

State Pollutant Discharge Elimination System (SPDES) DISCHARGE PERMIT

SIC Code: 1794, 1623	NAICS Code:	237110		SPDES Number:	NY0277274		
Discharge Class (CL):	04			DEC Number:	2-6402-00004/00100		
Toxic Class (TX):	N			Effective Date (EDP):	December 30, 2024		
Major-Sub Drainage Basin:	1701 - 0022			Expiration Date (ExDP):	December 29, 2029		
Water Index Number:	(MW1.3) UB	Item No.:	890.6 - 6	Madification Dates (EDDM).	TDD		
Compact Area:	IEC			Modification Dates (EDPM):	ופט		

This SPDES permit is issued in compliance with Title 8 of Article 17 of the Environmental Conservation Law of New York State and in compliance with the Clean Water Act, as amended, (33 U.S.C. '1251 et.seq.)

PERMITTEE NAME AND ADDRESS								
Name:	New York City Economic Development Corporation (NYC EDC)	Attention:	Leonard	Leonard Greco				
Street:	One Liberty Plaza		Econard Greeo					
City:	New York	State:	NY	Zip Code:	10006			
Email:	Lgreco@edc.nyc	Phone:	212-312	2-3743				

is authorized to discharge from the facility described below:

FACILITY NAME, A	FACILITY NAME, ADDRESS, AND PRIMARY OUTFALL											
Name:	New Stap	lew Stapleton Waterfront Development - Northern & Southern Phases										
Address / Location:	Front Str	ont Street from Hannah Street to Vanderbilt Avenue County: Richmond										
City:	Staten Is	Staten Island State NY					Zip	Zip Code:		10304		
Facility Location:		Latitude:	40 °	38 '	00	" N	& Longitude	: -7	4 0	04	26	" W
Primary Outfall No.:	001 (PR-622)	Latitude:	40 °	38	06	" N	& Longitude	: 7	4 °	04	23	" W
Wastewater Description:	Treated Groundw	Receiv	0	r New	York	NAICS	S:	Class:	SB	Stand	dard:	SB

and the additional outfalls listed in this permit, in accordance with: effluent limitations; monitoring and reporting requirements; other provisions and conditions set forth in this permit; and 6 NYCRR Part 750-1 and 750-2.

This permit and the authorization to discharge shall expire on midnight of the expiration date shown above and the permittee shall not discharge after the expiration date unless this permit has been renewed or extended pursuant to law. To be authorized to discharge beyond the expiration date, the permittee shall apply for permit renewal not less than 180 days prior to the expiration date shown above.

DISTRIBUTION:

BWP Permit Coordinator (permit.coordinator@dec.ny.gov)

BWP Permit Writer

RWE (Selvin.southwell@dec.ny.gov)

RPA

EPA Region II (Region2_NPDES@epa.gov)

NYCEDČ

Permit Administrator:	Stephen A. Watts III					
Address:	47-40 21st Street, Long island City, NY 11101					
Signature		Date				

SPDES Number: **NY0277274**Page 2 of 12 v.1.24

SUMMARY OF ADDITIONAL OUTFALLS

Outfall	Wastewater Description NAICS Code Outfall Latitude					Outfall Longitude					
002 (PR-014)	Treated Groundwater		40	0	37	51	" N	74	04	, 23	" W
Receiving Water: Upper New York Bay Class: SB											
Outfall	Wastewater Description	NAICS Code	Outfall	Latit	ude			Outfall Longitude			
003	Treated Groundwater		40	0	37	24	" N	74	° 04	' 16	" W
Receiving Wate	Receiving Water: Upper New York Bay Class: SB										

SPDES Number: **NY0277274**Page 3 of 12 v.1.24

DEFINITIONS

TERM	DEFINITION
7-Day Geo Mean	The highest allowable geometric mean of daily discharges over a calendar week.
7-Day Average	The average of all daily discharges for each 7-days in the monitoring period. The sample measurement is the highest of the 7-day averages calculated for the monitoring period.
12-Month Rolling Average (12 MRA)	The current monthly value of a parameter, plus the sum of the monthly values over the previous 11 months for that parameter, divided by the number of months for which samples were collected in the 12-month period.
30-Day Geometric Mean	The highest allowable geometric mean of daily discharges over a calendar month, calculated as the antilog of: the sum of the log of each of the daily discharges measured during a calendar month divided by the number of daily discharges measured during that month.
Action Level	Action level means a monitoring requirement characterized by a numerical value that, when exceeded, triggers additional permittee actions and department review to determine if numerical effluent limitations should be imposed.
Compliance Level / Minimum Level	A compliance level is an effluent limitation. A compliance level is given when the water quality evaluation specifies a Water Quality Based Effluent Limit (WQBEL) below the Minimum Level. The compliance level shall be set at the Minimum Level (ML) for the most sensitive analytical method as given in 40 CFR Part 136, or otherwise accepted by the DEC.
Daily Discharge	The discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for the purposes of sampling. For pollutants expressed in units of mass, the 'daily discharge' is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurement, the 'daily discharge' is calculated as the average measurement of the pollutant over the day.
Daily Maximum	The highest allowable Daily Discharge.
Daily Minimum	The lowest allowable Daily Discharge.
Effective Date of Permit (EDP or EDPM)	The date this permit is in effect.
Effluent Limitations	Effluent limitation means any restriction on quantities, quality, rates and concentrations of chemical, physical, biological, and other constituents of effluents that are discharged into waters of the state.
Expiration Date of Permit (ExDP)	The date this permit is no longer in effect.
Instantaneous Maximum	The maximum level that may not be exceeded at any instant in time.
Instantaneous Minimum	The minimum level that must be maintained at all instants in time.
Monthly Average	The highest allowable average of daily discharges over a calendar month, calculated as the sum of each of the daily discharges measured during a calendar month divided by the number of daily discharges measured during that month.
Outfall	The terminus of a sewer system, or the point of emergence of any waterborne sewage, industrial waste or other wastes or the effluent therefrom, into the waters of the State.
Range	The minimum and maximum instantaneous measurements for the reporting period must remain between the two values shown.
Receiving Water	The classified waters of the state to which the listed outfall discharges.
Sample Frequency / Sample Type / Units	See DEC's "DMR Manual for Completing the Discharge Monitoring Report for the SPDES" for information on sample frequency, type and units.

SPDES Number: **NY0277274**Page 4 of 12 v.1.24

PERMIT LIMITS, LEVELS AND MONITORING

OUTFALL	DESCRIPTION	RECEIVING WATER	EFFECTIVE	EXPIRING
001 (PR-622)	Treated Groundwater	Upper New York Bay	TBD	TBD

	EFF	LUENT L	IMITATIO	ON		MONITO	RING REQUIRE	MEN	TS	
PARAMETER								Loca	ation	FN
	Туре	Limit	Units	Limit	Units	Sample Frequency	Sample Type	Inf.	Eff.	
Flow	Daily Maximum	0.69	MGD			Continuous	Recorder		Х	
рН	Daily Minimum	6.0	SU			Doily	Grab		_	
рп	Daily Maximum	9.0	SU			Daily	Glab		Х	
Total Suspended Solids (TSS)	Monthly Average	20	mg/L			Monthly	Grab		Х	
Total Suspended Solids (TSS)	Daily Maximum	40	mg/L			Monthly	Grab		Х	
Oil & Grease	Monthly Average	15	mg/L			Monthly	Grab		Х	
Total Mercury	Daily Maximum	50	ng/L			Monthly	Grab		Х	
Total Copper	Daily Maximum	34	ug/L			Monthly	Grab		Х	
Total Lead	Daily Maximum	42	ug/L			Monthly	Grab		Х	
Total Zinc	Daily Maximum	349	ug/L			Monthly	Grab		Х	
EMERGING CONTAMINANTS	Туре	Limit	Units	Limit	Units	Sample Frequency	Sample Type	Inf.	Eff.	FN
Perfluorooctanoic acid (PFOA)	Daily Maximum	Monitor	ug/L			Quarterly	Grab	Х	Х	3
Perfluorooctanesulfonic acid (PFOS)	Daily Maximum	Monitor	ug/L			Quarterly	Grab	Х	Х	3
All 38 Per-and Polyfluoroalkyl Substances (PFAS)	Daily Maximum	Monitor	ug/L			Quarterly	Grab	Х	Х	3, 4
1,4-Dioxane (1,4-D)	Daily Maximum	Monitor	ug/L			Quarterly	Grab	Х	Х	3

PERMIT LIMITS, LEVELS AND MONITORING

OUTFALL	DESCRIPTION	RECEIVING WATER	EFFECTIVE	EXPIRING
002 (PR-014)	Treated Groundwater	Upper New York Bay	TBD	TBD

	EFF	LUENT L	IMITATIO	ON		MONITO	RING REQUIRE	MEN	TS	
PARAMETER								Loca	ation	FN
	Туре	Limit	Units	Limit	Units	Sample Frequency	Sample Type	Inf.	Eff.	
Flow	Daily Maximum	1.01	MGD			Continuous	Recorder		Х	
-11	Daily Minimum	6.0	SU			Dailu	Crah			
pΗ	Daily Maximum	9.0	SU			Daily	Grab		Х	
Total Suspended Solids (TSS)	Monthly Average	20	mg/L			Monthly	Grab		х	
Total Suspended Solids (TSS)	Daily Maximum	40	mg/L			Monthly	Grab		Х	
Oil & Grease	Monthly Average	15	mg/L			Monthly	Grab		Х	
Total Mercury	Daily Maximum	50	ng/L			Monthly	Grab		Х	
Total Copper	Daily Maximum	34	ug/L			Monthly	Grab		Х	
Total Lead	Daily Maximum	42	ug/L			Monthly	Grab		Х	
Total Zinc	Daily Maximum	349	ug/L			Monthly	Grab		Х	
ACTION LEVEL PARAMETERS	Туре	Action Level	Units	Action Level	Units	Sample Frequency	Sample Type	Inf.	Eff.	FN
Benzene	Daily Maximum	5	ug/L			Monthly	Grab		Х	1
Toluene	Daily Maximum	5	ug/L			Monthly	Grab		Х	1
Ethylbenzene	Daily Maximum	5	ug/L			Monthly	Grab		Х	1
Xylene(o)	Daily Maximum	5	ug/L			Monthly	Grab		Х	1, 2
Xylene(m+p)	Daily Maximum	10	ug/L			Monthly	Grab		Х	1, 2
Tetrachloroethylene	Daily Maximum	10	ug/L			Monthly	Grab		Х	1
МТВЕ	Daily Maximum	Monitor	ug/L			Monthly	Grab		Х	1
EMERGING CONTAMINANTS	Туре	Limit	Units	Limit	Units	Sample Frequency	Sample Type	Inf.	Eff.	FN
Perfluorooctanoic acid (PFOA)	Daily Maximum	Monitor	ug/L			Quarterly	Grab	Х	х	3
Perfluorooctanesulfonic acid (PFOS)	Daily Maximum	Monitor	ug/L			Quarterly	Grab	Х	х	3
All 38 Per-and Polyfluoroalkyl Substances (PFAS)	Daily Maximum	Monitor	ug/L			Quarterly	Grab	Х	х	3, 4
1,4-Dioxane (1,4-D)	Daily Maximum	Monitor	ug/L			Quarterly	Grab	Х	Х	3

SPDES Number: **NY0277274**Page 6 of 12 v.1.24

PERMIT LIMITS, LEVELS AND MONITORING

OUTFALL	DESCRIPTION	RECEIVING WATER	EFFECTIVE	EXPIRING
003	Treated Groundwater	Upper New York Bay	TBD	TBD

	EFFL	LUENT LIN	IOITATIN	N		MONITO	RING REQUIRE	MEN	TS	
PARAMETER							0	Loca	ation	FN
	Туре	Limit	Units	Limit	Units	Sample Frequency	Sample Type	Inf.	Eff.	
Flow	Daily Maximum	1.01	MGD			Continuous	Recorder		Х	
-11	Daily Minimum	6.0	SU			Doily	Crah			
рН	Daily Maximum	9.0	SU			Daily	Grab		Х	
Total Suspended Solids (TSS)	Monthly Average	20	mg/L			Monthly	Grab		Х	
Total Suspended Solids (TSS)	Daily Maximum	40	mg/L			Monthly	Grab		Х	
Oil & Grease	Monthly Average	15	mg/L			Monthly	Grab		Χ	
Total Mercury	Daily Maximum	50	ng/L			Monthly	Grab		Х	
Total Arsenic	Daily Maximum	180	ug/L			Monthly	Grab		Х	
Total Lead	Daily Maximum	42	ug/L			Monthly	Grab		Х	
Total Nickel	Daily Maximum	41	ug/L			Monthly	Grab		Χ	
EMERGING CONTAMINANTS	Туре	Limit	Units	Limit	Units	Sample Frequency	Sample Type	Inf.	Eff.	FN
Perfluorooctanoic acid (PFOA)	Daily Maximum	Monitor	ug/L			Quarterly	Grab	Х	Χ	3
Perfluorooctanesulfonic acid (PFOS)	Daily Maximum	Monitor	ug/L			Quarterly	Grab	Х	Х	3
All 38 Per-and Polyfluoroalkyl Substances (PFAS)	Daily Maximum	Monitor	ug/L			Quarterly	Grab	Х	Х	3, 4
1,4-Dioxane (1,4-D)	Daily Maximum	Monitor	ug/L			Quarterly	Grab	Х	Х	3

FOOTNOTES:

- 1. Action Levels: If the action level is exceeded, the additional monitoring requirement is triggered, and the permittee shall undertake a short-term, high-intensity, monitoring program for the respective parameter(s). Samples identical to those required for routine monitoring purposes shall be taken on each of at least three consecutive days and analyzed. Results shall be expressed in both mass and concentration. If levels higher than the action levels are confirmed, the permittee shall evaluate the treatment system operation and identify and employ actions to reduce concentrations present in the discharge. The permit may also be reopened by the DEC for consideration of revised action levels or effluent limits. Action level monitoring results and the effectiveness of the actions taken shall be summarized and submitted with the monthly operating report [or DMR] data.
- 2. Revised the limit for Xylene action level of 5µg/l to individual xylene (o, m+p) isomers for all outfalls, to address the technical error made in 2024 SPDES permit. Per TOGS 1.2.1 (attachment C), the technology based effluent limit-best professional judgment (TBEL-BPJ) limit applicable for facilities with carbon adsorption is 5.0 µg/l for individual Xylene isomers (o, m and p) and not the sum of (o, m and p) Xylene. The TBEL-BPJ is still protective of the water quality standard of the receiving waterbody. Due to the technical difficulty of analyzing the m & p isomers Xylene separately, the permit includes 5.0 µg/l action level for o-Xylene and 10 µg/l for m+p -Xylene.
- 3. The permittee shall collect grab samples of both the influent and effluent from the facility's treatment system(s) associated with the identified outfall for Per-and Polyfluoroalkyl Substances (PFAS) utilizing EPA analytical method 1633. The samples must represent normal discharge conditions and treatment operations and shall be obtained on a quarterly basis for at least 3 consecutive months.
- 4. Refer to the Emerging Contaminants Pollutant Summary Table for a list of the 38 PFAS compounds to test for.

SPDES Number: **NY0277274**Page 7 of 12 v.1.24

SPECIAL CONDITIONS

BEST MANAGEMENT PRACTICES (BMPs) FOR INDUSTRIAL FACILITIES

Note that for some facilities, especially those with few employees or limited industrial activities, some of the below BMPs may not be applicable. It is acceptable in these cases to indicate "Not Applicable" for the portion(s) of the BMP Plan that do not apply to your facility, along with an explanation.

- 1. <u>General</u> The permittee shall develop, maintain, and implement a Best Management Practices (BMP) plan to prevent releases of significant amounts of pollutants to the waters of the State through plant site runoff; spillage and leaks; sludge or waste disposal; and stormwater discharges including, but not limited to, drainage from raw material storage. The BMP plan shall be documented in narrative form and shall include the 13 minimum BMPs and any necessary plot plans, drawings, or maps. Other documents already prepared for the facility such as a Safety Manual or a Spill Prevention, Control and Countermeasure (SPCC) plan may be used as part of the plan and may be incorporated by reference. A copy of the current BMP plan shall be submitted to the DEC as required in item (2.) below and a copy must be maintained at the facility and shall be available to authorized DEC representatives upon request.
- 2. <u>Compliance Deadlines</u> –The BMP plan shall be implemented within 6 months of submission, unless a different time frame is approved by the Department. The BMP plan shall be reviewed annually and shall be modified whenever (a) changes at the facility materially increase the potential for releases of pollutants; (b) actual releases indicate the plan is inadequate, or (c) a letter from the DEC identifies inadequacies in the plan. The permittee shall certify in writing, as an attachment to the December Discharge Monitoring Report (DMR), that the annual review has been completed. Subsequent modifications to or renewal of this permit does not reset or revise these deadlines unless a new deadline is set explicitly by such permit modification or renewal.
- 3. Facility Review The permittee shall review all facility components or systems (including but not limited to material storage areas; in-plant transfer, process, and material handling areas; loading and unloading operations; storm water, erosion, and sediment control measures; process emergency control systems; and sludge and waste disposal areas) where materials or pollutants are used, manufactured, stored or handled to evaluate the potential for the release of pollutants to the waters of the State. In performing such an evaluation, the permittee shall consider such factors as the probability of equipment failure or improper operation, cross-contamination of storm water by process materials, settlement of facility air emissions, the effects of natural phenomena such as freezing temperatures and precipitation, fires, and the facility's history of spills and leaks. The relative toxicity of the pollutant shall be considered in determining the significance of potential releases. The review shall address all substances present at the facility that are identified in the SPDES application Form NY-2C (available at https://www.dec.ny.gov/docs/permits_ej_operations_pdf/form2c.pdf) or that are required to be monitored for by the
 - https://www.dec.ny.gov/docs/permits_ej_operations_pdf/form2c.pdf) or that are required to be monitored for by the SPDES permit.
- 4. 13 Minimum BMPs: Whenever the potential for a release of pollutants to State waters is determined to be present, the permittee shall identify BMPs that have been established to prevent or minimize such potential releases. Where BMPs are inadequate or absent, appropriate BMPs shall be established. In selecting appropriate BMPs, the permittee shall consider good industry practices and, where appropriate, structural measures such as secondary containment and erosion/sediment control devices and practices. USEPA guidance for development of stormwater elements of the BMP is available in *Developing Your Stormwater Pollution Prevention Plan A Guide for Industrial Operators*, February 2009, EPA 833-B-09-002. As a minimum, the plan shall include the following BMPs:

1. BMP Pollution Prevention Team

3. Risk Identification & Assessment

4. Employee Training

2. Reporting of BMP Incidents

5. Inspections and Records

6. Security

7. Preventive Maintenance

8. Good Housekeeping

9. Materials/Waste Handling, Storage, & Compatibility

10. Spill Prevention & Response

11. Erosion & Sediment Control

12. Management of Runoff

13. Street Sweeping

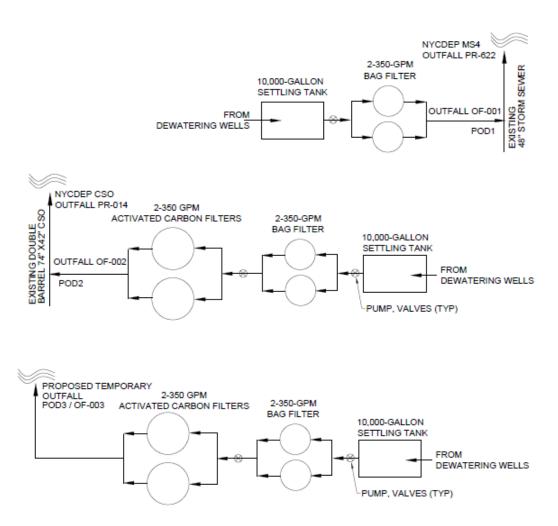
SPDES Number: **NY0277274**Page 8 of 12 v.1.24

DISCHARGE NOTIFICATION REQUIREMENTS

- (a) The permittee shall install and maintain identification signs at all outfalls to surface waters listed in this permit, unless the Permittee has obtained a waiver in accordance with the Discharge Notification Act (DNA). Such signs shall be installed before initiation of any new discharge location.
- (b) Subsequent modifications to or renewal of this permit does not reset or revise the deadline set forth in (a) above, unless a new deadline is set explicitly by such permit modification or renewal.
- (c) The Discharge Notification Requirements described herein do not apply to outfalls from which the discharge is composed exclusively of storm water, or discharges to ground water.
- (d) The sign(s) shall be conspicuous, legible and in as close proximity to the point of discharge as is reasonably possible while ensuring the maximum visibility from the surface water and shore. The signs shall be installed in such a manner to pose minimal hazard to navigation, bathing or other water related activities. If the public has access to the water from the land in the vicinity of the outfall, an identical sign shall be posted to be visible from the direction approaching the surface water.

The signs shall have **minimum** dimensions of eighteen inches by twenty-four inches (18" x 24") and shall have white letters on a green background and contain the following information:

N.Y.S. PERMITTED DISCHARGE POINT
SPDES PERMIT No.: NY
OUTFALL No. :
For information about this permitted discharge contact:
Permittee Name:
Permittee Contact:
Permittee Phone: () - ### - ####
OR:
NYSDEC Division of Water Regional Office Address:
NYSDEC Division of Water Regional Phone: () - ### -####

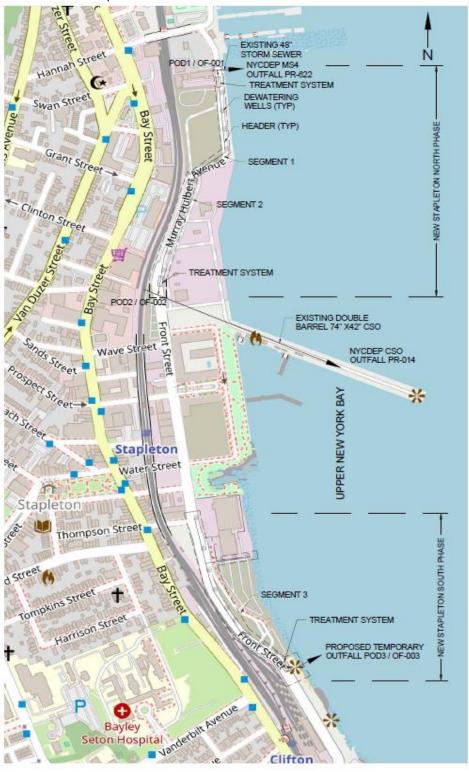

- (e) Upon request, the permittee shall make available electronic or hard copies of the sampling data to the public. In accordance with the RECORDING, REPORTING AND ADDITIONAL MONITORING REQUIREMENTS page of your permit, each DMR shall be maintained (either electronically or as a hard copy) on record for a period of five years.
- (f) The permittee shall periodically inspect the outfall identification sign(s) in order to ensure they are maintained, are still visible, and contain information that is current and factually correct. Signs that are damaged or incorrect shall be replaced within 3 months of inspection.

MONITORING LOCATIONS

The permittee shall take samples and measurements, to comply with the monitoring requirements specified in this permit, at the locations(s) specified below:

Influent: Prior to settling tank. Sample for emerging contaminants only.

Effluent: After the Effluent Pump


Treatment Systems at Each Outfall for New Stapleton Waterfront Development
Northern & Southern Phases
Staten Island, New York

MONITORING LOCATIONS

The permittee shall take samples and measurements, to comply with the monitoring requirements specified in this permit, at the locations(s) specified below:

Influent: Prior to settling tank. Sample for emerging contaminants only.

Effluent: After the Effluent Pump

Dewatering Site Plan for New Stapleton Waterfront Development Northern & Southern Phases Staten Island, New York

SPDES Number: **NY0277274**Page 11 of 12 v.1.24

GENERAL REQUIREMENTS

A. The regulations in 6 NYCRR Part 750 are hereby incorporated by reference and the conditions are enforceable requirements under this permit. The permittee shall comply with all requirements set forth in this permit and with all the applicable requirements of 6 NYCRR Part 750 incorporated into this permit by reference, including but not limited to the regulations in paragraphs B through H as follows:

B. General Conditions

1. Duty to comply 6 NYCRR 750-2.1(e) & 2.4 Duty to reapply 2. 6 NYCRR 750-1.16(a) Need to halt or reduce activity not a defense 6 NYCRR 750-2.1(g) 6 NYCRR 750-2.7(f) 4. Duty to mitigate Permit actions 6 NYCRR 750-1.1(c), 1.18, 1.20 & 2.1(h) 5. 6. Property rights 6 NYCRR 750-2.2(b) 7. Duty to provide information 6 NYCRR 750-2.1(i) 8. Inspection and entry 6 NYCRR 750-2.1(a) & 2.3

C. Operation and Maintenance

 1. Proper Operation & Maintenance
 6 NYCRR 750-2.8

 2. Bypass
 6 NYCRR 750-1.2(a)(17), 2.8(b) & 2.7

 3. Upset
 6 NYCRR 750-1.2(a)(94) & 2.8(c)

D. Monitoring and Records

1. Monitoring and records
2. Signatory requirements
6 NYCRR 750-2.5(a)(2), 2.5(a)(6), 2.5(c)(1), 2.5(c)(2), & 2.5(d)
6 NYCRR 750-1.8 & 2.5(b)

E. Reporting Requirements

Reporting requirements for non-POTWs 6 NYCRR 750-2.5, 2.6, 2.7, &1.17 2. Anticipated noncompliance 6 NYCRR 750-2.7(a) 3. Transfers 6 NYCRR 750-1.17 Monitoring reports 6 NYCRR 750-2.5(e) 4. Compliance schedules 6 NYCRR 750-1.14(d) 5. 24-hour reporting 6 NYCRR 750-2.7(c) & (d) 6. Other noncompliance 6 NYCRR 750-2.7(e) 7. Other information 6 NYCRR 750-2.1(f) 8.

F. Sludge Management

The permittee shall comply with all applicable requirements of 6 NYCRR Part 360.

G. SPDES Permit Program Fee

The permittee shall pay to the DEC an annual SPDES permit program fee within 30 days of the date of the first invoice, unless otherwise directed by the DEC, and shall comply with all applicable requirements of ECL 72-0602 and 6 NYCRR Parts 480, 481 and 485. Note that if there is inconsistency between the fees specified in ECL 72-0602 and 6 NYCRR Part 485, the ECL 72-0602 fees govern.

H. Water Treatment Chemicals (WTCs)

New or increased use and discharge of a WTC requires prior DEC review and authorization. At a minimum, the permittee must notify the DEC in writing of its intent to change WTC use by submitting a completed *WTC Notification Form* for each proposed WTC. The DEC will review that submittal and determine if a SPDES permit modification is necessary or whether WTC review and authorization may proceed outside of the formal permit administrative process. The majority of WTC authorizations do not require SPDES permit modification. In any event, use and discharge of a WTC shall not proceed without prior authorization from the DEC. Examples of WTCs include biocides, coagulants, conditioners, corrosion inhibitors, defoamers, deposit control agents, flocculants, scale inhibitors, sequestrants, and settling aids.

- 1. WTC use shall not exceed the rate explicitly authorized by this permit or otherwise authorized by the DEC.
- 2. The permittee shall maintain a logbook of all WTC use, noting for each WTC the date, time, exact location, and amount of each dosage, and, the name of the individual applying or measuring the chemical. The logbook must also document that adequate process controls are in place to ensure excessive levels of WTCs are not used.
- 3. The permittee shall submit a completed WTC Annual Report Form each year that they use and discharge WTCs. This form shall be submitted in electronic format and attached to either the December DMR or the annual monitoring report required below. The WTC Notification Form and WTC Annual Report Form are available from the DEC's website at: http://www.dec.ny.gov/permits/93245.html

SPDES Number: NY0277274

Page 12 of 12 v.1.24

RECORDING, REPORTING AND ADDITIONAL MONITORING REQUIREMENTS

- A. The monitoring information required by this permit shall be retained for a period of at least five years from the date of the sampling for subsequent inspection by the Department or its designated agent.
- B. <u>Discharge Monitoring Reports (DMRs):</u> Completed DMR forms shall be submitted for each month reporting period in accordance with the DMR Manual available on DEC's website.

DMRs must be submitted electronically using the electronic reporting tool (NetDMR) specified by DEC. Instructions on the use of NetDMR can be found at https://www.dec.ny.gov/chemical/103774.html. Hardcopy paper DMRs will only be accepted if a waiver from the electronic submittal requirements has been granted by DEC to the facility.

The first monitoring period begins on the effective date of this permit, and, unless otherwise required, the reports are due no later than the 28th day of the month following the end of each monitoring period.

Phone: (518) 402-8111

C. Additional information required to be submitted by this permit shall be summarized and reported to the Regional Water Engineer and Bureau of Water Permits at the following addresses:

Department of Environmental Conservation Division of Water, Bureau of Water Permits 625 Broadway, Albany, New York 12233-3505

Department of Environmental Conservation
Regional Water Engineer, Region 2
One Hunters Point Plaza, Long Island City, New York, 11101-5407 Phone: (718) 482-4933

- D. Monitoring and analysis shall be conducted using sufficiently sensitive test procedures approved under 40 CFR Part 136, unless other test procedures have been specified in this permit.
- E. More frequent monitoring of the discharge(s), monitoring point(s), or waters of the State than required by the permit, where analysis is performed by a certified laboratory or where such analysis is not required to be performed by a certified laboratory, shall be included in the calculations and recording of the data on the corresponding DMRs.
- F. Calculations which require averaging of measurements shall utilize an arithmetic mean unless otherwise specified in this permit.
- G. Unless otherwise specified, all information recorded on the DMRs shall be based upon measurements and sampling carried out during the most recently completed reporting period.
- H. Any laboratory test or sample analysis required by this permit for which the State Commissioner of Health issues certificates of approval pursuant to section 502 of the Public Health Law shall be conducted by a laboratory which has been issued a certificate of approval. Inquiries regarding laboratory certification should be directed to the New York State Department of Health, Environmental Laboratory Accreditation Program.

Facility: NYCEDC- New Stapleton Waterfront Development- Northern & Southern Phases

SPDES Number: NY0277274 USEPA Non-Major/Class 04 Industrial Permit Writer: Jennifer Cetrulo Water Quality Reviewer: NA

SPDES Permit Fact Sheet New York City Economic Development Corporation (NYCEDC) NYCEDC- New Stapleton Waterfront Development— Northern & Southern Phases NY0277274

Permittee: New York City Economic Development Corporation (NYCEDC) Date: August 22, 2025 v.1.25 Facility: NYCEDC- New Stapleton Waterfront Development– Northern & Southern Phases

SPDES Number: NY0277274 Permit Writer: Jennifer Cetrulo USEPA Non-Major/Class 04 Industrial Water Quality Reviewer: NA

Contents

Summary of Permit Application	3
Administrative History	4
Facility Information	4
Site Overview	5
Existing Effluent Quality	6
Receiving Water Information	7
Permit Requirements	8
Anti-backsliding	8
Antidegradation	8
Discharge Notification Act Requirements	8
Best Management Practices (BMPs) for Industrial Facilities	8
Emerging Contaminant Monitoring	
Special Conditions	8
OUTFALL AND RECEIVING WATER SUMMARY TABLE	10
POLLUTANT SUMMARY TABLE	10
Outfall 001 (PR-622)	10
POLLUTANT SUMMARY TABLE	11
Outfall 002 (PR-014)	11
POLLUTANT SUMMARY TABLE	14
Outfall 003	14
POLLUTANT SUMMARY TABLE	14
Outfall 001 (PR-622), 002 (PR-014), 003 (EMERGING CONTAMINANTS)	14
Appendix: Regulatory and Technical Basis of Permit Authorizations	20
Regulatory References	20
Outfall and Receiving Water Information	20
Existing Effluent Quality	21
Permit Requirements	21

Facility: NYCEDC- New Stapleton Waterfront Development- Northern & Southern Phases

SPDES Number: NY0277274

USEPA Non-Major/Class 04 Industrial

Permit Writer: Jennifer Cetrulo
Water Quality Reviewer: NA

Summary of Permit Application

A modified State Pollutant Discharge Elimination System (SPDES) permit has been drafted for the NYCEDC- New Stapleton Waterfront Development– Northern & Southern Phases. The changes to the permit are summarized below:

- Updated permit format, definitions, and general conditions.
- Added a summary of the proposed project under section Summary of Permit Application.
- Added NAICS Code: 237110 (Sewer construction) to permit.
- Updated Address/Location under Facility Name, Address, and Primary Outfall section.
- Added outfall 003 as part of the southern infrastructure phase, in addition to the already permitted outfalls 001(PR-622) & 002(PR-014).
- Updated the permit's water class I to water class SB to reflect the reclassification of the water body. As per the 2019 Beach Act Rulemaking Upper New York Bay was reclassified from water class I to SB.
- Updated Facility Information section and removed table from section.
- Updated Administrative History section.
- Updated the dilution ratio 10:1 used in the previous permit to a 5:1 dilution ratio.
- Changed limit for Copper from 67 ug/L to 34 ug/L for outfalls 001 and 002.
- Changed limit for Lead from 84 ug/L to 42 ug/L for outfalls 001 and 002.
- Changed limit for Zinc from 420 ug/L to 349 ug/L for outfalls 001 and 002.
- Added emerging contaminants Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), all 38 Per-and Polyfluoroalkyl Substances (PFAS), and 1,4-Dioxane (1,4-D) to the permit for monitoring at all PODs.
- Revised the limit for Xylene action level of 5µg/l to individual xylene (o, m+p) isomers for all outfalls, to address the technical error made in 2024 SPDES permit. Per TOGS 1.2.1 (attachment C), the technology based effluent limit-best professional judgment (TBEL-BPJ) limit applicable for facilities with carbon adsorption is 5.0 ug/l for individual Xylene isomers (o, m and p) and not the sum of (o, m and p) Xylene. The TBEL-BPJ is still protective of the water quality standard of the receiving waterbody. Due to the technical difficulty of analyzing the m & p isomers Xylene separately, the permit includes 5.0 ug/l action level for o-Xylene and 10 ug/l for m+p -Xylene.
- Updated the date of the Existing Discharge Data on the *Pollutant Summary Tables* for outfalls 001 and 002 to reflect the date of the DMRs.
- Added justification language for Oil & Grease limit to Pollutant Summary Tables for outfalls 001 and 002.
- Added justification language for Mercury limit to Pollutant Summary Tables for outfalls 001 and 002.
- Updated condition for sampling at influent location only for emerging contaminants.
- Removed footnote "1. Effluent shall not exceed 15% of influent concentration values for TSS."
- Removed footnote "2. This is a Compliance Level. The calculated WBEL is 67."
- Removed footnote "3. This is a Compliance Level. The calculated WBEL is 84."
- Added footnote #2.; regarding the revised limits for Xylenes.
- Added footnote #3.; regarding sampling for PFOS, and PFAS.
- Updated footnotes for *Permit Limits, Levels and Monitoring* Tables.
- Removed from SPDES permit special condition #5. Stormwater Pollution Prevention Plans (SWPPPs) Required for Discharges of Stormwater from Construction Activity to Surface Waters.
- Updated the site overview and dewatering schematic diagrams to reflect the location of the new outfall (003) and its respective treatment system.

Facility: NYCEDC- New Stapleton Waterfront Development- Northern & Southern Phases

SPDES Number: NY0277274

USEPA Non-Major/Class 04 Industrial

Permit Writer: Jennifer Cetrulo
Water Quality Reviewer: NA

 Updated the wastewater type for outfalls 001 & 002 in the table under section Receiving Water information.

- Added Critical Receiving Water Data & Mixing Zone subsection under Receiving Water section.
- Added Anti-Backsliding subsection under Permit Requirements section.
- Added Best Management Practices (BMPs) for Industrial Facilities subsection under Permit Requirements section.
- Added Emerging Contaminant Monitoring subsection under Permit Requirements section.
- Added Special Conditions subsection under Permit Requirements section.

A new State Pollutant Discharge Elimination System (SPDES) permit was issued in 2024 for the discharge of treated groundwater generated from temporary construction dewatering during the construction of storm and sanitary sewers, and water mains along Front Street from Wave Street to Hannah Street as part of the New Stapleton Waterfront Redevelopment Project. The site is part of a redevelopment project undertaken by the New York City Economic Development Corporation (NYCEDC). The redevelopment project proposed a multi-use commercial, residential and recreation area bounded by Hannah Street to the north, the Clifton yard to the south, The Upper New York bay to the east and Front Street to the west. Temporary dewatering is therefore necessary to facilitate groundwater lowering for construction activities to take place in the dry condition.

The construction is projected to occur over a period of approximately two years and anticipated to start in December 2024. The treated dewatering water is to be discharged to the Upper New York Bay via existing NYCDEP outfalls (PR-622 & PR-014). The issued permit includes the reporting requirements for the following parameters: Flow, pH, total suspended solids (TSS), oil and grease, benzene, toluene, ethylbenzene, xylene(o), xylene(m+p), Tetrachloroethylene, MTBE, arsenic, copper, nickel, lead, zinc, mercury, PFOS, and PFAS.

This fact sheet summarizes the information used to determine the effluent limitations (limits) and other conditions contained in the permit. General background information including the regulatory basis for the effluent limitations and other conditions are in the Appendix linked throughout this fact sheet.

Administrative History

10/19/2023 The New York City Economic Development Corporation (NYCEDC) submitted a NY-2C permit application.

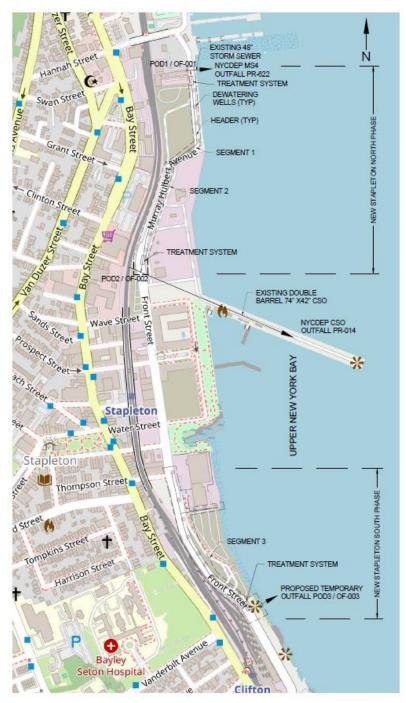
12/30/2024 Current SPDES permit became effective with a five-year term. Permit has an expiration date of 12/29/2029. This permit has formed the basis of this permit modification.

9/4/2024 The New York City Economic Development Corporation (NYCEDC) submitted a request to modify the permit to add outfall POD3 (003) as part of the southern infrastructure phase of the project. The northern phase of the project includes permitted outfalls POD1 (PR-622) & POD2 (PR-014).

The Notice of Complete Application, published in the <u>Environmental Notice Bulletin</u> and newspapers, contains information on the public notice process.

Facility: NYCEDC- New Stapleton Waterfront Development- Northern & Southern Phases

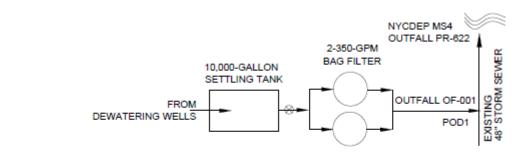
SPDES Number: NY0277274

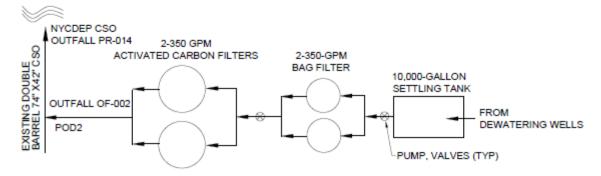

USEPA Non-Major/Class 04 Industrial

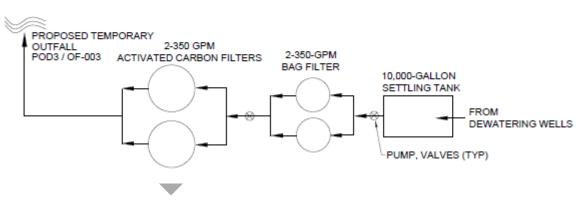
Permit Writer: Jennifer Cetrulo
Water Quality Reviewer: NA

Facility Information

This is an industrial facility (SIC codes 1794 and 1623) that produces effluent. Effluent consists of treated groundwater. The current treatment system was constructed in 2024 and it includes sedimentation, filtration, and carbon adsorption.


Site Overview




Dewatering Plan for New Stapleton Waterfront Development Northern & Southern Phases Staten Island, New York

Facility: NYCEDC- New Stapleton Waterfront Development- Northern & Southern Phases

SPDES Number: NY0277274 Permit Writer: Jennifer Cetrulo USEPA Non-Major/Class 04 Industrial Water Quality Reviewer: NA

Treatment Systems at Each Outfall for New Stapleton Waterfront Development
Northern & Southern Phases
Staten Island, New York

Existing Effluent Quality

The <u>Pollutant Summary Table</u> presents the existing effluent quality and effluent limitations. The existing effluent quality for outfalls 001 and 002 was determined from Discharge Monitoring Reports submitted by the permittee on 1/1/2025 to 5/31/2025, and the existing effluent quality for outfall 003 was determined from the application groundwater sampling results from 5/20/2024 to 6/12/2024.

Facility: NYCEDC- New Stapleton Waterfront Development- Northern & Southern Phases

SPDES Number: NY0277274 Permit Writer: Jennifer Cetrulo USEPA Non-Major/Class 04 Industrial Water Quality Reviewer: NA

Receiving Water Information

The facility proposes to discharge via the following outfalls:

Outfall No.	SIC Code	Wastewater Type	Receiving Water
001 (PR-622)	1794 1623	Treated groundwater	Upper New York Bay, Class SB
002 (PR-014)	1794 1623	Treated groundwater	Upper New York Bay, Class SB
003	1794 1623	Treated groundwater	Upper New York Bay, Class SB

Impaired Waterbody Information

The Upper New York Bay segment (PWL No. 1701-0022) was first listed on the 1998 New York State Section 303(d) List of Impaired/TMDL Waters as impaired due to Dioxin; PCBs and Other Toxics from Historical Data Source. The segment continues to be listed as of the 2020 NYS Section 303(d) List. A TMDL has not been developed to address the impairment and, therefore, there are no applicable waste load allocations (WLAs) for this facility.

Critical Receiving Water Data & Mixing Zone

The treated construction dewatering discharges to the Upper New York Bay, which is a tidal estuary. The Department Guidance TOGS 1.3.1 limits tidal dilution for mixing that is determined to be incomplete to 10:1. The outfall terminus is at the shoreline (bank discharge). Previous Cormix modeling efforts have indicated the effluent mixing with the tidal waterbody is anticipated to be incomplete and will occur along the shoreline rather than the open waters of the estuary. Therefore, a reduced dilution ratio of 5:1 for acute, chronic, and HEW protections is appropriate."

Outfall No.	Acute Dilution Ratio A(A)	Chronic Dilution Ratio A(C)	Human, Aesthetic, Wildlife Dilution Ratio (HEW)	Basis
001	5:1	5:1	5:1	TOGS 1.3.1
002	5:1	5:1	5:1	TOGS 1.3.1
003	5:1	5:1	5:1	TOGS 1.3.1

Critical receiving water data are listed in the <u>Pollutant Summary Table</u> at the end of this fact sheet. <u>Appendix Link</u>

Permit Requirements

The technology based effluent limitations (<u>TBELs</u>), water quality-based effluent limitations (<u>WQBELs</u>), <u>Existing Effluent Quality</u> and a discussion of the selected effluent limitation for each pollutant present in the discharge are provided in the <u>Pollutant Summary Table</u>.

Appendix Link

Anti-backsliding

The modified permit includes new limits for copper, lead, zinc and xylene (m+p) isomer; which provides more stringent limiting values than the previously issued permit. The limitations contained in the permit are at least as stringent as the previous permit limits and there are no instances of backsliding. Appendix Link

Facility: NYCEDC- New Stapleton Waterfront Development- Northern & Southern Phases

SPDES Number: NY0277274 Permit Writer: Jennifer Cetrulo USEPA Non-Major/Class 04 Industrial Water Quality Reviewer: NA

Antidegradation

The permit contains effluent limitations which ensure that the best usages of the receiving waters will be maintained. The Notice of Complete Application published in the Environmental Notice Bulletin contains information on the State Environmental Quality Review (SEQR)¹ determination. Appendix Link

Discharge Notification Act Requirements

In accordance with the Discharge Notification Act (ECL 17-0815-a), the permittee is required to post a sign at each point of wastewater discharge to surface waters, unless a waiver is obtained. This requirement is new.

Additionally, the permit contains a requirement to make the DMR sampling data available to the public upon request. This requirement is new.

Best Management Practices (BMPs) for Industrial Facilities

In accordance with 6 NYCRR 750-1.14(f) and 40 CFR 122.44(k), the permittee is required to develop and implement a BMP plan that prevents, or minimizes the potential for, the release of toxic or hazardous pollutants to state waters. The BMP plan requires annual review by the permittee.

Emerging Contaminant Monitoring

Emerging Contaminants, such as Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), all 38 Per-and Polyfluoroalkyl Substances (PFAS), and 1,4-Dioxane (1,4-D), have been used in a wide variety of consumer and industrial product as well as in manufacturing processes for decades. These contaminants do not break down easily, therefore their presence in wastewater can remain a concern for years following their discontinued use. As the science surrounding these contaminants is still evolving, additional monitoring is needed to better understand potential sources and background levels. For more information on emerging contaminants, please see the DEC Division of Water web page: Emerging Contaminants In NY's Waters - NYSDEC.

Pursuant to 6 NYCRR Part 750-1.13(a), the permit includes a monitoring requirement for Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), all 38 Per-and Polyfluoroalkyl Substances (PFAS), and 1,4-Dioxane (1,4-D), to evaluate the influent and effluent discharge levels. This monitoring program is consistent with guidance released in EPA guidance memos dated April 28, 2022, and December 5, 2022.

Special Conditions

The permittee shall submit to the Department a letter requesting for permit discontinuance upon completion of the dewatering activities.

_

¹ As prescribed by 6 NYCRR Part 617

Permittee: New York City Economic Development Corporation (NYCEDC) Date: August 22, 2025 v.1.25 Facility: NYCEDC- New Stapleton Waterfront Development—Northern & Southern Phases

SPDES Number: NY0277274 Permit Writer: Jennifer Cetrulo USEPA Non-Major/Class 04 Industrial Water Quality Reviewer: NA

OUTFALL AND RECEIVING WATER SUMMARY TABLE

					Water Index No. /	Major /					Critical	Dil	ution R	atio
Outfall	Latitude	Longitude	Receiving Water Name	Water Class	Priority Waterbody Listing (PWL) No.	Sub Basin	Hardness (mg/l)	1Q10 (MGD)	7Q10 (MGD)	30Q10 (MGD)	Effluent Flow (MGD)	A(A)	A(C)	HEW
001 PR-622	40° 38' 06" N	74° 04' 23" W	Upper New York Bay	SB	(MW1.3) UB	17/01	-	-	-	-	0.69	5 :1	5 :1	5 :1
002 PR-014	40° 37' 51" N	74° 04' 23" W	Upper New York Bay	SB	(MW1.3) UB	17/01		-	-	-	1.01	5 :1	5 :1	5 :1
003	40° 37' 24" N	74° 04' 16" W	Upper New York Bay	SB	(MW1.3) UB	17/01		-	-	-	1.01	5 :1	5 :1	5 :1

POLLUTANT SUMMARY TABLE

Outfall 001 (PR-622)

	001	Description	of Was	tewater: T	reated groun	dwater									
Outfall #		Type of Tre	atment:	Settling											
			Exist	ing Discha	rge Data		ΓBELs		Wa	ter Quality	Data & W	QBELs			Dania fan
Effluent Parameter	Units	Averaging Period	Permit Limit	Existing Effluent Quality	# of Data Points Detects / Non- Detects	Limit	Basis	Ambient Bkgd. Conc.	Projected Instream Conc.	WQ Std. or GV	WQ Type	Calc. WQBEL	Basis for WQBEL	ML	Basis for Permit Requirement
reviewed for de	evelopme	nt of the WQ	BELs. Th	ne standar	d and WQBE	L shown be	ed from Discharg elow represent th 1.2.1 Att.C, for ca	e most stri	ingent.		•		able water	quality	v standards were
Flow Rate	MGD	Daily Max	Monitor	PR-622 Actual Average	-	0.69	Design Flow	Narrativ		tions that w neir best usa		he waters for	<u>703.2</u>	-	Monitor
	Consiste	ent with 40CF	R Part 1	33.102 an	d TOGS 1.3.	3, a monthly	y average flow lir	nitation eq	ual to the a	verage daily	/ design c	apacity of the t	reatment p	lant is	s specified.
рН	SU	Minimum	6.0	- Actual Min	0/0	6.0	TOOC 4 2 4			0.5.0.5	Danas	05.05	700.0		TDEL
		Maximum	9.0	- Actual Max	2/0	9.0	TOGS 1.2.1	-	-	6.5 – 8.5	Range	6.5 - 8.5	703.3	-	TBEL
							ent technology lis .3, the normal ra								al to the TBEL is

Outfall #	001	Description	of Was	tewater: T	reated grour	ndwater									
Outrail #	PR-622	Type of Tre	eatment:	Settling											
			Exist	ing Discha	rge Data	-	ΓBELs		Wa	ter Quality	Data & W	QBELs			Basis for
Effluent Parameter	Units	Averaging Period	Permit Limit	Existing Effluent Quality	# of Data Points Detects / Non- Detects	Limit	Basis	Ambient Bkgd. Conc.	Projected Instream Conc.	WQ Std. or GV	WQ Type	Calc. WQBEL	Basis for WQBEL	ML	Permit Requirement
Total Suspended Solids (TSS)	mg/L	Monthly Avg	20	-	-	20	TOGS 1.2.1	-	wastes	s or other w	astes that	e, industrial will cause for their best	703.2		TBEL
		Daily Max	40	-	0/0	40	TOGS 1.2.1				ages.				
					ect the availa ective of wate		ent technology lis andards.	ted in Atta	chment C.	Given the a	vailable di	lution, an efflue	ent limitation	n equ	al to the TBEL,
Oil & Grease	mg/L	Monthly	15	-	0/0	15	TOGS 1.2.1	X	industrial		ther waste	ele to sewage, es, nor visible rease.	703.2		TBEL
on a Ground							r pollutants such visible oil film no			department	has estab	lished that the	Oil & Grea	ase TB	EL limit of 15
	ng/L	Daily Max	50	-	0/0	50	TOGS 1.3.10	-	-	0.7	H(FC)	-	<u>703.5</u>	-	TOGS 1.3.10
Total Mercury	Consiste	ent with TOG	S 1.3.10	Mercury –	SPDES Per	mitting & M	ultiple Discharge	Variance.							
Additional Pol	llutants [Detected													
	ug/L	Daily Max	67	-	0/0	1300/610	TOGS 1.2.1	-	-	5.6(c); 7.9(a)	A(C); A(A)	33.74 (Total)	<u>703.5</u>	-	WQBEL
Total Copper	defined i dilution r with the	n 40 CFR pa atio, and an EPA Docum	rt 136. A assumed ent 823-l	default dilu I negligible 3-96-007.	ution of 5:1 per upstream ar	er TOGS 1.3 mbient cond vith TOGS 1	mitations, standa 3.1 was used to c entration. A meta I.2.1, TBELs refl	alculate ef als translat	fluent limits or of 1.205	. The WQB was applied	EL was cal	lculated from the from the from the from the from the diss	ne chronic solved to to	water tal for	quality standard m in accordance
	ug/L	Daily Max	84	-	0/0	280/130	TOGS 1.2.1	-	-	8.0(c); 204(a)	A(C); A(A)	42.08 (Total)	<u>703.5</u>	-	WQBEL
Total Lead	defined i dilution r with the	n 40 CFR pa atio, and an EPA Docum	rt 136. A assumed ent 823-l	default dilu I negligible 3-96-007.	ution of 5:1 pe upstream ar	er TOGS 1.3 mbient cond vith TOGS 1	mitations, standa 3.1 was used to c entration. A meta I.2.1, TBELs refl	alculate ef als translat	fluent limits or of 1.052	r metals sh . The WQB was applied	nall be exp EL was ca d to conve	lculated from the from the from the from the diss	ne chronic solved to to	water	quality standard, m in accordance

Outfall #	001	Description	n of Was	tewater: T	reated grour	ndwater									
Outrail #	PR-622	Type of Tre	eatment:	Settling											
			Exist	ing Discha	rge Data	٦	TBELs		Wa	ater Quality	Data & W	'QBELs			Dania for
Effluent Parameter	Units	Averaging Period	Permit Limit	Existing Effluent Quality	# of Data Points Detects / Non- Detects	Limit	Basis	Ambient Bkgd. Conc.	Projected Instream Conc.	WQ Std. or GV	WQ Type	Calc. WQBEL	Basis for WQBEL	ML	Basis for Permit Requirement
	ug/L	Daily Max	420	-	0/0	1000/420	TOGS 1.2.1	-		66	A(C)	348.81(Total)	<u>703.5</u>	-	WQBEL
Total Zinc	defined standard accorda	sistent with 40 CFR 122.45 (C) Metals. All permit effluent limitations, standards, or prohibitions for metals shall be expressed in terms of "total recoverable metal" as need in 40 CFR part 136. A default dilution of 10:1 per TOGS 1.3.1 was used to calculate effluent limits. The WQBEL was calculated from the chronic water quality dard, dilution ratio, and an assumed negligible upstream ambient concentration. A metals translator of 1.057 was applied to convert from the dissolved to total form in ordance with the EPA Document 823-B-96-007. Consistent with TOGS 1.2.1, TBELs reflect the available treatment technology listed in Attachment C. Given the available ton, an effluent limitation equal to the WQS is appropriate.													

POLLUTANT SUMMARY TABLE

Outfall 002 (PR-014)

O. 445-11 #	002	Description	of Was	tewater: T	reated grour	dwater									
Outfall #	PR-014	Type of Tre	atment:	Settling, F	iltration, Carl	oon Absorp	tion								
			Exist	ing Discha	rge Data	7	ΓBELs		Wa	ater Quality	Data & Wo	QBELs			Basis for
Effluent Parameter	Units	Averaging Period	Permit Limit	Existing Effluent Quality	# of Data Points Detects / Non- Detects	Limit	Basis	Ambient Bkgd. Conc.	Projected Instream Conc.	WQ Std. or GV	WQ Type	Calc. WQBEL	Basis for WQBEL	ML	Permit Requirement
reviewed for de	General Notes: Existing discharge data from 1/1/2025 to 5/31/2025 was obtained from Discharge Monitoring Reports provided by the permittee. All applicable water quality standards were reviewed for development of the WQBELs. The standard and WQBEL shown below represent the most stringent. The technology based effluent limitations (TBELs) were developed from TOGS 1.2.1 Att.C, for category H (carbon adsorption) treatment systems.														
Flow Rate	MGD	Daily Max	Monitor	PR-014 Actual Average	-	1.01	Design Flow	Narrative their best		ons that wil	l impair the	e waters for	<u>703.2</u>	-	Monitor
	Consiste	ent with 40CF	R Part 1	33.102 and	d TOGS 1.3.	3, a monthly	y average flow lir	nitation eq	ual to the a	verage daily	y design ca	apacity of the	treatment p	olant is	specified.
рН	SU	Minimum	6.0	6.8 Actual Min	3/0	6.0	TOGS 1.2.1			6.5 – 8.5	Danga	65 95	702.2		TBEL
	Maximum 9.0 7.16 Actual Max 2/0 9.0 TOGS 1.2.1 6.5 - 8.5 Range 6.5 - 8.5 703.3 - TBEL														
							ent technology lis 3.3, the normal ra								al to the TBEL is

O.:#fall #	002	Description	of Was	tewater: T	reated grour	dwater											
Outfall #	PR-014	Type of Tre	atment:	Settling, F	iltration, Car	oon Absorp	tion										
			Exist	ing Discha	rge Data	-	ΓBELs		Wa	ter Quality	Data & Wo	QBELs			Dania far		
Effluent Parameter	Units	Averaging Period	Permit Limit	Existing Effluent Quality	# of Data Points Detects / Non- Detects	Limit	Basis	Ambient Bkgd. Conc.	Projected Instream Conc.	WQ Std. or GV	WQ Type	Calc. WQBEL	Basis for WQBEL	ML	Basis for Permit Requirement		
Total Suspended Solids (TSS)	mg/L	Monthly Avg	20	13.9	-	20	TOGS 1.2.1	-	wastes	or other wa	astes that	e, industrial will cause for their best	<u>703.2</u>	-	TBEL		
		Daily Max	40	13.9	3/0	40	TOGS 1.2.1	Licagos									
					ect the availa		ent technology lis andards.	ted in Atta	chment C. (Given the av	vailable di	lution, an efflu	ent limitation	n equ	al to the TBEL,		
Oil & Grease	mg/L	Monthly	15	1.4	3/0	15	TOGS 1.2.1		industrial		ther waste	le to sewage, es, nor visible rease.	703.2		TBEL		
		This limit is based on the statewide effluent guideline with similar pollutants such as oil terminals. The department has established that the Oil & Grease TBEL limit of 15 ng/l is sufficient to meet narrative water quality standards of no visible oil film nor globules of grease															
T	ng/L	Daily Max	50	10.7	2/1	50	TOGS 1.3.10	-	-	0.7	H(FC)	0.7	<u>703.5</u>	-	TOGS 1.3.10		
Total Mercury	Consiste	ent with TOG	S 1.3.10	Mercury –	SPDES Per	mitting & M	ultiple Discharge	Variance.	<u>'</u>	•	,	•					

Additional Po	llutants [Detected													
	ug/L	Daily Max	67	22.2	3/0	1300/610	TOGS 1.2.1	-	-	5.6(c); 7.9(a)	A(C); A(A)	33.74 (Total)	<u>703.5</u>	-	WQBEL
Total Cooper	defined in 40 CFR part 136. A default dilution of 5:1 per TOGS 1.3.1 was used to calculate effluent limits. The WQBEL was calculated from the chronic water quality standard, dilution ratio, and an assumed negligible upstream ambient concentration. A metals translator of 1.205 was applied to convert from the dissolved to total form in accordance with the EPA Document 823-B-96-007. Consistent with TOGS 1.2.1, TBELs reflect the available treatment technology listed in Attachment C. Given the available dilution, an effluent limitation equal to the WQS is appropriate.														
	ug/L	Daily Max	84	27.2	3/0	280/130	TOGS 1.2.1	-	-	8.0(c); 204(a)	A(C); A(A)	42.08 (Total)	<u>703.5</u>	1	WQBEL
Total Lead	defined i dilution r with the	n 40 CFR pa atio, and an	rt 136. A assumed ent 823-	default dilu I negligible B-96-007.	ution of 5:1 p upstream a Consistent v	er TOGS 1.5 mbient cond vith TOGS	mitations, standa 3.1 was used to c centration. A meta I.2.1, TBELs refle	alculate ef als translat	fluent limits or of 1.052	. The WQB was applie	EL was ca d to conve	lculated from t rt from the disa	he chronic solved to to	water tal for	quality standard, m in accordance

	ug/L	Daily Max	420	125	3/0	1000/420	TOGS 1.2.1	-	-	66	A(C)	348.81 (Total)	<u>703.5</u>	-	WQBEL
Total Zinc	defined i dilution r with the	n 40 CFR pa atio, and an	rt 136. A assumed ent 823-l	default dilu I negligible B-96-007.	ution of 5:1 p upstream a Consistent v	er TOGS 1.3 Imbient cond With TOGS 1	mitations, standa 3.1 was used to dentration. A meta 1.2.1, TBELs refle	alculate ef als translat	fluent limits or of 1.057	. The WQB was applie	EL was ca d to conve	lculated from th	e chronic volved to to	water tal for	quality standard, m in accordance
	ug/L	Daily Max	5	0.081	3/0	5	TOGS 1.2.1	-	-	10	H(FC)	-	<u>703.5</u>	-	Action Level
Benzene	area, Bro concenti fuel oils) compone TOGS 1	ooklyn. Volat ations in gas . Since many ents. To ensu	ile organ soline and petroleu ure that o ent, the cent,	ic compoud light distium spills in contaminar carbon ads	nds (VOCs) llate product volve gasoli its may not b corption trea	such as being su	commercial gas nzene, toluene, el fuel). BTEX co fuel, the State re ring the dewateriss can meet 5 ughe WQS.	ethylbenz ncentratio gulates pe ng operati	ene, and x ns typically etroleum rel ons, reporti	ylene com decrease i ated contar ng requirer	pounds (E n the heav minants by nents for E	BTEX) are normal rier grades of persenting limits of BTEX has been	nally found etroleum d n the indiv added in t	at relatistillate idual he dra	atively high e products (e.g., BTEX aft permit. Per
	ug/L	Daily Max	5	0.059	3/0	5	TOGS 1.2.1	·	-	6,000	H(FC)	-	<u>703.5</u>	-	Action Level
Toluene	concentifuel oils) compone TOGS 1 dilution,	ations in gas . Since many ents. To ensu .2.1 Attachman effluent lin	oline and petrolet our that of ent, the o	d light disti um spills in ontaminar carbon ads	llate product volve gasoli its may not b orption treat e TBEL is pr	ts (e.g., dies ne or diesel be drawn du tment proce		ncentratio gulates pe ng operati	ns typically etroleum rel ons, reporti	decrease i ated contar ng requirer enzene, etl	n the heav minants by nents for E nylene and	rier grades of per setting limits of BTEX has been	etroleum d n the indiv added in t	istillat idual l he dra	e products (e.g., BTEX aft permit. Per
	ug/L	Daily Max	5	0.031	3/0	5	TOGS 1.2.1	-	-	5	H(WS)	-	1.1.1	-	Action Level
Ethylbenzene	area, Br concenti fuel oils) To ensu Attachm	ooklyn. Volat ations in gas . Since many re that conta	tile orgar soline and petroleu minants on adsor	nic compound light distim spills inversely may not be partion treat	unds (VOCs llate product rolve gasolin e drawn dur ment proces	s) such as be ts (e.g., dies ne or diesel fring the dew ss can meet	t commercial ga- penzene, toluendel fuel). BTEX co- uel, the State regulatering operation 5 ug/l limit for incommercial	e, ethylbe incentratio ulates peti is, reportir	nzene, and ns typically oleum relating requirem	d xylene c decrease i ed contami nents for Bi ylene and i	ompound n the heav nants by s ΓEX has b ndividual	s (BTEX) are noterior grades of potenting limits on to een added in the	normally for etroleum d he individu ne draft pe . Given the	ound a listillat ual BT ermit.	at relatively high e products (e.g., EX components. Per TOGS 1.2.1
	ug/L	Daily Max	5	0.08	3/0	5	TOGS 1.2.1	-	-	19(c); 170(a)	A(C); A(A)	-	TOGS 1.1.1	-	Action Level
Xylene(o)	area, Broconcentifuel oils) componentifogs 1 has been	ooklyn. Volat ations in gas . Since many ents. To ensu .2.1 Attachmen changed fro	ile organ soline and petroleu ure that o ent, the community total or total	ic compour dight distium spills in contaminar carbon adskylene to ir	nds (VOCs) Ilate product volve gasoli its may not b corption treat ndividual xyle	such as beits (e.g., dies ne or diesel pe drawn du tment procesene isomers	commercial gas nzene, toluene, el fuel). BTEX co fuel, the State re ring the dewateriss can meet 5 ug. Due to the teche available dilution	ethylbenz incentratio gulates peng operati I limit for inical diffic	ene, and x ns typically etroleum rel ons, reporti individual B ulty of analy	urces of per ylene com decrease i ated contain ng requirer enzene, ett /zing the m	pounds (E) In the heaveninants by Innents for E Innylene and & p isome	BTEX) are normalier grades of persetting limits of BTEX has been a individual Xylers xylene sepa	nd groundy nally found etroleum d n the indiv added in t ene isomer rately, the	at relativistillate in the drawn at the draw	atively high e products (e.g., BTEX aft permit. Per e xylene limit

	ug/L	Daily Max	5	0.08	3/0	10	TOGS 1.2.1	-	-	19(c); 170(a)	A(C); A(A)	-	TOGS 1.1.1	-	Action Level
Xylene(m+p)	area, Br concente fuel oils) To ensu Attachm from total	ooklyn. Vola rations in gas . Since many re that conta ent, the carb al xylene to i	ttile organ soline and petroleuminants on adsor ndividual	nic compo d light disti Im spills inv may not b ption treatr xylene iso	unds (VOCs llate product volve gasoling e drawn dur ment process mers. Due to	s) such as the side of diesels of diesels of diesels of diesels of the dewn of the technical such as the techn	penzene, toluend sel fuel). BTEX co fuel, the State regolatering operation of ug/I limit for individuals.	e, ethylbe oncentratio ulates peti ns, reportir vidual Ben nalyzing th	enzene, and ns typically roleum relating requirem zene, ethyle e m & p iso	d xylene c decrease i ted contami nents for B ene and ind omers xylen	ompounds n the heav nants by se EX has be ividual Xyle e separate	s (BTEX) are ier grades of petting limits on een added in tene isomers. The	normally for etroleum of the individu he draft po he xylene l	ound a distillat ual BT ermit. imit ha	ter in the project at relatively high te products (e.g., 'EX components. Per TOGS 1.2.1 as been changed imit for o-Xylene
Tetrachloroet	ug/L	Daily Max	10	0.054	3/0	10 -50	TOGS 1.2.1	-		-	-	-	-	-	Action Level
		SS 1.2.1 Atta SEL is proted			adsorption t	reatment pr	ocess can meet	10 ug/l lim	t for Tetrac	hloroethyle	ne. Given t	he available di	lution, an e	effluen	t limitation equal
	ug/L	Daily Max	Monitor	0.2	3/0	50	TOGS 1.2.1	-	-	-	-	-	-	-	Action Level
МТВЕ	is protec		/QS. Hov	vever, if the	e action leve	l is exceede	rocess can meet ed, the additional								

POLLUTANT SUMMARY TABLE

Outfall 003

0(-11.#		Description	of Was	tewater: T	reated grour	ndwater									
Outfall #	003	Type of Tre	ype of Treatment: Settling, Filtration, Carbon Absorption												
			Untreated Groundwater Samples			TBELs			Wa			Basis for			
Effluent Parameter	Units		Permit Limit	Untreated groundwa ter	# of Data Points Detects / Non- Detects	Limit	Basis	Ambient Bkgd. Conc.	Projected Instream Conc.	WQ Std. or GV	WQ Type	Calc. WQBEL	Basis for WQBEL	ML	Permit Requirement
General Notes: Existing discharge data from 5/20/2024 to 6/12/2024 was obtained from the application provided by the permittee. All applicable water quality standards were reviewed for development of the WQBELs. The standard and WQBEL shown below represent the most stringent. The technology based effluent limitations (TBELs) were developed from TOGS 1.2.1 Att.C, for category H (carbon adsorption) treatment systems.															
Flow Rate	MGD	Daily Max	-	003 Actual Average	-	1.01	Design Flow		: No alterati			e waters for	703.2	-	Monitor
	Consiste	ent with 40CF	R Part 1	33.102 an	d TOGS 1.3.	3, a monthl	y average flow lir	mitation ed	ual to the a	verage dail	y design c	apacity of the	treatment p	olant is	s specified.
рН	SU	Minimum	-	6.8 Actual Min	4/0	7.5					Bongo	6.5 - 8.5	702.2		TBEL
		Maximum	-	7.5 Actual Max	4/0						Range	0.5 - 6.5	703.3	-	IDEL
	Consistent with TOGS 1.2.1, TBELs reflect the available treatment technology listed in Attachment C. Given the available dilution, an effluent limitation equal to the TBEL is protective of the WQS. Additionally, consistent with NYCRR 703.3, the normal range shall not be extended by more than one-tenth (0.1) of a pH unit.														

Outfall #	003	Description	of Was	tewater: T	reated grour	ndwater									
Outrail #	003	Type of Tre	atment:	Settling, F	iltration, Car	bon Absorp	tion								
	Units		Untreated Groundwater Samples			-	ГВELs	Water Quality Data & WQBELs							Basis for
Effluent Parameter		Averaging Period	Permit Limit	Untreated groundwa ter	# of Data Points Detects / Non- Detects	Limit	Basis	Ambient Bkgd. Conc.	Projected Instream Conc.	WQ Std. or GV	WQ Type	Calc. WQBEL	Basis for WQBEL	ML	Permit Requirement
Total Suspended Solids (TSS)	mg/L	Monthly Avg	-	-	0/0	20	TOGS 1.2.1	-	wastes	s or other w	astes that	e, industrial will cause for their best	703.2	-	TBEL
		Daily Max	-	544	4/0	40	TOGS 1.2.1				ages.				
	Consistent with TOGS 1.2.1, TBELs reflect the available treatment technology listed in Attachment C. Given the available dilution, an effluent limitation equal to the TBEL, and consistent with TOGS 1.3.3, is protective of water quality standards.														
Oil & Grease	mg/L	Monthly	-	1.21	2/2	15	TOGS 1.2.1		industrial		other waste	ole to sewage, es, nor visible rease.	<u>703.2</u>	-	TBEL
	This limit is based on the statewide effluent guideline with similar pollutants such as oil terminals. The department has established that the Oil & Grease TBEL limit of 15 mg/l is sufficient to meet narrative water quality standards of no visible oil film nor globules of grease														
	ng/L	Daily Max	-	6.49	4/0	50	TOGS 1.3.10	-	-	0.7	H(FC)	0.7	703.5	-	TOGS 1.3.10
Total Mercury	Consiste	ent with TOG	S 1.3.10	Mercury –	SPDES Per	mitting & M	ultiple Discharge	Variance.	•			•	1		
Additional Dat		Datastad													
Additional Pol	llutants I	Detected		l		_		<u> </u>	ı	<u> </u>		1 1		ı	
	ug/L	Daily Max	-	15.6	4/0	1400/620	TOGS 1.2.1	<u> </u>	-	36(c)	A(C)	180 (Total)	703.5	-	WQBEL
Total Arsenic	Consistent with 40 CFR 122.45 (C) Metals. All permit effluent limitations, standards, or prohibitions for metals shall be expressed in terms of "total recoverable metal" as defined in 40 CFR part 136. A default dilution of 5:1 per TOGS 1.3.1 was used to calculate effluent limits. The WQBEL was calculated from the chronic water quality standard, dilution ratio, and an assumed negligible upstream ambient concentration. A metals translator of 1.000 was applied to convert from the dissolved to total form in accordance with the EPA Document 823-B-96-007. Consistent with TOGS 1.2.1, TBELs reflect the available treatment technology listed in Attachment C. Given the available dilution, an effluent limitation equal to the WQS is appropriate.														
	ug/L	Daily Max	-	84.2	3/1	280/130	TOGS 1.2.1	-	-	8.0(c); 204(a)	A(C); A(A)	42.08 (Total)	703.5	-	WQBEL
Total Lead	defined dilution with the	in 40 CFR pa ratio, and an	rt 136. A assumed ent 823-l	default dilt I negligible 3-96-007.	ution of 5:1 pe upstream ar Consistent w	er TOGS 1.3 mbient cond vith TOGS 1	mitations, standa 3.1 was used to c centration. A meta I.2.1, TBELs refl	alculate ef als translat	fluent limits tor of 1.052	. The WQB was applied	EL was ca d to conve	lculated from the trom the diss	ne chronic solved to to	water tal for	quality standard, m in accordance

Facility: NYCEDC- New Stapleton Waterfront Development- Northern & Southern Phases

SPDES Number: NY0277274 Permit Writer: Jennifer Cetrulo USEPA Non-Major/Class 04 Industrial Water Quality Reviewer: NA

Outfall #	003	Description	of Was	tewater: T	reated groun	dwater									
Outfall #	003	Type of Tre	be of Treatment: Settling, Filtration, Carbon Absorption												
				eated Grou Sample			ΓBELs		Wa	ter Quality	Data & W	QBELs			Basis for
Effluent Parameter	Units	Averaging Period	Permit	Untreated groundwa ter	# of Data Points Detects / Non- Detects	Limit	Limit Basis		Projected Instream Conc.	WQ Std. or GV	WQ Type	Calc. WQBEL	Basis for WQBEL	ML	Permit Requirement
	ug/L	Daily Max	-	84.5	4/0	4/0 550/370 TOGS 1.2.1 - 8.2(c); A(C); A(C); A(A) 41.41(Total) 703.5 -								WQBEL	
	Consistent with 40 CFR 122.45 (C) Metals. All permit effluent limitations, standards, or prohibitions for metals shall be expressed in terms of "total recoverable metal" as														

dilution ratio, and an assumed negligible upstream ambient concentration. A metals translator of 1.010 was applied to convert from the dissolved to total form in accordance with the EPA Document 823-B-96-007. Consistent with TOGS 1.2.1, TBELs reflect the available treatment technology listed in Attachment C. Given the available dilution,

POLLUTANT SUMMARY TABLE

Outfall 001(PR-622), 002(PR-014), 003 [EMERGING CONTAMINANTS]

an effluent limitation equal to the WQS is appropriate.

Emerging Contaminants: O	utfall #	001 (PR-62	22), 002 (P	R-014), 00	3										
	Units		Existing Discharge Data			ТВІ	ELs	Water Quality Data & WQBELs							
Effluent Parameter		Averaging Period	Permit Limit	Existing Effluent Quality	# of Data Points Detects / Non- Detects	Limit	Basis	Ambient Bkgd. Conc.	Projected Instream Conc.	WQ Std. or GV	WQ Type	Calc. WQBEL	Basis	ML	Basis for Permit Requirement
	lotes: See Emerging Contaminant Monitoring section above. Effluent samples were analyzed for Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), all 38 Per-and olyfluoroalkyl Substances (PFAS), and 1,4-Dioxane (1,4-D).														
Perfluorooctanoic Acid (PFOA) ¹	ng/L	Daily Max	•	•	0/0	-	-	-	-	-	-	-	-	-	Monitor
Perfluorooctanesulfonic Acid (PFOS) ¹	ng/L	Daily Max	-	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
Perfluoro-butanoic Acid (PFBA) ¹	ng/L	Daily Max	•	-	0/0	-	-	•	-	-	-	-	-	-	Monitor
Perfluoro-pentanoic Acid (PFPeA) ¹	ng/L	Daily Max	•	-	0/0		-	•	-	-	-	-	-	-	Monitor
Perfluoro-hexanoic Acid (PFHxA) ¹	ng/L	Daily Max	-	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
Perfluoro-heptanoic Acid (PFHpA) ¹	ng/L	Daily Max	-	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
Perfluoro-nonanoic Acid (PFNA) ¹	ng/L	Daily Max	-	-	0/0	-	-	-		-	-		-	-	Monitor

Water Quality Reviewer: NA

		1													1
Perfluoro-decanoic Acid (PFDA) ¹	ng/L	Daily Max		-	0/0	-	-	-	-	-	-	-	-	-	Monitor
Perfluoro-undecanoic Acid (PFUnA) ¹	ng/L	Daily Max	-	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
Perfluoro-dodecanoic Acid (PFDoA) ¹	ng/L	Daily Max	-	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
Perfluoro-tridecanoic Acid (PFTriA) ¹	ng/L	Daily Max	-	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
Perfluoro-tetradecanoic Acid (PFTeA) ¹	ng/L	Daily Max	-	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
Perfluoro-butanesulfonic Acid (PFBS) ¹	ng/L	Daily Max	1	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
Perfluoro-pentanesulfonic Acid (PFPeS) ¹	ng/L	Daily Max	-	-	0/0	-	-	-		-	-	-	-	-	Monitor
Perfluoro-hexanesulfonic Acid (PFHxS) ¹	ng/L	Daily Max	-	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
Perfluoro-heptanesulfonic Acid (PFHpS) ¹	ng/L	Daily Max	-	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
Perfluoro-nonanesulfonic Acid (PFNS) ¹	ng/L	Daily Max	-	-	0/0	-		-	-	-	-	-	-	-	Monitor
Perfluoro-decanesulfonic Acid (PFDS) ¹	ng/L	Daily Max	-	-	0/0				-	-	-	-	-	-	Monitor
Perfluoro-dodecane-sulfonic Acid (PFDoS) ¹	ng/L	Daily Max	-	-	0/0			-	-	-	-	-	-	-	Monitor
Perfluoro-octane- sulfonamide (FOSA) ¹	ng/L	Daily Max	-	-	0/0			-	-	-	-	-	-	-	Monitor
N-methyl Perfluoro- octanesulfon-amidoacetic Acid (NMeFOSAA) ¹	ng/L	Daily Max	ı	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
N-ethyl Perfluoro- octanesulfon-amidoacetic Acid (NEtFOSAA) ¹	ng/L	Daily Max	1	·	0/0	-	-	-	-	-	-	-	-	-	Monitor
4:2 Fluorotelomer Sulfonic Acid (FTS) ¹	ng/L	Daily Max	-	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
6:2 Fluorotelomer Sulfonic Acid (FTS) ¹	ng/L	Daily Max	-	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
8:2 Fluorotelomer Sulfonic Acid (FTS) ¹	ng/L	Daily Max	-	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
N-ethyl Perfluoro- octanesulfon-amide (NEtFOSA) ¹	ng/L	Daily Max	-	-	0/0	-	-	-	-	-	-	-	-	-	Monitor
N-methyl Perfluoro- octanesulfon-amide (NMeFOSA) ¹	ng/L	Daily Max	-	-	0/0	-	-	-	-	-	-	-	-	-	Monitor

Facility: NYCEDC- New Stapleton Waterfront Development- Northern & Southern Phases

SPDES Number: NY0277274 Permit Writer: Jennifer Cetrulo USEPA Non-Major/Class 04 Industrial Water Quality Reviewer: NA

N-methyl Perfluorooctanesulfon-amidoethanol Daily Max 0/0 ng/L Monitor (NMeFOSE)1 N-ethyl Perfluorooctanesulfon-amidoethanol Daily Max 0/0 ng/L Monitor (NEtFOSE)1 9-Chlorohexadeca-fluoro-3-Daily Max oxanonane-1-sulfonic Acid ng/L 0/0 Monitor (9CI-PF3ONS)1 Hexafluoro-propylene Oxide Dimer Acid (HFPO-DA or ng/L Daily Max 0/0 Monitor GenX)1 11-Chloroeicosafluoro-3-Daily Max oxaundecane-1-sulfonic ng/L 0/0 Monitor Acid (11CI-PF3OUdS)1 4,8-Dioxa-3Hperfluorononanoic Acid ng/L Daily Max 0/0 Monitor (ADONA)1 3-Perfluoropropyl Propanoic ng/L Daily Max 0/0 Monitor Acid (3:3 FTCA)1 2H,2H,3H,3H-Perfluoro-Daily Max 0/0 ng/L Monitor octanoic Acid (5:3 FTCA)1 3-Perfluoroheptyl Propanoic ng/L Daily Max 0/0 Monitor Acid (7:3 FTCA)1 Nonafluoro-3,6-0/0 dioxaheptanoic Acid Daily Max ng/L Monitor (NFDHA)1 Perfluoro-4-methoxy-0/0 Daily Max ng/L Monitor butanoic Acid (PFMBA)1 Perfluoro-3-methoxy-0/0 ng/L Daily Max Monitor propanoic Acid (PFMPA)1 Perfluoro(2ethoxyethane)sulfonic Acid 0/0 ng/L Daily Max Monitor (PFEESA)1 1.4-Dioxane (1.4-D) 1 na/L Daily Max 0/0 Monitor

¹ Monitoring has been added to support establishment of future standards or TBELs.

Facility: NYCEDC- New Stapleton Waterfront Development- Northern & Southern Phases

SPDES Number: NY0277274 Permit Writer: Jennifer Cetrulo USEPA Non-Major/Class 04 Industrial Water Quality Reviewer: NA

Appendix: Regulatory and Technical Basis of Permit Authorizations

The Appendix is meant to supplement the fact sheet for multiple types of SPDES permits. Portions of this Appendix may not be applicable to this specific permit.

Regulatory References

The provisions of the permit are based largely upon 40 CFR 122 subpart C and 6 NYCRR Part 750 and include monitoring, recording, reporting, and compliance requirements, as well as general conditions applicable to all SPDES permits. Below are the most common citations for the requirements included in SPDES permits:

- Clean Water Act (CWA) 33 section USC 1251 to 1387
- Environmental Conservation Law (ECL) Articles 17 and 70
- Federal Regulations
 - o 40 CFR, Chapter I, subchapters D, N, and O
- State environmental regulations
 - o 6 NYCRR Part 621
 - o 6 NYCRR Part 750
 - o 6 NYCRR Parts 700 704 Best use and other requirements applicable to water classes
 - o 6 NYCRR Parts 800 941 Classification of individual surface waters
- NYSDEC water program policy, referred to as Technical and Operational Guidance Series (TOGS)
- USEPA Office of Water Technical Support Document for Water Quality-based Toxics Control, March 1991, Appendix E

The following is a quick guide to the references used within the fact sheet:

SPDES Permit Requirements	Regulatory Reference
Anti-backsliding	6 NYCRR 750-1.10(c)
Best Management Practices (BMPS) for CSOs	6 NYCRR 750-2.8(a)(2)
Environmental Benefits Permit Strategy (EBPS)	6 NYCRR 750-1.18, NYS ECL 17-0817(4), TOGS 1.2.2 (revised
	January 25,2012)
Exceptions for Type I SSO Outfalls (bypass)	6 NYCRR 750-2.8(b)(2), 40 CFR 122.41
Mercury Multiple Discharge Variance	Division of Water Program Policy 1.3.10
	(DOW 1.3.10)
Mixing Zone and Critical Water Information	TOGS 1.3.1 & Amendments
PCB Minimization Program	40 CFR Part 132 Appendix F Procedure 8, 6 NYCRR 750-1.13(a) and
	750-1.14(f), and TOGS 1.2.1
Pollutant Minimization Program (PMP)	6 NYCRR 750-1.13(a), 750-1.14(f), TOGS 1.2.1
Schedules of Compliance	6 NYCRR 750-1.14
Sewage Pollution Right to Know (SPRTK)	NYS ECL 17-0826-a, 6 NYCRR 750-2.7
State Administrative Procedure Act (SAPA)	State Administrative Procedure Act Section 401(2), 6 NYCRR 621.11(I)
State Environmental Quality Review (SEQR)	6 NYCRR Part 617
USEPA Effluent Limitation Guidelines (ELGs)	40 CFR Parts 405-471
USEPA National CSO Policy	33 USC Section 1342(q)
Whole Effluent Toxicity (WET) Testing	TOGS 1.3.2
General Provisions of a SPDES Permit Department	NYCRR 750-2.1(i)
Request for Additional Information	

Outfall and Receiving Water Information

Impaired Waters

The NYS 303(d) List of Impaired/TMDL Waters identifies waters where specific best usages are not fully supported. The state must consider the development of a Total Maximum Daily Load (TMDL) or other strategy to reduce the input of the specific pollutant(s) that restrict waterbody uses, in order to restore and protect such uses. SPDES permits must include effluent limitations necessary to implement a waste load allocation (WLA) of an EPA-approved TMDL (6 NYCRR 750-1.11(a)(5)(ii)), if applicable. In accordance with 6 NYCRR 750-1.13(a), permittees discharging to waters which are on the list but do not yet have a TMDL developed may be required to perform additional monitoring for the parameters causing the impairment. Accurate monitoring data is needed to determine the existing capabilities of the wastewater treatment plants and to assure that WLAs are allocated equitably.

Facility: NYCEDC- New Stapleton Waterfront Development- Northern & Southern Phases

SPDES Number: NY0277274

USEPA Non-Major/Class 04 Industrial

Permit Writer: Jennifer Cetrulo
Water Quality Reviewer: NA

Existing Effluent Quality

The existing effluent quality is determined from a statistical evaluation of effluent data in accordance with TOGS 1.2.1 and the USEPA Office of Water, <u>Technical Support Document for Water Quality-based Toxics Control</u>, March 1991, Appendix E (TSD). The existing effluent quality is equal to the 95th (monthly average) and 99th (daily maximum) percentiles of the lognormal distribution of existing effluent data. When there are greater than three non-detects, a delta-lognormal distribution is assumed, and delta-lognormal calculations are used to determine the monthly average and daily maximum pollutant concentrations. Statistical calculations are not performed for parameters where there are less than ten data points. If additional data is needed, a monitoring requirement may be specified either through routine monitoring or a short-term high intensity monitoring program. The <u>Pollutant Summary Table</u> identifies the number of sample data points available.

Permit Requirements

Basis for Effluent Limitations

Sections 101, 301, 304, 308, 401, 402, and 405 of the CWA and Titles 5, 7, and 8 of Article 17 ECL, as well as their implementing federal and state regulations, and related guidance, provide the basis for the effluent limitations and other conditions in the permit.

When conducting a full technical review of an existing permit, the previous effluent limitations form the basis for the next permit. Existing effluent quality is evaluated against the existing effluent limitations to determine if these should be continued, revised, or deleted. Generally, existing limitations are continued unless there are changed conditions at the facility, the facility demonstrates an ability to meet more stringent limitations, or in response to updated regulatory requirements. Pollutant monitoring data is also reviewed to determine the presence of additional contaminants that should be included in the permit based on a reasonable potential analysis to cause or contribute to a water quality standards violation.

Anti-backsliding

Anti-backsliding requirements are specified in the CWA sections 402(o) and 303(d)(4), ECL 17-0809, and regulations at 40 CFR 122.44(*I*) and 6 NYCRR 750-1.10(c) and (d). Generally, the relaxation of effluent limitations in permits is prohibited unless one of the specified exceptions applies, which will be cited on a case-by-case basis in this fact sheet. Consistent with current case law² and USEPA interpretation³ anti-backsliding requirements do not apply should a revision to the final effluent limitation take effect before the scheduled date of compliance for that final effluent limitation.

Antidegradation Policy

New York State implements the antidegradation portion of the CWA based upon two documents: (1) Organization and Delegation Memorandum #85-40, "Water Quality Antidegradation Policy" (September 9, 1985); and, (2) TOGS 1.3.9, "Implementation of the NYSDEC Antidegradation Policy – Great Lakes Basin (Supplement to Antidegradation Policy dated September 9, 1985) (undated)." The permit for the facility contains effluent limitations which ensure that the existing best usage of the receiving waters will be maintained. To further support the antidegradation policy, SPDES applications have been reviewed in accordance with the State Environmental Quality Review Act (SEQR) as prescribed by 6 NYCRR Part 617.

Effluent Limitations

In developing a permit, the Department determines the technology-based effluent limitations (TBELs) and then evaluates the water quality expected to result from technology controls to determine if any exceedances of water quality criteria in the receiving water might result. If there is a reasonable potential for exceedances of water quality criteria to occur, water quality-based effluent limitations (WQBELs) are developed. A WQBEL is designed to ensure that the water quality standards of receiving waters are met. In general, the CWA requires that the effluent limitations for a particular pollutant are the more stringent of either the TBEL or WQBEL.

² American Iron and Steel Institute v. Environmental Protection Agency, 115 F.3d 979, 993 n.6 (D.C. Cir. 1997)

³ U.S. EPA, Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic Pollutants for the State of California; 65 Fed. Reg. 31682, 31704 (May 18, 2000); Proposed Water Quality Guidance for the Great Lakes System, 58 Fed. Reg. 20802, 20837 & 20981 (April 16, 1993)

Facility: NYCEDC- New Stapleton Waterfront Development- Northern & Southern Phases

SPDES Number: NY0277274

USEPA Non-Major/Class 04 Industrial

Permit Writer: Jennifer Cetrulo
Water Quality Reviewer: NA

Technology-based Effluent Limitations (TBELs) for Industrial Facilities

A TBEL requires a minimum level of treatment for industrial point sources based on currently available treatment technologies or Best Management Practices (BMPs). CWA sections 301(b) and 402, ECL sections 17-0509, 17-0809 and 17-0811, and 6 NYCRR 750-1.11 require technology-based controls on effluents. TBELs are set based upon an evaluation of New Source Performance Standards (NSPS), Best Available Technology Economically Achievable (BAT), Best Conventional Pollutant Control Technology (BCT), Best Practicable Technology Currently Available (BPT), and Best Professional Judgment (BPJ).

Best Professional Judgement (BPJ)

For substances that are not explicitly limited by regulations, the permit writer is authorized to use BPJ in developing TBELs. Consistent with section 402(a)(1) of the CWA, and NYS ECL section 17-0811, the DEC is authorized to issue a permit containing "any further limitations necessary to ensure compliance with water quality standards adopted pursuant to state law". BPJ limitations may be set on a case-by-case basis using any reasonable method that takes into consideration the criteria set forth in 40 CFR 125.3. Applicable state regulations include 6 NYCRR 750-1.11. The BPJ limitation considers the existing technology present at the facility, the statistically calculated existing effluent quality for that parameter, and any unique or site-specific factors relating to the facility. Technology limitations generally achievable for various treatment technologies are included in TOGS 1.2.1, Attachment C. These limitations may be used for the listed parameters when the technology employed at the facility is listed.

Water Quality-Based Effluent Limitations (WQBELs)

In addition to the TBELs, permits must include additional or more stringent effluent limitations and conditions, including those necessary to protect water quality. CWA sections 101 and 301(b)(1)(C), 40 CFR 122.44(d)(1), and 6 NYCRR Parts 750-1.11 require that permits include limitations for all pollutants or parameters which are or may be discharged at a level which may cause or contribute to an exceedance of any State water quality standard adopted pursuant to NYS ECL 17-0301. Additionally, 6 NYCRR Part 701.1 prohibits the discharge of pollutants that will cause impairment of the best usages of the receiving water as specified by the water classifications at the location of discharge and at other locations that may be affected by such discharge. Water quality standards can be found under 6 NYCRR Parts 700-704. The limitations must be stringent enough to ensure that water quality standards are met at the point of discharge and in downstream waters and must be consistent with any applicable WLA which may be in effect through a TMDL for the receiving water. These and other requirements are summarized in TOGS 1.1.1, 1.3.1, 1.3.2, 1.3.5 and 1.3.6. The DEC considers a mixing zone analysis, critical flows, and reasonable potential analysis when developing a WQBEL.

Mixing Zone Analyses

In accordance with TOGS 1.3.1., the DEC may perform additional analysis of the mixing condition between the effluent and the receiving waterbody. Mixing zone analyses using plume dispersion modeling are conducted in accordance with the following:

"EPA Technical Support Document for Water Quality-Based Toxics Control" (March 1991); EPA Region VIII's "Mixing Zones and Dilution Policy" (December 1994); NYSDEC TOGS 1.3.1, "Total Maximum Daily Loads and Water Quality-Based Effluent Limitations" (July 1996); "CORMIX v11.0" (2019).

Reasonable Potential Analysis (RPA)

The Reasonable Potential Analysis (RPA) is a statistical estimation process, outlined in the 1991 USEPA Technical Support Document for Water Quality-based Toxics Control (TSD), Appendix E. This process uses existing effluent quality data and statistical variation methodology to project the maximum amounts of pollutants that could be discharged by the facility. This projected instream concentration (PIC) is calculated using the appropriate ratio and compared to the water quality standard (WQS). When the RPA process determines the WQS may be exceeded, a WQBEL is required. The procedure for developing WQBELs includes the following steps:

Facility: NYCEDC- New Stapleton Waterfront Development- Northern & Southern Phases

SPDES Number: NY0277274 Permit Writer: Jennifer Cetrulo USEPA Non-Major/Class 04 Industrial Water Quality Reviewer: NA

1) identify the pollutants present in the discharge(s) based upon existing data, sampling data collected by the permittee as part of the permit application or a short-term high intensity monitoring program, or data gathered by the DEC;

- 2) identify water quality criteria applicable to these pollutants;
- 3) determine if WQBELs are necessary (i.e. reasonable potential analysis (RPA)). The RPA will utilize the procedure outlined in Chapter 3.3.2 of EPA's Technical Support Document (TSD). As outlined in the TSD, for parameters with limited effluent data the RPA may include multipliers to account for effluent variability; and,
- 4) calculate WQBELs (if necessary). Factors considered in calculating WQBELs include available dilution of effluent in the receiving water, receiving water chemistry, and other pollutant sources.

The DEC uses modeling tools to estimate the expected concentrations of the pollutant in the receiving water and develop WQBELs. These tools were developed in part using the methodology referenced above. If the estimated concentration of the pollutant in the receiving water is expected to exceed the ambient water quality standard or guidance value (i.e. numeric interpretation of a narrative water quality standard), then there is a reasonable potential that the discharge may cause or contribute to an exceedance of any State water quality standard adopted pursuant to NYS ECL 17-0301. If a TMDL is in place, the facility's WLA for that pollutant is applied as the WQBEL.

For carbonaceous and nitrogenous oxygen demanding pollutants, the DEC uses a model which incorporates the Streeter-Phelps equation. The equation relates the decomposition of inorganic and organic materials along with oxygen reaeration rates to compute the downstream dissolved oxygen concentration for comparison to water quality standards.

The Division of Water has been using the TMDL approach in permit limit development for the control of toxic substances. Since the early 1980's, the loading capacity for specific pollutants has been determined for each drainage basin. Water quality-limiting segments and pollutants have been identified, TMDLs, waste load allocations and load allocations have been developed, and permits with water quality-based effluent limits have been issued. In accordance with TOGS 1.3.1, the Division of Water implements a Toxics Reduction Strategy which is committed to the application of the TMDL process using numeric, pollutant-specific water quality standards through the Watershed Approach. The Watershed Approach accounts for the cumulative effect of multiple discharges of conservative toxic pollutants to ensure water quality standards are met in downstream segments.

Minimum Level of Detection

Pursuant to 40 CFR 122.44(i)(1)(iv) and 6 NYCRR 750-2.5(d), SPDES permits must contain monitoring requirements using sufficiently sensitive test procedures approved under 40 CFR Part 136. A method is "sufficiently sensitive" when the method's minimum level (ML) is at or below the level of the effluent limitation established in the permit for the measured pollutant parameter; or the lowest ML of the analytical methods approved under 40 CFR Part 136. The ML represents the lowest level that can be measured within specified limitations of precision and accuracy during routine laboratory operations on most effluent matrices. When establishing effluent limitations for a specific parameter (based on technology or water quality requirements), it is possible that the calculated limitation will fall below the ML established by the approved analytical method(s). In these instances, the calculated limitation is included in the permit with a compliance level set equal to the ML of the most sensitive method.

Monitoring Requirements

CWA section 308, 40 CFR 122.44(i), 6 NYCRR 750-1.13, and 750-2.5 require that monitoring be included in permits to determine compliance with effluent limitations. Additional effluent monitoring may also be required to gather data to determine if effluent limitations may be required. The permittee is responsible for conducting the monitoring and reporting results on Discharge Monitoring Reports (DMRs). The permit contains the monitoring requirements for the facility. Monitoring frequency is based on the minimum sampling necessary to adequately

Facility: NYCEDC- New Stapleton Waterfront Development- Northern & Southern Phases

SPDES Number: NY0277274 Permit Writer: Jennifer Cetrulo USEPA Non-Major/Class 04 Industrial Water Quality Reviewer: NA

monitor the facility's performance and characterize the nature of the discharge of the monitored flow or pollutant. Variable effluent flows and pollutant levels may be required to be monitored at more frequent intervals than relatively constant effluent flow and pollutant levels (6 NYCRR 750-1.13). For industrial facilities, sampling frequency is based on guidance provided in TOGS 1.2.1. For municipal facilities, sampling frequency is based on guidance provided in TOGS 1.3.3.

