.8	20.0
Dibromomethane	Ave	0.8055	0.8351	0.1000	25.9	25.0	3.7	20.0
1,4-Dioxane	Ave	0.0058	0.0047		404	500	-19.2	50.0
Bromodichloromethane	Ave	1.542	1.592	0.2000	25.8	25.0	3.3	20.0
2-Chloroethyl vinyl ether	Ave	1.231	1.276		25.9	25.0	3.7	20.0
cis-1,3-Dichloropropene	Ave	2.052	2.084	0.2000	25.4	25.0	1.6	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.2496	0.2352	0.1000	118	125	-5.8	20.0
Toluene	Ave	0.8238	0.8458	0.4000	25.7	25.0	2.7	20.0
trans-1,3-Dichloropropene	Ave	0.4837	0.4984	0.1000	25.8	25.0	3.0	20.0
Ethyl methacrylate	Ave	0.4674	0.4623		24.7	25.0	-1.1	20.0
1,1,2-Trichloroethane	Ave	0.2461	0.2330	0.1000	23.7	25.0	-5.4	20.0
Tetrachloroethene	Ave	0.3595	0.4007	0.2000	27.9	25.0	11.5	20.0
1,3-Dichloropropane	Ave	0.5121	0.5221		25.5	25.0	2.0	20.0
2-Hexanone	Ave	0.4671	0.4053	0.1000	108	125	-13.2	20.0
Chlorodibromomethane	Ave	0.3293	0.3333	0.1000	25.3	25.0	1.2	20.0
1,2-Dibromoethane (EDB)	Ave	. 0.3176	0.3247		25.6	25.0	2.2	20.0
Chlorobenzene	Ave	0.9050	0.9196	0.5000	25.4	25.0	1.6	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3370	0.3565		26.4	25.0	5.8	20.0
Ethylbenzene	Ave	1.557	1.599	0.1000	25.7	25.0	2.7	20.0
m,p-Xylene	Ave	0.6181	0.6330	0.1000	25.6	25.0	2.4	20.0
o-Xylene	Ave	0.6031	0.6146	0.3000	25.5	25.0	1.9	20.0
Styrene	Ave	1.055	1.074	0.3000	25.5	25.0	1.8	20.0
Bromoform	Ave	0.2239	0.2319	0.1000	25.9	25.0	3.6	50.0
Isopropylbenzene	Ave	3.201	3.446	0.1000	26.9	25.0	7.6	20.0
Bromobenzene	Ave	0.7844	0.8690		27.7	25.0	10.8	20.0
1,1,2,2-Tetrachloroethane	Ave	0.8218	0.8147	0.3000	24.8	25.0	-0.9	20.0
1,2,3-Trichloropropane	Ave	0.2872	0.2681		23.3	25.0	-6.7	20.0
trans-1,4-Dichloro-2-butene	Ave	0.4743	0.4137		21.8	25.0	-12.8	50.0
N-Propylbenzene .	Ave	3.608	3.889		26.9	25.0	7.8	20.0
2-Chlorotoluene	Ave	0.7269	0.7744		26.6	25.0	6.5	20.0
1,3,5-Trimethylbenzene	Ave	2.630	2.815		26.8	25.0	7.0	20.0
4-Chlorotoluene	Ave	2.478	2.645		26.7	25.0	6.8	20.0
tert-Butylbenzene	Ave	0.5875	0.6258		26.6	25.0	6.5	20.0
1,2,4-Trimethylbenzene	Ave	2.702	2.862		26.5	25.0	5.9	20.0
sec-Butylbenzene	Ave	3.307	3.621		27.4	25.0	9.5	20.0
1,3-Dichlorobenzene	Ave	1.545	1.621	0.6000	26.2	25.0	4.9	20.0
4-Isopropyltoluene	Ave	2.929	3.192		27.2	25.0	9.0	20:0
1,4-Dichlorobenzene	Ave	1.547	1.654	0.5000	26.7	25.0	6.9	20.0
n-Butylbenzene	Ave	2.532	2.665		26.3	25.0	5.3	20.0
1,2-Dichlorobenzene	Ave	1.501	1.531	0,4000	25.5	25.0	2.0	20.0

Lab Name: TestAmerica Buffalo Job No.: 480-123780-1

SDG No.:

Lab Sample ID: CCVIS 480-377452/2 Calibration Date: 09/18/2017 22:22

Instrument ID: <u>HP5973N</u> Calib Start Date: 09/06/2017 17:16

GC Column: ZB-624 (20) ID: 0.18(mm) Calib End Date: 09/06/2017 20:26

Lab File ID: N2298.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1765	0.1469	0.0500	20.8	25.0	-16.8	50.0
1,2,4-Trichlorobenzene	Ave	1.113	0.8863	0.2000	19.9	25.0	20.3*	20.0
Hexachlorobutadiene	Ave	0.4841	0.4599		23.8	25.0	-5.0	20.0
Naphthalene	Ave	2.904	2.143		18.5	25.0	1/26.2*	20.0
1,2,3-Trichlorobenzene	Ave	0.9762	0.7112		18.2	25.0	7.1*	20.0
Dibromofluoromethane (Surr)	Ave	1.129	1.139		25.2	25.0	().8	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	1.751	1.729		24.7	25.0	-1.2	20.0
Toluene-d8 (Surr)	Ave	1.149	1.175		25.6	25.0	2.3	20.0
4-Bromofluorobenzene (Surr)	Ave	0.4008	0.3954		24.7	25.0	-1.3	20.0

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo	Job No.: 480-123780-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 480-377452/6
Matrix: Water	Lab File ID: N2302.D
Analysis Method: 8260C	Date Collected:
Sample wt/vol: 5(mL)	Date Analyzed: 09/19/2017 00:09
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 377452	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		1.0	0.35
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
96-18-4	1,2,3-Trichloropropane	ND		1.0	0.89
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane (EDB)	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		5.0	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		5.0	3.0
107-13-1	Acrylonitrile	ND		5.0	0.83
71-43-2	Benzene	ND		1.0	0.41
74-97-5	Bromochloromethane	ND		1.0	0.87
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Chlorodibromomethane	ND		1.0	0.32
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74~87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
74-95-3	Dibromomethane	ND		1.0	0.41
100-41-4	Ethylbenzene	ND		1.0	. 0.74
74-88-4	Iodomethane	ND		1.0	0.30
75-09-2	Methylene Chloride	(0.556	J	1.0	0.44

FORM I 8260C

GC/MS VOA ORGANICS ANALYSIS DATA SHEET ŁOKW I

εr.0	0.1		ND		Styrene	100-45-5
WDF	ВГ	Ö	RESULT		СОМРОИИР ИАМЕ	.ON SAD
, 	nuits: ug/L				SZATTE :.OV n	Analysis Batc
		MOJ (b	el: (low/me	vəd	VIII	% Moisture:
(mm) 81	GC Column: ZB-624 (20) ID: 0.18(mm)			D9	:.10V	Soil Extract
	Dilution Factor: 1				:10V	JoupilA Lios
	Date Analyzed: 09/19/2017 00:09			Dat	(Jm) S	Sample wt/vol
		:	e Collected	Dat	oq: 8560C	Analysis Meth
	Lab File ID: N2302.D			dal		Matrix: Water
	Lab Sample ID: MB 480-377452/6			ds.l	:DI	Client Sample
		1	 _			spe No.:
I-087831-084 :.oV dot			dot	chmerica Buffalo	Lab Name: Tes	

061-77		101	J	0-20-09021	
STIMIL	Ö	%BEC		.ON SAS	
99.0	0.2		ИВ	Xylenes, Total	1330-50-7
06.0	0.1		ИВ	Vinyl chloride	D-10-9L
28.0	0.8		ND	Vinyl acetate	108-02-4
88.0	0.1		ND	Trichlorofluoromethane	₽-69-S <i>L</i>
94.0	0.1		ND	ТтісһІогоетһепе	9-T0-6 <i>L</i>
22.0	0.8		ИD	trans-1,4-Dichloro-2-butene	9-19-011
7E.0	0.I		ND	frans-1,3-Dichloropropene	10061-02-6
06.0	0.I		ND	trans-1,2-Dichloroethene	S-09-9ST
TC.U	О.Т			тотиеле	E-88-80T

Tetrachloroethene

ИD

0.τ

98.0

75-123	1	30T	Dibromofluoromethane (Surr)	L-ES-898T
73-120		86	4-Bromofluorobenzene (Surr)	₽-00-09₽
80-120		<i>L</i> 6	Toluene-d8 (Surr)	2037-26-5
77-120		TOT	1,2-Dichloroethane-d4 (Surr)	0-L0-090LT
STIMIL	Ö	%BEC	SURROGATE	.ON SAD

127-18-4

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Part 360 Baseline Metals Data for TestAmerica Buffalo, Job Number: 480-123780-1

21 Ground Water Samples, 3 Surface Water Samples, and 1 Field Duplicate Collected September 7-12, 2017

Prepared by: Donald Anné October 27, 2017

Holding Times: Samples were analyzed within NYSDEC ASP holding times.

- <u>Initial and Continuing Calibration Verification</u>: The percent recoveries for target metals were within control limits (90-110% for all metals except Hg, 80-120% for Hg).
- <u>Low Level Standard for AA and ICP</u>: The percent recoveries for target metals were within laboratory QC limits (70-130%) for the low level standards.
- <u>Blanks</u>: The analyses of initial and continuing calibration, and preparation blanks reported baseline metals as below the MRLs, as required.
- <u>ICP Interference Check Sample</u>: The percent recoveries for applicable baseline metals were within control limits (80-120%).
- Spike Sample Recovery: Two of two percent recoveries for mercury were below control limits (75-125%) and below 30% for aqueous MS/MSD sample MW-9I. Positive results for mercury should be considered estimated, biased low (J-), and "not detected" results rejected, unusable (R) in associated aqueous samples.
- <u>Laboratory Duplicates</u>: The relative percent differences for target metals were below the allowable maximum (20%) in aqueous MS/MSD sample MW-9I, as required.
- <u>Field Duplicates</u>: The relative percent difference for applicable metals were below the allowable maximum (20%) in field duplicate pair MW-18S/CHA-1 (attached sheet), as required.
- <u>Laboratory Control Sample</u>: The percent recoveries for target metals were within control limits (80-120%) for the following aqueous samples.

Part 360 Baseline Metals Data Job Number: 480-123780-1

LCS 480-376039/2-A	LCS 480-376186/2-A	LCS 480-376635/2-A
LCS 480-376474/2-A	LCS 480-375862/2-A	LCS 480-376121/2-A
LCS 480-376549/2-A	LCS 480-376794/3-A	

ICP Serial Dilution: The %Ds for applicable metals were below the allowable maximum (10%) in aqueous serial dilution sample MW-9I, as required.

Instrument Detection Limits: All IDLs were at or below the MRLs, as required.

Part 360 Baseline Metals

Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-123780-1

S	61= MW-9S	S2=	CHA-1
<u>Analyte</u>	<u>S1</u>	<u>\$2</u>	RPD (%)
aluminum	ND	ND	NC
antimony	ND	ND	NC
arsenic	ND	ND	NC
barium	0.089	0.086	3%
beryllium	ND	ND	NC
boron	0.77	0.75	3%
cadmium	ND	ND	NC
calcium	119	117	2%
chromium	ND	ND	NC
cobalt	ND	ND	NC
copper	0.0060	0.0048	NC
iron	0.019	ND	NC
lead	ND	ND	NC
magnesium	16.1	15.7	3%
manganese	1.3	1.3	0%
mercury	ND	ND	NC
nickel	0.0054	0.0025	NC
potassium	10.2	9.9	3%
selenium	ND	ND	NC
silver	ND	ND	NC
sodium	63.4	61.5	3%
thallium	ND	ND	NC
vanadium	0.0054	0.0054	0%
zinc	0.0031	0.0035	NC

Samples results are reported in mg/L

Bold numbers are below the lowest standard.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

Client ID: MW-9I MS	Lab ID: 480-123848-1 MS
Lab Name: TestAmerica Buffalo	Job No.: 480-123780-1
SDG No.:	
Matrix: Water	Concentration Units: mg/L

% Solids:

Analyte	SSR	Sample Result (S	R) C	Spike Added (SA)	%R	Control Limit %R	Q	Method
Aluminum	10.01	ND		10.0	100	75-125		6010C
Antimony	0.204	ND		0.200	102	75-125		6010C
Arsenic	0.314	0.10		0.200	106	75-125		6010C
Barium	0.286	0.084		0.200	101	75-125		6010C
Beryllium	0.206	ND	T	0.200	103	75-125		6010C
Boron	0.505	0.30		0.200	101	75-125		6010C
Cadmium	0.210	ND	1	0.200	105	75-125		6010C
Calcium	127.3	116		10.0	116	75-125	4	6010C
Chromium	0.204	ND		0.200	102	75-125		6010C
Cobalt	0.205	0.0046		0.200	100	75-125		6010C
Copper	0.211	ND		0.200	105	75-125		6010C
Iron	14.75	4.7	T	10.0	101	75-125		6010C
Lead	0.214	0.0035	J	0.200	105	75-125		6010C
Magnesium	64.15	53.5		10.0	107	75-125	4	6010C
Manganese	0.262	0.054		0.200	104	75-125		6010C
Nickel	0.220	0.016		0.200	102	75-125		6010C
Potassium	25.59	15.3		10.0	103	75-125		6010C
Selenium	0.209	ND		0.200	105	75-125		6010C
Silver	0.0538	ND		0.0500	108	75-125		6010C
Sodium	148.4	138		10.0	103	75-125	4	6010C
Thallium	0.205	ND	1	0.200	102	75-125		6010C
Vanadium	0.213	ND		0.200	106	75-125		6010C
Zinc	0.204	ND	\top	0.200	102	75-125		6010C
Mercury	0.000323	ND		0.00667	5	80-120	F1	7470A

SSR = Spiked Sample Result

5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

Client ID: MW-9I MSD	Lab ID: 480-123848-1 MSD	
Lab Name: TestAmerica Buffalo	Job No.: 480-123780-1	
SDG No.:		
Matrix: Water	Concentration Units: mg/L	
9 0-1:		·

% Solids:

Analyte	(SDR)	Spike Added (SA)	%R	Control Limit %R	RPD	RPD Limit	Q	Method
Aluminum	10.08	10.0	101	75-125	1	20	-	6010C
Antimony	0.205	0.200	102	75-125	0	20		6010C
Arsenic	0.308	0.200	103	75-125	2	20		6010C
Barium	0.285	0.200	100	75-125	1	20		6010C
Beryllium	0.206	0.200	103	75-125	0	20		6010C
Boron	0.499	0.200	98	75-125	1	20		6010C
Cadmium	0.211	0.200	106	75-125	0	20		6010C
Calcium	124.0	10.0	82	75-125	3	20	4	6010C
Chromium	0.206	0.200	103	75-125	1	20		6010C
Cobalt	0.205	0.200	100	75-125	0	20		6010C
Copper	0.209	0.200	104	75-125	1	20		6010C
Iron	14.67	10.0	100	75-125	1	20		6010C
Lead	0.214	0.200	105	75-125	0	20		6010C
Magnesium	62.79	10.0	93	75-125	2	20	4	6010C
Manganese	0.261	0.200	104	75-125	1	20		6010C
Nickel	0.220	0.200	102	75-125	0	20		6010C
Potassium	25.07	10.0	98	75-125	2	20		6010C
Selenium	0.212	0.200	106	75-125	1	20		6010C
Silver	0.0521	0.0500	104	75-125	3	20		6010C
Sodium	144.0	10.0	NA 59	75-125	3	20	4	6010C
Thallium	0.204	0.200	102	75-125	0	20		6010C
Vanadium	0.212	0.200	106	75-125	0	20		6010C
Zinc	0.203	0.200	102	75-125	0	20		6010C
Mercury	0.000328	0.00667	(5)	80-120	2	20	F1	7470A

SDR = Sample Duplicate Result

NA - Not applicable, the sample concentration was greater than 4 times the spiking level; therefore, valid percent recoveries could not be calculated.

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Classical Chemistry* Baseline Parameters Data for TestAmerica Buffalo, Job Number: 480-123780-1

21 Ground Water Samples, 3 Surface Water Samples, and 1 Field Duplicate Collected May 31-June 3, 2016

Prepared by: Donald Anné October 27, 2017

Holding Times: The samples were analyzed within the USEPA holding times.

<u>Initial and Continuing Calibration Verification</u>: The percent recoveries for applicable target analytes were within laboratory QC limits (90-110% for all analytes except hexavalent chromium, 85-115% for hex chrome).

<u>Blanks</u>: The analyses of initial and continuing calibration and method blanks reported baseline analytes as below the MRLs, as required.

Spike Sample Recovery: The percent recoveries (%Rs) for ammonia were below laboratory QC limits (90-110%), but not below 30% for aqueous spike samples SW-2A, MW-9S, MW-15D, and MW-14I. Positive results for ammonia should be considered estimated, biased low (J-) and not detected results considered estimated (UJ) in associated aqueous samples.

The %R for total recoverable phenolics was below laboratory QC limits (90-110%), but not below 30% for aqueous spike sample MW-14D. Positive results for total recoverable phenolics should be considered estimated, biased low (J-) and not detected results considered estimated (UJ) in associated aqueous samples.

The %R for hexavalent chromium was below laboratory QC limits (90-110%), but not below 30% for aqueous spike sample MW-14I. Positive results for hexavalent chromium should be considered estimated, biased low (J-) and not detected results considered estimated (UJ) in associated aqueous samples.

The %R for COD was above laboratory QC limits (90-110%) for aqueous spike sample CHA-1. Positive results for COD should be considered estimated, biased high (J+) in associated aqueous samples.

- <u>Duplicates</u>: The relative percent differences for applicable analytes were below the allowable maximum (20%) in aqueous duplicate samples, as required.
- <u>Laboratory Control Sample</u>: The percent recovery for cyanide was above laboratory QC limits (90-110%), but not above 150% for aqueous sample LCS 480-376603/2-A. Positive results for cyanide should be considered estimated, biased high (J+) in associated aqueous samples.
- <u>Field Duplicates</u>: The relative percent differences for color and COD were above the allowable maximum (20%) in field duplicate pair MW-9S/CHA-1 (attached sheet). Results for color and COD should be considered estimated (J) in samples MW-9S and CHA-1.
- * Classical chemistry analytes include alkalinity, ammonia, bio-chemical oxygen demand (BOD₅), bromide, chemical oxygen demand (COD), chloride, color, cyanide, hexavalent chromium, nitrate, sulfate, total dissolved solids (TDS), total kjeldahl nitrogen (TKN), total organic carbon (TOC), total hardness, and total recoverable phenolics.

General Chemistries

Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-123780-1

S1= MW-9S **S2=** CHA-1

<u>Analyte</u>	<u>S1</u>	<u>S2</u>	<u>RPD (%)</u>	
ammonia, mg/L	0.37	0.34	8%	
total cyanide, mg/L	ND	ND	NC	
total kjeldahl nitrogen, mg/L	1.1	1.1	0%	
Biochemical Oxygen Demand, mg/L	ND	ND	NC	
total hardness, mg/L	380	368	3%	
total recoverable phenolics, mg/L	0.0072	0.0071	NC	
bromide, mg/L	ND	ND	NC	
chloride, mg/L	45.7	45.4	1%	
nitrate, mg/L-N	1.4	1.5	7%	
sulfate, mg/L	83.0	82.9	0%	
Chemical Oxygen Demand, mg/L	31.3	11.1	95%	*
alkalinity, mg/L	359	388	8%	
hexavalent chromium, mg/L	ND	ND	NC	
Total Organic Carbon, mg/L	11.6	11.6	0%	
Total Dissolved Solids, mg/L	575	555	4%	
turbidity, NTU	ND	ND	NC	
color, C.U.	20.0	15.0	29%	*

^{*} RPD is above the allowable maximum (20%)

Bold numbers are below the lowest standard.

ND - Not detected.

NC - Not calculated, both results must be above the reporting limit for valid RPDs to be calculated or within quantitation limits (above the low standard).

5-IN MATRIX SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab	Name:	TestAmerica	Buffalo	Job	No.:	480-123780-1

SDG No.:

Matrix: Water

Method	Lab Sample ID	Analyte	Result	C Unit	Spike Amount	Pct. Rec.	Limits	RPD RPD Limit	Q
310.2	480-123848-1	Alkalinity, Total	589	mg/L					В
310.2	480-123848-1 MS	Alkalinity, Total	589.8	mg/L	20.0	6.	60-140		4
Batch	ID: 376228 D	Pate: 09/11/2017 15:07							
310.2	480-123848-3	Alkalinity, Total	104	mg/L					В
310.2	480-123848-3 MS	Alkalinity, Total	115.1	mg/L	20.0	56	60-140		4
Batch	ID: 375911 D	ate: 09/08/2017 12:57							
350.1	480-123780-1	Ammonia as N	ND	mg/L		1			F1
350.1	480-123780-1 MS	Ammonia as N	0.122	mg/L	0.200	61)	90-110		F1
Batch		Pate: 09/12/2017 12:04				· A			
350.1	480-123848-1	Ammonia as N	20.8	mg/L		DI			
350.1	480-123848-1 MS	Ammonia as N MW-91	22.80	mg/L	4.00	50	90-110		4
Batch		eate: 09/12/2017 12:16							
350.1	480-123848-2	Ammonia as N	0.37	mg/L					F1
350.1	480-123848-2 MS	Ammonia as N	0.452	mg/L	0.200	43	90-110		F1
Batch		Date: 09/12/2017 13:19							
350.1	480-123947-6	Ammonia as N	0.040	mg/L		(F1
350.1	480-123947-6 MS	Ammonia as N MW-159	0.190	mg/L	0.200	(75)	90-110		F1
Batch		Pate: 09/13/2017 14:52							
350.1	480-124024-5	Ammonia as N	0.039	mg/L		X			F1
350.1	480-124024-5 MS	Ammonia as N MW-HI	0.199	mg/L	0.200	80	90-110		F1
Batch		Date: 09/11/2017 11:30	Prep Batch		Date: 0	9/11/20	17 03:59)	
351.2	480-123848-1	Total Kjeldahl Nitrogen		mg/L					
351.2	480-123848-1 MS	Total Kjeldahl Nitrogen		mg/L	10.0	90	90-110		
Batch		Pate: 09/12/2017 09:48	Prep Batch		Date: 0	9/11/20	17 18:10)	
351.2	480-123780-1	Total Kjeldahl Nitrogen		J mg/L					
351.2	480-123780-1 MS	Total Kjeldahl Nitrogen	1.20	mg/L	1.00	102	90-110		
Batch		Pate: 09/14/2017 09:49	Prep Batch	376696	Date: 0	9/13/20	17 16:40)	
351.2	480-123947-9	Total Kjeldahl Nitrogen	ND	mg/L					
351.2	480-123947-9 MS	Total Kjeldahl Nitrogen	1.09	mg/L	1.00	109	90-110		
Batch		Date: 09/14/2017 09:58	Prep Batch	376697	Date: 0	9/13/20	17 16:40)	
351.2	480-124024-1	Total Kjeldahl Nitrogen		mg/L					
351.2	480-124024-1 MS	Total Kjeldahl Nitrogen	2.05	mg/L	1.00	107	90-110		
Batch		Date: 09/14/2017 10:06	Prep Batch	1: 376697	Date: 0	9/13/20	17 16:40)	
351.2	480-124024-4	Total Kjeldahl Nitrogen	1.2	mg/L					
351.2	480-124024-4 MS	Total Kjeldahl Nitrogen	2.21	mg/L	1.00	105	90-110		
Batch	ID: 376235 D	Pate: 09/11/2017 20:09							

5-IN MATRIX SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab	Name:	TestAmerica	Buffalo	Joh No.:	480-123780-1
1100	rianic.	TODCIMICTICA	Dullul	OOD NO.	400-123/00 1

SDG No.:

Matrix:	Water											
Method	Lab Sample ID	Analyte	Result (C U	Init	Spike Amount			Limits	RPD	RPD Limit	Q
410.4	480-123848-1	Chemical Oxygen Demand	49.4	n	ng/L			-				В
410.4	480-123848-1 MS	Chemical Oxygen Demand	105.4	m	ng/L	50.0	112		75-125			
Batch :	ID: 376235 D	ate: 09/11/2017 20:09										
410.4	480-123848-7	Chemical Oxygen Demand	11.1	π	ng/L		~					F1 B
410.4	480-123848-7 MS	Chemical Oxygen Demand	85.80	n	ng/L	50.0	149)	75-125			F1
Batch :	ID: 376459 D	ate: 09/12/2017 18:56										
410.4	480-123947-2	Chemical Oxygen Demand	ND	n	ng/L							
410.4	480-123947-2 MS	Chemical Oxygen Demand	56.35	n	ng/L	50.0	113		75-125			
Batch :	ID: 376459 D	ate: 09/12/2017 18:56										
410.4	480-123947-7	Chemical Oxygen Demand	ND	π	ıg/L							
410.4	480-123947-7 MS	Chemical Oxygen Demand	61.42	π	ng/L	50.0	123		75-125			
Batch :	ID: 376983 D	ate: 09/14/2017 19:30										
410.4	480-124024-5	Chemical Oxygen Demand	ND	n	ıg/L							
410.4	480-124024-5 MS	Chemical Oxygen Demand	53.19		ng/L	50.0			75-125			
Batch :	ID: 376237 D	ate: 09/12/2017 01:54	Prep Batch:	:	376225	Date:	09/11/	201	7 16:50			
420.1	480-123848-1	Phenolics, Total Recoverable	0.0060									
420.1	480-123848-1 MS	Phenolics, Total Recoverable	0.103		ng/L	0.100			90-110		-	
Batch :		ate: 09/12/2017 01:54	Prep Batch:		376225	Date:	09/11/	201	7 16:50			
420.1	480-123848-2 480-123848-2	Phenolics, Total Recoverable	0.0072			0 100	95		90-110			
Batch :	MS	Phenolics, Total Recoverable ate: 09/15/2017 01:57	0.102 Prep Batch:		376971	0.100			7 16:45			
420.1	480-124024-6		-			Date.	03/14/	201	7 10:43			F1
420.1	460-124024-6	Phenolics, Total Recoverable	ND	11	ng/L							E J.
420.1	480-124024-6 MS MW-140	Phenolics, Total Recoverable	0.0829	π	ng/L	0.100	83		90-110			F1
Batch :	ID: 376000 D	ate: 09/09/2017 09:10										
7196A	480-123848-1	Chromium, hexavalent	ND	n	ng/L							
7196A	480-123848-1 MS	Chromium, hexavalent	0.0471	n	ng/L	0.0500	94		85-115			
Batch :		ate: 09/09/2017 09:10										
7196A	480-123848-7	Chromium, hexavalent	ND		ng/L							
7196A	480-123848-7 MS	Chromium, hexavalent	0.0471	n	ng/L	0.0500	94		85-115			
Batch :	ID: 376246 D	ate: 09/12/2017 04:16										
7196A	480-123947-2	Chromium, hexavalent	ND	π	ng/L							
7196A	480-123947-2 MS	Chromium, hexavalent	0.0489	π	ng/L	0.0500	98		85-115		_	
Batch	ID: 376246 D	ate: 09/12/2017 04:16										
7196A	480-123947-9	Chromium, hexavalent	ND	п	ng/L							
7196A	480-123947-9 MS	Chromium, hexavalent	0.0471	п	ng/L	0.0500	94		85-115			

5-IN MATRIX SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name:	TestAmerica Buffalo	Job No.:	480-123780-1
SDG No.:			

Matrix: Water

Method	Lab Sample ID	Analyte	Result C	Unit	Spike Amount	Pct. Rec.	Limits	RPD RPD Limit	Q ·
Batch	ID: 376589 · D	ate: 09/13/2017 08:12							
7196A	480-124024-5	Chromium, hexavalent	0.0067 J	mg/L					F1
7196A	480-124024-5 MS M(L	Chromium, hexavalent	0.0486	mg/L	0.0500	84	85-115		F1
Batch	ID: 376623 D	ate: 09/13/2017 13:27	Prep Batch:	376473	Date: 0	9/13/20	717 04:15		
9012B	480-123848-1	Cyanide	ND	mg/L					
9012B	480-123848-1 MS	Cyanide	0.101	mg/L	0.100	101	90-110		
Batch	ID: 376667 D	ate: 09/13/2017 15:10	Prep Batch:	376603	Date: 0	9/13/20	08:10		
9012B	480-123947-5	Cyanide	ND	mg/L					*
9012B	480-123947-5 MS	Cyanide	0.102	mg/L	0.100	102	90-110		
Batch	ID: 376250 D	ate: 09/10/2017 17:57							
9060A	480-123780-2	Total Organic Carbon	7.0	mg/L					
9060A	480-123780-2 MS	Total Organic Carbon	27.77	mg/L	20.0	104	54-131		
Batch	ID: 376250 D	ate: 09/10/2017 21:59							
9060A	480-123848-1	Total Organic Carbon	17.7	mg/L					
9060A	480-123848-1 MS	Total Organic Carbon	37.93	mg/L	20.0	101	54-131		
Batch	ID: 376250 D	ate: 09/11/2017 02:49							
9060A	480-123848-5	Total Organic Carbon	1.6	mg/L					
9060A	480-123848-5 MS	Total Organic Carbon	22.78	mg/L	20.0	106	54-131		
Batch	ID: 376727 D	ate: 09/13/2017 21:37							
9060A	480-123947-3	Total Organic Carbon	1.3	mg/L					В
9060A	480-123947-3 MS	Total Organic Carbon	18.28	mg/L	20.0	85	54-131		
Batch	ID: 376727 D	Date: 09/14/2017 02:35							
9060A	480-123947-7	Total Organic €Carbon	5.7	mg/L					
9060A	480-123947-7 MS	Total Organic Carbon	23.46	mg/L	20.0	89	54-131		
Batch	ID: 375999 D	Date: 09/09/2017 09:45							
SM	480-123848-1	Color	15.0	Color					
2120B SM 2120B	480-123848-1 MS	Color	35.00	Units Color Units	20.0	100	33-162		
Batch		Date: 09/12/2017 10:11							
SM 2340C	480-123848-1	Total Hardness	500	mg/L					
SM 2340C	480-123848-1 MS	Total Hardness	1000	mg/L	500	100	74-130		
		Date: 09/13/2017 10:16							
SM 2340C	480-123848-5	Hardness, as CaCO3	196	mg/L					
SM 2340C	480-123848-5 MS	Hardness, as CaCO3	392.0	mg/L	200	98	74-130		
SM 2340C	480-123848-5	Total Hardness	196	mg/L					
SM 2340C	480-123848-5 MS	Total Hardness	392.0	mg/L	200	98	74-130		

7A-IN LAB CONTROL SAMPLE GENERAL CHEMISTRY

Lab	Name:	TestAmerica	Buffalo	Job No.:	480-123780-1
-----	-------	-------------	---------	----------	--------------

SDG No.:

Matrix: Water

Method	Lab Sample ID	Analyte	Result C Unit Spike Pct. Limits RPD $_{ m Limit}$ Q
Batch	ID: 376590	Date: 09/13/2017 11:14	Prep Batch: 376442 Date: 09/12/2017 18:23
			LCS Source: WC_CN_50ppm_00235
9012B	LCS 480-376442/2- A	Cyanide	0.263 mg/L 0.250 105 90-110
Batch	ID: 376623	Date: 09/13/2017 13:19	Prep Batch: 376473 Date: 09/13/2017 04:15
9012B	LCS 480-376473/2-	Cyanide	LCS Source: WC_CN_50ppm_00235 0.245 mg/L 0.250 98 90-110
Batch		Date: 09/13/2017 14:49	Prep Batch: 376603 Date: 09/13/2017 08:10
9012B	LCS 480-376603/2-	Cyanide	LCS Source: WC_CN_50ppm_00235 0.315 mg/L 0.250 126 90-110 *
Batch		Date: 09/13/2017 15:23	Prep Batch: 376605 Date: 09/13/2017 12:30
9012B	LCS 480-376605/2-	Cyanide	LCS Source: WC_CN_50ppm_00235 0.247 mg/L 0.250 99 90-110
Batch		Date: 09/18/2017 10:19	Prep Batch: 377049 Date: 09/15/2017 10:41
9012B	LCS 480-377049/2- A		LCS Source: WC_CN_50ppm_00235 0.231 mg/L 0.250 92 90-110
Batch	ID: 376250	Date: 09/10/2017 14:18	
	480-376250/5		LCS Source: TOC LCS_00159 60.87 mg/L 60.0 101 90-110
Batch	ID: 376250	Date: 09/11/2017 01:03	
	480-376250/29		LCS Source: TOC LCS_00159 61.35 mg/L 60.0 102 90-110
Batch	ID: 376727	Date: 09/13/2017 00:18	
9060A	LCS 480-376727/5	Total Organic Carbon	LCS Source: TOC LCS_00160 57.98 mg/L 60.0 97 90-110
Batch		Date: 09/13/2017 12:11	
9060A	LCS 480-376727/29	Total Organic Carbon	LCS Source: TOC LCS_00160 56.91 mg/L 60.0 95 90-110
		Date: 09/14/2017 00:06	
	480-376727/53		LCS Source: TOC LCS_00160 56.82 mg/L 60.0 95 90-110
Batch	ID: 377213	Date: 09/15/2017 15:09	
9060A	LCS 480-377213/29	Total Organic Carbon	LCS Source: TOC LCS_00160 56.90 mg/L 60.0 95 90-110

